VERITAS Cluster Server™1.3.0

Agent Developer’s Guide

UNIX and Windows NT

October 2000
30-000033-399

VERITAS

Disclaimer

Copyright

The information contained in this publication is subject to change without notice.
VERITAS Software Corporation makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. VERITAS Software Corporation shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual.

Copyright © 1998-2000 VERITAS Software Corporation. All rights reserved. VERITAS is a
registered trademark of VERITAS Software Corporation in the US and other countries.
The VERITAS logo and VERITAS Cluster Server are trademarks of VERITAS Software
Corporation. All other trademarks or registered trademarks are the property of their
respective owners.

Printed in the USA, October 2000.

VERITAS Software Corporation
1600 Plymouth St.

Mountain View, CA 94043
Phone 650-335-8000

Fax 650-335-8050
www.veritas.com

http://www.veritas.com

Contents

Preface . .. vii
INtrodUCHION .. . o Vii
HoOW AQents WOrK e viii
PrereqUISITES viii
How This Guide isOrganized i e viii
Technical SUPPOIt o iX

For Customers Outside U.S.andCanada, iX
CONVENTIONS ..o iX

Chapter 1. VCS Agent Entry Points 1

Listof Agent ENntry POINtS i e 3
VS A S AU . . . oot 3
0T o1 o 5
ONIINE . 6
OffliNe .. 6
Clean . 7
attr_changed 8
(0] 1= o 9
ClOSE 9
SRUTAOWN . . 9

Chapter 2. Implementing Entry Points Using C++ 11
Data StFUCTUIESo 11
ArgList Attribute 13

111 =

CH+ENtry POINt SYNTaXo 15

VCSAGSIArtUD . o 15
MONITOT . .. e e e 16
ONIINE 17
offline ... o 18

Clean . 19
attr_changed 20

07 7T o 22

ClOSE 23
SHULOWN L 24

VCS PriMItIVES . .o 25
VCSAQSEtENtIYPOINTS . .. oo 25
VCSAGSELCOOKIE . . ottt 26
VCSAGREGISTEr . o .ttt 28
VCSAQUNIEGISTEr .o 29
VCSAGGELCOOKIE ..o 30
VCSAGLOGMSG . ot 32
VCSAQGLOGCONSOIEMSG . oo 32
Chapter 3. Implementing Entry Points Using Scripts 33
ArgLISt ALtHIDULES 34
SCript Entry POINt SYNtaX 36
MONITOT .. e e 36
ONIINE 36
offline ... o 36

Clean . 37
attr_changed 37

07 7T o 37

ClOSE 37
ShULOWN . 37

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

LOggiNg oo 38

Message NUMDEringo 38
Chapter 4. Building a Custom VCS Agent e 39
Building a VCS Agent for MyFile ResOUrces ... 41
Using SCript Entry POINtSo 42

Using VCSAgStartup() and Script Entry Points 44

Using C++ and Script Entry POINESo 48

Using C++ ENtry POINtSo 54
Chapter 5. Setting Agent Parameters i 61
AgentFile ... 61
AgentReplyTIMEOUL 61
AQeNntStartTIMEOULo 61

ArgLISt o 62
ALrChangedTimeouUt o 62
CloSETIMEOUL . ..o e 62
CleanTimeout o 62
Confinterval 63
FaultONMONItOrTIMEOULSt 63
LogLevel ... 64
Monitorinterval 64
MONItOrTIMEOULo 64
NUMTHIreads 64
OfflineMonitorinterval 64
OfflineTimMeoUt 65
OnlineRetryLimit 65
ONliNETIMEOUL e 65
OnlineWaitLimit 65
OPENTIMEOUL .. ot e e e 65
RestartLimit 66

Contents \% h—

RegLISt . . . 66

ToleranceLimit o 66
Scheduling Class and Priority Configuration Support 66
Additional Information for Windows NT Userscoiiun... 66
Priority RaNQeSo 67
Default Scheduling Classes and Priorities i, 67
Parameters for Scheduling Class and Priorities 68
AGENECIASS . oo 68
AGENtPIIONIY . 68
SCHIPLCIASS . . o e 68
SCHIPEPIIONIY ..o 68
Initializing Parameters in the Configuration File 68

Setting Parameters Dynamically from the Command Line 68

Chapter 6. Testing VCS AQeNtSt 71
Using the VCS ENgine ProCcessot 72

Test COMMANASo 72

USING AQENtSeIVer . o 73
ToAcCCeSS Help .. .o 73
Appendix: Upgrading Custom Agentst 81
Sample clean Entry POiNt 83
USING Gt o 83
Using Shell Script 84

IO EX L 87

vi

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Preface

Introduction

This guide describes the API provided by the VERITAS Cluster Server™ (VCS) agent
framework, and explains how to build and test an agent on UNIX and Windows NT
platforms.

Note Custom agents are not supported by VERITAS Technical Support.

Each VCS agent manages resources of a particular type within a highly available cluster
environment. An agent typically brings resources online, takes resources offline, and
monitors resources to determine their state.

Agents packaged with VCS are referred to as bundled agents. Examples of bundled agents
include Share, IP (Internet Protocol), and NIC (network interface card) agents. For more
information on bundled agents, including their attributes and modes of operation, see the
VERITAS Cluster Server Bundled Agents Reference Guide.

Agents packaged separately for use with VCS are referred to as enterprise agents.

They include agents for Informix, Oracle, and Sybase, and others. Contact your VERITAS
sales representative for information on how to purchase these agents for your
configuration.

For information on installing and configuring VCS, see the VERITAS Cluster Server
Installation Guide.

How Agents Work

How Agents Work

A single VCS agent can monitor multiple resources of the same resource type on one host.
For example, the NIC agent manages all NIC resources.

When the VCS engine process, HAD, comes up on a system, it automatically starts the
required agents according to the type of configuration. When an agent is started, it gets
the necessary configuration information from HAD. It then periodically monitors the
resources and updates HAD with their status.

The agent also carries out online and offline commands received from had. If an agent
crashes or hangs, HAD detects it and restarts the agent.

Note The VCS engine process is known as “HAD.” The acronym stands for
“high-availability daemon.”

Prerequisites

Before proceeding, make sure you have defined the resource type; specifically, that you’ve
defined the attributes of the resource type in the file types.cf, and that you understand the
semantics of the online, offline, and monitor operations. (If necessary, review the
information regarding the VCS configuration language in the VERITAS Cluster Server
User’s Guide.)

How This Guide is Organized

Chapter 1, “VCS Agent Entry Points,” provides a list of VCS entry points and explains
how to implement them.

Chapter 2, “Implementing Entry Points Using C++,” describes how to implement the VCS
entry points using C++. This chapter also describes the VCS agent primitives.

Chapter 3, “Implementing Entry Points Using Scripts,” describes how to implement the
VCS entry points using scripts. This chapter also describes the script syntax for entry
points.

Chapter 4, “Building a Custom VCS Agent,” provides step-by-step instructions for
building a custom agent using C++ and scripts.

Chapter 5, “Setting Agent Parameters,” describes each agent parameter and default.

Chapter 6, “Testing VCS Agents,” provides two methods for testing VCS agents:
the AgentServer utility and the VCS engine process “HAD.”

viii

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Technical Support

Technical Support

For assistance with this product, or information regarding VERITAS service packages,
contact Technical Support at the numbers listed below. You may also contact Technical
Support via email at support@veritas.com.

VCS on UNIX: from U.S and Canada, call 800.342.0652.

VCS on Windows NT: from U.S and Canada, call 800.634.4747. To access Fast Code,
enter 100 after the phone number.

For Customers Outside U.S. and Canada

From Europe, Middle East, or Asia, visit the Technical Support website at
http://support.veritas.com for a list of each country’s contact information.

Conventions

Typeface Usage

courier computer output, command references within text

couri er (bold) user input, keywords in grammar syntax

italic new terms, titles, emphasis, variables replaced with a name or value
italic (bold) variables within a command

Symbol Usage

UNIX superuser prompt (for all shells)

C\> DOS command prompt

i -
Preface ix ~

Conventions

- X VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

VCS Agent Entry Points 1

Developing a VCS agent requires using the agent framework and implementing
entry points. An entry point is a plug-in, defined by the user, that is called when an event
occurs within the VCS agent. An entry point can be a C++ function or a script.

The VCS agent framework supports the entry points listed below. With the exception of
VCSAgSt art up and noni t or, all entry points are optional. Definitions of each entry
point begin on page 3.

VCSAgStartup

monitor

online

offline

clean

attr_changed

open

close

o o o o oo o o d

shutdown

The VCSAgSt ar t up entry point must be implemented using C++. Other entry points
may be implemented using C++ or scripts.

Note If there are no other entry points in C++, you don’t have to provide your own
VCSAgSt ar t up. You can use the VCSAgSt ar t up provided by the agent
framework. (See “Using Script Entry Points” on page 42.)

The advantage to using C++ is that entry points are compiled and linked with the agent
framework library. They run as part of the agent process, so there is no system overhead
when they are called. The advantage to using scripts is that you can modify the entry
points dynamically; however, a new process is created each time they are called. Note that
you may use any combination of C++, Perl, and shell to implement multiple entry points
for a single agent.

The VCS agent framework ensures that a resource has only one entry point running at a
time. If multiple requests or events are received for the same resource, they are queued,
then processed one at a time. However, because the agent framework is multithreaded, a
single agent process can run entry points of several resources simultaneously. For
example, if a resource receives requests to offline first, then close, the of f | i ne entry point
is called first. The cl ose entry point is called only after the offline request returns or
times out. However, if the offline request is received for one resource, and the close
request is received for another, both are called simultaneously.

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

List of Agent Entry Points

List of Agent Entry Points

Beginning with the entry point VCSAgSt ar t up below, each VCS agent entry point is
listed and defined in the following sections.

VCSAgStartup

As stated previously, VCSAgSt ar t up is required if other entry points are implemented
using C++. This entry point is called once when the VCS agent starts. It receives no inputs
and returns no value.

VCSAgSt ar t up must register all entry points with the agent framework by calling the
primitive VCSAgSet Ent r yPoi nt s (VCSAgENt r yPoi nt St ruct &ep). The structure
VCSAgENt r yPoi nt St ruct consists of function pointers, one for each VCS entry point
except VCSAgSt ar t up. (For information on VCS primitives, see page 25.)

Sample Structure
/1 Structure used to register the entry points.

typedef struct {
void (*open)(const char *res_nane,void **attr_val);
void (*cl ose)(const char *res_nane,void **attr_val);
VCSAgResState (*nonitor)(const char
*res_nane, void **attr_val,
int *conf_level);
unsigned int (*online)(const char *res_nane,
void **attr_val);
unsigned int (*offline) (const char *res_nane,
void **attr_val);
void (*attr_changed) (const char *res_nane,
const char *changed_res_nane, const char
*changed_attr_nane, void **new val);
unsigned int (*clean) (const char *res_naneg,
VCSAgWhyCl ean reason, void **attr_val);
void (*shutdown) ();
} VCSAgENt ryPoi nt Struct;

When using C++ to implement an entry point, assign the function to the corresponding
field of VCSAgENt r yPoi nt St r uct . In the following example, the function

nmy_shut down is assigned to the field shut down. If you are using a script, or if you are
not implementing an optional entry point, set the corresponding field to NULL.

Chapter 1, VCS Agent Entry Points 3 W

List of Agent Entry Points

For an agent to run an entry point whose field is set to NULL, the agent automatically
looks for the correct script to execute.

0 On UNIX: $VCS_HOME/bin/resource_type/entry_point.
0 OnWindows NT: VCS_HOME\bin\resource_type\entry_point.extn.

Note On Windows NT, the extension (.extn) assumes the value exe for executable
programs, sh for shell scripts compatible with MKS Toolkit, bat for batch files, or pl
for Perl scripts.

The following example shows the VCSAgSt ar t up entry point for a VCS agent
implementing the shut down entry point only. (Note that the noni t or entry point is
mandatory. In the following example, it is implemented using scripts.)

#i ncl ude "VCSAgApi . h"
void ny_shutdown() {

}

voi d VCSAgStartup() {
VCSAgENt r yPoi nt St ruct ep;
ep.open = NULL;
ep.online = NULL;
ep.of fline = NULL;
ep. noni tor = NULL;
ep.attr_changed = NULL;
ep. cl ean = NULL;
ep. cl ose = NULL;
ep. shut down = ny_shut down;

VCSAgSet Ent r yPoi nt s(ep) ;

- 4 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

List of Agent Entry Points

monitor

The noni t or entry point typically contains the code to determine resource status.
For example, the noni t or entry point of the IP agent checks whether or not an IP address
is configured, and returns online or offline accordingly.

Note This entry point is mandatory.

The framework calls this entry point after completing the onl i ne and of f | i ne entry
points. The noni t or entry point determines if bringing the resource online or taking it
offline was effective. The agent framework may also periodically call this entry point to
detect if the resource was brought online or taken offline unexpectedly.

The noni t or entry point receives a resource name and ArgList attribute values as input
(see “ArgList” on page 62). It returns the resource status (online, offline, or unknown), and
the confidence level 0-100. The confidence level is informative only; it is not used by VCS.
It is returned only when the resource status is online.

A C++ entry point can return a confidence level of 0-100. A script entry point combines
the status and the confidence level in a single number. For example:

O 100 indicates offline.

O 101 indicates online and confidence level 10.
O 102 indicates online and confidence level 20.
O 103-109 indicates online and confidence levels 30-90.
O 110 indicates online and confidence level 100.
Chapter 1, VCS Agent Entry Points 5

List of Agent Entry Points

online

The onl i ne entry point typically contains the code to bring a resource online. For
example, the onl i ne entry point for an IP agent configures an IP address. When the
online procedure completes, the moni t or entry point is automatically called by the
framework to verify that the resource is online.

The onl i ne entry point receives a resource name and ArgList attribute values as input. It
returns an integer indicating the number of seconds to wait for the online to take effect.
The typical return value is 0.

offline

The of f I i ne entry point is called to take a resource offline. For example, the of f| i ne
entry point for an IP agent removes an IP address from the system. When the offline
procedure completes, the noni t or entry point is automatically called by the framework
to verify that the resource is offline.

The of f | i ne entry point receives a resource name and ArgList attribute values as input.
It returns an integer indicating the number of seconds to wait for the offline to take effect.
The typical return value is 0.

- 6 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

List of Agent Entry Points

clean

The cl ean entry point is called automatically by the framework when all ongoing actions
associated with a resource must be terminated and the resource must be taken offline,
perhaps forcibly. The entry point receives as input the resource name, an encoded reason
describing why the entry point is being called, and the ArgList attribute values. It must
return 0 if the operation is successful, and 1 if unsuccessful.

The reason for calling the entry point is encoded according to the following enumtype:

enum VCSAgWhyCl ean {
VCSAgCd eanOf f 1 i neHung,
VCSAgd eanO f | i nel nef fecti ve,
VCSAgd eanOnl i neHung,
VCSAgCd eanOnl i nel neffective,
VCSAgC eanUnexpect edOf f I i ne,
VCSAgC eanhbni t or Hung

b
0 VCSAgCleanOfflineHung

The of f I i ne entry point did not complete within the expected time.
(See “OnlineTimeout” on page 65.)

0 VCSAgCleanOfflinelneffective

The of f | i ne entry point was ineffective.

0 VCSAgCleanOnlineHung
The onl i ne entry point did not complete within the expected time.
(See “OnlineTimeout” on page 65.)

0 VCSAgCleanOnlinelneffective

The onl i ne entry point was ineffective.

0 VCSAgCleanUnexpectedOffline
The online resource faulted because it was taken offline unexpectedly.
0 VCSAgCleanMonitorHung

The online resource faulted because the noni t or entry point consistently failed to
complete within the expected time. (See “FaultOnMonitorTimeouts” on page 63.)

Chapter 1, VCS Agent Entry Points 7

List of Agent Entry Points

The agent supports the following actions when the cl ean entry point is implemented:

[0 Automatically restarts a resource on the local system when the resource faults.
(See the RestartLimit attribute for the resource type.)

[0 Automatically retries the onl i ne entry point when the first attempt to bring a
resource online fails. (See the OnlineRetryLimit attribute for the resource type.)

[0 Enables the VCS engine to bring a resource online on another system when the
onl i ne entry point for the resource fails on the local system.

For the above actions to occur, the cl ean entry point must return 0.

attr_changed

The at t r _changed entry point is called when a resource attribute is modified, and only
if that resource is registered with the agent framework for notification. See the primitives
VCSAgRegi st er () and VCSAgUnr egi st er () for details (page 28). To register
automatically, see the RegLi st parameter described on page 66. This entry point receives
as input the resource name registered with the agent framework for notification, the name
of the changed resource, the name of the changed attribute, and the new attribute value. It
does not return a value. This entry point provides a way to respond to resource changes.
Most agents do not require this functionality and will not implement this entry point.

~ 8 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

List of Agent Entry Points

open

The open entry point is called when the VCS agent starts managing a resource; for
example, when the agent starts, or when the value of the Enabled attribute is changed
from 0 to 1. It receives a resource name and ArgList attribute values as input and returns
no value. This entry point typically initializes the resource.

Note A resource can be brought online, taken offline, and monitored only if it is managed
by a VCS agent. The value of the resource’s Enabled attribute must be set to 1.

When a VCS agent is started, the open entry point of each resource is guaranteed to be
called before its onl i ne, of f | i ne, or noni t or entry points are called. This allows you
to embed the code used to initialize agent implementation for each resource. Most agents
do not require this functionality and will not implement this entry point.

close

The cl ose entry point is called when the VCS agent stops managing a resource; for
example, when the value of the Enabled attribute is changed from 1 to 0. It receives a
resource name and ArgList attribute values as input and returns no value. This entry
point typically deinitializes the resource if implemented. Most agents do not require this
functionality and will not implement this entry point.

Note A resource is monitored only if it is managed by a VCS agent. The value of the
resource’s Enabled attribute must be set to 1.

shutdown

The shut down entry point is called before the VCS agent shuts down. It receives no input
and returns no value. Most agents do not require this functionality and will not
implement this entry point.

Chapter 1, VCS Agent Entry Points 9 W

List of Agent Entry Points

- 10 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Implementing Entry Points Using C++ 2

This chapter describes how to use C++ to implement agent entry points. This chapter also
describes agent primitives, the C++ functions provided by the VCS agent framework.

Because the agent framework is multithreaded, all C++ code written by the agent
developer must be MT-safe. For best results, avoid using global variables. If you do use
them, access must be serialized (for example, by using mutex locks).

On UNIX, the following guidelines also apply:

0 Do not use C library functions that are unsafe in multithreaded applications. Instead,
use the equivalent reentrant versions, such asr eaddi r _r () instead of readdir ().

0 When acquiring resources (dynamically allocating memory, opening a file, etc.), use
thread-cancellation handlers to ensure that resources are freed properly. (See the
manual pages for pt hr ead_cl eanup_push() and pt hread_cl eanup_pop()
for details.)

Data Structures

/1l Values for the state of a resource - returned by the
/1 monitor entry point.
enum VCSAgResSt ate {
VCSAgResOF f | i ne, /] Resource is offline.
VCSAgResOnl i ne, /] Resource is online.
VCSAgRes Unknown /'l Resource is neither online nor offline.

11 -——

Data Structures

/1l Values for the reason why the clean entry point
/1 is called.

enum VCSAgWhyd ean {
VCSAgQ eanOi fli neHung, // offline entry point did
/1 not conplete within the
/'l expected tine.

VCSAgC eanOf f 1 i nel neffecti ve, /1 offline entry point
/'l was ineffective.
VCSAgCd eanOnl i neHung, /1 online entry point did

/1 not conplete within the
/'l expected tine.
VCSAgCd eanOnl i nel neffective, /1 online entry point
/'l was ineffective.
VCSAgC eanUnexpect edOf f I i ne, /1l the resource becane
/1 offline unexpectedly.
VCSAgC eanhbni t or Hung /! nonitor entry point did
/1l not conplete within the
/'l expected tine.
3

/1 Structure used to register the entry points.

typedef struct {
void (*open)(const char *res_name, void **attr_val);
void (*close)(const char *res_nane, void **attr_val);
VCSAgResState (*nonitor)(const char *res_nane,
void **attr_val, int, *conf_level);
unsigned int (*online)(const char *res_nane,
void **attr_val);
unsigned int (*offline)(const char *res_nane,
void **attr_val)
void (*attr_changed) (const char *res_nane,
const char *changed_res_nane, const char
*changed_attr_nane, void **new val);
unsi gned int (*clean)(const char *res_nane,
VCSAgWhyd ean reason, void **attr_val);
void (*shutdown) ();
} VCSAgENt ryPoi nt Struct;

The structure VCSAgENt r yPoi nt St r uct consists of function pointers, one for each VCS
entry point except VCSAgSt art up. (The VCSAgSt ar t up entry point is called by name,
and therefore must be implemented using C++ and named VCSAgSt ar t up.)

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

ArgList Attribute

ArgList Attribute

The ArgList attribute is a predefined static attribute that specifies the list of attributes
whose values are passed to the open, cl ose, onl i ne, of f 1 i ne, and noni t or entry
points. The values of the ArgList attributes are passed through a parameter of type
voi d **. For example, the signature of the onl i ne entry point is:

unsi gned i nt
ny_online(const char *res_nane, void **attr_val);

The parameter at t r _val is an array of character pointers that contains the ArgList
attribute values. The last element of the array is a NULL pointer. Attribute values in
attr_val are listed in the same order as attributes in ArgList.

The values of scalar attributes (integer and string) are each contained in a single element
of att r _val . The values of non-scalar attributes (vector, keylist, and association) are
contained in one or more elements of at t r _val . If a non-scalar attribute contains N
components, it will have N+1 elementsin at t r _val . The first element is N, and the
remaining N elements correspond to the N components. See page 62 for more information
on ArgList. See the chapter describing the VCS configuration language in the

VERITAS Cluster Server User’s Guide for attribute definitions.

Chapter 2, Implementing Entry Points Using C++ 13 =

ArgList Attribute

For example, if Type “Foo”

Type Foo (
str Name
NameRul e =
int IntAttr

is defined in the file types.cf as:

resource. Nane

str StringAttr
str VectorAttr[]
str AssocAttr{}

static str ArgList[] = { IntAttr, StringAttr,
VectorAttr, AssocAttr }
)
And if a resource “Bar” is defined in the file main.cf as:
Foo Bar (
IntAttr = 100
StringAttr = "Oracl e”
VectorAttr = { "vol 1", "vol 2", "vol 3" }
AssocAttr = { "diskl" = "1024", "disk2" = "512" }
)
The parameter att r _val will be:
attr_val[0] ===> "100" /1 Value of IntAttr, the first
/1 ArgList attribute.
attr_val[1] ===> "Oracle" // Value of StringAttr.
attr_val [2] ===> "3" /'l Number of conponents in VectorAttr.
attr_val[3] ===> "vol 1"
attr_val[4] ===> "vol 2"
attr_val[5] ===> "vol 3"
attr_val[6] ===> "4" /1 Nunber of conponents in AssocAttr.
attr_val[7] ===> "disk1l"
attr_val [8] ===> "1024"
attr_val[9] ===> "disk2"
attr_val [10]===> "512"
attr_val [11]===> NULL // Last el enent.

14

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

C++ Entry Point Syntax

C++ Entry Point Syntax

VCSAgStartup
voi d VCSAgStartup();

The entry point VCSAgSt ar t up() must use the primitive VCSAgSet Ent r yPoi nt s()
to register the other entry points with the VCS agent framework. (VCS primitives are
described on page 25.) Note that the name of the C++ function must be

VCSAgSt art up() .

For example:

/'l This exanple shows the VCSAgStartup() entry point
/1 inmplenmentation, assuming that the monitor, online,
/1l and offline entry points are inplemented in C++ and
/'l the respective function nanmes are res_nonitor,
/'l res_online, and res_offline.
#i ncl ude " VCSAgApi . h"
voi d VCSAgStartup() {
VCSAgENt ryPoi nt St ruct ep;

ep. open = NULL,;

ep. cl ose = NULL;

ep.nmonitor = res_nonitor;

ep.online = res_online;

ep.offline = res_offline;

ep.attr_changed = NULL;

ep. cl ean = NULL;

ep. shut down = NULL;

VCSAgSet Ent r yPoi nt s(ep) ;
}
VCSAgResSt ate res_nonitor(const char *res_nane, void

**attr_val, int *conf_level) {

unsi gned int res_online(const char *res_nane,
void **attr_val) {

unsigned int res_offline(const char *res_nane,
void **attr_val) {

}
R R R ————
Chapter 2, Implementing Entry Points Using C++ 15 Y

C++ Entry Point Syntax

monitor
VCSAgResSt at e
ny_nonitor(const char *res_nane, void **attr_val,int *conf_|evel);

The parameter conf _| evel is an output parameter. The return value, which indicates
the resource status, must be a VCSAgResState value defined on page 11.

You may select any name for the function.

The noni t or field of VCSAgENt r yPoi nt St r uct passed to VCSAgSet Ent r yPoi nt s()
must be assigned a pointer to this function.

For example:
#i ncl ude "VCSAgApi . h"

VCSAgRes St at e
ny_nonitor(const char *res_nane, void **attr_val, int *conf_Ilevel)

{

/1l Code to determine the state of a resource.
VCSAgResState res_state = ...
if (res_state == VCSAgResOnline) {
/1 Determ ne the confidence level (0 to 100).
*conf _level = ...
}
el se {
*conf _l evel = 0;
}
return res_state;
}
voi d VCSAgStartup() {
VCSAgENt r yPoi nt Struct ep;

ep.nonitor = ny_nonitor;

VCSAgSet Ent r yPoi nt s(ep) ;

~ 16 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

C++ Entry Point Syntax

online
unsi gned i nt
online(const char *res_nane, void **attr_val);

You may select any name for the function.

The onl i ne field of VCSAgENt r yPoi nt St r uct passed to VCSAgSet Ent r yPoi nt s()
must be assigned a pointer to this function.

For example:
#i ncl ude "VCSAgApi . h"

unsi gned i nt
ny_online(const char *res_nane, void **attr_val) {
/1l Implement the code to online a resource here.

/1 1f nonitor can check the state of the resource
/1l inmrediately, return 0. Otherwi se, return the
/'l appropriate nunber of seconds to wait before
/1 calling nonitor.

return O;

}

voi d VCSAgStartup() {
VCSAgENt r yPoi nt St ruct ep;

ep.online = ny_online;

VCSAgSet Ent r yPoi nt s(ep) ;

}
R R . ————
Chapter 2, Implementing Entry Points Using C++ 17 ¥

C++ Entry Point Syntax

offline
unsi gned i nt
res_offline(const char *res_nane, void **attr_val);

You may select any name for the function.

The of f | i ne field of VCSAgENt r yPoi nt St r uct passed to VCSAgSet Ent r yPoi nt s()
must be assigned a pointer to this function.

For example:
#i ncl ude "VCSAgApi . h"

unsi gned i nt
ny_offline(const char *res_nane, void **attr_val) {
/1 Implenment the code to offline a resource here.

/1 1f nonitor can check the state of the resource
/1 inmrediately, return 0. Otherwi se, return the
/'l appropriate nunber of seconds to wait before
/1 calling nonitor.

return O;

}

voi d VCSAgStartup() {
VCSAgENt r yPoi nt Struct ep;

ep.offline = nmy_offline;

VCSAgSet Ent r yPoi nt s(ep) ;

~ 18 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

C++ Entry Point Syntax

clean
unsi gned i nt
cl ean(const char *res_nanme, VCSAgWyd ean reason,void **attr_val);

You may select any name for the function.

The cl ean field of VCSAgENt r yPoi nt St r uct passed to VCSAgSet Ent r yPoi nt s()
must be assigned a pointer to this function.

For example:
#i ncl ude "VCSAgApi . h"

unsi gned i nt
ny_cl ean(const char *res_nane, VCSAgWydC ean reason,
void **attr_val) {
/1l Code to forcibly offline a resource.

/1 If the procedure is successful, return 0; else
/'l return 1.
return O;

}

voi d VCSAgStartup() {
VCSAgENt r yPoi nt St ruct ep;

ep. cl ean = ny_cl ean;

VCSAgSet Ent r yPoi nt s(ep) ;

}
R R . ————
Chapter 2, Implementing Entry Points Using C++ 19 ¥

C++ Entry Point Syntax

attr_changed
voi d
res_attr_changed(const char *res_nane, const char
*changed_r es_nane,
const char *changed_attr_nane,
void **new val);

The parameter new_val contains the attribute’s new value. The encoding of new_val is
similar to the encoding of the ArgList attributes described on page 13.
You may select any name for the function.

The at t r _changed field of VCSAgEnNt r yPoi nt St r uct passed to
VCSAgSet Ent r yPoi nt s() must be assigned a pointer to this function.

Note This entry point is called only if you register for change notification using the

primitive VCSAgRegi st er () described on page 28, or the agent parameter
RegLi st described on page 66.

For example:

#i ncl ude "VCSAgApi . h"
voi d
ny_attr_changed(const char *res_nane,
const char *changed_res_nane,
const char *changed_attr_nane,
void **new val) {
/1 When the value of attribute Foo changes, take sone action.
if ((strcnp(res_nanme, changed_res_nanme) == 0) &&
(strcnp(changed_attr_nanme, "Foo") == 0)) {
/1 Extract the new value of Foo. Here, it is assuned
/!l to be a string.
const char *foo_val = (char *)new_val[0];
/1 Implenment the action.

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

C++ Entry Point Syntax

/'l Resource Oral managed by this agent needs to

/1 take sonme action when the Size attribute of

/'l the resource Diskl is changed.

if ((strcnp(res_nane, "Oral") == 0) &&
(strcnp(changed_attr_nane, "Size") == 0) &&
(strcnp(changed_res_nane, "Diskl") == 0)) {

/'l Extract the new value of Size. Here, it is
/] assunmed to be an integer.

int sizeval = atoi((char *)new_val[0]);

/1l Inmplement the action.

}

voi d VCSAgStartup() {
VCSAgENt r yPoi nt Struct ep;

ep.attr_changed = ny_attr_changed;

VCSAgSet Ent r yPoi nt s(ep) ;

}
R R R ————
Chapter 2, Implementing Entry Points Using C++ 21 ¥

C++ Entry Point Syntax

open
void res_open(const char *res_nane, void **attr_val);
You may select any name for the function.

The open field of VCSAgENt r yPoi nt St r uct passed to VCSAgSet Ent r yPoi nt s()
must be assigned a pointer to this function.

For example:
#i ncl ude "VCSAgApi . h"

void my_open(const char *res_name, void **attr_val) {
/1 Performresource initialization, if any.
/'l Register for attribute change notification, if needed.

}

void VCSAgStartup() {
VCSAgENt ryPoi nt Struct ep;

ep. open = my_open;

VCSAgSet Ent r yPoi nt s(ep) ;

~ 22 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

C++ Entry Point Syntax

close
void res_cl ose(const char *res_nane, void **attr_val);
You may select any name for the function.

The cl ose field of VCSAgENt r yPoi nt St r uct passed to VCSAgSet Ent r yPoi nt s()
must be assigned a pointer to this function.

For example:
#i ncl ude "VCSAgApi . h"

void my_cl ose(const char *res_nane,void **attr_val) {
/'l Resource-specific de-initialization, if needed.
/'l Unregister for attribute change notification, if any.

voi d VCSAgStartup() {
VCSAgENt r yPoi nt Struct ep;
ep. cl ose = ny_cl ose;

VCSAgSet Ent r yPoi nt s(ep) ;

Chapter 2, Implementing Entry Points Using C++ 23

C++ Entry Point Syntax

shutdown
voi d shut down();
You may select any name for the function.

The shut down field of VCSAgENt r yPoi nt St r uct passed to
VCSAgSet Ent r yPoi nt s() must be assigned a pointer to this function.

For example:
#i ncl ude "VCSAgApi . h"

void my_shutdown(const char *res_nane) {
/'l Agent-specific de-initialization, if any.

}

void VCSAgStartup() {
VCSAgENt ryPoi nt Struct ep;

ep. shut down = ny_shut down;

VCSAgSet Ent r yPoi nt s(ep) ;

~ 2 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

C++ Entry Point Syntax

VCS Primitives

Primitives are C++ methods implemented by the VCS agent framework. Beginning with
the primitive VCSAgSet Ent r yPoi nt s() below, each VCS primitive is listed and defined
in the following sections.

VCSAgSetEntryPoints
voi d VCSAgSet Ent r yPoi nt s(VCSAgEnt r yPoi nt Struct & entry_poi nts);

This primitive requests that the VCS agent framework use the entry point
implementations designated in ent ry_poi nt s. It must be called only from the
VCSAgSt ar t up entry point.

For example:

/'l This exanpl e shows how to use VCSAgSet Ent ryPoi nts()
/1 Primtive within the VCSAgStartup() entry point. It

/] is assuned here that the nonitor, online, and offline
/'l entry points are inplemented in C++, and that the

/'l respective function names are res_nonitor,

/'l res_online, and res_offline.

#i ncl ude "VCSAgApi . h"

voi d VCSAgStartup() {
VCSAgENt ryPoi nt Struct ep;

ep.open = NULL;

ep. cl ose = NULL;

ep. nonitor = res_nonitor;
ep.online = res_online;
ep.offline = res_offline;
ep.attr_changed = NULL;
ep. cl ean = NULL;

ep. shut down = NULL;
VCSAgSet Ent r yPoi nt s(ep) ;

Chapter 2, Implementing Entry Points Using C++ 25 Y

C++ Entry Point Syntax

VCSAgSetCookie

voi

d VCSAgSet Cooki e(const char *nanme, void *cookie);

This primitive requests that the VCS agent framework store a cookie. This value is
transparent to the VCS agent framework, and can be obtained later by calling the
primitive VCSAgCet Cooki e() . Note that a cookie is not stored permanently; it is lost
when the VCS agent process exits. This primitive can be called from any entry point.

For example:

#i ncl ude " VCSAgApi . h"

I
I
I
I
I
/1
/1
/1
I
I
I
I
I
I
I
I

voi

}

voi

Assume that the online, offline, and nonitor
operations on resource require a certain key. Al so
assune that obtaining this key is tinme consum ng, but
that it can be reused until this process is

t er m nat ed.

In this exanple, the open entry point obtains the key
and stores it as a cookie. Subsequent online,

offline, and nonitor entry points get the cookie and
use the key.

Not e that the cookie nane can be any unique string.
Thi s exanpl e uses the resource nane as the cookie
nane.

d *get _key() {

d ny_open(const char *res_nane, void **attr_val) {
i f (VCSAgGet Cooki e(res_nane) == NULL) {
void *key = get_key();
VCSAgSet Cooki e(res_nane, key);

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

C++ Entry Point Syntax

VCSAgResState my_noni tor(const char *res_name, void
**attr_val, int *conf_level _ptr) {
VCSAgResSt at e state = VCSAgResUnknown;
*conf _level _ptr = 0;
void *key = VCSAgCet Cooki e(res_nane);
if (key == NULL) {
/'l Take care of the rare cases when
/1 the open entry point failed to
/1 obtain the key and set the the cookie
key = get_key();
VCSAgSet Cooki e(res_nane, key);
}

/'l Use the key for testing if the resource is
/1 online, and set the state accordingly.

return state;

Chapter 2, Implementing Entry Points Using C++ 27 —

C++ Entry Point Syntax

VCSAgRegister
voi d
VCSAgRegi st er (const char *notify_res_naneg,
const char *res_nane,
const char *attr_nane);

This primitive requests that the VCS agent framework notify the resource

noti fy_res_nane when the value of the attribute at t r _name of the resource

r es_name is modified. The notification is made by calling the at t r _changed entry
point for noti fy_res_nane. Note thatnoti fy_res_nane can be the same as

r es_name. This primitive can be called from any entry point, but it is useful only when
the at t r _changed entry point is implemented.

For example:
#i ncl ude "VCSAgApi . h"

void nmy_open(const char *res_name, void **attr_val) {

/'l Register to get notified when the
/1l "Critical Attr" of this resource is nodified.
VCSAgRegi ster(res_nane, res_nane, "Critical Attr");

/'l Register to get notified when the
/] "Critical Attr" of "Central Res" is nodified.
VCSAgRegi ster(res_nane, "Central Res”, "Critical Attr");

/'l Register to get notified when the

/1l "Critical Attr" of another resource is nodified.

/1 It is assumed that the name of the other resource

/1 is given as the first ArgList attribute.

VCSAgRegi ster(res_nane, (const char *)attr_val[0],
"Critical Attr");

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

C++ Entry Point Syntax

VCSAgUnregister
voi d
VCSAgUnr egi ster (const char *notify_res_name, const char *res_nane,
const char *attr_nane);

This primitive requests that the VCS agent framework stop notifying the resource
noti fy_res_nane when the value of the attribute at t r _name of the resource
r es_name is modified. This primitive can be called from any entry point.

For example:

#i ncl ude "VCSAgApi . h"

void nmy_cl ose(const char *res_nane, void **attr_val) {

/1l Unregister for the "Critical Attr" of this resource.
VCSAgUnr egi ster(res_name, res_nanme, "Critical Attr");

/'l Unregister for the "Critical Attr" of "Central Res".
VCSAgUnr egi ster(res_name, "Central Res”, "Critical Attr");

/'l Unregister for the "Critical Attr" of another resource.
/1 1t is assunmed that the name of the other resource is
/'l given as the first ArgList attribute.
VCSAgUnr egi ster(res_nane, (const char *)

attr_val[0], "Critical Attr");

}
R R . ————
Chapter 2, Implementing Entry Points Using C++ 29 Y

C++ Entry Point Syntax

VCSAgGetCookie

voi

d *VCSAgGet Cooki e(const char *nane);

This primitive requests that the VCS agent framework get the cookie set by an earlier call
to VCSAgSet Cooki e() . It returns NULL if cookie was not previously set. This primitive
can be called from any entry point.

For example:

#i ncl ude " VCSAgApi . h"

I
I
I
I
I
/1
/1
/1
I
I
I
I
I
I

voi

}

Assume that the online, offline, and nonitor
operations on resource require a certain key. Al so
assune that obtaining this key is tinme consum ng, but
that it can be reused until this process is term nated.

In this exanple, the open entry point obtains the key
and stores it as a cookie. Subsequent online,

offline, and nonitor entry points get the cookie and
use the key.

Not e that the cookie nane can be any unique string.
Thi s exanpl e uses the resource nane as the cooki e nane.

d *get _key() {

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

C++ Entry Point Syntax

void my_open(const char *res_name, void **attr_val) {
i f (VCSAgGet Cooki e(res_nanme) == NULL) {
void *key = get_key();
VCSAgSet Cooki e(res_nane, key);

}
}
VCSAgResState nmy_noni tor (const char *res_name, void
**attr_val, int *conf_level _ptr) {
VCSAgResSt at e state = VCSAgResUnknown;
*conf_| evel _ptr = 0;
voi d *key = VCSAgCet Cooki e(res_nane) ;
if (key == NULL) {
/'l Take care of the rare cases when the open
/'l entry point failed to obtain the key and
/1 set the the cookie
key = get_key();
VCSAgSet Cooki e(res_nane, key);
}
/'l Use the key for testing if the resource is
/1 online, and set the state accordingly.
return state;
}
Chapter 2, Implementing Entry Points Using C++ 31 Y

C++ Entry Point Syntax

VCSAgLogMsg
voi d
VCSAgLogMsg(int tag, const char *nmessage, int flags);

This primitive requests that the VCS agent framework write nessage to the following
agent log file,

0 On UNIX: $VCS_LOG/log/resource_type A.log.

0 On Windows NT: VCS_HOME\Ilog\resource_type_A.txt.

Tag can be any value from TAG_A to TAG_Z. Fl ags can be zero or more of LOG_NONE,

LOG_TI MESTAMP (prints date and time), LOG_NEWLI NE (prints a new line), and LOG_TAG
(prints tag). This primitive can be called from any entry point.

For example:

#i ncl ude "VCSAgApi . h"

VCSAgLogMsg(TAG E, "This is a debug nessage",
LOG TAG LOG TI MESTAMP| LOG_NEWLI NE) ;

VCSAgLogConsoleMsg
voi d
VCSAgLogConsol eMsg(i nt tag, const char *nmessage, int flags);

This primitive requests that the VCS agent framework write nessage to the following
VCS engine log file.

0 On UNIX: $VCS_LOG/log/engi ne_A.log.

0 On Windows NT: VCS_HOME\Iog\engi ne_A.txt.

Tag can be any value from TAG_A to TAG_Z. Tags A-E are enabled by default.

Fl ags can be zero or more of LOG_NONE, LOG_TI MESTAMP (prints date and time),

LOG_NEWLI NE (prints a new line), and LOG_TAG (prints tag). This primitive can be called
from any entry point.

For example:
#i ncl ude " VCSAgApi . h"

VCSAgLogConsol eMsg(TAG_ A, "Getting | ow on di sk space",
LOG TAG LOG TI MESTAMP) ;

DY) VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Implementing Entry Points Using Scripts 3

As mentioned in Chapter 2, on UNIX the VCSAgSt ar t up entry point must be
implemented using C++. Other entry points may be implemented using C++ or scripts.
If no other entry points are implemented in C++, implementing VCSAgSt ar t up is not
required. Instead, UNIX developers may use ScriptAgent, and Windows NT developers
may use VCSdefault.dll. See page 43 for examples of each.

Script entry points can be executables or scripts, such as shell or Perl (VCS includes a Perl
distribution). On Windows NT, batch (.bat) files can also be used. To use shell scripts on
Windows NT, you must first install MKSToolkit or a similar software application. Also,
the PATH environment variable must include the directory where sh is installed.

Adhere to the following rules when implementing a script entry point:
O Inthe VCSAgSt ar t up entry point, set the corresponding field of

VCSAgENt r yPoi nt St ruct to NULL prior to calling VCSAgSet Ent r yPoi nt s() .
(If necessary, review page 3.)

0 Place the script file in the correct directory after verifying the name of the script file.
0O OnUNIX:
0O Verify that the name of the script file is the same as the entry point.
0 Place the file in the directory $VCS_HOME/bin/resource_type.

O On Windows NT:

0O Verify that the name of the script file is the same as the entry point, followed
by a period and the appropriate extension (see page 4).

00 Place the file in the directory VCS_HOME\bin\resource_type.

For example, if the onl i ne entry point for Oracle is implemented using Perl,
the onl i ne script must be:

On UNIX: $vCS_HOME/bin/Oracle/online
On Windows NT: VCS_HOME\bin\Oracle\online.pl

ArgList Attributes

The input parameters of script entry points are passed as command-line arguments.
The first command-line argument for all the entry points is the name of the resource
(except shut down, which has no arguments).

Some entry points have an output parameter that is returned through the program exit
value. When using batch files on Windows NT, beware of a subtle problem in passing the
exit code. The value returned by the final batch command is presented as the exit value of
the program. There is no direct way to exit a batch program with a particular value.

For example, when executing the batch command exi t 100, the exit code of the program
is 0 and not 100. This is because the exi t command does not look at the arguments, and
always exits with 0. To solve this problem, VCS on Windows NT includes a small program
called exi t code. exe in the directory VCS_HOMEN\bin. This program exits with the
value passed as the argument, so it can be used as the last command of a batch file to force
a specific exit value. For example, the following batch file has the exit value of 110:

echo Hello Wrld
" W/CS_HOVE% bi n\ exi t code" 110

ArgList Attributes

The open, cl ose,onl i ne,of fl i ne, noni t or, and cl ean scripts receive the resource
name and values of the ArgList attributes. The values of scalar ArgList attributes (integer
and string) are each contained in a single command-line argument. The values of complex
ArgList attributes (vector and association) are contained in one or more command-line
arguments.

If a vector or association attribute contains N components, it is represented by N+1
command-line arguments. The first command-line argument is N, and the remaining N
arguments correspond to the N components. (See page 62 for more information on
ArgList. See the chapter on the VCS configuration language in the VERITAS Cluster Server
User’s Guide for attribute definitions.)

If Type “Foo” is defined in types.cf as:

Type Foo (
str Nanme

NameRul e = resource. Nanme

int IntAttr

str StringAttr

str VectorAttr[]

str AssocAttr{}

static str ArgList[] = { IntAttr, StringAttr,
VectorAttr, AssocAttr }

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

ArgList Attributes

And if a resource “Bar” is defined in main.cf as:

Foo Bar (
IntAttr = 100

StringAttr = "Oracl e"
VectorAttr = { "vol1", "vol 2", "vol 3" }
AssocAttr = { "diskl" = "1024", "disk2" = "512" }

)

On UNIX: the onl i ne script for Bar is invoked as:
online Bar 100 Oracle 3 vol1l vol 2 vol 3 4 diskl 1024 di sk2 512

On Windows NT: the Perl script onl i ne. pl script for Bar is invoked as:
perl online.pl Bar 100 Oracle 3 vol 1 vol 2 vol 3 4 di skl 1024 di sk2 512

Chapter 3, Implementing Entry Points Using Scripts 35 -

Script Entry Point Syntax

Script Entry Point Syntax

monitor
noni t or resource ArgList_attribute_values

A script entry point combines the status and the confidence level in the exit value.
For example:

0 100 indicates offline.

0 101 indicates online and confidence level 10.

0 102-109 indicates online and confidence levels 20-90.

0 110 indicates online and confidence level 100.

If the exit value falls outside the range 100-110, the status is considered unknown.

online
onl i ne resource ArgList_attribute_values

The exit value is interpreted as the expected time (in seconds) for the online procedure to
be effective. The exit value is typically 0.

offline
of fl1 i ne resource ArgList_attribute_values

The exit value is interpreted as the expected time (in seconds) for the offline procedure to
be effective. The exit value is typically 0.

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Script Entry Point Syntax

clean

cl ean resource clean_reason ArgList_attribute_values

The variable clean_reason equals one of the following values:

0 - The of f I i ne entry point did not complete within the expected time.

1-Theof fli ne entry point was ineffective.

2 - The onl i ne entry point did not complete within the expected time.

3 - The onl i ne entry point was ineffective.

4 - The resource was taken offline unexpectedly.

5 - The monitor entry point consistently failed to complete within the expected time.

(See “FaultOnMonitorTimeouts” on page 63.)

The exit value is 0 (successful) or 1.

attr_changed
attr_changed resource_name changed_resource_name changed_attribute_name

new_attribute_value

The exit value is ignored.

Note This entry point is called only if you register for change notification using the
primitive VCSAgRegi st er () described on page 28, or the agent parameter
RegLi st described on page 66.

open
open resource_name ArgList_attribute_values

The exit value is ignored.

close
cl ose resource_name ArgList_attribute_values

The exit value is ignored.

shutdown
shut down

The exit value is ignored.

Chapter 3, Implementing Entry Points Using Scripts 31T

Logging

Logging

Messages directed to the st dout and st der r of the script entry points are captured and
sent to the global log. Additionally, script entry points can send any message to the global
log using the hal og command. See hal og(1M) manual page for more information.

Message Numbering

All VCS agent log messages contain message numbers in the range of 0 - 1,000,000.

Log messages from agents developed by VERITAS consultants contain message numbers
in the range of 1,000,001 - 2,000,000. The log message number range available for customer
custom agents is: 2,000,001 and beyond.

- 38 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a Custom VCS Agent

A4

The VRTSvcs package includes the following files to facilitate agent development on
UNIX and Windows NT platforms. Note that custom agents are not supported by
VERITAS Technical Support.

Script Agents

Description

Pathname: UNIX

Pathname: Windows NT

Ready-to-use VCS agent
that includes a built-in
implementation of the
VCSAgSt ar t up entry
point.

$VCS_HOME/bin/ScriptAgent

Note ScriptAgent cannot be used
be used with C++ entry
points.

VCS_HOME\bin\VCSdefault.dll

Note VCSdefault.dll cannot be
used with C++ entry points.

C++ Agents

Description

Pathname: UNIX

Pathname: Windows NT

Directory containing a
sample C++ agent and
Makefil e.

$VCS_HOME/src/agent/Sample

VCS_HOMEN\src\agent\Sample

Sample Makefi | e for
building a C++ agent.

$VCS_HOME/src/agent/Sample
/Makefile

VCS_HOMEN\src\agent\Sample\
Makefile

Entry point templates for
C++ agents.

$VCS_HOME/src/agent/Sample
/agent.C

VCS_HOMEN\src\agent\Sample\
Sample.C

39 -——

Compiling is not required if all entry points are implemented using scripts. A copy of
Scri pt Agent is sufficient on UNIX; a copy of VCSdefault.dll is sufficient on
Windows NT.

Compiling is required to build the agent if any entry points are implemented using C++.

We recommend the following procedures for UNIX and Windows NT developers

implementing entry points using C++:

1. Editagent. C(UNIX) or sanpl e. C(Windows NT) to customize the implementation.
0 OnUNIX: agent . Cis located in the directory $YCS_HOME/src/agent/Sample.
0 On Windows NT: sanpl e. Cis located in the directory

VCS_HOMEN\src\agent\Sample.

2. After completing the changes to agent . Cor sanpl e. C, invoke the command to

build the agent.

0 On UNIX: the command is make, and it is invoked from
$VCS_HOME/src/agent/Sample.

O On Windows NT: the command is nmake, and it is invoked from
VCS_HOMEN\src\agent\Sample.

Additional Recommendations

We also recommend naming the agent binary (UNIX) or DLL (Windows NT)
resource_typeAgent or resource_type.dll, respectively.

0 On UNIX: place the agent in the directory $VCS_HOME/bin/resource_type.

For example, on UNIX the agent binary for Oracle would be
$VCS_HOME/bin/Oracle/OracleAgent. If it is different, for example
/foo/ora_agent, the types.cf file must contain the following entry:

Type Oacle (
static str AgentFile = "/fool/ora_agent"

)

0 On Windows NT: place the agent in VCS_HOME\bin\resource_type. The agent DLL
for Oracle would be VCS_HOME\bin\Oracle\Oracle.dll.

40

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

If entry points are implemented using scripts, the script file must be placed in a specific
directory, and must be named correctly (if necessary, review page 4).

0 On UNIX: the directory for the script file is $VCS_HOME/bin/resource_type.
0 On Windows NT: the directory for the script file is VCS_HOME\bin\resource_type.

For example, if the onl i ne entry point for Oracle is implemented using Perl, the
onl i ne script must be:

0 On UNIX: $VCS_HOME/bin/Oracle/online
0 On Windows NT: VCS_HOME\bin\Oracle\online.pl

Building a VCS Agent for MyFile Resources

The following sections describe different ways to build a VCS agent for “MyFile”
resources. For test purposes, instructions for installing the agent on a single VCS system
are also provided. For multi-system configurations, you must install the agent on each
system in the cluster. Note that examples are included for UNIX and Windows NT
developers.

The UNIX examples assume that VCS is installed under /opt/VRTSvcs. If your VCS
installation directory is different, change the commands accordingly. The Windows NT
examples use the keyword VCS_HOME to denote the VCS installation directory.
Substitute VCS_HOME with the actual directory name when entering commands.

A MyFile resource represents a regular file. The MyFile onl i ne entry point creates the file
if it does not already exist. The MyFile of f | i ne entry point deletes the file. The MyFile
noni t or entry point returns online and confidence level 100 if the file exists; otherwise, it
returns offline. The examples in this chapter use the following type and resource
definitions:

/1 Define the resource type called MyFile (in types.cf).
type MyFile (

NameRul e = resource. Pat hNane;

str Pat hNane;

static str ArgList[] = { PathNane };

)
/1 Define a MyFile resource (in nmain.cf).
M/File (
Pat hNanme = "/tnp/VRTSvcs_filel" (UNIX)or
"C:\\tenp\\VRTSvcs_filel" (Windows NT)
Enabled = 1
)

Chapter 4, Building a Custom VCS Agent 41

Building a VCS Agent for MyFile Resources

The resource name and ArgList attribute values are passed to the script entry points as
command-line arguments. For example, in the preceding configuration, script entry
points receive the resource name as the first argument, and PathName as the second.

Using Script Entry Points

The following example shows how to build the MyFile agent without writing and
compiling any C++ code. This example implements the onl i ne, of f | i ne, and noni t or
entry points only. (UNIX users, see the example below. Windows NT users, see the
example on page 43.)

Building an Agent Using Script Entry Points on UNIX

1. Create the directory /opt/VRTSvcs/bin/MyFile:
nkdir /opt/VRTSvcs/ bin/ MyFil e
2. Use the VCS agent Zopt/VRTSvcs/bin/ScriptAgent as the MyFile agent. Copy this
file to Zopt/VRTSvcs/bin/MyFile/MyFileAgent, or create a link:
To copy the agent binary:
cp /opt/VRTSvcs/ bi n/ Scri pt Agent
[opt/ VRTSvcs/ bi n/ MyFi | e/ MyFi | eAgent
To create a link to the agent binary:
1n -s /opt/VRTSvcs/ bi n/ Scri pt Agent
[opt/ VRTSvcs/ bi n/ MyFi | e/ MyFi | eAgent
3. Implementthe onl i ne, of fI i ne, and noni t or entry points using scripts.
a. Using any editor, create the file Zopt/VRTSvcs/bin/MyFile/online with the
contents:

1/ bin/sh
Create the file specified by the PathNane attri bute.
touch $2

b. Create the file Zopt/VRTSvcs/bin/MyFile/offline with the contents:

!/ bin/sh
Renove the file specified by the PathNanme attri bute.
rm $2

DY) VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

c. Create the file Zopt/VRTSvcs/bin/MyFile/monitor with the contents:

!/ bin/sh
Verify file specified by the PathName attribute exists.
if test -f $2

then exit 110;
el se exit 100;
fi

Building an Agent Using Script Entry Points on Windows NT

1. Create the directory VCS_HOME\bin\MyFile:
C:\> nkdir VCS_HOVE\ bi n\ MyFi |l e

2. Use VCS_HOME\bin\VCSdefault.dll as the agent DLL.
Copy the file to VCS_HOME\bin\MyFile.dll, as shown below:

C.\> cp VCS_HOVE\ bi n\ VCSdef aul t. dl |
VCS_HOVE\ bi n\ MyFi | e\ MyFi | e. dl |

3. Implementthe onl i ne, of fIi ne, and noni t or entry points using scripts.
The examples below use shell scripts. MKS Toolkit or equivalent software is required
for running shell scripts. Entry points can also be implemented as batch files.

a. Using any editor, create the fileVCS_HOME\MyFile\online.sh with the following
contents:

Create the file specified by the PathNane attri bute.
touch $2

b. Create the file VCS_HOME\bin\MyFile\offline.sh with the following contents:

Renove the file specified by the PathNane attri bute.
rm $2

c. Create the file VCS_HOME\bin\MyFile\monitor with the following contents:

Verify that file specified by PathNanme attribute exists.
if test -f $2

then exit 110;

el se exit 100;

fi

Chapter 4, Building a Custom VCS Agent 43 -

Building a VCS Agent for MyFile Resources

Using VCSAgStartup() and Script Entry Points

The following example shows how to build the MyFile agent using your own
VCSAgSt ar t up entry point. This example implements the VCSAgSt ar t up, onl i ne,
of f i ne, and noni t or entry points only. (UNIX users, see the example below.
Windows NT users, see the example on page 46.)

Building an Agent Using VCSAgStartup() and Script Entry Points on UNIX

1. Create the directory Zopt/VRTSvcs/src/agent/MyFile:
nkdir /opt/VRTSvcs/src/agent/ MFile

2. Copy the contents from the directory Zopt/VRTSvcs/src/agent/Sample
to the directory you created in the previous step:

cp /opt/VRTSvcs/ src/ agent/ Sanpl e/ *
/ opt/ VRTSvcs/ src/agent/ MyFil e

3. Change to the new directory:
cd /opt/VRTSvcs/ src/ agent/ MyFil e

4. Edit the file agent . Cand modify the VCSAgSt ar t up() function (the last 15 lines)
to match the following example:

voi d VCSAgStartup() {
VCSAgENt r yPoi nt St ruct ep;

I

the entry point fields to NULL because

/1l this exanpl e does not inplenent any of them

I

ep.
ep.
ep.
ep.
ep.
ep.
ep.
ep.

usi ng C++.

open = NULL;

NULL;

= NULL;
= NULL;
= NULL;

attr_changed = NULL;

NULL;

shut down = NULL;

VCSAgSet Ent r yPoi nt s(ep) ;

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

5. Compile agent . Cand build the agent by invoking make. (Makef i | e is provided.)

make

6. Create the directory Zopt/VRTSvcs/bin/MyfFile:
nkdir /opt/VRTSvcs/ bin/ MyFile

7. Install the MyFile agent built in step 5.
make install AGENT=MFile

8. Implement the onl i ne, of fI i ne, and noni t or entry points, as instructed in step 3
on page 42.

Chapter 4, Building a Custom VCS Agent 45 -

Building a VCS Agent for MyFile Resources

Building an Agent Using VCSAgStartup() and Script Entry Points on Windows NT

Note To build an agent on Windows NT, you must first install Visual C++ on the system
on which the agent will be built.

=

Create the directory VCS_HOME\src\agent\MyfFile:

C.\> nkdir VCS_HOMWE\src\agent\ MFile

2. Copy the contents of the directory VCS_HOME\src\agent\Sample to the directory
you created in the previous step:

C.\> cp VCS_HOVE\ src\agent\ Sanpl e* VCS_HOVE\ src\agent\ M/Fi | e

3. Change to the new directory:
C.\> cd VCS_HOVE\ src\agent\ MFile

4. Edit the file sanpl e. Cand modify the VCSAgSt ar t up() function
(the last 15 lines) to match the following example:

voi d VCSAgStartup() {
VCSAgENt r yPoi nt St ruct ep;

I

the entry point fields to NULL because

/'l this exanpl e does not inplenent any of them

11

ep.
ep.
ep.
ep.
ep.
ep.
ep.
ep.

usi ng C++.

NULL;
NULL;
= NULL;
= NULL;
= NULL;

attr_changed = NULL;

NULL;

shut down = NULL;

VCSAgSet Ent r yPoi nt s(ep) ;

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

5. Compile sanpl e. Cand build the agent by invoking nmake. (Makef i | e is provided.)

C:\> nmake

6. Create the directory VCS_HOME\bin\MyfFile:
C\> nkdir VCS_HOME\ bi N\ M/Fi | e

7. Place the sample.dll as the MyFile agent library.
C.\> copy sanple.dll VCS_HOVE\ bi "\ MyFi | e\ WyFil e.dl I

8. Implement the onl i ne, of fI i ne, and noni t or entry points, as instructed in step 3
on page 43.

Chapter 4, Building a Custom VCS Agent 47

Building a VCS Agent for MyFile Resources

Using C++ and Script Entry Points

The following example shows how to build the MyFile agent using your own

VCSAgSt ar t up entry point, the C++ version of the noni t or entry point, and the script
version of onl i ne and of f | i ne entry points. This example implements the

VCSAgSt art up, onl i ne, of f1i ne, and noni t or entry points only. (UNIX users, see
the example below. Windows NT users, see the example on page 51.)

Building an Agent Using C++ and Script Entry Points on UNIX

1. Create the directory Zopt/VRTSvcs/src/agent/MyFile:
nkdir /opt/VRTSvcs/src/agent/ MFile

2. Copy the contents from the directory Zopt/VRTSvcs/src/agent/Sample
to the directory you created in the previous step:

cp /opt/VRTSvcs/ src/ agent/ Sanpl e/ *
/ opt/ VRTSvcs/ src/agent/ MyFil e

3. Change to the new directory:
cd /opt/ VRTSvcs/ src/agent/ MyFil e

4. Edit the file agent . Cand modify the VCSAgSt ar t up() function (the last 15 lines)
to match the following example:

voi d VCSAgStartup() {
VCSAgENt r yPoi nt St ruct ep;

/1 This exanple inplenents only the nonitor entry
/1 point using C++. Set all the entry point
/1 fields, except nonitor, to NULL.

ep. open = NULL;

ep. cl ose = NULL;

ep.monitor = res_nonitor;

ep.online = NULL;

ep.of fline = NULL;

ep.attr_changed = NULL;

ep. cl ean = NULL;

ep. shut down = NULL;

VCSAgSet Ent r yPoi nt s(ep) ;

~ 48 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

5. Modify theres_noni t or () function:

/1 This is a C++ inplementation of the nonitor entry
/1 point for the MyFile resource type. This function
/1 determines the status of a MyFile resource by

/'l checking if the corresponding file exists. It is
/1 assunmed that the conplete pathnanme of the file wll
/'l be passed as the first ArgList attribute.

VCSAgResState res_nonitor(const char *res_nane, void
**attr_val,int *conf_level) {
/1 Initialize the OUT paraneters.
VCSAgResSt at e state = VCSAgResUnknown;
*conf _level = 0;

if (attr_val) {
/'l Get the pathname of the file.
const char *path_nanme = (const char *) attr_val[0];
/1 Determine if the file exists.
struc stat stat_buf;
if (stat(path_nanme, &stat_buf) == 0) {
state = VCSAgResOnl i ne;

*conf | evel = 100;

}

el se {
state = VCSAgResO fl i ne;
*conf _level = 0;

}

}
// Return the status of the resource.

return state;

Chapter 4, Building a Custom VCS Agent 49

Building a VCS Agent for MyFile Resources

6. Compile agent . Cand build the agent by invoking make. (Makef i | e is provided.)

make

7. Create the directory Zopt/VRTSvcs/bin/MyfFile:
nkdir /opt/VRTSvcs/ bi n/ MyFile

8. Install the MyFi | e agent built in step 6.
make install AGENT=MFile

9. Implement the onl i ne and of f | i ne entry points, as instructed in step 3 on page 42.

- 50 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

Building an Agent Using C++ and Script Entry Points on Windows NT

Note To build an agent on Windows NT, you must first install Visual C++ on the system
on which the agent will be built.

1. Create the directory VCS_HOMEN\src\agent\MyFile:
C.\> nkdir VCS_HOMWE\src\agent\ MFile

2. Copy the contents of the directory VCS_HOME\src\agent\Sample to the directory
you created in the previous step:

C.\> cp VCS_HOVE\ src\agent\ Sanpl e\ * VCS_HOWE\ sr c\

agent\ MyFil e

3. Change to the new directory:

C.\> cd VCS_HOVE\ src\agent\ M/Fil e

4. Edit the file sanpl e. Cand modify the VCSAgSt ar t up() function (the last 15 lines)
to match the following example:

voi d VCSAgStartup() {
VCSAgENt r yPoi nt St ruct ep;

I
I
/1

ep.
ep.
ep.
ep.
ep.
ep.
ep.
ep.

This exanple inmplenents only the nonitor entry
point using C++. Set all the entry point fields,
except nonitor, to NULL.

open = NULL;

cl ose = NULL;

nonitor = res_nonitor;

online = NULL;

of fline = NULL;

attr_changed = NULL;

cl ean = NULL;

shut down = NULL;

VCSAgSet Ent r yPoi nt s(ep) ;

Chapter 4, Building a Custom VCS Agent 51 -

Building a VCS Agent for MyFile Resources

5. Modify theres_noni t or () function:

/1 This is a C++ inplenmentation of the nonitor entry
/1 point for the MyFile resource type. This function
/1 determines the status of a MyFile resource by

/'l checking if the corresponding file exists. It is
/1 assunmed that the conplete pathnanme of the file wll
/'l be passed as the first ArgList attribute.

VCSAgResState res_nonitor(const char *res_nane, void
**attr_val,int *conf_level) {
/1 Initialize the OUT paraneters.
VCSAgResSt at e state = VCSAgResUnknown;
*conf _level = 0;

if (attr_val) {
/'l Get the pathname of the file.
const char *path_name = (const char *) attr_val[0];
/1 Determine if the file exists.
DWORD attrs = GetFil eAttributes(path_nane);
if (attrs!=Oxffffffff) {
state = VCSAgResOnl i ne;

*conf _l evel = 100;

}

el se {
state = VCSAgResO fl i ne;
*conf _level = 0;

}

}
/! Return the status of the resource.

return state;

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

6. Compile sanpl e. Cand build the agent by invoking nmake. (Makef i | e is provided.)

C:\> nmake

7. Create the directory C:\Program Files\VERITAS\cluster server\bin\MyFile:
C\> nkdir VCS_HOME\ bi N\ M/Fi | e

8. Place the sample.dll as the MyFile agent library.
C.\> copy sanple.dll VCS_HOVE\ bi "\ MyFi | e\ WyFil e.dl I

9. Implement the onl i ne and of f | i ne entry points, as instructed in step 3 on page 43.

Chapter 4, Building a Custom VCS Agent 53

Building a VCS Agent for MyFile Resources

Using C++ Entry Points

The example in this section shows how to build the MyFile agent using your own
VCSAgSt ar t up entry point and the C++ version of onl i ne, of f| i ne, and noni t or
entry points. This example implements the VCSAgSt art up, onl i ne, of fl i ne, and
noni t or entry points only. (UNIX users, see the example below. Windows NT users, see
the example on page 57.)

Building an Agent Using C++ Entry Points on UNIX

1. Editthe file agent . Cand modify the VCSAgSt ar t up() function
(the last 15 lines) to match the following example:

voi d VCSAgStartup() {
VCSAgENt ryPoi nt Struct ep;

/1l This exanple inplenents online, offline, and
/! nonitor entry points using C++. Set the

/'l corresponding fields of VCSAgEntryPoi nt Struct
/'l passed to VCSAgSet EntryPoints. Set all other

/1 fields to NULL.

ep. open = NULL;

ep. cl ose = NULL;
ep.monitor = res_nonitor;
ep.online = res_online;
ep.offline = res_offline;
ep.attr_changed = NULL;
ep.cl ean = NULL;

ep. shut down = NULL;
VCSAgSet Ent r yPoi nt s(ep) ;

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

2. Modifyres_online() andres_of fline():

/1l This is a C++ inplementation of the online entry

/1 point for the MyFile resource type. This function
/'l brings online a MyFile resource by creating the

/'l corresponding file. It is assuned that the conplete
/'l pathnane of the file will be passed as the first

/1 ArgList attribute

unsi gned i nt
res_online(const char *res_nane, void **attr_val) {
if (attr_val) {
/'l Get the pathname of the file.
const char *path_nanme = (const char *) attr_val[0];

/'l Create the file
int fd = creat (path_nane, S IRUSR | S_|WSR)
if (fd <0) {
/1l if creat() failed, send a | og nessage to
/1 the consol e.
char nsg [1024];
sprintf (msg,
"Resource(%) -creat() failed for file(%)",
res_nanme, path_nane);
VCSAgLogConsol eMsg (TAG A, nsg,
LOG TI MESTAMP | LOG NEW.INE | LOG TAG ;

}
el se {

cl ose(fd);
}

}

/1 Conpl eted onlining resource. Return O so nonitor

/1 can start imediately. Note that return val ue

/'l indicates how | ong agent framework nmust wait before
/1 calling the monitor entry point to check if online
/1 was successful

return 0

/1 This is a C++ inplementation of the offline entry
/1 point for the MyFile resource type. This function
/'l takes offline a MyFile resource by deleting the

/'l corresponding file. It is assuned that the conplete
/'l pathnane of the file will be passed as the first

/1 ArgList attribute

Chapter 4, Building a Custom VCS Agent 5 ¥

Building a VCS Agent for MyFile Resources

unsi gned i nt
res_of fline(const char *res_nane, void **attr_val) {
if (attr_val) {
/'l Get the pathname of the file.
const char *path_nanme = (const char *)
attr_val [0];

/'l Delete the file
renove (path_nane);

}
/'l Conpl eted offlining resource. Return 0 so nonitor
/1 can start imediately. Note that return val ue
/'l indicates how |l ong agent framework rmust wait before
/1 calling the nonitor entry point to check if offline
/1 was successful.
return O;

}

Modify r es_noni t or (), as shown on page 49.

Compile agent . Cand build the agent by invoking make. (Makefi | e is provided.)

make

Create the directory /Zopt/VRTSvcs/bin/MykFile:
nkdir /opt/VRTSvcs/ bin/ MFile

Install the MyFile agent built in step 4.
make install AGENT=MFile

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

Building an Agent Using C++ Entry Points on Windows NT

Note To build an agent on Windows NT, you must first install Visual C++ on the system
on which the agent will be built.

1. Create the directory VCS_HOMEN\src\agent\MyFile:
C.\> nkdir VCS_HOMWE\src\agent\ MFile

2. Copy the contents of the directory VCS_HOME\src\agent\Sample to the directory
you created in the previous step:

C.\> cp VCS_HOVWE\ src\agent\ Sanpl e\ * VCS_HOVE\ sr c\
agent\ MyFil e

3. Change to the new directory:

C.\> cd VCS_HOVE\ src\agent\ M/Fil e

4. Edit the file sanpl e. Cand modify the VCSAgSt ar t up() function
(the last 15 lines) to match the following example:

voi d VCSAgStartup() {
VCSAgENt r yPoi nt St ruct ep;

/1l This exanple inplenents online, offline, and
/1 nonitor entry points using C++. Set the

/1 corresponding fields of VCSAgEntryPointStruct
/| passed to VCSAgSet EntryPoints. Set all other

/1 fields to NULL.

ep. open = NULL,;

ep. cl ose = NULL;
ep.nmonitor = res_nonitor;
ep.online = res_online;
ep.offline = res_offline;
ep.attr_changed = NULL;
ep. cl ean = NULL;

ep. shut down = NULL;
VCSAgSet Ent r yPoi nt s(ep) ;

Chapter 4, Building a Custom VCS Agent 57 -

Building a VCS Agent for MyFile Resources

5. Modifyres_online() andres_of fline():

I
I
I
I
I
I

This is a C++ inplenentation of the online entry
point for the MyFile resource type. This function
brings online a M/File resource by creating the
corresponding file. It is assumed that the conplete
pat hname of the file will be passed as the first
ArgList attribute.

unsi gned i nt
res_online(const char *res_nane, void **attr_val) {

if (attr_val) {

/'l Get the pathname of the file.
const char *path_nanme = (const char *) attr_val[0];

/!l Create the file.
HANDLE h = Creat eFil e(pat h_nane,
GENERI C_READ| GENERI C_WRI TE,
0, // Not Shared
NULL, // Default Security
OPEN_ALWAYS, FILE ATTRI BUTE_NORMAL,
(HANDLE) NULL

)

i f(h == INVALI D_HANDLE_VALUE) {
char nsg[1024];
sprintf(nsg

“CreateFile() failed with (%) for (%)",
Get LastError (), path_nane);
VCSAgLogMsg(TAG A, nsg, (LOG TI MESTAMP| LOG NEWLI NE]

LOG TAG));
}
el se {
Cl oseHandl e (h);
}

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Building a VCS Agent for MyFile Resources

/'l Conpl eted onlining of resource. Return O so nonitor
/1 can start imediately. Note that return val ue

/'l indicates how | ong agent framework must wait before
/1 calling the nonitor entry point to check if online
/1 was successful

return O

}

/1 This is a C++ inplenentation of the offline entry
/1 point for the MyFile resource type. This function
/'l takes offline a MyFile resource by deleting the

/'l corresponding file. It is assuned that the conplete
/'l pathnane of the file will be passed as the first

/1l ArgList attribute

unsi gned i nt
res_of fline(const char *res_nane, void **attr_val) {
if (attr_val) {
/'l Get the pathname of the file.
const char *path_nane = (const char *)
attr_val [0];

/1 Delete the file
i f(!DeleteFile(path_nane)) {
char nsg[1024];
sprintf(nsg,
"DeleteFile() failed with (%) for (%)"
Get LastError (), path_nane);
VCSAgLogMsg(TAG_A, nsg,
LOG TI MESTAMP| LOG_NEWL.I NE| LOG TAG)) ;

}

/'l Conpleted offlining of resource. Return 0 so

/'l nonitor can start inmrediately. Note that return

/1 val ue indicates how | ong agent franework mnmust wait
/'l before calling the nmonitor entry point to check if
/1 offline was successful

return O

Chapter 4, Building a Custom VCS Agent 59 ¥

Building a VCS Agent for MyFile Resources

6. Modify the res_noni t or () function, as instructed in step 5 on page 52.

7. Compile sanpl e. Cand build the agent by invoking nmake. (Makef i | e is provided.)

C:\> nmake

8. Create the directory VCS_HOME\bin\MyfFile:
C\> nkdir VCS_HOME\ bi N\ M/Fi | e

9. Place the sample.dll as the MyFile agent library.
C.\> copy sanple.dll VCS_HOVE\ bi "\ MyFi | e\ MyFil e. dl |

- 60 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Setting Agent Parameters 5

The VCS agents can be customized for a resource type by setting the values of the agent
parameters. Agent parameters are predefined static attributes of the resource type. They
can be assigned values when defining the resource type in types.cf, and they can be set
dynamically using the command hat ype - nodi fy (described in the VERITAS Cluster
Server User’s Guide). Beginning with AgentFile below, each agent parameter is listed and
defined in the following sections.

Note VCS now allows you to specify priorities and scheduling classes for VCS processes.
For details on the additional parameters included with this feature, and for
instructions on initializing them in the types.cf file or setting them from the
command line, see “Scheduling Class and Priority Configuration Support” on
page 66.

AgentFile

The name of the agent file to be executed:

0 On UNIX: the default is $VCS_HOME/bin/resource_type/resource_typeAgent.
0 On Windows NT: the default is VCS_HOME\bin\VCSAgDriver.exe.

AgentReplyTimeout

The engine restarts the agent if it has not received the periodic heartbeat from the agent
for the number of seconds specified by this parameter. The default value of 130 seconds
works well for most configurations. Increase this value if the engine is restarting the
agent. This may occur when the system is heavily loaded or if the number of resources
exceeds three or four hundred. (See the command haagent - di spl ay in the chapter on
administering VCS from the command line in the VERITAS Cluster Server User’s Guide.)
Note that the engine will also restart a crashed agent.

AgentStartTimeout

After the engine has started the agent, this is the amount of time the engine waits for the
initial agent “handshake” before attempting to restart. Default is 60 seconds.

61 -——

ArgList

An ordered list of parameters whose values are passed to the open, cl ose, onl i ne,
of f1i ne, moni t or, and cl ean entry points. Default is empty list.

ArgList Reference Attributes

Reference attributes refer to attributes of a different resource. If the value of a resource
attribute is defined as the name of another resource, the ArgList of the first resource can
refer to an attribute of the second resource using the : operator.

For example, if the resource ArgList resembles the following code sample (in which the
value of at t r 3 is the name of another resource), the entry points are passed the values of
theat tr 1, at tr 2 attributes of the first resource, and the value of the at t r _Aattribute of
the second resource.

{ attrl, attr2, attr3:attr_A}

AttrChangedTimeout

Maximum time (in seconds) within which the at t r _changed entry point must complete
or else be terminated. Default is 60 seconds.

CloseTimeout

Maximum time (in seconds) within which the cl ose entry point must complete or else be
terminated. Default is 60 seconds.

CleanTimeout

Maximum time (in seconds) within which the cl ean entry point must complete or else be
terminated. Default is 60 seconds.

Note Windows NT does not support a safe method for one thread to terminate another
thread running arbitrary code. Therefore, VCS agents on Windows NT wait until
the entry points complete. The entry point timeouts listed in this chapter do not
apply to VCS on Windows NT.

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Conflinterval

Specifies an interval in seconds. When a resource has remained online for the designated
interval (all moni t or invocations during the interval reported ONLINE), any earlier faults
or restart attempts of that resource are ignored. This parameter is used with
ToleranceLimit to allow the noni t or entry point to report OFFLINE several times before
the resource is declared FAULTED. If noni t or reports OFFLINE more often than the number
set in ToleranceLimit, the resource is declared FAULTED. However, if the resource remains
online for the interval designated in Conflnterval, any earlier reports of OFFLINE are not
counted against ToleranceLimit.

It is also used with RestartLimit to prevent VVCS from restarting the resource indefinitely.
VCS attempts to restart the resource on the same system according to the number set in
RestartLimit within Confinterval before giving up and failing over. However, if the
resource remains online for the interval designated in Confinterval, earlier attempts to
restart are not counted against RestartLimit. Default is 600 seconds.

FaultOnMonitorTimeouts

Indicates the number of consecutive monitor failures to be treated as a resource fault.

A monitor attempt is considered a failure if it does not complete within the time specified
by the MonitorTimeout parameter. When a monitor fails as many times as the value
specified by this parameter, the corresponding resource is brought down by calling the
cl ean entry point. The resource is then marked FAULTED, or it is restarted, depending on
the value set in the Restart Limit parameter.

When FaultOnMonitorTimeouts is set to 0, monitor failures are not considered indicative
of a resource fault. Default is 4.

Note This parameter applies only to online resources. If a resource is offline, no special
action is taken during monitor failures. Also, VCS on Windows NT waits for the
entry points to run to completion; therefore, FaultOnMonitorTimeouts is not useful
on Windows NT.

Chapter 5, Setting Agent Parameters 63 -

LogLevel

Specifies the type of agent framework and entry point messages to be written to the agent
log file (local to the system):

0 On UNIX: $VCS_LOG/log/resource_type A.log
0 On Windows NT: VCS_HOME\Iog\resource_type A.txt

Value Description

all Log all messages. (Not recommended.)

debug Log all messages, except function-tracing messages. (Not recommended.)
info Log only error messages and messages useful to the agent developer.
error Log only error messages (default).

none Log no messages.

MonitoriInterval

Duration (in seconds) between two consecutive monitor calls for an ONLINE or
transitioning resource. Default is 60 seconds.

MonitorTimeout

Maximum time (in seconds) within which the noni t or entry point must complete or else
be terminated. Default is 60 seconds.

NumThreads

Number of threads used within the agent process for managing resources. This number
does not include the three threads used for other internal purposes. Default is 10 threads.

OfflineMonitorinterval

Duration (in seconds) between two consecutive monitor calls for an OFFLINE resource. If
set to 0, OFFLINE resources are not monitored. Default is 300 seconds.

Note In previous releases, agents monitored offline resources once every minute by
default. To reduce monitoring overhead, this frequency was changed to once every
five minutes. This interval may be adjusted to meet specific configuration
requirements.

64

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

OfflineTimeout

Maximum time (in seconds) within which the of f | i ne entry point must complete or else
be terminated. Default is 300 seconds.

OnlineRetryLimit

Number of times to retry onl i ne, if the attempt to online a resource is unsuccessful. This
parameter is meaningful only if cl ean is implemented. Default is 0.

OnlineTimeout

Maximum time (in seconds) within which the onl i ne entry point must complete or else
be terminated. Default is 300 seconds.

OnlineWaitLimit

Number of monitor intervals to wait after completing the online procedure, and before the
resource becomes online. If the resource is not brought online after the designated monitor
intervals, the online attempt is considered ineffective. This parameter is meaningful only
if the cl ean entry point is implemented.

If clean is not implemented, the agent continues to periodically run noni t or until the
resource comes online.

If cl ean is implemented, when the agent reaches the maximum number of monitor
intervals it assumes that the online procedure was ineffective and runs cl ean. The agent
then notifies the engine that the online failed, or retries the procedure, depending on
whether or not the OnlineRetryLimit is reached. Default is 2.

OpenTimeout

Maximum time (in seconds) within which the open entry point must complete or else be
terminated. Default is 60 seconds.

Chapter 5, Setting Agent Parameters 65 -

Scheduling Class and Priority Configuration Support

RestartLimit

Affects how the agent responds to a resource fault (see “FaultOnMonitorTimeouts” on
page 63 and “ToleranceLimit” on page 66). A hon-zero RestartLimit causes VCS to invoke
the onl i ne entry point instead of failing over the service group to another system. VCS
attempts to restart the resource according to the number set in RestartLimit before it gives
up and fails over. However, if the resource remains online for the interval designated in
Conflinterval, earlier attempts to restart are not counted against RestartLimit. Default is 0.

Note The agent will not restart a faulted resource if the cl ean entry point is not
implemented. Therefore, the value of the RestartLimit parameter applies only if
cl ean is implemented.

RegList

Keylist of parameter names. All resources are automatically registered for change
notification for specified parameters. Default is empty list.

ToleranceLimit

A non-zero ToleranceLimit allows the moni t or entry point to return OFFLINE several
times before the ONLINE resource is declared FAULTED. If the noni t or entry point reports
OFFLINE more times than the number set in ToleranceLimit, the resource is declared
FAULTED. However, if the resource remains online for the interval designated in
Conflnterval, any earlier reports of OFFLINE are not counted against ToleranceLimit.
Default is 0.

Scheduling Class and Priority Configuration Support

VCS now allows you to specify priorities and scheduling classes for VCS processes.
VCS supports the following scheduling classes:

0 RealTime (specified as “RT” in the configuration file)

0 TimeSharing (specified as “TS” in the configuration file)

Additional Information for Windows NT Users

On Windows NT, RT is mapped to HIGH_PRIORITY_CLASS and TS is mapped to
NORMAL_PRIORITY_CLASS.

- 66 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Scheduling Class and Priority Configuration Support

Priority Ranges

The following table displays platform-specific priority range for RealTime and
TimeSharing processes.

Platform | Scheduling | Default Priority Range Using #ps Commands
Class Priority Range
Weak / Strong

Solaris RT 0/59 100 /159
TS -60 7/ 60 N/A
Note On Solaris, use #ps -ae 0 pri, args

HP-UX RT 127/ 0 127/ 0
TS N/A N/A
Note On HP-UX, use #ps - ael

Default Scheduling Classes and Priorities

The following table lists the default class and priority values used by VCS. Note that the
default priority value is platform-specific. Therefore, when priority is set to ™"

(empty string), VCS converts the priority to a value specific to the platform on which the
system is running. For TS, the default priority equals the strongest priority supported by
the TimeSharing class. For RT, the default priority equals two less than the strongest
priority supported by the RealTime class. So, if the strongest priority supported by the
RealTime class is 59, the default priority for the RT class is 57.

Process Default Scheduling Default Priority
Class
Solaris HP-UX
Engine RT 57 (Strongest - 2) | 2 (Strongest + 2)
Process created by TS 60 (Strongest) N/A
Engine
Agent TS 60 (Strongest) N/A
Script TS 60 (Strongest) N/A
. ————
Chapter 5, Setting Agent Parameters 67 Y

Scheduling Class and Priority Configuration Support

Parameters for Scheduling Class and Priorities

AgentClass

Indicates the scheduling class for the VCS agent process. Default is "TS".

AgentPriority

Indicates the priority in which the agent process runs. Default is ™ (empty string).

ScriptClass

Indicates the scheduling class of the script processes (for example, online) created by the

agent. Default is "TS".

ScriptPriority

Indicates the priority of the script processes created by the agent. Default is ™.

Initializing Parameters in the Configuration File

The following configuration shows how to initialize these parameters through
configuration files. The example shows parameters of a FileOnOff resource.

type FileOnOFf (
static str Agentd ass = RT
static str AgentPriority = 10
static str ScriptCass = RT
static str ScriptPriority = 40
static str ArgList[] = { PathNane }
NameRul e = resour ce. Pat hNane
str Pat hName

Setting Parameters Dynamically from the Command Line

To update the AgentClass

Type:
hat ype -nodi fy resource_type Agent Cl ass value

For example, to set the AgentClass parameter of the FileOnOff resource to Realtime, type:

hatype -nodify FileOnO'f AgentC ass "RT"

v
-——v
— G

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Scheduling Class and Priority Configuration Support

v To update the AgentPriority
Type:

hat ype -nodi fy resource_type Agent Priority value

For example, to set the AgentPriority parameter of the FileOnOff resource to 10, type:
hatype -nodify FileOnO'f AgentPriority "10"

v To update the ScriptClass
Type:

hat ype -nodi fy resource_type Scri pt Cl ass value

For example, to set the ScriptClass of the FileOnOff resource to RealTime, type:
hatype -nodify FileOnOf Scriptd ass "RT"

v To update the ScriptPriority
Type:

hat ype -nodi fy resource_type Scri ptPriority value

For example, to set the ScriptClass of the FileOnOff resource to RealTime, type:

hatype -nodify FileOnO'f ScriptPriority "40"

Note Note: For the parameters AgentClass and AgentPriority, changes are effective
immediately. For ScriptClass and ScriptPriority, changes become effective for scripts
fired after the execution of the hat ype command.

Chapter 5, Setting Agent Parameters 69 -

Scheduling Class and Priority Configuration Support

- 70 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Testing VCS Agents 6

VCS agents can be tested using the VCS engine or the AgentServer utility. In either case,
you can activate the agent debug messages by setting the value of the LogLevel attribute
of the resource type to i nf 0. Debug messages are logged to a specific file.

0 On UNIX debug messages are logged to $VCS_LOG/log/resource_type_A.log.
0 On Windows NT debug messages are logged to VCS_HOME\Ilog\
resource_type_ A.txt
Complete the following requirements before testing an agent:
0 Build the agent binary (UNIX) or DLL (Windows NT) and place it in the proper
directory.
0 OnUNIX: $YCS_HOME/bin/resource_type.
0 On Windows NT: VCS_HOME\bin\resource_type.

O Install script entry points in the proper directory.
0 OnUNIX: $YCS_HOME/bin/resource_type.
0 On Windows NT: VCS_HOME\bin\resource_type.
0 If you are using the VCS engine process, define the resource type in types.cf, define

the resources in main.cf, and restart the engine. You may also define the new type and
resources using commands listed in the VERITAS Cluster Server User’s Guide.

Using the VCS Engine Process

When the VCS engine process “had” becomes active on a system, it automatically starts
the appropriate agent processes, based on the contents of the configuration files. A single
VCS agent process monitors all resources of the same type on a system.

After the VCS engine process is active, type the following command at the system prompt
to verify that the agent has been started and is running:

haagent -di spl ay resource_type

For example, to test the Oracle agent, type:

haagent -display O acle

If the Oracle agent is running, the output resembles:

#Agent Attribute Value
O acl e AgentFil e

O acl e Faul ts 0

O acl e Runni ng Yes
O acle Started Yes

Test Commands
To activate agent debug messages, type:

hat ype -nodi fy resource_type LoglLevel info

To check the status of a resource, type:

hares -di spl ay resource_name

To bring a resource online, type:
hares -online resource_name -sSys system

This causes the onl i ne entry point of the corresponding agent to be called.

To take a resource offline, type:
hares -of fline resource_name -sSys system

This causes the of f | i ne entry point of the corresponding agent to be called.

To deactivate agent debug messages, type:

hat ype -nodify resource_type LoglLevel error

72 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Using AgentServer

The AgentServer utility enables you to test agents independent of the VCS engine process.
It is part of the VCS package and is installed under the directory $vCS_HOME/bin on
UNIX, or the VCS_HOME\bin on Windows NT. Instructions for using this utility begin
on the next page.

To Access Help

When AgentServer is started, a message prompts you to enter a command or type hel p
for the complete list of the AgentServer commands. We recommend you type hel p to
review the commands before getting started.

Output resembles:

The foll owi ng conmands are supported. (Use help for nore information
on using any command.)
addattr
addr es
addstaticattr
addt ype
debughash
debugnenory
debugti ne
del ete
del eteres
nodi fyres
nodi f yt ype
of flineres
onlineres
print
pr oberes
startagent
st opagent
qui t

Chapter 6, Testing VCS Agents 73 -

v

For help on a specific command, type help command_name at the AgentServer prompt (>).
For example, for information on how to bring a resource online, type:

>hel p onlineres

Output resembles:

Sends a nessage to an agent to online a resource.
Usage: onlineres <agentid> <resname>

where <agentid> is id for the agent - usually sane as
the resource type nane.

where <resname> is the nane of the resource.

To test the FileOnOff agent on UNIX

1. Type the following command to start AgentServer:
$VCS_HOWE bi n/ Agent Ser ver

AgentServer must monitor a TCP port for messages from the VCS agents. This port
number can be configured by setting vcst est to the selected port number in the file
/etc/services. If vest est is not specified, AgentServer uses the default value 14142,

2. Start the agent for the resource type:

>startagent FileOnOff /opt/VRTSvcs/ bin
/FileOnOf/Fil eOnOf f Agent

You will receive the following messages:

Agent (FileOnOf) has connect ed.
Agent (FileOnOf) is ready to accept commands.

74

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

3. Review the sample configuration:
types. cf:

type FileOnOf (
str Pat hNane
static str ArgList[] = { PathNane }
NanmeRul e = resource. Pat hNane

)
mai n. cf:
group ga (
)
FileOnOf filel (
Enabled = 1
Pat hName = "/t np/ VRTSvcsfil e001"
)

4. Complete step a through step f to pass this sample configuration to the VCS agent.

a. Add atype:
>addtype FileOnOf Fil eOnOf f

b. Add attributes of the type:
>addattr FileOnO'f FileOnOrf PathName str ""
>addattr FileOnO'f FileOnO'f Enabled int O
c. Add the static attributes to the FileOnOff resource type:

>addstaticattr FileOnOf FileOnOf ArgList
vect or Pat hName

d. Add the LoglLevel attribute to see the debug messages from the
VCS agent:

>addstaticattr FileOnOf FileOnOf LogLevel str info

Chapter 6, Testing VCS Agents 7% -

e. Add aresource:
>addres FileOnO'f filel FileOnOf f

f. Set the resource attributes:

>modi fyres FileOnO'f filel Pat hNanme str
/tmp/ VRTSvcsfil e001
>modi fyres FileOnOf filel Enabled int 1

5. After adding and modifying resources, type the following command to obtain the
status of a resource:
>proberes FileOnOf filel
This calls the nmoni t or entry point of the FileOnOff agent.
You will receive the following messages indicating the resource status:
Resource(filel) is OFFLINE
Resource(filel) confidence level is O
a. To bring a resource online:
>onlineres FileOnOf filel

This calls the onl i ne entry point of the FileOnOff agent. The following message is
displayed when filel is brought online:

Resource(filel) is ONLINE

Resource(filel) confidence level is 100
b. To take a resource offline:

>of flineres FileOnO'f filel

This calls the of f | i ne entry point of the FileOnOff agent. A status message similar to
the example in step a is displayed when file1 is taken offline.

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

6. View the list of VCS agents started by the AgentServer process:
>print
Output resembles:
Fol owi ng Agents are started:
Fil eOnOr f
7. Stop the agent:
>st opagent Fil eOnCr f

8. Exit from the AgentServer:
>qui t

Chapter 6, Testing VCS Agents

77

v To test the FileOnOff agent on Windows NT

1. Type the following command to start AgentServer:
C.\ > VCS_HOVE\ bi n\ Agent Ser ver

Note that VCS_HOME should be substituted by the installation directory.
AgentServer must monitor a TCP port for messages from the VVCS agents. This port
number can be configured by setting vcst est to the selected port number in the file
CAWINNT\system32\drivers\etc\services. If vcst est is not specified,
AgentServer uses the default value 14142.

2. Start the agent for the resource type:

>startagent FileOnOf VCS_HOWE\ bi n\ VCSAgDri ver. exe

Note here also that VCS_HOME should be substituted by the installation directory.
You will receive the following messages:

Agent (FileOnOf) has connect ed.
Agent (FileOnOf) is ready to accept commands.

3. Review the sample configuration:
types. cf:

type FileOnOf (
str Pat hNane
static str ArgList[] = { PathNane }
NanmeRul e = resour ce. Pat hNane

)
mai n. cf :
group ga (
)
FileOnOf filel (
Enabled = 1
Pat hNane = "C.\\ VRTSvcsfil e001"
)

78 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

4. Complete step a through step f to pass this sample configuration to the VCS agent.

a. Add atype:
>addtype FileOnOf Fil eOnOf f

b. Add attributes of the type:
>addattr FileOnO'f FileOnOrf PathName str ""
>addattr FileOnOf FileOnO'f Enabled int O
c. Add the static attributes to the FileOnOff resource type:

>addstaticattr FileOnOf FileOnOFf ArgList
vect or Pat hName

d. Add the LoglLevel attribute to see the debug messages from the
VCS agent:
>addstaticattr FileOnOf FileOnOf LogLevel str info

e. Add aresource:
>addres FileOnOff filel Fil eOnOF f

f. Set the resource attributes:

>modi fyres FileOnOrf filel Pat hName str
C \\VRTSvcsfil e001
>modi fyres FileOnO'f filel Enabled int 1

5. After adding and modifying resources, type the following command to obtain the
status of a resource:
>proberes FileOnO'f filel
This calls the noni t or entry point of the FileOnOff agent.
You will receive the following messages indicating the resource status:

Resource(filel) is OFFLINE
Resource(filel) confidence level is O

Chapter 6, Testing VCS Agents 9 Y

a. To bring a resource online:
>onlineres FileOnOf filel

This calls the onl i ne entry point of the FileOnOff agent. The following message
is displayed when filel is brought online:

Resource(filel) is ONLINE
Resource(filel) confidence level is 100
b. To take a resource offline:
>of flineres FileOnOf filel
This calls the of f | i ne entry point of the FileOnOff agent. A status message
similar to the example in step a is displayed when filel is taken offline.
View the list of VCS agents started by the AgentServer process:
>print
Output resembles:
Fol owi ng Agents are started:
Fil eOnOf f
Stop the agent:
>st opagent Fil eOnCr f

Exit from the AgentServer:

>qui t

80

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Upgrading Custom Agents

In VCS 1.2, a change was introduced to the agent framework that affects all custom
agents. Specifically, when an agent reports an unexpected offline status, the agent
framework now calls the cl ean entry point instead of the of f | i ne entry point.
Therefore, if custom agents are to clean up following a resource fault, the agent must
implement the cl ean entry point. Custom agents created prior to VCS 1.2. must be
upgraded to accommodate this change, as described on the following page.

When a resource becomes offline unexpectedly, some agents may want to take action prior
to VCS marking the resource as FAULTED. For example if a resource represents a collection
of processes, and if the Monitor resource reports offline because one or more processes
exited abruptly, the agent may determine to bring down the remaining processes before
faulting the resource.

Some agents may not require any fault cleanup code, and are unaffected by this change in
the agent framework. For example, the FileOnOff agent reports ONLINE if a given file
exists, and OFFLINE if it does not. If a FileOnOff resource becomes offline unexpectedly, no
additional cleanup is required.

81 -——

The following information describes the procedures for upgrading custom agents built
prior to VCS 1.2.

Is this a NONE re‘source (monitor only)? Yes —p Is any entry point written in C or C+? No — Replace
|

Scri pt Agent
No Yes with 1.3.0 version.
(See Chapter 3.)

Recompile and replace in

directory /opt/VRTSvcs/bin/Agent. Upgrade complete.

Upgrade complete.

Does agent have cl ean entry point? Yes —» Handle cl ean codes? Yes —» Must handle new code:
‘ ‘ VCSAgC eanhbni t or Hung
No No - . S
(See “clean” description in
Chapter 1.)

Must handle change in
unexpected offline.
(See previous page.)

Return to shaded area above
v to complete procedure.
Can resource go offline and still require

some processes and files be removed? Yes————>» | This agent is affected by the changes to the
|

No agent framework described in the previous
section and therefore requires implementation
Can monitoring of resource hang? Yes —» | of the cl ean entry point. You have the option to
N‘o base the cl ean entry point on the of f| i ne
v entry point, or implement cl ean from scratch.
Do you want enhanced behavior Yes—— | (See instructions on next page.)

provided by a cl ean entry point?
(See “clean” description in

Chapter 1.) N‘O Return to shaded area above
v to complete procedure.
Return to shaded area above
to complete procedure.

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Sample clean Entry Point

Sample clean Entry Point

The following samples illustrate how to implement the cl ean entry point for the
FileOnOff resource. The differences between of f | i ne and cl ean entry points are also
explained.

The meaning of the return value (or exit code in the case of scripts) of the cl ean entry
point is different from that of the of f | i ne entry point. O f | i ne entry points typically
return 0, which indicates that the resource can be monitored immediately, however this
return value can be any number. Cl ean entry points can return 0 (indicating success) or 1
(indicating failure). If cl ean returns 1, it may be called again after a monitor interval.

Also, compared with of f | i ne, the cl ean entry point receives an additional argument
indicating the reason cl ean was called. This argument is positioned directly after the
resource name argument. (See page 7 for more information.)

Using C++
Assume the following offline function:
/*
* Ofline entry point for FileOnOf resources. Renoves the file
* associated with the FileOnOff resource.
*
* The first ArgList attribute is supposed to be the pathnane of
*

of the FileOnOFf resource. See VCS Bundl ed Agents Guide for
* nmore info on FileOnOFf resources.
*/
unsigned int res_offline(const char *res_nanme, void **attr_val) {
if (attr_val) {
const char *path_nane = (const char *)attr_val[0];
renove(pat h_nane) ;
}

return O;

}

The clean entry point can be implemented as:

/*
* Clean entry point for FileOnOf resources. Renpves the file
* associated with the FileOnO'f resource.

* The first ArgList attribute is supposed to be the pathnane of
* of the FileOnOf resource. See VCS Bundl ed Agents Quide for
* nore info on FileOnO'f resources.
*/
Appendix , Upgrading Custom Agents 83 Y

Sample clean Entry Point

unsi gned i nt

rval

}
}

res_clean(const char *res_nanme, VCSAgWiyd ean reason,
void **attr_val) {

unsigned int rval = 1;// Failure

if (attr_val) {
const char *path_nane = (const char *)attr_val[0];
if ((renmove(path_name) == 0) || (errno == ENCENT)) {

return rval;

Using Shell Script

= 0;// Successfully deleted file.

Assume the following offline script:
#1 / bi n/ sh

HHHHHHHH R

Ofline entry point for FileOnOf resources. Renmpves the file
associated with the FileOnOf resource.

The first ArgList attribute is supposed to be the pat hnane of

of the FileOhO f

resource. See VCS Bundl ed Agents Guide for

nmore info on FileOnOff resources.

Note that $1 is resource name and $2 is the first ArgList attribute.

rm-f $2
exit O

The clean entry point can be implemented as:

Clean entry point for FileOhnOf resources. Renoves the file
associated with the FileOnOf resource.

The first ArgList attribute is supposed to be the pathnanme of the

#!/ bin/sh
#

#

#

#

#

FileOnO f
FileOnO f

resource.
resources.

See VCS Bundl ed Agents Guide for nore info on

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Sample clean Entry Point

#

Note that $1 is resource nane, $2 is the reason code and $3 is the
first ArgList attribute.

#

rm-f $3

if test -f $3

then exit 1;

el se exit O;

fi

Appendix , Upgrading Custom Agents 85 -

Sample clean Entry Point

- 86 VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

Index

AgentClass parameter 68
AgentFile parameter 61
AgentPriority paramater 68

AgentReplyTimeout parameter 61
AgentStartTimeout parameter 61

Arglist attribute 13
ArgList parameter 62

ArgList reference attributes 62

attr_changed entry point 8
C++ syntax 20
script syntax 37

AttrChangedTimeout parameter 62

Classes, scheduling 66
clean entry point 7

C++ syntax 19

enum types 7

script syntax 37
CleanTimeout parameter 62
close entry point 9

C++ syntax 23

script syntax 37
CloseTimeout parameter 62
Conflnterval parameter 63

Entry points
attr_changed 8
clean7
close 9
definition 1
monitor 5
Null fields 4
offline 6
online 6
open 9
sample structure 3

shutdown 9
VCSAgStartup 3

enum types for clean
VCSAgCleanMonitorHung 7
VCSAgCleanOfflineHung 7
VCSAgCleanOfflinelneffective 7
VCSAgCleanOnlineHung 7
VCSAgCleanOnlinelneffective 7
VCSAgCleanUnexpectedOffline 7

FaultOnMonitorTimeouts parameter 63

LogLevel parameter 64

monitor entry point 5

C++ syntax 16

script syntax 36
MonitorLevel parameter 64
MonitorTimeout parameter 64

NumThreads parameter 64

offline entry point 6

C++ syntax 18

script syntax 36
OfflineMonitorinterval parameter 64
OfflineTimeout parameter 65
online entry point 6

C++ syntax 17

script syntax 36
OnlineRetryLimit parameter 65
OnlineTimeout parameter 65
OnlineWaitLimit parameter 65
open entry point 9

C++ syntax 22

script syntax 37

87 -——

OpenTimeout parameter 65

[=]

Parameters
AgentClass 68
AgentFile 61
AgentPriority 68
AgentReplyTimeout 61
AgentStartTimeout 61
ArgList 62
AttrChangedTimeout 62
CleanTimeout 62
CloseTimeout 62
Confinterval 63
FaultOnMonitorTimeouts 63
LogLevel 64
MonitorLevel 64
MonitorTimeout 64
NumThreads 64
OfflineMonitorinterval 64
OfflineTimeout 65
OnlineRetryLimit 65
OnlineTimeout 65
OnlineWaitLimit 65
OpenTimeout 65
RegList 66
RestartLimit 66
ScriptClass 68
ScriptPriority 68
ToleranceLimit 66

Primitives
definition 25
VCSAgGetCookie 30
VCSAgLogConsoleMsg 32

VCSAgLogMsg 32
VCSAgRegister 28
VCSAgSetCookie 26
VCSAgSetEntryPoints 25
VCSAgUnregister 29
Priorities, specifying 66

RegList parameter 66
RestartLimit parameter 66

ScriptClass parameter 68
ScriptPriority parameter 68
Shell scripts

definition 33

using on Windows NT 33
shutdown entry point 9

C++ syntax 24

script syntax 37

ToleranceLimit parameter 66

VCSAgGetCookie primitive 30
VCSAgLogConsoleMsg primitive 32
VCSAgLogMsg primitive 32
VCSAgRegister primitive 28
VCSAgSetCookie primitive 26
VCSAgSetEntryPoints primitive 25
VCSAgStartup entry point 3
VCSAgStartup entry point, C++ syntax 15
VCSAgUnregister primitive 29

88

VERITAS Cluster Server Agent Developer’s Guide, 1.3.0

	Preface
	Introduction
	How Agents Work
	Prerequisites
	How This Guide is Organized
	Technical Support
	For Customers Outside U.S. and Canada

	Conventions

	VCS Agent Entry Points
	List of Agent Entry Points
	VCSAgStartup
	monitor
	online
	offline
	clean
	attr_changed
	open
	close
	shutdown

	Implementing Entry Points Using C++
	Data Structures
	ArgList Attribute
	C++ Entry Point Syntax
	VCSAgStartup
	monitor
	online
	offline
	clean
	attr_changed
	open
	close
	shutdown
	VCS Primitives
	VCSAgSetEntryPoints
	VCSAgSetCookie
	VCSAgRegister
	VCSAgUnregister
	VCSAgGetCookie
	VCSAgLogMsg
	VCSAgLogConsoleMsg

	Implementing Entry Points Using Scripts
	ArgList Attributes
	Script Entry Point Syntax
	monitor
	online
	offline
	clean
	attr_changed
	open
	close
	shutdown

	Logging
	Message Numbering

	Building a Custom VCS Agent
	Building a VCS Agent for MyFile Resources
	Using Script Entry Points
	Using VCSAgStartup() and Script Entry Points
	Using C++ and Script Entry Points
	Using C++ Entry Points

	Setting Agent Parameters
	AgentFile
	AgentReplyTimeout
	AgentStartTimeout
	ArgList
	AttrChangedTimeout
	CloseTimeout
	CleanTimeout
	ConfInterval
	FaultOnMonitorTimeouts
	LogLevel
	MonitorInterval
	MonitorTimeout
	NumThreads
	OfflineMonitorInterval
	OfflineTimeout
	OnlineRetryLimit
	OnlineTimeout
	OnlineWaitLimit
	OpenTimeout
	RestartLimit
	RegList
	ToleranceLimit
	Scheduling Class and Priority Configuration Support
	Additional Information for Windows NT Users
	Priority Ranges
	Default Scheduling Classes and Priorities
	Parameters for Scheduling Class and Priorities
	AgentClass
	AgentPriority
	ScriptClass
	ScriptPriority
	Initializing Parameters in the Configuration File
	Setting Parameters Dynamically from the Command Line

	Testing VCS Agents
	Using the VCS Engine Process
	Test Commands

	Using AgentServer
	To Access Help

	Upgrading Custom Agents
	Sample clean Entry Point
	Using C++
	Using Shell Script

	Index

