Axiomatic Multi-Platform C

AMPC™ IDE
USER MANUAL

AMPC™ IDE USER MANUAL 1/80

THE USER MANUAL FOR AMPC™ IDE

PART I: INTRODUGCTION. .ttt it s e vt e e et e e e e rae e aae s e s e e e aane e aneaaneans 5
1. INTRODUCTION TO AXIOMATIC MULTI PLATFORM C (AMPC™)...ccvviiieeiinenns 6
1. L WHAT IS AMP O M 2 ittt it e e e st e e et n e e e e an e anneaaneanneans 6
1.2 SYSTEM REQUIREMENT S, ...ttt erre e s aae s en e e nneanneans 6
1.2.1 For Linux OS Platform.....cooeiiiiii i e 6
1.2.2 For Mac OS X Platform....c.coiiiii i e e 6
1.2.3 For Microsoft Windows Platform........cccoiiiiiiiiii e 7

1.3 COMPILATION AND INSTALLATION. ..iiittiii it it eeeeeee e 7
1.3.1 LinuX X86 Platform.....ceeiiie i e 7
1.3.2 Mac OS X Platform...c.ci i e 10
1.3.3 Microsoft Windows Platform........ccooiiiiiiiiii e 11

1.4 RESTRICTIONS AND NOTES. ...ttt i it aae e naes 12
1.5 TRADEMARK INFORMATION. .. utiitiiitiiie it i e nae e e nneeeaes 13
1.6 DISCLAIMER OF WARRANTY 1ttt ittt sttt sie et e st s se e seeneeenesneenes 14
1.7 LIMITATION OF LIABILITY . .tiiiteiitiiiiii i e e sieeseesiteenneeanesnneaaneanneas 14
2. ComponeNnts Of AMP C .. i i e 15
2.1 The User Interface (GUI)....coiiiiiiiiiiiiiic i enee e enneee e 15
2.1.1 EditOr Pan@l....uviiii i e 15
2.1.2 Project Navigator Panel........ccooiiiiiiiiiiii e 16
2.1.3 OULPUL Panel. ... e e 16

B R 1= LU = = 16

B R T 1Yo 1 Y- 17

92 @0] 011 L= o 17
G 20 7= 01U T [=T o P 17

B R U) I = 101 o 1= o P 17
PART II: STARTING/USING AMP C M. .. ittt iiieeaee s s e ranne s naneeaannens 18
3. Working on AMPC™ With GUIL......ciiiiiiiii i e e anneas 19
3.1 Creating an Application Using the GUI..........ccooiiiiiiiii i 19
3.1.1 Creating Project File....cviiiiiiii i i 19
3.1.2 Save Project File. . s 20
3.1.3 Build(Compile) Application.......ccoiiiiiii i i e 20

3.2 Managing Project Files.cviiiii i v e 20
3.2.1 Creating A NeW File....c.coiiiiiiii s e naee s 20
3.2.2 Adding Header File. . ..o i i 20
3.2.3 Opening and Closing of Project......ccciiiiiiiiiiiiiiiiic i 20

3.3 Navigating AM P C . . e 20
3.3, MENUD AN i e 20
LT =T o 21

o [=T o 21

e o =Tt w7 = o 1 22

ST =T=] el B = o 1O P 23

RV LAY 1= o | 24

1o o £=3 1 1= o 1O P 24
SettiNGS-MEBNU. .. e 25

G20 27 1Yo 1 5 Y- 1 25

3.4 Navigating The Editor. ..o e e 29

AMPC™ IDE USER MANUAL 2/80

2] o oY o1 29

4, Creating AppPlications. ..o 30
4.1 Console AppliCatioNS. ...ciiiue i i e e 30
4.2 Calling Java Method From AMPC™ Code.....ccvviiiuiiiiiiiiiiiiieennineenannens 31
4.3 Calling Native C Functions From AMPC™ ... e 33

4.3.1 Some BackgroUund.......cceiiiiiiiiii i i e 33
4.3.2 AN EXaMIPle. . e 33
4.4 GUI-based AppliCations. . ..oiuiiii i i s 36
4.4, 1 AN EXAMIPIE. ittt e 36
4.5 Network-based Applications......ccvviiiii e 37
4.5.1 TCP Client Sample Source Code......cciviiiiiiiiiiiiiiiiii i eaeens 38
4.5.2 TCP Server Sample Source Code......ccvviiiiiiiiiiiiiiiii i i 38
4.6 Database-based Applications.......oovviiiiiiiiii e 39
4.6.1 AN EXAMIPIE. it 40
4.7 Embedding Assembly Code in Your C Code.....ccuviiiiiiiiiiiiiieiiinennineenns 43

A ©e 1 1 0.1 =T o 44
5.1 Using Compiler - GUIL.....coiiiiiiiii i s aae e s e anes 44
5.2 Using Compiler - Console.....cuviiiiiii i e 44

T Y 1 -) G 44
Y7 B T =1 o | 0] o o] o = 45
ST ANC B B T=T 0 T= o Ta 1] o Lol 1= PP 45
5.3 Executing Application - GUIL......coiiiiiiiii i e e eaneeas 45
5.4 Executing Application - CoNSOle. ... ccuiiiiiiiii i 46
o IV | =) 46
SR P B L1~ ol o o) o o 1= 46
5.4.3 DEPENUENCIES. .ttt ittt e 46

6. Differences From Standard C.......coiiiiiiiiiiiii i e 47

6.1 Using the DOUBLE type in AMPC ™ ... i i eaneenaneeeas 47
6.1.1 DOUBLE FUNCHIONS. ..utiiiiiiii i s s e s s s e s s s nnne e s nnnns 47
6.1.2 AN EXaMPle. . i e 48
6.1.3 Passing DOUBLE value to JAVA method.........ccooiiiiiiiiiiiiiiiiens 48

PART III: AMPC™ MOBILE. ...ttt i e eeneens 50

7 AMPC T MODIl . ettt e 51
7.1 System ReqUIrEMENES. ..ot e e e 51
7.2 Installation. . c.coi i 52
7.3 USiNg AMPC™ MODIl@ .uoiiiiii i e 52

7.3.1 Step 1 - Getting Started ..o 53
7.3.2 Step 2 - Create a shortcut and a JARfile...cooiiiiiiiiiiiii i, 54
7.3.3 Step 3 - Create an INF file and package the application into a CAB file
.. 56
7.3.4 Step 4 - Create a setup (.ini) file and install your application on the

(0 YT 60
7.3.5Step 5 - Un-install....o e 61

o I A A Y 1 o O LY o PP 62

8. AMPC™ Header FileS. ..ottt e e e e e ane e eannens 63
8.1 List of AMPC Header Files....covviiiiiiii i eeaneea e 63

9. AMPC™ Standard....c.cviiireiiie i s a e 65
9.1 I/O Functions (Stdio.n) ... e 65

AMPC™ IDE USER MANUAL 3/80

9.2 Character Class Tests Functions (ctype.h)....cooiiiiiiiiiiiiiiie 66
9.3 String Manipulation Functions (string.h).......cccoiiiiiiiii i 66
9.4 Mathematical Functions (math.h) ... 67
9.5 Utility Functions (stdlib.h)...cceviiinii i 68
9.6 Program Diagnostic Function (assert.h).......ccooviiiiiiiiiiiiiiiii e 69
9.7 Variable Argument List Functions (stdarg.h).....cccooiiiiiiiiiiiiiiniciiienn. 69
9.8 Non-Local Jump Functions (setimp.h).....cooiiiiiiiii e 69
9.9 Signal Functions (Signal.n).....cooeiiii e 69
9.10 Time, Date & Other System Related Functions (time.h)..................... 69
9.11 Setting Location Specific Functions (locale.h).......cccooviiiiiiiiiiinnnns 70
9.12 NON ANSI-C FUNCHIONS. ...ttt s s r s s s e s s s nnne e s eans 70
9.13 Additional FEatUres. . ..ot s 70
R Y | o O €] = o] T =P 71
11, AMPC ™ NEEWOIK. ottt e e e r e a e aaeaas 73
12, AMPC T Database. . ittt 74

AMPC™ IDE USER MANUAL 4/80

PART I: INTRODUCTION

1. Introduction to Axiomatic Multi-Platform C (AMPC™)

2. Components of AMPC™

AMPC™ IDE USER MANUAL 5/80

1. INTRODUCTION TO AXIOMATIC MULTI PLATFORM C
(AMPC™)

1.1 WHAT IS AMPC™?

AMPC™ is an Integrated Development Environment (IDE) for the C
programming language, which generates Java byte-code for rapid development
of applications. The resulting application software will be able to run on any JVM
enabled device.

AMPC™ is based upon American National Standards Institute C (ANSI QO),
X3.159-1989. This allows users of AMPC™ to develop software using the
standard C programming language and run the executables on JVM enabled
devices requiring no knowledge of the Java language.

Examples of JVM enabled devices are PDAs, cell-phones, game consoles and
desktop systems.

The Java class file generated by AMPC™ is in full conformance with Sun's Java
Virtual Machine Specification Second Edition (Java 2 Platform)

AMPC™ follows the ANSI C standard, and supports the run-time library for C
applications.

AMPC™ is available for the following platforms:
- Windows on x86 PCs

- Linux OS on x86 PCs

- Mac OS X 10.4 on Macintosh Power PC G4.

1.2 SYSTEM REQUIREMENTS

Before installing AMPC™, please make sure that your computer meets the
following minimum requirements:

1.2.1 For Linux OS Platform

- Intel x86 based processor or compatible.

- 64 megabytes of RAM minimum. It is possible to run the application with less
RAM but this is not advisable. It is recommended to have 256MB of RAM.

- CD-ROM drive (for installation from CDs)
- At least 50MB of hard disk space for installation.

1.2.2 For Mac OS X Platform

- PowerPC based processor. Recommended PowerPC G4 and above

AMPC™ IDE USER MANUAL 6/80

At least 128MB of RAM. Recommended 256MB

CD-ROM Drive

At least 150MB of disk space.

Mac OS X 10.4 Operating System or above.

JRE/J2SDK 1.4 or above.

If you want to use AMPCGUI (build using GTK) you are required to have:
i. X11 for Mac OS X
ii. Xcode tools for Mac OS X

1.2.3 For Microsoft Windows Platform

Intel x86 based processor or compatible.

128 megabytes of RAM minimum. It is possible to run the application with
less RAM but this is not advisable. It is recommended to have 256MB of
RAM.

CD-ROM drive (for installation from CDs)
At least 150MB of hard disk space for installation.

The minimum version of JDK needed for AMPC™ is JDK 1.4.2 and JDK 5.0 is
recommended.

The latest version, JDK 5.0 Update 3 can be downloaded from
https://java.sun.com/j2se/1.5.0/download.jsp. The minimum drive space for
JDK 5.0 installation is about 132 MB.

1.3 COMPILATION AND INSTALLATION

User compilation is not necessary as AMPC™ will be distributed with a binary
installer.

1.3.1 Linux x86 Platform

ampc-linux-1.0.tar.gz file can be downloaded at http://www.axiomsol.com.
Once downloaded, the compressed file will have to be unpacked using the
following commands;

tar or extract ampc-linux-1.0.tar.gz

‘% tar -xvzf ampc-linux-1.0.tar.gz ‘

After extracting all the compressed files, you can start the installation
process.

To install, go to directory ampc-linux-1.0

I% cd ampc-linux-1.0 ‘

AMPC™ IDE USER MANUAL 7/80

http://www.axiomsol.com/

- Then execute the installation program by issuing the command;

% ./install.sh

- To uninstall, execute the following command.

% ./uninstall.sh

- The install script will install the relevant files onto your user's home directory
and set the correct permissions on the files so users can access and run
AMPC™,

- During the installation process, users have to fill in some information that is
required by the system.

- Once the disclaimer as below is displayed, users have to respond to the
question. If you the installation will proceed to the next step.

DISCLAIMER OF WARRANTY

THIS SOFTWARE IS PROVIDED BY AXIOMATIC SOLUTIONS SDN BHD " "AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COMPANY BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

LIMITATION OF LIABILITY

Licensee acknowledges that the Licensed Software may have defects or
deficiencies which cannot or will not be corrected by Axiomatic. Licensee
will hold Axiomatic harmless from any claims based on Licensee's use of
the Licensed Software for any purposes, and from any claims that later
versions or releases of any Licensed Software furnished to Licensee are
incompatible with the Licensed Software provided to Licensee under this
Agreement.

Licensee shall have the sole responsibility to protect adequately and
backup Licensee's data and/or equipment used in connection with the
Licensed Software. Licensee shall not claim against Axiomatic for lost
data, re-run time, inaccurate output, work delays or lost profits
resulting from Licensee' use of the Licensed Software.

To the extent not prohibited by law, in no event will Axiomatic be liable
for any indirect, punitive, special, incidental or consequential damage in
connection with or arising out of this Agreement (including loss of
business, revenue, profits, use, data or other economic advantage),
however it arises, whether for breach or in tort, even if the other party
has been previously advised of the possibility of such damage.

Do you agree? [Yes/No] yes

AMPC™ IDE USER MANUAL 8/80

- After you agree with the disclaimer, then you have to

questions below:

answer all the

Name: <your name>
E-mail: <your email@mail domain.com>
Serial No: <our-serial-number>

License: <our-license-code-number>

Information Details:

Product Name: Axiomatic Multi-Platform C
Platform: <purchased-OS-platform>
Version: <purchased-version-number>
License Type: <purchased-license-type>
Licensed To: <your name>

E-mail: <your email@mail domain.com>

Serial Number: <our-serial-number>

License Key: <our-license-code-number>

- After you have entered all the information,

you will

get the above

information from the system. You have to check the information. If the
information is correct, you have to answer yes, if not you have to quit from

the installation process.

‘Is the above information correct and complete? [Yes/No/Quit] yes ‘

- Upon successful installation, you will get the following message:

Congratulations'!

Thank you for choosing AMPC.

- If you are using KDE, you can access AMPC™ by navigating through START
APPLICATION > DEVELOPMENT > MORE PROGRAMS > AXIOMATIC

MULTI-PLATFORM C

- For first time installation, the shell may not be automatically loaded unless
you re-initialize AMPC's profile script. To initialize the environment, do the

following steps;
- For bash shell:

[)

% source S$HOME/ampc/bin/ampc.sh

- For csh shell:

[o)

% source SHOME/ampc/bin/ampc.csh

AMPC™ IDE USER MANUAL

9/80

Note: All files and packages have been pre-compiled using glibc version 2.3.2
on Intel x86 machine.

1.3.2 Mac OS X Platform

Download ampc-macosx-1.0.pkg.zip file from http://www.axiomsol.com

To get the ampc-macosx-1.0.pkg file, you have to unpack the file ampc-
macosx-1.0.pkg.zip.

To install, use the Finder program and double click on the ampc-macosx-
1.0.pkg installer package. Then, follow the instructions given.

On the License page, read the license agreement. Once you agree with the
license agreement, choose drive/partition destination where you want to
install AMPC™,

You need to enter administrator's name and password before you can
proceed with the installation.

The AMPC™ will be installed in directory /Applications/AMPC on the
chosen drive/partition.

To execute the AMPC™, double click on ampcgui (ampcgui.app).

The ampcgui will install relevant files into your user home directory and set
the correct permissions on the files.

To install license key information, you have to:
- Open the /Applications/AMPC directory (where ampcgui located).
- Double click on the install-license file.

- During installation process, you need to fill in some information. You have
to read term described in License.rtf file and answer yes if you agree on
it.

- Do you agree with the term described in License.rtf or LICENSE file ?
[Yes/No] yes

- Once you answered “yes”, you then have to fill in some information that
had been emailed to you earlier.

Name: <your name>
E-mail: <your email@mail domain.com>

Serial No: <our-serial-number>

License: <our-license-code-number>

- Then the system will prompt you with the details of the information.

Information Details:

Product Name: Axiomatic Multi-Platform C

Platform: <purchased-OS-platform>

Version: <purchased-version-number>

AMPC™ IDE USER MANUAL 10/80

http://www.axiomsol.com/

License Type: <purchased-license-type>
Licensed To: <your name>

E-mail: <your email@mail domain.com>
Serial Number: <our-serial-number>

License Key: <our-license-code-number>

Is the above information is correct and complete? [Yes/No/Quit] yes

- Upon completion of the installation, you will receive the message as
below:

Congratulations!

Thank you for choosing AMPC.

- To Uninstall AMPC™:

- Open a terminal window and change vyour current directory to
/Applications/AMPC directory.

- Execute the uninstall.sh script file. This script will completely remove
AMPC™ from your computer system.

% ./uninstall.sh ‘

- You have to login as an administrator's user before you can completely
remove AMPC™ directory from /Applications directory.

Note: All files and packages have been pre-compiled on MacOS X 10.4 (Tiger),
Macintosh Power PC G4 machine.

1.3.3 Microsoft Windows Platform

- AMPC™ installer can be downloaded from http://www.axiomsol.com. Before
you proceed with the installation, you need to login as an administrator user
in Windows XP.

- Click the AMPC™ installer and it will install all the packages in the specified
directory C:\Program Files\AMPC directory. During the installation, these
are the packages that will be installed:

- Ampcgui IDE

- AMPC™ compiler
- Jasmin

- Cygwin

- To install license key information, you have to go to Start > All Programs
> Axiomatic Multi-Platform C > Install License

- This will execute the install license program and you have to provide few
information. You have to read the terms described in License.rtf file and
answer yes if you agree to it.

AMPC™ IDE USER MANUAL 11/80

Do you agree with the term described in License.rtf or LICENSE file ?
[Yes/No] yes

- Once you answered “yes”, you then have to fill in some information that had
been emailed to you earlier.

Name: <your name>
E-mail: <your email@mail domain.com>
Serial No: <our-serial-number>

License: <our-license-code-number>

- Then the system will prompt you with the details of the information.

Information Details:

Product Name: Axiomatic Multi-Platform C
Platform: <purchased-OS-platform>
Version: <purchased-version-number>
License Type: <purchased-license-type>
Licensed To: <your name>

E-mail: <your email@mail domain.com>
Serial Number: <our-serial-number>

License Key: <our-license-code-number>

Is the above information is correct and complete? [Yes/No/Quit] yes

- Upon completion of the installation, you will receive the message as below:

Congratulations!

Thank you for choosing AMPC.

- When the installation is completed, you need to restart first your computer
before you can start using AMPC™.

- To uninstall AMPC™, open the Start > Control Panel > Add/Remove
Program and choose AMPC™ to remove.

1.4 RESTRICTIONS AND NOTES

1. All scalar data types are 1 word long. They are "char", "short", "int",
"long", "long long", "float", "double", ...

2. JNI (JVM Native Interface) for AMPC is also supported. An example is
given in the directory "ampc_jni".

3. Goto statements across functions or blocks not allowed.

4. fork() followed by exec() functionality is implemented differently. Here's
an example of how to use it:

AMPC™ IDE USER MANUAL 12/80

#include <stdio.h>

main ()

{ char *cmd;

cmd = "1s -1";

INT java("invokestatic _J RunIt/fork and exec", "S", "V", STRI1 (cmd));
}

5. Memory size models for stack and heap are PICO, NANO, MICRO, TINY,
SMALL, MEDIUM, LARGE, and HUGE. They are 0.5 meg, 1 meg, 2 megs, 4
megs, 8 megs, 16 megs, 20 megs, and 32 megs respectively. TINY model
(4 megs) is the default.

6. The JVM limits each function/method to occupy at most 64KB of binary
code space. Any function/method that is bigger than that will be caught
by the JVM and execution is halted.

7. "Bit field" not supported, that is, the colon ":" operator can be used but
ignored by the compiler as it is allocated a word-sized space.

8. It is encouraged that the source file names to have only characters that
are valid C identifier characters. This is to avoid the possibility of the
Jasmin assembler not being able to parse file names used in function calls
(method invocations) due to the existence of non-identifier character(s).

9. Please set the "classpath" when running the "RUN" command (that
invokes the JVM interpreter) using the "-cp" to include the location of the
application being executed followed by the current location, followed by
the location LOCAL_CLASSFILES, and followed by any other location you
wish to include in the classpath. Alternatively, you may set the
environment variable CLASSPATH for this purpose.

Example:

‘%RUN -cp myapps/hello:/usr/local/lib/acc2jvm:. helloworld

1.5 TRADEMARK INFORMATION

© 2007 Axiomatic Solutions Sdn. Bhd,

Valid license from Axiomatic Solutions Sdn. Bhd is required for possession, use,
or copying. Axiomatic Solutions Sdn. Bhd shall be not be liable for technical or
editorial errors or omissions contained herein. The information in this document
is provided "as is" without warranty of any kind and is subject to change
without notice. All other product names mentioned herein may be trademarks
of their respective companies.

AMPC™ IDE USER MANUAL 13/80

1.6 DISCLAIMER OF WARRANTY

This software is provided by Axiomatic Solutions Sdn Bhd "AS IS" and any
expressed or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall the company be liable for any direct, indirect,
incidental, special, exemplary or consequential damages (including but not
limited to, procurement of substitute goods or services, loss of use, data, or
profits; or business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise)
arising in anyway out of the use of this software, even if advised of the
possibility of such damage.

Licensee acknowledges that Licensed Software may contain errors and is not
designed or intended for use in the design, construction, operation or
maintenance of any nuclear facility ("High Risk Activities"). Axiomatic disclaims
any expressed or implied warranties of fitness for such uses. Licensee
represents and warrants to Axiomatic that it will not use, distribute or license
the Licensed Software for High Risk Activities.

1.7 LIMITATION OF LIABILITY

Licensee acknowledges that the Licensed Software may have defects or
deficiencies which cannot or will not be corrected by Axiomatic. Licensee will
hold Axiomatic harmless from any claims based on Licensee's use of the
Licensed Software for any purpose and from any claims that later versions or
releases of any Licensed Software furnished to Licensee are incompatible with
the Licensed Software provide to Licensee under this Agreement.

Licensee shall have the sole responsibility to protect adequately and backup
Licensee's data and/or equipment used in connection with the Licensed
Software. Licensee shall not claim against Axiomatic for lost data, re-run time,
inaccurate output, work delays or lost profits resulting from Licensee's use of
the Licensed Software.

To the extent not prohibited by law, in no event will Axiomatic be liable for any
indirect, punitive, special, incidental or consequential damage in connection
with or arising out of this Agreement (including loss of business, revenues,
profits, use, data or other economic advantage), however it arises, whether for
breach of in tort, even if the other party has been previously advised of the
possibility of such damage.

AMPC™ IDE USER MANUAL 14/80

2. Components of AMPC™

2.1 The User Interface (GUI)

The main GUI of AMPC™ is the Main Window, which will be launched when
AMPC™ is executed. The Main Window is divided into several panels; Menu
bar (at the top), Toolbar, Project Panel, Editor and Output Panel.

[AMPC - KL e -

Eie Edi Pmjeci Seach View Took Setings Hels

DaE: b AR 2O 2 G40
5 W

Ebbasiingl.pg
LHl'.lJ\.'l Filis
testingLh
Ifﬂ.ul\. i Filas
tesringlc

Fike: Lneihed

Figure 2.1

The first two panels, Menu bar and Toolbar, are the main interfaces to the
backend components. In order to interact with the backend components of the
AMPC™, users have to use the items in these two bars. Output from all the
activities will be displayed in the Output Panel, which is located at the bottom of
the Main Window. The Project Navigator Panel, which display files for a project
file, is on the left side of the middle panel. The editor panel is on the right side.

2.1.1 Editor Panel

The editor panel is used for editing source code. The editor’s main features are
syntax styling, error indicators and code completion. The editor uses
proportional fonts, bold and italic. Other than that, the editor uses multiple
foreground and background colors to indicate the differences in the syntax.

The editor also provides editor margin, such as line numbering, and editor guide
such as indentation guide.

AMPC™ IDE USER MANUAL 15/80

2.1.2 Project Navigator Panel

You can manage all the source, header and project files in the Project Navigator
panel. Files displayed in this panel will be arranged in tree form as depicted

below:
= testingl.prj B
-—LH eader Files
testingl.h

—LSuurce Files
testingl.c

Figure 2.2

From this panel also, you can select and open a file by double clicking on the
file.

2.1.3 Output Panel

Output and results of the AMPC™ are displayed in the Output Window. The
output displayed in different foreground colors based on the types of output.
The output window can be set visible or invisible.

2.1.4 Menu Bar

You can interact with the other components of the IDE through the menubar.
The menubar is categorized into several main categories. The items include
FILE, EDIT, PROJECT, SEARCH, VIEW, TOOLS, SETTINGS, and HELP.

AMPC™ IDE USER MANUAL 16/80

2.1.5 Toolbar

Another way that user can interact is through the items placed in the toolbar.
By clicking on the specific item on the toolbar, the system will process the
request. The toolbar can be made visible or invisible. This option can be
accessed through the View item in the Menubar.

2.2 Compiler

The key feature of AMPC™ compiler is that it emits Java bytecode instead of
machine code. It translates C source codes into java byte codes. There are two
ways to use the AMPC™ compiler.

The first one is from the AMPC™ GUI that is available from the Tools menu
item, and select "BUILD”. This will execute the COMPILER and the compiler will
compile the source code files and produce Java bytecode.

The second way is to access it from the console, where you can just type in
COMPILE <filename.c> and it will generate the Java bytecode.

2.3 Debugger

(Will be available in future releases)

Although the Compiler produces the final application, the application may still
crash during execution or may not even run, due to so-called "bugs" in the
code. The bugs inside the codes usually end the execution of a program with
the message "Segmentation fault".

AMPC™ IDE provides users with a tool to watch the internal values of an
application and the execution step by step with setting "breakpoints" in the
code. The debugger stops the execution every time the program comes to a
breakpoint during execution. You can easily watch out for values and the setting
of breakpoints in the code.

2.4 GUI Builder

(Will be available in future releases)

GUI Builder is a rapid application development tool for users to create a new
graphical application. The GUI Builder will create templates and you can add in
your source code to the templates based. The C source code will call Java
Swing/SWT library for graphical applications.

AMPC™ IDE USER MANUAL 17/80

PART II: STARTING/USING AMPC™

3. Working on AMPC™ with GUI

4. Creating Applications

5. Compiler

6. Differences

AMPC™ IDE USER MANUAL 18/80

3. Working on AMPC™ with GUI

With the AMPC™ IDE, you will be able to compile and execute C programs in a
JVM environment.

In case of more than one source files, a new project file has to be created. You
have to name the project file with the same name of the source file that
contains the main function. You can add in as many source files as you like.
To build the application, you invoke the build system from the Tools menu. This
will compile all the files and create the application.

3.1 Creating an Application Using the GUI

3.1.1 Creating Project File

To develop a new application with AMPC™, users have to create the application
skeleton.

To start creating your application, select NEW PROJECT from the Project-menu
A dialog box as below will appear:

___New Project

Project Name

Parent Directory : | /home/userl

X Close o oK

Figure 3.1

Type the project name and click OK. The project file will be created, together
with a project skeleton. The project skeleton includes the project file (.prj),
header file (*.h) and source file (.c).

The project file is the file you have to load to open the project in later sessions.

If you already have header files you want to use, you can choose those files as
well. To build the binary, select BUILD from the Tools-menu or click on the
BUILD button from the toolbar.

You can also test the functions already present by selecting GO from the Tools-
menu.

Note: The name of the source file that contains the main function shall be the
same as the project name, but with different file extension.

AMPC™ IDE USER MANUAL 19/80

3.1.2 Save Project File

Before you build/compile the application that you have created, save the project
file. To save the project file, select the SAVE PROJECT command from the
project-menu.

3.1.3 Build(Compile) Application

After you have created the application with a project file and the related source
code files, you can produce the java byte code of your application by compiling
the application. To compile the application, select BUILD from the Tools-menu
or click on the BUILD button from the toolbar.

3.2 Managing Project Files

3.2.1 Creating A New File

To create a new file, choose NEW from the File-menu or click on the NEW
button from the toolbar. A dialog box will appear, and enter your file hame and
choose whether it is a header file or a source file. After you have entered the
filename the file will be added to your project file.

3.2.2 Adding Header File

To add an existing header file, select ADD HEADER FILE from the Project-
menu. A dialog box will appear, and select the require header file from the
dialog box. The selected file will appear on the Project Navigator Panel.

3.2.3 Opening and Closing of Project

To open your existing project file, selecc OPEN PROJECT from your Project-
menu. A dialog box will appear, and select your project file. After you have
selected your project file, the project file will be displayed in the Project
Navigator Panel. You can choose a file to be displayed in the editor by double
clicking on the file in the Project Navigator Panel.

3.3 Navigating AMPC™

3.3.1 Menubar

Users can interact with other components of the IDE through the menu bar. The
menu bar is divided into several main categories - FILE, EDIT, VIEW,
PROJECT, SETTING, TOOLS and HELP.

AMPC™ IDE USER MANUAL 20/80

File-Menu

This section covers the functions which can be accessed via the File-menu in the
menu bar.

NEW or CTRL+N creates a new file. The file can be created using different
templates. The filename will be given during the saving of the file.

OPEN or CTRL+0O opens a file. The OPEN FILE dialog box will be displayed
and you will be prompted to select a file to be opened.

CLOSE or CTRL+W closes the active file in the editing window.

SAVE or CTRL+S saves a file. This saves the active file in the top editing
window. If the file has not been saved yet, the SAVE FILE AS... dialog will be
opened to let you choose a path and filename for the file to be saved.

SAVE AS from the File-menu saves the current file under a new name. Once
clicked, the SAVE FILE AS... dialog will appear and a new name has to be
given for the file.

To exit AMPC™, click EXIT from the File-menu. If changes are made to any of
the files, you will be asked if these files need to be saved.

Edit-Menu

The Edit menu provides editing functions while editing files. The editing
functions are available via a context-menu in the editor.

UNDO or CTRL+2Z reverts the last editing operation

REDO or CTRL+Y does the last undo step again

CUT or CTRL+X cuts out a selection and copies it to the system clipboard.
COPY or CTRL+C copies a selection to the system clipboard.

PASTE or CTRL+V inserts the clipboard contents at the current cursor position.

INSERT FILE or CTRL+INSERT selects a file and inserts its contents at the
current cursor position.

AMPC™ IDE USER MANUAL 21/80

Project-Menu

The Project-menu provides functions to create and maintain projects. User can
manage all the source, header and project files from within the Project
Navigator Panel. Files displayed in this panel will be arranged in tree form as
depicted below:

“Itestingl.pr fad
Header Files
testingl.h
Source Files

testingl.c

Figure 3.2
From this panel, user can select a file by double clicking on the file and the
selected file will be opened in the editor.

The NEW PROJECT command from the project-menu will invoke the
Application Wizard and allows user to create a new project by choosing
application type.

The OPEN PROJECT command from the project-menu will call up the Open
Project dialog box, where you can choose a project file to be opened. After
selection, the project will be loaded.

The CLOSE PROJECT command from the project-menu will close the current
project.

The SAVE PROJECT command from the project-menu will save the current

AMPC™ IDE USER MANUAL 22/80

project file.

The SAVE AS PROJECT command from the project-menu will invoke the
PROJECT SAVE AS dialog box. Enter the name of the project file. The project
file will be given *.prj extension.

The ADD HEADER FILE TO PROJECT command from the project-menu will
invoke the ADD HEADER FILE TO PROJECT dialog box. Select the required
header file and the file will be added to the project file. You need to save the
project file.

The ADD SOURCE FILE TO PROJECT command from the project-menu will
invoke the ADD SOURCE FILE TO PROJECT dialog. Select the required source
file and the file will be added to the project file. You need to save the project
file.

The DELETE FILE FROM PROJECT command will delete the selected file from
the project file. It is advisable to save the project file after the deletion is
completed.

Search-Menu

The FIND from the Search-menu or CTRL+F will invoke the FIND dialog box
that prompts you to input an expression that user want to find in the current
file. The cursor will go to the location that has the expression that matches the
expression that user has typed.

FIND NEXT or F3 will ask the system to look for the next location that matches
the given expression.

FIND PREVIOUS or SHIFT+F3 will allow the system to look for the previous
location that matches the given expression.

FIND IN FILES... or SHIFT+CTRL+F will invoke the FIND IN FILES dialog.
You will be able to search for an expression from several files. Input the
expression and name of files in the dialog box.

REPLACE.. or CTRL+H will invoke the REPLACE dialog window. Input the
expression that you want to replace and the new expression.

GO TO or CTRL+G will invoke the GO TO dialog window. Type the line humber
and the cursor will go to the specified line number.

TOGGLE BOOKMARK or CTRL+F2 will enable or disable the bookmark at the
current line number in the editor.

AMPC™ IDE USER MANUAL 23/80

NEXT BOOKMARK or F2 will move the cursor to the next bookmark.

PREVIOUS BOOKMARK or SHIFT+F2 will move the cursor to the previous
bookmark.

CLEAR ALL BOOKMARK will clear all the bookmarks.

View-Menu
FULL SCREEN or F11 enables or disables the full screen.

TOOLBAR enables or disables the toolbar.
STATUS BAR enables or disables the status bar.
END OF LINE enables or disables the end of line indicator in the editor.

INDENTATION GUIDES enables or disables the indentation guides in the
editor.

LINE NUMBERS enables or disables the display of line numbers in the editor.
MARGIN will enable or disable margin for the editor.
FOLD MARGIN enables or disables fold margin for the editor.

OUTPUT from the View-menu will enable or disable the output window panel.

Tools-Menu

The Tool-menu allow user to compile and build applications.

To compile source files into *.class files: Select BUILD from the Tools-menu or
press F7.

RUN or press F5 executes an application.

STOP stops the execution of the application.

CLEAR OUTPUT or SHIFT+F5 clears all the messages in the output pane.

AMPC™ IDE USER MANUAL 24/80

SWITCH PANE or CTRL+F6 switches the active panel.

Settings-Menu

From Menu, click setting and choose COMPILER OPTIONS. The Compiler
Options dialog box will appear. There are 4 options available:

- AMPC Memory Model

- AMPC Optimization Model
- Include Path

- Define

3.3.2 Toolbar

Users can interact with the items placed in the toolbar by clicking on the specific
item in the toolbar.

The Toolbar can be made visible or invisible. This option can be accessed in the
View item in the Menu bar.

The toolbar is as depicted below:

DOBERX s hR AQAARXR B A
B5S %5

2 @5

Figure 3.3

b

Figure 3.4

Click the above icon to create a new file.

A dialog box will appear, and users will be prompted to fill in the filename and
select whether the file is a source file or a header file. Then, click OK. The file
can also be created using different templates.

a

Figure 3.5

Click the above icon to open a file.

The OPEN FILE dialog box will be displayed and you will be prompted to select
a file to be opened. The file will be opened in the editor window.

AMPC™ IDE USER MANUAL 25/80

8

Figure 3.6

Click the above icon to save a file.

This saves the active file in the top editing window. If the file has not been
saved yet, the SAVE FILE AS... dialog will be opened to let you choose a path

and filename for the file to be saved.

Figure 3.7

Click the above icon to close an active file.
To close an active file in the editing window.

o

Figure 3.8

Click the above icon to undo the last editing operation. Once clicked, the last

editing operation will be reverted.

Figure 3.9

Click the above icon to redo the last undo step again.

®

Figure 3.10

Click the above icon to cut out a selection and copy it to the system clipboard.

Iy

Figure 3.11

Click the above icon to copy a selection to the system clipboard.

AMPC™ IDE USER MANUAL 26/80

[

Figure 3.12

Click the above icon to insert the clipboard contents at the current cursor
position.

Figure 3.13

Click the above icon to build the project file. All the source files in the project

files will be compiled to *.class files.

Figure 3.14

Click the above icon to execute an application.

Figure 3.15

Click the above icon to stop the execution of the application.

Figure 3.16

Click the above icon to display a Compiler Options dialog box.

!

Figure 3.17

Clicking the above icon will invoke the APPLICATION WIZARD. The
application wizard allows user to create a new project file. User has to type in a
project name. The project file and project directory will be created. A project
tree will be displayed on the project window (in the left panel). Besides the
project file, a skeleton source file and header file will also be created.

AMPC™ IDE USER MANUAL 27/80

@

Figure 3.18

Click the above icon, and the system will call up the OPEN PROJECT dialog
box, where you can choose a project file to be opened. After selection, the
project will be loaded into the project window.

@

Figure 3.19

Click the above icon to save the current project file.

=

Figure 3.20

Click the above icon to close the current project file.

AMPC™ IDE USER MANUAL 28/80

3.4 Navigating The Editor

3.4.1 Shortcut

To use the editor, you should make yourself comfortable with some keyboard

shortcuts that make it easier to position the cursor and edit the file.

Shortcut Keys

Function

Left Arrow

Move one letter to the left

Right Arrow

Move one letter to the right

CTRL + Left Arrow

Move one word to the left

CTRL + Right Arrow

Move one word to the right

Up Arrow Move one line up

Down Arrow Move one line down

Home Move to the beginning of the line
End Move to the end of the line
PageUp Move one page up

PageDown Move one page down

SHIFT+Left Arrow

Move one letter to the left

SHIFT+Right Arrow

Move one letter to the right

CTRL+SHIFT+Left Arrow

Move and select one word to the
left

CTRL+SHIFT+Right Arrow

Move and select one word to the
right

Move to the beginning of the

CTRL+Home current file

CTRL+ENd Move to the end of the current file
SHIFT+PageUp Move and select one page up
SHIFT+PageDown Move and select one page down
INS Enable and disable insert mode
CTRLA4C g(i)gglotahrz selected text to the
CTRL+V Insert the text from the clipboard
CTRL+L Delete current line

CTRL+Z Undo editing step

CTRL+Y Redo the undo step

AMPC™ IDE USER MANUAL

29/80

4. Creating Applications

4.1 Console Applications

To create an application, users have to create a project file first by selecting
NEW PROJECT from Project-Menu. The name of the project file should be the
same with the source file that contains a main function.

Example: To print output of "Hello World".

Create a project file, NEW PROJECT, then enter the project name. Then go to
the source file, and write your source code.

Example:

#include <stdio.h>

main ()

{
printf ("Hello World \n");

Save the source file and the project file. Then compile your application by
selecting BUILD from Tools-Menu. If there is no compilation error, you can
execute the application by selecting RUN from the Tools-Menu.

You can pass arguments to the console applications by passing the two
arguments, which are argc and argv, on the command line. Both parameters
are declared implicitly.

Example:

#include <stdio.h>
main ()

{

int cnt;
printf ("$1 parameters entered \.",argc);
for (cnt = 0; cnt <= argc -1; cnt++)

{

printf ("Parameter %d is %$s\n",cnt, argv[cnt]);

AMPC™ IDE USER MANUAL 30/80

4.2 Calling Java Method From AMPC™ Code

One of the most interesting features of AMPC™ is that it allows you to call java
methods from your C programs. Therefore, you could interface with your
existing or new java methods.

You can get access to java method by using INT_java, FLOAT_java and
DOUBLE_java.

Example:

INT java("invokestatic <class>/<method>", "IISI", "V", varl, var2,
STR1 (var3), varid);

<class> : the java class to you want to refer.

<method> : the java method that you want to access.

"IISI" : is the variable types that you want to pass to the java
method.

The types that you can use are :

Integer -1
String -S
Float -F
Char -C
DOUBLE -D

"V" : the return variable. V stands for void. You can replace V with other types
of variables except Float. If the returned type of the java method is float, you
will have to use Float_java.

Float java("invokestatic <class>/<method>, "IISI", "F", varl, var2,
STR1 (var3), vard);

Restrictions:

You cannot pass object to the java method. Currently, you can only pass 4
strings at a time. You have to use STR1 for the first string, and STR2, STR3
and STR4 respectively.

Example:

INT java("invokestatic <class>/<method>", "IISI", "V", varl, var2,
STR1 (var3), wvard)

var3 is of type string. You have to use STR1l(var3) in the INT_java,
FLOAT_java and DOUBLE_java. If var4 is also of type string, you have to
use STR2(var4).

AMPC™ IDE USER MANUAL 31/80

Example:

{

int done;

done = INT java ("invokestatic Java APP/CreateButton",

object ID, STR1(title), container ID);

void Create Button (int object ID, int container ID, char *title)

"ISI",

nywn
4

The above example, called java method of class Java_APP, that is CreateButton
by passing 3 parameters, which are of types integer, string and integer with a

return type of integer.

In this example, the java method returns an integer value. If the return type of

java method is of type float, you have to use FLOAT_java.

{
float done;

done = FLOAT java ("invokestatic Java APP/CreateButton”,

void Create Button (int object ID, int container ID, char *title)

Example:

DBL1(f2D DOUBLE (45.0)));

printf ("Dval = %D\n", Dval);

"ISI", "E",
object ID, STR1(title), container ID);
}
#include <stdio.h>
cont ()
{
DOUBLE Dval;
Dval = DOUBLE java ("invokestatic java/lang/Math/cos", "D", "D",

The above example shows the usage of DOUBLE_java where the return value
of Java method "cos" is of type DOUBLE. You have to use DBL1(DOUBLE) in
the INT_java, FLOAT_java and DOUBLE_java. Please refer 6.1: Using the

DOUBLE type in AMPC™, for the details of DOUBLE operations.

AMPC™ IDE USER MANUAL

32/80

4.3 Calling Native C Functions From AMPC™

The JVM Native Interface (JNI) is the native programming interface for AMPC™.
This is for the purpose of calling native C functions from AMPC C code.

This is handy since huge amount of code has been written over the years and
are stable enough not to fiddle with, that it would be convenient to just simply
use them by interfacing them from AMPC™. Also, the source code for such
applications might not be available to be ported to AMPC™, and the only way
to use them is by means of JNI.

4.3.1 Some Background

Writing native functions for AMPC™ programs requires several steps:

1.You need to start by writing an AMPC™ program. Create a function that
declares the native function; this program contains the declaration or
signature for the native function. It also includes a main function that calls
the native function.

2.Compile the AMPC™ program that declares the native function and the
main function.

3. Generate a header file for the native function using the utility program
called "javah". Once the header file has been generated what we have is
the formal signature for the native function.

4. Then, write the implementation of the native function in a language such
as C or C++.

5.Now you need to compile the header and implementation files into a
shared library file.

6. Finally, run the AMPC™ program.

4.3.2 An Example

1. First, you need to write the AMPC™ code such as this:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
FILE *fopen () ;

void NATIVE interface (void)
{

_NATIVE prototype (" unix stat", "s", "I");
}

void NATIVE shared library(void)
{

_NATIVE load library("StatLib");
}

int stat(char *file name, struct stat2 *buf)
{ int retval;
FILE * transit file;

AMPC™ IDE USER MANUAL 33/80

retval = INT NATIVE call(" unix stat", "s", "I", STR1(file name)) :;
if ((_transit file = fopen(". transit stat buf.txt", "r")) != NULL)
{ fscanf(transit file, "% X %X

& (buf->st dev),

& (buf->st_ino),
(buf->st mode),
(buf->st nlink),
(buf->st uid),
(buf->st _gid),
(
(
(
(

X %X %$x %x %$x %x %x",

o
o
o

X %X

buf->st rdev),

buf->st size),

buf->st atime),

buf->st mtime),

& (buf->st ctime)) ;
fclose(_transit file);
remove (". transit stat buf.txt");
return (retval) ;

}

else

{ fprintf (stderr, "Error opening file: transit stat buf.txt\n");
exit (1) ;

}

&
&
&
&
&
&
&
&

}

2. The _NATIVE_interface function declaration above provides only the
function signature for "unix_stat" by passing it in the built-in function
_NATIVE_prototype. It does not provide the implementation for the
function. You need to provide the implementation for "unix_stat" in a
separate native language source file.

3. Then, you need to compile the above by typing:

% COMPILE stat.c

which produces the file "stat.class".
4. Then, type:

[)

% javah stat

which results in the generation of the "stat.h" file. In this example the
name "Java_stat__ 1lunix_1stat" is automatically created by "javah" to
be used as the name of the native function in the source file
"unix_stat.c".

5. The _NATIVE_shared_library function is where you load the shared
library by calling the function _NATIVE_load_library. The libStatLib.so
library is created by doing the following:

gcc -shared -I/usr/local/j2sdkl.4.2/include \
-I/usr/local/j2sdkl.4.2/include/linux \

unix stat.c -o libStatLib.so

AMPC™ IDE USER MANUAL 34/80

6. And, this is an example of the "unix_stat.c" code.

#include <jni.h>
#include "./stat.h"
#include <stdio.h>
#include <sys/stat.h>
FILE *fopen();

JNIEXPORT jint JNICALL Java stat 1lunix lstat
(JNIEnv *env, jobject obj, Jjstring file name)
{ char *fname;
FILE * transit file;
struct stat buf;
int retval;

fname = (*env)->GetStringUTFChars (env, file name, 0);
retval = stat (fname, &buf);
if ((_transit file = fopen(". transit stat buf.txt", "w"))!= NULL)

)
{ fprintf(transit file, "3x %x %x %X %X %X %X %X %x %x %x",
(int) buf.st dev,

(int) buf.st ino,
(int) buf.st mode,
(int) buf.st nlink,
(int) buf.st uid,
(int) buf.st gid,
(int) buf.st rdev,
(int) buf.st size,
(int) buf.st atime,
(int) buf.st mtime,
(int) buf.st ctime) ;
fclose(transit file);

}

else

{ fprintf (stderr, "Error opening file: \" transit stat buf.txt\" for
writing\n") ;

exit (1) ;

}

(*env) ->ReleaseStringUTFChars (env, file name, fname);

return (retval) ;

}

7. Finally, write an application that utilizes the above "stat.class" fun

ction

such as the following "file_exists.c" program which checks for the
existence of the text file "abc123.txt" by using the "stat" function which
in turn calls the native function "Java_stat___1unix_1stat" defined in
"unix_stat.c".

8. Here's the program in the file "file_exists.c":

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

void cont ()
{ char *a file = "abcl23.txt";
struct stat2 statBuf;

if (stat(a file, &statBuf))

AMPC™ IDE USER MANUAL 35/80

printf ("Cannot stat file: \"%s\"\n", a file);
else
printf ("File \"%s\" exists\n", a file);

}

main ()
{

cont () ;

}

9. Test the "file_exists" program by typing:

% RUN file exists

4.4 GUI-based Applications

AMPC™ also provides you with GUI libraries. Please refer to AMPC™ Function
Libraries (GUI Libraries - New) for the details of the libraries. Before you
create a GUI-based application, first you have to create a project file for the
application. Then write in your source code in the source file. An example of a

source file is as below.

4.4.1 An Example

This example is to create several button types in a window

#include <stdio.h>
#include <stdlib.h>
#include <gui/gui.h>

AmpcWidget *win;

AmpcWidget *shell;

AmpcWidget *buttonl;

AmpcWidget *button2;

AmpcWidget *btn up, *btn left, *btn right, *btn down;
AmpcWidget *radio, *toggle,*flat;

AmpcImage *image;

void MainCalc ()
{
win = ampc display new() ;
shell = ampc_shell new(win,"Test Button With Image ");

buttonl = ampc button new(shell, AMPC CHECK) ;
ampc_button set bounds (buttonl,10,40,100,30);
ampc_button set text (buttonl, "check box (AMPC CHECK)");

button2 = ampc button new(shell, AMPC PUSH) ;

ampc_button set bounds (button2,10,80,10,10);
ampc_control setSize (buttonz,220,30);
ampc_button set text (button2, "push button (AMPC PUSH)");

btn up = ampc button new (shell, AMPC ARROW) ;
ampc_button set bounds (btn up, 10,120, 30,30);

btn left = ampc button new(shell, AMPC ARROW) ;
ampc_button set bounds (btn left,50,120,30,30);

AMPC™ IDE USER MANUAL

36/80

radio = ampc_button new (shell, AMPC RADIO) ;
ampc_button set bounds(radio,10,160,100,30) ;
ampc_button set text(radio, "AMPC RADIO");

toggle = ampc button new(shell, AMPC TOGGLE) ;
ampc _button set bounds (toggle,10,200,100,30)
ampc_button set text(toggle, "AMPC TOGGLE") ;

’

flat = ampc button new(shell, AMPC FLAT) ;
ampc_button set bounds(flat,10,240,100,30);
ampc button set text(flat, "AMPC FLAT");

image = ampc_graphics image new (shell, "one.gif");
ampc_button set image (buttonl, image);
ampc_shell open (shell);

}

void main ()

{
ampc_init () ;
MainCalc () ;
ampc_main (win, shell);

}

4.5 Network-based Applications

AMPC™ also provides you with Network libraries. Currently, there is only a TCP
protocol libraries available. Please refer to AMPC™ Function Libraries for the
details of the libraries. An example of a source file is as below. This example is

to create an echo client/server application.

4.5.1 TCP Client Sample Source Code

#include <stdio.h>
#include <string.h>
#include <network.h>

main ()
{
int sockID;
char svrname[100];
int svrport;

char msg[] = "A text message";
char msgrcvd([100];

char totalmsg[100];

int msglen;

int bytercvd;

int totalbytercvd = 0;

if ((argc < 1) && (argc > 4))
{

exit (1) ;
}

fprintf (stderr, "Usage: %$s <Query host> <port>\n",

argv[0]);

AMPC™ IDE USER MANUAL

37/80

strcpy (svrname, argv[l]);
svrport = atoi(argv([2]);

printf ("Connected to server...

printf ("\nServer Name: $s\nServer Port: %d\n", svrname, svrport);

sockID=socket (svrname, svrport):;

sending echo string.\n");

msglen = strlen (msg) ;
send (sockID, msg, msglen, CLIENT);
printf ("dbg: After send function.\n");

totalmsg[0]="\0";
while (totalbytercvd < msglen)
{
if ((bytercvd = recv (&sockID, msgrcvd,msglen, CLIENT)) == -1)
{
printf ("Connection close prematurely.\n");
exit (1) ;
}
totalbytercvd += bytercvd;
msgrcvd [msglen] = '\0';
strcat (totalmsg, msgrcvd) ;

}
printf ("Received: %s\n", totalmsg);

socketclose (CLIENT) ;

4.5.2 TCP Server Sample Source Code

#include <stdio.h>
#include <string.h>
#include <network.h>
#define BUFSIZE 32

int main ()
{
int svrport;
int recvmsgsize;
int clntsockID;

char clnthost[32];
int clntport;

char msgrcvd[100];
int msglen = 0;

if((argc < 1) && (argc >1))

{
fprintf (stderr, "Usage: %s <Server port no.>\n", argv[0]);
exit (1) ;

svrport = atoi(argv([1l]):;
printf ("Preparing opening port at %d\n", svrport);

serversocket (svrport) ;

AMPC™ IDE USER MANUAL

38/80

printf ("Listening at port %d\n", svrport);

while (1)
{
if ((clntsockID=accept (clnthost)) == -1)
printf ("Error accepting client\n");
else
printf ("Handling client from %s[sockID=%d]\n", clnthost,
clntsockID) ;
while ((recvmsgsize = recv(&clntsockID, msgrcvd, msglen, SERVER)) !=

-1)
{
send (clntsockID, msgrcvd, msglen, SERVER) ;
}

printf ("Close connection from client %s.\n", clnthost);
socketclose (SERVER) ;
printf ("Closed\n") ;

}
/* NOT REACHED */

4.6 Database-based Applications

AMPC™ also provides the Open Database Connectivity (ODBC) libraries. The
ODBC standard defines the common application programming interface that
allows programs and programmers to communicate with any SQL database
which has an ODBC driver. Refer to AMPC™ Function Libraries for the details of
the libraries.

4.6.1 An Example
Note: This release only supports MySQL database and Linux Platform.

#include <stdio.h>
#include <stdlib.h>
#include <sgl.h>
#include <sglext.h>
#include <sgltypes.h>
#include <odbcinst.h>

int main ()

{
SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;
SQLRETURN rc;

SQLCHAR dataSource[100] =
"Jdbc:mysqgl://localhost/employees";

SQLCHAR errmsg[SQL MAX MESSAGE LENGTH];

SQLCHAR status[10], colName[255];

SQLINTEGER error, nRow ;

SQLSMALLINT mlen, nCol, nIndex, sqglType, scale, nullable, colNameLength;
SQLUINTEGER colSize;

AMPC™ IDE USER MANUAL 39/80

char driver[100];
SQLINTEGER empId;

printf ("\nAllocating Environment Handle D

if ((rc != SQL SUCCESS) && (rc != SQL SUCCESS WITH INFO)) ({
printf ("\nError AllocHandle\n");
exit (1);

}

printf (" Allocated !\nSetting the Environment Version ")

rc = SQLSetEnvAttr (henv , SQL ATTR ODBC VERSION , (SQLPOINTER)
SQL OV _ODBC3, O0);

if ((rc != SQL SUCCESS) && (rc != SQL SUCCESS WITH INFO)) {
printf ("\nError SQLSetEnvAttr\n");
SQLFreeHandle (SQL HANDLE ENV , henv);
exit (1) ;

}

printf (" Set !'\nAllocating Connection Handle WY e

rc = SQLAllocHandle (SQL HANDLE DBC , henv , &hdbc);

if ((rc != SQL SUCCESS) && (rc != SQL SUCCESS WITH INFO)) {
printf ("\nError Allocating Connection Handle %d\n",rc);
SQLFreeHandle (SQL HANDLE ENV , henv);
exit (1) ;

}

rc = SQLLoadDriver (hdbc,MYSQL , driver);

if ((rc != SQL SUCCESS) && (rc != SQL SUCCESS WITH INFO)) {
printf ("\nFailed to load the driver\n");
SQLFreeHandle (SQL _HANDLE ENV, henv) ;
exit (1) ;

}

printf (" Loaded !'M);

(

(
printf ("\n\t Driver Name : %s",driver);

(
printf ("\n\nEstablishing connection to database T g
rc = SQLConnect (hdbc , dataSource, SQL NTS , (SQLCHAR *)

"zalfa", SQL NTS , (SQLCHAR *) "qgwerty" , SQL NTS);

if ((rc != SQL SUCCESS) && (rc != SQL SUCCESS WITH INFO)) {
printf ("\nError SQLConnect\n") ;
SQLFreeHandle (SQL HANDLE ENV , henv);
exit (1) ;

}

printf (" Connection Established !\nAllocating Statement Handle

rc = SQLAllocHandle (SQL HANDLE STMT , hdbc , &hstmt);
if ((rc != SQL SUCCESS) && (rc != SQL SUCCESS WITH INFO)) {

printf ("\nError AllocStatement %d\n",rc);
SQLDisconnect (hdbc) ;

char fname[256], lname[256], title[256], email[256], salary[1l0];

rc = SQLAllocHandle (SQL HANDLE ENV, (void *) SQL NULL HANDLE, &henv):;

printf (" Allocated !'\nLoading SQL DIrivVereeeeeeneeeeenn. WY e

prlntf "\n\n\t***") g

prlntf "\n\t***") 3

AMPC™ IDE USER MANUAL

40/80

SQLFreeHandle (SQL HANDLE DBC , hdbc);
SQLFreeHandle (SQL_HANDLE ENV , henv);
exit (1) ;

}

printf (" Allocated !\nExecuting SQL Statement

rc = SQLExecDirect (hstmt , "SELECT fname, lname, title FROM
employee data", SQL NTS);
if ((rc != SQL SUCCESS) && (rc != SQL SUCCESS WITH INFO)) {

printf ("\nError SQLExecDirect %d\n",rc);
SQLFreeHandle (SQL HANDLE STMT , hstmt) ;
SQLDisconnect (hdbc) ;
SQLFreeHandle (SQL HANDLE DBC , hdbc);
SQLFreeHandle (SQL HANDLE ENV , henv);

exit (1) ;

}

printf (" Success !\n\n");

while ((rc = SQLFetch (hstmt)) != SQL NO DATA) {
SQLGetData (hstmt, 1, SQL C CHAR, fname, sizeof (fname), &error);
SQLGetData (hstmt, 2, SQL C CHAR, lname, sizeof (lname), &error);
SQLGetData (hstmt, 3, SQL C CHAR, title, sizeof(title), é&error);
printf ("Column 1 : %s \t", fname);
printf ("Column 2 : %s \t", lname);
printf ("Column 3 : %$s \t", title);
printf ("\n") ;

}

SQLFreeHandle (SQL HANDLE STMT , hstmt);
SQLDisconnect (hdbc) ;
SQLFreeHandle (SQL HANDLE DBC , hdbc);
SQLFreeHandle (SQL HANDLE ENV , henv);

return 0;

AMPC™ IDE USER MANUAL

41/80

4.7 Embedding Assembly Code in Your € Code

If you want to go into lower level, you can embed an assembly code in your C
source code. For example, if you want to add in assembly code in the previous
example, do the following:

#include <stdio.h>

main ()

{
asm("; Testing inline asm\n"); /* assembly code*/
printf ("Hello World \n");

}

The syntax is as below:

Iasm("<assembly code>") ; ‘

You can refer to the jasmin manual for details on assembly code syntax and
usage.

AMPC™ IDE USER MANUAL 42/80

5. Compiler

5.1 Using Compiler - GUI

The compiler can be accessed from the Tools-Menu and choose "BUILD".
AMPC™ will compile all your source files in your project file. You can change
the "COMPILER OPTIONS" by selecting the Setting-Menu and choosing the
options that you require.

5.2 Using Compiler - Console

Other than through the GUI, users can also use the compiler from console. The
syntax to be use with C source file(s) (.c):

5.2.1 Syntax

Usage: COMPILE [-options] [-memory model] [-optimization] [-debuging]
sourcefilel.c [sourcefile2.c] ...

e.g: COMPILE testl.c test2.c test3.c
e.g: COMPILE -I../include -DUNIX testl.c test2.c test3.c

Syntax to be use with project file (.prj):

Usage: COMPILE [-options] [-memory model] [-optimization] [-debuging] -f
sourceprojfile.prj

e.g: COMPILE -f test.prj

Options:

-S Compile only, the output will be a .s file (default option).

-R Compile and resolve link, the output will be a .s file.

-E Preprocess only; do not compile, assemble or link.

_1/dir Include the directory /dilj to the list of include directories to
be searched for header files.

-o file Write output to file.

-Dname Predefine name as a macro, with definition 1.

-Dname=definition Predefine name as a macro, with definition=definition.

Cancel any previous definition of name, either built in or

-Uname provided with a -D option.

Memory model:
-m H huge memory model (32MB).

AMPC™ IDE USER MANUAL 43/80

-m L large memory model (20MB).

-m M medium memory model (16MB).
-m S small memory model (8MB).
-mT tiny memory model (4MB).

-m U micro memory model (2MB).

-m N nano memory model (1MB).

-m P pico memory model (0.5MB).

Optimization:

-00 optimization level 0 (safe mode option).
-01 optimization level 1 (default option).
-02 optimization level 2.

-03 optimization level 3.

Debuging:

-S Do not delete assembly file (.s file).

Note: The filename must be a .c file.

5.2.2 Descriptions

COMPILE is a program to resolve '"invokestatic" and "invokespecial”
reference call to functions/methods from other file at assembler code level. It is
just like a linker where it resolves external functions in a different file.
Binary package, support for Linux, Mac OS X and MS Windows.

5.2.3 Dependencies

libxmlI2 (/usr/lib/libxml2.s0.2)

libz (/lib/libz.s0.1)

libpthread (/lib/i686/libpthread.so.0)
libm (/lib/i686/libm.s0.6)

5.3 Executing Application - GUI

To execute the application that has been compiled through AMPCGUI, it can be
accessed from the Tools-Menu and choose "RUN". AMPCGUI will execute and
display the output in new terminal/shell window.

AMPC™ IDE USER MANUAL 44/80

5.4 Executing Application - Console

To execute the application that has been compiled, use the following syntax.

5.4.1 Syntax
Usage: RUN javabytecodefile [argl] [arg2] ...
e.g: RUN helloworld

5.4.2 Descriptions
RUN is a script to execute program compiled by AMPC™.

The program source file must contain main() function to make it runable. The
script also accepts multiple argument variables which passed from command
line.

Note: Shell script file only support for Linux and Mac OS X. For Ms Windows
platform, use runjava.bat instead.

5.4.3 Dependencies

- /bin/sh shell program.
- java program.

AMPC™ IDE USER MANUAL 45/80

6. Differences From Standard C

AMPC™ supports a very large subset of ANSI C. One notable difference is that
"double" in AMPC™ is 32 bits long. In order to utilize 64-bit floating point you
can use "DOUBLE". Please refer to section 6.1 for the details on how to use
"DOUBLE".

The other difference is thay you do not need to declare variables "argc" and
"argv". They are already pre-declared. The details are in section 6.2.

6.1 Using the DOUBLE type in AMPC™

6.1.1 DOUBLE Functions

"DOUBLE" is our implementation of the 64-bit long floating point type. It is
declared as a struct of two float fields. The operations associated with
"DOUBLE" are as follows:

DOUBLE _f2D_DOUBLE(float);

DOUBLE _i2D_DOUBLE(int);

DOUBLE _c2D_DOUBLE(char);

float _D2f DOUBLE(DOUBLE);

int _D2i_DOUBLE(DOUBLE);

char _D2c_DOUBLE(DOUBLE);

DOUBLE _add_DOUBLE(DOUBLE, DOUBLE);
DOUBLE _sub_DOUBLE(DOUBLE, DOUBLE);
DOUBLE _mul_DOUBLE(DOUBLE, DOUBLE);
DOUBLE _div_DOUBLE(DOUBLE, DOUBLE);
int _equal_DOUBLE(DOUBLE, DOUBLE);

int _less(DOUBLE, DOUBLE);

int _less_equal(DOUBLE, DOUBLE);

int _not_equal(DOUBLE, DOUBLE);

int _greater(DOUBLE, DOUBLE);

int _greater_equal(DOUBLE, DOUBLE);

Mathematical operations associated with "DOUBLE" are as follows:

DOUBLE _sin_DOUBLE(DOUBLE);
DOUBLE _sinh_DOUBLE(DOUBLE);
DOUBLE _sqrt_ DOUBLE(DOUBLE);
DOUBLE _tan_DOUBLE(DOUBLE);
DOUBLE _tanh_DOUBLE(DOUBLE);
DOUBLE _acos_DOUBLE(DOUBLE);
DOUBLE _asin_DOUBLE(DOUBLE);
DOUBLE _atan2_DOUBLE(DOUBLE,DOUBLE);
DOUBLE _atan_DOUBLE(DOUBLE);
DOUBLE _ceil_DOUBLE(DOUBLE);
DOUBLE _cos_DOUBLE(DOUBLE);

AMPC™ IDE USER MANUAL 46/80

DOUBLE _cosh_DOUBLE(DOUBLE);

DOUBLE _exp_DOUBLE(DOUBLE);

DOUBLE _fabs_DOUBLE(DOUBLE);

DOUBLE _floor_DOUBLE(DOUBLE);

DOUBLE _fmod_DOUBLE(DOUBLE,DOUBLE);
DOUBLE _fmod_DOUBLE(DOUBLE, int);
DOUBLE __huge_val_DOUBLE(void);
DOUBLE __IsNan_DOUBLE(DOUBLE);
DOUBLE _Idexp_DOUBLE(DOUBLE, int);
DOUBLE _log10_DOUBLE(DOUBLE);
DOUBLE _log_DOUBLE(DOUBLE);

DOUBLE _modf_DOUBLE(DOUBLE,DOUBLE);
DOUBLE _pow_DOUBLE(DOUBLE,DOUBLE);
DOUBLE _roundf_DOUBLE(DOUBLE);

6.1.2 An Example

#include <stdio.h>

main ()
{ DOUBLE x;
int i;

x = _f£2D DOUBLE (12.34);

printf ("$D\n", x);

i=2;

x = add DOUBLE (x, i2D DOUBLE (i));
printf ("$D\n", x) ;

}

Note: To print the output properly for DOUBLE variable, JDK 1.5.0 (also

known as JDK 5.0) are required.

6.1.3 Passing DOUBLE value to JAVA method

You can call Java method and pass Double value as a parameter to a Java
method. You have to use _DBL1(DOUBLE) function during the passing of
Double value to a Java method. The following example illustrates the passing of

a DOUBLE value as a parameter to a Java method:

#include <stdio.h>

cont ()
{ DOUBLE Dval;

Dval = DOUBLE java ("invokestatic java/lang/Math/cos",
_DBL1(_f£2D DOUBLE (45.0))) ;
printf ("Dval = %D\n", Dval);

}

main ()
{

cont () ;

}

npw

AMPC™ IDE USER MANUAL

47/80

Notice that _DBL1() needs to be used when passing the DOUBLE value
returned by _f2D_DOUBLE(45.0).

AMPC™ IDE USER MANUAL 48/80

PART Illl: AMPC™ MOBILE

7. AMPC™ Mobile

AMPC™ IDE USER MANUAL 49/80

7. AMPC™ Mobile

This document describes the creation of a self-contained Microsoft® Windows
Installer file for the Microsoft® Windows Mobile application. This file automates
the deployment of the application instead of directly copying the appropriate
CAB file to your device.

* This release is currently available only for the Microsoft® Windows®

Platform

7.1 System Requirements

Please make sure that your host computer meets the following minimum
system requirements before instaling AMPC™ Mobile:

Devices System Requirements
Processor Intel x86 based processor or compatible
AMPC™ Mobile can only be installed on the following
systems:
Operating
System Microsoft® Windows® XP Professional
Microsoft® Windows® XP Home Edition
Minimum :
M 128 Megabytes. It is not advisable to run the
emory lication with less RAM
(RAM) app
It is best recommended to have 256 of RAM
At least 700 MB of hard disk space for installation
AMPC™ Mobile : Approximately 40 MB
Hard disk J2SE 1.4.2_x : Approximately 430 MB
drive Microsoft .NET Framework : Approximately 60 MB
Microsoft ActiveSync : Approximately 20 MB
IBM]9 JVM : Approximately 140 MB
CD-ROM drive|Required

AMPC™ IDE USER MANUAL

50/80

Initially, before you start developing your mobile application with AMPC™
Mobile, please ensure the following software packages are installed:

Software Software Requirements
J2SE e
1.4.2_x Download J2SE 1.4.2_x at http://java.sun.com

Install Microsoft ActiveSync 4.0 or newer to synchronize

. Windows Mobile/Pocket PCs with your computer. Download

Microsoft® .)
. the latest version at:

ActiveSync

http://www.microsoft.com/windowsmobile/downloads/acti

vesync41l.mspx

Install J9 JVM from IBM on your target device in order to
provide a platform for your applications deployment J9
IBM J9 JVM |JVM can be downloaded at : http://www-

128.ibm.com/developerworks/websphere/zones/wireless/

weme_eval runtimes.html

Microsoft® |Download the .NET Framework Version 2.0 at
.NET http://www.microsoft.com/downloads/details.aspx?FamilyI
Framework |[D=0856EACB- 4362-4B0D-8EDD-

Version 2.0 |AAB15C5EQ4F5&displaylang=en

7.2 Installation

AMPC™ Mobile installer can be downloaded at http://www.axiomsol.com.
Please log in as an administrator to allow the installation mode and then
proceed with the installation.

Once the process of downloading has been completed, double-click the AMPC™
Mobile setup file for the installation of all the packages into the specified
directory ‘C:\Program Files\AMPC'.

To install the license-key information, go to Start > Program Files >
Axiomatic Multi-Platform C Mobile > Install AMPC License Key. Please
read the license agreement as stated in the License.rtf carefully. Type ‘yes’ if
you agree to the terms prescribed. Upon completion, restart your computer
before you start using AMPC™ Mobile.

Complete uninstallation of AMPC™ Mobile could only be done manually
through the Add/Remove Programs.

7.3 Using AMPC™ Mobile

The following are the steps to develop and deploy your Microsoft® Windows
Mobile/Pocket PCs applications.

- Create the mobile application using AMPC™ Mobile
- Create a shortcut (*.Ink) file and a JAR file to enable users to launch the

AMPC™ IDE USER MANUAL 51/80

http://www.axiomsol.com/
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www-128.ibm.com/developerworks/websphere/zones/wireless/weme_eval_runtimes.html
http://www-128.ibm.com/developerworks/websphere/zones/wireless/weme_eval_runtimes.html
http://www-128.ibm.com/developerworks/websphere/zones/wireless/weme_eval_runtimes.html
http://www.microsoft.com/windowsmobile/downloads/activesync41.mspx
http://www.microsoft.com/windowsmobile/downloads/activesync41.mspx
http://java.sun.com/

application from the target device.

- Create an information file (*.inf) to describe all your resources and all the
CE setups required.

- Package the application into a CAB (Cabinet) file.

- Create a setup (*.ini) file which will then be used by CE App Manager to
install application.

- Finally, create a self-extracting application executable (*.exe) which will
install your device application from the desktop.

7.3.1 Step 1 - Getting Started

Getting started, to create a new project, go to Project > New Project and
name the project name. Click OK to proceed. The name of the project file
should be the same as the source file name that contains the main function.

Write your mobile application. Save your project before proceeding. Set the
compiler options by selecting Settings > Compiler Options from the project-
menu and a dialog box will appear. Tab on AMPC Memory Model and choose
Pico - 0.5 MB or Nano - 1 MB. Click OK and build/compile your application.
If there is no error, run your application to ensure that it is working correctly.

The next step is to install AMPC™ Mobile on your PocketPC/Windows Mobile
device. Select Mobile Device > Install AMPC Mobile. A setup wizard will
appear. Click Next and click Finish if you accept the terms prescribed. Once
clicked, AMPC™ Mobile will be installed on your device. Choose location to
install AMPC™ Mobile on your device and tab Install to proceed.

AMPC™ IDE USER MANUAL 52/80

o4

Select a program'z check bos if you want to install it on pour
mobile device, or clear the check box if vou want bo remoyve the
program from pour device.

Mote: |f a program that you installed i not lizted, the program was
hiot dezigned to be uzed on your mobile device.

-~

Installing Applications

Inztalling Axiormatic Solutions AMPC Mobile.

Cancel

SpaceE required for selecied programs.
Space available on device:

v

Remove from both locations
To remove the zelected program from both
your device and thiz computer, click Remove.

|t |

Figure 7.1

7.3.2 Step 2 - Create a shortcut and a JAR file

Create a shortcut (.Ink) for your application. This is done by going to Mobile
Device >> Create JAR Files. Fill in the text boxes with appropriate values.

For example:

1. Application Name will be your project name

2.Set path to where AMPC™ Mobile JAR files on your target device reside
Eg: \Program Files\AMPC Mobile\ampc_mobile.jar

3. Set path to where your application JAR files on your target device reside
Eg: \Program Files\yourappdirectory\yourapp.jar

AMPC™ IDE USER MANUAL 53/80

‘ﬂCreate Shortcut and JAR file E]@

Create shortcut (LNK file)

General |19 Jym

Application Mame

factorial

Set path to AMPC Mobile JAR files (Ex: “Program FileshAMPC Mobilehampe_mobile.jar)
Device Memory [] storage Card

“Program FileshAMPC Mobilebhampe_mobile.jar

Set path to your application JAR files (Ex: “Program Fileshyourappdiriyourapp.jar)
Device Memory [] storage Card

“Program Files\factorialyfactorial.jar

Create shortcut and JAR archive

Comme]| oo | (ol]

Figure 7.2

4. Tab on J9 JVM and set path to where]9 JVM on your target device
reside. Check J9 version.

Eg: \Storage Card\Program Files\J9\PPRO11\j9w.exe or \Program Files\
J9\PPRO11\j9w.exe

General [19 JWVM

Select 19 CDC Yersion
® cDC 1.0 O coc 1.1
Set path to J9 JvM

{Ex: “Storage Card\Program Files®J9WPPRO11MbIRY 9w . exe)
[] Device Memaory Storage Card

WStorage Cardyj9WPPRC1IOYbIN 9w exe

Figure 7.3

5. Once completed, click Create to generate a shortcut file and a JAR file.
Click Finish when all the files have been created.

AMPC™ IDE USER MANUAL 54/80

Create shortcut (LNK file)

General |19 Jym

Application Mame

factaorial

Set path to AMPC Mohbile JAR files (Ex: WProgram FileshaMPC Mobilebampe_mobile jar)
Device Memaory [] storage Card

“Program FileshAMPC Mobilebampc_mobile.jar

Set path to your application JAR fi Files'yourappdiriyyourapp.jar)

Device Memaory ge Card

Files Created !

“Program Filesi\factorial\factorial.j

Create shortcut and JAR archive

Creating shortcut file ...
Creating AR archive ...
Dane !

e G W

Figure 7.4

6. The next step is to generate a CAB file. A CAB (Cabinet) file is a self-
extracting archive file that contains installation instructions and all of the

files required by your application (this includes your dependencies such as
DLLs, resources, help files, etc)

7.3.3 Step 3 - Create an INF file and package the application into a
CAB file

Go to Mobile Device and select Install Application in the project-menu to
start creating information file (.inf). A 'Create Setup Information File (INF)'

box will appear. Fill in each text box in each tab with appropriate values. This
INF file is editable.

For example:

1. Check either Windows NT or Windows 95 for the Sighature Name.
2. Type the provider’s name, for example your company name.

AMPC™ IDE USER MANUAL 55/80

= Create Setup Information File (IMF File)

WX

Setup Information
Create Setup Information File (INF)

Wersion

Signature : & WINDOWS MT
O WINDOWS 95

Provider : Axiomatic Solutions

CESignature : WINDOWS CE

Create CAB files

Version | CEStrings | Default Install | Source Disks Mames | Source Disks Files | Additional Files

Cancel

Figure 7.5

3. Choose installation directory on your target device from the combo box

provided.

Eg: %CE1%/%AppName% will be \Program Files\factorial

CEStrings
Application Mame factorial
Install Dir : HCEL%N Y AppMame

| Mersion CEStrings | Default Install | Source Disks Names | Source Disks Files | Additional Files |

Figure 7.6

AMPC™ IDE USER MANUAL

56/80

Substitutions Directories
% CE1% \Program Files
% CE2% \Windows
% CE3% \Windows\Desktop
% CE4% \Windows\Startup
% CE5% \My Documents
% CE6% \Program Files\Accessories
% CE7% \Program Files\Communications
% CE8% \Program Files\Games
% CE9% \Program Files\Pocket Outlook
% CE10% \Program Files\Office
%CE11% \Windows\Programs
% CE12% \Windows\Programs\Accessories
%CE13% \Windows\Programs\Communications
% CE14% \Windows\Programs\Games
% CE15% \Windows\Fonts
% CE16% \Windows\Recent
% CE17% \Windows\Favorites

The InstallDir should be the same as the path you set for your application
JAR files in the previous form.

4. Default Install: Check the checkbox available in this tab.

Default Install

version | CEStrings | Default Install | Source Disks Mames | Source Disks Files | additional Files

1R and Shortout Files

Copy Files : factorialfiles

5. Select location to where your project source resides on your desktop.

AMPC™ IDE USER MANUAL

Figure 7.7

57/80

n CEString;,_Damestaﬂ-_Sﬂtae_mskLNﬁm&uanﬂﬁh_Eues B
Browse For Folder

lect locatiol

@' Desktop
WDocuments = 3

[.r_'| My Documents
* } My Computer
W My Mebwork Places
2 Recyels Bin
[blueEcho
[+) Dema
__J Fackorial
|2 Scribble
AR files () Townviewer

[Make Mew Folder] [Ik l ’ Zancel

Figure 7.8
6. Select your application shortcut’s name and your JAR file’s name.
| Version | CEStrings | Default Install | Source Disks Names| Source Disks Files | additional Files|
Select your application shortout
factorial.lnk
Select your application 1&R files
factorial,jar
Figure 7.9

7. If you have any additional files to be added to your mobile application
(such as image files etc), tab on Additional Files and select them. Use
Shift-Click or Control-Click to select multiple files.

AMPC™ IDE USER MANUAL 58/80

Version | CEStrings | Default Install | Source Disks Names | Source Disks Files | Additional Files

Select file(s) to be added
* Use Shift-Click or Ctrl-Click to select multiple files

three.png,one.png,tani.pnag,

Browse

Figure 7.10

8. Once completed, click Create to generate information file (.inf) and a
CAB file. Click Finish to complete the creation of a CAB file.

7.3.4 Step 4 - Create a setup (.ini) file and install your application on
the device

Start installing your application by going to Mobile Device > Install
Application. Fill in the text boxes available in ‘Create INI File’ form. This INI
file is editable.

For example:

1. Component will be your project name. So does for uninstall field.
2. Describe your application in the Description field.
3. Select your cabfile’s name.

AMPC™ IDE USER MANUAL 59/80

=

2= Create INI File M=)

Config Infarmation

Create Configuration Settings File {INI)

CEAppkdanager

“Yersion ;1.0

Component © | factonial
Description : Wwindows CE bazed application
Unistall : Factarial

Cahfiles factaral CAB

Figure 7.11

4. This form will generate a setup (.ini) file. Once the file has been created,
click Finish to install your application on your device.

7.3.5 Step 5 - Un-install

The application and the .CAB file you created can be uninstalled. You can
uninstall them by using PocketPC/Windows Mobile directly or from your
desktop. To uninstall from PocketPC/Windows Mobile device, select Remove
Programs from the Settings application in the Start Menu.

Alternatively, you can uninstall the application from the Control Panel > Add
or Remove Programs and click the Remove button.

AMPC™ IDE USER MANUAL 60/80

PART IV: AMPC™ API

8. AMPC™ Header Files

9. AMPC™ Standard

10.AMPC™ Graphics

11.AMPC™ Network

12.AMPC™ Database

AMPC™ IDE USER MANUAL 61/80

8. AMPC™ Header Files

8.1 List of AMPC Header Files

acc2jvm.h
ansidecl.h
ansi.h
assert.h
ctype.h
errno.h
ext_fmt.h
fcntl.h
features.h
float.h
getopt.h
GLOBALS.h
- io.h
. jni.h
limits.h
locale.h
loc_incl.h
loc_time.h
math.h
network.h
rusagestub.h
setjmp.h
signal.h
softfloat.h
stdarg.h
stddef.h
stdio.h
stdlib.h
string.h
time.h
unistd.h
xalloc.h
xstate.h
xstrxfrm.h
yfuns.h
yvals.h
AMPC
. em-wm.h
header.h
optimize.h
size.h

AMPC™ IDE USER MANUAL 62/80

bits
. confname.h
environments.h
posix_opt.h
types.h
typesizes.h
wordsize.h
gnu
stubs.h
gui
- gui.h
sql
. driver.h
driverextras.h
ini.h
log.h
Ist.h
odbcinst.h
odbcinstext.h
sql.h
sqglext.h
sqltypes.h
sqglucode.h
uodbc_stats.h
Sys
errno.h
mman.h
stat.h
times.h
types.h
wait.h

AMPC™ IDE USER MANUAL 63/80

9. AMPC™ Standard

9.1 I/O Functions (stdio.h)

void clearerr(FILE *stream)

int fclose(FILE *stream)

int feof(FILE *stream)

int ferror(FILE *stream)

int fflush(FILE *stream)

int fgetc(FILE *stream)

int fgetpos(FILE *stream, fpos_t *pos)

char *fgets(char *str, int n, FILE *stream)

FILE *fopen(const char *filename, const char *mode)

int fprintf(FILE *stream, const char *format, ...)

int fputc(int char, FILE *stream)

int fputs(const char *str, FILE *stream)

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream)
FILE *freopen(const char *filename, const char *mode, FILE *stream)
int fscanf(FILE *stream, const char *format, ...)

int fseek(FILE *stream, long int offset, int whence)

int fsetpos(FILE *stream, const fpos_t *pos)

long int ftell(FILE *stream)

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream)
int getc(FILE *stream)

int getchar(void)

char *gets(char *str)

void perror(const char *str)

int printf(const char *format, ...)

int putc(int char, FILE *stream)

int putchar(int char)

int puts(const char *str)

int remove(const char *filename)

int rename(const char *old_filename, const char *new_filename)
void rewind(FILE *stream)

int scanf(const char *format, ...)

AMPC™ IDE USER MANUAL

64/80

void setbuf(FILE *stream, char *buffer)

int setvbuf(FILE *stream, char *buffer, int mode, size_t size)
int sprintf(char *str, const char *format, ...)

int sscanf(const char *str, const char *format, ...)

FILE *tmpfile(void)

char *tmpnam(char *str)

int ungetc(int char, FILE *stream)

int vprintf(const char *format, va_list arg)

int vfprintf(FILE *stream, const char *format, va_list arg)

int vsprintf(char *str, const char *format, va_list arg)

9.2 Character Class Tests Functions (ctype.h)

int isalnum(int character)
int isalpha(int character)
int iscntrl(int character)

int isdigit(int character)

int isgraph(int character)
int islower(int character)
int isprint(int character)

int ispunct(int character)
int isspace(int character)
int isupper(int character)
int isxdigit(int character)
int tolower(int character)
int toupper(int character)

9.3 String Manipulation Functions (string.h)

void *memchr(const void *str, int ¢, size_t n)

int memcmp(const void *strl, const void *str2, size_t n)
void *memcpy(void *strl, const void *str2, size_t n)
void *memmove(void *strl, const void *str2, size_t n)
void *memset(void *str, int ¢, size_t n)

char *strcat(char *strl, const char *str2)

AMPC™ IDE USER MANUAL 65/80

char *strchr(const char *str, int c)

int strcmp(const char *strl, const char *str2)

char *strcpy(char *strl, const char *str2)

size_t strcspn(const char *strl, const char *str2)
char *strerror(int errnum)

size_t strlen(const char *str)

char *strncat(char *strl, const char *str2, size_t n)
int strncmp(const char *strl, const char *str2, size_t n)
char *strncpy(char *strl, const char *str2, size_t n)
char *strpbrk(const char *strl, const char *str2)
char *strrchr(const char *str, int c)

size_t strspn(const char *strl, const char *str2)
char *strstr(const char *strl, const char *str2)

char *strtok(char *strl, const char *str2)

9.4 Mathematical Functions (math.h)

double acos(double x)

double asin(double x)

double atan(double x)

double atan2(doubly y, double x)
double ceil(double x)

double cos(double x)

double cosh(double x)

double exp(double x)

double fabs(double x)

double floor(double x)

double fmod(double x, double y)
double frexp(double x, int *exponent)
double Idexp(double x, int exponent)
double log(double x)

double log10(double x)

double modf(double x, double *integer)
double pow(double x, double y)
double sin(double x)

AMPC™ IDE USER MANUAL

66/80

double sinh(double x)
double sqrt(double x)
double tan(double x)

double tanh(double x)

9.5 Utility Functions (stdlib.h)

void abort(void)

int abs(int x)

int atexit(void (*func)(void))

double atof(const char *str)

int atoi(const char *str)

long int atol(const char *str)

void *bsearch(const void *key, const void *base, size_t nitems, size_t size,
int (*compar)(const void *, const void *))

void *calloc(size_t nitems, size_t size)

div_t div(int numer, int denom)

void exit(int status)

void free(void *ptr)

char *getenv(const char *name)

long int labs(long int x)

Idiv_t Idiv(long int numer, long int denom)

void *malloc(size_t size)

void gsort(void *base, size_t nitems, size_t size, int (*compar)(const void *,
const void*))

int rand(void)

void *realloc(void *ptr, size_t size)

void srand(unsigned int seed)

double strtod(const char *str, char **endptr)

long int strtol(const char *str, char **endptr, int base)

unsigned long int strtoul(const char *str, char **endptr, int base)

int system(const char *string)

AMPC™ IDE USER MANUAL 67/80

9.6 Program Diagnostic Function (assert.h)

void assert(int expression)

9.7 Variable Argument List Functions (stdarg.h)

void va_start(va_list ap, last_arg)
type va_arg(va_list ap, type)
void va_end(va_list ap)

9.8 Non-Local Jump Functions (setjmp.h)

int setjmp(jmp_buf environment) (not implemented)
void longjmp(jmp_buf environment, int value) (not implemented)

9.9 Signal Functions (signal.h)
void (*signal(int sig, void (*func)(int)))(int)
int raise(int sig)

9.10 Time, Date & Other System Related Functions (time.h)

char *asctime(const struct tm *timeptr)

clock_t clock(void)

char *ctime(const time_t *timer)

double difftime(time_t timel, time_t time2)

struct tm *gmtime(const time_t *timer)

struct tm *localtime(const time_t *timer)

time_t mktime(struct tm *timeptr)

size_t strftime(char *str, size_t maxsize, const char *format,
const struct tm *timeptr)

time_t time(time_t *timer)

AMPC™ IDE USER MANUAL 68/80

9.11 Setting Location Specific Functions (locale.h)

struct Iconv *localeconv(void)
char *setlocale(int category, const char *locale)

9.12 Non ANSI-C Functions

void itoa (int value, char c[]) - (stdlib.h)

void Itoa (long int value, char buffer[]) - (stdlib.h)

Idiv_t Idiv2(long int numer, long int denom) - (stdlib.h)

long int Iseek (int fildes, long int offset, int whence) - (stdio.h)
int strcoll(const char *str1l, const char *str2) - (string.h)

size_t strxfrm(char *strl, const char *str2, size_t n) — (string.h)

9.13 Additional Features

Shortcircuit
Stderr
Stdout
Stdin

AMPC™ IDE USER MANUAL

69/80

10. AMPC™ Graphics

void _add_radiobutton_to_buttongroup(gui_Object *an_object,
gui_Object *container);

void _clear_kb_EVENT();

void _clear_mouse_CLICKED_status();

void _clear_mouse_EVENT();

void _clear_mouse_PRESSED_status();

void _clear_mouse_RELEASED_status();

void _clearRect(int x, int y, int width, int height);

void colorchooser(gui_Object *container, int *red, int *green, int *blue);

void _create_button(gui_Object *an_object, gui_Object *container);

void _create_buttongroup(gui_Object *an_object, gui_Object *container);

void _create_checkbox(gui_Object *an_object, gui_Object *container);

void _create_combobox(gui_Object *an_object, gui_Object *container);

void _create_list(gui_Object *an_object , gui_Object *container, char str[],
int visible, int selmode);

void _create_passwordfield(gui_Object *an_object, gui_Object *container,
int col);

void _create_popupMenu(gui_Object *an_object, gui_Object *container);

void _create_radiobutton(gui_Object *an_object, int status,
gui_Object *container);

void _create_textfield(gui_Object *an_object, gui_Object *container, int col,
int editable);

void _create_window(gui_Object *an_object)void drawLine(int x1, int y1,
int x2, int y2, int RGB_Red, int RGB_Green, int RGB_Blue);

void drawOval(int x, int y, int width, int height, int RGB_Red, int RGB_Green,
int RGB_Blue);

void drawRect(int x, int y, int width, int height, int RGB_Red, int RGB_Green,
int RGB_Blue);

void drawRoundRect(int x, int y, int width, int height, int arcwidth,
int arcHeight, int RGB_Red, int RGB_Green, int RGB_Blue);

void _get_effective_event(int *effective_event_count, int *effective_ID,
char **effective_menu_item_str);

AMPC™ IDE USER MANUAL 70/80

char _get_kb_MODE();

char _get_kb_READ();

int _get_kb_READ_status();

void _get_list_selectedindex(gui_Object *an_object, int indx);

void _get_mouse_CLICKED_status();

void _get_mouse_pos(int *cur_X, int *cur_Y, int *which_button);

void _get_mouse_pos_ DRAGGED(int *cur_X, int *cur_Y, int *which-button);

void _get_mouse_pos_MOVED(int *cur_X, int *cur_Y);

int _get_mouse_PRESSED_status();

int _get_mouse_READ_status();

int _get_mouse_RELEASED_status();

void _get_passwordfield_value(gui_Object *an_object, char **passwdval);

int _getPixel(int x, int y);

void separateRGB(int *RGB_Red, int *RGB_Green, *RGB_Blue, unsigned color);

void _set_backgroundcolor(gui_Object *an_object, int color);

void _set_list_listdata(gui_Object *an_object, gui_Object *cp_object);

void _set_textfield_editable(gui_Object *an_object , int editable);

void _set_textfield_text(gui_Object *an_object, char *str);

char *show_input_dialog(char *a_str);

void show_message_dialog(char *strl);

void _window_set_backgroundcolor(gui_Object *an_object, int color);

void _window_set_backgroundcolor_rgb(gui_Object *an_object, int red,
int green, int blue);

AMPC™ IDE USER MANUAL 71/80

11. AMPC™ Network

#define SERVER 0
#define THREAD 1
#define CLIENT 2
#define CLIENTTHREAD 3

int accept(char *clnthost);
int checkmessage();

int checksocket();

int gethostaddr(char *buf);

char *gethostbyaddr(char *abuf, int alen, int atype);

char *gethostbyname(char *buf);
int gethostcname(char *buf);

int gethostname(char *buf);

int getsocket(int index);

void listen_and_accept();

void sendrecvclient();

extern int recv(int * connID, char * buffer, int buflen, int flags);
extern int send(int connID, char * msg, int msglen, int flags);

int serversocket(int port);
int socket(char * ipaddr, int port);
int socketclose(int flags);

AMPC™ IDE USER MANUAL

72/80

12. AMPC™ Database

SQLAIllocConnect (SQLHENV envHandle , SQLHDBC *connectHandle);

Allocates a connection handle that deals you with the actual database
connection.

SQLAIllocEnv (SQLHENV *envHandle);
Allocates an environment handle.

SQLAllocHandle (SQLSMALLINT handleType, SQLHANDLE inputHandle,
SQLHANDLE *outputHandlePtr);
Obtains a handle.

SQLAllocStmt (SQLHDBC connectHandle , SQLHSTMT *stmtHandle);
Obtains a statement handle.

SQLBindCol (SQLHSTMT stmtHandle, SQLUSMALLINT iCol,
SQLSMALLINT dataCType, SQLPOINTER targetValue,
SQLINTEGER *targetValueBuffLength, SQLINTEGER *lengthOrIndicator);
Binds application variables to columns in the result set.
Supported C data types (for column number iCol)
SQL_C_BINARY
SQL_C_BIT
SQL_C_CHAR
SQL_C_DATALINK
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_LONG
SQL_C_NUMERIC
SQL_C_SHORT
SQL_C_TINYINT
SQL_C_TYPE_DATE
SQL_C_TYPE_TIME
SQL_C_TYPE_TIMESTAMP
AMPC™ IDE USER MANUAL 73/80

SQLCancel (SQLHSTMT stmtHandle);
Cancels the processing on a statement.

SQLCloseCursor (SQLHSTMT stmtHandle);

Closes a cursor that has been opened on a statement and discard pending
results.

SQLConnect (SQLHDBC connectHandle , SQLCHAR *dataSourceName,
SQLSMALLINT dataSourceLength, SQLCHAR *userlID,
SQLSMALLINT userIDLength, SQLCHAR *password,
SQLSMALLINT passwordLength);

Establishes a connection to specific driver by data source name (DSN),
user ID and password.

Data source name (DSN) is the name or alias name of the database to
which you are connected. For instance : "“jdbc:mysql://localhost/
employees”.The actual content of DSN is loosely specified as
jdbc: <subprotocol>:<subname>. The subprotocol identifies which driver
to use and the subname provides the driver with any required connection
information - usually the local host name and the database name.

SQLDescribeCol (SQLHSTMT stmtHandle, SQLUSMALLINT iCol,
SQLCHAR *columnName, SQLSMALLINT columnNameMaxLength,
SQLSMALLINT *columnNameStringLength, SQLSMALLINT *sqlType,
SQLUINTEGER *columnPrecision, SQLSMALLINT *columnScale,
SQLSMALLINT *nullable);

Describes column attributes (column name, type, precision, scale,
nullability).

SQLDisconnect (SQLHDBC connectHandle);

Closes the connection that is associated with the database connection
handle.

SQLEndTran (SQLSMALLINT handleType, SQLHANDLE handle,
SQLSMALLINT completionType);
Commits or rolls back a transaction.

For handleType , specify one of the following values :

AMPC™ IDE USER MANUAL 74/80

SQL_HANDLE_DBC for connection handle.
SQL_HANDLE_ENV for environment handle.

For completionType argument , use one of the following values:

SQL_COMMIT to commit a transaction.
SQL_ROLLBACK to roll back a transaction.

SQLError (SQLHENV envHandle, SQLHDBC connectHandle,
SQLHSTMT stmtHandle, SQLCHAR *sqlState,
SQLINTEGER *nativeError, SQLCHAR *errorMsg,

SQLSMALLINT errorMsgMax, SQLSMALLINT *errorMsglLength);

Retrieve error information.

SQLExecDirect (SQLHSTMT stmtHandle, SQLCHAR *sqlString,
sqlStringLength);

Prepares and executes an SQL Statement directly.

SQLExecute (SQLHSTMT stmtHandle);

Executes an SQL statement.

SQLFetch (SQLHSTMT stmtHandle);
Fetch the next row.

SQLFreeConnect (SQLHDBC connectHandle);
Releases the connection handle.

SQLFreeEnv (SQLHENV envHandle);

Releases the environment handle.

SQLFreeHandle (SQLSMALLINT handleType, SQLHANDLE handle);

Releases environment, connection or statement handle.

For handleType , specify one of the following values :
SQL_HANDLE_STMT to free the statement handle.
SQL_HANDLE_DBC to free the connection handle.
SQL_HANDLE_ENYV to free the environment handle.

AMPC™ IDE USER MANUAL

SQLINTEGER

75/80

SQLFreeStmt (SQLHSTMT stmtHandle, SQLUSMALLINT option);

Ends statement processing, closes the associated cursor, discards pending

results, and frees all resources that are associated with the statement
handle.

Supported options:
SQL_CLOSE
SQL_ DROP

SQLGetConnectAttr (SQLHDBC connectHandle, SQLINTEGER attribute,
SQLPOINTER valuePtr, SQLINTEGER buffLength,
SQLINTEGER *stringLengthPtr);
Returns the value of a connection attribute.
Currently supported attributes (for attribute):
SQL_ATTR_ACCESS_MODE
SQL_ATTR_AUTOCOMMIT
SQL_ATTR_CURRENT_CATALOG
SQL_ATTR_LOGIN_TIMEOUT
SQL_ATTR_TXN_ISOLATION

SQLGetConnectOption (SQLHDBC connectHandle, SQLUSMALLINT attribute,
SQLPOINTER valuePtr);

Returns the value of a connection attribute.

Refer to SQLGetConnectAttr for a complete list of currently supported
connection attributes.

SQLGetCursorName (SQLHSTMT stmtHandle, SQLCHAR *cursorName,
SQLSMALLINT cursorMax, SQLSMALLINT *cursorLength);
Returns the cursor name that is associated with a statement.

SQLGetData (SQLHSTMT stmtHandle, SQLUSMALLINT iCol,
SQLSMALLINT dataCType, SQLPOINTER targetValue,
SQLINTEGER targetValueMaxLength, SQLINTEGER *lengthOrIndicator);
Returns part or all of one column of one row of a result set.
Refer to SQLBindCol for currently supported C data types.

AMPC™ IDE USER MANUAL 76/80

SQLGetDiagRec (SQLSMALLINT handleType, SQLHANDLE handle,
SQLSMALLINT recordNum, SQLCHAR *sqlState,
SQLINTEGER *nativeError, SQLCHAR *errorMsg,
SQLSMALLINT buffLength, SQLSMALLINT errorMsglLength);
Returns additional diagnostic information.

For handleType , specify one of the following values:
SQL_HANDLE_DBC for connection handle.
SQL_HANDLE_STMT for statement handle.
SQL_HANDLE_ENV for environment handle.

SQLGetEnvAttr (SQLHENV envHandle, SQLINTEGER attribute,
SQLPOINTER valuePtr, SQLINTEGER bufferLength,
SQLINTEGER *stringLengthPtr);

Returns the value of an environment attribute.

Currently supported environment attributes:
SQL_ATTR_ODBC_VERSION
SQL_ATTR_OUTPUT_NTS

SQLGetFunctions (SQLHDBC connectHandle, SQLUSMALLINT function,
SQLUSMALLINT *exists);
Returns supported driver functions.

SQLGetStmtAttr (SQLHSTMT stmtHandle, SQLINTEGER attribute,
SQLPOINTER valuePtr, SQLINTEGER bufferLength,
SQLINTEGER *stringLengthPtr);

Returns the value of a statement attribute.

Currently supported statement attributes (for attribute):
SQL_ATTR_MAX_LENGTH
SQL_ATTR_MAX_ROWS
SQL_ATTR_QUERY_TIMEOUT
SQL_ATTR_TXN_ISOLATION
SQL_ATTR_STMTTXN_ISOLATION

AMPC™ IDE USER MANUAL 77/80

SQLGetStmtOption (SQLHSTMT stmtHandle, SQLINTEGER attribute,
SQLPOINTER valuePtr);
Returns the value of a statement attribute:

Refer to SQLGetStmtAttr for a complete list of currently supported
statement attributes.

SQLNumResultCols (SQLHSTMT stmtHandle, SQLSMALLINT *nCol);
Returns the number of columns in the result set.

SQLPrepare (SQLHSTMT stmtHandle, SQLCHAR *sqlString,
SQLINTEGER sqlStringLength);
Prepares an SQL statement for subsequent execution

SQLRowCount (SQLHSTMT stmtHandle, SQLINTEGER *nRows);

Returns the number of rows that are affected by insert, update, or delete
request.

SQLSetColAttributes (SQLHSTMT stmtHandle, SQLUSMALLINT iCol,
SQLCHAR *colStr, SQLSMALLINT colStrLength, SQLUSMALLINT dataType,
SQLUINTEGER colDef, SQLSMALLINT colScale, SQLSMALLINT nullable);
Sets attributes of a column in the result set.

SQLSetConnectAttr (SQLHDBC connectHandle, SQLINTEGER attribute,

SQLPOINTER valuePtr, SQLINTEGER stringLength);

Sets a connection attribute.

Currently supported connection attributes (for attribute):

SQL_ATTR_ACCESS_MODE; valuePtr can be either:

SQL_MODE_READ_ONLY
SQL_MODE_READ_WRITE
SQL_MODE_DEFAULT

SQL_ATTR_AUTOCOMMIT; valuePtr can be specified whether to be
in auto commit or manual commit mode

SQL_AUTOCOMMIT_ON
SQL_AUTOCOMMIT_OFF
SQL_AUTOCOMMIT_DEFAULT

AMPC™ IDE USER MANUAL 78/80

SQL_ATTR_CURRENT_CATALOG

SQL_ATTR_LOGIN_TIMEOUT

SQL_ATTR_TXN_ISOLATION; valid values for valuePtr:
SQL_TXN_READ_UNCOMMITTED
SQL_TXN_READ_COMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE

SQLSetConnectOption (SQLHDBC connectHandle, SQLUSMALLINT attribute,
SQLUINtEGER valuePtr);
Sets a connection attribute.

Refer to SQLSetConnectAttr for a complete list of currently supported
connection attributes.

SQLSetCursorName (SQLHSTMT stmtHandle, SQLCHAR *cursorName,
SQLSMALLINT cursorNamelLength);
Specifies a cursor name.

SQLSetEnvAttr (SQLHENV envHandle, SQLINTEGER attribute,
SQLPOINTER valuePtr, SQLINTEGER stringLength);
Sets an environment attribute.

SQLSetStmtAttr (SQLHSTMT stmtHandle, SQLINTEGER attribute,

SQLPOINTER valuePtr, SQLINTEGER stringLength);

Sets a statement attribute.

Currently supported statement attributes (for attribute):
SQL_ATTR_MAX_LENGTH
SQL_ATTR_MAX_ROWS
SQL_ATTR_QUERY_TIMEOUT
SQL_ATTR_TXN_ISOLATION
SQL_ATTR_STMTTXN_ISOLATION

SQLSetStmtOption (SQLHSTMT stmtHandle, SQLUSMALLINT attribute,
SQLUINTEGER valuePtr);
Sets a statement attribute.

AMPC™ IDE USER MANUAL 79/80

SQLTransacf (SQLHENV envHandle, SQLHDBC connectHandle,
SQLUSMALLINT transactionType);
Commits or rolls back a transaction.
For transactionType argument , use one of the following values:
SQL_COMMIT to commit a transaction
SQL_ROLLBACK to roll back a transaction

SQLLoadDriver (SQLHDBC connectHandle, SQLSMALLINT database,

SQLCHAR *driverName);
Loads and registers a driver in order to connect to database.

AMPC™ IDE USER MANUAL 80/80

	PART I: INTRODUCTION
	1. INTRODUCTION TO AXIOMATIC MULTI PLATFORM C (AMPC™)
	1.1 WHAT IS AMPC™?
	1.2 SYSTEM REQUIREMENTS
	1.2.1 For Linux OS Platform
	1.2.2 For Mac OS X Platform
	1.2.3 For Microsoft Windows Platform

	1.3 COMPILATION AND INSTALLATION
	1.3.1 Linux x86 Platform
	1.3.2 Mac OS X Platform
	1.3.3 Microsoft Windows Platform

	1.4 RESTRICTIONS AND NOTES
	1.5 TRADEMARK INFORMATION
	1.6 DISCLAIMER OF WARRANTY
	1.7 LIMITATION OF LIABILITY

	2. Components of AMPC™
	2.1 The User Interface (GUI)
	2.1.1 Editor Panel
	2.1.2 Project Navigator Panel
	2.1.3 Output Panel
	2.1.4 Menu Bar
	2.1.5 Toolbar

	2.2 Compiler
	2.3 Debugger
	2.4 GUI Builder

	PART II: STARTING/USING AMPC™
	3. Working on AMPC™ with GUI
	3.1 Creating an Application Using the GUI
	3.1.1 Creating Project File
	3.1.2 Save Project File
	3.1.3 Build(Compile) Application

	3.2 Managing Project Files
	3.2.1 Creating A New File
	3.2.2 Adding Header File
	3.2.3 Opening and Closing of Project

	3.3 Navigating AMPC™
	3.3.1 Menubar
	File-Menu
	Edit-Menu
	Project-Menu
	Search-Menu
	View-Menu
	Tools-Menu
	Settings-Menu

	3.3.2 Toolbar

	3.4 Navigating The Editor
	3.4.1 Shortcut

	4. Creating Applications
	4.1 Console Applications
	4.2 Calling Java Method From AMPC™ Code
	4.3 Calling Native C Functions From AMPC™
	4.3.1 Some Background
	4.3.2 An Example

	4.4 GUI-based Applications
	4.4.1 An Example

	4.5 Network-based Applications
	4.5.1 TCP Client Sample Source Code
	4.5.2 TCP Server Sample Source Code

	4.6 Database-based Applications
	4.6.1 An Example

	4.7 Embedding Assembly Code in Your C Code

	5. Compiler
	5.1 Using Compiler - GUI
	5.2 Using Compiler - Console
	5.2.1 Syntax
	5.2.2 Descriptions
	5.2.3 Dependencies

	5.3 Executing Application - GUI
	5.4 Executing Application - Console
	5.4.1 Syntax
	5.4.2 Descriptions
	5.4.3 Dependencies

	6. Differences From Standard C
	6.1 Using the DOUBLE type in AMPC™
	6.1.1 DOUBLE Functions
	6.1.2 An Example
	6.1.3 Passing DOUBLE value to JAVA method

	PART III: AMPC™ MOBILE
	7. AMPC™ Mobile
	7.1 System Requirements
	7.2 Installation
	7.3 Using AMPC™ Mobile
	7.3.1 Step 1 - Getting Started
	7.3.2 Step 2 - Create a shortcut and a JAR file
	7.3.3 Step 3 - Create an INF file and package the application into a CAB file
	7.3.4 Step 4 - Create a setup (.ini) file and install your application on the device
	7.3.5 Step 5 - Un-install

	PART IV: AMPC™ API
	8. AMPC™ Header Files
	8.1 List of AMPC Header Files

	9. AMPC™ Standard
	9.1 I/O Functions (stdio.h)
	9.2 Character Class Tests Functions (ctype.h)
	9.3 String Manipulation Functions (string.h)
	9.4 Mathematical Functions (math.h)
	9.5 Utility Functions (stdlib.h)
	9.6 Program Diagnostic Function (assert.h)
	9.7 Variable Argument List Functions (stdarg.h)
	9.8 Non-Local Jump Functions (setjmp.h)
	9.9 Signal Functions (signal.h)
	9.10 Time, Date & Other System Related Functions (time.h)
	9.11 Setting Location Specific Functions (locale.h)
	9.12 Non ANSI-C Functions
	9.13 Additional Features

	10. AMPC™ Graphics
	11. AMPC™ Network
	12. AMPC™ Database

