
AIX Systems Center
Dallas, Texas

 Copyright IBM Corp. 1993

Advanced Linking
Gary R. Hook

hook@vnet.ibm.com

2 Copyright IBM Corp. 1993
Advanced Linking

3  Copyright IBM Corp. 1993
Advanced Linking

Overview

� Review of Terminology

� Application Organization

� System Linker/Binder

� Kernel Loader

� Linker Command Line

4 Copyright IBM Corp. 1993
Advanced Linking

Notes

This presentation is a discussion of some of the more esoteric aspects of the
AIX Version 3 linker, or binder, and loader. By way of discussion, it is perhaps
advantageous to approach the capabilities of the components through
illustrations. These illustrations elaborate on the techniques used to solve
various problems that have been brought to the attention of National Technical
Support.

The first section of the presentation, once past the overview, is a brief
discussion of application organization. This discussion will point out some
potential problem areas that form the basis for more elaboration further on in
the presentation. Following that is a brief rehash of binder terminology, then
a series of “case studies”. Each case study will explore a different problem that
has been encountered.

After a series of case studies has been presented, some of the linker
command line options will be explored.

For reference purposes, the command ld is the system linker. The linker
processes command line arguments and hands instructions to the binder
program bind , located in the /usr/lib directory. For the purposes of this
presentation, the terms “linker” and “binder” are interchangeable.

5  Copyright IBM Corp. 1993
Advanced Linking

Case Study Structure

� Problem statement

� Exploration of the nuances of that problem

� A description of how we might approach a solution

� Details of the solution

6 Copyright IBM Corp. 1993
Advanced Linking

Notes

Our case studies will consist of:

� Problem statement

� Exploration of the nuances of that problem

� A description of how we might approach a solution

� Details of the solution

Each will explore the use of one or more of the binder/loader team to solve a
particular problem.

7  Copyright IBM Corp. 1993
Advanced Linking

Review of Terminology

� Reference

� The use of a symbol by some function or data
structure

� Resolution

� The act of associating a reference to a symbol with
the definition of that symbol

� Relocation

� The technique used to support the concept of
address–independent programs

8 Copyright IBM Corp. 1993
Advanced Linking

Notes

When object modules refer to a symbol, that symbol must be resolved for
proper execution to take place. The linker performs a portion of this function
at link time; the loader handles runtime resolution when accessing shared or
dynamically loaded objects.

AIX V3 supports address–independent, reentrant code. Text segments never
contain address constants, allowing multiple processes to share a single copy
of a text segment for an executing program. This is accomplished by forcing
all references to external functions to take place through the table of contents,
or TOC. References to routines within the same object are handled via a
function descriptor. It is through these function descriptors and the TOC that
relocation takes place.

9  Copyright IBM Corp. 1993
Advanced Linking

Application Organization

Application

Reusable functionality and data

System Libraries

� Applications often contain code that can be classed as
“reusable”

� Reusable portion is designed with an API

� The API defines the external access to the shared object

10 Copyright IBM Corp. 1993
Advanced Linking

Notes

When designing an application to utilize shared objects, some thought must
be given to the interface of the shared object. This is because the shared
object is no different than an ordinary library with respect to programmatic
usage, but does require additional care during program construction.

The reusable portion of any set of code falls into that category because there
is a consistent programmatic interface to the code. This application
programming interface, or API, often remains unchanged over the course of
time, and thus can be used to describe the division between the main
application and a shared object or objects.

11  Copyright IBM Corp. 1993
Advanced Linking

Import and Export Lists

� The first line of an import list takes one of three forms:

� Anonymous import

#!

� Specification of a shared object

#!shr.o

� Explicit specification of a shared object

#!/u/me/mylibdir/shr.o

� Export lists serve two purposes:

� Define the interface for accessing the shared object’s
functions and data

� Inform the binder which symbols to retain during the
link phase

12 Copyright IBM Corp. 1993
Advanced Linking

Notes

Import lists may take one of 3 forms: an anonymous import, a list that names
an object to be loaded when found, and the full pathname of an object. In all
three cases the file contains a list of symbols that are to be made publicly
available to any referencing modules. The differences come from the use of
each type of import list.

If an export list contains an object specification on the first line, that
specification is ignored. This allows the same file to be used as both an export
and import list. This feature will be explored in our first example.

One additional note: the first line of an import list begins with the characters
#! (pound sign followed by an exclamation mark); occasionally, a module will
contain symbols that begin with the character # (pound sign). If this is the
case, the pound sign must not be the first character on the line, or the binder
will think that the remainder of the line specifies the name of an object module.
To sidestep this restriction, provide a blank space before any symbol
beginning with a pound sign.

13  Copyright IBM Corp. 1993
Advanced Linking

Case Study #1: Accessing Data
Structures in Shared Objects

� Data can be specified within a shared object much the
same as functions

� Often occurs with FORTRAN modules and common
blocks in shared objects

� Data symbol resolution takes place at link time

� Shared object and main both reference the same
symbol

� The links take place at different times

� Each “sees” its own copy of those symbols

14 Copyright IBM Corp. 1993
Advanced Linking

Notes

Both functions and data structures may reside within a shared object. Since
a reference to these elements is simply a symbol, they may both be treated
in an equivalent manner with respect to the API.

For example, common blocks in FORTRAN modules are data structures
created by the compiler. These structures exist within the defining module; it
becomes the job of the linker to coalesce these definitions into a single datum.

15  Copyright IBM Corp. 1993
Advanced Linking

Data Structures

� Modules referencing structure data1 are

� Compiled

� Bound together to create shr1.o

� Other modules referencing structure data1 are

� Compiled

� Combined to form the main application

� When the main portion is built, binding errors will occur
due to the unresolved reference to data1

� If data1 is defined within the main application, then two
copies of the data structure will exist

16 Copyright IBM Corp. 1993
Advanced Linking

Notes

How do we get the main application to connect to data structures located
within an shared object?

For example, a data structure is defined and used within modules that are
combined to form shr1.o. The data structure thus lives within that shared
object, and references to the data structure from within that object are properly
resolved.

Other routines are then compiled and linked to form the main application. This
main application also references data1, but does not define it. The intention
is for the main routines to access the data structure created within shr1.o.

To complicate matters, if the main portion attempts to explicitly define data1,
then two copies of the data structure will exist within the executing application.
This is a result of two properly compiled objects both completely and correctly
defining their own copies of the same data structure.

One might jump to the conclusion that data of the same name would resolve
to the same location in the data segment when all modules are loaded. This
would not be the case due to the fact that all data from the main and shared
portions will reside within the private data segment, but will occupy separate
locations. There is a way around this behavior, which is discussed later in the
presentation.

17  Copyright IBM Corp. 1993
Advanced Linking

An Example in C

� Assume the following function

#include <stdio.h>

int data1 = 5;

int f1()
{

printf(”f1(): %d\n”, data1);
}

� The symbols f1 and data1 are exported from the
shared object

� The shared object is created with the command

ld –o shr.o f1.o –bE:shr.exp –bM:SRE \
–lc –H512 –T512

18 Copyright IBM Corp. 1993
Advanced Linking

Notes

Here we have f1.c containing the code for f1() and a definition of the data
structure data1 . An exports list is created which contains the symbols
comprising the API.

The exports list for this object, in file shr.exp , will contain two symbols:

f1
data1

Note that we do not name an object on the first line of this file.

Finally, the object is created using a straightforward link command.

Please note that while this example is in the C programming language, this
technique works with the FORTRAN language as well, and is especially
applicable in the area of common blocks within shared objects. In fact, the
technique came to light explicitly for providing the capability of accessing
common blocks in FORTRAN shared objects.

19  Copyright IBM Corp. 1993
Advanced Linking

An Example...

� Assume the following main routine

#include <stdio.h>

int data1;

main()
{

data1 = 3;
printf(”main(): %d\n”, data1);

data1 = 2;
f1();

}

� The normal link command might be

ld –o a.out /lib/crt0.o main.o shr.o \
–H512 –T512 –L. –lc

� Output from the application:

main(): 3
f1(): 5

20 Copyright IBM Corp. 1993
Advanced Linking

Notes

Using common command line tactics, the main routine is compiled and linked
to form the a.out executable. When run, however, the program produces
erroneous output. We conclude that the two portions are not referring to the
same copy of data1 .

21  Copyright IBM Corp. 1993
Advanced Linking

A Solution

� We need to tell the main application to use the data
structures defined within the shared object

� The binder will utilize local definitions over import
definitions

� This behavior is default using common command line
semantics

� Import lists may also occupy a position on the command
line

� Filename specifications

� Object modules

� Archives

� Import Lists

22 Copyright IBM Corp. 1993
Advanced Linking

Notes

We must somehow specify to the main portion of the application that the data
structures of interest will be defined within a shared object. When that shared
object is loaded (at program load time) then all references to the data
structures will be properly resolved between the two portions of the
application.

Common semantics of linker invocation are such that the pieces comprising
the main application are listed on the command line, with shared objects and
archive libraries listed after the regular object modules. In this case, the first
local definition will override any imported definitions.

23  Copyright IBM Corp. 1993
Advanced Linking

A Solution...

� An alternative exports file might be

#!shr.o
f1
data1

� Can be used as an import list

� The link command line

ld –o a.out /lib/crt0.o shr.exp main.o \
shr.o –H512 –T512 –L. –lc

� Output from the application

main(): 3
f1(): 2

� Illustrates that both portions of the application are
referencing the same data structures

24 Copyright IBM Corp. 1993
Advanced Linking

Notes

If, however, we change the exports list into a form suitable for use as an import,
we get the results shown in the first bullet. Note that the shared object is
specified without a full path; this is one alternative to the build process.

The command line now shows the import list being specified explicitly on the
command line. Note that it is before the main routine. This is the only location
that will force the linker to override the local definition. The use of the
–bI:shr.exp form will not provide the same results due to the order in which
files and command line options are processed by the binder.

When the modified command line (shown) is used, however, the linker will
override local definitions with the import version. This fact will be reported by
ld during the execution of this command. Keeping in mind that the rule is
first–come, first–served, the import version from the shared object will be the
data structure used by the code within the main application. The last bullet
shows the output of the application after the modified link command is used.

An alternative form of the export/import list and command line is (assuming the
work is being performed within the /u/me/mydir directory)

#!/u/me/mydir/shr.o
f1
data1

ld –o a.out /lib/crt0.o shr.exp main.o \
shr.o –H512 –T512 –lc

Here we have eliminated the need for the –L option in the link command. The
choice of which is left as a philosophical exercise for the reader.

25  Copyright IBM Corp. 1993
Advanced Linking

Case Study #2: Relinking a Shared
Object

There are two aspects to this problem:

� Rebuilding shared objects during program development

� Use the relinking capability to speed program
construction

� Replacing functions within a shared object that is part of
the system

� Utilize a set of the developer’s functions to replace
those normally found in system libraries

� Often desirable to provide a debugging form of the
memory allocation routines.

26 Copyright IBM Corp. 1993
Advanced Linking

Notes

One difficulty with shared objects is the inability to replace, on the “fly”, a
function residing within the shared object. This requirement appears in two
situations: building and debugging a shared object during the program
development cycle, and replacing a routine that currently exists within one of
the system libraries.

The first situation can be described as follows: in order to ascertain the
execution performance and correctness of routines within a shared object, an
application is separated into pieces, each of which becomes an object, except
for the main portion of the application. Testing and debugging then takes place
on the objects. As bugs are discovered and corrected, the new routines must
be linked into the object.

The second scenario is more intricate. As an example, let us assume that a
developer wishes to utilize a version of malloc suitable for debugging. This
alternative form of malloc can be used to monitor heap usage and produce
stack traces when memory use errors occur.

27  Copyright IBM Corp. 1993
Advanced Linking

Further Details on the Problems

� Scenario #1

� Object must be completely rebuilt each time a
change to one routine is made

� Ignores the relinkability aspect of objects under AIX

� Scenario #2

� References within an object are tightly bound

� System library cannot be modified by an average
user

� Linker already understands how to locate the shared
objects in the system library

� Shared objects are automatically viewed as “shared” by
the binder

� How to access the actual contents of the object?

28 Copyright IBM Corp. 1993
Advanced Linking

Notes

With respect to the first situation, every time a change is made to a routine in
a shared object the entire object must be built using traditional construction
techniques. As the shared object grows in size and complexity, the overhead
required to rebuild the object increases.

In the second situation, there is no way for a symbol reference to be able to
refer to an internal version of a routine and still be able to access an external
version of the routine. Recall the first case study: references within a shared
object cannot be changed without reconstructing the shared object. If this is
the case, the problem becomes trivial. We must find a solution that allows us
to utilize the existing object.

Further complicating the issue is the fact that references to the system library’s
shared objects refer to the object shr.o in the file libc.a located in the directory
/lib . Finally, the linker makes assumptions about the location of objects on the
system; the loader then utilizes this information.

The final piece to this puzzle is the shared object itself. Normally, when linking
to a shared object, the binder understands that the object is intended to be
shared. It therefore only references the information within, but does not use
the actual contents of the object.

29  Copyright IBM Corp. 1993
Advanced Linking

Relinking a Shared Object

� Assume that an export list already exists for the shared
object

� Be aware of references to other shared objects

� Pull in all referenced modules, shared or not

ld –r –bnso shr.o –o tmp.o

� Do not specify any of the system libraries in this
command

� Relink the temporary object with the new modules

ld –o shr.o new1.o new2.o ... tmp.o \
–bE:shr.exp –bM:SRE –H512 –T512 \
–lc ...

� New modules must be specified first on the
command line

30 Copyright IBM Corp. 1993
Advanced Linking

Notes

The first assumption we will make is that an exports list already exists for the
object of interest. A simple technique for producing this list is to use the
following command

/usr/ucb/nm shr.o | egrep ’ [BAD] ’ | cut –c12– | \
 sed –e ’s/^#/ #/’ | sort | uniq > shr.exp

Note that there are spaces around [BAD] and before the # in the substitution
string of the sed command. This command will produce fairly accurate
exports lists for existing shared objects.

You will also want to get a list of archives and objects referenced by the shared
object of interest. This is done using the dump command.

dump –nv shr.o | more

and view the “***Import File Strings*** ” section.

The next step is to get an actual copy of all the code of interest. This can be
accomplished using the –bnso and –r options. This command should only list
those objects for which you require the actual contents. Other objects that will
be used as–is should not be referenced at this point. Name the output object
with some arbitrary temporary name.

When binding in the new object modules, the export list will be used as well
as any libraries that were originally required by the shared object. Note that
the new objects must come first on the command line. In this way, they will
override the definitions within the object tmp.o , and any references to the
routines being replaced will be adjusted to refer to the new versions.

31  Copyright IBM Corp. 1993
Advanced Linking

Case Study #3: Renaming a System
Routine

� Code exists which calls a routine from a system library

� The calls to this system routine must be intercepted

� The system routine should be accessed via another
name

� Application operates as–is on other platforms

� Source code cannot be modified

32 Copyright IBM Corp. 1993
Advanced Linking

Notes

This problem relates to the issue of replacing any system function with a
comparable one in an application. A “wedge” routine is supplied which is
named the same, but performs some additional functionality before calling the
real system call. One additional aspect of this problem is the probability of the
code being portable between operating systems; the application should not
have to be redesigned or source code modified for execution under AIX.

33  Copyright IBM Corp. 1993
Advanced Linking

An Example of Replacing a System
Routine...

� Calls to the system subroutine fprintf () should be
intercepted

� A prefix is added to all text output through this function

Hello, World!

main

myfprintf

fprintf

==>

Hello, World!

� Output should look like

==>Hello, World!

34 Copyright IBM Corp. 1993
Advanced Linking

Notes

As an example, suppose that all calls to the function fprintf() should be
captured. The output is processed by placing a prefix before every group of
text; the function arguments are then handed off to the real function.

35  Copyright IBM Corp. 1993
Advanced Linking

An Example...

� The linker option –brename: is used

� True symbol names of functions are prefaced with a dot

� main.c

#include <stdio.h>

main(int argc, char *argv[])
{
 fprintf(stdout,

”Arbitrary output from %s\n”,
argv[0]);

}

� fprintf.c

#include <stdarg.h>

int fprintf(void *fp, char *fmt, ...)
{
 va_list arg;
 va_start(arg, fmt);
 sysfprintf(fp, ”==>”);
 vfprintf(fp, fmt, arg);
}

36 Copyright IBM Corp. 1993
Advanced Linking

Notes

The rename option of the binder allows us to specify an oldname followed by
a new name; the names are separated by a comma. Thus, the command line
syntax looks something like

–brename:oldname,newname

True symbol names for functions in AIX objects are prefaced with a period.
The name alone refers to the function descriptor, but we are interested in the
actual function.

The sample code shows a call to the fprintf() function. Our version of the
function outputs a simple prefix, then hands the function arguments to a
function named sysfprintf() . During the link step, names will be changed
to provide proper resolution.

37  Copyright IBM Corp. 1993
Advanced Linking

An Example...

� Create an intermediate object

ld –r main.o fprintf.o –o tmp.o \
–brename:.fprintf,.myfprintf \
–brename:.sysfprintf,.fprintf \
–H512 –T512

� Rename all references to fprintf()

� This includes our definition from fprintf.c

� Rename all references to sysfprintf()

� Build the application

cc –o main tmp.o

� Output of the application

==>Arbitrary output from main

38 Copyright IBM Corp. 1993
Advanced Linking

Notes

The first step is to link all objects comprising the application. The system
libraries are not included here as we will only manipulate references in our
code. Since our application refers to functions in other libraries, we use the
–r option.

All calls to the function fprintf() are transformed to an arbitrarily selected
name myfprintf() . This renaming is also applied to the function from the
file fprintf.c . After this step is completed, there are actually no references to
the function fprintf() .

The second rename command takes the reference to the nonexistent function
sysfprintf() and transforms it into a reference to fprintf() . This
reference remains unresolved as this link phase completes.

The crucial point here is the order in which renaming is performed. We must
have a point at which there are no references to the symbol being replaced.
Once all existing references are changed, the “bogus” name for the function
(sysfprintf in this example) is changed to the real name. Finally, this
process must take place separate from any objects containing the actual
desired functions (libc.a in this example).

The final link command takes the intermediate object and combines it with
appropriate system libraries. The reference to fprintf() is resolved to the
definition provided by libc.a

As can be seen, the output of the fprintf in main() is modified by our
custom routine. While this example is fairly trivial, this approach works equally
well with functions from any library or the kernel.

39  Copyright IBM Corp. 1993
Advanced Linking

Case Study #4: Duplicate Symbol
Names in C and FORTRAN

� Library routines are provided for two languages

� Under AIX, the true names of functions are uniform

� XLF does not add a trailing underscore to a symbol

� All FORTRAN symbols are mapped to lower case

� Uniform library routine names cause resolution conflicts

� The getenv /system /signal conflicts of last year
are an example

� The IBM GL libraries are another source of resolution
difficulties

40 Copyright IBM Corp. 1993
Advanced Linking

Notes

Under AIX, interlanguage calling is simplified by the fact that symbol names
between C, FORTRAN, and Pascal are uniform. Other systems historically
have added an underscore to the end of FORTRAN symbols to distinguish
them from C symbols. Our xlf compiler does not perform this function, by
default; this simplifies housekeeping when creating multilanguage
applications.

A difficulty arises when both C and FORTRAN (for example) access functions
of the same name but residing within differing libraries or runtime
environments. Since xlf does not mangle the symbol name, there is a conflict
between the two libraries. Differing calling conventions between the two
languages makes one dialect of the routine unusable by the other language
without special coding considerations. One example is the conflict between
the XLF runtime environment definition of the getenv() , system() , and
signal() routines that occurred in the second and third quarter of 1991. This
conflict appeared as programmers moved applications from other platforms
to AIX. They would often make calls to getenv() or system() from both C
and FORTRAN. Our library structure did not allow both language
implementations to properly resolve to their respective versions due to the
uniformity of the “true” symbols.

Another conflict arises in the area of GL programming. The GL libraries libgl.a
and libfgl.a contain implementations of the GL graphics system with
programming interfaces applicable to their respective languages. It is
desirable to access GL routines from both C and FORTRAN within the same
application, but symbol resolution during program linking produces the same
difficulties as described above.

41  Copyright IBM Corp. 1993
Advanced Linking

A Program Construction Strategy

� Shared objects allow us to implement symbol resolution
at separate times

� Separate the C function from the FORTRAN

� Combine the C modules into a shared object linked to the
appropriate libraries

� An exports list is required for the C modules

� Combine:

� the FORTRAN code

� FORTRAN libraries

� Shared object containing C routines

42 Copyright IBM Corp. 1993
Advanced Linking

Notes

Using shared objects allows us to perform the correct symbol resolution at
proper times. The first step is to separate the modules into groups based on
the source language; our example will use C and FORTRAN.

Our main routine is written in FORTRAN; therefore, the C functions are
selected to build a shared object. This conclusion is based on the fact that the
native compiler corresponding to the language of the main function should be
used to perform the final program construction. The C modules are combined
into a shared object; an appropriate exports list will be required. This link step
should provide proper resolution of all C–specific symbols during this step. To
support the next phase of this process, the final location of this shared object
is left as an exercise for the reader. We will assume it is in the working
directory.

Finally, the remaining modules are combined with any FORTRAN–oriented
libraries to produce the final application. It should not be necessary to add the
C–oriented libraries at this point; all resolution to C routines should be
accomplished through the shared. If, however, the FORTRAN code does
directly access C library routines, the appropriate libraries may be added. The
focus of this technique is to take the C conflicts and move them to a separate
object.

43  Copyright IBM Corp. 1993
Advanced Linking

An Example

� main.f

 program main
 call gef()
 call gec()
 end

� gef.f

 subroutine gef
 character*256 c
 call getenv(’SHELL’, c)
 write(5,10) c
10 format(’SHELL=’,A80)
 end

� gec.c

int gec()
{
 char *term = getenv(”TERM”);
 printf(”TERM=%s\n”, term);
}

44 Copyright IBM Corp. 1993
Advanced Linking

Notes

As an example, consider this source code. A call is made to the FORTRAN
version of getenv() from the gef() subroutine; the C function gec() calls
the C version of getenv() . Both modules are accessed from the main
program.

This particular example is rather trivial. The current version of the XLF
compiler understands certain functions that have caused problems in the past.
The getenv() , system() , abort() , and signal() symbols, when
accessed from FORTRAN, are modified into a format that avoids the symbol
name conflict. This fix occurred at the 1.1.5 level of the compiler, but the
principles involved in this solution are easily illustrated using this function.

45  Copyright IBM Corp. 1993
Advanced Linking

An Example...

� Create the shared object

ld –o shr.o gec.o –bE:shr.exp –bM:SRE \
–H512 –T512 –lc

� Create the main application

xlf –o main main.f gef.f shr.o –L$PWD

� Application output

SHELL=/bin/ksh
TERM=aixterm

46 Copyright IBM Corp. 1993
Advanced Linking

Notes

The shared object is built; don’t forget to construct an exports list! The C library
is added to this link; references from our C code are fully bound to the
definitions within the C library.

The remaining portion of the application is built. Any FORTRAN references
are resolved at this time; the resolution will be to the FORTRAN library. One
can see that by separating the link steps, proper resolution can be enforced
even though the libraries themselves might not be “cooperative”.

47  Copyright IBM Corp. 1993
Advanced Linking

Case Study #5: Module Load Order

� A shared object contains reusable functionality as well as
replaceable routines

� The shared object should be designed such that
func4() can be replaced by a function of the same
name within the main portion

func1()
func2()
func3()
func4()

main application

shared object

main()
func4()

� Functions arbitrarily utilize replaceable functions

� func2() calls func4()

48 Copyright IBM Corp. 1993
Advanced Linking

Notes

For this example, let’s assume that we have designed a shared object to
contain a certain number of reusable functions. In addition, this shared object
contains functions that may be replaced by functions of the same name in the
main application.

As an example, suppose we have created a shared object containing four
functions. Given the behavior of the binder, all references to func4() within
the shared object will be tightly bound to the existing definition. At runtime, the
function func4() in the main application is the function that should be called
by any routines within the shared object. An additional constraint is that the
main application is not required to supply a version of func4() to the object.
Therefore, a default copy still has to exist and be accessible, as the function
will be used during execution. These two constraints are seemingly
incompatible given the structure of objects in AIX.

49  Copyright IBM Corp. 1993
Advanced Linking

Module Load Order...

� The loader utilizes the following:

� Object filename

� Library search path

� An application consists of one or more objects

� Each object has its own library search path

� This information is often uniform, since the default is
/lib:/usr/lib:

� Search paths do not have to be identical across all
objects that make up an application

50 Copyright IBM Corp. 1993
Advanced Linking

Notes

When we explore the functionality of the binder and loader, we discover that
loader information is stored in every loadable object; i.e. every object that has
been produced by ld . This information often is compatible across objects. For
example, most objects contain information about the standard library search
path /lib:/usr/lib: since they utilize the system library located in
libc.a . But this information can change based on the object. Even modules
comprising a single application can contain varying loader information. We
can use this fact to reconstruct our shared object into a form more suitable to
the situation.

51  Copyright IBM Corp. 1993
Advanced Linking

Module Load Order...

� Split the shared object into two portions:

� The “reusable code” portion

� The replacable code portion

main application

shared objects

func1()
func2()
func3()

func4()
func4()

main()

� Any replaceable function now resides within a separate
shared object

52 Copyright IBM Corp. 1993
Advanced Linking

Notes

Functions classed as “replaceable” in the shared object are extracted into a
separate object. While this admitedly adds additional housekeeping to the
application, it provides greater flexibility. The idea now is to construct the
shared objects from the bottom up.

Functions such as func4() are grouped together to build an object. This
object is built the same as any other shared object. For the purposes of this
discussion we will call the object repshr.o . The remaining functions are then
combined to construct the object shr.o .

53  Copyright IBM Corp. 1993
Advanced Linking

Building the Objects...

� To build repshr.o :

� The exports file repshr.exp will be

func4

� The command to link the object is

ld –o repshr.o func4.o –bM:SRE \
–bE:repshr.exp –H512 –T512 –lc

� To build shr.o :

� The contents of shr.exp

func1
func2
func3
func4

� The command to link the object is

ld –o shr.o func1.o func2.o func3.o \
repshr.o –L/u/me/lib –bM:SRE \
–bE:shr.exp –H512 –T512 –lc

54 Copyright IBM Corp. 1993
Advanced Linking

Notes

Each object will have an exports list (no suprises here). The object repshr.o
is built first; this makes the creation of the other object more straightforward.

Several points to note here include:

� The file repshr.o is located in a directory which is publicly available.

� The name repshr.o will be used by another object residing in a different
location.

� repshr.o is built first to allow shr.o to be built in a manner which supports
this scheme.

The other routines are combined to create shr.o . Note that we have two
choices when linking:

� Specify repshr.o on the command line and use the –L option to provide
the library search path modifier. Note that even though we might specify
a path to the object module, only the basename of the file is retained.

� Use an import list that only names the object file repshr.o without
specifying a full path to the object.

The point here is that, while we must name the shared object and provide an
appropriate library search path, we must not irrevocably combine the two
parameters. Thus, we name repshr.o as an object and add a search directory.
The loader will, when attempting to load shr.o , search the specified directory
for a file named repshr.o in order to resolve the reference to func4() . An
examination of the loader section using the command

dump –nv shr.o

will show how this information is organized.

55  Copyright IBM Corp. 1993
Advanced Linking

Building the Objects...

� The main application consists of

� The main code

� Functions designed to replace other (replaceable)
functions

� These functions are combined to create another
object named repshr.o

� To build repshr.o :

� Again, repshr.exp will contain:

func4

� The command to link the object:

ld –o repshr.o func4.o –bM:SRE \
–bE:repshr.exp –H512 –T512 –lc

56 Copyright IBM Corp. 1993
Advanced Linking

Notes

The main application must also be split into two portions. Functions of the
same category as func4() will occupy another object named repshr.o . This
object will be built the same as the previous repshr.o . In fact, the same
exports list may be used, as well as the same command line.

57  Copyright IBM Corp. 1993
Advanced Linking

Building the Objects...

� The construction of the main application takes place in a
different directory

shr.o
repshr.o

main

app lib

src

/u/me

repshr.o

� To build the main application, the command is

cc –o main main.o /u/me/lib/shr.o \
–L$PWD –L/u/me/lib

58 Copyright IBM Corp. 1993
Advanced Linking

Notes

The generic portion of the application resides in the /u/me/lib directory. The
main portion is kept in /u/me/app . Thus, when the application is linked, we
must specify a library search path to the application. The key point here,
however, is that the library search path is different than the one specified for
shr.o . Recall that for shr.o we listed the directory /u/me/lib ; for the main
application we will specify /u/me/app also, but first on the command line. This
tells the loader to search for an object named repshr.o in the application
directory first, then the lib directory, and finally in the standard locations /lib
and /usr/lib .

Note, also, that this command line only references shr.o ; it is not necessary
to explicitly specify repshr.o at this point. The symbol table in shr.o will supply
all the symbols to be referenced.

How does this differ from the file shr.o ? When that object was constructed, the
library path was listed as /u/me/lib . The result is two modules (main and
shr.o) which contain differing search paths.

How does all this add up to a solution to the problem? It turns out that the
loader, when bringing in an object, will use the library search paths in the order
in which they are found. Thus, the loader loads main , which requires the
object shr.o . The loader looks first in the paths specified by the object main
while searching for an object named repshr.o . If one is found, it is loaded.
In our case, this will be the file in the /u/me/app directory, the one containing
the replacement functions. Thus, the original problem has been addressed.

What happens if an application is built which uses /u/me/lib/shr.o but does not
supply any replacement functions? When shr.o is loaded, the loader will
search for the file repshr.o in the paths specified in the main application; failing
that, it will then look in the paths specified in shr.o . At this point it would
discover an appropriate file in the /u/me/lib directory and load it. All symbols
will be resolved and execution will begin.

59  Copyright IBM Corp. 1993
Advanced Linking

Replacing Some of the Functions

� A function exists which is not replaced by the main
application

� func5() is added to /u/me/lib/repshr.o

� Only one object with a given name can be loaded at a
time

� The object /u/me/app/repshr.o does not contain a
definition of func5() , but will be the first object
found along the current search paths

� If the object shr.o cannot resolve the symbol func5 , the
load will fail

� An imports list is provided to /u/me/app/repshr.o during
the link

#!/u/me/lib/repshr.o
func4
func5

� A corresponding exports list should be constructed
which lists all of these symbols

60 Copyright IBM Corp. 1993
Advanced Linking

Notes

That was a fairly trivial example. Let’s complicate matters somewhat by
adding another function func5() to /u/me/lib/repshr.o . This function should
be used as–is by a certain application; it will be called from the main portion
rather than the shared object shr.o .

The difficulty comes from the object load order: /u/me/app/main causes the
object /u/me/lib/shr.o to be loaded. This object, in turn, desires to load an
object named repshr.o from some arbitrary directory. If the object that is found
(/u/me/app/repshr.o in the given scenario) does not contain the required
symbol, the load will fail with an error message.

The solution is to get /u/me/app/repshr.o to understand the other symbol
definitions. This is easily accomplished with an imports list that specifies the
exact location of the alternative repshr.o . This list will provide alternative
locations of symbol definitions; the same set of symbols is then exported from
the object, but without naming the absolute path of the object.

Therefore, repshr.exp contains both

func4
func5

as the external interface to the module.

61  Copyright IBM Corp. 1993
Advanced Linking

Replacing Some of the Functions

� The link command from within /u/me/app then becomes

ld –o repshr.o func4.o –bE:repshr.exp \
–bI:/u/me/lib/repshr.imp –bM:SRE \
–H512 –T512 –lc

� The import list is kept in the lib directory

� The object supplies local definitions for any defined
functions

� The definition from func4.o is retained

� Pass–through references are supplied for any undefined
functions

� The definition of func5() from /u/me/lib/repshr.o is
passed through this object

� When loaded, shr.o references repshr.o which is found
and loaded from /u/me/app

� References to func5() ultimately resolve to
/u/me/lib/repshr.o , which is also loaded

62 Copyright IBM Corp. 1993
Advanced Linking

Notes

When the object is linked together, the command line specifies an import list
which will refer to every function coming from the generic module
/u/me/lib/repshr.o . Any local definitions, such as func4() , will override the
import definition due to the command line syntax being used (–bI: option
instead of naming the import list specifically; refer to case #1).

At load time, then, main is loaded, causing /u/me/lib/shr.o to be loaded. This
modules causes a search for repshr.o to take place; the object file is found
in the /u/me/app directory. The pass–through reference also causes the
object /u/me/lib/repshr.o to be loaded, but any references to func4() will
bind to the first definition found, which is the one in /u/me/app/repshr.o .

The complete code for this example is provided in appendix A

63  Copyright IBM Corp. 1993
Advanced Linking

An Idiosyncracy of the Loader

� Loading of dynamic objects occurs in one of:

� Segment 13, the shared text segment

� Segment 2, the process private data segment

� Destination is determined by file permissions

� Basic objects: the actual file permissions are used

� Archives: the permissions of the archive are used

� Holds true for both a shared object and the load()
system call

64 Copyright IBM Corp. 1993
Advanced Linking

Notes

When objects are loaded, under the current system, they will be placed into
one of two places:

� The shared text segment (addresses beginning at 0xD0000000)

� The private data segment (adresses beginning at 0x20000000)

The only criterion used to determine the load location is the permissions of the
file. A shared object (or dynamically loaded object) will only load into the
shared text segment if the file permissions provide read access by “other”.
Note that execute access is not necessary.

The actual file permissions are the criterion. While this is a simple matter to
determine for simple .o files, archive libraries become another matter. Under
AIX Version 3, the permissions of the archive itself determine the load
destination. This is in contrast to the permissions of the objects within the
archive.

This behavior is consistent for both shared objects and dynamically loaded
objects.

65  Copyright IBM Corp. 1993
Advanced Linking

Programmatic Interface

� Dynamic loading and binding is provided by the following
functions:

load()

� Loads an object, and returns a pointer to the entry
point

loadbind()

� Causes explicit binding to take place between
two objects

loadquery()

� Provides information about the list of objects that
were loaded as part of the executing application

unload()

� Remove a dynamically loaded object from the
process’ memory

66 Copyright IBM Corp. 1993
Advanced Linking

Notes

These four functions provide a high level interface to the kernel loader. The
first function, load() , provides the capability of loading an additional module
into an executing application. These object modules are referred to as
dynamic object modules to differentiate them from shared object modules.
The differences at this point in time are minimal, as they exhibit the same
functionality. Also, the location at which they are loaded is dependant upon
the file permissions: is read access provided to “other”? If global read access
is provided, the object is loaded into the shared text segment; if not, it is loaded
into the private data segment.

The loadbind() function provides access to the kernel symbol resolution
service. The use of this function is explored in a following example.

When problems arise, the loadquery() function can be used to determine
the source of the problem. It can also be used to access the list of modules
that comprise the executing application. The AIX Calls and Subroutines
Reference provides a description and example of the use of this routine; it is
only mentioned here for completeness.

Finally, the unload() system call can be used to remove an object module from
an executing application. If that module was loaded into the shared text
segment, the system handles the reclamation of the used memory. If the
object was loaded into the private data segment, that memory remains
unusable except by another call to load() .

67  Copyright IBM Corp. 1993
Advanced Linking

The load() Function

� Requirements for creating objects for dynamic loading:

� The name of the entry point, or

� An exports list

� The command line would look something like

ld –o dynobj.o f1.o f2.o ... –lc \
–H512 –T512 –e EntryPoint

or

ld –o dynobj.o f1.o f2.o ... –lc \
–H512 –T512 –bE:obj.exp

� The load() function allows the program to load a
module

� And resolve all symbol references to the executing
application

� Or wait until the object is explicitly resolved against
another object

68 Copyright IBM Corp. 1993
Advanced Linking

Notes

To create an object for dynamic loading, we use what is by now becoming a
very familiar command line. The difference here is that the option –bM:SRE
is unnecessary. We also have an alternative approach to specifying the
external interface:

� An entry point can be named using the –e option. This dictates a single
function which will be referenced by the loading program. This option is
the same as providing an exports list containing a single symbol.

� An exports list can be named. With this option, various unrelated
modules can be combined into a single object and loaded. Accessing
these modules can be accomplished using a variety of techniques. More
on this subject at the end of the presentation.

There would seem to be a conflict between these two approaches. How is the
entry point determined when an exports list is used? In this case, the first data
symbol in the list appears to be used as the entry point. While this is not
documented, it does seem to be deterministic. It is advisable, however, to
explicitly name the entry point. If there are no data symbols in the exports list,
the entry point becomes undefined.

The load() function can be used to bring in, at runtime, various portions of
an application as they are needed. Through the use of the
L_NOAUTODEFER flag, objects can be loaded and explicitly resolved against
other objects. This does not prohibit the main application from executing; the
only potential pitfall is if the application attempts to access a symbol that has
not been resolved.

One additional note: load() takes as an argument the name of the object file
to be loaded. There is currently no way to specify a member of an archive.
Thus, dynamic objects may not be combined into libraries.

69  Copyright IBM Corp. 1993
Advanced Linking

The loadbind() Function

� The loadbind() function allows:

� Objects with unresolved references to be loaded and
resolved against explicit objects

� Runtime selection of modules to load and reference

� Anonymous imports

� Various modules may be arbitrarily resolved against one
another

70 Copyright IBM Corp. 1993
Advanced Linking

Notes

It is possible to create objects that are not fully resolved. This is done through
anonymous imports. When the object is created, not all functions or data
symbols must be defined within the object; these definitions may be provided
by the main application. This situation is similar to that found in our last
example; the difference is that there is no default routine upon which to fall
back.

This function, loadbind() , allows an application to resolve symbol
references at runtime.

For example, an application can load two modules: dyn1.o and dyn2.o . The
loadbind() function allows dyn1.o to be explicitly resolved against
dyn2.o . The programmer can expand this technique to be as intricate as
required; there is no practical limitation to the way symbol resolution can be
accomplished.

71  Copyright IBM Corp. 1993
Advanced Linking

Runtime Resolution

� An example of main() :

#include <stdio.h>
int i1 = 1;
extern int f1();
int main()
{
 loadbind(0, main, f1);
 i1 = 5;
 f1();
 printf(”in main(): ”);
 printf(”value of i1=%d\n”,i1);
}

� Function f1() in the shared object:

#include <stdio.h>
int f1()
{
 extern int i1;
 printf(”in shr/f1(): ”);
 printf(”value of i1=%d\n”,i1);
 i1 = –3;
}

72 Copyright IBM Corp. 1993
Advanced Linking

Notes

For example, suppose functions in a shared or dynamic object must access
data structures that are defined and filled by the main portion of our program.
Here we have a main program which defines data structure i1 . The function
f1() uses i1 and resides in a shared object.

73  Copyright IBM Corp. 1993
Advanced Linking

Runtime Resolution...

� An exports list shr.exp is constructed:

f1

� An import list shr.imp is provided:

#!
i1

� The shared object is constructed:

ld –o shr.o f1.o –bE:shr.exp \
–bI:shr.imp –bM:SRE –H512 –T512 –lc

� Build the main application:

cc –o main main.c shr.o –L$PWD \
–bE:main.exp

� The application output is:

in shr/f1(): value of i1=5
in main(): value of i1=–3

74 Copyright IBM Corp. 1993
Advanced Linking

Notes

The exports list provides access to our function. An import list, in the
anonymous form, indicates that the symbol i1 is provided from somewhere;
we just don’t know where at this point.

The shared object is assembled. Note the use of the –bI option.

The main application is constructed. Here one detail must be attended to: the
symbol i1 must be exported. The file main.exp contains this symbol. Also,
for the sake of simplicity, we assume that all the code for this example exists
in the same directory. In more elaborate circumstances, attention would be
given to the location of the shared object(s) and source files.

Finally, the application is executed. The output shows that the main routine
can modify i1 ; the correct value is printed by the function f1() , which then
makes its own modification. The final value is the printed by main.

75  Copyright IBM Corp. 1993
Advanced Linking

Filenames

� Filenames on the compiler and linker command lines

� Object modules

� Archives

� Import lists

� Linker examines the contents of the file, not just the
filename

� Shared objects could be named as an archive

� shr.o becomes libmyshr.a

� Allows the binder to avoid the overhead of accessing
an archive

� Import lists can be named as ‘.o’ files

� shr.imp becomes shr_imp.o

76 Copyright IBM Corp. 1993
Advanced Linking

Notes

The binder is intelligent enough to recognize the type of file being referred to
in the process of building an application. For example, one might assume that
when I tell ld the name of an object file, “file1.o”, it will trust me enough to
believe that the file is indeed an object module. The same assumption would
hold true for an archive file. It turns out that this is not the case. The binder
determines the appropriate file type based upon the contents. Therefore, it is
possible to change the name of a file for the benefit of the command line and
the convenience of the build process. Let’s explore some examples.

The first is one of creating and using shared objects. Normally, when a shared
object is designed, the API is constructed, the code gathered together and
linked to create an object. This object might then be placed within an archive,
and the archive moved to a system–wide location such as /usr/local/lib . Now
while there is nothing “wrong” with this approach, if the library in question only
contains the single object, there is unnecessary overhead in accessing that
object when linking. The loader will have the same overhead if the object is
repeatedly required by executing applications and then released. The
overhead is a result of opening the archive and locating the object within; both
the binder and loader prefer to access the object without the intervening layer
of the archive. To this end, then, an alternative might be take the shared object
as before, but instead, change the name to that of an archive file. The linking
semantics become simpler, and the actual creation and management of an
archive to house the shared object becomes unnecessary.

A second example can be constructed from the case study #1 regarding the
accessing of data structures within shared objects. In the example, access
to a shared object’s data structures was provided by preceding the objects on
the command line with an import list specifying the true location of the data of
interest. Note that this import list must fall first on the command line, but due
to its name, requires direct use of the ld command. This implies much
housekeeping and knowledge on the part of the average user which can be
cumbersome. By renaming the import list to resemble an object module, the
cc or xlc commands can be used to perform the link. Thus, this becomes a
convenience issue.

77  Copyright IBM Corp. 1993
Advanced Linking

Binder Command Line Options

� –berok

� Sample main.c

#include <stdio.h>
#include <sys/ldr.h>

main(int argc, char *argv[])
{
 int (*FuncPtr)();
 extern int sub5();

 FuncPtr = load(”sub.o”, \
L_NOAUTODEFER, \
”/usr/lib:/lib:”);

 if (FuncPtr == NULL)
 {
 perror(”load failure”);
 exit(–1);
 }
 sub5();
}

78 Copyright IBM Corp. 1993
Advanced Linking

Notes

Several binder command line options warrant mentioning.

The –berok option can be used to force the production of an executable
object, even though there may be unresolved symbol references. As long as
the unresolved symbols remain unreferenced, the application will execute
without mishap. In addition to this, this option can result in the following
behavior:

When the application loads the object, any unresolved symbols in the main
portion are resolved against the loaded object. This is default in the system.
Any symbols that match those available in the new object will then refer to the
definition in the object. This is how the symbol sub5 is connected to the
function sub5() within the object sub.o .

Note the option to the load() function: L_NOAUTODEFER . This option only
applies to symbol resolution within the object being loaded. Resolution of
symbols within main are still handled automatically. Therefore, the use of
L_NOAUTODEFER or the standard flag 1 is irrelevant with respect to the main
application. This flag only applies to resolution of symbols within the loaded
object.

79  Copyright IBM Corp. 1993
Advanced Linking

–berok Continued...

� Sample subroutine

#include <stdio.h>
int sub5()
{
 printf(”inside sub5\n”);
}

� Build the dynamic object

ld –o sub.o sub5.o –bE:sub.exp \
–T512 –H512 –lc

� Build the main application

cc –o main main.o –berok

� The output is

inside sub5

80 Copyright IBM Corp. 1993
Advanced Linking

Notes

In this example, the sub5() function is very generic in nature; no surprises
here. There is no requirement to do anything “magical” within the function.

The dynamic object is built using the techniques shown previously. The main
application is then linked. Note that we do not specify sub.o on the command
line; the main application handles accessing the object.

The important thing to note is the direct call to sub5() . When the main
application is built, the symbol cannot be resolved; thus the need for the
–berok option. At runtime, the object is loaded, and the symbol reference in
main() is bound to the definition in the loaded object. This is all handled
automatically by the kernel, and provides an alternative technique for access
multiple functions within a dynamic object.

81  Copyright IBM Corp. 1993
Advanced Linking

Command Line Options...

� –bloadmap:< filename >

� –bnodelcsect

� –bnoobjreorder

� –bmaxdata:< number >

� –bmap:< filename >

82 Copyright IBM Corp. 1993
Advanced Linking

Notes

The –bloadmap: option can be used to produce a listing of binder activity that
occurs during a link. This file will list binder commands and phases. Most
importantly, symbol overrides are reported here. It would be very informative
to utilize this option when working through the examples in this presentation.

Under AIX Version 3.1.7 or later, the default mode of the binder is
–bnodelcsect . This is in contrast to earlier versions of the system. This
option allows the binder to delete a symbol from an object module during
processing. The previous default behavior was to remove an entire csect
when a duplicate symbol was discovered. This occasionally produced an
error message about missing symbols which were known to reside within the
same module as the duplicate. Now, only the offending symbol is deleted; the
csect, along with any other symbols it contains, is retained. This behavior is
most often necessary when multiple definitions and multiple symbols occur
within a module. If you are using an earlier version of the operating system,
this option must be added to the command line.

Many programmers have requested an option which allows the user to bypass
the object module reordering phase; –bnoobjreorder provides this
functionality. This keeps the object code within an executable image in the
same order as was specified on the link command line. This option can
shorten the program development cycle, but the resultant application may
experience performance degradation. This option also appeared at release
level 3.1.7.

Another new feature of the binder under AIX Version 3.2 is the –bmaxdata
option. This option allows the creation of a process private data segment
greater than 256 MB. The actual method is to allocate up to 10 private shared
memory segments to hold the data. This implies a maximum private data set
of 2 GB, with an additional 256 MB for dynamic memory and the stack.

The –bmap option can be used to view the symbols, in address order, of an
object. Since the binder will delete unused data structures, this option can be
used to verify that a symbol is retained by an object.

83  Copyright IBM Corp. 1993
Advanced Linking

Appendix A: Case Study #5 Sample
Code

In the directory /u/me/lib :

f1.c
#include <stdio.h>

int func1()
{
 printf(”executing in shr/func1()...\n”);
 func3();
}

f2.c
#include <stdio.h>

int func2()
{
 printf(”executing in shr/func2()...\n”);
 func4();
}

f3.c
#include <stdio.h>

int func3()
{
 printf(”executing in shr/func3()...\n”);
}

shr.exp
func1
func2
func3
func4
func5

84 Copyright IBM Corp. 1993
Advanced Linking

f4.c
#include <stdio.h>

int func4()
{
 printf(”executing in shr/func4()...\n”);
}

f5.c
#include <stdio.h>

int func5()
{
 printf(”executing in shr/func5()...\n”);
}

repshr.exp
func4
func5

repshr.imp
#!/u/me/lib/repshr.o
func4
func5

The command lines are:

cc –c *.c
ld –o repshr.o f4.o f5.o –bE:../lib/repshr.exp \

–H512 –T512 –bM:SRE –lc
ld –o shr.o f1.o f2.o f3.o repshr.o –bE:shr.exp \

–L$PWD –H512 –T512 –bM:SRE –lc

85  Copyright IBM Corp. 1993
Advanced Linking

In the directory /u/me/app :

main.c
#include <stdio.h>

main()
{
 printf(”executing in main()...\n”);
 func1();
 func2();
 func5();
}

f4.c
#include <stdio.h>

int func4()
{
 printf(”executing in main/func4()...\n”);
}

cc –c *.c

ld –o repshr.o f4.o –bE:../lib/repshr.exp \
–bI:../lib/repshr.imp –H512 –T512 –bM:SRE –lc

cc –o main main.o –L$PWD –L/u/me/lib /u/me/lib/shr.o

Output of the compiled and linked example:

executing in main()...
executing in shr/func1()...
executing in shr/func3()...
executing in shr/func2()...
executing in main/func4()...
executing in shr/func5()...

