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INTRODUCTION TO THE R8000 MICROPROCESSOR CHIP SET 

1 

The MIPS R8000 Microprocessor Chip Set from MIPS Technologies implements a 
superscalar architecture, providing low-end vector supercomputer performance at a 
fraction of the cost. The 64 bit architecture of the MIPS R8000 Microprocessor Chip Set is 
implemented using separate integer and floating point devices. The impressive floating 
point performance of the R8000 Microprocessor Chip Set makes it ideal for applications 
such as engineering workstations, scientific computing, 3-D graphics workstations, and 
multi-user systems. The high throughput is achieved through complete separation of the 
integer and floating point functions, the use of wide, dedicated data paths, and large on­
and off- chip caches . 

The R8000 Microprocessor Chip Set implements the MIPS N instruction set. MIPS N is a 
superset of the MIPS ill instruction set and is backward compatible. Implementing a 3.3 
volt technology with a target frequency of 75 MHz, the R8000 Microprocessor Chip Set 
delivers peak performance of 300 MIPS and 300 MFLOPS. The R8000 CPU contains 2.6 
million transistors. The R8010 Floating Point Unit contains 830 thousand transistors. 
Each device is housed in a 591 pin PGA package and is fabricated using the Toshiba 
VHMOSill 0.7-micron silicon technology. Two Tag RAM's and 4 MBytes of Static RAM 
comprise the second level streaming cache . 
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1.1 R8000 MICROPROCESSOR CHIP SET FEATURES 

o Advanced Superscalar Architecture 

-Supports Four Instructions per Cycle 

-Two Load/Store Instructions per Cycle 

-Two Integer and Two Floating Point Execute Instructions per Cycle 

o High Performance Design 

-75 MHz Clock Rate 

- 3.3 Volt Technology 

- Separate Integer and Floating Point Chips 

- 300 Double Precision MFLOPS Peak 

-On-Chip Floating Point Instruction Queue 

- Separate 64 bit Load and Store Data Busses 

-Implements MIPS IV Instruction Set 

o High Integration Chip-Set 

-RBOOO CPU Contains: 

- 16 KByte Dual Ported Data Cache 

- 16 KByte Single Ported Instruction Cache 

- 384 Entry Dual Ported Translation Lookaside Buffer 

- 1K Entry Branch Prediction Cache 

- Second Level Cache Support 

o Optimized for Floating Point Performance 

- Separate-Chip Floating Point Unit 

-Two Floating point Execution Units 

-Two Floating Point Arithmetic and Two Floating Point Memory Operations per 
Clock 

-Large Load/Store Data Queues 

o Second Level Cache Support 

-Two 4-Way Set Associative Tag RAM Chips 

- Supports 4 MBytes of Second Level Cache 

-Delivers Two 64-bit Operands to the Floating Point Unit Every Clock. 

-Each Tag RAM has a Dedicated Bus Interface to the R8000 CPU. 

o Compatible with Industry Standards 

-ANSI/IEEE Standard 754-1985 for Binary Floating Point Arithmetic 

-MIPS ill Instruction Set Compatible 

- Conforms to MESI Cache Consistency Protocol 

- IEEE Standard 1149.1/D6 Boundary Scan Architecture 
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1.2 ARCHITECTURAL INNOVATIONS 

The design of the RSOOO Microprocessor Chip Set incorporates many architectural 
innovations which enhance performance. Many of these innovations are unique in the 
industry. Each of the items listed below is explained further in the following sections. 

1) A five-stage pipeline which swaps the execution and address generation stages. 
2) Super-scalar dispatch unit which allows execution of 4 instructions per clock and is 
NOT boundary dependent. 
3) Large Set associative TLB. 
4) Data Cache invalidation down to the word (32 bit) level. 
5) Split Level Cache resulting in the separation of Integer and Floating Point Data. 
6) Address Bellow Register which resolves bank conflicts and helps maintain a uniform 
flow of even and odd references to the interleaved streaming cache. 
7) Very fast 4 cycle integer multiply mechanism. 
8) Use of instruction and data queues to streamline the movement of instructions 
between the Integer and Floating Point Units. 
9) Prefetch instruction allows for the early fetching of data which can be placed as close 
as possible to the processor until it is required. 
10) Addition of conditional move instructions helps avoid unnecessary branches. 

1.2.1 Five Stage Pipeline 

The RSOOO Microprocessor contains a five stage pipeline which differs from the typical 
five stage RIS C pipeline in that the execution stage and the address stage have been 
switched. The typical RIS C pipeline contains the five stages configured in the following 
sequence: (F) Fetch, (D) Decode, (E) Exeeute, (A) Address cache, (W) Write result to 
register. 

In this typical pipeline configuration, any instruction which follows a load and is 
dependent on the load incurs a cycle delay in execution. This delay can impact 
performance in a superscalar implementation because when it occurs the compiler must 
locate four instructions to put in the delay slot in order to maintain full utilization of the 
instruction bandwidth. 

The RSOOO Microprocessor Chip Set incorporates the following pipeline sequence: 

(F) -Fetch and partial decode of the instruction. Branch prediction. 
(D)-Decode instruction, read register file, perform scoreboarding and dependency 
checks. 
(A) -Generate the required address 
(E)-ALU execution, Data Cache access, TLB lookup, exception detection. 
(W)-Write the result to the register file. 
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In the FDAEW pipeline the delay slot is placed before the load instruction and allows the 
processor to dispatch multiple instructions immediately following the load, including 

· the instruction usually scheduled in the load delay slot. 

Branch resolution occurs one cycle later, thereby increasing the branch penalty by one 
cycle. To overcome this problem the R8000 Microprocessor actually predicts the branch 
in the Fetch stage. Branch and delay instructions are fetched in F-stage and if the predict 
bit is on the program counter is modified and on the next clock the instruction cache 
starts fetching from the new target address. 

Refer to Figure 1-1. Quad 1 is fetched (PC= x) and then enters D-stage in (PC = x+1). At 
the same time quad 2 is fetched which contains a branch and corresponding delay. Since 
the predict bit in the branch cache is on, the new branch target address 't' is loaded into 
the program counter. Quad 3 is fetched with the new target address. In the next clock 
(PC= t+1) the branch and delay in quad 2 enter the A-stage. In t+2 Quad 2 enters the E­
stage. It is here that the instruction is executed and a determination is made as to 
whether the branch prediction was correct. The first instruction from the target address, 
Quad 3, is now in A-stage, one stage behind the branch and delay instructions. Once the 
branch has been executed and the target address is determined, the value is then 
compared with the target for the instruction in A-stage. If where the instruction wanted 
to branch is the same as where the pipeline had branched to 3 cycles earlier (E-stage and 
A-stage target compare is valid), then the pipeline continues without interruption. A 
branch mis-prediction causes a three cycle delay as the instructions in stages D, A, and E 
must be flushed. 

Figure 1-1 below shows the pipeline flow of the R8000 Microprocessor. A Quad is 
defined as four 32 bit instructions. PC = program counter. 
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As shown in Figure 1-1, on a branch ntis-prediction, the execution of each branch 
instruction and the corresponding change of control flow takes 3 clocks. 

1.2.2 Superscalar Dispatch Unit 

The R8000 Microprocessor can dispatch four instructions each cycle regardless of how 
many instructions were issued in the previous cycle. There are no boundary alignment 
restrictions. Instructions are fetched and placed in a six-quad deep instruction queue 
which acts as temporary storage for instructions waiting to be executed. When 
instructions are fetched from the !-cache they undergo predecoding before being placed 
in the queue. The purpose of predecoding is to reduce instruction processing time in the 
decode stage of the pipeline. Eighteen additional characterization bits are added to each 
original 32 bit instruction. Addition of the predecode bits expands each instruction to 50 
bits, hence the width of the instruction queue is 200 bits. These bits are used for two 
cycles, after which for integer operations they are no longer needed. Instructions which 
reach the floating point queue are 37 bits wide as five bits of the original 18 additional 
bits are used by the R8010 FPU. Predecoding accomplishes three things: 
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1) Consistent alignment of the 5-bit destination field. 
2) Instruction Category encoding. 
3) Addition of timing critical bits. 

A crossbar mechanism determines which of the four instructions to send depending on 
the resources available from cycle to cycle. This process is called Resource Modeling. The 
idea behind resource modeling is that instructions are not dispatched until there is 
sufficient resources available for them to complete. The crossbar monitors the status of 
each execution unit as well as determines interdependencies between any of the four 
instructions in the dispatch unit at any given line. 

Figure 1-2 shows a diagram comprised of four cycles and the flow of instructions 
through the supersclar dispatch mechanism. 
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Figure 1-2 R8000 Instruction Dispatch Mechanism 

The shaded areas in Figure 1-2 indicate those instructions which were dispatched. In the 
first clock instructions A, B, C, and D are presented to the dispatch logic. In the above 
example only instructions A and B are dispatched and sent to the execution stage of the 
pipeline. Instructions C and D remain. Instructions E and F are then read from the first 
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stage of the queue and passed through the multiplexor logic and placed in the dispatch 
unit in the next clock. Instructions G and H remain in the first stage of the queue. The 
dispatch unit is again loaded with four instructions (E, F, C, D). 

In the second dispatch in Figure 1-2 instructions E, C, and D are dispatched to the 
execution stage but instruction F remains. The execution of C and D allows instructions 
G and H to pass through to the dispatch unit. The first stage of the queue is now empty 
and new information can be clocked into it. Instruction I is also read from the second 
stage of the queue and placed in the dispatch unit. The dispatch unit now contains the 
four instructions I,F,G,H. 

The third cycle dispatches instructions F and G. I and H remain. The execution of F and G 
allows instruction J and K from the second stage of the queue to be moved to the 
dispatch unit. The instruction queue is then clocked, causing the four instructions in 
each stage to shift one stage down the queue as shown. The first stage of the queue now 
contains only instruction L because instructions I, J and K have already been shifted out. 

The first stage of the queue must be completely empty before any other instructions can 
be shifted into it. All stages of the queue are clocked simultaneously. Should a situation 
arise where the queue is full, meaning that all stages contain one or more instructions, a 
stall is issued and the instruction cache will cease fetching instructions until the stall 
condition is removed. 

1.2.3 Large Set Associative TLB 

The Translation Lookaside Buffer (TLB) is dual ported and is physically split into two 
halves. Each half contains 128 entries and is 3-way set associative, yielding a total of 384 
entries each. One half contains the virtual tags (VTAGS), the other the actual physical 
address (PA) corresponding to each virtual tag. 

TLB, Data Cache, and Data Cache Tag RAM lookups are performed in the execution 
stage (E-stage) of the pipeline. The VTAG portion of the TLB is used to determine 
whether a certain range of addresses resides in the PA portion. If it is determined that the 
translation for the virtual address resides in the TLB, the contents of the PA portion is 
compared to that in the Data cache tag RAM, resulting in either a hit or a miss to the 
Data cache. Either a TLB or a Data cache miss initiates an external memory cycle. 

Figure 1-3 shows a block diagram of the TLB. 
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Figure 1-3 Translation Lookaside Buffer 
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Table 1-1 shows the page sizes supported and the corresponding virtual address bits 
used to index the TLB. 

Page Size VIrtual Address 
Bits 

4K VA< 18: 12> 

8K VA< 19: 13> 

16K VA< 20: 14> 

64K VA< 22: 16> 

1M VA< 26: 20> 

4M VA< 28: 22> 

16M VA< 30: 24> 

Table 1-1 TLB Page Sizes 

The number of entries in the TLB is large enough to minimize the miss rate but at the 
- same time is not so large as to create speed problems. 

-
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1.2.4 Data Cache Invalidation 

Data cache invalidation in the R8000 CPU is performed by accessing the Data Cache 
Valid RAM which is 4 bits wide and contains 1024 entries. Each entry represents a 32 bit 
value, hence there are two valid bits per 64 bit doubleword. Each index to the valid RAM 
corresponds to the status of two 64 bit Data cache doublewords. There are two reasons 
for a separate valid RAM with individual invalidation bits down to the word level. 

The first reason is to alleviate invalidating entire lines of the cache when floating point 
data is found. Sometimes integer and floating point data reside in the same data cache 
(D-cache) line. Floating point loads and stores interface directly to the streaming cache 
and do not usually affect the contents of the R8000 data cache. However, the data cache 
of the R8000 must be kept coherent with the streaming cache. Therefore, if a FP store is 
done to a given location in the streaming cache which also resides in the D-cache, the D­
cache entry must be invalidated. By having individual valid bits for each 32 bit word in 
the data cache, the mixing of floating point and integer data in a given D-cache line is 
better accommodated. This way if an integer load is done to that same location a D-cache 
miss occurs, forcing the R8000 to fetch the data from the streaming cache. 

The second reason for having a separate valid RAM is to be able to easily invalidate the 
data for integer stores which miss in the D-cache. In the R8000 data is stored to the D­
cache in the same cycle that the TLB and D-cache hit/ miss status is determined. This is 
done so that the store data does not have to wait for the result of the lookup before it is 
written to the D-cache. If the TLB detects a store hit the cycle is already completed as the 
data has already been written. If a store miss occurs the data is invalidated in the 
following cycle by turning off the valid bit for that D-cache entry. 

Allowing invalidation down to the word level also helps to reduce 'false sharing', which 
occurs when data is unintentionally forced to bounce back and forth between caches. 

1.2.5 Split Level Cache 

The caching scheme of the R8000 microprocessor consists of a 16 KByte integer only first 
level data cache housed on the R8000, and a 4 MByte second level streaming cache. The 4 
MByte streaming cache acts as the second level cache for the R8000 and the first level 
cache for the R8010 FPU. Since integer data is stored on-chip in the R8000 access 
latencies are very short. Due to the large data sets that are normally required for floating 
point operations, the R8010 FPU interfaces only to the streaming cache. Separation of 
integer and floating point data helps to alleviate 'thrashing', which can occur when large 
vectors are moved in and out of the smaller on-chip data cache. For example, if large 
floating point vectors were handled in the data cache, all of the contents of the data cache 
would need to be moved out to make room for the vector, the vector then moved in and 
executed, then moved out, and the integer data moved back in. Also since the data cache 
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is normally not big enough to hold an entire floating point vector, a portion of the vector 
would be moved in and executed, then another, then another. Each of these results in a 
cache miss. 

In addition, the RSOOO microprocessor allows either two loads or one load and one store 
in the same cycle. If a load follows a store, the store can write to the same address as the 
load is reading from. Bypass circuitry exists inside the RSOOO which allows the store and 
the load to occur simultaneously. This is helpful when the compiler cannot differentiate 
between whether the store address for pointer A and the load address for pointer B are 
the same. This is why the store is done before the load. When the address is the same a 
clock is saved because the store to the cache does not have to complete before the load 
can be executed. 

1.2.6 Address Bellow Register 

The RSOOO Microprocessor contains two Tag RAM's which support the two way 
interleaved streaming cache and can perform two Tag RAM accesses per cycle. One bank 
contains even addresses and the other odd. In order to facilitate two accesses per cycle 
one address must be even and the other odd. However, the compiler cannot always 
guarantee that one access will be even and the other odd and a situation can arise where 
there are either two odd or two even accesses in the same clock. When this occurs only 
one of the two accesses can execute as they are both to the same bank. Multiple mis­
alignments by the compiler can degrade system performance. The address bellow 
register assures uniform distribution of even and odd references. Hardware manages 
and resolves the alignment problems. 

Figure 1-4 shows how the address bellow resolves bank conflicts when both accesses 
alternate between odd and even. Each access has been numbered for clarity. Note that 

- either of the even or odd accesses could be delayed. Those accesses shown in figure 1-4 
as delayed are arbitrary. The numerical values have been added for clarity to show the 
movement through the bellow register. 

-

-

-

-

-

-
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Figure 1-4 shows four separate accesses in an alternating even/ odd sequence. Because 
only one of the two even accesses can be dispatched to the Tag RAM at a time, the second 
access is delayed in the bellow register, hence a single access is performed in the first 
clock of the sequence. Since accesses to the Tag RAM's are single cycle, the E2 access 
previously delayed in the bellow register is released on the next clock along with one of 
the odd accesses. The bank conflict has been resolved in that both an even and an odd 
access are now allowed to occur simultaneously, even though they were not dispatched 
at the same time by the compiler. 

In the next clock o2 is released from the bellow and dispatched along with E3 while E4 is 
held in the bellow. Again two Tag RAM accesses are allowed to execute. In the next clock 
E4 is released from the bellow along with o3 while access o4 is held in the bellow. On the 
final clock of the sequence access 64 is released from the bellow. Since there are no 
subsequent accesses shown, the last clock in the sequence is also a single access. 

In Figure 1-4 the first and last accesses in the sequence shown are single accesses. 
However, the effect of the bellow register is such that all of the cycles in between allow 
for two Tag RAM accesses at the same time. Note that the compiler plays a major role in 
the efficient scheduling of accesses. Poor scheduling techniques by the compiler can 
effectively cut the cache access bandwidth in half and effectively render the streaming 
cache as one-way interleaved. 
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1.2.7 Integer Multiply 

The integer multiply function is performed in the RBOOO CPU and is several times faster 
than most other implementations currently on the market. Only four clocks are required 
for a 32 bit multiply and six clocks for a 64 bit multiply. Integer multiplies are frequently 
used in array index calculations. The superscalar nature of the R8000 microprocessor 
allows the computing portion of the operation to execute in less time. Addressing time is 
also reduced by lowering the integer multiply time. 

1.2.8 Floating Point Multiply-Add 

The addition of the four floating point multiply-add/subtract instructions allows two 
floating point computations to be performed with one instruction. The four instructions 
are multiply-add, multiply-subtract, negative multiply-add, and negative multiply­
subtract. 

The product of two operands is either added to or subtracted from a third operand to 
produce one result. The intermediate result is calculated to infinite precision and is not 
rounded prior to the addition. The result is then added to or subtracted from the 
contents of a floating point register specified in the instruction. The result is then 
rounded according to the rounding mode specified by the instruction. The final result is 
then placed in another floating point register whose location is also defined in the 
instruction. 

1.2.9 Floating Point Queues 

The Floating Point Queue mechanism consists of a floating point instruction queue and a 
load data queue which together allow the R8000 to run ahead of the R8010 FPU. Because 
FP operations are decoupled from the R8000,long FP operations can be executed in 
parallel with other integer operations. The RBOOO is not held up, allowing vector start-up 
time to be reduced. For example, in transitioning from one loop to another, while the 
R8010 FPU is completing the first loop, the R8000 can begin processing the overhead 
code and get started on the second loop, even though the R8010 FPU is not yet finished 
with the first loop. 

When instructions are fetched from the instruction cache of the R8000 CPU, predecoding 
is performed to determine the nature of the instruction and where it is to be executed. 
Floating point instructions are placed in the FP queue and an access to the streaming 
cache is initiated to retrieve the corresponding FP vector. The FP queue is located in the 
RBOOO. Once the data is available it is placed in the load data queue. The R8000 then 
releases the instructions from the FP queue and sends them to the R8010 FPU where they 
can begin execution. 
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. 1.2.10 Prefetch Support 

The R8000 Microprocessor supports a prefetch instruction which allows the compiler to 
issue instructions early so the corresponding data can be fetched and placed as close as 
possible to the CPU. For example, if data for a given operation resides in main memory, 
the prefetch instruction can be used to retrieve the data before it is required by the CPU. 
Once the CPU requests the data, the main memory access time has already elapsed and 
the data resides close to the CPU in a cache or data buffer where it can be accessed by the 
CPU quickly. 

Normally the prefetch instruction is used in loops and in most cases the prefetched data 
will be used by the CPU. The prefetch instruction is most helpful in large multi­
processor sy stems where a cache miss can take many cycles. 

1.2.11 Conditional Moves 

The R8000 Microprocessor has defined a set of four conditional move operators which 
allow IF statements to be represented without branches. The bodies of the THEN and 
ELSE statements are computed unconditionally and their results placed in temporary 
registers. Conditional move operators then transfer the temporary results to a 
permanent register file. Both legs of the IF statement are computed and one of them 
discarded. 

Conditional moves must be able to test both integer and floating point conditions in 
order to support the full range of IF statements. Integer tests are done by comparing a 
general register against a zero value. This is similar to the way integer branches are 
performed. 

Floating point tests are done by examining the floating point condition code. This is 
similar to the way Coprocessor 1 branches are handled. The conditional move operators 
in the RBOOO microprocessor support both integer and floating point data for the THEN 
and ELSE clauses, hence there are four conditional move operators. 

Since floating point conditional moves test the floating point condition code, multiple 
condition codes have been added to give the compiler some flexibility in scheduling the 
comparison and the conditional moves. The R8000 microprocessor contains eight 
condition code bits. 

1.3 ARCHITECTURAL OVERVIEW 

This section discusses briefly the architecture of each component in the RBOOO 
microprocessor chip set. Each of the components, the RBOOO CPU, R8010 FPU, Tag 
RAM's, and Streaming Cache Data RAM's have dedicated chapters which cover the 
respective components in more detail. Refer to the table of contents for more information 
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on a specific component. There are 7 basic parts to the sy stem. 

1) RBOOO Microprocessor 
2) R8010 Floating Point Unit 
3) Tag RAM (even addresses) 
4) Tag RAM (odd addresses) 
5) Streaming Cache SRAM (Even data) 
6) Streaming Cache SRAM (Odd data) 
7) Cache Controller 

Both the R8000 CPU and R8010 FPU have multiple execution units, allowing execution 
of 4 instructions per clock; two load/ store instructions and two register to register or 
floating point execute instructions. Separate integer and floating point units maximize 
floating point throughput and allow for simultaneous execution of integer and floating 
point instructions. The R8010 FPU contains two pipelines, each of which can perform a 
double precision multiply-add every cycle. Two identical tag RAM's store address 
information for the even and odd data banks of the interleaved streaming cache. The 
RBOOO CPU and R8010 FPU interface only to the streaming cache. Updates to the tag 
RAM's as well as all transactions requiring interface to main system memory are 
handled by the cache controller. Separate load and store data busses on the R8010 FPU 
eliminate bus turnaround time and allow both loads and stores to second level cache to 
execute simultaneously. Multiple tag RAM's provide an interleaved caching scheme, 
allowing access times to the cache to be hidden and providing two 64 bit operands to the 
R8010 FPU every clock. A separate dirty bit RAM within each Tag RAM allows for 
updating of the dirty bit status for one cy cle at the same time as a Tag RAM access for 
another cycle. Figure 1-5 shows a block diagram of the R8000 microprocessor chip set. 
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1.3.1 RSOOO Microprocessor. 

. The R8000 Microprocessor is a 591 pin device which handles all integer operations and is 
the main computing component of the system. The high pin count is a result of the 
numerous dedicated busses provided by the R8000. This dedicated bussing scheme 
helps to take full advantage of the multiple execution units within the R8000, allowing 
each unit to run independently of the other, alleviating not only the need for 
multiplexing data and address, but also allowing loads and stores to the streaming cache 
to occur simultaneously. 

The R8000 contains four caches and has dedicated interfaces to all components in the 
sy stem. The R8000 performs address generation and provides address information for 
interfacing to the streaming cache via separate and dedicated address busses for the 
even and odd banks. Instruction and data interface to the R8010 Floating Point Unit is 
via a dedicated 80 bit TBus, and addresses to the Tag RAM's are provided via separate 
and dedicated tag, index, and sector busses for both the even and odd tag RAM's. 

The R8000 contains two arithmetic logic units (ALU) as well as two address generation 
units, yielding a maximum of 4 instructions per cycle. The on-chip 16 KByte Data cache 
is dual ported and contains separate address and 64 bit data busses for each port. This 
allows multiple accesses to the cache to occur simultaneously. The 16 KByte instruction 
cache is 128 bits wide and single ported. Both caches are virtually indexed. The 
instruction cache is virtually tagged, alleviating the need for address translation on !­
cache accesses. The data cache is phy sically tagged to maintain coherency with second 
level cache. Each 32 by te line in the 1-cache contains a specific address space identifier 
(ASID). This value is assigned by the operating system and is process specific. There are 
at least two specific ASID values per process, one for the instruction cache, one for the 
TLB. The ASID helps to differentiate between multiple processes within the same cache 
and helps to reduce 1-cache flushing by allowing the operating sy stem to invalidate only 
those lines whose process is no longer valid. The operating sy stem can also flush the 1-
cache when all 256 ASID values have been used . 

In addition to the data and instruction caches, the R8000 also contains Branch and 
Translation Lookaside Buffer {TLB) caches. The Branch cache is accessed along with the 
instruction cache and is used to predict and modify the program counter on branch or 
jump instructions. The Branch Cache is a 15 bit field concatenated to each aligned 128 bit 
quad word of the 1-cache. The Branch Cache implements a simple branch prediction 
mechanism which branches depending on the state of the predict bit associated with 
each Branch Cache entry. 

The TLB cache is used to convert virtual addresses to physical addresses. A single TLB 
services both the data and instruction caches. The instruction cache only requires 
address translation on a miss. Similar to the instruction cache, each entry of the TLB also 
contains an ASID. However, this value is different from that contained in the 1-cache. 
Having separate ASID values for each cache allows separate flushing of the Instruction 
and TLB caches. Below is a list of features of the four caches. 
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- Instruction cache; 
- 16 KBytes 
- VIrtually indexed 
- Virtually tagged 
- Direct mapped, no hashing 
- Single ported, 128 bit path 
- Fetches 4 instructions (128 bits) per cy cle 
-32 Byte line size 
- No parity 
- 11 cy cle miss penalty to streaming cache 
- No coherency maintained with streaming cache 
- Alignment on 128-bit boundaries 
- Separate ASID values for I-cache tags 

- Data Cache; 
- 16 KBytes 
- Virtually indexed 
- Physically tagged 
- Direct mapped, no hashing 
- Dual ported, 64 bit data paths 
- Two loads or one load and one store per cycle 
- 32 By te line size 
- No parity 
- 8 cycle miss penalty to streaming cache 
- Coherency maintained with the streaming cache 
- Write through with allocate protocol 
- Separate ASID for D-cache tags 

- Branch Cache; 
- 1K Entries, one entry per 4 instr. 
- Virtually indexed in parallel with Instruction cache 
- Direct mapped, no hashing 
- 3 cycle miss penalty 

- TLB Cache; 
- Dual ported, 2 translations/clock 
- 3-way set associative, 
- 384 entries total (128 X 3 way ) 
- Implements random replacement algorithm 
- Supports 4K,8K,16K,64K,1M,4M,16M page sizes 
- Maps one virtual to one physical page 
- Indexed by low-order 7 bits of virtual address 
- Index is hashed by Exclusive-OR of low order 7 bits of TLB cache ASID. 
- Software Refilled 
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Figure 1-6 shows a block diagram of the RSOOO Microprocessor . 
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Figure· 1 -6 R8000 Microprocessor Block Diagram 
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1.3.2 R8010 Floating Point Unit 

The R8010 Floating Point Unit (FPU) is a 591 pin device which performs all floating point 
functions for the R8000 Microprocessor Chip Set. The R8010 FPU has two execution 
units, allowing two arithmetic and two Floating Point memory operations to be executed 
every clock. The Floating Point Register File contains 8 read ports and 4 write ports. 
Large load and store data queues, each 32 entries deep, allow for a pipelined interface 
between the R8000 CPU and the R8010 FPU, streamlining the flow of data and 
minimizing wait time. With a target frequency of 75 MHz, the R8010 FPU offers a peak 
performance of 300 MFLOPS. 

The R8010 FPU has no on-chip cache and uses the streaming cache, which is the second 
level cache of the R8000, as its memory. Dedicated load and store data busses to both the 
even and odd banks of streaming cache allow either a read or write operation to each 
bank to be performed every clock. An 80 bit TBus interface forms the control bus for the 
R8010 FPU and allows the R8010 FPU to interface to both the R8000 CPU and the Cache 
Controller (CC). Normally the R8010 FPU is controlled by the R8000. Dispatching of 
instructions, floating point loads and stores to the streaming cache, integer stores to the 
streaming cache, etc. are all under control of the R8000 CPU. Cycles which miss in the 
streaming cache and require interface to the main memory are handled by the Cache 
Controller. For these cycles the R8010 FPU is used only to transfer data from the load 
data bus to the store data bus. 

Floating point instructions are received from the R8000 microprocessor through the 
TBus. The instructions are executed and the result written back to the FP register file. 
Floating Point data is retrieved from the streaming cache on the load data pins and then 
placed in the Load Data Queue. For store operations data from the result is placed in the 
store data queue. As soon as the corresponding address information from the Tag RAM 
is made available, the data is written out to the streaming cache. In addition to floating 
point operations, the R8010 FPU is also used during integer stores to the streaming 
cache, handled by the R8000, as well as stores to main memory, handled by the CC. 

A set of fused multiply-add instructions have been added, taking advantage of the fact 
that the majority of floating point computations use the chained multiply-add paradigm. 
The operator for the multiply-add instructions is not defined by the IEEE and does not 
perform intermediate rounding. Eliminating the intermediate rounding step allows for a 
lower inherent latency and has higher precision and higher performance than an 
operator which performs intermediate rounding. 

Figure 1-7 shows a block diagram of the R8010 FPU. 
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Figure 1-7 R8010 Floating Point Unit Block Diagram 

1.3.3 Tag RAM 

Two identical tag RAM's are required in the R8000 Microprocessor Chip Set in order to 
support the interleaved architecture of the second level streaming cache. Both RAM's 
contain the same information. One is used for the even bank, the other for the odd bank. 
The two banks are differentiated by the state of address bit A3. If this bit is low the access 
is to the even bank. A3 high enables the odd bank. 

Both Tag RAM's are alway s written simultaneously and contain the exact same address, 
state, and virtual synonym information. The dirty bit information can be different 
between the even and odd bank devices. If either the even or odd double-words of a 
cache line are dirty the CC will write back the entire line. The Tag RAM is 4-way set 
associative. Each indexed entry of the Tag RAM contains 128 bits divided as four 32 bit 
values. Each 32 bit value contains a 20 bit tag address, a four bit virtual sy nonym field, 
and 8 state bits which define the coherency attributes. Either the tag address or the state 
and virtual synonym information can be written at any given time. A single 20 bit 
external tag bus handles the flow of both through the device. In addition the tag bus is 
bi-direc�onal and used for both reading and writing of the device. The Cache controller 
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is responsible for both reading and writing the Tag RAM and must control whether the 
address or state information is allowed to be written. 

A separate 16 bit dirty bit RAM is the only portion of the Tag RAM where the 
information is different between the two Tag RAM's. Figure 1-8 shows a block diagram 
of the tag RAM. 
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. 1.3.4 Streaming Cache Data RAM's 

The streaming cache data RAM's have separate load and store data busses. Although 
only one cycle can be performed by the data RAM's at a time, both read and write data 
can be on their respective busses at the same time. Having separate busses eliminates 
any bus turnaround time, which occurs on back to back read followed by write cycles, 
and allows read and write data to be pipelined to the RAM, effectively allowing the 
RAM to perform a read or write operation every clock. 

The total memory size is split between the even and odd banks. Each bank contains 2 
MBytes and has a dedicated Tag RAM, allowing accesses to the banks to operate 
simultaneously and independently of one another. The RAM is buffered by input and 
output data registers. If the RAM is performing a read and write data appears on the 
input bus, the data is placed in the register. Self-timed write logic allows the RAM to 
write the data as soon it finishes the previous read cycle. Figure 1-9 shows a block 
diagram of a streaming cache data RAM. 
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1.3.5 Streaming Cache Memory Architecture 

OE_ 

The cache memory sy stem architecture consists of sets, lines, and sectors. In order to 
help the reader understand the cache memory architecture, the following example 
discusses a 4 MBy te SIM module implementation in a 4-way set associative 
configuration with 128 by tes per sector and four sectors per line. 

There are nine devices per SIM module,8 data RAM's and 1 parity RAM, which yield 1 
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MBy te. A minimum of two SIM modules per bank are required to interface to each of the 
64 bit external busses of the R8000 Microprocessor. Connection to the mother board is via 
two parallel 75 pin SIP connectors. The modules are soldered directly to the board. 

The 4-way set associative cache has 4 sets. Each set consists of 2048 lines. Each line 
consists of four sectors. Each sector contains sixteen 64-bit words divided as 8 words per 
bank. Figure 1-10 shows a block diagram of how the cache memory is organized. 
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REGISTERS 
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The R8000 Microprocessor Chip Set provides four sets of architecturally visible registers: 

1) Thirty-two general purpose registers (GPR) located on the RSOOO, thirty-one of which 
are usable. Register (rO) always contains a value of zero. Each register is 64 bits wide. 
These registers are numbered r31. .r0 and are used for virtual address generation as well 
as general movement and temporary storage of load and store data throughout the 
device. 

2) Thirty-two Floating-Point Registers (FPR) located on the R8010 FPU. Each register is 
64 bits wide. These registers are numbered f31. .f0 and are used for general movement 
and temporary storage of load and store data throughout the device. 

3) Thirty-two system control registers located on the R8000. Each register is 64 bits wide . 
These registers are accessible through the double Move To-From Coprocessor-a instruc­
tions such as DMTCO and DMFCO. The 32 bit versions of these instructions, MTCO and 
MFCO, are not defined. The R8000 system control registers are defined as Coprocessor-a 
(CopO) registers. 

4) Two floating point control registers located on the R8000 CPU. Each register is 32 bits 
wide. Although the architecture provides for thrity-two control registers, only two, regis­
ters 31 and 0 are visible. These registers are accessible through the Move To-From Copro­
cessor-a instructions such as MTCO and MFCO. The 64 bit versions of these instructions, 
DMTCO and DMFCO, are not defined. The R8010 FPU system control registers are 
defined as Coprocessor-1 (Copl) registers . 
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Table 2-1 below shows a listing of Coprocessor-a and Coprocessor-1 registers. 

Cop# Reg# Mnemonic Description 
0 0 TLBSet Select set in set-associative TLB 
0 1 --- Register not used 
0 2 EntryLo Low half of TLB entry 
0 3 ----- Register not used 
0 4 UBase Pointer to User PTE table 
0 5 ShiftAmt Shift amount to align Vrrtual page number 
0 6 Trap Base Base address of trap vectors 
0 7 BadPAddr Bad Physical Address 
0 8 VAddr Virtual Address Register 
0 9 Counts Cycle and operation counters 
0 10 Entry Hi High half of TLB entry 
0 11 --- Register not used 
0 12 SR Status Register 
0 13 Cause Reason for last exception 
0 14 EPC Exception Program Counter 
0 15 PRid Processor Revision Identifier 
0 16 Config Configuration register 
0 17 -- Register not used 
0 18 WorkO Uninterpreted temporary register 
0 19 Work1 Uninterpreted temporary register 
0 20 PBase Pointer to Kernel Private PTE table 
0 21 GBase Pointer to Kernel Global PTE table 

0 22-23 -- Register not used 
0 24 Wrred Indicies of wired entries in the TLB 
0 25-27 -- Reserved for additional Wired registers 
0 28 DC ache Data Cache control register 

0 29 I Cache Instruction Cache control register 

0 30-31 -- Register not used 
1 0 FConfig Floating-point Configuration register 

1 1-30 --- Register not used 
1 31 FSR Floating-point Status Register 

Table 2-1 Control Registers 
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2.1 COPROCESSOR 0 REGISTER SET 

This section lists the 32 system control registers referred to as Coprocessor 0. The regis­
ters are listed in numerical order with their corresponding register number in parenthe­
ses. The following registers are reserved by MIPS technologies and should not be used: 
rl, r3, rll,r17, r22, r23, r25, r26, r27, r30, and r31. These registers do not appear in the fol­
lowing section. 

2.1.1 TLBSet (rO) 

Set address -----------, 

6362 

0 

61 2 

�------------ Last TLBP 

P if set, the last TLBP operation was unsuccessful. 
SET specifies the set select address within a TLB entry. 

The TLBSet Register is a read-write register used to index a TLB entry's set 
and to provide access status as the result of a TLBP operation. 

The SET field is used to select a TLB entry's set for a TLBW or a TLBR 
instruction. When a TLB Refill (User, Kernel Private, and Kernel Global) 
exception occurs, TLBSet is loaded with a random set to be replaced. When 
a TLB Invalid or TLB Modified exception occurs, TLBSet is loaded with the 
set which contains the virtual tag match. This value may be overwritten 
under program control to write to a specific set number. 

The TLBSet register also contains status regarding the TLB Probe (TLBP) 
instruction execution. The P bit is set if the last TLBP instruction did not 
find a TLB entry which matched VADDR and the ASID value in the 
Entry Hi register. If the last TLBP was successful, P=O and SET holds the set 
number which matched. The format of the SET field is shown below. 

00 Set O 

01 Set 1 

10 Set 2 

11 Reserved 

The TLBSet register is undefined on reset. 
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2.1.2 EntryLo (r2) 

63 

2-4 

zero read 

1 
valid 

dl dirty 
coherence 

Physical Frame Number --,. 
40 39 12 1 1  98 7 6 0 I 

z I PFN I c lfl z I 
24 28 3 7 

Z are fields that may be written with anything but always read as 
0 

PFN Physical Frame Number 
C specifies the page cache coherence algorithm 
D if set, page is dirty and writable 
V if set, entry is valid 

The Entrylo register is a read-write register used to access the lower half of 
the TLB. Entrylo contains the Physical Page Number (PFN} and its 
associated Cache Algorithm (C), Write Permission (D), and Valid (V} state 
bits. 

The c field encoding is as follows: 

C Field Cycle Type 

()()() Processor-ordered Uncachable 
001 Reserved 
010 Sequential-ordered Uncachable 
0 1 1  Cachable Non-Coherent 
100 Cachable Coherent Exclusive 
101 Cachable Coherent Exclusive on Write 
1 10 Reserved 
1 1 1  Reserved (Cachable Write-through) 

Table 2-2 Cache Coherency Field Encoding 

The EntryLo register is undefined on reset. 
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2.1.3 UBase (r4) 

63 

PTE Base 
64 

PTEBase Base address of Page Table Entries 

0 

I 

The UBase register is a read-write register which holds the base address of 
the PTE table for the associated User region. The UBase, PBase, and GBase 
registers have identical formats. 

The UBase register is undefined on reset. 
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2.1.4 ShiftAmt (r5) 

63 

I 

2-6 

Shift Amount l 5 4 0 

0 I SA I 
59 5 

The ShiftAmt register is a read-only register that assists software in 
aligning pointers into page tables. In the User Region, right-shifting the VA 
register by the amount in the SA field correctly aligns the Vrrtual Page 
Number (VPN) field based on page size for the most recently failed 
translation. 
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2.1.5 TrapBase (r6) 

63 6159 58 

2 3 

0 

1 1  

49 47 

Base 

36 

Base Base address of trap vectors 
R Region bits of trap vectors 
C Cache algorithm bits of trap vectors 

121 1  0 

0 

12  

The TrapBase is a read-write register which contains the base address of all 
exception vectors except Reset, Soft Reset, and NMI. When an exception 
occurs, the 12-bit exception vector offset is concatenated with the 36-bit 
Base and the R and C bits to form the new program counter. 
This register is undefined on reset. 
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2.1.6 BadPAddr (r7) 

63 60 59 

2-8 

40 39 

0 PAddr 
20 

BadPaddr Bad Physical Address 
Syn Bits [15:12] of the virtual address 

40 

0 

I 

The BadPAddr register is a read-only register that contains the physical 
address which caused the virtual coherence error (floating) exception. 
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2.1.7 VAddr (r8) 

63 0 

VAddr I 
64 

VAddr Virtual Address 

The VAddr register is a read-write register that holds a 64-bit virtual 
address. VAddr is loaded both under software and hardware control. 
VAddr is loaded by hardware with the virtual address which causes a TLB 
fault, TLB Refill, TLB Invalid, TLB Modified, or Address Error Exception. 
VAddr is also writable by software, and is used to address the CopO 
instructions TLBW, TLBR, TLBP, DCTR, DCTW. 

For TLB faults resulting from trying to fetch instructions for an instruction 
cache miss, VAddr is loaded with the virtual address of the begining of the 
instruction cache block, not with the address of the instruction which 
caused the instruction cache miss. 
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2.1.8 Counts (r9) 

63 

2-10 

32 31 0 

0 Cycles 

32 32 

Cycles Count the number of processor clock cycles 

The Counts register is a read-write register consisting of a 32-bit counter. 
The Cycles counter is incremented once per clock cycle. IP10 is wired to bit 
[31] of the Counts Register. 

The Counts register is undefined on reset. 
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2.1.9 EntryHi (rlO) 

63 61 I R I 
2 

z 
14 

p 
z 
VPN 
ASID 

48 47 19  1 8  12 1 1  

VPN I z I ASID 

29 7 8 

Two-bit Region (00 = user, 01 = KVO, 1 1  = KV1 ). 

4 3  0 

4 

Fields that may be written with anything but always read as 0. 
Virtual Page Number field. 
Address Space Identifier. 

The EntryHi register is a read-write register used to access the upper half of 
the TLB. In addition, EntryHi contains the Address Space Identifier (ASID) 
used to match the virtual address with a TLB entry when virtual addresses 
are presented for translation. 

When a TLB-related exception occurs, EntryHi is loaded with the Vrrtual 
Page Number (VPN) and the Region (R) of the virtual address that failed 
translation. The VPN field contains bits [47:19] of the faulting virtual 
address. It is not right justified according to page size. VPN[23:19] is 
conditionally set to zero by hardware on a per-bit basis based on page size. 
The ASID field already contains the Address Space Identifier for the virtual 
address which caused the exception, and so is not loaded when a exception 
occurs. 

The VPN field does not contain bits [18:12] of the virtual address, for these 
are not stored in the TLB. 

The EntryHi register is undefined on reset. 
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2.1.10 Status (r12) 

63 

2-12 

41 39 36 35 32 30 28 26 24 18 8 6 5 4 3 2 1 0 

0 

23 

� KPS I UPS I o lcuH��� o I 
4 4 2 2 6 

IM 

1 1  

IE is the Interrupt Enable (0 = disabled, 1 = enabled). 
EXL is the Execution Level (0 = normal, 1 = exception). 
KU is the Execution Mode (0 = kernel, 1 = user). 
UX If set enables MIPS-III opcodes in user mode. 
XX If set enables SGI-extended opcodes in user mode. 
IM Interrupt Mask (0 = disabled, 1 = enabled). 
RE Reverse endian in user mode. 
FR enables additional floating-point registers 

(0 = 16 registers, 1 = 32 registers). 
CU controls the usability of coprocessors zero and one 

2 

(0 = unusable, 1 = usable). Coprocessor zero is always usuable 
when in kernel mode, regardless of the setting of the CU0 bit. 

UPS User Page Size. 
KPS Kernel Page Size. 
DM Floating-point precise exception Mode. 
ois Reserved for future use: 0 on read, must be 0 on write. 

The SR register is a read-write register that contains the kernel/user mode, 
interrupt enable, and various other information. 

Interrupts are enabled when IE=1 and EXL=O. 

The base execution mode is set by the kernel/user bit (KU). The actual 
execution mode is modified by the execution level (EXL). The processor is 
in user mode when KU=1 and EXL=O, otherwise it is in kernel mode. 
The user instruction-set architecture is specified by the UX and XX field. 
Clearing XX inhibits SGI-extension opcodes. Clearing UX inhibits MIPS-III 
opcodes. All opcodes are permanently available in kernel mode. 

The interrupt mask field (1M) is a 11-bit field that controls the enabling of 
the 11 maskable interrupt conditions. A maskable interrupt is taken if 
interrupts are enabled, and the corresponding bits are set in both the 
interrupt mask field of the SR and the interrupt pending field of the Cause 
register. Note that there are unmaskable interrupts as defined in the Cause 
Register. 

The endian of the processor in kernel mode is set by BE bit in the Config 
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register. The Reverse Endian (RE) bit in the SR is used to modify the endian 
of the processor in user mode. 

The FR bit enables additional registers in the floating-point coprocessor. 

The Coprocessor Usuable (CU) field is a 2-bit field that controls whether 
coprocessor instructions will cause an exception. Regardless of the setting 
of the cu field, coprocessor zero is always usable when in kernel mode. 
The User Page Size (UPS) field specifies the page size of the User Vrrtual 
(UV) region of the address space. The Kernel Page Size (KPS) field specifies 
the page size of the Kernel Vrrtual (KVO and KV1) regions of the address 
space. The encodings are as follows. 

Page Size Encoding 

4K ()()()() 
8K 0001 
16K 0010 

64K 0011 

1M 0100 

4M 0101 

16M 0110 

reserved all others combinations 

Table 2-3 UPS/KPS Field Encoding 

The OM bit controls whether the floating-point unit is in performance or 
precise exception mode. DM=O is performance mode, DM=1 is precise 
exception mode. 

The Status register is initialized during reset . 
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2.1.11 Cause (r13) 

6362 

2-14 

29 27 25 23 19 18 

0 IP 

34 5 1 1  5 3 

BD Last exception was taken while executing in a branch delay slot 
(0 normal, 1 delay slot). 

CE 

NMI 
BE 
VCI 
FPI 
IP 
ExcCode 

Coprocessor unit number is referenced when a 
Coprocessor Unusable exception is taken. 
Non-maskable interrupt has occured. 
Bus Error pending 
Coprocessor virtual coherence interrupt or TLBX pending. 
Floating point exception has occurred. 
Interrupt pending. 
Exception Code field (described below). 

The Cause register is a read-write register that describes the nature of the 
last exception. A 5-bit exception code indicates the cause of the exception 
and the remaining fields contain detailed information relevant to the 
handling of certain types of exceptions. 

The Interrupt Pending {IP) field indicates which maskable external, 
internal, coprocessor, and software interrupts are pending. These 
interrupts are maskable by �e 1M field in the Status reg. 

IP0 .. 1 are software interrupts, and may be written into to set or reset 
software interrupts. 

IP2 .. 7 are external interrupts which are set and cleared by transactions 
through the T-bus. Software cannot set or clear these bits. 

IP8 is the even bank G-cache parity error flag. This bit is set by hardware 
when a parity error is detected in the even bank and must be cleared by 
software. 

IP9 is the odd bank G-cache parity error flag. This bit is set by hardware 
when a parity error is detected in the odd bank and must be cleared by 
software. 

IP1 0 is the cycle counter overflow flag. This flag is wired to the most 
significant bit of the Cycle counter. 
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The FPI is the floating-point exception flag. This flag is the logical and of the 
Enable and Flag fields of the FSR in the floating-point unit. 

The VCI flag indicates a coprocessor virtual-coherence interrupt. 
Coprocessor loads and stores cause imprecise virtual-coherence exceptions 
which are reported as interrupts by setting this flag. The VCI flag is cleared 
by software. 

The BE flag indicates a Bus Error is pending from the system interface. This 
flag is set or reset by transactions through the TBus. Software cannot set or 
clear this bit. 

The NMI flag indicates a non-maskable interrupt. The NMI interrupt is not 
enabled or disabled by the EXL or IE fields of the Status Register. The NMI 
flag is set by transactions through the TBus. Software setting of this bit 
does not cause an interrupt. 

The Cause register is undefined on reset. 

Table 2-4 shows a listing of the exception code fields 

Number Mnemonic Description 
0 Int Interrupt 
1 Mod TLB Modification exception 
2 TLBL TLB exception (Load or instruction fetch) 
3 TLBS TLB exception (Store) 
4 A dEL Address Error exception (Load or instruction fetch) 
5 A dES Address Error exception (Store) 

6-7 ----- Not used 
8 Sys Syscall exception 
9 Bp Breakpoint exception 
10  RI Reserved Instruction exception 
1 1  CpU Coprocessor Unusable exception 
12  Ov Arithmetic Overflow exception 
1 3  Tr Trap exception (i.e. the instruction "trap") 

14-3 1 ----- Not used 

Table 2-4 Exception Codes 

TFP User's Manual 2-15 



2.1.12 Exception Program Counter (r14) 

63 

2-16 

EPC 

EPC Exception Program Counter 

0 

The EPC is a read-write register which contains the address at which 
instruction processing may resume after servicing an exception. For 
synchronous exceptions, the EPC register contains either the virtual 
address of the instruction which was the direct dause of the exception, or 
when that instruction is in a branch delay slot, the EPC contains the virtual 
address of the immediately preceeding branch or jump instruction and the 
Branch Delay (BD) bit in the Cause register is set. 

For asynchronous exceptions the EPC points to where execution should 
resume. 

The EPC register is undefined on reset. 
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2.1.13 Process Revision Identifier (r15) 

63 

0 

48 

16 15  8 7 0 fmplementatio� Revision I 
8 8 

The PRid register is a read-only register containing the Process Revision 
Identifier for the RBOOO Microprocessor. 
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2.1.14 Config (r16) 

63 

2-18 

35 31 16 14 12 1 1  9 8  6 3 0 

DB 
IB 
DC 
IC 
BE 
PM 
ICE 
SMM 

0 

29 

0 

1 6  3 3 3 

Data cache block size = 2°8+4 bytes (ro) [1] 
Instruction cache block size = 218+4 bytes (ro) [1] 
Data cache size = 2oc+l2 bJ:tes (ro) [2] 
Instruction cache size = 21 +ll bytes (ro) [3] 
Big endian memory (rw) [1] 
Parity mode: 0 = even parity, 1 = odd parity (rw) [0] 
Inhibit Count during Exception (rw) [1] 
Sequential Memory Model (rw) [1] 

The Config register is a read-write register that specifies the various 
configuration options. Power-up values are shown in brackets [ ] .  

4 

The instruction and data cache parameters are fixed by hardware and are 
displayed in the IC, IB, DC, and DB fields. 

The endian of the memory system is set by the BE field. 

The Parity Mode (PM) bit specifies the mode of the parity error detection 
and generation. Even parity (PM=O) means all zeros including the parity bit 
is good parity; odd parity (PM=1 ) means all zeros including the parity bit is 
bad parity. Parity errors are reported via interrupt IP8• Whether or not the 
error causes an exception is controlled by the interrupt masking 
mechanism of the Status Register. 

The ICE flag disables the Count register when the processor is executing in 
exception level. 

The SMM selects between the Sequential Memory Model and a Coprocessor 
Ordered Stores Model. Setting SMM causes integer and floating-point loads 
and stores to execute in order. Clearing SMM causes the processor to 
execute in "Coprocessor Order". 

The configuration register is initialized during reset. 
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2.1.15 WorkO (r18), Work1 (r19) 

63 0 

64 

The WorkO and Work1 registers are read-write registers for software use. The 
hardware does not interpret the contents of these registers. 

Both registers are undefined on reset. 
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2.1.16 PBase (r20) 

63 

2-20 

PTE Base 

64 

PTEBase Base address of Page Table Entries 

0 

I 

The PBase register is a read-write register which holds the base address of 
the PTE table for the associated Kernel Private region. The UBase, PBase, 
and GBase registers have identical formats. 

The PBase register is undefined on reset. 
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2.1.17 GBase (r21) 

63 

PTE Base 

64 

PTEBase Base address of Page Table Entries 

0 

I 

The GBase register is a read-write register which holds the base address of 
the PTE table for the associated Kernel Global region. The UBase, PBase, 
and GBase registers have identical formats. 

The UBase register is undefined on reset. 
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2.1.18 Wired (r24) 

63 

2-22 

Index 
v 

32 7 7 

The seven bit TLB entry to be 'wired' 
Valid Bit set if corresponding Index is valid 

7 7 

The Wired register is a read-write register used to control the TLB 
replacement algorithm. Up to four entries may be wired down under 
program control. The four entries must be in different congruence classes. 

The TLB is three-way set associative. Only set 0 may be 'wired'. When a 
TLB Refill exception occurs, the congruence class of the missing virtual 
address is compared to each of the four indices in the wired register. If a 
match is found for a valid entry in the wired register, a random value in the 
range 0 . . 2 is loaded into the TLBSet register. If a valid match is not found, a 
random value in the range 1. .2 is loaded into the TLBSet register. 

The Wired register is undefined on reset. 

TFP User's Manual 



I _  

--

-

-

-

-

-

-

-

-

-

-

-

2.1.19 DCache (r28) 

63 28 25 

4 4 

H 
TAG 
v 
E 

39 

0 TAG 

15 28 

Interrogate Cache operation resulted in a hit 
Physical tag field 
Valid bits, one per 32-bit word 
set if cache line is exclusively owned 

12 11  0 

0 

11 

The Data Cache register is a read-write register used to read and write the 
data cache tag in conjuction with the OCTR and OCTW instructions. 

The DCache register is undefined on reset. 
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2.1.20 !Cache (r29) 

63 

2-24 

0 

48 47 40 39 

0 

16  8 40 

lASlO Instruction cache Address Space Identifier 

The Instruction Cache register is a read-write register used to store the 
Instruction Address Space Identifier. 

The !Cache register is undefined on reset. 

0 
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2.2 COPROCESSOR 1 REGISTER SET 

The CoProcessor 1 register and dedicated floating point registers located on the R8010 
FPU. Although 32 register locations have been allocated for floating point operations, 
currently only two registers, fO and f31, are used. Registers fl..f30 are reserved. 

2.2.1 FConfig (fO) 

31 

0 

16  

16 1 5  8 7  0 I Implementation I Revision I 
8 8 

The FConfig register is a 32 bit read-only register accessible by instructions 
running in kernel or user mode. The Implementation field is an 8-bit number 
that defines this particular implementation of the floating-point 
coprocessor. The Revision field is an 8-bit number that defines this particular 
revision of this implementation of the floating-point coprocessor. 
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2.2.2 Floating Point Status (£31) 

2-26 

31 24 22 18 1 7 16 12 1 1  7 6  2 1  0 

0 lei Cause I Enables I Flags I RM I 
7 

FCC Floating-point Condition Code 
FS Flush denormalized results to zero 
RM Rounding Mode 
V Invalid operation 
Z Division by zero 

Inexact exception 
0 Overflow exception 
u Underflow exception 
E Emulation exception 

The Floating Point Status Register (FSR) register contains status and control 
information and is accessible by instructions running in either kernel or 
user mode. The FSR controls the arithmetic rounding mode and the 
enabling of user-mode traps, as well as indicating when exceptions have 
occurred. 

A read and subsequent use of the FSR causes all previous instructions that 
have not been completed in the floating-point coprocessor's pipeline to be 
completed. Refer to chapter 5, section 5.3.2 for more information on 
synchronizing the floating-point coprocessor. 

The contents of the FSR are unpredictable and undefined after a processor 
reset or a power-up event. Software should initialize this register. 

The bit descriptions are as follows: 

The RM field controls the rounding mode of all floating-point operations. 

The Flags bits are cumulative and indicate that an exception was raised on 
some operation since the time which they were explicitly reset. Flag bits are 
set to 1 if an IEEE 754 exception is raised, and unchanged otherwise. The 
flag bits are never cleared as a side effect of floating-point operations, but 
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may be set or cleared by writing a new value into the status register using a 
"move to coprocessor control" instruction. 

The Cause bits specify the exceptions raised by the last floating-point 
operation and cause an interrupt if the corresponding Enable bit is set. The 
Cause bits are written by each floating-point operation in performance mode 
only. Load, store, and move operations do not change the state of the Cause 
bits. The Cause bits are set to 0 or 1 to indicate the occurrence or non­
occurrence of an IEEE 754 exception. Setting a Cause bit via a "move to 
coprocessor control" instruction causes an interrupt if the corresponding 
Enable bit is set, and always sets the corresponding flag bit. The precision of 
the interrupt is the same as that of a floating-point operation exception. 

Unimplemented floating-point coprocessor opcodes cause a reserved 
instruction exception in the RBOOO Microprocessor. All other FPU 
exceptions are reported via IP10  in the Cause register . 

The Enable bits control whether a floating-point exception should cause an 
interrupt. The precision of the interrupt is dependent on which mode the 
floating-point unit is running in. 

Setting the FS bit to 0 in precise exception mode causes operations 
involving denormalized numbers to be handled by the kernel. Setting the 
FS bit to 1 in precise exception mode causes denormalized operands and 
results that would be denormalized to be flushed to zero instead of causing 
an unimplemented operation exception. The state of the FS bit in 
performance mode is irrelevant. The machine acts as if the bit is set to 1. 

The FCC bits are the floating-point condition codes. FCC[O] is the same as 
the "c" bit in the MIPS-ill architecture. FCC[1 ] .. FCC[7] are new condition 
code bits. Any one of bits FCC[O] .. FCC[7] can be written by the "floating­
point compare" instruction. 

The E bit of the FSR indicates unimplemented operand exceptions. Like the 
Flag bits, the E bit is cumulative and indicates that an exception was raised 
on some operation since the time it was explicitly reset . 
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MIPS IV INSTRUCTION SET SUMMARY 

3 

The R8000 Microprocessor Chip Set runs the MIPS IV instruction set, which is a superset 
of the MIPS ill instruction set and backward compatible. The additions of these new 
instructions enables the MIPS architecture to compete in the high-end numeric 
processing market which has traditionally been dominated by vector architectures. 

A set of compound multiply-add instructions has been added, taking advantage of the 
fact that the majority of floating point computations use the chained multiply-add 
paradigm. The operator for the multiply-add instructions is not defined by the IEEE and 
does not perform intermediate rounding. Eliminating the intermediate rounding step 
allows for a lower inherent latency and has higher precision and higher performance 
than an operator which performs intermediate rounding. 

A register + register addressing mode for floating point loads and stores has been added 
which eliminates the extra integer add required in many array accesses. Register + 
register addressing for integer memory operations is not supported. 

A set of four conditional move operators allows floating point arithmetic 'IF' statements 
to be represented without branches. 'THEN' and 'ELSE' clauses are computed 
unconditionally and the results placed in a temporary register. Conditional move 
operators then transfer the temporary results to their true register. Table 3-l lists in 
alphabetical order the new instructions which comprise the MIPS IV instruction set. 
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Instruction Definition 

BClF Branch on FP Condition Code False 

BClT Branch on FP Condition Code True 

BClFL Branch on FP Condition Code False Likely 

BClTL Branch on FP Condition Code True Likely 

C.cond.fmt (cc) Floating Point Compare 

LDXCl Load Double Word indexed to COPl 

LWXCl Load Word indexed to COPl 

MADD.sd Floating PointMultiply-Add 

MOVF Move conditional on FP Condition Code False 

MOVN Move on Register Not Equal to Zero 

MOVT Move conditional on FP Condition Code True 

MOVZ Move on Register Equal to Zero 

MOVF.fmt FP Move conditional on Condition Code False 

MOVN.fmt FP Move on Register Not Equal to Zero 

MOVT.fmt FP Move conditional on Condition Code True 

MOVZ.fmt FP Move conditional on Register Equal to Zero 

MSUB.sd Floating Point Multiply-Subtract 

NMADD.sd Floating Point Negative Multipy-Add 

NMSUB.sd Floating Point Negative Multiply-Subtract 

PFETCH Prefetch Indexed --- Register + Register 

PREF Prefetch --- Register + Offset 

RECIP.fmt Reciprocal Approximation 

RSQRT.fmt Reciprocal Square Root Approximation 

SDXCl Store Double Word indexed to COPl 

SWXCl Store Word indexed to COPl 

Table 3-1 MIPS IV Instruction Set Additions and Extensions 
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Table 3-2 lists the COPO instructions for the RBOOO microprocessor. COPO instructions are 
those which are not architecturally visible and are used by the kernel. 

COPO Instruction Definition 

ERET Return from Exception 

TLBP Probe for TLB Entry 

TLBR Read TLB Entry 

TLBW Write TLB Entry 

DCTR Data Cache Tag Read 

DCTW Data Cache Tag Write 

Table 3-2 RBOOO COPO Instructions 

3.1 INSTRUCTION FORMATS 

Each CPU instruction consists of a singl� 32-bit word, aligned on a word boundary. 
There are three instruction formats-immediate (1-type), jump (J-type), and register (R­
type )-as shown in Figure 3-1. The use of a small number of instruction formats 
simplifies instruction decoding, allowing the compiler to synthesize more complicated 
(and less frequently used) operations and addressing modes from these three formats as 
needed . 
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I -type (Immediate) 

31 26 25 21 20 1 6 1 5  op rs I sub rt I ft I br offset 
6 5 5 1 6  

CI-type (Floating-point condition-code 1-type) 

31 26 25 21 20 1 8 1 7  16 1 5  
COP1 BC cc lndl tl l  offset 

6 5 3 1 6  

R-type (Register)_ 

31  26 25 21 20 1 6 1 5  1 1  1 0  op Irs/ trl fmt/ su3 rt l ft rd I ts sa l td 
6 5 5 5 5 

RC-type (Register to floating-point condition code) 

31 26 25 21 20 1 6 1 5  1 1  1 0  8 7  op fmt ft fs cc 0 
6 5 5 5 3 2 

CR-type (Floating-point condition-code R-type) 

31 26 25 21  20 1 8 1 7  16 1 5  1 1  1 0  
SPECIAL rs cc l o j u j  rd 0 

6 5 3 5 5 

J-type (Jump) 

31 26 25 op target 
6 26 

Figure 3-1 Instruction Formats 

3-4 

0 

I 

1 1  

I 

6 5  0 function I 
6 

6 5  0 I function I 
6 

6 5  0 function I 
6 

0 

I 

TFP User's Manual 



-

-

-

-

-

-

-

.. 

.. 

3.2 LOAD AND STORE INSTRUCTIONS 

Load and store are immediate (I-type) instructions that move data between memory and 
the general registers. The only addressing mode that load and store instructions directly 
support is base register plus 16-bit signed immediate offset. 

3.2.1 Scheduling a Load Delay Slot 

A load instruction that does not allow its result to be used by the instruction 
immediately following is called a delayed load instruction. The instruction slot 
immediately following this delayed load instruction is referred to as the load delay slot. 
In the R8000 Microprocessor the instruction immediately following a load instruction 
can use the contents of the loaded register, however in such cases hardware interlocks 
insert additional real cycles. Consequently, scheduling load delay slots can be desirable, 
both for performance and maintaining R4x00-Series microprocessor compatibility. 
However, the scheduling of load delay slots is not absolutely required. 

The data from a load instruction is available for use by an instruction issued in the cycle 
after the load instruction. Because the R8000 is a super-scalar microprocessor instruction 
scheduling to improve performance may cause instructions to be inserted between the 
load and the use. 

3.2.2 Defining Access Types 

Access type indicates the size of a R8000 Microprocessor data item to be loaded or stored, 
set by the load or store instruction opcode. Regardless of access type or byte ordering 
(endianness), the address given specifies the low-order byte in the addressed field. For a 
big-endian configuration, the low-order byte is the most-significant byte; for a little­
endian configuration, the low-order byte is the least-significant byte. 

The access type, together with the three low-order bits of the address, define the bytes 
accessed within the addressed doubleword. Only the combinations shown in Figure 3-2 
are permissible; other combinations cause address error exceptions . 

TFP User's Manual 3-5 



3-6 

Access Type 
Mnemonic 

(Value) 

Septibyte (6) 

Sextibyte (5) 

Quin tibyte ( 4) 

Word (3) 

Triplebyte (2) 

Halfword (1) 

Byte (0) 

Low Ordez Bytes Accessed 
Ad�s r---------------�--------------� 

Bits 

2 1 0 

Big endJan 
(631----31---0) 

Byte 

tittle endJan 
(63-----31.---0) 

Byte 

Figure 3-2 Byte Access within a Double Word 
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3.3 COMPUTATIONAL INSTRUCTIONS 

Computational instructions can be either in register (R-type) format, in which both 
operands are registers, or in immediate (I-type) format, in which one operand is a 16-bit 
immediate. 
Computational instructions perform the following operations on register values: 
• arithmetic 
• logical 
• shift 
• multiply 
• divide 

These operations fit in the following four categories of computational instructions: 
• ALU Immediate instructions 
• three-Operand Register-Type instructions 
• shift instructions 
• multiply and divide instructions 

For word-oriented ALU operations all operands must be 32-bit sign extended. The result 
of operations that use incorrect sign-extended-bit values is unpredictable. 

3.4 JUMP AND BRANCH INSTRUCTIONS 

Jump and branch instructions change the control flow of a program. All jump and branch 
instructions occur with a delay of one instruction: that is, the instruction immediately 
following the jump or branch (this is known as the instruction in the delay slot) always 
executes while the target instruction is being fetched from storage. Branches are predicted 
when the instruction quad is fetched and have no penalty. A branch mis-prediction incurs 
a 3 cycle penalty. 

3.4.1 Overview of Jump Instructions 

Subroutine calls in high-level languages are usually implemented with Jump or Jump and 
Link instructions, both of which are J-type instructions. In J-type format, the 26-bit target 
address shifts left 2 bits and combines with the high-order 4 bits of the current program 
counter to form an absolute address . 

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump 
Register or Jump and Link Register instructions. Both are R-type instructions that take 
the 32-bit or 64-bit bit address contained in one of the general purpose registers . 
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3.4.2 Overview of Branch Instructions 

All branch instruction target addresses are computed by adding the address of the 
instruction in the delay slot to the 16-bit offset (shifts left 2 bits and is sign-extended to 32 
bits) . All branches occur with a delay of one instruction. If a conditional "branch likely" 
is not taken, the instruction in the delay slot is nullified. 

3.5 COPROCESSOR INSTRUCTIONS 

Coprocessor instructions perform operations in their respective coprocessors. 
Coprocessor loads and stores are I-type, and coprocessor computational instructions 
have coprocessor-dependent formats. CPO instructions perform operations specifically 
on the System Control Coprocessor registers to manipulate the memory management and 
exception handling facilities of the processor. 

3.6 SUMMARY OF INSTRUCTION SET ADDITIONS 

The following is a brief description of the additions to the MIPS ill instruction set. These 
additions comprise the MIPS IV instruction set. 

3.6.1 Indexed Floating Point Load 

LWXCl - Load word indexed to Coprocessor 1 .  
LDXCl - Load doubleword indexed to Coprocessor 1 .  

The two Index Floating Point Load instructions are exclusive to the MIPS IV instruction 
set and transfer floating-point data types from memory to the floating point registers 
using register + addressing mode. There are no indexed loads to general registers. The 
contents of the general register specified by the base is added to the contents of the 
general register specified by the index to form a virtual address. The contents of the 
word or doubleword specified by the effective address are loaded into the floating point 
register specified in the instruction. 

The region bits (63:62) of the effective address must be supplied by the base. If the 
addition alters these bits an address exception occurs. Also, if the address is not aligned, 
an address exception occurs. 
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3.6.2 Indexed Floating Point Store 

SWXC1 - Store word indexed to Coprocessor 1. 
SDXC1 - Stare doubleword indexed to Coprocessor 1.  

The two Index Floating Point Store instructions are exclusive to the MIPS IV instruction 
set and transfer floating-point data types from the floating point registers to memory 
using register + addressing mode. There are no indexed loads to general registers. The 
contents of the general register specified by the base is added to the contents of the 
general register specified by the index to form a virtual address. The contents of the 
floating point register specified in the instruction is stored to the memory location 
specified by the effective address. 

The region bits (63:62) of the effective address must be supplied by the base. If the 
addition alters these bits an address exception occurs. Also, if the address is not aligned, 
an address exception occurs. 

3.6.3 Prefetch 

PREF - Register + offset format 
PFETCH Indexed - Register + register format 

The two prefetch instructions are exclusive to the MIPS IV instruction set and allow the 
compiler to issue instructions early so the corresponding data can be fetched and placed 
as close as possible to the CPU. Each instruction contains a 5-bit 'hint' field which gives 
the coherency status of the line being prefetched. The line can be either shared, exclusive 
clean, or exclusive dirty. The contents of the general register specified by the base is 
added either to the 16 bit sign-extended offset or to the contents of the general register 
specified by the index to form a virtual address. This address together with the 'hint' 
field is sent to the cache controller and a memory access is initiated. 

The region bits ( 63:62) of the effective address must be supplied by the base. If the 
addition alters these bits an address exception occurs. The prefetch instruction never 
generates TLB-related exceptions. The PREF instruction is considered a standard 
processor instruction while the PFETCH instruction is considered a standard 
Coprocessor 1 instruction. Refer to section 1.2.10 for more information on the prefetch 
instruction. 
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3.6.4 Branch on Floating Point Coprocessor 

BCl T - Branch on FP condition True 
BClF - Branch on FP condition False 
BCl TL - Branch on FP condition True Likely 
BClFL - Branch on FP condition False Likely 

The four branch instructions are upward compatible extensions of the Branch on 
Floating point Coprocessor instructions of the MIPS instruction set. The BCl T and BClF 
instructions are extensions of MIPS I. BCl TL and BClFL are extensions of MIPS ill. 
These instructions test the floating point condition codes. If no condition code is 
specified then condition code bit zero is selected. This encoding is downward compatible 
with previous MIPS architectures. 

The branch target address is computed from the sum of the address of the instruction in 
the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 64 bits. If the 
contents of the floating point condition code specified in the instruction are equal to the 
test value, the target address is branched to with a delay of one instruction. If the 
conditional branch is not taken and the nullify delay bit in the instruction is set, the 
instruction in the branch delay slot is nullified. 

3.6.5 Integer Conditional Moves 

MOVT - Move conditional on condition code true 
MOVF - Move conditional on condition code false 
MOVN - Move conditional on register not equal to zero 
MOVZ - Move conditional on register equal to zero 

The four integer move instructions are exclusive to the MIPS IV instruction set and are 
used to test a condition code or a general register and then conditionally perform an 
integer move. The three bit floating point condition code specified in the instruction, or 
the 5 bit general register specifier, is compared to zero. If the result indicates that the 
move should be performed, the contents of the specified source register is copied into the 
specified destination register. 

3.6.6 Floating Point Multiply-Add 

MADD - Floating Point Multiply-Add 
MSUB- Floating Point Multiply-Subtract 
NMADD - Floating Point Negative Multiply-Add 
NMSUB - Floating Point Negative Multiply-Subtract 
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These four instructions are exclusive to the MIPS IV instruction set and accomplish two 
floating point operations with one instruction. Refer to section 1.2.8 for more 
information. 

3.6.7 Floating Point Compare 

C.cond - Compare 
C.cond - Implies cc=O 

The two compare instructions are upward compatible extensions of the floating point 
compare instructions of the MIPS I instruction set and produce a boolean result which is 
stored in one of the condition codes . 

The contents of the two FP source registers specified in the instruction are interpreted 
and arithmetically compared. A result is determined based on the comparison and the 
conditions specified in the instruction. If one of the values is not a number and the high 
order bit of the condition field is set, an invalid operations trap occurs. Comparisons are 
exact and neither overflow or underflow. 

Timing restrictions exist for these instructions. The contents of the destinations condition 
code specified in the instruction is immediately available only within the R8010 FPU. A 
one-instruction delay is provided to propagate the condition code to the R8000 
Microprocessor. The value of the condition code is undefined during this one instruction 
and no hardware interlock detection mechanism is provided. 

The implications for compiler code scheduling is that a compare instruction may be 
immediately followed by a dependent floating point conditional move instruction, but 
may not be immediately followed by a dependent branch on floating point coprocessor 
condition instruction or a dependent integer conditional move instruction. Note that this 
restriction applies only to the condition code specified in the 3-bit condition code 
specifier of the instruction. All other condition codes are unaffected 

3.6.8 Floating Point Conditional Moves 

MOVT.fmt - Floating Point Conditional Move on condition code true 
MOVF.fmt - Floating Point Conditional Move on condition code false 
MOVN.fmt - Floating Point Conditional Move on register not equal to zero 
MOVZ.fmt - Floating Point Conditional Move on register equal to zero 

The four floating point conditional move instructions are exclusive to the MIPS IV 
instruction set and are used to test a condition code or a general register and then 
conditionally perform a floating point move. The three bit floating point condition code 
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specified in the instruction, or the 5 bit general register specifier, is compared to zero. If 
the result indicates that the move should be performed, the contents of the specified 
source register is copied into the specified destination register. All of these conditional 
floating point move operations are non-arithmetic. Consequently, no IEEE 754 
exceptions occur as a result of these instructions. 

3.6.9 Reciprocal's 

RECIP.fmt - Reciprocal Approximation 
RSQRT.fmt - Reciprocal Square Root Approximation 

The reciprocal instruction performs a reciprocal approximation on a floating point value. 
The reciprocal of the value in the floating point source register is approximated and 
placed in a destination register. The numerical accuracy of this operation is 
implementation dependent based on the rounding mode used. 

The reciprocal square root instruction performs a reciprocal square root approximation 
on a floating point value. The reciprocal of the positive square root of a value in the 
floating point source register is approximated and placed in a destination register. The 
numerical accuracy of this operation is implementation dependent based on the 
rounding mode used. 

The approximation is due to the fact that neither of these instruction meets IEEE 
accuracy requirements. In both cases a small amount of precision has been sacrificed, 
thereby significantly reducing execution time. For example, in the case of a RECIP 
instruction, X/Y is computed by taking the reciprocal of Y and multiplying that result by 
X. The reduced execution time of the reciprocal operation allows a RECIP followed by a 
MUL (multiply) instruction to be executed faster than a single DIV (divide) instruction. 
The performance difference between a RSQRT instruction and a SQRT followed by a DIV 
instruction is implementation dependent. 

Refer to appendix A for more information on the RECIP and RSQRT instructions. 
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Table 3-3 shows the integer instruction latencies in the RSOOO Microprocessor. 

Instruction Group Latency Dispatch 

Arithmetic and 1 2/cycle 
Logical 

Shift 1 1/cycle 

Load 1 2/cycle 

Store N/A 1/cycle 

- Multiply (32-bit) 4 1/cycle 

Multiply (64-bit) 6 1/cycle 

- Table 3-3 RSOOO Integer Instruction Latencies 

Table 3-4 shows the floating point instruction latencies of the RSOOO CPU. 
-

Instruction Group Latency Dispatch 
-

Load 0 2/cycle 

Store N/A 2/cycle 

Compare 1 2/cycle 

.. Absolute 1 2/cycle 

Negative 1 2/cycle 
... Move 1 2/cycle 

Conditional Moves 1 2/cycle 

Add 4 2/cycle 

Subtract 4 2/cycle 

MADD 4 2/cycle 

DIV.s 14 1* 

DIV.d 20 1 *  

... SQRT.s 14 1 *  

SQRT.d 23 1*  
... Table 3-4 RSOOO Floating Point Instruction Latencies 

.... 
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Instruction Group Latency Dispatch 

RECIP.s 8 1 *  

RECIP.d 14 1 *  

RSQRT.s 8 1 *  

RSQRT.d 17 1 *  

mtc1 ,  dmtc1 *** 1/cycle 

mfc1 ,  dmfc1 N/A 2** 

* Functional unit is busy for Latency-3 cycles. 
** Holds up FP Dispatch unit for the next 3 cycles. 
*** May incur a floating point resynchronization 
delay 

Table 3-4 R8000 Floating Point Instruction Latencies 
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MEMORY MANAGEMENT 

4 

The R8000 Microprocessor provides a full-featured memory management unit (MMU) 
which uses an on-chip translation lookaside buffer (TLB) to translate virtual addresses to 
physical addresses. This chapter describes the processor virtual and physical address 
spaces, virtual to physical address translation, operation of the TLB, and system control 
registers which provide the software interface to the TLB. 

The R8000 Microprocesor supports a 48 bit paged virtual address space. The physical 
address is 40 bits. The RBOOO Microprocessor Chip Set implements the 64 bit MIPS IV 
instruction set which supports 32-bit user-mode applications as a proper subset. The 
RBOOO Microprocessor does not support 32-bit kernels. 

Both forward-mapped and reverse-mapped virtual memory management schemes are 
supported. Multiple page sizes are supported on a per process basis. 
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4.1 ADDRESS SPACE 

The R8000 Microprocessor provides a 48 bit virtual address and a 40 bit physical address. 
The maximum user process size is 128 terabytes (248). The virtual address is encoded 
into 64 bits as shown in Table 4-1. 

63 62 61 48 47 0 

Region Filler Virtual Page Number (VPN) and Offset 

Table 4- 1 Virtual Address 

The virtual address shown in Table 4-1 consists of a 2 bit region field, a 14 bit filler, and a 
48 bit virtual page number concatenated with a page offset. The virtual address space is 
divided into four regions as defined by the region bits VA[63:62]. Table 4-8 shows how 
the virtual address space is divided. 

Virtual Address Region Beginning Address Ending Address 
Space [63:62] 

Kernel Virtual (KV1) 11 Ox_ffff_OOOO_OOOO_OOOO Ox_ffff_ffff_ffff_ffff 
KV1 synonyms 11 Ox_cOOO_OOOO_OOOO_OOOO Ox_cOOO_ffff_ffff_ffff 

Kernel Physical (KP) 10 Ox_8000_0000_0000_0000 Ox_bOOO_ffff_ffff_ffff 

Kernel Virtual (KVO) 01 Ox_4000_0000_0000_0000 Ox_4000_ffff_ffff_ffff 

User Virtual (UV) 00 ox_oooo_oooo_oooo_oooo Ox_OOOO_ffff_ffff_ffff 

Table 4-2 Vrrtual Address Divisions 

The R8000 Microprocessor supports only kernel and user mode address spaces. No 
supervisor modes exists. The KV1, KVO, and KP address spaces shown in Table 4-8 are 
accessible only in kernel mode. User space is defined with the region bits = 00 as shown. 

The address map is defined such that, with the exception of the KV1 and KP address 
spaces, all of the 14 filler bits (VA[61:48]) must be zero. KP is the only address space 
where the filler bits can be a combination of ones and zeros. Non-zero filler bits in either 
the UV or KVO address spaces shown in Table 4-2 constitutes an illegal access and 
generates an address error exception. Figure 4-1 shows where the illegal access areas 
reside in the address map. 
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Oll_ffff_ rfff_ ffff _ffff 

Ox_ffff_OOOO_OOOO_OOOO 
Ox_fff e_ffff _ ffff _ffff 

ox_cOOI_oooo_oooo_oooo 
Ox_cOOO_ ffff _ffff_ffff 

Ox_cOOO_OOOO_OOOO_OOOO 
Ox_b fff_ffff_ffff_ffff 

Ox_bOOO_OIOO_OOOO_OOOO 
Ox_bOOO_OOff_ffff_ffff 

ax_sooo_oooo_oooo_oooo 
Ox_7 fff _ffff _ffff _ffff 

Ox_4001_0000_0000_0000 
Ox_ 4000_ ffff _ ffff _ffff 

Ox_ 4000_0000_0000_0000 
Ox_Jfff _ ffff_ ffff_ffff 

Ox_oool_OOOO_oooo_oooo 
Ox_OOOO_ffff_ffff_ffff 

KVl 

uv 
ox_oooo_oooo_oooo_oooo L__ ____ ....J 

Figure 4-1 Vutual Address Map 
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bOOO_OOff ffff tfff 
bOOO_(){)()(f_OOOO_oooo 
afffciWJ ffii ffii 
a1 _oroo_oooo_oooo 
a I 00 OOff ffff ffff 
a 1 oo-::(){)()0"_ 0000_0000 
aM tiff� 
a _ 100_ _0000 
aooo_�ffff mr 
aOOO_ _0000_0000 
gmJfff_ffff_ffff 

9�-uwrllffoooo 
9soo:(X)()()_OOOO_oooo Whffif� ffff 

_01 _0000_0000 
9000_00ff ffff ffff 

���-0000 

8800_0100 0000 0000 
8800-00ff_1ffi'_tm 

���-rfir�OOOO 
8000_0 I 00_0000_0000 
8000_00ff_ffff_tfff 
8000_0000_0000_0000 
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4.1.1 User Virtual (UV) Space 

The region bits VA[63:62] determine which of the four regions of virtual address space is 
being accessed. The User Vrrtual space is accessed when both regions bits are zero. When 
the operating system starts a user process in UV space the process can only generate 
addresses where the region bits are both zero. Any other combination of region bits 
causes an address exception error indicating that the program is attempting to access 
memory outside the designated range. In this way the region bits act as a protection 
scheme. User Virtual addresses are extended with an 8-bit Address Space Identifier 
(ASID) and are mapped by the TLB. Refer to section 4.2 for more information on the 
ASID. 

4.1.2 Kernel Virtual 0 (KVO) Space 

The KVO space is defined as 'kernel private' virtual address space. Virtual addresses in 
KVO space are extended by the 8-bit ASID value contained in the Entry Hi register. KVO 
space is used by the kernel for accesing virtual address space on behalf of a specific 
process. Both the TLB and the eight bit ASID are used in KVO space. 

4.1.3 Kernel Virtual 1 (KV1) Space 

The KVl space is defined as 'kernel global' virtual address space. In contrast to KVO 
space, virtual addresses in KVl space are not extended with an 8-bit ASID. In KVl space 
the kernel can access global virtual address space independent of any specific process. 
KVl space is accessible with the filler bitS set to all zero's (see section 4.1.4 below) or all 
ones to facilitate the use of negative-offset addressing from register rO. Both forms of the 
address are treated as the same virtual address. The region bits, the virtual page number 
(VPN), and the offset are exactly the same. 

4.1.4 Kernel Virtual 1 (KVl) Synonyms 

As stated in section 4.1.3, KVl and KVl synonyms are treated as the same virtual 
address. KVl synonyms are provided to allow negative addressing using register rO. In 
KVl space the TLB is used but not the ASID. 

4.1.5 Kernel Physical Space 

In the kernel physical (KP) address space the virtual and physical addresses are 
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considered the same. No address translation is performed in KP space. The processor 
simply takes the lower 40 bits of virtual address and places them on physical address 
bits 39:0. The physical address comes directly from the virtual address generation units 
in the RSOOO Microprocessor. KP space allows physical addresses to be generated 
without TLB intervention. 

Note in Figure 4-1 that KP is the only space where the filler bits may be a combination of 
ones and zeros. The uppermost three filler bits (VA[61:59]) are used to divide the KP 
address space into subspaces, each having a different cachability attribute. Attempting to 
access memory with virtual address outside of these sub-ranges results in an address 
error exception . Table 4-3 shows how the KP address space is divided. 

Coherence Filler Beginning Address Ending Address 
[61:59] 

Cachable Coherent 101 Ox_a800_0000_0000_0000 Ox_a8 OO_OOff _ffff_ffff 
Exclusive on Write 

Cachable Coherent 100 ox_aooo_oooo_oooo_oooo Ox_aOOO_O Off_ffff..,.ffff 
Exclusive ! 
Cachable Non- 011 Ox_9800_0000_0000_0000 Ox_9800_0 0ff_ffff_ffff 
Coherent 

Uncached 010 Ox_9000_0000_0000_0000 Ox_9000_0 0ff_ffff_ffff 
Sequential Ordered 

Uncached Co- 000 ox_sooo_oooo_oooo_oooo Ox_8000_00ff_ffff_ffff 
Processor Ordered 

Table 4-3 Division of the KP address space 

The fields in Table 4-3 define the coherency attributes and are necessary because in KP 
space no address translation is performed. In each of the other three address spaces 
(KV1, KVO, and UV) the coherency field is stored in the TLB. Since address translation is 
not performed when generating KP addresses, virtual address bits 61:59 are used for this 
purpose. This is why KP address space is the only portion of the address map in which 
the filler bits (61:59) can be a combination of ones and zeros. Table 4-4 gives a summary 
of the various address spaces . 
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Virtual Address Region Uses TLB Uses ASID 
Space [63:62] 

Kernel Virtual 11 Yes No 
(KV1) 

Kernel Physical 10 No No 
(KP) 

Kernel Vrrtual 01 Yes Yes 
(KVO) 

User Vrrtual (UV) 00 Yes Yes 

Table 4-4 Address Spaces and TLB Usage 

4.2 ADDRESS SPACE IDENTIFIERS 

Kernel Private (KVO) and User VIrtual (UV) virtual address spaces are extended with an 
8-bit ASID value to reduce the frequency of TLB and instruction cache flushing on a 
context switch. The existence of the ASID allows multiple processes to exist 
simultaneously in both the TLB and the instruction caches. There are actually two 
distinct ASID values for a given process. The instruction cache ASID (IASID) is stored in 
the I Cache register and is compared to the ASID value in the instruction cache tag 
during an instruction cache access. The TLB ASID (TASID) is stored in the EntryHi 
register and is compared to the ASID value in the Vrrtual tag (VTAG) portion of the TLB 
on a TLB access. The IASID and TASID values are independent of one another. Having 
different ASID values for a given process allows the kernel to independently flush and 
control the instruction and TLB caches. 

· 

4.3 REGISTER ADDRESSING MODES 

The R8000 Microprocessor provides two addressing modes: Register + Register and 
Register + Immediate. Addresses are derived by adding an offset to a base register. The 
offset value can either come from a register or the immediate field of the instruction. This 
section discusses how these modes are used and how the actual address is generated. 
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4.3.1 Register + Register Addressing 

When register + register addressing mode is used both portions of the address come 
from the General Purpose Register (GPR). The values are read from the two registers in 
the D-stage of the pipeline and are added together in A-stage to form a 64 bit virtual 
address. Since the R8000 Microprocessor can perform two address generations per cycle, 
a total of four registers are read from the GPR at the same time and used to construct the 
two 64-bit virtual addresses. 

4.3.2 Register + Immediate Addressing 

In register + immediate mode a portion of the address comes from the GPR with the 
remaining portion coming from the immediate field of the instruction. The base register 
is read in the D-stage of the pipeline and is added to the immediate value in the A-stage 
to form a 64 bit virtual address. The values are not concatenated. Since the R8000 
Microprocessor can perform two address generations per cycle, two registers are read 
from the GPR at the same time. Each register value is added to the corresponding 
immediate field from the instruction to construct the two 64-bit virtual addresses . 

4.3.3 Region Bits, the Base Register, and Legal Addresses 

There is one restriction on the generation of legal virtual addresses. For both register + 
register and register + immediate addressing, it is required that the region of the 
generated virtual address be the same as the region of the base register. The base region 
cannot change as a result of the addition of the offset. If the region of the generated 
virtual address does not equal the region of the base address, an address error exception 
occurs. However, there is one exception to this rule. If the processor is operating in 
kernel mode it is legal to use a negative offset with register rO as the base register to 
generate an address into KVl space. If register rO is the base portion of the address and 
the offset is negative then the region bits are both forced to ones which places the 
machine in KVl space. If for some reason a user process (UV space) tries to generate an 
address using this technique, the region bits will mis-compare and an address exception 
error will occur. This address generation technique is used by the kernel to allow address 
generation without having to use any of the registers allocated to that process . 
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Figure 4-2 Address Generation Block Diagram 

Instruction 

4.4 DATA FORMATS 

The R8000 microprocessor supports four data formats: a 64-bit doubleword, a 32-bit 
word, a 16-bit half-word, and an 8-bit byte. Byte ordering within the larger data formats 
-- half-word, word, and doubleword- can be configured in either big endian or little 
endian format. 

The default mode of operation for the R8000 microprocessor is big endian. All code 
accesses are done in big endian and multi-byte data values are stored in memory in big 
endian format. In big endian format byte 0 is the most-significant byte and byte 7 is the 
least-significant byte. When operating in kernel mode the endian of the processor is set 
by the BE bit in the Config register. The Reverse Endian (RE) bit in the Status register can 
be used to dynamically switch the endian in user mode. Figure 4-3 and Figure 4-4 show 
little endian and big endian byte ordering within a 64-bit doubleword. 
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Figure 4-3 Linle Endian Byte Ordering 

Least-Significant Byte Most-Significant Byte 

Figure 4-4 Big Endian Byte Ordering 

Data alignment requirements are as follows. Any violation results in an address error 
exception. 

• 64 bit values are aligned on 8-byte boundaries when referenced in 
memory. The three least significant address bits must be zero. 
• 32 bit values are aligned on 4-byte boundaries when referenced in 
memory. The two least significant address bits must be zero. 
• 16 bit values are aligned on 2-byte boundaries when referenced in 
memory. The least significant address bit must be zero. 

The following eight special instructions can be used to load and store words or 
doublewords that are not aligned on 4-or 8-byte bowtdaries. The instructions are used in 
four pairs as shown to provide addressing of misaligned words. Addressing misaligned 
data incurs one additional instruction cycle over that required for addressing aligned 
data due to the required execution of two instructions. 

LWL - Load Word Left 
LWR - Load Word Right 

LDL - Load Doubleword Left 
LDR - Load Doubleword Right 

SWL - Store Word Left 
SWR - Store Word Right 

SOL - Store Doubleword Left 
SDR- Store Doubleword Right 

The Load Word Left (LWL) Instruction is used in combination with the LWR instruction 
to load the lower 32 bits of a register with four consecutive bytes from memory when the 
bytes cross a word boundary. The LWL instruction loads the left portion of the register 
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with the appropriate part of the high-order word. The LWR instruction loads the right 
portion of the register with the appropriate part of the low-order word. Similarly, the 
Load Doubleword Left (LDL) and Load Doubleword Right (LDR) instructions are used 
to load mis-�ligned double-words. 

The Store Word Left (SWL) instruction is used in combination with the SWR instruction 
to store the lower 32 bits of a register to memory when the bytes cross a word boundary. 
The SWL instruction stores the left portion of the register with the appropriate part of the 
high-order word. The SWR instruction stores the right portion to the register to the 
appropriate part of the low-order word. The same rules apply for the Store Doubleword 
Left (SDL) and Store Doubleword Right (SDR) instructions. 

4.5 ADDRESS TRANSLATION 

The R8000 Microprocessor uses a Translation Lookaside Buffer {TLB) to perform virtual 
to physical address translation. The TLB is internal to the R8000 CPU and is used to 
determine if a given address exists in the physically indexed data cache. Since the 
instruction cache is virtually indexed address translation is necessary only on a miss. 
Hence the R8000 Microprocessor has a single TLB to service both the instruction and 
data caches. 

The TLB is dual-ported and can perform two virtual address to physical address 
translations per cycle. The TLB is 128 entries deep and 3-way set associative for a total of 
384 entries. The large number of entries helps to minimize the TLB miss rate but still 
maintain a single cycle access rate. The TLB supports multiple page sizes on a per 
process basis. The TLB may contain multiple page sizes at any given time, but each process, 
defined by a specific ASID value, can have only one page size associated with it. 

TLB, Data Cache, and Data Cache Tag RAM lookups are performed in the execution 
stage (E-stage) of the pipeline. The VTAG portion of the TLB is used to determine 
whether a certain range of addresses resides in the physical address (PA) portion. If it is 
determined that the translation for the virtual address resides in the TLB, the contents of 
the PA portion is compared to that in the Data cache tag RAM, resulting in either a hit or 
a miss to the Data cache. Either a TLB or a Data cache miss initiates an external memory 
cycle. Figure 4-5 shows the organization of the Translation Lookaside Buffer. 

4-10 TFP User's Manual 



Port A address 

Port B address 

' ,, ' n 

127 127 

n • 

VTAG VTAG VTAG PA PA PA -

- 0 0 

-
WayO I Way1 I Way2 WayO I Way1 I Way2 

Notes: 

VTAG = VIrtual Tag 
- PA = Physical Address 
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The physical address portion of Figure 4-5 is comprised of 28 bits. The organization of 
• the physical address portion of the TLB is identical to that of the EntryLo register. The 

EntryLo register serves as the data register for the physical addres portion of the TLB 
RAM. 
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4.5.1 Indexing the TLB 

The TLB is indexed by the lower seven bits of the virtual page number. Which of the 
seven bits are used varies depending on the page size. The index is hashed by logically 
XOR'ing the lower 7-bits of the virtual page number with the lower 7-bits of the TLB 
ASID. 

Figure 4-6 shows how the TLB is indexed. The region bits control a multiplexor which 
passes either the 4-bit Kernel Page Size (KPS) field or the 4-bit User Page Size (UPS) field 
to select the seven virtual address bits which form the index to the TLB. If the region 
bits are zeros, the UPS field is passed through the multiplexor. A non-zero value causes 
the KPS field to be passed. However, there is one exception to this rule. When base 
register rO is used with a negative offset to generate an address, the Kernel Page Size 
(KPS) field is selected. The KPS field is defined by bits 39:36 of the Status register. Bits 
35:32 define the UPS field. 
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Figure 4-6 Indexing the TLB 

sample instruction 
···············; :··················! 

ld r2, ���� + l�����l 
offset 

ooooooooooooooooouooooooooouoo••••••••••• 

As shown in Figure 4-6, the TLB supports seven different page sizes. The 128 entries of 
the TLB mean that seven virtual address bits are necessary to index the TLB. Which 
virtual address bits are used depends on the page size. Figure 4-7 through Figure 4-13 
show the organization of the virtual address and which bits are used to index the TLB 
for the various page sizes. 
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Figure 4- 10 64 KByte Page Size 
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Figure 4-12  4 MByte Page Size 
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4.5.2 TLB Writes 

0 
Offset I 

0 
Offset 

The TLB Read and TLB Write operations make use of several COPO registers: Entry Hi, 
EntryLo, VAddr, TLBSet. EntryHi and EntryLo serve as the data registers for the TLB. 
Information to be written to the VTAG portion of the TLB is placed in the Entry Hi 
register. Information to be written to the PA portion of the TLB is placed in the EntryLo 
register. The VAddr register serves as the address register for the TLB providing a 64-bit 
virtual address. The TLBSet register selects which of the 3 sets is to be written or read. 

The TLB implements a random replacement algorithm, hence under most cases the 2 bit 
value in the TLBSet register has been randomly generated. However, this value can be 
overwritten under program control in order to write a specific number. The contents of 
both the Entry Hi and the TLBSet registers are undefined at reset. The format of the set 
bits of the TLBSet register is shown in Table 4-5. 

TLBSET [1:0] Set 

00 Set O 

01 Set 1 

10 Set 2 

11 Reserved 

Table 4-5 TLB Set Replacement Field 
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4.5.2.1 Wiring Down TLB Entries 

The Wired register is provided to assist the operating system in preventing certain TLB 
entries from being replaced during a TLB refill exception. Such entries are said to be 
"wired down". The operating system (OS) has the ability to "wire" certain TI.B locations. 
Normally TLB locations are wired down either to enhance performance or maintain 
correctness. To enhance performance the OS can "wire down" pages contai:ni.ng 
frequently accessed data structures. To maintain correctness the OS can wire down pages 
on which it cannot take a TLB refill exception. 

When a TLB refill exception is detected, the TLBSet register is loaded with a random 
number which indicates the set to replace. The random number chosen is normally a 
value between 0 and 2. However, if the index of the congruence class for a given TLB 
exception is marked as "wired" in the Wired register, then a random value of 1 or 2 is 
loaded into the TLBSet register, indicating that set 0 is not available. The Wired register 
can hold four TLB indeces. Only set 0 of each index can be wired. 

Each index in the Wired register has a valid bit associated with it. The valid bit must be 
set in order for the TLB location to be wired by the OS. If a TLB miss occurrs and the 
location is wired, but the valid bit in the register is not set, that location is overwritten. 

The valid bit provides a mechanism to determine whether the contents of the Wired 
register mave meaning. Figure 4-14 shows an example of the Wired register containing 
entries for indexed locations 1, 2, 3, and 127. 

WIRED Register 

1\:ote: Register bus 63:32 not shown 

Figure 4-14 Wired TLB Locations 
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4.6 FORWARD AND REVERSE MAPPING 

The RBOOO Microprocessor provides support for both forward and reverse mapped 
memory management schemes. A forward mapping table contains the virtual-to­
physical address translation for a given virtual address. Figure 4-15 shows a forward­
mapped table entry which is identical to the format of the EntryLo register. The address 
contains the Physical Frame Number (PFN) and the associated Cache algorithm (C), the 
write permission (D), and the Valid state bits (V). 

Software Bits Physical Frame Number 

24 

Figure 4- 15  Forward Mapped Page Table Entry 

For each virtual page in a forward mapped scheme there is an entry in the page table. 
The more virtual pages the larger the page table. In a reverse mapped memory there is 
an entry in the page table for each physical page. Multiple virtual pages are aliased to the 
same entry. The entry contains a virtual tag which is read and compared to the virtual 
page being accessed. A valid compare indicates that the entry contains the translation for 
the given virtual page. The aliased locations form a linked list which contain pointers to 
one another. Hence if the virtual tag mis-compared with the virtual page, the entry 
would contain a pointer to the next entry in the linked list. The new entry is then 
accessed and again compared. This process is continued until the correct page table 
entry is located. A reverse mapped memory scheme can be useful when the page table 
size is a concern. Since physical address space is much smaller than virtual address 
space, a reverse-mapping scheme can provide for a much srri.aller page table. 

A reverse mapped entry contains three doublewords. Doubleword 0 is the same format 
as the forward mapped address shown in Figure 4-15. Doubleword 1 contains the Virtual 
Page Number (VPN) and ASID of the entry. Doubleword 1 is identical in format to the 
Entry Hi register. Doubleword 2 contains a virtual pointer to the next entry in the linked 
list. Figure 4-16 shows a page table entry for a reverse-mapped memory scheme. 
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Figure 4- 16  Reverse Mapped Page Table Entry 

4.7 TLB EXCEPTIONS 

The following section discusses the various types of TLB exceptions. Specific exception 
vectors are provided for each of the four main virtual address spaces. The TLB specific 
exceptions and their corresponding vector locations are listed in Table 4-6. 
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Name Vector Cause Description 
Code 

TLB Refill, TrapBase + Ox_OOO TLBL The referenced address was to the 
User, (EXL=O) TLBS User Region (UV) and did not 

match any TLB entry. 

TLB Refill, TrapBase + Ox_400 TLBL The referenced address was to the 
Kernel Private TLBS Kernel Private Region (KVl) and 
(EXL=O) did not match any TLB entry. 

TLB Refill, TrapBase + Ox_800 TLBL The referenced address was to the 
Kernel Global TLBS Kernel Global Region (KVO) and 
(EXL=O) did not match any TLB entry. 

TLB Refill TrapBase + Ox_cOO TLBL The referenced address (to any 
(EXL=l) TLBS Region) did not match any TLB 

entry. 

TLB Invalid TrapBase + Ox_cOO TLBL Virtual-address that matches an 
TLBS invalid TLB entry. 

TLB Modified TrapBase + Ox_cOO Mod An attempt to write to a virtual 
address that did not have D bit in 
the corresponding TLB entry set. 

Table 4-6 TLB Exception Vectors 

Each of the vectors shown in figure 4-6 can occur on either a load or a store with the 
exception of the TLB Modified exception, which occurs only on a store. The TLBL and 
TLBS exception codes, indicated by bits [7:3] of the Cause register, indicate whether the 
instruction, defined by the contents of the Exception Program Counter (EPC) register, 
and the BD bit [63] of the Cause register, was a load or a store. Table 4-7 shows the cause 
register codes for TLB specific exceptions. A complete list of exception cause codes can 
be found in chapter 5, table 5-2. 
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ExcCode Mnemonic Description 
Number 

1 Mod TLB Exception Modification 

2 TLBL TLB Exception (Load or Instruction Fetch) 

3 TLBS TLB Exception (Store) 

30 TLBX TLB Exception (Multiple Hits due to a Duplicate 
Entry 

Table 4-7 TLB Exception Codes 

4.7.1 TLB Refill 

A TLB Refill exception occurs when no TLB entry matches a reference to a mapped 
address space. TLB refill exceptions are precise and are not maskable. Four exception vector 
locations are provided for TLB refill exceptions. Which vector is used depends on the 
state of the region bits (VA[63:62]) of the faulting address and the execution level (EXL) 
of the faulting process, indicated by bit [1] in the Cause register. A complete list of 
exception vectors can be found in chapter 5, table 5-1 .  

When a TLB refill exception occurs, the VAddr and EntryHi registers contain the virtual 
address that failed address translation. The EntryHi register also contains the Address 
Space Identifier (ASID) from which the translation failed. A random set number is 
generated and then qualified by the contents of the Wired register to assure that the set 
chosen does not correspond to any of those in the Wired register. The random value is 
then placed in the TLBSet register. The contents of EntryLo is undefined. 

The 64-bit Exception Program Counter (EPC) register points at the instruction which 
caused the exception, unless the instruction is in a branch delay slot. If the instruction 
resides in a branch delay slot, the EPC register points at the branch instruction which 
preceedes it, and the BD bit of the Cause register is set. 

Three Base registers are provided by hardware, one per mapped region: UBase, PBase, 
and GBase. 

The UBase register specifies the base address of the page table for a per-process user 

TFP User's Manual 4-19 



virtual address space miss. The User space (UV) is defined by the region bits VA[63:62] 
of the virtual address (R = 00) . 

The PBase register specifies the table address for a per-process kernel private address 
space miss. Kernel Private space (KVO) is defined by the region bits VA[63:62] of the 
virtual address (R = 01). 

The G Base register specifies the table address for a per-process kernel global address 
space miss. Kernel global space (KV1) is defined by the Region bits VA[63:62] of the 
virtual address (R = 11). No register is defined for the Kernel Physical address space as 
address translation is not performed when operating in this space. 

In a forward mapping scheme, multiple Base registers allows different regions to have 
different page sizes. In a reverse mapping scheme, multiple base registers allow different 
regions to have different page and reverse table sizes or share tables with a common 
page size. Base addresses are specified by software. 

On a TLB-miss, hardware loads the VAddr register with the virtual address of the 
missing reference. The actions taken by hardware during a TLB-miss is mapping scheme 
independent. The ShiftAmt register is loaded with a shift amount based on page size. For 
instance, a 4k-byte page size has a shift-amount of 12, a 16k-byte page size a shift­
amount of 14, etc. Hardware provides a unique exception entry point for User space 
(UV), Kernel Private space (KVO) and Kernel Global space (KV1) TLB Refill exceptions. 
TLB Refill exception action depends on the Memory Management Unit (MMU) scheme. 
Which scheme is chosen is under software control and is transparent to hardware. 

4.7.1.1 TLB Refill: Forward Mapping Table 

The forward mapping table TLB-miss handler is required to justify VAddr register 
relative to page and page table entry size, reload the EntryLo register and load a new 
TLB entry via the TLBW instruction . Miss handler code is independent of page size. 

Example code for a forward-mapped translation tables is discussed below. The example 
assumes that the highest page of virtual memory, which is reachable by a negative offset 
from register rO, is wired down and some small number of words are available to the 
handlers for holding various constants. 

Multiple page sizes are supported by shifting the VAddr register to the right. Since 
software knows the page sizes of each region, each PTEBase can be pre-shifted to the left 
by the appropriate number of bits to compensate. It is most convenient to always set the 
high-order bit of PTEBase and use an arithmetic right shift to add a series of logical 
one's. The unwanted values can be logically AND'ed away. 
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The following code contains explicit NOP' s to show where interlocks would occur. 

# 
# Fetch VAddr and adjust according to page size and PTE entry size. 
# 
dmfcO kl, VAddr# get VA 
dmfcO kO, ShiftAmt# get page size shift amount value 
srav kl, kl, kO# page size adjustment 
nop 
sll kl, kl, $entrysize# PTE entry size adjustment 

# 
# Fetch appropriate PTEBase for address space where fault occurred 
# This can issue with sll above. 

#ifdef UTLB_user 
dmfcO kO, UBase# region 00 handler 
#else ifdef UTLB_kemal_private 
dmfcO kO, PHase# region 01 handler 
#else ifdef UTLB_kemel_global 
dmfcO kO, GBase# region 11 handler 
#endif 
or kl,kl, kO# combine PTEBase with vpn offset 
nop 

# 
# Finish refilling the TLB 
# 
ld kO, O(kl)# fetch translation 
nop 
dmtcO kO, EntryLo 
tlbw# write new entry in random set 
eret 

A cycle could be saved in the handler by keeping the contents of the ShiftAmt register as 
a constant in the wired-down page of virtual memory. In this way, ShiftAmt would be 
obtained with a ld instead of a dmfcO, and the ld is capable of issuing with the dmfcO 
VAddr. 
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4.7.1.2 TLB Refill: Reverse Mapping Table 

The reverse mapping table TLB-miss handler is responsible for generating the reverse 
table hash index and traversing the list of entries per table index in search of a 
translation. Once a translation is found, the EntryLo register is loaded and the TLB 
refilled via the TLBW instruction. Miss handler code is independent of page size and reverse­
mapping page table size. 

The idea behind a fast reverse-mapped TLB Refill handler is that the hash table should 
typically have very few "collisions". Therefore it is possible to search the first few nodes 
quickly using unrolled and hand-optimized code, reverting to a more general handler 
for the uncommon case (or if no translation is found). 

Four constants are required in the following example code. The constant HASHVAL 
typically contains some function of the current ASID to "randomize" probes into the 
hash table. Only bits [47:12] should be non-zero. The constant TBLMASK is used to 
define the hash table size. Distinct TBLMASK's are needed to support differing User and 
Kernel page sizes. 

A temporary variable, LINKPTR, located in the same "negatively-addressed" area is 
used to save away a node pointer. This optimization is optional and it is possible to 
retrace the linked list from the VAddr register. 

Another detail is that the virtual address field in the page table entry must be identical to 
the format of the Entry Hi register including the zero fields. 

Example code for a reverse-mapped translation table is discussed below. The example 
assumes that the highest page of virtual memory, which is reachable by a negative offset 
from register rO, is wired down and some small number of words are available to the 
handlers for holding various constants. 

Multiple page sizes are supported by shifting the VAddr register to the right. Since 
software knows the page sizes of each region, each PTEBase can be pre-shifted to the left 
by the appropriate number of bits to compensate. It is most convenient to always set the 
high-order bit of PTEBase and use an arithmetic right shift to add a series of logical 
one's. The unwanted values can be logically AND'ed away. 

The following code contains explicit NOP' s to show where interlocks would occur. The 
code should run very close to one instruction per cycle. The following code does not 
check for end-of-list. There is an implicit assumption that lists are terminated into a 
"terminal" node which does not ever match and whose link points to itself. 

4-22 TFP User's Manual 



-

-

-

-

-

-

.. 

.. 

-

... 

... 

... 

... 

... 

... 

Look_in_first_node: 
dmfc0k11 VAddr# fetch vpn 
ldk01 HASHVAL(rO) # fetch hash value; 
# ld can issue with previous dmfcO. 
xork11 k11 kO# hash VPN[47:12] 
# 
# Adjust vpn relative to page size and PTE entry size 

dmfcOkO 1 ShiftAmt# fetch page size shift amount value; 
# dmfcO can issue with xor. 
sravk11 k11 kO# page size adjustment 
nop 
sllk11 k11 $entrysize# PTE entry size adjustmen 

# Fetch appropriate PTEBase for address space where fault occurred. 
# This can issue with sll above. 

#ifdef UTLB_user 
dmfcO kO 1 UBase# region 00 handler 
#else ifdef UTLB_kemal_private 
dmfcO kO I PBase# region 01 handler 
#else ifdef UTLB_kemel_global 
dmfcO kO I GBase# region 11 handler 
#end if 
ork11 k11 kO# combine PTEBase with vpn offset 

# 
# Mask according to table size (and to zero high-order bits). 
# 
ldk01 TBLMASK(rO)# fetch reverse table size mask 
# can issue with previous OR.. 
andk01 k11 kO# table size hash index 
# adjustment 
nop 
sdk01 LINKYfR(rO)# save away entry index 
nop 
# 
# Compare Entry Hi against virtual address in table entry 
# 
ldk01 8(k0)# fetch entry containing VPN/ ASID 
dmfcO k11 Entry Hi# if no match look at next 
# node can issue with 
# previous ld. 
# 
#ifdef UTLB_kemel_global 
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srlk1, 12# global reference must clear out 
nop 
sllk1, 12# ASID field in EntryHi 
nop 
#endif 

bneqkO, k1, Look_In_Second_Node 
ld kO, LINKPTR(rO) 
# 
# Translation found. Write new TLB entry. 
# 
ldk1, O(kO)# fetch translation; we won't fault 
nop 
dmtc0k1, EntryLo 
tlbw# tlb allocation 
eret 

Look_In_Second_Node: 
ldk0,16(k0)# fetch next node pointer 
nop 
sdkO, LINKPTR(rO)# save away entry index 
# 
# Compare Entry Hi against virtual address in table entry 
# 
ldkO, 8(k0)# fetch entry containing VPN/ ASID 
# k1 still has Entry Hi 
bneqkO, k1, Look_In_Third_Node 
ld kO,LINKPTR(rO) 

# Translation found. Write new TLB entry. 
# 
ldk1, O(kO)# fetch translation; we won:t fault 
dmtc0k1, EntryLo 
nop 
tlbw# tlb allocation 
eret 
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4.7.2 TLB Invalid 

The TLB Invalid entry in Table 4-6 occurs when a virtual address reference matches a 
TLB entry marked invalid. This exception is precise and not maskable. 

The TLB Invalid exception uses the common exception vector located at offset Ox_ cOO in 
Table 4-6. The TLBL and TLBS exception codes, indicated by bits [7:3] of the Cause 
register, indicate whether the instruction, defined by the contents of the EPC register, 
and the BD bit [63] of the Cause register, was a load or a store. 

When a TLB Invalid exception occurs, the VAddr and EntryHi registers contain the 
virtual address that failed address translation. The Entry Hi register also contains the 
Address Space Identifier (ASID) from which the translation failed. The set which 
matches the virtual address reference is placed in the TLBSet register. 

The 64-bit EPC register points at the instruction which caused the exception, unless the 
instruction is in a branch delay slot. If the instruction resides in a branch delay slot, the 
EPC register points at the branch instruction which preceedes it, and the BD bit of the 
Cause register is set. 

The valid bit of a TLB entry is typically cleared when a virtual address does not exist, 
when it exists but is not in memory (a page fault), or when a trap is desired on any 
reference to the page (for example, to maintain a reference bit) . After servicing the 
particular cause of this exception, the TLB entry can, if appropriate (i.e. no subsequent 
exception was possible), be validated by reading the invalid TLB entry into the EntryLo 
register with a TLBR operation, moving EntryLo to a general register, setting the V bit, 
moving it back to EntryLo, and doing a TLBW operation . 

4.7.3 TLB Modified 

A TLB Modified exception occurs when the virtual address of a store instruction matches 
a TLB entry marked valid but not dirty /writable. The TLB Modified exception is precise and 
not maskable. 

The TLB Modified exception uses the common exception vector located at offset Ox_ cOO 
in Table 4-6. The Mod exception code, indicated by bits [7:3] of the Cause register, is set. 

When a TLB Modified exception occors, the VAddr and EntryHi registers contain the 
virtual address that failed address translation. The Entry Hi register also contains the 
Address Space Identifier (ASID) from which the translation failed. The set which 
matches the virtual address reference is placed in the TLBSet register. 
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The 64-bit EPC register points at the instruction which caused the exception, unless the 
instruction is in a branch delay slot. If the instruction resides in a branch delay slot, the 
EPC register points at the branch instruction which preceedes it, and the BD bit [ 63] of 
the Cause register is set. 

The kernel uses the failing virtual address to identify the corresponding access control 
information. The page identified may or may not permit write accesses, and if not 
permitted, a "Write Protection Violation" occurs. Otherwise, if write accesses are 
permitted, the page frame is marked dirty /writable by the kernel in its own data 
structures and the TLB entry is updated 

4.8 DATA AND CONTROL REGISTERS 

The RBOOO microprocessor supports two groups of registers defined as CoProcessor 0 
(COPO) and CoProcessor 1 (COP1). CoProcessor 0 contains control, status, data, and 
configuration registers for the Integer Unit. CoProcessor 1 contains status and 
congifuration registers for the R8010 floating point unit. 

There are thirty-two 64 bit system control registers which are accessible via the double 
Move To/From CoProcessor 0 instructions (DMTCO, DMFCO). Thirty-two bit versions of 
these instructions are not supported. 

There are two 32 bit floating point control registers which are accessible via the double 
Move To/From CoProcessor 1 instructions (DMTC1, DMFC1). Thirty-two bit versions of 
these instructions are not supported. 

This section focuses on those registers used to support and manage TLB functions. Not 
all of the 32 system control registers are defined here. Refer to the Registers chapter for a 
complete listing of all registers. 

· 

The following pages list the TLB specific registers and their functions. 
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4.8.1 TLBSet 

6362 

H 

COPO 
Register # 

0 

p 
SET 
w 

Register 
Mnemonic Description 

TLBSet Select TLB set 

w 

61 
if set, the last TLBP operation was unsuccessful. 
specifies the set select address within a TLB entry. 
Fields that may be written with anything but are 
always read as 0 

2 1  0 

Description 
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The TLBSet Register is a read-write register used to index a 
TLB entry's set and to provide access status as the result of a 
TLBP operation. 

The SET field is used to select a TLB entry's set for a TLBW or a 
TLBR instruction. When a TLB Refill (User, Kernel Private, and 
Kernel Global) exception occurs, TLBSet is loaded with a 
random set to be replaced. When a TLB Invalid or TLB 
Modified exception occurs, TLBSet is loaded with the set 
which contains the virtual tag match. The Set field may be 
overwritten under program control to write to a specific set 
number. 

The TLBSet register also contains status regarding the TLB 
Probe (TLBP) instruction execution. The P bit is set if the last 
TLBP instruction did not find a TLB entry which matched 
Entry Hi. If the last TLBP was successful, P=O and SET holds 
the set number which matched. 

Format for SET field: 

00 

01 

10 

11 

Set O 

Set 1 

Set 2 

Reserved 

The TLBSet register is undefined on reset. 
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4.8.2 EntryLo 

COPO 
Register # 

2 

63 I w 

24 

PFN 
c 
D 
v 
w 

Register 
Mnemonic Description 

EntryLo Physical Address portion of TLB entry 

40 39 12 1 1  98 7 6 0 

I Physical Frame Number (PFN) 

28 

Physical Frame Number 
Specifies the page cache coherence algorithm 
When set the page is dirty and writable 
When set the entry is valid 

3 

Fields that may be written with anything but are 
always read as 0 

7 

Description: 

4-28 

The EntryLo register is a read-write register used to access the 
physical portion of the TLB. EntryLo contains the Physical 
Page Number (PFN) and its associated Cache Algorithm (C), 
Write Permission (D), and Valid (V) state bits. 

The C field encoding is as follows: 

000 uncacheable processor-ordered 

001 reserved 

010 uncacheable sequential-ordered 

011 cacheable non-coherent 

100 cacheable coherent, exclusive 

101 cacheable coherent, exclusive on write 

110 reserved 

111 reserved ( cacheable, write-through) 

The EntryLo register is undefined on reset. 
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4.8.3 EntryHi 

COPO Register 
Description Register # Mnemonic 

10 Entry Hi Virtual Tag portion of TLB entry 

63 61 48 47 1 9  1 8  12  1 1  4 3  0 

I R I w I Vitrtual Page Number (VPN) I w I ASID I w I 
2 14 29 7 8 4 

R Two bit Region field (OO=user, 01 =KVO, n=KV1) 
VPN Virtual Page Number field 
ASID Address Space Identifier. 
w Fields that may be written with anything but 

always read as 0 

Description: 

TFP User's Manual 

The EntryHi register is a read-write register used to access the 
virtual tag portion of the TLB. In addition, Entry Hi contains 
the Address Space Identifier (ASID) used to match the virtual 
address with a TLB entry when virtual addresses are presented 
for translation, 

When a TLB-related exception occurs, Entry Hi is loaded with 
the Vrrtual Page Number (VPN) and the Region (R) of the 
virtual address that failed translation. The VPN field contains 
bits [47:19] of the faulting virtual address. It is not right 
justified according to page size. VPN[23:19] is conditionally set 
to zero by hardware on a per-bit basis based on page size. 

The ASID field already contains the Address Space Identifier 
for the virtual address which caused the exception, and so is 
not loaded when an exception occurs. 

The VPN field does not contain bits [18:12] of the virtual 
address. These are not stored in the TLB. 

The EntryHi register is undefined on reset. 
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4.8.4 UBase 

63 

4-30 

COP.O Register 
Description Register # Mnemonic 

4 UBase User Page Table Entry Base Address 

0 

PTE Base I 
64 

PTE Base Base address of Page Table Entries 

Description 

The UBase register is a read-write register which holds the base 
address of the PTE table for the associated User region. The 
UBase, PBase, and GBase registers have identical formats. 

The UBase register is undefined on reset. 
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4.8.5 PBase 

COPO Register 
Description Register # Mnemonic 

20 PBase KVO space Page Table Entry Base Address 

63 0 

PTE Base 

6J I 

PTE Base Base address of Page Table Entries 

Description 

TFP User's Manual 

The PBase register is a read-write register which holds the base 
address of the PTE table for the associated Kernel Virtual 0 
region, also referred to as Kernel Private. The UBase, PBase, 
and GBase registers have identical formats. 

The PBase register is undefined on reset. 

4-31 



4.8.6 GBase 

63 

4-32 

COPO Register 
Description Register # Mnemonic 

21 GBase KV1 space Page Table Entry Base Address 

0 

PTE Base I 
64 

PTE Base Base address of Page Table Entries 

Description 

The GBase register is a read-write register which holds the base 
address of the PTE table for the associated Kernel V1rtual 1 
region, also referred to as Kernel Global. The UBase, PHase, 
and GBase registers have identical formats. 

The GBase register is undefined on reset. 
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4.8.7 ShiftA.mt 

COPO Register 
Description Register # Mnemonic 

5 ShiftAmt Shift amount to align virtual page number 

63 5 4 0 

I 0 I SA I 
59 5 

SA Shift Amount 

Description: 

TFP User's Manual 

The ShiftAmt register is a read-only register that assists 
software in aligning pointers into page tables. In the User 
Region, right-shifting the VA register by the amount in the SA 
field correctly aligns the Virtual Page Number (VPN) field 
based on page size for the most recently failed translation. The 
SA value for each page size is as follows: 

Page Size ShiftAmt 
Value 

4K 0 1 100 

8K 01 101  

16K 0 1 1 1 0  

64K 10000 
1M 10100 

4M 10110 

16M 1 1000 

Table 4-8 Page Size ShiftAmt Values 
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4.8.8 Wired 

63 

COPO 
Register # 

24 

Indexx 
Vx 
w 

Register 
Description Mnemonic 

w 

32 

Wired Indices of wired locations in the TLB 

7 7 7 

TLB entry to be 'wired' down 
Valid Bit set if corresponding Index is valid 
Fields that may be written with anything but 
always read as 0 

7 

Description: 

4-34 

The Wired re�ter is a read-write register used to control TLB 
replacement algorithm. Up to four entries may be wired down 
under program control. The four entries must be in different 
congruence classes. 

The TLB is three-way set associative. Only set 0 may be 'wired'. 
When a TLB Refill exception occurs, the congruence class of 
the missing virtual address is compared to each of the four 
indices in the Wrred register. If a match is found for a valid 
entry in the Wrred register, a random value in the range 1. .2 is 
loaded into the TLBSet register. If a valid match is not found, a 
random value in the range 0 .. 2 is loaded into the TLBSet 
register. 

The Wired register is undefined on reset. 

TFP · User's Manual 



-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

4.8.9 VAddr 

COPO Register 
Description Register # Mnemonic 

8 VAddr Virtual Address Register 

63 0 

VAddr I 
64 

VAddr Virtual Address 

Description: 

TFP User's Manual 

The VAddr register is a read-write register that holds a 64-bit 
virtual address. VAddr is loaded both under software and 
hardware control. 

VAddr is loaded by hardware with the virtual address which 
causes a TLB Refill, TLB Invalid, TLB Modified, or Address 
Error Exception. VAddr is also writable by software, and is 
used to address the TLB for TLBW, TLBR, TLBP, DCTR and 
DCTW CopO instructions. 
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4.8.10 BadPAddr 

4-36 

COPO Register 
Description Register # Mnemonic 

7 BadPAddr Bad Physical Address 

63 60 59 40 39 0 

4 

0 

20 

BadPaddr 
Syn 

Description: 

PAddr I 
40 

Bad Physical Address 
Bits [15:12] of the virtual address 

The BadPAddr register is a read-only register that contains the 
physical address which caused the virtual coherence error 
(floating) exception. 
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INTERRUPTS AND EXCEPTIONS 

5 

The exception processing system of the RSOOO Microprocessor is responsible for 
efficiently handling relatively infrequent events such as address translation misses, 
arithmetic overflows, l/0 interrupts, and system calls. These events cause the 
interruption of normal flow of control. Dedicated locations contain vectors which service 
the various exceptions. Once the exception has been serviced the program contents, 
which were saved in temporary strorage prior to servicing of the exception, are re­
loaded and normal execution resumes. 

The RSOOO Microprocessor treats all events which interrupt the normal flow of execution 
as exceptions. Interrupts are a type of exception, and exceptions can be both precise and 

... imprecise . 

... 

... 
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5.1 EXCEPTIONS 

When an exception is taken and the contents of the Exception Program Counter (EPC) 
register contains the exact address of the instruction which caused the exception, the 
exception is precise. When the Exception Program Counter register contains a value 
which is near the offending address but not exact, the exception is imprecise. External 
interrupts, which have no relationship to any instructions, are also classified as imprecise 
exceptions. The type of exception taken indicates whether it is precise or imprecise. 

The RBOOO Microprocessor can generate interrupts internally as well as accept interrupts 
from external sources. There are no dedicated interrupt pins on the RBOOO 
Microprocessor. External interrupts are handled by the Cache Controller and the status 
of the Cache Controller's interrupt register is transferred to the RBOOO via the TBus. The 
register contents are decoded within the RBOOO and the appropriate service routine is 
executed. Figure 5-1 shows the different types of exceptions. 

5-2 

EXCEPTIONS 

Precise � � 
TLB Refill, (UV), (KVO), (I<Vl), 
TLB Invalid, TLB Modified, 
Integer Overflow, Trap, System Call, 
Breakpoint, Coprocessor Unusable, 
Reserved, Address Error 

/ Imprecise � 
Vutual Coherence Interrupt 
Bus Error 
Floating Point Interrupt 

terrupts 

NMI and all General 
Interrupts defined 
by the IP �eld of the 
Cause regiSter. 

Figure 5-1 Exception Types 
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To handle an exception, the processor vectors to a fixed address in kernel mode with 
interrupts disabled. Once the exception has been serviced, the program counter, 
operating mode, and interrupt enable must be restored. Hence it is these values which 
must be saved when an exception occurs. 

When an exception occurs, the Exception Program Counter (EPC) register is loaded with 
the appropriate restart location at which execution may resume after servicing the 
exception. The counter can also be thought of as containing the address of the instruction 
that caused the exception. If the instruction was executing in a delay slot the counter 
contains the address of the previous instruction and the DB bit is set. 

The base operating mode is defined by the KU (Kernel/User) and the IE (Interrupt 
Enable) bits of the Status register. The execution level is set by the EXL bit, also from the 
Status register. Interrupts are enabled when IE=1 and EXL=O. The operating mode is 
specified by the base mode when the execution level is normal, and is in kernel mode 
when the execution level is exception. Returning from an exception consists of resetting 
the execution level (bit [1] of the Status register) to normal. From a register standpoint 
there are three basic types of exceptions; 

1) Hard reset 
2) Non-Maskable Interrupt (NMI) 
3) All others . 

5.1.1 Hard Reset 

When returning from hard reset exception the state of the Config (configuration) and 
Status registers are as shown in Figure 5-2. 

163 

63 

0 
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Config Register 

35343332 31 

0 

Status Register 

1 6 1514  1 2 1 1 9 8  6 5 4 3 0 

1M 
0 

Figure 5-2 Register Contents Following a Hard Reset 
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The program counter is loaded with the following 64-bit hexidecimal value. 

Ox_9000_0000_1fc0_0000 

5.1.2 Non-Maskable Interrupt 

When a non-maskable interrupt exception is taken the contents of the main program 
counter are loaded into the Exception Program Counter (EPC) register and indicate the 
address at which the exception occurred. Note that the existing EPC counter value is lost 
when the EPC is loaded. The main program counter can then be loaded with the vector 
address so that servicing can begin. The main program counter is loaded with the 
following 64-bit hexidecimal address. 

Ox_9000_0000_1fc0_0000 

The contents of the Config register does not change. Bit [1] of the Status Register is set to 
a high value (1), indicating that the execution level is for an exception. In addition, Cause 
register bit [27] is also set to a high value, indicating that the exception was a NMI. The 
hardware modification to the Status register is shown in Figure 5-3. 

Status Register 
63 41 40 39 3E 35 �� 24 H 18 8 7 6 5 4 3 2 1 0 

I 0 DM KPS UPS 0 cu O FR  RE 0 1M xx ux  � 0 ) I 
Execution Level ,. 
bit set to 1 

Figure 5-3 Status Register Contents Following an MNI 

5.1.3 General Exceptions 

Hard Reset and NMI exceptions each vector to a fixed entry point as discussed in 
sections 5.1.1 and 5.1.2. All other exceptions vector to an offset relative to the contents of 
the Trap Base register . When a general exception is taken the Status register is read and 
the main program counter (PC) is loaded with the contents of the Trap Base register. 
Loading of the main program counter occurs regardless of the exception level. Note that 
the current value is lost when the PC is loaded. 

The EXL bit [1] of the Status register determines the execution level. If EXL=O when the 
status register is read, the contents of the PC are transferred to the exception program 
counter (EPC) so that the address which caused the exception can be saved. 
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If EXL=l when the status register is read, indicating that another exception is currently 
begin serviced, the EPC already contains the address of the exception currently being 
serviced. The contents of the PC are not transferred to the EPC so as not to overwrite the 
current EPC value. Figure 5-4 shows how general exceptions are handled. 

1 63  0 

c 

Status Register 

Trap Base Register Trap Vector 

0 Trap Vector Base Address 

Any Exception causes 
Main PC to be loaded 

Main Program Counter 

PC Transferred to 
EPC if EXL = 0 

Exception Program Counter register 

• If EXL=l, contents of the main PC are not transferred to EPC. 

Figure 5-4 Handling a General Exception 

8 7 6 5 4 3 2 1 0  

EXL 

The Config register contents do not change when a general exception is taken. The 
Cause register is modified depending on which general exception was taken. For 
example, a Coprocessor Unusable exception sets the CE bit, a Vrrtual Coherence 
exception sets the VCI bit, a floating point exception sets the FPI bit, etc. Figure 5-5 
shows the Cause register . 
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Figure 5-5 Cause Register 

Multiple trap vector entry points are provided by hardware based on the exception 
taken. Table 5-1 below lists the various types of exception vectors and their Trap Vector 
offsets. 

Name Vector Cause Description 
Code 

Hard Reset Reset Vector -- Resets everything. 
Ox_9000_0000_1fc0_0000 

NMI NMIVector -- Requested by external logic 
Ox_9000_0000_1fc0_0000 

TLB Refill, TrapBase + Ox_OOO TLBL The referenced address was to the 
User, (EXL=O) TLBS User Region (UV) and did not 

match any TLB entry. 

TLB Refill, TrapBase + Ox_400 TLBL The referenced address was to the 
Kernel Private TLBS Kernel Private Region (KVl) and 

(EXL=O) did not match any TLB entry. 

TLB Refill, TrapBase + Ox_800 TLBL The referenced address was to the 
Kernel Global TLBS Kernel Global Region (KVO) and 

(EXL=O) did not match any TLB entry. 

TLB Refill TrapBase + Ox_cOO TLBL The referenced address (to any 
(EXL=l) TLBS Region) did not match any TLB 

entry. 

TLB Invalid TrapBase + Ox_cOO TLBL Vrrtual-address that matches an 
TLBS invalid TLB entry. 

TLB Modified TrapBase + Ox_cOO Mod An attempt to write to a virtual 
address that did not have D bit in 
the corresponding TLB entry set. 

Common TrapBase + Ox_cOO See General exception vector for all 
Exceptions Cause other exceptions. 

Table 5-1 Exception Vectors 
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Exceptions are always generated by a particular instruction, and are reported precisely 
with respect to that instruction. All other events are termed interrupts. This section lists 

. the types of General exceptions and how they are handled and serviced. These 
exceptions are indicated by loading a specific value into the 'Exception Code' field of the 
Cause register, located at bits [7:3] . Below is a listing of each general exception and the 
corresponding 5 bit hexidecimal value. Those Exception codes specific to the TLB are 
discussed in chapter 4, sections 4.7.1 through 4.7.3. 

ExcCode Mnemonic Description Number 

0 Int Interrupt 

1 Mod TLB Exception Modification 

2 TLBL TLB Exception (Load or Instruction Fetch) 

3 TLBS TLB Exception (Store) 

4 A dEL Address Error Exception (Load or Instruction Fetch) 

5 A dES Address Error Exception (Store) 

6-7 ----- Reserved by MIPS Technologies 

8 Sys SysCall Exception 

9 Bp Breakpoint Exception 

10 RI Reserved Instruction Exception 

1 1  CpU Coprocessor Unusable Exception 

12 Ov Arithmetic Overflow Exception 

13 Tr Trap Exception 

14-3 1 ----- Reserved by MIPS Technologies 

Table 5-2 Exception Codes 
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5.1.3.1 Address Error Exception 

An address error exception occurs when an attempt is made to load, fetch, or store a 
quantity which is not properly aligned, to reference kernel address space from user 
mode, or when the region bits of the effective address do not match the region bits in the 
base register. The address error exception is precise and not maskable. 

The AdEL and AdES exception codes are defined by ExcCodes 4 and 5 in Table 5-2 and 
indicate whether the instruction, defined by the contents of the EPC register, and the BD 
bit [ 63] of the Cause register, was a load or a store. 

5.1.3.2 System Call Exception 

The System Call exception occurs when an attempt is made to execute the corresponding 
instruction. The SysCall exception is precise and is not maskable. The common exception 
vector in Table 5-1 is used for this exception. The SysCall exception is defined by 
ExcCode 8 in Table 5-2. The Sys code in the Cause register is set. 

The EPC points at the instruction which caused the exception, unless the instruction is in 
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the 
branch instruction which preceedes it, and the BD bit of the Cause register is set. 

Control is transfered to the applicable system routine. To resume execution, the EPC 
must be altered so that the offending instruction is not re-executed. 

5.1.3.3 Breakpoint Exception 

The Breakpoint exception occurs when an attempt is made to execute the corresponding 
instruction. The Breakpoint exception is precise and is not maskable. The common 
exception vector in Table 5-1 is used for this exception. The Breakpoint exception is 
defined by ExcCode 9 in Table 5-2. The Bp code in the Cause register is set. 

The EPC points at the instruction which caused the exception, unless the instruction is in 
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the 
branch instruction which preceedes it, and the BD bit of the Cause register is set. 

Control is transfered to the applicable system routine. To resume execution, the EPC 
must be altered so that the offending instruction is not re-executed. 
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5.1.3.4 Reserved Instruction Exception 

The Reserved Instruction exception occurs when an attempt is made to execute the 
corresponding instruction. The Reserved Instruction exception is precise and is not 
maskable. The common exception vector in Table 5-1 is used for this exception. The 
reserved Instruction exception is defined by ExcCode 10 in Table 5-2. The RI code in the 
Cause register is set. 

The EPC points at the instruction which caused the exception, unless the instruction is in 
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the 
branch instruction which preceedes it, and the BD bit of the Cause register is set. 

Control is transfered to the applicable system routine. To resume execution, the EPC 
must be altered so that the offending instruction is not re-executed. 

5.1.3.5 Coprocessor Unusable Exception 

The Coprocessor Unusable exception occurs when an attempt is made to execute the 
corresponding instruction. The Coprocessor Unusable exception is precise and is not 
maskable. The common exception vector in Table 5-1 is used for this exception. The 
CoProcessor Unusable exception is defined by ExcCode 11 in Table 5-2. The CpU code in 
the Cause register is set. 

The EPC points at the instruction which caused the exception, unless the instruction is in 
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the 
branch instruction which preceedes it, and the BD bit of the Cause register is set. 

Control is transfered to the applicable system routine. To resume execution, the EPC 
,. must be altered so that the offending instruction is not re-executed 

.... 

... 

.. 

5.1.3.6 Integer Overflow Exception 

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI, or 
DSUB instruction results in a two's complement overflow. This exception is precise and 
not maskable. The common exception vector in Table 5-1 is used for the Integer 
Overflow exception. The Integer Overflow exception is defined by ExcCode 12 in Table 
5-2. The Ov code in the C�use register is set . 

The EPC points at the instruction which caused the exception, unless the instruction is in 
a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the 
branch instruction which precedes it, and the BD bit of the Cause register is set. The 
process executing at the time is handed a UNIX SIGFPE/FPE_INTOVF _TRAP signal. 
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5.1.3.7 Trap Exception 

A Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ TGEI, TGEUI, TLTI, 
TLTUI, TLEQI, or TNEI instruction results in a true condition. The trap exception is 
precise and not maskable. The common exception vector in Table 5-1 is used for this 
exception. The Trap exception is defined by ExcCode 13 in Table 5-2. The Tr code in the 
Cause register is set. The EPC points at the instruction which caused the exception, 
unless the instruction is in a branch delay slot. If the instruction is in a branch delay slot, 
the EPC points at the branch instruction which preceedes it, and the BD bit of the Cause 
register is set. The process executing at the time is handed a UNIX SIGFPE/ 
FPE_INTOVF _TRAP signal. 

5.1.3.8 Reserved Instruction Exception 

There are two classes of reserved instruction exceptions relating to opcodes and values. 
An illegal coprocessor-1 opcode is reported via this exception. Value related exceptions 
cause a floating-point interrupt which is explained in section 5.3. The reserved 
instruction exception is precise and is not maskable. 

The common exception vector is used for this exception. The FPE code in the Cause 
register is set. The EPC points at the instruction which caused the exception, unless it is 
in a branch delay slot. If the instruction is in a branch delay slot, the EPC points at the 
branch instruction which preceedes it, and the BD bit of the Cause register is set. 

Control is transfered to the applicable system routine. To resume execution, the EPC 
must be altered so that the offending instruction is not re-executed. 

· 

5.2 INTERRUPTS 

The Interrupt exception occurs when one of the interrupt conditions are asserted. 
Interrupts are a type of exception and are imprecise and maskable. The general exception 
vector is used for servicing Interrupt exceptions. The lnt code in the Cause register is set. 

The Cause register in Figure 5-5 contains an 11 bit Interrupt Pending (ll') field which 
indicates the current interrupt requests. It is possible that more than one of the bits will 
be set at once, or even that no bits are set (if an interrupt is asserted and then deasserted 
before the Cause register is read). If the interrupt is caused by software, the condition is 
cleared by setting the corresponding Cause register bit to zero. Table 5-3 describes the ll' 
field. 
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Cause Interrupt 
IP #  Register Description 

Bits Type 

0 . .  1 8 . . 9 Software Used to set or clear software interrupts 

2 . . 7 10  .. 1 5  External Set and cleared through the TBus. External 
interrupts cannot be cleared by software 

8 16  Parity Streaming cache even bank parity flag 

9 17  Parity Streaming cache odd bank parity flag 

10 1 8  Overflow Cycle counter overflow flag. Wired to the 
most significant bit of the cycle counter 

Table 5-3 Interrupt Pending Fields 

5.3 INTERRUPT TYPES 

The R8000 Microprocessor supports 11 asynchronous interrupts. Two are managed by 
software, three are generated internally by hardware, and six are generated externally 
via the Thus. Interrupts are posted in the IP field of the Cause register. 

5.3.1 Virtual Coherence (Coprocessor) Interrupt 

A Virtual Coherence (Coprocessor) interrupt (VCI) occurs when each of the following 
three conditions are true. 

1) A coprocessor load or store hits in the streaming cache. 
2) Virtual address bits [15:12] of the reference are different than the Vutual synonym (VS) 
bits stored in the streaming cache. 
3) The SMM bit of the Status register is reset. 

The VS bits in the streaming cache are set to bits [15:12] of the virtual address when a 
reference causes a streaming cache miss. The Vutual coherence interrupt is not maskable. 
When a VCI interrupt occurs the VCI bit in the Cause register is set, and the BadPAddr 
register contains the offending physical address along with bits [15:12] of the virtual 
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address; The offending instruction as well as an unbounded number of sul;>se.qv.ent . 
instructions will have already completed by the time the interrupt is posted. If additional ,, 
virtual coherence (coprocessor) violations occur before the interrupt is serviced, no 
additional addresses are captured into BadPAddr. 

Coprocessor memory references directly address the physically-addressed streaming 
cache and are not susceptible to virtual coherence violations. Therefore, there is no harm 
in allowing coprocessor memory references to complete even when they cause virtual 
coherence exceptions. However, these coprocessor memory references may fail to 
invalidate the on-chip integer data cache and thus not maintain coherency between the 
caches. If the processor is operating in Sequential Memory Model mode, the hardware 
interlocks subsequent integer memory references to avoid the possibility of reading stale 
data, at the expense of some performance loss. The virtua1 coherence interrupt is non­
recoverable. 

5.3.2 Floating Point Interrupt 

The R8000 Microprocessor implements imprecise IEEE-compliant floating-point 
exceptions which are reported via the Floating-Point Interrupt. 

In performance mode a floating-point operation that raises an exception will write the 
appropriate substitution value (e.g. NaN) into the register file, regardless of whether the 
exception is enabled or not, and continue execution. If the exception is enabled, bit IPlO 
in the Cause register is set and an imprecise floating-point interrupt occurs some time 
later. 

In precise exception mode a floating-point operation that raises an enabled exception 
does not write the result into the register file, and bit IPlO in the Cause register is set to 
cause a precise floating-point interrupt with the EPC register pointing to the offending 
instruction. A disabled exception will write the appropriate substitution value (e.g. 
NaN) into the register file and continue execution. 

Imprecise floating-point exceptions in normal mode can only be observed after the fact. 
Therefore trap handlers that count exceptions or abort the process are possible, but trap 
handlers that alter the result value based on an exception are not possible. Software 
should service this interrupt by clearing bit IP10 in the Cause register. Precise exception 
mode is specified by setting the DM bit in the Status Register. After a mode change an 
implementation-dependent number of instructions may not be floating-point 
instructions. Note that the Cause field in the R8010 Floating Point Status (FSR) register 
cannot be used to determine the cause of the interrupt in normal mode, and the Flags 
field must be used instead. However, the Cause field can be used in any mode to 
determine the status of the last floating-point operation. 
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5.3.3 Counter Overflow Interrupt 

The Count register increments once per clock cycle. A counter-overflow interrupt is 
posted when the high-order bit becomes set. Bit IPlO in the Cause register is set and an 
imprecise counter-overflow interrupt occurs some time later. 

Software must reset the Count register and clear bit IPlO in the Cause register. 

5.3.4 Parity Error Interrupt 

The RSOOO Microprocessor has a very large off-chip streaming cache which is protected 
by parity bits. Parity errors are imprecise and nonrecoverable. Separate parity flags exist 
for both the even and odd banks of the streaming cache. Cause register bit IPS pertains to 
the even bank of streaming cache. Cause register bit IP9 pertains to the odd bank of 
streaming cache. 

If a parity error is detected on a floating-point load operation or an instruction or data 
cache refill, bit IPS or IP9 in the Cause register is set and an imprecise parity-error 
interrupt occurs some time later. Parity errors should be logged and the process aborted. 
Software should clear bits IPS and IP9 in the Cause register. 

5.3.5 Bus Error Interrupt 

A Bus Error interrupt exception is generated by board-level circuitry and indicates 
events such as bus time-out, backplane bus parity error, and invalid physical memory 
addresses or access types. The Bus Error interrupt is imprecise and not maskable. 

The common exception vector is used for this interrupt and the process executing at the 
time is handed a UNIX SIGBUS signal. Since the TFP Microprocessor implementation of 
this exception is imprecise, the kernel should "clean up" any outstanding references (e.g. 
writes buffered in the 1/0 systems) by reading from uncacheable device registers to 
avoid accidentally killing the wrong process . 
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INITIALIZATION INTERFACE 

6 

This chapter describes the initialization and testing requirements for the RSOOO 
Microprocessor Chip Set. The initialization sequence is discussed and code examples are 
provided for both the RBOOO microprocessor and the Tag RAM. General testing 
requirements are also discussed including some specific testing characteristics which 
must be addressed. 
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In general the � vot-up procedure consists of four steps: 

1) Invalidate Instruction and Data Caches. 
2) Flush Store Address Queue. 
3) Set all Tag RAM states to invalid and assure that each of the four sets of any given Tag 
RAM index have different tags. 
4) Initialize the TLB. 

6.1 Instruction and Data Cache Invalidation 

Invalidation of the instruction cache is accomplished by the invalidation of each entry in 
the cache. Uncached instructions are fetched from memory and placed in the cache and 
the entry is marked as invalid. Each entry in the instruction cache contains four 32-bit 
instructions (quad word). An instruction cache line (32 bytes) contains two quadwords. 
There is one valid bit per instruction cache line. 

When the first entry is accessed with the "Jump Immediate" instruction cache hardware 
control logic marks the line as invalid due to the fact that the instructions were fetched 
from the following accress range; 

9000_0004_1FCx_xxxx 

The 9h value on the upper address bits indicates that the access is non-cachable and 
umapped in the TLB. The "Jump Immediate " instruction with the correct offset is used 
to step through the cache and invalidate the entries. 

The Data Cache is invalidated using the DCTW instruction. The 4-bit valid field in the 
DCACHE register must be loaded with all zero's. The contents of the DCACHE register 
are undefined on reset. 

Unlike the instruction cache, where the valid bit is included as part of the entry, the data 
cache has a separate valid bit RAM. One valid bit exists per word (32-bits) and there are 
4 bits per valid RAM entry. Hence two writes to the valid RAM are necessary to 
invalidate one line (32 bytes) of the data cache. 

Successive invalidations of the data cache valid RAM are accomplished by incrementing 
the VADDR register by 16 each time. 

Note that any data loads, including non-cachable loads from a ROM device, are not 
guaranteed to work correctly until this step is completed due to the fact that the RSOOO 
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cached data as opposed to taking a data cache miss. Refer to section 6.5 for more 
information. 

6.2 Flushing the Store Address Queue 

The Store Address Queues are flushed using 32 writes to an even location (Address<3> 
clear) and 32 writes to an odd location (Address<3> set). The addresses used are two 
unused local address space registers and the writes are non-cacheable. The data is not 
important. 

6.3 Tag RAM State Invalidation 

In order to avoid memory reads going onto the backplane, the data RAM tests are divided 
into two groups. Each group does the same test but skips the part of Set 3 which the test 
itself is read through so that no cacheable reads or writes go to the area which has been 
invalidated by instruction reads and cause a read on the backplane. 

During this step no single non-cacheable read should be done from any address except 
the ROM space which will read through the area of RAM which is being skipped ( eg. the 
code itself). 

Before any of the Tag RAMs are written, two non-cacheable reads from the ROM space at 
the current PC must be done to initialize the Annex pipe so that it doesn't corrupt the 
values after they are written. 

The value of the tag RAM address used for set three is chosen so that any instruction 
fetches which occur during this step will put exactly the same value into the the location. 
The state, virtual synonym, and dirty bits should also be set so that the instructions will 
load the identical value. 

The tag RAM addresses should be as follows: 

Set 
0 
1 
2 
3 

Tag 
Ox041CC 
Ox0410C 
Ox041EC 
Ox041FC 

Address<21:20> will be written from the address used to access the tags and need not be 
varied explicitly for caches larger than 4MB . 
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The dirty bits do not matter; the state bits should all be exclusive; and the virtual 
synonym bits should be set to address<15:12> (part of the index) so that no virtual 
synonym misses can occur when used with virtual equals physical mapping. 

For all processors except the master the procedure for the first two initializations of the 
streaming cache should be repeated except that the states should all be written to invalid 
instead of exclusive. These processors will not run C code and will not need a stack. 

The master processor should be initialized in the same way as the slaves except that a 
stack region should be created at whatever index and address tag is convenient and of 
whatever size (up to the size of one set) may be convenient. The stack should be created 
now because we do not want to write the streaming cache tags again later. 

The stack provision is made by picking a section of Set 1 (it must not be set 0 or 3). The 
Tag Address and state writes may be done after the complete slave style initialization has 
been accomplished. The state should be exclusive and the dirty bits do not matter. Again 
the virtual synonym bits must be set to Address<15:12> to avoid reads on the backplane. 
The Set Allow register must be set not to allow access to Set 1. (Note that Force Set Three 
is still on until the next step.) Before running User Mode, Set Allow should be set back to 
allow all sets in replacement. 

The stack made in this way will work whether there is memory board in the system or 
not. The states are already exclusive and do not have to be filled from memory and the 
set allow does not include Set 1 so that the stack cannot be kicked out. Set 0 will be 
kicked out by non-cacheable accesses which miss in the cache, so it is not used; Set 3 will 
be kicked out in Force Set Three Mode, so it is not used. 

All the cache lines in the system are now in legal states; Some of them are exclusive in the 
master processor and invalid elsewhere while the rest are invalid everywhere. In 
addition, at every index in every cache, the address tags in the four sets are all different. 

6.4 Initializing the TLB 

Initialization of the TLB consists of the following two steps; 

1) Mark all entries invalid in the physical address (PTAG) portion of the TLB. 
2) Assure that each set of each index in the virtual tags (VTAG) portion of the TLB 
contains different tag information. 

The entries of the PTAG are invalidated by executing the TLBW instruction for each 
entry. The EntryLo register must be set to all zero's as its contents are written to the 
PTAG. Writing all zero's to the register assures that the valid bit for the entry will not be 
set when the TLB entry is written. 
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The Entry Hi register is used to write the VTAG portion of the TLB. The initialization of 
the VTAG must assure that none of the three sets of a given entry contains the same tag 
information. The following sequence shows an example of how this can be 
accomplished. 

1) Load Entry Hi with all zero's. 
2) Write Entry Hi to set 0 of a given index. 
3) Increment the V1rtual Page Number (VPN) field of Entry Hi by 1 .  
4) Write Entry Hi to set 1 of the same index. 
5) Again increment the Virtual Page Number (VPN) field of Entry Hi by 1.  
6)  Write Entry Hi to set 2 of the same index. 

This sequence will assure that an interrupt does not occur when accessing the TLB for 
the first time due to multiple sets having the same value. 

6.5 RSOOO Microprocessor Functional Characteristics 

The following list of characteristics must be understood when attempting to perform a 
boot-up procedure on the R8000 Microprocesor. Each characteristic is explained and a 
solution is offered. 

- N on-Cachable instruction fetches change the state of the instruction cache. 

- When loading instructions from unmapped address space virtual address bits 61:59 are 
encoded to contain the coherence protocol. For uncached instructions the value of virtual 

I address bits 63:59 can be one of two values: 
-

-

-

... 

... 

-

63 62 61 60 59 

1 0 0 0 0 
1 0 0 1 0 

Write Gatherer for Graphics 
Normal Mode - Uncached Sequential 

As shown above, 10010 forces the uppermost hex value of the address to 9h, while 10000 
forces the value to 8h. If the uppermost value is 8h, the instruction cache is checked and 
if the value is there an instruction cache hit occurs. A miss causes the instruction cache 
hardware control logic to force the state of bit 60 to a logical one, causing the access to 
become uncachable sequential. Once the instruction is fetched and brought into the 
instruction cache the entry is executed again. Executing each instruction twice eliminates 
the state change from occurring. An access to 8000_xxxx_xxxx_xxxx causes the access to 
be non-cachable. The first execution causes an instruction cache miss but the instruction 
is held in the cache. The second execution of the instruction results in a hit and does not 
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corrupt the state of the streaming cache. 

- N on-Cachable data fetches change the state of the data cache. 

Uncached data references use the data cache as a buffer. Uncached data is placed in the 
cache and marked invalid. Uncached data references can happen anytime and do not 
have any relationship to when the data cache is invalidated. 

The data cache must be invalidated each time a page is converted from cachable to non­
cachable. Data loads from the ROM must not be performed until after the data cache has 
been invalidated. If during power-up the data cache happens to contain the address 
which is being accessed the invalid data associated with that data cache location will be 
read as opposed to the location in the ROM. 

- Non-cachable data loads which check the tag address or tag state information corrupt 
the streaming cache location to which the data was mapped. This location may or may 
not be the same as the location which the tag controls. 

The data and corresponding set address must be written into each of the tags and 
corresponding state in both tag RAM's and then read back to assure each is functioning 
correctly. As with the non-cachable fetch routine explained above, the entire test should 
be run twice and the results ignored on the first pass. This also assures that the code will 
fit into the 16 KByte direct mapped instruction cache. 

The instruction reads will modify the values placed in set 3 in some of the tags. To avoid 
these modifications the entire test should be run on sets 0, 1, and 2 by writing to all 
locations in these sets and then reading all locations back. The test of set 3 can then be 
run by writing to each location in set 3 and then immediately reading it back before the 
location can be potentially modified by another read. 

The other solution for avoiding these modifications is to write the values to all four sets 
and then read them back in a particular order which begins with the location in set 3 
which reads through itself and the other 63 locations which read through the same line 
and expand from there. These locations are different between the tag RAM's. 
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- Dirty Bit Testing 

While writes to the Tag RAM addresses are straight forward, writes to the Tag RAM 
states are more complex. The method for writing the dirty bits to non-identical values 
requires two writes; One for all of the sectors with the dirty bit clear, and another for the 
remaining sectors with their dirty bits set. The write enable bits within the data are used 
to accomplish this. 

- N on-cachable Accesses put Data into the Streaming Cache 

Between the time when a hard reset is performed until the intitalization procedure is 
complete all data or instruction should be placed only in set 3 of the streaming cache. At 
the conclusion of the boot procedure the condition should be removed so that all four 
sets of the cache can be used. 

6.6 Initialization Code Examples 

The following routines contain examples for initializing the data and instruction caches, 
tag RAM's, streaming cache, and registers . 
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I 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * \ 
* Thi s  f i l e  contains the ini t ia l i zation and s tartup code for * 

* the R8 0 0 0  Microproc essor . * * 

\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ! 

# inc lude " ml . h "  

# inc lude <asm . h> 

# inc lude < sys / regde f . h> 

# inc lude <sys / sbd . h> 

# inc lude < sys / cpu . h> 

# inc lude < sys / fpu . h> 

# inc lude < sys / loaddrs . h> 

# include < sys / EVEREST / gda . h> 

# inc lude < sys / EVEREST/ everror . h> 

# inc lude < sys / EVEREST / evconf ig . h> 

# inc lude " ip2 1prom . h " 

# inc lude " prom_l eds . h " 

# inc lude " prom_con f ig . h " 

# inc lude " pod . h "  

# inc lude " pod_fai lure . h "  

# include " prom_intr . h " 

#de f ine CAUSE_NMI 

#def ine PROM_SR 

#de f ine SR_CU1 

#de f ine SR_FR 

#def ine C O_TLBSET 

#def ine C O_TLBLO 

#def ine C O_UBASE 

#def ine C O_TRAPBASE 

#def ine C O_BADVADDR 

#de f ine C O_COUNT 

#de f ine CO_TLBHI 

#def ine C O_SR 

#def ine C O_CAUSE 

#def ine C O_EPC 

#def ine C O_WORKO 

#de f ine C O_WORK1 

#de f ine C O_PBASE 

#de f ine C O_GBASE 

6-8 

Ox0 8 0 0 0 0 0 0  ! * Non-maskable interrupt 

SR_CU1 I SR_FR I SR_PAGES I ZE 

Ox2 0 0 0 0 0 0 0  / * coprocessor 1 usable * / 

Ox0 4 0 0 0 0 0 0  / * enable addit ional fp regs * / 

$ 0  

$ 2  

$ 4  

$ 6  

$ 8  

$ 9  

$ 1 0  

$ 1 2 

$ 1 3 

$ 1 4  

$ 1 8  

$ 1 9 

$ 2 0  

$ 2 1  

/ * Select s e t  in s e t - as s o c i a t ive t lb * / 

/ * Low ha l f  o f  t lb entry * / 

/ * Bas e  o f  user page tables * / 

! * Bas e  addr o f  exc . vec tors * / 

! * Virtual addres s reg i s ter * / 

! * Free- running counter * / 

/ * High hal f  o f  t lb entry * / 

! * S tatus reg i s ter * / 

/ * Cause reg i s ter * / 

/ * Excep t i on program counter * / 

! * Unint erpreted temp . reg i s ter * / 

/ * Unint erpreted temp . reg i s ter * / 

/ * Base o f  kernel private page tables * / 

/ * Bas e  o f  kernel global page tables * / 
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.... 

#de f ine C O_WIRED $ 2 4  I *  Indices of t lb wired entr ies * I  
#def ine CO_DCACHE $ 2 8  I *  Dcache c ontrol reg i s ter * I  
#def ine C O_ICACHE $ 2 9  I *  Icache control reg i s t er * I  

#def ine ICACHE_LINE_CODE \ 
addu z ero , zero , z ero ; I *  0 * I  \ 

addu z ero , zero , z ero ; I *  4 * I  \ 

addu zero , z ero , z ero ; I *  8 * I  \ 

addu z ero , zero , z ero ; I *  1 2  * I  \ 

addu zero , zero , z ero ; I *  1 6  * I  \ 

addu zero , z ero , z ero ; I *  2 0  * I  \ 

addu zero , zero , z ero ; I *  2 4  * I  \ 

addu z ero , z ero , z ero I *  2 8  * I  

I *  Four i cache l ines per s treaming cache l ine ( 12 8  bytes } * I  
#de f ine FOUR_LINES_CODE \ 

ICACHE_LINE_CODE ; \ 

ICACHE_LINE_CODE ; \ 

ICACHE_LINE_CODE ; \ 

ICACHE_LINE_CODE \ 

I *  3 2  i cache l ines per 1 k  * I  
#def ine THIRTYTWO_LINES_CODE 

FOUR_LINES_CODE ; FOUR_LINES_CODE ; 

FOUR_LINES_CODE ; FOUR_LINES_CODE ; 

FOUR_LINES_CODE ; FOUR_LINES_CODE ; 

FOUR_LINES_CODE ; FOUR_LINES_CODE 

Oxa8 0 0 0 0 0 0 0 0 0 fc 0 0 0  

\ 

\ 

\ 

\ 

\ 

#def ine POD_STACKADDR 

#de fine SAQ_INIT_ADDRESS Ox9 0 0 0 0 0 0 0 1 8 0 0 0 3 8 0  I *  2 unused local 

#CC reg i ster address * I  
#de f ine SAQ_DEPTH 

#de f ine BB_BUSTAG_ADDR 

#de f ine BB_PTAG_E_ADDR 

3 2  

SBUS_TO_KVU ( Ox1 8 0 8 0 0 0 0 } I *  bus tag 

# address * I  
SBUS_TO_KVU ( Ox1 8 1 0 0 0 0 0 } I *  proc tag 

# even address * I  
#def ine BB_BUSTAG_ST SBUS_TO_KVU ( Ox1 8 0 c 0 0 0 0 }  I *  bus tag state * I  

proc tag even #def ine BB_PTAG_E_ST 

#def ine BTAG_ST_INIT 

#def ine PTAG_ST_INIT 
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SBUS_TO_KVU ( Ox1 8 1 4 0 0 0 0 } I *  

Ox0 0 0 0 0 0 0 0 0 0 0 1 f 0 0 0  

# 

Ox0 0 0 0 0 0 7 c 0 0 0 0 0 0 0 0  

# s tate * I  
I *  bus tag s tate 

init value * I  
I *  proc tag state 

# ini t value * I  
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. text 

. set noreorder 

. s et at 

#def ine GOTO_CHANDRA_MODE \ 

! * 

LA 

LI 

and 

j r  

nop ; 

kO , 8 f ;  

kl , Ox8 f f f f f f f f f f f f f f f ; 

kO , kl ; 

kO ; 

\ 

\ 

\ 

\ 

\ 

* entry - - When the CPU begins execut ing i t  j umps 
* through the power-on vec tor to thi s  po int . 
* Thi s  routine ini t i a l i zes the processor and s tarts 
* bas ic sys tem conf iguration . 
* I 

LEAF ( entry )  

! * 

* Check to see i f  we got an NMI . I f  so , j ump to the NMI 
* handler code . 
* I 

DMFC O ( kO ,  CO_CAUSE ) # Load 

and kO , CAUSE_NMI 

bnez kO , bev_nmi 

nop 

the Cause regi s ter 

# Check for an NMI 

# IF NMI , j ump to NMI 

# handler 

ini t i al i z e : 

6-10 

dla kO , trap_table 

DMTC O ( kO , C O_TRAPBASE ) / * ini t TrapBas e  regi s t er * / 

dl i vO , PROM_SR 

DMTC O ( vO , C O_SR ) # Put SR into known state 

j al pon_inval idate_IDcache s # Inval idate I &D caches 

nop 

j al ini t_cpu # Set up the main proce s s or 

nop # ( BD )  

! * 

* C l ear the cache tags 
* I 

j al pon_inval i date_dcache# Inval idate dcache tags 
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... 

... 

,. 

,. 

... 

Jill 

.. 

Jill 

nop 

! * 

* Rout ine ini t_cpu 
* Set up the R8 0 0 0 ' s  bas ic control reg i s ters and TLB . 
* 

* 

* 

* I 

For R8 0 0 0 , may need to add code for ini t i a l i z ing Icache , 

Dcache , COPO reg i s ters , SAQs , and Gcache . 

LEAF ( init_cpu ) 

move s 6 , ra # Save return 

# address 

/ * Ini t ia l i z e  COPO regi s t er . C O_TRAPBASE as sumed s etup 
* be fore c a l l ing thi s rountine . * / 

dl i vO , PROM_SR 

DMTC O ( vO , C O_SR ) # Put SR into known s tate 

DMTC O ( z ero , C O_TLBSET ) #  C lear TLBs e t  

DMTC O ( z ero , C O_TLBLO ) #  C l ear EntryLo 

DMTC O ( z ero , C O_UBASE ) 

DMTC O ( z ero , C O_BADVADDR ) #  Clear VAddr 

DMTC O ( z ero , CO_COUNT ) #  C l ear Count s 

DMTC O ( z ero , C O_TLBHI ) #  C lear EntryHi 

DMTC O ( z ero , C O_CAUSE ) #  C l ear interrupt s  

DMTC O ( z ero , C O_EPC ) # C l ear Except i on Program Counter 

! * No need to ini t Con f ig reg . It i s  ini tial i zed by hardware at 

reset . * / 

DMTC O ( z ero , CO_WORKO ) 

DMTC O ( z ero , C O_WORKl ) 

DMTC O ( z ero , C O_PBASE )  

DMTC O ( z ero , C O_GBASE ) 

DMTC O ( z ero , C O_WIRED ) 

DMTC O ( z ero , C O_DCACHE ) 

DMTC O ( z ero , C O_ICACHE ) 

c t c l  z ero , fpc_c sr 

j al f lush_t lb 

nop 

j al f lush_SAQueue 

nop 
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# C l ear out the TLB 

# Ini t ial i z e / f lush SAQs 
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j al pon_ini t i al i z e_scache# Ini t ial i z e  G- cache 

nop 

j s 6  

nop 

END ( init_cpu ) 

# Return to cal l er 

LEAF ( pon_inval idate_IDcaches ) 

icache 

. set noreorder 

. al i gn 5 

THIRTYTWO_LINES_CODE ; 

THIRTYTWO_LINES_CODE ; 

THIRTYTWO_LINES_CODE ; 

THIRTYTWO_LINES_CODE ; 

THIRTYTWO_LINES_CODE ; 

THI RTYTWO_LINE S_CODE ; 

THI RTYTWO_LINE S_CODE ; 

THIRTYTWO_LINES_CODE ; 

# f ir s t  inva l idate the 

THIRTYTWO_L INES_CODE / * 2 k  * I 
THIRTYTWO_LINES_CODE / * 4k * I 

THIRTYTWO_L INES_CODE / * 6k * I 

THIRTYTWO_L INES_CODE / * 8k * I 
THIRTYTWO_L INES_CODE / * 1 0 k  * I 

THIRTYTWO_L INES_CODE / * 1 2 k  * I 

THIRTYTWO_L INES_CODE / * 1 4k * I 

THIRTYTWO_L INES_CODE / * 1 6k * I 

J pon_inval idate_dcache# now go do the dcache 

nop 

END ( pon_inval idate_IDcaches )  

! * Ini t ia l i z e  DCache by inva l i dat ing i t . DCache i s  1 6KB ,  wi th 
* 3 2 Byte l ine , 2 8  b i t s  Tag + 1 bit Exc lus ive + 8 b i t s  Va l id + 3 2  
* Bytes Data . Need two consecut ive wri t e s  to hal f - l ine boundaries 
* to c l ear Val id b i t s  for each l ine . 
* I 

LEAF ( pon_inval ida te_dcache ) 

6-12 

. s et noreorder 

t 3 , ra move 

l i  

j al 

nop 

v1 , 1 6  # s i z e  o f  the hal f  o f  Dcache l ine 

get_dc aches i z e  

# v1 : ha l f  l ine s i z e , vO : cache s i z e  t o  be ini t ia l i z ed 
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1 :  

d l i  t l , POD_STACKADDR# Start ing address f o r  Dcache 

# ini t i a l i zation . 

daddu t2 , t l , vO # t2 : l oop terminator for each 

# cache l i ne : mark it inva l i d  

DMTC O ( t 1 , C O_BADVADDR ) 

DMTC O ( zero , C O_DCACHE ) #  c lear a l l  ( 4 )  Val id b i t s  

dc tw # wri t e  to the Dcache Tag 

s snop ; s snop ; s snop # pipel ine haz ard prevent i on 

. s et reorder 

daddu t 1 , v1 # inc rement to next hal f - l ine 

bltu t 1 , t2 , 1b# t2 i s  terminat i on count 

j t3 

END ( pon_inval idat e_dcache ) 

... I * Ini t ial i z e  S tore Addres s Queue by i s suing ( SAQ_DEPTH ) Even and 
* ( SAQ_DEPTH ) Odd uncached-wr i tes to two even and odd a l igned 
* local reg i s t ers - 2 unused local CC regi ster addresses used 

• * I 

-

-

... 

-

LEAF ( f lush_SAQueue ) 

1 :  

no reorder . s e t  

dl i 

l i  

t O , SAQ_INIT_ADDRESS # address t o  s tart ( wr i t ing )  at 

t 1 , SAQ_DEPTH # number of entries in the queue 

sd 

sd 

addi 

bne z 

nop 

z ero , O ( t O ) 

z ero , 8 ( t 0 ) 

t 1 , - 1  

t 1 , 1b 

J ra 

nop 

. s et reorder 

# wr i t e  ( even ) 8 bytes 

# wr i t e  ( odd ) 8 bytes 

END ( f lush_SAQueue ) 

LEAF ( pon_ini t ia l i z e_scache ) 
... . s e t  noreorder 

move s 4 , ra 

-
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1 :  

dl i t O , Ox9 0 0 0 0 0 0 0 l fc0 f 0 0 0  

ld t l , O ( t O ) 

ld t l , O ( t O ) 

dl i vO , BB_BUSTAG_ADDR# bus tag addres s bas e  

d l i  vl , BB_PTAG_E_ADDR# proc tag address bas e  

dl i t 8 , BB_BUSTAG_ST# bus tag s tate bas e  

dl i t 9 , BB_PTAG_E_ST# proc tag s tate bas e  

l i  al , BTAG_ST_INIT# bus tag s tate ini t . value 

dl i a2 , PTAG_ST_INIT# proc tag state init value 

l i  a3 , Ox0 1 0 0 0 0 0 0  # increment value for next set 

# tag addre s s . 

l i  s 3 , OxO l O O O O  # increment value for addres s o f  

# tag address - next s e t  

s l l  t2 , t l , 3 # shi f t  index count into appropriate 

# pos i t ion 

or t3 , vO , t2 # address o f  bus tag addr . 

l i  taO , OxO lcc O O O O O #  data t o  be wri t ten into s e t  

or 

or 

or 

l i  

tal , vl , 

ta2 , t 8 , 

ta3 , t 9 , 

aO , 4 

# 0 o f  bus & proc 

# tag addr . ( i . e .  s tart from s e t  0 )  

t 2 #  addres s o f  proc tag addr . 

t 2 #  addres s  o f  bus tag s tate 

t2 # addres s o f  proc tag s tate 

# set loop count 

! * Wri t e  into 4 sets o f  the index , s tart ing from set 0 * ! 

2 :  

6-14 

sd 

sd 

sd 

sd 

addu 

daddu 

daddu 

daddu 

daddu 

addi 

taO , 0 ( t 3 ) #  wri t e  into bus tag addr . 

taO , O ( ta l ) # wr i t e  into proc tag addr . 

al , O ( ta2 ) #  wri t e  into b�s tag s tate 

a2 , O ( ta3 ) #  wri t e  into proc tag s tate 

taO , a3 # increment tag value to be wri t ten 

# to next s e t  

t 3 , s 3  # incr . addr . o f  bus tag addr . to 

# next s e t  

tal , s3 # incr . addr . o f  proc tag addr . to 

# next s e t  

ta2 , s 3  # incr . addr . o f  bus tag s tate to 

# next set 

ta3 , s 3  # incr . addr . o f  proc tag s tate to 

# next set 

aO , - 1 
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,.. 

,.. 

... 

,.. 

,.. 

... 

bgt 

nop 

addiu 

ble 

nop 

aO , z ero , 2b# are we done wi th all 4 s e t s ? 

9 9 : 

move 

J 
nop 

. s e t  

#report 

. s et 

J 
nop 

t l , 1 

t l , t O , lb 

vO , z ero 

s4 

reorder 

error 

no reorder 

s 4  

. s e t  reorder 

END ( pon_ini t ia l i z e_s cache ) 
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# done with no error 

# z ero retn -> no error 
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CLOCK INTERFACES 

7 

The R8000 Microprocessor Chip Set contains dedicated clock interfaces for each 
component in the system. The clock interface for the integer and floating point units are 
identical. The clock interfaces for the integer, floating point, tag RAM, and streaming 
cache SRAM modules are covered in the following sections. 

The clock interface signals for the RSOOO Microprocessor and R8010 Floating Point Unit 
are connected as shown in Figure 7-1. 

TFP User's Manual 7-1 



7.1 R8000/R8010 CLOCK INTERFACE 

Vee (3.3V) 

IO OHM 

.-------- VCC_PLL 
LPF_OUT 

680 K OHM 

.__ ______ ...._.., ______ GND_PLL 
75 MHz clock 

EXT_CLK driver output ---- CLK 

330 0HM .------ SYNC_IN 

...__ ____ SYNC_OUT 

GND GND 

Figure 7- 1 R8000/R80 10 Clock Interface Connection Diagram 

CLK (Reference Cock) Active High Input 

Master input clock to the Phase Lock Loop (PLL} circuitry of the R8000. The output of the 
PLL is then used as the master clock for the chip. CLK is normally connected directly to 
the ouput of the external clock driver. In most cases it is desirable to use the PLL 
circuitry, but for those applications which to not wish to use the PLL, the clock drivers 
should be connected to EXT_CLK. 

EXT_CLK (External Clock) Active High Input 

The EXT_CLK input allows the system designer to bypass the internal PLL of the R8000 
and drive the chip directly from the system clock. When not in use this pin should be 
tied to ground through a 330 ohm resistor. 
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GND_PLL (Ground Phase Lock Loop) 

Gronnd source for the phase lock loop circuitry. GND _PLL can be connected to 
VCC_PLL through . 1 microfarad and .015 microfarad capacitors in parallel. See figure 

.... 7.1. 

-

-

-

... 

-

-

-

,.,. 

-

LPF _OUT (Low Pass Filter Output) Active High Output 

LFP _OUT is a special pin used to test the PLL circuitry during component test for 
monitoring the status of the low-pass filter. LPF _OUT must be connected to VCC_PLL 
through a 680K ohm resistor. 

SYNC_IN (Synchronized PLL input) Active High Input 

SYNC_IN is part of the PLL feedback path and must be connected to SYNC_ OUT in 
order for the PLL circuitry to work correctly. The pins are made avaliable externally to 
allow the user to manually alter the phase of the PLL by lengthening the connection 
between SYNC_IN and SYNC_OUT . 

SYNC_OUT (Synchronized PLL input) Active High Output 

SYNC_ OUT is part of the PLL feedback path and must be connected to SYNC_IN in 
order for the PLL circuitry to work correctly. The pins are made avaliable externally to 
allow the user to manually alter the phase of the PLL by lengthening the connection 
between SYNC_IN and SYNC_OUT. 

VCC_PLL (Voltage Phase Lock Loop) 

Voltage source for the phase lock loop circuitry. Connected to a regulated 3.3 volt source. 
VCC_PLL can be connected to GND _PLL through .1 and .015 microfarad capacitors in 
parallel. 
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7.2 TAG RAM CLOCK INTERFACE 

The clock interface for the even and odd bank Tag RAM's in the R8000 Microprocessor 
Chip Set is identical. The following diagram shows how the vaious clock interface pins 
are connected together. 

PLLINl 

PLLIN2 

Vee 

}-

GND 

PLLSEL ----"1 

PLLEN 

330 0HM 

330 0HM 

75 MHz clock 

DISABLES PLL 

driver output ---- CLK 

330 0HM 

Figure 7-2 Tag RAM Clock Interface Connection Diagram 

CLK (Clock Input) Active high Input 

GND 

Clock input for the Tag RAM. The input frequency is 75 MHz . The clock can drive the 
device directly, or function as an input to a phase lock loop based on the state of the 
input pin PLLEN. See figure 7-2. 

PLLEN (Phase Lock Loop Enable) Active High Input 

Enable pin for the bi-polar phase lock loop. Assertion of PLLEN enables the phase lock 
loop. Deassertion of this pin disables the phase lock loop and allows the input clock to 
drive the device directly. See figure 7-2. 
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PLLIN1 (Phase Lock Loop 1) Active High Input 

There are two phase lock loop circuits on-chip. PLLINl is the 75 MHz clock input for the 
CMOS phase lock loop. This pin should be tied to ground for normal PLL operation. See 
figure 7-2. 

PLLIN2 (Phase Lock Loop 1) Active High Input 

PLLIN2 is the 75 MHz clock input for the Bi-Polar phase lock loop. This pin should be 
tied high for normal PLL operation. See figure 7-2. 

PLLSEL (Phase Lock Loop Select) Active High Input 

There are two types of phase lock loop circuits inside the Tag RAM, one of which is used 
for testing purposes. PLLSEL must be tied high for proper operation of the device. See 
figure 7-2. 

7.3 STREAMING CACHE CLOCK INTERFACE 

The clock interface to the streaming cache Data RAM's consists of twelve separate clocks 
per data bank, 24 clocks in all. Six clocks are used for the upper 32-bit module and six 
clocks for the lower 32-bit module for the even data bank. Six clocks are used for the 
upper 32-bit module and six clocks for the lower 32-bit module for the odd data bank. 
Each module contains 12 devices; eight 256K X 4 Data RAM's, one 256K X 4 Parity RAM, 
and three address buffers. Each clock drives two devices. 

EU_CLKA (Even Upper Clock A) Active High Input 
EU_CLKB (Even Upper Clock B) Active High Input 
EU_CLKC (Even Upper Clock C) Active High Input 
EU_CLKD (Even Upper Clock D) Active High Input 
EU_CLKE (Even Upper Clock E) Active High Input 
EU_CLKF (Even Upper Clock F) Active High Input 

EL_CLKA (Even Lower Clock A) Active High Input 
EL_CLKB (Even Lower Clock B) Active High Input 
EL_CLKC (Even Lower Clock C) Active High Input 
EL_ CLKD (Even Lower Clock D) Active High Input 
EL_CLKE (Even Lower Clock E) Active High Input 
EL_CLKF (Even Lower Clock F) Active High Input 
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Figure 7-3 below shows the clock connections to the upper and lower halves of the even 
bank. Twelve other separate clocks interface to the odd bank in the exact same manner as 
shown in figure 7-3. 

7-6 

EU_CLKB EU_CLKD 
EU_CLKA EU_CLKC EU_CLKE 

EU_CLKF 

* Actual clock connections may be different than shown. The clock connections 
here are shown only as an example. 

EVEN BANK -- Lower 32 Bits* 

EL_CLKB EL_CLKD 
EL_CLKA EL_CLKC EL_CLKE 

EL_CLKF 

Figure 7-3 Streaming Cache SRAM Clock Connection Diagram 
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ELECTRICAL SPECIFICATIONS AND MECHANICAL DATA 

8 

The following chapter contains electrical specifications and packaging information for 
the RBOOO Microprocessor, R8010 FPU, Tag RAM, and Streaming Cache Data RAM's . 

TFP User's Manual 8-1 



8.1 ELECTRICAL SPECIFICATIONS 

The following sections lists the electrical specifications for each of the components in the 
RBOOO Microprocessor Chip Set. The electrical specifications for the R8000 
Microprocessor and R8010 Floating Point Unit are exactly the same. 

8.1.1 R8000 Microprocessor/R8010 FPU 

SYMBOL PARAMETER RATING UNIT 

Vee Supply Voltage -0.5 to +7.0 v 

Vm Input Voltage -0.5 to VCC+0.5 v 

Vo Output Voltage -0.5 to VCC+0.5 v 

Po Allowable Power Dissipation TBD w 

ToPR Operating Temperature 0 to +70 oc 
TsTG Storage Temperature -55 to +150 oc 

Table 8-1 R8000/R80 10  Absolute Maximum Ratings 

SYMBOL PARAMETER MIN MAX UNIT 

Cm Input Capacitance -- 5 pF 

CcK Clock Input Capacitance -- 8 pF 

Cour Output Capacitance -- 8 pF 

Vee Supply Voltage 3 . 135 3.465 v 

Icc Supply Current1 -- 4.3 A 

Vrn Input High Signal Voltage 2.2 -- v 

VIL Input Low Signal Voltage -- 0.8 v 

VoH Output High Signal Voltage 2.4 -- V@4ma 

VoL Output Low Signal Voltage -- 0.4 V@8ma 

Table 8-2 R8000/R8010  DC Electrical Characteristics 

1 .  lSW @ 75 MHz, V cc=Max, all outputs switching 
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SYMBOL PARAMETER1 MIN MAX UNIT 

lcP Clock Period 13.3 inf nS 

tcH Clock Pulse High 4 9 nS 

teL Clock Pulse Low 4 9 oS 

ts Setup T1me2 2 -- nS 

tu Hold Time I -- nS 

tcQ Clock to Output3 2 7 nS 

IHZ Clock Output to High Impedance 2 7 nS 

tu Clock to Output Low Impedance 2 7-- nS 

Table 8-3 R8000/R8010 AC Tun.i.ng Characteristics 

1. All parameters are specified over the range 0-70 °C. 
2. Setup and hold times assume a 3 nS rise and fall time between VlL and VIH and with 
input pulse levels of 0 to 3.0V. Clock rise time is 1 nS between VIL and VlH and with 
pulse level of 0 to 3.0V. Input timing measuremtnt reference level is l.SV. 
3. Standard output loading of SO pF with all outputs switching simultaneously. Output 
timing measurement reference levels are 0.8V and 2.0V. 

CLOCK 

INPUT 

OUTPUT 

Figure 8-1 R8000�8010 Setup, Hold, and Clock-to-Out Tuning Parameters 
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CLOCK 

INPUT 

OUTPUT 

Figure 8-2 R8000/R8010 Clock and Tristate Ttming Parameters 

8.1.2 TAG RAM 

8-4 

SYMBOL PARAMETER RATING UNIT 

Vee 

vrN 
Yo 
Po 

ToPR 

TSTG 

SYMBOL 

erN 
CcK 

CoUT 

Supply Voltage -0.5 to+7.0 v 

lnput Voltage -0.5 to VCC+0.5 v 

Output Voltage -0.5 to VCC+0.5 v 

Allowable Power Dissipation 2 w 

Operating Temperature 0 to +70 oc 

Storage Temperature -55 to +150 oc 

Table 8-4 Tag RAM Absolute Maximum Ratings 

PARAMETER MIN MAX UNIT 

Input Capacitance -

Clock Input Capacitance -

Omput Capacitance -

Table 8-5 Tag RAM DC Electrical Characteristics 

5 pF 

8 pF 

8 pF 
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SYMBOL PARAMETER MIN MAX UNIT 

Vee Supply Voltage 4.75 5.25 v 

Icc Supply Current1 -- 570 rnA 

Vrn Input High Signal Voltage 2.2 -- v 

VIL Input Low Signal Voltage -- 0.8 v 

VoH Output High Signal Voltage (except 2.4 -- V@4ma 
DATSA) 

VoL Output Low Signal Voltage (DATSA) -- 0.4 V@8ma 

VoH Output High Signal Voltage (DATSA)2 2.4 -- V@ 15ma 

VoL Output Low Signal Voltage (DATSA) -- 0.4 V@48ma 

Table 8-5 Tag RAM DC Electrical Characteristics 

1 .  3W @80 MHz, V cc=Max, all outputs switching 
2. These signals drive heavy capacitive loads. All are complementary outputs. 

SYMBOL PARAMETER1 MIN MAX UNIT 

tcP Clock Period 13.3 inf nS 

tcH Clock Pulse High 4 -- nS 

teL Clock Pulse Low 4 -- nS 

ts Setup Time2 (except ESA) 2 -- nS 

ts Setup Tune2 (ESA) 3 -- nS 

tH Hold Time 1 -- nS 

tcQ Clock to Output3 2 7 nS 

tHZ Clock Output to High Impedance 2 10 nS 

tLZ Clock Output to Low Impedance 1 10 nS 

Table 8-6 Tag RAM AC Timing Characteristics 

1. All parameters are specified over the range 0-70 °C. 
2. Setup and hold times assume a 3 nS rise and fall time between VIL and Vrn and with 
input pulse levels of 0 to 3.0V. Clock rise time is 1 nS between V1L and Vrn and with 
pulse level of 0 to 3.0V. Input timing measuremtnt reference level is l.SV. 
3. Standard output loading of 50 pF with all outputs switching simultaneously. Output 
timing measurement reference levels are 0.8V and 2.0V. 
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CLOCK 

INPUT 

OUTPUT 

CLOCK 

INPUT 

Figure 8-3 Tag RAM Setup, Hold, and Clock-to-Out Tuning Parameters 

OUTPUT 

Figure 8-4 Tag RAM Clock and Tristate Timing Parameters 

8.1.3 SYNCHRONOUS SRAM MODULE 
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SYMBOL PARAMETER RATING 

Vee Supply Voltage -0.5 to +7.0 

VIN Input Voltage -0.5 to VCC+0.5 

Vo Output Voltage -0.5 to VCC+0.5 

Po Allowable Power Dissipation 1 0  

ToPR Operating Temperature O to +70 

TsTG Storage Temperature -55 to +150 
-

Table 8-7 Cache RAM Absolute Maximum Ratings 

-

- SYMBOL PARAMETER MIN MAX 

Vee Supply Voltage 4.75 5.25 
-

Vrn Input High Voltage 2.20 5.25 

Vn... Input Low Voltage -0.5 1 +.80 
-

Iu Inpue Leakage Current -- --

ILo Output Leakage Current -- ---

Icc Average Operating Current -- --

- IsB Standby Current -- --

VoH Output High Signal Voltage2 2.4 --

VoL Output Low Signal Voltage3 -- 0.4 -

Table 8-8 Cache RAM DC Electrical Characteristics 
-

1. VIL = -1 V Minimum for 3 nS per cycle 
2. IOH = -4.0 rnA 

- 3. 10L = 8.0 mA 

i -

-
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UNIT 

v 

v 

v 

w 

oc 
oc 

UNIT 

v 
v 

v 

uA 

uA 

rnA 

rnA 

V @4ma 

V@8ma 
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SYMBOL PARAMETER MIN MAX UNIT 

tCHCH Clock Cycle Time 12.5 -- nS 

tCH Clock high Pulse Width 4.0 -- nS 

tCL Clock Low Pulse Width 4.0 -- nS 

tCHQV Clock High to Data Valid 2.0 7.0 nS 

tAVCHl Address Setup to Clock High 2.0 - - nS 
(AD 1 5:ADO) 

tCHAXl Address Hold From Clock High 1 .0 -- nS 
(AD15:ADO) 

tAVCH2 Address Setup to Clock High (DATSAXO, 2.0 -- nS 
DATSAXl ,  DATSAYO, DATSAYl)  

tAVCH2 Address Hold from Clock High (DAT- 1 .0 -- nS 
SAXO, DATSAXl ,  DATSAYO, DAT-
SAYl)  

tECHV Module enable setup to clock high 2.0 -- nS 

tCHEX Module enable hold from clock high 1 .0 -- nS 

tWVCH Write enable setup to clock high 2.0 -- nS 

tCHWX Write enable hold from clock high 1 .0 -- nS 

tGVCH Output enable setup to clock high 2.0 -- nS 

tCHGX Output enable hold from clock high 1 .0 -- nS 

tDVCH Input data setup to clock high 2.0 -- nS 

tCHDX Input data hold from clock high 1 .0 -- nS 

tCHQLZ Clock high to output low-Z 2.0 -- nS 

tCHQHZ Clock high to output high-Z 2.0 -- nS 

Table 8-9 Cache RAM AC Timing Characteristics 
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CLOCK 

INPUT 
DATA 

OUTPUT 
DATA 

ADDRESS 
AD15 :ADO 

l'cHCH 

Figure 8-5 Cacbe RAM Setup, Hold, and Qock-Lo-Out Tuning Parameters 

8.2 MECHANICAL DATA 

The following section contains the package pinout and device measurements for the 
RSOOO Microprocessor, R8010 FPU, Tag RAM, and synchronous cache SRAM. 
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(I!) 
(I!) 
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I 

A3 AS A7 

B2 B4 B6 B8 

Cl C3 CS C7 

D2 D4 D6 D8 

El E3 ES E7 

F2 F4 F6 F8 

Gl G3 GS G7 

H2 H4 H6 H8 

Jl J3 JS J7 

K2 K4 K6 K8 

L l  L 3  LS L7 

M2 M4 M6 M8 

Nl N3 NS N7 

P2 P4 P6 P8 

Rl R3 RS R7 

T2 T4 T6 T8 

U l  U 3  us U7 

V2 V4 V6 va 

Wl W3 WS W7 

Y2 Y4 Y6 Y8 

AAl AA3 AAS AA7 

AB2 AB4 AB6 AB8 

ACl AC3 ACS AC7 

AD2 AD4 AD6 AD8 

AEl AE3 AES AE7 

AP2 AP4 AF6 AP8 

AGl AG3 AGS AG7 

AH2 AH4 AH6 AH8 

AJl AJ3 AJS AJ7 

AK2 AK4 AK6 AK8 

ALl AL3 ALS AL7 

AM2 AM4 AM6 AM8 

ANl AN3 ANS AN7 

AP2 AP4 AP6 AP8 

ARl AR3 ARS AR7 

AT2 AT4 AT6 AT8 

A9 All A13 AlS Al7 Al9 A2 1 A2 3 A2 S A2 7 A29 A31 A3 3 A3 S A37 A39 M l  A43 A4 S 

BlO Bl2 Bl4 Bl6 Bl8 B20 B22 B24 B26 B2 8 B30 B32 B34 B36 B38 B4 0 B42 B44 

C9 C l l  Cl3 ClS Cl7 Cl9 C21 C23 C2S C27 C29 C31 C33 C3S C37 C39 C41 C43 C4S 

DlO Dl2 Dl4 Dl6 Dl8 D2 0 D2 2 D24 D2 6 D2 8 D30 

E9 Ell E13 ElS El7 El9 E21 E2 3 E2S E2 7 E29 

FlO Fl2 Fl4 F l 6  F l 8  F20 F22 F2 4 F2 6 F28 F30 

G9 Gll G13 GlS Gl 7 Gl9 G2 1 G23 G2 S G2 7 G29 

HlO Hl2 Hl4 Hl 6 Hl8 H20 H22 H24 H26 H28 H30 

D32 D34 D36 

E 3 1  E 3 3  E3S 

F32 F34 F 3 6  

G3 1 G3 3 G3 S 

H32 H34 H36 

D3 8 D40 D42 D44 

E37 E39 E4 1 E4 3 E4 S 

F38 F40 F42 P44 

G3 7 G39 G4 1 G43 G4S 

H38 H40 H42 H44 

J39 J4 1 J4 3 J4 S 

K3 8 K40 K42 K44 

L39 L4 1 L43 L4S 

M 3 8  M 4 0  M42 M44 

N3 9 N4 1 N4 3 N4S 

P38 P40 P42 P44 

R39 R41 R43 R4S 

T 3 8  T40 T42 T44 

U39 U 4 1  U4 3 U4S 

V38 V40 V42 V44 

V38 V40 V42 V44 

Y 3 8  Y40 Y42 Y44 

AA39 AA4 1 AA43 AA4 S 

AB38 AB40 AB42 AB44 

AC39 AC4 1  AC4 3  AC4 S  

AD38 AD40 AD42 AD44 

AE39 AE4 1 AE4 3 AE4S 

AP3 8  AF40 AP42 AF44 

AG39 AG4 1 AG4 3 AG4S 

AH38 AH4 0 AH42 AH44 

AJ39 AJ41 AJ4 3 AJ4S 

AK38 AK40 AK42 AK44 

AL39 AL41 AL4 3 AL4S 

AM3 8  AM40 AM42 AM44 

AN39 AN4 1 AN4 3 AN4S 

AP38 AP40 AP42 AP44 

AR39 AR4 1 AR4 3 AR4S 

AT3 8 AT4 0 AT42 AT44 

AUl AU3 AUS AU7 AU39 AU4 1 AU4 3 AU4S 

AV2 AV4 AV6 AV8 AVl O  AV12 AV14 AV1 6  AV1 8 AV2 0 AV2 2 AV2 4 AV2 6  AV2 8 AV30 AV32 AV34 AV3 6  AV3 8  AV4 0 AV4 2 AV44 

AWl AW3 AWS AW7 AW9 AWll AW13 AWlS AW17 AW19 AW2 1 AW2 3 AW2 S AW2 7 AW2 9 AW3 1  AW33 AW3 S  AW3 7 AW39 AW4 1  AW4 3 AW4 S 

AY2 AY4 AY6 AY8 AY10 AY12 AY14 AY16 AY18 AY2 0 AY2 2 AY24 AY26 AY2 8 AY30 AY32 AY34 AY36 AY38 AY40 AY42 AY44 

BAl BA3 BAS BA7 BA9 BAl l  BA13 BAlS BA1 7  BA1 9 BA2 1 BA2 3  BA2S BA27 BA29 BA3 1 BA3 3 BA3 S BA37 BA39 BA4 1 BA43 BA4S 

BB2 BB4 BB6 BB8 BBlO BB12 BB14 BB16 BB18 BB20 BB22 BB24 BB2 6 BB28 BB30 BB32 BB34 BB3 6 BB38 BB40 BB42 BB44 

BCl BC3 BCS BC7 BC9 Bel l  BC13 BCl S  BC17 BC19 BC21 BC23 BC2 S  BC2 7  BC29 BC31 BC33 BC3S BC3 7  BC39 BC41 BC43 BC4S 

BD2 BD4 BD6 BD8 BDlO BD12 BD14 BD16 BD18 BD20 BD2 2 BD24 BD2 6 BD28 BD3 0 BD32 BD34 BD3 6 BD38 BD40 BD42 BD44 

BEl BE3 BES BE7 BE9 BEll BE13 BElS BE17 BE19 BE21 BE23 BE2S BE27 BE29 BE31 BE33 BE3S BE37 BE3 9 BE41 BE43 BE4S 
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Location . . . Signal Location . . . Signal Location . . . Signal Location .. . Signal Location . . . Signal Location . . . Signal 
A03 ..................... Vcc B26 ........ TBUS<46> D4 ............... LDE<I> E27 ..................... Vss G5 .............. LD0<3> H28 .. .. .. ..... ..... ..... Vss 

A05 .......... TBUS<O> B28 ........ TBUS<50> D6 .. .......... TBUS<3> E29 ..................... Vcc G7 .... .......... LD0<2> H30 ..................... Vss 

A07 .......... TBUS<6> B30 ........ TBUS<54> D8 ............ TBUS<7> E31 .................... . Vss G9 ...... .. ... .... LDE<O> H32 ..................... Vss 

A09 ........ TBUS< 12> B32 ........ TBUS<58> DIO ........ TBUS<II> E33 ......... TBUS<67> GII.. ................... Vcc H34 . . .. ... ........... . .. Vss 

Ali ... ..... TBUS<16> B34 ........ TBUS<62> D12 ........ TBUS<15> E35 ......... TBUS<71> G13 ..................... Vcc H36 ..................... NC 

- A13... .. . .  TBUS<20> B36 ........ TBUS<66> D14 ........ TBUS<21> E37 ......... TBUS<75> GIS ..................... Vee H38 .................... Vss 

A15 ........ TBUS<24> B38 ........ TBUS<72> D16 ........ TBUS<25> E39 ......... TBUS<79> G17 ..................... Vcc H40 .................... Vcc 

A17... .... TBUS<28> B40 ........ TBUS<78> D18 ........ TBUS<29> E41 ...... _. . ... ..... X_SDI G19 ..................... Va; H42 ............. ITAG_R 
-

A19 ........ TBUS<32> B42 ...................... NC D20 ........ TBUS<33> E43 ....... SYNC_OUI G21 ..................... Va; H44 ............. ITAG_O 

A21... ..... TBUS<36> B44 ...... ... . ... ........ Vss D22 ........ TBUS<37> E45 ................... CLK G23 ..................... Vcc Jl ................ LDE<5> 

- A23 ........ TBUS<40> Cl ....................... Vcc D24 ........ TBUS<43> F2 ............. LDE<34> G25 ..................... Va; J3 .............. LDE<36> 

A25 ...... . . TBUS<44> C3 ....................... Vss D26 ....... TBUS< 47> F4 ............. LD0<34> G27 ..................... Va; J5 ................ LD0<5> 

- A27 ........ TBUS<48> cs .............. LDO<O> D28 ....... TBUS<51> F6 ............. LD0<33> G29 ..................... Vcc J7 ............... LD0<4> 

A29 ........ TBUS<52> C7 ........ .. . .  TBUS<4> D30 ........ TBUS<55> FS.: ............ ......... Vss G31 ..................... Vcc J39 ......... VCC_PLL 

A31... ..... TBUS<56> C9 ..... .. . . . TBUS<10> D32 ........ TBUS<59> FlO ..................... Va; G33 ..................... Va; J41 ............. .JTAG_S 

-
A33 ........ TBUS<60> Cli... .... .  TBUS<17> D34 ........ TBUS<65> F12 ..................... Vss G35 ..................... Vcc J43 . ................. FCCR 

A35 ........ TBUS<64> C13 ........ TBUS<19> D36 ........ TBUS<69> F14 ..................... Va; G37 ........... FVALID# J45 ..... ADDRE<17> 

- A37 ........ TBUS<68> C15 ........ TBUS<23> D38 ........ TBUS<73> F16 ..................... Vss G39 ..................... Va; K2 . ...... ......  LDE<37> 

A39 ........ TBUS<74> C17 ........ TBUS<27> D40 ........ TBUS<77> F18 ..................... Vcc G41... ....... SYNC_IN K4 ............ LD0<38> 

- A41 ............... TBOE# C19 ........ TBUS<31> D42 ...... ....... RESET# F20 ..................... Vss G43 .............. ITAGJ K6 .............. LD0<6> 

A43 ..................... Vcc C21... ..... TBUS<35> D44 .. ........... . x_soo F22 ..................... Va; G45 ............. ITAG_C KS ...................... Vss 

A45 ..................... Vss C23 ........ TBUS<39> El ....................... Vss F24 ..................... Vss H2. .. ............ LDE<4> K38 ......... GND_FLL 

-
B2 ....................... Vss C25 .... . . .. TBUS<45> E3 ............... LDE<2> F26 .................... Vee H4 ............ LD0<36> K40 ..................... Vss 

B4 ...... ... . .. LD0<32> C27 ........ TBUS<49> ES ......... ...... LDO<l> F28 ...................... Vss H6 ............ LD0<35> K42. ................ FCCL 

- B6 ............ TBUS<2> C29 ........ TBUS<53> E7 ... .. ... .. ... TBUS<I> F30 ................ .... .  Vcc H8 ....................... Vcc K44 ..... ADDRE<16> 

B8 ............ TBUS<8> C31... ..... TBUS<57> E9 ............. TBUS<5> F32. .................... Vss HlO ........... LD£<32> Ll ............. LDE<38> 

B10 ........ TBUS<14> C33 ........ TBUS<61> Ell ........... TBUS<9> F34 ..................... Vcc H12 ..................... Vss L3 ............ . . .  LDE<6> 

B12 ........ TBUS<18> C35 ........ TBUS<63> E13 ......... TBUS<13> F36 ..................... Vss H14 ..................... Vss LS .. ... .. ..... ... LDO<S> 

B14 ........ TBUS<22> C37 ........ TBUS<70> E15 ..................... Vss F38 ..................... Vcc H16 .................. Vss L7 ............. LD0<37> 

,. 
B16 ........ TBUS<26> C39 ........ TBUS<76> E17 ..................... Vss F40 ..................... Vss H18 .................. Vss L39 ..................... Va; 

B 18 ........ TBUS<30> C41 ........... FPINTR# E19 ..................... Vcc F42 .......... EXT_CLK H20 . ............ ..... Vss L41....ADDR0<17>. 

,. B20 ........ TBUS<34> C43 ..................... Vss E21 ..................... Vss F44 ........... LPF _our H22. ..... ..... .. ... .. Vss L43 ..... ADDR0<16> 

B22 ........ TBUS<38> C45 ..................... Vcc E23 .... ..... TBUS<41> Gl ............. LD£<35> H24 ......... ......... Vss L45 ..... ADDRE<1 5> 

B24 ........ TBUS<42> D2. ............ LDE<33> E25 .................... .  Vss G3 ............... LDE<3> H26 .................. Vss M2 ..... ......... LDE<7> 
-
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M4 ........... LD0<41> T38 ..................... Vss Y44 ...... ADDRE<6> AE5 . ..... .... LD0<48> AJ41 ................... Vcc AP2 .......... LDE<55> 

M6 ........... LD0<39> T40 ..................... Vcc AAI .......... LDE<14> AE7 ..................... Vss AJ43 ........ ESAO<O> AP4 .......... LD0<23> 

MS ...................... Vee T42 ..... ADDRO<IO> AA3 .......... LDE<45> AE39 .................. Vcc AJ45 ....... ESASELE AP6 ... . ..... .  l.D0<55> 

M38 .................... Vss T44 ..... ADDRE<IO> AA5 .. ..... .. LD0<1 4> AE41 ................... Vss AK2 .... ..... . LDE<52> APS ..................... Vss 

M40 .................... Vcc Ut ............. LDE<l l> AA7 .................... Vss AE43 .... ADDRO<O> AK4 ......... l.D0<50> AP38 ................... Vss 

M42 .... ADDR0<15> U3 ............. LDE<42> AA39 .................. Vcc AE45 .... ADDRE<I> AK6 ......... LD0<21> AP40 ................... Vss 

M44 .... ADDRE< I4> U5 ............ LD0<43> AA4l .................. Vss AF2 .. ........ LDE<49> AKS ............. ..... .. Vss AP42 .......... DEQSE# 

NI ............... LDE<8> U7 ....................... Vss AA43 ... ADDR0<5> AF4 .......... LD0<17> AK38 .................. Vss AP44 .......... ENQLE# 

N3 ............. LDE<39> U39 ..................... Vcc AA45 .... ADDRE<5> AF6 .................... Vcc AK40 .................. Vss ARI .......... LDE<24> 

N5 . .... . ...... . .  l.D0<9> U41 ..................... Vss AB2 .......... LDE<46> AFS ..................... Vss AK42 ....... ESA0<1> AR3 .......... LDE<56> 

N7 ... .......... . LD0<7> U43 ...... ADDR0<9> AB4 .......... LD0<15> AF38 ................... Vss AK44 ....... ESAE<O> AR5 ......... l.D0<56> 

N39 ..................... Vcc U45 ...... ADDRE<9> AB6 .......... LD0<46> AF40 ................... Vss ALI... ....... LDE<21> AR7 .......... l.D0<57> 

N41 ... .ADDR0<14> V2 ............. LDE<43> ABS .................... Vss AF42 ......... WEO<I> AL3 .......... LDE<53> AR39 .................. Vcc 

N43 .... ADDR0< 13> V4 ............ LD0<13> AB38 .................. Vss AF44 .... ADDRE<O> AL5 ........ .. l.D0<52> AR41 . ... .MCHSAOO 

N45 .... ADDRE<13> V6 ....................... Vcc AB40 .................. Vss AGI... ....... LDE<1 8> AL 7 .......... l.DO<S4> AR43 ........... CCREQ 

P2 ............. I.DE<40> VS ....................... Vss AB42 .... ADDR0<4> AG3 ......... .LDE<50> AL39 .................. Vcc AR45 ......... ENQLP# 

P4 ............. LDO< II> V38 ..................... Vss AB44 . ... ADDRE<4> AG5 ......... LD0<1 8> AL41 ................... Vss AT2 ...... . .... I.DE<25> 

P6 . ... ........ .  LD0<40> V40 ..................... Vss ACI... ....... I.DE<15> AG7 .................... Vss AL43 ......... .. IURELit AT4 .......... l.D0<25> 

PS ........................  Vss V42 ...... ADDR0<8> AC3 .......... I.DE<47> AG39 .................. Vcc AL45 ........ ESAE<I> AT6 .. . . ..... .  l.D0<26> 

P38 ...................... Vss V44 ...... ADDRE<8> AC5 .......... LD0<47> AG41 .................. Vss AM2 .. . ..... .  I.DE<22> ATS ..................... Vcc 

P40 ...................... Vss WI ............ LDE<44> AC7 .................... Vss AG43 ........ WEO<O> AM4 ......... l.D0<20> AT38 ..... .MCHSf01 

P42 ..... ADDR0<1 2> W3 ............ LDE<12> AC39 .................. Vcc AG45 ......... WEE<I> AM6 . . ..... .. l.D0<22> Xf40 ................... Vcc 

P44 ..... ADDRE<12> W5 ........... LD0<44> AC41 ....ADDR0<3> AH2 .......... LDE<19> AMS ................... Vcc AT42 ...... MCHSAOI 

RI ............. LDE<41> W7 . . ...... .............. Vss AC43 .... ADDR0<2> AH4 ......... LD0<49> AM38 ................. Vss Xf44 .......... DEQSO# 

R3 ............... I.DE<9> W39 .................... Vcc AC45 .... ADDRE<3> AH6 ......... l.D0<51> AM40 ................. Vcc AUI .......... I.DE<57> 

R5 . . . . . . . . . . . .  LD0<42> W4t .................... Vcc AD2 ......... LDE<16> AHS .................... Vcc AM42 ........... UPDE# AU3 .......... I.DE<26> 

R7 ....................... Vss W43 ..... ADDR0<7> AD4 ......... LD0<1 6> AH38 .................. Vss AM44.VALIDOUT# AU5 ......... l.D0<58> 

R39 ..................... Vcc W45 ..... ADDRE<7> AD6 . . . . .. .. . . . . . . . ... . .  Vcc AH40 .................. Vcc ANI .......... LDE<54> AU7 ......... l.D0<59> 

R41 ..................... Vss Y2 ............. LDE<1 3> ADS .. . . ............ . . . .  Vcc AH42 ....... ESASELO AN3 .......... LDE<23> AU39 ........ MCHVSO 

R43 ..... ADDRO<I I> Y4 ............ LD0<45> AD38 .................. Vss AH44 ......... WEE<O> AN5 ......... l.D0<53> AU41 .. .. .MXTCHO# 

R45 ..... ADDRE<ll> Y6 ....................... Vcc AD40 ..... . . . . ... . ... .. Vcc AJI ........... LDE<51> AN7 ........ . LD0<24> AU43 .... .MCHSAEO 

T2 ............. LDE< 10> YS ....................... Vcc AD42 ... ADDRO<I> AJ3 ........... I.DE<20> AN39 .................. Vcc AU45 ...... INTMODE 

T4 ............. LD0<12> Y38 ..................... Vss AD44 ... ADDRE<2> AJ5 ........... LD0<19> AN41... ..... ENQLO# AV2 .......... LDE<58> 

T6 ............. LDO<IO> Y40 ..................... Vcc AEI... ....... LDE<48> AJ7 ..................... Vss AN43 ........ DEBUG# AV4 .......... LD0<27> 

TS ....................... Vcc Y42 ...... ADDR0<6> AE3 .......... LDE<17> AJ39 ................... Vcc AN45 ........... UPDO# AV6 .......... LD0<28> 
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-

AVS ..................... Vss AW33 ................. Vrx BAI3 ..... TAGE< 17> BB38 ... 1NDEXE<4> BD18 ...... .TAG0<9> BE43 .................. Vrx 

AVIO ........ LDE<3 1> AW35 ................. Vrx BAIS .................. Vss BB40 .. 1NDEXE<2> BD20 ....... TAG0<7> BE45 ................... Vas 

- AV12 .................. ,Vss AW37 .. INDEXE<O> BA17 .................. Vrx BB42 .... MCJNSE3 BD22 ....... TAG0<5> 

AV14 ................... Vss AW39 ................. Vrx BAI9 .................. Vss BB44 ... .MCJNSE2 BD24 ....... TAG0<3> 

AV16 ................... Vss AW41.. ..MCJNSOI BA21 .................. Vss BCI .................... Vrx BD26 ....... TAGO<I> 

AV18 ................... Vss AW43 ..... MOISTEO BA23 ....... TAGE<3> BC3 .................... Vss BD281NDEX0<16> 

AV20 ................... Vss AW45 ...... MATOI# BA2S .................. Vss BCS .......... LD0<31> BD301NDEX0<14> 

- AV22 ................... Vss AY2 .......... LDE<28> BA27 .................. Vrx BC7 ............. PMODE BD321NDEX0<12> 

AV24 ................... Vss AY4 .......... LDE<29> BA29 .................. Vss BC9 ....... TAG0<19> BD341NDEXO<IO:> 

AV26 ................... Vss AY6 .......... LD0<61> BA3! .................. Vss BCII... ... TAGE<1 5> BD36 .. 1NDEX0<8> -

AV28 ................... Vss AY8 .................... Vrx BA33 ..  1NDEXE<7> BC13 ...... TAGE<14> BD38 .. 1NDEX0<5> 

AV30 ................... Vss AYIO .................. Vss BA35 .. 1NDEXE<5> BC15 ...... TAGE<12> BD40 .. 1NDEX0<2> 

-
AV32 ................... Vss AY12 .................. Vrx BA37 .. 1NDEXE<3> BC17 ...... TAGE<IO:> BD42 ....... DBSETO# 

AV34 ................... Vss AY14 .................. Vss BA39 ..  1NDEXE<l> BC19 ........ TAGE<8> BD44 ................. Vss 

- AV36 ....... BDSETE# AY16 .................. Vrx BA41... . .MCJNS03 BC2l... ..... TAGE<6> BEl .................... Vss 

AV38 ................... Vss AY18 .................. Vss BA43 ...... MCJNSE1 BC23 ........ TAGE<4> BE3 .................... Vrx 

AV40 ................... Vss AY20 .................. Vrx BA45 ...... MCJNSEO BC2S ........ TAGE<I> BES .......... LD0<63> 
... 

AV42 ..... .MCHSTOO AY22 .................. Vss BB2 .......... LDE<30:> BC27.1NDEXE<16> BE7 ....... TAG0<21> 

AV44 ...... MCHSAE1 AY24 .................. Vrx BB4 .......... LDE<62> BC29.1NDEXE<14> BE9 ....... TAG0<18> 

-
AWI ......... LDE<27> AY26 .................. Vss BB6 .............. PERRE BC31 .1NDEXE<12> BEII .. . . .  TAG0<16> 

AW3 ......... IDE<59> AY28 .................. Vrx BB8 ........ TAGE<20> BC33.1NDEXE<IO:> BE13 ..... TAG0<14> 

... AW5 ......... LD0<60:> AY30 .................. Vss BBIO ...... TAGE<18> BC35 ... 1NDEXE<9> BE15 .... TAG0<12> 

AW7... .. .... ID0<29> AY32 .................. Vrx BB12 ...... TAGE<16> BC37 ... INDEX0<6> BE17 ..... TAGO<IO:> 

AW9 ......... LDE<63> AY34 .................. Vss BB14 ...... TAGE<13> BC39 ... 1NDEX0<3> BE19 ....... TAG0<8> 
-

AWI I ................. Vrx AY36 .................. Vrx BB16 ...... TAGE<11> BC4l...INDEXO<O:> BE2l... .... TAG0<6> 

AW 13 ................. Vrx AY38 .................. Vas BB18 ........ TAGE<9> BC43 ................... Vss BE23 ....... TAG0<4> 

,.. 
AWIS ................. Vrx AY40 .................. Vrx BB20 ........ TAGE<7> BC45 ........ .......... Vrx BE25 ....... TAG0<2> 

AW17 ................. Vrx AY42 ..... MCJNS02 BB22 ........ TAGE<5> BD2 ................... Vss BE27 ....... TAGO<O:> 

,... AW19 ................. Vss AY44 ...... MCHSTE1 BB24 ........ TAGE<2> BD4 .......... LD0<62> BE29.1NDEXO<t5> 

AW21 ................. Vrx BA1.. ........ IDE<60:> BB26 ........ TAGE<O:> BD6 ............. PERRO BE31.1NDEX0<13> 

AW23 ................. Vrx BA3 .......... IDE<61> BB28.1NDEXE<t5> BDS ...... TAG0<20:> BE33.1NDEXO<II> 

AW25 ................. Vrx BA5 .......... LD0<30:> BB30.1NDEXE<l3> BDIO .... TAG0<17> BE35 .. 1NDEX0<9> 

AW27 ................. Vrx BA7 .................... .NC BB32.1NDEXE<11> BD12 .... TAG0<15> BE37 .. INDEX0<7> 

,. 
AW29 ................. Vrx BA9 ....... TAGE<21> BB34 ... 1NDEXE<8> BD14 ..... TAG0<13> BE39 ... 1NDEX0<4> 

AW3 1 ................. Vcc BA1 1 ..... TAGE<19> BB36 ... 1NDEXE<6> BD16 ..... TAG0<11> BE4l....INDEX0<1> 
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K6 K8 
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M6 M8 

NS N7 

P6 P8 

RS R7 

T6 T8 

us U7 

V6 v8 

WS W7 

Y6 Y8 

AAl AA3 AAS AA 7 

AB2 AB4 AB6 AB8 

ACl AC3 ACS AC7 

AD2 AD4 AD6 AD8 

AEl AE3 AES AE7 

AF2 AF4 AF6 AF8 

AGl AG3 AGS AG7 

AH2 AH4 AH6 AH8 

AJl AJ3 AJS AJ7 

AK2 AK4 AK6 AK8 

ALl AL3 ALS AL7 

AM2 AM4 AM6 AM8 

ANl AN3 ANS AN7 

AP2 AP4 AP6 AP8 

ARl AR3 ARS AR7 

AT2 AT4 AT6 AT8 

AUl AU3 AUS AU7 

M hll hl3 liS hl7 hl9 �1 �3 �S �7 �9 �1 �3 �S �7 �9 Ml M3 MS 

810 812 814 816 818 820 822 824 82 6 82 8 830 832 834 836 838 840 842 844 

C9 Cll Cl3 ClS Cl7 Cl9 C21 C23 C2S C27 C29 C31 C33 C3S C37 C39 C41 C4 3 C4S 

mo m2 m4 m 6  m8 ooo 002 004 00 6 00 8 ooo 002 004 oo6 oo 8 wo w2 W4 

E9 Ell E13 ElS El7 El9 E21 E2 3 E2 S E27 E29 E31 E3 3 E3S E3 7 E39 E41 E43 E4S 

FlO Fl2 Fl4 Fl 6 Fl8 F20 F22 F24 F2 6 F28 F30 F32 F34 F36 F38 F40 F42 F44 

G9 Gll Gl3 GlS Gl7 Gl9 G2 1 G2 3 G2 S G2 7 G2 9 G31 G3 3 G3 S G3 7 G3 9 G41 G43 G4S 

HlO Hl2 Hl4 Hl 6 Hl8 H20 H22 H24 H2 6 H28 H30 H32 H34 H36 H38 H4 0 H42 H44 

J39 J4 1 J4 3 J4S 

K38 K40 K42 K44 

L39 L41 L43 L4 S 

M38 M40 M42 M44 

N39 N4 1 N43 N4S 

P38 P40 P42 P44 

R3 9 R41 R43 R4S 

T38 T40 T42 T44 

U39 U4 1 U4 3 U4S 

V3 8 V40 V42 V44 

V3 8 V40 V42 V44 

Y38 Y40 Y42 Y44 

AA39 AA4 1 AA4 3 AA4 S 

AB38 AB40 AB42 AB44 

AC3 9  AC4 1 AC43 AC4S 

AD38 AD40 AD42 AD44 

AE39 AE4 1 AE43 AE4S 

AF38 AF40 AF42 AF44 

AG3 9 AG4 1 AG4 3 AG4 S 

AH3 8  AH40 AH42 AH44 

AJ3 9  AJ4 1 AJ43 AJ4 S 

AK3 8 AK4 0 AK4 2 AK44 

AL39 AL41 AL43 AL4S 

AM38 AM40 AM42 AM44 

AN3 9 AN4 1 AN43 AN4 S 

AP38 AP40 AP42 AP44 

AR39 AR4 1 AR43 AR4S 

AT38 AT40 AT4 2 AT44 

AU39 AU4 1 AU4 3 AU4 S 

AV2 AV4 AV6 AV8 AVlO AV12 AV14 AV1 6  AV18 AV2 0 AV2 2 AV2 4  AV2 6 AV2 8 AV3 0  AV32 AV34 AV3 6 AV3 8 AV40 AV4 2 AV4 4 

AWl AW3 AWS AW7 AW9 AWl l  AW1 3 AWl S  AW1 7  AW19 AW2 1 AW2 3 AW2 S AW2 7 AW2 9 AW3 1 AW3 3 AW3 S AW3 7  AW39 AW4 1 AW4 3 AW4 S 

BAl 

AY2 AY4 

BA3 BAS 

AY6 AY8 AYlO AY12 AY14 AY1 6 AY18 AY20 AY22 AY24 AY2 6 AY28 AY30 AY32 AY34 AY36 AY38 AY40 AY42 AY44 

BA7 BA9 BAl l BA13 BAl S BA1 7  8Al9 � 1  BA23 BA2 S BA2 7 BA2 9 8A3 1  BA33 BA3S BA37 BA39 BA41 BA43 8A4 S 

882 884 

BCl BC3 

886 

BCS 

888 8810 8812 8814 8816 8818 8820 8822 8824 882 6 882 8 8830 8832 8834 883 6 8838 8840 8842 8844 

BC7 BC9 BCll BC13 BClS BC17 BC 19 8C21 BC2 3  BC2 S BC27 BC2 9  8C3 1 BC33 BC3S BC3 7  BC39 BC4 1 8C43 BC4S 

802 804 B06 B08 BOlO B012 BM4 8016 B018 B02 0 B022 B024 B02 6 B028 B030 B032 8034 B036 B03 8 8040 B042 B044 

BEl BE3 8ES BE7 8E9 BEl l BE13 BElS BE17 BE19 BE21 8E23 8E2S 8E27 8E29 8E3 1 BE33 BE3S BE37 BE39 BE41 BE43 BE4S 
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A03 .............. ..... .. Ycc B26 ........ TBUS<46:> D4 ............... LDE<l> E27 ...... .. ..... .. .... . .  Vss GS .............. LD0<3> H28 .................... Vss 

A05 .......... TBUS<O> B28 ........ TBUS<.50> D6 . .. ... .. ... .  TBUS<3> E29 ... .................. Vcc G7 .............. LD0<:2> H30 .................... Vss 

A07 .......... TBUS<6> B30 ........ TBUS<54> D8 ............ TBUS<7> E3l ......... ... .. ... . . . . Yss G9 .. ....... ...... LDE<O> H32 .... ..... . .... .. ... . Vss 

A09 ........ TBUS<l 2> B32 ........ TBUS<58> DlO ........ TBUS<ll> E33 ......... TBUS<67> Gll ..................... Vcc H34 .................... Vss 

All ........ TBUS<l6> B34 ........ TBUS<62> Dl2 ........ TBUS<l5> E35 ......... TBUS<71> Gl3 . . . . ... .............. Vcc H36 ..................... NC 

- Al3 ........ TBUS<20> B36 ........ TBUS<66> D14 ........ TBUS<21> E37 ......... TBUS<75> Gl5 .................. .. .  Ycc H38 .................. .. Yss 

Al5 ........ TBUS<24> B38 ........ TBUS<72> Dl6 ........ TBUS<25> E39 ......... TBUS<79> Gl7 ..................... Ycc H40 . . . . . . . ............. Ycc 

Al7 ........ TBUS<28> B40 ........ TBUS<78> Dl8 ........ TBUS<29> E4l ................ X_SDI Gl9 .....................  Ycc H42 ............. JTAG_R 
-

Al9 ........ TBUS<32> B42 ..................... NC D20 ........ TBUS<33> E43 ....... SYNC_OUT G2l .................... . Ycc H44 ............. JTAG_O 

A2l... ..... TBUS<36> B44 .......... ... . . ... ... Vss D22 ........ TBUS<37> E4S . ... ......... .. . . . .  CLK G23 ............. . ... . . .. Ycc Jl...  ............. LDE<5> 

-
A23 ........ TBUS<40> Ct ..................... . .  Vee D24 ........ TBUS<43> F2... . . .. ...... LDE<34> G25 .................. . . .  Ycc J3 .............. LDE<36> 

A25 .... .. . . TBUS<44> C3 . . . . . ... .. ... ..... ..... Vss D26 ....... TBUS< 47> F4 ............. LD0<34> G27 ..................... Vcc J5 ................ LD0<5> 

- A27 ........ TBUS<48> C5 .............. LDO<O> D28 ....... TBUS<5 1> F6 .. ........... LD0<33> G29 ..................... Vcc 17 ............... LD0<4> 

A29 ........ TBUS<52> C7 . . ..........  TBUS<4> D30 ........ TBUS<55> FS ........................ Yss G3l . . ..... . ... ..... ..... Vcc J39 ......... vcc_pu. 

A3l... ..... TBUS<56> C9 .. . . . . .... TBUS<l0> D32 ........ TBUS<59> FIO .. ........ ........... Ycc G33 ..................... Ycc J41 ............. .ITAG_S 
-

A33 ........ TBUS<60> Cll... ..... TBUS<l7> D34 ........ TBUS<65> Fl2 ...................... Vss G35 ..................... Ycc J43 ............. DEBUG_ 

A35 ........ TBUS<64> Cl3 ........ TBUS<l9> D36 ........ TBUS<69> Fl4 ................. .... Ycc G37 .......... . FYALID# 14S .••.•.••...... SDO<O> 

- A37 ........ TBUS<68> Cl5 ........ TBUS<23> D38 ........ TBUS<73> Fl6 ..................... .  Yss G39 ..................... Vcc K2 . ... ......... LDE<37> 

A39 ........ TBUS<74> Cl7 ........ TBUS<27> D40 .... .. . .  TBUS<TI> Fl8 ..... ....... ... ..... . Vcc G4l... ....... SYNC_IN K4 ............ LD0<38> 

- A4l ............... TBOE# Cl9 ........ TBUS<31> D42 ............. RESET# F20 ...................... Vss G43 .............. ITAG_I K6 .............. LD0<6> 

A43 ...... ... .... .. ...... Vcc C2l... ..... TBUS<35> D44 .... . ....... . .  x_soo F22 ..................... Ycc G4S ............. ITAG_C K8 ....................... Yss 

A45 ......... ..... ....... Vss C23 ...... .. TBUS<39> El ............. . . .. ...... Vss F24 ...................... Yss H2 ............ . . .  LDE<4> K38 . ... .. ... GND_PU. 
... 

B2 ................. .... .. Yss C25 . .... ... TBUS<45> E3 ............... LDE<2> F26 .............. . . . . . .  Vee H4 ............ LD0<36> K40 .............. . .... .  Vss 

B4 ............ LD0<32> C27 ........  TBUS<49> ES ............... LDO<l> F28 ..................... Yss H6 ............ LD0<35> K42 ..................... NC 

- B6 ............ TBUS<2> C29 ........ TBUS<53> E7 ............. TBUS<l> F30 .. ............... . . .. Ycc H8 ........ ............... Vcc K44 .......... SD0<32> 

B8 ............ TBUS<8> C31 ........ TBUS<57> E9 ............. TBUS<5> F32 ................. .. .. Yss HlO ........... LDE<32> Ll ............. LDE<38> 

BlO ........ TBUS<14> C33 ........ TBUS<61> Ell... ........ TBUS<9> F34 .. ... .. ..... ..... .... Vcc H12 ....... .............. Vss L3 ............... LDE<6> 

Bl2 ........ TBUS<l 8>  C3S ........ TBUS<63> El3 ......... TBUS<l 3> F36 .... . ..... ..... .. .... Vss Hl4 ..................... Vss LS .............. . LD0<8> 

Bl4 ........ TBUS<22> C37 ........ TBUS<70> EIS .................. ... Yss F38 ... .................. Ycc Hl6 ............... . ... . .  Yss L7 ............. LD0<37> 

Bl6 ........ TBUS<26> C39 ........ TBUS<76.> El7 .............. ....... Vss F40 ............... .. .... Yss H18 ....... ............ .. Vss L39 .. ............... .... Ycc 

Bl8 ........ TBUS<30> C4l ..................... .NC El9 ........... . ....... . .  Vcc F42 ...... .... EXT_CLK H20 .. .......... ......... Vss L4l ............. SDE<O> 

B20 ........ TBUS<34> C43 ...... ............... Yss E21 ........ ............. Vss F44 .... ..... .. LPF _our H22. .. ............... .. .  Yss L43 ........... SDE<32> 

B22 ........ TBUS<38> C4S ..................... Vcc E23 .. ....... TBUS<41> Gl ............. LDE<35> H24 ................. . ... Vss L45 ............. SDO<l> 

.. B24 ........ TBUS<42> D2 ............. LDE<33> E25 ...... . .............. Vss G3 ............... LDE<3> H26 ..................... Vss M2 . .......... .. .  LDE<7> 

Table 8- 1 1  R801 0  Floating Point Unit Pinout 
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Location . . . Signal Location .. .  Signal Location . . . Signal Location . . . Signal Location . . . Signal Location .. . Signal 
M4 ........... l..D0<41> T38 ..................... Vss Y44 ............ SD0<5> AES ........ . .  l..D0<48> AJ4l ................... Va; AP2 .......... 1DE<55> 

M6 ........... LD0<39> T40 ..................... Va; AAI .......... IDE<l4> AET ............. . . . . . . .  Vss AJ43 ......... SDE<40> AP4 .......... 1...D0<23> 

MS ...................... Va; T42 .......... .SDE<35> AA3 ......... . 1DE<45> AE39 .................. Vcc AJ45 ........... SD0<8> AP6 .......... l..DO<S5> 

M38 .................... Vss T44 ........... SD0<35> AAS ......... l..DO<l4> AE4l .................. Vss AK2 .......... 1DE<52> APS ..................... Vss 

M40 .................... Va; Ul ............. IDE<l l> AA7 .................... Vss AE43 .......... SDE<7> AK4 ......... LDO<SO> AP38 ................... Vss 

M42 ............ SDE<l> U3 ............. 1DE<42> AA39 .................. Va; AE45 .......... SPO<l> AK6 ......... 1...D0<21> AP40 ................... Vss 

M44 .......... SD0<33> U5 ............ l..D0<43> AA4l .................. Vss AF2 ..... ..... 1DE<49> AKS .................... Vss AP42 ......... SDE<43> 

Nl ............... 1DE<8> U7 ....................... Vss AA43 ........ SDE<37> AF4 .......... l..DO<l7> AK38 .................. Vss AP44 ........ SD0<42> 

N3 ............. 1DE<39> U39 ..................... Va; AA45 ........... SPE<2> AF6 .................... Va; AK40 .................. Vss ARI... ....... IDE<24> 

N5 . . . . .. .. ...... l..D0<9> U4l ..................... Vss AB2 .......... 1DE<46> AFS ..................... Vss AK42 .......... SDE<9> AR3 ..... ..... 1DE<56> 

N7 ........... ... l..D0<7> U43 ............. SDE<4> AB4 .......... l..DO<l5> AF38 ................... Vss AK44 ...... SD0<40-> AR5 .. .. ..... LD0<56> 

N39 ..................... Va; U45 ............ SD0<4> AB6 .......... LD0<46> AF40 ................... Vss ALI... ....... IDE<21> AR7 .......... l..DO<S7> 

N4l ........... SDE<33> V2 ............. 1DE<43> ABS .................... Vss AF42 ......... SDE<39> AL3 .......... 1DE<53> AR39 .................. Va; 

N43 ............. SDE<2> V4 ............ l..DO<l3> AB38 .................. Vss AF44 .......... SD0<7> AL5 ..... ..... l..DO<S2> AR4l ........ SDE<44> 

N45 ............ SD0<2> V6 ....................... Va; AB40 .................. Vss AGI. ......... IDE<l8> AL7 .......... l..DO<S4> AR43 ........ SDE<l2> 

P2... . . ........ 1DE<40> VS ....................... Vss AB42 .......... SPE<3> AG3 .......... 1DE<50> AL39 .................. Va; AR45 ........ SD0<11> 

P4 ............. l..DO<ll> V38 ..................... Vss AB44 ........  SD0<37> AG5 ......... l..DO<l8> AL4l ................... Vss AT2 ........... 1DE<2S> 

P6 ............ l..D0<40> V40 ..................... Vss ACI... ....... IDE<l5> AG7 .................... Vss AL43 ........ SDE<41> AT4 .......... 1...D0<25> 

PS ........................  Vss V42 ........... SDE<36> AC3 .......... 1DE<47> AG39 .................. Va; AL45 .......... SD0<9> AT6 .......... 1...D0<26> 

P38 ...................... Vss V44 .......... SD0<36> AC5 .......... l..D0<47> AG4l .................. Vss AM2 ......... 1DE<22> ATS ..................... Vcc 

P40 ...................... Vss Wl ............ IDE<44> AC7 .................... Vss AG43 .......... SP0<3> AM4 .... ..... ID0<20> AT38 ....... BYPASS# 

P42 ............ SDE<34> W3 ............ 1DE< l2> AC39 .................. Va; AG45 .......... SP0<2> AM6 ...... .. .  ID0<22> AT40 ................... Va; 

P44 ........... SD0<34> W5 ........... l..D0<44> AC4l... ....... SDE<6> AH2 .......... 1DE<l9> AMS ................... Va; AT42 ......... SDE<l3> 

Rl ............. IDE<41> W7 ......................  Vss AC43 ........ SDE<38> AH4 ......... l..D0<49> AM38 ................. Vss AT44 ........ SD0<43> 

R3 ............... 1DE<9> W39 .................... Va; AC4S .......... SD0<6> AH6 ......... l..DO<Sl> AM40 ................. Va; AUI ......... .LDE<57> 

R5 ............  l..D0<42> W4l .................... Va; AD2 .......... 1DE<l6> AHS .................... Va; AM42 ....... SDE<l0> AU3 ......... .LDE<26> 

R7 ....................... Vss W43 ............. SPE<O> AD4 ......... l..DO<l6> AH38 ......•........... Vss AM44 ....... SD0<41> AU5 ......... LDO<S8> 

R39 ..................... Va; W45 ............. SPE<l> AD6 .. ................. . Va; AH40 ................. Va; ANI... ....... IDE<54> AU7 ......... l..DO<S9> 

R4l ..................... Vss Y2 ............. 1DE<l3> ADS .................... Va; AH42 .......... SDE<8> AN3 .......... 1DE<23> AU39 .......... LP0<3> 

R43 ............. SDE<3> Y 4 ............ LD0<4S> AD38 .................. Vss AH44 ........ SD0<39> ANS ......... l..DO<S3> AU41... ....... PMODE 

R45 ............. SD0<3> Y6 ....................... Va; AD40 .................. Va; AJ1 ........... 1DE<51> AN7 .. ..... .. 1...D0<24> AU43 ........ SD0<44> 

T2 .............  1DE<l 0>  YS ....................... Vcc AD42 .......... SPO<O> AJ3 ........... 1DE<20> AN39 .................. Va; AU45 ........ SD0<12> 

T4 ............. l..DO<l2> Y38 ..................... Vss AD44 ........ SD0<38> AJ5 ........... l..DO< l9> AN4l ........ SDE<l l> AV2 .......... 1DE<58> 

T6 ............. LD0<10> Y40 ..................... Va; AEI... ....... IDE<48> AJ7 ... .............. .. .. Vss AN43 ........ SDE<42> AV4 .......... 1...D0<27> 

TS ....................... Va; Y42 ............. SDE<5> AE3 .......... 1DE<l7> AJ39 ................... Va; AN45 ........ SDO<IO> AV6 .......... 1...D0<28> 

Table 8- 1 1  R801 0  Floating Point Unit Pinout 
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I -
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Location . . . Signal Location .. . Signal Location . . . Signal Location .. . Signal Location .. . Signal Location .. . Signal 
I -

AV8 ..................... Vss AW33 ................. Vcc BA13... .. .. SDE<62> BB38 ........ SDE<47> BD18 ....... S00<26> BE43 .................. Vcc 

AVlO ........ lDE<3 1> AW35 ................. Vcc BAlS .................. Vss BB40 ........ SDE<46> BD20 ....... S00<25> BE45 .................. Vss 

AV 12 ................... Vss AW37 ......... SDE<5> BA17 .................. Vcc BB42 ........... LPE<O> BD22 ....... SD0<24> 

AV14 ................... Vss AW39 ................. Vcc BA19 .................. Vss BB44 ........... LPE<I> BD24 ....... S00<23> 

AV16 ................... Vss AW41..  ....... LP0<2> BA21 .................. Vss BCI .................... Vcc BD26 ....... S00<22> 

AVIS ................... Vas AW43 ........ DEQSO# BA23 ........ SDE<55> BC3 ..................... Vss BD28 ....... S00<21> 

AV20 ................... Vss AW45 ................. NC BA2S .................. Vu BCS .......... LD0<31> BD30 ........ SD0<20> 
-

AV22 ................... Vss AY2 .......... lDE<28> BA27 .................. Vcc BC7 .............. ENQLP BD32 ........ SD0<19> 

AV24 ................... Vss AY4 .......... lDE<29> BA29 .................. Vss BC9 .......... SD0<31> BD34 ........ SD0<!8> 

,.,, AV26 ................... Vss AY6 .......... LD0<61> BA31 .................. Vss BCII.. ...... SDE<61> BD36 ........ SD0<!7> 

AV28 ................... Vss AY8 .................... Vcc BA33 ........ SDE<17> BC13 ........ SDE<29> BD38 ........ SD0<47> 

,. AV30 ................... Vss AYIO .................. Vss BA35 ........ SDE<16> BCIS ........ SDE<28> BD40 ........ SD0<14> 

AV32 ................... Vss AY12 .................. Vcc BA37 ........ SDE<IS> BC17 ........ SDE<27> BD42 .............. FCCL 

AV34 ....... ............ Vss AY14 ................. Vss BA39 ........ SDE<14> BC19 ........ SDE<26> BD44 .................. Vss 

,... 
AV36 .............. FCCR AY16 .................. Vcc BA41.. .. ... .. . LPO<O> BC2l... ..... SDE<2S> BEl ..................... Vss 

AV38 ................... Vss AY18 .................. Vss BA43 ........... LPE<2> BC23 ........ SDE<24> BE3 .................... Vcc 

... AV40 ................... Vss AY20 .................. Vcc BA45 ........... LPE<3> BC2S ........ SDE<S4> BES .......... LD0<63> 

AV42 .......... DEQSE# AY22 .................. Vss BB2 .......... lDE<30> BC27 ........ SDE<53> BE7 .... .... . . .. . .  PERRE 

AV44 ........ SD0<13> AY24 .................. Vcc BB4 .......... lDE<62> BC29 ........ SDE<52> BE9 .......... SD0<62> 
... 

AWI ......... lDE<27> AY26 .................. Vu BB6 ........... ENQLE# BC3l... ..... SDE<5 1> BEli ........ SD0<61> 

AW3 ......... lDE<59> AY28 .................. Vcc BB8 .......... .... PERRO BC33 ........ SDE<SO> BE13 ........ SD0<60> 

,... 
AWS ......... LD0<60> AY30 .................. Vss BB10 ........ SDE<31> BC35 ........ SDE<18> BE1S... .... SDO<S9> 

AW7 ......... lD0<29> AY32 .................. Vcc BB 12 ........ SDE<30> BC37 ........ SDO<l6> BE17 ....... SD0<58> 

.. AW9 ......... lDE<63> AY34 .................. Vss BB!4 ........ SDE<60> BC39 ........ SD0<46> BE19 ........ SD0<57> 

AWl i ................. Vcc AY36 .................. Vcc BBI6 ........ SDE<59> BC4l... ..... FPINTR# BE21.. ...... SDO<S6> 

AW1 3 ................. Vcc AY38 .................. Vu BB 1 8  ........ SDE<S8> BC43 ................... Vss BE23 ........ SD0<55> 
,. 

AWlS ................. Vee AY40 .................. Va: BB20 ........ SDE<S7> BC4S .................. Vcc BE2S ........ SDO<S4> 

AW17 ................. Va: AY42 ......... LPO<l> BB22 ........ SDE<S6> BD2 .................... Vss BE27 ........ SD0<53> 

,. 
AW19 ................. Vcc AY44 ...... .. ....... FOEI BB24 ........ SDE<23> BD4 .......... LD0<62> BE29 ........ SD0<52> 

AW2 l ................. Va: BAI ... ....... lDE<60> BB26 ........ SDE<22> BD6 ........... ENQLO# BE3l.. ...... SDO<SI> 

AW23 ................. Vcc BA3 .......... lDE<61> BB28 ........ SDE<21> BD8 .......... SD0<63> BE33 ........ SDO<SO> 

AW2S ................. Vcc BAS ......... .  lD0<30> BB30 ........ SDE<20> BD10 ........ SD0<30> BE3S ........ SD0<49> 

AW27 ................. Vcc BA7 .................... NC BB32 ........ SDE<l9> BD12 ........ S00<29> BE37 ........ SD0<48> 
,.. 

AW29 ................. Vcc BA9 .................... NC BB34 ........ SDE<49> BD14... .... S00<28> BE39 ........ SDO<IS> 

AW3 l ................. Vcc BAII... ..... SDE<63> BB36 ........ SDE<48> BD16 ........ SD0<27> BE41.. ...... SD0<4S> 

,.. Table 8- 1 1  R80 10 Floating Point Unit Pinout 
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T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
vee vss vee vss vee vss vee vss vee vss vee RGOENZ vee vss vee vee 

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
VSS INDEX7 INDEXS INDEX4 INDEX2 INDEXO SEeTORO TDI TMS mST RGOSI 11 eLK Ne Ne PLUN1 VSS 

p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
vee INDEX9 INDEXB INDEXS INDEX3 INDEX1 SEeTOR1 TeK TOO eEt RGOSIOt Ne VSUB Ne NC VSS 

N 0 0 0 
VSS INDEX11 INDEX10 

M 0 0 0 
VSS lWEI INDEX12 

L 0 0 0 
VSS SmDI STWEI 

K 0 0 0 

J 
VSS RWSAO RWSA 1 

0 0 0 
vee OEI DBSETt 

H 0 0 0 
vee TAGO TAG1 

G 0 0 0 
vee TAG2 TAG3 

F 0 0 0 
vee TAG4 TAGS 

E 0 0 0 
vee TAGS TAG7 

D 0 0 0 
vee TAGS TAG9 

0 0 0 
PWN2 Ne vee 

0 0 0 
PLLEN PLLSEL VSS 

0 0 0 
Ne Ne VSS 

0 0 0 
NC Ne VSS 

0 0 0 
NC VSUBeELL vee 

0 0 0 
Ne Ne VSS 

0 0 0 
NC Ne SSBENZ 

0 0 0 
Ne Ne VSS 

0 0 0 
MeHST1 NC vee 

0 0 0 
MCHVS3 MCHSTO Vee 

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
VSS TAG1 0  TAG12 TAG1 4  TAG1 8  TAG1 8  vee ESAO DATSNJOt DA�11 OATSA10f DATSA11t MCHSAO MCHVS1 MCHVS2 vee 

B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
vee TAG1 1  TAG1 3  TAG1 5  TAG1 7  TAG1 9  vee ESA1 DATS.IOO DA� DATSA10 DATSA11 MATCHt MCHSA1 MCHVSO vee 

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 

8-18 

vss vee vss vee vee vss vss vee vee vee vee vee vss vee vss 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure 8-8 Tag RAM Package 
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Location . . . Signal Location .. .  Signal 
Al ....... ................ Yss BI2 ..... DATSAY<I> 

A3 ...... ................. Ycc B13 ........... MATCH# 

A4 ....................... Yss B14 ...... MCHSA<I> 

AS ....................... Vcc BIS ...... MCHVS<O.> 

A6 ....................... Ycc B16 ..................... Vcc 

A7 ....................... Vss Cl ....................... Yss 

A8 ....................... Yss C2 ............. TAG<JO> 

A9 ....................... Vcc C3 ............. TAG<12> 

AIO ..................... Vcc C4 ............. TAG<14> 

Att ............... ...... vcc cs ............. TAG<t6> 

A12 ..................... Vcc C6 ............. TAG<18> 

Location .. . Signal 
DI6 ..................... Vcc 

El ....................... Vcc 

E2 ............... TAG<6> 

E3 .......... ..... TAG<7> 

E14 ....... MCHST<I> 

EIS ...................... NC 

E16 ..................... Vcc 

FI ....................... Vcc 

F2 ............... TAG<4> 

F3 ....... ........ TAG<5> 

F14 ...................... NC 

Location . . . Signal 
J2 ....................... 0E# 

J3 ................ DBSEf# 

J14 ...................... .NC 

JJS ........ VSUBCEIL 

J16 ...................... Vcc 

Kl ....................... Vss 

K2 ........... RWSA<l> 

K3 ........... RWSA<O.> 

K14 ..................... NC 

KJS ..................... NC 

K16 ..................... Vss 

Location . . . Signal Location .. .  Signal 
N14 .............. PU.IN2 R8 ....................... 1DI 

NIS ..................... NC R9 ..................... TMS 

N16 ..................... Vcc RIO ................. TRST 

Pl ....................... Vcc Rll ............. RGOSII 

P2 . .......... INDEX<9> Rl2 ................... CLK 

P3 ........... 1NDEX<8> R13 ...................... NC 

P4... ........ INDEX<5> R14 ..................... Vcc 

PS... ........ INDEX<3> RlS .............. PU.INl 

P6 ........... 1NDEX<I> R16 ..................... Vss 

P7 .... .... SECI'OR< I> Tl ....................... Vcc 

PS ...................... TCK T2 ................... .... Yss 

AI3 ..................... Ycc C7 .................. ..... Vss FJS ...................... NC Ll ....................... Vss P9 . .................... 1DO T3 ....................... Ycc 

A14 ..................... Yss CS ............... ESA<O.> F16 ...................... Vss L2 ................. STRD# PJO ..................... CE# T4 ....................... Yss 

A15 ..................... Ycc C9 .... DATSAW#<O.> Gl ....................... Vcc L3 ................. STWE# Pll .............. RGOSIO TS ....................... Vss 

A16 ..................... Yss CJO .. DATSAW#<I> 

Bl ...................... Ycc CII...DATSAZ#<O.> 

B2 ............. TAG<Il> Cl2 ... DATSAZ#<I> 

B3 ............. TAG<1 3> C13 ...... MCHSA<O.> 

B4 ............. TAG<15> C14 ...... MCHVS<I> 

BS ............. TAG<17> C15 ...... MCHVS<2> 

B6 ............. TAG<19> C16 ..................... Vcc 

B7 ............... ESASEL DI ....................... Vcc 

G2 .............. TAG<2> L14 ...................... NC 

G3 ............... TAG<3> LJS ...................... NC 

G14 ..................... NC L16 ..................... Vss 

GJS ..................... NC Ml ...................... Vss 

G16 ............ SSBENZ M2 ........ ....... ... TWE# 

Hl ....................... Vss M3 ....... 1NDEX<1 2> 

H2 .............. TAG<O.> M14 .............. Pl.LEN 

H3 .... ........... TAG<l> MIS ............ PILSEL 

P12 ..................... NC T6 ....................... Vcc 

P13 ................. VSUB TI ....................... Yss 

P14 ...................... NC TS ......... .............. Ycc 

PJS ...................... NC T9 ....................... Vss 

P16 ...................... Vss TJO ..................... Yss 

Rl ....................... Vss Tl l ..................... Vcc 

R2 .......... INDEX<7> T12 ........... RGOENZ 

R3 ... ..... .. 1NDEX<6> T13 ..................... Vcc 

BS ............... ESA<I> D2 ............... TAG<8> Hl4 .................... .NC M16 ................... Yss R4 .......... 1NDEX<4> T14 ..................... Yss 

B9 ....... DATSAX<O.> 

BJO ..... DATSAX<I> 

BII ..... DATSAY<O.> 

TFP User's Manual 

D3 ............... TAG<9> HJS ..................... NC 

D14 ...... MCHVS<3> H16 ..................... Vss 

DlS ..... .MCHST<O.> Jl ........................ Vcc 

Nl ....................... Vss RS, ..... .... INDEX<2> 

N2 ........ 1NDEX<ll> R6 .......... INDEX<O.> 

N3 ........ INDEX<IO> R7 ....... SECI'OR<O.> 

Table 8-1 2  Tag RAM Unit Pinout 

TIS ..................... Vcc 

T16 ..................... Vcc 
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8-20 

GNO 
eEt 

AO<O> 
A0<2> 
A0<4> 

GNO 
eLKA 
GNO 

A0<5> 
A0<7> 
AD<9> 

A0<11> 
A0<14> 

V3 
A0<15> 
A0<16> 
A0<17> 

v�Y; 
GNO 

V3 
L0<8> 
50<3> 
L0<6> 
50<5> 

vee 
50<6> 
L0<5> 
50<8> 
L0<3> 

GNO 
eLK8 
GNO 

50<Hl> 
L0<16> 
50<12> 
L0<15> 

V3 
GNO 

50<15> 
L0<12> 
50<16> 
L0<10> 

vee 
GNO 

V3 
50<18> 
L0<25> 
50<20> 
L0<23> 

vee 
50<23> 
LD<20> 
50<2S> 
lD<18> 

GNO 
eLKF 
GNO 

50<27> 
LD<32> 
50<29> 
L0<30> 

V3 
50<30> 
L0<29> 
50<32> 
LD<27> 

vee 
GNO 

V3 
OAT5AY<O> 
OAT5AX<O> 
OAT5AY<1> 
OAT5AX<1> 

GNO 

A1 
A3 
AS 
A7 
A9 
A1 1 
A1 3 
A1 5 
A1 7 
A1 9 
A21 
A23 
A2S 
A27 
A29 
A31 
A33 
A3S 
A37 
A39 
A41 
A43 
A4S 
A47 
A49 
AS1 
A53 
A5S 
AS7 
A59 
A61 
A63 
A65 
A67 
A69 
A71 
A73 
A75 
An 
A79 
A81 
A83 
ASS 
A87 
A89 
A91 
A93 
A9S 
A91 
A99 
A101 
A103 
A105 
A107 
A109 
A111 
A113 
A11S 
A1 17 
A119  
A121 
A123 
A12S 
A127 
A129 
A131 
A1 33 
A135 
A137 
A139 
A141 
A143 
A145 
A147 
A149 

B2 
B4 
B6 
B8 

810 
812 
814 
816 
818 
B20 
B22 
B24 
B26 
B28 
B30 
B32 
B34 
B36 
B38 
B40 
B42 
B44 
B46 
B48 
B50 
B52 
B54 
B56 
B58 
B60 
B62 
B64 
B66 
B66 
870 
872 
874 
876 
878 
B80 
B81 
B84 
B86 
B88 
890 
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Figure 8-9 Streaming Cache SIM Module 
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HARDWARE INTERFACE 

9 

Chapter 9 defines the hardware interface for the RSOOO Microprocessor, R8010 Floating 
Point Unit, Tag RAM, and streaming cache data RAM's. A (_) at the end of a signal name 
denotes that the signal is active low. In this chapter the terms "Streaming Cache RAM", 
"Data RAM's", and "Second Level Cache SRAM" all have the same meaning. Figure 9-1 
shows how the different components of the RSOOO Microprocessor Chip Set connect 
together. 
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Figure 9- 1 R8000 Microprocessor Component Connection Diagram 
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9.1 RSOOO MICROPROCESSOR SIGNAL DESCRIPTIONS 

The R8000 Microprocessor is a 591 pin device and interfaces to all other components in 
the chip set. The following sections define the external pinout of the R8000 
Microprocessor and are divided into specific component interfaces. Figure 9-2 shows the 
functional pin groupings of the R8000. 
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R8000 Microprocessor 

.. DEBUG_ 
.. DEQSE_ . 

FCCL ... .. DEQSO_ 
FCCR . ENQLE_ ... 

.. 

FPINTR_ .. 
.. ENQLO_ . R8010 FPU � 

PERRO .. 

INTERFACE ENQLP_ � 

PERRE .. .. FVALID_ . 

.A � PM ODE � 

TBUS[71:0] -/ TBUS[79:72] :. TBUSOE_ .... 

MATCHE_ .. 
� 

MCHSAE [1:0] : DBSETE_ 
MCHVSE [3:0] ... ESAE [1:0] EVEN TAG RAM = MCHSTE [1:0] .A � INTERFACE � ESASELE 

TAGE [21:0] < - INDEXE [16:0] � -

MATCHO_ 
MCHSAO [1:0] ... DBSETO_ :- ODD TAG RAM 

-

MCHVSO [3:0] ESAO [1:0] 
MCHSTO [1:0] .. INTERFACE .. ESASELO ... � 

.A ) - INDEXO [16:0] TAGO [21 :0] -

.. WEE_ [1 :0] 
LDE[63:0] EVEN BANK DATA -· 

- � ADORE [17:0] 
L00[63:0] -

ODD BANK DATA ..: WE0_ [1:0] 
- ADDRO [17:0] 

-

CCREQ_ .. CACHE .. IUREL_ .A .... · � 

TBUS[71:0] ) CONTROLLER .. SAQE_ 
INTERFACE � SAQO_ 

VALIDOUT_ ... 

CLK .. 

EXT_CLK : :-GND_PLL : CLOCK .... LPF_OUT 
VCC_PLL 

INTERFACE SYNC_IN ... .... SYNC_ OUT 

JTAG_TDI - ... JTAG_TDO JTAG_TMS ... .... 

:. JTAG JTAG_TCK : JTAG_TRST - INTERFACE .. 500 � 

SDI -

INTLMODE .. INITIALIZATION -

RESET - INTERFACE 

Figure 9-2 R8000 Microprocessor Signal Groupings 

Table 9-1 shows a pin summary of the R8000 Microprocessor in alphabetical order. 
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Pin iD Pin Name Active Level Connects To 
Output Pins 

ADDRE[l7 :0] Address Even High Even Bank Data 
ADDRO[l7:0] Address Odd High Odd Bank Data 

DBSETE_ Dirty Bit Set Even Low Even Tag RAM 
DBSETO_ Dirty Bit Set Odd Low Odd Tag RAM 
DEBUG_ Debug Low R8010 FPU 

-
DEQSE_ Dequeue Store Even Low R8010 FPU 
DEQSO_ Dequeue Store Odd Low R8010 FPU 
ENQLE_ Enqueue Load Even Low R8010 FPU 
ENQLO_ Enqueue Load Odd Low R8010 FPU 
ENQLP_ Enqueue Load Priority Low R8010 FPU 

,. ESAE[ l :O] External Set Address Even High Even Tag RAM 
ESAO[ l :O] External Set Address Odd High Odd Tag RAM 

- ESASELE Ext. Set Addr. Select Even High Even Tag RAM 
ESASELO Ext. Set Addr. Select Odd High Odd Tag RAM 
FVALID_ R80 1 0  FPU Valid Low R8010 FPU 

INDEXE[ l 6:0] Index Even High Even Tag RAM 
INDEXO[ 16:0] Index Odd High Odd Tag RAM 

- IUREL_ Integer Unit Release Low Cache Controller 
JTAG_TDO Jtag Test Data Output High External Source 
LPF_OUT PLL Low Pass Filter Test High External Source 

- PM ODE Parity Mode High R8010 FPU 
SAQE_ Store Adress Queue Even Low Cache Controller 

,.. SAQO_ Store Address Queue Odd Low Cache Controller 
SDO Serial Data Out High External Source 

SYNC_ OUT PLL Feedback Loop High Sync_In pin of R8000 
TBUS[79:72] TBus High R8010 FPU 

TBUSOE_ TBus Output Enable Low R8010 FPU 
.. VALIDOUT_ Valid Out Low Cache Controller 

WEE[ l :O]_ Write Enable Even Low Even BankData 
WEO[l :O]_ Write Enable Odd Low Odd Bank Data 

.. 
Input Pins 

CCREQ_ Cache Controller Request Low Cache Controller 
CLK Reference Clock (Uses PLL) High External Source 

EXT_CLK Ext. Clock (Bypasses PLL) High External Source 
FCCL FPU Condition Code Left High R8010 FPU 

Table 9-1 R8000 Microprocessor Pin Summary 

-
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Pin iD Pin Name Active Level Connects To 
i"'LCK FPU Condition Code Right High R8010  i"'"PU 

FPINTR_ R80 10 FPU Interrupt Low R8010 FPU 
GND_PLL Ground Source for PLL Low External Source 

INTLMODE Internal Mode High External Source 
JTAG_TCK JTAG Clock High External Source 
JTAG_TDI JTAG Test Data In High External Source 

JTAG_TRST JTAG Test Reset High External Source 
JTAG_TMS JTAG Test Mode Select High External Source 
LDE[63:0] Load Data Even High Even Bank Load Data 
LD0[63:0] Load Data Odd High Odd Bank Load Data 
MATCHE_ Match Even Low Even Tag RAM 
MATCHO_ Match Odd Low Odd Tag RAM 

MCHSAE[1 :0] Match Set Address Even High Even Tag RAM 
MCHSA0[1 :0] Match Set Address Odd High Odd Tag RAM 
MCHSTE[1 :0] Match State Even High Even Tag RAM 
MCHST0[1 :0] Match State Odd High Odd Tag RAM 
MCHVSE[3:0] Match Vrrtual Synonym Even High Even Tag RAM 
MCHVS0[3:0] Match VIrtual Synonym Odd High Odd Tag RAM 

PERRE Parity Error Even High R8010 FPU 
PERRO Parity Error Odd High R8010 FPU 
RESET_ R8000 Reset Pin Low External Source 

SDI Serial Data In High External Source 
SYNC_IN PLL Feedback Loop High Sync_Out pin of R8000 
VCC_PLL Voltage Source for PLL High External Source 

Input/Output Pins 

TAGE[21 :0] Tag Address Even High Even Tag RAM 
TAG0[2 1 :0] Tag Address Odd High Odd Tag RAM 
TBUS[7 1 :0] TBus Interface High R8010  FPU/CC 

Table 9- 1 RSOOO Microprocessor Pin Summary 

9.1.1 RSOOO Microprocessor to R8010 FPU Interface 

This section defines the pins between the R8000 and the R8010 Floating Point Unit. The 
pins are listed in alphabetical order. 
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. DEBUG_ (Debug) Active Low Output 

This signal indicates whether the results of a FP operation are written into the Floating 
Point Register File when an exception occurrs. When DEBUG is active (0), a floating 
point operation that raises the enabled exception does not write its result to the FPR. For 
a disabled exception the FPR is updated with the appropriate substitution value. When 
DEBUG is inactive (1), a floating point operation that raises an exception writes its 
appropriate substitution value to the FPR regardless of whether the exception is enabled 
or disabled. DEBUG_ is connected directly to the DEBUG_ pin of the R8010 FPU . 

DEQSE_ (Dequeue Store Even) Active Low Output 

This signal indicates when an even 64 bit doubleword of data should be read from the 
store data queue and the Dequeue Even Pointer updated. DEQSE_ is connected directly 
to the DEQSE_ pin of the R8010 FPU. 

DEQSO_ (Dequeue Store Odd) Active Low Output 

This signal indicates when an odd 64 bit doubleword of data should be read from the 
store data queue and the Dequeue Even Pointer updated. DEQSO_ is connected directly 
to the DEQSO_ pin of the R8010 FPU. 

ENQLE_ (Enqueue Load Even) Active Low Output 

This signal indicates when an even 64 bit doubleword of data from the streaming cache 
should be written into the load data queue and the enqueue load pointer incremented . 
ENQLE_ is connected directly.to the ENQLE_ pin of the R8010 FPU . 

ENQLO_ (Enqueue Load Odd) Active Low Output 

This signal indicates when an odd 64 bit doubleword of data from the streaming cache 
should be written into the load data queue and the enqueue load pointer incremented. 
ENQLO_ is connected directly to the ENQLO_ pin of the R8010 FPU. 

ENQLP _ (Enqueue Load Priority) Active Low Output 

This signal indicates the order of execution between two loads to be enqueued. ENQLP 
asserted indicates that the odd 64 bit doubleword should be enqueued before the even 64 
bit doubleword. ENQLP _ is connected directly to the ENQLP _ pin of the R8010 FPU . 
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FCCL (Floating Point Condition Code Left) Active High Input 

This signal is the condition code generated by the left R8010 FPU execution unit. The 
R8000 keeps track of the floating point operation, the CC destination, and the pipeline 
stage. FCCL is connected directly to the FCCL pin of the R8010 FPU. 

FCCR (Floating Point Condition Code Right) Active High Input 

This signal is the condition code generated by the right R8010 FPU execution unit. The 
RBOOO keeps track of the floating point operation, the CC destination, and the pipeline 
stage. FCCR is connected directly to the FCCR pin of the R8010 FPU. 

FPINTR_ (Floating Point Interrupt) Active Low Input 

This signal indicates that a floating point exception has occurred on either execution unit 
and the enable bit of the FSR for that type of exception was active. FPINTR_ is connected 
directly to the FPINTR_ pin of the R8010 FPU. 

FVALID_ (FPU Valid) Active Low Output 

This signal active indicates that the TBus has a valid FPU operation during the current 
cycle. FVALID is connected directly to the FVALID pin of the R8010 FPU. 

PERRE (Parity Error Even) Active High Input 

This signal is generated by the R8010 FPU and is asserted when a parity error is detected 
on the load data and load parity busses of the even bank. PERRE is connected directly to 
the PERRE pin of the R8010 FPU. 

PERRO (Parity Error Odd) Active High Input 

This signal is generated by the R8010 FPU and is asserted when a parity error is detected 
on the load data and load parity busses of the odd bank. PERRO is connected directly to 
the PERRO pin of the R8010 FPU. 

PMODE (Parity Mode) Active High Output 

The PMODE pin determines whether odd or even parity checking and generation is to 

9-8 TFP User's Manual 



-

-

-

-

-

-

-

-

-

-

-

-

-

-

be performed by the R8010 FPU and is connected directly to the PMODE pin of the 
R8010 FPU. When enabled, even parity is checked on the even and odd load data busses 
of the R8010 FPU and is generated for the even and odd store data busses of the R8010 
FPU for data going to the streaming cache. 

TBUS [79:72] Active High Output 

Part of the 80 bit TBus. These bits are output only and connect directly to the TBUS 
[79:72] pins of the R8010 FPU and are used for transferreing data and operations to the 
R8010 FPU. When TBUS [79:78] equals '10', the TBus is able to transfer two memory 
specifiers and two floating point operations to the R8010 FPU. When TBUS [79:78] does 
not equal '10', the TBus is used for special operations such as integer stores and moves to 
and from the R8010 FPU. TBUS [79:72] is valid whenever the FVAUD_ signal is active. 

TBUS [71:0] Active High Bi-Directional 

This bi-directional bus connects between the CC, the R8000, and the R8010 FPU. The 
function of each bit changes depending on which device is driving. Normally the CC 
drives the TBus when reading or writing the tag RAM's or reading the Data RAM-'s and 
for general communication with the R8000. The R8010 FPU uses the TBus to transfer 
Move data from the floating point register file (FPR) to the Integer Register File of the 
R8000 as requested by the R8000. The R8000 uses the TBus for integer stores to the data 
RAM's, general communication with the CC and the R8010 FPU, and R8010 FPU to 
R8000 move instructions. TBUS [71:0] connects directly to TBUS [71:0] of the FPU as well 
as TBUS [71:0] of the Cache Controller. TBus connection between the CC and the R8010 
FPU is by virtue of the fact the the R8000 communicates with both. There is no TBus 
communication protocol between the R8010 FPU and the CC. 

TBUSOE_ (Thus Output Enable) Active Low Output 

This signal is used as a tri-state enable for the TBus [71:0] pin connections to the R8010 
FPU. TBUSOE_ is connected directly to the TBUSOE_ pin of the R8010 FPU. Two cycles 
after TBUSOE_ is asserted the R8000 receives valid input data on the TBus. 

9.1.2 RSOOO Microprocessor to Even Tag RAM 

This section defines the pins between the R8000 Microprocessor and the even tag RAM. 
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The signals are listed in alphabetical order. 

DBSETE_ (Dirty Bit Set Even) Active Low Output 

This pin is the dirty bit RAM write enable and is connected to the DBSETE_ pin of the 
even tag RAM. The tag RAM contains a separate on-chip 16-bit wide dirty bit RAM 
which contains the status of each of the sectors for each of the 4 ways of the tag RAM. 
The dirty bit RAM is accessed on lookup cycles regardless of the state of the line. H the 
access is a hit and DBSETE_ is active, the dirty bit is written one clock after the lookup is 
done. 

ESAE [1:0] (External Set Address Even) Active High Output 

When a tag RAM lookup is performed, logic inside the tag RAM determines which of 
the four ways compared correctly with the tag address on the bus and encodes this 
information as a two bit value called the 'match set address'. Oftentimes the R8000 will 
perform the tag lookup many cycles before the corresponding write to the data RAM's is 
done. When this occurrs there must be a mechanism to store the 2 bit set address value 
for use during the actual write. The lookup is performed ahead of time and the result is 
stored to the R8000 via the match set address (MCHSA) pins of the tag RAM. When the 
write is done this information is driven back through the tag RAM via the ESAE pins 
and becomes the upper two bits of the even data RAM address of the second level cache. 
ESAE [1:0] is connected directly to the ESAE [1:0] pins of the even tag RAM. 

ESASELE (External Set Address Select Even) Active High Output 

This pin controls a multiplexor inside the tag RAM which allows the data set address for 
the data RAM's to be driven either directly from the tag RAM compare result logic or 
from the ESAE pins. H ESASELE is asserted the ESAE [1:0] values are driven out to the 
data RAM's. This pin is normally only asserted on write cycles when the tag RAM 
lookup is performed before the corresponding write. ESASELE is connected directly to 
the ESASELE pin of the even tag RAM. 

INDEXE [16:0] (Index Even) Active High Output 

These bits form the index to the even tag RAM. This bus is output only. In a four 
Megabyte cache implementation the connections to the Tag RAM are as follows: 

INDEXE [1:0] Not Used. To be left unconnected. 
INDEXE [3:2] connect to SECTOR [1:0] pins of the even Tag RAM. 
INDEXE [13:4] connect to INDEX [9:0] of the even Tag RAM. 
INDEXE [16:14] connect to INDEX [12:10] of the even Tag RAM through hardware 
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jumpers. 

MATCHE_ (Match Even) Active Low Input 

This signal is an output of the even Tag RAM. When the R8000 Microprocessor performs 
a lookup cycle to the tag RAM a portion of the physical address is used as an index 
which selects one of 2048 Tag RAM entries. Each entry contains all four sets of the four 
way set associative even tag RAM. Assertion of the MATCHE_ signal by the tag RAM 
indicates that the address on the bus compared to one of the four sets. MCHSAE [1:0] 
below encodes which of the four sets compared. MATCHE_ is connected directly to the 
MATCHE_ pin of the even tag RAM. 

MCHSAE [1:0] (Match Set Address Even) Active High Input 

These two bits are used on R8000 lookup cycles to the Tag RAM and encode which of the 
four ways in the 4-way set associative Tag RAM the compare occurred. Oftentimes the 
lookup for a store, which determines whether or not the requested address is in the 
cache, is performed many cycles before the corresponding store data becomes avaliable. 
MCHSAE [1:0] allows the R8000 to store the result of the compare until the store data is 
available. The information is used by the RBOOO Microprocessor to construct the upper 
two bits of the Data RAM cache address. MCHSAE [1:0] connect directly to the 
MCHSAE [1:0] pins of the even tag RAM. 

MCHSTE [1:0] (Match State Even) Active High Input 

This two bit value is driven by the even Tag RAM on lookup cycles and indicates the 
state information for one of four 128 byte sectors in the streaming cache corresponding to 
the address which compared. This two bit value encodes which state a given line in the 
streaming cache is in; Shared, Invalid, or Exclusive. MCHSTE [1:0] connect directly to 
the MCHSTE [1:0] pins of the even tag RAM. 

MCHVSE [3:0] (Match Virtual Synonym Even) Active High Input 

These signals represent virtual address bits [15:12] . This four bit virtual synonym value 
is stored in the even Tag RAM along with each 20 bit tag address. Because the data cache 
is virtually indexed and is larger than some of the programmable page sizes, multiple 
virtually indexed locations in the Data cache can have the same physical address. To 
insure that not more than one physical location is active at a time, a check of virtual 
address bits [15:12] is done at the same time as the address compare to assure that the 
same virtual address is being accessed. These four virtual synonym bits tell of the last 
location in the Data cache to be used. MCHVSE [3:0] connect directly to the MCHVSE 
[3:0] pins of the even tag RAM. 
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TAGE [21:0] (Tag Address Even) Active High 1/0 

The Tag RAM address bus is bi-directional. The address is driven by the R8000 on 
lookup cycles, and driven by the CC on writes through the TBus. On read cycles the tag 
RAM drives the address information to the CC through the TBus as requested. In a 4 
Megabyte cache implementation connections to the Tag RAM are as follows: 

TAGE [0] Not Used. To be left unconnected. 
TAGE [1] connects to TAG [17] of the even Tag RAM through a hardware jumper. 
TAGE [3:2] connect to TAG [19:18] pins of the even Tag RAM. 
TAGE [20:4] connect to TAG [16:0] of the even Tag RAM. 
TAGE [21] connects to TAG [17] of the even Tag RAM through a hardware jumper. 

9.1.3 RSOOO Microprocessor to Odd Tag RAM 

This section defines the pins between the RSOOO Microprocessor and the odd tag RAM. 
The signals are listed in alphabetical order. 

DBSETO_ ( Dirty Bit Set Odd) Active Low Output 

This pin is the dirty bit RAM write enable and is connected to the DBSETO_ pin of the 
odd tag RAM. The tag RAM chip contains a separate 16-bit wide dirty bit RAM which 
contains the status of each of the sectors for each of the 4 ways of the tag RAM. The dirty 
bit RAM is accessed on lookup cycles regardless of the state of the line. If the access is a 
hit and DBSETO_ is active, the dirty bit is written one clock after the lookup is done. 
DBSETO_ is connected directly to the DBSETO_ pin of the odd tag RAM. 

ESAO [1:0] (External Set Address Odd) Active High Output 

When a tag RAM lookup is performed, logic inside the tag RAM determines which of 
the four ways compared correctly with the tag address on the bus and encodes this 
information as a two bit value called the 'match set address'. Oftentimes the R8000 will 
perform the tag lookup many cycles before the corresponding write to the data RAM's is 
done. When this occurrs there must be a mechanism to store the 2 bit set address value 
for use during the actual write. The lookup is performed ahead of time and the result is 
stored to the R8000 CPU via the match set address (MCHSA) pins of the tag RAM. When 

9-12 TFP User's Manual 



-

-

-

-

-

... 

-

-

-

the write is done this information is driven back through the tag RAM via the ESAO pins 
and becomes the upper two bits of the odd bank streaming cache RAM address. ESAO 
[1:0] are connected directly to the ESA [1:0] pins of the odd tag RAM. 

ESASELO (External Set Address Select Odd) Active High Output 

This pin controls a multiplexor inside the tag RAM which allows the data set address for 
the data RAM's to be driven either directly from the tag RAM compare result logic or 
from the ESAO pins. If ESASELO is asserted the ESAO values are driven out to the data 
RAM's. This pin is normally only asserted on write cycles when the tag RAM lookup is 
performed before the corresponding write. ESASELO is connected directly to the 
ESASELO pin of the odd tag RAM. 

INDEXO [16:0] (Index Odd) Active High Output 

These bits form the index to the odd tag RAM. This bus is output only. In a 4 Megabytre 
implementation connections to the Tag RAM are as follows: 

INDEXE [1:0] Not Used. To be left unconnected. 
INDEXE [3:2] connect to SECTOR [1:0] pins of the odd Tag RAM. 
INDEXE [13:4] connect to INDEX [9:0] of the odd Tag RAM. 
INDEXE [16:14] connect to INDEX [12:10] of the odd Tag RAM through hardware 
jumpers . 

MATCHO_ (Match Odd) Active Low Input 

This signal is an output of the odd Tag RAM. When the RBOOO performs a lookup cycle to 
the tag RAM a portion of the physical address is used as an index which selects one of 
2048 Tag RAM entries. Each entry contains all four sets of the four way set associative 
odd tag RAM. Assertion of the MATCHO_ signal by the tag RAM indicates that the 
address on the bus compared to one of the four sets. MCHSAO [1:0] below encodes 
which of the four sets compared. MATCHO_ is connected directly to the MATCHO_ pin 
of the odd tag RAM. 

MCHSAO [1:0] (Tag RAM Match Set Address Odd) Active High Input 

These two bits are used on R8000 lookup cycles to the Tag RAM and encode which of the 
four ways in the 4-way set associative Tag RAM the compare occurred. Oftentimes the 
lookup for a store, which determines whether or not the requested address is in the 
cache, is performed many cycles before the corresponding store data becomes avaliable. 

,.. MCHSAO [1:0] allows the RBOOO to store the result of the compare until the store data is 
available. The information is used by the RBOOO to construct the upper two bits of the 

... 
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Data RAM cache address. MCHSAO [1:0] connect directly to the MCHSAO [1:0] pins of 
the odd tag RAM. 

MCHSTO [1:0] (Tag RAM Match State Odd) Active High Input 

This two bit value is driven by the odd Tag RAM on lookup cycles and indicates the state 
information for one of four 128 byte sectors in the streaming cache corresponding to the 
address which compared. This two bit value encodes which state a given line in the 
streaming cache is in; Shared, Invalid, or Exclusive. MCHSTO [1 :0] are connected 
directly to the MCHSTO [1:0] pins of the odd tag RAM. 

MCHVSO [3:0] (Match Virtual Synonym Odd) Active High Input 

These signals represent virtual address bits [15:12] . This four bit virtual synonym value 
is stored in the odd Tag RAM along with each 20 bit tag address. Because the data cache 
is virtually indexed and is larger than some of the progaammable page sizes, multiple 
virtually indexed locations in the Data cache can have the same physical address. To 
insure that not more than one physical location is active at a time, a check of virtual 
address bits [15:12] is done at the same time as the address compare to assure that the 
same vitrual address is being accessed. These four virtual synonym bits tell of the last 
location in the Data cache to be used. MCHVSO [3:0] are connected directly to the 
MCHVSO [3:0] pins of the odd tag RAM. 

TAGO [21:0] (Tag Address Odd) Active High 1/0 

The Tag RAM address bus is bidirectional. The address is driven by the R8000 on lookup 
cycles, and driven by the CC on writes through the TBus. On read cycles the tag RAM 
drives the address information through the TBus to the CC as requested. In a 4 Megabyte 
cache implementation connections to the Tag RAM are as follows: 

TAGE [0] Not Used. To be left unconnected. 
TAGE [1] connects to TAG [17] of the even Tag RAM through a hardware jumper. 
TAGE [3:2] connect to TAG [19:18] pins of the even Tag RAM. 

TAGE [20:4] connect to TAG [16:0] of the even Tag RAM. 
TAGE [21] connects to TAG [17] of the even Tag RAM through a hardware jumper. 
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9.1.4 RSOOO Microprocessor to Even Bank Streaming Cache 

This section defines the pins between the RBOOO CPU and the even bank of streaming 
cache data RAM's. The signals are listed in alphabetical order. 

ADORE [17:0] (Address Even) Active High Output 

These pins supply the address to the second level cache. ADORE [17:0] of the RBOOO 
connect directly to ADORE [17:0] of both SIM modules of the even data bank . 

LDE [63:0] (Load Data Even) Active High Input 

Load data bus between the RBOOO CPU and the even bank of the streaming cache. This 
bus is unidirectional and accepts load input data only. Store data is transferred through 
the FPU via the TBus. Data transfers between the streaming cache and the RBOOO are 
synchronous and conform to a 5 cycle pipeline. When a streaming cache load is initiated 
by the RBOOO, data is returned in 5 clocks. Streaming cache misses take approximately 50 
clocks. There are two 32 bit wide SIM modules on the even data bank. LDE [63:32] are 
connected directly to the LD [32:0] pins of the upper 32 bit even data RAM module. LDE 
[31:0] are connected directly to the LD [32:0] pins of the lower 32 bit even data RAM 
module. 

WEE_ [1:0] (Write Enable Even) Active Low Output 

The streaming cache data RAM's can be written either by the RBOOO or by the CC. Writes 
by the CC are handled through the FPU via the TBus. WEE_ [1] is connnected to the WE_ 
pin of the RAM's containing the upper 32 bits of data for the even bank. WEE_ [0] is 
connnected to the WE_ pin of the RAM's containing the lower 32 bits of data for the even 
bank. Normally the RBOOO CPU drives these pins during write hits to the streaming 
cache. But the CC can also write the streaming cache. This is normally done on streaming 
cache misses where the requested data has to be fetched from main memory. In this case 
the CC is responsible for fetching the data from main memory and writing the data to 
the streaming cache through the TBus. Bit 63 of the TBus is passed through the RBOOO 
CPU onto WEE_ [1] to write the upper 32 bits of the even bank. Bit 62 of the TBus is 
passed through the RBOOO CPU onto WEE_ [0] to write the lower 32 bits of the even bank. 

9.1.5 RSOOO Microprocessor to Odd Bank Streaming Cache 

This section defines the pins between the RBOOO Microprocessor and the odd bank of 
streaming cache data RAM's. The signals are listed in alphabetical order. 
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ADDRO [17:0] (Address Odd) Active High Output 

These pins supply the address to the second level cache. ADDRO [17:0] of the R8000 
CPU connect directly to ADDRO [17:0] of both SIM modules of the odd data bank . 

LDO [63:0] (Load Data Odd) Active High Input 

Load data bus between the R8000 and the odd bank of cache SRAM. This bus is 
unidirectional and accepts load input data only. Store data is transferred through the 
FPU via the TBus. Data transfers between the streaming cache and the R8000 are 
synchronous and conform to a 5 cycle pipeline. When a streaming cache load is initiated 
by the R8000 CPU, data is returned in 5 clocks. Streaming cache misses take 
approximately 50 clocks. There are two 32 bit wide SIM modules on the odd bank. LDO 
[63:32] are connected directly to the LD [32:0] pins of the upper 32 bit odd data RAM 
module. LSO [31:0] are connected directly to the LD [32:0] pins of the lower 32 bit odd 
data RAM module. 

WEO_ [1:0] (Write Enable Odd) Active Low Output 

The streaming cache data RAM's can be written either by the R8000 or by the CC. Writes 
by the CC are handled through the TBus. WEO _ [1] is connnected to the WE_ pin of the 
SIMM containing the upper 32 bits of data for the odd bank. WEO_ [O] is connnected to 
the WE_ pin of the SIMM containing the lower 32 bits of data for the odd bank. 
Normally the R8000 drives these pins during write hits to the streaming cache. But the 
CC also can write the streaming cache. This is normally done on streaming cache misses 
where the requested data has to be fetched from main memory. In this case the CC is 
responsible for fetching the data from main memory and writing it to the streaming 
cache through the TBus. Bit [61] of the TBus is passed through the R8000 onto WEO_ [1] 
to write the upper 32 bits of the odd bank. Bit [60] of the TBus is passed through the 
RBOOO onto WEO_ [O] to write the lower 32 bits of the odd bank. 

9.1.6 RSOOO Microprocessor to Cache Controller 

This section defines the pins between the R8000 Microprocessor and the cache controller. 
The signals are listed in alphabetical order. 

CCREQ_ (Cache Controller Request) Active Low Input 

CCREQ_ is driven by the CC and when asserted indicates that the CC is either 
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requesting control or does not wish to give up control of the TBus. CCREQ_ is connected 
directly to the CCREQ_ pin of the Cache Controller. 

IUREL_ (Integer Unit Release) Active Low Output 

IUREL_ is driven by the R8000 and when asserted indicates that the R8000 CPU is giving 
control of the TBus to the Cache Controller. IUREL_ is connected directly to the IUREL_ 
pin of the Cache Controller. The R8000 can release control of the TBus in response to the 
assertion of CCREQ_ by the cache controller, or it can release the bus immediately after 
incurring a data cache instruction cache, or TLB miss. 

NXTDATE_ (Store Address Queue Even) Active Low Output 

This signal is driven by the R8000 CPU and indicates that store data associated with a 
non-cacheable write will be on the even store data bus on the next clock. When the CC is 
in control of the TBus, the R8000 asserts SAQE_ if the even store address queue contains 
an address for which bits [17:7] match the Tag RAM index bits [17:7] which were on the 
TBus four cycles earlier. The signal remains deasserted if no such match is detected. 
SAQE_ should always be considered together with SAQO_. If either is asserted, a 
compare hit has occurred. Address comparisons are done on a 128 byte minimum 
quantity and take one cycle. Address range comparisons larger than 128 bytes require 
multiple cycles. SAQE_ is connected directly to the SAQE_ pin of the Cache Controller . 

NXTDATO_ (Store Address Queue Odd) Active Low Output 

This signal is driven by the R8000 CPU and indicates that store data associated with a 
non-cacheable write will be on the odd store data bus on the next clock. When the CC is 

... in control of the TBus, the R8000 assertes SAQO_ if the odd store address queue contains 
an address for which bits [17:7] match the Tag RAM index bits [17:7] which were on the 
TBus four cycles earlier. The signal remains deasserted if no such match is detected. 
SAQO_ should always be considered together with SAQE_. If either is asserted, a 
compare hit occurred. Address comparisons are done on a 128 byte minimum quantity 
and take one cycle. Address range comparisons larger than 128 bytes require multiple 
cycles. SAQO_ is connected directly to the SAQO_ pin of the Cache Controller. 

,. 

... 

TBUS [71:0] Active High 110 

These pins form the general communication interface between the R8000 CPU and the 
CC and connect directly to TBUS [71:0] pins of both the Cache Controller and the R8010 
FPU. The function of each bit changes depending on which device is driving. Normally 
the CC drives the TBus when reading or writing the tag RAM's or reading the Data 
RAM's and for general communication with the R8000. The R8010 FPU uses the TBus to 
transfer Move data from the floating point register file (FPR) to the Integer Register File 
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of the R8000 as requested by the RSOOO. The R8000 CPU uses the TBus for integer stores 
to the data RAM's, general communication with the CC and the R8010 FPU, and R8010 
FPU to R8000 CPU move instructions. TBUS [71:0] connects directly to TBUS [71:0] of the 
R8010 FPU as well as TBUS [71:0] of the Cache Controller. TBus connection between the 
CC and the R8010 FPU is by virtue of the fact the the R8000 CPU communicates with 
both. There is no TBus communication protocol between the R8010 FPU and the CC. 

TBus [67:64] forms the Function field when the CC is in control. The function field is the 
only field of the TBus by which the CC changes the internal state of the R8000 chip itself 
rather than just the tag RAM's or the Data RAM's. The 4 bit field translates to 16 possible 
functions that the CC can perform on the R8000 Microprocessor. TBUS [71:0] connects 
directly to the TBUS [71:0] pins of the Cache Controller. 

VALIDOUT_ (Active Low Output) 

VALIOOUT_ is driven by the R8000 to indicate that the information on the TBus is valid 
for the Cache Controller to receive. VALIOOUT_ is connected directly to the 
VALIOOUT_ pin of the Cache Controller. 

9.1.7 Clock Interface Signals 

CLK (Reference Clock) Active High Input 

Master input clock to the Phase Lock Loop (PLL) circuitry of the R8000 Microprocessor. 
The output of the PLL is then used as the master clock for the chip. CLK is normally 
connected directly to the ouput of the external clock driver. In most cases it is desirable 
to use the PLL circuitry, but for those applications which to not wish to use the PLL, the 
clock drivers should be connected to EXT_CLK. 

EXT_CLK (External Clock) Active High Input 

The EXT_CLK input allows the system designer to bypass the internal PLL of the R8000 
CPU and drive the chip directly from the system clock. When not in use this pin should 
be tied to ground through a 330 ohm resistor. Refer to figure 7-1. 

GND_PLL (Ground Phase Lock Loop) 
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Ground source for the phase lock loop circuitry. GND _PLL can be connected to 
VCC_PLL through .1 microfarad and .015 microfarad capacitors in parallel. Refer to 
figure 7-1 .  

LPF _OUT (Low Pass Filter Output) Active High Output 

LFP _OUT is a special pin used to test the PLL circuitry during component test for 
monitoring the status of the low-pass filter. LPF _OUT must be connected to VCC_PLL 
through a 680K ohm resistor. 

· 

SYNC_IN (Synchronized PLL input) Active High Input 

Sync_in is part of the PLL feedback path and must be connected to Sync_ Out in order for 
the PLL circuitry to work correctly. The pins are made avaliable externally to allow the 
user to manually alter the phase of the PLL. 

SYNC_ OUT (Synchronized PLL input) Active High Output 

Sync_ Out is part of the PLL feedback path and must be connected to Sync_In in order for 
the PLL circuitry to work correctly. The pins are made avaliable externally to allow the 
user to manually alter the phase of the PLL. 

VCC_PLL (Voltage Phase Lock Loop) 

Voltage source for the phase lock loop circuitry. Connected to a regulated 3.3 volt source. 
VCC_PLL can be connected to GND_PLL through .1 and .015 microfarad capacitors in 

.. parallel. 

.. 

-

.. 

... 

9.1.8 JTAG Interface Signals 

The following signals comprise the Test Access Port (TAP) of the FPU. The TAP provides 
access to many test suppox:t functions built into the chip. The TAP consists of three 
required synchronous inputs, one required synchronous output, and an optional input 
for asynchronous initialization of the TAP. When the TAP controller is not reset at 
power-up as a result of features built into the test logic, the asynchronous TRST_ input 
must be provided to reset the TAP . 
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In addition to the JTAG compliant logic, the R8000 Microprocessor also contains a 
seperate scan chain which connects every flip-flop in the random logic control blocks . 

. This scan chain is non-IEEE compliant and is used during component verification testing 
to test the random logic. These two pins, SDI and SDO, are NOT part of the JTAG 
circuitry and should not be used. 

JTAG_TCK (JTAG Test Clock) Active High Input 

The dedicated test clock input is used to provide system-dock independent testing of the 
serial data paths between components. The dedicated clock input allows for the shifting 
of test data through the device concurrently with normal operation of the component. In 
addition, the independent test clock allows test data to be transferred on- and off- chip 
without changing the state of the on-chip system logic. TCK is a required signal for proper 
boundary scan operation. 

JTAG_TMS (JTAG Test Mode Select) Active High Input 

The voltage level at the Test Mode Select input is decoded by the TAP controller and 
used to control on-chip test operations. TMS is sampled on the rising edge of TCK and a 
change in state to the TMS input should occur on the falling edge of TCK. A pull-up 
resistor should be used so that an un-driven TMS input appears as high to the internal 
logic. TMS is a required signal for proper boundary scan operation. 

JTAG_TDI (JTAG Test Data Input) Active High Input 

Serial test instructions and data are transferred to the test logic by the TDI input. The TDI 
and TDO pins provide for serial movement of test data through the circuit. Information 
on the TDI input is sampled on the rising edge of TCK and a change in state to the TDI 
input should occur on the falling edge of TCK. A pull-up resistor should be used so that 
an un-driven TDI input appears as high to the internal logic. TDI is a required signal for 
proper boundary scan operation. 

JTAG_TDO (JTAG Test Data Output) Active High Output 

The Test Data Output (TDO) pin is used to transfer test instructions and data from the 
internal test logic. To avoid race conditions, the TDI and TMS inputs are sampled on the 
rising edge of TCK, while changes to the TDO output occur on the falling edge. Using 
opposite edges of the clock allows output data from one device to propogate to another 
device and be sampled on the following rising edge. TDO is a required signal for proper 
boundary scan operation. 
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JTAG_TRST_ (JTAG Test Reset) Active High Input 

The optional TRST_ input provides for asynchronous initialization of the TAP controller. 
The TAP controller is asynchronously reset whenever TRST_ is asserted with a low 
voltage level. A pull-up resistor should be used so that an un-driven TRST_ input 
appears as high to the internal logic. Use ofTRST _ is  NOT required for proper boundary scan 
operation. In addition, the TRST_ input must not be used to initialize any system logic 
within the component. To ensure proper operation of the test logic, the TMS input 
should be held at a high voltage level while the TRST_ input changes state from a logic 
zero to a logic one. If rising edges occur simultaneously at the TRST_ and TCK inputs 
when a logic zero is applied to TMS, a race condition can occur and the operation of the 
TAP controller is unpredictable. The controller may either remain in the reset state or 
change to the run state. 

SDI (Serial Data In) Active High Input 

Non-IEEE compliant scan chain input which allows for testing of the random control 
logic blocks within the R8000 CPU during component test and verification. SDI should 
be tied to ground through a 330 ohm resistor. 

SDO (Serial Data Out) Active High Output 

Non-IEEE compliant scan chain output which allows for testing of the random control 
logic blocks within the R8000 CPU during component test and verification. SD should be 
left unconnected during normal operation. 

9.1.9 Initialization Interface 

INTLMODE (Internal Mode) Active High Input 

Internal address register for interfacing to the second level streaming cache. Currently 
external address registers are used to buffer the address due to the large number of 
RAM's required to facilitate a 4 MegaByte implementation. However, in the future it is 
conceivable that fewer RAM's will be needed to suffice the same memory requirements. 
The R8000 Microprocessor provides an on-chip address register for this purpose. 
Currently this register is not used because it is unable to drive all of the devices required 
for the cache. The external register can hopefully be eliminated as RAM sizes increase. 
The INTLMODE pin should be tied to ground through a 330 ohm resistor. 
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RESET_ (Processor Reset) Active Low Input 

Reset pin of the RBOOO. Reset should be held low for 4096 clocks before being released. A 
12-bit counter can be used to accomplish this. Fifteen clocks after the rising edge of 
RESET is sampled the RBOOO asserts VALIDOUT_ for one clock. Two clocks after the 
rising edge of VALIDOUT _ the Cache Controller MUST assert the signal CCREQ_ to 
allow the CC to begin fetching from the boot PROM. CCREQ_ should remain asserted 
until the RBOOO issues IUREL_, indicating that the control of the TBus has been 
relinquished. Refer to the initialization interface in chapter 6 for more information on 
RESET. 

9.2 R8010 FPU SIGNAL DESCRIPTIONS 

The R8010 Floating Point Unit (FPU) is a 591 pin device and has dedicated interfaces to 
all other components in the system with the exception of the Tag RAM's. There are no 
signals which go between the FPU and the Tag RAM's. The following sections define the 
external pinout of the FPU and are divided into specific component interfaces. Figure 9-3 
shows the functional pin groupings of the R8010 FPU. 
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R8010 FPU 
DEBUG_ .. -
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DEQSE_ .. - FCCR -.. 
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-

LDE [63:0] ...... INTERFACE - SDE [63:0] 
- .... 

LPO [3:0] - ... SPO [3:0] - ODD BANK DATA ... -

LOO [63:0] - INTERFACE -
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'I .... 
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-

CLK -
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-

SYNC_IN -
.. 
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.. 
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- soo .. -

SOl .. 

RESET .. INITIALIZATION 
.. 
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Figure 9-3 R80 10 FPU Signal Groupings 

Table 9-2 shows a pin summary of the R8010 FPU in alphabetical order . 

... 

... 

-
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Pin iD Pin Name Active Level Connects To 
Output Pins 

FCCL FPU Condition Code Left High R8000 CPU 
FCCR FPU Condition Code Right High R8000 CPU 

FPINTR_ FPU Interrupt Low R8000 CPU 
JTAG_TDO JTAG Test Data Output High External Source 
LPF_OUT PLL Low Pass Filter Test High External Source 

PERRE Parity Error Even High R8000 CPU 
PERRO Parity Error Odd High R8000 CPU 

SDE [63:0] Store Data Even High Even Bank Store Data 
SDO Serial Data Out High External Source 

SDO [63:0] Store Data Odd High Odd Bank Store Data 
SPE [3:0] Store Parity Even High Even Bank Store Parity 
SPO [3:0] Store Parity Odd High Odd Bank Store Parity 

SYNC_ OUT PLL Feedback Loop High Sync_In pin of FPU 
Input Pins 

BYPASS_ Floating Point Bypass Low Cache Controller 
CLK Reference Clock (Uses PLL) High External Source 

DEBUG_ Debug Low R8000 CPU 
DEQSE_ Dequeue Store Even Low R8000 CPU 
DEQSO_ Dequeue Store Odd Low R8000 CPU 
ENQLE_ Enqueue Load Even Low R8000 CPU 
ENQLO_ Enqueue Load Odd Low R8000 CPU 
ENQLP_ Enqueue Load Priority Low R8000 CPU 

EXT_CLK External Clock High External Source 
FOE_ Floating Point Output Enable Low Cache Controller 

FVALID_ FPU Valid Low R8000 CPU 
GND_PLL Ground Source for PLL Low External Source 
JTAG_TCK JTAG Test Clock High External Source 
JTAG_TDI JTAG Test Data In High External Source 
JTAG_TMS JTAG Test Mode Select High External Source 
JTAG_TRST JTAG Test Reset High External Source 
LDE [63:0] Load Data Even High Even Bank Load Data 
LDO [63:0] Load Data Odd High Odd Bank Load Data 
LPE [3:0] Load Parity Even High Even Bank Load Parity 
LPO [3:0] Load Parity Odd High Odd Bank Load Parity 
PM ODE Parity Mode High R8000 CPU 
RESET_ FPU Reset Pin Low External Source 

Table 9-2 R8010 FPU Pin Summary 
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Pin iD Pin Name Active Level Connects To 

SDI Serial Data In Higli �xtenial Source 
SYNC_IN PLL Feedback Loop High Sync_In pin of FPU 

TBUS [79:72] TBus High R8000 CPU 
TBUSOE_ TBus Output Enable Low R8000 CPU 
VCC_PLL Voltage Source for PLL High External Source 

Input/Output Pins 
TBUS [7 1 :0] TBus Interface High R8000/CC 

Table 9-2 R8010 FPU Pin Summary 

9.2.1 R8010 FPU to RSOOO Microprocessor 

The signals in this section comprise the interface between the RSOOO Microprocessor and 
the R8010 FPU. These signals are described further in section 9.1. 

DEBUG_ (Debug Mode) Active Low Input 

This signal indicates whether the results are written into the Floating Point Register File 
when an exception occurrs. When DEBUG is active (0), a floating point operation that 
raises the enabled exception does not write its result to the FPR. For a disabled exception 
the FPR is updated with the appropriate substitution value. When DEBUG is inactive (1), 
a floating point operation that raises an exception writes its appropriate substitution 
value to the FPR regardless of whether the exception is enabled or disabled. DEBUG_ is 
connected directly to the DEBUG_ pin of the RSOOO. Refer to section 9.1.1 for more 
information on DEBUG_ . 

DEQSE_ (Dequeue Store Even) Active Low Input 

This signal indicates when an even 64 bit doubleword of data should be read from the 
store data queue and the Dequeue Even Pointer updated. DEQSE_ is connected directly 
to the DEQSE_ pin of the RSOOO. Refer to section 9.1.1 for more information on DEQSE_ . 

DEQSO_ (Dequeue Store Odd) Active Low Input 

This signal indicates when an odd 64 bit doubleword of data should be read from the 
store data queue and the Dequeue Even Pointer updated. DEQSO_ is connected directly 
to the DEQSO_ pin of the RSOOO . 
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ENQLE_ (Enqueue Load Even) Active Low Input 

This signal indicates when an even 64 bit doubleword of data from the streaming cache 
should be written into the load data queue and the enqueue load pointer incremented. 
ENQLE_ is connected directly to the ENQLE_ pin of the RSOOO CPU. 

ENQLO_ (Enqueue Load Odd) Active Low Input 

This signal indicates when an odd 64 bit doubleword of data from the streaming cache 
should be written into the load data queue and the enqueue load pointer incremented. 
ENQLO_ is connected directly to the ENQLO_ pin of the RSOOO. Refer to section 9.1.1 for 
more information on ENQLO_. 

ENQLP _ (Enqueue Load Priority) Active Low Input 

This signal indicates the order of execution between two loads to be enqueued. ENQLP _ 
asserted indicates that the odd 64 bit doubleword should be enqueued before the even 64 
bit doubleword. ENQLP _ is connected directly to the ENQLP _ pin of the RSOOO. Refer to 
section 9.1.1 for more information on ENQLP _. 

FCCL (Floating Point Condition Code Left) Active High Input 

This signal is the condition code generated by the left R8010 FPU execution unit. The 
RBOOO keeps track of the floating point operation, the CC destination, and the pipeline 
stage. FCCL is connected directly to the FCCL pin of the RSOOO CPU. Refer to section 
9.1.1 for more information on FCCL. 

FCCR (Floating Point Condition Code Right) Active High Input 

This signal is the condition code generated by the right R8010 FPU execution unit. The 
RBOOO keeps track of the floating point operation, the CC destination, and the pipeline 
stage. FCCR is connected directly to the FCCR pin of the RSOOO CPU. Refer to section 
9.1.1 for more information on FCCR. 

FPINTR_ (Floating Point Interrupt) Active Low Output 

This signal is driven by the R8010 FPU and indicates that a floating point exception has 
occurred on either execution unit and that the enable bit of the FSR for that type of 
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occurred on either execution unit and that the enable bit of the FSR for that type of 
exception was active. FPINTR_ is connected directly to the FPINTR_ pin of the R8010 

. FPU. Refer to section 9.1.1 for more information on FPINTR_. 

FVALID_ (FPU Valid) Active Low Input 

This signal active indicates that the TBus has a valid R8010 FPU operation during the 
current cycle. FVALID_ is connected directly to the FVALID_ pin of the R8000 CPU. 
Refer to section 9.1.1 for more information on FVALID_. 

PERRE (Parity Error Even) Active High Output 

The PERRE signal is generated by the R8010 FPU when PMODE is active and is asserted 
when a parity error is detected on the load data and load parity busses of the even bank. 
PERRE is connected directly to the PERRE pin of the R8000 CPU. Refer to section 9.1.1 
for more information on PERRE. 

PERRO (Parity Error Odd) Active High Output 

The PERRO signal is generated by the R8010 FPU and is asserted when a parity error is 
detected on the load data and load parity busses of the odd bank. PERRO is connected 
directly to the PERRO pin of the R8000 CPU. Refer to section 9.1.1 for more information 
on PERRO . 

PMODE (Parity Mode) Active High Input 

,. The PMODE pin determines whether even or odd parity checking and generation is to 
be performed by the R8010 FPU. PMODE is connected directly to the PMODE pin of the 
RBOOO. Refer to section 9.1.1 for more information on PMODE. 

,.. 

... 

... 

-

TBUS [79:72) (Tbus) Active High Input 

Part of the 80 bit TBus. These bits are input only and connect directly to the TBUS [79:72] 
pins of the R8000 Microprocessor and are used for transferring data and operations to 
the R8010 FPU. TBUS [79:72] is valid whenever the FVALID_ signal is active. Refer to 
section 9.1.1 for more information on TBUS [79:72] . 

TBUSOE_ (Tbus Output Enable) Active Low Input 

This signal is used as a tri-state enable for the TBus [71:0] pin connections to the R8010 
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FPU. TBUSOE_ is connected directly to the TBUSOE_ pin of the R8000 CPU. Refer to 
section 9.1.1 for more information on TBUSOE_. 

9.2.2 R8010 FPU to Even Bank Streaming Cache 

LDE [63:0] (Load Data Even) Active High Input 

Load data bus between the R8010 FPU and the even bank of the streaming cache. This 
bus is unidirectional and accepts load input data only. Even bank store data is 
transferred via the dedicated SDE bus. In a 4 Megabyte implementation there are two 32 
bit wide SIM modules on the even bank. LDE [ 63:32] are connected directly to the LD 
[32:0] pins of the upper 32 bit even data RAM module. LDE [31:0] are connected directly 
to the LD [32:0] pins of the lower 32 bit even data RAM module. 

LPE [3:0] (Load Parity Even) Active High Input 

Load parity bus between the R8010 FPU and the even bank of the streaming cache. This 
bus is unidirectional and accepts load parity data only. Even bank store data is 
transferred via the dedicated store parity bus. In a 4 Megabyte implementation there are 
two 32 bit wide SIM modules on the even bank. LPE [3:2] are connected directly to the 
LP [1:0] pins of the upper 32 bit even data RAM module. LPE [1:0] are connected directly 
to the LP [1:0] pins of the lower 32 bit even data RAM module. Parity is checked and 
generated in 16-bit quantities. Hence only the lower two parity bits (LP [1:0]} are 
currently used. On both modules LP [3:2] of the SIM module connector are not used and 
should be left unconnected. 

· 

SDE [63:0] (Store Data Even) Active High 1/0 

Store data bus between the R8010 FPU, the even bank of the streaming cache, and the 
external data buffers. The bus itself is bidirectional, although it is unidirectional from the 
R8010 FPU's point of view. When the R8010 FPU is in control the bus becomes 
unidirectional and drives store output data only. Even bank load data is transferred via 
the dedicated LDE bus. There are three basic uses of the store data bus; Floating Point 
stores, Integer stores, and streaming cache data transfers to I from main memory. On 
Floating Point stores the R8000 instructs the R8010 FPU to drive data from a register file 
out onto the store data bus. Address information for the store is provided by the R8000 
via a dedicated address bus between the R8000 CPU and the even bank of the streaming 
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cache. Integer Store data and alignment information is transferred via the TBus to the 
R8010 FPU. Control signals from the R8000 allow the R8010 FPU to pass the data from 
the TBus to the SDE pins. When data from the streaming cache is to be transferred to 
main memory, the Cache Controller initiates a streaming cache load. The load data is 
retrieved from the cache using the LDE pins and transferred to the R8010 FPU. The CC 
controls the flow of data through the R8010 FPU asserting the FOE_ and BYPASS_ 
signals to the R8010 FPU, allowing data to pass internally from the LDE pins to the SDE 
pins and out to the main memory data buffers. When the CC is in control of the bus 
during a cache line fill, the SDE [63:0] bus is driven by the external data buffers. Since 
data from main memory is written to the streaming cache using the SDE pins, the SDE 
pins on the R8010 FPU side are tri-stated and the data is witten to the streaming cache. In 
a 4 Megabyte implementation there are two 32 bit wide SIM modules on the even bank. 
SDE [63:32] are connected directly to the SD [32:0] pins of the upper 32 bit even data 
RAM module. SDE [31:0] are connected directly to the SD [32:0] pins of the lower 32 bit 
even data RAM module. 

SPE [3:0] (Store Parity Even) Active High Input 

Store parity bus between the R8010 FPU and the even bank of the streaming cache. This 
bus is unidirectional and transfers store parity data only. Even bank load data is 
transferred via the dedicated load parity bus. There are two 32 bit wide SIM modules on 
the even bank. SPE [3:2] are connected directly to the SP [1:0] pins of the upper 32 bit 
even data RAM module. SPE [1:0] are connected directly to the SP [1:0] pins of the lower 
32 bit even data RAM module. Parity is checked and generated in 16-bit quantities . 
Hence only the lower two parity bits (SP [1:0]) of each module are currently used. On 
both modules SP [3:2] should be left unconnected. 

9.2.3 R8010 FPU to Odd Bank Streaming Cache 

LDO [63:0] (Load Data Odd) Active High Input 

Load data bus between the R8010 FPU and the odd bank of the streaming cache. This 
bus is unidirectional and accepts load input data only. Odd bank store data is transferred 
via the dedicated SOO bus. In a 4 Megabyte implementation there are two 32 bit wide 
SIM modules on the even bank. LOO [63:32] are connected directly to the LD [32:0] pins 
of the upper 32 bit odd dat.a RAM module. LOO [31:0] are connected directly to the LD 
[32:0] pins of the lower 32 bit odd data RAM module. 

LPO [3:0] (Load Parity Odd) Active High Input 
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Load parity bus between the R8010 FPU and the odd bank of the streaming cache. This 
bus is unidirectional and accepts load parity data only. Odd bank store data is 

. transferred via the dedicated store parity bus. In a 4 Megabyte implementation there are 
two 32 bit wide SIM modules on the odd bank. LPO [3:2] are connected directly to the LP 
[1:0] pins of the upper 32 bit odd data RAM module. LPO [1:0] are connected directly to 
the LP [1:0] pins of the lower 32 bit odd data RAM module. Parity is checked and 
generated in 16-bit quantities. Hence only the lower two parity bits (LP [1:0]) are 
currently used. On both modules LP [3:2] should be left unconnected. 

SDO [63:0] (Store Data Odd) Active High 1/0 

Store data bus between the R8010 FPU, the odd bank of the streaming cache, and the 
external data buffers. The bus itself is bidirectional, although it is unidirectional from the 
R8010 FPU's point of view. When the R8010 FPU is in control the bus becomes 
unidirectional and drives store output data only. Odd bank load data is transferred via 
the dedicated LOO bus. There are three basic uses of the store data bus; Floating Point 
stores, Integer stores, and streaming cache data transfers to I from main memory. On 
Floating Point stores the RBOOO Microprocessor instructs the R8010 FPU to drive data 
from a register file out onto the store data bus. Address information for the store is 
provided by the RBOOO via a dedicated address bus between the RBOOO Microprocessor 
and the odd bank of the streaming cache. Integer Store data and alignment information 
is transferred via the TBus to the R8010 FPU. Control signals from the R8000 CPU allow 
the R8010 FPU to pass the data from the TBus to the SOO pins. When data from the 
streaming cache is to be transferred to main memory, the Cache Controller initiates a 
streaming cache load. The load data is retrieved from the cache using the LOO pins and 
transferred to the R8010 FPU. The CC controls the flow of data through the R8010 FPU 
asserting the FOE_ and BYPASS_ signals to the R8010 FPU, allowing data to pass 
internally from the LOO pins to the SOO pins and out to the main memory data buffers. 
When the CC is in control of the bus during a cache line fill, the SOO [ 63:0] bus is driven 
by the external data buffers. Since data from main memory is written to the streaming 
cache using the SOO pins, the SOO pins on the R8010 FPU side are tri-stated and the 
data is witten to the streaming cache. In a 4 Megabyte implementation there are two 32 
bit wide SIM modules on the odd bank. SOO [63:32] are connected directly to the SD 
[32:0] pins of the upper 32 bit odd data RAM module. SDO [31:0] are connected directly 
to the SD [32:0] pins of the lower 32 bit odd data RAM module. 

SPO [3:0] (Store Parity Odd) Active High Input 

Store parity bus between the R8010 FPU and the odd bank of the streaming cache. This 
bus is unidirectional and transfers store parity data only. Odd bank load data is 
transferred via the dedicated load parity bus. There are two 32 bit wide SIM modules on 
the odd bank. SPO [3:2] are connected directly to the SP [1:0] pins of the upper 32 bit odd 
data RAM module. SPO [1:0] are connected directly to the SP [1:0] pins of the lower 32 
bit odd data RAM module. Parity is checked and generated in 16-bit quantities. Hence 
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only the lower two parity bits (SP [1:0]) of each module are currently used. On both 
modules SP [3:2] should be left unconnected. 

9.2.4 R8010 FPU to Cache Controller 

BYPASS (Floating Point Bypass) Active Low Input 

Assertion of BYPASS_ allows data from the load data pins to bypass the internal circuits 
of the R8010 FPU and be transferred directly to the store data output buffers. The 
assertion of FOE_ enables the buffers and allows the streaming cache load data to be 
driven out onto the store data pins. Bypass deasserted allows data from within the 
registers of the R8010 FPU to be driven out onto the SDE or SOO pins (assuming FOE_ is 
active). 

FOE_ (Floating Point Output Enable) Active Low Input 

Assertion of FOE_ and FBYPASS_ on streaming cache transfers to main memory enables 
the output drivers of the R8010 FPU which allow data to be driven directly from the LDE 
[63:0] /LDO [63:0] pins to the SDE [63:0] /SOO [63:0] pins of the R8010 FPU respectively . 
When data from the streaming cache is to be transferred to main memory, the Cache 
Controller initiates a streaming cache load. The load data is then transferred on the LDE 
or LDO pins to the R8010 FPU. The CC controls the flow of data through the R8010 FPU 
by asserting the FOE_ and BYPASS_ signals to the R8010 FPU, allowing data to be driven 
onto the SDE or SOO busses. When data is to be transferred from main memory to the 
streaming cache, the CC deasserts FOE...J tri-stating the store data busses (SDE/SOO) of 
the R8010 FPU. 

TBUS [71:0] (TBus interface) Active High 1/0 

TBus [71:0] are connected between the CC, RSOOO, and R8010 FPU. There is no 
communication protocol between the R8010 FPU and the CC. The TBus of the R8010 FPU 
and the CC are connected only because the RSOOO must communicate with both. Refer to 
section 9.1.1 for more information on the TBus. 

9.2.5 R8010 FPU Clock Interface 
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CLK (Reference Clock) Active High Input 

Master input clock to the Phase Lock Loop (PLL) circuitry of the R8010 FPU. The output 
of the PLL is then used as the master dock for the chip. CLK is normally connected 
directly to the ouput of the dock driver. In most cases it is desirable to use the PLL 
circuitry, but for those applications which to not wish to use the PLL, the dock drivers 
should be connected to EXT_ CLK. 

EXT_CLK (External Clock) Active High Input 

The EXT_CLK input allows the system designer to bypass the internal PLL of the R8010 
FPU and drive the chip directly from the system dock. EXT_CLK should be tied to 
ground through a 330 ohm resistor. 

GND_PLL (Ground Phase Lock Loop) 

Ground source for the phase lock loop circuitry. GND_PLL can be connected to 
VCC_PLL through .1 microfarad and .015 microfarad capacitors in parallel. 

LPF _OUT (Low Pass Filter Output) Active High Output 

LFP _OUT is a special pin used to test the PLL circuitry during component test for 
monitoring the status of the low-pass filter. LPF _OUT must be connected to VCC_PLL 
through a 680K ohm resistor. 

SYNC_IN (Synchronized PLL input) Active High Input 

SYNC_IN is part of the PLL feedback path and must be connected to SYNC_OUT in 
order for the PLL circuitry to work correctly. The pins are made available externally to 
allow the user to manually alter the phase of the PLL. 

SYNC_OUT (Synchronized PLL input) Active High Output 

SYNC_ OUT is part of the PLL feedback path and must be connected to SYNC_IN in 
order for the PLL circuitry to work correctly. The pins are made available externally to 
allow the user to manually alter the phase of the PLL. 

VCC_PLL (Voltage Phase Lock Loop) 
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Voltage source for the phase lock loop circuitry. Connected to a regulated 3.3 volt source. 
VCC_PLL can be connected to GND_PLL through .1 and .015 microfarad capacitors in 
parallel. 

9.2.6 JTAG Interface 

The JTAG interface of the R8010 FPU is identical to that of the R8000 Microprocessor. All 
of the pins have the same function and characteristics. Below is a listing of the JTAG pins 
which interface to the R8010 FPU. For a description of these pins, refer to the JTAG pin 
description in section 9 .1.8. 

JTAG_TCK (JTAG Test Clock) Active High Input 
JTAG_ TMS (JTAG Test Mode Select) Active High Input 
JTAG_ TDI (JTAG Test Data Input) Active High Input 
JTAG_ TOO (JTAG Test Data Output) Active High Output 
JTAG_TRST_ (JTAG Test Reset) Active High Input 
SOl (Serial Data In) Active High Input 
SDO (Serial Data Out) Active High Output 

9.2.7 Initialization Interface Signals 

RESET 

Reset Pin of the R8010 FPU. The signal should be asserted for 4096 clocks. This count is 
easily accomplished with a 12-bit counter. Refer to the reset description of the R8000 
CPU in section 9.1.9. 

9.3 EVEN TAG RAM UNIT SIGNAL DESCRIPTIONS 

Two identical Tag RAM's are required in the R8000 Microprocessor environment for 
support of the 2-way interleaved second level streaming cache. The even Tag RAM 
maintains address, state and virtual synonym information for the even bank of 
streaming cache data and the odd Tag RAM maintains address, state, and virtual 
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synonym information for the odd bank of streaming cache data. 

The Even Tag RAM Unit is a 155 pin device which interfaces to the R8000 
Microprocessor, the Cache Controller, and the even bank of streaming cache. The 
following sections define the external pinout of the Tag RAM and are divided into 
specific component interfaces. Figure 9.4 shows the functional pin groupings of the Even 
Tag RAM. 

EVEN TAG RAM 

DBSETE_ ... .. 
ESAE [1 :0] ... 

"':. __... MATCHE_ 
R8000 

-
ESASELE 

-· 
-- MCHSAE [1 :0] 

INDEXE [12:0] -:: INTERFACE -= MCHSTE [1 :0] 
SECTORE [1 :0] =-... MCHVSE [3:0] 

� 
-

TAGE [19:0) 

-- DATSAXE [1:0] -
EVEN BANK DATA ... DATSAYE [1:0] 

INTERFACE 
-.. DATSAWE_ [1:0] -
.. DATSAZE_ [1 :0] -

OE_ ... 
RWSA [1:0] .: 

""a CACHE STRD_ .. 
CONTROLLER STWE_ .. 
INTERFACE TWE ... ... -

CLK .. 
PLLIN1 : CLOCK : PLLIN2 : INTERFACE PLLSEL .. 
PLLEN .. .. 

JTAG_TDI ... .. 
JTAG_TMS ... JTAG JTAG_TCK ... INTERFACE - JTAG_TDO 

JTAG_TRST ... 
VSUB : VSUBCELL .. 

RGOEN : COMPONENT TEST 
RGOSO RGOSI INTERFACE 

-
SSB�-

:-.. 
... 

Figure 9-4 Even Tag RAM Signal Groupings 
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Table 9-3 shows a pin summary of the even Tag RAM in alphabetical order. 

Pin iD Pin Name Active Level Connects To 
uutput nns 

DATSAWE_ [1 :0] Data Set Address Even Low Even Bank Address 
DATSAXE [1:0) Data Set Address Even High Even Bank Address 
DATSAYE [1:0) Data Set Address Even High Even Bank Address 
DATSAZ_ [1 :0] Data Set Address Even Low Even Bank Address 

JTAG_TDO JTAG Test Data Out High External Source 
MATCHE_ Address Match Low R8000 CPU 

MCHSAE [ 1 :0] Match Set Address High R8000 CPU 
MCHSTE [1 :0] Match State High R8000 CPU 
MCHVSE [3:0] Match Virtual Synonym High R8000 CPU 

RGOSO Ring Oscillator Output High External Source 
- Input Pins 

CE_ Chip Enable Low External source 
CLK Reference Clock High External Source 

- DBSETE_ Even Dirty Bit Set Low R8000 CPU 
ESAE [ 1 :0] Even External Set Address High R8000 CPU 

- ESASELE External Set Address Select High R8000 CPU 
INDEXE [ 12:0] Even Tag RAM Index High R8000 CPU 

JTAG_TCK JTAG Clock High External Source 
- JTAG_TDI JTAG Test Data In High External Source 

JTAG_TMS JTAG Test Mode Select High External Source 
- JTAG_TRST JTAG Test Reset Low External Source 

OE_ Output Enable Low Cache Controller 
PLLEN Phase Lock Loop Enable High External Source 

-
PLLIN1 Phase Lock Loop Input High External Source 
PLLIN2 Phase Lock Loop Input High External Source 

- PLLSEL Phase Lock Loop Select High External Source 
RGOEN_ Ring Oscillator Enable Low External Source 

RGOSI Ring Oscillator Input High External Source 
- RWSA [ 1 :0] Read Write Set Address High Cache Controller 

SECTORE [ 1 :0] Even Sector Address High R8000 CPU 
- SSBEN_ Self Sub-Bias Enable Low External Source 

Table 9-3 Even Tag RAM Pin Summary 

-
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Pin iD Pin Name Active Level Connects To 
�TRU_ �tate Read Low cache Controller 
STWE_ State Write Enable Low Cache Controller 
TWE_ Tag Write Enable Low Cache Controller 
VSUB Self Sub-Bias Voltage Input High External Source 

VSUBCELL Self Sub-Bias Voltage Input High External Source 
Input/Output Pins 

TAGE [ 19:0] Even Tag Address High R8000 CPU 

Table 9-3 Even Tag RAM Pin Summary 

9.3.1 Even Tag RAM to RBOOO Microprocessor 

The following signals connect to the R8000 and are explained further in section 9.1.2. 

DBSETE_ (Even Dirty Bit Set) Active Low Input 

The dirty bit RAM is conditionally written based on the state of DBSETE_. Refer to the 
DBSETE_ pin description in section 9.1.2 for more information. 

ESAE [1:0] (External Set Address Even) Active High Input 

These pins are connected directly to the ESAE [1:0] pins of the R8000 CPU. Refer to the 
ESAE pin description in section 9.1.2 for more information. 

ESASELE (External Set Address Select Even) Active High Input 

The ESASEL pin acts as a mux select to drive the ESA [1:0] bits through to the DATSA 
[1:0] bits. Refer to the ESASELE pin description in section 9.1.2 for more information. 

INDEXE [16:0] (Tag RAM Index Even) Active High Input 

These pins form the index into the Tag RAM and are connected to the INDEXE pins of 
the R8000 Microprocessor. Refer to the INDEXE pin descriptions in section 9.1.2 for 
connectivity information. 

MATCHE_ Active Low Output 

This signal is an output of the even Tag RAM. Assertion of this signal by the tag RAM 
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indicates that the address on the bus compared to one of the four sets. MATCH_ is 
connected directly to the MATCHE_ pin of the R8000 CPU. Refer to the MATCHE_ pin 
description in section 9.1.2 for more information.MCHSAE [1:0] (Match Set Address 
Even) Active High Output 

On a lookup cycle, these 2 bits are used form an encoded value of which of the four ways 
in the Tag RAM was a hit. Refer to the MCHSAE pin descriptions in section 9 .1.2 for 
more information. 

MCHSTE [1:0] (Match State Even) Active High Output 

These 2 bits encode the state information of a given 128 byte sector in the data RAM's. 
The state can be shared, exclusive, or invalid. Refer to the MCHSTE [1:0] pin 
descriptions in section 9.1.2 for more information. 

MCHVSE [3:0] (Match Virtual Synonym Even) Active High Output 

The bits correspond to virtual address bits 15:12 and form the virtual synonym entry in 
the Tag RAM. Refer to the MCHVSE [3:0] pin descriptions in section 9.1.2 for more 
information . 

SECTOR [1:0] (Tag RAM Sector Address) Active High Input 

These two pins act as a 4:1 mux selector inside the Tag RAM. Each line of the Data RAM 
contains 4 sectors, with each sector containing sixteen 64 bit words, 8 in the odd bank 
and 8 in the even bank. The SECTOR [1:0] pins are used to select the correct state 
information for the sector to be accessed. Refer to the INDEXE pin descriptions in section 
9.1.2 for more infomation. 

TAGE [19:0] (Tag RAM Tag Address Even) Active High 1/0 

These pins form the tag address of the tag RAM. The TAG pins are written and read by 
the CC. The R8000 CPU uses TAG [19:0] for lookup cycles. Reads and writes from the CC 
are passed onto the TAG pins through the TBus. Refer to the TAGE pin descriptions in 
section 9.1.2 for connectivity information. 

9.3.2 Even Tag RAM to Even Bank Streaming Cache 
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DATSAXE [1:0] (Data Set Address X Even) Active High Output 
DATSAYE [1:0] (Data Set Address Y Even) Active High Output 
DATSAWE_ [1:0] (Data Set Address W Even) Active Low Output 
DATSAZE_ [1:0] (Data Set Address Z Even) Active Low Output 

These two bits form the upper two address bits for the even bank of the streaming cache. 
Each of the four sets of DATSA pins contains the exact same information and are 
buffered versions of one another. Two sets are inverted. 

9.3.3 Tag RAM to Cache Controller 

The Cache Controller does not distinguish between even and odd Tag RAM's. Each 
interface pin of the CC goes to both the even and odd Tag RAM's. 

TOE_ (Tag Output Enable) Active Low Input 

The TOE_ pin is driven by the CC when the CC is reading the Tag RAM. Assertion of 
TOE_ allows the information currently on the 20 bit Tag Address bus to be driven back to 
the R8000 Microprocessor where it is returned to the CC via the TBus. Either tag address 
or state and virtual synonym information is driven out onto the tag bus based on the 
state of STRD_ (see below). 

RWSA [1:0] (Read Write Set Address) Active High Input 

This two bit field is driven by the CC when the Cache Controller is reading or writing to 
the Tag RAM and indicates which ways of the four-way set associative Tag RAM is to be 
read or written. Normally the CC modifies the Tag RAM based on the result of a 
previous R8000 lookup cycle. The result of which of the four ways compared during the 
lookup is driven onto the MCHSA [1:0] pins of the tag RAM and returned to the R8000. 
The R8000 CPU in turn passes this encoded information to the CC via a field of the TBus. 
When the CC actually modifies the Tag RAM, the way to be modified is selected using 
the RWSA [1 :0] pins. The Dirty Bit RAM also uses these pins to update the correct dirty 
bit entry. 

STRD _ (State Read) Active Low Input 

STRD_ is a control pin used in the Cache Controller read logic block inside the Tag RAM 
and is used to drive either State and V.S. information, or tag address information onto 
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the bi-directional tag pins. At the same time the TOE_ pin must be asserted to enable this 
information onto the Tag address bus. Which information is driven out onto the tag pins 
is determined by STRD_. The information on the tag bus enters the RSOOO and is 
returned to the CC via a field of the TBus. 

STWE_ (State Write Enable) Active Low Input 
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TWE_ (Tag Write Enable) Active Low Input 

TWE_ is driven by the CC whenever tag address information is to be written to the Tag 
RAM. Refer to STWE_ above. 

9.3.4 Tag RAM Clock Interface 

The following signals comprise the clock interface for the even Tag RAM . 

CLK (Clock Input) Active high Input 

Clock input for the Tag RAM. The input frequency is 75 MHz. The clock can drive the 
device directly, or function as an input to a phase lock loop based on the state of the 
input pin PLLEN. 

PLLEN (Phase Lock Loop Enable) Active High Input 

Enable pin for the bi-polar phase lock loop. Assertion of PLLEN enables the phase lock 
loop. Deassertion of this pin disables the phase lock loop and allows the input clock to 
drive the device directly. 

PLLINl (Phase Lock Loop 1) Active High Input 

There are two phase lock loop circuits on-chip. PLLINl is the 75 MHz clock input for the 
CMOS phase lock loop. This pin should be tied to ground for normal PLL operation. 
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PLLIN2 (Phase Lock Loop 1) Active High Input 

PLLIN2 is the 75 MHz clock input for the Bi-Polar phase lock loop.This pin should be 
tied high for normal PLL operation. 

PLLSEL (Phase Lock Loop Select) Active High Input 

there are two types of phase lock loop circuits inside the Tag RAM, one of which is used 
for testing purposes. PLLSEL must be tied high for proper operation of the device. 

9.3.5 JTAG Interface 

The JTAG interface of the Tag RAM is identical to that of the R8000 and R8010 FPU. All 
of the pins have the same function and characteristics. Below is a listing of the JTAG pins 
which interface to the Even Tag RAM. For a description of these pins, refer to the JTAG 
pin description in section 9 .1 .8. 

JTAG_ TCK (JTAG Test Clock) Active High Input 
JTAG_TMS (JTAG Test Mode Select) Active High Input 
JTAG_TDI (JTAG Test Data Input) Active High Input 
JTAG_ TDO (JTAG Test Data Output) Active High Output 
JTAG_ TRST _ (JTAG Test Reset) Active High Input 

9.3.6 Component Test Interface 

The following signals comprise the component test interface to the Tag RAM. These 
signals are listed only for completeness and have no functional purpose other than form 
device testing. It is important that the user connect these pins in the manner specified in 
the pin descriptions below. 

CE_ (Chip Enable) Active Low Input 
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Chip Enable for the test logic. This pin is NOT a master chip enable for the device. It 
simply enables certain testing functions which are performed during component 
verification and testing. CE_ must be tied to ground through a 330 ohm resistor. 

RGOEN_ (Ring Oscillator Enable) Active Low Input 

The ring oscillator is part of the clock circuitry of the Tag RAM. RGOEN_ is used to 
observe the behavior during certain stages of the oscillator during the component test 
and verification porocess. For normal operation RGOEN_ must be tied to ground 
through a 330 ohm resistor. 

RGOSI (Ring Oscillator Input) Active High Input 
RGOSO (Ring Oscillator Output) Active High Output 

These pins are used in conjunction with RGOEN_ during the component test and 
verification process. For normal operation RGOSI must be tied to ground through a 330 
ohm resistor. RGOSO must be left unconnected. 

SSBEN_ (Self-Sub-Bias Enable) Active Low Output 

Enables the bias voltage inputs which are used during the component test and 
verification process to monitor current flow through the device. SSBEN_ must be tied to 
ground through a 330 ohm resistor. 

VSUB (Bias Voltage Input) Active High Input 
VSUBCELL (Bias Voltage Input) Active High Input 

These two pins work in conjunction with SSBEN_ to monitor current flow through the 
device during the component test and verification process. Both of these pins must be 
left unconnected for normal operation. 

9.4 ODD TAG RAM UNIT SIGNAL DESCRIPTIONS 

Two identical Tag RAM's are required in the R8000 Microprocessor environment for 
support of the 2-way interleaved second level streaming cache. The odd Tag RAM 
maintains address, state and virtual synonym information for the odd bank of streaming 
cache data and the even Tag RAM maintains address, state, and virtual synonym 
information for the even bank of streaming cache data . 
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The Odd Tag RAM Unit is a 155 pin device which interfaces to the R8000, the Cache 
Controller, and the odd bank of streaming cache. The following sections define the 
external pinout of the Tag RAM and are divided into specific component interfaces. 
Figure 9-5 shows the functional pin groupings of the odd Tag RAM. 

DBSETO_ 
ESAO [1 :0] 
ESASELO 

INDEXO [12:0] 
SECTORO [1 :0] 

TAGO [19:0] 

OE_ 
RWSA [1:0] 

STRD_ 
STWE_ 

TWE_ 

CLK 
PLLIN1 
PLLIN2 
PLLSEL 
PLLEN 

JTAG_TDI 
JTAG_TMS 
JTAG_TCK 

JTAG_TRST 
VSUB 

VSUBCELL 
RGOEN 

RGOSI 
CE_ 

SSBEN_ 

ODD TAG RAM 

--
-... R8000 -... - INTERFACE :--;, = - -

;> ... -
EVEN BANK DATA ... 

INTERFACE -.... -
... -

.. 
.... ""':: CACHE 
: CONTROLLER 
.. INTERFACE -

-
: CLOCK - INTERFACE -.. -
-
: JTAG 

INTERFACE .. .. -

: = COMPONENT TEST .. - -
- INTERFACE 
: 

Figure 9-5 Odd Tag RAM Unit Signal Groupings 

MATCHO 
MCHSAO [1:0] 
MCHSTO [1:0] 
MCHVSO [3:0] 

DATSAXO [1:0] 

DATSAYO [1 :0] 
DATSAWO_ [1:0] 
DATSAZO_ [1 :0] 

JTAG_TDO 

RGOSO 

Table 9-4 shows a pin summary of the odd Tag RAM Unit in alphabetical order. 
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Pin iD Pin Name Active Level Connects To 
output PinS 

- DATSAWO_ [ 1 :0] Data Set Address Odd Low Odd Bank Address 
DATSAXO [ 1 :0] Data Set Address Odd High Odd Bank Address 

- DATSAYO [ 1 :0] Data Set Address Odd High Odd Bank Address 
DATSAZO_ [ 1 :0] Data Set Address Odd Low Odd Bank Address 

JTAG_TDO JTAG Test Data Out High External Source 
- MATCHO_ Address Match Low R8000 CPU 

MCHSAO [ 1 :0] Match Set Address High R8000 CPU 
- MCHSTO [1 :0] Match State High R8000 CPU 

MCHVSO [3:0] Match Vrrtual Synonym High R8000 CPU 
RGOSO Ring Oscillator Output High External Source 

,.. Input Pins 

CE_ Chip Enable Low External source 
CLK Reference Clock (Uses PLL) High External Source 

DBSETO_ Odd Dirty Bit Set Low R8000 CPU 
ESAO [1 :0] Odd External Set Address High R8000 CPU 

... ESASELO External Set Address Select High R8000 CPU 
INDEXO [12:0] Odd Tag RAM Index High R8000 CPU 

... JTAG_TCK JTAG Clock High External Source 
JTAG_TDI JTAG Test Data In High External Source 
JTAG_TMS JTAG Test Mode Select High External Source 

... JTAG_TRST JTAG Test Reset Low External Source 
OE_ Output Enable Low Cache Controller 

... PLLEN Phase Lock Loop Enable High External Source 
PLLIN l Phase Lock Loop Input High External Source 
PLLIN2 Phase Lock Loop Input High External Source 
PLLSEL Phase Lock Loop Select High External Source 
RGOEN_ Ring Oscillator Enable Low External Source 

... RGOSO Ring Oscillator Output High External Source 
RWSA [ 1 :0] Read Write Set Address High Cache Controller 

SECTORO [1 :0] Odd Sector Address High R8000 CPU 
SSBEN_ Self Sub Bias Voltage Enable Low External Source 
STRD_ State Read Low Cache Controller 

... STWE_ State Write Enable Low Cache Controller 
TWE_ Tag Write Enable Low Cache Controller 
VSUB Bias Voltage Input High External Source 

... 
Table 9-4 Odd Tag RAM Pin Summary 

... 
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Pin iD Pin Name Active Level Connects To 
V�U.Hl :EI .L Htas Voltage input High bxternal �ource 

Input/Output Pins 

TAGO [ 19:0] Odd Tag Address High R8000 CPU 

Table 9-4 Odd Tag RAM Pin Summary 

9.4.1 Odd Tag RAM to RSOOO Microprocessor 

The following signals connect to the RSOOO and are explained further in section 9.1.3. 

DBSETO_ (Odd Dirty Bit Set) Active Low Input 

The dirty bit RAM is written conditionally based on the state of DBSE10_. Refer to the 
DBSETO_ pin description in section 9.1.3 for more information. 

ESAO [1:0] (External Set Address Odd) Active High Input 

These pins are connected directly to the ESAO [1:0] pins of the RSOOO. Refer to the ESAO 
pin description in section 9.1.3 for more information. 

ESASELO (External Set Address Select Odd) Active High Input 

The ESASEL pin acts as a mux select to drive the ESA [1:0] bits through to the DATSA 
[1:0] bits. Refer to the ESASELE pin description in section 9.1.3 for more information. 

INDEXO [12:0] (Tag RAM Index Odd) Active High Input 

These pins form the index into the Tag RAM and are connected to the INDEXO pins of 
the R8000. Refer to the INDEXO pin descriptions in section 9.1.3 for connectivity 
information. 

MATCHO_ Active Low Output 

This signal is an output from the odd Tag RAM. When the RSOOO performs a lookup 
cycle to the tag RAM an index is supplied which corresponds to all four sets of the four 
way set associative odd tag RAM. Assertion of this signal by the tag RAM indicates that 
the address on the bus compared to one of the four sets. MATCHO_ is connected directly 
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to the MATCHO_ pin of the R8000 CPU. 

MCHSAO [1:0] (Match Set Address Odd) Active High Output 

On a lookup cycle, these 2 bits are used to form an encoded value indicating which of the 
four ways in the Tag RAM was a hit. Refer to the MCHSAE pin descriptions in section 
9.1.3 for more information. 

- MCHSTO [1:0] (Match State Odd) Active High Output 

These 2 bits encode the state information of a given 128 byte sector in the data RAM's. 
- The state can be shared, exclusive, or invalid. Refer to the MCHSTE [1:0] pin 

descriptions in section 9.1.3 for more information. 

-

-

... 

-

.. 

... 

... 

MCHVSO [3:0] (Match Virtual Synonym Odd) Active High Output 

The bits correspond to virtual address bits [15:12] and form the virtual synonym entry in 
the Tag RAM. Refer to the MCHVSE [3:0] pin descriptions in section 9.1.3 for more 
information. 

SECTORO [1:0] (Tag RAM Sector Address Odd) Active High Input 

These two pins act as a 4:1 mux selector inside the Tag RAM. Each line of the Data RAM 
contains 4 sectors, with each sector containing sixteen 64 bit words, 8 in the odd bank 
and 8 in the even bank. The SECTORO [1:0] pins are used to select the correct state 
information for the sector to be accessed. Refer to the INDEXO pin descriptions in 
section 9.1.3 for more infomation. 

TAGO [19:0] (Tag RAM Tag Address Odd) Active High 1/0 

These pins form the tag address of the tag RAM. The TAGO pins are written and read by 
the CC. The R8000 uses TAGO [19:0] for lookup cycles. Reads and writes from the CC are 
passed onto the TAGO pins through the TBus. Refer to the TAGO pin descriptions in 
section 9.1.3 for connectivity information. 

9.4.2 Odd Tag RAM to Odd Bank Streaming Cache 

DATSAXO [1:0] (Data Set Address X Odd) Active High Output 
DATSAYO [1:0] (Data Set Address Y Odd) Active High Output 
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DATSAWO_ [1:0] (Data Set Address W Odd) Active Low Output 
DATSAZO_ [1:0] (Data Set Address Z Odd) Active Low Output 

These two bits form the upper two address bits for the odd bank of the streaming cache. 
Each of the four sets of DATSA pins contains the exact same information and are 
buffered versions of one another. Two sets are inverted. 

9.4.3 Odd Tag RAM to Cache Controller 

The Cache Controller does not distinguish between even and odd Tag RAM's. Each 
interface pin of the CC goes to both the even and odd Tag RAM's. Below is a list of 
signals which constitute the Tag RAM to Cache Controller interface. Refer to section 
9.3.3, Tag RAM to Cache Controller, for pin defintions of the cache controller interface. 

TOE_ (Tag Output Enable) Active Low Input 
RWSA [1:0] (Read Write Set Address) Active High Input 
STRD _ (State Read) Active Low Input 
STWE_ (State Write Enable) Active Low Input 
TWE_ (Tag Write Enable) Active Low Input 

9.4.4 Tag RAM Clock Interface 

The following signals comprise the clock interface for the odd Tag RAM. These signals 
are identical in functionality and characteristics to those of the even Tag RAM. Refer to 
clock interface in section 9.3.4 for the definitions of these pins. 

CLK (Clock Input) Active high Input 
PLLEN (Phase Lock Loop Enable) Active High Input 
PLLIN1 (Phase Lock Loop 1) Active High Input 
PLLIN2 (Phase Lock Loop 1) Active High Input 
PLLSEL (Phase Lock Loop Select) Active High Input 

9.4.5 JTAG Interface 

9-46 TFP User's Manual 



-

-

-

-

-

-

,.. 

-

,.. 

.. 

The JTAG interface of the Tag RAM is identical to that of the R8010 FPU and R8000 CPU. 
All of the pins have the same function and characteristics. Below is a listing of the JTAG 

. pins which interface to the tag RAM's. 

JTAG_ TCK (JTAG Test Oock) Active High Input 
JTAG_TMS (JTAG Test Mode Select) Active High Input 
JTAG_TDI (JTAG Test Data Input) Active High Input 
JTAG_ TOO (JTAG Test Data Output) Active High Output 
JTAG_TRST_ (JTAG Test Reset) Active High Input 

9.4.6 Component Test Interface 

The following signals comprise the initialization interface to the odd Tag RAM. The 
functionality of these pins is identical to the even Tag RAM. Refer to section 9.3.6 for a 
description of these pins. 

CE_ (Test Logic Chip Enable) Active Low Input 
RGOEN_ (Ring Oscillator Enable) Active High Input 
RGOSI (Ring Oscillator Input) Active High Input 
RGOSO (Ring Oscillator Output) Active High Output 
SSBEN_ (Self Sub-Bias Voltage Enable) Active High Output 
VSUB (Sub-Bias Voltage Input) Active High Output 
VSUBCELL (Sub-Bias Voltage Input) Active High Output 

9.5 EVEN BANK STREAMING CACHE PIN DESCRIPTIONS 

The even bank of Data RAM's interfaces to the even Tag RAM. The odd bank of Data 
RAM's interfaces to the odd Tag RAM. Both banks interface to the R8000 CPU and the 
R8010 FPU. The following sections define the external pinout of the even and odd data 
RAM's and are divided into specific component interfaces. Note that the even bank 
contains twelve clock inputs. Each line is an individual output of the clock driver 
circuitry. The even bank contains 24 devices between the two modules, hence no clock 
line is required to drive more than two devices. Figure 9-6 shows the functional pin 
groupings of the Even Data RAM bank. 
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Figure 9-6 Even Bank Data RAM Signal Groupings 

Table 9-5 shows a pin summary of the even data RAM bank iJ:t alphabetical order. 

Pin iD Pin Name Active Level Connects To 
Output Pins 

LDE [63:0] Load Data Even High R8000/R801 0  
LPE [3:0] Load Parity Even High R8000 CPU 

Input Pins 

ADDRE [ 17:0] Even Bank Address High R8000 CPU 
CE_ Chip Enable Low External source 
cs_ Chip Select Low External Source 

DATSAWE_ [1 :0] Data Set Address Odd Low Even Tag RAM 

Table 9-5 Even Bank Data RAM Pin Summary 
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Pin iD Pin Name Active Level Connects To 
DATSAXE [ 1 :0] Data Set Address Odd High Even Tag RAM 

DATSAYE [ 1 :0] Data Set Address Odd High Even Tag RAM 

DATSAZE_ [ 1 :0] Data Set Address Odd Low Even Tag RAM 

EU_CLKA Even Upper Clock A High External Source 
EU_CLKB Even Upper Clock B High External Source 
EU_CLKC Even Upper Clock C High External Source 
EU_CLKD Even Upper Clock D High External Source 
EU_CLKE Even Upper Clock E High External Source 
EU_CLKF Even Upper Clock F High External Source 
EL_CLKA Even Lower Clock A High External Source 
EL_CLKB Even Lower Clock B High External Source 
EL_CLKC Even Lower Clock C High External Source 
EL_CLKD Even Lower Clock D High External Source 
EL_CLKE Even Lower Clock E High External Source 
EL_CLKF Even Lower Clock F High External Source 
SDE [63:0] Store Data Even High R8010 FPU 
SPE [3 :0] Store Parity Even High R8010 FPU 

WEE_ [ 1 :0] Even Bank Write Enables Low RSOOO CPU 

Table 9-5 Even Bank Data RAM Pin Summary 

9.5.1 Even Bank Streaming Cache to RSOOO Microprocessor 

ADORE [17:0] (Address Even) Active High Input 

These pins form the address to the even bank of the streaming cache. Bits 17:0 of the 
R8000 connect directly to address pins 17:0 of both SIM modules of the even bank . Refer 
to section 9.1.4 for more information on ADORE [17:0]. 

LDE [63:0] (Load Data Even) Active High Output 

,.. Load data bus between the R8000 and the even bank of the streaming cache. This bus is 
unidirectional and drives only load input data to the R8000. Refer to section 9.1.4 for 
more information on LDE [63:0]. 

-

... 

WEE_ [1:0] (Even Bank Write Enable) Active Low Input 

The data RAM's can be written either by the R8000 or by the CC. The CC writes to the 
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data RAM's through the TBus. The RBOOO Microprocessor provides a total of four write 
enables, two for the odd bank and two for the even bank. Streaming cache designs must 

. allow for 32 bit writeability. WEE_ [1] is connnected to the WE_ pin of the upper 32 bits 
of data for the even bank. WEE_ [O] is connnected to the WE_ pin of the lower 32 bits of 
data for the even bank. Refer to section 9.1.4 for more information on WEE_ [1:0] .  

9.5.2 Even Bank Streaming Cache to Even Tag RAM 

DATSAXE [1:0] (Data Set Address X Even) Active High Input 
DATSAYE [1:0] (Data Set Address Y Even) Active High Input 
DATSAWE_ [1:0] (Data Set Address W Even) Active Low Input 
DATSAZE_ [1:0] (Data Set Address Z Even) Active Low Input 

These two bits form the upper two address bits for the Even bank of Data RAM's. Each 
of the four sets of DATSA pins contains the exact same information and are buffered 
versions of one another. Two of the sets are inverted. 

9.5.3 Even Bank Streaming Cache to R8010 FPU 

LDE [63:0] (Even Bank Load Data) Active High Output 

The LD [63:0] pins of the even bank of the streaming cache connect directly to the LDE 
[63:0] busses of both the RBOOO CPU and the R8010 FPU. Refer to section 9.1.4 for more 
information on LDE [63:0]. 

LPE [3:0] (Even Bank Load Parity) Active High Input 

Load parity bus between the R8010 FPU and the even bank of the streaming cache. This 
bus is unidirectional and drives load parity data only. Refer to section 9.2.2 for more 
information on LPE [3:0]. 

SDE [63:0] (Store Data) Active High Output 

The SD [ 63:0] pins of the even bank of the streaming cache connect directly to the SDE 
[63:0] pins of the R8010 FPU. There is no direct store data interface between the RBOOO 
CPU and the streaming cache data RAM's. Integer stores are handled through the R8010 
FPU via the TBus. Refer to section 9.2.2 for more information on SDE [63:0] . 
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SPE [3:0] (Store Parity Even) Active High Input 

Store parity bus between the R8010 FPU and the even bank of the streaming cache. This 
bus is unidirectional and accepts store parity data only. Even bank load data is 
transferred via the dedicated load parity bus. Refer to section 9.2.2 for more information 
on SPE [3:0] . 

9.5.4 Even Bank Clock Interface 

The clock interface to the even bank of Data RAM's consists of twelve separate clocks. 
Six clocks are used for the upper 32-bit module and six clocks for the lower 32-bit 
module. Each module contains 12 devices; eight 256K X 4 Data RAM's, one 256K X 4 
Parity RAM, and three address buffers. Each clock drives two devices. 

EU_CLKA (Even Upper Clock A) Active High Input 
EU_CLKB (Even Upper Oock B) Active High Input 
EU_CLKC (Even Upper Clock C) Active High Input 
EU_CLKD (Even Upper Clock D) Active High Input 
EU_CLKE (Even Upper Oock E) Active High Input 
EU_CLKF (Even Upper Clock F) Active High Input 

EL_CLKA (Even Lower Clock A) Active High Input 
EL_CLKB (Even Lower Clock B) Active High Input 
EL_CLKC (Even Lower Clock C) Active High Input 
EL_CLKD (Even Lower Oock D) Active High Input 
EL_ CLKE (Even Lower Clock E) Active High Input 
EL_CLKF (Even Lower Oock F) Active High Input 

,... 9.5.5 Even Bank Control Interface 

The control interface for the even bank of streaming cache Data RAM's consists of a chip 
,. select and an output enable. Because the R8000 CPU and R8010 FPU provide dedicated 

load and store data busses for both the even and odd banks, no multiplexing of data is 
necessary. In addition, these busses interface only to certain devices within the system. 
This allows the OE_ pin to be permenantly asserted by tying it to ground. In addition, 
the cs_ pin can also remain permenantly asserted by tying it to ground . 

... 
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CS_ (Chip Select) Active Low Input 

Chip Select for the module. The individual chip selects for each RAM are tied together 
and routed to the module connector. cs_ should be tied to ground through a 330 ohm 
resistor. 

OE_ (Output Enable) Active Low Input 

Output enable for the module. Assertion of CE_ allows the RAM to drive data onto the 
load data bus. The individual output enables for each RAM are tied together and routed 
to the module connector. OE_ should be tied to ground through a 330 ohm resistor. 

9.6 ODD BANK STREAMING CACHE PIN DESCRIPTIONS 

The following sections define the external pinout of the odd bank of streaming cache 
data RAM's and are divided into specific component interfaces. The following sections 
define the external pinout of the even and odd data RAM's and are divided into specific 
component interfaces. Note that the even bank contains twelve dock inputs. Each line is 
an induvidual output of the dock driver circuitry. The even bank contains 24 devices 
between the two modules, hence no clock line is required to drive more than two devices 
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Figure 9-7 Odd Bank Data RAM Signal Groupings 

Table 9-6 shows a pin summary of the odd data RAM bank in alphabetical order. 

Pin iD Pin Name Active Level Connects To 
Output Pins 

LDO [63:0] Odd Bank Load Data High R8000/R80 10 FPU 
LPO [3:0] Odd Bank Load Parity High R8000 CPU 

Input Pins 

ADDRO [17:0] Odd Bank Address High R8000 CPU 
CE_ Chip Enable Low External source 
cs_ Chip Select Low External Source 

DATSAWO_ [1 :0] Data Set Address Odd Low Odd Tag RAM 
DATSAXO [ 1  :0] Data Set Address Odd High Odd Tag RAM 
DATSAYO [ 1 :0] Data Set Address Odd High Odd Tag RAM 

Table 9-6 Odd Bank Data RAM Pin Summary 
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Pin iD Pin Name Active Level Connects To 
UATSAZU p:UJ Data Set Address Odd Low Udd Tag RAM 

OU_CLKA Odd Upper Clock A High External Source 
OU_CLKB Odd Upper Clock B High External Source 
OU_CLKC Odd Upper Clock C High External Source 
OU_CLKD Odd Upper Clock D High External Source 
OU_CLKE Odd Upper Clock E High External Source 
OU_CLKF Odd Upper Clock F High External Source 
OL_CLKA Odd Lower Clock A High External Source 
OL_CLKB Odd Lower Clock B High External Source 
OL_CLKC Odd Lower Clock C High External Source 
OL_CLKD Odd Lower Clock D High External Source 
OL_CLKE Odd Lower Clock E High External Source 
OL_CLKF Odd Lower Clock F High External Source 
SDO [63:0] Store Data Odd High R80 1 0 FPU 
SPO [3:0] Store Parity Odd High R801 0  FPU 

WEO_ [ 1 :0] Odd Bank Write Enable Low R8000 CPU 

Table 9-6 Odd Bank Data RAM Pin Summary 

9.6.1 Odd Bank Streaming Cache to RSOOO Microprocessor 

ADDRO [17:0] (Address Odd) Active High Input 

These pins form the address to the odd bank of the streaming cache. Bits 17:0 of the 
R8000 Microprocessor connect directly to address pins 17:0 of both SIM modules of the 
odd bank . Refer to section 9.1.5 for more information on ADDRO [17:0] . 

LDO [63:0] (Load Data Odd) Active High Output 

Load data bus between the R8000 CPU and the odd bank of the streaming cache. This 
bus is unidirectional and drives only load input data to the R8000. Refer to section 9.1.5 
for more information on LOO [63:0] . 

WEO_ [1:0] (Odd Bank Write Enable) Active Low Input 

The data RAM's can be written either by the R8000 CPU or by the CC. The CC writes to 
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the data RAM's through the TBus. The R8000 Microprocessor provides a total of four 
write enables, two for the odd bank and two for the even bank. Streaming cache designs 
must allow for 32 bit writeability. WEO_ [1] is connnected to the WEO_ pin of the upper 
32 bits of data for the odd bank. WEO_ [0] is connnected to the WEO_ pin of the lower 
32 bits of data for the odd bank. 

9.6.2 Odd Bank Streaming Cache to Odd Tag RAM 

DATSAXO [1:0] (Data Set Address X Odd) Active High Input 
DATSAYO [1:0] (Data Set Address Y Odd) Active High Input 
DATSAWO_ [1:0] (Data Set Address W Odd) Active Low Input 
DATSAZO_ [1:0] (Data Set Address Z Odd) Active Low Input 

These two bits form the upper two address bits for the odd bank of Data RAM's. Each of 
the four sets of DATSA pins contains the exact same information and are buffered 
versions of one another. Two of the sets are inverted. 

9.6.3 Odd Bank Streaming Cache to R8010 FPU 

LDO [63:0] (Odd Bank Load Data) Active High Output 

The LDO [ 63:0] pins of the odd bank of the streaming cache connect directly to the LOO 
[63:0] busses of both the R8000 CPU and the R8010 FPU. Refer to section 9.2.3 for more 
information on LOO [63:0] . 

LPO [3:0] (Odd Bank Load Parity) Active High Input 

Load parity bus between the R8010 FPU and the odd bank of the streaming cache. This 
bus is unidirectional and drives load parity data only. Odd bank store parity data is 
transferred via the dedicated store parity bus. Refer to section 9.2.3 for more information 
on LPO [3:0]. 

SDO [63:0] (Store Data Odd) Active High Output 

The SOO [ 63:0] pins of the odd bank of the streaming cache connect directly to the SOO 
[63:0] pins of the R8010 FPU. There is no direct store data interface between the R8000 
CPU and the streaming cache data RAM's. Integer stores are handled through the R8010 
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FPU via the TBus. Refer to section 9.2.3 for more information on SOO [63:0]. 

SPO [3:0] (Store Parity Odd) Active High Input 

Store parity bus between the R8010 FPU and the odd bank of the streaming cache. This 
bus is unidirectional and accepts store parity data only. Odd bank load parity data is 
transferred via the dedicated load parity bus. Refer to section 9.2.3 for more information 
on SPO [3:0] . 

9.6.4 Odd Bank Streaming Cache Clock Interface 

The clock interface to the odd bank of Data RAM's consists of twelve separate clocks. Six 
clocks are used for the upper 32-bit module and six clocks for the lower 32-bit module. 
Each module contains 12 devices; eight 256K X 4 Data RAM's, one 256K X 4 Parity RAM, 
and three address buffers. Each clock drives two devices. 

OU_CLKA (Even Upper Clock A) Active High Input 
OU_CLKB (Even Upper Clock B) Active High Input 
OU_CLKC (Even Upper Clock C) Active High Input 
OU_CLKD (Even Upper Clock D) Active High Input 
OU_CLKE (Even Upper Cock E) Active High Input 
OU_CLKF (Even Upper Cock F) Active High Input 

OL_CLKA (Even Lower Cock A) Active High Input 
OL_CLKB (Even Lower Cock B) Active High Input 
OL_CLKC (Even Lower Cock C) Active High Input 
OL_CLKD (Even Lower Cock D) Active High Input 
OL_CLKE (Even Lower Clock E) Active High Input 
OL_CLKF (Even Lower Cock F) Active High Input 

9.6.5 Odd Bank Streaming Cache Control Interface 

The control interface for the odd bank of streaming cache Data RAM's consists of a chip 
select and an output enable. Because the RSOOO CPU and R8010 FPU provide dedicated 
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load and store data busses for both the even and odd banks, no multiplexing of data is 
necessary. In addition, these busses interface only to certain devices within the system. 
This allows the OE_ pin to be permenantly asserted by tying it to ground. In addition, 
the cs_ pin can also remain permenantly asserted by tying it to ground. 

CS_ (Chip Select) Active Low Input 

Chip Select for the module. The individual chip selects for each RAM are tied together 
and routed to the module connector. CS_ should be tied to ground through a 330 ohm 
resistor. 

OE_ (Output Enable) Active Low Input 

Output enable for the module. Assertion of CE_ allows the RAM to drive data onto the 
load data bus. The individual output enables for each RAM are tied together and routed 
to the module connector. OE_ should be tied to ground through a 330 ohm resistor. 
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TBUS INTERFACE 

10 

The TBus is an 80 bit high speed 75 :MHz bus which connects between the R8000 
Microprocessor, the R8010 Floating Point Unit (FPU), and the Cache Controller (CC). The 
TBus is used for general communication between the devices. Ownership of the TBus 
changes depending on the operation to be performed. The format of the TBus also 
changes depending on which device is driving the bus. 

Under normal operating conditions the R8000 CPU drives the TBus. The R8000 CPU 
performs operations and transfers the result or status of the operations across the TBus 
to the CC. However, there is frequent exchange of TBus ownership between the R8000 
CPU and the CC. When conditions occur which warrant CC interaction to the system, 
such as a streaming cache miss, TBus ownership is transferred to the CC and the 
necessary operation completed. The TBus is the Cache Controller's main interface to the 
rest of the system. Among other things, the CC uses the TBus to transfer tag RAM 
address, state, and virtual synonym information, Data RAM address and write enable 
information, and interrupt status to the R8000 CPU. Because the CC does not have 
dedicated bus interfaces to the tag RAM's or the Streaming Cache, it is the responsibility 
of the R8000 CPU to take the information on the TBus and route it to the proper address 
or control busses in the system. Refer to figure 1-1 in chapter 1 for a block diagram of the 
R8000 Microprocessor Chip Set. 

There are four types of transfers which can occur between the R8000 CPU and the R8010 
FPU. However, during only one of these transfers, moving data from a floating point 
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register to a general purpose register inside the R8000 CPU, does the R8010 FPU actually 
drive the TBus. Under all other conditions the TBus pins of the R8010 FPU are in input 

. mode. 

Although there are physical pin connections between the CC and the R8010 FPU, they 
exist only because the R8000 CPU must communicate with both devices. There is no 
protocol or information exchange of any kind between the CC and the R8010 FPU. 

The lower 72 bits of the TBus (TB71:0) connect between the three devices. The uppermost 
8 bits (TB<79:72>) connect only between the R8000 CPU and the R8010 FPU. 

Figure 10-1 shows the TBus connections between the three devices. 

R8000 CPU 

8 v � l / 

- TB<79:72> 72 v 
- / 

R8010 FPU 
TB<71:0> - -

- ..... 

Figure 10-1 TBus Connections 

10.1 PROCESSOR CONTROLLED TBUS FIELDS 

CACHE 
CONTROLLER 

The fields comprising the TBus include all of the basic information available for a given 
R8000 CPU access. If the R8000 CPU requires CC intervention to complete a cycle, this 
information is dispatched across the TBus and control of the bus transferred to the CC. 
The CC then uses the TBus information to take the appropriate action. 

The Command and Coherence fields indicate what type of operation the R8000 CPU was 
trying to do. The Match, Set Address, State, and Vutual Synonym fields encode the 
information received during the Tag RAM lookup. The Size field indicates the size of 
non-cachable information and is only valid when non-cachable operations are being 
performed. 

The format of the TBus changes depending which device is driving. When the R8000 
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CPU is in control of the TBus, the format of TB<71:0> is as shown in Table 10-1. 

R8000 CPU Controlled Thus Fields Width Thus Bits 

Reserved 12 71:60 

Command 4 59:56 

Size 3 55:53 

Coherence Protocol 3 52:50 

No Match 2 49:48 

Set Address 2 47:46 

State Information 2 45:44 

Virtual Synonym 4 43:40 

Physical Address 40 39:0 

Table 10-1  R8000 CPU Controlled TBus Fields 

Table 10-1 shows the bit orientations of the TBus under RBOOO CPU control. Not all of the 
fields are used for each type of cycle. There are four divisions of the TBus and which 
portions are driven or tri-stated depends on the operation being executed. 

1) Bits 79:72 connect between the RBOOO CPU and the R8010 FPU and are always driven 
regardless of the operation. 
2) Bits 71:64 are driven only by the RSOOO CPU or the CC. Which device is driving 
depends on the state of the TBus state machine. 
3) Bits 63:40 can be driven by the RSOOO CPU, CC, or R8010 FPU. The CC drives the pins 
as dictated by the TBus state machine. The R8010 FPU drives the pins as commanded by 
the RSOOO CPU, such as when the R8010 FPU is commanded to move data from a R8010 
FPU register and place it in an RSOOO CPU register. In all other situations the pins are 
driven by the RSOOO CPU. 
4) Bits 39:0 are also driven by the RSOOO CPU, CC, and R8010 FPU. The same rules apply 
as those for bits 63:40. In addition, during the CC state (CC is in control of the TBus), 
seven cycles after one of the tag RAM read functions is driven, bits 39:0 of the TBus are 
tri-stated by the CC to allow the RSOOO CPU to return data. Refer to section 11.2.2 for 
more information on the tag read function. 

The following sections explain the functions in table 10-1 in more detail . 

10.1.1 Reserved Field 

The reserved field comprises bits 71:60. These bits are reserved by MIPS Technologies 
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Incorporated. 

10.1.2 Command Field 

The Command field is a four bit field which encodes the type of memory access the 
RBOOO CPU was doing which caused the transfer. The Command field is always valid 
whenever VALIDOUT_ is asserted. Also included in the command field are the Cachable 
and Non-cachable coherence attributes of each access type. 

Command Encoded Cachable Non-
Value Cachable 

Read 0 yes yes 

Instruction Fetch 1 yes yes 

Write 2 yes no 

Write 3 yes no 

Reserved 4-5 --- ---

Non-Cachable Write 6 no yes 

Sequential Non-Cachable 7 no yes 
Write 

Prefetch 8 yes no 

Reserved 9-1 5  --- ---

Table 10-2 Command Field Encoding 

The command field allows the RBOOO CPU to inform the CC what type of cycle was being 
performed which caused the R8000 CPU to request action. The CC can then decode the 
four bit field and initiate the appropriate cycle. The command field is sampled by the CC 
during the clock when VALIDOUT_ is asserted by the R8000 CPU. Normally after 
VALIDOUT_ is asserted by the R8000 CPU the TBus state machine will transition from 
the RUN state to the CC state to allow the CC control of the TBus. 

The read entry of the command field indicates any type of read cycle, such as the PROM, 
the Non-volatile RAM, registers in the CC chip, registers in the system address chips, 
main memory, 1/0 busses, etc. 

Even though a read and an instruction fetch are both read cycles, having a separate 
instruction fetch entry in the command field allows the system designer to differentiate 
between the fetching of instructions and the fetching of data. Different coherence 
protocols can then be assigned to each. For example, if it is determined during a data 
fetch that no other processor in the system has that data the data can be marked as 
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fetch that no other processor in the system has that data the data can be marked as 
'Exclusive' and written immediately without requiring further state modification 
transactions. This boosts system performance as data can be written and used 
immediately as it becomes available. 

For instructions there is normally no necessity for writing, hence the instructions can be 
fetched and marked as 'Shared'. Therefore, if another processor requests the same 
instruction there is no need to do an 'Intervention' cycle (see section 11.4.9 for a 
definition of intervention). The other processor can simply fetch the instruction without 
requiring additional overhead. 

The write entry of the command field comprises encoded values 2 and 3. These cycles 
are identical. Duplicate writes appear simply for the convenience of the gating 
arrangements inside the R8000 CPU. The CC must react to either of these bits active 
when VALIDOUT_ is asserted. 

The reserved entries of the command field pertain to encoded entries 4, 5, and 9-15 and 
are reserved by MIPS Technologies. 

The RSOOO CPU non-cachable write entry of the command field is a partial write, 
meaning that less than 128 bytes can be written. During this cycle the R8000 CPU does 
not give up the TBus. In non-cachable write cycles there is no place to put the data and 
have it transferred at a later time with a write-back cycle. Non-cachable data is 
transferred to the Data cache but is marked as invalid. The R8000 CPU can use the data 
only once. If the R8000 CPU tries to read the non-cachable data a second time it will 
incur a miss because the line is marked as invalid. The R8000 CPU non cachable write 
cycle writes the data without concern for the sequential order of instructions. 

In a Sequential non-cachable write the processor writes out the data and then halts 
execution and will not restart until commanded to do so. This assures that nothing 
happens out of order. 

The Prefetch entry allows the CC to fetch data which may be required by the R8000 
CPU. The prefetch is non-binding in the sense that there is no penalty involved and no 
requirement that the data be used by the R8000 CPU after being fetched. The prefetch is 
a special instruction which creates an address and fetches the corresponding data or 
instructions. Normal instructions cause movement of data between registers or devices. 
The prefetch does not demand any such action but rather generates an address which 
causes the CC to fetch data or instructions which may or may not be used . The 
advantage of prefetching is that at the time the prefetch is initiated the data is not needed 
by the R8000 CPU. However, if the prefetched data or instructions are used later on they 
are available immediately, the access time for the data having already been completed . 
Prefetched instructions or data are fetched by the CC and moved into the Data Cache 
and marked as invalid in the Data Cache Valid RAM. Note that prefetch instructions are 
inserted into the instruction stream by the compiler. There is no system requirement that 
they be supported. 
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10.1.3 Size Field 

The Size field is an encoded three bit value which indicates the size of the operation, one 
through eight bytes, for non-cachable operations. The size field is used only on non­
cachable operations and is valid for any command indicating a partial read. Cachable 
operations always fetch 128 bytes. The page table entries in memory determine whether 
a given location is cachable or non-cachable. The size field relates to the coherence 
protocol field described in section 11 .1.4 below. The coherence field encodes the type of 
non-cachable operation and the size field indicates the corresponding amount of data to 
be transferred. 

There is one exception to the size field. Non-cachable instruction fetches always fetch 32 
bytes. During this type of non-cachable cycle the CC does not decode the size field 
because the fetch size has been pre-determined by the instruction itself. Non-cachable 
instruction fetches exist in order to facilitate the boot-up procedure. There are no non­
cachable instructions fetches after completion of the boot-up procedure. Although 32 
bytes is the specified minimum, more bytes can be fetched is desired. The amount 
fetched is system dependent. The encoded values of the size field are shown in Table 10-
3. 

Encoded Size Value 

0 1 byte 

1 2 bytes 

2 3 bytes 

3 4 bytes 

4 5 bytes 

5 6 bytes 

6 7 bytes 

7 8 bytes 

Table 10-3 Size Field Encoding 
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10.1.4 Coherence Protocol Field 

The Coherence Protocol field is a three bit field used to indicate the coherence attributes 
in the page table entry for the access and is always valid whenever VALIDOUT_ is 
asserted. It is used to determine whether the access is cachable, and what type of 
protocol to follow in filling the streaming cache. The Coherence field allows data to 
maintain coherent in a multi-processor environment. 

Non-cachable cycles transfer data from an external non-cachable source into the data 
cache of the RBOOO CPU. When the RBOOO CPU requests non-cached data the CC retrieves 

- the data and places it in the Data Cache of the RBOOO CPU and marks the status of the 
entry as invalid. The RBOOO CPU has internal tracking mechanisms which allow the 
location to be read as soon as data becomes available without taking a miss due to the 

- invalid status of the entry. However, the RBOOO CPU can read the location only once. Any 
subsequent reads to that location result in a Data Cache miss. Table 10-4 shows the 
different cycles supported by the coherence field. 

-

-

-

... 

-

-

-

-

,. 

-

-

-

Encoded Coherence Attribute Value 

0 Processor Ordered Uncachable 

1 Reserved 

2 Uncachable Sequential 

3 Cachable Non-Coherent 

4 Cachable Coherent Exclusive 

5 Cachable Coherent Exclusive on Write 

6-7 Reserved 

Table 10-4 Coherence Field 

The Processor Ordered Uncachable entry is used for writing hardware registers in the 
CC which support the write-gatherer operation. The purpose of a write-gatherer is to 
gather 32 bit write operations from another source (such as a graphics engine) into a 128 
byte block before sending them across the bus. Otherwise each single 32 bit write would 
have to be sent across the bus which would decrease system data bandwidth and 
degrade overall system performance. 

The Reserved entry is reserved by MIPS Technologies and should not be used. 

The Uncachable Sequential entry is the standard non-cachable protocol which can be 
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used by internal CC registers, 1/0 registers, memory, etc. Only those exact bytes 
specified are actually written or read. There is no minimum block size requirement. 

The Cachable Non-Coherent allows data to be cached which is not coherent between 
processors. This function is supported for those systems which do not require that data 
coherency between processors be maintained. 

The Cachable Coherent Exclusive entry allows data to be read from another device and 
marked as exclusive. It is the responsibility of the CC to retrieve the data from another 
processor and assure that the entry in the other processor is marked as invalid. 

The Cachable Coherent Exclusive on Write entry is the standard protocol that all 
cachable cycles should follow. Data can be shared between processors and read access 
allowed to each at the same time. Any processor which desires to write the data must 
assure that all of the other processors mark their entries as invalid. Any other processor 
which then desired the newly written data must perform an intervention cycle in order 
to retrieve the data. 

10.1.5 Match Field 

The Match field in table 10-1 is a two bit field which reflects the status of the MATCH pin 
which was returned to the R8000 CPU by the Tag RAM. The R8000 CPU samples the 
various control signals from the Tag RAM and encodes the status of the Tag RAM lookup 
in the Match field of the TBus. The Match field also contains the status of whether the 
virtual synonym returned from the Tag RAM matched the virtual address bits from the 
original address. The number of virtual synonym bits actually checked depends on the 
size of the Data Cache. The result of the Tag RAM lookup is sent across the TBus to the 
CC and the appropriate action is taken by the CC. 

The MATCH field is valid whenever VALIOOUT_ is asserted and is driven by the R8000 
CPU whenever the R8000 CPU is doing a write cycle and the line is marked either shared 
or invalid. If the line is marked shared it must be upgraded. If the line is marked invalid 
the data must be retrieved. The state status is determined by the CC from the state field 
explained in section 10.1.7. 

If the R8000 CPU is performing either a read or a write cycle and the line is marked 
exclusive no CC action is required. Also, if the R8000 CPU is performing a read cycle and 
the line is marked shared no CC action is required. 

Separate Match and State fields are required due to the sectored nature of the streaming 
cache. There are four sectors per streaming cache line but only one address per line. Each 
of the four sectors of the line must be looked at individually to ascertain the status of 
each. It is possible to have an address match but no sector match (all sectors are in the 
State field are marked invalid). This is important to determine because if the address 
matches, the data must be placed at that address even though all of the corresponding 
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sectors may be invalid. If this were seen simply as a miss the CC would pick a random 
set to put the data in. You could then end up with multiple sets in the cache containing 

. the same address. Table 10-5 lists the different codes of the Match field and their 
descriptions 

Encoded Coherence Attribute Value 

0 Tag Match and VIrtual Synonym Match (Cachable) 

1 Tag Match and VIrtual Synonym Miss-Match OR 
Tag Match and Non-Cachable Operation 

2 Reserved 

3 No Tag Match 

Table 10-5 Match Field Encoding 

If the Match field indicates both a Tag address match and a virtual synonym match 
(encoded value 0), the CC simply fetches and adds a sector to the existing line in both the 
Data cache and the Streaming cache. 

If the field indicates a Tag address match and a virtual synonym miss-match (encoded 
value 1), the CC removes the entire line, invalidates the corresponding entry in the Data 
Cache, fetches the needed sector and places it in the streaming cache (in the same set) . 

If there is no Tag address match (encoded value 3), indicating a miss, the CC removes the 
entire line at a set which the CC chooses, invalidates the Data Cache entry for that line, 
fetches the needed sector and places it in the streaming cache at that set. 

10.1.6 Set Address Field 

The Set Address field in table 10-1 is a two bit field which reflects the status of the Tag 
RAM lookup and distinguishes which of the four sets in the Tag RAM the address 
compared. The Set Address field is valid whenever there is an address match as 
determined by the Match field. When a lookup cycle is performed on the 4-way set 
associative Tag RAM, and there is an address match, the Tag RAM encodes onto the 
MCHSA<1:0> pins which of the four sets of a given Tag RAM entry actually compared. 
This information is then routed by the R8000 CPU from its MCHSA inputs onto the Set 
Address field of the TBus (bits 47:46). Table 10-6 shows the encoding of the set address 
field. 
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Encoded Set Address Match Value 

0 Set O Match 

1 Set 1 Match 

2 Set 2 Match 

3 Set 3 Match 

Table 10-6 Set Address Field 

10.1.7 State Field 

The two bit State field indicates the coherency status for the given access. The state field 
is always driven whenever VALIDOUT_ is asserted. Every entry in the Tag RAM has 
address, state, and virtual synonym information associated with it. H there is a match to 
one of the 4 sets, the set address information is returned by the Tag RAM on the 
MCHSA<l:O> pins. The corresponding state information is returned by the Tag RAM on 
the MCHST<l:O> (Match State) pins. This information is then routed by the R8000 CPU 
from its MCHST inputs onto the State field of the TBus (bits 45:44).The state field is used 
to determine the reason for the miss. 

Table 10-7 below lists the different codes of the State field and their descriptions. 

Encoded Definition Value 

0 Invalid 

1 Shared State 

2 Exclusive State 

3 Reserved 

Table 10-7 State Field Encoding 
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10.1.8 Virtual Synonym Field 

The four bit Virtual Synonym field contains virtual address bits 15:12 for the access 
which caused the operation. Every entry in the Tag RAM has address, state, and virtual 
synonym inf.ormation associated with it. H there is a match to one of the 4 sets, the set 
address and state information are returned by the Tag RAM on the MCHSA and MCHST 
pins respectively. The corresponding virtual synonym information is returned by the Tag 
RAM on its MCHVS <3:0> (Match Virtual Synonym) pins. This information is then 
routed by the RSOOO CPU from its MCHVS inputs onto the Vuiual Synonym field of the 
TBus (bits 43:40). The virtual synonym field is required so that the Data Cache inside the 
RSOOO CPU can be correctly invalidated. 

The data cache is virtually indexed and physically tagged. The data cache is also larger 
than the minimum page size configuration of 4 KBytes. Consequently there could be 
multiple places in the data cache which a given doubleword could reside. The virtual 
synonym (V.S.) is used to assure that a given doubleword of data cannot reside in 
multiple places in the data cache. 

H the correct 4 KByte page is chosen, indicated by a data cache tag match, the cache is 
accessed and the cycle completes. If the data cache tag misses the RSOOO CPU initiates a 
streaming cache cycle to determine whether the data is then in the second level cache. 
The virtual synonym bits are stored in the Tag RAM and indicate that, if the data is in the 
data cache, there is the only location which it can reside, otherwise the V.S. bits would 
not match and a miss would occur. The RSOOO CPU compares the V.S. bits of the address 
with the value returned from the Tag RAM lookup. Because there is only one V.S. in the 
data cache at any given time the only way to change from 4K Byte page to another is to 
have a data cache miss. On a data cache miss the RSOOO CPU checks in the tag ram to see 
which virtual synonym is allowed for the corresponding cycle. If the V.S. in the data 
cache is the current one then the data has to be in the data cache. If there is a V.S. mis­
match the data could be somewhere else in the data cache so action must be taken. In this 
case the whole 512 bytes is transferred to main memory and the 512 bytes in the data 
cache is then invalidated. The V.S. in the streaming cache is then changed and execution 
resumes. No action between the streaming cache and main memory is required . 

10.1.9 Physical Address Field 

The 40 bit Physical Address is the result of the TLB lookup corresponding to the access 
which caused the operation. Since there is no address bus interface between the RSOOO 
CPU and the CC, the address information is transferred on TBus bits 39:0 . 
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10.2 CC CONTROLLED TBUS FIELDS 

The following section discusses the protocol involved when the cache controller is in 
control of the TBus. The CC can either arbitrate for control of the TBus, or it can be 
granted immediate control by the R8000 CPU. The CC is responsible for monitoring the 
activity on the system bus which is used by other processors in the system to 
communicate with each other. If another processor in the system requires access to local 
streaming cache memory, the CC will arbitrate for control of the streaming cache in order 
to service the incoming request. 

A miss to the streaming cache causes the R8000 CPU to bypass arbitration and grant the 
bus to the CC immediately. The CC then fetches the data being requested from main 
memory, places it in the streaming cache, and releases control of the bus back to the 
R8000 CPU. Transition of the TBus state machine to 'CC' state allows the CC control of 
the TBus. Refer to section 10.3 for more information on the TBus state machine. 

Table 10-8 shows the TBus protocol when the CC is in control. 

CC Controlled Thus Fields Width Thus Bits 

Reserved 4 7 1 :68 

Function 4 67:64 

Streaming Cache Write Enables 4 63:60 

External Set Address 2 59:58 

Streaming Cache Address<21 :4> 18  57:40 

Tag RAM Address<39:5> 35 39:5 

Reserved 1 4 

Virtual Synonym 4 3:0 

Table 10-8 CC Controlled TBus Fields 

10.2.1 Reserved 

TBus bits <71:68> and bit 4 are reserved by MIPS Technologies Incorporated and should 
not be used. 

10-12 TFP User's Manual 



-

-

-

-

-

-

-

-

10.2.2 Function Field 

The Function Field is a four bit field and is the only field by which the CC changes the 
internal state of the RBOOO CPU instead of just the Tag RAM's or the streaming cache 
RAM's. The function field is valid on every clock which the TBus state machine is in the 
CC state. There are a number of different operations which can be performed based on 
the state of the function field. The function field controls such operations as invalidation 
of the first level Data Cache, instructing the R8000 CPU to empty the floating point store 
address and store data queues by briefly returning the TBus to the RBOOO CPU for this 
operation, interrupt status, and signal generation for reading the Tag RAM. 

The function field is represented by TBus bits 67:64. The 4 bit value is encoded as 
follows. 

Encoded Description Value 

0 No R8000 CPU operation 

1 Reserved* 

2 Interrupt 

3 Empty Queue 

4 Reserved* 

5 Read of Even Tag RAM 

6 Read of Odd Tag RAM 

7 Combined Read of both Tag RAM's 

8-9 Reserved* 

10  Invalidate Data Cache Line (32 bytes) 

1 1 - 15  Reserved* 

Table 10-9 Function Field Encoding 

* Encoded values reserved by MIPS Technologies Incorporated. 

Below is an explanation of each of the various Function fields. 

10.2.2.1 No RSOOO CPU Operation 

No RBOOO CPU Operation is provided so that the CC is not forced to do any of the other 
operations and is analogous to the VALIDOUT_ signal. When the RBOOO CPU is in 
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control of the TBus the information on the TBus is valid only when VALIDOUT_ is 
active. However, when the CC is in control the TBus is valid every cycle. But the CC does 
not always drive valid information every cycle. The No R8000 CPU Operation 
mechanism is used to indicate to the rest of the system that, although the TBus is being 
driven during a given cycle, it contains no valid information. 

10.2.2.2 Interrupt 

The Interrupt function changes the internal state of the R8000 CPU by setting the 
interrupt pending bit. The R8000 CPU then reads some memory mapped registers inside 
the CC to find out more information about the interrupt so that the proper interrupt 
service routine can be executed. The R8000 CPU is responsible for clearing the interrupt 
bit once servicing has been completed. Refer to section 10.4.13 for more information. 

10.2.2.3 Empty Queue 

The Empty Queue function is initiated when the CC finds an address match in the Store 
Address Queue (SAQ). There are two reasons why the CC does a SAQ compare, 
Intervention and write back or line replacement from the streaming cache to main 
memory. The address match is detected by the CC while the TBus state machine is in the 
'CC' state. A valid SAQ compare causes the Cache Controller to transition from CC state 
to EQ state. Control of the TBus is returned to the R8000 CPU allowing the instructions 
corresponding to the addresses in the SAQ to be executed. After the queue is emptied 
the TBus is returned to the CC. Refer to section 10.3 for more information in the CC state 
machine. Refer to the Store Address Queue Compare cycle in section 10.4 for more 
information. 

10.2.2.4 Tag Read Even/Odd 

The Tag Read Even and Tag Read Odd functions affect the tri-state enables of the R8000 
CPU on TBus bits <39:0>, which represent the Tag address and virtual synonym fields, 
as well as the Tag address field of the Tag RAM connections. Refer to Figure 10-2 below: 

cc 

� 
TBus 

,, 
Even Odd 
Tag Tag RAM Address R8000 CPU Tag RAM Address .. Tag 
RAM 

- ... -
RAM 

Figure 10-2 Interface Busses of the Tag RAM Read Function 
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Whether the even or odd tag RAM is read depends on the state of address bit A3. If this 
bit is deasserted (0), the even tag RAM is read. Assertion of A3 (1) causes the odd tag 
RAM to be read. The Tag RAM even/ odd read operation does not change the internal 
state of the R8000 CPU but rather it controls a multiplexor inside the R8000 CPU to 
assure that the correct Tag RAM information is transferred across the TBus. 

Once the tag read function is placed on the TBus, the different busses in the above 
diagram tri-state and drive at various times to complete the operation. The table below 
shows a behavior of the various busses during a Tag RAM read. Refer to the Tag RAM 
read cycle and associated timing diagram in section 10.4 for more information. 

Cycle 1 2 3 4 5 6 7 8 9 10 

Tag RAM CPU CPU CPU z TAG z CPU CPU CPU CPU 
Address 

TBus cc cc cc cc cc cc z CPU z cc 

Table 10-10 Bus Behavior During a Tag RAM Read 

In Table 10-10 above the CC has encoded the function field of the TBus to indicate a Tag 
RAM read and placed the request on the TBus pins <67:64> in Clock 0 (not shown). For 
the first three clocks (1-3) after the tag read request is placed on the bus by the CC the 
R8000 CPU continues to drive the tag RAM address pins (refer to Figure 10-2 above). 
During this time the CC is driving the TBus . 

In clock 4 the R8000 CPU stops driving the tag address bus and tri-states. The CC also 
asserts the signal OE_ to the Tag RAM in clock 4. Assertion of OE_ allows the 
information on the 20 bit Tag RAM tag address bus to be driven by the Tag RAM back to 
the R8000 CPU in clock 5. In clock 6 the Tag RAM releases control of the tag address bus 
back to the R8000 CPU and the R8000 CPU begins driving again in clock 7. 

At this point the Tag RAM has been accessed and the appropriate information driven 
back to the R8000 CPU by the Tag RAM. The information must now be transmitted by 
the R8000 CPU across the Thus and back to the CC. There is a three clock delay internal 
to the R8000 CPU between when the information is driven by the Tag RAM in clock 5 
and when it is driven by the R8000 CPU onto the TBus in clock 8. 

When the Tag Read function appears on the Thus (clock 0 in table 10-10, not shown) the 
CC will continue to drive the Thus for 6 clocks (clocks 1-6 in Table 10-10). In clock 7 the 
CC releases control of the TBus, allowing the Tag address information to be driven by the 
R8000 CPU in clock 8. In clock 9 the R8000 CPU tri-states the TBus and relinquishes 
control back to the CC in clock 10, thereby completing the cycle. 
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10.2.2.5 Tag RAM Combined 

The Tag Read Combined function allows the CC to read the state and dirty bit 
information from each Tag RAM at the same time. The even and odd dirty bits must then 
be logically OR'ed together external to the R8000 CPU. Because both the even and odd 
Tag RAM's are controlled by the same write enable from the CC, they will always have 
the same address, state, and virtual synonym information. However, each Tag RAM has 
a separate Dirty Bit Set (DBSET) write enable pin. The Tag Read combined function is 
used by the CC to determine if any of the sectors in a given line of the cache has entered 
the dirty exclusive state. When both RAM's are read at the same time, the state and 
virtual synonym information from the Odd tag RAM is returned by default. Only the 
dirty bit information from the even Tag RAM is returned. Refer to the Tag Read 
combined timing diagram and accompanying table in section 10.1.3 for more 
information. 

10.2.2.6 Invalidate Data Cache 

The Invalidate Data Cache function causes 32 bytes of the Data Cache to be invalidated 
at the address specified by the Virtual Synonym and Tag RAM address fields of the Tbus. 
When the Invalidate Data Cache function is initiated by the CC, bits <11:5> of the Tag 
RAM address field (TBus bits 11:5) are concatenated with the four bit virtual synonym 
field (TBus bits 3:0) to form an index to the Data Cache Valid RAM. The remaining TBus 
Tag address bits (TBus bit 39:12) are compared to the physical tag to determine whether 
the addresses to be invalidated resides in the Data Cache. When a data cache invalidate 
is initiated, the CC does not know whether the data is in the data cache. If the tag 
matches, the eight valid bits representing the 32 byte line are cleared. Refer to Chapter 1 
for more information on the Data Cache Valid RAM architecture. Figure 10-3 how the 
TBus is used during a Data Cache invalidation cycle. 
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Figure 10-3 TBus format During a Data Cache Invalidation Cycle 

10.2.3 Streaming Cache Write Enables Field 

The four bit Streaming Cache Write Enables field is represented by TBus bits 63:60 and is 
used when writing data to the streaming cache. The smallest writable quantity 
supported by the streaming-cache is 32 bits. The 4 MByte streaming cache consists of 
four SIM modules, each 1 MByte in size and organized as 256K X 36 bits. During 
streaming cache write cycles initiated by the CC the Cache Controller places the write 
enable information onto the TBus. The R8000 CPU then routes TBus bits 63:60 onto the 
correct write enable pins which connect between the R8000 CPU and the Streaming 
Cache. The Streaming Cache Write Enable field can contain valid cycle information and 
be driven at the same time as the Tag RAM address and other fields which do not pertain 
to a streaming cache cycle. This allows information for multiple cycles to be on the TBus 
at the same time. Figure 10-4 shows how the write enable field of the TBus corresponds 
to the Streaming Cache. 
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Figure 10-4 Streaming Cache Write Enables 

10.2.4 External Set Address Field 

The External Set Address field forms the two uppermost bits of address for the 
streaming cache and is used to differentiate in which of the four sets of the streaming 
cache the data resides. Both the Tag RAM and the streaming cache are 4-way set 
associative. When the Tag RAM is accessed all four ways in the entry are compared to 
the address on the bus. If there is a Tag Match the Tag RAM must then encode which of 
the 4 ways actually compared. The Tag RAM uses the MCHSA<l:O> pins to encode this 
information. The information is sent back to the R8000 CPU and stored. When it comes 
time to use this information the R8000 CPU places the 2 bit value onto the External Set 
Address (ESA<l:O>) pins. The External Set Address field can contain valid cycle 
information and be driven at the same time as the Tag RAM address and other fields 
which do not pertain to a streaming cache cycle. This allows information for multiple 
cycles to be on the TBus at the same time. Figure 10-5 shows how the CC uses the R8000 
CPU and the TBus to address the streaming cache. 
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Figure 10-5 CC Addressing of the Streaming Cache 

Sixteen bits of address and two bits of Data Set Address (DATSA) are used to address the 
streaming cache. On a read cycle the DATSA bits are derived from an R8000 CPU lookup 
of the Tag RAM. The correct set which matched is encoded by the Tag RAM and passed 
onto the DATSA outputs. This is denoted by "Tag RAM Internal Compare" in figure 10-
5. On a write cycle the lookup is still performed, but often times the lookup is performed 
many cycles before the write data actually becomes available. The result of the lookup is 
passed to the CC and stored. When the data becomes available the CC transfers the 
corresponding set information it originally received from the R8000 CPU on TBus bits 
<59:58>. The two bit value passes through the R8000 CPU onto the ESA<1:0> outputs, 
through the multiplexor logic in the Tag RAM, and finally out onto the DATSA<1:0> 
output pins of the Tag RAM to the streaming cache. The R8000 CPU can supply up to 18 
bits of address for use with 16 MBit DRAM's. Currently only 16 of the 18 address bits are 

- used . 

.. 

.... 
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10.2.5 Streaming Cache Address Field 

The Streaming Cache Address field is transmitted at the same time as the Write Enable 
and External Set Address fields. These fields combined together provide the necessary 
information to perform a Streaming Cache cycle. The field is 18 bits in size and is 
transferred on TBus bits <57:40>. The Streaming Cache Address field can contain valid 
cycle information and be driven at the same time as the Tag RAM address and other 
fields which do not pertain to a streaming cache cycle. This allows information for 
multiple cycles to be on the TBus at the same time. 

10.2.6 Tag RAM Address Field 

The Tag RAM Address is used to write and read the Tag Address of the Tag RAM, check 
the Store Address Queue, and invalidate the first level data cache of the RSOOO CPU. The 
tag address of the Tag RAM is 20 bits wide. Since tag address, state, and virtual synonym 
information are all transferred to and from the Tag RAM using the same 20 bit tag bus, 
either tag information of state and virtual synonym information can be written at any 
given time. 

When the tag address is read, the index must be placed on bits <21:5>. The result is 
returned by the Tag RAM to the RSOOO CPU, and in turn from the RSOOO CPU to the CC 
on TBus bits <39:0>. Although all 40 bits are driven, only those bits corresponding to the 
actual tag will be valid. The remaining bits are undefined. When the Store Address 
Queue is checked, Tag RAM address bits <19:7> are used for comparison. 

10.2.7 Virtual Synonym Field 

The virtual synonym field is used to assure that the correct location is invalidated during 
a data cache invalidation cycle. The index to the Data Cache Tag RAM inside the RSOOO 
CPU is formed by TBus bits <15:5>. The four bit virtual synonym field (TBus <3:0> ), is 
concatenated with tag address bits (TBus 39:16) to form data cache address. The address 
is used for the data cache tag comparison to determine whether the location to be 
invalidated resides on the data cache. 

10.3 TBUS STATE MACHINE 

The TBus state machine is used for arbitration of the TBus between the RSOOO CPU and 
the CC. It is important to note that the state diagram in Figure 10-6 below shows only a 
functional representation of how the external signal pins function during TBus 
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arbitration. It is not an actual representation of the TBus state machine. In actuality there 
are two TBus state machines, one each inside the RSOOO CPU and the CC, which are 
designed to work together in a synchronous pipelined environment. Although each is 
similar to the machine below, the two machines differ in both the number of states and 
the signals generated. The intent of the diagram below is to provide the reader with a 
functional overview of how TBus arbitration is performed and to show how the signal 
pins act during TBus arbitration and ownership transfer. 

In Figure 10-6 a bar (xxxx)over the signal name indicates the signal is deasserted. An 
underscore (_ ) indicates the signal is active low. 
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TBUS STATE MACHINE 

REQ CCREQ_& itllm._ RUN 
CCREQUEST R8000 CPU CONTROL 
CCREQ•ON 
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TBUS • R8000 CPU 

cc 
CCCONTROL 
R8000 CPUREI.= ON TBUS•CC 

TBUS = R8000 CPU 

IUREL_ 

TBUS • R8000 CPU 
CCREQ•ON 

Figure 10-6 TBus Stare Macbine 

10.3.1 RUN State 

The RUN state is the normal state of operation when the R8000 CPU is in control of the 
TBus. There are two conditions under whlch the machine will transition from the RUN 
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state. Assertion of CCREQ_ by the Cache Controller (CC) causes the machine to 
transition to the REQ state. The RSOOO CPU can also give up the TBus without it being 
requested by the CC. On a streaming cache miss, for example, the RSOOO CPU will assert 
IUREL_ and give up the TBus immediately. The CC then fetches the requested data from 
main memory. 

10.3.2 REQ State 

The REQ state is entered when the CC asserts CCREQ_ to inform the RSOOO CPU that the 
TBus is being requested. While in the REQ state the CC is guaranteed to have to wait no 
longer than 1500 clocks before being granted the bus. Until IUREL_ is asserted by the 
RBOOO CPU the machine remains in the REQ state. Assertion of IUREL_ causes the 
machine to transition from REQ state to BC state. 

When BC state is entered the TBus buffers on the RSOOO CPU are in the output mode and 
the buffers on the CC are in the input mode. The BC state is one clock in duration and 

- allows each device to switch from input to output mode, or vise-versa. On the following 
dock the machine transitions to CC state. 

-

-

-

10.3.3 CC State 

Transition to the CC state indicates that the CC is now in control of the TBus. From the 
CC state the machine can either transition to BE state or to RST state. Deassertion of 
CCREQ_ by the CC causes the transition to BE state. This transition occurs when the CC 
wishes to give control of the TBus back to the RSOOO CPU temporarily in order to allow 
the RSOOO CPU to empty the store address queue (i.e. execute all remaining instructions) . 
For example, when the CC wishes to write back a line from the streaming cache to main 
memory, it first checks the store address queue (SAQ) to determine whether the address 
corresponding to the line to be written out is in the SAQ. Checking the queue assures 
that the most current data is written out. Refer to figure 10-16 for more information on 
the SAQ compare operation. 

10.3.4 FFEQ Signal Generation 

If there is no valid address compare, the line is written out. However, if the address 
compare is valid, the CC must allow the RSOOO CPU to write out the data which 
corresponds to the address in the queue. Assertion of the 'ffeq' signal allows the machine 
to transition from CC state to BE state. The 'ffeq' signal causing the transition is 
generated by the state machine and is the decoded equivalent of the function field, 
represented by bits 67:64 of the TBus. If the bit orientation on these pins is 0111, 

..,. indicating that the CC wishes the queue to be emptied, the 'ffeq' signal is generated and 
the machine transitions to BE state. The BE state allows one clock for bus tum-around. 

-

-
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10.3.5 EQ State 

The machine transitions to EQ state on the next clock, IUREL_ and CCREQ_ are 
deasserted and TBus control is returned to the RSOOO CPU. Once the SAQ is emptied the 
RBOOO CPU reasserts IUREL_ and the machine transitions to the EE state to allow for bus 
tum-around and then back to CC state. 

10.3.6 EQR State 

There are some circumstances under which the CC cannot wait for the SAQ empty 
operation to be completed. When this occurs the CC asserts CCREQ_ and the machine 
transitions to EQR state. After the curr�nt operation is completed the RSOOO CPU asserts 
IUREL_ and the machine transitions through EE state and back to CC state. Transition 
from EQR to EE state means that the SAQ may or may not be empty. 

When the CC is finished completing the necessary operations, the machine transitions 
from CC state to RST state. This transition is caused by deassertion of the 'ffeq' signal, 
which is in tum caused by the function field changing orientation to reflect something 
other than empty queue status. 

· 

Any information which remains in the SAQ at the time the state machine was instructed 
to transition remains there and is executed as soon as the RSOOO CPU resumes control of 
the TBus. 

10.4 CYCLE TYPES 

The CC is required to read and write the Tag RAM's and Streaming Cache, perform Data 
Cache invalidate cycles, and transmit interrupt status among other things. Because the 
CC does not have any dedicated busses between itself and other devices in the system, 
all communication with these other devices takes place via the TBus. This section 
discusses the timing issues involved with transmitting cycle information across the 
TBus. 

10.4.1 Tag Address Write 

The CC is responsible for management of the Tag RAM. This includes writing to the Tag 
RAM whenever its contents require modification, and reading the Tag RAM to 
determine the state of a given entry. 
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A tag address write requires a 20 bit tag address, an 11 bit index, and a 2 bit sector field. 
Both Tag RAM's are written at the same time? Refer to Figure 10-7 below. TBus <39:5> 
are placed on the bus in clock 1. Two clocks are required for the information to propagate 
through the R8000 CPU and out onto the Tag RAM tag and index pins. The two bit set 
address field, RWSA<l:O> (Read Write Set Address), is hard-wired from the CC to each 
Tag RAM. Hence in order to assure that all of the signals arrive to the Tag RAM at the 
same time, the RSWA field is issued two docks later in dock 3. Also in clock 3 the signal 
TWE_ (Tag Write Enable) is asserted by the CC. This signal is also hard-wired to the Tag 
RAM's. The signal STWE_ (State Write Enable) must be deasserted in dock 3 to assure 
that the Tag RAM writes tag address information and not state or virtual synonym 
information. 

TAG ADDRESS WRITE (Even and Odd) 

1 2 3 4 5 6 7 

CLOCK 

TBus d�l:5::> 

RSWA<I 

TWE_ 

Figure 10-7 : Tag Address Wri 1e (Even and Odd) 

Table 10-11 below shows how TBus<39:20> connect to the R8000 CPU, and how the 
R8000 CPU tag pins connects to the Tag RAM tag pins. The pin connections are the same 
for both the even and odd Tag RAM's. 

TBus Bits 
RSOOO CPU Tag RAM 

<39:20> 
Tag Bits Tag Bits 
<21:2> <19:0> 

TBus<39> Tag <21> Tag< l7> 

TBus<38> Tag <20> Tag<l6> 

TBus<37> Tag <19> Tag<l5> 

Table 1 0- 1 1  Tag RAM Tag Pin Connection Chart 
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TBus Bits R8000 CPU Tag RAM 

<39:20> Tag Bits Tag Bits 
<21 :2> <19:0> 

TBus<36> Tag <18> Tag<14> 

TBus<35> Tag <17> Tag<13> 

TBus<34> Tag <16> Tag<12> 

TBus<33> Tag <15> Tag<1 1> 

TBus<32> Tag <14> Tag<10> 

TBus<3 1> Tag <13> Tag<9> 

TBus<30> Tag <12> Tag<8> 

TBus<29> Tag <1 1>  Tag<7> 

TBus<28> Tag <10> Tag<6> 

TBus<27> Tag <9> Tag<5> 

TBus<26> Tag <8> Tag<4> 

TBus<25> Tag <7> Tag<3> 

TBus<24> Tag <6> Tag<2> 

TBus<23> Tag <5> Tag<1> 

TBus<22> Tag <4> Tag<O> 

TBus<21> Tag <3> Tag<19> 

TBus<20> Tag <2> Tag<18> 

Table 10- 1 1  Tag RAM Tag Pin Connection Chart 

Table 10-12 below shows how TBus<19:5> connect to the R8000 CPU, and how the R8000 
CPU index pins connects to the Tag RAM index and sector pins. The pin connections are 
the same for both the even and odd Tag RAM's. 

TBus Bits R8000 CPU Tag RAM 

<19:7> Index Bits Index Bits 
<14:2> <10:0> 

TBus<19> Index <14> Index <10> 

Table 10-12  Tag RAM Index and Sector Pin Connection Chart 
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TBus Bits R8000 CPU Tag RAM 

<19:7> Index Bits Index Bits 
<14:2> <10:0> 

TBus<18> Index <13> Index <9> 

TBus<17> Index <12> Index <8> 

TBus<16> Index <11> Index <7> 

TBus<1 5> Index <10> lndex <6> 

TBus<14> Index <9> Index <5> 

TBus<13> lndex <8> Index <4> 

TBus<12> Index <7> Index <3> 

TBus<1 1> Index <6> Index <2> 

TBus<10> lndex <5> Index <1> 

TBus<9> Index <4> Index <0> 

TBus<8> Index <3> Sector <1> 

TBus<7> Index <2> Sector <0> 

Table 10- 12  Tag RAM Index and Sector Pin Connection Chart 

10.4.2 Tag Address Read of Even Tag RAM 

A Tag Address Read is performed whenever the CC wants to know the status of a given 
entry. An encoded value of Sh in the function field informs the RSOOO CPU that the cycle 
in progress is an Even Tag RAM read and indicates to the RSOOO CPU such parameters as 
when to expect the data back from the Tag RAM, when to place it on the TBus, and what 
TBus bits to place the data on. It is not necessary that the RSOOO CPU knows whether the 
cycle is a tag address read or a state and virtual synonym read. This decision is made by 
the CC. Hard-wired signals between the CC and the Tag RAM assure that the 
appropriate information is routed to the outputs of the Tag RAM. 
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Figure 10-8 Tag Address Read of Even Tag RAM 

9 10 

The index information is placed on the TBus by the CC in clock 1. Also in clock 1 the 
function field is encoded and placed on the TBus. As with the Tag RAM address write 
cycle above, the RSWA<1:0> field is driven by the CC two clocks later in clock 3 to allow 
the RBOOO CPU adequate time to route the index information to the Tag RAM. The 
STRD_ (State Read) signal must be deasserted in clock 3. Deassertion of STRD_ allows 
the Tag RAM to fetch tag address information as opposed to state and virtual synonym 
information. 

The Tag RAM requires 1 clock after the RWSA field becomes valid to access the 
requested information. The Tag address bus is bidirectional. The signal OE_ is asserted 
by the CC in clock 4 which routes the read information out onto the tag address bus. 

One clock after OE_ is asserted, in clock 5, the Tag RAM drives the requested 
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information onto the tag address bus and back to the R8000 CPU. From the CC's point of 
view, the passage of information from the Tag RAM back to the R8000 CPU is 
transparent to the operation and hence is shown only for clarity. The R8000 CPU then 
requires clocks 6 and 7 for propagation time and in clock 8 the requested information is 
driven by the R8000 CPU onto the TBus and back to the CC. 

Although the TBus state machine is in the CC state and the CC is driving the TBus, the 
R8000 CPU must drive the requested information back to the CC. Hence the CC must 
give up the bus for one clock to allow the transfer to take place. In clocks 1-6 the CC is 
driving the TBus. In clock 7 the CC deasserts CCREQ_, causing the state machine to 
transition to state RST and the TBus to tri-state. In clock 8 the machine transitions from 
state RST to state RUN and control of the TBus is granted to the R8000 CPU. The R8000 
CPU then drives the TBus during clock 8. In clock 9 the R8000 CPU asserts IUREL_ and 
the machine transition to state BC, where the TBus is again tri-stated. The machine then 
transitions from state BC to state CC where the CC again takes control of the TBus. 

10.4.3 Tag Address Read of Odd Tag RAM 

A Tag Address Read is performed whenever the CC wants to know the status of a given 
entry. An encoded value of 6h in the function field informs the R8000 CPU that the cycle 

- in progress is an Odd Tag RAM read and indicates to the R8000 CPU such parameters as 
when to expect the data back from the Tag RAM, when to place it on the TBus, and what 
TBus bits to place the data on. It is not necessary that the R8000 CPU knows whether the 
cycle is a tag address read or a state and virtual synonym read. This decision is made by 
the CC. Hard-wired signals between the CC and the Tag RAM assure that the 
appropriate information is routed to the outputs of the Tag RAM . 

.. 

... 

-

-

-

-

... 

-
TFP User's Manual 10-29 



CLOCK 

TBus 19:5 
(Tag Address) 

RSWA<I· 

STRD_ 

OE_ 

TAG BITS 
TO CPU 

TAG RAM 
ADDRESS 

• TR = Tag RAM 

TAG ADDRESS READ OF ODD TAO RAM 

2 3 4 5 

cc 

R8000 CPU returns odd Tag 
address to the CC 

6 7 

Figure 10-9 Tag Address Read of Odd Tag RAM 

8 9 10 

The index information is placed on the TBus by the CC in dock 1. Also in clock 1 the 
function field is encoded and placed on the TBus. As with the Thg RAM address write 
cycle above, the RSWA<l:O> field is driven by the CC two clocks later in clock 3 to allow 
the R8000 CPU adequate time to route the index information to the Thg RAM. The 
STRD_ (State Read) signal must be deasserted in dock 3. Deassertion of STRD_ allows 
the Tag RAM to fetch tag address information as opposed to state and virtual synonym 
information. 

The Tag RAM requires 1 dock after RSWA becomes valid to access the requested 
information. The Tag address bus is bidirec tional. The signal OE_ is asserted by the CC 
in clock 4 which routes the read information out onto the tag address bus. 

One clock after OE_ is asserted, in clock 5, the Tag RAM drives the requested 
information onto the tag address bus and back to the RBOOO CPU. From the CC's point of 
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view, the passage of information from the Tag RAM back to the R8000 CPU is 
transparent to the operation and hence is shown only for clarity. The R8000 CPU then 
requires clocks 6 and 7 for propagation time and in clock 8 the requested information is 
driven by the R8000 CPU onto the TBus and back to the CC. 

Although the TBus state machine is in the CC state and the CC is driving the TBus, the 
R8000 CPU must drive the requested information back to the CC. Hence the CC must 
give up the bus for one clock to allow the transfer to take place. In clocks 1-6 the CC is 
driving the TBus. In clock 7 the CC deasserts CCRE� causing the state machine to 
transition to state RST and the TBus to tri-state. In clock 8 the machine transitions from 
state RST to state RUN and control of the TBus is granted to the R8000 CPU. The R8000 
CPU then drives the TBus during clock 8. In clock 9 the R8000 CPU asserts IUREL_ and 
the machine transition to state BC, where the TBus is again tri-stated. The machine then 
transitions from state BC to state CC where the CC again takes control of the TBus. 

10.4.4 Back to Back Tag Address Read 

Due to the pipelined nature of the TBus, the CC can generate a new operation every 
clock. Figure 10-10 shows a timing diagram of a back to back tag address read operation. 
In clock 1 the index and function fields are transmitted across the TBus. In clock 2 
information for the second operation (cycle B) is dispatched. Also during clocl< 2 the 
information for cycle A has begun propagating through the R8000 CPU. In clock 4 the 
Tag RAM drives cycle A tag information back to the R8000 CPU. At the same time the 
index information for cycle B is being used to access the next Tag RAM location, and in 
clock 5 this information is driven out. 

In clock 7 the tag information for cycle A has propagated through the R8000 CPU and is 
placed on the TBus and returned to the CC. Also in clock 7 cycle B is in the last stage of 
propagation through the R8000 CPU, and in clock 9 the information is driven onto the 
TBus. Figure 10-10 shows a timing diagram of a back to back tag address read. 
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Figure I 0-10 Back. to Back Tag Address Read 

10 

10.4.5 Tag RAM State and Virtual Synonym Write 

The 20 bit tag address bus of the Tag RAM is used for reading and writing of both the tag 
address and state and virtual synonym information. When a cycle is initiated by the CC 
the Tag RAM does not know whether tag or state information is on the bus. The CC 
controls which is written by asserting either TWE_ (Tag Write Enable) or STWE_ (State 
Write Enable). TBus timing is the same as for a tag address write. However, the format of 
the TBus changes. Note that TWE_ must be deasserted in clock 3 to assure that state 
information is written. 

Figure 10-11 shows a timing diagram of a state write, which shows TBus bits 39:5 being 
driven by the CC. 
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Figure I Q- 1 1  Tag RAM State and VinuaJ Synonym Write 

Bit Description Thus bits 

Write Data for Diny Bit 39 

Enable Virtual Synonym Write 38 

Enable Sector 0 State and Dirty Bit Write 37 

Enable Sector I State and Dirty Bit Write 36 

Enable Sector 2 State and Dirty Bit Write 35 

Enable Sector 3 State and Diny Bit Write 34 

Virtual Synonym 33:30 

Sector 0 State Information 29:28 Odd 

Sector 1 State Information 27:26 0dd 

Sector 2 State Jnformation 25:24 Odd 

Sector 3 State Information 23:22 Odd 

Unused 21:20 

Tag RAM Index 1 9:9 

Table 10-13 Tag RAM State and V.S. Write TBus Bit Definitions 

Table 10..13 shows the orientation of TBus <39:5> during a state and V.S. write. The 
enable bits for each sector and dirty bit of each set allows for modification of data for any 
or all sets of a given tag RAM entry. 
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10.4.6 Even Tag RAM State and Virtual Synonym Read 

When a state and virtual synonym read cycle is initiated by the CC, an index is sent 
across the TBus which selects one line of the Tag RAM. Note that the Tag RAM is 4-way 
set associative, hence each line contains four different sets of data. State information for 
all four sectors of a given set are read out, as well as the four bit virtual synonym value 
for that set. Each set contains 32 bits of information Which of the four sets is read is 
determined by the value of RWSA<1:0>. Figure 10-12 below shows a diagram of how set 
0 is organized. The remaining three sets are organized in the exact same manner. 

Tag Address 
(20) 

SET O 

Virtual . SectorO Sectorl Sector2 
Synonym State State State 

(4) (2) (2) (2) 

Figure 10-12 Tag RAM Set Organization 

Sector3 
State 

(2) 

The format of the function field of the TBus is the same as for an even tag address read. 
The type of read cycle (tag address or state) is not differentiated in the TBus transfer. The 
CC controls this using hard-wired control pins. Figure 10-12 shows a timing diagram for 
the even Tag RAM state and V.S. read. Note that the corresponding data is returned in 
clock 9. For clocks 1-9 the TBus state machine must remain in the CC state. No pipelined 
cycles which may cause the TBus state machine to transition from the CC are allowed in 
clocks 2-9. The TBus "Don't Care" portion in clocks 2-9 must be CC cycles. 

Also note that TBus <19:5> is driven for two consecutive clocks. The Dirty Bit RAM 
inside the Tag RAM is physically separate from the actual Tag RAM portion of the device 
and a there is a register between the two devices. Hence it takes one clock longer for an 
access to the Dirty Bit RAM to occur. For cycles where the reading of the Dirty Bit RAM 
is required, the TBus information must be driven for two clocks. H the dirty bit RAM 
information is not required it is only necessary to drive the TBus for one clock. Clock 1 in 
the diagram can be eliminated. 

10-34 TFP User's Manual 



STATE AND V.S. READ OF EVEN TAG RAM 

L 2 3 4 5 6 7 8 9 10 

CLOCK 
,.. 

,.. TBus 67:64 
{Function) 

,.. 

r 
,.. 

.... 

r 

r 

STRD_ 

OE_ 

TAG RAM 
STATE AND +----t--�--+-----+--+----" 
V.S. DATA 

• TR = Tag RAM 
•• See table 10-14 

R8000 CPU returns State and 
V.S. info to the CC.. 

-----....J 

Figure 10-13 Even Tag RAM State and Vtnual Synonym Read 

The RWSA<l:O> field is driven by the CC two clocks later in clock 4 to allow the RSOOO 
CPU adequate time to route the index information to the Tag RAM. STRD_ (State Read) 
is also asserted in clock 3 to enable the read information out onto the Tag RAM's internal 
tag bus. 

The encoded value in the function field indicates to the R8000 CPU the type of cycle 
being performed and indicates the appropriate action to be taken. In clock 5, three clocks 
after receiving the function field, the R8000 CPU tri-states the tag address bus. Also in 
clock 5 the CC asserts OE_ which drives the requested information onto the tag pins. The 
OE_ signal is pipelined and is driven one clock before the information is actually driven 
out by the Tag RAM. Even though the OE_ pin is deasserted in clock 6 it is effectively 
still active in clock 6 as the Tag RAM is driving information to the R8000 CPU. 

In clock 6 the Tag RAM drives the requested information back to the RSOOO CPU. This 
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operation is transparent to the cycle and is shown only for clarity of flow through the 
devices. In clock 7 the Tag RAM tag bus is tri-stated and is controlled by the RSOOO CPU 
in clock S. 

By the end of clock 8 the state information has propagated through the RSOOO CPU and is 
returned to the CC in dock 9. In dock 10 the RSOOO CPU relinquishes control of the TBus 
back to the CC. The behavior of the state machine during a state read is the same as 
during a tag address read. Refer to section11.4.2 for an explanation of state machine 
behavior. 

When the Tag RAM is accessed 20 bits are returned to the RSOOO CPU. When the RSOOO 
CPU returns the information to the CC all 40 bits are driven. Table 10-14 below shows the 
bit orientation of the TBus during a state read. The orientation is the same for both even 
and odd state read cycles. 

Although single reads of either the even or odd tag RAM's are provided, these functions 
are normally used only for diagnostic purposes. Under normal conditions a Combined 
read of both Tag RAM's is the most desirable so that comparison of the state and dirty bit 
information from both devices can be done inside the RSOOO CPU. 

Bit Description Thus Bits 

Undefined 39:38 

Tag RAM Sector 0 Dirty Bit 37 

Tag RAM Sector 0 Dirty Bit 36 

Tag RAM Sector 0 Dirty Bit 35 

Tag RAM Sector 0 Dirty Bit 34 

Vrrtual Synonym Data 33:30 

Sector 0 State Information 29:28 

Sector 1 State Information 27:26 

Sector 2 State Information 25:24 

Sector 3 State Information 23:22 

Unused 21 :20 

Undefined 19:5 

Table 10- 14 Tag RAM State and V.S. Read TBus Bit Definitions 
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10.4.7 Odd Tag RAM State and Virtual Synonym Read 

The timing for an odd Tag RAM state read is the same as for the even Tag RAM state 
read explained in section 10.4.6 above. The only difference is the bit orientation of the 
function field, which is encoded to indicate a read of the Tag RAM . 

Refer to Figure 10-14 below. The RWSA<1:0> field is driven by the CC two clocks later in 
clock 3 to allow the R8000 CPU ad equate time to route the index information to the Tag 
RAM. STRD_ (State Read) is also asserted in clock 3 to enable the read information out 
onto the Tag RAM's internal tag bus. 

The encoded value in the function field indicates to the R8000 CPU the type of cycle 
being performed and indicates the appropriate action to be taken. In clock 5, three clocks 
after receiving the function field, the RSOOO CPU tri-states the tag address bus. Also in 
clock 5 the CC asserts OE_ which drives the requested information onto the tag pins. The 
OE_ signal is pipelined and is driven one clock before the information is actually driven 
out by the Tag RAM. Even though the OE_ pin is deasserted in clock 6 it is effectively 

,. still active in clock 6 as the Tag RAM is driving information to the R8000 CPU. 

,.. 

In clock 6 the Tag RAM drives the requested information back to the R8000 CPU. This 
operation is transparent to the cycle and is shown only for clarity of flow through the 
devices. In clock 7 the Tag RAM tag bus is tri-stated and is controlled by the R8000 CPU 
in clock 8. 

By the end of clock 8 the state information has propagated through the R8000 CPU and is 
returned to the CC in clock 9. In clock 10 the R8000 CPU relinquishes control of the TBus 
back to the CC. The behavior of the state machine during a state read is the same as 
during a tag address read. Refer to section 11.4.2 for an explanation of state machine 
behavior. 

When the Tag RAM is accessed 20 bits are returned to the R8000 CPU. When the R8000 
CPU returns the information to the CC all 40 bits are driven. Table 10-15 below shows the 
bit orientation of the TBus during a state read. The orientation is the same for both even 
and odd state read cycles. 

Although single reads of either the even or odd tag RAM are provided, these functions 
are normally used only for diagnostic purposes. Under normal conditions a Combined 
read of both Tag RAM's is the most desirable so that comparison of the state and dirty bit 
information from both devices can be done inside the R8000 CPU. 

,.. Refer to Table 10-14 above shows the bit orientation of the TBus during an odd Tag RAM 
state read. The orientation is the same for both even and odd state read cycles. 

,.. 
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CLOCK 

TBus <19:5> 
(Function) 

RSWA<l:O> 

STRD_ 

OE_ 

TAG BUS 
CONTROL 

L 2 3 4 5 6 7 

TAG RAM 
STATE AND +----+-----1f--C_c __ ..:.__--+----+----Y 
V.S. DATA 

* TR = TagRAM 
u See table 10-14 

R8000 CPU renuns State and 
V.S. info to the CC** 

8 9 LO 

Figure I 0-14 Odd Tag RAM State and Vtrtual Synonym Read 

10.4.8 Combined Tag RAM State and Virtual Synonym Read 

The combined operation is provided so that the dirty bit information from both the even 
and odd Tag RAM's can be read in the same cycle. 

For a combined read cycle th.e THus <19:5> index must be driven by the CC for two 
consecutive clocks, shown as clocks 1 and 2 in Figure 10-15 below. The extra clock is 
required because inside the Tag RAM, the dirty bit RAM is physically separate from the 
address and state RAM and there is a register in the path which separates the two 
RAM's. 

10-38 TFP User's Milnual 



f"" 

,.. 

-

... 

,. 

r 

r 

r 

r 

r 

r 

The hmction field is encoded to indicate to the RBOOO CPU a combined read hmction. 
The state of the function field informs the R8000 CPU where to place the information on 
the TBus. When the Tag RAM's are accessed, the information from the 20 bit tag bus is 

placed onto TBus <37:18>. 

Figure 10-15 below shows a timing diagram for a combined state read. 

CLOCK 

TBus <19:5> 
(Tag Index) 

STRD_ 

* TR = TagRAM 
** See table 10-15 

2 3 4 5 6 

R8000 CPU returns State and 
V.S. info to the CC** 

7 8 

Figure I 0-15 Combined Tag RAM State and Vinual Synonym Read 

9 10 

The sequence of signal generation and the returning of data back to the CC is the same as 
for the even and odd state read cycles in sections 10.4.6 and 10.4.7. When data is returned 
to the CC all 40 bits of the physical address field (TBus <39:0>) are driven by the RBOOO 
CPU. State and virtual synonym information are read from the odd Tag RAM by default. 

Table 10-15 below shows the bit orientation of TBus<39:0>. 
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Bit Description Thus bits 

Undefined 39:38 

Odd Tag RAM Sector 0 Dirty Bit 37 

Odd Tag RAM Sector 1 Dirty Bit 36 

Odd Tag RAM Sector 2 Dirty Bit 35 

Odd Tag RAM Sector 3 Dirty Bit 34 

Vtrtual Synonym Data 33:30 Odd 

Sector 0 State Information 29:28 Odd 

Sector 1 State Information 27:26 Odd 

Sector 2 State Information 25:24 0dd 

Sector 3 State Information 23:22 Odd 

Even Tag RAM Sector 0 Dirty Bit 2 1  

Even Tag RAM Sector 1 Dirty Bit 20 

Even Tag RAM Sector 2 Dirty Bit 19 

Even Tag RAM Sector 3 Dirty Bit 18 

Undefined 17:0 

Table 10- 15  Combined Tag RAM State and V.S. Read TBus Bits 

10.4.9 Store Address Queue Compare 

The purpose of a store address queue compare operation is to determine whether the 
address placed on the bus by the CC compares to any of those which are in the Store 
Address Queue (SAQ). The SAQ is located in the R8000 CPU and contains addresses 
which have already been verified in the Tag RAM and are known to be in the Streaming 
Cache. Most of the time these addresses are in the queue because the data corresponding 
to them has not yet become available. 

The SAQ stores the entire streaming cache address including the set information, which 
it uses to write the streaming cache. For coherence reasons the contents of the SAQ are 
considered to be in the streaming cache. Therefore, whenever there is a CC initiated read 
of the streaming cache, the SAQ must also be checked. There are two reasons why the 
CC reads the streaming cache. 
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1) Intervention 
2) Write back or line replacement from the streaming cache to main memory. 

Intervention occurs when another processor wants data in the streaming cache which is 
exclusive. The line may either be clean or dirty. If the line is clean the CC will allow the 
external agent to retrieve the data from the streaming cache. If the line is dirty the CC 
must place the correct data in the cache before allowing the external agent to perform the 
read. 

When a write-back cycle from the streaming cache to main memory is to be performed, a 
SAQ operation is performed by the CC first to assure that the address corresponding to 
the requested data is not in the queue. This way the CC assures that the most up to date 
information is written out to main memory. 

If the SAQ check is valid the CC causes the TBus state machine will transition from CC 
state to EQ state based on the state of the function field of the TBus. The transition allows 
control of the streaming cache to be given back to the R8000 CPU so that the queue may 
be emptied. Transition to the empty queue (EQ) state does not mean that the queue is 
flushed, but rather that all of the cycles in the queue are allowed to finish. Once the 
queue is emptied control of the bus is given back to the CC and the write-back to main 
memory can be completed . 

In the SAQ operation the CC places address bits [17:7] onto the TBus Tag RAM address 
field. This value is then compared with bits [17:7] of each entry in the SAQ. Bits [6:0] are 
not checked due to the 128 byte sector size of the streaming cache. Four clocks are 
required to check both the right and left SAQ' s to determine whether there is a valid 
compare. The result of the compare is returned to the CC using the SAQE_ and SAQO_ 
pins. These pins are hard-wired between the CC and the R8000 CPU, hence there is no 
information which need be returned by the R8000 CPU through the TBus. If the 
requested address compares to any one of the values in either SAQ the CC cannot 
perform a streaming cache cycle because the address corresponding to the data for that 
location is in the SAQ and has not yet been written out. So the CC must wait. 

During a SAQ compare operation a condition can occur in which the address thought 
there was a valid compare but there really was not. This condition is called a 'false 
positive'. The R8000 Microprocessor Chip Set defines a sector as 128 bytes. If the address 
compare is for a given 32 byte value, and a store did not exist in this 32 bytes, but one of 
the other 96 bytes out of the 128 bytes does contain a store, a false positive occurs even 
though the store does not exist in the given 32 byte value being compared. When a false 
positive does occur the SAQ must be emptied. 

If either SAQE_ or SAQO_ is returned active the CC releases CCREQ_ and places the 
Empty Queue operation on the function pins of the TBus. This activity causes the TBus 
state machine to transition from CC state to EQ state, granting control of the bus back to 
the R8000 CPU. The CC then waits for the queue to empty, at which time the R8000 CPU 
asserts the signal IUREL_. Assertion of this signal causes the state machine to transition 
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back to the CC state and the CC resumes execution of the cycle. 

Figure 10-16 below shows a block diagram of the Store Address Queue operation. 

SAQE_ cc ... SAQO_ 
p -

TBus 
<17:7> 

, r 
, ............................................................. ....................................................................... 
' ' 

Even SAQ Odd SAQ ' 

' 
' ' ' 
' : ' ' 
' : ' ' 
' , ' ,  lr ' 1  , , ' ,  lr ,  I 1 lr , ,. ' ; ' 
' 

Comparator I I Comparator I ' ' ' ' 
' ' ' ' I ' ' ' ' : R8000 CPU . 
• ................................................................................................................................... : 

Figure 10-16 Store Address Queue Compare Operation 

From the time the address information is placed on the TBus by the CC, four clocks are 
required to perform the SAQ compare operation. The results of the compare are returned 
to the CC by SAQE_ and SAQO_. Figure 10-17 below shows a timing diagram of the 
SAQ compare operation. For clarity the signals SAQE_ and SAQO_ are both shown as 
active in clock 5 of the diagram. In actuality the signals act independently of one another 
and can be in either the asserted or deasserted state. In addition, due to the pipelined 
nature of the R8000 Microprocessor, a different SAQ operation could be performed in 
each clock of the timing diagram below. Therefore, the signals SAQE_ and SAQO_ can 
be active in clocks 1-4 as well as clocks 6-7 returning the status of SAQ compare 
operations pertaining to other cycles. 
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STORE ADDRESS QUEUE COMPARE CYCLE 

2 3 4 5 6 7 

CLOCK 

TBus <17:7> 

SAQE_ 

SAQO_ 

Figure I 0-17 Store Address Queue Compare 

10.4.10 Data Cache Invalidate 

Data Cache invalidate operations are performed by the RBOOO CP U  as instructed by the 
CC and are done for the same reasorui as the SAQ operation explained in section 11.4.9, 
intervention and write back or line replacement. The invalidate operation is 
unidirectional in that no information is returned by the RBOOO CPU. The CC passes the 
necessary information required to perform the invalidation across the TBus. No 
handshake mechanism exists to inform the CC that the operation was performed. 

Each invalidate cycle performed by the CC invalidates 32 bytes, or one line, of the Data 
cache. This equates to 16 bytes from the left port and 16 bytes from the right port of the 
dual-ported data cache. Because the data cache Valid RAM contains a valid bit for every 
32 bits of data, and there are 4 valid bits per Data cache Valid RAM entry. Thirty two 
bytes corresponds to 2 entries of the Data cache Valid RAM. Refer to chapter 1 for more 
information on Data Cache Valid RAM organization. 

Figure 10-18 below shows a timing diagram for data cache invalidation. 
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CLOCK 

TBus 39:0 

TBus 67.64 
(Function} 

1 

DATA CACHE INVALIDATION CYCLE 

2 3 4 5 6 7 8 9 10 

Figure 10-18 Data Cache Invalidation 

The CC drives TBus <39:0> during a Data Cache Invalidate operation. These bits 
encompass the Tag RAM address field (TBus <39:5>) and the virtual synonym field 
(TBus <3:0> ). Bit 4 is unused in the operation. Figure 10-19 below shows the bit 
orientation of the TBus during a data cache invalidation. 

39 16 15 
Virtual 

1 2  1 1  5 4 3 

Not 
Physical Address <39:16> Address Address <11:5> Used <15:12> 

Phys1cal 
Address 
<15:12> 

Figure I 0-19 TBus Bit Orientation during a Data Cache Invalidation 

10.4.11 Streaming Cache Data Write 

0 

The CC performs a streaming cache write in situations where it is necessary to transfer 
data from the system bus data buffers to the streaming cache. This normally occurs 
whenever the RBOOO CPU incurs a miss to the streaming cache. The R8000 CPU transfers 
ownership of the TBus to the CC which allows the CC to retrieve the desired locations 
from main memory. 

In order to write the streaming cache the CC must supply all of the necessary signals. 
Address, External Set Address and write enable information are all sent across the TBus 
simultaneously. In addition the CC must tri-state the store data bus buffers of the R8010 
FPU to allow the data buffers to drive data onto the store data bus. This is accomplished 
by deassertion of the FOE_ pin, which is a hard-wired sjgnal between the CC and the 
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R8010 FPU. Normally the signal FOE_ is asserted, allowing the R8010 FPU control of the 
store data bus. Refer to figure 10-22 for more information on how FOE_ is used. Figure 
10-20 below shows a block diagram of the data bus interfaces in the RSOOO 
Microprocesor. 

�stem Ercstem 
ata R8000 CPU ata 

Buffers Buffers 
(Even bank) (Odd bank) 

h Even�l � � Odd � �  
Load Load 

-
Streaming Data Data Streaming 

-
- Cache Cache -(Even bank) (Odd bank) 

, , , 
Even Store Data Odd Store Data 

R8010 FPU 
From CC FOE 

-

Figure 10-20 Data Bus Organization 

Once ownership of the store data bus is granted to the system data buffers, 16 bytes can 
be written on each cycle and a write enable exists for every 4 bytes. Figure 10-21 shows a 
timing diagram of a Streaming Cache Data Write 
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CLOCK 

ESA <1..0> 
( . Set Addrau) 

DR WE_ 
(Wnte Enables) 

FOE_ 

STORE 
DATA 

• Data Buffers 

2 3 4 5 6 7 8 9 10 

Figure 10-21 SU"eaming Cache Data Write 

Address, ESA, and write enable information are sent across the TBus in clock 1. 
Note that there is a two dod: delay (internal to the R8010 FPU) between the time when 
FOE_ is deasserted by the CC and when the R8010 FPU actually tri-states the store data 
bus. In cycles 1 and 3 the TBus is shaded and labeled 'CC', indicating that these cycles 
must be CC cycles. 

The actual data is driven by the data buffers in dock 5. FOE_ is also asserted in dock 5. 
The two clock delay allows the R8010 FPU to again begin driving the store data bus in 
dock 7. 

10.4.12 Streaming Cache Data Read 

Streaming cache data reads by the CC occur when another processor wishes to obtain 
data in the streaming cache. Note in figure H}-20 that there is no dedicated read data bus 
between the data buffers and the streaming cache. Instead, a streaming cache data read 
cycle requires that data pass from the load data bus of the streaming cache to the R8010 
FPU. The CC asserts the signal BYPASS_ to allow this load data to be routed from the 
load data bus of the R8010 FPU onto the store data bus of the R8010 FPU. nus operation 
occurs internal to the R8010 FPU and requires two docks. The FOE_ and BYPASS_ 
mechanism is shown in Figure 10-22. 
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Figure 1 0-22 Functions of the BYPASS_ and FOE_ pins 

Figure 10-23 shows a timing diagram of a streaming cache data read. Cycles 1-4 must be 
CC cycles. Sixteen bytes may be read on each cycle. All write enable pins must be 

,. deasserted at this time. 

,. 

,. 

,. 

,.. 
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BYPASS_ 

STORE 
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10.4.13 Interrupt Status 

2 3 4 5 6 7 8 

Data driven onto 
R8010 FPU store data bus __ __, 
and out to data buffers 

Figure 10-23 Streaming Cache Data Read 

9 10 

The CC can pass interrupt status information to the R8000 CPU during any cycle in 
which the TBus state machlne is in the CC state (CC is in control of the TBus). The 
interrupt status cycle is necessary because the R8000 CPU does not have any dedicated 
interrupt pins. Interrupts generated in the system are sent to the interrupt status 
registers in the CC. Whenever the register is updated, the CC encodes the function field 
indicating to the RBOOO CPU that the interrupt register has been updated. Hence the 
TBus actually functions as the interrupt pin mechanism of the RBOOO CPU. The R8000 
CPU then accesses the interrupt registers inside the CC to determine which interrupt 
was set and vectors to the appropriate interrupt service routine. 

Interrupt status is transferred across TBus bits <39:29> whenever the function field 
indicates the interrupt function. Table 10-16 shows the TBus bit orientation during 
interrupt status transfer. 

fP Enable 
NMI Bus Error 

IP Field NMI Field 
Bus Error 

Enable Enable Field 

TB<39> TB<38> TB<37> TB<36:31> TB<30> TB<29> 

Table I 0-16 TBus Interrupt Status Transfer 

I0-48 TFP User's Milnual 



-

-

-

..... 

10.5 R8010 FPU TBUS PROTOCOL 

Refer to figure 10-1. Note that TBus bits TB<79:72> connect only between the R8000 CPU 
and the R8010 FPU. No CC connection to these bits exists. The following section requires 
no intervention by the CC and is explained only for clarity. The R8010 FPU TBus protocol 
is specific between the R8000 CPU and the R8010 FPU. The protocol is system 
independent and has no parameters which can be modified in any way . 

Instructions are dispatched by the R8000 CPU to the R8010 FPU through the TBus. There 
are four basic types is transmissions which are differentiated by encoding the uppermost 

.,... two bits of the TBus (TB<79:78> ) .  Table 10-17 shows the TBus format for the four types of 
transmissions. Each of these is explained in more detail below. 

..... 

,. 

,. 

,. 

,.. 

,. 

TBus Bits 7978 77 76 75 74 73 65 64 63 56 55 28 

Normal 1 0  Vma Vmb Vfa Vtb MemSpecA MemSpecB FpOP-A 

MoveFrom 0 1 Vmf Vmb Vfa Vtb MfSpec MemSpecB FpOP-A 

IntStore 

Move To 

0 0  1 ---- --- --- IStSpec -

1 1 1 ---- --- --- MtSpec -

Table 10-17  R80 10 FPU TBus Protocol 

Legend: 

FpOP-A = Floating Point Operand A 
FpOP-B = Floating Point Operand B 
MemSpec-A = Memory Specifier A 
MemSpec-B = Memory Specifier B 
MfSpec = MoveFrom Specifier 
IStSpec = Integer Store Specifier 
MtSpec = MoveTo Specifier 
Vma = Memory Specifier A (bits 73:65) Valid 
Vmb = Memory Specifier B (bits 64:56) Valid 
Vfa = Floating Point Operation A (bits 55:28) Valid 
Vfb = Floating Point Operation B (bits 27:0) Valid 
Vmf = MoveFrom Specifier Valid 
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10.5.1 Normal Transfer 

A normal dispatch contains two FP arithmetic operations, each 28 bits wide, and two FP 
memory operations, each 9 bits wide. There are roughly 30 FP arithmetic operations 
which can be dispatched by the R8000 CPU. The 28 bit TBus format for arithmetic 
operations is different for each operation. For FP memory operations, the 9 bit value 
contains Floating Point Register destination as well as data alignment information. Each 
of the four potential instructions contains a valid bit associated with it, denoted by bits 
<77:74> in the table. Setting this bit indicates to the R8010 FPU that a given instruction is 
valid and should be executed. 

10.5.2 MoveFrom Transfer 

MoveFrom is similar in format to Normal mode except that the FP memory operation 
normally on TBus bits 73:64 is substituted with a move specifier. This operation moves 
data from a FP register to a general purpose register (GPR) in the R8000 CPU and is the 
only time which the R8010 FPU drives the TBus. Bit 77 indicates whether the MoveFrom 
specifier is valid. 

10.5.3 IntStore Transfer 

IntStore - The IntStore operation supports integer stores to the streaming cache. As 
shown in figure 1-1 of chapter 1, there is no direct path for integer stores from the R8000 
CPU to the streaming cache. Instead they are transmitted across the TBus and out onto 
the store data pins of the R8010 FPU. In IntStore mode the TBus contains the 64 bit 
integer data along with some store alignment information. 

10.5.4 MoveTo Transfer 

The Move To operation moves data from a General Purpose Register (GPR) in the R8000 
CPU to a Floating Point Register. The MoveTo format is similar to the IntStore format 
except that instead of store alignment information, TBus bits [73:65] contain the FPR 
destination. The 64 data is transmitted on TBus pins [63:0]. 
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RESPONSIBILITIES OF THE CACHE CONTROLLER 

1 1  

The RBOOO Microprocessor Chip Set has large first and second level caches which 
minimize the need for interfacing to external main memory. Main memory is typically 
slow and when accessed frequently can degrade the overall performance of the 
processor. To maximize performance, the Integer Unit interfaces only to separate 16 
KByte on-chip instruction and data caches and the 4 MByte streaming cache. The 
Floating Point Unit interfaces only to streaming cache. Neither device initiates cycles or 
interfaces directly to the main memory. However, there are times when interfacing to the 
external main memory is necessary. 

The Cache Controller is a stand-alone device which manages the interface between the 
RBOOO Microprocessor Chip Set, main memory, and the system back-plane. The cache 
controller was not included as part of the RBOOO Microprocessor Chip Set in order to 
allow the designer maximum flexibility in memory and overall system design. 

Although some hardwired pins must be provided by the Cache Controller (CC}, the 
majority of communication between the RSOOO CPU and the CC is done via the 72 bit 
TBus. The TBus protocol is complex and changes depending on whether the RBOOO CPU 
or the Cache Controller is driving. Refer to chapter 10 for more information on TBus 
protocol. 

Cache Controller designs will differ greatly from system to system. This chapter offers 
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some examples of how a cache controller might handle some commonly used bus 
transfers. 

In general the Cache Controller is required to manage: 

1) The fetching of data from main memory after a streaming cache miss or as instructed 
by the Integer Unit. 

2) The write-back of dirty data from the streaming cache to main memory. 

3) Modification of the streaming cache Tag RAM tag address, state, and virtual synonym 
information. 

4) Invalidation of the first level data cache (inside the R8000 CPU) when the streaming 
cache is modified in order to assure coherency between caches. 

5) All coherence issues between the various streaming caches in a multiprocessor 
system. 

6) The filtering of coherence activity such that the processor is protected from 
unnecessary interruptions. 

· 

7) Checking of the Store Address Queue (inside the R8000 CPU) to assure that the most 
up to date data is transferred. 

8) On board local registers for interrupt prioritizing and management. 

The system bus interface contains data and address buffer devices as well as a third Tag 
RAM responsible for bus snooping to maintain coherency between processors. Although 
use of a third Tag RAM is not required it is highly recommended in m'der to allow the 
two Tag RAM's which support the streaming cache to maintain a single cycle access rate. 
Forcing either of these two Tag RAM's to support the streaming cache as well as bus 
snooping and back-plane monitoring could severely hamper overall system 
performance. Control of these devices must be provided by the CC. In addition the CC 
interfaces to all system 1/0 devices. If a boot PROM is used in the system the CC is 
responsible for moving PROM data into the data cache to facilitate the boot-up 
procedure. 

11.1 STREAMING CACHE DATA MANAGEMENT OVERVIEW 

On R8000 CPU misses to the streaming cache the R8000 CPU informs the CC that the 
requested data was not available. Control of the bus is then transferred to the CC. Since 
neither the R8000 CPU or the R8010 FPU communicate directly with external main mem­
ory, it is the responsibility of the CC to fetch the requested data from main memory and 
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place it in the streaming cache. Once the cycle is completed the CC relinquishes control 
of the bus back to the RBOOO CPU. The RBOOO CPU then fetches the requested data from 
the streaming cache and execution resumes. 

In addition to streaming cache misses, the CC is responsible for monitoring the cache 
coherency attributes of each line in the cache. This is done via the 16 bit Dirty Bit RAM 
portion of the Tag RAM as well as the Tag RAM itself. If the state of the line in the cache 
changes, the state information in the Tag RAM must also be updated to reflect the 
change. If the state of the line remains the same and only the modified status changes, 
only the dirty bit is accessed. State information remains the same. Changing the state 
information is the responsibility of the CC. Updating of the dirty bit RAM is done by the 
RBOOO. 

Since the first level cache is write-through, all writes by the RBOOO to the first level Data 
cache are also written out to the streaming cache. If a write is executed to a line which 
has already been modified, the CC forces the RBOOO to halt the cycle, whereby the CC 
takes control of the TBus. The modified data is then written out to main memory and 
control of the TBus returned to the RBOOO. 

11.2 TAG RAM MANAGEMENT OVERVIEW 

The Cache Controller is responsible for monitoring and updating of the Tag RAM. The 
RBOOO performs only Look-up cycles to the Tag RAM. Lookups are done when the RBOOO 
CPU wishes to read or write the streaming cache and desires to know state, virtual syn­
onym, or set information corresponding to that line. With the exception of the dirty bits 
the RBOOO CPU cannot update the contents of the tag RAM. Tag RAM management is the 
responsibility of the CC. 

The CC can write either Tag information, or state and virtual synonym information to 
the Tag RAM in a given cycle. The Tag address is multiplexed with either tag or state and 
virtual synonym information. When the tag address is updated, the 20 bit tag bus con­
tains all address bits. When the state and virtual synonym information is updated, the 
tag bus conforms to a specific bit orientation. The bit orientation changes for state and 
virtual synonym read cycles. Whenever there is a streaming cache miss, or when a line of 
the streaming cache is to be written out to main memory, the Tag RAM information must 
be updated to reflect this change. The CC must supply all necessary control signals to the 
Tag RAM. 

Figure 11-1 and Table 11-1 below show the TBus state machine and the encoding of the 
function field respectively. Both of these diagrams should pe used for reference as they 
are referred to frequently throughout the remainder of this chapter in the explanation of 
each timing diagram. 
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Figure 11-1 TBus State Machine 
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Encoded Description Value 

0 No RBOOO operation 

1 Reserved* 

2 Interrupt 

3 Empty Queue 

4 Reserved* 

5 Read of Even Tag RAM 

6 Read of Odd Tag RAM 

7 Combined Read of both Tag RAM's 

8-9 Reserved* 

10  Invalidate Data Cache Line (32 bytes) 

1 1 - 15  Reserved* 

Table 1 1 -1  TBus Function Field Encoding 

11.3 SYSTEM BUS OPERATIONS 

This section outlines three common operations which can be initiated by a system bus. 

1) Inbound Invalidate 
2) Shared Intervention 
3) Exclusive Intervention 

11.3.1 Inbound Invalidate 

An inbound invalidate is required when another processor in a system wants an exclu­
sive copy of some data in the cache. The CC is informed by the other processor of its 
desire to obtain an exclusive copy of the data. The cache controller then requests the 
TBus and waits to receive it. Once the TBus is granted the following operations must be 
performed by the CC. 
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1) The state of the addressed sector in the streaming cache must be set to invalid by 
performing a Tag RAM state write. 
2) One sector of the Data Cache must be invalidated by performing a data cache 
invalidate cycle. 

If multiple operations are required the CC is not required to relinquish control of the 
TBus back to the R8000 Microprocessor. 

Figure 11-2 shows a timing example of an invalidate. The CC asserts CCREQ_ to begin 
bus arbitration. The first break line shown in Figure 11-2 indicates that, once CCREQ_ is 
asserted, as many as 1024 clocks can elapse before the R8000 CPU gives up the bus. The 
R8000 CPU relinquishes control of the TBus by asserting IUREL_. 

The tag RAM state write is performed in the first CC state. The new state information is 
placed on TRA[39:5] . This new sector information is for the tag RAM and does not affect 
the R8000 CPU, hence the function field in the first CC state is Oh, indicating no R8000 
CPU operation. STWE_ is asserted by the CC two clocks later when the state change to 
the tag RAM is actually made. The two clock delay is the time required for the informa­
tion to propagate through the R8000 CPU. The set address information on RWSA[1:0] is 
also active at this time and is required in order for the tag RAM to determine which of 
the four sets to update. 

In the next 4 CC states the function field changes to Ah (1010b), indicating a data cache 
invalidation cycle. At the same time the addresses to be invalidated (Adr0-Adr3) are 
placed on the TRA bus. Each address corresponds to 32 bytes of data. Since invalidation 
is by sector and a sector is 128 bytes, four addresses must be output by the CC. 

The write data bus is not used during an inbound invalidate. Transitions labeled 
"processor" indicate that the data bus belongs to the R8000 CPU but that the data is not 
relevant to the invalidate cycle. The 'x' indicates that the data bus does not belong to the 
R8000 CPU. 
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11.3.2 Shared Intervention 

A shared intervention occurs when the local processor has an exclusive copy of some 
data and another processor wants to read it. Once the data is read the status of the line 
must be changed to shared as the data now exists in more than one location. The CC is 
informed by the other processor of its desire to obtain a copy of the exclusive data. The 
CC requests the TBus and once it is granted the following operations must be performed. 
The sequence of these operations and the duty each one performs constitutes a shared 
intervention cycle. The cycles below should be pipelined together to maximize system 
performance. For example, all of these cycles can be performed while the streaming 
cache is being accessed by the CC. 

1) One sector of data must be read from the streaming cache by performing a streaming 
cache read cycle. 

2) The store address queue must be checked to determine whether the requested address 
resides in the queue by performing a store address queue compare. The operation com­
pare address bits <17:7> on the bus with each entry in the even and odd store address 
queues. If any of the compares are valid ownership of the TBus must be given back to the 
RBOOO CPU temporarily to allow the cycle to complete. 

3) The dirty bit for the requested sector must be checked by performing a combined Tag 
RAM read. This operation allows the dirty bits from both Tag RAM's to be returned to 
the CC in the same cycle. A compare is then performed internal to the CC to determine if 
any of the sectors for the requested line is dirty. 

4) The state of the streaming cache line must be set to shared by performing a tag RAM 
state write. 

5) The data cache must be invalidated to remove a possible exclusive tag. This is accom­
plished by performing a data cache invalidate cycle. 

If the dirty bit was found to be clear, or the line is in a state other than exclusive, then the 
data read may be ignored. The streaming cache must be set to the shared state if the state 
was clean exclusive and unchanged otherwise. 

If the requested address matches one of those in the Store Address Queue, the data read 
should be ignored and the streaming cache state should remain unchanged. The CC 
must then return ownership of the TBus to the RBOOO CPU so that the store address 
queue may be emptied. These two cases cannot both happen as the dirty bit must be set 
in order for the corresponding address to get into the SAQ. 

Figure 11-3 shows a timing example of a shared intervention. The CC requests and is 
eventually granted the TBus when the R8000 CPU asserts IUREL_. In the first "CC" state 
the address for the read is generated on TRA[39:5]. The data is available 7 clocks later as 
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shown on the wrile data bus. Each of the 8 addresses transferred on the TRA bus equates 
to 128 bits of data, hence an intervention cycle transfers 16 bytes of data. 

During the 'CC' states in Figure 11-3 the function field indicates the operation currently 
being performed. First the data in the data cache must be invalidated. The first address 
to be invalidated is referred to as AO on the DRA[21:4] . In the second 'CC' state the inval­
idation occurs as shown by the value 1010 ('a' hex) in the function field. The definitions 
of the function field can be found in Table 11-1 . In the third and fourth 'CC' states 
addresses A2 and A3 are transferred and a combined read of the tag RAM's is per­
formed. The result of the combined read is pipelined and the result will not be available 
for a few clocks. 

In the fifth, sixth, and seventh 'CC' states the remaining three addresses to be invali­
dated; A4, AS, and A6, are transferred. In these three clocks the function field is 1010, 
indicating an invalidation cycle. In the eighth 'CC' state address data RAM address A7 is 
transferred. Also in this clock the new state information, indicated on the TRA bus as 
'nSt', is written. Note that this value is supplied before the old state information, indi­
cated by 'oSt' on the TRA bus. The old state information was read from the Tag RAM in 
CC clock 6 by the assertion of STRD_ and placed on the tag bus one clock later with the 
assertion of TOE_. Remember that the tag bus connects between the tag RAM and the 
R8000 CPU. The information must then propagate through the R8000 CPU and out onto 
the TBus. Even though the new state appears on the TBus before the old state, the new 
state information does not actually arrive at the Tag RAM until the old state is read out, 
thereby not allowing one to over write the other. The new state is written when STWE_ is 
asserted . 

It is important to note in all of these timing diagrams that the signal activity shown on 
the TBus is when the information actually appears on the TBus, not necessarily when 
this information arrives at its final destination (Cache RAM, Tag RAM, etc.). This is why 
in Figure 11-3 that the new state information can be sent across the TBus three clocks 
ahead of the old information being sent and still not actually overwrite the old state. 

During the time when the new state information is being transferred across the TBus the 
function field is 0000, indicating no operation to the R8000 CPU. This is because tag 
RAM updates are handled by the CC. Asserting 0000 onto the function field tells the 
R8000 CPU to ignore the information on the TBus. 

In the next clock function 0011 is placed on the function field, indicating a store address 
queue hit. However, the R8000 CPU will only respond to this function if it occurs on the 
last 'CC' state, after which the bus transitions to the BE state. Refer to Figure 11-1 for a 
flow chart of the TBus state machine. 

... However, note that function 0011 does not occur on the last CC state. This indicates to 
the R8000 CPU that a SAQ hit did not occur and to ignore the function. Figure 12-4 
shows an intervention with a SAQ hit . 

... 
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Note in chapter 1, figure 1-5 that the external data buffers interface only to the store data 
bus of the RSOOO microprocessor chip set. When a read is to be performed the informa­
tion must be read from the streaming cache by the CC and placed on the load data bus. 
The data is then sent to the R8010 FPU and routed internally onto the store data bus 
where it is sent back to the data buffers. Hence both loads and stores to main memory 
use the store data bus. In the second 'CC' state BYPASS_ is asserted which causes the 
R8010 FPU to route the incoming load data onto the store bus. 

The seven clock delay between when the first streaming cache address appears on the 
TBus and when the corresponding data appears on the store data bus is derived as 
follows; 

a) Two cycles for the address on the TBus to propagate through the RSOOO CPU onto the 
streaming cache address bus. 
b) One cycle to pass through an address fan-out register in order to drive all of the 
necessary RAM's. 
c) One cycle to address the RAM. 
d) One cycle to retrieve the data. 
e) Two cycles to pass the data through the RSOOO CPU. 
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11.3.3 Shared Intervention with Store Address Queue Match 

The shared intervention with SAQ match operation is identical to the shared interven­
tion operation discussed in section 11.3.2 except that the empty queue function (0011 on 
the function field of the TBus) occurs on the last 'CC' state, causing the TBus state 
machine to perform the empty queue operation. 

Figure 11-4 shows a timing example of a shared intervention with a SAQ match. A store 
address queue check is performed and the result appears on NXTDATE_, indicating that 
the even SAQ got a compare hit. Either NXTDATE_ or NXTDATO_ or both can be 
asserted in a given clock. The assertion of NXTDATE_ causes the CC to de-assert 
CCREQ_ which in turn causes the TBus state machine to transition from CC to BE and 
then to EQ state where control of the TBus is returned to the R8000 CPU and the empty 
queue operation begins. The break at the end of Figure 11-4 indicates that an undeter­
mined number of cycles can elapse during the EQ operation depending on the types of 
instructions in the queue to be executed. Note that the data on the store data bus is 
aborted once the SAQ hit occurs. 

Once the EQ operation is completed in Figure 11-5 control of the �us is returned to the 
CC and the shared intervention operation is restarted. The operation shown in Figure 11-
5 is now exactly the same as that shown in Figure 11-3. Refer to the shared intervention 
discussion in section 11.3.2. 

1 1-12 TFP User's Manual 



-

-

-

-

-

... 

.... 

THIS PAGE INTENTIONALLY LEFT BLANK 

,. 

•• 

,.. 

TFP User's Manual 1 1 -13 



Clock 

IUREL_ 

CCReq_ 

ValidOut -

TBUS St.Mach. 

TBIU Command 

TBIU Size 

TBIU Coherence 

TBIU Match 

TBIU Set 

TBIU State 

TBIU V.S. 

TBIU PAddr 

TBCC Function 

TBCC WE_[3:0] 

TBCC DRA[21 :4] 

TBCC TRA[39:5] 

FOE_ 

Bypass_ 

Store Data 

TWE -

STWE -

STRD_ 

TOE_ 

RWSA[1 :0] 

NXTDATE -

NXTDATO_ 

��������������������� 
�� 

J 
,-\__ ( 1/ )' ( 
,-� (� � , ,.-� � � � � G£ � ,..--I ..- , ,.-� Y@ � RUl' �cc X cc � cc X sE 

· - · - · -, - - ......__ , ....__ · -

/( ,__ I; "----

-<� t-- /, -
r-- I \ 

}( ) "----
-) ) � I I - I \ \' "'---

\( - I 

t-- \' 
(-

r--.....__ ( r--) ) 1,----� � � � � � � 0 )()() � \� I� · -, - · - · - , ......__ 

( 1 1 1  
,--� G ,..--l r--, ,.-, ,.-�� ( � � A3 K A4 � � � -, -
,--v;:;; c r l r--r.:. r.:. � r;_ X r1 

( -. ......__ rt.=:. , ....__ , ....__ . ......__ . ......__ ·� 

J 

j' !\ I 

� ,..--l r--, ,.---� rEi (! ( Proc lissor X � Ko2 X o3 - · - -

( 
( 
( \_ 

( Ll/ ?� 
) X K ��� 'I X ) 

J I 

} '-I/ 

): I 
Figure 1 1 -4 Shared Intervention with Store Address Queue Match 

1 1-14 TFP User's Manual 



-

-

Clock ��������������������� 
IUREL_ I 

CCReq_ I 

ValidOut_ 

-
,-� � � � � � ,---1 ,---•,---, ,..--I .--� ,...--. r-rr;.;, � � � � TBUS St.Mach. EO � Kcc cc ��.cc Kcc e � ·-, .......__ , ....._ � � -.-: -1 -� ....._ , ..__ ....._ 

TBJU Command 

TBIU Size -
TBIU Coherence 

TBIU Match -
TBIU Set 

- TBIU State 

TBIU V.S. 

... TBIU PAddr 

C": � � � l r-, ,___ : .--- � :r-TBCC Function K101C 101C K101C ()I � � � I .....__ , .......__ 

.. TBCC WE_[3:0] 1 1 1  
r;; [,---, ,---r;; r,;:;- !,---[ ,--- ,..--

TBCC DRA[21 :4] A1 1\E.. A5 "' AS A7 X .......__ 1- � -, ......._ , ......_ .......__ 

·r-� '{;.; � � �� 1 .---.r-:r; r TBCC TRA[39:5] �dr2 �dr:l nSt t--X I� , .......__ 1 '- . ._ , ......_ I......_ , ....__ ....__ I ....._ ... 

FOE_ 

... Bypass_ l 
,---[ ,--- - - to; � roo , ,--- , ,....--

Store Data p� 10r lj DO K o1 !( 02 03 X o7 VProc - ._ ! .....__ 

TWE -
STWE - !\._ 
STRD - � 
TOE_ \._ 
RWSA[1 :0] s� 1\ X K set Jill 

NXTDATE_ 
,. 

NXTDATO_ 

,.. Figure 1 1 -5 Shared Intervention with Store Address Queue Match -- con't. 

TFP User's Manual 1 1-15 



11.3.4 Exclusive Intervention 

An exclusive intervention is similar to a shared intervention except that the other proces­
sor has requested an exclusive copy of the data as opposed to simply reading the data.­
Once the data is read by the other processor the CC must mark the line as invalid. The 
CC is informed by the other processor of its desire to obtain an exclusive copy of the 
data. The CC then requests the TBus and once it is granted the following operations 
must be performed. The sequence of these operations and the duty each one performs 
constitutes an exclusive intervention cycle. 

1) One sector of data must be read from the data cache by performing a streaming cache 
data read. 

2) The store address queue must be checked to determine whether the requested address 
resides in the queue. The operation compare address bits <17:7> on the bus with each 
entry in the even and odd store address queues. If any of the compares are valid owner­
ship of the TBus must be given back to the RSOOO CPU temporarily to allow the cycle to 
complete. 

3) The dirty bit for the requested sector must be checked by performing a combined Tag 
RAM read. This operation allows the dirty bits from both Tag RAM's to be returned to 
the CC in the same cycle. A compare is then performed internal to the CC to determine if 
any of the sectors for the requested line is dirty. 

4) The state of the streaming cache line must be set to invalid by performing a tag RAM 
state write. 

5) The data cache must be invalidated to remove a possible exclusive tag. This is accom­
plished by performing a data cache invalidate cycle. 

If the dirty bit was found to be clear, or the line is in a state other than exclusive, then the 
data read may be ignored. The streaming cache must be set to the invalid state if the state 
was clean exclusive and unchanged otherwise. 

If the requested address matches one of those in the Store Address Queue, the data read 
should be ignored and the streaming cache state should remain unchanged. The Cc must 
then return ownership of the TBus to the R8000 CPU so that the store address queue may 
be emptied. These two cases cannot both happen as the dirty bit must be set in order for 
the corresponding address to get into the SAQ. 

The diagram for an exclusive intervention is identical to the shared intervention in Fig­
ure 11-3. The only exception is that in a shared intervention the new state information in 
'nSt' causes the line to be changed to the shared state. In an exclusive intervention cycle 
the 'nSt' causes the line to be changed to the invalid state, thereby allowing the request­
ing agent to obtain the data exclusively. 
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The exclusive intervention with store address queue match is identical to the shared 
intervention with store address queue match in Figure 11-4 and Figure 11-5. The only 
exception is that in a shared intervention with SAQ hit the new state information in 'nSt' 
causes the line to be changed to the shared state. In an exclusive intervention with SAQ 
hit the 'nSt' causes the line to be changed to the invalid state, thereby allowing the 
requesting agent to obtain the data exclusively. 

11.4 PROCESSOR INITIATED OPERATIONS 

Under certain conditions the RBOOO CPU can initiate operations requiring interface to the 
CC via the TBus. The processor asserts VALIDOUT_ and waits for servicing by the CC. 
Multiple cycles can occur back to back, hence there is no maximum limit of cycles placed 
on the CC by the RBOOO CPU. The following are some conditions under which the RBOOO 
CPU asserts VALIDOUT_ and IUREL_ simultaneously. 

1) A write back cycle needs to be executed . 
2) The result of a Tag RAM lookup is a virtual synonym mis-match or no address match. 
3) The store address queue is empty. 

Under conditions where the RBOOO CPU has requested data from memory there is 
latency involved in the access. During this time the RBOOO CPU does not need to relin­
quish control of the bus immediately. As long as the SAQ is not empty the RBOOO CPU 
can continue execution. VALIDOUT_ is asserted by the RBOOO CPU and the requested 
information is passed to the CC. IUREL_ is asserted by the RBOOO CPU when: 

1) There are no more addresses on the SAQ and the processor is now idle. 
2) The CC requests the TBus. The RBOOO CPU then asserts IUREL_ as soon as the current 
TBus transfer(s) are completed. 

Table 11-2 shows a listing of cycles which the RBOOO CPU may need to perform. In the 
State column, "ALL" refers to all combinations of the No Match and State fields of the 
TBus. No Match means that the MATCH_ pin was not asserted when the Tag RAM was 
accessed for the corresponding cycle. MATCH_ asserted indicates the line was in either 
the Invalid, Shared, or Exclusive state. The cycles in the "Operation Required" column 
are discussed in the following sections . 
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Command Coherence State Operation Required Protocol 

Read/Instruction Fetch Non-Cachable All Non-Cachable Read 

Read/Instruction Fetch Cachable No-Match Miss and Replace 

Read/Instruction Fetch Cachable Invalid Simple Miss 

Write Cachable No-Match Miss and Replace 

Write Cachable Invalid Simple Miss 

Write Invalidate Shared Upgrade 

Write Non-Cachable All Non-Cachable Write 

Write Non-Cachable All Sequential Non-Cach-
able Write 

Table 1 1 -2 Processor Initiated TBus Operations 

From Table 11-2 above, the following operations can be required of the RBOOO CPU: 

1) Miss and Replace 
2) Simple Miss 
3) Upgrade 
4) Non-Cachable Read 
5) Non-Cachable Write 
6) Sequential Non-Cachable Write 

11.4.1 Miss and Replace 

Miss and Replace means that a sector was required for which there was not already a 
place in the streaming cache. Hence one of the four lines at the required cache index 
must be replaced. When the R8000 CPU requests this operation, IUREL_ is asserted by 
the R8000 CPU, causing the TBus state machine to transition from RUN state to CC state, 
thereby transferring ownership of the TBus to the CC. Once the CC is granted owner­
ship, the following operations are required to perform a streaming cache miss and 
replace. The sections referred to in each step show the corresponding timing diagrams. 

1) One line in the cache index must be chosen for replacement. Which set of the cache is 
chosen for replacement depends on the state of the Match Field. If the Match field indi­
cates an either an address match and virtual synonym match, or an address match and a 
virtual synonym mis-match, the line is chosen based on the state of the Set Address field. 
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If the Match field indicates no address match the set is normally chosen using the ran­
dom replacement algorithm. However, there are two exceptions where the set is not cho­
sen randomly: 

la) A cachable read/I-fetch (second entry in Table 11-2) which has no address match. The 
corresponding Miss and Replace operation chooses a set based on the state of the set 
address field. 
lb) A cachable write (fourth entry in Table 11-2) which has no address match. The corre­
sponding Miss and Replace operation chooses a set based on the state of the set address 
field. 

In the above two cases the intent of the Miss and Replace operation is to obtain a new 
virtual synonym and a perform a data cache invalidate . 

2) The Store Address Queue (SAQ) must be checked for conflict with any of the four sec­
tors of that line by performing a SAQ compare operation. The operation compares 

... address bits <17:7> on the bus with bits <17:7> for each entry in the even and odd store 
address queues. If any of the compares are valid ownership of the TBus must be given 
back to the R8000 CPU temporarily to allow the cycle to complete. 

... 

,.. 

,. 

3) The upper physical address bits must be retrieved from the Tag RAM for use in writ­
ing back the dirty sectors and in invalidating the data cache. This can be accomplished 
by performing a Tag RAM address read. 

4) The dirty bits must be checked for each of the sectors of that line. In addition, the vir­
tual synonym bits for the line which is to be replaced must be retrieved from the Tag 
RAM. Both operations are accomplished by performing a Tag Read Combined opera­
tion. This operation allows the dirty bits from both Tag RAM's to be returned to the CC in 
the same cycle. A compare is then performed internal to the CC to determine if any of 
the sectors for the requested line is dirty. The state read operation allows the CC to read 
the state and virtual synonym information for a given entry in the cache. 

5) If it is determined in step 3 that any of the sectors is dirty, the dirty data from the 
replaced line must be read from the streaming cache by performing a streaming cache 
read. 

6) The data cache must be invalidated to remove the potential copy of any of the four 
sectors of the replaced line. This is accomplished by performing a data cache invalidate 
cycle. The number of Data Cache invalidates which must be executed depends on the 
system parameters. For example, data cache invalidates can invalidate 32 bytes. If the 
streaming cache line size is 512 bytes then 16 back to back data cache invalidates must be 
executed in order to invalidate the entire line. 

7) A new sector of data must be read from the system bus and placed in one sector of the 
chosen line by performing a streaming cache write cycle. The criteria for determining 
which set should be replaced is explained in step 1. 
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8) The tag address of the new data must be placed in the Tag RAM. 

9) The state of the streaming cache must be set either to Shared or Exclusive, whichever 
state is appropriate, for the new sector, and to Invalid for the other three sectors of the 
line. The dirty bit must be cleared for all four sectors of that line. This is accomplished by 
performing a Tag RAM state write. 

If the SAQ compare needs to be emptied control of the TBus is returned to the R8000 
CPU and the queue allowed to empty. The entire process is then repeated from the 
beginning. The states and dirty bits control which sectors are written back to the system. 
If the states are not exclusive and the dirty bits are clear for blocks which have not been 
read in parallel with checking the states and dirty bits, then those sectors do not need to 
be read. 

There are several minor variations for the reading of the new sector from the system. The 
type of bus transaction used and the state to which the streaming cache sector is set 
when another cache makes the shared response is shown in Table 11-3. 

Cause of Miss Coherence Bus Transaction Not Shared Shared Protocol 

Any Non-Coherent Non-Coherent Exclusive Exclusive 

Any Exclusive Exclusive Read Exclusive ------

Load Shared Read Exclusive Shared 

1-Fetch Shared Read Shared Shared 

Store Shared Exclusive Read Exclusive -------

Table 1 1 -3 Bus Transactions and their Resulting States 

While waiting for the new data to be retrieved, those cycles not required for these opera­
tions to complete may be transferred to the floating point and store machines by request­
ing that the queue be emptied and then requesting the TBus in anticipation of the earliest 
time data might return. The following timing diagrams show some examples of how 
various miss and replace cycles could be performed. 

Figure 11-6 shows a line replacement with address miss. The line replacement operation 
replaces data for 32 consecutive addresses. With 16 bytes of data corresponding to each 
address, a total of 512 Bytes of data are moved. The set chosen for the transfer is arbi­
trary. The first four valid addresses on TRA[39:5] are for store address queue checking 
and reading out the state information from the tag RAM. These operations correspond to 
functions 0110 and 0111 of the function field. 
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After the tag RAM information is read out the data cache is invalidated as shown by 
Inv0-Inv3 on the TRA pins. The actual invalidation addresses continue up to InvlS. As 
with previous timing diagrams, the empty queue function 0111 on the TBus does not 
occur on the last 'CC' state and hence is ignored by the RBOOO CPU. 

The addresses and corresponding write-back data complete about half way through Fig­
ure 11-7. The new address and data then appear on AO-A7 of the DRA field and RO-R7 of 
the store data bus. The new tag address information appears on the TRA field followed 
by the state field. TWE_ is asserted two clocks after the tag address appears on the TBus, 
again to allow for propagation time through the RSOOO CPU, and the tag address infor­
mation is written. In the next clock STWE_ is asserted to allow the state information to be 
written. Which of the four sets is to be written is determined by the information on the 
RWSA[l:O] pins when TWE_ and STWE_ are asserted. The set information shown valid 
for two clocks during the read in Figure 11-6 is the same set used to write the new infor­
mation in Figure 11-7. This assures that the same set is read and written. 
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11.4.2 Simple Miss 

The simple miss is much more straight forward that the Miss and Replace operation 
because the sector to be filled is currently invalid and there is no data to write back. Con­
trary to the Miss and Replace operation, in the Simple Miss operation the RBOOO CPU 
does not assert IUREL_ at the same time as VALIDOUT_, hence control of the TBus is not 
passed immediately to the CC. The following operations are required in order to com­
plete the Simple Miss operation. 

1) A new sector of data must be read from the system and placed in one sector of the cho­
sen line at a set determined by the value on the set address field. This is accomplished by 
performing a streaming cache write. 

2) The state of the streaming cache must be set to shared or exclusive, as appropriate, and 
the dirty bit cleared for the new sector. This is accomplished by performing a Tag RAM 
state write. 

These two operations are accomplished in the same manner as the corresponding opera­
tions for the Miss and Replace except that the streaming cache is only modified for one of 
the sectors. 

Figure 11-10 and Figure 11-11 shows a timing diargam of a simple miss. 
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11.4.3 Upgrade 

An upgrade occurs when the RSOOO CPU wants to write a line which is shared. The sec­
tor is in the shared state but must be changed to the exclusive state so that it can be writ­
ten. For the upgrade operation the RSOOO CPU does not assert IUREL_ in the same clock 
as VALIDOUT_ and control of the TBus is not passed immediately to the CC. If the 
upgrade fails, meaning that another processor has already performed the upgrade, noth­
ing is done and control is requested and then returned to the RSOOO CPU for a retry. If the 
upgrade succeeds the state of the sector in the streaming cache is updated from shared to 
exclusive state and the dirty bit is cleared. Control of the TBus must be passed to the CC 
so that a Tag RAM state write can be executed and the status of the line changed and the 
corresponding dirty bit cleared. The dirty bit is then set by the RSOOO CPU when the 
write occurs. Refer to section 11 .4.5 for more information on how to execute a Tag RAM 
state write. 

The upgrade timing diagram is quite simple since the intention of the cycle is only to 
change the state of the Tag RAM. Once the TBus state machine is in the 'CC' state the 
cache controller places the new tag RAM state information on the TRA bus. The informa­
tion propagates through the RSOOO CPU and two clocks later STWE_ is asserted and the 
write is performed. At the same time as STWE_ is asserted, RWSA[1:0] is valid which 
indicates to the tag RAM which set is to be written. 

Figure 11-12 shows a timing diagram of a line upgrade. 
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11.4.4 Non-Cachable Read 

A non-cachable read occurs when any read is executed from a non-cachable protocol 
page. Unlike a cachable read a non-cachable read can occur only with a line replacement. 
The steps are as follows: 

1) One line in the cache index must be chosen for replacement. Which set of the cache is 
chosen for replacement depends on the state of the Match Field. If the Match field indi­
cates an either an address match and virtual synonym match, or an address match and a 
virtual synonym mis-match, the line is chosen based on the state of the Set Address field. 

If the Match field indicates no address match the set is normally chosen using the ran­
dom replacement algorithm. However, there are two exceptions where the set is not cho­
sen randomly: 

1a) A cachable read/I-fetch which has no address match. The corresponding Miss and 
Replace operation chooses a set based on the state of the set address field. 
1b) A cachable write which has no address match. The corresponding Miss and Replace 
operation chooses a set based on the state of the set address field. 

In the above two cases the intent of the Miss and Replace operation is to obtain a new 
virtual synonym and a perform a data cache invalidate. 

2) The Store Address Queue (SAQ) must be checked for conflict with any of the four sec­
tors of that line by performing a SAQ compare operation. The operation compares 
address bits <17:7> on the bus with bits <17:7> for each entry in the even and odd store 
address queues. If any of the compares are valid ownership of the TBus must be given 
back to the RBOOO CPU temporarily to allow the cycle to complete. 

3) The upper physical address bits must be retrieved from the Tag RAM for use in writ­
ing back the dirty sectors and in invalidating the data cache. This can be accomplished 
by performing a Tag RAM address read. 

4) The dirty bits must be checked for each of the sectors of that line. In addition, the vir­
tual synonym bits for the line which is to be replaced must be retrieved from the Tag 
RAM. Both operations are accomplished by performing a Tag Read Combined opera­
tion. This operation allows the dirty bits from both Tag RAM's to be returned to the CC in 
the same cycle. A compare is then performed internal to the CC to determine if any of 
the sectors for the requested line is dirty. The state read operation allows the CC to read 
the state and virtual synonym information for a given entry in the cache. 

5) If it is determined in step 3 that any of the sectors is dirty, the dirty data from the 
replaced line must be read from the streaming cache by performing a streaming cache 
read. 
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6) The data cache must be invalidated to remove the potential copy of any of the four 
sectors of the replaced line. This is accomplished by performing a data cache invalidate 
cycle. The number of Data Cache invalidates which must be executed depends on the 
system parameters. For example, data cache invalidates can invalidate 32 bytes. If the 
streaming cache line size is 512 bytes then 16 back to back data cache invalidates must be 
executed in order to invalidate the entire line. 

7) For a data non-cachable read the entire 128 byte sector is fetched. Instruction fetch 
non-cachable reads fetch only from the on-board PROM or from main memory. In this 
case 32 bytes are read at a time. A new sector of data must be read from the system bus 
and placed in one sector of the chosen line by performing a streaming cache write cycle. 
The criteria for determining which set should be replaced is explained in step 1. 

8) The tag address of the new data must be placed in the Tag RAM. 

9) The state of the streaming cache must be set either to Invalid. This is accomplished by 
performing a Tag RAM state write . 

The non-cachable read cycle is almost identical to the read with line replacement cycle 
shown in Figure 11-6 and Figure 11-7. The differences are as follows: 

1) When VAUOOUT_ is asserted in for the line replacement in Figlire 11-6 the. three bit 
coherence protocol field is a 5 (101), indicating a cachable coherent exclusive on write. In 
Figure 11-13 the protocol is a 2 (010), indicating an uncachable sequential operation. 

2) In the next to last 'CC' cycle in Figure 11-7 the state information remains the same. In 
the next to last 'CC' cycle in Figure 11-14 the state is changed to invalid. 
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11.4.5 Processor Ordered Non-Cachable Write 

A non-cachable write occurs when the Sequential Mode bit in the R8000 CPU is clear and 
any write is done to a non-cachable protocol page. For a non-cachable write operation 
the R8000 CPU does not assert IUREL_ in the same clock as VALIDOUT_ and control of 
the TBus is not passed to the CC. A non-cachable write must wait for the corresponding 
data to show in the correct update data queue. The two data are then sent together to the 
system or to the addressed local register. The Processor Ordered Non Cachable function 
is used for writing hardware registers in the CC which support the write-gatherer opera­
tion. The purpose of a write-gatherer is to gather 32 bit write operations from another 
source (such as a graphics engine) into a 128 byte block before sending them across the 
bus. Otherwise each single 32 bit write would have to be sent across the bus which 
would decrease system data bandwidth and degrade overall system performance. 

The processor ordered non-cachable write timing diagram in Figure 11-15 never leaves 
the RUN state. The NXTDATE_ and NXTDATO_ pins perform different functions 
depending on whether the R8000 CPU of the CC is in control of the TBus. When the 
RBOOO CPU is in control of the TBus each is driven by the RBOOO CPU and indicates that 
store data associated with a non-cachable write will be on the even store data bus on the 
next clock. When the CC is in control of the TBus, the R8000 CPU asserts NXTDATE_ or 
NXTDATO_ if either store address queue contains an address for which bits [17:7] 
match the Tag RAM index bits [17:7] which were on the TBus four cycles earlier. The sig­
nals remain de-asserted if no such match is detected. 

In Figure 11-15 when NXTDATE_ is asserted data on the even store data bus becomes 
valid one clock later. The even data is always in order with the even addresses and the 
odd data is always in order with the odd addresses. However, the even and odd refer­
ences are not always in order relative to each other. 
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11.4.6 Sequential Non-Cachable Write 

For a sequential non-cachable write operation the R8000 CPU does not assert IUREL_ in 
the same clock as VALIDOUT_ and control of the TBus is not immediately passed to the 
CC. Figure 11-16 shows a timing example of a sequential ordered non-cachable write. 

The only real difference between the sequential and processor-ordered non-cachable 
writes is that in a sequential non-cachable write the R8000 CPU asserts IUREL_ which 
allows the it to determine when the actual non-cachable write has been completed. At 
the end of the cycle CCREQ_ is asserted by the CC indicating that the cycle has com­
pleted. 
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11.4.7 Interrupt 

Interrupt detection and status is handled by the cache controller. The R8000 CPU does 
not have a specific interrupt pin but rather accepts interrupt information from the CC 
over the TBus. When the interrupt is detected by the CC, the contents of the interrupt 
register must be passed to the R8000 CPU so that proper servicing can begin. 

After obtaining control of the TBus the CC places the value 0010 on the function field as 
shown in Figure 11-17, indicating an interrupt cycle. The TRA field contains the actual 
interrupt information on TRA [39:29] . The encoding of these bits is shown in Table 11-4. 

IP Enable NMI Bus Error IP Field NMI Field Bus Error 
Enable Enable Field 

TB<39> TB<38> TB<37> TB<36:3 1> TB<30> TB<29> 

Table 1 1-4 TBus Interrupt Status Transfer 

At the same time the information is placed on the TBus, the CC de-asserts the signal 
CCREQ. to indicate that the cycle is over. Control is then returned to the R8000 CPU. 
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11.5 HARDWIRED CONTROL FUNCTIONS 

Although the majority of communication between the CC and the RBOOO Microprocessor 
Chip Set is done via the TBus, there are some hardwired control functions which the CC 
must support. The CC interfaces to the RBOOO CPU, the R8010 FPU, and the Tag RAM's. 
The following table lists the hardwired control signals between the CC and each of these 
devices. 

Signal Type Interface Definition 

VALIDOUT_ I R8000 CPU Bus information valid 

IUREL_ I R8000 CPU R8000 CPU releases control of TBus 

NXTDATE I - R8000 CPU Even store address queue compare valid 

NXTDATO_ I R8000 CPU Odd store address queue compare valid 

CCREQ_ 0 R8000 CPU Cache Controller TBus request 

FOE_ 0 R8010 FPU Floating point output enable 

BYPASS_ 0 R8010 FPU Floating point data bypass control 

RWSA<l :O> 0 TAG RAM Read write set address 

TWE - 0 TAG RAM Tag address write enable 

STWE_ 0 TAG RAM State and virtual synonym write enable 

STRD_ 0 TAG RAM Read state information control 

TOE_ 0 TAG RAM Output read information onto tag pins 

TBus<72:0> I/0 R8000 CPU/ Bus communication 
R8010 FPU 

Table 1 1 -5 Cache Controller Hardwired Control Signals 

11.5.1 Integer Unit Interface 

VALIDOUT_ is driven by the R8000 CPU to indicate that the information on the TBus is 
valid for the Cache Controller to receive. The CC must monitor the state of VALIDOUT_ 
and be prepared to latch all 72 bits of the TBus whenever it is asserted. 

IUREL_ is driven by the R8000 CPU and indicates to the CC that the R8000 CPU has 
relinquished control of the TBus. Assertion of IUREL_ causes transition of the TBus state 
machine to the 'CC' state. IUREL_ remains active as long as the R8000 CPU does not 
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have control of the bus. IUREL_ is de-asserted whenever the TBus state machine is in the 
"RUN' state. 

NXTDATE_ is driven by the R8000 CPU and indicates the result of the even store 
address queue compare. When the CC is in control of the TBus, the R8000 CPU asserts 
this signal low if the even store address queue contains an address for which bits <17:7> 
match the Tag RAM index bits <17:7> which were on the TBus four cycles earlier. The 
signal remains de-asserted if no such match is detected. NXTDATE_ should always be 
considered together with NXTDATO_. If either is asserted, a compare hit has occurred. 
Address comparisons are done on a 128 byte minimum quantity and take one cycle. 
Address range comparisons larger than 128 bytes require multiple cycles. NXTDATE_ is 
connected directly to the NXTDATE_ pin of the Cache Controller. 

NXTDATO_ is driven by the R8000 CPU and indicates the result of the odd store 
address queue compare. When the CC is in control of the TBus, the R8000 CPU asserts 
this signal low if the odd store address queue contains an address for which bits <17:7> 
match the Tag RAM index bits <17:7> which were on the TBus four cycles earlier. The 
signal remains de-asserted if no such match is detected. NXTDATO_ should always be 
considered together with UPDE_. If either is asserted, a compare hit occurred. Address 
comparisons are done on a 128 byte minimum quantity and take one cycle. Address 
range comparisons larger than 128 bytes require multiple cycles. NXTDATO_ is con­
nected directly to the NXTDATO_ pin of the Cache Controller. 

CCREQ_ is driven by the CC and indicates to the R8000 CPU that the CC either has 
requested control of the TBus or does not wish to give up control of the TBus. Assertion 
of CCREQ_ causes the TBus state machine to transition to the 'REQ' state. A maximum 
of 1500 clocks can elapse between the time CCREQ_ is asserted and IUREL_ is finally 
asserted and control of the TBus granted . 

11.5.2 Floating Point Unit Interface 

FOE_ is driven by the CC and allows the R8010 FPU to drive data onto the store data 
bus. De-assertion of FOE_ tri-states the store data pins. FOE_ works in conjunction with 
the BYPASS_ on streaming cache transfers to main memory and allows data to be driven 
directly from the load data pins (LDE<63:0> and L00<63:0>) to the store data pins 
(SDE<63:0> and S00<63:0>) of the R8010 FPU respectively. When data from the stream­
ing cache is to be transferred to main memory, the Cache Controller initiates a streaming 
cache load. The load data is then transferred on the LDE or LOO pins to the R8010 FPU. 
The CC controls the flow of data through the R8010 FPU by asserting the FOE_ and 
BYPASS_ signals to the R8010 FPU, allowing data to be driven onto the SDE or SOO bus­
ses. Refer to figure 10-22 for a graphical representation of how these pins manage the 
flow of data through the R8010 FPU. 
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BYPASS_ (Floating Point Bypass) Active Low Input 

Assertion of BYPASS_ allows data from the even and odd load data pins to bypass the 
internal circuits of the R8010 FPU and be transferred directly to the store data output 
buffers. The assertion of FOE_ enables the buffers and allows the streaming cache load 
data to be driven out onto the store data pins. BYPASS_ de-asserted allows data from 
within the registers of the R8010 FPU to be driven out onto the SDE or SOO pins (assum­
ing FOE_ is active). Refer to figure 11-22 for a graphical representation of how these pins 
manage the flow of data through the R8010 FPU. 

11.5.3 Tag RAM Interface 

The Cache Controller does not distinguish between even and odd Tag RAM's. Therefore 
each interface pin described below connects to both the even and odd Tag RAM's. 

The two bit RWSA<l:O> field is driven by the CC when the Cache Controller is reading 
or writing to the Tag RAM. RWSA<l:O> are used to choose between one of the 4 sets of 
the 4-way set associative tag RAM. The Dirty Bit RAM also uses these pins to update the 
correct dirty bit entry. The values placed on the RWSA pins by the CC are obtained from 
the R8000 CPU during a Tag RAM lookup cycle and are passed to the CC via the Set 
Address field of the TBus. 

STRD _ is driven by the CC and is used to control multiplexor logic inside the Tag RAM 
which enables either State and V.S. information, or tag address information, onto the 
internal 20 bit tag bus. When the Tag RAM is read by the CC, the TOE_ pin must also be 
asserted to enable this information onto the external Tag address bus. The information 
enters the R8000 CPU and is returned to the CC via the TBus. 

TOE_ is driven by the CC when the CC is reading the Tag RAM. Assertion of OE_ allows 
the information in the Tag RAM to be driven out onto the extemal 20 bit Tag Address bus 
and back to the R8000 CPU where it is returned to the CC via the TBus. 

STWE_ is asserted whenever the CC is writing state and virtual synonym information to 
the Tag RAM. Both the tag address and the state and V.S. information are carried to the 
Tag RAM via a single 20 bit tag address bus. The CC tracks the information on the pins 
and asserts STWE_ if state and V.S. information is to be written. TWE_ is asserted if tag 
address information is to be written. TWE_ and STWE_ must never be asserted at the 
same time. 

TWE_ is driven by the CC whenever tag address information is to be written to the Tag 
RAM. Refer to STWE_ above. 
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11.5.4 TBus Interface 

This 72 bit bidirectional bus goes between the CC, the R8000 CPU, and the R8010 FPU. 
The function of each bit changes depending on which device is driving. Normally the 
CC drives the TBus when reading or writing the tag RAM's or reading the Data RAM's 
and for general communication with the R8000 CPU. The R8010 FPU uses the TBus to 
transfer Move data from the floating point register file (FPR) to the Integer Register File 
of the R8000 CPU as requested by the R8000 CPU. The RBOOO CPU uses the TBus for 
integer stores to the data RAM's, general communication with the CC and the R8010 
FPU, and R8010 FPU to RBOOO CPU move instructions. TBUS<63:0> connects directly to 
TBUS<63:0> of the R8010 FPU as well as TBUS<63:0> of the Cache Controller. THus 
connection between the CC and the R8010 FPU is by virtue of the fact the R8000 CPU 
communicates with both. There is no TBus communication protocol between the R8010 
FPU and the CC. Chapter 10 discusses the TBus interface in detail. 

11.5.5 Data Bus Interface 

There is no direct data bus interface between the CC and any other device in the system. 
However, the CC is responsible for the flow of data between the store data busses of the 
even and odd banks of the streaming cache, and the even and odd data buffers 
respectively. The data buffers separate the R8000 Microprocessor from the main memory 
back-plane bus. SDE[63:0] and 500[63:] comprise the even and odd store data busses 
respectively . 
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SYSTEM CONTROL COPROCESSOR ­
INSTRUCTION SET DETAILS 

A 

This appendix provides a detailed description of the operation of the System Control 
Coprocessor (Coprocessor 0) instructions implemented by the R8000 Microprocessor. 
The instructions are listed in alphabetical order . 

Exceptions that may occur due to the execution of each instruction are listed after the 
description of each instruction. Descriptions of the immediate cause and manner of 
handling exceptions are omitted from the instruction descriptions in this appendix . 

Tables at the end of this appendix list the bit encoding for the constant fields of each 
instruction, and the bit encoding for each individual instruction is included with that 
instruction . 

A.l System Control Coprocessor Instructions 

The MIPS architecture provides a uniform abstraction for a few coprocessor units, 
alternate execution units with register files separate from the R8000 CPU. The System 
Control function of MIPS processors is implemented using this mechanism as 
coprocessor 0. The System Control Coprocessor manipulates the processor control, 
memory management, and exception handling facilities of the processor. Though many 
processors have similar system control facilities, the System Control Coprocessor 
instructions are R8000 CPU-specific . 
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CPO - Instruction Set Details 

A.2 Instruction Formats 

Every R8000 CPU instruction consists of a single word (32 bits) aligned on a word 
boundary. The instructions to transfer data between general registers and coprocessor 
registers have one format, common to most coprocessors. Coprocessor computational 
instructions have coprocessor-dependent formats. The CPO instructions have the major 
opcode of COPO, and specify further operations with subfields 

A-2 

Computation (Coprocessor) 
31 26 25 21 20 6 5 0 

I op I rs I 0 I funct I 
Register move (Coprocessor) 

31 

I op 

op 

rs 

rt 

rd 

26 25 21 20 1 6  1 5  1 1 1 0 0 

I rs I rt I rd 0 I 
6-bit operation code (COPO for all these instructions) 

5-bit specifier: select move to/from or operation 
instruction 

5-bit R8000 CPU source/ destination general register 
specifier 

5-bit Coprocessor source/ destination general register 
specifier 

Table A-1 CPO Instruction Formats 
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CPO - Instruction Set Details 

A.3 Instruction Notation Conventions 

In this appendix, all variable subfields in an instruction format (such as rs, rt, immediate, 
etc.) are shown in lowercase names. 

The bit encoding for the opcode constants accompanies each instruction and is also 
summarized in figures located at the end of this Appendix. Fields which are not shown 
as opcode constants, but are shown to contain zero are reserved fields and must be coded 
as zeros for correct operation. 

In the instruction descriptions that follow, the Operation section describes the operation 
performed by each instruction using a high-level language notation. 
The registers in Coprocessor 0 are referred to by name in the high-level language. 
Special symbols and functions used in the notation are described in the table below. 
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Symbol 
+-
II 

xy 
xy .. z 

+ - * 

div 

mod 

I 
< 

nor 

xor 

and 

or 

GPR[xj 

CPR[z,xj 

REGISTERFIELD 

Llbit 

TLB[index, set] 

CPO - Instruction Set Details 

Meaning 
Assignment. 

Bit string concatenation. 

Replication of bit value x into a ybit string. Note: X is atways a single-bit value. 
Selection of bits y through z of bit string x. Little-endian bit notation is always 
used. If y is less than z, this expression is an empty (zero length) bit string. 

2's complement or floating-point arithmetic: addition, subtraction, multiplication 

2's complement integer division. 

2's complement modulo. 

Floating-point division. 

2's complement less than comparison. 

Bit-wise logical NOR. 

Bit-wise logical XOR. 

Bit-wise logical AND. 

Bit-wise logical OR. 

General-Register x. The content of GPR[O] is always zero. 

Coprocessor unit z, general register x. 

The value of the field "FIELD" in the specified r1'Jtister or structure. This is 
similar to the bit selection notation, but uses a fie d name. 

Bit of state to specify synchronization instructions. Set 
by LL, cleared by ER£T and Invalidate and read by SC. 
The TLB cache entry selected by a specified index and set value. 
This has fields HI, LO, VPN (in HI) and ASID (in HI). 

DCache_ Tag_Ram[V Addr] 
The Data Cache Tag Ram entry indexed by the 
address in the VAddr register. 

TLBindex(VAddr, KPS, UPS) The TLB cache index for the address in the VAddr register given 
the current processor operating mode and the current page sizes 

Table A-2 CPO Instruction Operation Notations 
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CPO - Instruction Set Details 

DCTR Data Cache Tag Read DCTR 
31 26 25 21 20 6 5 0 

COPO COM 0 OCTR 
0 1 0 0 0 0  1 1 0 0 0  0 0 0 0 0  0 0 0 0  0 0 0 0  0 0  0 0 1 0 0 1  

Format 

DCTR 
Description: 

6 5 1 5  6 

TFP specific 

The V Addr register specifies an entry in the Data Cache Tag Ram. DCTR reads the tag from the 
specified Data Cache Tag entry and writes it to the DCache register. 

Operation: 

OCache +-- OCache_Tag_Ram[VAddr] 

Exceptions: 

Coprocessor unusable exception 
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CPO - Instruction Set Details 

DCTW Data Cache Tag Write DCTW 
31 26 25 21 20 6 5 0 

COPO COM 0 DCTW 
0 1 0 0 0 0  1 1 0 0 0  0 0 0 0 0  0 0 0 0  0 0 0 0  0 0  0 0 1 0 1 0 

Format: 

DCTW 
Description: 

6 5 1 5  6 

TFP specific 

The V Addr register specifies an entry in the Data Cache Tag Ram. DCTR reads the tag from the 
DCache register and writes it into the specified Data Cache Tag entry. 

Operation: 

DCache_Tag_Ram[VAddr] f- DCache 

Exceptions: 

Coprocessor unusable exception 
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DMFCO 
31 26 25 

COPO 

CPO - Instruction Set Details 

Doubleword Move From 
System Control Coprocessor 

21 20 1 6  1 5  1 1  1 0  

DMF rt rd 

DMFCO 
0 

0 
0 1 0 0 0 0  0 0 0 0 1  0 0 0 0 0 0 0 0 0 0 0  

6 5 5 5 1 1  

Format TFP specific 

DMFCO rt, rd 

Description: 

The contents of the system control coprocessor (CPO) general register rt are loaded into R8000 CPU 
general register rd. This instruction is used by software to read from the system control registers. 

Operation: 

GPR[rd) +-- CPR[O,rt] 

Exceptions: 

Coprocessor unusable exception 
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DMTCO 
31 26 25 

COPO 

CPO - Instruction Set Details 

Doubleword Move To 
System Control Coprocessor 

21 20 1 6  15  1 1  1 0  

DMT rt rd 

DMTCO 
0 

0 
0 1 0 0 0 0  0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0  

6 5 5 5 1 1  

Format: TFP specific 

DMTCO rt, rd 

Description: 

The contents of RBOOO CPU general register rt are loaded into system control coprocessor (CPO) 
general register rd. This instruction is used by software to write to the system control registers. 

Because the state of the virtual address translation system may be altered by this instruction, the 
operation of load and store instructions and TLB operations within an implementation-dependent 
window, prior to and after this instruction, are undefined. 

Operation: 

CPR[O,rd] � GPR[rt] 

Exceptions: 

Coprocessor unusable exception 
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CPO - Instruction Set Details 

ERET Exception Return ERET 
31 26 25 21 20 6 5 0 

COPO 
0 1 0 0 0 0  

Format 

ERET 

Description: 

6 

COl 
1 0 0 0 0  

5 

0 ERET 
0 0 0 0 0  0 0 0 0  0 0 0 0  0 0  0 1 1 0 0 0  

1 5  6 

TFP specific 

ERET is the instruction for returning from an interrupt, exception, or error trap. Unlike a branch 
or jump instruction, ERET does not execute the next instruction. ERET must not itself be placed in 
a branch delay slot. 

An ERET executed between a LL and SC causes the SC to fail. 

Operation: 
PC +- EPC 
SR1 +-- 0 
Llbit +-- 0 

Exceptions: 

Coprocessor unusable exception 
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CPO - Instruction Set Details 

SSNOP Superscalar Inhibit NOP SSNOP 
31 26 25 21 20 1 6  1 5  1 1  1 0  6 5 0 

SPECIAL 0 0 0 1 SLL 
0 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 1 0 0 0 0 0 0  

6 5 5 5 5 6 

Format 

SSNOP 

TFP Specific 

Description: 

This is a No-OPeration instruction that alters the superscalar instruction dispatch behavior of the 
TFP processor. No instruction that follows a SSNOP in program order can be dispatched until after 
the SSNOP has been dispatched. The SSNOP can be dispatched in the same cycle as instructions 
that precede it. 

For example, consider the sequence: 
dmtcO r4,VAddr 
ssnop 
ssnop 
ssnop 
tlbw 

The DMTCO that writes the V Addr register and the first SSNOP can issue in the same cycle, say T, 
but the second SSNOP can't issue because of the first SSNOP. The second SSNOP will issue in cycle 
T + 1 by itself. The third SSNOP will issue in cycle T +2. Finally the TLBP (and following 
instructions) can issue in cycle T +3. 

This is not a coprocessor 0 instruction. It is documented with the TFP CPO instructions because it 
is TFP-specific and the primary use is to serialize code sequences that perform system control 
functions. 

The instruction is the encoding of "SLL $0,$0," but the mnemonic is recognized by the TFP 
assembler and the instruction is recognized as the special superscalar inhibit operation by the 
processor and is not treated as a shift. 

Operation: 

Exceptions: 

None 
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CPO - Instruction Set Details 

TLBP Probe TLB For Matching Entry TLBP 
31 26 25 21 20 6 5 0 

COPO COM 0 TLBP 
0 1 0 0 0 0  1 1 0 0 0  0 0 0 0 0  0 0 0 0  0 0 0 0  0 0  0 0 1 0 0 0  

Format: 

TLBP 

Description: 

6 5 1 5  6 

TFP specific 

The TLB cache is probed for a translation that matches the address in the V Addr register and the 
ASID in the Entry Hi register. The TLB cache index is determined from the value in the V Addr 
The result of the probe is recorded in the TLBSet register. If there is a match, then the P bit is cleared 
to zero, and the set number is recorded in the SET field. If there is no match, then the P bit is set to 
one and the SET field is undefined. 

Operation: 

index � TLBindex(VAddr, KPS, UPS) 
TLBSetP � 1 
/* this is an associative match in actual hardware *I 
for i in 0 .. 2 

match � (VAddrREGION = TLB[index, i]REGION) 
and (VAddrVPN = TLB[index, i]vpN) 
and (EntrHIASID = TLB[index, i]ASID) 

if match = true then 
TLBSetP � O  
TLBSetsET � matching set number 

end if 
endfor 

Exceptions: 

Coprocessor unusable exception 
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CPO - Instruction Set Details 

TLBR Read Indexed TLB Entry TLBR 
31 26 25 21 20 6 5 0 

COPO COM 0 TLBR 
0 1 0 0 0 0  1 1 0 0 0  0 0 0 0 0  0 0 0 0  0 0 0 0  0 0  0 0 0 0 0 1  

6 5 1 5  6 

Format 

TLBR 

TFP specific 

Description: 

The TLB entry is specified by the V Addr register and the TLBSet register. The contents of the 
specified TLB entry is moved to the Entry Hi and EntryLo registers. 

This operation is undefined for an incorrectly specified SET address. 

Operation: 

index f- TLBindex(VAddr, KPS, UPS) 
set f- TL8Set1 . .  0 
EntryHi f- TLB[index, set]Hi 
Entrylo f- TLB[index, setJL0 

Exceptions: 

Coprocessor unusable exception 
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CPO - Instruction Set Details 

TLBW Write Indexed TLB Entry TLBW 
31 26 25 21 20 6 5 0 

COPO COM 0 TLBW 
0 1 0 0 0 0  1 1 0 0 0  0 0 0 0 0  0 0 0 0  0 0 0 0  0 0  0 0 0 0 1 0  

6 5 1 5  6 

Format: TFP specific 
TLBW 

Description: 

The TLB entry is specified by the V Addr register and the TLBSet register. The contents of the 
Entry Hi and EntryLo registers is moved into the specified TLB entry. 

These operations are undefined for an incorrectly specified SET address. 

Operation: 

index +-- TLBindex(VAddr, KPS, UPS) 
set +-- TLBSet1 . .  o 
TLB[index, set]Hi +-- EntryHi 
TLB[index, set]L0 +-- EntryHi 

Exceptions: 

Coprocessor unusable exception 
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CPO - Instruction Set Details 

TFP Coprocessor 0 - Opcode Bit Encoding 

A-14 

All TFP System Control Coprocessor instructions have major opcode COPO. The encoding of the 
COPO major opcode is shown here with all other major opcodes omitted. 

bits [28 .. 26 
] 

[31.. .29 0 1 
] 
2 

bits [23 .. 21 
] 

[25 .. 24 0 1 
] 
0 
1 
2 
3 

bits 
[5 . . 3] 
0 
1 
2 
3 
4 
5 
6 
7 

bits 
[5 .. 3] 
0 
1 
2 
3 
4 
5 
6 
7 

* DMF 
* * 

[ 2 .. 0] 
0 1 
* * 

* * 

* * 

ERET * 

* * 

* * 

* * 

* * 

[ 2 .. 0] 
0 1 
* TLBR 
TLBP OCTR 
* * 

.. .. 
.. .. 
* .. 
* .. 
.. .. 

Major Opcode 

2 3 

COPO rs 

2 3 

* * 

* * 

COl 
COM 

4 5 6 

4 5 6 

* DMT * 

* * * 

COPO function when rs equals COl 
2 3 4 5 6 
* * * * * 

* * * * * 

* * * * * 

* * * * * 

* * * * * 

* * * * * 

* * * * * 

* * * * * 

COPO function when rs equals COM 
2 3 4 5 6 
TLBW * * * * 

OCTW * * * * 

* * .. .. .. 
.. .. .. .. .. 
.. .. .. .. .. 
.. .. .. .. .. 
.. .. .. .. .. 
.. .. * .. .. 

7 

7 

* 

* 

7 
* 

* 

* 

* 

* 

* 

* 

* 

7 
* 

* 

.. 
.. 
.. 
.. 
.. 
.. 

TFP User's Manual 



-

-

-

-

-

-

HAZARDS AND I�RLOCKS 

B 

The RSOOO Microprocessor contains certain restrictions which must be adhered to in 
order to attain maximum instruction execution performance. Certain combinations of 

- instructions are not permitted and the results of executing these illegal combinations can 
be unpredictable. Most hazards result from instructions modifying and reading a state in 
different pipeline stages. Such hazards are defined between pairs of instructions, not on 

• a single instruction in isolation. These constraints are discussed throughout this 
appendix. Refer to chapter 6, section 6.5 for information regarding hazards during the 
boot-up procedure. 

-

-

-

.. 
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8.1 The MiscBus 

The MiscBus is a 64-bit utility bus internal to the RSOOO CPU and is used for transferring 
data in situations where dedicated buses are not available. Instructions which use the 
MiscBus include JAL, :MFCO, MTCO. It is important to note that the MiscBus is a single 
resource and is not controlled by score-boarding. Certain restrictions apply when using 
the MiscBus. 

- Only one MFCO instruction at a time can occur in the E-stage of the pipeline. 
- Only one MTCO instruction at a time can occur in the W-stage of the pipeline. 
- Only one JAL instruction at a time can occur in the E-stage of the pipeline. 

The MoveFrom and Move To Coprocessor 0 instructions both use the MiscBus to transfer 
data between the general purpose register (GPR) and the coprocessor 0 registers. 
However, these instructions use the MiscBus in different cycles of the pipeline. :MFCO 
uses the MiscBus in the E-stage, while MTCO uses the MiscBus in the W-stage. The 
following restriction applies. 

A MFCO instruction must not occur in the cycle following a MTCO instruction. Hence a 
MFCO instruction in the E-stage of the pipeline cannot be followed by a MTCO. 
instruction in W-stage. 

A JAL uses the MiscBus to pass the program counter value from the instruction unit to 
the execution unit and stores the result into register r31 of the GPR. JAL uses the MiscBus 
in the E-stage, as does the :MFCO instruction. Therefore, a hazard exists if JAL and :MFCO 
attempt to execute in the same cycle. The following restriction applies. 

The JAL and MFCO instruction must not occur at the same time in the E-stage of the 
pipeline. 

In addition, the MTCO instruction uses the MiscBus in the W-stage of the pipeline. Due to 
the interdependency of these instructions, a hazard occurs if a MTCO instruction in the 
W-stage is followed by a JAL instruction in E-stage, since the JAL is actually issued 
before the MTCO instruction. The following restriction applies. 

A JAL instruction must not occur in the cycle following a MTCO. 
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8.2 The Address Generation Pipeline 

The RBOOO CPU has two address generation pipelines that are used for all loads and 
stores. Instructions flow down the pipeline through stages A-E-W. Coprocessor 0 
memory (CopOmem) instructions are those Coprocessor 0 instructions that use the 
memory pipeline, as opposed to using the integer pipeline. 

However, Coprocessor 0 memory instructions do not flow through the pipeline in the 
same manner as other loads and stores. Coprocessor 0 memory instructions use the 
address pipeline two cycles later than a normal load/ store memory operation. Hence, if 
a memory operation follows a Coprocessor 0 memory operation by two cycles in the 
pipeline, the normal memory operation (loads/stores) is aborted in it's E-stage, the 
pipeline is flushed, and the memory operation is restarted. 

8.3 Coprocessor 0 Register Latencies 

This section lists each of the Coprocessor 0 registers and the latencies incurred when 
executing certain instructions. 

8.3.1 Virtual Address (VAddr) Register 

The VAddr register is used in addressing Coprocessor 0 memory instructions. When a 
Coprocessor 0 memory instruction is in the E-stage, the VAddr is forced back into the 
memory pipeline in the D-stage. When executing a MTCO instruction using the VAddr 
register and expecting the new value of VAddr to index either the TLB of the Data Cache, 
the MTCO instruction has a latency of 2. The 2-cycle latency is shown below. 

ssnop instruction issued in cycle 0 

MTCO VAddr instruction issued in cycle 1 

ssnop also issued in cycle 1 

ssnop issued in cycle 2 

TLBR issued in cycle 3 two cycles after MTCO 

8.3.2 Status Register 

The KPS/UPS fields of the Status Register may affect addressing of the TLB for the 
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TLBR, TLBW, TLBP Coprocessor instructions. If the region of the address in the VAddr 
register points to kernel physical (KP) space, the Status Register page size fields have no 
effect on the indexing of the TLB. The Status register has no effect on the DCTR and 
DCTW Coprocessor instructions. 

If the region of the address in VAddr register points to a virtual address space (as 
opposed to kernel physical space), then the KPS/UPS field is used to choose the lower 7-
bits of the virtual page. The MTCO Status Register has a latency of 1 to the TLBR, TLBW, 
and TLBP Coprocessor instructions. The one cycle latency is shown below. 

Cycle 
� 

0 
t---

ssnop instruction issued in cycle 0 

1 
� 

1 
� 

MTCO Status Register (SR) instruction issued in cycle 1 

ssnop also issued in cycle 1 

2 
.___ 

TLBR issued in cycle 2 one cycle after MTCO 

B.3.3 TLBSet Register 

The TLBSet register is used to determine the status of the TLB write-enables when the 
TLBW instruction is in the W-stage. The MTCO TLBSet operation has a latency of 1 to a 
TLBW instruction. TLBSet has a latency of 0 to a TLBR instruction. The one cycle latency 
of a TLBW operation is shown below. 

Cycle 
� 

0 ssnop instruction issued in cycle 0 
t---

1 MTCO TLBSet instruction issued in cycle 1 
r----

1 ssnop also issued in cycle 1 
� 

2 TLBW issued in cycle 2 one cycle after MTCO 
.___ 

The zero cycle latency of a TLBR operation is shown below. 
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Cycle 

ssnop instruction issued in cycle 0 

MTCO TLBSet instruction also issued in cycle 0 

TLBR instruction also issued in cycle 0 

8.3.4 EntryHi Register 

The Entry Hi register serves as a data register for the TLBW instruction to write the TLB. 
TLBW picks up the data from Entry Hi when the TLBR instruction is in the H-stage. A 
MTCO instruction writes to Entry Hi at the end of the W-stage. Since the TLBW picks up 
the value from Entry Hi so late in the pipeline, the MTCO is 0 latency with respect to the 
TLBW . 

The MTCO-EntryHi operation can come down the pipeline in the same cycle with the 
TLBW, and the TLBW will get the new data. Entry Hi also may affect the index into the 
TLB for TLBR, TLBW, and TLBP operations. If the address in the VAddr register points to 
Kernel Global (KV1) space, then the 8-bit ASID field in Entry Hi does not affect the 
indexing. Otherwise, the ASID is XOR'd with the least significant 7-bits of the virtual 
page number to form an index into the TLB. For this reason the MTCO operation must 
occur one cycle before the TLBW, TLBR, or TLBP operations in the pipeline. The MTCO 
has a latency of one cycle with respect to these instructions. The TLBR operation is 
shown below . 

ssnop instruction issued in cycle 0 

MTCO Entry Hi operation issued in cycle 1 

ssnop also issued in cycle 1 

TLBR issued in cycle 2 one cycle after MTCO 

The TLBR operation loads the Entry Hi and EntryLo registers late in the pipeline. TLBR 
has a latency of 3 to a MFCO operation. The MFCO-EntryHi/EntryLo must come 3 cycles 

.... after the TLBR operation. The three cycle latency is shown below. The following 
sequence places new data in EntryHi/EntryLo from a TLBR. 

.... 
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TLBR instruction issued in cycle 0 

ssnop also issued in cycle 0 

ssnop issued in cycle 1 

ssnop issued in cycle 2 

MFCO-EntryHi issued in cycle 3 three cycles after TLBR 

There is no score-boarding between two writes to the same register, such as between 
TLBR and MTCO-EntryHi operations, both of which target the Entry Hi register. For 
example, if a MTCO-EntryHi or MTCO-EntryLo operation occurs in the next cycle after a 
TLBR, the result of the MTCO will be put into Entry Hi or EntryLo respectively. The 
following restrictions apply. 

- A  DCTR operation in H-stage cannot occur at the same time as a MTCO-DCACHE 
operation in W-stage. 

- A  TLBR operation in H-stage cannot occur at the same time as a MTCO-EntryHi/ 
EntryLo operation in W-stage. 

- A TLBP operation in H-stage cannot occur at the same time as a MTCO-TLBSet 
operation in W-stage. 

B.4 VAddr Multiplexing 

The execution of a MTCO-VAddr operation in W-stage and any Coprocessor 0 memory 
instruction in E-stage require a multiplexor in the pipeline which is a single resource. If a 
Coprocessor 0 memory executes in the cycle after a MTCO-VAddr operation, a collision 
for this resource occurs. Hence the following restriction applies. 

- A  MCTO-VAddr operation must not occur in the cycle following a Coprocessor 0 
memory instruction. 
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8.5 Integer Store Cancellation 

In order to alleviate a potential timing problem that can occur when cancelling integer 
stores a mechanism exists in the RSOOO CPU which recirculates the store address back 
through the address pipeline to invalidate the store data in the data cache while the 
pipeline is being flushed. This mechanism requires the use of the same multiplexor 
mentioned in the previous example and if used can collide with a MTCO-VAddr 
executing in the same cycle (W-stage). To avoid this problem, the following restriction 
applies. 

- Do not schedule Integer stores in the same cycle with a MTCO-VAddr. 

8.6 Instruction Latency and Control Registers 

This section describes the latency of instructions which affect address translation. 

8.6.1 TL8W Instruction 

The TLBW instruction uses the memory pipeline in a different fashion than loads and 
stores. While these standard memory operations access the TLB in the E-stage, the TLBW 
instruction does not access the TLB until two cycles later in the H-stage. At the end of the 
H-stage, the TLB is written with a new value which can be used for translation. Hence a 
memory operation can occur 3 cycles behind a TLBW instruction and receive the new 
translation. The actual latency of a TLBW instruction is 3 cycles. 

It is possible for the effective latency of the TLBW instruction can be 0 at the end of an 
exception handler. For example, if the TLBW is at the end of an exception handler, 
indicating a Return From Exception (ERET) is coming, the ERET causes a pipeline flush 
and creates a bubble in the pipeline of 3 cycles. 

If a TLBW is placed at the end of a fast TLB exception handler in order to place a 
translation into the TLB, and an ERET is then executed which causes the code to return 
to the instruction that caused the TLB miss, no ssnop operations are needed to retrieve 
the required 3 cycles following the TLBW and before the use of the translation . 

8.6.2 MTCO-Status Register (UPS/KPS Fields) 

- The MTCO-SR operation has a latency of 3. Three cycles after a MTCO-SR, new values in 
the KPS and UPS fields will affect address translation. MTCO takes effect at the end of the 
W-stage. The page size is used in A-stage to set-up TLB controls. 

-

-
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8.6.3 MTCo-EntryHi (ASID) 

The MTCQ-EntryHi operation has a Latency of 3. Three cycles after a MTCQ-EntryHi 
operation, the new value in the ASID field affects the hashing into the TLB. MTCO takes 
effect at end of the W-stage. The ASID size is used in A-stage to hash TLB-index into the 
pre-decoder. 

8.7 Use of the SSNOP Instruction 

In addition to the standard NOP instruction, the MIPS IV instruction set includes a 
super-scalar no-op instruction (SSNOP). Insertion of a SSNOP instruction breaks 
superscalar dispatch in the TFP microprocessor and assures that no instruction that 
follows the SSNOP in the assembly language is dispatched in the same cycle as the 
SSNOP. The SSNOP instruction is provided to help the software developer adhere to 
certain restrictions inherent to the MIPS architecture, namely to keep certain instruction 
pairs separated by one or more cycles. 

Table B-1 shows the insertion of SSNOP instructions as a way of separating certain 
instructions. However, in some cases single cycle integer operations can be substituted. 
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Instruction Followed By Number of Comments SSNOP's -

dmfcO dmfcO 1 Move From any COPO register 

- dmfcO dmtcO 1 Move To/From any COPO register 

dmfcO jal 1 Move From any COPO register 

- dmfcO jalr 1 Move From any COPO register 

dmtcO dmfcO 2 Move To/From any COPO register 

- dmtcO dmtcO 1 Move To any COPO register 

dmtcO jal 2 Move to any COPO register 

- dmtcO jalr 2 Move To any COPO register 

dmtcO (Vaddr) any TLB op 2 Move to Vaddr Register Only 

- dmtco (Status) any TLB op 2 Move to Status Register Only 

dmtcO (TLBSet) any TLB op 2 Move to TLBSet Register Only 

... dmtcO (EntryHi) any TLB op 2 Move to Entry Hi Register Only 

dmtcO (EntryLo) any TLB op 2 Move to EntryLo Register Only 

dmtcO (Status) any Integer 4 When accessing SR to enable/disable 
operation interrupts. 

dmtcO (Status) any FP 4 Four cycles before new interrupt 
... operation mask takes effect. 

any TLB op any Memory op 3 Any TLB operation followed by any 
... Memory operation . 

tlbp dmfcO (TLBSet) 4 Move From TLBSet register only 

... tlbr dmfcO (EntryHi) 4 Move From Entry Hi register only 

tlbr dmfcO (EntryLo) 4 Move From EntryLo register only 

dctr dmfcO (DCACHE) 3 Move From DCACHE register only 

jal dmfcO 1 Move From any COPO Register 

jal dmtcO 1 Move From any COPO Register 

jalr dmfcO 1 Move From any COPO Register 

jalr dmtcO 1 Move To any COPO Register 

Table B-1: SSNOP Requirements 

,.. 
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