
AIX/6000 Internals and
Architecture

J. Ranade Workstation Series

BAMBARA, ALLEN • PowerBuilder: A Guide for Developing Client I Server Applications,
0-07-005413-4

CERVONE • AJX/6000 System Guide, 0-07-024129-5

CHAKRAVARTY •Power RISC System/6000: Concepts, Facilities, and Architecture,
0-07-011047-6

CHAKRAVARTY, CANNON • PowerPC: Concepts, Architecture, and Design, 0-07-011192-8

CHAPMAN • OS/2 Power User's Reference: From OS/2 2.0 Through Wary,
0-07-912218-3

DEROEST • AJX for RS I 6000: System and Administration Guide, 0-07-036439-7

GRAHAM • Solaris 2.X: Internals and Architecture, 0-07-911876-3

HENRY, GRAHAM • Solaris 2X System Administrator's Guide, 0-07-029368-6

JOHNSTON • OS I 2 Connectivity and Networking: A Guide to Communication
Manager I 2, 0-07-032696-7

JOHNSTON • OS/2 Productivity 7bol Kit, 0-07-912029-6

LAMB • MicroFocus Workbench and 7bolset Developer's Guide, 0-07-036123-3

LEININGER • AIX/6000 Developer's 7bol Kit, 0-07-911992-1

LEININGER • HP-UX Developer's 7bol Kit, 0-07-912174-8

LEININGER • Solaris Developer's 7bol Kit, 0-07-911851-8

LEININGER • UNIX-Developer's 7bol Kit, 0-07-9.11646-9

LOCKHART • OSF DCE: Guide to Developing Distributed Applications, 0-07-911481-4

PETERSON • DCE: A Guide to Developing Portable Applications, 0-07-911801-1

RANADE, ZAMIR • C++ Primer for C Programmers, Second Edition, 0-07-051487-9

ROBERTSON, KOOP • Integrating Windows and Netware, 0-07-912126-8

SANCHEZ, CANTON • Graphics Programming Solutions, 0-07-911464-4

SANCHEZ, CANTON • High Resolu,tion Video Graphics, 0-07-911646-9

SANCHEZ, CANTON • PC Programmer's Handbook, Second Edition, 0-07-054948-6

SANCHEZ, CANTON • Solutions Handbook for PC Programmers, Second Edition,
0-07-912249-3

WALKER, SCHWALLER • CPI-C Programming in C: An Application Developer's Guide to
APPC, 0-07-911733-3

WIGGINS • The Internet for Everyone: A Guide for Users and Providers, 0-07-067019-8

AIX/6000 Internals and
Architecture

David A. Kelly

McGraw-Hill
New York San Francisco W&shlngton, D.C. Auckland Bogobli

Caracas Usbon London Madrid Mexico City Miian
Montreal New Delhl San Juan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data
Kelly, David A. (David Allen)

AIX/6000 internals and architecture I David A. Kelly.
p. cm.-(J. Ranade workstation series)

Includes index.
ISBN 0-07-034061-7
1. AIX (Computer file) 2. Operating systems (Computers)

RS/6000 Workstation. I. Title. II. Series.
QA76.76.063K452 1996
005.4' 469-dc20

McGraw-Hill

3. IBM

95-25794
CIP

Copyright © 1996 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced·or dis­
tributed in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 AGM/AGM 9 0 0 9 8 7 6

ISBN 0-07-034061-7

The sponsoring editor for this book was Jerry Papke; the editing supervisor was
Fred Bernardi, and the production supervisor was Pamela Pelton. It was set in
Century Schoolbook by Re�ee Lipton of McGraw-Hill's Professional Book Group
composition unit.

Printed and bound by Quebecor I Martinsburg.

This book is printed on acid-free paper.

McGraw-Hill books are available at special quantity discounts to use as premiums
and sales promotions, or for use in corporate training programs. For more infor­
mation, please write to the Director of Special Sales, McGraw-Hill, 11 West 19th
Street, New York, NY 10011. Or contact your local bookstore.

Information contained in this work has been obtained by The McGraw-Hill
Companies, Inc. ("McGraw-Hill") from sources believed to be reliable.
However, neither McGraw-Hill nor its authors guarantees the accuracy or
completeness of any information published herein and neither McGraw-Hill
nor its authors shall be responsible for any errors, omissions, or damages
arising out of use of this information. This work is published with the under­
standing that McGraw-Hill and its authors are supplying information, but
are not attempting to render engineering or other professional services. If
such services are required, the assistance of an appropriate professional
should be sought.

Preface xi

Chapter 1. How to Study the AIX Kernel

1 .1 Layers of the AIX Operating System
1 .2 The AIX 3.2 Kernel
1 .3 What Can I Do Without the Source Code?
1 .4 How to Read a Header File
1 .5 The Journey Begins

Chapter 2. An Overview of the AIX 3.2 Operating System

2.1 A Brief History of AIX
2.2 A User's Perspective of AIX 3.2
2.3 AIX 3.2 System Administration
2.4 AIX Application Programming
2.5 The Design of the AIX 3.2 Kernel
2.6 Kernel Subsystems

Chapter 3. AIX 3.2 Programs and Processes

3;1 Programs
3.2 Processes and Process Types
3.3 Program Creation in AIX
3.4 The AIX Compilation Process
3.5 The AIX 3.2 Linkage Editor
3.6 The XCOFF File
3.7 The AIX 3.2 Process Image
3.8 The System Call Subsystem

Chapter 4. AIX 3.2 Memory Management

4.1 An Introduction to Virtual Memory
4.2 AIX 3.2 Virtual Memory
4.3 The Huge Data Model
4.4 Virtual Memory Pages

Contents

1

1
3
5
8

1 5

1 7

1 8
20
21
32
32
35

39

39
39
41
42
44
49
51
61

65
65
67
73
74

vii

viii Contents

4.5 Address Translation 86
4.6 The VMM Segments 96
4;7 The Shared Te:ict Segment and Shared Libraries 96

Chapter 5. The Process Management Subsystem 101

5.1 Processes 1 01
5.2 Process Management Data Structures 1 05
5.3 User Process Creation 1 1 3
SA An Introduction to Process Scheduling 1 26
5.5 A Process Scheduling Example 1 30
5.6 The Context Switch 1 34
5.7 Interrupts 1 36
5.8 The Scheduler and the Suspension Queue 1 43
5.9 AIX 3.2 Real· Time Processes 1 47

Chapter 6. The Journaled File Systems 151

6.1 An Overview of Fiie Systems 1 51
6.2 Fiie System Components 1 53
6.3 The Journaled Fiie System (JFS) 1 62
6.4 The JFS Architecture 1 62
6.5 JFS Storage Schemes 1 67
6.6 How the JFS Log Works 1 70

Chapter 7. AIX 3.2. Disk File 1/0 175

7.1 File 1/0 Layers 175
7.2 The Process Fiie Descriptor Table 178
7.3 The Kernel's File Table 1 78
7.4 TheGnode 1 82
7.5 The In-Core lnode Table 1 83
7.6 File and Record Locking 1 88
7.7 Fiie 1/0 Subroutines 1 92
7.8 Memory Mapped Flies 201

Chapter 8. Virtual Fiie Systems 211

8.1 The VFS Layer 211
8.2 Vnodes 21 2
8.3 vfs Structures 21 3
8.4 gfs Structures 21 6
8.5 The rnode Table 21 8

Chapter 9. The Device 1/0 Subsystem 219

9.1 Components of Device 1/0 21 9
9.2 AIX 3.2 Device Configuration 225
9.3 System Start-up 227

Chapter 10. Interprocess Communication

1 0.1 Introduction to Interprocess Communication
1 0.2 AIX 3.2 Signal Management
1 0.3 Unnamed Pipes
1 0,4 System V IPCs-An Introduction
1 0.5 AIX 3.2 Shared Memory
1 0.6 AIX 3.2 Semaphores
1 0.7 AIX 3.2 Message Queues

Index 265

Contents ix

231

231
232
239
244
246
252
257

Preface

AIX (Advanced Interactive executive) is IBM's primary contribution to the
open operating system market. Its popularity has grown steadily since its
introduction in 1986. Combined with the outstanding performance of the RISC
System/6000 line of servers and workstations, AIX Version 3 has been honored
with industry praise. Since AIX is offered on the new POWER chip generation
of personalcomputers, the future of this operating system is solid.

The kernel of the AIX Version 3 operating system is based on the System V,
Release 2 version of AT&T's UNIX. It also includes BSD (Berkeley) enhance­
ments, as well as many new features introduced by IBM. Some of these fea­
tures include the Journaled File System (JFS) and support for logical disk
partitioning (the Logical Volume Manager). IBM has also implemented file 1/0
routines through the operating system's virtual memory management subsys­
tem. Because of these enhancements, study of the AIX kernel must be
approached from a unique perspective of combining traditional UNIX concepts
with new techniques.

This book provides detailed information about the.AIX Version 3 kernel and
its subsystems. It gives systems programmers an understanding of kernel com­
ponents and extensions, as well as techniques for synchronizing access to glob­
al kernel data structures. It supplies valuable information for applications
programmers who wish to write code that makes better use of kernel services
and system resources. Finally, it helps system administrators understand the
concepts behind system parameters.

This book is organized into the following chapters:

Chapter 1, How to Study the AIX Kernel, introduces the AIX Version 3 ker­
nel and its subsystems. It explains how one can learn about the internal
workings of the operating system without having access to the source code.
This is accomplished by examining system header files and using various
tools, such as debuggers and performance-monitoring facilities. It also pro­
vides a brief overview of C language concepts that must be understood in
order to read the header files.

xi

xii Preface

Chapter 2, An Overview of theAIX 3.2 Operating System, gives a description
of the operating system and its applications. It explains the implementation
of system administration utilities such as the system management interface
tool (SMIT), the object data manager (ODM), the logical volume manager
(LVM), and the queueing system. It describes characteristics of the AIX ker­
nel, such as how it is preemptable, pageable, and dynamically extendable. It
also includes the history of AIX.

Chapter 3, AIX 3.2 Programs and Processes, illustrates the structure of an
AIX program as defined by the XCOFF model. It also describes different
types of processes and details their virtual memory images. Dynamic bind­
ing is explained as part of a discussion of program creation in AIX. Finally,
the different techniques used by AIX Version 3.1 and AIX Version 3.2 for
dynamically allocated memory are explained.

Chapter 4, AIX 3.2 Memory Management, provides information on how AIX
manages physical and virtual memory. It introduces the concepts of persis­
tent storage and working storage. It details virtual memory management
data structures such as the page frame table, segment control blocks, and
external page tables. It explains how the virtual memory manager translates
effective addresses into virtual addresses and real addresses, as well as how
the page stealer allocates memory to popular program and file pages.

Chapter 5, The Process Management Subsystem, lists and describes process
attributes. It details the life cycle of a process, process states, and process
scheduling. It also explains how AIX performs context switches and how
interrupts are handled. Real-time programming is introduced.

Chapter 6, The Journaled File System, describes in detail IBM's variation of
the Berkeley fast file system. This chapter illustrates the layout of the JFS
and explains how it logs changes to its own data structures, thus reducing
the likelihood of file system corruption when a system crash occurs. JFS
components, such as files, directories, inodes, and super blocks are exam­
ined.

Chapter 7, AIX 3.2 Disk File 110, explains how the AIX kernel handles local
disk file 1/0. The kernel's file table and in-core inode table are described, as
well as lock lists and memory mapped files. Many of the file 110 system calls,
such as open(), read(), write(), and lseek() are discussed from the kernel's
perspective.

Chapter 8, Virtual File Systems, examines the kernel components used to
support various types of physical file systems. Vnodes, vfs and gfs struc­
tures, as well as vnodeops and vfsops are described. The vmount table is also
discussed.

Chapter 9, The Device 110 Subsystem, lists and describes the components of
device 110. It explains the role of the file system and how AIX implements
special block and character device file names. The device switch table is

Preface xiii

introduced and a detailed discussion of device driver top and bottom halves
is provided.

Chapter 10, Interprocess Communication, describes how the kernel imple­
ments various means of sharing information between processes. Signals,
pipes, shared memory, semaphores, and message queues are defined from an
application's perspective and from the kernel's perspective.

Acknowledgements

So many people have contributed to this book. Some have given their technical
support while others have provided the encouragement I needed to undertake
and complete this project. They all have my sincere thanks.

I would like to express my deepest gratitude to Jay for his guidance and
patience, as well as to Fred Bernardi, my editor, for putting this book together
as quickly as possible, despite the fact that I kept missing deadlines.

I would also like to thank Elizabeth Johnstone, my business partner for the
past four years for helping me find the time to work on this book, as well as Tim
Armbrust for convincing me to write it.

Many thanks go to the people who have enhanced my understanding of AIX
over the years. The list includes Gary Wilson, Frank Edwards, Mike Heinrich,
Bobby Higgins, and Harvey and Jackie Mette, as well as many of my former co­
workers at IBM, whose names must go unmentioned. You know who you are.

I must also thank the hundreds of students I have had the pleasure of teach­
ing over the past thirteen years. Their questions helped expand my technical
knowledge and provided many of the "war stories" you'll read in this book.

Special thanks go to Bill Scaling and all the nice folks at ProAmerica for let­
ting me borrow their RISC System/6000 in times of need.

Finally, special thanks to my wife, Carolyn, for putting up with many lost
evenings and weekends these past few months.

David A. Kelly

Chapter

1
How to ·Study the AIX Kernel

"AIX internals" is the study of the AIX kernel and kernel subsystems. This
book provides a starting point for such a study. This chapter describes what is
involved in the study of the AIX Version 3.2 kernel.

1 .1 Layers of the AIX Operating System

UNIX is frequently described by its functional layers. The same can be said
for AIX. Figure 1.1 describes the components of the AIX 3.2 system. At the
center of the illustration is the system hardware. This would represent the
RISC System/6000, PowerPC, or any computer designed to support the AIX
operating system. While the hardware is not part of AIX, the goal of any oper­
ating system is to provide the link between the applications and the hard­
ware, so it is shown here.

The kernel is the operating system itself. All operating systems have two
primary responsibilities: to facilitate 1/0, forming the link between the appli-

Applications

Figure 1 .1 Layers of the AIX operating system.

2 Chapter One

cations and the system hardware, as described above, and to provide support
for executing programs.

Author's Note: AIX, like all UNIX-based operating systems, makes a distinction
between an executable file and a program that is executing. The term "program"
refers to an executable file stored on disk or some other medium. When a pro­
gram is loaded into memory and executed, it is called a "process." To illustrate
the difference between a program and a process, a system might have a program
named "/usr/local/bin/games/ds9." This file contains the program. If eight users
on the system decide to play the game at the same time, there will be eight
processes executing "ds9." Each process has its own identity, attributes, and pri­
vate data. Details on progrliflls and processes are provided in Chap. 3.

The AIX kernel supports device I/O and file I/O. Device I/O allows an appli­
cation to open a device, then interface with the device by reading or writing
data. An example of device I/O would be opening a tape drive, then writing
data to the drive. The user's terminal interface also represents device I/O.

File I/O allows an application to store data for later retrieval. To this end,
the kernel supports file systems that logically arrange files into directories.
AIX 3.2 goes a step further by supporting different types of file systems,
referred to as virtual file systems. Examples of virtual file systems include
local disk file systems, remote file systems (file sharing via a client-server
scenario), and CD-ROM file systems.

As is true with all UNIX-based systems, AIX implements device I/O
through the File I/O Subsystem. This means that each device available to the
system has a file representation in a file system. By convention, the abstract
files that represent devices are found in the /dev directory. An application
opens a device file in the same way as any other file. For instance, when an
application opens the file "/dev/lpO," then writes data to the file, it is actually
writing data to a printer.

Author's Note: AIX 3.2 usually only allows the root user to access device files
directly as described above.

AIX process management involves the loading and executing of programs,
process scheduling for the CPU, memory management, and interprocess com­
munication (IPC). The AIX 3.2 kernel includes routines for performing tasks
associated with process management, as well as tables that hold information
about active processes.

·

Figure 1. 1 shows the application layer surrounding the kernel layer. The
application layer represents user processes, which include any programs exe­
cuted by system users. Applications· are programs written by your local staff,
programs purchased from vendors, and programs that come with the AIX
operating system.

The shell is a special application that provides the user's interface to the
system. AIX 3.2 includes the three most popular UNIX shells; the Bourne
shell, the C shell, and the Korn shell. The Korn shell is the default shell for
AIX 3.2 users. The shell serves as a command interpreter and includes a pro-

How to Study the AIX Kernel 3

gram.ming language suitable for automating user and system administrative
tasks. The shell is not discussed in this book.

Author's Note: Figure 1.1 illustrates the layers of the AIX operating system. The
circle drawing used is found in many UNIX books and training courses. My ver­
sion differs slightly from others I have seen in that I prefer to show the shell out­
side of the application layer. Most other versions of the "circle drawing" show the
shell surrounding the kernel, with the appli<;ation layer on the outside. Actually,
since the shell is an application itself, the outer two layers should be considered
equal. My justification for placing the application layer within the shell layer is
that applications use system calls to request services of the kernel. System calls
are not made by users of the shell prompt.

1 .2 The AIX 3.2 Kernel

Figure 1.2 provides another view of the AIX 3.2 kernel and its relationship to
the application layer of the system. As mentioned earlier, UNIX-based sys­
tems assign file names to physical and logical devices. The system's physical
memory is called /dev/mem. A portion of the physical memory is allocated to
the kernel. The kernel's memory space is represented by the file /dev/kmem
and is called "system memory." All remaining memory from /dev/mem is
available for applications and is called "user memory."

Author's Note: The kernel's memory space is treated as virtual memory since
the AIX kernel uses paging space. Details on the virtual memory characteristics
of the kernel are provided in later chapters of this book. The concepts are intro­
duced here only as an overview.

The kernel contains code and data used to facilitate 1/0 and manage
processes. The data are found in various system tables. For instance, the ker-

---------1dev/mem --------� ,...-1--- ---.

Processes

-
I

e
l,;g B

"' 1l 18 .. fl)
� �

I .�
fl) I -

I Kernel Application Layer

I I I Kernel Services
I I

I I Device Drivers

Ill
/dev/kmem �

Figure 1 .2 TheAIX 3.2 kernel.

4 Chapter One

nel maintains a process table, which has one entry for each active process.
Othe.r tables include the file table, the in-core inode table, and the device
switch table. These tables and their structures are the primary focus of this
book ..

The kernel uses device drivers to interface with the peripheral hardware of
the system. Device drivers include routines for opening and communicating
with the devices. Device drivers also handle interrupts from controllers when
devices need the system's attention.

System memory is off limits to applications. In other words, applications
cannot directly access data stored in the kernel. Applications request infor­
mation and services from the kernel by issuing system calls. A system call is
a routine found within the kernel. When executed, a system call runs on
behalf of the calling process. AIX 3.2 includes a large number of system calls,
which represent the kernel's application programming interface (API).

The AIX 3.2 kernel includes routines which are available to system calls
and device drivers. These routines provide various kernel-level services. IBM
calls these routines "kernel services." Kernel services are not available to
application programs. In fact, application programmers need not know about
the kernel services routines, but systems programmers (those writing device
drivers, system calls, and other types of kernel extensions) must know how to
use the kernel services. The InfoExplorer on-line documentation system·
includes descriptions of all AIX 3.2 kernel services.

How Is a kernel created?

With many UNIX-based systems, the kernel must be rebuilt to load new
device drivers or change system parameters. The rebuilding process involves
modifying various configuration files, then recompiling and relinking these
files to the kernel image file. A make file is usually included with the system
to automate much of the kernel rebuild. The ptoblem is that the system must
be rebooted every time a new device driver is added.

The AIX operating system includes a dynamic kernel which need not be
rebuilt to implement new device drivers, system calls, or other kernel exten­
sions. Tunable kernel parameters can also be changed "on the fly."

Kernel source code

Most open systems vendors, including IBM, consider the kernel code of their
operating system as proprietary. This is due to the fact that much of the ker­
nel code is licensed from its original source, such as AT&T. The license agree­
ments stipulate that the licensee must not divulge proprietary information
about the kernel. Most AIX customers do not have access to the source code.

If one is lucky enough to have access to the source code for the various ker­
nel subsystems, learning the internals is simply a matter of reading and
properly interpreting the code. While the source code for AIX is available, it is
very expensive. It is likely that the source code will not be at one's disposal.

How to Study the AIX Kernel 5

Therefore, the .approach taken by this book assumes that source code is not
available. All concepts are discussed using resources commonly available on
the standard system.

Author's Note: As of this writing, IBM offers a source code license for AIX
Version 3.1 at a price that would prohibit most customers from purchaSing it sim­
ply to "find out how it really works." IBM does not offer the source code for AIX
Version 3.2.

1.3 What Can I Do without the Source Code?

Without source code, one can still study the kernel by reading the documenta­
tion and examining the system header files that come with the system.
Various utilities are available for displaying kernel structures and debugging
kernel extensions. Even with these tools, however, some aspects of the kernel ·

remain undocumented and unreachable from the user's perspective. This
book relies on information obtained from those who developed the AIX kernel
to fill in many of the gaps in the IBM published documentation.

AIX header flles

Header files are C source code files that are included by the preprocessor
when compiling programs. These header files (often called "include" files)
usually define variables and structures, macros, and type definitions. System
header files are included since some are required for system calls. They pro­
vide a wealth of information about the kernel.

The system header files are an optional install module as part of the appli­
cation development toolkit (ADT). In other words, the system header files
come with the system but are loaded only if specified during the installation
process. If installed, they are mostly located under the /usr/include/sys direc­
tory. Figure 1.3 illustrates the directory tree for AIX 3.2 header files.

Some important header files include:

/usr/include/sys/types.h. This file includes many typedefs. Typedefs are def­
initions of new data types derived from standard types. (See Sec. 1.4 for an
example of a typedef.) They make it easier to port application code from one
UNIX-based system to another. Typedefs are illustrated throughout the
header files discussed in this book.

/usr/include/sys/limits.h. This file defines many of the system limits, such
as the maximum number of user IDs or the maximum number of characters
in a file's path name. It also defines the system page size as 4096 bytes.

/usr/include/sys/param.h. This file defines many symbolic constants that
are used throughout the system. Some of the definitions are made to pro­
vide compatibility with other UNIX-based systems. This file also defines
many useful macros.

6 Chapter One

I a.outh limits.h procinfo.h syms.h
acl.h linenum.h reloc.h uinfo.h
aouthdr.h loader.h setjmp.h xcoff.h
ermo.h lvm.h signal.h
fcntl.h lvmrec.h stdio.h
filehdr.h malloc.h storclass.h

jfs sys

dir.h acl.h i_machine.h mounth shm.h
filsys.h adspace.h ipc.h msg.h signal.h
fsdefs.h bootrecord.h limits.h msgbuf.h socket.h
fsparam.h buf.h lock.h mstsave.h socketvar.h
fsvar.h cblock.h lock_def.h param.h specnode.h
ino.h cred.h lockf.h pri.h tty.h
inode.h device.h lockl.h prov.h user.h
jfsmount.h domain.h m_intr.h proc.h var.h
quota.h ermo.h m_param.h protosw.h vfs.h

file.h m_types.h pseg.h vmount.h
NOTE: Only selected flock.h malloc.h seg.h vnode.h
header files are shown. gfs.h mbuf.h sem.h xcoff.h

Figure 1 .3 AIX 3.2 header files.

Tools

/usr/include/sys/m_param.h. This file defines parameters that are specific to
a machine type, such as the number of general-purpose registers and float­
ing-point registers.

Author's Note: Any header file whose name begins with "m_" contains machine­
specific definitions.

Not all header files are shipped with the AIX 3.2 system. IBM considers the
header files that describe structures of the virtual memory manager (VMM)
and logical volume manager (LVM) as proprietary. They will be mentioned in
this book, but specific code examples are not given.

AIX 3.2 includes many tools designed to help programmers and system
administrators examine and debug the kernel and other operating system
components. The tools also provide a means of learning about the kernel and
can be used to reinforce the concepts presented in this book. This section
introduces some of these tools but is not intended to provide detailed informa­
tion on their usage. Consult the InfoExplorer on-line documentation that
comes with the AIX operating system for more details on using these tools.

Crash. One of the most useful tools for examining kernel structures and ker­
nel data is the crash utility. It is an interactive facility that allows the user to

How to Study the AIX Kernel 7

examine the image or
'
the system's current kernel or to examine the image of a

system dump. A system dump is the kernel image which is preserved by AIX
3.2 when the kernel panics and the system crashes. The crash utility is often
used to try to determine the reason for a system crash.

Trace. The trace command, when activated, records kernel events with an
extremely fine granularity of detail. The trace utility records the events to a
memory buffer, which is written to a disk-based log file. Another command,
trcrpt, is used to format the trace log into a report. Many kernel routines already
contain trace hooks, so running trace only involves the collection and recording
of data which are already available. It is possible for systems programmers to
add their own hooks to the device drivers and other kernel extensions they cre­
ate. The biggest problem with trace is that it collects a large amount of data very
quickly. Sorting through a trace report can be very tedious. Fortunately, trace
has options for specifying the desired events on which to report.

Author's Note: The trace facility is often a last resort for isolating a performance
problem or other system anomaly. It is not uncommon to run trace for as little as
30 seconds. and collect over 10 megabytes worth of kernel event information! It is
very useful, though, for determining exactly what the kernel is doing in a chrono-
logical fashion.

-

The low-level kernel debugger. While the capabilities of this tool are similar to
those of crash, it is used primarily to debug kernel extensions. The kernel
debugger can be run only with the system in maintenance mode.

fsdb. The file system debugger, fsdb, is a utility found on most UNIX-based
systems. It allows the user to examine file system structures and trace links
between those structures. It also allows the user to change file system control
data, and should be used with extreme caution. Only root can run fsdb.

- svmon. When it comes to looking at the virtual memory manager information,
svmon provides a great deal of help. This tool was developed exclusively for AIX
by a team of IBM programmers in Austin who were responsible for creating
performance management utilities. The svmon command allows the user to
look at virtual memory segments, the kernel's page frame table, and other com­
ponents of the VMM.

Other tools that can aid in the understanding of the AIX 3.2 kernel are too
countless to mention here but are described throughout this book.

IBM documentation

Most of the documentation for AIX 3. 2 is provided on-line via the
InfoExplorer hypertext retrieval system. It includes the Command Reference
Guide for user-level commands, the Technical Reference Guide for library
subroutines and system calls, general guides for communications and graph­
ics programming, as well as documentation for system management. The

8 Chapter One

InfoExplorer data set can be installed on hard drive or is available on CD­
ROM. The CD-ROM version of InfoExplorer, while a little slower when
accessing data, contains all of the AIX. 3.2 documentation and saves disk
space. In addition to InfoExplorer, all AIX 3.2 documentation is available in
hard copy form from IBM.

Another documentation option for AIX is the series of books produced by an
IBM organization called the International Technical Support Center (ITSC).
The books are called "red books" because of the color of their covers. They pro­
vide valuable "how to" information, which complements the traditional refer­
ence style of the InfoExplorer documentation. Ask your IBM representative
for information on the ITSC red books.

Using lnfoExplorer

The InfoExplorer program supports a graphical mode and a character
(ASCII) mode. The graphical mode, which provides navigation windows and
mouse support, is much easier to use. The program is invoked via the "illfo"
command.

The InfoExplorer main navigation screen includes buttons to access infor­
mation via "Tasks," "Commands," "Programming Reference," and "List of
Books." A search option is also provided. Users wanting information on the
topics discussed in this book will most likely want to· access the "Program­
ming Reference" or "List of Books" options. Under the "List of Books" option,
the book called "Programming the Base Operating System" includes manual
pages for all of the library ;routines and system calls. The book called
"General Programming Guide" contains informatiQn about system memory
allocation and the process image.

Perhaps the most useful InfoExplorer option is the search facility. A simple
search involves scanning all InfoExplOrer data bases for matches of the user­
supplied string(s). The complex search option provides the ability to look for
text matches that meet specified criteria, such as exact combinations of
strings.

The best feature of InfoExplorer is its hypertext links. This allows the user
to jump from one document to another by clicking on a jump point (any text
surrounded by a box). This is useful in those "See also ... " situations.

1 .4 How to Read a Header File

This section is appropriate for the reader who is not experienced with the C
programming language. It provides an overview to C header files, and how
they define structures, unions, and pointers. It is not intended to teach C pro­
gramming.

The C preprocessor

How to Study the AIX Kernel 9

The first phase of compiling a C program is the preprocessor phase. The C
preprocessor processes every line of source code that begins with the "#" sym­
bol. Figure 1.4 gives examples of preprocessor directives. The #include pre­
processor directive is used to copy the code found in the specified header file
into the applications prior to calling the compiler. Header files contain defini­
tions of structures and other variable types that can be shared by many
applications. For instance, an application that manages an employee data
base might include a header file that defines an emprec (employee record)
structure. This structure might also be used by an application that processes
payroll taxes. By placing the definition of the emprec structure in a header
file that is included by both applications, there is no need to define the struc­
ture within each application. This saves time and avoids errors.

The "<>" symbols surrounding a file name tell the C preprocessor that the
file can be found in the /usr/include directory. Many of the system header files,
which describe kernel structures, are found in the directory /usr/include/sys.
Therefore, it is common to see #include statements that reference header files
such as <sys/proc.h>, which includes the /usr/include/sys/proc.h header file.

If a #include statement references a file whose name appears in double
quotes, such as #include "mydefs.h," the preprocessor attempts to locate the
file based on the relative or absolute path name specified within the quotes.
In the example #include "mydefs.h," the preprocessor looks for the header file
in the current directory.

The #define preprocessor directive defines a symbolic constant or a macro
function. A symbolic constant is a string of characters, usually capitalized to
make it easily recognized. The preprocessor performs a "search and replace"
operation for symbolic constants defined with a value. For the example shown
in Fig. 1.4, the preprocessor would replace all occurrences of MAXSIZE
throughout the code with the value 2000. This makes changing the value easier.

Sometimes, a symbolic constant is defined without an explicit value. This
signifies a condition to the preprocessor. The directives #ifdef and #endif are
used to provide conditional inclusion of text. Figure 1.5 provides an example.

#include <stdio.h>
#include <sys/proc.h>
#include "mydefs.h"
#define MAXSIZE 2000
#define _AIX3.2_

Figure 1.4 C preprocessor directives.

1 O Chapter One

Structures

#ifdef DEBUG
printf("Debug mode is turned on.\n");

#endif

Figure 1 .5 The #ifdefpreprocessor directive.

Here, if the symbolic constant DEBUG is defined, either within the file or
from the command line (see the -D option to the xlc command for AIX 3.2),
the printfO line is included in the compilation. Otherwise, the printf() line is
omitted. A #ifndef directive is available to test for a symbolic constant that is
not defined.

Author's Note: It's important tO be aware of #if def directives when tracing sys­
tem header files. Since much of the code has been ported from other systems (e.g. ,
the NFS header files from Sun MicroSystems), #ifdef directives exist for different
implementations.

A C structure is the definition of a record type. It is a collection of variables,
called members, that hold information relative to the instance of the struc­
ture. An array of structures constitutes a table. As mentioned earlier, the ker­
nel has many tables for storing data related to the activities of the system.

Figure 1.6 gives an example of a structure named stu_rec. It represents a
record of a student who is or was registered at a university. It includes mem­
bers (referred to as fields for those familiar with data base concepts) for the
student's first name, last name, and sex. The stu_rec structure is defined in
the stu_db.h header file. The stu_app.c application includes the stu_db.h
header file, then defines an array called stu_db[], which is an array of stu_rec
structures. The size of the array depends on whether the BIG_MACH symbol­
ic constant is defined at compilation time. The BIG_MACH symbolic constant
refers to a system with a large amount of physical memory.

Type definitions

The typedef statement in C allows a programmer to derive a new data type
by building upon existing data types. For instance, C does not include a date
data type, but one can be constructed by using a structure that contains three
integer members (month, day, year). Figure 1.7 shows the example applica­
tion updated to include a date_t data type for the student's birth date. Note
that the stu_db.h header file includes the mytypes.h header file.

stu_db.h

#ifdef BIG_MACH
#define SIZE 2000
#else
#define SIZE 200
#endif

struct stu_rec

{
·char s_fname[l5];

char s_lname[15];
char s_sex;

};

Figure 1 .6 C structures.

mytypes.h

struct date
{

}

int month;
int day;
int year;

typedef date date_t;

stu_app.c
#include "stu_db.h"

main()
{

struct stu_rec stu_db[SIZE];

Figure 1 .7 Type definitions.

stu_app.c

How to Study the AIX Kernel 1 1

#include "stu_db.h"

main()

{
struct stu_rec stu_db[SIZE];

s_fname!:=====
s_lname_ ___ __, stu_db[O] s_sexO

•
•
•

s_fname!:=====
s_lname ..._ ___ __, stu_db[1999]
s_sexO

stu_db.h

#include "mytypes.h"

struct stu_rec
{

};

char s_fname[l5];
char s_lname[l5];
char s_sex;
date_t bdate;

s_fname!====�
s_tname . stu_db[O]
s_sexD bctate!DDDI

•
•
•

s_fllame:====�
s_lname stu_db[1999]
s_sexD bdate!t:JtJCll

1 2 Chapter One

Typedefs are often used to aid in porting code. For instance, each AIX
process has a process ID number, which is an integer data type. The system
includes a derived data type called pid_t, which is an integer. The pid_t data
type is defined in the /usr/include/sys/types.h header file. Applications that
declare variables for process ID numbers should declare them as pid_t data
types instead of integers. By doing this, if the application is ever ported to
another UNIX-based system, where, for instance, the process ID number is
defined as a short, the pid_t data type in that system's types.h header file
would be declared as a short.

Pointers

A pointer is a variable that holds a memory address. Pointers are often used
to hold the addresses of other variables. Pointers are a very complex topic in
C. We'll keep our discussion focused on the use of pointers to construct linked
lists and form relationships between tables.

A pointer is declared according to the type of data to which it will point. For
instance, an integer pointer is designed to point to some integer data.
Pointers can be declared to point to structures. Figure 1.8 adds a new field to
the stu_rec structure. It is a pointer to a class structure. The application cre­
ates an array of class structures, call classes. This table lists the classes for
which a student is registered. Note that the stu_rec structure has a single
pointer to a class structure. But a student could be registered for many class­
es at once. The class structure includes a cl_next pointer and a cl_prev point­
er, which point to other class structures (other entries in the classes table) .

stu_db.h
•
•

classes[y] •

struct stu_rec
{

char s_fname[15];
char s_lname[15];
char s_sex;
date_t bdate;
struct class *s_clist;

} ;
struct class
{

};

struct class *cl_next;
struct class *cl_prev;
char cl_name[32];
char cl_code[6];

•
•

stu_db[x] •

•
•
•

Figure 1 .8 Pointers to structures.

cl_name
cl_code c:::::::::J
cl_prev cl_next

cl_name
cl_code c:::::::::J
cl_prev cl_next

ct_name
cl_code c:::::::::J
cl_prev cl_next

cl_name
cl_code c:::::::::J
*cl_prev

•
•
•

cl_next*

How to Study the AIX Kernel 1 3

stu_db.h
•
•

classesfy] • •
•

stu_db[x) •
struct stu_rec

cl_name._ ___ __,
cl_code c::::=:::J {

char s_fname[15];
char s_lname[15];
char s_sex;
date_t bdate;

s_fname::=====!
s_lname
s_sexD ':'""bda:--te""ID�D�D�I

s_clist *

* cl_prev cl_next *
cl_name..____=,---�
cl_code c::::=:::J
* cl_prev cl_next *

struct class *s_clist;

} ;

•
•
•

cl_name._ ___ �
cl_code c::::=:::J

struct class * cl_prev cl_next ..,i.+-....,
{

} ;

struct class *cl_next;
struct class *cl_prev;
char cl_name[32];
char cl_code[6];

cl_name.__ ___ _,
cl_code c::::=:::J
* cl_prev cl_next *

•
•
•

Figure 1 .9 Linked lists.

Unions

This is known as a doubly linked list. Figure 1.9 illustrates how the doubly
linked list works.

A union is a variable that holds a single value in one of many possible objects
of different sizes and types. A union can be used in a data base record to hold
data for one of many fields where the fields are mutually exclusive. For
instance, the student data base example could be modified to keep track of a
student's current classes, the date the student graduated, or the reason a stu­
dent dropped out of school. These three conditions are mutually exclusive, so
a union saves space by overlapping the definitions of the three fields. Figure
1 .10 illustrates the use of a union.

In the example, if a student is currently enrolled, the s_data union uses the
_s_classes pointer to point to the linked list of class records. If a student has
graduated, the s_data union uses the _s_graddate field to hold the date of
graduation. If the student has dropped out of school, the s_data union uses
the _s_dropout pointer to point to an entry in the dropout table. Note the use
of the s_stat field and its defined values to control how the union members
are accessed.

The size of a union is set by the compiler to the size of the largest data type
within the union.

1 4 Chapter One

stu_db.h

struct stu_rec
{

char s_stat;
char s_fname[l5];
char s_lname[l5];
char s_sex;
date_t bdate;
union { '

struct class * _s_classes;
date_t _s_graddate;
struct dropout _s_dropout;
} s_data:

I* Values for s_stat */
#define STUCUR OxOO /* enrolled */
#define STUGRAD OxO l /* graduated */
#define STUDROP Ox02 /*dropped out */

} :

Figure 1 .1 0 Unions.

Macros

classes

A macro is a function defined and substituted by the preprocessor. Macros
exist to simplify access to union and structure members. They can also per­
form evaluations of expressions. Figure 1.11 illustrates a macro that returns
the year of a student's graduation.

Examining system header files

Armed with the ability to read and trace C header files, one can learn much
about the internals of the AIX 3.2 kernel. For instance, each process has the
ability to open files. As will be discussed in Chap. 7, the files that a process
opens are tracked in the process's user area. A process's user· area is defined
as a user structure in the /usr/include/sys/user.h header file. Pointers to

_ stu_db.h

I* stu is a pointer to a stu_rec structure */
#define GRADYEAR(stu) \

(((stu)->s_stat & STUGRAD) ? (stu)->s_data._s_graddate.year : 0)

Figure 1.11 Macros.

How to Study the AIX Kernel 1 5

opened files are maintained in the u_ufd[] array, which is defined at the end
of the user structure. The size of the array is a symbolic constant called
OPEN_MAX. The OPEN_MAX symbolic constant is not defined in the user.h
header file, however. Looking at the other header files included by user.h, one
should notice a header file named limits.h. The /usr/include/sys/limits.h file
contains a definition of OPEN_MAX as 2000. This means that an AIX 3.2
process can open up to 2000 files at a time.

One of the best tools for tracing header files is the grep command. It can be
used to locate the definition of variables and symbolic constants. When using
grep, remember to search all directories where system header files are found.

1 .5 The Journey Begins

I've described how one studies internals without having access to the source
code. You are now prepared to begin your voyage through the AIX 3.2 kernel.
The next chapter provides a high-level view of the system and discusses its
major subsystems. Those familiar with other UNIX kernels might be tempted
to skip the next chapter, but the AIX 3.2 operating system has a few interest­
ing differences, which one must understand before delving deeper into the
technical characteristics of the kernel.

Chapter

2
An Overview of the AIX 3.2

Operating System

The Advanced Interactive eXecutive (AIX) operating system is IBM's open
system offering. Its origins can be traced back to the Interactive eXecutive
(IX) operating system for an IBM mainframe series in the early 1980s. The
current version of AIX, Version 3.2, runs on the IBM RISC System/6000, as
well as the IBM PowerPC line of computers. AIX is also the foundation of
Bull's BOS operating system.

Author's Note: At the writing of this book, AIX Version 4.1 is available in limited
distribution. I anticipate that most of IBM's AIX customers will move to Version
4.1 in late 1995 and early 1996.

AIX 3.2 is based on AT&T's UNIX System V Release 2, with enhancements
from Berkeley (BSD) 4.2 and 4.3. It also includes subsystems inherited from
previous versions of AIX, as well as components developed exclusively by
IBM. As a founding member of the Open Software Foundation (OSF), IBM
has incorporated OSF/ 1 features, such as Motif and the Distributed
Computing Environment (DCE) into software offerings for AIX. IBM has also
contributed to OSF/l. The Logical Volume Manager (LVM), created for AIX
3.1, is part of the OSF/1 definition.

IBM has made compliance with the IEEE's POSIX (Portable Operating
System Interface Standards) and X/Open's XPG3 (X!Open Portability Guide)
standards a top priority. Although a few issues are debated regarding full
compliance with these standards, programs written to POSIX and XPG3
standards should be easily ported to AIX 3.2.

Author's Note: One topic of debate regarding standards compliance is how AIX
3.2 allocates paging space when the malloc() subroutine is called. See "The AIX
3.2 malloc() Subroutine and Paging Space" in Chap. 4.

1 7

1 8 Chapter Two

This chapter provides a brief history of the AIX operating system, as well
as an overview of its internal (kernel layer) and external (application and sys­
tem management layer) components.

Author's Note: When I joined IBM's Product Education staff in 1989, an old
UNIX friend of mine asked me, "Tell the truth, IBM doesn't really want to sell
UNIX. They'd rather lock customers into proprietary systems like the AS/400."
My response, while I could hardly speak for the folks at the top of the IBM deci­
sion-ma.king chain, was that IBM probably would rather sell proprietary systems.
Let's face it, when you control the standards, you control the market. But IBM
realizes that customers want open systems. There is little choice but to be in the
UNIX marketplace. It is clear that if IBM chooses to be in the open systems
arena, they will strive to offer the best product out there.

·

Of course, you'll think I'm biased toward AIX. You're probably right, to some
degree. But I have worked with all of the most popular UNIX-based operating
systems, and I think AIX has a lot going for it.

I've taught AIX System Administration, Programming, Performance
Management, and Internals to quite a few UNIX professionals over the past six.
years, and I've often found some degree of skepticism about those aspects of AIX
that are different from other UNIX-based systems. When given time to work with
the system's utilities and features, however, most of my students end up appreci­
ating the differences that AIX offers. Many of the strongest AIX supporters today
are those people with a high level of experience using other UNIX-based operat­
ing systems.

2.1 A Brief History of AIX

AB mentioned earlier, IBM's first venture into offering a UNIX-based operat­
ing system was a product called IX (Interactive eXecutive), which ran on a
mainframe system. That was followed, in 1985, by AIX for the RT. The RT
was IBM's implementation of the Reduced Instruction Set Computing (RISC)
processor architecture for a workstation. The RT (RISC Technology) came in
desktop and deskside models and offered peripherals for the commercial mar­
ketplace, such as external disk drive bays. It also offered 2D and 3D graphics
adapters for engineering and scientific applications.

The last version of AIX released for the RT was Version 2. It included
TCP/IP and NFS for networking, an IBM-proprietary application for network
file sharing called Distributed Services (DS), interfaces for managing devices
and file systems, and a variety of applications for mainframe connectivity.

The RT and AIX Version 2 never really penetrated the engineering and sci­
entific marketplace, which at the time was dominated by Sun workstations.
The RT lacked power and speed. Although a floating-point adapter card was
available as an option, the system never really shook the RT/PC name that it
was given early on. Still, IBM learned a great· deal from their first venture
into the open systems workstation arena.

In 1989, IBM introduced AIX for the PS/2. It ran only on the top-of-the-line
models of that time, the Model 80 and the Model 90. It included many fea-

An Overview of the AIX 3.2 Operating System 1 9

tures of AIX Version 2 . In the same year, IBM offered AIX/370, which ran on
the 370 mainframe series. It used AIX on a PS/2 as the control system, and
included the Transparent Computing Facility (TCF), which provided users a
consistent work environment via AIX access from any workstation attached
to the network.

AIX Version 3 and the RISC System/6000 were introduced together in
February 1990. The RISC System/6000 hardware shows IBM's commitment to
the engineering and scientific workstation marketplace. Various models, all
based 'on what IBM calls the second-generation RISC chip, include desktop,
deskside, and rack-mounted systems. IBM continues to upgrade the RISC
chip capabilities, and new models are introduced regularly. Figure 2. 1 pro­
vides an overview of the original RISC System/6000 models.

In 1992, IBM added the Model 220 to the RISC System/6000 family.
Shortly thereafter, other 2XX models were introduced. Originally, the Model
220 was designated as the diskless workstation. While it had a RISC proces­
sor and its own memory, it had no fixed disk drives. Diskless workstations
have become popular in the open systems marketplace as a low-cost solution
for providing RISC processing for individual users. When a diskless worksta­
tion is powered up, it broadcasts a message across the network looking for its
boot server system. The boot server responds by downloading boot code, as
well as a root file system, to the diskless workstation. Other file systems are
then mounted from any one of many possible NFS servers.

The Model 220 was the first RISC System/6000 to include an integrated
SCSI (Small Computer System Interface) controller for disk, tape, and CD­
ROM support, as well as integrated Ethernet and optional Token Ring cards.
This meant that controller card slots need not be used for these adapters.
IBM now includes these integrated cards on many of the newer models.

500 Series
(Deskside)

1:!1!!!1!!!U:!r11:11!
300 Series
(Desktop)

Figure 2.1 RISC System/6000 models.

900 Series
(Rack)

20 Chapter Two

1986 AIX Version 2 for the RT

1989 AIX for the PS/2

1990 AIX Version 3 . 1 for the RISC System/6000

1992 AIX Version 3.2 for the RISC System/6000

Figure 2.2 The history of AIX.

The Model 220 can include an optional 2-gigabyte fixed disk. This can be
used in a diskless workstation environment to support local paging space,
since paging across a network is not one of the most pleasant experiences
where performance and network throughput are concerned. IBM calls this
configuration a "dataless" workstation.

AIX 3 . 1 represented quite a change from AIX Version 2 . A considerable
amount of work was done to improve the system management tools, as well
as the kernel subsystems described throughout this book. AIX 3.2 was intro­
duced in 1992. It added support for diskless workstations, which included
rearranging the file tree. See Sec. 2 .3 for more information on the system
management features of AIX 3.2.

Figure 2.2 summarizes the history of the AIX. operating system.

2.2 A User's Perspective of AIX 3.2

To the user, AIX looks and acts like most other versions of UNIX-based sys­
tems. This is thanks to standards like POSIX, which strive to define common
syntax, function, and output from commands and application programming
interfaces (APls).

Author's Note: I have had numerous students over the years who, while experi­
enced with other operating systems, are new to UNIX. A common question they
have is "If UNIX is supposed to be the same on all different types of systems, why
are there so many UNIX vendors, each claiming that their version of UNIX is
superior?" After a brief explanation of the history of UNIX and how each vendor
participates in the open systems marketplace, I compare using a UNIX-based
operating system to renting an automobile. When you rent an automobile, it's
usually not the same make or model as you normally drive, but you're able to
drive it because things like the gas and brake pedals and the steering wheel are
all in the same place and do the same things you're used to on your own car.
However, it's likely that the radio controls, the air conditioning controls, and the
switch that turns on the headlights are different from those on your own car. Yet

An Overview of the AIX 3.2 Operating System 21

you're able to figure them out quickly (usually). UNIX is like that. A user who is
familiar with UNIX knows what the ls command does, for instance. However, not
all UNIX-based systems produce output from the ls command with the same for­
mat. Some systems print the names of all files in the current directory in a single
column. Other systems, like AIX, print the names of all files in the current direc­
tory in multiple columns. It's easy to move from one UNIX-based system to
another, but the user should expect subtle differences for things that do not fall
under the control of standards.

AIX supports the three most popular UNIX shells, the Bourne shell, the C
shell, and the Korn shell. IBM also offers AIXwindows as a graphical user
interface (GUI). AIXwindows include the X Window System (Version 11
Release 5), the Motif Window Manager (from the OSF), and the Xdesktop
application (from IXI, LTD). The X Window System provides a display server,
which handles 1/0 from the terminal and routes it to the appropriate window
client. The Motif Window Manager controls the look and feel of the windows
and their attributes. Other window managers are available for the X Window
System. Xdesktop is an application that provides a graphical view of the file
system, using icons to represent files and directories. Users can customize the
desktop by adding their own icons.

AIX 3.2 supports a high function terminal (HFT) device driver. This driver
is multiplexed to handle 1/0 for a graphical display, a keyboard, a mouse, and
a tablet device. One of the most useful features of the HFT is virtual termi­
nals. A virtual terminal is a full-screen session, as opposed to a window. An
initial virtual terminal is implemented for a user's login session. The user can
start additional virtual terminals by issuing the open command (see the man­
ual page for the open command). The open command takes, as an argument,
the name of the program to be executed in the new terminal session. The pro­
gram executed is usually a shell. Each virtual terminal is represented as a
device named /dev/hft/n, where n is the number of the virtual terminal. The
user switches between virtual terminals by pressing the <ALT>-<CTRL>
(or <ALT>-<ACTION>) key combination. Figure 2.3 illustrates · the use of
virtual terminals.

2.3 AIX 3.2 System Administration

Experienced UNIX users quickly become comfortable with AIX commands.
Experienced UNIX system administrators find many enhancements to the
traditional system management paradigm. This section lists and describes
many of the system administration improvements made to AIX.

The system management interface tool

The most striking system administration improvement made by IBM was the
creation of the system management interface tool (SMIT). While many UNIX-

22 Chapter TWo

login: dkelly
password:
$ open ksh
$ _

$ open csh
$

%

Figure 2.3 Vutual terminals.

based systems have menu-driven administration tools, SMIT provides a com­
plete and consistent interface for virtually all system management compo­
nents. The philosophy of SMIT is that it doesn't matter if one is adding a new
tape drive or a new user to the system. The interface should look and work
the same. Figure 2.4 shows the main menu of SMIT.

Actually, SMIT does not perform the system management tasks. It only con­
structs a command string that is executed in a shell environment. An adminis-

System Management

Move cursor to desired item and press Enter.

Installation and Maintenance
Devices
Physical and Logical Storage
Security and Users
Communications Applications and Services
Spooler (Print Jobs and Printer)
Problem Determination
Performance and Resource Scheduling
System Environments
Process Subsystems
Applications
Using SMIT (information only)

Fl=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F I O=Exit Enter=Do

Figure 2.4 The system management interface tool.

An Overview of the AIX 3.2 Operating System 23

Creat.e User

TYpe or select values in entry fields
Press Enter AFfER making all desired changes.
[TOP] [Entry Fields]

* User NAME []

ADMINISTRATIVE User? false +
User ID [] #
LOGIN User? true +
PRIMARY Group [] +

Group SET [] +
ADMINISTRATIVE Groups [] +
SU Groups [] +
HOME Directory . []
[1 8 More]

Fl=Help
F5=Undo
F9=Shell

F2=Refresh
F6=Command
F lO=Exit

Figure 2.5 A SMIT dialog screen.

F3=Cancel
F7=Edit
Ent.er= Do

F4=List
F8=1mage

trator can execute the commands, called "high-level commands," directly, with­
out using SMIT. Each high-level command maps to a specific system manage­
ment task. There are four primary task prefixes for the commands: "mk ... " to
make, or add, a new object, "ls ... " to list existing objects, "ch. , ." to change an
existing object, and "rm ... " to remove an existing object. For instance, the
high-level command "mkuser" adds a new user account to the system, while
the high-level command "mkvg" adds a new volume group of disk drives to the
system (see an explanation of the logical volume manager later in this sec­
tion). Each ·high-level command maps to a SMIT dialog screen. A dialog screen
prompts the administrator for information which becomes parameters for the
corresponding high-level command. Figure 2.5 provides an example of the
SMIT dialog screen for the mkuser high-level command.

The object data manager

AIX's object data manager (ODM) is an application that uses an object-orient­
ed data base to store information about devices, installed software, system
management daemons, and the SMIT screens. Some network configuration
data are also kept by the ODM. The data base files reside in the /etc/objrepos
and /usr/lib/objrepos directories. Table 2.1 lists some of the files �d what
they hold.

Figure 2.6 shows how SMIT, the high-level commands, and the ODM work
together to facilitate system management. High-level commands query or
modify the system configuration by updating or listing information found in
the ODM data bases or various ASCII files. An arrow is shown from the ODM

24 Chapter Two

TABLE 2.1 ODM Files

ODM
File

/etc/objrepos/PdDv

/etc/objrepos/PdAt

/etc/objrepos/CuDv

/etc/objrepos/CuAt

/etc/objrepos/ConfigRules

/etc/objrepos/lpp

/etc/objrepos/history

/etc/objrepos/inventory

/etc/objrepos/srn_menu_opt

/etc/objrepos/sm_name_hdr

/etc/objrepos/srn_crnd_hdr

/etc/objrepos/srn_crnd_opt

Contains ...

all supported devices

default attributes for all supported devices

customized devices (defined)

customized device attributes

rules for the sequence of device configuration

all installed software products and updates

historical data for software product updates

file names for installed software products

SMIT menu screen options

SMIT name· selector screen data

SMIT dialog screen data

SMIT dialog screen field data

to SMIT to illustrate that the data used to construct the SMIT screens are
found within the ODM. A system administrator can customize SMIT screens
by changing the data in the ODM.

Author's Note: The ODM has probably been the most controversial component of
AIX. I initially learned about the ODM while working for IBM in 1989, prior to
the announcement ofAIX 3.1. The talk at that time was that the ODM data base
files would replace all traditional UNIX ASCII files, including files like /etc/pass­
wd. My first thought was "how could AIX be anything like UNIX without the
/etc/passwd file!" I found out later that the role of the ODM was a hot point of

ODM

SMIT Dialog

Screens

High-Level

Commands

ASCII Files

Figure 2.6 SMIT and high-level commands.

An Overview of the AIX 3.2 Operating System 25

debate between various groups of IBM designers and developers. There were
those who believed that the ODM should control all system configuration infor­
mation, while others stressed the importance of keeping some ties to tradition. In
the end, the decision was made not to include any user management information
in the ODM data bases.

·

As with SMIT, one of the goals of the ODM is to provide a consistent view
of the system configuration. This is accomplished by reducing all information
to objects, which can be treated in a common fashion. For instance, all sup­
ported devices are stored as objects in the PdDv (predefined devices) file. The
default values for the attributes of each device are stored as objects in the
PdAt (predefined attributes) file. While the attributes of a SCSI disk drive
are different from the attributes of a parallel printer, Fig. 2. 7 illustrates how
the ODM links the objects. The ODM includes user-level commands that
allow an administrator to work directly with the ODM data base files. The
ODM also includes a library named /usr/lib/libodm.a that provides an API for
programmers.

Author's Note: Some might be tempted to use the ODM tools supplied with AIX
to create their own data base applications. I strongly discourage this. IBM pro­
vides the ODM to manage system configuration data. It is not intended to be
used as a data base engine for user applications. Aspects of the ODM might
change from .one release of AIX to another, possibly leaving one with a data base
application that no longer works.

AIX 3.2 device management

AIX uses two ODM files to define devices. The PdDv (predefined devices) file
contains descriptions of all supported devices. The CuDv (customized devices)

4201-2 1 printer
. . . I . . .
857mb 1 disk

I
I

I subclass I . . . I uniquetype
1 parallel 1 . . . 1 printerlparallel/4201-2 ---
1 • • • t • • • , •• •
1 scsi 1 . . . 1 disk/scsi/857mb-----t Link I I I
I I I

PdAt +
· device 1 attribute 1 deflt
pririter/parallel/4201·2 : line

1
66

printer/parallel/4201 -2 1 col : 80
· · · I · · · I · · ·
disk/scsi/857mb t model_name 1 62RW I OO
disk/scsi/857mb I max.Jun I 0
disk/scsi/857mb � recovery_Iimit � 6

Figure 2.7 The ODM and device attributes.

26 Chapter Two

file contains information about the devices that
'
the system has (or thinks it

has). AIX classifies all devices as being in one of three possible states: prede­
fined, defined, and configured. A predefined device is one that is supported
but not present on the system. In other words, a predefined device is in the
PdDv file but not in the CuDv file. When an administrator uses SMIT or the
corresponding high-level command to add a device, an entry for that device is
made in the CuDv file. The device is now said to be in a defined state. The
defined device, however, is not yet available for use. First, the device must be
set to a configured state. A device is configured when its device driver has
been loaded into the kernel. Figure 2.8 illustrates device states. More infor­
mation on device configuration is provided in Chap. 9.

The AIX 3.2 queuing system

AIX 3.2 implements 'printer management via a queuing system that is unlike
the System V spooler or the BSD queuing system. It includes the concept of
virtual printers to provide separate user interfaces to a single printer that
supports multiple emulation modes. The AIX queuing system supports
queues not only for printers but for any type of device or resource for which
serialization is desired.

Users submit queue requests by issuing one of four possible commands.
The enq command queues a job request. The qprt command queues print job

- requests and has options for controlling the attributes of the virtual printer.
AIX also supports the Ip (System V) command and the lpr (BSD) command
for compatibility. When a user submits a queue request, a file is created,
describing the request, in the /var/spool/lpd/qdir directory. When the resource
for which the queue applies is available, the request is fulfilled.

At the heart of the AIX queuing system is the qdaemon program. This
program monitors the availability of resources for which queues are imple-

Predefined

(Unknown)

j ' .

Defined

j ' '

Configured

(Available)

Figure 2.8 Device states.

/etc/qconfig
Configuration

File

An Overview of the AIX 3.2 Operating System 27

. Ip 9-- !; 1----.,___q_da_e_m_o_n__,1--..,•1 tvar/spoolnpd/qdir
qprt I t spawns

!u.srllibllpdlpwbe
Backend Program

Figure 2.9 The AIX. 3.2 queuing system.

mented. When a resource is available and a j ob request exists in the
/var/spool/lpd/qdir directory for the resource, the qdaemon spawns a back­
end program to process the request. The backend program for local printers
is /usr/lib/lpd/piobe. Figure 2.9 illustrates the AIX 3.2 queuing system.

Sqftware management

IBM uses three terms to describe installed software: base operating system
(BOS), licensed program product (LPP), and optional program product (OPP).
The BOS consists of all software that makes up the core of the AIX operating
system. It includes the kernel, all essential applications, and configuration
files. An LPP is an application that the customer has purchased for AIX. It is
not bundled with the BOS. Examples of LPPs include AIXwindows, the
Fortran compiler, and the GraPHIGS application. An OPP is an application
that comes with AIX, at no additional charge, and can be selected for installa­
tion or skipped. Examples of OPPs include the system accounting facility, the

· C shell, the INed editor, and the text processing applications (nroff, troff, etc.).
Information about the BOS, LPPs, and OPPs is stored by the ODM in a

series of files called the vital product data base. This includes the software
release levels, update history, inventories of files, and product serial numbers.

Author's Note: AIX makes no distinction between LPPs and OPPs. The ODM
calls them both LPPs.

28 Chapter Two

The journaled file system

AIX Version 3 introduced the journaled file system (JFS). Its details are
described in Chap. 6. The JFS is the default file system type for local disk
files. It offers two advantages over other types of UNIX disk file system.
First, the JFS logs activity associated with the file system control structures.
This allows it to reconstruct a file system to a known state in the event of a
system crash. Second, a JFS file system can be extended while it is in use.
This allows the system administrator to increase the size of the file system
without disrupting user activity.

The logical volume manager

One of the most popular features of AIX Version 3 is the logical volume man­
ager (LVM). It aids the management of disk space by providing a logical view
of disk drives. A logical volume is a specified amount of disk space designated
to hold a journaled file system or some raw partition, such as paging space.
The disk space allocated to a logical volume need not be contiguous, or even
all on the same physical disk drive. As with a journaled file system, a logical
volume can be extended dynamically.

This section provides information on the implementation of the LVM. It
begins by introducing some important terms.

Physical volume (PV). A physical volume is a disk drive. It can be an internal
drive or an external drive. It can be a SCSI drive or some other type of drive.
Its size is not important.

Volume group (VG). A volume group is a collection of one or more physical vol­
umes. The physical volumes in a volume group are configured together for
some logical reason. In fact, a volume group can be thought of as a collection
of drives grouped as one logical drive. The system requires at least one volume
group, . called the root volume group (or rootvg), which contains the root file
system.

A volume group can contain up to 32 physical volumes. A physical volume
must belong entirely to a single volume group. In other words, a disk drive
cannot be split between two volume groups. The extent of a volume group
becomes the boundaries for its contents, as described shortly. New physical
volumes can be added dynamically to a volume group.

AIX uses a command called varyonvg to vary on a volume group. A volume
group must be "varied on" before its contents are available. The varyoffvg
command is used to take a volume group off-line, thus making its contents
inaccessible.

Volume group descriptor area (VGDA). Each physical volume of a volume group
has a structure stored in a reserved set of sectors called the volume group

VGD

PPl

PP2

PP3

PP4

PPS

pp

An Overview of the AIX 3.2 Operating System 29

descriptor area. This structure maintains information about the entire volume
group. Multiple copies are kept to assure their integrity.

·

Physical partition (PP). The LVM carves all physical volumes in a volume group
into equal-sized partitions. The partitions are allocated from contiguous space.
Most AIX systems use a default physical partition size of 4 megabytes, but sys­
tem administrators can specify a different physical partition size when the vol­
ume group is created. The Model 320, one of the original RISC System/6000
models with a smaller disk capacity, uses a default physical partition size of 2
megabytes. A physical partition is the smallest amount of disk space that can
be allocated to a logical volume.

Figure 2 . 10 illustrates a sample volume group and its components
described thus far.

Logical volume (LV). As mentioned earlier, a logical volume is a container for a
journaled file system or some other entity, such as paging space or a dump
device. A logical volume is a collection of one or more physical partitions. The
physical partitions that make up a logical volume need not be contiguous or
even all on the same physical volume, but they must all be allocated from phys­
ical volumes that are in the same volume group. In other words, while a logical
volume can span multiple physical volumes, it cannot span multiple volume
groups.

VGl

I
PV l PV2 PV3

VGD

PP l

PP2

PP3

PP4

PPS

PP6

PP lO

PPl l

PP 1 2

PP 1 3

Figure 2.1 0 The logical volume manager.

30 Chapter Two

VGD

PPI

PP2

PP3

PP4

PP5

pp

A JFS must be stored in a logical volume. The relationship between a logi­
cal volume and a JFS is one-to-one, in that only one JFS is ever found in a
single logical volume.

Logical partition (LP). The final LVM term is logical partition. A logical parti­
tion is similar to a physical partition except that it is referenced as a subdivi­
sion of a logical volume where a physical partition is referenced as a
subdivision of a physical volume. A logical volume numbers its logical parti­
tions from 1 to n, where n is the last partition in the logical volume. This is done
without regard to the physical location of each logical partition. Figure 2.11
illustrates a volume group with a set of logical volumes defined. In the exam­
ple, the third logical partition oflogical volume three is found in the fifth phys­
ical partition of physical volume two.

One of the most important features of the LVM is mirroring. The LVM
allows the system administrator to mirror critical logical volumes to improve
availability and reliability. When mirroring is implemented, the LVM main­
tains one (single mirroring) or two (double mirroring) spare copies of each
physical partition of a mirrored logical volume. While the administrator can
choose on which physical volumes the mirrors are stored, it is advisable to
allocate each copy of a mirrored physical partition on a different physical vol­
ume. Figure 2.12 illustrates a single mirror for LV3. Although mirroring is

PVl

LVl

LVl

LV2

LV2

LV2

LVl

PP1 2

PP 1 3

VGl

I
PV2

LV2

LV3

LV3

LV3

LV l LP4

LV l LP5

PV3

VGD.A

PPl

PP2

PP3

PP4

PP5

PP6

Figure 2.1 1 Logical volumes.

An Overview of the AIX 3.2 Operating System 31

VGl

I
PV l PV2 PV3

VGDA
PPI LV I LV2 LV3 ' LPl
PP2 LV l LV3' LP2

LV2 LV3 LV3' LP3
LV2 LV3 L

LV2 LV3

LV I

LVl LP4

LV l LP5

Figure 2.1 2 LVM mirrors.

established by the administrator for an entire logical volume; the internals of
the LVM implement mirroring on a partition-by-partition basis.

There are two reasons for mirroring important logical volumes. First, keep­
ing spare copies on separate physical volumes helps assure that the logical
volume is still accessible, even if one of the physical volumes fails. In the
example in Fig. 2. 12, LV3 will still be available even if PV3 fails. If PV2 fails,
LVl and LV2 will be inaccessible, but LV3 will still be accessible. It is impor­
tant for a system administrator to plan the physical layout and mirroring
strategies for critical logical volumes.

The second advantage to mirroring is that, while it takes longer for the
operating system to write multiple CQpies of data to the mirrors, read time is
improved because the LVM decides which copy provides the fastest access
time based on estimated disk seek distance. This means that mirroring logi­
cal volumes that have more read operations than write operations can actual­
ly improve the disk 1/0 performance. The rule of thumb for most read/write
file systems is that 80 percent of the 1/0 .operations involve reads and 20 per­
cent of the 1/0 operations involve writes.

Of course, mirroring isn't for every logical volume. The disadvantage to
mirroring is that it requires two or three times as much disk space. Mirroring
is designed for fault tolerance of critical data, such as on-line transaction pro­
cessing and other data base or commercial applications. Stand-alone worksta­
tions in a development shop, for instance, might find little benefit in mirror,
at least not enough to offset the additional disk space requirements.

32 Chapter Two

Another feature of the LVM is bad block relocation. If an 1/0 request
encounters a bad disk block, the disk hardware usually handles it, remapping
the bad block to a spare block location. (Most disk drives maintain a pool of
spare blocks used for remapping bad blocks.) If the disk hardware does not
provide bad block relocation, the LVM handles it at the software level. The
LVM relocates the bad block to another block within the file system. The LVM
implements bad block relocation only when it is not provided by the disk
hardware.

Author's Note: 1b the best of my knowledge, all of the disk drive models offered
by IBM for the RISC System/6000 support hardware-level bad block relocation.
Check the documentation of third party disk drive systems to detemiine whether
or not they support hardware-level bad block relocation.

If a bad block is detected during a write operation (the LVM supports a
write verify option to confirm all writes), the block is remapped and the data
are written to the new location. If a bad block is detected during a read opera­
tion, if the logical volume is mirrored, the LVM reads from another copy. It
then remaps the bad block and copies the data from the mirror to the new
location. If the logical volume is not mirrored, the read request fails and
returns an error to the application.

2.4 AIX Application Programming

A.IX 3.2 supports a family of compilers that are designed specifically to pro­
duce code optimized to run on the RISC System/6000 processors. Languages
that are part of the XL family include ANSI C, C++, Fortran, and Pascal.
Details of the XL compilers and the A.IX 3.2 compilation process are found in
Chap. 3.

Other languages available for A.IX include COBOL and ADA. Assembler
programming for the RISC System/6000 is also supported.

The AIX 3 ,2 kernel API includes
'
system calls that are compliant with

POSIX and X/PG3 standards. System calls are also included for compatibility
with System V and BSD applications .

. The application development toolkit (ADT), an A.IX LPP, contains many of
the traditional UNIX programming utilities. It includes lint, make, source
code control system, and the dbx debugger. IBM also provides CASE tool
applications for A.IX.

2.5 The Design of the AIX 3.2 Kernel

The A.IX 3.2 kernel was introduced in Chap. 1. Recall that the kernel is the
code and data that provides YO and process management services for applica­
tions. The kernel uses device drivers to interface with system hardware.
Applications request services of the kernel by issuing system calls. The mem-

An Overview of the AIX 3.2 Operating System 33

ory used by the kernel has the device name /dev/kmem. All remaining real
memory is allocated to applications and is called user memory.

There are four important features of the AIX 3.2 kernel: it is preemptable,
it is dynamically extendable, it supports real-time applications, and most of it
is pageable. This section describes the importance of these features.

The preemptable kernel

A preemptable kernel means that a process can be preempted while it is run­
ning a system call. Preemption occurs when the kernel dispatcher decides
that the current running process is no longer the most favored process. The
current running process is preempted to allow another process to run. Older
UNIX systems had nonpreemptable kernels. This meant that the dispatcher
had to wait until the current process finished its system call before preempt­
ing it to allow another process to run. Figure 2 .13 illustrates the preemptable
AIX 3.2 kernel.

In the example below, Process A is the current running process. Process B,
which has a more favored priority than Process A, is in a sleep state, waiting
for a hardware event to occur. Process A is in the middle of a system call
when the event for which Process B is waiting occurs. Hardware events
interrupt all system processing so that the event can be handled by the
device driver. The interrupt handler in the device driver wakes the sleeping
Process B and notifies the kernel's dispatcher. The dispatcher preempts
Process A so that Process B can run. Process A will resume the system call
the next time the dispatcher chooses it to run. Details on how the kernel dis­
patches processes are provided in Chap. 5.

User Memory Kernel Memory

Interrupt �-�
Handler

D
Wakeup

------+--� - � Process B � �
Device
Driver

l 1 1 Point of Preemption

Process A System Call

Figure 2.13 The preemptable AIX 3.2 kernel.

Interrupt

34 Chapter Two

Author's Note: I stress the difference in the terms "preemption" and "interrup­
tion." Preemption is what happens to a running process when the dispatcher has
selected a more important process to run. Interrupts occur when a hardware
device needs the operating system's attention. While interrupts do cause the sys­
tem to stop running the current process while the interrupt is handled, unless
the dispatcher selects another process to run after the interrupt is complete, the
current process resumes running.

Dynamic kernel extensions

The fact that the AIX 3.2 kernel can be dynamically extended was mentioned
briefly in Chap. 1. There are four types of AIX 3.2 kernel extensions. They are
device drivers, system calls, virtual file systems, and STREAMS modules, all
of which can be added to the kernel without rebuilding the kernel image or
rebooting the system. Each of the .kernel extensions mentioned is de$cribed in
various chapters of this book. InfoExplorer includes a book called "Kernel
Extensions and Device Support Programming Concepts," which is required
reading for anyone creating device drivers, system calls, or virtual file sys­
tems. There is limited documentation on writing STREAMS modules.

The pageable kernel

Traditionally, UNIX kernels are pinned in memory, which means that the
pages of the kernel remain in real memory. The advantage of pinning the ker­
nel is that access to the kernel code and data is faster. The disadvantage is
that less memory is available for applications' user code. As kernels have
grown larger on many UNIX-based systems, pageable kernels have become ·
more common. Pageable kernels use disk paging space to hold those pages of
the kernel that are not frequently referenced. This allows kernels to provide
additional services without extracting the penalty of the increased kernel
size. It also frees up real memory for applications.

Most of the AIX 3.2 kernel is pageable. System call code as well as many of
the kernel's tables are pageable. Figure 2 .14 illustrates the pageable portion
of the kernel. Note that some of the kernel's memory is still pinned. For
instance, the interrupt handler portion of device drivers must be pinned.

· Interrupt handlers must run quickly to avoid blocking other system activities
for too long; therefore, page faults are not allowed within interrupt handler
code. Any kernel data structures accessed by interrupt handlers must also be
pinned. Besides, imagine what would happen if the system paged out the
interrupt handler code for the disk drive devices!

Real-time programming

The nonpreemptable kernel described earlier in this section illustrates one of
the reasons that UNIX, historically, is not considered a real-time operating

· An Overview of the AIX 3.2 Operating System 35

Pinned
User Memory

Pageable
Kernel Memory Kernel Memory

rJ D I . . ·. 1 11 11
Pageable Device Device

Tables Driver Driver
and Data Head Intem1pt

Process
Handler

D � I Pinned[j]
System Calls

Tables
Process and Data

Figure 2.1 4 The pageable AIX 3.2 kernel.

system. A real-time operating system is one that can guarantee the maximum
amount of time it takes for an application running on the system to react to
some event. The time between the occurrence of the event and the dispatch­
ing of the process that handles the even.t is called the "context latency." Real­
time systems can guarantee a maximum context latency.

Author's Note: I often see "real time" mistakenly described as "fast." A real-time
system need not guarantee a "fast" context latency. The true definition of real
time is that the context latency falls within the expectations of the application
users. For instance, a banking system might define real time as guaranteeing
that a customer's account is updating within 15 minutes of an ATM transaction.
One of the largest markets for real-time programming is the stock trading and
securities industry.

AIX 3.2 provides real-time options through many of its characteristics. For
instance, the preemptable kernel is an essential part of real time.
Nonpreemptable kernels allow a process to finish a system call before dis­
patching another process. This is unacceptable for real-time applications.

Other features of the AIX 3.2 kernel that support real-time programming
include system calls that allow real-time programs to set their priority levels,
faster context switch time (a context switch, detailed later in this book, is the
action of switching between running processes), and enhanced system timers.

Author's Note: Actually, IBM describes AIX as providing "near real time" support.

2.6 Kernel Subsystems

Figure 2. 15 illustrates the two major subsystems of the AIX 3.2 kernel; the
110 subsystem and the process management subsystem. Each subsystem has

36 Chapter TWo

I Process I � • I
•

'
System Call Interface

t

Linraries
•

'
I User Mode

System Mode
(Kernel)

I LoSical Fde S)llem
VO

Subsystem Process Manasoment

I Vmual/Physical Filo System
Subsystem I Process Schedulios I

• ' ��::==:.
-

� -

'
I Buffer Cache I j �

, • I Character I Block I .
� � ' t
'f 'f

l Controllers : I
Devices

Hardware

Figure 2.15 AIX 3.2 kernel subsystems.

its own subsystems. For instance, the 1/0 subsystem includes the file 1/0 sub­
system, the virtual memory manager (VMM) and the logical volume manager
(LVM). The process management subsystem includes the kernel loader, which
loads and executes programs, the process scheduling subsystem, and support
for interprocess communications (IPC). The line from the process manage­
ment subsystem to the VMM indicates that the VMM handles the memory
requirements of processes.

As mentioned before, system calls provide the application's interface to the
kernel. System calls and library routines are described in detail in Chap. 3 .

Device 1/0 takes one of two forms: block 1/0 or character 1/0. Block devices
are those devices that perform 1/0 using a buffer strategy. The 1/0 occurs in
blocks. Disk drives are block devices. Character devices are those devices that
perform 1/0 one character at a time. Examples of character devices include
printers and terminals . Character devices are said to perform "raw" 1/0.
Conversely, block devices are said to perform "cooked" 1/0. Many block
devices have corresponding "raw" modes that allow processes to access-the
device using character 1/0.

Device types are determined by issuing the ls -1 command on the /dev direc­
tory. The first column of each line indicates the device type. A "b" indicates a

$ ls -1 /dev
crw-rw--- 1 root system 14,0

brw-r---- root system 1 0,0
brw-r----- root system 1 0, 1

brw-r----- root system 15 ,0
brw-r--- root system 15,1

crw-r----- root system 1 0,0
crw-r---- root system 1 0,l

crw-r----- root system 1 5,0
crw-r----- root system 1 5, 1

crw-rw--- root system 1 2,0
crw-rw---- root system 1 2,1

May 15 09:3 1

May 15 09:3 1
May 15 09: 3 1

May 1 5 09:3 1
May 1 5 09:3 1

May 1 5 09:3 1
May 15 09:3 1

May 15 09: 3 1
May 1 5 09: 3 1

May 1 5 09:3 1
May 15 09:3 1

An Overview of the AIX 3.2 Operating System 37

console

hd l
hd2

hdiskO
hdisk l

rhd l
rhd2

rhdiskO
rhdisk l

ttyO
tty !

Figure 2.16 AIX. 3.2 device special files.

block device, while a "c" indicates a character device. Note in the example
shown in Fig. 2.16 that AIX 3.2 refers to fixed (hard) disk drives as "hdisk . . . "
for block mode and "rhdisk . . . " for character mode. The same is true for logical
volumes where the block mode name is "hd . . . " and the character mode name ·
is "rhd "

Chapter

3
AIX 3.2 Programs and Processes

This chapter presents an overview of programs and processes by defining each
and describing their attributes.

3.1 Programs

A program is an executable image stored on disk or some other medium. In
other words, a program is an executable file. Programs include the applications
that come with AIX, such as the vi editor, the cat program, the various shells,
etc. Programs also include applications purchased for the system, as well as
applications written by in-house programmers.

3.2 Processes and Process Types

A process is the executing image of a program. To illustrate, if three users on
the same system are all running the vi editor, there are three processes run­
ning the same program. Figure 3. 1 illustrates this example. The kernel con­
trols how each process shares the system resources, such as the CPU, memory,
disks, etc., with the other processes. A kernel component known as the dis­
patcher decides which process will control the CPU. This time-sharing concept,
called process scheduling, is discussed in detail in Chap. 5.

Processes have attributes that distinguish them from one another. Each
process has a unique process ID number (PID). Other process attributes
include user identification numbers, group sets, current directories, and
resource usage statistics. Each process also includes the instructions and data
of the program they are executing. The precise image of a process is described
shortly.

There are different types of processes.

39

40 Chapter Three

r ,

L �

Memory
File System

Figure 3.1 Programs and processes.

User processes. User processes are the most common type of process. They
perform work on behalf of a user. Examples include the shells, editors, com­
mands, utilities, and any application invoked by a user. They are created by
other user processes. This defines a parent-child relationship between user
processes. User processes are in user mode when running code that is part of
the program executing within the process. When the program executing with­
in a user process makes a system call, a mode switch occurs, transferring exe­
cution to the system call code in kernel memory. The kernel is said to be
executing on behalf of the user process and is running in system mode. A
process's CPU time is the sum of the process's user mode time plus system
mode time.

Author's Note: CPU time is not the same as total run time (or response time) since
processes are not always running. Sometimes they sleep (wait on an event) or are
preempted by a more favored process.

When it comes to scheduling, there are two classes of user processes: ordinary
user processes and fixed-priority user processes. An ordinary user process has
a priority value that changes over the lifetime of the process (see Chap. 5 for a
detailed discussion of process scheduling). A fixed-priority process has a prior­
ity value that remains constant. A setpri() system call issued by the process
causes its priority to become fixed. Real-time programs usually use the setpri()
system call to assign themselves to a highly favored priority level, thus assur­
ing that they will preempt ordinary user processes.

Kernel processes. Kernel processes are processes that spend all of their time
in system mode, running kernel code. They can be created only by system calls
or device drivers. They perform tasks on behalf of system calls, device drivers,
or other kernel entities. They are scheduled and selected for dispatch the same
way as user processes and have many of the same attributes as user processes.

AIX 3.2 Programs and Processes 41

Author's Note: AIX 3.2 displays kernel processes as "kproc"s when the ps-ek com­
mand is issued. See Fig. 3.3 for an example.

Daemon processes. . Daemon processes represent another type of user process.
A daemon process runs in user mode and system mode, like other user process­
es; however, a daemon process has no controlling terminal session. It will con­
tinue to run even when no one is logged into the system. Daemons are

. frequently used by system administrators to perform repetitive tasks, such as
collecting system performance information or doing file system backups in the
middle of the night. Daemons are also used by the system and many of the net­
work facilities. Examples of daemons . include cron, syncd, inetd, telnetd, and
swapper. All of these daemon processes are started at boot time and usually run
for the duration of the system. Daemon processes are identified in the output
of the ps -ef command by the "-" symbol in the TTY column, since they have no
controlling terminals.

Figure 3.2 illustrates the various types of processes described. Figure 3.3
shows an example of the ps command, displaying all of the process types.

3.3 Program Creation in AIX

AIX includes a family of compilers that have separate language-specific front
ends but a common backend. This is known as the XL family of compilers. The
four XL compilers are xlc for ANSI C, xlC for C++, xlf for Fortran, and xlp for
Pascal. AIX Version 3 includes the xlc compiler. All other compilers must be
purchased separately.

Each XL compiler front end compiles its particular language's source code
into an intermediate language that is common to all XL compilers. The common

User Memory Kernel Memory

Controlling
TTY Structure

--=
:.- . D

-

- · -

D
User • System Kernel

Process
Calls Process

- •
Daemon
Process

Figure 3.2 Types of processes.

42 Chapter Three

$ ps -efk
USER
root
root
root

root

PID
0
1
514

5240

PPID c STIME TTY
0 54 08 :32:40 -
0 0 08:33 :25 -
0 120 08:33:40 -

0 08:35:09 hft/O

Figure 3.3 The ps command and process types.

TIMECMD
0:00 swapper
0:00 /etc/init
3:58 kproc

0:00 -ksh

backend optimizes the code, if desired, to produce an object file. There are two
outstanding benefits to this approach. First, the optimizing backend .is
designed to optimize code specifically for the RISC System/6000 or POWER/PC
processors, taking advantage of their advanced architectural features. The
optimizer rearranges code in such a way as to best fill the processor pipeline.

Second, the common intermediate language makes it possible for programs
in one language to call routines in another language. For instance, a C program
can call a Fortran routine to perform numerically intensive operations, or a
Pascal program can call a C routine to interface with a device driver.

Another benefit of the XL compiler family is that they all share a common
linkage editor.

3.4 The AIX Compilation Process

The AIX compilation process differs slightly from traditional compilation
processes, as illustrated in Fig. 3.4. The traditional C compilation process in
UNIX starts with the C preprocessor, a progr1:1m called "cpp." The preprocessor
handles all lines that start with the #directive token, such as #include and
#define (see Chap. 1 for details on preprocessor directives that are pertinent to
this book). The preprocessor creates a file with the same base name as the orig­
inal source file, but with a ".i" extension. The .i file is in ASCII format.

Next, the compiler reads in the .i file and compiles the code into assembler
source. The results are stored in a file with the same base name as the original
source code file, but with a ".s" extension.

The assembler, a program named "as," converts the assembler source in the
.s file into an object file. The results are stored in a file with the same base
name as the original C source code file, but with a ".o" extension. This is where
the compilation process stops if the -c option is given when the compiler is
invoked. Object files containing useful routines are often archived into
libraries.

'lraditional

a.out

AIX

Compiler
"xlc"

(includes built-in
preprocessor and

code-generator
assembler)

}olllli--"""Linkage Editor
"Id"

AIX 3.2 Programs and Processes 43

Figure 3.4 Traditional and AIX 3.2 program compilation.

Finally, to produce an executable file, the linkage editor is called. The link.­
age editor, a program named "ld," binds external objects to the program in
order to satisfy unresolved references to functions and variables. For instance,
many C programs call the print:£{) routine to send output to standard out. Since
the code for print:£{) is not defined within the application, it must be brought in
from somewhere else. In the case of print:£{), the code is linked in from the stan­
dard C library, /lib/libc.a. The result of the linkage editor is an executable file
named "a.out." The linkage editor can be told to name the file something other
than a.out, for convenience.

The AIX compilation process accomplishes everything that the traditional
UNIX compilation does, but there are a few differences. The AIX C compiler
includes a built-in C preprocessor. It works with a superset of the standard cpp
directives but includes a few AIX-specific pragma options, such as #pragma dis­
joint and #pragma isolated_call. See InfoExplorer for more iriformatiop. on
these directives.

AB mentioned earlier, the AIX C compiler consists of a front end, which pro­
duces an intermediate language, and an optimizing backend. The compiler
backend includes a code generator, similar to the standard assembler, which
produces an object file. While the compilation process does not use the tradi­
tional assembler "as," an assembler is included with AIX, allowing one to devel­
op code using the RISC System/6000 and POWER/PC assembly language.
However, it is difficult, using the assembler, to create code that is more efficient .
and faster than code optimized by the compiler backend. For example, the AIX
optimizer treats all auto-type integers as register variables by assigning them
to virtual registers. The -0 option must be used when invoking the compiler to
specify optimization.

44 Chapter Three

3.5 The AIX 3.2 Linkage Editor

Static binding

The AIX 3.2 linkage editor creates object files and executable files. It is named
"Id" and is called for the last phase of the compilation process as long as the -c
option is not specified when the compiler is invoked. The AIX 3.2 linkage edi­
tor performs dynamic binding and static binding, as described in the next sec­
tion of this chapter. It also creates shared object code, which is described in
Chap. 4.

The "traditional" UNIX compilation process described above illustrated a link­
age editor that performed static binding. This means that the code and data of
all external symbols (a symbol is the name of a variable or a function) are
brought together and placed in the executable file that the linkage editor pro­
duces. For instance, in the case of an application's call to the printf() routine,
the code for printf() is copied from the standard C library into the application
itself. Figure 3.5 illustrates static binding.

Dynamic binding

Dynamic binding was introduced to AIX in Version 3 .1. It allows the linkage
editor to delay resolving external symbol references until the application is exe-

• = code and data of external symbols
referenced by the
application

Libraries and
Object Files

Figure 3.5 Static binding.

Application
Source Code

Compiler I
Code Generator

Linkage Editor

•

Executable
(a.out)

AIX 3.2 Programs and Processes 45

cuted. Instead of copying the code for the printfO routine into the application,
the linkage editor places a small amount of "glue code" into the application. The
glue code provides the name of the symbol (function or variable), as well as the
file name of the library or external module where the · symbol can be found.
When the program is executed, the kernel's loader uses the glue code to locate
and resolve the symbol. In .the case of the print£() routine, the kernel's loader
locates print£() in the standard C library (/lib/libc.a) and loads the code into the
process image. Figure 3.6 illustrates dynamic binding.

Obviously, the biggest advantage of dynamic binding is that executable files
are smaller, since code from frequently called routines is not copied to each exe­
cutable · file. Another benefit of dynamic binding is that since library routines
are not linked to the application until run-time, library routines can be
changed without needing to relink applications to them. The next time the
application is executed it loads the new version of the library routine.

Author's Note: I always point out that one of the possible disadvantages to. dynam­
ic binding is that the next time the application is executed it loads the new version
of the library routine. When a new version of a library routine is introduced on the
fly, it has been known to "break" an application or two.

A disadvantage of dynamic binding is that the glue code serves as a promise
to the application that the specified files that define the external symbols will be
available at run-time. If, for any reason, a file is not available, the promise is bro-

• = code and data of
external symbols
referenced by the
application

Application
Object Code

- = glue code

D
D

Libraries and
Object Files

Figure 3.6 Dynamic binding.

UWge M� · 1 I / Executable /-uiion (a.out)

Process

I · · · ·

46 Chapter Three

ken and the loader fails when a user tries to execute the program. One must not
remove, move, or change the name of any file that contains definitions of dynam­
ically bound symbols. This also means that in order to distribute any application
that is dynamically bound to libraries or external modules, the libraries and
modules must also be distributed. Static binding creates a completely self-con­
tained application. AIX 3.2 allows both dynamic and static binding.

Creating an object file for dynamic binding

Figure 3. 7 illustrates how an object file is created so that it can be dynamical­
ly bound to an application. The source code file, colors.c, has three functions
and a global variable with an initial value. The first step is to compile the
source code file. It is necessary to use the -c flag when invoking the compiler to
avoid calling the linkage editor. Since this source file does not have a main()
function, the linkage editor would fail. The second step is to create an export
list file. This is an ASCII file that lists the names of all symbols to be exported
by the object file for dynamic binding and can be created with any text editor.
The file named colors.exp in the example below is the export file. The final step
is to call the linkage editor (Id) with the -bE:colors.exp option. This option spec­
ifies the export file name. The example designates colors as the final name for
the object file.

Author's Note: The ld command in Fig. 3. 7 includes the -e red option and the -le
option. The -e option specifies the name of the function to use as an entry point for
the object file. Any function name from the source code will do. It's provided
because the linkage editor requires that an entry point be specified. The -le option
must be used so that the linkage editor can locate the printf() subroutine in the

colors.c
int myglob=7;

red() {

blue() {

green() {

xlc -c colors .c

colors.exp
Expon file for colors.o
myglob
red
blue
green

ld -o colors colors .o -bE:colors.exp -e red -le

Figure 3.7 Creating an object file for dynamic binding.

AIX 3.2 Programs and Processes 47

standard C library. These two options must be explicitly given when using the ld
command. They need not be given when using the xlc (or cc) command to invoke
the compiler because the AIX 3.2 C compiler uses a configuration file, named
/etc/xlc.cfg, to specify defaults to the linkage editor when it is called by the compil­
er. The configuration file instructs the linkage editor to include /lib/crtO.o, which
makes the resulting output file executable by specifying the program's entry point,
and to include the standard C library when resolving symbols. The ld command has
no configuration file.

Creating an application for dynamic binding

Figure 3.8 illustrates how an application is created to dynamically bind with
the colors object file from Fig. 3.7. First, an import list file is created. Like the
export list file, it is an ASCII file. The import list file uses the #! syntax to spec­
ify the absolute or relative path name for the file to which the application will
bind. Each #! path line is followed by the names of the symbols to be imported
from the file. Multiple path names may be specified within a single import list
file. The import list file in this example is myapp.imp. Note that it includes only
the symbols required for myapp.c. The second step is to compile the application.
The -bl:myapp.imp option instructs the linkage editor, when it is called by the
compiler, to create the glue code necessary to dynamically bind the colors object
file to the application.

Author's Note: I use this example in one of my classes. I once had an observant
student who noticed that the size of the myapp executable was larger when dynam­
ically bound to the colors object than when statically bound. The reason is that the
glue code required for dynamic binding in this case ended up being more code than
the bound routines themselves. This is often true with programs this small.

myapp.c
extern int myglob

main()

(
red();

myglob++;
green(); ·

}

myapp.imp
Import file for myapp
#!}colors
my glob
red
green

xlc myapp.c -o myapp -bl :myapp.imp
Figure 3.8 Creating an application for dyri.amic binding.

48 Chapter Three

/lib/libc.a
(The Standard

C Library)

shr.o

colors.c
int myglob=7;

red() {
printf("This is red. \n");
}

Auto Import blue() {
(No Import

List File)

green() {

Explicit

Import

(Import

List File)

myapp.c
extern int myglob

main()

{
red();
myglob++;
green();

}

Figure 3.9 Dynamic binding and the standard C library.

To illustrate the relationship between myapp, colors, and the standard
C library, Fig. 3.9 shows how each component is bound. Note that an object file
that exports symbols, such as the colors object file, can also import symbols.
One might notice that the colors object file did not use an import list file to
dynamically bind with the standard C library. This is because AIX 3.2 performs
automatic importing of symbols when linking to a shared object or shared
library. The standard C library contains many shared objects, one of which
includes the print£() subroutine. Shared objects and shared libraries are dis­
cussed in Chap. 4.

Load-time dynamic binding

The dynamic binding technique described in the previous section is called exec­
time dynamic binding. This me.ans that the resolution of external symbols
takes place when a program is executed. AIX 3.2 supports another type of
dynamic binding called load-time dynamic binding. This technique loads an
object file into the process when the program running in the process calls the
load() subroutine. Parameters to the load() subroutine include the name of
the loadable object file and a flag option to control how the object file is loaded.
The load() subroutine returns a pointer to the function that has been designat­
ed as the object file's entry point. The code of the object file is loaded into the
process's data region (see Sec. 3. 7). The unload() subroutine is called to unload
the object file code from the process's data region when it is no longer needed.

AIX 3.2 Programs and Processes 49

See the manual pages or InfoExplorer for more information on the load() and
unload() subroutines.

Load-time dynamic binding is useful when applications need to call a large
utility that is required infrequently. By loading the large utility on-the-fly
instead of upon execution of the program, the virtual memory requirements of
the process are reduced. If the utility is not required by the user, it is never
loaded. Figure 3 .10 provides an example of load-time dynamic binding. Notice
the definition of the entry point for the loadable module. Here, it is important
to specify the desired entry point, as it links the two components.

Author's Note: The load-time dynamic binding technique is similar to PC-DOS
overlays.

3.6 The XCOFF File

bigmod.c

The object file created by the code generator is in a format known as XCOFF
(eXtended Common Object File Format), an IBM variation of AT&T's COFF
(from System V Release 2). Figure 3 .11 illustrates the components of the
XCOFF file, which are also described by the header files listed. The structure
of the XCOFF file is described in /usr/include/xcoff.h. XCOFF begins with a file
header structure of type filehdr as defined in /usr/include/filehdr.h. The file

myapp.c
I* Big routine, hardly ever used */

bigmod()

...

char *libpath="mb:/usr/lib:.";
main() {

xlc -c bigmod.c
Id -o bigmod bigmod.o -e bigmod -Jc

Figure 3.1 0 Load-time dynamic binding.

{
int (*funcp)();
. ..

if((funcp=load("bigmod", libpath))=O)

{
perror("load");
exit(l) ;

}
. . .

(*funcpX);
. . .

if(unload(funcp))

I
perror(''Unload");
exit(2);
}
. . .

}

xlc -o myapp myapp.c

50 Chapter Three

File Header
Auxiliary Header

- - �X!_�t!Qn_!i�� - -
_ _ J?!at!. S.=_ct!Qn_!I�ad� _ _

_ _ �S! �t!Qn_!i�� _ _

_ -�d£_r .[e�oE_ �a�e� _
.

_
_ T�t��Qa�)-

_ _ _

Data (Raw Data) - - - - - - - - - - -
- - - !:�3:'1_e:_�8:� .J:?��) - - - - - - - - -

Loader Header
- - - - - - - - - - - - - - - · - - . - - - - - -

_ _ _ _ _ _ _ _ _ !-?��e! _S�b.?! ��I� _ _ _ _

Loader Relocation Data - - - - - - - - - - -

Relocation Data

Line Number Data

Symbol Table
String Table

Figure 3.1 1 The XCOFF file image.

filehdr.h

aouthdl:h

scnhdr.h

loader.h

reloc.h
linenum.h
syms.h I storclass.h

header includes fields that describe attributes of the XCOFF file. A field called
f_magic indicates the target machine for the object file or executable.

The XCOFF file header is followed by an auxiliary header described by the
aouthdr structure defined in the /usr/include/aouthdr.h header file. This struc­
ture also contains a magic number that indicates whether the file is executable,
and if so, how it should be executed. It also holds the size values for the other
sections of the XCOFF file. Another field in the auxiliary header, o_modtype, is
an array of two character1;1 that describes the module type. A module type of
"RE" indicates a shared object (reentrant code). The use of shared objects is
explained later in this chapter. The third part of the XCOFF file is the section
headers. The section headers define attributes of each of the XCOFF sections,
including their names, sizes, and starting locations. The structure scnhdr is
defined in the header file /usr/include/scnhdr.h.

After the headers, the XCOFF file has a raw data area, which contains the
main sections. The text section holds the machine instructions that represent
the code of the program. The data section holds declarations of global variables
which have initial values. Noninitialized global variables are tagged in the BSS
section header within the section headers area, as illustrated in Fig. 3. 11. BSS
stands for block started by symbol and is actually an old mainframe assembler

• .

AIX 3.2 Progl'.llms and Processes 51

term. It indicates that memory must be allocated at run-time to hold these
variables.

The next section is the loader section. This component constitutes part of the
AIX-specific information in the XCOFF image, as a loader section is not part of
the standard COFF format. The loader section contains information used by
the kernel loader in order to perform dynamic binding. This is where the
"promises" made in the import list files described in Sec. 3.5 are stored.

Other sections of the XCOFF file include the debug section, which is present
if the program was compiled with the -g option to the cc or xlc commands, the
symbol table section, for locally defined symbols, and a string section, which
holds symbol names that are longer than eight characters. The details of these
sections are more appropriate for a book on compiler internals and are beyond
the scope of this book.

3� 7 The AIX 3.2 Process Image

The previous section of this chapter described the XCOFF image of a program.
When a program is executed it runs as a process. This section describes the
image of a process.

Author's Note: To state that a program runs as a process is an oversimplification.
It is more correct to say that a process provides an environment for the execution
of a program. We discuss how processes are created and how they execute programs
in Chap. 5.

The two major components of a process are the text and the data. The text is
the machine instructions that make up the program code. The data are the user
variables of the program and their values, and the system information about
the process. AIX 3.2 allocates a memory segment for the text and ·a memory seg­
ment for the data of a process. The segments are maintained by the virtual
memory manager (detailed in Chap. 4). Each segment is 256 megabytes of vir­
tual memory.

The text segment

Author's Note: Actually, every process has 16 segments, which are described in
Chap. 4. As an introduction to the process image, we discuss only the two most
important segments here.

The text segment holds the code of the executing program. Its contents are
directly mapped from the raw text section of the XCOFF file. The kernel allo­
cates only one text segment for the code of a given program, no matter how
many processes are running the program concurrently. In other words, the text
segment is shared by all processes executing the same program. The text seg­
ment is protected as read-only memory to prevent any process from changing

52 Chapter Three

Process data

the code while it is being executed. In this way, AIX does not support self-mod­
ifying code.

Author's Note: Actually, there is a way to implement self-modifying code. Load­
ti.me dynamic binding, described in Sec. 3.5, loads the code of a specified object file
into the calling process's data segment. This is necessary since the text segment is
read-only and cannot be changed during execution. It would also be inappropriate
for the loadable object file to be loaded into a segment that might be shared by other
processes, as could be the case with a text segment. A process has read-write author­
ity for its own data segment. Therefore, code loaded into the data segment of a
process via the load() subroutine . can be altered. This is not the primary intent of
load-ti.me dynamic binding, but rather a coincidental characteristic.

A process has various classes of data that must be described before detailing
the layout of the process's data segment. Each class is handled differently. The
following list briefly describes some of the classes a process may have. It is not
the intent of this section to describe the scope or other characteristics of all the
data classes supported by the C language. The reader is encouraged to consult
the C Language Reference Guide that is part of the InfoExplorer on-line docu­
mentation for more details.

Initialized global data. These are variables that are declared outside of the body
of a function and have been given initial values by the program. The compiler
places these variables together within the program's XCOFF file. The kernel's
loader allocates memory for these variables within the process's data segment
at run-time.

Noninitial lzed global data. These are variables that are declared outside of the
body of a function but have not been given initial values. The compiler groups
these variables together in the BSS section of the XCOFF file (see Sec. 3.6).
Since these variables have no values at compile-time, the compiler does not
allocate actual space in the XCOFF file for the variables. For instance, if a glob­
al array of 2000 emprec structures is declared by a program (where an emprec
structure contains an employee re.cord definition), the compiler does not actu­
ally allocate that much space in the XCOFF file. The loader, at run-time, does
allocate enough memory in the process's data segment to hold the array. It also
initializes the global data according to standard C language rules. See the C
Language Reference Guide under lnfoExplorer for more information on ini­
tialization rules.

Automatic local data. These are variables declared within the body of a function.
They may be initialized or noninitialized. Their scope is the body of the function.
In other words, when the function ends, they no longer exist. They are stored on
a stack within the process's data segment. Stacks are described shortly.

AIX 3.2 Programs and Processes 53

Static local data. These are variables that are declared within the body of a
function. Like automatic local data, their scope is the body of the function; how­
ever, they maintain their values after the function ends. If the function is called
subsequent times, these variables are recalled with their last known values.
For this reason, they are not stored on a stack. They are stored along with the
initialized global data of the process.

·

Dynamically allocated global data. Programs often require more memory as they
run to accommodate dynamic growth of data. Sometimes the additional memo­
ry is only needed temporarily. The malloc() subroutine provides programs with
the ability to access more memory from their data segment. The new memory
is allocated above the BSS and is called the heap. In other words, using malloc()
allows a program to "throw more memory on the heap." The AIX 3.2 imple­
mentation of the malloc() subroutine is a little different from the way other
UNIX-based systems implement it. This is described later in this chapter.

Figure 3 .12 illustrates how the different classes of data are treated by the
compiler and the kernel's loader.

. How a stack works

Each function called within a program usually has local data. The local data of
a function have a scope of the function's duration. Since functions can call other
functions, local data of the calling function must be saved while the called func-

int x=5;
int y;
mainO
{

int a=25;
static int t;
char *m;
m=malloc(5 12);

Figure 3.12 Data classifications.

Process Data
Segment

a=25

Heap
y=O
(main)t;::()
x=5

Stack

BSS

Initialized Data

54 Chapter Three

main()
{
int a=l ;
int b=2;
foo();

foo()

{
int x=l O;
int y=20;
bar();

tion is executing. When the nested called function completes, the caller's data
must become available again. This is ac�omplished by using a stack. Each func­
tion has a stack frame. The size of each stack frame is determined by the com­
piler and corresponds to the needs of each function. When a function calls
another function, a stack frame is created for the new function and is "pushed"
onto the stack. ADC 3.2 stacks grow downward in memory, so a new stack frame
is pushed below the current stack frame. The CPU maintains a stack frame
pointer that points to the memory address of the current stack frame. When the
nested function completes, its stack frame is "popped," or discarded. The stack
frame pointer is changed to point back up to the previous stack frame. Figure
3 .13 illustrates the code example and how the stack is managed.

In the example, the main() function has its own stack frame to hold the local
variables "a" and "b". When main() calls foo() a stack frame is pushed on the
stack for the foo() function. It holds the "x" and "i' local variables of foo(). When
foo() calls bar() a stack frame is pushed for the bar() function. It holds the "a"
and "x" local variables of bar(). Even though different functions have local vari­
ables of the same name, the system can tell them apart because each has its
own stack frame in memory.

Author's Note: I often explain stacks when teaching basic C programming since it
helps illustrate the difference between passing parameters by value and passing
parameters by reference when calling a function. Passing parameters by value
copies the values from the caller function's stack frame to the called function's
stack frame. Passing parameters by reference means passing the addresses of the
original data in the calling function's stack frame to pointers defined in the called
function's stack frame. This allows the called function to indirectly manipulate the
values of the variables in the calling function's stack frame.

bar()
{
int a=lOO;
int x=200;

foo() called

LPush_.
bar() called

LPush_.

main()

foo()

bar()

a= l
b=2

foo() returns

x= IO
y=20 - Pop-..

a= IOO
bar() returns

x=200 - Pop-..

Figure 3.1 3 A stack exampl�.

_start() argc
argvO
envp[]

main()

. . . ()

=
�
e

�
� CJ
s 00

AIX 3.2 Programs and Processes 55

Figure 3.14 AIX 3.2 stack frame allocation.

By default, the AIX 3.2 link.age editor designates a program's entry point as a
routine called _start(). The _start() routine is found in the /lib/crtO.o object file.
The _start() routine calls main(), passing to it the parameters argc, argv[], and
envp[] . Therefore, the first frame on the stack is allocated to _start(). The sec­
ond frame is allocated to main(). Each stack frame has a pointer link back to
stack frame of the function that called it. Figure 3. 14 illustri;i.tes how AIX 3.2
builds a process's user stack.

The data segment

AIX 3.2 carves the 256-megabyte data segment of a process into two regions as
shown in Fig. 3. 15. The kernel region is 524,288 bytes (1024 * 512, or 112
megabyte). The remaining space in the segment is allocated to the user region.
The point of separation between the two regions is called the "red zone." A

Process

Data
Segment

(256MB)

User Region

Figure 3.15 The process data segment.

� Red Zone
Process cannot read
or write data above
this address

56 Chapter Three

process can read and write within its own user region, but it may not directly
access the memory allocated to the kernel region (above the red zone).

When a program is executed, the kernel's loader places the program's ini­
tialized global data starting at the lowest address of the user region. This is
also the lowest address of the data segment. The amount of memory required
for initialized global data is known at load time and does :i;10t change during the
lifetime of the process.

The loader allocates memory for the noninitialized global data directly above
the initialized global data. It does so based on information found in the BSS
section header of the program's XCOFF file. All arrays are expanded to their
declared dimensions. The BSS data are initialized according to C language
rules. For instance, all integers are initialized to zero. The loader sets a break
value, called brk, at the top of the BSS. The brk value indicates the highest
memory address assigned to global data.

As mentioned earlier, the malloc() subroutine, or one of its relatives [calloc()
and realloc()], allocates additional global memory during program execution.
This is done by raising the brk value. This means that the heap is allocated
from memory directly above the BSS and grows upward into the data segment's
user region, as shown in Fig. 3. 16. System administrators and programmers
can use the ulimit command to set the maximum amount of memory that can
be allocated to global data, thus limiting the growth of the heap.

Author's Note: Actually, the malloc() subroutine calls the sbrk() system call, which
resets the break point.

KHEAP ---.i----=K=ern=e-.1 =H=ea..._--t

User Area

BSS

Initialized Data

Figure 3.1 6 Data segment details.

KHEAPSIZE

UJ
N
v:, �
0 UJ
e::: I
::>

UJ
N Vi 0 UJ Cl)

AIX 3.2 Programs and Processes 57

At the top of the data segment's user region is an integer called errno. This
variable, which is global and can be accessed by the process, is set to some value
when a system call, running on behalf of the process, fails. The system call
records the reason for the failure in the errno variable. The header file
/usr/include/errno.h defines symbolic constants to match the errno values.

The process's user stack is directly below the errno variable. It holds the local
data for user code functions. It grows downward into the data segment's user
region as functions are nested and stack frames are pushed. It retreats upward
as the nested functions complete and the stack frames are popped. System
administrators and programmers can use the ulimit command to set the max�
imum amount of memory that can be allocated to the user stack.

The area between the top of the heap (the brk point) and the bottom of the
user stack, for lack of a better name, is called the VM (virtual memory) hole. It
is the remaining memory of the data segment's user region after accounting for
the initialized global data, BSS, heap, errno, and user stack. This is a very
large area and allows for a great deal of process data. It is, however, sometimes
not enough memory for applications that require more than 256 megabytes of
user data, such as some graphically based engineering and scientific programs.
Chapter 4 describes how a program can request additional memory for data.
IBM calls it the "huge data model" technique.

System calls and device driver routines running on behalf of a process some­
times need to allocate memory dynamically. They do so by calling the xmalloc()
kernel service. Since AIX 3.2 has a preemptable kernel, which means that a
system call running on behalf of a process is not guaranteed to complete before
the process is preempted, each process must have its own kernel heap. This is
found at the top of the data segment's kernel region. It has a size of about 398 .

kilobytes.
Below the per-process kernel heap is the user area. Each process has a user

area, which holds information about the process. The user area is defined as a
user structure in the /usr/include/sys/user.h header file and has a size of 18,576
bytes. It includes the process's credentials (user and group IDs), current direc­
tory, resource usage and limit information, and signal mask. It also includes
the device name of the process's controlling terminal, as well as the name of the
program executing within the process. The user area contains an array of
pointers to files opened by the process. The array is called the file descriptor
table. Details of the user area are provided in Chap. 5.

Author's Note: The user area is sometimes called the U-Area or u-block. The size
of a process's user area is 18,576 bytes in AIX 3.2. On most UNIX-based systems,
the user area is pageable. In fact, a comment in the /usr/include/sys/user.h header
file states "The u-block contains information about the process that need not be in
memory when the process is swapped out. It is pinned when the process is swapped
into memory, and unpinned out when the process is swapped out." AIX 3.2 pins the
first two pages of the user area, even when the process is swapped out. The remain­
ing portion of the user area contains the file descriptor table and is always pageable.

58 Chapter Three

Below the user area, the process's data segment contains a loader section,
used for dynamic binding. This section has a size of 256 bytes.

Below the loader section is the per-process kernel stack. It is used by system
calls running on behalf of the process in the same way that the user stack is
used. System calls can call other system calls or small routines called kernel
services. Since each kernel service may have its own local data, a stack is
required. It can grow to a size of approximately 96 kilobytes, which takes it one
page (4 kilobytes) from the lowest memory address of the kernel region of the
data segment.

The symbolic constant names displayed in Fig. 3. 16 come from the
/usr/indude/sys/pseg.h header file. The name of this file comes from "private
segment." The #defines take a while to sort through, but Fig. 3 .16 should help.

The mallocO, reallocO, and freeO subroutines

IBM changed the way the AIX kernel allocates and deallocates heap memory
from AIX 3.1 to AIX 3.2. These are techniques used by the kernel when mal­
loc(), realloc(), and free() are called. AB described earlier, the malloc() subrou­
tine requests that additional memory be allocated for data. The additional
space is allocated from a chunk of contiguous virtual memory within the
process's data segment. If a process calls malloc() multiple times, while each
malloc() results in the allocation of contiguous virtual memory chunks, there is
no guarantee that the chunks themselves will be contiguous to one another. It
is also important to understand that each chunk requires additional memory
to manage the allocated space. The management space is called the chunk's
prefix. Programs must be careful not to clobber the prefix of a chunk.

Author's Note: I use the term "chunk" to refer to the memory space returned by a
call to malloc() or realloc(). The AIX documentation refers to it as a "block." I pre­
fer not to use the term "block" since it is used many other places in AIX to refer to
objects of a fixed size.

The realloc() subroutine is used by a process to change the size of an already
allocated chunk of virtual memory in the heap. It often results in the original
chunk's being moved to another virtual memory location to assure that the
resized chunk remains contiguous.

When a process no longer needs memory that was dynamically allocated with
malloc(), it can call the free() subroutine to deallocate the virtual memory. The
free() subroutine places the freed chunk of contiguous virtual memory onto a
free list per process. It is important to understand that the memory deallocat­
ed by the free() subroutine never goes back to the system's free virtual memo­
ry. It only becomes available to be allocated once again by another call to
malloc() or realloc().

When malloc() or realloc() are called, the system looks first at the process's
free list of memory chunks. The free list consists of previously allocated, then
freed contiguous chunks of virtual memory. If a process has never called mal­
loc(), the free list is empty. In that case, the sbrk() system call is used to raise

AIX 3.2 Programs and Processes 59

the break point of the . heap. It does this by moving the _edata location. The
amount of memory �abbed by sbrk() is determined by the size of the malloc()
request, but rounding up does occur. Any memory grabbed by sbrk() that is
beyond what was requested by malloc() is placed on the free list. Any memory
deallocated by the free() subroutine is also placed on the free list.

The AIX 3.1 method

AIX 3.1 uses a set of 28 hash buckets to manage the heap. Each hash bucket
points to a linked list of free virtual memory chunks of a given size. Table 3. 1

. lists the hash bucket indices and their corresponding memory chunk sizes.
Each virtual memory chunk requires 8 bytes of management overhead.

When a malloc() call is made, the systein queries the hash bucket that corre­
sponds · to the memory size requested. If the hash bucket points to an existing
chunk, that chunk is allocated. If the hash bucket points to null (the bucket is
empty), sbrk() is called to add blocks to the list. The sbrk() system call never
grabs less than a 4096-byte . page; therefore, if the requested memory siZe is
smaller than a page, the request is honored and the remaining memory from
the page is carved into chunks equal to the requested size and placed in the
linked list maintained by the hash bucket. Figure 3. 17 provides an example.
When a chunk is freed, it is placed at the head of the linked list maintained by
the hash bucket that corresponds to the freed chunk's size.

TABLE 3.1 AIX 3.1 mallocO Hash Buckets

Bucket Block Size Sizes Mapped
0 16 0 - 8

1 32 9 - 24

2 64 25 - 56

3 1 28 57 - .120

4 256 1 2 1 - 248

5 5 1 2 249 - 504

6 l K 505 - (I K-8)

7 2K (l K-7) - (2K-8)

8 4K (2K-7) - (4K·8)

9 SK (4K· 7l·· (8K-8)

1 0 16K (8K-7) • (1 6K-8)

1 1 32K (1 6K-7) • (32K-8)

1 2 64K (32K-7) - (64K-8)

1 3 1 28K (64K-7) - (1 28K-8)

14 256K (1 28K-7) - (256K-8)

1 5 5 1 2K (256K-7) • (512K·8)

1 6 lM (51 2K-7) - (lM-8)

1 7 2M (1 M-7) - (2M-8)

Pages Used

2

3

5

9

1 7

33

65

1 29

257

5 1 3

(Continued)

60 Chapter Three

TABLE 3.1 AIX 3.1 mallocO Hash Buckets (Continued)

Bucket Block Size Sizes Mapped Pages Used

1 8 4M (2M-7) - (4M-8) I K + I
1 9 8M (4M-7) - (8M-8) 2K + I

20 1 6M (8M-7) - (1 6M-8) 4K + I

2 1 32M (1 6M-7) - (32M-8) 8K + I

22 64M (32M-7) - (64M-8) 1 6K + I

23 1 28M (64M-7) - (1 28M-8) 32K + I
24 256M (1 28M-7) - (256M-8) 64K + I

25 5 12M (256M-7) - (512M-8) 1 28K + I

26 1024M (512M-7) - (1 024M-8) 256K + I

27 2048M (1 024M-7) • (2048M-8) 5 1 2K + I

If the size of an existing chunk is changed via the realloc() subroutine, the
system checks to see if the new size still falls within the range of sizes sup­
ported by the current chunk (see Table 3. 1). Ifit does, then the system updates
the length value in the chunk's prefix and returns the same chunk. If the new
size is greater than the size of the current chunk, a new chunk is allocated from
the appropriate hash bucket list and the data are moved from the current
chunk to the new chunk. The smaller chunk is then placed on the free list.

The AIX 3.2 method

AIX 3.2 uses a binary tree to maintain free lists of virtual memory chunks with­
in the heap. There is no limitation to the number of chunk sizes supported by
the tree. This method also helps reduce virtual memory fragmentation.

Heap Control Structures

(Hash Buckets)

Figure 3.1 7 An AIX 3.1 malloc() example.

VM Hole

Top of BSS

AIX 3.2 Programs and Processes 61

When a malloc() occurs, the system searches the tree for the first memory
chunk large enough to accommodate the request. If the chunk found is larger
than the requested size, the chunk is divided into two chunks. One chunk is the
requested size and is returned to the program. The other chunk is the remain­
der (called the "runt") and is placed back on the tree at the appropriate loca­
tion. If no chunk of the requested size is found on the tree, sbrk() is called to
extend the heap. The requested chunk size is returned to the process and any
remaining runt is placed on the tree at the appropriate location.

The most interesting part of the AIX 3.2 heap management occurs when a
chunk is freed. Instead of simply placing the freed memory chunk back on the
tree free list, the system checks to see if an adjacent virtual memory chunk
exists on the tree. If it does, the two churiks are combined to form a larger
chunk of contiguous virtual memory, which is placed back on the free list at the
appropriate location in the tree.

When one compares the two methods, one sees that the AIX 3 .1 hash bucket
technique often returned memory chunks that were much larger than required
by the process. The AIX 3.2 tree technique returns memory chunks that are
often much closer in size to what the process requested. This means that it is
possible for some AIX 3 .1 applications to fail when executed in AIX 3.2. To pro­
vide compatibility with AIX 3:1 applications that rely on the hash bucket
inethod of heap allocation, � 3.2 includes an environmental variable called
MALLOCTYPE. For AIX 3 .1 applications that experience problems in AIX 3.2,
the following command should be issued at the shell prompt prior to executing
the application:

export MALLOCTYPE = 3.1

There is another unusual characteristic of the AIX 3.2 malloc() subroutine
that has to do with paging space allocation. It is discussed in Chap. 4.

3.8 The System Call Subsystem

The AIX 3.2 system call subsystem provides the API (application programming
interface) to the kernel. AB mentioned earlier, applications running as user
processes cannot directly access kernel memory. They must use system calls to
access kernel data and services. This section describes how system calls are
used and what happens within the AIX 3.2 kernel when they are used.

System calls and library routines

System calls and library routines look alike but operate in a very different way.
Library routines are commonly used functions, defined within object files that
are archived into library files. These object files are linked to applications such
that the code of the functions becomes part of the application at link time, if

static binding is used, or at run-time, if dynamic binding is used. When an
application calls a library routine function, the code executes in user mode and

62 Chapter Three

the data are stored in the user stack. The kernel is not involved in executing a
library routine.

System calls are commonly used functions that are part of the kernel. They
perform system-level services on behalf of the calling process. When a process
invokes a system call, a mode switch occurs. The mode switch changes the exe­
cution environment from user mode to system mode. The normally protected
memory allocated to the kernel (/dev/kmem) becomes available to the applica­
tion while the system call executes. A separate kernel stack is used to hold the
data associated with system calls. Figure 3 .18 illustrates the mode switch.

The symbol hash table

AIX 3.2 employs a unique way of accessing the code of a system call. When a
process issues a system call, the name of the system call is used to search the
kernel's symbol hash table. This table contains the names of all valid system
calls. When a match is found in the symbol hash table, its corresponding index
value is used to vector into an array of pointers to functions. The retrieved func­
tion address points to the system call code. The symbol hash table and array of
pointers is shown in Fig. 3. 19.

System call return

When a system call completes, it returns a value to the calling process. This is
true whether the system call succeeds or fails. It is the responsibility of the pro­
gram that issued the system call to check the return value. A programmer must
rely on the system documentation for explanations of valid return values from

User Memory Kernel Memory

User Mode System Mode

- System Call System
-

Subsystem Calls Kernel
1 1 1 1 Stack

-

Mode Switch # 1 1 1 1 syscall() /
- 1 1 1 1 Process -

Figure 3.1 8 The mode switch.

User Memory

syscallo

Process

Figure 3.1 9 The symbol hash table.

Kernel Memory

System Call
Subsystem System

Ii Calls
1 1 1 1

_,.., 1 1 1 1
1 1 1 1 �ymbol

Hash
Table

AIX 3.2 Programs and Processes 63

each system call. The documentation for each system call describes the valid
return values for success and failure.

When a system call fails, it returns a specific value that indicates failure to
the calling process. It also assigns a value to the errno global variable described
earlier in this chapter. The /usr/include/sys/errno.h header file defines symbol­
ic names for the possible values for the errno variable. A program can query the
errno value to determine the reason for a system call failure.

A system call example

Figure 3.20 provides an example of the open() system call. If the open() system
cali succeeds in opening the specified file, it returns the integer value of the

#include <fcntl.h>

main()
(
int fd;

if((fd=open("mydata".O_RDWR))=- 1)
(
perror(argv[O]) ;
exit(l);
}

Figure 3.20 A system call example.

64 Chapter Three

assigned file descriptor. The valid values for file descriptors are 0 through 1999.
(The use of file descriptors is detailed in Chap. 7.) If the open() system call fails,
it returns a -1 value. The program tests for the -1 value. If the open() system
call fails, the program reports the error and exits. The open() system call fails
if the file named "mydata" is not found in the current directory or the process
does not have the authority to .open the file for reading and writing.

Chapter

4
AIX 3.2 Memory Management

4.1 An Introduction to Virtual Memory

Swapping

Virtual memory is a concept supported by most operating systems. Its primary
purpose is to allow many programs of various sizes to run at the same time by
giving the computer system the appearance of having more physical memory
than it actually has. This is accomplished by supplementing the system's phys­
ical memory with a secondary storage medium such as disk space. Programs
run in virtual memory, unaware of the fact that the virtual memory is a com­
bination of the system's primary storage (physical memory) and secondary
storage (such as disk space). A component of the operating system, the virtual
memory manager (VMM) in the case of AIX 3.2, controls how the physical mem­
ory and secondary storage are used.

Another aspect of virtual memory is that every process has a virtual address
range of byte zero to the highest addressable byte in the image of the process.
Where each byte of a process resides in physical memory when it is accessed is
inconsequential. The VMM translates each virtual address in a process's
address space to its current physical address. Portions of a program's text or
data can reside in any physical memory location at any time.

Early UNIX systems used a virtual memory technique cal1ed swapping. When
a program was executed an entire process image was created in physical mem­
ory. The process image was similar to the process image described in Chap. 3
but was much smaller, as to allow many processes to exist in physical memory
simultaneously. Figure 4. 1 illustrates many processes in memory at once. A
process's image had to be in memory in order for the process to be dispatched.
A process whose image was in memory was said to be "in core." It is common

65

66 Chapter Four

Real Memory

... ,

L. .J

Figure 4.1 Swapping.

Swap Device

for processes to spend much of their time waiting on 1/0 requests to complete
or waiting on some other event to occur. Processes that are waiting are said to
be sleeping and cannot be dispatched. Older UNIX systems would move the
images of slc;ieping processes from physical memory to secondary storage,
which, in this case, was a raw disk partition called swap space. Such processes
were said to be "swapped out." This would free up physical memory for other
processes. When the event waited on by a sleeping process occurred, the oper­
ating system would wake the process, but before the process could be dis­
patched, it had to be . swapped in from swap space to physical memory. Figure
4. 1 illustrates swapping. Swapping had two major disadvantages. It was slow,
since copying entire process images was involved, and it limited the size of a
process.

Demand paging

Most UNIX-based systems today use a virtual memory technique called
demand paging. It was introduced in BSD systems in the early eighties,
although the concept of demand paging was found in mainframe operating sys­
tems prior to that. In demand paging virtual memory, a process's text and data
are carved up into pages of a specified size. Most systems use a page size of 2,
4, or 8 kilobytes. When a program is executed, the VMM allocates physical
memory to pages of the process's text and data as they are required. For
instance, as a process runs, when a particular variable is referenced the VMM
attempts to locate the data page that contains the variable in physical memo­
ry. If the page is found, the contents of the physical memory that holds the
value of the variable are loaded into a CPU register for proc�ssing. If the page
is not found a page fault occurs. The VMM locates the missing page in the sec­
ondary storage and pages it into memory. Once the page is in memory, the value
of the variable can be loaded into a CPU register for processing. With demand
paging, the secondary storage device is called "paging space."

The goal of demand paging is to keep the most popular pages in physical
memory. When available physical memory runs short, the least popular pages

Paging Device

Figure 4.2 Demand paging.

AIX 3.2 Memory Management 67

(those that have not been referenced for a while) are paged out to paging space.
Figure 4.2 illustrates demand paging. Most UNIX-based systems, including
AIX 3.2, use a VMM technique that is a combination of swapping and demand
paging. Most of the time AIX 3.2 uses demand paging to manage memory
requirements. If the system becomes acutely short of free physical memory AIX
3.2 resorts to swapping entire processes in order to prevent a condition called
"thrashing." Thrashing occurs when a system is spending more time moving
pages in and out of physical memory than doing productive work. Thrashing is
described in greater detail shortly.

Author's Note: Some of the old swapping terminology persists today. For
instance, paging space is still sometimes referred to as swap space. AIX 3.2
includes a command called "swapon" that is used to activate a paging space parti­
tion. Finally, the traditional UNIX scheduler process, which is responsible for
arranging ready-to-run processes into run queues according to each process's pri­
ority, also had the responsibility of making sure that when a process was made
ready-to-run (i.e., awakened from a sleep state when a specified event occurred) its
image was swapped into physical memory. To this day, the scheduler still has the
name "swapper," even though it swaps processes only when the system is thrash­
ing. The swapper has process ID zero in AIX 3.2.

4.2 AIX 3.2 Virtual Memory

The RISC System/6000 supports real memory configurations from 16
megabytes to 2 gigabytes and beyond, based on the model. The AIX Version 3
kernel, working with the RISC System/6000 hardware, supports a virtual
memory scheme of 4 petabytes.

Author's Note: A petabyte is one million billion bytes, the level beyond a terabyte.
Four petabytes is the same as 2A52. This is architecturally accomplished by using
a 52-bit virtual address. While the idea of a system with 4 petabytes of virtual
memory might have some programmers salivating with the thought of writing
incredibly large programs, keep in mind that the 4 petabytes represents the total
virtual memory size of the system. All processes must share this address space and

68 Chapter Four

AIX implements a virtual memory scheme that provides 4 gigabytes per process. It
must also be understood that utilized virtual memory must be backed by secondary
storage, specifically paging space. The details of the per process usage of virtual
memory are described shortly.

Virtual memory segments

Segment
Infonnation

Table

AIX 3.2 uses a segmented memory scheme. Architecturally speaking, one can
view the entire 4 petabytes of virtual memory as being carved into segments.
Each virtual memory segment is 256 megabytes. Segments are allocated by the
virtual memory manager as needed by processes and the operating system. The
k�rnel includes a segment information table (SIT) to track allocated segments
in a manner similar to how the process table tracks processes. Theoretically,
the system can support 16 million segments (4 petabytes divided by 256 mega­
bytes). Each segment is identified by a unique segment ID number, much as
each process is identified by a unique process ID number. Segment ID numbers
are often seen within kernel structures defined in header files as variables of
type vmhandle_t. The header file /usr/include/sys/seg.h provides the typedef.

Each segment is carved into virtual memory pages. Each page is 4096 bytes.
The RISC System/6000's real memory is divided up into 4K frames. It is at this
point that virtual memory meets real memory in that the 4K virtual memory
pages of segments are moved in and out of the 4K frames of real memory.
Frames are the holders for the pages. The virtual memory manager uses a page
frame table (PFT) to keep track of the state of real memory frames, and a series
of external page tables (XPT) to keep track of the virtual memory pages. Figure
4.3 illustrates the components of virtual memory.

Page
Frame

s��r� �r:_tsr--ir--i,-,,-,-.-,.-���
II'�

All Virtual Memory -- 4PB

\
Paging Device

Figure 4.3 VMM components.

External
Page

Tables

Segments and
·
processes

AIX 3.2 Memory Management · 69

The AIX virtual memory manager allocates 16 segments per process. Thus the
virtual memory image of an AIX process is 4 gigabytes. The AIX compilers gen­
erate 32-bit effective addresses for each instruction and piece of data per pro­
gram. These 32-bit effective addresses are used as pointers within the
4-gigabyte virtual memory image. Figure 4.4 illustrates the 16 segments that
make up the virtual memory image of a process.

Segment 0-The kernel segment

The AIX kernel is always allocated to segment 0 by the Virtual Memory
Manager. This segment is constant and remains part of every process's virtual
memory image. This emphasizes the fact that the kernel is not a process itself,
but rather a part of every process. Despite the fact that the kernel is part of
every process, a process cannot directly access the kernel. Segment 0 is consid­
ered "off limits" to a process and can only be accessed via system calls.

Segment 1-The text segment

Segment 1 of each process contains the text of that process. The pages from the
text section of the process image (from Chap. 3) are stored here. This indicates
that, under normal conditions, the largest program (set of instructions) sup­
ported by AIX 3.2 is 256 megabytes. Recall that Chap. 3 described load-time

UO Addresses 15
Kernel Data 14
Shared Lib. 1 3

Reserved 1 2
l l

Q) 10 � g
9 "' :;:: c.. j» u.. rl) - "O "' 8 � g_ o; v o. O 7 ::;; "' -a

-0 ::;; c: 6 Q) I 0
3 � :E

5 .c e -o
rl) Q) � 4 ::s '-< 0 3

Private Data 2
Text l

Kernel 0

Figure 4.4 Process segments.

70 Chapter Four

dynamic binding, which allows a program to load additional text into its data
segment.

Text segments can be shared by multiple processes. For example, if three
users on the same system are all running the vi editor, the instructions for the
editor are loaded into memory only one time. Each user's vi process shares the
same vi text pages. Text segment sharing is automatic in AIX 3.2.

The text segment of a process is read-only. The process cannot alter its content.

Segment 2-The data segment

The most interesting segment of a process is segment 2. This segment contains
the initialized data, noninitialized data (BSS), heap, user area, user stack, and
kernel stack, as described in Chap. 3.

The data segment's contents cannot be shared between different processes.
Each process has its own private data segment. The data segment is often
called the "per-process private segment."

Figure 4.5 illustrates the relationship of the process image, as described ear­
lier, to the process's virtual memory segments. The kernel region of the data
segment, which is 1/2 megabyte, can only be accessed by the kernel (for reasons
that are explained shortly). The kernel stack is only used by system calls oper­
ating on behalf of the process. The initialized data, BSS, and heap sizes vary

JJO Addresses 1 5

Kernel Data 14
Shared Lib. 1 3 Kernel Hea
Reserved 1 2 User Arca

1 1 L
Kernel Stack

<l..) 1 0 ::I':. � <l..) d
• ::::: 0.. 9 e;. u. Cl) 0 -0 _g 8 E g_ d

User Stack <l..) o.. Cl 7 :E d -
-0 :;s g 6 <l..) ' 0 !:::' ·-=

VM Hole � � :.; 5 Vi E -o <l..) < 4 :;s
Heap

0
3

ass Private Data 2
Initialized Data

Text
Kernel ()

Figure 4.5 The per-process private data segment.

AIX 3.2 Memory Management 71

with each process. The fact that all of these sections are placed within the data
segment helps one determine the size of the VM hole. The size of the VM hole
is 256 megabytes minus 1/2 megabyte (the size of the kernel region) minus the
initialized data, BSS, heap, and user stack.

As with the text segment, one might assume that 256 megabytes minus the
small amount of space used for the kernel region would afford adequate space
for user data. In most cases this is true. However, there are many applications,
such as geophysical modeling, that require massive amounts of user data. Such
programs can exhaust the available space in the data segment. AIX. Version 3.2
provides the ability to allocate more segments for data storage. This concept,
called the "huge data model," is detailed shortly.

A process has read and write capabilities on most of the pages of its own data
segment. The only exceptions are the pages within the kernel region, which can
only be accessed by the kernel.

Segments 3-1 0-Shared memory or memory mapped files

Every process has 8 of its 16 segments available for use as shared memory
segments or for memory mapping files. Shared memory is a form of inter­
process communication where more than one process accesses the same seg­
ment. Details of shared memory are discussed later in this chapter. Most
UNIX-based systems, including AIX. 3.2, support explicit file mapping, where
the contents of an open file is mapped to data space within the process's image.
In AIX. 3.2, data blocks from an open file can be mapped into pages within seg­
ments 3 through 10. Memory mapped files are explained in Chap. 7.

Segments 1 1 and 12

These two segments are reserved by the operating system.

Author's Note: Although IBM claims that segments 11 and 12 are reserved, I have
found that they will work for shared memory IPC and explicitly memory mapped
files. I advise that programmers avoid using these segments for s.hared memory or
mapped files, however, since the future use of these two segments is unknown.

Segment 1 3-The shared text segment

AIX. 3.2, like most other UNIX-based systems, supports the concept of shared
libraries or, more specifically, shared text. When many programs use common
routines from libraries or other external modules, the text (instructions) from
these routines is loaded into a segment that is shared by all processes.
Relocation code within each program provides a . technique that allows many
different processes, executing many different programs, to shared public ver­
sions of common routines such as printf(). Since AIX. 3.2 uses a segment to store
shared text, a limit of 256 megabytes of shared text space is imposed. Infor-

72 Chapter Four

mation on how to create shared text modules and how the kernel implements
the sharing is provided later in this chapter.

Segment 1 4-The kernel data segment

Like a program, the kernel consists of text (system calls and kernel services)
and data (variables and tables). Most of the code for the kernel is found in seg­
ment 0. Most of the data of the kernel is found in segment 14. For instance, the
process table starts at address OXE0030000. Like segment 0, all processes
share segment 14, although its contents can only be accessed by the kernel.

Segment 1 5-The 1/0 device address segment

This segment is truly a virtual segment, in that no physical memory is ever
assigned to represent it. The virtual memory manager interprets any reference
to an address within segment 15 as a reference to an I/O device. Such refer­
ences are mainly made by device drivers. The virtual-to-real memory transla­
tion discussed shortly does not apply to this segment.

Process segments and the system

0
Kernel

2
Data
(Vil

Figure 4:6 shows three processes and their segments. Two of the processes are
executing the vi editor so they share a common text segment. All three process­
es share the kernel and kernel data segments, as well as the shared text seg­
ment. All three processes have their own data segments. None of the processes
are implementing shared memory or explicitly memory mapped files.

AIX 3.2 allocates segments for other uses. The VMM has two segments allo­
cated for its own use. They are the VMMDSEG (VMM data segment) and the

13
Shared

Text

I
Text
(Vi)

I 1 4
Text Kernel

(ponies) Data

2
Data
(Vi)

2
Data

(POnies)

Segments

Figure 4.6 An example of process and system segments.

AIX 3.2 Memory Management 73

PTA (page table area). The use of these segments is described later in this
chapter.

The VMM also allocates segments to opened ordinary files. The files may.be
local or remote (see Chap. 7). The VMM maps the file's pages into a segment
when the file is opened by a process. The file segment is not one of the process's
16 segments. If a file is opened by multiple processes concurrently, the VMM
only maps the file once. It is never mapped to multiple segments. The process­
es that opened the file access it via the same segment ID number. Figure 4. 7
shows the two VMM segments as well as a file opened by one or more of the
three processes.

The segment information table

The kernel maintains a table to keep track of segments. Each active segment
is represented by a segment control block (SCB) structure. Each SCB is an
entry in the kernel's segment information table. Since segments are allocated
and deallocated as needed, the segment information table's size is dynamic.

Author's Note: AB mentioned in Chap. 1, IBM considers the VMM header files and
codes as proprietary. The files and structures described throughout this chapter
are not shipped with AIX 3.2; therefore, I've avoided mentioning specific field
names.

4.3 The Huge Data Model

0
Kernel

1 3
Shared

Text

2
Data

(m a

I
Text

(onies)

The private data segment of each process provides it with almost 256
megabytes of virtual memory for user data. Some applications, such as engi­
neering and scientific programs that use large multidimensional arrays,

VJ\IM 2
Data YfA Data
Seg. (ksh)

I File System Text
(ksh)

I File A
Text -(m a J

1-1
Kernel
Data

2 File B

-Data
onies)

Segments

Flgure 4.7 VMM and file segments.

74 Chapter Four

require more data space. AIX 3.2 allows a process to claim the virtual memory
of up to eight more of its own segments (segments 3 through 10) for additional
data space. IBM calls this the huge data model.

The AIX 3.2 linkage editor includes an option, -bmaxdata, that allows a pro­
grammer to specify how many additional segments should be available to the
process for data space. Figure 4.8 shows an example of creating an application
that requests five additional segments for data space. Segments 3 through 7
are allocated. The additional data space cannot be used until it is allocated via
the malloc() subroutine (see Chap. 3). Keep in mind that if the application
intends to use all the additional data space it acquires with the -bmaxdata
option, adequate paging space must exist to accommodate the virtual memory.
Another point to remember is that the process in Fig. 4.8 can no longer use seg­
ments 3 through 7 for shared memory IPC or explicitly memory mapped files.

4.4 Virtual Memory Pages

Figure 4.9 illustrates how AIX 3.2 classifies page and storage types. Physical
memory is carved into 4-kilobyte frames. These frames hold the 4-kilobyte
pages of virtual memory. The contents of disk files, which can be programs or
data files, are stored in 4-kilobyte disk data blocks (see Chap. 6). AIX 3.2 carves
paging space into 4-kilobyte slots.

xlc -o myapp myapp.c -bmaxdata:Ox 50000000
-

�

Figure 4.8 The huge data model.

1/0 Addresses

Kernel Data

Shared Lib.
- Reserved -

- Shared Data -

_ or _

Memory-Mapped Files

- More -

- -

Data 1-- -

- Space -

Private Data

Text

Kernel

15

14

1 3

1 2

1 1

1 0
9
8
7
6
5
4
3
2

0

NFS
Server

·�

4K Fra es ·

File Systems

� Slols

AIX 3.2 Memory Management 75

Figure 4.9 Page storage types.

Persistent storage pages

When a program is executed, required pages of the program's code (called text
pages) are brought from disk into memory. The action of loading a page from
disk to memory is called a pagein. When a process opens a data file for 1/0, the
requested pages of the data file are paged in. If a process performs a write oper­
ation on the opened file, the contents of the data file's page are modified. AIX.
3.2 refers to a page of virtual memory whose contents have been changed as a
"dirty" page. Eventually, the VMM will write the dirty page back out to the disk
file, replacing the disk file copy of the page with the modified page. This oper­
ation is called a pageout. The text pages of a program are not allowed to be
modified (recall that a process's text segment is read-only); therefore, text
pages are never paged out. If the physical memory frame holding a process's
text page is reassigned to another page, then the same text page is required
again by the executing program, and the VMM performs another pagein oper­
ation from the same disk data block of the program. This is called a "repage,"
since the page had to be fetched more than once.

Pages that come from disk files, such as program pages and data file pages,
are always paged back out or repaged back in from their original disk location.
IBM calls this technique "persistent storage." Persistent storage pages never
use paging space.

Author's Note: The concept of persistent storage confused one of my students. He
questioned the fact that the VMM would automatically page out a modified page of

76 Chapter Four

a data file without the consent of the user. ''What about when I edit a file with vi?"
he asked. "Does the VMM page out pages of the file I'm editing before I've issued a
save command? I thought vi gave me the option of quitting without saving, thus
aborting the changes made to the pages of the file." What he did not understand
about vi is that it uses a temporary file to store the file that is being edited. When
the user issues the save command (:w), vi writes the temporary copy of the file over
the original file pages in memory. The VMM pages out the modified pages of the
original file at the appropriate time.

The data file illustrated in Fig. 4.9 represents a data file opened directly by a
process. Pages of the data file are paged in when the process calls read(). The data
file pages are modified when the process calls write(). The VMM pages the data file
pages back out to disk when the file is closed or when the syncd daemon flushes all
dirty pages to disk.

Writing persistent storage pages to disk files

The VMM writes dirty persistent storage pages to their respective disk files at
various times. All dirty pages of a data file are paged out to disk when the data
file is closed. If a process writes to a data file sequentially, the VMM pages out
16 kilobytes (four pages) every time it hits a 16-kilobyte boundary, as illustrat­
ed in Fig. 4. 10. A dirty persistent storage page is paged out when the VMM
requires the frame holding the dirty page for another page. All dirty persistent
storage pages are paged out when a sync() operation occurs. AIX 3.2 has a
syncd daemon which is started during system initialization by the /shin/re.boot
shell script. It runs with a parameter of 60, which indicates that it calls the
sync() subroutine once every 60 seconds. In addition, any user can call the sync
command or the sync() subroutine at any time.

Working storage pages

Data File
in Memory

In addition to text pages, processes have data pages. These are the pages that
make up the process's data segment (see Chap. 3). Recall that this segment con-

Physical write of
first four pages
occurs when
application performs
logical write to
first byte of fifth
page

File System

Data File
on Disk

Figure 4.1 O Writing sequential pages to disk files.

AIX 3.2 Memory Management 77

tains the process's initialized global data, BSS, heap, user stack, user area, ker­
nel stack, and kernel heap. Process data are transient. They have no home on
disk and are likely to change during the execution of the process. Since process
data pages do not come from a disk file originally (they are constructed by the
kernel's loader at run-time), they cannot be treated as persistent storage pages.
They are called "working storage pages" and are paged in and out of paging
space.

The pageable portion of the AIX 3.2 kernel is working storage. It pages in and
out of the system's paging space. Figure 4.11 illustrates the 16 process segments
and indicates which are persistent storage and which are working storage.

Client storage pages

The network file system (NFS) provides processes the ability to access files
stored on remote systems. It does so by implementing a virtual file system (see
Chap. 8) that makes a remote file look as though it is stored locally. Processes
are not aware that the NFS files they open are stored remotely. When a process
reads or writes to a remote file, NFS pages the file across the network. The
VMM assigns a segment to a remote file in the same fashion as it assigns seg­
ments to local files, except the segment is called a "client segment."

Remote file pages can be text or data file pages. If a process opens a remote
data file for 110, pages of the data file are paged in and out of the original disk
file across the network. NFS implements a file locking scheme to control con­
current access to the file by multiple NFS clients. If a process executes a pro­
gram that is stored on an NFS server, NFS pages the program's text pages to

I/O Addresses 15 NIA

1--
-Ke_m_e_l_D_ata_--1 · 14 Working Storage

Working Storage
Shared Lib. 13

Reserved

Private Data

Thxt

Kernel

12

1 1 �o�
8

Working Storage if Shared Memory
or Additional Data Space

7
6 Persistent or Client Storage if

:/__.._Mk
2 Working Storage .

l Persistent or Client Storage

0 Working Storage

Figure 4.1 1 Process segment types.

78 Chapter Four

the client. Since the text pages are read only, they need not be paged back to
the server. If the VMM requires a frame that is holding a client text page that
has not been referenced in a while, instead of discarding it, the VMM pages the
client text page to local paging space where it can be retrieved if needed later.
This reduces the possibility of a large number of network repages. Figure 4.12
illustrates client storage.

The page frame tables

NFS Client

Real Memory

The AIX. 3.2 kernel maintains two tables to track physical memory frames.
They are the page frame table hardware (PFTHW) and the page frame table
software (PFTSW). Despite the name, the page frame table hardware is part of
the kernel software. The PFTHW and PFTSW are twin tables with one entry
for each frame of physical memory. The PFTHW contains fields that describe
the hardware state of each physical memory frame. It is this table that is used
by the VMM to determine how memory is currently allocated. Many of the
PFTHW fields are updated directly by the system hardware. The PFTSW con­
tains fields used by the VMM to perform memory aliasing, which allows a phys­
ical memory frame to contain a page that is mapped to different virtual
addresses from multiple processes. Memory aliasing supports memory mapped
files and the mmap() subroutine. The PFTSW also keeps statistics on each
physical memory frame.

Author's Note: To simplify discussions in this chapter, the PFTHW and PFTSW
tables will be referred to as the page frame table (PFT).

NFS
Server

Pageiu/Pageout
across the network EJ�

Pagein across
the network

Paging Device

= � 1 1
Figure 4.1 2 Client storage pages.

AIX 3.2 Memory Management 79

The size of the PFT is determined at system initialization and is static, since
the amount of physical memory cannot change without a system restart. The
PFT can be very large, up to 1 megabyte. Each entry in the PFT describes a
frame of physical memory. Fields include the segment ID and page number for
the page currently occupying the frame, a flag to indicate whether the page in
the frame has been referenced recently, and a flag to indicate whether the page
in the frame is dirty (has been modified since it was last written to disk). Figure
4. 13 illustrates an excerpt from the PFT.

Page replacement

sidpno

- �

The key role o f the VMM i s to make sure that pages required by processes or
the operating system are in physical memory. If they are not, the VMM must
fetch them from secondary storage (paging space, in the case of working stor­
age, or the file system, in the case of persistent storage). The access pattern of
virtual memory pages by processes shows that pages are either accessed
repeatedly or accessed infrequently. The goal of the VMM is to keep frequently
accessed (popular) pages in physical memory. The VMM must also maintain an
adequate number of available physical memory frames on a free list to accom­
modate activities such as the prefetch (read ahead) algorithm used during the
sequential reading of a file. In order to accomplish these tasks, the VMM must
occasionally select pages found in physical memory frames for replacement. It
attempts to replace pages that have not been referenced in a while. The actual
page replacement· algorithms are discussed below.

The VMM maintains a threshold parameter called minfree that defines the
minimum number of physical memory frames on the free list. When the num­
ber of free frames drops below this point, the VMM runs a page stealer routine,
which uses the page replacement algorithm to free memory frames. It uses
another parameter, maxfree, to indicate how many frames must be freed by the

refbit mod bit lock bits
tree 11st tree 11St

status bits pincount ��� .. i..n�I,

--- ----

Each entry con-esponds to a frame of physical memory

Figure 4.1 3 The page frame table.

80 Chapter Four

page stealer. The default value for minfree is 120 frames. The default value for
maxfree is 128 frames. Both minfree and maxfree can be tuned, as described
later in this chapter.

Figure 4.14 uses an excerpt from the PFT to illustrate how the page stealer
works. When the number of free frames of physical memory drops below the
value of the minfree parameter, the page stealer begins scanning entries in the
PFT looking for pages to steal. It determines whether a page sb,ould be stolen
by examining the reference flag. If the reference flag is turned on, it indicates
that the page has been recently referenced. In that case, the page stealer turns
off the reference flag and moves on to the next frame. If the r:eference flag is
still turned off the next time the page stealer examines that frame, the page is
stolen.

Author's Note: One of my students dubbed this the "Arnold Schwarzenegger algo­
rithm." If the reference flag is turned on, the page stealer turns it off and says, "I'll
be back." If the reference flag is still turned off when the page stealer comes back
around to the frame, it's "Hasta La Vista, Baby!"

When the page stealer finds a PFT entry with the reference flag turned off,
it selects the page in that frame for stealing. If the dirty flag is not turned on,
the frame is placed on the free list. If the dirty flag is turned on, the page is
scheduled for pageout and the frame is placed on the free list. The page is not
actually paged out until another page needs the frame.

Page Stealer
sidpno retbit modbit lock bits

free hst free list
status bits pincount forw h .. ,.1r

1 30800005 off off

1 8ed0014' off on

a2.J000 1 3 on on

1 27500001 on OD

----- off off r · •

1 8ed001 .J7 on on • ' ----- off off . . _J
1 30800002 off on

1 8ed001 50 off off

1 8ed001 5 1 on OD

1 8ed001 52 on OD

2f! 662443 off off

980000 1 2 on off

Figure 4.1 4 The page stealer and the page frame table.

AIX 3.2 Memory Management 81

The pages of frames that are placed on the free list are not lost until anoth­
er page uses the frame. This allows a process to access a page that is on the free
list. When this occurs, the VMM turns the reference flag back on and the page
is saved. AIX 3.2 calls this a page reclaim.

The VMM includes a table called the page device table (PDT). Pages sched­
uled for pageout are logged in this table until they are actually paged out. The
size of the PDT is 256 entries.

When the page stealer steals enough pages to bring the number of free
frames to the maxfree parameter, it stops. The next time it runs it starts where
it left off. When the page stealer makes a complete pass through the PFT it is
called a cycle. Many performance . measurement tools report statistics on
pageins, pageouts, page steals, reclaims, and cycles.

Computational pages and data file pages

For performance reasons, AIX 3.2 differentiates between computational pages
and data file pages. Computational pages are made up of processes' text and
data. The VMM tracks and limits the total number of file pages that are in
physical memory. Two parameters, minperm and maxperm, are used to set
thresholds for data file pages. They are expressed as percentages of physical
memory. When the percentage of data file pages in physical memory drops
below the minperm value, the page stealer steals equally from data file pages
and computational pages. When the percentage of data file pages in physical
memory climbs above the maxperm value, the page stealer steals only data file
pages. When the percentage of data file pages in physical memory is between
the values of minperm and maxperm, the page stealer steals only data file
pages unless the repage rate for file pages is higher than the repage rate for
computational pages, in which case computational pages are also stolen.
Figure 4. 15 illustrates this relationship. The default value for minperm (in
pages) is (number of memory frames - 1024) * .2. The default value for max­
perm (in pages) is (number of memory frames - 1024) * .8.

The prefetch algorithm

The AIX 3.2 VMM performs read ahead when it detects that a file is being
accessed sequentially. It saves time by prefetching consecutive pages from disk
in anticipation of their need. When a process accesses two consecutive pages of
a data file, the VMM schedules additional reads. The number of pages read by
the VMM is determined by the threshold parameters minpgahead and maxpg­
ahead. The minpgahead parameter specifies the number of pages to prefetch
when the VMM first detects that a file is being accessed sequentially. The
default value is two. The size of each subsequent prefetch is double the previ­
ous pref etch size; therefore, if minpgahead is two, the first pref etch reads two
pages. The second prefetch reads four pages. The third prefetch reads eight
pages, and so forth. The doubling of the prefetch size ends when the number

82 Chapter Four

Physical Memory

· =
• • I
� � �

c . � •

mm
Data File

I ._ ..._ -
..._ ..._

- .

I

--...
___.,,

Process

- •
II Data Segment

•
I I Text Segment

I Comput ational Page

I Data Fil e Page

Figure 4.1 5 Computational and data file pages.

reaches the value of the maxpgahead parameter, which has a default value of
eight. Each prefetch overlaps the process's access requests. Figure 4.16 illus­
trates the prefetch algorithm using the default values for minpgahead and
maxpgahead.

In the example above, the first access by the process causes no assumptions
to be made by the VMM. When the process accesses the first byte of the next
page of the file, the VMM responds by fetching minpgahead number of pages.

Data or Program File
- - - - - - - - - - - - - - - - - - - -0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 16 1 7 1 8 1 9

H When page 0 accessed, no read ahead

1---+---I When page 1 accessed, minpgahead pages read

H i---------11 When page 2 accessed, 4 more pages read

H
When page 4 accessed, maxpgahead pages read

H ...
When page 8 accessed, maxpgahead pages read

Figure 4.1 6 The prefetch (read ahead) algorithm.

AIX 3.2 Memory Management 83

/usr/lpp/bos/samples/vmtune -P 50

min perm
1433

maxperm minpgahead maxpgahead
6554 2 8 .

minfree
56

maxfree
64

numperm
1532

number of memory frames=8 192 number of bad memory pages=()
maxperm=80% of real memory
minperm=17.5% of real memory

min perm
1433

maxperm minpgahead maxpgahead
4096 2 8

minfree
56

maxfree
64

numperm
1532

number of memory frames=8 l 92 number of bad memory pages=O
maxperm=50% of real memory
minperm=l 7.5% of real memory

Figure 4.1 7 The vmtune command.

When the process accesses the first byte of the first pref etched page, the VMM
prefetches an additional four pages. When the process accesses the first byte of
the second set of prefetched pages, the VMM prefetches an additional eight
pages. Once the VMM has reached the value of maxpgahead it continues to
prefetch that many pages. This entire algorithm stops if the process accesses
any nonconsecutive page from the file.

VMM tunable parameters

The VMM parameters listed in this section are tunable. AIX 3.2 includes a com­
mand called /usr/lpp/bos/samples/vmtune that is used to examine or change the
values of minfree, maxfree, minperm, maxperm, minpgahead, and maxpg­
ahead. It is stored in the samples directory because it is release-specific and
tightly coded to the VMM of each version of AIX. The samples directory also
includes the source file vmtune.c and a README file for specific information.

When vmtune is executed with no arguments it displays the current para­
meter values. When vmtune is executed with arguments it displays two sets of
values. The first set indicates what the parameter ,values were prior to malting
any changes. The second set indicates the parameter values after applying the
desired changes. Figure 4. 17 illustrates examples of the vmtune command.

The vmtune command uses the following options:

-f minfree (number of frames)

-F maxfree (number of frames)

84 Chapter Four

-p minperm (percentage of physical memory)
-P maxperm (percentage of physical memory)
-r minpgahead (number of pages)
-R maxpgahead (number of pages)

Author's Note: The values for minperm and maxperm are expressed as a percent­
age of physical memory even though the formula described earlier in this chapter
for determining the default values was expressed in pages.

Consult the AIX 3.2 Performance Tuning Guide (SC23-2365-03) for details on
tuning the VMM parameters. This guide is also found within lnfoExplorer.

VMM and system administration

The two main concerns of a system administrator when it comes to the VMM
are malting sure the system has enough physical memory to support the work­
load· and malting sure the system does not run too low on av�able paging
space.

Without enough physical memory the system thrashes. That's when the sys­
tem is spending more time shuffi.ing pages from primary to secondary storage
than perforining useful work. There are two solutions to thrashing. One is to
reduce the workload of the system by eliminating unnecessary processes or
rescheduling jobs for nonpeak hours. The second solution is to add more phys­
ical memory.

AIX documentation states that one can identify a thrashing system by run­
ning the vmstat command and comparing the number of pageouts (po) to the
number of pages freed by the page stealer (fr). If the number of pageouts is con­
sistently greater than 17 percent (one-sixth) of the number of pages freed by
the page stealer, the system is thrashing. AIX 3.2 has an algorithm to reduce
the effects of thrashing. It is described in Chap. 5 .

Author's Note: You usually don't need to run vmstat to figure out that the system
is thrashing. The disk drives will begin to chatter and response time will slow dra­
matically!

Running low on available paging space slots can be an even bigger problem
than thrashing. The system handles the situation in stages. When available
paging space slots reaches the first low water mark the system prohibits the
creation of new processes via the fork() system call. Processes attempting to
fork() will retry five times at a specified frequency before returning a failure
condition. (See Chap. 5 for a description of the fork() system call.) This way the
system is able to stop new processes from being created since there is not
enough paging space available to support their working storage requirements.
Unfortunately, this action may not be enough to alleviate the problem. Existing
processes may use malloc() to grab more virtual memory, thus more paging
space.

AIX 3.2 Memory Management 85

When the system reaches another low water mark of available paging space
slots, it sends a SIGDANGER signal to all processes. (See Chap. 10 for an
explanation of signals.) The SIGDANGER signal is unique to AIX. 3.2.
Unfortunately, the default action for a process receiving a SIGDANGER signal
is to ignore it. A process must register a signal handler to deal with the SIG­
DANGER signal, or the process can call psdanger() to query the status of avail­
able paging space. See the manual page for the psdanger() subroutine or the
example program in the Performance Tuning Guide found in InfoExplorer. An
appropriate action upon receipt of a SIGDANGER signal is to gracefully ter­
minate the process, lest · the operating · system does it nongracefully, as
described in the next paragraph.

When a final low water mark of av¢lable paging space slots is reached, the
system has no choice but to terminate processes. It sends SIGKILL signals,
which cannot be trapped or ignored, to those processes that are consuming the
most virtual memory. These processes are immediately terminated.

Author's Note: The · system often terminates. the X display server, which causes
the termination of all window clients and their children. You've lost just about
everything but at least you don't have a paging space shortage anymore! In tradi­
tional UNIX fashion, the only message the user receives when . this happens is
"Process killed." At least the cause is easy to identify. The lsps command displays
the paging space devices and their utilization percentages. If the utilization is
greater than 85 percent, you should consider adding more page space.

AIX. 3;2 offers two· options for increasing the paging space. Existing paging
space logical volumes can be extended dynamically or new paging space logical
volumes can be created and activated dynamically. If the system has multiple
physical volumes (fixed disk drives) it is usually better to create a new paging
space logical volume, as long as it is placed on a physical volume that does not
already have a paging space logical volume or any other busy logical volume.
The VMM uses a round-robin technique for allocating slots of paging space to
virtual memory. If it is later determined that an additional paging space logi­
cal volume is not required, one can remove it. The process of removing a pag-

. ing space logical volume is not difficult but it does require a system restart. The
system management interface tool (SMIT) has an option for deactivating a pag­
ing space device upon the next system restart.

If the system has only one physical volume or the other physical volumes are
already heavily utilized, it is best to extend the size of the current paging space.
The drawback to this is that it is very difficult to reduce the size of the paging
space logical volume if it is later determined that it need not be so large.

Author's Note: IBM recommends that the total paging space size be 1.5 to 2 times
the size of physical memory at smaller memory sizes. I usually allocate 2.5 times
the size of physical memory for systems with 16, 32, or 64 megabytes of random
access memory (RAM). In theory, as a system's physical memory increases the ratio
of paging space should decrease since the system should do less paging. This is not
always true, however. The most important factor in determining a system's paging

86 Chapter Four

space requirements is the applications running on the system. Since AIX 3.2 uses
persistent storage for data files, commercial applications that perform a lot of file
IIO, such as data bases, do not require as much paging space as applications that
process a lot of data, such as graphical engineering and scientific applications. The
bottom line is that your system should always have at least as much paging space
as it has physical memory.

The AIX 3.2 malloc() subroutine and paging space

AIX 3.2 uses a late allocation technique for paging space when processes call
malloc(). This means that paging space slots are not allocated to the process's
working storage until the process references pages within the memory region
returned from malloc(). As each page of memory is accessed by the process, a
paging space slot is allocated. This can lead to a potential problem. If many
processes use malloc() to allocate large chunks of virtual memory, the system
does not verify that there is enough paging space to accommodate the requests,
since the allocation of paging space may never actually occur. If all of these
processes then begin to reference large amounts of the space they acquired
with malloc() the system might run out of paging space. This is where it is
important to monitor paging space utilization with the psdanger() subroutine
or by trapping the SIGDANGER signal.

Author's Note: This reminds me of the way the airlines overbook flights. They
know, from historical data, that they can count on a certain percentage of no-shows.
Therefore, they reserve more seats than actually exist. AIX 3.2 might promise more
paging space than actually exists with the idea that processes don't always use
everything they have asked for with the malloc() subroutine. This has sparked the
debate regarding standards compliance described in Chap. 2. On most systems,
malloc() fails if there is not enough paging space to honor the request. This may
cause some programs that run correctly on other UNIX-based systems to fail when
ported to AIX 3.2.

4.5 Address Translation

This section describes how the VMM translates addresses that find data and
instructions in physical memory.

In order for a process to run, its instructions must be loaded into the RISC
System/6000 or PowerPC processor pipeline. In order for a process to manipu­
late its data, the data must be loaded into CPU registers. A hierarchy of system

· resources is involved in the execution of a process, as shown in Fig. 4. 18. CPU
resources, the instruction pipeline, general-purpose registers, and floating­
point registers are the scarcest resources. If a desired piece of data is located in
a CPU register, access time is very fast; however, only a small amount of data
can occupy the CPU registers at a time.

Traditionally, data and instructions are kept in memory. Load and store oper­
ations move the data and instructions to and from the memory and CPU. While

Scarcest

Most Plentiful

Caches
Data and Instruction Caches

(Level 1 and Level 2)

Primary Storage
Physical Memory

SecondaJy Storage
Paging Space

Most Expensive

Least Expensive

AIX 3.2 Memory Management 87

Figure 4.1 8 System resources.

there can be an abundance of memory (compared to CPU registers), locating a
line of code or piece of data in memory is time-consuming. To help speed up the
search, many computer systems, including the RISC System/6000 and
PowerPC, implement multiple levels of memory caching. The caches, while
more abundant than CPU registers but scarcer than memory, hold the most
recently referenced data and code. If a desired piece of data or instruction is
found in one of the caches, the access time is still very fast. If the desired data
or instruction is not found in one of the caches, a cache miss occurs and the
search continues throughout the entire physical memory.

If the desired piece of data or instruction is not found in physical memory, a
page fault occurs. This means that the virtual memory page that contains the
desired data or instruction has been paged out or was never paged in. The
VMM must locate the missing page and fetch it into memory. This takes the
greatest amount of time, but secondary storage via disk-based paging space is
the most abundant and least expensive resource.

There are three different types of addresses associated with every program
instruction or piece of data. When a program is compiled, the compiler assigns
an effective address to every line of code and every piece of data in the program.
An effective address in AIX 3.2 is 32 bits, which represents 4 gigabytes, the
total size of a process's image. The VMM converts the 32-bit effective address
into a 52-bit virtual address; 52 bits represent the 4-petabyte virtual memory
size of AIX 3.2. The 52-bit address is then translated by the VMM into a 32'-bit
real address, which is used to locate the desired instruction or data in physical
memory or secondary storage. Figure 4. 19 illustrates the translation process.

Jn order to find a piece of data or a machine instruction, the VMM needs to
know three things. First, the VMM must determine which segment holds the

88 Chapter Four

2. Uses Virtual Address to
search Data or Instruction
Cache

1. Convens Effective Address
to Virtual Address (which
identifies the Segment, Page
Number and Page Offset

3. As Cache is searched,
Vutual Address is used to
search Translation Lookaside
Buffer

S. Miss causes Page Fault.
External Page Tables or
In-Core !node searched
for Secondary Storage
Location

4. As Cache and TLB are
searched, Virtual Address is
used to search Page Frame
Table

Figure 4.1 9 The address translation process.

desired object. Second, it must determine which page within the segment holds
the desired object. Finally, the VMM must determine at which byte within the
page the desired object begins. The last component is known as the page offset.
Recall that there are 16,777,216 possible 256-megabyte segments in the 4
petabytes of virtual memory. There are 65,536 possible 4-kilobyte pages in a
256-megabyte segment. There are 4096 bytes in each page. The next section
explains how the VMM locates the segment, page, and byte offset for a piece of
data or instruction.

The effective address

As mentioned earlier, the compiler assigns a 32-bit effective address to every
machine instruction (line of code) and every piece of data in the program. To
illustrate how the VMM performs address translation, assume the following
line of code from a program:

printfl:"The answer is %d. \n", a);

. The program must pass the value of the variable "a" to the printfl:) subroutine.
The system must locate the variable "a" so that its contents can be loaded into

4 bits

Segment
(0-15)

16 bits

Page Number
(0-65535)

Figure 4.20 The 32-bit effective address.

12 bits

Page Offset
(0-4095)

AIX 3.2 Memory Management 89

a CPU register. The compiler generated a 32-bit effective address for "a" when
the program was compiled. The VMM starts with that address, which is carved
up as shown in Fig. 4.20.

The first 4 bits of the address are used to identify the segment that holds the
variable. Four bits allows up to 16 segments to be referenced. This is a far cry
from the possible 16,777,216 segments mentioned above, but recall that a
process has 16 segments. All that is needed for now is the segment number
within the process. The 16 bits from the middle of the effective address indicate
the page number within the segment. The 16 bits can reference up to 65,536
pages, or the number of pages in a segment. The last 12 bits indicate the byte
offset of the object (in this case, the storage location of the variable "a") within
the page.

The first step involves transforming the 4-bit segment number within the
process into a 24-bit segment identifier for all of virtual memory.

Segment registers

The RISC System/6000 and Power PC include a set of registers called the seg­
ment registers. There are 16 segment registers. They hold the segment ID
numbers for the 16 segments of the current process. During address transla­
tion, the VMM uses the first 4 bits of the effective address to index into the seg­
ment registers. Each segment register holds a 32-bit value, although only 24
bits are returned for address resolution. The 24 bits represent the unique seg­
ment ID number (24 bits can reference up to 16, 777 ,216 segments). Figure 4.21
illustrates how the segment registers are indexed for the variable "a." The first
4 bits of the effective address for "a" would be 0010 since the variable is data
and would be found in a process's data segment (segment 2).

The 24-bit segment ID is attached to the remaining 28 bits of the effective
address to form the 52-bit virtual address. The 52-bit virtual address is capa- ·

ble of referencing any byte of the 4-petabyte virtual memory range. Now the
search for the variable "a" begins. Figure 4.22 shows how the search takes
place. It is not a sequential search, but rather a parallel search. The 52-bit vir­
tual address is used many ways by the VMM during the search, as illustrated
in the following sections.

Data/instruction caches

As mentioned earlier, many computer systems' CPUs include data and instruc­
tion caches that serve as a form of fast memory. They hold copies of the most

90 Chapter Four

Effective Address of
Variable "a"

Segment
Information

24-bit Segment ID

Segment
Registers

Figure 4.21 The segment registers.

32-bit Effective Address
4 bits l 6 bits 1 2 bits

�
24 bits .J6 bits 12 bits

52-bit Effective Address

LI Cache L2 Cache TLB

Figure 4.22 Cache and memory searching.

Software

... � �
Hardware

recently accessed data and instructions from memory. The RISC System/6000
and PowerPC implement data and instruction caches for such a purpose. The
sizes of these caches are model-specific. Consult the hardware specifications for
your particular system for details. This example assumes that the data cache
size is 128 kilobytes.

Banko Ban kl Bank2

• • • • • • • • •

1111 Data ,. Data - Data
• • • • • • • • •

Bank3
Data
Data
Data

• • •

-:�: Data
• • •

Data
Data

128 bytes

AIX 3.2 Memory Management 91

Line O

Line 1
Line 2

Congruence Class

Line 254

Line 255

Figure 4.23 The data cache.

Each cache line is 128 bytes long. The data cache is four-way set associative,
which means that there are four banks of 128-byte lines; For a system with 128
kilobytes of data cache, such as the example here, there are 256 cache lines in
each bank. The combination of the four corresponding cache lines from the four
banks is called a congruence class, so the cache in this example would have 256
congruence classes. Figure 4.23 illustrates the data cache configuration for the
example . .

For cache searching, the 52-bit virtual address derived from the 32-bit effec­
tive address is carved up as shown in Fig. 4.24. The rightmost 7 bits represent
the cache line offset since 7 bits can represent up to 128 bytes. The next right­
most 8 bits represent the line number in the cache, since 8 bits can represent
up to 256 congruence classes. The leftmost 37 bits represent a tag, which is
used to uniquely identify the correct cache line when a congruence class is
searched. Each 128-byte cache line includes a 37 -bit tag prefix. This way, the
cache search is done by vectoring to the correct congruence class, then com­
paring the four tags with the virtual address tag. If a match is found, there is
a cache hit and the line offset from the virtual address is used to load the CPU
register. If no tag match is found, a cache miss occurs. While this very fast
search is taking place, other searches are progressing in parallel, so a cache
miss simply ends the cache search.

Level 2 caches

Some RISC System/6000s and PowerPC models include an L2 cache. L2 caches
· are larger than the primary data cache described above but take longer to
search. The L2 caches are direct mapped, instead of four-way set associative.
There are 8192 lines of 128 bytes each. For L2 caches, the virtual address is
carved up as shown in Fig. 4.25. The rightmost 7 bits still reference the line off-

92 · Chapter Four

Banko

=
• • •

Data

• • •

Bankl

•
• • •

Data

• • •

Figure 4.24 Searching the data cache.

;

Bank2

• • •

52-bit Vi.rtual Address

Tag I Line No. I Line Off. I .
37 bits 8 bits 7 bits

Bank3
Data Line O
Data Line I
Data Line 2

• • •

- Data · t• Data

• • • • • •

Data

Data r 128 bytes 1 r 128 bytes 1

52-bit Vntual. Address

Line 254
Line 255

Tug I Line No. I Line Off. I
32 bits 1 3 bits 7 bits

Data Line O
Data Line I
Data Line 2

• • •

Data

• • •

Data Line 8190
Data Line 8191

Figure 4.25 Searching the L2 cache.

AIX 3.2 Memory Management 93

set, but the next rightmost 13 bits reference the line number, since 13 bits can
reference up to 8192 cache lines. The remaining 32 bits serve as the tag.

The translation lookaside buffer

The translation lookaside buffer (TLB) is another hardware cache that keeps
track of the most recently referenced pages and their current real memory loca­
tions. It can hold up to 512 references. It is two-way set associative and has 256
congruence classes. The 52-bit virtual address is carved up as shown in Fig. 4.26
for searching the TLB. The leftmost 32 bits represent the tag. The next 8 bits
indicate the TLB line number. If a tag match is found, the TLB returns the 20-
bit physical memory frame. The 20-bit frame number is reattached to the right­
most 12 bits from the effective address (the page offset bits) to form the 32-bit
real address. If a tag match is not found, the desired page may still be in phys­
ical memory, but now the search takes place in the software.

The hash anchor table and page frame tables

BankO

While the system is searching the caches and TLB, the VMM is also searching
for the desired page by looking through the page frame tables. Since this is

· done in software, it is much slower than any of the examples presented so far.
As mentioned earlier, the PFT contains· one entry for every physical memory
frame. Its size, which can be quite large, is configured at system initialization
and never changes.

·

• • •

• • •

Bankl

52-bit Virtual Address

Tug I Line No. I Page Off. I
32 bits 8 bits 12 bits

Frame # Line 0
Frame # Line 1
Frame # Line 2

• • •

• • •

Frame # Line 254

Line 255
+-----!

Figure 4.26 Searching the TLB.

94 Chapter Four

Page faults

To speed the PFT search, the kernel maintains a hash anchor table (HAT).
Hashing is performed on the leftmost 40 bits of the 52-bit virtual address (the
segment ID and page number). A value from the HAT indexes to the head of a
linked list found in the PFT. The PFT uses linked lists to chain all pages that
share common segment IDs. Only the linked list must be searched, which
reduces the search time. The search is performed using the segment ID num­
ber and the first three bits of the page number. If a match is found, the index
value of the match in the PFT is used as a 20-bit frame ID. The 20-bit frame ID
is attached to the 12-bit page offset from the original effect address to form the
real address. The entire 128-byte memory line that corresponds to the real
address is loaded into the data cache, possibly replacing another line. The tag
in the data cache line is updated to reflect the new contents of the cache line.
The value at the desired address is loaded into a CPU register. Figure 4.27
illustrates the PFT search. If the PFT search does not yield a match, a page
fault occurs and the VMM must look to paging space if the desired page is
working storage (as with the example of variable "a"), or a file system if the
desired page is persistent storage.

'

The VMM uses a series of tables called external page tables, or XPTs, to keep
track of working storage pages on paging space. AIX 3.2 allocates one XPT for
each working storage segment. It is used by the VMM to locate working stor­
age pages in paging space.

An interesting characteristic of the AIX 3 .2 XPTs is that they, themselves,
are pageable. This is to allow them to grow to a size adequate to handle the

User Memory Kernel Memory

4K

Dl:- Real Address
l Frame No. l Page Off. I

j l

52-bit Virtual Address l Seg. ID l Page No. l Page Off. I
I u bits 16 bits I 12 bits I

40 bits I I �---

I 21 bits Ii----......
20-bit � ...
Frame Number ,--- Page

� Frame
w== Table

J I Hash
Anchor
Table

Figure 4.27 Searching the page frame table.

AIX 3.2 Memory Management 95

large virtual address space of AIX 3.2. Since the XPTs are pageable it's possi­
ble that the VMM can experience a page fault while resolving a process's page
fault. When this happens, the VMM must first locate and page in the missing
page of the XPT. It can then finish locating the missing page to resolve the orig­
inal page fault. This double page fault resolution is called "back tracking." The
frequency of back tracking is reported by the vmstat command. See the manu­
al page for vmstat for details.

Figure 4.28 illustrates how the XPTs are configured. Each XPT has a pinned
anchor structure, called an xptroot, that allows the rest of the XPT to be paged
out. The size of the xptroot structure is 1024 bytes. Each one holds up to 256
pointers to XPT data blocks. Each XPT data block, defined as an xptdblk struc­
ture, holds up to 256 XPT entries. These entries identify the locations of work­
ing storage pages using 4 bits to identify the paging space logical volume (there
is a system limit of 16 paging space logical volumes) and 24 bits to identify the
block number.

Persistent storage segments do not use XPTs . Since the data block addresses
of a local disk file are maintained in a structure called an inode (see Chap. 6)
and this structure is cached in the kernel when a file is open, the VMM uses the
inode information to locate missing pages of the file. Figure 4.29 illustrates how
this works. See the section called "Linking an In-Core Inode to a File Segment"
in Chap. 7 for more information.

Pinned
User Memory Kernel Memory

Pageable
Kernel Memory

XPfs r - - - - - - - ,

I xptroot I __.....{] I xptdblk 0
I structure�-0

Segmeotllftttm:::C:::o I
Iofo1'111lltioo I � I : I

Table · � _ _ _ �� � xptdblk 255

� � ;;;tr�ot- i � � xptdblk 0 �--+ structure�O I
1 �1--0
I mi:im-L : I

Figure 4.28. External page tables.

1 ,-....__[] 1 xp1db1k 2ss
L - - - ; - - - .J

Paging Space

96 Chapter Four

;52-hjt Yimial Address � 16 16-bit Paae No.

1 24 Workina Seament

t I ·
I I 24-bit Segment ID �1---+--+-----+--+-

Persistent Segment

File lnode I
Segment I I Information

Table

Paging Space File System

Figure 4.29 Handling a page fault.

4.6 The VMM Segments

AB mentioned earlier in this chapter, the VMM has two segments of its own, the
VMMDSEG (VMM data segment) and the PTA (page table area). The VMMD­
SEG contains most of the tables discussed in this chapter, as well as miscella­
neous VMM variables. The VMMDSEG includes the page frame tables, the
hash anchor table, the page device table, and the segment information table. ·

The page table area holds the external page tables. It includes a set of area
page map (apm) structures at the beginning of the segment. Each apm struc­
ture defines the status of a page within the PTA. Figure 4.30 illustrates the lay­
out of the PTA segment.

4.7 The Shared Text Segment and Shared Libraries

Segment 13 of every process is the system's shared text segment. It contains
the code of subroutines linked from a shared object file or shared library. This
allows many processes to access the same memory location · for a commonly
used subroutine instead of each process having its own private copy of the sub­
routine. The section explains why shared libraries are important and describes
how to create them.

Why shared text?

Author's Note: The term "shared library" is misleading in AIX 3.2 because it's the
objects in the libraries that are either sharable or nonsharable. A library might con­
tain a mix of both shared and nonshared objects.

Before the days of shared text, all code found in UNIX process at program run­
time was private. This meant that if a dozen processes, all executing different

§
Area
Page
Maps

Segments

Pa e Table Area

�
�
�

xptroot .
Structures

VMM Data Segment

Segment HAT PFT
Information

Table

AIX 3.2 Memory Management . 97

Figure 4.30 The VMM segments.

programs, included references to the printf() subroutine found in the standard
C library, each process had its own private copy of the text for the printf(). One
can easily see that memory is being wasted, especially considering that the text
never changes.

The concept of shared text means that the code for commonly referenced sub­
routines is placed in a global memory location that can be accessed by any
process. That is exactly what segment 13 of every AIX 3.2 process is, a common
location for shared text. Figure 4.31 contrasts nonshared text with shared text
in.AIX 3.2. Since every subroutine includes data, which cannot be shared among
different processes, they are loaded into the process-private data segment.

In addition to reducing the memory requirements of proces�es, shared text
can also reduce paging activity because frequently referenced pages of shared
subroutines tend to stay in physical memory more often. There is one draw­
back, however, to shared text. Its location in segment 13 causes an executing
process to have a poorer locality of reference, which means that the virtual
memory pages touched by the process are further spread out than they would
be if the shared text were private. The AIX Performance Tuning Guide suggests
trying application with shared and nonshared versions of object files or
libraries to determine if the use of shared text degrades process performance.

Creating a shared object

Figure 4.32 provides an example of how to create a shared object. The source
code file red.c includes a subroutine called red(). An export file is created for the
object so that dynamic binding can be implemented. See Chap. 3 for details on
dynamic binding and export files. The source code file is compiled into the

98 Chapter Four

Linking to a
Nonshared Object

Linking to a
Shared Object

Data

Text

Nonshared
Object

Process
Image at
Run-time

1 5
1 4
1 3

2
1
0

Data
Text

Shared
Object

Process
Image at
Run-time

1 5
1 4
1 3

1
0

Figure 4,31 Nonshared vs. shared text.

object file red.o. The Id command is then used with the -bE:red.exp option to
identify the export file. The most important option is -bM:SRE, which desig­
nates the object file as shared. The option means "Mode: Shared Reusable" (or
reentrant). This is all that is required to make the object shared. See Chap. 3
for a description of the other options given with the Id command.

An object file that is marked for shared text has the valu� "RE" stored in the
o_modtype field of the auxiliary header portion of its XCOFF file. See Chap. 3
for an explanation of the XCOFF file. A simple C program can be written to test
the value of this field to determine if an object file has been marked for shared
text.

recl.c

I � I �Export list fur red.o

xlc -c red.c
Id -o red.o red.o -bB:red.exp -bM:SRB -e red -le

Figure 4.32 Creating a shared object.

red.o blue.o

EJ EJ
green.o

EJ
libcolors.a

B
B

AIX 3.2 Memory Management 99

ar -q libcolors.a red.o blue.o green.o B
Library
Control

Data ' �--·-�
Figure 4.33 Creating a shared library.

Creating a shared l ibrary

Figure 4.33 illustrates how a library is created. The ar command is used to
archive three object files, all of which have been marked (or shared text, into a
library called libcolors.a. The ar command includes other options for adding
new object files to a library, replacing existing object files in a library, and
extracting object files from a library. See the manual page for the ar command
for more information.

Linking an application to a shared library object

Figure 4.34 illustrates how an application links to a shared library. The -1
option, which is passed by the compiler to the linkage editor, specifies the
library name. The -L option indicates that the current directory should be
searched for the library. The most important point of the example in Fig. 4.34
is that AIX 3.2 will perform dynamic binding of the red() function to the appli­
cation when it is executed, even though the application was compiled without
an import list file (see Chap. 3). This is because "auto import" is the default
when linking to any shared object.

Replacing a shared l ibrary object

As mentioned in Chap. 3, one of the advantages of dynamic binding is that if a
library object is updated, the applications that are linked to the library need
not be relinked. The applications inherit the object revision the next time they
are executed. It is important to point out, however, that AIX 3.2 does not allow
one to update a shared object within a library once any program that is linked

1 00 Chapter Four

myapp.c

main(}
{
red();
.. .

l

libcolors.a

B
B
1 · g�en.o I

xlc -o myapp myapp.c -L. -lcolors Library
Control

Data

Figure 4.34 Linking to a shared library.

to the shared object has been executed since the previous system initialization,
even if the program has terminated. In other words, once a program that uses
a shared object from a library has been executed, the system must be rebooted
in order to update the shared object in the library, even if the program is no
longer running.

Author's Note: Actually, the system need not be rebooted, but a special command
must be run before the library object can be replaced.

The reason for this is simple. Once shared text is loaded into segment 13 it
stays there, even if all programs that have used it are no longer executing. AIX
3.2 assumes that the shared text will be needed again later, and it is easier to
leave it in place. Because of this, the system prevents the library object from
being updated.

AIX 3 .2 includes a command called "slibclean," which cleans out all shared
text subroutines that have a current reference count of zero from segment 13.
The command must be run prior to updating any shared library. See the man­
ual page for slibclean for more information.

Chapter

5
The Process Management

Subsystem

Process management is one of the most important subsystems of the AIX 3.2
kernel. It is responsible for creating processes and cleaning up after them when
they terminate. It also schedules processes by arranging them into run queues
based on their priorities and dispatches the most favored processes at regular
intervals. Finally, the process management subsystem provides timer mecha­
nisms that are used by processes to trigger timed events. This chapter
describes all of these characteristics of the AIX 3.2 process management sub­
system.

5.1 Processes

The process is the most important feature of AIX 3.2. It is the scheduled entity
of work, providing the environment and resources required to execute a pro­
gram. Most of the commands issued at the shell's prompt result in the creation
of a process to execute the comm�nd. In fact, the primary purpose of the shell,
as a command interpreter, is to create processes for the execution of commands.
When a user invokes a command that is the name of an executable file, the
shell, which is itself a process, creates a child process, then loads the program
specified as the command into the process image for execution. Figure 5 .1 illus­
trates how the shell executes commands as child processes.

Author's Note: Not all commands issued at the shell prompt result in the creation
of a child process. Some commands are recognized by the shell as subroutines with­
in the code of the shell's program. Such commands are called "shell built-ins." They
run within the shell's process. Examples of shell built-ins include the cd command
and the Korn shell's test command.

The child process created by the shell initially executes another copy of
the shell. Soon after its creation, it loads and executes the desired program.

1 01

1 02 Chapter Five

Attribut.es:
User = jim

The Shell Proc� (Parent)

I $, .. m� I ,� ..-Th_e_C_hil_. _d_�------. >awns.. ""' . .. executes the
/usr/bin/cat program

Figure 5.1 The shell and processes.

This is called "spawning a process." The details of spawning are discussed
shortly.

With the exception of two special processes, all user processes are created by
other user processes. The creating process is known as the parent process and
the created process is known as the child process. See Chap. 3 for details on dif­
ferent types of processes.

Each process has its own environment. A child process inherits much of its
environment and many of its attributes from its parent. The child can decide
whether to keep the environment or modify it. Modifications made to the child's
environment are not passed back to the parent process but would be inherited
by any processes created by the child. Figure 5.2 illustrates how processes

Environment:
PS1="$"

Parent

Primary Group = staff
Priority = 65

TERM=hft
PRINTER=mars
LOGNAME=jim
HOME=/home/jim
PWD=/home/jim/mywork

Nice Value = 30
Signal Mask
Open Files

Child

Figure 5.2 Process inheritance.

Attributes:
User = jim
Primary Group = staff
Priority = 65
Nice Value = 30
Signal Mask
Open Files

Environment:
PSI="$"
TERM=hft
PRINTER=mars
LOGNAME=jim
HOME=/home/jim
PWD=lhome/jim/mywork

The Process Management Subsystem 1 03

inherit environments and attributes. When a process terminates its environ­
ment also terminates.

Process attributes

In addition to text and user data, processes maintain information used by the
operating system. Chapter 3 mentioned some of the attributes of a process.
Here, we provide more details.

Process identification number. Probably the most well-known attribute of a
process is its process ID number, or PID. Each process is guaranteed to have a
unique PID within the system. The PID is used by many shell-level commands,
such as kill. It is also used as a parameter to many system calls and subrou­
tines, such as signal(). The /usr/include/sys/types.h header file defines a data
type called pid_t, which is an integer. AIX 3.2 has a special way of assigning
PIDs, which is described shortly.

Process group ID. Each process belongs to a process group. Processes can
change process groups or create new process groups. The main purpose of a
process group is to organize related processes such that an entire group can be
controlled as a job. The C shell and the Korn shell use process groups to imple­
ment job control. Signals are sent to all processes within a process group via
the killpg() subroutine (see the manual page for killpg() for more details). Each
process group has a process identified as the group leader. The process group
ID (PGID) is equal to the PID of the group leader process.

Session ID. Process groups can be collected into sessions. A session is one or
more process groups. Each session has a leader. The session ID is equal to the
PID of the session leader.

Credentials. Every process has a set of credentials that identify the user asso­
ciated with the process. The credentials are actually a set of user and group IDs
which are described shortly. The credentials are used by the system to deter­
mine the authority a process has over files and other resources.

Priority. Every process has a priority value used by the dispatcher to deter­
mine the order of time sharing of the CPU. The priority value for an AIX 3.2
process has a range of 0 through 127, where the lower the value, the more
favored the process. For instance, a process with a priority of 62 is more favored
than a process with a priority of 68. For most processes, the priority value
changes frequently, as described later in this chapter.

Nice value. The nice value is a factor used in calculating the priority of a
process. Users have some control over the nice values of their processes. See the

1 04 Chapter Five

discussion of process scheduling later in this chapter for more details on
process priorities and nice values.

Signal handling information. Signals are notifiers sent to a process by the ker­
nel or by another process. A process has some control over how incoming sig­
nals are treated. See Chap. 10 for details on signals.

Accounting Data. As a process runs, it gathers statistics about itself, such as
the amount of accumulated CPU time. These statistics are available to the
process or its parent.

Opened files. Each process maintains a table of pointers to files the process
has opened. The table is called the file descriptor table.

Operational environments

A RISC processor is always executing code from one of two different environ­
ments. It is either executing code from a process (or a system call running on
behalf of a process), or it is executing the code of an interrupt handler. When
the processor is executing process code or the code of a system call, it is running
in the process environment. When an event occurs that interrupts the process
environment, the system must handle the event by running an interrupt han­
dler. The processor is then said to be running in the interrupt handler envi­
ronment. The fundamental differences between the two environments are
described in this section.

During process environment, the system operates in one of two modes: user
mode, when executing the user code of a process, and system mode, when exe­
cuting the kernel code of a system call. Recall from Chap. 3 that the system per­
forms a mode switch when a system call is encountered during the execution of
a process. The ID numbers of a process's 16 segments occupy the segment reg­
isters in hardware when a process is running. Processes may use the floating­
point registers. The process environment is subject to page faults.

Interrupt handlers are always more favored than any process. They are ·

found in the device driver which corresponds to the device whose interrupts
they service. In addition, there are many interrupt handlers that react to inter­
rupts generated by the system hardware, such as timer interrupt handlers.

Each interrupt handler runs with a priority value. While an interrupt han­
dler is running, it blocks all interrupts that are less favored than itself. For this
reason, interrupt handlers must complete as quickly as possible. Therefore,
interrupt handlers may not experience page faults. All code and data touched
by an interrupt handler must be pinned in memory. Figure 5.3 illustrates the
process environment and the interrupt handler environment.

The Process Management Subsystem 1 05

Pinned
User Memory

Pageable
Kernel Memory Kernel Memory

CJ 1111 • 1111 • D
Process

Pageable
Tables

and Data

Device
Driver
Head

Device
Driver

Interrupt
Handler D-+--.-1 System Calls Process

Pinned
Tables

and Data

Process Environment -------; I

Figure 5.3 Operational environments.

5.2 Process Management Data Structures

r Interrupt --1
Handler

Environment

This section describes kernel tables and other data structures used to manage
processes.

The process table

The kernel's process table is at the heart of the process management subsys­
tem. It is an array of proc structures as defined in the /usr/include/sys/proc.h
header file. The size of the table is defined as NPROC, which is 131,072 entries . .

The process table is stored in the kernel's data segment (segment 14 of the 16
process segments).

With most UNIX-based operating systems, the NPROC value is tunable. It
is not tunable in AIX 3.2. The /usr/include/sys/proc.h header file defines
NPROC as (1 <<PROCSHIFT), where PROCSHIFT is 17. This is binary
100000000000000000, which is 131,072 decimal. The size of the process table
is obviously larger than would ever be required. Traditionally, the process table
must be pinned in memory since it is often accessed by interrupt handlers.
Pinning a table as large as the AIX 3.2 process table would be unreasonable;
therefore, AIX 3.2 only pins pages of the process table that have active entries.

Interesting fields in the proc structure include:

1 06 Chapter Fhre

The user area

p_stat. A character field that indicates the state of the process table slot.
Values are defined in the /usr/include/sys/proc.h header file and are dis­
cussed in Sec. 5.3.

p_wtype. A character field that indicates the event for which a process is
waiting. Values are defined in the /usr/include/sys/proc.h header file.

p_flag. An unsigned long integer that indicates the current flag settings for
the process. Values are defined in the /usr/include/sys/proc.h header file and
are discussed throughout this chapter. The flag values are ORed to allow
multiple flags to be set simultaneously.

p_child. A pointer to another proc structure (entry within the process table)
for the head of the list of child processes. The use of this field is described
shortly.

p_siblings. A pointer to another proc structure that forms a linked list of
processes which, along with this process, share a common parent process.

p_pri. A character field that holds the process's current priority value. It is
used by the dispatcher when determining which process to run.

p_uid. A uid_t data type that holds the real user ID of the process.

p_pid. A pid_t data type that holds the process's ID number.

p_ppid. A pid_t data type that holds the process's parent PID number.

p_pgrp. A pid_t data type that holds the process group ID number for this
process.

There are many other fields in the process table which are described through­
out this chapter. They are grouped according to their use. For instance, there
are fields used by the process scheduler and dispatcher, fields used for signals,
and fields used for identification.

Author's Note: The proc structure and the /usr/include/sys/proc.h header file in
general provide a great deal of information about any UNIX-based operating sys­
tem. It is one of the first files I examine when I encounter a new system.

Each process has, defined within its data segment, a user area, or U area. It
was first described in Chap. 3 as part of the image of a process. A process's user
area contains information about the process that is not needed when the
process is not executing. Unlike the process table, process user areas are not
accessed by interrupt handlers. The user area is probably the second most
important component of process management, after the process table.

The user area is defined as a user structure in the /usr/include/sys/user.h
header file. Interesting fields include:

The Process Management Subsystem 1 07

u_procp. A pointer to the proc structure (entry in the process table) that rep­
resents this process.

u_signal[]. An array of pointers to functions that is used to vector to signal
handling routines within the process's text segment. See Chap. 10 for details
on how this array is used.

u_sigmask[]. An array of sigset_t data types that indicates which signals to
block when executing a signal handler. See Chap. 10 for details on signal
blocking.

u_segst[]. An array of segstate structure which defines the current state of
the process's 16 segments. The array has 16 elements.

·

u_exh. A union that contains either the XCOFF header, if the process is exe­
cuting a binary program, or the name of the shell interpreter, if the process
is executing a · shell script. For binaries, the union holds an xcofthdr struc­
ture, as defined in the /usr/include/xcoff.h header file. The xcofthdr structure
holds the program's fi.lehdr structure and aouthdr structure. See Chap. 3 for
information on these two structures. For shell scripts the union holds an
array of 32 characters called u_exshell[] . The array contains the string "#!"
plus the path name of the shell, such as "#!/usr/bin/ksh." This notation is
often used in shell scripts to identify which program to use when executing
the script.

u_comm[]. An array of 33 characters used to hold the basename of the exe­
cutable running in this process.

u_cred. A pointer to a ucred structure. The ucred structure Iiolds the cre­
dentials of the process. Its definition and use are described shortly.

u_timer. A structure used to hold timer information. Timers are discussed
later in this chapter.

u_ru. A rusage structure that holds resource usage information for this
process. The rusage structure, defined in /usr/include/sys/resource.h,
includes fields that hold run-time statistics that are available to the process's
parent. For instance, the rusage structure holds the process's accumulated
user mode and system mode times, which can be viewed by a user by issuing
the time or timex commands. See the manual pages for time and timex for
more details.

u_cru. Another rusage structure; however, this one holds accumulated
resource usage statistics for this process and all of its children.

u_ttyd. A dev_t data type (device major and minor numbers) that indicates
the controlling terminal for this process. The dev_t data type is described in
Chap. 9. .

u_cdir. A pointer to a vnode for the process's current directory. See Chaps. 7
and 8 for details on vnodes. This is how a process knows the starting point
for relative path name resolution.

1 08 Chapter Five

u_ufd[] . As described earlier, this array is the process's file descriptor table.
It has a size of OP�NMAX (2000 elements), where each active element points
to an entry in the kernel's file table. A file descriptor table slot is allocated
each time a process opens any type of file. See Chap. 7 for a complete discus­
sion on the use of the per-process file descriptor table.

The u_procp pointer in a process's user area points from the process image
to its entry in the kernel's process table, as illustrated in Fig. 5.4. The process
table entry also has a link to the process's user area, although it's not a simple
pointer. The p_adspace field, which is a vmhandle_t data type in the proc struc­
ture, holds the segment ID number of the process's data segment. The segment
ID number is accessed through the kernel's segment information table to
locate the process's user area, which is always at the same offset within the
data segment.

A process's credentials

Each process's user area includes a pointer called u_cred which points to a
ucred structure within the kernel memory. The ucred structure is defined in
the /usr/include/sys/cred.h header file. It includes fields for user IDs and group
IDs. The user ID fields are all uid_t data types and include:

cr_uid. The process's effective user ID

cr_ruid. The process's real user ID

cr_suid. The process's saved user ID

cr_luid. The process's login user ID

The group ID fields are all gid_t data types and include:

cr_gid. The process's effective group ID

cr_rgid. The process's real group ID

cr_sgid. The process's saved group ID

cr_groups[]. An array of size NGROUPS_MAX (defined as 32 in the
/usr/include/sys/limits.h header file) which holds the group IDs for the con­
current group set.

AIX 3.2 allows a user to belong to up to 32 groups at a time. Group access to
files and other objects is granted if the group associated with the file or other
object is present in the process's concurrent group set. One group is designated
as the process's primary group. By default, this is the group designated in the
/etc/passwd file for the user account. A user can change their primary group for
a login session by using the newgrp command. The primary group is associated
with any file created by the process. Figure 5.5 illustrates AIX 3.2 group sets.

The Process Management Subsystem 1 09

User Memory Kernel Memory

User Area u_:.procp *

Data Segment

Text Segment

Process
Segment

Information
Table

Process

Table

c::::J p_adspace

Figure 5.4 The user area and the process table.

As seen in the ucred structure, four different user IDs are maintained per
process. The login user ID (luid) is the ID number of the account used to log in
to the system. It never changes as long as the user is logged in. The real user
ID (ruid) is the ID number of the account for the user of the system. It changes
whenever a user successfully issues the su (switch user) command. It can also
be changed by a process running with root authority (user ID = 0) issuing the
setuid() subroutine.

User Credentials

User ID: ckelly
Primary Group: payroll
Group Set: staff, acctg, sales, payroll

Access
,
/

Aflowedl
@

Name: customers
Owner: tsmith
Group: sales
Penns: rw-rw----

Access · �
Denied T L FileJ

Name: mydata
Owner: rjones
Group: mgrs
Penns: rw-rw---

Figure 5.5 Group sets.

@
Name: salaries
Owner: ckelly
Group: payroll
Perms: rw-r----

1 1 o Chapter Five

Login Se�ion

The effective user ID (euid) is the same as the real user ID unless the process
has executed a program that has set-user-ID-bit turned on. The set-user-ID-bit
is activated for an executable file by ORing the value 04000 with the other octal
notation of the chmod command or chmod() subroutine. When a user executes
a program that has the set-user-ID-bit turned on, the effective user ID of the
process is set to the user ID value of the owner of the program. This feature
allows system administrators to grant root or other special privileges to a non­
privileged user when they execute a specific program. It also allows program­
mers to grant users access to data files only when the users execute specific
programs.

Figure 5.6 illustrates an example of a set-user-ID-bit program. The program,
called ponies, handicaps horse races. Its owner, dkelly, allows any user to exe­
cute the program. During execution, the ponies program opens and performs
1/0 operations on a file called horses.ascii, which is an ASCII data file. dkelly
does not want any user to be able to directly access the horses.ascii file with an
editor or other tool, so he sets the permissions such that only dkelly can per­
form read and write operations on the ASCII file. In order to allow other users
to access the horses.ascii file when executing the ponies program, the set-user­
ID-bit is activated for the ponies program. A set-group-ID-bit works in a simi­
lar fashion to the set-user-ID-bit. When it is activated for a program file, any
process that executes the program has its effective group ID set to the group ID
associated with the program. ·

The set-group-ID-bit has a special meaning for data files. It is used to imple­
ment mandatory file and record locking as described in Chap. 7.

Programs that have the set-user-ID-bit activated sometimes call the setuid()
subroutine to change the effective user ID value back to the value of the real
user ID. This is usually done after some privileged access has taken place and
the special effective user ID is no longer needed. If the program needs to use the
special set-user-ID-bit value, it can get it from the saved user ID field. Figure
5. 7 shows how the four user ID fields evolve during the execution of a program.

Login User ID: janet
Real User ID: janet Effective User ID: janet

r chmod 4755 ponies

I ponies I
Child Proce� (ponies) /owner: dkelly Pero: rwsr-xr-x I I Login User ID: janet ---------� horses.ascii
Real User ID: janet Access Allowed Effective User ID: dkelly

Figure 5.6 A set-UID-bit program.

Owner: dkelly Perms: rw---·-

Login Session

The Process Management Subsystem 1 1 1

Login User ID: janet
Real User ID: janet
Effective User ID: janet

r chmod 4755 ponies

Child Process (ponies)

Login User ID: janet
Real User ID: janet
Effective User ID: dk:elly

I ponies I /owner: dk:elly
Perms: rwsr-xr-x

i
I* After some time */

Login User ID: janet
Real User ID: janet
Effective User ID: janet
Saved User ID: dk:elly

_J
setuid(); /* Set EUID back to RUID */ Results

Figure 5.7 User IDs and the setuid() subroutine.

Author's Note: Most UNIX-based systems store the user IDs and group IDs
directly inside of the user area. By placing these values in a separate ucred struc­
ture, AIX 3.2 accomplishes two things. It allows multiple processes to point to the
same ucred structure (note that the ucred structure has a field called cr_ref, which
serves as a reference count) instead of having the same information repeated in
each process. This saves space. It also allows the credential information to be
stored in kernel memory, which is much more secure than user memory. The cre­
dential structure can then be used by various security components of the operat­
ing system.

How AIX 3.2 generates process ID numbers

Most UNIX-based systems assign process ID numbers sequentially as new
processes are created. When the last available process ID number is assigned,
the sequence starts over with the lowest available nonassigned value. A.IX 3.2
does not use this technique. Instead, the process ID number is broken down bit­
wise into two parts. As an integer, the process ID number consists of 32 bits,
but only the rightmost 26 bits of the 32-bit word are used. From that 26 bits,
the leftmost 18 bits are used as an index into the process table. The remaining
(rightmost) 8 bits serve as a generation number which is incremented each
time a process table slot is assigned. In this way, a process's PID can be used to
determine its slot in the process table. Figure 5.8 illustrates the configuration
of an A.IX 3.2 PID.

The /usr/include/sys/proc.h header file defines macros for converting a PID
into a process table slot number. The conversion, shown in Fig. 5.9, is based on
bitwise ANDing the PID with the value Ox7ffif00, then shifting the results to
the right by 8 bits.

1 1 2 Chapter Five

Not
Used

32-bit Integer

(p_pid)

18 bits 8 bits

Process
Table
Index

Generation
Number

Figure 5.8 AIX 3.2 process ID numbers.

proc.h

#define GENSHIFf 8

define PROCPfR(pid) \
((pid) != 1) ? \
&proc[((pid) & Ox7ffff00) » GENSHIFf] \
&proc[l])

PID 47928 =lolololololololololololdolild1 lolddololdd1 lololol
Ox7ffff00 = Ii l1 ldd1 Iii d1li lddd1 lilil dd1 ldolololololololol &

lolololololololololololi I 1 I 1 l 1 l 1 I 1 I 1 I 1 lolololololololol
t

lil9li lddol 1 ld = Slot 1 87

Figure 5.9 Converting a PID into a process table slot number.

Author's Note: Another method I have used for determining a process's slot num­
ber in the process table is to convert the decimal-based PID to hexadecimal, drop
the right two digits, then convert the number back to decimal. For instance, a PID
value of 4 7928 converts to Oxbb38. Dropping the right two digits leaves Oxbb which,
when converted back to decimal, is 187. Therefore, a process with a PID of 47928
would always occupy process table slot 187.

Author's Note: There is a concern about the way ADC 3.2 assigns PIDs. Since their
value is determined by the index of a process in the process table, they are not
assigned sequentially. This means that it is possible for a child process to have a
lower PID value than its parent. I have encountered shell scripts over the years
that count on a child's PID being higher than that of its parent. While this is not a
good programming assumption to make, it does happen. Such shell scripts, or any
kind of program for that matter that depends on sequential PID assignment, will
find difficulties in ADC 3.2.

5.3 User Process Creation

The Process Management Subsystem 1 1 3

This section details the life cycle of a process, from its creation to its termina­
tion. It also describes fainily . relations between processes and how the kernel
keeps track of those relationships. The fork(), exit(), wait(), and exec family of
subroutines are also presented.

The forkO system call

As mentioned earlier, almost all user processes exist because a parent process
created them. The exceptions are PID 0, the system scheduler (whose name is
"swapper") and PID 1, the "init" process. These two processes are hand-crafted
at system start. Actually, all other user processes can trace their ancestry back
to init. '

A new user process is created when an existing user process issues the fork()
system call. The definition of the fork() system call is that it makes a new
process (child) that is an exact clone of the calling process (parent). This is not
completely accurate, however. The child process does inherit most of its attrib­
utes and properties from its parent, but there are obvious differences. For
instance, the child process has its own unique PID. It also has a different PPID
(parent's process ID number) than its parent. Finally, resource statistics for the
child process are initialized to zero to give the child a fresh start. Other attrib­
utes, many of which have been discussed already, are inherited by the child.
They include the priority and nice values, the credentials, the process group
membership, and the parent's opened files.

Author's Note: The fact that the child process inherits the parent's opened files by
receiving a copy of the parent's file descriptor table is not a trivial point, as is
described in Chap. 7.

The fork() system call works with the virtual memory manager (VMM) to
establish segments for the new process. A child process shares the same text
segment as its parent. In fact, the child process inherits the same program
counter address (which is stored in the instruction address register, or IAR).
This means that the child process comes to life running the fork() system call.
The VMM allocates a new data segment for the child process; however, pages
from the parent's data segment are only copied as either the parent or child
modifies them. This is a VMM technique called "copy on write" which helps
reduce the overhead of the fork() system call. The child process receives a new
user area structure, but many of the fields from the parent's user area are
copied into the child's user area.

The first thing the fork() system call does is verify that the calling process's
user ID has not reached the maxuproc value. The maxuproc parameter, which
is tunable via the system management interface tool (SMIT), specifies the
largest number of processes allowed per nonroot user ID. By default, the value
of maxuproc is 40. It prevents users from accidentally or intentionally creating
recursive programs that call fork().

1 1 4 Chapter Five

The fork() system call also verifies that the VMM has an adequate amount of
free paging space slots. If this is not the case, fork() retries after waiting a spec­
ified amount of time. If the fifth retry fails, the fork() system call fails and
returns a value of -1 to the calling process. The wait time between retries is
tunable via the /usr/lpp/bos/samples/schedtune command. See the manual
page for schedtune for more details.

The fork() system call assigns a slot from the process table. A page fault may
occur if the assigned slot is from a page of the process table that has no other
active entries and is therefore not pinned. The proc structure includes a field
called p_stat, which is set to the value of SNONE when the slot is not in use. It
is changed to the value of SIDL while fork() is creating the child process.

Author's Note: The SIDL value for p_stat means that the process is "under con­
struction," since the process table slot is no longer available yet the process has not
been realized in memory. The p_stat field holds this value for a very short time and
never returns to this state.

The fork() system call generates a unique PID based on the process table slot
index. It places a lock on the process table while the slot is allocated and the
PID is generated. This prevents any other process or interrupt handler from
interfering with the fork() system call while it is executing a critical section of
code.

Kernel services called by fork() h�dle the creation of the new segments, as
well as the copying of values from the parent to the child. Pointers are also
updated to include the child process in the appropriate linked lists, as
described shortly. Once the child's VMM segments are in place, fork() sets the
value of the p_flag field in the child's process table slot to the value of SLOAD,
which means that the process is "in core."

One of the last things the fork() system call does, running on behalf of the
parent process, is to link the child to a run queue and set the p_stat field to a
value of SRUN. This makes the child process "ready to run." The fork() system
call then returns the PID of the child back to the parent. When the child is
selected to run, it starts in the middle of the fork() system call! This is to allow
the child process to finish its side of the fork(). The child's version of the fork()
system call returns a zero to the child process. Figure 5 .10 illustrates the fork()
system call. The fork() system call returns a -1 to the calling process if it fails
to create a child. Two conditions that may cause fork() to fail are insufficient
paging space and the maxuproc value reached for the caller's user ID.

The process family tree

The process table includes linked lists to keep families of process together.
First, every proc structure includes a pointer called p_child. It points to anoth­
er proc structure that represents a child of the process. Since a process can cre­
ate many children, this pointer points to a child that is designated as the head

The Process Management Subsystem 1 1 5

User Memory Kernel Memory

� = = :i
� § § �
I- - - -l L - - .J

Child

System

Call
Subsystem

Process Tuble

p...pid=3:?44 p_stat:::SRl�

p_pid=371 S p_siat=SIDLISRl "'S

Figure 5.1 O The fork () system call.

p_pid I
p_ppia I

Parent Process

p_pid CimLJ
p_ppid c=L:J
p_child "'

proc structures

18992 I p_pid I 22816

16724 I p_ppid l 1 6724

p_pid I 1 2480

p_ppid I 1 672-1

p_siblings * p_siblings * p_siblings *

Child Process Child Process Child Process

Figure 5.11 A process family tree.

of the child list. The child processes of any parent keep track of one another
through a null terminated link list associated with the p_siblings pointer.
Figure 5 . 11 displays the relationship between a parent process and its linked
list of children.

Author's Note: This is a strange family. The parent is only able to remember one
child, so it tells that child to remember one of its siblings, which, in tum, must
remember one of its siblings, and so forth. Sounds like the theme for a television
talk shoyv.

Whenever a new process is created or an existing process terminates, the
p_siblings list is reconstructed. If the child process that is the head of the sib-

1 1 6 Chapter Five

lings list terminates, the parent's p_child pointer must be relinked to the new
head of the siblings list.

Process groups

Process groups were introduced earlier in this chapter. Each proc structure has
two fields that manage a process group. The p_pgrp is a pid_t data type that
holds the process group ID number, which is also the PID of the process group
leader. A pointer called p_pgrpl is used to create a circularly linked list of all
processes within the process group. Figure 5.12 illustrates how the process
table maintains process groups.

The process life cycle

Figure 5.13 illustrates the life cycle of a user process. The labeled states corre­
spond to values of the p_stat field in a process table slot (proc structure). A slot
that is not active has a p_stat value of SNONE. During the creation of a new
process, the p_stat field is set to SIDL, or "intermediate state of process cre­
ation." This means that the slot is spoken for, even though the process is not
ready to run yet. A new process passes through this stage only once and for a
very short period of time.

The fork() system call makes the new process ready to run by changing the
value of p_stat to SRUN. The process is now said to be on a run queue and fair
game for selection by the kernel's dispatcher routine. An SRUN process is not

Process
Table

p_pid �
p_pgrp �

* p_pgrpl

p_pid CillIJ
p_pgrp CillLJ

* p_pgrpl

p_pid CillD
p_pgrp �

* p_pgrpl

p_pid CillLl
p_pgrp Lill.[]

* p_pgrpl

p_pid CJl6L]
p_pgrp CillLJ

�-- · p_pgrpl

Figure 5.1 2 Process groups.

PID 1412
PPID 1288

PID 1288

PID 1426
PPID 1288

PID 1242
PPID 1426

PID 3268
PPID 1426

PID 1384
PPID 1288

SRUN
Dispatched Preempted

Waiting

SS LEEP

exit()

SZOMB

Figure 5.1 3 The process life cycle.

The Process Management Subsystem 1 1 7

Suspended

SS TOP

waiting on any event or condition. Since AIX 3.2 does not support multiproces­
sor hardware, there will only ever be one process selected to run at any given
time. The p_stat value for the current running process is still SRUN. AIX 3.2
does not have a name for the running state.

There are five possible things that can happen to a running process: it may
be preempted by the operating system, making way for another process to run;
it may be interrupted by an event that causes an interrupt handler to run; it

. may voluntarily put itself to sleep while waiting on an event or condition; it
may be stopped (not terminated, simply suspended) by the operating system;
or it might call the exit() subroutine and terminate. Each of these possibilities
is explored now.

Preemption occurs for the current running process when the kernel's dis­
patcher has determined that a more favored process is ready to run. The cur­
rent running process could still use the CPU, but it will have to wait until it is
once again the most favored ready-to-run process. The preempted process is
placed back on the run queue.

If a system call running on behalf of a process must wait on an event, such
as disk 110, page fault resolution (which usually involves disk 1/0), a timer, or
any other type of event, the system call will cause the process to voluntarily
give up the CPU by calling the esleep() kernel service. This changes the p_stat
field to the value of SSLEEP. Sleeping processes are not considered by the dis­
patcher when selecting a process to run, since they are not in a ready-to-run
state. Most interactive processes spend the majority of their time sleeping.
When the event that the · sleeping process is waiting on occurs, the interrupt
handler associated with the event wakes the sleeping process by setting p_stat
to the value of SRUN, making the process ready to run. Note that when a sleep-

1 1 8 Chapter Five

ing process wakes, it does not automatically go back to running but rather
must contend for the CPU with all other ready-to-run processes. The schedul­
ing algorithm used by AIX 3.2, however, fairly guarantees that a freshly awak­
ened process is dispatched quickly to respond to the event.

Interrupts are driven by events associated with devices. For instance, an
interrupt occurs when a disk drive controller notifies the system that data
requested by some process have been fetched and are ready for transfer to the
process. Since the process that requested the disk data is usually sleeping
while waiting for the data, interrupts are seldom associated with the current
running process. An interesting characteristic of AIX 3.2 is that whenever an
interrupt wakes a sleeping process and places it back on a run queue, the inter­
rupt handler should call the dispatcher so that it sees the ready-to-run process.
More on this shortly.

A process with a p_stat value of SSTOP is suspended. This occurs when the
kernel or another process sends a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU
signal to the current running process. There are various ways of suspending a
process. For instance, the <CTRL>-<z> key combination instructs the C shell
or the Korn shell to suspend the current running foreground process. This is
part of those shells' job control feature. Processes are also stopped by break
points set within a debug session. Finally, the stty command has options, such
as tostop, which instruct a terminal session to suspend any background process
that attempts to send output or request input for the controlling terminal. The
process leaves the SSTOP state when it receives a SIGCONT signal. Note that
the process returns to the ready-to-run state.

The final thing that can happen to the current running process is for the
process to exit. This causes the p_stat field to change to the value of SZOMB.
The process is now said to be in zombie state. All processes become zombies
while they exit. A process should only be in this state for a short period of time,
while its resources are deallocated. The SZOMB state is the opposite of the
SIDL state. Zombies are discussed in more detail later in this section.

The exec family of system calls

As previously mentioned, the fork() system call creates a new process that is
almost a clone of the calling process. In fact, after the fork() call, both the par­
ent and child processes are executing the- same text. This, by itself, may not
seem very useful. Usually, it makes more sense for the parent and child
processes to perform their own specific tasks. This is accomplished by having
the child process execute another program within its process image. The exec
family of system calls makes this possible.

There is no exec() system call, but rather a set of system calls based on the
name. Figure 5.14 lists the various calls used to execute programs along with
the characteristics of each. Consult the manual page for the execl() subroutine
(all of the variations are described on the same manual page), or InfoExplorer
for more information on implementation specifics.

execl(char *path, char argO, . . . , (char *) 0)

The Process Management Subsystem 1 1 9

execle(char *path, char *argO, . . . , (char *) 0, char *envp[})
execlp(char *filename, char *argO, . . . , (char *) 0)

execv(char *path, char *argv[])
execve(char *path, char *argv[J, char *envp[J)
execvp(char *filename, char *argv[})

Figure 5.1 4 The exec family of system calls.

Author's Note: For simplicity, I will refer to the exec family of calls as a generic
exec() call throughout this chapter. From an internals perspective, the kernel activ­
ities for each of the exec calls are almost identical.

When a process calls exec() the kernel's loader routine locates the specified
executable file, performs all the necessary tasks to make the program runable,
and loads and executes the program's text within the image of the calling
process. To make the program runable, the loader must resolve all references
to external symbols as described in the loader section of the program's XCOFF
file. This is dynamic binding. The virtual memory manager allocates a new text
segment for the program code if no other process is executing the program. If
one or more processes are already executing the program, the virtual memory
manager allows the process calling exec() to share the existing text segment.
The loader also creates, within the process's data segment, the areas for ini­
tialized global data, noninitialized global data (the BSS), and the user stack.
The process's user area survives the exec() call, but some of the field values
within the user area change to reflect information specific to the newly execut­
ed program. One important point to emphasize is that the process's file descrip­
tor table, which references files already opened by the process, survives the
exec() call. The only exceptions are any files that were previously opened by the
process with the CLOSE_ON_EXEC flag specified when the files were opened.
The fact that the process's file descriptor table survives an exec() call is crucial
to pipes, sockets, and other forms of interprocess communications, as described
later in this book.

The exec() call returns a -1 value upon failure. Reasons for failure include the
nonexistence of the specified program, or lack of privilege needed to execute the
program. There is no return from exec() if the call succeeds. This is because
the text is replaced by the text of the newly executed program. This is illus­
trated in Fig. 5 .15. The program example assumes that if it reaches the line of
code following the execl() call, the execl() call must have failed.

1 20 Chapter Five

mainO
{

if(forkO==O) I* We must be the child */
{

. }

execl("Jmyprog" ,"myprog" ,0);
perror("Exec failed");
exit(!);

else /* We must be the parent */
wait();

Figure 5.1 5 An exec example.

Process termination

There are various events that cause a process to terminate. A process can
choose to terminate by calling exit() or abort(). A process will also terminate
when it reaches the closing brace (}) of the main() function. (Actually, the link­
age editor supplies a call to exit() if it is not included by the programmer.)
Finally, most signals received by a process will cause termination of the
process. See Chap. 10 for details on signals. In all of these cases, the events in
the kernel that handle process termination are the same.

The exit() subroutine not only terminates the calling process but also allows
the programmer to specify an exit value, which is an integer parameter to the
exit() call. The exit value is passed back to the calling process's parent. The exit
values used by the programmer have no special meaning to the kernel. Their
meanings are significant only between the child and the parent. It is custom­
ary in UNIX, however, to use an exit value of zero to indicate successful pro­
gram completion, and a nonzero value to indicate an abnormal, or failed,
program completion.

Author's Note: The exit value parameter to the exit() subroutine is used in the
same way as the argument to the exit shell command, frequently used in shell
scripts. The $? special variable of the Bourne and Korn shells, or the $status spe­
cial variable of the C shell, reports the exit value of the previously terminated child
process, whether the child used the exit command (as in the case of a shell script)
or the exit() subroutine (as in the case of a binary executable).

There is a great deal of kernel activity involved in the termination of a process.
First, the kernel changes the p_stat field of the terminating process's process
table entry to the value SZOMB. This means that the process has become a
zombie. This is a normal occurrence in the death of a process; but a process
should only remain in the zombie st�te for a short period of time. More details
on zombies are given shortly. •

p_stat I
_p_ovly

(Union)

The Process Management Subsystem 1 21

Next, the kernel places the exit value of the terminating process in the
_p_xstat field of that process's slot in the process table. The _p_xstat field in the
process's proc structure holds the exit status. Another field, _p_ru, which is a ·
rusage structure, holds the resource usage information for the terminating
process. This information is copied from the terminating process's user area
and becomes available to the parent process. Note that the _p_xstat and the
_p_ru fields, along with some padded space, are part of a structure called
_p_szomb, which, in turn, is part of a union called _p_ovly. The comments in the
proc structure indicate that the _p_szomb structure is only used when the
p_stat field has a value of SZOMB. The other structure of the union, _p_signal,
is used to handle signals received by the process. A terminating process may not
receive signals; therefore, the two union members constitute a mutually exclu­
sive condition. This saves space in the process table, as illustrated in Fig. 5.16.

As a process terminates, all files held open by the process are closed. This
includes sockets, as well as ordinary files and directories. The reference counts ·

for all file table entries associated with the open files are decremented as the
files are closed. Any file locks held by the process are released. See Chap. 7 for
details on the kernel's file table and file locks. The virtual memory manager
deallocates the virtual memory segments that make up the process. At this
point, the process ceases to exist. All that remains is the exit status informa­
tion in the zombie slot of the process table.

When a process terminates, the kernel sends a SIGCHLD signal (signal
number 20) to the parent. This notifies the parent process of the death of the
child. Keep in mind that the child process is still linked to the sibling list. In
other words, although the child process has terminated and has become a zom­
bie, it's still a family member, as illustrated in Fig. 5. 17.

Process
'Thbl e

SZOMB I
_p_signal I _p_szomb

Di _p_xstat I
_p_padding

3 1..,..
_p_ru I I rusage structure

. . .
mainO
{

i- ----��it(3);
. . .

}

Figure 5.16 Exit status and the process table.

1 22 Chapter Five

User Memory

Parent

Figure 5.1 7 Process termination.

Kernel Memory

SIGCHLD (20)

Cleaning up zombies-The waitO system call

System

Call

Subsystem

Process Table

_p_xstatCJ p_pi�
p_stal CJ * p_child

_p_xstatCJ p_pidC]
p_stat CJ * p_child

_p_xstal[TI p_pi�
p_slat � * p_child

When a parent process creates a child process via the fork() system call, the
parent normally issues a wait() system call, which suspends the parent until
the child terminates and the parent receives the SIGCHLD signal. The wait()
system call then fetches the exit status value from the child's process table slot
and clears the zombie by changing the p_stat field to SNONE (slot available).
If the parent issues the · wait() system call immediately after returning from
fork(), the parent is serialized to run again only after the child has terminated.
A parent need not call wait() immediately after returning from fork() but can,
instead, continue to execute other instructions. This means that the parent and
child processes are running in parallel and contend with each other for CPU
scheduling. The two scenarios just given describe how the shell performs fore­
ground and background processing. Figure 5.18 shows pseudo code for a com­
mand interpreter. If a command is entered with an ampersand (&) symbol at
the end of the command string, the interpreter does not issue the wait() call
after spawning the new process but continues with the next iteration of the
loop and prompts the user for another command. If there is no ampersand sym­
bol, the interpreter spawns the child process, then waits until the child termi­
nates to perform the next iteration of the loop. While this example is an
oversimplified version of a shell, and there is a problem that occurs when the
user issues a number of background commands, it demonstrates how the shell
creates children to perform the specified commands.

The most common technique used by applications that don't want to block
until their child process terminates is to register a signal handler for the

endless loop
{

prompt user for a command
if command is a shell built-in
{

branch to built-in routine
continue next iteration of the loop

}
iflast character of command string is '&'
{

else
{

create a .child process via folk()
child: execute the specified command
parent: continue next iteration of the loop

create a child process via folk()
child: execute the specified command
parent: wait() for child to terminate

Figure 5.1 8 An example of a command inter­
preter.

The Process Management Subsystem 1 23

SIGCHLD signal. Signals and signal handlers are detailed in Chap. 10, but a
simple signal handler must be described here in order to demonstrate how a
process can continue to execute instructions while its children are also active.
The signal() subroutine registers a signal handler for a process by allowing the
program to specify the signal to watch for and the action to take when the sig­
nal is received. The program example in Fig. 5 .19 registers a signal handler,
which is a function called deal_ with_it(), and instructs the program to call the
handler when a SIGCHLD signal is received. When the child process termi­
nates and the parent receives the SIGCHLD signal, the program suspends the
activities of the some_ very _long_routine() function and branches to
deal_ with_it(). The deal_ with_it() handler issues a wait() call to fetch the exit
status of the child and to clean up the zombie. Once this is completed, the pro­
gram returns to the some_ very _long_routine() function and continues where it
left off. This program only creates one child so the signal handler need only be
called once. If a program creates many children, and some of the children ter­
minate at almost the same time, the SIGCHLD signal handler may miss some
of the signals. This is because the parent can only process one signal at a time
and signals of the same type do not stack or queue. In other words, if the par­
ent receives two or more SIGCHLD signals nearly simultaneously, it will only
see one. The reasons for this are explained in Chap. 10, but the following text
describes one method for overcoming this problem.

AIX 3.2 supports three versions of the wait() system call. The traditional
wait() system call takes, as a parameter, the address of an integer where the
child's exit status value is to be stored, and returns the process ID number of

1 24 Chapter Five

main()
{

. ..

signal(SIGCHLD, deal_ with_it);
. . .

if(fork()=O) /* Child */
{

}
else

execl("Jmyprog","myprog",0);
perror("Could not execute");
exit(l);

some_ very_log_routine();

deal_ with_it()
I

wait();

Flgure S.1 9 Clearing zombies with a signal han­
dler.

the deceased child. The waitpid() system call has three parameters; the address
of an integer where the child's exit status value is to be stored, a pid_t data type
(integer) that specifies the process ID number of the child for which the calling
process is waiting, and a flag value. If the second parameter (the child's process
ID) is zero, the waitpid() system call fetches the exit status of the first zombie
process in the linked list of children. This technique is the same as the tradi­
tional wait() system call. The flag parameter can be set to the value
W _NOHANG, which causes the waitpid() call to return a value of zero when
there are no zombies on the linked list of children. Figure 5.20 shows how the
waitpid() system call is used with the W _NOHANG flag to clean up multiple
zombies that have occurred nearly simultaneously. When the parent receives a
SIGCHLD signal, it branches to the zclean() handler, which loops until all zom­
bies within the parent's linked list of children have been cleaned up. When
there are no more zombies, the waitpid() call returns zero without hanging,
which terminates the loop and returns from the handler.

#include <sys/waith>

zclean()
{

signal(SIGCHLD,zclean);
int rv=l ;
while(rv=waitpid(O,O,WNOHANG));

Figure s.20 Another signal handler.

The Process Management Subsystem 1 25

Author's Note: Notice that the signal handler reregisters itself within the zclean()
routine. The reason for this is explained in Chap. 10.

The third version of waiting supported by AIX 3.2 is the wait3() system call.
This call fetches the resource usage information of the deceased child process
and its descendants, as well as the exit status of the child. See the manual page
for wait(), waitpid(), and wait3() for more information.

There is a way for a parent process to clean up a zombie without using one of
the wait() routines. A signal handler can be registered with the SIGCHLD sig­
nal specified and the action of SIG_IGN (ignore the signal). This causes the
p_stat field of the zombie's process table slot to change from SZOMB to
SN ONE. The exit status information is ignored. Figure 5.21 shows the com­
mand interpreter example from earlier with the addition of the signal handler
to ignore and clean up zombies.

If a process never waits for a child or does not register a signal handler to
ignore the SIGCHLD signal, the child will remain in a zombie state until the
parent terminates. Long-lived zombies show up as <defunct> processes in the
output of the ps command. The kill command does not remove a zombie
because the kill command works by sending a signal to the specified process,
and the receiving process must run in order to act upon the signal. Zombies
can't run because they no longer exist; thus the signal is never delivered. This
is why AIX 3.2 uses a union to hold either signal information or the process's
exit status. Once a process terminates and becomes a zombie it has no need for
signal handling fields.

#include <Sys/signal.h>

signal(SIGCHLD,SIG_IGN);
endl� loop
I

prompt user for a command
if command is a shell built-in

I
branch to built-in routine
continue next iteration of the loop

I
if last character of command string is ' & '
I

I
else
I

create a child process via forlc()
child: execute the specified command
parent: continue next iteration of the loop

create a child process via forlc()
child: execute the specified command
parent: wait() for child to terminate

Figure 5.21 The command interpreter revisited.

1 26 Chapter Five

Author's Note: Students often ask what penalty is suffered if a system has a lot of
zombies that aren't quickly cleaned up. Aside from each zombie's taking up a slot
in the process table (256 bytes per slot), since they no longer exist, they take up no
other system resources; however, each zombie counts toward the total number of
processes that a user has at any given time. This might cause a user to hit the max­
uproc limit, discussed earlier in this chapter.

5.4 An Introduction to Process Scheduling

At the heart ofthe AIX 3.2 process management subsystem is process schedul­
ing. It consists of a kernel subroutine called dispatch(), known as the dispatch­
er, a process called swapper, which is the scheduler process, a set oflinked lists
of proc structures within the process table, known as run queues, and a set of
internal variables and algorithms. The goal of the process scheduling subsys­
tem is to make sure the most favored ready-to-run process is running at all
times.

Process priorities and run queues

As mentioned earlier, each process has a priority value, stored in the p_pri field
of the proc structure. The priority value is a number between 0 and 127 and,
for most processes, changes frequently. The lower the priority value of a
process, the more favored it is. In other words, a process with a priority value
of 62 is more favored than a process with a priority value of 65. When a process
is in a ready-to-run state (i.e. , not waiting on any event, such as 1/0 comple­
tion), the process is placed on a run queue. AIX 3.2 has 128 run queues, num­
bered 0 through 127. A ready-to-run process is placed on the run queue that
corresponds to the process's priority value. For example, a ready-to-run process
with a priority value of 65 is placed on run queue 65. Since most process prior­
ities change frequently as they run, their run queue associations also change.
The run queues are actually doubly linked lists created by the p_next and
p_prior pointers in the proc structure, as illustrated in Fig. 5.22. Processes that
have a common priority value are on the same linked list, or run queue.

Figure 5.23 illustrates the AIX 3.2 run queues. Ordinary, nonroot user
processes always have priority values between 60 and 126. (Priority value 127
is reserved for a special kernel process that is described shortly.) Only process­
es granted special consideration by root authority can have priority values
between 1 and 39. (Priority value 0 is reserved for the page stealer, which was
described in Chap. 4.) Priority values between 40 and 59 are reserved for
processes running with root authority and a negative nice value. The nice com­
mand and nice values are discussed shortly.

The process with a priority value of 127 is a special kernel process called
"wait." In AIX 3.2 it always has a process ID number of 5 14 and is always ready
to run; therefore, it only runs when there is no other process ready to run. The
"wait" process represents processor idle time, as displayed by performance
monitoring tools such as sar and iostat.

The Process Management Subsystem 127

Process
Tuble

p_pid � p_pri GU
* p_next ... p__prev *

p_pid [filL] p_pri ULl
* p_next ... p_prev *

p_pid � p_pri GU
* p_next p_prev *

p_pid � p_pri GU
* p_next p_prev *

p_pid � p_pri [ii]
* p_next ... p_prev *

p_pid I 10466 I p_pri ULl
* p_next ... p_prev *

p_pid � p_pri GU
* p_next ... p_prev *

Figure 5.22 Process priorities and run queues.

0

40
60

127

Root Authority
Real· Time Processes

Root Authority Negative Nice Processes

Ordinary User Processes

Figure 5.23 Run queue levels.

1 28 Chapter Five

Author's Note: I once had a student ask if his system was CPU-bound because he
noticed, when he did a ps -elk command, that process ID 514 was using 98 percent
of the CPU time. In fairness to the student, since the ps -k command in AIX 3.2 only
lists the names of kernel processes as "kproc," it's often difficult to determine their
purpose.

The dispatcher

The dispatcher is a kernel routine called dispatch(). AB a kernel routine, it can
only be called by system calls or interrupt handlers within device drivers. It
cannot be called directly by an application. The dispatcher scans the run
queues, selects the most favored ready-to-run process, and dispatches it to run .

. Specifically, it resumes running the current process if that process is still the
most favored, or it calls the swtch() kernel routine to perform a context switch.

Author's Note: The s\\11ch() routine is spelled without an "i" because "switch" is a
reserved word in the C programming language.

To quickly select the most favored process, the dispatcher scans a 128-bit
mask. The mask has one bit for each run queue. If there are no ready-to-run
processes linked to a particular run queue, the corresponding bit in the mask
is 0. When a run queue has proc structures linked to it, the corresponding bit
in the mask is set to 1. A kernel routine called requeue(), which is called when­
ever a process is placed on a run queue, is responsible for setting and unsetting
bits in the mask. Once the dispatcher has determined the most favored run
queue with a ready-to-run process, it consults an array called proc_run[], which
has 128 elements, each containing a pointer to a proc structure. It uses the bit
number from the mask as an index into the proc_run[] array. The pointer in the
array element points to the proc structure that represents the process that is
at the head of that particular run queue. That process is then dispatched.
Figure 5.24 illustrates how the dispatcher selects a process to run.

Dispatcher Run Queues
Bit Mask proc_run[] Selected /Proc�ss

...

Figure 5.24 The dispatcher.

The Process Management Subsystem 129

As mentioned earlier, the dispatcher is called by interrupt handlers and sys­
tem calls. This is usually done whenever a process is placed on a run queue,
such as when a process is awakened from a sleep state, or when a process is
moved from one queue to another. The dispatcher is called by setting a global
kernel flag called "runrun." Systems programmers who write device drivers or
system calls must use the runrun flag to call the dispatcher whenever a process
is placed on a run queue.

Process scheduling fields

Each proc structure (entry in the process table) has three fields that are used
to maintain a process's priority. The p_pri field holds the priority itself. A field
called p_cpu holds the count of recently accumulated clock ticks of CPU time.
A clock tick in AIX 3.2 is 1/100 second. The concept of "recently accumulated"
means the value of this field decays periodically, as is demonstrated shortly.
The third field is the p_nice. It holds the process's "nice" value. Figure 5.25
shows the fields used for process scheduling.

The nice value

Every process has a nice value. By default, the nice value is 20. If a user is
about to run a program whose response time is not critical, and the user does
not want to wrest CPU time away from other processes running at the same
time, the user can "nice" the program. This is done by adding the nice command
to the beginning of the command string, as shown in Fig. 5.26. If used alone,
the nice command adds a value of 10 to the default nice value of 20, making the
nice value 30. The higher the nice value, the "nicer" the process is. If a user
issues a command preceded by "nice -15," 15 is added to the default nice value
of 20, making the nic� value 35. The highest value that can be given with the
nice command is "nice -20," for a nice value of 40. The superuser (root) can use
negative values for nice, such as "nice - -15," which subtracts 15 from the
default ni.ce value of 20, making the nice value 5.

Process
'Thble

p_pri UL]
p_cpu LU
p_nice �

Figure 5.25 Process scheduling fields.

130 Chapter Five

$ bigprog
nice=20 (default)

$ nice bigprog
nice=30

$ nice - 1 S bigprog
nice=35

nice -- 1 5 bigprog
nice=5

Figure 5.26 The nice command.

Author's Note: I have sometimes heard people mistakenly say that the nice com­
mand allows a user to set the priority of his or her process. This is not true. The
nice command only sets the nice value, which is one factor in calculating a process's
priority. The nice command is like allowing someone else, with only one or two
pages to reproduce at a copy machine, to go ahead of you when you are about to
reproduce a large volume of pages.

The nice command is only used to set the nice value of a process at the time
of execution. It cannot change the nice value of an already running process. AIX
3.2, however, supports the renice command for changing the nice value of an
already executing process. See the manual pages for nice and renice for more
information. The Korn shell automatically sets the nice value of background
processes at 24.

5.5 A Process Scheduling Example

This section describes, step by step, how processes are scheduled and dis­
patched. It uses three ready-to-run processes (the "wait" process at run queue
127 is ignored for this example). The processes and their scheduling attributes
are shown in Fig. 5.27. The dispatcher selects process B to run, since it has the
most favored p_pri value. Process B executes for one clock tick. The system is
interrupted after each clock tick by the system clock interrupt. In addition to
updating all system timers, the clock tick interrupt handler charges the cur­
rent process for the clock tick of CPU time it just used. This is done by incre­
menting the value of p_cpu for process B. The clock tick interrupt handler then
recalculates the priority value of the current running process by using the fol-
lowing algorithm:

·

p_pri = PUSER + p_nice + (p_cpu >> 1)

A

B

c

Process
Table

p_pri DD
p_cpu [JI]
p_nice DD
p_pri OD
p_cpu CI:J
p_nice DD
p_pri DO
p_cpu CD
p_nice DD

6 1

73

The Process Management Subsystem 1 31

Figure 5.27 A process scheduling example.

The algorithm starts with a symbolic coristant called PUSER, which is set to a
value of 40 in the /usr/include/sys/pri.h header file. PUSER keeps non-real-time
processes from ever having a priority value more favored than 40. The nice
value, discussed in the previous section of this chapter, is added to the PUSER
constant. (Actually, the PUSER constant is added to the nice value to establish
the value of p_nice, but they are shown as two separate values in the algorithm
above to simplify the example.) The next portion of the algorithm, (p_cpu > > 1),
right-shifts the bits of the current CPU clock tick count by 1 bit. This operation
is the same as "divide by 2." Therefore, the algorithm is simply dividing the cur­
rent CPU clock tick count by 2 and adding the result to PUSER and p_nice. In
the case of process B from the example, the algorithm would look like this:

p_pri = 40 + 20 + (8/2)

The priority calculates to 64. This means that process B must be requeued from
run queue 63 to run queue 64, as shown in Fig. 5.28.

. The clock tick interrupt handler always calls tlie dispatcher when it com­
pletes. This means that the dispatcher is called at least 100 times per second.
In the example, the dispatcher selects process B as the most favored process.
The swtch() routine is not called since process B is already running. Process B
simply resumes execution. After another clock tick, process B's p_cpu is incre­
mented to 9. The algorithm still results in a priority value of 64 because the
division of the odd number is handled as an integer with truncation of the dec­
imal value:

p_pri = 40 + 20 ,.. (9/2)

p_pri = ' 64

132 . Chapter Five

Process

Table

6 1
p_pri DLJ

A p_cpu DD
p_nice DD
p_pri DLJ

B p_cpu CD
p_nice DD
p_pri DLI

c p_cpu CD
p_nice OD 73

Figure 5.28 Process requeuing.

As each clock tick occurs, process B's priority continues to become less favored.
Eventually, when process B's p_cpu value reaches 12, the priority calculation
algorithm results in a priority value of 66, which is the same as process Ks pri­
ority value. Process B is placed at the head of the run queue linked list. The dis­
patcher selects process B to continue running, as illustrated in Fig. 5.29.

A

B

c

Author's Note: The fact that AIX 3.2 places a proc structure at the head of the
linked list of a run queue, instead of at the tail end, is interesting. By doing this,
the kernel delays the context switch that would occur between process A and
process B for another two clock ticks.

Process

Table

p_pri DLJ
p_cpu DD
p_nice DD
p_pri D!:I
p_cpu [][]
p_nice DD
p_pri DLI
p_cpu CD
p_nice OD

61
62
63
64

72
73

Figure 5.29 The process scheduling example continues.

Time slices

The Process Management Subsystem 1 33

After two more clock ticks, process B's priority becomes 67. It is no longer the
most favored process and, for the first time in the example, the dispatcher calls
the swtch() routine. The swtch() routine saves the context of process B, then
restores the context of process A into the machine state and resumes process A
The details of a context switch are provided in the next section.

The algorithm demonstrated here might lead one to believe that, since run­
ning processes become less favored as they run, all ready-to-run processes end
up, sooner or later, with the same priority value, and that they simply take
turns running in a round robin fashion. This is somewhat true; however, one
must remember that processes frequently go to sleep, thus removing them­
selves from the run queues. Conversely, when a sleeping process awakens, it is
placed on the run queue that corresponds to its priority value, so newly made
ready-to-run processes can join the work load at any priority level. There is one
other aspect of process scheduling that has yet to be described. That is the role
of the scheduler process.

The scheduler process, whose process ID number is zero and whose name
appears as "swapper" in the output from the ps -e command, spends most of the
time sleeping. It wakes once every 100 clock ticks (once each second), performs
a series of process scheduling tasks, then goes back to sleep. One of the tasks
of the scheduler process is to cut the p_cpu value of all processes in half. As the
scheduler runs through the process table, it performs the following algorithm:

p->p_cpu = p->p_cpu > > 1

The variable "p" is a pointer to a proc structure and i s used to indicate the cur­
rent process table entry as the scheduler loops through each slot in the process
table. Once again, the right-shift 1-bit operation is the same as "divide by 2."
The result is that once each second, all processes have their accumulated CPU
time cut in half. This is the decay factor mentioned earlier.

Another operation performed by the scheduler is to recalculate all processes's
p_pri values using the same algorithm used by the clock tick interrupt handler:

p->p_pri = PUSER + p�>p_nice + (p->p_cpu >>1)

All processes are then requeued as necessary and the dispatcher is called to
select the most favored ready-to-run process for execution. The bottom line of
the scheduler algorithm is that running processes become less favored as they
use CPU time, since their p_cpu values incre�e. On the other hand, sleeping ·

processes become more favored since their p_cpu values decay rapidly. This
means that the AIX 3.2 process scheduling policies favor I/O bound processes
over CPU bound processes;

With most UNIX�based operating systems, a process is dispatched with a time
slice, which is a guaranteed minimum amount of time that the process may run

134 Chapter Five

before the dispatcher is called to decide whether that process is still the most
favored process. In AIX 3.2, the dispatcher can be called at the conclusion of
any interrupt handler. This means that the dispatcher can be called with the
same frequency as interrupts, which can occur between any two RISC instruc­
tions. The likelihood of an interrupt's occurring after each RISC instruction is
extremely remote, but when one defines "time slice" as the guaranteed mini­
mum amount of time a process may run before it is evaluated by the dispatch­
er, in theory that time is one RISC instruction. For practical purposes, AIX 3.2
defines a time slice as a clock tick, or 1/lOOth second.

Author's Note: You will see shortly that AIX 3.2 includes a tunable parameter for
the time slice. This parameter actually controls how often the dispatcher is called
by the clock tick interrupt handler. The shortest allowed time slice is 1/100 second.

5.6 The Context Switch

A context switch is the act of preempting the current running process, saving its
machine state, restoring the machine state of another process, and resuming
the execution of the newly dispatched process. The machine state of a process
includes the information that populates the various hardware registers at the
time of preemption. This information is saved within the preempted process's
user area. In a larger sense, the "context" of a process includes the machine
state as well as other information in the kernel pertaining to the process.

The user area of each process (defined as a user structure in the
/usr/include/sys/user.h header file) includes an embedded machine state save
area, which holds the machine state of a process when · it is not running. The
structure, called u_save, is an mstsave structure as defined in the
/usr/include/sys/mstsave.h header file.

Three of the most interesting fields in the mstsave structure are:

gpr[NGPRS]. An array of unsigned long integers that holds the contents of
the computer's general-purpose registers at the time of preemption. The size
of the array is NGPRS, which is defined in the /usr/include/sys/m_param.h
header file as 32. Recall that header files whose names begin with "m_" are
machine-specific, as would be the case when dealing with the number of gen­
eral-purpose registers.

fpr[NFPRS]. An array of double precision floating point numbers that holds
the contents of the floating point registers at the time of preemption. The size
of the array is NFPRS, which is also defined as 32 in the
/usr/include/sys/m_param.h header file. This is the number of floating point
registers in the RISC System/6000 and the PowerPC.

as. An adspace_t data type, which is actually an array of 16 vmhandle_t
data types. It holds the segment ID numbers of the 16 segments of the
process, per the segment registers in the hardware. The adspace_t data type
is defined in the /usr/include/sys/m_types.h header file. It includes an array,

The Process Management Subsystem 1 35

called srval[] , with 16 elements, each holding a segment ID number as a
vmhandle_t data type.

When a process is running, its user area is mapped into the kernel memory.
A kernel variable, called u, holds the current process's user area. It is accessed
via &u (the address of u). A context switch involves mapping the incoming
process's user area to the address of u. This presents an interesting problem for
the operating system. The u_save structure, which holds the segment ID num­
bers of the incoming process, is itself in the process's data segment. So how does
the operating system know the segment ID number of the incoming process's
data segment? Recall that each

.
entry in the process table includes a field called

p_adspace, which holds the segment ID number of tliat process's data segment.
Since the process table slots are always pinned in memory, and every process's
user area is always at the same location within the data segment, the swtch()
kernel routine has all the information it needs to locate and map the incoming
process's user area to the address of u.

Author's Note: Recall from the discussion of the process's data segment in Sec. 3.7
that a process may not directly access its own user area or any other portion of the
kernel section of the data segment. That is because the user area is mapped into
kernel memory, which is only available to a process's application code via system
· calls.

Figure 5.30 illustrates how the mstsave structure (u_save) is used during a
context switch. Most of the kernel code involved in performing context switch­
es is written in assembler, since it deals with the system hardware.

User Memory Kernel Memory

.u_save

Hardware

User • u_save Area

Rumrlng
Process

General-Purpose
Re isters

Figure 5.30 The mstsave structure.

.u_save

Floating Point
Re "sters

Segment
Registers

1 36 . Chapter Five

5. 7 · Interrupts

The process management subsystem includes mechanisms for handling inter-
. rupts. These interrupts occur when physical devices, such as network con­

trollers or the hardware clock, notify the operating system of some condition or
situation. For instance, the SCSI (small computer system interface) controller
interrupts the operating system when an 110 request has completed. The inter­
rupts generated by physical devices (other than the CPU) are bus level inter-

. · rupts. In addition to bus level interrupts, AIX 3.2 supports a series of software
and CPU level interrupts.

As mentioned earlier, AIX 3.2 is always executing in one of two different envi­
ronments. It is said to be in the process environment when executing the code
of a process or a system call made by a process, and in interrupt handler envi­
ronment when executing code that services a hardware or software interrupt.
This section describes what happens when the operating system is in the inter­
rupt handling environment.

Interrupt classes and priorities

AIX 3.2 supports 16 classes of bus level (device) interrupts and 34 classes of
software and CPU interrupts. They are defined in the /usr/include/sys/m_intr.h
header file. In addition to interrupt classes, AIX 3.2 provides 12 priority levels
for interrupts. These priority levels are similar to the 128 priority levels for
processes; however, interrupt handlers are not time sliced. Figure 5.31 shows
how interrupt handler priorities compare to process priorities.

To understand the relationship of interrupt classes and priorities to process­
es, one must understand what happens when an interrupt occurs. Figure 5.32

Interrupt

Handler

Priorities

Process

Priorities

Figure 5.31 Interrupt handler priorities.

User Memory Kernel Memory

SCSI

Figure 5.32 An interrupt handler example.

The Process Management Subsystem 1 37

SCSI
intr Controller

Structures �-�---'

illustrates the components involved in handling an interrupt. It uses a SCSI
controller as an example of a device that generates an interrupt. The events of
the example are numbered.

·

1 . Process A issues a read() system call on a file that it has opened. The file
resides on fixed disk "hdiskO." The portion of the file requested by process A is
not in memory and must be fetched from disk. This is done by the logical vol­
ume manager (described in Chap. 9), which issues a physical 1/0 request to the
SCSI device driver.

2. The SCSI device driver calls the e_sleep() kernel service, causing process
A to sleep while awaiting the completion of the 1/0 request. This allows the dis­
patcher to run process B.

3. When the SCSI controller is ready to transfer the requested file pages, it
interrupts the CPU. This causes process B to stop executing while the CPU and
the operating system handle the interrupt.

4. The operating system includes a linked list of intr structures, defined in
the /usr/include/sys/intr.h header file. Each device has an intr structure in this
linked list. The kernel contains interrupt processing logic that locates the cor­
rect intr structure. The intr structure contains a pointer to a function called an
interrupt handler. The interrupt handler is inside of the SCSI device driver.

5. A context switch occurs, saving the machine state of process B so that the
interrupt handler can execute. The context switch between a process and an
interrupt handler is actually faster than a context switch between processes.
This is because interrupt handlers only use segments 0 (the kernel segment)
and 14 (the kernel data segment), which are already part of the process con-

138 Chapter Five

0 -

1 -

2 -

3
"CS 4 f
� s

r: 6

f 7

� 8

9

10

11 -

text. The contents of the segment registers need not be changed to accommo­
date an interrupt handler. Another characteristic of interrupt handlers is that
they do not use the floating point registers, so the floating point registers allo­
cated to the current process need not be saved during a context switch to an
interrupt handler. The context switch between a process and an interrupt han­
dler is said to be an abbreviated context switch.

6. Initially, the SCSI interrupt handler interrupts the CPU at a high priori­
ty level to get the system's attention. This is called the first-level interrupt han­
dler, or FLIH. As the FLIH executes, it blocks all interrupts that occur at less
favored priorities. The higher (more favored) the priority of an interrupt han­
dler, the shorter its execution time must be, since it blocks all other interrupts ·
at its priority level and below. The FLIH performs whatever tasks must be done
at this high level of priority.

7. If the interrupt handler has tasks to perform that are less important than
other interrupts that may occur, the first-level interrupt handler calls a second­
level interrupt handler (SLIH), which runs at a less favored priority. This is called
"off-level scheduling" and is done via the i_sched() kernel service. Each FLlli pri­
ority level has a corresponding SLlli priority, as shown in Fig. 5.33. Figure 5.33
also shows how interrupt handler path length (time of execution) should be
matched to the interrupt handler priorities. There is nothing within AIX 3.2 that
enforces any of these concepts. Rather, it is up to the system program to adhere to
these guidelines when writing device driver interrupt handlers.

8. The SLlli in this example uses the e_ wake() kernel service to wake the
sleeping process A. This causes process A to be placed back on the run queue.
Upon completion of the SLIH, the dispatcher is called, since a process has been
made ready-to-run.

9. The dispatcher performs a context switch from process B back to process A.

-
H Device Class 0

I
I

�-l Device Class I
I

I
Device Class 2

I
I I

Device Class 3
I
I

. - 1 Off Level for Device Class 0 : -
-

1 Off Level for Device Class I : -
- : Off Level for Device Class 2 -

-
1 Off Level for Device Class 3 -

-

Figure 5.33 Off-level interrupt handling.

Interrupt-to-interrupt context switches

The Process Management Subsystem 139

As mentioned earlier, AIX 3.2 supports 12 priorities of interrupts. As an inter­
rupt handler runs, it blocks all other interrupts at its priority level, as well as
interrupts of a less favored priority. An interrupt with a more favored priority
than an executing interrupt handler will preempt the executing interrupt han­
dler. This means that a context switch takes place between the interrupt han­
dler of lesser priority and the interrupt handler of greater priority.

·

When a context switch takes place between interrupt handlers, the pre­
empted handler's context is saved in an mstsave structure, as defined in the
/usr/include/sys/mstsave.h header file. The mstsave structure that saves an
interrupt handler's context is just like the u_save structure of a process. The
kernel has a chain of 12 mstsave structures, one for each interrupt priority
level. The first field in each mstsave structure is a pointer called prev that
points back to the previous mstsave structure in the chain. As interrupts are
nested, mstsave structures are allocated off of the chain in a fashion similar to
a stack (see Chap. 3 for a discussion of how stacks work). A pointer called csa
points to the mstsave structure associated with the current interrupt handler.
The prev field of the first interrupt handler's mstsave structure points to the
u_save structure of the current process.

Figure 5.34a-f illustrate how nested interrupts and their handlers use the
chain of mstsave structures to save their context. At Time 1 (Fig. 5.34a), the
current process is executing when an interrupt occurs. ThE;l priority of the inter­
rupt, for this example, is 4. The context of the process is saved in the u_save
structure and the csa pointer changes to point to the first mstsave structure in ·
the chain. At Time 2 (Fig. 5.34b), as the first interrupt handler is executing,
another interrupt occurs. This interrupt has a priority of 3, so the first inter­
rupt handler is preempted. The context of the first interrupt handler is saved
in its mstsave structure while the csa pointer is changed to point to the next
mstsave structure in the chain. The second interrupt handler now executes. At
Time 3 (Fig. 5.34c), a third interrupt occurs with a priority of 2. This interrupt
preempts the second interrupt handler. The context of the second interrupt
handler is saved in its mstsave structure and the csa pointer is incremented to
point to the next mstsave structure in the chain. Now, the third interrupt han­
dler executes. At Time 4 (Fig. 5.34d), the third interrupt handler has complet­
ed. The csa pointer is set to point to the mstsave structure of the second
interrupt handler. This is done by using the prev pointer to walk back up the ·
chain. The second interrupt handler can now resume its execution. At Time 5
(Fig. 5.34e), the second interrupt handler has completed and the context of the
first interrupt handler is restored via the csa pointer. The first interrupt han­
dler can now resume. Time 6 (Fig. 5.34/) shows the completion of the first inter­
rupt handler. The csa pointer is set to point to the mstsave structure that is
u_save (within the process's user area). This allows the process to continue exe­
cution. Keep in mind that the dispatcher may be called before allowing the
process to resume execution.

1 40 Chapter Five

User Memory

User Memory

User Memory

Kernel Memory

(a)

Kernel Memory

(c)

Kernel Memory

Ewat2 Compleles

(e)

...... .

--[)
D
D

User Memory

User Memory

User Memory

Kernel Memory

(b)

Kemel Memory
,,_,

&o -f]
--[)

D
B-1 3 - -
Completes - -

(d)

Kernel Memory

&o D
D

-' D
Ewent l
Completos

(f)

Figure 5.34a-f Interrupt-to-interrupt context switches.

Disabling Interrupts

Kernel-level routines, · such as system calls, running in the process environ­
ment, and interrupt handlers, running in the interrupt handler environment,
often share common kernel data structures. To prevent contention problems,
kernel-level routines can disable interrupts when updating these shared data
structures. For instance, a device driver might link I/O requests to a queue
when running in the process environment. An interrupt handler associated
with the same device driver might also update the queue as requests are ser­
viced. Since interrupts always take priority over processes, the system calls
and device driver routines running on behalf of processes must · have a way of
preventing interrupt handlers from running while the system calls and device

The Process Management Subsystem 1 41

driver routines update the shared data structures. In the same fashion, less
favored interrupt handlers must be able to prevent more favored interrupts
from occurring while they update kernel data.

Serializing access to shared kernel data structures is accomplished in AIX
3.2 via the i_disable() and i_enable() kernel services. A parameter to the i_dis­
able() kernel service sets the current interrupt priority to a level that prevents
interrupts of the same level or lower (less favored) priority from occurring. The
i_enable() kernel service resets the interrupt priority level. The code between
the i_disable() call and the i_enable() call is known as the "critical section" of
code. A symbolic constant called INTMAX is used to disable all interrupts. A
symbolic constant called INTBASE is used to enable all interrupts. Figure 5.35
illustrates how interrupts are disabled by a system call. See the manual pages

. for i_disable() and i_enable(), as well as the InfoExplorer documentation on dis­
abling interrupts for more information.

AIX 3.2 system calls, kernel services, and interrupt· handlers are written to
implement the shortest path lengths possible for critical sections of code. In
other words, interrupts are disabled only when absolutely necessary to assure
data integrity, and for the shortest amount of time possible. Systems program­
mers who write device drivers must understand the use of i_disable() and
i_enable() and appreciate the ramifications of their utilization. The IBM man­
ual called "Kernel Extensions and Device Support Programming Concepts"
within InfoExplorer or available in hard copy form provides guidelines for dis­
abling interrupts.

/* Code from some kernel extension */

I* Start critical section of code */
i_disable(INTMAX); /* Disable all interrupts */
... I* Critical section here */
i_enable(INTMAX); /* Enable all interrupts */

Figure 5.35 Disabling interrupts.

i_cli<able(INTMAX)

'
o --�
1
2
3
4
s
6
7
8
9

10
1 1 -----;

i_enable(INTMAX)

'

142 Chapter Five

Locking kernel data structures

a ·c:: 0 ·c:: �
i:: 60 0 ·.:1
e � 68

Access to kernel data structures by processes can be serialized by locks. The .
lockl() and unlockl() kernel services allow kernel routines, such as system calls
running on behalf of processes, to lock and unlock kernel data structures.
These kernel services provide advisory locks, which means that the kernel does
not enforce these locks. Rather, kernel services and system calls must request
a lock for a kernel resource. The lockl() kernel service includes a flag parame­
ter to indicate the desired action to take if the lock is not available. The flag
allows the process to sleep until the lock becomes available, or immediately
return with a failed condition.

To avoid deadlock conditions, kernel locks are obtained in a hierarchical
fashion that progresses from the coarsest lock level to the finest lock level.
Another feature of kernel locks is the artificial raising of the priority of a
process that owns a kernel lock to the level of a process that requests the same
lock. This concept is illustrated in Fig. 5.36. Process A, which has a priority
value of 68, issues a system call that acquires a lock on the process table. Soon
afterward, process B, which has a priority value of 60 (which is more favored
than process A) and has been sleeping while waiting for some event to occur,
has awakened, since the event has occurred. The dispatcher causes process A
to be preempted (even while holding a kernel lock) and allows process B to exe­
cute. Process B then issues a system call that attempts to lock the process
table. The lock request fails since the lock is still owned by process A. The sys­
tem artificially raises process .Ns priority to 60 so that process A can run . As
soon as process A releases the lock, its priority is set back to 68. This allows
process B to run and acquire the process table lock.

Process - User Modec=]
Process - System Mode ..

Process With Lock Imo

0 2 3 4 5 6 7 8 9 10 1 1 12 1 3 14
Time

Figure 5.36 Kernel locks and process priorities.

The Process Management Subsystem 1 43

5.8 The Scheduler and the Suspension Queue

AIX 3.2 adds a new scheduling feature that helps reduce the effects of thrash­
ing due to overcommitted memory. (See Chap. 4 for an explanation of thrash­
ing.) It is a memory load control algorithm which is executed by the scheduler
process. Recall that the scheduler process (PID 0, a.k.a. "swapper") runs once
each second. In addition to its traditional job of calculating process priorities
and requeuing ready-to-run processes, it checks to see if the system is thrash­
ing. If it detects a thrashing condition, it suspends certain processes and pre­
vents new processes from entering the system. The pages associated with a
suspended process age very quickly and are removed from physical memory by
the page stealer. This reduces the load on physical memory and allows the sys­
tem to recover from the thrashing condition. As soon as the system is no longer
thrashing, the suspended processes are allowed to continue execution. This
section provides details on the memory load control algorithm.

The memory load control algorithm

Figure 5.37 illustrates the logic flow of the memory load control algorithm. The
flowchart begins once each second when the scheduler wakes.

1. The scheduler determines ifthe system is thrashing. This is accomplished
by examining two fields already maintained by the virtual memory manager
(VMM): the number of page steals within the last second and the number of
pageouts resulting from page steals within the last second. By default, when
the scheduler detects that the number of page steals requiring pageouts is
greater than one-sixth of all pages stolen within the last second, the system is
thrashing. The formula is

(pageouts/pages stolen)>(l/6)

.----,.---1�(Once each second . ..)f----�+
4.

Evaluate all
Processes'

Re a0e Rate

3.
Reactivate

Some
Processes

Figure 5.37 The memory load control algorithm.

es

5.
Suspend .. Bad ..

Processes

144 Chapter Five

2. If the system is not thrashing and has not been thrashing for a designat­
ed period of time (1 second, by default), and there are suspended processes, the
scheduler allows a certain number of processes to leave the suspension queue
and resume execution. Suspended processes are selected for reactivation first
by their priority value and second according to which processes have been sus­
pended the longest. In other words, when two or more suspended processes
have the same priority value, the scheduler reactivates them in a FIFO fash­
ion, according to the suspension queue.

Author's Note: The 1-second delay between the time the system stops thrashing
and the reactivation of the suspended processes allows the system a safety period
to recover from the thrashing state. This delay time is tunable. One . second is the
default value for this parameter.

The number of processes reactivated by the scheduler is based on an inter­
nal algorithm. It is designed to reactivate enough suspended processes to equal
about a 20 percent increase in active processes per second. This scheme allows
the workload to build slowly after recovering from a thrashing condition.

3. A reactivated process is given a grace period (2 seconds, by default) dur­
ing which it is not qualified for suspension. The reason for this is explained
shortly.

4. Another operation performed by the scheduler when the system is not
thrashing is to determine which processes should be suspended if the system
starts thrashing. This is done by examining the repage rate of each eligible
process. Recall from Chap. 4 that a repage is a pagein of a page that had pre­
viously been in physical memory but was then paged out. The VMM tracks the
repage rate for every process. By default, if more than 25 percent (one-fourth)
of all pageins for a process within the last second were repages, the scheduler
marks the process as "bad," or qualified for suspension. Processes that are
immune to suspension include sleeping processes, fixed-priority processes with
priority values less than 60 (see the next section of this chapter for a discussion
of fixed-priority processes), processes that have just been reactivated and are
still within their grace periods, processes that have pinned memory, and ker­
nel processes. Keep in mind that, at this point, the scheduler is only selecting
processes that should be suspended when action is taken to correct a thrashing
condition. No processes are actually being suspended. ·

5. When the scheduler determines that the system is thrashing (based on
the formula presented in step 1), it takes action by suspending all processes
marked as "bad" (in step 4). It also prevents new processes from executing by
having them placed on the suspension queue as well. This causes the pages
associated with these processes to quickly age. The pages are stolen from phys­
ical memory, allowing the system to recover from the thrashing condition.

The system maintains another tunable parameter which specifies the mini­
mum number of processes to leave active. By default, the value of this para-

The Process Management Subsystem 1 45

meter is two. It can be adjusted to control the aggressiveness of the memory
load control algorithm at various physical memory sizes and workloads.

Author's Note: The term "bad" process is interesting because, in most cases,
processes that do a lot of repaging can cause a system to thrash. The high repage
rate may be the result of poor locality of reference. It cannot always be assumed,
however, that a high repage rate occurs only within bad processes. Another process
might pin a large number of pages to physical memory. Recall that processes that
have pinned memory are not eligible for suspension and are therefore never "bad"
processes. They can be the direct cause of overcommitted memory, however, thus
causing other processes to have higher repage rates than they would normally
have. The bottom line is that sometimes a "bad" process isn't really bad. It's just a
victim of its environment!

Suspension flags and fields

The kernel maintains the following fields in the process table (proc structure
as defined in /usr/include/sys/proc.h) to aid the memory load control algorithm:

p_repage. An integer that holds the repage count for the process.

p_sched_next. A pointer to the next proc structure on the suspension queue.

p_sched_back. A pointer to the previous proc structure on the suspension
queue. The suspension queue is a doubly linked list within the process table.

p_sched_flags. A character field that holds the current suspension status
flag. The possible values, as defined in the /usr/include/sys/proc.h header file,
include:

SSWAPNONE. Defined as OxOO, it indicates a normal (not "bad")
process.

SGETOUT. Defined as OxOl, it indicates a process that the scheduler
has marked as "bad." Its repage rate is higher than the defined system para­
meter (default 25 percent of all pageins). The process is not suspended but
will be if the scheduler detects a thrashing condition.

SSWAPPED. Defined as Ox02, it indicates that the scheduler has sus­
pended the process. The process is said to be on the suspension queue.

SJUSTBACKIN. Defined as Ox03, it indicates that the process has just
been reactivated and is still operating within its grace period. As mentioned
earlier, the process is immune to further suspension as long as it is in this
grace period, which has a default time value of 2 seconds. The grace period
is necessary since, while a process is suspended, most, if not all, of its pages
are aged and paged out. A high repage rate is only natural in order to get the
process running again.

146 Chapter Five

Tuning the memory load control algorlthm­
The schedtune util ity

AIX. 3.2 includes a utility, /usr/lpp/bos/samples/schedtune, which provides the
ability to adjust some of the parameters discussed in this section. For instance,

. the parameter that defines a thrashing condition as more than one-sixth of all
page .steals requiring pageouts can be tuned. When issued with no options, the
schedtune command displays the current settings, as shown in Fig. 5.38.

The SYS value, altered via the -h option, is used to determine when a sys­
tem is thrashing. The default value of six provides the 1/6 operand in the equa­
tion given earlier in this chapter. Using the -h option, the formula can be
displayed as

(pageouts/pages stolen)>(l/h)

When the equation above is true, the scheduler assumes that the system is
thrashing and takes appropriate action.

The PROC value, altered via the -p option, is used by the scheduler to deter­
mine which processes are candidates for suspension. The default value of four
provides the one-fourth (25 percent) repage rate that identifies "bad" process­
es. Using the -p option, the formula is expressed as

(number of repages in last second/number of page faults in last second)>(l/p)

When the equation above is true, the scheduler sets the p_sched_flags field of
the process to SGETOUT.

The MULTI value, altered via the -m option, indicates the minim.um number
of processes to leave active when suspending processes. This value can be
increased for a system with a large amount of physical memory. See the AIX 3.2
Performance Tuning Guide (SC23-2365-03) for more details on tuning this
parameter.

The WAIT value, altered via the -w option, indicates the number of seconds
that the scheduler waits before reactivating processes once the thrashing con­
dition has passed. Setting this number higher than 1 second may cause poor
response time and excessive CPU idle time after a thrashing condition.

/usr/lpp/bos/samples/schedtuoe

-h
SYS

6

TIIRASH
-p

PROC
4

-m
MULTI

2

Figure 5.38 The schedtune command.

SUSP
-w

WAIT
1

-e
GRACE

2

FORK
-f

TICKS .
10

SCHED
-t

TIME-SLICE
0

The Process Management Subsystem 147

The GRACE value, altered via the -e option, indicates . the grace period of
unlimited repages given to a suspended process when it is reactivated. The
default value is 2 seconds.

The TICKS value, altered via the -f option, indicates the time interval, in
clock ticks {1/100 second), between retries of the fork() system call to create a
new process when the system is low on paging space. Recall from Chap. 4 that
the VMM prevents new processes from coming to life when the number of avail­
able paging space slots is below a low water mark. A fork() system call will retry
at the specified interval for five iterations before failing.

The TIME;...SLICE value, altered via the -t option, allows the system admin­
istrator to change the frequency with which the dispatcher is called. By default
(0), the dispatcher is called after each clock tick interrupt, as described earlier
in this chapter. For each value of 1 added to this parameter, the time slice
increases by 10 milliseconds (one clock tick).

·

Author's Note: So you can tune the time slice of AIX 3.2! Well, sort of. The -t
option of the schedtune comm.and adjusts the parameter that controls the mini­
mum frequency with which the dispatcher is called, or, in other words, the maxi­
mum time a process is allowed to run before its priority is reevaluated. Keep in
mind that the dispatcher is also called whenever any interrupt awakens a sleep­
ing p;rocess. Since the true definition of time slice is the guaranteed minimum
amount of time that a process will run before the dispatcher is called, the -t option
of the schedtune comm!llld does not actually change the time slice. Adjusting this
parameter might improve the performance of a system that runs very long, CPU­
intensive applications.

One final note on the memory load control algorithm.: It is import;ant to
remember that the goal of suspending processes when the system is thrashing
is to allow the system to smooth out and recover from a thrashing state.
Without process suspension, a small thrashing condition can grow steadily
larger until the system cannot recover. The memory load control algorithm is
not a permanent solution to the problem of overcommitted memory. That con­
dition can only be solved by adding more physical memory to the system or
reducing the memory requirements.

5.9 AIX 3.2 Real· Time Processes

Real-time programs, as described in Chap. 2, guarantee a maximum response
time (context latency) to specific events. Many of the features of the AIX 3.2
kernel were designed to support a "near-real-time" environment. For instance,
the preemptable kernel, as described in Chap. 2, allows a real-time process to
preempt an ordinary process that . is in the middle of executing a system call.
The improved method by which the dispatcher locates the most favored ready­
to-run process, discussed earlier in this chapter, also contributes to the real­
time capabilities of AIX 3.2. But one feature stands out above all others when

1 48 Chapter Five

it comes to implementing real time in AIX 3.2: the ability to fix a process's pri­
ority to a specific value.

Fixed-priority processes and the setpriO system call

AIX 3.2 provides the setpri() system call to allow a program to fix its priority.
Recall that AIX 3.2 includes 128 priority values and run queues (0-127), as
illustrated in Fig. 5.39. The PUSER value used in calculating a process's pri­
ority value is a constant 40. The only way for a process to have a priority more
favored than PUSER (less than 40) is via the setpri() system call. The setpri()
system call takes two parameters: a pid_t data type (or integer) that indicates
the ID number of the process whose priority is to be fixed, and an integer value
that indicates the desired priority level. If the process ID number parameter is
zero, the setpri() system call fixes the priority of the calling process. Figure 5.40
provides a code example of how the setpri() system call is used to fix a real-time
process to a highly favored run queue.

In the example, the process calls setpri() to fix its own priority to 38. This
makes it more favored than any ordinary user process. Note that after setting
its priority, the process sleeps, waiting for the event for which it must quickly
respond. Well-behaved real-time processes spend most of their time sleeping at
very favored priority levels. This prevents them from interfering with other
processes.

Fixed-priority processes behave differently from ordinary processes. They
are immune to the process scheduling algorithms discussed in Sec. 5.5. In fact,
the equations presented in that section were not complete. They are wrapped

0

16

40
60

127

"swapper"
Root Authority

Real-Time Proce$es
(Must Use setpriO)

Root Authority Negative Nice Processes

Ordinary User Processes

Figure 5.39 Fixed-priority processes.

main()

{
setpri(0,38);

The Process Management Subsystem 1 49

. . . I* sleeps, waiting for real-time event */

Figure 5.40 The setpri() system call.

within a test equation that verifies that the process being evaluated is not a
fixed-priority process. The p_flag field of the proc structure (process table
entry) includes a definition of SFIXPRI (OxOOOOOlOO) that indicates a process
that has called setpri(). The actual calculation performed by the clock tick
interrupt handler and scheduler, when determining the priority of a process, is

if(p->p_flag !& SFIXPRI)

p->p_pri = p->p_nice+(p->p_cpu>> l)

Recall that p is a pointer to the proc structure being evaluated, and that p_nice
has already had the PUSER constant of 40 added to the process's nice value
(0-40). Note that this algorithm only takes place if the process's p_flag value
does not include the value of SFIXPRI.

Author's Note: The bitwise AND (&) operator is used to test for the existence of a
value within another value. In this case, it is used to test for the existence of the
value OxOOOOOlOO in the process's p_flag value. The ! negates the logics of the test.
Therefore, the test is TRUE if the SFIXPRI flag is not set.

The setpri() system call fixes a process to a designated priority. Subsequent
calls to setpri() can be used to change the priority of the process, but there is no
mechanism by which a process can revert back to normal scheduling charac­
teristics.

Author's Note: I tell my students that a process is like a cat: once you fix it you
can't unfix it!

The setpri() system call can be dangerous if not used properly. Note in Fig. 5.39
that the scheduler process, known as "swapper" (PID 0), is fixed at priority 16.
Many other important system processes are fixed at various priority levels. The
/usr/include/sys/pri.h header file includes definitions of some of these process­
es and their priority levels. It also includes a warning that any process subject
to scheduling must have a priority level less favored than the scheduler. Figure

150 Chapter Five

0

5

16

"badproc" 0
"swapper"

Figure 5.41 The wrong way to use setpri().

5.41 shows how a program can abuse the setpri() system call by setting its own
priority to five, then entering an endless loop. The effect appears to lock up the
system. Actually, the system is still running, but only the process that has set

. its priority to level 5. Even the scheduler cannot run. For this reason, only a
process with root authority can successfully call setpri() .

6.1 An Overview of File Systems

Chapter

6
The Journaled File System

The term "file system" has two distinct meanings for UNIX-based systems. The
"global file system" refers to the file tree as viewed by the user. It includes the
entire hierarchical arrangement of directories and files, from a logical perspec­
tive, regardless of the physical components that comprise the tree. In reality,
the global file system is made up of one or more physical file systems, which
reside on separate disk partitions or other storage media. These physical file
systems are connected to form the global file system.

The global file system

Figure 6. 1 illustrates the AIX 3.2 file tree and a simplified representation of the
file systems on disk.

Author's Note: The details of the files found in each directory are appropriate for
a system administration discussion and are not provided here. While Fig. 6.1
shows each file system as a contiguous disk partition, the AIX logical volume man­
ager allows file systems to be fragmented and spread across one or more physical
disk drives, as described in Chap. 2.

Each file system has its own root directory, which is mounted onto a stub direc­
tory in the file system above. The stub directory is called the mount point. Each
mount point directory is shown as boxed in Fig. 6 .1 .

AIX local disk file systems must reside within disk partitions called ''logical
volumes." Each logical volume is considered a device and thus includes a
device file abstraction in the /dev directory. Table 6 .1 lists the AIX 3.2 file sys­
tems, describes their general use, and indicates the device names for their log­
ical volumes.

1 51

152 Chapter Six

bin sbin etc lib · dev home

bin lpp lib include ccs

I
sys

/usr
I I I I I I bin .:. usr ... custdata local ... include ... ccs

frar
I I I I admspool news uuc

/honr
I I

1chase pjames I wlong

Figure 6.1 The AIX 3.2 file tree and disk file systems.

TABLE 6.1 AIX 3.2 File Systems

I FS Name I Device Name

I /dev/hd4

/home /dev/hdl

/usr /dev/hd2

/tmp /dev/hd3

/var /dev/hd9var

adm spool news uucp prese1ve

I Description I
Holds configuration and boot
files specific to the system

Holds users' HOME directory
trees

Holds Licensed Program
Products (LPPs)

Holds temporary files

Holds transient system files
such as mail and news

The Journaled File System 1 53

The physical flle system

AIX. implements local disk file systems via the journaled file system, or JFS.
The JFS is similar to many other UNIX file systems, providing an interface
that is compatible with those file systems. The main difference is that the JFS
logs operations, such as the creation and removal of files and directories, that
change file system control structures. The logging provides a means of recon­
structing critical pointers in the event of a system crash. The result is a much
more robust file system.

The virtual file system

The JFS is one type of virtual file system. AIX. supports three virtual file sys­
tem types: JFS for local disk files, network file system (NFS) for remote file sys­
tems, and CD-ROM file systems. The virtual file system concept, which is
detailed in Chap. 8, allows different types of file systems to be accessed from
applications without the applications needing to know the details of operation
for each file system type.

Other virtual file system types can be added to the AIX. kernel. For instance,
support for the Andrew file system (AFS), developed at Carnegie-Mellon
University, which provides remote file access in quite a different fashion from
NFS, can be added to AIX. as a kernel extension.

Author's Note: IBM offers the distributed file system (DFS) as part of the distrib­
uted computing environment (DCE) from the Open Software Foundation (OSF).
DFS has its roots in AFS. Therefore, it can be said that IBM offers AFS for AIX as
the DFS of DCE from the OSF!

6.2 · File System Components

Flies

At the surface, file systems consist of three logical components: files, inodes,
and directories.

In AIX., as with other UNIX-based systems, ordinary files have no structure, as
far as the operating system is concerned. An ordinary file, which might contain
data or executable code, is nothing more than a string of bytes. There is no such
thing as a record size or format. Any format expected by an application must be
superimposed by the application on the raw data of the file.

Author's Note: As seen in Chap. 4, there is one instance when a kernel component
expects an ordinary file to have a format. The kernel loader expects object files and
compiled executables to be in XCOFF format. This is necessary in order to proper­
ly allocate memory for text, initialized data, and noninitialized data, as well as
resolve references to symbols found in dynamically bound objects.

1 54 Chapter Six

I nodes

Figure 8.2 AIX 3.2 files.

The ordinary file is one type of AIX file. Other types of files include directories,
symbolic links, block device special files, character device special files, named
pipes (FIFOs), and sockets. Details of the structures and uses of each of these
file types are provided in appropriate chapters of this book. Directories are
described shortly.

The raw data of an ordinary file are stored in data blocks, as seen in Fig. 6.2.
For local disk files (JFS), the data block size is 4096 bytes (4 kb). This means
that the smallest disk allocation size for an ordinary file that is not empty is 4
kb. Also, the last data block of a file is always 4 kb, regardless of how much of
the block is actually used. While this tends to was1;e disk space, especially in
file systems that hold many small flies (the JFS in AIX 3.2 does not support
data block fragmentation), the benefit comes from the fact that file I/O is per-

. formed in 4-kb chunks via pageins and pageouts (see Chap. 4).

Since the data blocks of an ordinary file contain nothing but raw data, the
attributes of a file, such as the UID of the owner of the file, the GID of the group
associated with the file, and the permission bits and file type, must be kept
elsewhere. These attributes are stored in the file's in.ode (short for information
node). Each file has an inode. Figure 6.3 illustrates the JFS inode.

The AIX header file /usrfmclude/jfsfmo.h contains the definition of the disk
inode as a struct dinode. This file is one of the more difficult files to read for two
reasons. The comments are found above the member definitions, instead of to
the right of each definition, and, since there are many different types of files,
the latter portion of the dinode structure is a complex set of nested unions and
structures. An experienced C programmer should have little trouble untan­
gling this convoluted mess, but the novice may need to spend more time on it.

Important members of the dinode structure include:

Directories

The Journaled Fiie System 1 55

di_mode. A mode_t data type that includes the file type and permission bits

di.;..nlink. The number of hard links for the inode (described shortly)

di_uid and di_gid. The user ID of the owner and the group ID of the associ­
ated group

di_size. An off_t data type that holds .the logical file size in bytes

di_nblocks. The number of data blocks actually used by the file

di_atime. The timestamp of the file's last access

di_mtime. The timestamp of the file's last modification

di_ctime. The timestamp of the inode's last modification

di_acl. A pointer to the file's access control list, if any (described shortly)

Author's Note: The "ctiine" timestamp is wrongly commented in some UNIX­
based system header files as holding the file's creation tiine. Rather, it holds the
date and tiine of the last change made to the inode itself, such as changed permis­
sions via the chmod command.

The remainder of the dinode structure is specific to the file type. For ordinary
files, this portion of the inode provides an array oflogical block numbers for the
data blocks of the file. A detailed explanation of how the data block addresses
are maintained is found in Sec. 6.5.

·

The size of an AIX 3.2 inode is 128 bytes. Each file system has its own set of
inodes. A file system's inodes are maintained in an array allocated to a set of
data blocks within the file system. This is known as an inode table. Each inode
has a number which corresponds to the inode's index within the table.

It's important to note that nowhere in the discussion of the file or the inode has
the file name appeared. That's because file names are not found within the files
(or at least as far as the operating system is aware), nor are they found within

file type }
permissions file mode

link count
user ID
group ID
size (in bytes)
number of blocks
tiniestamp of last access
timestamp of last modification
timestamp of last inode change

Figure 6.3 The JFS disk inode.

logical disk
addresses

1 56 Chapter Six

Directory File
"mydata"

· Inode #45

[
45 mydata

Figure &A Directories and inodes.

Inode #2

the inode. Actually, file names exist only to provide the user with a symbolic ref­
erence to a file. The system performs all file operations based on inode num­
bers. File names are found only within directories.

A directory is a type of file that does have a structure recognized by the oper­
ating system. Each directory is made up of slots that hold file names and their
corresponding inode numbers. In other words, a directory serves as a lookup
table for converting file names to inode numbers. Figure 6.4 provides a simpli­
fied view of the relationship of a directory to an inode to a file.

Figure 6.5 shows how a complete pathname to a file is represented through
directories and inodes. Since a directory is a type of file, it will have an inode
which is referenced in that directory's "parent" directory. Thus a linked list, of
sorts, is formed from the root directory to the file. Note that each directory con­
tains a file named ".'; which represents that directory. The "." (dot) name is use­
ful when issuing commands such as cp /etc/motd ./mymotd. Each directory also
contains a file named " .. " (dot-dot) which represents the directory's parent
directory. This is used in commands such as cd .. to change the current direc­
tory to the parent directory. These file names are shown in Fig. 6.5.

26 clave

/home

/home/dave/bin/ponies

Figure 6.5 A pathname example.

Links

4 bytes
djno
47
118

6

Flgure 6.6

The Journaled File System 1 57

The old style directory, as was used in AIX Version 2 for the RT, had a simple
directory structure that consisted of two fields, a short integer for the inode num­
ber and a character array of 14 characters for the file name. The file name limit,
therefore, was 14 characters. AIX 3.2 employs a directory structure similar to
that of the BSD version of UNIX, which provides for variable-length file names.

The AIX 3.2 directory structure is defined as a struct direct in the file
/usr/include/jfs/dir.h. The structure has four fields:

d_ino. An unsigned long for the inode number

d_reclen. An unsigned short for the length of the entire directory entry

d_namlen. An unsigned short for the length of the file name

d_nameLD_NAME_MAX + l]. A character array for the file name

_D_NAME_MAX is defined in the dir.h file as 255 and is the size of the longest
allowed file name. The MAXNAMELEN symbolic constant is also defined with­
in the same file for BSD compatibility. Since AIX file names are terminated
with a null character (\0), the d_name[] array is 256 characters. The d_namlen
field contains the length of the file name. The file name is always padded up to
the next 4-byte boundary. Figure 6.6 illustrates an example of a directory.

AIX allocates directory space in 512-byte blocks (see DIRBLKSIZ in dir.h). A
directory consists of one or more of these blocks. Directory entries claim all of the
bytes in a block. This is accomplished by having the last directory entry claim all
of the remaining free bytes in the block within that entry's d_reclen field. When
an entry is deleted from a directory, the free bytes from the deleted entry are
claimed by the previous entry's d_reclen field. Figure 6. 7 represents a before and
after example. The dir.h header file includes a macro called DIRSIZ that indi­
cates the minimum record length required to hold a directory entry. The dir.h
header file also provides information on many library routines for manipulating
directories, including opendir(), readdir(), closedir(), and rewinddir().

AIX 3.2 supports hard links and symbolic links. A hard link exists between a
directory entry and an inode within the same file system. The ln command

2 bytes 2 bytes 4 bytes 4 bytes 2 bjtes 2 bytes 4 bytes
d_recleo dJU1mleo dJU1me[) djno d_recleo d_oamleo d_oame[]

12 1 .\0 49 2 .. \0
32 21 a_ very_long_me_name\O 121 16

mydata\0 dJU1me[] 24 bytes

A directory example.

158 Chapter Six

Before:
47 12 1 .\0
121 16 6

inventory\O a_very_long.Jile_name\O !
231 420 6 ""

;;

.....___ _________ J_
After: rm inventory

�������T 47 12 1 .\0 12 2 •• \0
121 20 6

231 420 6
a_ very_long.Jile_name\O t = ""

;;

,____ ____ _____.J_
Figure 6.7 Directory space reallocation.

allows users to create additional links for an inode by establishing additional
directory entries which reference that inode. For example, two users can create
links to a data file or executable file such that the file appears to exist in each
of their home directories. Figure 6.8 illustrates such an example. Hard links
also allow a single file to have multiple names within the same directory. For
instance, AIX. 3.2 links /usr/bin/sh to /usr/bin/k.sh to treat the Korn shell as the
default shell. ·

The disk inode structure (dinode) includes a field named di_nlink which indi­
cates the number of hard links to the file represented by the inode. In the exam­
ple in Fig. 6.8, the inode has a link count of three. When a user removes a file
via the rm command, the directory entry for that file is deleted and the di_nlink
value is decremented for that inode. When an inode's di_nlink count reaches
zero, the file is considered com,pletely removed. The inode is then placed back
on the free list of inodes and the file's data blocks are released back to the free
list of data blocks.

The di_nlink count shows up in the output from ls -1, as shown in Fig. 6.9.
File inode numbers can be determined with the ls -i command. The ncheck com­
mand converts inode numbers to file path names. The find command also
includes a switch for determining file names for inode numbers. Hard links can
only exist between directory entries and inodes within the same file system.
Symbolic links were added to UNIX to provide links between directory entries

In /home/wilma/salaries /home/wilma/mysal

In /home/wilma/salaries /home/fred/salaries

Figure 6.8 A hard link example.

pwd
/home/wilma
ls -1

/home File System

-rw-r---- 3
-rw-r---- 3

wilma payroll 38755 June 12 08:3 1 mysal
wilma payroll 38755 June 12 08:3 1 salaries

ls -i

387 mysal
387 salaries
ncheck -i 387 /home
/dev/hd2:

/home/fred/salaries
/home/wilma/mysal
/home/wilma/salaries

find /home -inum 387 -print
/home/fred/salaries
/home/wilma/mysal
/home/wilma/salaries

Figure 6.9 File names and inode numbers.

The Journaled Fiie System 1 59

and inodes that are in different file systems. The ln -s command is used to cre­
ate a symbolic link.

Figure 6. 10 illustrates how a symbolic link is created between two file sys­
tems. The symbolic link (/home/carolyn/bin/ponies) is a special type of file. Its
inode contains the full path name of the target file (/usr/local/bin/ponies). The
dinode struct defined in /usr/include/jfs/ino.h includes a character array called

1 60 Chapter Six

In -s /usrflocal/bin/ponies lhome/carolyn/bin/ponies

Figure 6.1 o A symbolic link example.

/usr File System

/home/carolyn/bin

ponies
/home File System

_s_private[D_PRIVATE] which holds the path name of the target file as long as
the path name is less than D_PRIVATE, which is defined as 48 characters. If
the target file's path name is 48 characters or more (don't forget the null ter­
mination character), the path name is stored in a data block pointed to by the
inode. This is all defined in the di_sym union.

The ls -1 /home/carolyn/bin command shows the following (Fig. 6. 11): The "l"
character for the file type indicates the symbolic link. Notice the permissions
for the symbolic link file. They are "wide open" since the target file's inode holds
the actual permissions for the target file. Symbolic links do not increment the
target file's link count.

Symbolic links, while necessary, include a number of potential problems.
First, if the target file of a symbolic link is remove, moved, or renamed, the link
is broken. For instance, if the file named /usr/local/bin/poilies is renamed to
/usr/local/bin/horses, trying to execute /home/carolyn/bin/poilies would result
in the error message "Cannot open /home/carolyn/bin/poilies." The error mes-

$ ls -1 /home/carolyn/bin

hwxrwxrwx 1 carolyn staff O July 18 09:43 ponies->/usr/local/bin/ponies

Figure 6.1 1 Symbolic links and the ls command.

The Journaled File System 1 61

sage is misleading because it does not indicate the fact that the system cannot
traverse the link. Care must also be taken when executing any type of file
manipulation command on a symbolic link file. The results depend on whether
or not the command knows how to deal with symbolic links. ·

Symbolic links offer one big advantage over hard links, aside from allowing
links across file systems. Symbolic links can be established for entire directo­
ries. For instance, the /bin directory in AIX 3.2 is actually a symbolic link to the
/usr/bin directory. This way, not every file in the /bin directory has to be estab­
lished as a link.

Author's Note: Some UNIX-based systems allow hard links of entire directories as
long as the directories are within the same file system. AIX 3.2 does not allow this
option for hard links.

Author's Note: AIX 3.2 introduced the symbolic links of the /bin directory to
/usr/bin and the /lib directory to /usr/lib to help maintain backward compatibility
withAIX 3.1. Most of the /bin and /lib directory contents were moved to /usr/bin and
/usr/lib, respectively, in AIX 3.2 to reduce the size of the root file system for support
of diskless workstations.

Finally, if a user moves from the parent directory of a symbolically linked direc­
tory, down through the symbolically linked directory, then references the " .. "
directory name or issues the pwd command, the results can be surprising. For
instance, consider the example in Fig. 6. 12. If a user starts at /home/carolyn and
moves to /home/carolyn/lib (which is really /usr/local/lib), then issues the pwd
command, the output is "/usr/local/lib" if the user is using the Bourne shell or

In -s /usr/localllib /bome/carolyo/lib

fuse File System lhome File System

Figure 6.1 2 Symbolic links and directories.

1 62 Chapter Six

the C shell. If the user is using the Korn shell, however, the output is "/home/car­
olyn/lib"! Similar results occur when the user issues a "cd . . " command.

Access control lists

AIX 3.2 implements access control lists (ACLs) as a way of providing extended
permission capability. The owner of a file can issue the commands acledit,
aclget, and aclput to look at or modify the extended permissions of that file.
(See the manual pages or InfoExplorer for more details on these commands.)
Since the access control lists allow permission sets to be created for any user or
group, additional space is required within the file's control data structure to
hold this information. To avoid increasing the size of the disk inode, since ACLs
might only be applied to a small number of files on most systems, IBM created
a structure called an extended inode. The extended inode is an additional
amount of disk space allocated only for files that require it. The dinode struc­
ture defined in /usr/include/jfs/ino.h has a field called di_acl which points to the
data block holding the file's extended inode. If the value of di_acl is null, the file
has no extended inode. The header file /usr/include/sys/acl.h defines the struc­
tures used to maintain ACLs. The header file lacks comments, but the struc­
tures are easy to understand once one understands the application of ACLs (see
the manual page for acledit).

6.3 The Journaled File System (JFS)

The JFS represents one of IBM's finest contributions to the open systems mar­
ketplace, although it is not without some controversy. The JFS applies a data
base logging approach to file system control structures. In this way, if a system
crashes while these control structures are being updated, a log redo utility
allows the file system to be returned to a known state. It is important to under­
stand that the JFS does not log changes made to user data. Therefore, a sys­
tem crash might still result in the loss of user data. The JFS attempts to assure
that the file system maintains its integrity through a crash.

Prior to the JFS, a system administrator relied on tools such as fsck or fsdb
to fix a corrupted file system. The fsck utility looks for inodes that have non­
zero link counts yet are not claimed by any directory entry, or data blocks which
are not on the free list yet are not claimed by any inode. When fsck finds such
"orphans," it has little choice but to place the inodes (files) or data blocks
(assigned to a file by fsck) into the lost+found directory located in the root
directory of the file system. Finding the owners of the contents of the
lost+found directory after running fsck relies upon.the UNIX savvy of the sys­
tem administrator and is usually not an easy task.

Incidentally, AIX 3.2 includes the fsck utility which still can be used to check
the integrity of a file system. In fact, if the JFS log redo fails for any reason,
fsck may be the only way to fix a corrupted file system, short of restoring from
a backup. AIX 3.2 also offers the fsdb (file system debugger), which allows a
user to examine and change the data found in file system control structures.

The Journaled Fiie System 1 63

Each journaled file system within a volume group (see Sec. 2.3 for informa­
tion on volume groups) usually shares a common JFS log. The JFS log for the
root volume group is in the /dev/hd8 logical volume. It is a 4-megabyte circular
log which is updated by the operating system at regular intervals. The details
of the JFS logging are described in Sec. 6.6.

One unfortunate aspect of the JFS ·is that it is not supported for floppy
diskette file systems.

6.4 The JFS Architecture

As previously mentioned, the JFS design is similar to other UNIX-type file sys­
tems. It includes a boot block, a super block, inodes, indirect blocks, and data
blocks. Anyone familiar with other types of UNIX file systems might be tempt­
ed to skip this section of the book. However, the JFS supplies a few interesting
twists to the traditional UNIX file system paradigm. This section explores
those nuances. It also serves as an introduction to the fundamental concepts of
file systems.

Before describing the design on the JFS it's necessary to say a few things about
how AIX 3.2 manages disk space. As explained in Chap. 2, the LVM carves all
physical disk space up into �ontiguous physical partitions. The default size of
these partitions is 4 megabytes on most RISC System/6000 mc;>dels. Some small­
er RISC System/6000 models use a 2-megabyte default physical partition size. In
any case, the size of a volume group's physical partitioning is constant through­
out the volume group and can be set by the system administrator when the vol­
ume group is created. IBM recommends 4 megabytes as the optimal size.
. When a journaled file system is created, the system allocates it to one or more
physical partitions. This means that the smallest file system that can be created
in a volume group is equal to the size of the physical partitioning of that volume
group. Figure 6.13 shows a volume group with 4-megabyte physical partitions. It
also shows a couple of 4-megabyte file systems and a 12-megabyte file system.
Another nice feature of the JFS (with help from the LVM) is the ability to easily
extend a file system. When a file system becomes full, the system administrator

VG
I

PV2

JFS3

JFS3

JFS3 .

Figure 6.1 3 The JFS and the LVM.

1 64 Chapter Six

can simply allocate more physical partitions, as long as free physical partitions
exist within the volume group. The partitions allocated to a file system need not
be contiguous or even on the same physical disk drive. Best of all, the file system
can be extended while it is mounted and in use by users' processes.

While the logical volume manager refers to the 4-megabyte chunks of con­
tiguous disk space as physical partitions, the journaled file system calls them
allocation groups. AB shown in Fig. 6. 13, each allocation group contains its own
set of inodes. This is similar to the BSD file system concept of cylinder groups.

Each JFS consists of the following components, as illustrated in Fig. 6. 14:

Block 0. The boot block (also called the ipl block), which is not used for any­
thing.

Block 1. The super block, which contains control information for the entire
file system.

Block 31 . The spare super block copy, used in the event of a corrupted super
block. While many UNIX file systems allocated a large number of spare
super blocks, the JFS only allocates one. This is because the JFS logging
makes it less likely for the super block to become corrupted. Also, as
described shortly, the information found in the JFS super block is not as
important to the integrity of the file system as the information found in the
super block of other UNIX file systems.

Blocks 32 through 63. The inode table for this allocation group.

Blocks 2 through 31, and 64 through the end of the file system. Data blocks.

The header file ./usr/include/jfs/filsys.h has some excellent comments describing
the design of the JFS. It also contains the definition of the super block structure.

First Allocation Group

�:, �lltll I IM!t" 0 = Boot Block
1 = Super Block
3 1 = Spare Super Block
32 - 63 = Inode Table
2 - 30 & 64 - 1 023 = Data Blocks

JFS l
PP4
PPS 32
PP6 0 - 3 1 = !node Table

32 - 1023 = Data Blocks

Subsequent Allocation Groups

Figure 6.1 4 JFS block allocation.

The JFS super block

The Journaled File System 1 65

Block one of the JFS is the super block for that file system. The structure of the
super block is defined in the header file /usr/include/jfs/filsys.h. The JFS super
block is not as "super" as its counterparts in other UNIX-based file systems.
Traditionally, the super block contains pointers to the linked lists of free inodes
and data blocks for the file system it represents. For this reason; 'if the super
block became corrupted, the file system was trashed. This is why many UNIX­
based file systems have spare super block copies scattered throughout the file
system. As you will see shortly, IBM has implemented another method of main­
taining inode and data block-free lists. The method does not rely on the JFS
super block.

The JFS super block contains a few interesting fields, such as:

s_fsize. The file system size (in 512-byte blocks). AIX 3.2 supports a maxi­
mum file system size of 2 gigabytes.

s_bsize. The block size for this file system.

s_fnam.e[]. The name of the file system.

s_logdev. A dev_t type (device major and minor numbers) for the JFS log of
this file system .

. s_ronly. A character field set if the file system is mounted as read-only.

s_time. A time_t type that holds the timestamp of the last super block
update.

s_fmod. A character flag that indicates the state of the file system. Values
include:

0. File system is clean and unmounted.

1. File system is mounted.

2. File system was mounted when dirty or commit failed.

3. Log redo processing attempted but failed.

Beyond these fields, the JFS super block isn't very interesting.

The inode table and inode allocation

Blocks 32 through 63 of a JFS hold the inode table for the first allocation group . .
The JFS inAIX 3.2 dynamically allocates another inode table for each new allo­
cation group when the file system is extended. The inode table occupies blocks
0 through 3 1 of each allocation group after the first allocation group. The JFS
attempts to assign data blocks for inodes from the same allocation group when­
ever possible. Unlike traditional UNIX-based file systems that allow the sys­
tem administrator to specify the number of inodes for a file system when the
file system is created, the JFS in AIX 3.2 defaults to one inode per data block

166 Chapter Six

within the allocation group. Since the size of an allocation group is 4 mega­
bytes, and each data block is 4 kilobytes, the JFS creates 1024 inodes for each
allocation group. This is illustrated in Fig. 6.14.

In theory, this inode allocation scheme should mean that a file system will
never run out ofinodes as long as there are still data blocks because of the one­
to-one ratio. In practice, however, it is possible to run out of inodes and still
have data blocks left over because zero-length files, such as symbolic links and
device special files, req'U:ire an inode without ever allocating a data block.

Reserved inodes

Author's Note: The latter example occurred for one of my students who was work­
ing with AIX 3.2 on IBM's SP/2 system. She needed to define a large number of
device special files in the /dev directory, only to find that the system ran out of
inodes in the root file system. The only solution was to extend the root file system
to create more inodes.

The first 16 inodes of every JFS file system (inodes 0 through 15) are reserved
by the JFS. A description of each reserved inode is found in the comments of the
/usr/include/jfs/filsys.h header file. Most of these reserved inodes have file
names that begin with a "." (dot) character because they are hidden files, but
unlike the hidden files found throughout the system directories, these files are
"really hidden," as they do not appear in any directory. This is accomplished by
handcrafting the inodes so that they do not require a directory entry to support
their link count value. Remember that every open file is represented by a seg­
ment in the VMM (see Chap. 4). Many of the reserved inodes are associated
with files that are only present in the VMM when a file system is mounted and
never actually exist on disk.

Author's Note: The /usr/include/jfs/filsys.h header file erroneously comments that
inodes 9-16 are reserved for future use, when actually inodes 9-15 are reserved.
This error can be tested by creating a new file system and creating a file within the
new file systems. The first file created should have an inode number of 16. This just
goes to show that you can't always trust the comments!

Inode 0 of the JFS is never used.

Root directory. lnode 2 of the JFS is always used for the root directory of the
file system. An interesting thing happens if one performs the ls -ia command in
the root file system, then compares the output with that of an ls -ia command
in the /home directory. The inode number for /home within the root file system
is 2. In other words, since the file system is mounted, the ls command reports
the /home directory as the root of the /home file system. In addition, the inode
number of "." in the /home directory is also 2 since that is the inode for the root
directory of the /home file system, not the /home mount point. ·

The Journaled File System 1 67

.superblock. Inode 1 of the JFS is reserved for a file named .superblock. This
virtual file simply refers to the super block and spare super block. Examining
the inode reveals that the file consists of two data blocks, blocks 1 and 31.

. inodes. · Inode 3 of the JFS is reserved for a file named .inodes. This file keeps
track of all file system data blocks being used to hold inodes. This is similar to
a disk or cylinder group map in other UNIX-based file systems .

. indirect. Inode 4 of the JFS is reserved for a virtual file named .indirect. The
VMM uses this file to map the pages of indirect blocks for the entire file sys­
tem. An explanation of indirect blocks is given shortly .

. inodemap. Inode 5 of the JFS is reserved for a virtual file named .inodemap.
This file takes the place of the traditional linked list of free inodes via a bit map
where each inode of the file system is represented by a bit flag. When an inode
is in use (di_nlink>O), the bit flag is turned on for the corresponding bit in the
map. When a new file is created in the file system and a new inode is needed,
the file system scans the .inodemap segment for the first bit flag that is turned
off. The bit flag is turned on and the corresponding inode is assigned to the new
file. This technique is much faster than manipulating linked lists .

. d iskmap. Inode 6 of the JFS is reserved for a virtual file named .diskmap. As
the .inodemap file keeps track of the free and allocated inodes, the .diskmap file
keeps track of free and allocated data blocks within the file system. The
.diskmap file, however, is not a simple bit map. The file uses a set of hash buck­
ets built on a binary tree principle to point to chains of contiguous free data
blocks. This way, when a new file is allocated with a known size, such as when
a large file is copied to another file, the JFS can search for a large enough set
of contiguous data blocks to allow the file to be stored with the least amount of
fragmentation .

. inodex. Inode 7 of the JFS is reserved for a virtual file named .inodex. The file
contains information about inode extensions, as used by access control lists (see
Sec. 6.2)

·
.

. inodexmap. Inode 8 of the JFS is reserved for a virtual file named .inodexmap.
The file contains a bit map used to keep track of free and allocated inode exten­
sions. It is similar to the .inodemap file.

Many of these virtual files are created when the file system is mounted.
As mentioned earlier, inodes 9 through 15 of the JFS are reserved for future

ui:;e. Figure 6 .15 recaps the reserved inodes.

1 68 Chapter Six

0 Not Used
I .superb lock
2 Root directory of the File System
3 .inodes
4 .indirect
5 .inodemap
6 .diskmap
7 .inodex
8 .inodexmap

9- 1 5 Reserved

Figure 6.1 5 Reserved inodes.

6.5 J FS Storage Schemes

The earlier discussion of inodes alluded to the fact that a file's inode contains
the logical disk addresses for the data blocks of that file. One might wonder
how the inode, which is only 128 bytes, can hold enough logical disk addresses
to accommodate large files. This is done through a series of storage schemes,
each designed to efficiently handle files of various sizes. While the JFS method
of addressing data blocks is similar to the direct, single indirect, double indi­
rect, and triple indirect schemes used by many UNIX file systems, it differs
slightly in its implementation.

The disk inode contains an array of eight logical addresses for the first eight
data blocks of a file. The term "logical address" refers to the data blocks' num­
bers within the file system. The actual disk addresses (i.e., physical sector
numbers) are derived by the logical volume manager during disk 1/0. The array
of eight direct block pointers, called _di_rdaddr[NDADDR], is defined within
the dinode structure of the /usr/include/jfs/ino.h header file. NDADDR is
defined by AIX 3.2 as eight. Each pointer holds the logical block number for a
4-kilobyte data block. This scheme, as shown in Fig. 6. 16, supports a file size of
32 kb. Since support for larger files is required, a file with a size of >32 kb must

_di_raddr[NDADDR]

In ode
Figure 6.1 6 Direct data block accessing scheme.

di vindirect

_di_rindirect

The Journaled File System 1 69

Inode

Figure 6.1 7 Single-indirect data block accessing scheme.

resort to another storage scheme. Figure 6. 17 · shows how the JFS implements
single indirect access. Each inode contains a field named _di_rindirect. This
field holds the logical disk address of the file's indirect block. An indirect block
is a 4-kilobyte data block that has been converted, by the JFS, to hold up to
1024 4-byte logical disk addresses for data blocks. This allows a file to access
up to 4 megabytes of space.

To speed up access to files that use indirect addressing, the JFS works with
the VMM to. map the indirect block into a page of a VMM segment called .indi­
rect. There is a single .indirect virtual file created for each mounted file system.
Each page of the .indirect segment can hold an indirect block from disk. All files
larger than 32 kb within the same file system share the use of the .indirect file.

Each inode that has an indirect block uses a field named _di_ vindirect to
indicate the page number of the memory mapped indirect block within the
.indirect segment. For files larger than 4 Mb, the JFS uses a third scheme,
known as the double indirect block. In this case, the inode's _di_rindirect field
contains the logical disk address of a double indirect block. A double indirect
block is a 4-kilobyte data block that has been converted to hold up to 512 8-byte
values, each of which consists of two 4-byte pointers. One of the 4-byte point­
ers from each 8-byte pair holds the logical disk address of an indirect block. The
other 4-byte pointer from each 8-byte pair holds the page number of where its
corresponding indirect block has been mapped in the .indirect segment. This
scheme allows the double indirect block to access up to 512 indirect blocks, each
of which can access up to 1024 4-kb data blocks. This provides a maximum
access size of 2 gigabytes (512 * 1024 * 4096). Since 2 gigabytes is the largest
supported file system in AIX 3.2, this scheme works perfectly. Figure 6.18
shows how a very large file (>4 Mb) might be accessed by the JFS.

1 70 Chapter Six

di vindirect

_dLrindirect

I node
4kb Double

Indirect
Block

5 1 2 - 4kb Indirect
Blocks

Figure 6.1 8 Double-indirect data block accessing scheme.

Author's Note:. One might be tempted to think that the address scheme described
above is the reason that AIX 3.2 has a file size limit of 2 Gb. Actually, the reason for
the 2-Gb file size limit is more historical than technical. The field called di_size in
the dinode structure defined in /usr/include/jfs/ino.h is a typedef of oft.t. The off_t
is defined in /usr/include/sys/types.h as a signed long, which means that one of the
32 bits is used to show the sign of the number, leaving 31 bits to hold the number
itself; 3 1 bits can access up to 2 Gb. Your next questions might be "Why is the o:ff_t
a signed long? When would I have a negative file size?" The off_t is also used to

· define the read/write offset within a file (see the manual page for the lseek() sub-:
routine). Since it is possible to seek backward through a file, negative values had to
be supported. At the time this strategy was created, no one could implement 2-Gb
file sizes because the hardware didn't support it. (Remember, it wasn't that long ago
that we were all paying big bucks for 10 Mb hard drives!) Therefore, a maximum
file size of 2 Gb seemed more than adequate. Most open system vendors have imple­
mented or are considering schemes that extend the maximum file size beyond 2 Gb.
AIX Version 4.2 will support 64-Gb maximum file and file system sizes. ·

The actual layout of the .indirect segment is not as simple as the example
given above. The .indirect segment is described through comments found in the
/usr/include/jfs/ino.h header file.

6.6 How the JFS Log Works

As mentioned previously, the goal of the journaled file system is to provide a
more robust file system by logging changes made to its own structures and
lists. This includes changes made to the file system super block, the. inodes,
directories, indirect blocks, and free lists of inodes and data blocks.

Author's Note: The term "free list" is used figuratively here. · Recall that the JFS
uses bit maps to track free and allocated inodes and data blocks.

The Journaled File System 1 71

Whenever a JFS is mounted, the AIX kernel verifies its consistency by examin­
ing the log records of that file system. The log records show transactions that
were completed (committed), as well as, in the case of a file system crash, incom­
plete transactions. The JFS reconstructs the committed transactions, bringing
the file system structures up to date. Incomplete transactions are discarded,
since they would leave the file system structures in a "half-baked" state.

JFS logging is similar to the way many data base programs log transactions.
It's important to remember, however, that the JFS does not log the user data
bo:und for the file system data blocks. In other words, when a . system crash
occurs or someone shuts off the power to the computer without properly bring­
ing down the operating system, data in memory which have not yet been writ­
ten to disk are lost. The JFS log will make it possible to recover the file system
control data, but the user data are not recoverable.

Components of the JFS

The JFS uses a physical disk partition (usually 4 megabytes in size) as a log
device. Each volume group (see Chap. 2 for a discussion of volume groups and
the logical volume manager) must have a JFS log device. The rootvg's log
device is /dev/hd8. A JFS's log device can be specified at the time the file sys­
tem is created.

The JFS also maintains a log segment (a 256-megabyte segment) in virtual
memory for each log device. Pages of this segment are written to the disk log
device at regular intervals. The JFS also maintains an inode manager and a

· lock manager to ensure that in-core inodes are locked while they are updated.
(In-core inodes are detailed in Chap. 7 .)

A JFS example

1b illustrate how the JFS logs changes made to the file system structures, an
example of the mkdir command is used. The following list includes just a few
of the events that take place in the JFS when a new directory is created by a
user:

An inode is allocated for the new directory. The .inodemap segment is updat­
ed by setting the bit that represents the inode.

An entry is made for the new directory in the parent directory's data block.
The new directory's inode number is associated with the new directory's
name. This operation may involve adding a new directory block to the direc­
tory.

A data block is allocated to the new directory. The .diskmap segment is
updated.

· ·

The "." and " . . " file names are added to the new directory.

The link count is incremented for the parent directory's inode (due to the " . . "
file name in the new directory).

172 Chapter Six

TID

JPS
In-Memory 1--___,:;.;.._---l

JPS
Disk Copy

Log
(/dev/hd8)

Log

Figure 6.1 9 A JFS logging example.

JPS
Disk Copy

Log
(/dev/hd8)

Last sync() _.

. ;
I
I

1 ' . ., I
� I
g> 1 ..J

I

t
End of Log _.

Figure 6.20 The JFS log redo.

B3

Commit B

02

Sync

• • •

TID

. . .
Sync

A l

B l

A2

D I

A3

C2

A4

Commit A

B3

Commit B

D2

/devJkmem

mkdir •••

TID 'Ii'ansaction
Al Allocate new Inode

A2 Allocate Data Block to new Directorv

A3 Uodate Parent Dir's Data Block

A4 Uodate Parent Dir·s Inode (link count)

[i]� W- Other on-going
operations

w/

JPS /devJkmem

In-Memory
Log

-
-

I ?Peration A is replayed l
1 m memory

;. · 1 �peration B is replayed I m memory

Transactions for operations
C and D are discarded

The Journaled File System 1 73

The link count is incremented in the new directory's inode (due to the "." file
name it now contains).

Author's Note: That's quite a bit of activity, isn't it? On most UNIX-based systems,
if the system crashed while in the middle of performing these tasks, the file system
would end up in a corrupted state. The JFS attempts to assure that these activities
are performed atomically.

It's important to understand that the events listed above happen in memory
and are then written to disk some time later. Generally, user data and file sys­
tem control data are written to disk whenever a sync occurs. The JFS is able to
confirm that this has happened by writing a sync record to the log.

Author's Note: Many UNIX-based systems use a sync daemon, which writes all
modified file pages and file system data to disk every 30 seconds. The AIX 3.2 syncd
process performs a sync once every 60 seconds, by default. The sync time can be
changed. The syncd daemon is launched from the /shin/re.boot shell script at sys­
tem start-up. A system administrator can change the parameter to the syncd pro­
gram from within this script.

As the new directory is being created, the JFS logs each transaction (each
event from the list above) in the log segment, as the activity takes place in
memory. Once all transactions have been completed in memory and recorded to
the log segment, the JFS writes a commit record to the log segment. As men­
tioned earlier, the log segment pages are written to the disk-based log device at
regular intervals. Figure 6. 19 illustrates the example so far.

When a file system is mounted, the JFS checks the log entries for the file sys­
tem. If the log does not end with a sync record, the JFS concludes that the file
system was not unmounted cleanly. The JFS performs a log redo, searching
back through the log for the previous sync record. The JFS does not care about
any transaction above this sync record since the sync caused all changes to be
written to disk.

The JFS then performs all transactions for which commit records exist. Any
transactions that do not have a commit record are discarded. This should bring
the file system structures to a complete and known state. Figure 6.20 illus­
trates the log redo procedure .

.
Author's Note: While the JFS is not foolproof, I can attest to the improved file sys­
tem reliability. I have tried, on occasion, to corrupt a JFS file system by doing
things like powering down in the middle of copying a large file. While I have expe­
rienced a loss of user data, I have not corrupted a file system. I am not advocating,
however, that you try this on your system!

Chapter

7
AIX 3.2 Disk Fi le 1/0

This chapter details the kernel components involved in providing local disk file
1/0 in AIX 3.2. It traces the links of structures from the process to the kernel's
file table. Vnodes are introduced, although details of the virtual file system are
found in Chap. 8. Gnodes and the in-core inode table are described and the link
is made between the file subsystem and the virtual memory management sub­
system.

7 .1 Fi le VO Layers

Figure 7 . 1 shows the layers oflocal disk file 1/0. When a process opens any type
of file, a link is established between the process and the file subsystem. The
details of the file subsystem are the topic of this chapter. The AIX 3.2 virtual
memory manager allocates a segment for each opened file (see Chap. 4). The
data blocks of the opened file are mapped to pages in the segment. This tech­
nique is simplified by the fact that the sizes of data blocks and VMM pages are
both 4 kilobytes.

When a process performs a read operation on an open file, the VMM checks
to see if the desired page is already in memory (perhaps the page was recently
read by the process or by another process). If the page is found, the process's
read request is satisfied without a physical read being performed. If the page
is not found in memory, the VMM locates and loads the page via a pagein. A
pagein results in a physical read. Write operations work in a similar fashion.
This explains the difference between logical 1/0, between the process, the file
subsystem, and the VMM, and physical 1/0, between the VMM and the disk
storage subsystem.

For ordinary file 1/0, if the desired file page is not in main memory, the VMM
issues a request to the logical volume manager (LVM) to fetch the page from its
persistent disk location in the file system. The VMM was discussed in Chap. 4

1 75

1 76 Chapter Seven

User Memory Kernel Memory

t - - - - - - - - - - - - - - - - - - - ,

Pile

Subsystem

Process

Figure 7.1 File L'O layers.

Virtual Mdnory Manager

Logical Yolu�e Manager

I
I

Disk O,vice Driver

@--- � .
and the LVM is discussed in Chap. 2. Here, the focus is on the file system com­
ponents of the AIX 3.2 kernel.

The AIX 3.2 file subsystem can also be divided into three layers, as illustrat­
.ed in Fig. 7.2. The logical file system deals with file names, directories, inodes,
, and data blocks. When a process opens a file, the logical file system converts
the file name to an inode number and determines the file type. The process's
credentials are checked at this level to allow or deny the specified access to the
file or directory.

The virtual file system layer is relatively new to most UNIX-based systems.
It was created to provide an interface to different file system types, without the
process needing to know the details of the file system types. For instance, an
application might open, then read from a file named "/custdata/TEXAS/past­
due" without needing to know if the file is coming from a local disk drive, over
the network via some network file system utility, or from a CD-ROM. While
performing file I/O to and from these file system formats is certainly different
for each format, the application need not be concerned with those differences.
The workings of the virtual file system (VFS) layer are discussed in detail in
Chap. 8. For now, it's enough to say that the VFS layer determines the VFS
type of the requested file and performs the appropriate tasks.

The final layer of file I/O involves the kernel components that represent the
physical file. These components consist of the process's file descriptor table, the
kernel's file table, the in-core inode table, and a few other structures. Figure 7.3
provides an example of how these components are linked when a process opens
a file. The vnode is part of the VFS layer, which is actually found in the middle

User Memory

AIX 3.2 Disk Fiie 1/0 1 77

Kernel Memory

- - - - - - - I- - - - - - - - - - ,
Logical Virtual

File File

System System

File Subsystem

Figure 7.2 The file J/O subsystem.

User Memory

File
Descriptor

'Thble

File Table
Vnocles

Figure 7.3 File J/O subsystem components.

Virtual
File

System

Physical

File

System

Virtual Mebtory Manager

Logical Vol+e Manager
I
I

Disk D'vice Driver

@--- �

Kernel Memory

In-Core Inodes
D
D
D
D
D

Gnodes

File
Segment

Segment
Control
Blocks

D
D
D
D
VMM

178 Chapter Seven

of the other kernel components. UNIX-based systems that do not implement
the VFS layer simply have a pointer from the kernel's file table directly to the
in-core inode table.

7.2 The Process File Descriptor Table

Each process has its own file descriptor table (FDT). This is an array found
within each process's user area. The FDT is defined as u_ufd[OPEN_MAX] in
the user structure found in /usr/include/sys/user.h. OPEN_MAX is defined in
/usr/include/sys/limits.h as 2000. Each of the 2000 slots of the u_ufd array con­
sists of a pointer to a struct file, which is a pointer into the kernel's file table.
The pointer name is fp. AB a C array, the slots are numbered from 0 through
1999. The first three slots of a process's FDT (zero, one, and. two), as you might
have already guessed, are usually assigned to the process's coil.trolling termi­
nal device file as standard in (0), standard out (1), and standard error (2).

Author's Note: The number of per process file descriptor table entries varies from
one UNIX-based system to another. While some systems allow the system admin­
istrator to tune the value (the parameter is usually called NOFILES) and some sys­
tems allocate chunks of file descriptors dynamically, the size of the per process file
descriptor table for AIX 3.2 is static at 2000 slots per process.

File descriptors from the process's FDT are assigned each time a file is
opened, as in the case of the open() or creat() subroutines or any of their varia­
tions. File descriptors are also assigned by the dup(), socket(), and pipe() sub­
routines and can be assign�d by the fcntl() subroutine. An important rule to
remember is that, for most of these subroutines, the system assigns the lowest
available file descriptor. AB an example, the open() system call returns the low­
est available file descriptor. The file descriptor is then used as a handle to the
file when performing other file 1/0 functions. Figure 7 .4 provides a short code
example. The open() system call returns -1 upon failure and sets the errno vari­
able to indicate the reason for the failure (see /usr/include/sys/errno.h).
Reasons for failure might include "No such file" (ENOENT), "Operation not
permitted" -(EPERM), or "'Ibo many open files" (EMFILE). The last example
indicates that the process already has 2000 open files. An open file must be
closed in order to free up a file descriptor.

·

Author's Note: While it may seem unlikely to need more than 2000 files opened by
a single process, I have encountered a few students who have hit this limit.

7.3 The Kernel's File Table

The read/write offset

The kernel maintains a single file table. Each slot is defined as a struct file in
the /usr/include/sys/file.h header file. One slot is allocated in the file table for
each instance of the opening of a file. The key here is to understand that if two

AIX 3.2 Disk Fiie 1/0 1 79

#include <fcntl.h>

mainO
{

int fda, fdb, fdc, fdd;

if((fda=open(''filea" ,O _RDWR))=- 1)
perror(''filea");

if((fdb=open("fileb" ,O _RDWR))==-I)
perror(''fileb");

if((fdc=open(''filec" ,O _RDWR))=-1)
perror(''filec");

if((fdd=open("filed" ,O _RDWR))=- 1)
perror("filed");

Figure 7.4 The file descriptor table.

1999
u....ufd[OPENMAXJ

processes open the same file at the same time, or if a single process opens the
same file more than once, there will be multiple entries in the file table. The
reason for this is that the primary purpose of the file table is to hold the
read/write offsets for each open file. Since many processes can open the same
file at once, yet each process needs to maintain its own location within the file,
separate file table entries are allocated. The read/write field is called f_offset
and is an off_t data type. This is the same data type used by the disk inode to
hold the file's logical size. ·

Author's Note: The f_offset field is often referred to as the "read/write pointer."
Even the comment in the /usr/include/sys/file.h file refers to it as the "read/write
character pointer." It's important to realize that this field is not a pointer, in the
true C sense, but rather an offset from the first byte of the file.

File table reference counts

Another field in the file table, f_count, indicates the reference count as the
number of process file descriptors pointing to the file table slot. Since the ker­
nel allocates one slot in the file table for each instance of an open file, and these
slots are pointed to by file descriptors in each process, there is usually a one-to­
one relationship between file descriptors and file table slots. There are a few
instances, however, when more than one file descriptor points to a single file
table slot. The dup() subroutine and its variations duplicate the memory point­
er found in one file descriptor to the lowest available file descriptor. This caus­
es the two file descriptors to point to the same file table slot. This technique is

180 Chapter Seven

Process

fda::open("mydata'',O_RDWR);
fdb=open("theirdata",O_RDONLY);
fdc::open("mydata",O_RDWR);
fdd::open("mydata",O_RDONLY);
fde::open("moredata" ,0_ WRONLY);
fdf=dup(fde);

Figure 7.5 The kernel's file table.

FDe 'Dlble
f_flag f_count f_offset f_up ffreeUst

. Free
List

Vnodes

tty??

my data

tbeirdata

moredata

used in AIX 3.2 to establish the relationship of standard in, standard out, and
standard error. Figure 7 .5 shows a code example along with an illustration of
the file descriptor table and kernel's file table.

Author's Note: Many UNIX-based systems open si (standard in) as read-only, then
open so (standard out) as write-only, then dup so to se (standard error). AIX 3.2
simply opens si for read-write, then dups so and se. While it's obvious that a process
would never write to standard in, this technique makes other operations, such as
building pipes (see Chap. 10), easier.

Another time, aside from dup(), when file table slots are shared by more than
one file descriptor is when a process which has already opened files performs a
fork() system call and creates a child process. The child process inherits the
parent's file descriptor table; thus the pointers assigned to the file descriptors
remain the same. A subroutine called by fork() increments the reference count
for each file table slot that is inherited by the child process. Figure 7.6 illus­
trates an example of inherited file descriptors. After the fork(), the parent and
child processes share the read-write offset of each opened file. This technique
makes sense when dealing with standard out or standard error, since it is desir-

Parent f_flag f_count f_offset f_up
c::=i c=J

AIX 3.2 Disk File 1/0 1 81

ffreelist Vnodes

� ��===1=�-A
tty??

O_RDWR o:J CJ
� �Hr--1f-_,.L_I O_RDWR ITJ c=J s
6 �:-:-ir'- CJ CJ my data 7
8

O_RDONLY

O_RDWR

OJU>ONU"

ITJ c=J
ITJ CJ their data
CT] CJ

0 '-""'""-"'" o_wRONIY I CTJ CJ 1
2
3
4 I CJ CJ moredata
s '---''"'- "''
6 ,_......._.,,, I CJ CJ 7
8 I CJ CJ

I CJ CJ Free
List

Figure 7.6 The file table after a fork().

able for processes created within the same terminal sessions to adhere to a syn­
chronous data flow of output and errors. After the fork(), files opened by either
process are independent of the other process.

Vnode pointer/free l ist union

Other fields of note in the file table include:

f_flag. A long that indicates how the file was opened (i.e. , O_RDWR,
O_RDONLY, etc.). See the manual page for the open() subroutine for infor­
mation on the flags.

f_type. A short that indicates the type of file descriptor associated with the
file table slot. The values are defined in /usr/include/sys/file.h as
DTYPE_ VNODE (1) as an ordinary file, DTYPE_SOCKET (2) as a socket
endpoint, or DTYPE_GNODE (3) for a device.

f_up. A union which holds either a pointer to a struct vnode when the file
table slot is in-use or a pointer to the next free slot in the file table when the

182 Chapter Seven

slot is not in-use. The vnode pointer is called f_uvnode and the free list point­
er is called f_unext.

A single vnode is created in the kernel for each opened file, no matter how
many times the file is concurrently opened. The term "vnode" comes from "vir­
tual node" and is the key element of the virtual file system layer. Vnodes are
mentioned here because they connect the file table to the gnode. Details of the
vnode and the virtual file system are provided in Chap. 8. Gnodes are discussed
shortly. Figure 7.5 illustrates the relationship of the file table to the vnodes and
the file table's free list.

The kernel anchors the file table's free list with a pointer called ffreelist.

The fi leops structure

Finally, each file table entry includes a pointer to a struct fileops. The fileops
structure is defined directly within the file structure in the /usr/include/sys/file.h
header file. The fileops structure contains pointers to functions that manipulate
data in the file table, such as functions for reading and writing, which modify the
read/write offset.

7.4 The Gnode

As mentioned, an active file table slot points to the vnode associated with an
opened file. The vnode then points to a gnode structure. The gnode structure is
defined in /usr/include/sys/vnode.h as a struct gnode. The te!1Il "gnode" refers
to a generic node.

Gnodes are usually contained within another structure. In the case of a
local disk file, for instance, the gnode is found within an in-core inode. In-core
inodes are used to hold the memory-resident copy of the disk inodes when
local disk files have been opened. The kernel maintains a table of in-core
inodes. Figure 7. 7 illustrates the relationship of vnodes to gnodes and gnodes

Ffle
Tuble Vnodes

Gnodes

Figure 7.7 Vnodes, gnodes, and in-core inodes.

AIX 3.2 Disk File 1/0 1 83

to in-core inodes. The gnode is explored further after a discussion of the in­
core inode table . .

7 .5 The In-Core lnode Table

When a local disk file is opened, the kernel reads the file's disk inode into mem­
ory where the contents of the 128-byte dinode structure are stored within a
larger structure called an in-core inode. Figure 7 .8 illustrates what happens
when a file is opened.

In-core inode allocation

The in-core inode structure is defined in the header file /usr/include/jfs/inode.h.
(Recall that the disk inode structure, dinode, is defined in the header file
/usr/include/jfs/ino.h.) The goal of AIX 3.2 is to have one in-core inode active for
every local disk file that has been opened since the system was booted. In other
words, when a file has been closed by all processes that had it open, the file
table slot and the vnode are released, but the in-core inode remains intact. The
idea is that most systems tend to have the same relatively small set of files
opened repeatedly. By keeping the in-core inodes of files that have been closed
in the kernel, subsequent opens to the file take less time.

Of course, the kernel cannot allocate new in-core inodes without limit.
Therefore, the kernel establishes a set of in-core inodes, known as the in-core
inode table (ICIT). Within the ICIT, the kernel maintains a free list and a
cached list of in-core inodes. When the free list is exhausted and a new in-core
inode is required, the kernel selects the least-recently-used in-core inode and
reassigns it to the newly opened file. The size of the ICIT is set at system start-

In-Core
I nodes

- -
- -
- - Disk Inode Loaded Into

In-Core Inode When File fiB - --------.
Opened - -

- -
- -

Gnodes Disk
Inode

Copies

Figure 7.8 Disk inodes and in-core inodes.

Disk lnodes

1 84 Chapter Seven

up as 4096 + (32 * Memsize_in_megabytes) in-core inodes. As an example, a
system with 64 Mb of real memory has an ICIT size of 6144 in-core inodes.

Interesting fields from the in-core inode, as defined in /usr/include/jfs/inode.h,
include:

i_forw and i_back. A set of pointers to the next and previous in-core inodes
in the hash queue. The hash queues and hashing technique are described
shortly.

i_next and i_prev. A set of pointers to the next and previous in-core inode on
the free list or cache list.

i_gnode. The entire gnode structure, as defined in /usr/include/sys/vnode.h.
Recall that the gnode is usually contained within another structure. For local
disk files, the gnode is found within the in-core inode.

i_number. An ino_t data type that holds the disk inode number of the file.

i_dev. A dev_t data type that holds the device major and minor numbers for
the file system from which the file comes. The /usr/include/sys/types.h head­
er file includes a macro called makedev() that uses the high-order 16 bits of
a 32-bit unsigned long to hold the device's major number, while the low-order
16 bits are used to hold the device's minor number. Major and minor device
numbers for file systems can be found by doing a long listing (ls -1) of the /dev
directory.

i_locks. A flag used for locking the inode while the kernel is updating it.

i_count. The current reference count for the file (i.e. , how many vnodes cur­
rently point to the gnode within this inode).

i_dinode. A complete copy of the file's disk inode. By caching the disk inode
within the in-core inode, the system need not access the disk inode each time
it must be queried or updated.

Searching of the ICIT for a specific in-core inode is done using the file's inode
number and the file system's major and minor numbers (i_number and i_dev
fields). Searching on the inode number alone would not work as the ICIT con­
tains inodes from many different file systems. As an example, there might be
three different inodes #387 in the ICIT from three different file systems.

Figure 7.9 illustrates how in-core inodes are allocated when a file is opened.
Three possible scenarios are provided:

Scenario A. A file is opened, causing the kernel to allocate a file table slot and
a vnode. Upon searching the list of in-core inodes from previously opened files,
the file's in-core inode is found. The in-core inode is put back in use by incre­
menting the reference count from zero to one. When the file is closed, the in­
core inode's reference count is decremented to zero and the inode is placed at
the end of the cache list of previously opened files. This means that the least
recently opened files are found at the top of the cache list.

Free List
Anchor i_next

i_next

i next

i_oext i rev

i_oext

i_next

i next i rev

Used (LRU)

Anchor

Active

@

AIX 3.2 Disk Fiie 1/0 1 85

Locked

Figure 7.9 Allocation of in-core inodes.

Scenario B. A file is opened, causing the kernel to allocate a file table slot and
a vnode. Upon searching the list of in-core inodes from previously opened files,
the file's in-core inode cannot be found. This might occur if the file had never
been opened since system start-up or it was opened a long time ago and its in­
core inode was reassigned to another file. In this case, a new in-core inode is
taken from the free list and assigned to the file.

Scenario C. A file is opened, causing the kernel to allocate a file table slot and
a vnode. Upon searching the list of in-core inodes from previously opened files,
the file's in-core inode cannot be found and there are no more in-core inodes on
the free list. In this case, the kernel takes the least recently used in-core inode
(from the top of the list of in-core inodes from previously open files) and reas­
signs it to the new file.

Note that the list of in-core inodes from previously opened files, as well as the
free list of in-core inodes, are anchored by dummy in-core inodes.

In-core inode hashing

Over time, the in-core inode table can grow to be very large. Searching the ICIT
sequentially would take far too much time. Therefore, in-use in-core inodes are
placed in one of 512 hash queues according to the file's inode number. The head­
er file /usr/include/jfs/inode.h defines each hash queue anchor (0-511) as struct
hinode, which consists of a pointer forward (hi_forw) and a pointer backward
(hi_back). It also defines the number for hashing along with the number of
hash queues as NHINO using the macro:

1 86 Chapter Seven

#define NHINO PAGESIZE/sizeoftstruct hinode)

. . . where PAGESIZE is defined as 4096 bytes and the size of the hinode struc­
ture is 8 bytes (two pointers).

Figure 7.10 illustrates the hash queues for in-core inodes. that are active (ref­
erence count > 0) or have been active since system start-up. The formula for cal­
culating an in-core inode's hash queue is also found in the /usr/include/jfs/inode.h
header file in a macro:

#define IHASH(X) (&hinode[(int)(X) & (NHIN0-1)])

The macro above detei'mines the hash queue by bitwise ANDing the inode
number with the value 511. Another way to look at this is that the hash queue
is determined by the result of the inode number modulo (remainder when
divided by) 512. As an example, inode #387 would be found on hash queue 387,
since 387 % 5 12 = 387 (or 387 I 511 = 387). !node #518 would be found on hash
queue 6, since 518 % 512 = 6. The effect is to simply wrap around to hash queue
zero whenever the inode number is evenly divisible by 512.

The hashing described above spreads the in-core inodes out over 512 differ­
ent doubly linked lists, using the i_forw and i_back pointers. Now, only the in­
core inodes for the appropriate queue need to be searched for the required
match.

Linking an in-core lnode to a file segment

Uorw

The virtual memory manager allocates a 256-megabyte virtual memory seg­
ment for every opened ordinary file, regardless of the file's virtual file system

LRU Anchor

- - ,
_ _ ...
- - ,
_ _ ...
- - ,
_ _ _,
- - ,
- - -I

- - ,
_ _ ...

Queue O Queue 1 Queue 2 • • • Queue SU

Figure 7.1 O Hashing the in-core inodes.

AIX 3.2 Disk Fiie 1/0 1 87

origin (see Chap. 4). In other words, a local disk file (JFS), a remote disk file
(NFS), or a CD-ROM file all have segments allocated to hold their pages. A
VMM file segment has a unique segment ID number (SID) and an entry in the
kernel's segment information table. Each file's gnode contains the segment ID
number into which its file pages are mapped.

As mentioned previously, the gnode structure is defined in the
/usr/include/sys/vnode.h header file. Interesting fields include:

gn_type. The type of object to which the gnode belongs (regular file, directo­
ry, special file, etc.).

gn_seg. An unsigned long that holds the segment ID number into which the
file pages are mapped.

gn_ vnode. A pointer back to the vnode for this gnode.

gn_filocks. A pointer to a filock structure which serves as the head of the list
of read/write locks for this file. (More on file and record locking in the next
section of this chapter.)

gn_data. A character pointer (caddr_t is a common type definition from
/usr/include/sys/types.h that, as a character pointer, can point to any address
in "core") that points to the object in which the gnode is found. For instance,
in the case of a local disk file, the gn_data field in the gnode points to the in­
core inode which contains the gnode.

The most important field listed above is the gn_seg field. The segment ID
number contained in that field allows us to come full circle from where we ·

started in the discussion of VMM file segments in Chap. 4. Figure 7. 11 shows
how the gnode links the file subsystem to the VMM.

One last note on the in-core inode table: The VMM does not use an external
page table (XPT) to track the pages of a persistent storage segment, such as a

Segment

Control File Blocks
D Segment

In-Core Inode

- II -gn_seg I .film -

Goode D
. D

VMM

Figure 7.1 1 In-core inodes and VMM file ·segments.

1 88 Chapter Seven

segment used to map a local disk file. Instead, the VMM uses the data found in
the in-core inode copy of the disk inode for the file. Specifically, the VMM uses
the logical disk addresses for the data blocks of the file (see Sec. 4.5). In this
way, the in-core inode superimposes itself over an XPT image when presented
to the VMM.

7 .6 File and Record Locking

New users to UNIX-based systems are often surprised to find that the operat­
ing system does not automatically implement some type of file locking scheme.
Many have experienced the consequences of two or more users simultaneously
updating the same file. UNIX considers file and record locking to be a task bet­
ter left to the application layer; thus the kernel does no locking unless the
application requests it. The kernel does, however, provide data structures and
a programming interface for implementing file and record locking.

Author's Note: Simultaneous file updates sometimes occur in my classes where
two or more students accidentally log in using the same login account. They set
about creating or modifying a shell script or source file, only to find that when they
save their work, then edit it later, it has changed. This, of course, happens because
some other student has saved to the same file, thus clobbering the edits made by
the first student. I explain to them that UNIX does not automatically enforce file
or record locking because simultaneous updates might be desired by the users. But
I also mention that, if you listen very carefully, you can hear UNIX laughing at you
when you do this.

Before explaining how file and record locks are implemented in AIX 3.2, a
discussion of lock types must be given. Locks are enforced in one of two ways.
Advisory locks are implemented between two or more cooperating processes.
Before a cooperating process attempts to read from or write to a region of the
file, it checks for the existence of a lock. If a lock already exists, the process can
either sleep (block) until the lock becomes available or return an error condi­
tion to the application. If the region is not already locked, the process can then
set a lock on the region. The kernel guarantees that the lock test and set oper­
ation is performed atomically to prevent a race condition. The problem with
advisory locks is that the kernel does nothing to prevent a third process which
is not part of the cooperating set of processes from simply reading or writing
within a locked region of the file. Enforced locks, on the other hand, cause the
kernel to block any noncooperating process that attempts to read or write to a
locked file region, until the lock is released. By default, AIX 3.2 locks are advi­
sory locks. The kernel will implement enforced locks for any data file that has
its SGID bit set. The SGID bit can be set from the shell by using the chmod
command or from within a C program by using the chmod() subroutine. Figure
7. 12 illustrates how this bit is set. See the manual page for chmod for more
information.

In addition to advisory and enforced locks, the kernel supports read and
write locks. If a process sets an enforced write lock on a region of a file, other

ls -1

AIX 3.2 Disk File 1/0 1 89

-rw-rw-rw- 2 slee staff 14964 June 13 07:45 ourdata

SGID bit turned off - Locks are advisory

chmod 2666 mydata
ls -1

-rw-iwSrw- 2 slee staff 14964 June 13 07:45 ourdata

SGID bit turned on - Locks are enforced

Figure 7.1 2 Advisory locks and enforced locks.

processes cannot read or write to that region until the lock is released. If a
process sets an enforced read lock on a region of a file, other processes can still
read from that region, but they cannot write to that region until the lock is
released. The same rules apply for cooperating processes when advisory locks
are used. Write locks are usually implemented by a process that is updating a
file region to prevent other processes from reading data that are in a transient
state. Read locks are usually implemented by a process that is reading a file
region and does not want other processes changing the data while it is being
read.

To illustrate file and record locking, we'll use an example of a data file, called
"ourdata," which has been opened for reading and writing by two different
processes. The first process (A) decides to lock bytes 32 through 78 of the file.
The second process (B) chooses to lock bytes 121 through 180 of the file. Finally,
while still holding its first lock, process A locks bytes 225 to the end of the file.
Figure 7 . 13 shows how the regions of the file are locked. Notice that the last
lock goes from byte 225 to 0. The application programming interface allows the
specification of 0 to indicate "to the end of the file." This way, the size of the file
need not be known. Locking bytes 0 through 0 results in locking the entire file.

The filock and flock structures

The kernel maintains a table, called the lock list, for implementing file and
record locking. Lock list entries are struct filock as defined in the header file
/usr/include/sys/flock.h. Each filock structure includes an embedded flock
structure (also defined in flock.h) to describe the lock instance. The flock struc­
ture is called "set" within the filock structure. Interesting fields in the flock
structure include:

1 90 Chapter Seven

l_type. A short that holds the lock type (i.e., read or write lock).

l_start. An off_t data type that indicates the offset, in bytes, relative to
l_ whence for the starting location of the lock.

l_ whence. A short integer that holds the prospective from which the l_start
determines the starting location of the lock. Possible values are 0 = begin­
ning of file, 1 = current read/write offset, and 2 = end of file. In other words,
if a lock is set with l_ whence = 0 and l_start = 128, the lock starts at byte
128 of the file. On the other hand, if a lock is set with I_ whence = 1, l_start
= 128 and the current read/write offset at 200, the lock starts at byte 328.

l_len. An off_t data type that indicates the length, in bytes, of the lock. A zero
value means to the end of the file.

l_pid. A pid_t data type that holds the pid of the locking process.

Incidentally, the flock structure is also used by some of the application pro­
gramming interface routines, which are described shortly. Interesting fields in
the filock structure include:

set. The embedded flock structure described above.

prev and next. Pointers to the next and previous locks in the lock list for this
file.

The file subsystem keeps track of file locks via a . pointer from the gnode to
the filock structure in the lock list. The gnode pointer gn_filocks (see
/usr/include/sys/vnode.h) provides this link. The example given earlier showed
two processes setting three locks on the same file. However, there is only one

User Memory

• 1--+--­�

Process A

Process B

Figure 7.1 3 File locking example.

Kernel Memory

ourdata

32

78

121

1 80

255

EOF (0)

User Memory

Process &

Figure 7.1 4 JFS block allocation.

File
Tub le

32

78
121

110
225

0

AIX 3.2 Disk File 1/0 1 91

Kernel Memory

In-Core
Inode Table

pointer from the gnode to the lock list. Multiple locks per file are accomplished
by having the gnode point to the fl.lock structure (in the lock list) that describes
the first lock on the file. Each filock structure then uses the pointer called next
to point to the next filock structure in the lock list that describes a lock for the
same file. The next and prev pointers form a doubly linked list of filock struc­
tures. Figure 7.14 illustrates how this works.

AIX 3.2 provides four different subroutines for implementing file and record
locks:

lockf(). This subroutine comes from System V UNIX and is very simple to
use, albeit lacking in capabilities. It includes options for locking and unlock­
ing file regions but does not provide a distinction between read locks and
write locks. All locks are assumed write (exclusive) locks. The lockf() subrou­
tine also does not provide a parameter for indicating where the lock should
start. The lock region starts at the file descriptor's current read/write offset.
Therefore, the application must call lseek() to position the read/write offset
prior to calling lockf(). If an attempt is made to lock a region which is already
locked, this subroutine will block until the lock is available.

lockfx(). This subroutine takes, as a parameter, a pointer to a flock struc­
ture, as defined in /usr/include/sys/flock.h. The application must initialize
the values in a flock structure prior to calling lockfx(). The flock fields define

1 92 Chapter Seven

the starting location, size, and type of lock. The lockfx() subroutine includes
a parameter to specify the command. Command choices include options to
have the process sleep (block) or have the subroutine return a -1 if the lock
is not available.

flock(). This subroutine comes from4.3 BSD. It provides for shared or exclu­
sive locks and instructions on how to act if the lock is not available.

fcntl(). This multipurpose subroutine provides control over opened files. It
has many uses, one of which is record locking. The fcntl() subroutine requires
a pointer to a flock structure, which must be initialized by the application
prior to calling fcntl(). This subroutine includes options for read and write
locks and is defined by POSIX. 1 and XPG3 standards.

One very nice feature of AIX 3.2 file and record locking is that the four sub­
routines described above work with one another. Since they are interfaced with
a common set of kernel data (i.e . , the kernel's lock list), they can be used inter­
changeably by different processes.

Finally, since only one process can lock a region of a file at a time, file and
record locks are not inherited by the child process from the parent process
when a fork() occurs. All file and record locks owned by a process are released
when the process closes the file or when the process terminates.

7.7 File 1/0 Subroutines

This section describes many of the common subroutines used by applications to
perform file 110. While code examples are given, the focus is on what happens
in the AIX 3.2 kernel when these calls are made. Consult the manual pages or
InfoExplorer for details on the syntax and use of each of these subroutines.

The open() and dup() subroutines

The open() subroutine is a system call that opens a file for reading and writing.
The application supplies the path name of the file and appropriate flags for
access. Unless the O_CREAT flag is given, the kernel assumes that the file
exists. If it does not, open() fails. The open() subroutine also fails if the permis­
sions of the file do not allow the user the requested access, or ifthe process has
already opened the maximum number of files allowed per process (2000). If the
open() subroutine fails, it returns a value of -1; otherwise it returns the num­
ber of the file descriptor assigned to the file, from the process's file descriptor
table. Remember, the lowest available file descriptor is always assigned.

The open() subroutine creates a new entry in the kernel's file table and
assigns the address of the new entry to the fp pointer in the process's file
descriptor table.

If the file has not already been opened by another process, or the calling
process, a new vnode is created for the file. The f_uvnode pointer in the file

AIX 3.2 Disk Fiie 1/0 1 93

table entry is set to the address of the new vnode. If the file has already been
opened by another process, or the calling process, the f_uvnode pointer in the
file table is set to the address of the existing vnode.

Next, for local disk files, the in-core inode table is searched (see Sec. 7.5) to
see if the file's in-core inode is already in the cache. This search is unnecessary,
of course, if the file is already open. If a cache miss occurs, a new in-core inode
is assigned.

Finally, if the file was not already open, the VMM assigns a segment and
maps the data blocks of the file to the pages of that segment. Figure 7 .15 pro­
vides ari example. The dup() subroutine copies the pointer stored in a specified
file descriptor to the lowest available file descriptor. This allows two or more
file descriptors to share a common read/write offset. AIX. 3.2 also supports the
dup2() subroutine, which allows the calling application to specify not only the
desired file descriptor to copy but also the target file descriptor to assign. This
is one example of where the lowest available file descriptOr need not be
assigned.

The readO and wrlteO subroutines

The syntax and operation of the read() and write() subroutines are very simi­
lar. The read() system call copies data from a memory mapped file page into a

User Memory

fd=open(''mydata",O_RDWR);

Figure 7.1 5 The open() subroutine.

Kernel Memory

VDOCles In-Com Inodes

Segment Co111rol
Blocks

Virtnal
File

System Gnodes

File
Segment

VMM

1 94 Chapter Seven

specified buffer within the process's data segment. If the file page is not found
within real memory, the virtual memory manager instructs the logical volume
manager to page in the missing page. The write() system call copies data from
a specified buffer within the process's data segment to the memory mapped
page of the file. The write() system call is not responsible for actually writing
the data to disk. That operation is performed sometime later by the virtual
memory manager and the logical volume manager.

The application tells each system call how many bytes to read or write. This
causes the read/write offset in the file table to be incremented. The read() sys­
tem call returns the number of bytes actually read. It returns a zero upon
'encountering the end of the file. It returns a -1 upon failure. The write() system
call return values are the same as for read(). Figure 7. 16 illustrates a series of
file reads and writes.

This is a good time to discuss the differences between the open(), read(), and
write() system calls and the fopen(), fread(), and fwrite() library routines.
Programmers tend to use one set over the other for various reasons, but there
are some interesting points about how each set of routines operates. First, the
open(), read(), and write() subroutines are AIX 3.2 system calls. This means
that they execute in system mode (kernel memory) and that a mode switch is
required each time one of these calls is made by an application. On the other
hand, fopen(), fread(), and fwrite() are library routines whose code becomes
part of the application's user mode code at bind time. These routines run in

User Memory Kernel Memory

Vnodes Io-Core !nodes
Segment
Control
Blocks

Process

iead(fd,buff,100);
write(fd,buff2,S5);
read(fd,buff3,20);

Virtual
File

System Goodes

Figure 7.1 6 Direct data block accessing scheme.

VMM Ill---'
F'tle

Segment

#include <fcnd.b>
...
mainO
I

intfd, i;
char buffer;
...

AIX 3.2 Disk File 1/0 1 95

user mode. Obviously, the fopen(), fread(), and fwrite() library routines do per­
form system calls from time to time, but these calls are made from within the
library routines.

When an application issues an fopen() call, a pointer to a struct FILE is
returned. The struct FILE defined in the /usr/include/stdio.h header file
includes a 4096-byte buffer in the user space of the application for holding the
latest page read from the file. The fopen(), fread(), and fwrite() routines tend
to be much more efficient for smaller size reads and writes, because of the
user mode buffer, than the open(), read(), and write() system calls. Figure
7 . 17 includes code and a drawing to illustrate how inefficient the open(),
read(), and write() system calls can be.

Author's Note: I am using an extreme example here. Any applications program­
mer who writes a program that reads a million-byte file one byte at a time deserves
the performance they get. However, the example still drives home the point of the
overhead involved in system calls. I would advise the skeptical reader to take the
time to examine data derived from using various read sizes as the discussion con­
tinues.

Note that each. time through the loop, the application makes a system call, and
thus a mode switch. Recall from Chap. 3 the work involved in vectoring to the
kernel code of a system call, switching to the per-process kernel stack, then
returning to user mode. Now imagine that happening one million times. That's
what this program does. It's true that the kernel pages in an entire 4-kb page

User Memory Kernel Memory

rt Memory Mapped r-- - File Pages -
fd=open("bigfile",O_RDONLY);
for(i=l;i<=lOOOOOO;i++)

-1 Flle l/O I
Subsystem I

read(fd,&buffer, l);
...
close(fd);

I

Figure 7.1 7 Using file 1/0 system calls.

-baJrer • -
read()

Process

I Sys Call I � One b)1e
- 1 Subsystem re friend

Pagelns as
,,..--- -- DKeslU'J'
.......__ _....

EEEEm �
.....__

1 96 Chapter Seven

into the file segment as the file is read (actually, the VMM performs read ahead
to help speed the operation when it realizes that the file is being read sequen­
tially). But the read() system call is copying only one character at a time from
kernel memory to user memory.

Author's Note: A student once gave me an interesting analogy to the way this pro­
gram example works, and I've been known to use it from time to time. Imagine that
you've gone to your favorite movie theater to see Rocky XXV, and you decide to visit
the concession stand for a tub-o-popcorn. Upon ordering the popcorn, you are told
that the theater has a new policy which will not allow you to take the tub-o-pop­
corn into the auditorium. You may, however, take a single kernel (no pun intended)
of popcorn into the auditorium and leave the tub at the concession stand. Grabbing
a single kernel, you rush into the theater, take your seat, and eat the piece of pop­
corn. You then hurry back out to the concession stand, grab another piece of pop­
corn, and run back into the auditorium. It would take quite a while to finish the
tub, and you'd probably miss a good part of the film. This is certainly not an effi­
cient way of doing things. One can apply this example to a program that uses the
read() system call many times to read a large file in small numbers of bytes (again,
no pun intended). Each kernel of popcorn represents a character from the file, and
the tub represents a page from the VMM file segment. The auditorium represents
the system's user memory, and the concession stand represents the kernel memo­
ry. Increasing the number of popcorn kernels, say to a handful at a time, helps a
little, but not very much. Worst of all, we're probably talking about that new low­
fat, air-popped popcorn. Yuk!

Figure 7 .18 provides a code example that accomplishes the same task as the
program in Fig. 7. 17, but it uses the fopen() and fread() library routines. The
fread() routine copies an entire 4096 bytes from kernel memory to user memo­
ry as needed, then fetches the characters from the FILE buffer upon each call.
This means far fewer system calls and much less overhead.

Author's Note: Here we have a theater that allows its patrons to take the entire
tub-o-popcorn into the auditorium and eat the popcorn one kernel at a time from
the tub.

The point of this example is not to persuade programmers not to use system
calls. In fact, if one increases the number of bytes read each time through the
loop beyond the 4-kb buffer size of the FILE structure, the read() system call
becomes more efficient. The point is to illustrate how an understanding of the
operations going on in the kernel can help a programmer make better decisions
about which routines to use.

The lseek() subroutine

AiJ mentioned in the previous section, each read() or write() system call per­
formed on a given file increments the read/write offset for that file. Sometimes
a program may wish to change the read/write offset without actually request­
ing any 1/0. This can be accomplished with the lseek() subroutine. The lseek()

#include <stdio.b>
mainO
{ int i;

char buffer;
FILE *fp;
...

. User Memory

I-� 'l File VO I
Subsystem I

AIX 3.2 Disk File 1/0 1 97

Kernel Memory

Memory Mapped
- File Pages

fp=fopen("bigtile","r");
for(i=l ;i<=IOOOOOO;i++) �b-

� - � I Sys Call I -
fread(&buffer,1 , 1 ,fp); ..-..read() , _ I Subsystem

� On• plllf'
retrlt\�d ...

fclose(fp);
I

lhalO

Process

,,----

--

Pagelns m
-- DfCfSSll.l'J
_,.,

fil±m -
-

__,.,

Figure 7.1 8 Using file 1/0 library routines.

subroutine simply changes the value of the f_offset field in the file table. It
takes three parameters: the file descriptor on which to seek, the number of
bytes by which to increment or decrement the read/write offset (this parameter
is taken as an off_t data type, which is a signed integer, so negative numbers
are supported), and a whence value, which specifies the perspective of the seek.
There are three possible whence values, with symbolic constants defined in
/usr/include/unistd.h. Table 7 . 1 describes the whence values. Figure 7 . 19 gives
an example of the lseek() subroutine.

An interesting thing about lseek() is that an application can seek beyond the
end of a file. This does not extend the size of the file, however. The file is only

TABLE 7.1 Whence Values for lseek()

Numeric Symbolic
Values Values Description

0 SEEK_SET
From start of file
(absolute position)

1 SEEK_ CUR From current offset
(relative position)

2 SEEK_END
From end of file
(absolute position)

1 98 Chapter Seven

User Memory Kernel Memory

File Table Vnodes
File

In-Core !nodes

Segment
Control
Blocks

Descriptor·-t-_.,· EH-�
Table

Vutoal
rile

System Gnodes

· fd=open("mydata",O_RDWR);
lseek(fd,SEEK_SET,300); File

Segment

Figure 7.1 9 The !seek() subroutine.

extended when a write occurs beyond the end of the file. So what happens when
an application seeks hundreds of millions of bytes past the end of a file, then
writes a small amount of data? AIX creates a sparse file.

The code example in Fig. 7 .20 creates a file, then loops 11 times. Each time
through the loop, the application writes the word "hello," then uses the lseek()
subroutine to increment the read/write offset by 100,000,000 characters. The
result is a file that has a logical size of over 1 gigabyte. But AIX does not allo­
cate physical disk data blocks to hold the null data found between the
"hello"s. Therefore, the physical size of the file is only twelve 4-kb data blocks
(an indirect block is allocated since the size of the file is greater than 4
megabytes).

Author's Note: Notice that the program loops 11 times, but only 10 "gaps" end up
in the file. Since there was no write operation after the final lseek(), the extra off­
set is truncated when the file is closed.

The example above illustrates the difference between the logical size of a file,
based on the byte count up to the last location of actual data, and the physical
size of a file, which is the actual number of data blocks used by the file. It's pos­
sible to store a file with a logical size of 1 gigabyte in a file system whose size
is only 4 megabytes. The ls -1 command shows the logical size of a file in bytes.
Use the ls -s command to see the actual number of data blocks used by a file,
but remember that the Is -s command reports in 1-kilobyte block sizes (for

#include <unistd.b>
#include <fcntl.b>

mainO
{

int fd, i; ...
fd=open("boley_cow",O_CREATIO_ WRONLY,0666);
...
for(i= l ;i<= l O;i++)

{

AIX 3.2 Disk File 1/0 1 99

D : \
Dllo 4kb

Data
Blocks

write(fd,"bello",6);
lseek(fd,SEEK._CUR.100000000); DI

close(fd);

ls -1

-rw-rw-rw-

I
I '

jkelly staff 1000000066 June 13 07:45 holey_cow

Figure 7.20 Creating a "sparse" file.

POSIX compliance) so the reported number must be divided by 4 for AIX 3.2. A
file's disk inode keeps the logical size of the file in the di_size field and the num­
ber of data blocks used in the di_nblocks field.

The close() subroutine

The close() subroutine closes an instance of an opened file. It takes a file descrip­
tor number as a parameter and nulls the pointer stored in the fp field of that file
descriptor (see /usr/include/sys/user.h), thus dissolving the link between the file
descriptor in a process's file descriptor table and the corresponding entry in the
kernel's file table. It decrements the value in the f_count (reference count) field
of the file table slot (see /usr/include/sys/file.h). lfthe f_count field reaches zero,
the file table slot is freed. In this case, the value of the v _count field in the cor­
responding vnode is decremented (see /usr/include/sys/vnode.h).

If the v _count value reaches zero, the file has been closed by all processes
that once had it opened. The vnode is then freed, and the corresponding in-core
inode's i_count is set to zero (see /usr/include/jfs/inode.h). The in-core inode is
not freed but is now considered inactive and placed at the end of the least-

200 Chapter Seven

User Memory Kernel Memory

File
Descriptor

Table

File
Table Vnodes In-Core

lnode Table

+----l-::b-1 f_count [TI v_conn1 [IJ
i_counl [:::I:]

- f_count �
i_coun10

J-.�i----i-1 f_count CTI
i_counl [:::I:]

Process

f_count �
f_count CTI
f_count [==:J

v_coun1 [IJ
i_count[:::I:]

v_conn1 [i] i_countO
I v_count[:::::J I

close(fda);
-------1 close(fdc);

close(fde);

Figure 7.21 Closing files.

recently-used chain (see Sec. 7.5). Figure 7.21 illustrates examples of closed
files. All files held open by a process are automatically closed when the process
terminates.

The link{) and unlink{) subroutines

The link() subroutine is similar to the ln command. It links an inode to a direc­
tory. The link() subroutine is called by creat() or open() when the O_CREAT flag
is used. It can also be called by an application to create a hard link to an exist­
ing file. The link() subroutine increments the value of the di_nlink field in the
disk inode structure (see /usr/include/jfs/ino.h).

The unlink() subroutine dissolves the link between a directory entry and a
disk inode. It decrements the value of the di_nlink field in the disk inode. This
is what occurs when a user removes a file via the rm command. If the value of .
the di_nlink field reaches zero and the file is closed by all processes, the file is
considered removed. The inode and all associated data blocks are freed by the
system.

Figure 7 .22 illustrates an interesting code example that creates a temporary
file that is automatically removed when the process terminates. Once
unlinked, the file does not appear in any directory but exists as long as it is kept
open by the process.

AIX 3.2 Disk File 1/0 201

User Memory Kernel Memory

File
Descriptor

Table

File
Table

Vnodes In-Core
lnode Table

VMM

f_countC'!::J v_countITJ I di_nlinkW SCB

Process

fd=open("unpfile",O_RDWR);
unlink("unpfile");

close(fd);
Current

Directory

Figure 7.22 The unlink() subroutine.

7 .8 Memory Mapped Files

This section describes how AIX 3.2 performs implicit and explicit memory map­
ping of files. Implicit memory mapping occurs automatically when an ordinary
file is opened. Explicit memory mapping occurs when a process calls either
shmat() or mmap() to map an already opened ordinary file into the process's
user space. This section compares both of these memory mapping techniques to
the "traditional" style of using kernel buffers as a disk cache.

Kernel buffers-the traditional approach

Many older-styled UNIX-based systems reserve a portion of real memory for
pinned buffers that hold the most recently accessed data blocks from local disk
files. The buffers are allocated from kernel memory (/dev/kmem). These buffers
were called pinned K-buffers or "pink buffers" in AIX Version 2 on IBM's RT
system. The number of buffers is a tunable parameter that must be adjusted to
adequately accommodate caching of data blocks while not taking up so much
real memory as to hinder the execution of processes. Figure 7 .23 illustrates the
use of disk cache buffers.

Author's Note: The sar (system activity report) tool on System V UNIX systems
provides valuable information on the percentage of read and write cache hits for
data blocks found in the disk cache buffers. The sar -b command gives this infor­
mation. Since AIX 3.2 does not use the disk cache buffers for ordinary file I/O, the

202 Chapter Seven

User Memory

Bull' er
Headers

..

Logical Reads
and Writes

Kereel Memory

Pinned Disk Cache Buffers

Physical Reads
and Writes

Figure 7.23 "Old style" kernel disk cache buffers.

sar -b command reports 0% read and write cache hits. This is one of many exam­
ples where traditional UNIX utilities are obsolete inAIX. Care must be taken when
information is obtained from generic documentation about things like performance
management. Unless one fully understands the workings of the AIX kernel, faulty
assumptions can be :r;nade.

AIX 3.2 still has kernel buffers, but their use is limited to holding JFS
superblocks during file system mounts and handling buffered I/O of non-JFS
logical volumes. An example of the latter occurs when an application opens a
logical volume (raw disk partition) or other block device, such as would be the
case for a call to open ("/dev/hd15",0_RDWR). This type of operation is typical­
ly found in .data base applications that request a raw disk partition. AIX 3.2
allocates twenty 4-kb buffers by default, but the number of buffers is tunable
via the system management interface tool (SMIT) or the chdev command. AIX
also allocates one buffer header for each buffer. To view the number of assigned
buffers, select the "System Environments" option from the SMIT main menu,
then select the "Change/view characteristics of the operating system" option.
Look for the "Buffers=" attribute. It can be changed from this screen.

Users of commercial data base packages or in-house applications that read and
write to raw disk partitions should consider tuning the number of kernel buffers
to meet their system's needs. Consult the "AIX Performance Tuning Guide"
under InfoExplorer for more information on tuning the number of kernel buffers.

Implicit file mapping

AIX 3.2 Disk File 1/0 203

Actually, the concept of implicit file mapping has already been discussed in this
book, but it is necessary to review implicit file mapping prior to introducing the
concept of explicit file mapping. Implicit (or automatic) file mapping occurs in
AIX. 3.2 whenever an ordinary file is opened. Recall that the virtual memory
manager allocates a 256-Mb segment to hold the mapped pages of the file. The
segment ID number is held in the gn_seg field of the file's gnode structure (see
/usr/include/sys/vnode.h). An entry in the kernel's segment information table
keeps track of the segment. Figure 7.24 illustrates implicit file mapping.

The main benefit of file mapping over the traditional kernel buffers is that
file mapping allocates virtual · segments and pages dynamically as files are
opened, then releases them when files are closed. This fluid approach avoids
the need to have a static set of pinned buffers taking up a large portion of real
memory frames. The system adjusts to the demands for file memory versus
computational memory by letting the VMM handle the file 110.

Explicit file mapping using shmatO

AIX. 3. 1 and AIX 3.2 allow a process to explicitly memory map a file into that
process's own address space by using the shmat() system call.

User Memory Kernel Memory

Segment
Control

File Tuble VDOdes In-Coie lnodes � I -- J=:!. I I -- R D Ei
D D r::::::J D r::::::J I I �

VMM

Process
-

-

File
Segment

...,. l •+-
Figure 7.24 Implicit file mapping.

204 Chapter Seven

Author's Note: The shmat() system call was introduced with the System V IPCs
(interprocess communications) from AT&T. It allows processes to share memory
regions (shmat means "shared memory attach"). While AIX uses shmat() for shared
memory IPC (see Chap. 10), it also allows shmat() to be used for explicitly mapping
files. Most UNIX-based systems use the mmap() system call to perform explicit file
mapping and the shmat() system call only for shared memory IPC. AIX 3.1 does not
include the mmap() system call, leaving shmat() as the only option for mapping files.
AIX 3.2 introduced mmap() to provide portability. The interesting thing is that AIX
3.2 allows a programmer to use shmat() to do shared memory IPC or memory
mapped files, or mmap() to do shared memory IPC or memory mapped files. AIX 3.2
programmers concerned with portability and standards should use shmat() only for
shared memory IPC and mmap() only for memory mapped files. If portability is not
an issue, the choice of which interface to use can be based on the features of each.

The shmat() subroutine maps the entire file segment into one of the calling
process's eight available segments (segments 3 through 10). Figure 7.25 illus­
trates how shmat() maps a file into the process's address space. Regardless of
the size of the file that is smaller than a single segment (256 Mb), the entire
process segment is used by shmat(). In other words, when using shmat(), only
one file can be mapped into any single process segment at a time. This limits
the number of files that can be "shmatted" to eight at a time.

User Memory Kernel Memory

Process Segments

15 J/O Addresses

14 Kernel Data

13 Shared Lib.

12 Reserved
1 1

/!:
8

Process Segments 7 •
Available for Implicitly File Mapped Files 6 Segment

�: shmat()

2 Private Data

1 Text

0 Kernel

Figure 7.25 Explicit file mapping using shmat().

AIX 3.2 Disk File 1/0 205

#include <Sys/shm.h>
#include <fcntl.h>

File Descripior
T•ble

main()
{

int fd;

u_ses&l[NSEGS]--+m�

char "'fd_p;
u..Ji088t[3) bas
a wlue ofsix
(fd=6)

File descriptor
six assisaod 10
opened "mydota"
file fd=open("mydata",O_RDWR);

fd_p=shmat(fd,O,SHM_MAP);

printf("%c", "'fd_p); J• Prints first character of the file
to stdout. Note that no read was
required! */

close(fd); J• File is implicitly unmapped •/

Figure 7.26 An example of explicit file mapping using shmat().

Kernel =ps "mydata" � �:::process sesriient

t==j ...
Process

The shmat() subroutine can map files that are larger than a single segment
(>256 Mb). It simply uses additional segments from the process's user space.

Author's Note: Some IBM documentation claims that segments 3 through 12 are
available for memory mapped files. Other documentation states that segments 11
and 12 are reserved by the operating system. I have found that I can successfully
map files to segments 11 and 12 but would advise against it since IBM does not
seem to guarantee that this capability will always be supported.

Figure 7 .26 shows a code example of explicit file mapping with shmat(). The
file is first opened in the usual manner. The shmat() subroutine is then called.
The parameters include the file descriptor and the SHM_MAP flag, which tell
shmat() that it is mapping a file rather than attaching a shared memory seg­
ment. The second parameter of shmat() is very important. It tells shmat() the
virtual address within the process at which to start mapping the file (i.e. , the
starting location of the process's segment). A zero value for this para:rneter tells
shmat() to let the kernel decide which of the process's user segments (3 through
10) to use. The kernel normally selects the lowest available segment.

The state of each of a process's 16 segments is maintained by an array of
segstate structures in the process's user area. The array, defined in /usr/

206 Chapter Seven

writeit.c mapit.c
���������������-

#include <fcntl.h> #in cl ud e <Sys/sbm.h>
#include <fcntl.h>

main()
{

int fd, i;
cbar c='X';
...

.. .

main()

{
int fd, i;
char *fd_p;

fd=open("file_ w .. ,O_CREATIO_ WRONLY.0666); ...

... fd=open("file_m",O_CREATIO_ WRONLY,0666);
for(i=l;i<=IOOOOOO;i++)

write(fd,&c. l); fd_p=shmat(fd,0,SHM_MAP);

close(fd); for(i=l ;i<=IOOOOOO;i++)

fd_p++='X' ;

close(fd);

time writeit
real 4m57 .32s
user Om26. 1 8s
sys 4m l l.42s

time mapit
real Om0.29s
user Om0.26s
sys Om0.03s

Figure 7.27 Explicit vs. implicit file mapping.

include/sys/user.h, is called u_segst[NSEGS]. Both NSEGS and the segstate
structure are defined in /usr/include/sys/seg.h. NSEGS is defined as 16. A
segstate structure contains a segflag field, which describes the type of segment,
and a union called u_ptrs that holds either a file descriptor in a field called
mfileno or a pointer to a shared memory descriptor called shmptr. (See Chap.
10 for information about shared memory descriptors.)

The shmat() system call returns a character pointer to the starting location
of the mapped segment. Now the process can access and modify the data of the
file without performing read() and write() system calls. It is done directly
through the memory pointer. In effect, the file has become part of the process's
data. The overall improvement in file 1/0 can be astonishing. Figure 7 .27 shows
a side-by-side comparison of implicitly mapped file 1/0 and explicitly mapped
file 1/0. The results of timing the applications as each writes 1 ,000,000 char­
acters to a file, one character at a time1 are taken from an actual test case. Your
mileage may vary! The main reason for the difference in time comes from the
reduction in system calls (note the lower %sys time). The process is performing
loads and stores instead of reads and writes.

Author's Note: Yes, folks, I've done it again. I have provided an example of a pro­
gram that creates a file, then writes one million characters to it, one character at
a time. For those of you who didn't catch the example earlier in this chapter where
I did a similar thing with read() and fread(), I'll repeat that this example, while

AIX 3.2 Disk File 1/0 207

slanted in the favor of explicitly mapped files, is justifiable. Increasing the write
buffer size of the writeit.c program does improve its overall response time, but it
never matches that of mappit.c. I simply went for greater theatrics here.

Author's Note: When I present this example in my classes, I am sometimes con­
fronted by students who say that this example is not fair because the writeit.c pro­
gram is writing to a file on disk, while mappit.c is only writing to memory. However,
each program is writing to memory, and in each case, the memory contains the
mapped pages of a file. In both examples, the data are written to disk at some point
by the VMM. In the case ofmappit.c, the data are written to the disk file when the
file is closed (at program termination).

There is one very important difference in the results of the two files created
by the programs in Fig. 7 .27. When a page of data is touched in memory for the
first time, the kernel zero-fills the entire page. Therefore, the mfile created by
mappit.c will be larger than 1,000,000 bytes. It will be zero-filled to the end of
the last page. To avoid this minor problem, applications that use shmat()
should allocate file space in record sizes that match page boundaries.

A process can still perform read() and write() operations of a file while it is
mapped with shmat(). It is also possible for two or more processes to map the
same file simultaneously. The file's segment is simply mapped to one of each of
the processes' available segments. This results in concepts similar to shared
memory, where each process can instantly see the changes made within the
segment by other processes.

Explicit file mapping using mmapO

As mentioned earlier, AIX allows explicit file mapping via the shmat() subrou­
tine. The traditional UNIX method for explicit file mapping is provided by the
mmap() subroutine. AIX 3.2 added mmap(), along with a number of other mem­
ory mapping utilities that work with mmap(), in order to be compatible with
other UNIX-based systems. The goal of mmap() is the same as shmat(); how­
ever, its capabilities are quite different.

The mmap() subroutine is not based upon segments. Therefore, a file mapped
with mmap() uses exactly the amount of virtual memory within the process's
user space, as requested. This means that a process can map more than one file
into a single segment, which allows a process to map many more files simulta­
neously with mmap() than with shmat(). The mmap() subroutine also allows
the application to map portions of files, instead ofrequiring the entire file to be
mapped. The mmap() subroutine includes options for sharing a mapped file or
holding exclusive "rights" to the file.

Figure 7 .28 shows an example of using mmap() to explicitly map a file. The
first parameter specifies the address of where the mapped file should start. As
with shmat(), a zero for this parameter indicates that the kernel should choose
the location. This exf!.mple maps two pages of the file (8192) starting at byte
36,384. The MAP _SHARED option indicates that ''writes" made to the file via

208 Chapter Seven

#include <Sys/types.Ii:>
#include <Sys/mman.h:>

mainO

{
int fd;
char *f<lp;

fd=open("mydata",O_RDWR);

fd_p=mmap(0,8192,PROT_READ,
MAP_FILEIMAP_8HARED,fd,4096);

prinlf("%c", *fd_p}; /* Prints first character
of the second page of the
file to stdout.
(Offset is 4096)

close(fd); /* File is implicitly unmapped •/

15

14

13

12

11

10

9
8
7
6
5
4

3

2

1

0

Figure '7.28 Explicitly mapped files using mmap().

TABLE 7.2 shmatO vs. mmapO

Only one file per segment, therefore, limit of eight
files at a time.

Allows extension (appending) of file up to segment
boundary.

Maps entire file.

Slightly faster than mmap().

Not portable (see Author's Note at beginning of this
section).

Process Segments
YO Addresses

Kernel Data

Shared Lib.

r- Reserved -

- -
- -
- -
- -
,.... -
,.... -

• -�

Bytes 4096 throug b
1 2288 (second and
third pages) of the
me are mapped to
Process Segment
three

File
Segment j Private Data

Text

Kemel •

Can map multiple files to a single segment, therefore
many files can be mapped at a time.

Does not allow the extension of a mapped file.

Allows portions of files to be mapped. as well as
page-level protection of mapped tiles.

Slightly slower than shmatO.

Portable for memory mapped files.

AIX 3.2 Disk File 1/0 209

pointer assignment are visible to other processes. This is the opposite of
MAP _PRIVATE, which causes a private copy of the mapped file region to be
created when the file's contents are changed. See the manual page for mmap()
or InfoExplorer for a detailed description of the mmap() subroutine. Relatives
of mmap() include munmap(), msync(), and mprotect().

A comparison of shmatO and mmapO

Both shmat() and mmap() have their pros and cons. Table 7 .2 provides a side­
by-side look at these subroutines.

One final note on explicitly mapped files: Neither shmat() nor mmap() allows
mapping of special (device) files. Imagine the implications of explicitly map­
ping /dev/mem!

Chapter

8
Virtual File Systems

In Chap. 7, the virtual file system concept was briefly introduced. AB a layer of
the file 1/0 subsystem, the VFS provides applications with access to different
types of physical file systems without requiring the application to know the
specifics of how the file systems work. It has been mentioned that AIX. 3.2 sup­
ports three types of virtual file systems: the journaled file system (JFS) for local
disk files, the network file system-(NFS) for remote file systems, and CD-ROM
file systems. Support for other types of file systems can be added, .as kernel
extensions, to the VFS. Examples include the distributed file system (DFS), the
Andrew file system (AFS), and even PC-DOS based file systems.

Author's Note: I know someone who was contemplating implementing an Amiga­
style file system for AIX!

Chapter 7 also introduced vnodes (virtual nodes), but only inasmuch as to say
that they are found between the kernel's file table and the in-core inode table.
This chapter delves much deeper into the structure of the vnode and its rela­
tionship to other components of the VFS, such as the vfs structures, gfs struc­
tures, vmount table, vnodeops, and vfsops.

8.1 The VFS Layer

Figure 8. 1 illustrates how the virtual file system layer fits within the other
components of the AIX. 3.2 file 1/0 subsystem. Much of the concept of the VFS
layer was created by Bill Joy at Sun Microsystems. Additional work was dorie
by Peter Weinberger at Bel l Labs. While you will find support for virtual file
systems in other UNIX-based systems, IBM has made a few small changes
from the original BSD and SVR4 versions.

21 1

212 Chapter Eight

User Memory Kernel Memory

File
Table

Vnodes
D
D

--t=====t----H
D
D
D

Virtual
File

System

Otber File

System

Structures

Gnode

VMM
File

Mapping

Figure 8.1 The VFS layer.

8.2 Vnodes

The vnode connects the VFS to the file 110 subsystem. There is one vnode struc­
ture allocated to each opened file, regardless of the type of file system from
which the file comes or how many times the file has been opened. The vnode
structure is defined in the /usr/include/sys/vnode.h header file. Interesting
fields include:

v _flag. An unsigned short that indicates various states of this vnode or the
file system to which this vnode belongs. Flag values are defined in the
/usr/include/sys/vnode.h header file and include:

V_�OOT (OxOl). This vnode is for the root directory of the VFS.
VFS_UNMOUNTED (Ox02). This vnode's VFS has been unmounted.

V _TEXT (OxlO). The file of this vnode is currently being executed (pro­
gram text file).

v _count. An unsigned long that indicates the reference count for this vnode.

v _ vfsp. A pointer to the vfs structure (explained shortly) for this vnode. This
is one of the most important fields.

v _mvfsp. Another pointer to a vfs structure, this points to the vfs structure
for the file system that was mounted over this vnode. If this vnode is not the
mount point for a file system, this pointer is null.

User Memory

Process

Kernel Memory

File
Table

Virtual File Systems 21 3

I fd=open(�/home/carolynlmywork/mysclied",o_RDWR); I

Gnode

r--t-.1c v_vfsp v_flagO v_gnode ,.,..... __

VFS
Structure

* v_mvfsp v_countD

Figure 8.2 The vnode.

v _gnode. A pointer to a gnode structure, the gnode for this vnode (see Chap.
7 for information on gnodes).

There are other fields in the vnode structure, but the ones listed .above are the
·only ones important to the discussion at hand.

Figure 8.2 illustrates the allocation of a vnode for a typical file. As mentioned
earlier, the v _ vfsp pointer is very important. It points from the vnode to a vfs
structure.

8.3 vfs Structures

AIX 3.2 allocates one vfs structure for each mounted file system. Each vnode
points to the vfs structure that represents the file system in which the vnode's
file is found. The vfs structure is defined in the /usr/include/sys/vfs.h header
file. The vfs structure includes:

vfs_next. A pointer to the next vfs structure, as they are maintained in a
linked list.

vfs_gfs. A pointer to a gfs structure. This is a very important field and will
be explained shortly.

214 Chapter Eight

vfs_mntd. A pointer back to the vnode that represents the root directory of
the file system of this vfs structure.

vfs_mntdover. A pointer back to the vnode that represents the directory stub
(mount point) onto which the file system of the vfs structure is mounted.

vfs_mdata. A pointer to a vmount structure (an entry in the vmount table).
The vmount table has one entry for each mounted file system and holds infor­
mation about the options specified for the mount. The vmount structure is
defined in the /usr/include/sys/vmount.h header file.

The most important field in the vfs structure is the vfs_gfs pointer that
points to a gfs structure. The gfs structure is described shortly, but the links
between the vfs structures and the vnodes is discussed first. Figure 8.3 illus­
trates the relationships of a vsf and a set of vnodes. 'lb trace the links, start
with the vnode allocated to the file /home/carolyn/mywork/mysched. For the
example, assume that carolyn's home directory and all directories below it are
found in the /home file system.

The vnode for mysched points to a gnode in the in-core inode table for the local
disk file. The vnode also points to the vfs structure that represents the /home
file system. The vfs structure has three pointers back to vnodes, two of which
are illustrated here. One pointer, vfs_mntd, points back to the vnode that rep­
resents the root directory of the /home file system. The vnode for the root direc�

I fd=open("/bome/carolynfmywmklm:ysched'',O_RDWR); I
File

'Illble

Vmount
Tub le

Figure 8.3 Vnodes and vfs structures.

Vnodes
v_vfsp

* v_mvfsp

v_vfsp
* v_mvfsp

v_vfsp
* v_mvfsp

Gnodes

v_flagO v_gnode *-l---11.i
v_countD

v_flagO v_gnode >H---t�
v_countD

v_flagO v_gnode .-+---I�
v_countD

gfs
Structures

myscbed

/home (root dlr

of/home FS)

/home (mount point

of/home FS)

vfs

Structures

vfs_vuodes

Virtual File Systems 21 5

tory points to a gnode in the in-core inode table. This in-core inode holds the disk
inode for the root directory of the /home file system. Recall that this inode will
always have an index number of 2 (see "Reserved !nodes" in Sec. 6.4).

Another pointer in the vfs structure, vfs_mntdover, points to the vnode that
represents the mount point of the /home file system. The mount point is the
/home directory within the I (root) file system. Its vnode points to a gnode in
another in-core inode. This in-core inode holds the disk inode for the /home
directory. Its inode index number is arbitrary. Note that the vnode for the
/home directory (within the root file system) points to the vfs structure that
represents the root file system. The whole cycle can be repeated from there.

Author's Note: The illustration in Fig. 8.3 represents one of the biggest chal­
lenges to most of my students. The important point to remember is that there are
two representations of the /home directory. One vnode/gnode/in-core inode combi­
nation is the root directory of the /home file system and the other is the mount
point of the file system. The mount point is an ordinary directory found in the root
file system. Once the concept is clear, the rest of this convoluted drawing is easier
to understand.

Another vfs field, vfs_ vnodes, points back to a vnode that forms the head of
a linked list of vnodes from the same file system. The vnodes maintain the
doubly linked list via the v _ vfsnext and v _ vfsprev pointers defined in the
vnode structure (see /usr/include/sys/vnode.h>). Figure 8.4 illustrates this
relationship.

v_vfsprev Vnode for /home/jim/mydata

v_vfsprev v_vfsnext Vnode for /home/sue/tmp

v_vfsprev v_vfsnext Vnode for /home/janet/ponies

v _ vfsprev v_ vfsnext Vnode for /home/janet/mywork/letters

v_vfsnext Vnode for /home/buzz/planning

vfs Structure
.__ __ ___, for /home F11e System

Figure 8.4 Linked list of vnodes for a file system.

21 6 Chapter Eight

8.4 gfs Structures

vfs for
I

vfs_gfs

Each vfs structure points to a gfs structure (via the vfs_gfs pointer). There is
one gfs structure in the kernel for each supported virtual file system type. By
default, AIX has three gfs structures, one for JFS, one for NFS, and one for CD­
ROM. Figure 8.5 shows a typical set of vfs structures and their links to the gfs
structures.

The gfs structure is defined in the /usr/include/sys/gfs.h header file. Fields
include:

gfs_ops. Apointer to a vfsops structure.

gn_ops. A pointer to a vnodeops structure. These two fields are the most
important fields in the gfs structure. They point to structures that contain
pointers to functions, which are explained shortly.

gfs_type. An integer that contains a description of the VFS type. The values
for this field are found in the /usr/include/sys/vmount.h header file and
include the following:

MNT_AIX (0). An old-style AIX file system (pre-JFS).

MNT_NFS (2). Sun's network file system.

MNT_JFS (3). IBM's journaled file system.

MNT_CDROM (5). CD-ROM file system.

IBM reserves gfs_type numbers 0-7. Numbers 8 and above are available
for user-added virtual file systems.

vfs for
/home

vnodeops Structure

vfs for
/usr

vfs for
/rmnt

vfsops Structure

vfs for
/usrflpp/info/En_US

Figure 8.5 vfs and gfs structures.

Virtual File Systems 217

When a systems programmer adds a virtual file system type to AIX, the kernel
extension includes a new gfs structure.

The vnodeops and vfsops

gfs Structures

Each gfs structure points to a vnodeops structure. The vnodeops structure is
defined in the /usr/include/sys/vnode.h header file. It consists of pointers to
functions that perform operations on files. In a sense, the gfs-vnodeops rela­
tionship forms a switch table used to vector to the appropriate code for per­
forming an operation on a type of VFS file. In other words, when an application
issues an open(} request on a file, the open(} system call builds the link from
the process to the file 1/0 subsystem. In building that link, the open(} system
call uses a vnode to establish a relationship with the vfs and gfs structures for
the VFS type. The vnodeops structure associated with the gfs contains a point­
er to the open(} routine specific to the VFS type (see vn_open()). All the appli­
cation did was open a file. The application did not need to know anything about
the VFS type of the file. This brings us to the mission of the VFS layer of the
file 1/0 subsystem, which is to provide the ability to manipulate files from dif­
ferent types of file systems while hiding the details from the application.

Each gfs structure also includes a pointer to a vfsops structure. The vfsops
structure is defined in the /usr/include/sys/vfs.h header file. Like the vnodeops
structure, the vfsops structure contains pointers to functions. These functions,
however, are operations performed on file systems. Figure 8.6 illustrates the
switch table concept and wraps up the discussion of the VFS layer of the file
1/0 subsystem.

IFS CDROM

Functions pe1formed on files
JFS CDROM NFS

Functions performed
on file systems

. vfsops Structure

Figure 8.6 vnodeops and vfsops structures.

218 Chapter Eight

Rn odes

~
Segment
Control

Client Blocks
D Segment

Goode

r_sidl SID - -
-

Goode D
~ D

Goode VMM

Figure 8.7 The mode table.

8.5 The rnode Table

Chapter 7 described how vnodes for local disk files point to gnodes which are
contained within in-core inodes. For remote files, the NFS client maintains a
table of modes, which are similar to in-core inodes. The vnode of a remote file
points to a gnode contained within an mode. The mode structure is defined in
the /usr/include/sys/mode.h header file. Most of the fields in this structure
involve NFS internals and are beyond the scope of this book. The r_sid field
contains the ID number of the client segment into which the VMM has mapped
the remote file. Figure 8. 7 illustrates the rnode table.

Chapter

9
The Device VO Subsystem

Previous chapters have described how AIX 3.2 facilitates file 1/0 for the stor­
age and retrieval of data and programs . . This chapter describes how AIX 3.2
handles 1/0 directly to and from peripheral devices. It also addresses device
configuration and the object data manager (ODM).

From an application's perspective, data are read from and written to devices
in the same fashion as an ordinary file. This is because AIX 3 .2, as well as other
UNIX-based operating systems, treat attached devices as files, giving each
device a file name abstraction in the global file system. By convention, the
device file names are found in the /dev directory. The device file names are asso­
ciated with actual files, called special files.

9.1 Components of Device 1/0
There are three major components ofthe AIX 3.2 kernel involved in device 1/0:
the file 1/0 subsystem, the device switch table, and the device drivers. The file
subsystem includes the special files, mentioned above, as well as vnodes, spec­
nodes, and devnodes. Figure 9. 1 illustrates the relationship of the kernel com­
ponents that facilitate device 1/0.

The file subsystem

As mentioned in Chap. 2, devices come in two flavors: bfock and character.
Block devices perform 110 in buffered units for greater efficiency. Examples of
block devices include disk and diskette drives. Character devices, such as
printers and ASCII terminals, perform 1/0 one character at a time. Special files
come in block and character format to match device types. Figure 9.2 shows the
output of a listing of the /dev directory. The first character in each line of out-

21 9

220 Chapter Nine

User Memory Kernel Memory

File 1/0
Subsystem

-1----1f-9�I System Call
Subsystem

Process

Device Switch

Table

11111111111
111111111
1111111
111 111

Figure 9.1 Components of device 1/0.

$ ls -1 /dev
crw-rw--- I root system 14,0 May 15 09:3 1 console

brw-r----- root system 10,0 May 15 09:31 hdl
brw-r---- root system 10,l May 15 09:31 hd2

brw-r----- root system 15,0 May 15 09:31 hdiskO
brw-r---- root system 15,1 May 15 09:31 hdiskl

crw-r---- root system 10,0 May 15 09:3 1 rhdl
crw-r---- root system 10,l May 15 09:3 1 rhd2

crw-r--- root system 15,0 May 15 09:31 rhdiskO
crw-r---- root system 15 , l May 15 09:3 1 rhdiskl

crw-rw--- root system 12,0 May 15 09:31 ttyO
crw-rw--- root system 12,l May 15 09:31 ttyl

Flgure 9.2 Block and characler device file names.

put indicates the type of device. Block devices have a "b" as the file type and
character devices have a "c." Note that most block devices include character
device abstractions. This is because most block devices can function in charac­
ter mode. For instance, in AIX 3.2, each fixed disk drive has a block device
name of "hdisk . . . " and a character device name of "rhdisk . . . " (for raw mode).

Block and character special files have zero length. While the file subsystem
assigns an inode for a special file, no actual disk space is taken by the file.
Special files simply provide handles for interfacing with devices, in the form of

fd=open("/home/dave/myfile",O_RDWR); /* Opening an ordinaiy file */

devfd=open("/dev/hdiskO",O_RDWR); /* Opening a device */

Figure 9.3 Performing device 1/0.

The Device 1/0 Subsystem 221

file names that can be supplied to the open() system call, as shown in Fig. 9.3.
The fact that a device special file is opened like an ordinary file means that an
application can perform device 1/0 without needing to know anything about the
device with which it is interfacing.

In place of the size field for special files listed in Fig. 9.2, the ls -1 command
displays each device's major and minor numbers. A device's major number indi­
cates the device type. All devices that share a common device driver also share
a major number. For example, Fig. 9.2 shows ASCII terminals (tty . . .) as hav­
ing major number 12. A device's minor number indicates an instance of the
device type. For example, if a system included three ASCII terminals, they
would all share the same major number, but each terminal would have a dif­
ferent minor number. Figure 9.2 . shows the two ASCII terminals with minor
numbers of 0 and 1 .

Author's Note: You may have noticed that AIX 3.2 uses the same major number
for the raw mode interface of block devices (i.e., /dev/hdiskO and /dev/rhdiskO both
use major number 15 in Fig. 9.2). This is not true with all UNIX-based operating
systems.

Specnodes and devnodes

When an application opens a device for 110, the open() system call causes the
kernel to allocate a file descriptor, file table entry, and ·vnode, as it would for the
opening of any ordinary file. From here, however, things are a little different.
When the system determines that the file being opened is a special device file,
it sets the v _gnode pointer in the vnode to point to a gnode structure contained
within a specnode, as illustrated in Fig. 9.4. A second vnode is allocated to
maintain the special file's place within the physical file system. The v _gnode
pointer in the second vnode points to a gnode contained within an in-core inode.
The in-core inode contains the disk inode for the special file. The first vnode is
linked to the second vnode via the _ v _pfsvnode pointer found in the _ v _data
union. See the /usr/include/sys/vnode.h header file ·for more details.

The specnode, which is defined in /usr/include/sys/specnode.h, describes the
instance of a special file. AIX 3.2 introduces the specnode for device files and
unnamed pipes, which are described in Chap. 10. Interesting fields in the spec­
node include:

222 Chapter Nine

Process

User O stdin -
Area I stdout

2 J!!!m..
3

�
4 i----5 i----

PDT

File Tuble

f_ftag f_count

I CJ
I O_RDWR o:J
I CJ
I CJ
I CJ

Specnodes

D
_ .CJ sn_pfsgnode :� -

_sn_dnode

D
Gnodes �

f_up

*

'
*

*

*

Vnodes In-Core
In odes I I D

_v_pfsnode * I -I �o v_gnode � 1
1t.. & 0 _v_pfsnode :le

v_gnode •
Gnodes

Dev odes

--

Figure 9.4 Device 1/0 and the virtual file system.

sn_next. A pointer to another specnode structure, this field builds a linked
list of a specnodes that pertain to a specific device.

sn_count. A cnt_t data type (short integer) that holds the reference count for
the specnode.

sn_gnode. The embedded gnode structure.

sn_pfsgnode. A pointer to a gnode structure, this field points to the gnode
contained within the in-core inode for the device special file, as shown in
Fig. 9.4.

sn_data. A union that holds either a pointer to a devnode structure
(_sn_dnode) or a pointer to a fifonode structure (_sn_fnode). The pointer to a
devnode structure is used when the specnode is associated with a device spe­
cial file, as described in this chapter. The pointer to a fifonode structure is
used when the specnode is associated with an unnamed pipe, as described in
Chap. 10.

For device special files, the specnode points to a devnode. The devnode struc­
ture is also defined in the /usr/include/sys/specnode.h header file. Interesting
fields include:

Device drivers

The Device 1/0 Subsystem 223

dv _forw. · A pointer to another devnode structure, this field, along with
dv _back, builds a doubly linked list of devnode structures that are hashed for
faster access.

·

dv_back. See dv_forw.

dv _dev. A dev _t data type that holds the device's major and minor numbers.
See Chap. 7 for an explanation of how the dev_t data type is used.

dv_count. A cnt_t data type (short integer) that holds the refel\�nce count for
the devnode.

dv _specnodes. A pointer to the specnode that is the head of the linked list of
specnodes sharing the devnode.

Device drivers link the AIX 3.2 kernel with physical and logical devices. Each
device driver has two halves, commonly referred to as a top half and a bottom
half. The top half contains functions called by the kernel on behalf of process­
es. These functions are routines for tasks performed on devices, such as
d_open(), d_close(), d_read(), and d_ write(). These routines run in process envi­
ronment and are therefore preemptable by the AIX 3.2 dispatcher. The code
and data of the top half of AIX 3.2 device drivers are also pageable.

The bottom half of an AIX 3.2 device driver contains interrupt handler code,
used by the device driver to react to interrupts generated by the device. The
bottom half is active only when the system is in interrupt handler environ­
ment. The code and data of the bottom half are always pinned. Figure 9.5 illus­
trates the halves of an AIX device driver.

The device switch table

AIX 3.2 maintains a single device switch table, which is a matrix of pointers to
entry points for the functions found in the device driver top halves. The device

11 11 11
11 11 11

11 11
11 11

Top Half (Head) ·

Pageable/PreemptBble
Contains device functions
(i.e. d_open(), d_close. etc.)

Bottom Half
Pinned
Contains interrupt handlers

Figure 9.5 AIX 3.2 device drivers.

224 Chapter Nine

switch table is actually an array of devsw structures, which is defined in the
/usr/include/sys/device.h header file. The devsw structure contains mostly
pointers to the device driver functions. There is one devsw structure allocated
in the device switch table for each device major number (device driver).

When a process performs an 110-type operation on a device, the device switch
table is consulted to locate the entry point for the desired function. The func­
tion is called with the specific device's minor number passed as a parameter, as
illustrated in Fig. 9.6.

Author's Note: Most UNIX-based operating systems include two device switch
tables: one for block devices and one for character devices. As shown, AIX 3.2 uses
a single device switch table, which combines functions for both types of devices.

Figure 9. 7 provides an example of how the kernel handles device 110 operations.

Writing device drivers for AIX 3.2

System programmers who write device drivers for AIX 3.2 must take into
account the nature of a preemptable kernel. Top halffunctions and bottom half
interrupt handlers should disable interrupts during critical sections of code.
Top half functions must lock kernel data structures to assure proper access
synchronization. These concepts were discussed in Sec. 5. 7. Consult the lnfo­
E�plorer on-line documentation for details of writing an AIX 3.2 device driver.

File 1/0
Subsystem

(Major/Minor Numbers)

System Call
Subsystem

Device

Major

Numbers

0

5

Figure 9.6 The device switch table.

*

*

*

*

*

*

*

*

*

*

*

>!<

Device

Switch

Table

* *

* *

* *

* *

* *

* *

* *
Device

* * Driver

* * Minor I l l
* Number_ I I -

* * I I
* * I I

The Device 1/0 Subsystem 225

User Memory Kernel Memory

Devnodes

Device
Device Switch . Driver

18ble

1��c::!1�1��--...-�t:i::tt:t!t---

Figure 9.7 Device I/0-the big picture.

9.2 AIX 3.2 Device Configuration

Device states

Chapter 2 of this book gave a very brief description of the role of the object data
manager in AIX 3.2 device configuration. This section provides greater detail.

Recall that the object data manager is a collection of library routines, com­
mands, and data base files that are used by AIX 3;2 to store configuration data
for devices. The data base files, found in or linked to the /etc/objrepos directo­
ry, include:

PdDv. Predefined devices: configuration information for all supported devices

PdAt. Predefined attributes: "factory set" defaults for attributes associated
with each supported device, as well as ranges of valid values for the attributes

CuDv. Customized devices: devices the system actually has (or thinks it has)

CuAt. Customized attributes: those device attributes that have been modi­
fied from the "factory set" default values

AIX associates a state, or condition, with each device. The three most common
device states are "Predefined" (or unknown), "Defined," and " Available" (or con­
figured). All supported devices are in one of these three states. Figure 9.8 illus­
trates the device states. A device in the predefined state is listed in the PdDv
file but not in the CuDv file. In other words, the system does not think it has
· one of these devices attached. The device is unknown to the system.

A device in the defined state is known to the system. There is an entry in the
CuDv file for a defined device, but the device is not available for use. An exam­
ple of when a device is defined but not available is provided shortly.

226 Chapter Nine

Predefined

(Unknown)

Defined

Figure 9.8 Device states.

Configured

(Available)

A device is available when four things have occurred: the driver for the device
has been loaded into the kernel, an intr structure for the device has been ini­
tialized for interrupt handling, an entry has been made . in the device switch
table for the device's major number, and an entry in the /dev directory has
made the device accessible to applications.

Devices move from state to state with the help of small programs called
methods. There are methods for defining and configuring devices, as well as
undefining and unconfiguring devices. The methods work with the configura­
tion manager (a program called /etc/cfgmgr) to define and configure devices.

Author's Note: Since the Pd.Dv file contains information for all supported devices,
what about nonsupported devices? For instance, if a computer peripheral company
develops a new piece of hardware, such as a retina scanner, for the RISC
System/6000 or PowerPC, before it can be defined, information about the device
must be placed in the Pd.Dv. (There are no retina scanners listed in the PdDv cur­
rently; I have checked. Therefore, I like to say that there is a state that precedes
"Unknown" which I call "Really Unknown.") The developer of the scanner must not
only write the device driver for the scanner but must also include the methods, as
well as installation software that updates the PdDv. This would constitute the
packaging of the device driver and hardware support software . .

Device states become apparent to system administrators at two times. The
first is when the system is booted but an external device, such as a CD-ROM
unit, is not powered on. The configuration manager is not able to detect the
external device, so it only defines the CD-ROM, based on information in the
CuDv that indicated that the device was once on the SCSI bus. The device dri­
ver is not loaded into the kernel. This technique prevents kernel space from
being wasted by drivers for devices that are no longer attached to the system.
The problem occurs when the CD-ROM unit is turned on and an attempt is

. made to use it. Before it can be used, it must be made available. This can be
done through an option under the devices menu of SMIT called "Configure
Devices Added Since IPL."

The Device 1/0 Subsystem 227

Another time understanding device states is important is when a system
administrator re;moves a device. The SMIT _dialog screen for removing most
devices includes the question "Leave the definition in the data base?" with the
possible answers of yes or no. What the configuration manager wants to know
is whether the device definition should remain in the CuDv file. Answering
"yes" to the SMIT question causes the device driver to be unloaded . from the
kernel. The /dev entry is also removed. The device moves from the available
state to the defined state. Answering "no" to the SMIT question causes the con­
figuration manager to also remove the device's record in the CuDv. If a device
is being removed temporarily, it's usually best to leave the definition in the
CuDv data base file, as it serves as a place holder for the device.

Figure 9.9 shows how SMIT, the methods, the configuration manager, and
the ODM work together to perform device configuration.

9.3 System Start-up

The configuration manager is also involvedin the system start-up or IPL (ini­
tial program load, for those of you not familiar with IBM-speak). It works with
the ODM to define and configure devices in the proper order. There's only one
catch. The ODM files are stored in the root file system, which is found in the
root volume group, which is on one or more disk «!rives defined in the ODM.
We have a Catch-22! How can the configuration manager access the ODM files
when they are stored on a device which requires the ODM files in order to be
configured? In fact, how is the configuration manager (/etc/cfgmgr) executed
before the disk drives are configured? These questions are answered in this
section.

· ·

User Memory Kernel Memory �Methods Q;J T
,

ms

v
cfgmgr

�
ODM J L Database

Figure 9.9 AIX 3.2 device configuration.

Device

Switch

Table

- m - L ..L ..L ..L ..L .J

Device

Driver

rlllillll, 1 111 11111111 1 - _ ,
:- :mm - 1111 1111

Interrupt Handl�g � � �
Vector Information

228 Chapter Nine

Phase o

The boot sequence for the RISC System/6000 includes two phases. The pur­
pose of Phase I is to configure enough devices to vary on the root volume group
and mount the root file system. Once that is completed, Phase II configures the
remaining devices and puts the system in multiuser mode. There is, however,
an important set of events that occur prior to Phase I which shall be referred
to as "Phase O."

When a RISC System/6000 is powered on, its bootstrap program within its
read only storage (ROS) initiates two diagnostics tests. The first test is the
built-in self test (BIST) and the second test is the power-on self test (POST).
These routines test the CPU complex and other system-level components.
Upon completion of the POST, the ROS consults the nonvolatile RAM
(NVRAM) where two boot lists are stored. The boot lists are maintained in the
NVRAM via battery power. Each of the two boot lists corresponds to the two
boot modes of the system: NORMAL and SERVICE, which is controlled by a
key switch on the front panel of the system unit. The NORMAL mode boot list
contains a sequenced list of devices from which the system will attempt to boot
when the key is in the NORMAL position. The SERVICE mode boot list con­
tains a sequenced list of devices from which the system will attempt to boot
when the key is in the SERVICE position. Figure 9.10 illustrates the NVRAM
boot lists for a typical system.

Note that SERVICE mode booting first looks for a floppy diskette, then for a
CD-ROM, then for a tape, and finally, if none of these devices are found, it runs
the diagnostics manager software found on a fixed disk. This sequence allows
the system administrator to boot from one of the diagnostics media or from an
installation or mksysb tape. See the manual page for the bosboot command for
more information on creating boot records.

The boot list indicates a boot device, which must start with a boot record. For
NORMAL mode booting, a fixed disk is usually assigned as the boot device.
This decision is made when AIX 3.2 is installed. The boot lists can be viewed

Service

Floppy Diskette
Tape
CD-ROM
Fixed Disk (diagnostics)

Normal

Fixed Disk #

Figure 9.1 0 The boot list and the NVRAM.

Phase 1

Power On

EJ

The Device 1/0 Subsystem 229

or altered from within the · diagnostics program (diag) or by using the bootlist
command.

During NORMAL mode booting, the boot device (the first fixed disk drive,
in our example), is consulted. The first sector on the drive contains the boot
record (or IPL record). The layout of the boot record is defined in the
/usr/include/sys/bootrecord.h header file in the ipl_rec_area structure. It con­
tains the physical sector number (PSN) of the start of the boot logical volume
(BLV). The BLV is also known as /dev/hd5. The boot logical volume contains
boot code, a miniature version of the root file system, and a miniature version
of the ODM data base files. The BLV must always reside on the same physi­
cal disk drive as the boot record.

The boot code found in the BLV is used to load the kernel and to mount the
mini-root file system into memory. This file system is often called the RAM file
system. Next, the init process is handcrafted and executed. Phase I can now
begin.

The init process runs the configuration manager. It uses the information in the
miniature ODM data base to configure the base devices (those devices required
to accomplish the goal of Phase 1). It also uses the Config_Rules file in the
ODM to determine the correct order for configuring devices. For instance, a
SCSI disk drive cannot be configured until the SCSI controller has been con-

Phase I
Mount RAM Root FS
Load Kernel
Start init Process

Runs /etc/cfgmgr

+ Boot
Record

Uses Mini-ODM to
Configure Base Devices

Vary on Root VG

NV RAM � I Boot listr

Figure 9.11 The AIX 3.2 boot process.

Phase II
Mounts Real Root FS
Runs /etc/cfgmgr Again

Uses Real ODM to Configure
Non-Base Devices

230 Chapter Nine

Phase 2

figured. Once all of the devices associated with the root volume group are con­
figured, the volume group can be varied on (activated). The real root file sys­
tem can now be mounted and the RAM file system (mini-root) is discarded via
a newroot() can. This concludes Phase 1.

The init process runs the configuration manager a second time to configure all
other devices. Figure 9.11 illustrates the entire boot process. System adminis­
trators need to be aware of a couple of places where problems might occur dur­
ing the boot process · and what steps to take to correct the problems. The boot
list and/or BLV can become corrupted. The boot list can be reconstructed by
running diagnostics and accessing the ''View/Alter Boot list" option under the
diagnostics services menu. The BLV can be reconstructed by bringing the sys­
tem up in maintenance mode and using the bosboot command.

Author's Note: Some of you may be wondering how one boots the system to run
diagnostics if the boot list is corrupted. The ROS maintains an intrinsic boot list it
uses if the NVRAM is unavailable.

Chapter

10
Interprocess Communication

This chapter describes the kernel activities and components involved in vari­
ous forms of interprocess communication (IPC). It begins with informal IPC
mechanisms, such as signals and pipes, and concludes with more sophisticated
facilities, such as the System V IPCs (shared memory, semaphores, and mes­
sage queues). Each section includes a brief description of the application of the
IPC tools in order to help those not familiar with their usage, but detailed dis­
cussion of the system call syntax is avoided. Consult the AIX InfoExplorer on­
line documentation for information on system call syntax and usage. Also, the
topics discussed in this chapter are, for the most part, generic and applicable
to other UNIX-based systems. Therefore, any of the many reference books pub­
lished on the use of IPCs are recommended for applications programmers.

1 0.1 An Introduction to Interprocess
Communication

An IPC mechanism is any method or tool that allows processes to share infor­
mation. Some methods involve using facilities that exist for other purposes but
which happen to lend themselves to IPC. For example, one process can write
data to a hard file; then another process can read the data. This is considered
an informal IPC. It also has its drawbacks, as it is slow and requires some form
of external synchronization.

Other forms of IPC are designed specifically for the task of allowing process­
es to share information. These are the formal IPCs, which include their own
kernel data structures and application programming interface (API). Table
10. 1 lists various types of IPC mechanisms.

231

232 Chapter Ten

TABLE 1 0.1 AIX IPC Tools

Tuol Use Benett ts Drawbacks

Disk Files Store and retrieve data Easy to code Very slow
Flexible Requires disk space
Any process may participate
Flies survive power cycles

·Signals Notify another process Easy to code Only between processes
of a condition or Well known with same EUID (unless
situation or to take a Many programming sender has root authority)
specific action options Limited flexibility

· Signals might be lost

Exit Status Message from Easy to code Child must die to
child to parent participate

Only between child
and parent

Only an integer
may be passed

Unnamed Pipes Data stream flow from Easy to code Process must be related
one process to Built-in synchronization Ullidirectional
another UO redirection

Relatively fast

Named Pipes Data stream flow Easy to code Can be slow
through FIFO file Built-in synchronization

Available to unrelated
processes

1 0.2 AIX 3.2 Signal Management

Signals are common to all UNIX-based systems. There have been, however,
· various approaches to signal management. The AIX 3.2 signal management

subsystem incorporates features from System V and from BSD.

Author's Note: The fact that AIX supports most of both System V and BSD signal
APls, as well as the subroutines defined by POSIX, provides the application pro­
grammer with a wide range of options. In fact, one can be overwhelmed by the
choices, many of which overlap one another in functionality and features. When in
doubt, stick with POSIX.

Signals are sent to a process by another process or by the kernel. An example
of a signal sent from one process to another is when a user issues the kill com­
. mand from the shell prompt to terminate a background process. An example of
a signal sent from the kernel to a process is when a process attempts to perform
an illegal act, such as a reference to a memory pointer whose value has been
set to -1. The kernel uses a signal to terminate the offending process and, in
this case, to cause a core dump of the process. (A fiie named "core," which con­
tains the image of the process at the time of its termination, is created in the
current directory to allow the programmer to perform a "postmortem" on the
process using a debugger, such as dbx). Signals are also sent from the kernel to

Interprocess Communication 233

TABLE 1 0.1 AIX IPC Tools (Continued)

Thol Use Benefits Drawbacks

Shared Memory Common memory region Small to huge amounts of Hard to synchronize access
shared by mulitple data can be quickly shared Segment must be explicitly
processes Owner can set pennissions removed

Can live beyond processes

Semaphores Notify another process Sophisticates programming Not useful for sending real
of a condition or interface data
situation or serialize Operations performed Semaphore sets must be
access to resources atomically explicitly removed

Owner can set permissions
Can live beyond processes

Message Queues Messages sent from Flexible message structure Relatively slow

Sockets

one process to Message sizes up to 64 kb Queues must be explicitly
another Can be multiplexed removed

Owner can set permissions
Queues can live beyond

processes

Stream or datagram Extensive programming Complicated programming
data transfer between interface interface
processes on same Well standardized Requires system tuning to
or different systems Flexible application optimize performance

Possibly heavy memory
requirements

a process when driven by terminal control characters. For instance, when a
user presses the <CTRL>-<c> key combination, the AIX kernel sends a sig­
nal to the current foreground process. This usually results in the termination
of the process. Figure 10.1 illustrates how a process receives signals.

Processes can decide how to react to most of the signals they receive. A
process can accept a signal with the default consequence, which is usually, but
not always, termination. A process can choose to ignore the signal, which
means that the process never realizes it received the signal. A process can block
(mask) a signal, which holds off the delivery of the signal until the process is
ready for it. Finally, a process can catch a signal and branch to a routine called
a signal handler where some user�defined action takes place.

AIX 3.2 signals

The AIX 3.2 signal management subsystem is capable of supporting up to 64
different signals, although only 40 are currently defined. Symbolic constants
are defined for each signal in the /usr/include/sys/signal.h header file. Table
10.2 lists some of the more interesting signals.

Author's Note: Many of the comments given with the signals defined in
/usr/include/sys/signal.h include the symbols * , +, @, and ! . The * symbol indicates

234 Chapter Ten

Exception

Kernel

Figure 1 0.1 Receiving signals.

TABLE 1 0.2 AIX 3.2 Signals

Signal Signal
Number Name

1 SIGHUP

2 SIG INT

3 SIGQUIT

6 SIG AB RT
9 SIGKIIL

1 1 SIGSEGV

15 SIG'IERM

17 SIGS'IOP

19 SIGCONT

20 SIGCHLD

30 SIGUSRI

31 SIGUSR2

33 SIG DANGER

Process

Description

Tenninal disconnect (i.e. <C1RL-d>)

lntetTUpt (i.e. <CTRL-c>)

Quit (i.e. <C1RL-\>) (core dump)

abort() called (core dump)

Kill (cannot be caught or ignored)

Segmentation violation

Software kill (i.e. kill command)

Stop signal .

Continue signal

Death or suspension of child

User defined

User defined

Low paging space

Interprocess Communication 235

signals that cause a core dump by default. The + symbol indicates signals that are
ignored by default. The @ symbol indicates signals that cause the receiving process
to be stopped (suspended, not terminated). The ! symbol indicates signals that
cause the receiving process to continue from a stopped state. The SIGDANGER sig­
nal (33) is unique to AIX 3.2. It is sent to all processes when free paging space is
low. By default, processes ignore the SIGDANGER signal, although the comment
in the signal.h header file does not include a + symbol.

The /usr/iriclude/sys/signal.h header file also includes defines of symbol
names for compatibility with applications written for other UNIX-based sys­
tems. For instance, AIX defines signal 20 as SIGCHLD, the signal that is sent
to a parent process when a child process terminates or is suspended. Older
UNIX-based systems define this signal as SIGCLD, so AIX includes a define of
SIGCLD as SIGCHLD,

AD{ 3.2 includes two user-definable signals, SIGUSRl (30) and ·SIGUSR2
(31). Applications can be written to catch these signals and branch to an appro­
priate routine. Beware, however, that the default action for these two signals
is to terminate the receiving process.

Sending signals

Signals are sent from one process to another via the kill() subroutine. The name
"kill" is slightly misleading since not all signals terminate the receiving
process, but most signals do terminate the receiver. The kill() subroutine takes

· two parameters, the PID of the process to which the signal is sent, and the sig­
nal value itself. A process can only send signals to another process that shares
the same effective user ID (see Chap. 6), unless the sender has root authority.

The kill command, issued from the shell prompt, invokes the kill() subrou­
tine. The kill command can be instructed to send any valid signal. This is done
by specifying an option to the command. For example, "kill -9" sends a signal
number nine, SIGKILL. AIX 3.2 supports the killpg() subroutine, which deliv­
ers a signal to all the processes in a specified process group.

Receiving signals

Signals can arrive at a process at any time, but the signal is only considered
"delivered" when the process takes action on the signal. Until the signal is
delivered, it is pending. Action is only taken on the signal while the process is
running in user mode; however, some system calls, considered "slow" calls
because they could block forever, can be interrupted by a signal. Examples of
slow system calls include reads and writes to device and fifo files, sleep and
pause calls, and some ioctl calls.

As mentioned earlier, processes have four choices of how to handle the recep­
tion of most signals. There are numerous subroutines available to the applica­
tion programmer for defining which signals to ignore, block, and catch. Each
subroutine has its own characteristics, and some have drawbacks to be aware

236 Chapter Ten

Branch to
clean_upO

routine

of. Since this book is not intended as a programming guide, the discussion of
each subroutine is brief. Programmers should investigate each subroutine, as
well as others not listed here, by consulting the manual pages or InfoExplorer.

Some signals, such as SIGKILL (9) and SIGSTOP(l 7), cannot be caught or
ignored.

Author's Note: This is why the "kill -9" command can kill a process when "kill"
alone, which sends a SIGTERM (15) signal, may not work. A programmer can
choose to ignore the SIGTERM signal, but SIGKILL cannot be ignored. I recom­
mend that users and system administrators always try to terminate a process with
"kill" before resorting to "kill -9" since the programmer may have included a han­
dler to catch SIGTERM and gracefully shut down the process. Programmers can­
not register signal handlers for SIGKILL.

The signal() subroutine allows a programmer to ignore or catch a signal or
restore the default action for the signal. By default, AIX 3.2 implements the
System V version of the signal() subroutine, which has one tricky characteris­
tic. If a signal handler is registered via the System V signal() subroutine, then
the signal is received, execution branches to the specified handler, but the catch
option for the signal is not reregistered. If another signal of the same type is
received after the first signal trips the handler, the default action for the signal
is invoked, which usually results in the termination of the process. Figure 10.2
illustrates this problem.

Some programmers compensate for this problem by reregistering the han­
dler within the handler. The problem is that a process might receive another
signal of the same type before it has a chance to reregister the handler.

#include <Signal.h>

mainO

{
void clean_up(int);

signal(SIGINT,cleanup); /* Register handler */

. . . I* program tasks */ ------<Gt <CTRL-c> ca�
. }

,__ ___ clean_up()
{

. . . I* Clean up routine */
exit(); /* Clean up done */

Figure 1 0.2 Signal catching problem.

Interprocess Communication 237

Fortunately, AIX 3.2 also supports the BSD version of the signal() subroutine,
which automatically reregisters the handler. The BSD version of the signal()
subroutine is found in the /lib/libbsd.a library, which can be specified prior to
the standard C library when a program is linked.

Even with the BSD version of the signal() subroutine, a problem exists
where, if a signal handler is reregistered, a process might experience nested
occurrences of the handler. This could cause undesirable results.

Problems like those described above have led to the term "unreliable signals"
when referring to these API options. POSIX-compliant programs should use
the sigaction() subroutine, which provides reliable signal control. The sigac­
tion() subroutine includes three parameters. The first parameter specifies the
signal number for which this action applies. The second parameter is a point­
er to a sigaction structure, which is defined in the /usr/include/sys/signal.h
header file. The application initializes the sigaction structure with the name of
the signal handler routine (sa_handler), the set of signals to block (in addition
to those already being blocked by the process), while the handler is invoked
(sa_mask) and a flag to control various characteristics of the handler itself
(sa_flag). A third, optional, parameter can be used to specify a sigaction struc­
ture to hold the previously defined signal action for the specified signal.

Signal masks are used to specify which signals to block. Signal masks are
declared as a sigset_t data type as defined in /usr/include/sys/types.h. A sigset
is a structure containing two unsigned longs, named losigs and hisigs. This pro­
vides 64 bits, one for each supported signal, to use as a mask. AIX 3.2 includes
subroutines to manipulate the bits in sigset masks. They include sigemptyset()
which zeros all of the bits in the mask, sigfillset() which sets all the bits in the
mask, sigaddset() which sets a specified bit in the mask, and sigdelset(), which
turns off a specified bit in the mask. The sigismember() subroutine is used to
query the status of a bit in the mask. These subroutines are easier to use and
read than bitwise operators.

The sigprocmask() subroutine uses a sigset mask to block signals. The same
subroutine is used to unblock signals. The sigpending() subroutine allows a
process to find out what signals are pending before unblocking. As mentioned
earlier, many other subroutines are available for controlling signals.

Signals and the process table

The process table contains many fields used by the signal management sub­
system. They are defined in the /usr/include/sys/proc.h header file within a
union that is used for either signal information or, once the process becomes a
zombie, exit status information. The fields include:

_p_segstate. A character flag that indicates that a signal has arrived or that
the process is currently handling a signal.

_p_cursig. The current or last signal taken by the process.

238 Chapter Ten

_p_sigignore. A sigset_t data type that defines the signals currently being
ignored by the process.

_p_sigcatch. A sigset_t data type that · defines the signals currently being
caught by the process.

_p_sigmask. A sigset_t data type that defines the signals currently being
blocked by the process.

_p_sig. A sigset_t data type that indicates the signals that are pending. This
field is returned by the sigpending() subroutine described earlier.

Figure 10.3 illustrates the fields in the process table used by the signal man­
agement subsystem.

The signal handling vector

Each process's user area contains an array called u_signal. The definition,
found in /usr/include/sys/user.h, is

void (*u_signal[NSIG]) (int);

The array, which has a size of NSIG (defined as 64 in /ui;;r/include/sys/signal.h),
contains pointers to functions. The functions are the signal handler routines
registered by the process. Figure 10.4 illustrates the use of the u_signal[] array.

Signals as IPC

Process
Tub le

While signals are a form of interprocess communication, their use is limited.
They can only be implemented between processes that share a common effec­
tive user ID (unless the sender is running with root authority, With an effective

union _o_ovlv

struct __p_signal

_p_segstate � _p_cursig �
_p_sigignore 11ooomomo11nmm11111111111111m1101110n11011111

_p_sigmask 111111111111111111111111111111111101111111111111111111111011111

_p_sig 01111111111111m111011111111111ommmom11111111om11

· _p_sigcatch 1111111111111111111110011111111101111110111m11111111111110

Figure 1 0.3 Signals and the process table.

Process Table

I _,_..,. .. '" """""'I'""""""'""'"""""""'""""""'

Figure 1 0.4 The u_signalO array.

I
clean_upO

Process

Interprocess Communication 239

Text
Segment

user ID of 0). Signals cannot communicate data but simply notify the receiver
of some condition; therefore, the meaning of a signal is very limited. Finally, the
receiver of a signal has no way of knowing which process sent it. Signals have
a place in the IPC family, but data transfer must be accomplished by some
other mechanism.

1 0.3 Unnamed Pipes

Pipes are a common tool of the shell. Most UNIX users have implemented pipes
to forge simple tools, such as "who I we -1," which reports the number of users
logged in. Most users are unaware of how the shell creates a pipe. The section
describes unnamed pipes as an IPC mechanism, useful for passing data from
one process to another.

When a user issues the command "who I we -1," the shell creates two process­
es, which are connected by a pipe. The standard output from the "who" com­
mand is redirected through the pipe to become the standard input of the "we -1"
command. Figure 10.5 illustrates how the shell implements a J?ipe.

The pipe() system call

Unnamed pipes are created by the pipe() subroutine. It allocates the two low­
est available file descriptors from the calling process's file descriptor table. The

240 Chapter Ten

who WC

l - I
stdout stdio

c,who l wc -1 J
Figure 1 0.5 Shell pipes.

file descriptors are assigned to an array of two integers that is specified as a
parameter to pipe(); The lower of the two file descriptors opens one side of the
pipe as read-only. The higher of the two file descriptors opens the other side of
the pipe as write-only. Figure 10.6 provides a code example and illustration of
the pipe() subroutine.

mainO
{

int p[2];
pipe(p);

Figure 1 0.6 The pipe() subroutine.

User
Area

File

Descriptor

Table

p[OJ0 p[l JQ]

Unnamed pipes and the file system

Interprocess Communication 241

Pipes use the file system, as described shortly. Pipes created with the pipe()
subroutine, while using the file system, do not have file names. This is why
they are called "unnamed pipes."

The file descriptors of a pipe point to entries in the file table. There is one
entry in the file table for each side (read and write) of the pipe. Pipes do not use
the read/write offset field of the file table (see Chap. 8 for an explanation of the
read/write offset). The two file table entries of a pipe point to a common vnode.
The vnode of the pipe points to a gnode, which is contained within a specnode
structure. The specnode structure (introduced in Chap. 7 and defined in
/usr/include/sys/specnode.h) contains a union, called sn_data, that defines two
pointers. One pointer, _sn_fnode, is used by unnamed pipes to point to a fifo­
node. The fifonode is also defined in the /usr/include/sys/specnode.h header file
and includes the following fields:

ff_size. An unsigned long that indicates the current number of bytes held in
the pipe.

ff_ wptr. An unsigned short that indicates the current write offset for the
pipe.

ff_rptr. An unsigned short that indicates the current read offset for the pipe.

ff_bufINFBUF]. An array of caddr_t data types (character pointers). The
pointers point to the buffers that hold the data as they move through the
pipe. NFBUF is defined as eight.

Figure 10. 7 illustrates the file system components employed to implement
unnamed pipes in AIX 3.2.

Using unnamed pipes

Figure 10.7 shows what happens when a process calls the pipe() subroutine.
The only thing wrong with the example is that now we have a process that can
talk to itself through the pipe. This isn't very useful. To truly be called an IPC
mechanism, another process must be involved. After building the pipe, the
fork() system call is used to create a child process. Recall that a child process
inherits its parents' file descriptor table. Therefore, the child inherits both
sides of the pipe. Now, each process (parent and child) can close whichever side
of the pipe they don't intend to use (unnamed pipes only support unidirection­
al data transfer). Figure 10.8 shows the final result of the pipe construction.
Data can now be sent from the parent process to the child process. The parent
process uses the write() subroutine, while the child process uses the read() sub­
routine.

Author's Note: Unnamed pipes are unidirectional, but the programmer can decide
which process does the "talking'' and which process does the "listening." The talk­
er closes the read side of the pipe and the listener closes the write side of the pipe.

Process

User 0

Area 1
2
3
4
5

FDT

File Tuble

f_flag f_count f_offset f_up

I CJ CJ *

OJIDWR l [IJ CJ *

OJUX>NLY I ITJ -
o_WRONLYI [TI ..

I CJ CJ *

Specnodes

D
_snJnode llt-lf----9...i

D
Gnodes

Vnodes

D
v_gnode

Fifonodes

ff_wptr
ff_rptr

Figure 1 0.7 Unnamed pipes and the file system.

Parent

User 0

Area I
2 .
3
4
s

FDT

Child

User 0

Area I
2
3
4
5

FDT

Figure 1 0.8 A pipe example.

242

File Tuble

f_flag f_count f_offset f_up

l c=J CJ
OJIDWR I ITJ CJ
oJUX>NLY I DJ -
o_WRONLYI DJ -

I CJ CJ

Spec�odes

D
_snJnode

D
Gnodes

*

*

*

I

Vnodes

D
v_gnode

Fifonodes

�� �

Interprocess Communication 243

I've noticed that most of my students prefer to designate the parent process as the
talker and the child process as the listener. Perhaps their choices are based on per­
sonal experience.

One of the best features of unnamed pipes is that the data flow is automati­
cally synchronized. If a pipe reader attempts to read from a pipe before the
writer has had a chance to write to the pipe, the reader blocks until there is
data in the pipe. On the other hand, if a pipe writer fills the body of a pipe with
data and the reader has not pulled any of the data through the read side of the
pipe, the writer blocks until there is room in the pipe for more data. The size of
the body of the pipe is 32 kilobytes.

1b complete the discussion of unnamed pipes, the code example .given in Fig.
10.9 shows how pipes can be used to redirect the standard output of one process
to the standard input of another process. Notice that the pipe descriptors
remain after each process calls execl(). This illustrates why a process's file
descriptor table survives exec-type calls.

Named pipes

The biggest problem associated with unnamed pipes is that their existence
must be inherited. This limits them: to serving only related processes (parent-

main()
(

l

int rv, p[2] ;

close(O); /* Close stdin */
close(l); /* Close stdout */
pipe(p);
rv=fork();

if (rv-0) /* Child */
(

}

close(p[l]) ; /* Close write side of pipe */
dup(se); /* Reestablish stdin */
execl("progb'' ,"progb" ,0);
perror("progb failed");
exit(l) ;

I* Parent */
close(p[O]); /* Close read side of pipe */
dup(se); /* Reestablish stdout */
execl("proga" ,"proga" ,Q) ;
perror("proga failed");
exit(I);

Figure 1 0.9 Piping stdin and stdout.

proga

Parent

���t
2 atdcrr
3

progb

Child

pipe

244 Chapter Ten

child, sibling-sibling, etc.). Since unnamed pipes have no file name or other
type of handle, unrelated processes cannot participate. To solve this problem,
UNIX-based systems include the concept of named pipes. Named pipes are also
known as FIFO files (first-in, first-out) and are implemented as a special file
type.

The internal working of named pipes is similar to that of unnamed pipes, but
a named pipe has a file name created within a directory. This allows any
process to open the named pipe for reading or writing. Data written to a named
pipe are held in the FIFO file until another process reads from the named pipe.

In AIX 3.2, named pipes are created via the mkfifo() subroutine. Consult the
manual page for mkfifo() or InfoExplorer for detailed information on program­
ming with named pipes.

1 0.4 System V I PCs-An Introduction

System V IPCs include shared memory, semaphores, and message queues.
Each of these three mechanisms has a specific application, yet their interfaces
are similar. Each has a set of APis that allow the creation, use, and control of
the mechanism. The kernel maintains three tables of descriptors, one table for
each mechanism. Each of the descriptors includes a common structure used for
indicating the owner and permissions for the mechanism.

There are many similarities, from an application standpoint, between the
way System V IPCs are implemented and the way file 1/0 is implemented. For .
instance, each System V IPC mechanism must be created by a process before
other processes can use it. While it is in use, it is assigned to a descriptor, sim­
ilar to a file descriptor, which is used as a handle when accessing the mecha­
nism. The System V IPCs have permissions sets that specify read and write
privileges for the IPC owner, the group, and others. Finally, each shared mem­
ory segment, semaphore set, or message queue continues to exist, even if all of
the processes using them have terminated, until they are explicitly removed.

The lpc_perm structure

As mentioned earlier, the descriptor for each System V IPC mechanism
includes a common structure that specifies the owner and group of the mecha­
nism, as well as the permissions for the mechanism. The structure is called
ipc_perm and is defined in the /usr/include/sys/ipc.h header file. Fields of the
ipc_perm structure include:

uid. A uid_t data type that indicates the owner of the IPC mechanism.

gid. A gid_t data type that indicates the group associated with the IPC mech­
anism.

cuid. A uid_t data type that indicates the creator of the IPC mechanism. By
default, the creator is also the owner; however, subroutines exist to allow the

Interprocess Communication 245

owner to change ownership of the IPC mechanism. This changes the uid
field. The cuid field never changes.

cgid. A gid_t data type that indicates the primary group of the creator of the ,
IPC mechanism at the time the mechanism was created. Subroutines exist
to allow the owner to change the group associated with the mechanism. This
changes the gid field. The cgid field never changes.

mode. A mode_t data type that holds the permission bits for the IPC mecha­
nism. Permission options for each mechanism type are discussed shortly.

seq. An unsigned short that indicates the slot number from the appropriate
descriptor table.

key. A key_t data type (signed long) which holds the key for the IPC mecha�
nism.

A key ml!St be specified for each shared memory segment, semaphore set, or
message queue when it is created. The application programmer selects a key
that can uniquely identify the mechanism. All processes that intend to use the
IPC mechanism must know the key. In a way, a key is similar to a file name.

Care must be taken in selecting a key. If two different applications try to use
the same key value when creating separate shared memory segments, for
instance, the first process will successfully create the segment, but the second
process will fail, because the system deems that a segment associated with the
key already exists. For this reason, programmers who choose to hard code key
values should avoid obvious keys, such as 12345.

AIX 3.2 provides the ftok() subroutine to generate IPC keys. It takes a file
path name and a project ID as parameters. Programs within an application
suite can use ftok() to generate a unique key based on the path name of a file
that is part of the suite. Another technique is to place the key value in a head­
er file that is included by all programs in the application suite.

System V IPC system calls

The programming interface for creating, accessing, using, and controlling the
System V IPC tools provides as consistent a syntax as possible between shared
memory, semaphores, and message queues. The system calls shmget(),
semget(), and msgget() are used to create or access existing shared memory
segments, semaphore sets, and message queues, respectively. The system calls
shmctl(), semctl(), and msgctl() are used to control shared memory segments,
semaphore sets, and message queues, respectively. "Controlling" means exam­
ining the IPC's current settings, changing owners, groups, and permissions,
and removing the mechanism. There are other control options that are unique
to each mechanism type.

It's the system calls for using the System V IPC mechanisms that vary the
most. The shmat() system call is used for attaching a shared memory segment

246 Chapter Ten

TABLE 1 0.3 System V IPC Subroutines

Creating Using Controlling

Shared Memory shmget()
shmat()

shmctl() shmdt()

Semaphores semget() semop() semctl()

Message Queues msgget()
msgsnd()

msgctl() msgrcv()

to a process's user space, while shmdt() is used for detaching it when finished.
(Recall, from Chap. 7, that AIX 3.2 also allows a programmer to use shmat() to
memory map files.) Semaphores are manipulated with the semop() system call.
Finally, messages are posted to a message queue via the msgsnd() system call
and retrieved from a message queue with msgrcv(). Table 10.3 recaps the pri­
mary System V IPC system calls. There are a few other system calls related to
System V IPC that are not discussed here. Consult the InfoExplorer on-line
documentation for more details.

1 0.5 AIX 3.2 Shared Memory

Shared memory is the quickest and easiest way for two or more processes to
share large amounts of data. AIX 3.2 implements shared memory by allowing
processes to attach commonly defined memory regions to their own memory
space. A region, in this case, is a 256-megabyte virtual memory segment. Recall
from Chap. 4 that each process's virtual memory image includes 16 256-Mb
segments (for a 4-gigabyte address space), and that segments 3 through 10 are
available for shared memory. Figure 10. 10 illustrates the process's virtual
memory image and the segments available for shared memory.

Creating shared memory segments-shmget()

To implement shared memory, a process calls shmget(), supplying a key, the
size of the region to share (up to 256 Mb), and a flag which must include
IPC_CREAT ORed with the desired permissions. The IPC_CREAT constant,
along with other flag value&, are defined in the /usr/include/sys/shm.h header
file. The shmget() subroutine returns an integer which is the identifier for the
shared memory instance. The identifier is much like a file descriptor, for it is
used by the process, from this point on, to refer to the shared memory segment.

UO Addresses

Kernel Data

Shared Lib.

Reserved

/
Available for

15

14

13

12

1 1

10

9

8

7

Interprocess Communication 247

-��� 6

5

4

3

Figure 10.1 0

Private Data 2

Text 1

Kernel 0

Shared memory segments.

Author's Note: I use the term "segment," but the region of memory that is shared
between processes has a definable size, which is specified when the region is cre­
ated (per the shmget() parameter described above). The size limit for shared mem­
ory varies from one UNIX-based system to another. The size limit for AIX 3.2 is 256
Mb, or one segment. AIX 3.2 allocates an entire process segment to any shared
memory region, regardless of the specified size of the region.

Once a process has created a shared memory segment, other processes call
shmget(), specifying the saiµe key, in order to access the shared memory iden­
tifier. No other process can call shmget() using the IPC_CREAT flag and a key
for a segment that already exists. This results in an error returned from
shmget().

Author's Note: IPCs are the backbone of client-server applications. Since the
System. V IPCs only work between processes on the same system, their use for
client-server applications is limited to situations where the client and the server
are on the same machine. As a pre�erence, I designate the server process as the cre­
ator of the IPC mechanism. For shared memory, I have the server process call
shmget() with the IPC_CREAT flag. I have client processes call shmget() without
the IPC_CREAT flag. If a client process runs before the server has had a chance to
create the shared memory segment, the client's call to shmget() fails. When this
happens, I usually have the client print an error message that instructs the user to
check to see if the server is running.

248 Chapter Ten

Attaching shared memory segments-shmatO

The next step is for each participating process to call shmat(), specifying, as
parameters, the shared memory identifier returned from shmget(), an address
for mapping the shared memory segment, and any appropriate flags. (See the
manual page for shmat() for a list of flags.) Instead of specifying an address for
mapping the segment, a programmer can use the value 0, which instructs the
kernel to choose a location. This is recommended so that the code is easily port­
ed. The AIX 3.2 kernel usually selects the lowest available segment from those
allocated for shared memory (segments 3 through 10). The shmat() routine
returns a character pointer to the start of the shared memory segment.

Now the participating processes can assign data to the segment or examine
the data in the segment. Since the processes are sharing the memory in real
time, changes made by one process are instantly visible to other processes. This
illus�ates one problem with shared memory IPC. The programmer must
implement some form of synchronization to prevent processes from updating
the same memory at the same time. This problem can be solved many ways.
One method of implementing synchronization for shared memory access is the
use of semaphores, as discussed shortly.

Detaching shared memory segments-shmdtO

When a process concludes its use of a shared memory segment, the process
should detach the segment. This is done by calling shmdt(). The shmdt() call
takes the starting address of the segment (as returned from shmat()) for its
only parameter. Once a process detaches a segment, another segment can be
attached to the same location. A process automatically detaches all shared
memory segments when the process terminates. Keep in mind that detaching
a shared memory segment, even when done by the creator of the segment or the
last process to have it attached, does not remove the segment from the system.

Removing a shared memory segment-shmctlO

A shared memory segment is removed from the system when a process with the
same effective user ID as the creator or owner of the segment, or a process run­
ning with an effective user ID of 0 (root authority) calls the shmctl() subrou­
tine, providing, as parameters, the shared memory identifier and the
IPC_RMID flag. This causes the shared memory segment to be removed when
all participating processes have detached it. The IPC_RMID symbolic constant
is defined in the /usr/include/sys/shm.h header file. AB mentioned previously, if
no process explicitly removes the shared memory segment, it continues to exist
even after all participating processes have terminated.

Author's Note: This is true for all of the System V IPC mechanisms. Actually, it
may be desirable to have another process, many days later perhaps, issue a
shmget() call with the appropriate key and attach the segment.

Interprocess Communication 249

The system maintains a reference count for attached shared memory seg­
ments. Since the segment won't actually be removed until .the last process
detaches it, the shmctl() call with the IPC_RMID flag can be called any time.
This does, however, mean that if the reference count of processes with the seg­
ment attached ever reaches zero, the segment is lost forever.

Author's Note: As stated earlier, the System V IPCs are similar to file and file 1/0
activity. As a recap, the shared memory segment is created by some process, just as
a file is created. Processes attach the segment, just as processes open files. A
descriptor is associated with the shared memory segment, much as a file descrip­
tor is associated with an open file. (There is one significant difference here, how­
ever. With files, the descriptor is returned when the file is opened. With shared
memory, the descriptor, or identifier, is returned by shmget(), not shmat().) When
a process detaches a segment, the effect is similar to when a process closes a file,
even to the point ·that all attached shared memory segments are automatically
detached when a process terminates. Finally, some process is responsible for
removing the shared memory segment from the system. This is similar to a process
removing a file from the system.

Figure 10.11 provides a code example of shared memory IPC.

Program. A Program B

#include <Sys/ipc.h>
#include <Syslshm.h>

mainO
{

int shmid, i;
char *shm_start, *shm_p;
int mykey=9087;

if((shmid=shmget(mykey,256,IPC_CREATI0666))<0)
{ perror(shmget failed"); exit(l) ; } ·

if((shm_start=shm_p=shmat(shmid,0,0))=0)
{ perror("shmat failed"); exit(2); }

for(i=l ;i<=lOO;i++)
*shm_p++ = 'X';

shmdt(shm_start);

Figure 1 0.11 Using shared memory.

#include <Sys/ipc.h>
#include <Sys/shm.h>

mainO
{

int shmid, i;
char *shm_start, *shm_p;
int mykey=9087;

if((shmid=shmget(mykey,0,0))<0)
{ perror(shmget failed"); exit(l) ; }

if((shm_start=shm_p=shmat(shmid,0,0))=0)
{ perror("shmat failed"); exit(2); }

for(i=l ;i<=lOO;i++)
printf("%c", *shm_p++);

shmdt(shm_start);

shmctl(shmid,IPC_RMID);

250 Chapter Ten

The shmid_ds table

The kernel maintains a table of shared memory ID data structures. The table
is made up of shmid_ds structures as defined in the /usr/include/sys/shm.h
header file. One slot in this table is allocated for each shared memory segment
active on the system. Interesting fields from the shmid_ds structure include:

shm_perm. An embedded ipc_perm structure from /usr/include/sys/ipc.h.
This structure contains the user IDs and group IDs of the creator and owner
of the shared memory segment, along with the permissions and key value.
The ipc_perm structure also holds the slot number for the shmid_ds table.

shm_segsz. An integer that holds the defined size of the shared memory seg­
ment.

shm_lpid. A pid_t data type that holds the process ID number of the process .
that performed the last operation on the segment.

shm_cpid. A pid_t data type that holds the process ID number of the creator
of the shared memory segment. Recall that the ipc_perm structure holds the
user ID of the creator.

·

shm_nattch. An unsigned short that holds the number of current attaches
for the segment. This field serves.as a reference count.

shm_atime. A time_t data type that holds the timestamp for the last shmat()
performed on the segment.

shm_dtime. A time_t data type that holds the timestamp for the last shmdt()
performec;l on the segment.

shm_ctime. A time_t data type that holds the timestamp of the last modifi­
cation made to the shmid_ds structure itself.

shm_handle. A vmhandle_t that holds the segment ID number for the
shared memory segment. This field establishes a link to the virtual memory
manager.

The u_segst array

Author's Note: The data type vmhandle_t always represents a segment ID num­
ber in AIX 3.2.

As mentioned in the discussion of explicitly memory mapped files in Chap. 7,
each process's user area (as defined in /usr/include/sys/user.h) includes an
array called u_segst[NSEGS]. Its contents describe the use of each of the

. proces's's 16 segments (NSEG is defined as 16 in the /usr/include/sys/seg.h
header files). If a segment is used for shared memory IPC, the value of the cor­
responding u_segst element is the address of the shmid_ds structure assigned

Interprocess Communication 251

User Memory Kernel Memory

Mapping

Shared Segment

Process B

shmid_ds Table

D
Segment

Control

Blocks

Figure 1 0.1 2 Kernel structures for shared memory.

to the segment. The address is stored in the shmptr pointer found within the
u_ptrs union of the segstate structure (see /usr/include/sys/seg.h).

Figure 10.12 illustrates the structures used to define a shared memory
segment.

The shminfo structure

The /usr/include/sys/shm.h header file defines a structure called shminfo. This
structure defines the parameters for shared memory implementation.

Author's Note: The parameters defined in the shminfo structure are tunable in
most UNIX-based systeins. They are not tunable inAIX 3.2 but should be adequate
for most applications.

The shminfo structure includes the following fields. The values were deter­
mined by examining these fields with the crash facility.

shmmax. An integer that defines the maximum size of a shared memory
region. The value is 268,435,456 (which is the size of an AIX 3.2 segment).

shmmin. An integer that defines the minimum size of a shared memory
region. The value is 1 .

shmmni. An integer that defines the maximum number of available shared
memory identifiers. The value is 4096.

252 Chapter Ten

1 0.6 AIX 3.2 Semaphores

A semaphore is an IPC mechanism that is usually used to relay some condition
to all participating processes. For instance, a semaphore can be used to syn­
chronize access to some resource, such as a file or device.

TYpes of semaphores

Semaphores are implemented in sets. A set is an array of one or more sema­
phore values. The number of semaphore values in a semaphore set is estab­
lished when the set is created. Each semaphore value can be initialized to any
positive number; Most applications use semaphore sets that consist of a single
semaphore value.

There are two types of semaphores, binary semaphores and positive sema­
phores. With binary semaphores, the semaphore value is initialized to 1. When
a process wants to access the resource associated with the semaphore, it tests
for a positive semaphore value. If the test is true, the value is decremented to
zero, indicating that the process has control of the resource. When the process
is finished accessing the resource, it increments the value of the semaphore.
With positive semaphores, the semaphore value is initialized to some positive
value, which indicates the number of parallel resources available. Each process
wishing to access one of the parallel resources tests the semaphore for a posi­
tive value. If the test is true, the process decrements the value. When the
process is finished accessing the parallel resource, it increments the semaphore
value. Test and set operations on semaphores are guaranteed to be performed
atomically by the kernel. This prevents a situation where a process receives a
true result when testing for a positive- semaphore value, only to be preempted
before having a chance to decrement the value. Then, while preempted, anoth­
er process tests and sets the semaphore value, resulting in a race condition.

One interesting aspect of semaphores is the possibility that a process could
test and set a semaphore value, then terminate before resetting (releasing) the
semaphore. To prevent this, a flag, called SEM_UNDO can be specified when
the semaphore is set. The kernel maintains an adjustment value for "undoing"
the semaphore.

Processes can also decide how to react when a semaphore test fails (i.e. , when
the semaphore value is not positive). By default, the process will block until the
semaphore value becomes positive. The process can, however, include the
IPC_NOWAIT flag when testing the semaphore. The IPC_NOWAIT flag caus­
es a semaphore test to return immediately with a failure condition if the sem­
aphore value is not positive.

Creating a semaphore set-semgetO

A semaphore set is created by a call to the semget() subroutine, which includes,
as parameters, the designated key for the set, the number of semaphore values
to allocate to the set, and flags, which must specify IPC_CREAT "ORed" with

Address of sembuf structure

0T� 1 N=ropem-
semop(semid, &myrbufs,�J

,....
l

_
o

__,.

l
-

se

-
�

�
,

--0 ;-:-:-ire

-

-

-�-:-e

-:__,·�·>

• +

Interprocess Communication 253

semnum (which semaphore in the set) sem_flg (flag - adjust the semval
if the process terminates)

Figure 1 0.13 The sembuf structure and the semop() subroutine.

the permissions for the set. Other flag options allow the creating process to ini­
tialize the value(s) of the semaphore set. Consult the manual page for the
semget() subroutine for more details.

The semget() subroutine returns a semaphore set identifier. This identifier is
used with subsequent calls when accessing the semaphore set.

Once .the semaphore set has been created, other processes can access the set
by calling semget() with the same key, but without the IPC_CREAT flag. (See
shmget() from Sec. 10.5 for details on creating and accessing the System V
IPCs.) When calling semget(), the parameter used to specify the number of
semaphores in the set should be zero for noncreating processes.

Semaphore operations-semop()

The semop() subroutine is used to perform operations on semaphores. This is
the call that processes use to test and set the semaphore value, as well as unset
the semaphore value. The semop() subroutine takes, as parameters, the sema­
phore set identifier (returned from the semget() call), a pointer to a single sem­
buf structure or an array of sembuf structures, and an integer which indicates
the number of operations to be performed atomically by this semop() call. A sin­
gle sembuf structure is used when there is only one operation for the semop()
call to perform. If there are multiple operations to be performed by the semop()
call, the pointer parameter points to an array of sembuf structures. Figure
10. 13 illustrates how the semop() subroutine uses sembuf structures.

The sembuf structure, defined in the /usr/include/sys/sem.h header file, has
three fields:

sem_num. An unsigned short that indicates to which semaphore in the set
this operation applies. This is the index number for the semaphore within

254 Chapter Ten

the set. For single semaphore sets, which are most common, the sem_num
value is 0.

sem_flg. A short that contains flags specified by the programmers. Flags
include SEM_UNDO and IPC_NOWAIT, both of which are described below.
(The sem_flg is actually the third of the three parameters.)

sem_op. A short integer which indicates the operation to perform. The fol-
lowing operations are supported.

·

If the sem_op value is a positive number, that number is added to the sema­
phore value. This represents releasing the semaphore. If the SEM_UNDO flag
is set in the sem_flg field, the value of sem_op is subtracted from the adjust­
ment field for the semaphore.

If the sem_op value is a negative number, the kernel verifies that the sema­
phore's value is greater than or equal to the absolute value of sem_op. If it is,
then the absolute value of sem_op is subtracted from the semaphore's value.
This represents gaining access to the resource. The semaphore value must
remain greater than or equal to zero. If the SEM_UNDO flag is set in the
sem_flg field, the value of sem_op is added to the adjustment field for the sema­
phore.

If the semaphore's value is less than the absolute value of the sem_op field;
the resource is not available. If the IPC_NOWAIT flag is set in the sem_flg
field, the semop() call returns as failed. The process can then take whatever
action the programmer deems appropriate. If the IPC_NOWAIT flag is not
specified in the sem_flg field, the process sleeps until either the semaphore's
value becomes greater than or equal to the absolute value of sem_op, the sema­
phore set is removed, or a signal is received to end the sleep.

If the sem_op value is zero and the semaphore's value is zero, the operation is
completed. This represents a test of the semaphore value for zero, which is
sometimes used by applications that proceed when the semaphore value is zero.
If the sem_op value is zero and the semaphore's value is not zero, the process
blocks until the semaphore value is zero, or the semaphore is removed from the
system, or a signal is received to end the sleep. If the IPC_NOWAIT flag is set
in the sem_flg field and the semaphore's value is not zero, the semop() call fails.

Controlling the semaphore set-semctl(}

Semaphore sets are controlled with the semctl() subroutine. This subroutine
includes commands for examining the semaphore set characteristics
(IPC_STAT), changing the owner, group, or permissions of the semaphore set
(IPC_SET), and removing the semaphore set (IPC_RMID). In addition, com­
mands exist for retrieving and initializing one or more of the semaphore values
in the set. As with shared memory, only a process with the same effective user
ID of the creator or owner of a semaphore set can remove that semaphore set,
unless the process is running with an effective user ID or 0 (root authority).

Interprocess Communication 255

The semid_ds table

The kernel maintains a table of semaphore set ID data structures. The table is
made up of semid_ds structures as defined in the /usr/include/sys/sem.h head­
er file. One slot in this table is allocated for each semaphore set active on the
system. Interesting fields from the semid_ds structure include:

sem_perm. An embedded ipc_perm structure from /usr/include/sys/ipc.h.
This structure contains the user IDs and group IDs of the creator and owner
of the semaphore set, along with the permissions and key value. The
ipc_perm structure also holds the slot number for the semid_ds table.

sem_base. A pointer to the first semaphore in the set. This field points to a
sem structure, which represents one semaphore in a set. The sem structure,
which is also defined in the /usr/include/sys/sem.h header file, is described
shortly.

sem_nsems. An unsigned short that holds the number of semaphores in the
set. This indicates the number of sem structures in the array.

sem_otime. A time_t data type that holds the timestamp of the last semop()
call for this set.

sem_ctime. A time_t data type that holds the timestamp of the last change
made to the semid_ds entry.

The sem structure

Each semaphore in a set is represented by a sem structure, which contains the
following fields:

semval. An unsigned short that holds the value of the semaphore. This is the
field that was described in the previous section when the semop() subroutine
was discussed.

sempid. A pid_t data type that holds the process ID number of the process
that performed the last semop() call on this semaphore.

semncnt. An unsigned short that indicates the number of processes waiting
for the semaphore value to be greater than its current value.

semzcnt. An unsigned short that indicates the number of processes waiting
for the semaphore value to equal zero.

The sem_undo structure

The /usr/include/sys/sem.h header file includes the definition of a sem_undo
structure. There is one chain of sem_undo structures allocated in the kernel for
each active process on the system. The u_semundo pointer, found in each
process's user area (see /usr/include/sys/user.h) links the process to its chain of
sem_undo structures. The number of sem_undo structures linked into a

256 Chapter Ten

. process's chain is determined by the number of semop() calls, with the
SEM_UNDO flag set made by the process. The sem_undo structure contains
the following fields:

un_np. A pointer to the next sem_undo structure in the chain for this process

un_cnt. A short integer that holds the number of active entries in the chain

un_aoe. A short integer (adjust on exit) that holds the adjustment value

un_num. An unsigned short that holds the semaphore number within a set

un_id. An integer that holds the semaphore set identifier

The last three fields, un_aoe, un_num, and un_id, are defined within a struc­
ture called un_ent. An array of un_ent structures is allocated to the sem_undo
structure so that each element of the array contains the adjustment jnforma­
tion for each semop() call that included the SEM_UNDO flag.

Figure 10. 14 illustrates the kernel components for a couple of semaphore
sets.

The seminfo structure

The /usr/include/sys/sem.h header file defines a structure called seminfo. This
structure defines the parameters for semaphore implementation.

User Memory Kernel Memory

I
semget() _ J System Call I - I Subsystem I

Process A sem???O

I � � SCIIL.basC
= 1 ·o' l 'o' l 'o l seDLnsems [l]

sem Structures
� sent.base �mems [IJ :: i·o' l

Process B semid_ds Table

Figure 1 0.14 Kernel structures for semaphores.

Interprocess Communication 257

Author's Note: As with shminfo, the parameters defined in the seminfo structure
are tunable in most UNIX-based systems. They are not tunable in AIX 3.2 but
should be adequate for most applications.

The seminfo structure includes the following fields. The values were deter­
mined by examining these fields with the crash facility.

semmni. An integer that defines the maximum number of available sema­
phore identifiers. The value is 4096.

semmsl. An integer that defines the maximum number of semaphores per
set. The value is 102400.

semopm. An integer that defines the maximum number of operations per
semop() call. The value is 1024.

semume. An integer that defines the maximum number of undo entries per
process. The value is 1024.

semusz. An integer that defines, in bytes, the size of the undo structure. The
value is 8208.

semvmx. An integer that defines the maximum semaphore value. The value
is 32767.

semaem. An integer that defines the maximum "adjust on exit" value. The
value is 16384.

A semaphore example

Figure 10.15 provides a code example of semaphores. Note the use of the
SEM_UNDO flag.

1 o.7 AIX 3.2 Message Queues

The third, and final, System V IPC is message queues. A message queue is like
a bulletin board on which a process can post a message. Another process can
later "pick up" the message, thus removing the message from the queue.
Message queues offer a great deal of flexibility and capacity for data sharing.
A single message can be up to 64 kilobytes in size. Messages can be "addressed"
for an intended receiver, which allows a single message queue to serve any
number of processes.

Creating a message queue-msgget()

A message queue is created with a call to msgget(). The msgget() subroutine
takes two parameters: the designated key for the message queue, and a flag.
The process that creates the message queue must include the IPC_CREAT flag
"ORed" with the desired permissions for the queue. All other processes must

258 Chl!lpter Ten

Semaphore Routines
#include <syslipc.h>
#include <sys/sem.h>

sem_get()
{

int semid; /* semaphore descriptor */
struct sembuf getit= { 0,- 1 ,SEM_UNDO } ;
struct sembuf dropit={ O, 1 ,0 } ;

semop(semid,&getit, I);
}

sem_drop
{

sem_create() semop(semid, &dropit, I);
{

int mykey=5485;

if((semid=semget(mykey,l ,IPC_CREATI0666))<0)
perror(semget failed");

Figure 1 0.15 A semaphore example.

call the msgget() subroutine, providing the designated key but not specifying
the IPC_CREAT flag. (See shmget() from Sec. 10.5 for details on creating and
accessing the System V IPCs.)

The msgget() call returns an identifier for the message queue. The identifier
is used with subsequent system calls as a handle for the message queue.
Consult the manual page for msgget() for details.

Message structures-the msgbuf structure

Before discussing how messages are sent and received, it is important to under­
stand the structure of a message, as expected by the kernel. The /usr/include/
sys/msg.h header file defines a msgbuf structure that represents an example of
a message. Actually, the kernel only cares that the first field in the msgbuf struc­
ture contains a mtyp_t data type (integer) called "mtype" that specifies the .mes­
sage type. Beyond that, the programmer is free to customize the message body
to suit the needs of the application. Figure 10.16 illustrates the msgbuf tem­
plate and how it might be customized for a client-server application.

Sending messages-msgsndO

The msgsnd() subroutine is used to post a message to a queue. It takes, as para­
meters, the identifier of the message queue, as returned from the msgget() call,
a pointer to the customized msgbuf structure that contains the outgoing mes­
sage, the size of the message, and a flag value. Flag options include

mtype=l
__._.._, mypid=32214

struct cli_msgbuf

{
mtyp_t mtype;
pid_t mypid;
char city[25]; Client

Process

Figure 1 0.16 The msgbuf structure.

city="Pittsburgh"

mtype=322 14
team="Steelers"

Interprocess Communication 259

Server
Process

struct srv_msgbuf
{

mtyp_t mtype;
char team[25];

IPC_NOWAIT, which specifies that ifthere is not enough space on the message
queue for the message, or if the queue has reached its maximum allowed num­
ber of posted messages, the msgsnd() call will fail and return to the process.
The default action for either condition is to cause the process to block until
there is sufficient space on the queue for the message or the current count of
messages on the queue is no longer at the maximum allowed.

Receiving messages-msgrcv()

Processes pull messages from a message queue by calling msgrcv(). The msg­
rcv() subroutine takes, as parameters, the message queue identifier returned
from msgget(), a pointer to the customized msgbuf structure that will hold the
incoming message, the expected size of the message, an integer to indicate the
message type, and a flag value. Flag options include IPC_NOWAIT, which spec­
ifies that if there are no messages of the type specified, the msgrcv() will fail
and return to the process. The default action for msgrcv() when there are no
messages of the specified type on . the queue is to block.

Message queues work in a fifo (first in, first out) fashion. If a process calls
msgrcv() and specifies a message type as zero, the oldest message of any type
is pulled from the queue and received by the process. If a process calls msgrcv()
and specifies a message type other than zero, the oldest message of the type
specified is pulled from the queue and received by the process.

The size of any message is specified by the sending process when the mes­
sage is posted to a queue. If a receiver specifies a message size that is smaller

260 Chapter Ten

than the actual message, the msgrcv() call fails and an error is returned to the
receiving process. The rec�iving process can include the MSG_NOERROR flag
for msgrcv(), which means that a message that is larger than the size specified
by the receiver will be truncated to the specified size. The receiving process is
not made aware that the message has been truncated.

Controlling message queues-msgctlO

As with shared memory and semaphores, message queues must be explicitly
removed when they are no longer required. The msgctl() subroutine is called,
with the IPC_RMID flag, to remove a message queue. Only a process with the
same effective user ID as the creator or owner of the message queue, or a
process with an effective user ID of 0 (root authority) may remove a message
queue from the system.

Other commands for msgctl() include IPC_STAT, which allows the charac­
teristics of a message queue to be queried, and IPC_SET, which allows the
characteristics of a message queue to be changed. Message queue characteris­
tics include the owner, group, and permissions.

A message queue example

Figure 10. 17 provides a code example of a client-server application using mes­
sage queues. Since the application supports multiple clients, it uses a multi­
plexed message queue.

The msqid_ds table

The kernel maintains a table of message queue ID data structures. The table
is made up of msqid_ds structures as defined in the /usr/include/sys/msg.h
header file. One slot in this table is allocated for each message queue active on
the system. Interesting fields from the msqid_ds structure include:

msg_perm. An embedded ipc_perm structure from /usr/include/sys/ipc.h.
This structure contains the user IDs and group IDs of the creator and owner
of the message queue, along with the permissions and key value. The
ipc_perm structure also holds the slot number for the msqid_ds table.

msg_first. A pointer to the msg structure of the first message on the queue.
Each posted message includes an msg structure (described shortly) which
serves as a header for the message.

msg_last. A pointer to the msg structure of the last message on the queue.

msg_cbytes. An unsigned short that indicates the current number of bytes
on the queue.

msg_qnum. An unsigned short that indicates the number of messages cur­
rent on the queue.

Interprocess Communication 261

Server Client
#include <sys/types.h>
#include <sys/types.h>
#include <sys/msg.h>

#include <Sys/types .. h>
#include <sys/types.h>
#include <Sys/msg.h>

main() main()
{ {

int msgid, msgkey.=6792;
struct
{

mtyp_t mtype;
pid_t clipid;
char city[25];

) srv _msgin;
struct
{

mtyp_l mtype;
char team[25];

) srv _msgout;
msgid=msgget(msgkey,IPC_CREATI0666);
msgrcv(msgid,&sry _msgin,sizeof(srv _msgin),1 ,0);
... I* Look up team for city */ ... I* Populate srv_msgout.team with

results of lookup and srv _msgout.mtype
with value of srv_msgin.mypid */

msgsnd(msgid,&srv_msgout,sizeof(srv _msgout,0);
.. .
msgctl(msgid, IPC_RMID);

int msgid, msgkey.=6792;
struct
(

mtyp_t mlype;
pid_t mypid;
char city[25];

) cli_msgout;
struct
{

mtyp_t mtype;
char team[25];

) cli_msgin;
msgid=msgget(msgkey,0);

... I* Ask user for city */
: .. I* Populate cli_msgout.city with dsired city,

cli_mtype with 1, and cli_msgom.mypid
with return from getpid() */

msgsnd(msgid,&cli_msgout,sizeof(cli_msgout,0);
msgrcv(msgid,&cli_msgin,sizeof(cli_msgin,getpidQ,0);
printf("The team is %s.\n .. ,cli_msgin.team);

Figure 1 0.17 A message queue example.

msg_qbytes. An unsigned short that indica.tes the maximum number of
bytes on the queue.

msg_lspid. A pid_t data type that indicates the process ID number of the
process that issued the last msgsnd() call on the queue.

msg_lrpid. A pid_t data type that indicates the process ID number of the
process that issued the last msgrcv() call on the queue.

msg_stime. A time_t data type that holds the timestamp of the last msgsnd()
call issued on the queue.

msg_rtime. A time_t data type that holds the timestamp of the last msgrcv()
call issued on the queue.

msg_ctime. A time_t data type that holds the timestamp of the last change
made to the msqid_ds structure.

Additional fields in the msqid_ds structure keep track of processes waiting to
send messages to or receive messages from the queue.

262 Chapter Ten

The msg structure

Each message on a queue is represented by an msg structure, as defined in the
/usr/include/sys/msg.h header file. The msg structures for a queue are linked
together, and as seen in the previous section, the msqid_ds structure for the
queue points to the msg structures for first (oldest) and last (newest) messages
on the queue.

The msg structure includes the following fields:

msg_next. A pointer to the msg structure for the next message on the queue

msg_attr. A pointer to an msg_hdr structure, as defined below

msg_ts. An unsigned short that indicates the message text size

msg_spot. A character pointer to the actual message

Each msg structure points . to an msg_hdr, also defined in /usr/include/
sys/msg.h, that includes the following fields:

mtype. An mtyp_t data type (integer) that indicates the message type.

MSGX. A symbolic constant defined just above the msg_hdr structure in the
/usr/include/sys/msg.h header file. It includes the following four fields:

mtime. A time_t data type that indicates the time that the message was
sent.

muid. A uid_t data type that holds the effective user ID number of the
author of the message.

mgid. A gid_t data type that holds the effective group ID number of the
author of the message.

mpid. A pid_t data type that holds the process ID number of the author
of the message.

Figure 10. 18 illustrates the kernel components involved in message queues.

The msglnfo structure

The /usr/include/sys/msg.h header file defines a structure called msginfo. This
structure defines the parameters for message queue implementation.

Author's Note: As with shminfo and seminfo, the parameters defined in the
msginfo structure are tunable in most UNIX-based systems. They are not tunable
in AIX 3.2 but should be adequate for most applications.

The msginfo structure includes the following fields. The values were deter­
mined by examining these fields with the crash facility.

Interprocess Communication 263

User Memory Kernel Memory

Process 8

to+--+-� System Call

Process A

Subsystem

msg???O

lmsHcnnl msgJust mssJ.., *

msqid_ds Table

msg Structures

Messages

Figure 1 0.18 Kernel structure for message queues.

msgmax. An integer that defines the maximum message size. The value is
65,536.

msgmnb. An integer that defines the maximum number of bytes on a queue.
The value is 65,536.

msgmni. An integer that defines the maximum number of message queue
identifiers. The value is 4096.

msgmnm. An integer that defines the maximum number of messages
allowed per queue. The value is 8192.

Author's · Note: AIX 3.2 includes two commands that can be executed from the
shell to manage System V IPC mechanisms. The ipcs command displays informa­
tion about shared memory segments, semaphores, and message queues. The ipcrm
command is used to remove specified shared memory segments, semaphores, and
message queues. Consult the manual pages for each of these commands or the
InfoExplorer on-line documentation for further information on ipcs and ipcrm.

.diskmap, 167, 171

.indirect, 166, 169, 170

.inodemap, 166, 167, 171

.inodes, 166

.inodex, 167

.inodexmap, 167

.superblock, 166

/bin, 161
/dev, 2, 36, 151, 184, 219, 226, 227
/dev/hd8, 162, 170
/dev/kmem, 3, 33, 62, 201
/dev/mem, 3, 209
/etc/cfgmgr (see configuration manager)
/etc/objrepos, 23, 225
/etc/passwd, 108
/etc/xlc.cfg, 4 7
/lib/crtO.o, 47, 55
/lib/libbsd.a, 237
/lib/libc.a, 43, 45
/shin/re.boot, 76, 171
/usr/bin, 161
/usr/bin/ksh, 158
/usr/bin/sh, 158
/usr/include/aouthdr.h, 50
/usr/include/filehdr.h, 49
/usr/include/jfs/dir.h, 157
/usr/include/jfs/filsys.h, 164-166
/usr/include/jfs/ino.h, 154, 159, 161, 168-170,

183, 200
/usr/include/jfs/inode.h, 183-186, 199
/usr/include/scnhdr.h, 50
/usr/include/stdio.h, 195
/usr/include/sys/acl.h, 161
/usr/include/sys/bootrecord.h, 229
/usr/include/sys/cred.h, 108
/usr/include/sys/device.h, 224
/usr/include/sys/errno.h, 57, 63, 178
/usr/include/sys/file.h, 178-182, 199
/usr/include/sys/flock.h, 189, 191
/usr/include/sys/gfs.h, 216
/usr/include/sys/intr.h, 137

Index

/usr/include/sys/ipc.h, 244, 250, 260
/usr/include/sys/limits.h, 5, 15, 108, 178
/usr/include/sys/m_intr.h, 136
/usr/include/sys/m_param.h, 6, 134
/usr/include/sys/m_types.h, 134
/usr/include/sys/msg.h,258, 260, 262
/usr/include/sys/mstsave.h, 134, 139
/usr/include/sys/param.h, 5
/usr/include/sys/pri.h, 131, 149
/usr/include/sys/proc.h, 9, 105, 106, 111, 145,

237
/usr/include/sys/pseg.h, 58
/usr/include/sys/resource.h, 107
/usr/include/sys/mode.h, 218
/usr/include/sys/seg.h, 68, 206, 250, 251
/usr/include/sys/sem.h, 253, 255, 256
/usr/include/sys/shm.h, 246, 248, 250, 251
/usr/include/sys/signal.h, 233-238
/usr/include/sys/specnode.h, 221, 222, 241
/usr/include/sys/types.h, 5, 10, 103, 169, 184,

187, 237
/usr/include/sys/unistd.h, 197
/usr/include/sys/user.h, 14, 15, 57, 106, 134,

199, 206, 238, 250, 255
/usr/include/sys/vfs.h, 213, 217
/usr/include/sys/vmount.h, 214, 216
/usr/include/sys/vnode.h, 182, 184, 187, 190,

199, 203, 212, 215, 217, 221
usr/include/xcoff.h, 49, 107
/usr/lib/libodm.a, 25
/usr/lib/lpd/piobe, 27
/usr/lib/objrepos, 23
/usr/lpp/bos/samples/schedtune, 114,

146
/usr/lpp/bos/samples/vmtune, 83
/var/spool/lpd/qdir, 26, 27

#define, 9
#endif, 9
#ifdef, 9, 10
#ifndef, 10
#pragma, 43

265

266 Index

abort(), 120
access control lists, 155, 161, 167

· acledit, 161
aclget, 161
aclput, 161

AIX/370, 19
AIX windows, 21, 27
allocation groups, 163-165
Andrew File System (AFS), 153, 211
Application Development 'lbolkit (ADT), 5,

32
ar, 98, 99
area page map (APM), 96
argc, 55
argv[], 55
AS/400, 18
AT&T, 4, 17, 204
auxiliary header, 50, 98

back tracking, 95
background processing, 122
bad block relocation, 32
Berkeley Software Distribution (BSD), 17,

26, 32, 66, 157, 163, 192, 211, 232, 237
boot block, 162, 163
boot device, 228, 229
boot list, 228, 230
Boot Logical Volume (BLV), 229, 230
boot record, 228, 229
bootlist command, 229
bosboot, 228, 230
Bourne shell, 2, 21, 120, 161
brk, 56, 57
BSS, 50, 52, 56, 70, 71, 77, 119
Built-In Self'Thst (BIST), 228
Bull OS, 17

C shell, 2, 21, 27, 103, 118, 120, 161
calloc(), 56
Carnegie-Mellon University, 153
CD-ROM file system, 2, 153, 187, 211, 216
chdev, 202
chmod, 110, 154, 188
chmod(), 110, 188
client-server, 2, 77, 247, 258, 260
client storage, 77
clock interrupt, 130, 147
clock ticks, 131-133, 147, 149
close(), 199
closedir(), 157
COFF, 49, 51

computational pages, 81
Config_Rules, 229
configuration manager, 226, 227, 229
context latency, 35, 147
context switch, 35, 128, 133-139
crash, 6
creat(), 178, 200
credentials, 57, 103, 107, 113, 176
critical section of code, 114, 141, 224
cron, 41
csa, 139
CuAt, 225 .
CuDv, 25, 26, 225-227
customized devices, 225
cylinder groups, 163, 166

d_close(), 223
d_open(), 223
D_PRIVATE, 160
d_read(), 223
, d_write(), 223
daemons, 23, 41
data file pages, 81
dataless workstation, 20
dbx, 32, 232
deadlock, 142
debug section, 51
devices:

block, 36, 219-221
characte� 36, 219, 220
configuration, 26, 219, 227
drivers, 4, 7, 32-34, 40, 42, 47, 57, 72, 104,

128, 129, 138-141, 219-227
major numbers, 165, 184, 221, 223, 224,

226
minor numbers, 165, 184, 221, 223, 224
states, 26, 225-227

device switch table, 4, 219, 223, 224, 226
devnodes, 219, 222, 223
devsw, 224
DIRBLKSIZ, 157
DIRSIZ, 157
diskless workstation, 19, 20, 161
dispatch(), 126, 128
dispatcher, 33, 103, 106, 117, 118, 126-134,

137-139, 142, 147, 223
Distributed Computing Environment (DCE),

17, 153
Distributed File System (DFS), 153, 211
Distributed Services (DS), 18
double indirect blocks, 169
dump device, 29

dup(), 178-180, 193
dup2(), 193
dynanric binding, 44-46, 48, 51, 58, 70, 97,

99, 119
exec-time, 48
load-time, 48, 49, 52

e_sleep(), 117, 137
e_wake(), 138
effective group ID, 108, 262
effective user ID, 108, 110, 235, 238, 248,

254, 260, 262
enq, 26
envpO, 55
errno, 57, 63
exec family, 113, 118, 119
execl(), 118, 119, 243
exit(), 113, 117, 120
exit status, (see exit value)
exit value, 120-125
export list, 46, 47
extended common object file format (see

XCOFF)
external page tables (XP'l's), 68, 94-96, 187,

188

fcntl(), 178, 192
tfreelist, 182
fifonodes, 222, 241
file descriptors, 178-181, 192, 193, 197, 199,

221, 239-246, 249
file descriptor table, 57; 104, 107, 113, 119,

176, 178, 192, 199, 239, 241, 243
file mapping:

explicit file mapping, 71, 7 4, 201-207, 246
file table, 4, 108, 121, 175-185, 192, 193,

197, 199, 211, 221, 241
file and record locking, 110, 121, 187-192

advisory locks, 188, 189
enforced locks, 188, 189
lock list, 189, 191, 192
read locks, 188-192
write locks, 188-192

fileops, 182
filock, 187
find, 158
fixed priority process, 148, 149
floating point registers, 104, 134, 138
flock(), 192
fopen(), 194-196
fol,'eground processing, 122

Index 267

fork(), 84, 113, 114, 116, 118, 122, 147, 180,
181, 192, 241

fread(), 194-196, 206 ·

free(), 58, 59
fsck, 162
fsdb, 7, 162 .
ftok(), 245
fwrite(), 194, 195

general purpose registers, 134
gfs, 211, 213, 214, 216, 217
gnodes, 175, 182, 184, 190, 191, 203,

213-215, .218, 221, 222, 241
grep, 15

hash anchor table, 93, 94, 96
heap, 53, 56, 58-60, 70, 71
high function terminal (HFT), 21
hinode, 185, 186
huge data model, 57, 71, 73, 74

i_enable(), 141
i_sched(), 138
import list, 4 7, 48, 99
in-core inode table, 4, 175, 176, 178,

183-185, 193, 211, 214, 215
indirect blocks, 162, 166, 169, 170
inetd, 41
init, 113, 229, 230
Initial Program Load (IPL), 227
inodes, 95, 153-159, 162, 164, 166-168, 170,

171, 176, 200
disk inodes, 182, 184, 200, 215, 221
extended inodes, 161, 167
in-core inodes, 182--188, 193, 199, 215,

218, 221, 222
. manager, 171

instruction address register (iar), 113
INTBASE, 141
International Technical Support Center

(ITSC), 8
interprocess communication (IPC), 231, 238,

239, 241, 245, 248, 252, 263
interrupt handler environment, 104, 136,

140, 223
interrupts, 4, 34, 136, 223, 224

bus level, 136
CPU level, 136
handlers, 33, 34, 104, 105, 114, 117, 188,

128, 129, 134-141, 223-226

268 Index

interrupts (Continued):
first-level interrupt handlers (FLIH),

138
second-level interrupt handlers (SLIH),

138
priorities, 139

INTMAX, 141
intr, 137, 226
iostat, 126
ipc_perm, 244, 250, 255, 260
ipcrm, 263
IX, 17, 18
00, Limited, 21

JFS log, 162, 165
job control, 103, 118
Journaled File System (JFS), 28-30, 153,

154, 162-173, 187, 202, 211, 216
Joy, Bill, 211

kernel debugger, 7
kernel extensions, 5, 7, 34
kernel heap, 77
kernel loader, 36, 45, 51, 52, 56, 77, 119, 153
kernel locks, 142
kernel processes (kprocs), 40, 41, 126, 128,

144
kernel services, 4, 57, 58, 72, 114, 141
kernel stack (see per-process kernel stack)
kill, 125, 232, 235, 236
kill(), 235
killpg(), 103
Korn shell, 2, 21, 101, 103, 118, 120, 130,

158, 161

licensed program product (LPP), 27
link(), 200
linkage editor Od), 43-47, 55, 74, 98, 99, 120
links:

hard, 155, 158, 161
symbolic, 154, 158-161

In, 159, 200
load(), 48, 49, 52
loader (see kernel loader)
loader section, 51, 58, 199
locality of reference, 145
lock manager, 171
lockf(), 191
lockfx(), 191, 192
lockl(), 142

log segment, 171, 173
logical partitions, 30
logical volume, 29-31, 37, 85, 151, 162, 202
Logical Volume Manager (LVM), 6, 17, 28,

30-32, 36, 137, 151, 162, 175, 176, 194
login user ID, 108, 109
lp, 26
lpr, 26
ls, 158, 160, 166, 184, 198, 221
!seek(), 170, 191, 196--198
lsps, 85

machine state, 134, 137
make, 32
makedev(), 184
malloc(), 17, 53, 56, 58, 59, 61, 74, 84, 86
MALLOCTYPE, 61
maxfree, 79-81, 83
MAXNAMELEN, 157
maxperm, 81, 83, 84
maxpgahead, 81-83
maxuproc, 113, 126
memory load control, 143, 145, 147
message queues, 231, 244-246, 257-263
methods, 226
minfree, 79, 80, 83
minperm, 81, 83, 84
minpgahead, 81-83
mirroring, 30, 31
mkfifo(), 244
mmap(), 78, 201, 204, 207, 209
mode switch, 19{ 195
MotifWmdow Manager, 17, 21
mprotect(), 209
msg, 260, 262
msgbuf, 258, 259
msgctl(), 245
msgget(), 245, 257-259
msginfo, 262
msgrcv(), 246, 259-261
msgsnd(), 246, 258-261
msqid_ds, 260-262
mstsave, 134, 135, 139
msync(), 209
munmap(), 209

named pipes (FIFO files) (see pipes)
ncheck, 158
Network File System (NFS), 18, 77, 153, 187,

211, 216, 218
newgrp, 108

newroot(), 230
NGROUPS_MAX, 108
NHINO, 185
nice command, 126, 129, 130
nice values, 103, 104, 113, 131, 149
NOFILES, 178
nonvolatile RAM (NVRAM), 228
NPROC, 105
NSEGS, 206, 250
NSIG, 238

Object Data Manager (ODM), 23-25, 27, 219,
225, 227, 229

off-level scheduling, 138
Open Software Foundation, 17, 21, 153
open(), 63, 64, 178, 192, 194, 195, 200, 217,

221
OPEN_MAX, 107, 178
open command, 21
opendir(), 157
optionai program product (OPP), 27
OSF/1, 17

page device table (PDT), 81, 96
page fault, 34, 66, 87, 94, 104, 114, 117
page frame table (PFT), 7, 68, 78-80, 93, 94,

96
page reclaim, 81
page stealer, 79--81, 84, 126, 143
page table area (PTA), 73, 96
PAGESIZE, 186
paging space, 3, 28, 29, 34, 66-68, 74, 75, 77,

79, 84-87, 94, 95, 114, 147, 235
PC-DOS, 211
PdAt, 25, 225
PdDv, 25, 225, 226
per-process kernel stack, 58, 62, 70, 195
persistent storage, 75-77, 79, 86, 94, 95, 187
physical partitions, 29, 30, 162, 163
physical volumes, 28, 29, 31, 85
pipe(), 178, 239-241
pipes, 119

named pipes (FIFO files), 154, 244
unnamed pipes, 221, 222, 231, 239, 241,

243, 244
POSIX, 17, 20, 32, 192, 199, 232, 237
Power-On Self Test (POST), 228
predefined devices, 225
process environment, 104, 136, 140, 223
process group, 103, 106, 113, 116
process group leader, 116

Index 269

process scheduling, 2, 36, 104, 118, 126, 129,
130, 133, 148

process suspension, 145
process table, 4, 72, 105, 108, 111, 112, 121,

122, 125, 126, 129, 133, 135, 142, 145,
149, 237

ps, 125, 128, 133
PS/2, 18, 19
psdanger(), 85
PUSER, 131, 148, 149
pwd, 161

qdaemon, 26, 27
qprt, 26
queueing system, 26, 27

read ahead (prefetch), 79, 81-83, 196
Read Only Storage (ROS), 228
read(), 76, 137, 193-196, 206, 207, 241
readdir(), 157
real group ID, 108
real user ID, 108-110
real-time, 33-35, 40, 147, 148
realloc(), 56, 58, 60
"red books," 8
red zone, 55, 56
reentrant code, 50, 98
renice, 130
repage, 75
repage rate, 144
repaging, 145
requeue(), 128
resource usage, 125
rewinddir(), 157
rm, 158, 200
rnodes, 218
root volume group (rootvg), 28, 170, 227, 228,

230
RT, 18, 157, 201
run queues, 101, 117, 118, 126, 128-133, 148
runrun, 129
runt, 61
rusage, 107, 121

sar, 126, 201, 202
saved group ID, 108, 110
saved user ID, 108, 110
sbrk(), 56, 58, 59, 61
scheduler, 41, 67, 106, 113, 126, 133, 134,

144, 146, 149, 150

270 Index

segment control blocks, 73
segment information table, 68, 96, 187, 203
segment registers, 89, 104, 134, 138
segstate, 107, 205, 251
sem, 255
sem_undo, 255, 256
semaphores, 231, 244-248, 252-257, 260,

263
binary, 252
positive, 252

sembuf, 253
semctl(), 245, 254
semget(), 245, 252, 253
semid_ds, 255
seminfo, 256, 257, 262
semop(), 246, 253-256
set-group ID, 110, 188
set-user ID, 110
setpri(), 40, 148-150
setuid(), 109, 110
shared libraries, 48, 71, 96, 99
shared memory, 71, 74, 204, 206, 207, 231,

244-251, 260, 263
shared objects, 44, 48, 50, 96
shell, 2, 3, 21, 39, 40, 101, 107, 120, l22, 232,

235, 239, 263
shmat(), 201-209, 245-249
shmctl(), 245, 248, 249
shmdt(), 246, 248
shmget(), 245-249, 253, 258
shmid_ds, 250
shminfo, 251, 257, 262
sigaction(), 237
sigaddset(), 237
SIGC:EfLD, 121-124, 235
SIGCLD, 235
SIGCONT, 118
SIGDANGER, 85, 86, 235
sigdelset(), 237
sigemptyset(), 237
sigfillset(), 237
sigismember(), 237
SIGKILL, 85, 235, 236
signal handlers, 107, 122, 125, 233, 236-238
signal masks, 57, 237
signal(), 103, 236, 237
signals, 103, 104, 106, 107, 118, 120, 121,

123, 231-239
sigpending, 237, 238
sigprocmask(), 237
sigset, 237
SIGSTOP, 118, 236
SIGTERM, 236

SIGTSTP, 118
SIGTTIN, 118
SIGTTOU, 118
SIGUSRl, 235
SIGUSR2, 235
slibclean, 100
socket(), 178
sockets, 119, 121, 154
SP/2, 165
sparse file, 198
specnodes, 219, 221-223, 241
stacks:

kernel stacks, 70, 77
user stacks, 52-54, 57, 62, 70, 71, 77,

119
standard error, 178, 180
standard in, 178, 180
standard out, 178, 180
static binding, 44, 46
STREAMS, 34
string section, 51
stty, 118
su, 109
Sun Microsystems, 18, 211
super block, 162-166, 170, 202
suspension queue, 144, 145
svmon, 7
SVR4 (see System V)
swap space, 66
swapon, 67
swapper (see scheduler)
swapping, 65-67
swtch(), 128, 131, 133, 135
symbol hash table, 62
symbol table, 51
sync, 171
sync daemon, 171
sync(), 76
syncd, 41, 76, 171
System Management Interface 'lbol (SMIT),

21-26, 85, 113, 202, 226, 227
system mode, 40, 62, 104, 107, 194
System V, 26, 32, 49, 201, 211, 232, 236
System V IPCs, 204, 231, 244-249, 257, 258,

263

TCP/IP, 18
telnetd, 41
thrashing, 67, 84, 143, 144-147
time I timex, 107
time slices, 133, 134, 136, 147
trace, 7

translation lookaside buffer (TRB), 93
Transparent Computing Facility (TCF), 19

ulimit, 56, 57
unlink(), 200
unload(), 48, 49
unlockl(), 142
user area, 14, 57, 58, 70, 77, 106, 107, 111,

113, 119, 121, 134, 135, 178, 205, 238,
250, 255

user mode, 40, 61, 62, 104, 107, 194, 195, 235

varyoffvg, 28
varyonvg, 28
vfs, 211-217
vfsops, 211, 216, 217
virtual file system, 2, 34, 153, 176, 178, 182,

186, 211, 212, 216, 217
virtual memory manager, 6, 7, 36, 51, 65-69,

72-89, 95, 96, 113, 114, 119, 121, 143,
144, 147, 166, 169, 175, 186-188, 193,
194, 196, 203, 218, 250

virtual printers, 26
virtual terminals, 21
vital product database, 27
VM Hole, 57, 71
VMMDSEG, 72, 96
vmount, 214

vmount table, 211, 214
vmstat, 84, 95

Index 271

vnodes, 175, 176, 182-185, 187, 193, 199,
211-221, 241

vnodeops, 211, 216, 217
volume groups, 28--30, 162, 163, 170
Volume Group Descriptor Area (VGDA),

28

wait(), 113, 122-125
wait3(), 125
waitpid(), 124, 125
we, 239
Weinberger, Peter, 211
who, 239
working storage, 76, 77, 79, 86, 94
write(), 76, 193-195, 206, 207, 241

X Window System, 21
X/Open, 17
XCOFF, 49-52, 56, 98, 107, 119, 153
Xdesktop, 21
xlc, 10
xmalloc(), 57
XPG3, 192

zombies, 118, 120-126

ABOUT THE AUTHOR

David A Kelly's activities have put him at the very forefront of AIX d�velopments.
He is a principal of Kelly/Lloyd Associations in Plano, Texas, a firm that specializes
in developing and presenting AIX seminars. He has more than 12 years of direct
involvement in the UNIX environment and has developed highly successful courses
for such technology leaders as IBM, AT&T, EDS, and many others.

	2017_03_12_03_18_25
	2017_03_12_03_19_29
	2017_03_12_03_20_39
	2017_03_12_03_21_43
	2017_03_12_03_24_34
	2017_03_12_03_40_13

