<|lI!

AIX 5L Version 5.3

Assembler Language Reference

SC23-4923-02

<|lI!

AIX 5L Version 5.3

Assembler Language Reference

SC23-4923-02

Note
FBefore using this information and the product it supports, read the information in[Appendix J, “Notices,” on page 605.|

Third Edition (July 2006)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6B013, 11501 Burnet Road, Austin, Texas
78758-3400. To send comments electronically, use this commercial Internet address: pserinfo@us.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2006.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book
Highlighting .
Case-Sensitivity in AIX
ISO 9000.

Related Publications.

Chapter 1. Assembler Overview .
Features of the AIX Assembler .
Assembler Installation .

Chapter 2. Processing and Storage . .

POWER family and PowerPC Architecture Overwew
Branch Processor Ce e e
Fixed-Point Processor.

Floating-Point Processor .

Chapter 3. Syntax and Semantics.
Character Set .

Reserved Words.

Line Format

Statements .

Symbols .

Constants .

Operators

Expressions

Chapter 4. Addressing .
Absolute Addressing . .
Absolute Immediate Addressmg .
Relative Immediate Addressing
Explicit-Based Addressing
Implicit-Based Addressing
Location Counter

Chapter 5. Assembling and Linking a Program
Assembling and Linking a Program . .o
Understanding Assembler Passes

Interpreting an Assembler Listing.

Interpreting a Symbol Cross-Reference
Subroutine Linkage Convention .
Understanding and Programming the TOC .
Running a Program. Coe e

Chapter 6. Extended Instruction Mnemonics

Extended Mnemonics of Branch Instructions

Extended Mnemonics of Condition Register Logical Instruchons
Extended Mnemonics of Fixed-Point Arithmetic Instructions .
Extended Mnemonics of Fixed-Point Compare Instructions .
Extended Mnemonics of Fixed-Point Load Instructions .

Extended Mnemonics of Fixed-Point Logical Instructions

Extended Mnemonics of Fixed-Point Trap Instructions .
Extended Mnemonic mtcr for Moving to the Condition Register .
Extended Mnemonics of Moving from or to Special-Purpose Registers

© Copyright IBM Corp. 1997, 2006

. Xi
. Xi
. Xi
. Xi
. Xi

.1
.1
. 19
.21
. 24

. 27
.27
. 28
. 28
. 29
. 31
. 35
. 38
. 39

. 47
. 47
. 47
. 48
. 48
. 50
. 51

. 53
. 53
. 57
. 59
. 63
. 65
. 82
. 87

. 89

. 89

. 96

. 97

. 98

.. 99
. 100
. 100
. 102
. 102

Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions .
Extended Mnemonics of 64-bit Fixed-Point Rotate and Shift Instructions .

Chapter 7. Migrating Source Programs .
Related Information .
Functional Differences for POWER fam|ly and PowerPC Instructlons .

Differences between POWER family and PowerPC Instructions with the Same Op Code.

Extended Mnemonics Changes .

POWER family Instructions Deleted from PowerPC

Added PowerPC Instructions . .
Instructions Available Only for the PowerPC 601 RISC Mlcroprocessor . .
Migration of Branch Conditional Statements with No Separator after Mnemonic .

Chapter 8. Instruction Set

abs (Absolute) Instruction .

add (Add) or cax (Compute Address) Instructlon

addc or a (Add Carrying) Instruction .

adde or ae (Add Extended) Instruction . .
addi (Add Immediate) or cal (Compute Address Lower) Instruchon .
addic or ai (Add Immediate Carrying) Instruction

addic. or ai. (Add Immediate Carrying and Record) Instructlon
addis or cau (Add Immediate Shifted) Instruction

addme or ame (Add to Minus One Extended) Instruction
addze or aze (Add to Zero Extended) Instruction

and (AND) Instruction

andc (AND with Complement) Instructlon

andi. or andil. (AND Immediate) Instruction .

andis. or andiu. (AND Immediate Shifted) Instruction .

b (Branch) Instruction

bc (Branch Conditional) Instruc‘uon

becetr or bee (Branch Conditional to Count Reglster) Instruct|on
bclr or ber (Branch Conditional Link Register) Instruction

clcs (Cache Line Compute Size) Instruction

clf (Cache Line Flush) Instruction .

cli (Cache Line Invalidate) Instruction.

cmp (Compare) Instruction .

cmpi (Compare Immediate) Instruct|on .

cmpl (Compare Logical) Instruction .

cmpli (Compare Logical Immediate) Instructlon .

cntlzd (Count Leading Zeros Double Word) Instruction

cntlzw or cntlz (Count Leading Zeros Word) Instruction .
crand (Condition Register AND) Instruction

crandc (Condition Register AND with Complement) Instructlon
creqv (Condition Register Equivalent) Instruction

crnand (Condition Register NAND) Instruction

crnor (Condition Register NOR) Instruction.

cror (Condition Register OR) Instruction.

crorc (Condition Register OR with Complement) Instructlon
crxor (Condition Register XOR) Instruction .

dcbf (Data Cache Block Flush) Instruction .

dcbi (Data Cache Block Invalidate) Instruction

dcbst (Data Cache Block Store) Instruction

dcbt (Data Cache Block Touch) Instruction. .

dcbtst (Data Cache Block Touch for Store) Instruction

dcbz or dclz (Data Cache Block Set to Zero) Instruction .
dclst (Data Cache Line Store) Instruction

iV Assembler Language Reference

. 107
. 110

. 113
. 113
. 114
. 115
. 116
. 119
. 120
121
121

. 123
. 123
. 124
. 126
. 128
. 130
. 131
. 132
. 133
. 135
. 137
. 138
. 140
.14
. 142
. 143
. 144
. 147
. 149
. 152
. 153
. 155
. 156
. 157
. 159
. 160
. 161
. 162
. 163
. 164
. 165
. 166
. 167
. 168
. 169
. 170
.17
. 172
. 173
. 175
. 178
. 179
. 180

div (Divide) Instruction . . .

divd (Divide Double Word) Instructlon

divdu (Divide Double Word Unsigned) Instructlon

divs (Divide Short) Instruction . .

divw (Divide Word) Instruction .

divwu (Divide Word Unsigned) Instruchon .

doz (Difference or Zero) Instruction .

dozi (Difference or Zero Immediate) Instructlon .

eciwx (External Control In Word Indexed) Instruction .
ecowx (External Control Out Word Indexed) Instruction .
eieio (Enforce In-Order Execution of I/0O) Instruction
extsw (Extend Sign Word) Instruction.

eqv (Equivalent) Instruction .

extsb (Extend Sign Byte) Instruction .

extsh or exts (Extend Sign Halfword) Instruchon

fabs (Floating Absolute Value) Instruction .

fadd or fa (Floating Add) Instruction

fcfid (Floating Convert from Integer Double Word) Instruchon
fcmpo (Floating Compare Ordered) Instruction

fcmpu (Floating Compare Unordered) Instruction

fctid (Floating Convert to Integer Double Word) Instructlon

fctidz (Floating Convert to Integer Double Word with Round toward Zero) Instructlon .

fctiw or feir (Floating Convert to Integer Word) Instruction .
fctiwz or fcirz (Floating Convert to Integer Word with Round to Zero) Instructlon .
fdiv or fd (Floating Divide) Instruction. .

fmadd or fma (Floating Multiply-Add) Instruct|on

fmr (Floating Move Register) Instruction. .

fmsub or fms (Floating Multiply-Subtract) Instructlon .

fmul or fm (Floating Multiply) Instruction. .

fnabs (Floating Negative Absolute Value) Instruct|on .

fneg (Floating Negate) Instruction .

fnmadd or fnma (Floating Negative Multlply Add) Instructlon
fnmsub or fnms (Floating Negative Multiply-Subtract) Instruction .
fres (Floating Reciprocal Estimate Single) Instruction .

frsp (Floating Round to Single Precision) Instruction .

frsqrte (Floating Reciprocal Square Root Estimate) Instructlon

fsel (Floating-Point Select) Instruction .

fsgrt (Floating Square Root, Double-Precision) Instructlon .

fsqrts (Floating Square Root Single) Instruction .

fsub or fs (Floating Subtract) Instruction.

icbi (Instruction Cache Block Invalidate) Instructlon

isync or ics (Instruction Synchronize) Instruction.

Ibz (Load Byte and Zero) Instruction .

Ibzu (Load Byte and Zero with Update) Instructlon .
Ibzux (Load Byte and Zero with Update Indexed) Instruction .

Ibzx (Load Byte and Zero Indexed) Instruction

Id (Load Double Word) Instruction . Ce e

Idarx (Store Double Word Reserve Indexed) Instruction .

Idu (Store Double Word with Update) Instruction

Idux (Store Double Word with Update Indexed) Instructlon

ldx (Store Double Word Indexed) Instruction . .

Ifd (Load Floating-Point Double) Instruction

Ifdu (Load Floating-Point Double with Update) Instructlon .
Ifdux (Load Floating-Point Double with Update Indexed) Instruction.
Ifdx (Load Floating-Point Double-Indexed) Instruction . .
Ifg (Load Floating-Point Quad) Instruction .

. 182
. 184
. 185
. 186
. 188
. 190
. 191
. 193
. 194
. 195
. 196
. 197
. 198
. 199
. 200
. 202
. 203
. 205
. 206
. 207
. 208
. 209
. 210
. 212
. 213
. 216
. 218
. 219
. 221
. 224
. 225
. 226
. 228
. 231
. 233
. 235
. 236
. 237
. 239
. 240
. 242
. 243
. 245
. 246
. 247
. 248
. 249
. 250
. 251
. 252
. 253
. 253
. 254
. 255
. 256
. 257

Contents

\'}

Ifqu (Load Floating-Point Quad with Update) Instruction .

Ifqux (Load Floating-Point Quad with Update Indexed) Instructlon
Ifgx (Load Floating-Point Quad Indexed) Instruction .o
Ifs (Load Floating-Point Single) Instruction . .

Ifsu (Load Floating-Point Single with Update) Instruchon .
Ifsux (Load Floating-Point Single with Update Indexed) Instruction .
Ifsx (Load Floating-Point Single Indexed) Instruction .

Iha (Load Half Algebraic) Instruction . .

Ihau (Load Half Algebraic with Update) Instructlon .

Ihaux (Load Half Algebraic with Update Indexed) Instruct|on
Ihax (Load Half Algebraic Indexed) Instruction

Ihbrx (Load Half Byte-Reverse Indexed) Instruction

Ihz (Load Half and Zero) Instruction . .

Ihzu (Load Half and Zero with Update) Instruct|on .

Ihzux (Load Half and Zero with Update Indexed) Instructlon
Ihzx (Load Half and Zero Indexed) Instruction

Imw or Im (Load Multiple Word) Instruction.

Ig (Load Quad Word) Instruction

Iscbx (Load String and Compare Byte Indexed) Instructlon
Iswi or Isi (Load String Word Immediate) Instruction

Iswx or Isx (Load String Word Indexed) Instruction .

Iwa (Load Word Algebraic) Instruction .

Iwarx (Load Word and Reserve Indexed) Instructlon .

Iwaux (Load Word Algebraic with Update Indexed) Instructlon
Iwax (Load Word Algebraic Indexed) Instruction .

Iwbrx or Ibrx (Load Word Byte-Reverse Indexed) Instructlon
Iwz or | (Load Word and Zero) Instruction . .

Iwzu or lu (Load Word with Zero Update) Instructlon .

Iwzux or lux (Load Word and Zero with Update Indexed) Instruchon
Iwzx or Ix (Load Word and Zero Indexed) Instruction .

maskg (Mask Generate) Instruction

maskir (Mask Insert from Register) Instructlon

mcrf (Move Condition Register Field) Instruction.

mcrfs (Move to Condition Register from FPSCR) Instruc’uon
mcrxr (Move to Condition Register from XER) Instruction

mfcr (Move from Condition Register) Instruction .

mffs (Move from FPSCR) Instruction . .
mfmsr (Move from Machine State Register) Instruchon .
mfocrf (Move from One Condition Register Field) Instruction .
mfspr (Move from Special-Purpose Register) Instruction.

mfsr (Move from Segment Register) Instruction . .
mfsri (Move from Segment Register Indirect) Instruction .
mfsrin (Move from Segment Register Indirect) Instruction
mtcrf (Move to Condition Register Fields) Instruction .

mtfsb0 (Move to FPSCR Bit 0) Instruction .

mtfsb1 (Move to FPSCR Bit 1) Instruction .

mtfsf (Move to FPSCR Fields) Instruction . .

mtfsfi (Move to FPSCR Field Immediate) Instructlon . .
mtocrf (Move to One Condition Register Field) Instruction .
mtspr (Move to Special-Purpose Register) Instruction.

mul (Multiply) Instruction

mulhd (Multiply High Double Word) Instruchon .
mulhdu (Multiply High Double Word Unsigned) Instructlon .
mulhw (Multiply High Word) Instruction . ..
mulhwu (Multiply High Word Unsigned) Instructlon

mulld (Multiply Low Double Word) Instruction .

Vi Assembler Language Reference

. 258
. 260
. 261
. 262
. 263
. 264
. 265
. 266
. 267
. 268
. 269
. 270
. 272
. 273
. 274
. 275
. 276
. 277
. 278
. 280
. 282
. 283
. 284
. 286
. 287
. 287
. 289
. 290
. 291
. 292
. 293
. 294
. 296
. 297
. 298
. 299
. 300
. 301
. 302
. 303
. 305
. 306
. 307
. 308
. 309
. 310
. 31
. 313
. 314
. 315
. 317
. 319
. 320
. 321
. 322
. 324

mulli or muli (Multiply Low Immediate) Instruction .

mullw or muls (Multiply Low Word) Instruction

nabs (Negative Absolute) Instruction .

nand (NAND) Instruction

neg (Negate) Instruction

nor (NOR) Instruction

or (OR) Instruction

orc (OR with Complement) Instructlon

ori or oril (OR Immediate) Instruction .

oris or oriu (OR Immediate Shifted) Instruction .

popcntbd (Population Count Byte Doubleword) Instruct|on .

rac (Real Address Compute) Instruction .

rfi (Return from Interrupt) Instruction .

rfid (Return from Interrupt Double Word) Instructlon

rfsvc (Return from SVC) Instruction

rdcl (Rotate Left Double Word then Clear Left) Instruct|on

ridicl (Rotate Left Double Word Immediate then Clear Left) Instructlon
ridcr (Rotate Left Double Word then Clear Right) Instruction

ridic (Rotate Left Double Word Immediate then Clear) Instruction
ridicl (Rotate Left Double Word Immediate then Clear Left) Instruction
ridicr (Rotate Left Double Word Immediate then Clear Right) Instruction .
ridimi (Rotate Left Double Word Immediate then Mask Insert) Instruction
rimi (Rotate Left Then Mask Insert) Instruction e
riwimi or rlimi (Rotate Left Word Immediate Then Mask Insert) Instruction
riwinm or rlinm (Rotate Left Word Immediate Then AND with Mask) Instruction
riwnm or rinm (Rotate Left Word Then AND with Mask) Instruction .
rrib (Rotate Right and Insert Bit) Instruction

sc (System Call) Instruction

scv (System Call Vectored) Instructlon

si (Subtract Immediate) Instruction. .

si. (Subtract Immediate and Record) Instruction .

sld (Shift Left Double Word) Instruction .

sle (Shift Left Extended) Instruction

sleq (Shift Left Extended with MQ) Instructlon

slig (Shift Left Immediate with MQ) Instruction

sllig (Shift Left Long Immediate with MQ) Instruction .

sllg (Shift Left Long with MQ) Instruction .

slq (Shift Left with MQ) Instruction .

slw or sl (Shift Left Word) Instruction . .

srad (Shift Right Algebraic Double Word) Instruct|on . .
sradi (Shift Right Algebraic Double Word Immediate) Instruct|on .
sraiq (Shift Right Algebraic Immediate with MQ) Instruction.

sraq (Shift Right Algebraic with MQ) Instruction . .

sraw or sra (Shift Right Algebraic Word) Instruction .
srawi or srai (Shift Right Algebraic Word Immediate) Instruct|on .

srd (Shift Right Double Word) Instruction

sre (Shift Right Extended) Instruction. .

srea (Shift Right Extended Algebraic) Instructlon

sreq (Shift Right Extended with MQ) Instruction .

srig (Shift Right Immediate with MQ) Instruction .

srlig (Shift Right Long Immediate with MQ) Instruction

srlg (Shift Right Long with MQ) Instruction . .

srq (Shift Right with MQ) Instruction .

srw or sr (Shift Right Word) Instruction .

stb (Store Byte) Instruction

stbu (Store Byte with Update) Instruchon

Contents

. 325
. 326
. 328
. 330
. 331
. 333
. 334
. 335
. 336
. 337
. 338
. 339
. 341
. 341
. 342
. 343
. 344
. 345
. 346
. 347
. 348
. 349
. 350
. 352
. 354
. 356
. 358
. 360
. 361
. 362
. 363
. 364
. 364
. 366
. 367
. 369
. 370
. 372
. 373
. 375
. 376
. 377
. 378
. 380
. 382
. 383
. 384
. 386
. 387
. 389
. 390
. 392
. 393
. 395
. 396
. 397

Vii

stbux (Store Byte with Update Indexed) Instruction.
stbx (Store Byte Indexed) Instruction . .

std (Store Double Word) Instruction

stdcx. (Store Double Word Conditional Indexed) Instruct|on
stdu (Store Double Word with Update) Instruction .

stdux (Store Double Word with Update Indexed) Instructlon
stdx (Store Double Word Indexed) Instruction. .o
stfd (Store Floating-Point Double) Instruction .

stfdu (Store Floating-Point Double with Update) Instructlon

stfdux (Store Floating-Point Double with Update Indexed) Instruction .

stfdx (Store Floating-Point Double Indexed) Instruction

stfiwx (Store Floating-Point as Integer Word Indexed).

stfq (Store Floating-Point Quad) Instruction

stfqu (Store Floating-Point Quad with Update) Instructlon

stfqux (Store Floating-Point Quad with Update Indexed) Instruct|on
stfgx (Store Floating-Point Quad Indexed) Instruction . .
stfs (Store Floating-Point Single) Instruction .
stfsu (Store Floating-Point Single with Update) Instruct|on .
stfsux (Store Floating-Point Single with Update Indexed) Instructlon
stfsx (Store Floating-Point Single Indexed) Instruction.

sth (Store Half) Instruction. .

sthbrx (Store Half Byte-Reverse Indexed) Instructlon .

sthu (Store Half with Update) Instruction

sthux (Store Half with Update Indexed) Instructlon

sthx (Store Half Indexed) Instruction .

stmw or stm (Store Multiple Word) Instruct|on

stq (Store Quad Word) Instruction .

stswi or stsi (Store String Word Immediate) Instructlon

stswx or stsx (Store String Word Indexed) Instruction .

stw or st (Store) Instruction

stwbrx or stbrx (Store Word Byte- Reverse Indexed) Instructlon
stwex. (Store Word Conditional Indexed) Instruction

stwu or stu (Store Word with Update) Instruction

stwux or stux (Store Word with Update Indexed) Instructlon
stwx or stx (Store Word Indexed) Instruction .

subf (Subtract From) Instruction. .

subfc or sf (Subtract from Carrying) Instructlon .

subfe or sfe (Subtract from Extended) Instruction

subfic or sfi (Subtract from Immediate Carrying) Instruchon
subfme or sfme (Subtract from Minus One Extended) Instruction
subfze or sfze (Subtract from Zero Extended) Instruction

svc (Supervisor Call) Instruction.

sync (Synchronize) or dcs (Data Cache Synchronlze) Instructlon
td (Trap Double Word) Instruction .

tdi (Trap Double Word Immediate) Instruct|on

tibie or tlbi (Translation Look-Aside Buffer Invalidate Entry) Instruct|on

tibld (Load Data TLB Entry) Instruction .

tlbli (Load Instruction TLB Entry) Instruction .
tibsync (Translation Look-Aside Buffer Synchromze) Instructlon .
tw or t (Trap Word) Instruction

twi or ti (Trap Word Immediate) Instruct|on

xor (XOR) Instruction.

xori or xoril (XOR Immediate) Instruction

xoris or xoriu (XOR Immediate Shift) Instruction .

Chapter 9. Pseudo-ops

Viii Assembler Language Reference

. 398
. 399
. 400
. 401
. 402
. 403
. 404
. 405
. 406
. 407
. 408
. 409
. 410
. 411
. 412
. 413
. 414
. 415
. 416
. 417
. 418
. 419
. 420
. 421
. 422
. 423
. 425
. 425
. 427
. 428
. 429
. 430
. 432
. 433
. 434
. 435
. 437
. 439
. 441
. 442
. 444
. 446
. 447
. 449
. 450
. 451
. 452
. 454
. 455
. 456
. 457
. 458
. 459
. 460

. 463

Pseudo-ops Overview43
alignPseudo-op L . . . L466
.bbPseudo-op L . L L L Lo 4ber
.bcPseudo-op .. .468
bf Pseudo-op .. .468
JbiPseudo-op L o Lo L L L L4809
bs Pseudo-op L o Lo L Lo 489
.byte Pseudo-op47
.comm Pseudo-op. L., 4
.csectPseudo-op .A473
.double Pseudo-op .. .4
drop Pseudo-op47
(dsect Pseudo-op L LA
.ebPseudo-op L. L L L L L L Lo a4
.ecPseudo-op L L L L L L Lo L4
.ef Pseudo-op480
.eiPseudo-op480
.esPseudo-op L . L L Lo oL e s s L4
.extern Pseudo-op. L . oL L L L L L L4
file Pseudo-opo . 482
float Pseudo-op48
function Pseudo-op .48
.globl Pseudo-op48
.hash Pseudo-op .A485
dcomm Pseudo-op .. .A486
dglobl Pseudo-op L 487
Jine Pseudo-op. .488
dong Pseudo-op 489
long Pseudo-op L 489
.machine Pseudo-op.40
.org Pseudo-op. .49
.quad Pseudo-op49
ef Pseudo-op L L L L oL s s 49
.rename Pseudo-op 49
setPseudo-op.49
.short Pseudo-op L . L. L ... 49y
.source Pseudo-op .498
.space Pseudo-op. L o L L Lo 499
.stabx Pseudo-op L o o oL L L L L 499
.string Pseudo-op500
Abtag Pseudo-op L501
fcPseudo-opb0o3
docPseudo-op. L . L . . Lbo4
docof Pseudo-op Lbo4
.using Pseudo-op5b05
.vbyte Pseudo-op .. .5b09
weak Pseudo-op510
Xline Pseudo-opo ... b1

Appendix A. Messagesb13
Appendix B. Instruction Set Sorted by Mnemonic533
Appendix C. Instruction Set Sorted by Primary and ExtendedOpCode 547
Appendix D. Instructions Common to POWER family, POWER2, and PowerPC 561

Contents iX

Appendix E. POWER family and POWER2 Instructions .

Appendix F. PowerPC Instructions .

Appendix G. PowerPC 601 RISC Microprocessor Instructions .

Appendix H. Value Definitions.
Bits 0-5.

Bits 6-30 .

Bit 31

Appendix I. Vector Processor .

Storage Operands and Alignment .

Register Usage Conventions .

Runtime Stack . .

Procedure Calling Sequence .

Traceback Tables .

Debug Stabstrings.
Legacy ABI Compatibility and Interoperability .

Appendix J. Notices
Trademarks .

Index

X Assembler Language Reference

. 565

. 575

. 585

. 595
. 595
. 595
. 596

. 597
. 597
. 597
. 598
. 601
. 603
. 603
. 604

. 605
. 606

. 607

About This Book

This book is intended for experienced assembler language programmers. Users should be familiar with the
AIX® operating system or UNIX® System V commands, assembler instructions, pseudo-ops, and processor
register usage. This reference discusses features and specific usage for this version of the Assembler
including: installation, operation, syntax, addressing considerations, migration, instructions sets, and
pseudo-ops. Also covered are extended mnemonics for POWER-based architectures and their supported
processors.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system. Also identifies graphical objects such as buttons, labels,
and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see
displayed, examples of portions of program code similar to what you might write as a
programmer, messages from the system, or information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX 5L operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to the assembler:

« [AIX 5L Version 5.3 Commands Reference Volume 1: a through ¢

[AIX 5L Version 5.3 Commands Reference Volume 2: d through h

[AIX 5L Version 5.3 Commands Reference Volume 3: i through m|

[AIX 5L Version 5.3 Commands Reference Volume 4: n through 1

[AIX 5L Version 5.3 Commands Reference Volume 5: s through u|

[AIX 5L Version 5.3 Commands Reference Volume 6: v through 2

[AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

© Copyright IBM Corp. 1997, 2006 Xi

Xii Assembler Language Reference

Chapter 1. Assembler Overview

The assembler is a program that operates within the operating system. The assembler takes
machine-language instructions and translates them into machine object code. The following articles
discuss the features of the assembler:

+ [‘Features of the AIX Assembler’]
« [‘Assembler Installation” on page 10|

Features of the AIX Assembler

This section describes features of the AlX assembler.

Multiple Hardware Architecture and Implementation Platform Support
The assembler supports the following systems:

» Systems using the first-generation POWER family processors (POWER family architecture)

» Systems using the POWER2 processors (POWER family architecture)

» Systems using the PowerPC 601 RISC Microprocessor, PowerPC 604 RISC Microprocessor, or the
PowerPC A35 RISC Microprocessor (PowerPC architecture)

+ Systems using POWER4™ processors
+ Systems using POWER5" processors
» Systems using PPC970 processors

» Systems using POWER5+ processors
» Systems using POWERSG6 processors

The assembler also supports development of programs for the PowerPC 603 RISC Microprocessor
(PowerPC architecture).

Attention: The PowerPC 601 RISC Microprocessor implements the PowerPC architecture plus most of
the POWER family instructions that are not included in the PowerPC architecture. This implementation
provides a POWER family-to-PowerPC bridge processor that runs existing POWER family applications
without recompiling and also runs PowerPC applications. Future PowerPC systems might not provide this
bridge. An application should not be coded using a mixture of POWER family and PowerPC
architecture-unique instructions. Doing so can result in an application that will run only on a PowerPC 601
RISC Microprocessor-based system. Such an application will not run on an existing POWER family
machine and is unlikely to run with acceptable performance on future PowerPC machines.

There are several categories of instructions. The following table lists the categories of instructions and
shows which implementations support each instruction category. The "X" means the implementation
supports the instruction category.

Implementations Supporting Each Category of Instructions

Instruction Category POWER POWER2 601 603 604 A35
family

POWER2-unique X
instructions

POWER2 and PowerPC X X X X X
common instructions,
not in POWER family

© Copyright IBM Corp. 1997, 2006

POWER family-unique
instructions not
supported by PowerPC
601 RISC
Microprocessor

POWER family-unique
instructions supported

by PowerPC 601 RISC
Microprocessor

POWER family and
PowerPC common
instructions with same
mnemonics

POWER family and
PowerPC common
instructions with different
mnemonics

PowerPC instructions
supported by PowerPC
601 RISC
Microprocessor

Instructions unique to
PowerPC 601 RISC
Microprocessor

PowerPC instructions
not supported by
PowerPC 601 RISC
Microprocessor

PowerPC 32-bit optional
instruction set 1

PowerPC 32-bit optional
instruction set 2

Instructions unique to
PowerPC 603 RISC
Microprocessor

Implementations Supporting Each Category of Instructions

Instruction PWR
Category

PWR2

601

603

604

A35

970

PWR5

PWR5+

PWR6

POWER2-
unique
instructions

X

POWER2 and
PowerPC
common
instructions,
not in POWER
family

2 Assembler Language Reference

POWER
family-unique
instructions not
supported by
PowerPC 601
RISC
Microprocessor

POWER
family-unique
instructions
supported by
PowerPC 601
RISC
Microprocessor

POWER family
and PowerPC
common
instructions
with same
mnemonics

X

POWER family
and PowerPC
common
instructions
with different
mnemonics

X

PowerPC
instructions
supported by
PowerPC 601
RISC
Microprocessor

Instructions
unique to
PowerPC 601
RISC
Microprocessor

PowerPC
instructions not
supported by
PowerPC 601
RISC
Microprocessor

PowerPC

32-bit optional
instruction set
1

PowerPC
32-bit optional
instruction set
2

Instructions
unique to
PowerPC 603
RISC
Microprocessor

Chapter 1. Assembler Overview

3

PowerPC X X X X X
64-bit

instructions
PowerPC X X

Vector
instructions

PowerPC X
Decimal
Floating Point
instructions

Instructions X X
introduced with
POWERS5+

The following abbreviations are used in the heading of the previous table:

601 PowerPC 601 RISC Microprocessor
603 PowerPC 603 RISC Microprocessor
604 PowerPC 604 RISC Microprocessor

Host Machine Independence and Target Environment Indicator Flag

The host machine is the hardware platform on which the assembler runs. The target machine is the
platform on which the object code is run. The assembler can assemble a source program for any target
machine, regardless of the host machine on which the assembler runs.

The target machine can be specified by using either the assembly mode option flag -m of the@
command or the Lmachine] pseudo-op. If neither the -m flag nor the .machine pseudo-op is used, the
default assembly mode is used. If both the -m flag and a .machine pseudo-op are used, the .machine
pseudo-op overrides the -m flag. Multiple .machine pseudo-ops are allowed in a source program. The
value in a later .machine pseudo-op overrides a previous .machine pseudo-op.

The default assembly mode provided by the AIX assembler has the POWER family/PowerPC intersection
as the target environment, but treats all POWER/PowerPC incompatibility errors (including instructions
outside the POWER/PowerPC intersection and invalid form errors) as instructional warnings. The -W and
-w assembler flags control whether these warnings are displayed. In addition to being closen by the
absence of the -m flag of the as command or the .machine pseudo-op, the default assembly mode can
also be explicitly specified with the -m flag of the as command or with the .machine pseudo-op.

To assemble a source program containing platform-unique instructions from more than one platform
without errors or warnings, use one of the following methods:

» Use the .machine pseudo-op in the source program.

» Assemble the program with the assembly mode set to the any mode (with the -m flag of the as
command).

For example, the source code cannot contain both POWER family-unique instructions and PowerPC 601
RISC Microprocessor-unique instructions. This is also true for each of the sub-source programs contained
in a single source program. A sub-source program begins with a .machine pseudo-op and ends before the
next .machine pseudo-op. Since a source program can contain multiple .machine pseudo-ops, it normally
consists of several sub-source programs. For more information, see the pseudo-op.

4 Assembler Language Reference

Mnemonics Cross-Reference

The assembler supports both PowerPC and POWER family mnemonics. The assembler listing has a
cross-reference for both mnemonics. The cross-reference is restricted to instructions that have different
mnemonics in the POWER family and PowerPC architectures, but which share the same op codes,
functions, and operand input formats.

The assembler listing contains a column to display mnemonics cross-reference information. For more
information on the assembler listing, see [Interpreting an Assembler Listing]

The mnemonics cross-reference helps the user migrate a source program from one architecture to
another. The -s flag for the command provides a mnemonics cross-reference in the assembiler listing to
assist with migration. If the -s flag is not used, no mnemonics cross-reference is provided.

CPU ID Definition

During the assembly process the assembler determines which instruction set (from a list of several
complete instruction sets defined in the architectures or processor implementations) is the smallest
instruction set containing all the instructions used in the program. The program is given a CPU ID value
indicating this instruction set. Therefore a CPU ID indicates the target environment on which the object
code can be run. The CPU ID value for the program is an assembler output value included in the XCOFF
object file generated by the assembler.

CPU ID can have the following values:

Value Description

com All instructions used in the program are in the PowerPC and POWER family architecture intersection.
(The com instruction set is the smallest instruction set.)

ppc All instructions used in the program are in the PowerPC architecture, 32-bit mode, but the program

does not satisfy the conditions for CPU ID value com. (The ppc instruction set is a superset of the
com instruction set.)

pwr All instructions used in the program are in the POWER family architecture, POWER family
implementation, but the program does not satisfy the conditions for CPU ID value com. (The pwr
instruction set is a superset of the com instruction set.)

pwr2 All instructions used in the program are in the POWER family architecture, POWER2 implementation,
but the program does not satisfy the conditions for CPU ID values com, ppc, or pwr. (The pwr2
instruction set is a superset of the pwr instruction set.)

any The program contains a mixture of instructions from the valid architectures or implementations, or
contains implementation-unique instructions.The program does not satisfy the conditions for CPU ID
values com, ppc, pwr, or pwr2. (The any instruction set is the largest instruction set.)

The assembler output value CPU ID is not the same thing as the assembly mode. The assembly mode
(determined by the -m flag of the as command and by use of the .machine pseudo-op in the program)
determines which instructions the assembler accepts without errors or warnings. The CPU ID is an output
value indicating which instructions are actually used.

In the output XCOFF file, the CPU ID is stored in the low-order byte of the n_type field in a symbol table
entry with the C_FILE storage class. The following list shows the low-order byte values and corresponding
CPU IDs:

Low-Order Byte CPU ID

0 Not a defined value. An invalid value or object was assembled prior to definition of the
CPU-ID field.

ppc

ppc64

com

pwr

5 WOWN =

Chapter 1. Assembler Overview 5

Low-Order Byte CPU ID

5 any

18 pwr5

19 970

20 pwr6é

21 vec

22 pwr5x

224 pwr2(pwrx)

Source Language Type

For cascade compilers, the assembler records the source-language type. In the XCOFF file, the high-order
byte of the n_type field of a symbol table entry with the C_FILE storage class holds the source language
type information. The following language types are defined:

High-Order Byte Language
0x00 C

0x01 FORTRAN
0x02 Pascal
0x03 Ada

0x04 PL/I

0x05 Basic
0x06 Lisp

0x07 Cobol
0x08 Modula2
0x09 C++

0x0A RPG

0x0B PL8, PLIX
0x0C Assembler
0x0D-BxFF Reserved

The source language type is indicated by the pseudo-op. By default, the source-language type is
"Assembler.” For more information, see the .source pseudo-op.

Detection Error Conditions

Error number 149 is reported if the source program contains instructions that are not supported in the
intended target environment.

An error is reported if the source program contains invalid instruction forms. This error occurs due to

incompatibilities between the POWER family and PowerPC architectures. Some restrictions that apply in

the PowerPC architecture do not apply in the POWER family architecture. According to the PowerPC

architecture, the following invalid instruction forms are defined:

» If an Rc bit, LK bit, or OE bit is defined as / (slash) but coded as 1, or is defined as 1 but coded as 0,
the form is invalid. Normally, the assembler ensures that these bits contain correct values.

Some fields are defined with more than one / (slash) (for example, "///"). If they are coded as

nonzero, the form is invalid. If certain input operands are used for these fields, they must be checked.

For this reason, the following instructions are checked:

— For the PowerPC System Call instructions or the POWER family Supervisor Call instructions, if the
POWER family |sveal mnemonic is used when the assembly mode is PowerPC type, the SV field
must be 0. Otherwise, the instruction form is invalid and error number 165 is reported.

Note: Theand @ instructions are not supported in PowerPC target modes. The
instruction is supported only on the PowerPC 601 RISC Microprocessor.

6 Assembler Language Reference

— For the Move to Segment Register Indirect instruction, if the POWER family mtsri mnemonic is used
in PowerPC target modes, the RA field must be 0. Otherwise, the instruction form is invalid and error
number 154 is reported. If the PowerPC mtsrin mnemonic is used in PowerPC target modes, it
requires only two input operands, so no check is needed.

» For all of the Branch Conditional instructions (including Branch Conditional, Branch Conditional to Link
Register, and Branch Conditional to Count Register), bits 0-3 of the BO field are checked. If the bits that
are required to contain 0 contain a nonzero value, error 150 is reported.

The encoding for the BO field is defined in the section "Branch Processor Instructions” of PowerPC
architecture. The following list gives brief descriptions of the possible values for this field:

BO Description

0000y Decrement the Count Register (CTR); then branch if the value of the decremented CTR is
not equal to 0 and the condition is False.

0001y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and
the condition is False.

001zy Branch if the condition is False.

0100y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and
the condition is True.

0101y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and
the condition is True.

011zy Branch if the condition is True.

1z00y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0.

1z01y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0.

1z1zz Branch always.

The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

Note: The y bit provides a hint about whether a conditional branch is likely to be taken. The value of
this bit can be either 0 or 1. The default value is 0. The extended mnemonics for Branch
Prediction as defined in PowerPC architecture are used to set this bit to 0 or 1. (See [Extended|
Mnemonics for Branch Prediction| for more information.)

Branch always instructions do not have a y bit in the BO field. Bit 4 of the BO field should contain 0.
Otherwise, the instruction form is invalid.

The third bit of the BO field is specified as the "decrement and test CTR" option. For Branch
Conditional to Count Register instructions, the third bit of the BO field must not be 0. Otherwise, the
instruction form is invalid and error 163 is reported.

» For the update form of fixed-point load instructions, the PowerPC architecture requires that the RA field
not be equal to either 0 or the RT field value. Otherwise, the instruction form is invalid and error number
151 is reported.

This restriction applies to the following instructions:
— lbzu

— Ibzux

— lhzu

— lhsux

— lhau

— lhaux

— lwzu (lu in POWER family)

— lwzux (lux in POWER family)

» For the update form of fixed-point store instructions and floating-point load and store instructions, the
following instructions require only that the RA field not be equal to 0. Otherwise, the instruction form is
invalid and error number 166 is reported.

— Ifsu

Chapter 1. Assembler Overview 7

— Ifsux

— Ifdu

— Ifdux

— stbu

— stbux

— sthu

— sthux

— stwu (stu in POWER family)
— stwux (stux in POWER family)
— sifsu

— stfux

— stfdu

— stfdux

For multiple register load instructions, the PowerPC architecture requires that the RA field and the RB
field, if present in the instruction format, not be in the range of registers to be loaded. Also, RA=RT=0 is
not allowed. If RA=RT=0, the instruction form is invalid and error 164 is reported. This restriction applies
to the following instructions:

— Imn (Im in POWER family)
— Iswi (Isi in POWER family)
— Iswx (Isx in POWER family)

Note: For the Iswx instruction, the assembler only checks whether RA=RT=0, because the load
register range is determined by the content of the XER register at run time.

For fixed-point compare instructions, the PowerPC architecture requires that the L field be equal to 0.
Otherwise, the instruction form is invalid and error number 154 is reported. This restriction applies to the
following instructions:

- cmp
- cmpi
— cmpli
— cmpl

Note: If the target mode is com, or ppc, the assembler checks the update form of fixed-point load
instructions, update form of fixed-point store instructions, update form of floating-point load
and store instructions, multiple-register load instructions, and fixed-point compare instructions,
and reports any errors. If the target mode is any, pwr, pwr2, or 601, no check is performed.

Warning Messages

Warning messages are listed when the -w flag is used with the as command. Some warning messages
are related to instructions with the same op code for POWER family and PowerPC:

Several instructions have the same op code in both POWER family and PowerPC architectures, but
have different functional definitions. The assembler identifies these instructions and reports warning
number 153 when the target mode is com and the @flag of the as command is used. Because these
mnemonics differ functionally, they are not listed in the mnemonics cross-reference of the assembler
listing generated when the -s|flag is used with the as command. The following table lists these
instructions.

Table 1. Same Op Codes with Different Mnemonics

POWER family PowerPC

dcs sync

8 Assembler Language Reference

Table 1. Same Op Codes with Different Mnemonics (continued)

POWER family PowerPC
ics isync
svca sc

mtsri mtsrin
Isx Iswx

» The following instructions have the same mnemonics and op code, but have different functional
definitions in the POWER family and PowerPC architectures. The assembler cannot check for these,
because the differences are not based on the machine the instructions execute on, but rather on what
protection domain the instructions are running in.

— mfsr
— mfmsr
— mfdec

Special-Purpose Register Changes and Special-Purpose Register Field
Handling

TID, MQ, SDRO, RTCU, and RTCL are special-purpose registers (SPRs) defined in the POWER family
architecture. They are not valid in the PowerPC architecture. However, MQ, RTCU, and RTCL are still
available in the PowerPC 601 RISC Microprocessor.

DBATL, DBATU, IBATL, IBATU, TBL, and TBU are SPRs defined in the PowerPC architecture. They are
not supported for the PowerPC 601 RISC Microprocessor. The PowerPC 601 RISC Microprocessor uses
the BATL and BATU SPRs instead.

The assembler provides the extended mnemonics for "move to or from SPR” instructions. The extended

mnemonics include all the SPRs defined in the POWER family and PowerPC architectures. An error is

generated if an invalid extended mnemonic is used. The assembler does not support extended mnemonics

for any of the following:

+ POWER2-unique SPRs (IMR, DABR, DSAR, TSR, and ILCR)

* PowerPC 601 RISC Microprocessor-unique SPRs (HIDO, HID1, HID2, HID5, PID, BATL, and BATU)

» PowerPC 603 RISC Microprocessor-unique SPRs (DMISS, DCMP, HASH1, HASH2, IMISS, ICMP, RPA,
HIDO, and IABR)

* PowerPC 604 RISC Microprocessor-unique SPRs (PIE, HIDO, IABR, and DABR)

The assembler does not check the SPR field’s encoding value for the [mtspr{ and [mfspr| instructions,
because the SPR encoding codes could be changed or reused. However, the assembler does check the
SPR field’s value range. If the target mode is pwr, pwr2, or com, the SPR field has a 5-bit length and a
maximum value of 31. Otherwise, the SPR field has a 10-bit length and a maximum value of 1023.

To maintain source-code compatibility of the POWER family and PowerPC architectures, the assembler
assumes that the low-order 5 bits and high-order 5 bits of the SPR number are reversed before they are
used as the input operands to the mfspr or mtspr instruction.

Related Information
[Chapter 1, “Assembler Overview,” on page 1.

[‘Assembler Installation” on page 10.|

[Chapter 5, “Assembling and Linking a Program,” on page 53

Chapter 1. Assembler Overview 9

[‘Pseudo-ops Overview” on page 463

The command.

[“machine Pseudo-op” on page 490,[|“.source Pseudo-op” on page 498

Assembler Installation

The AIX assembiler is installed with the base operating system, along with commands, files, and libraries
for developing software applications.

Related Information
The command.

[‘machine Pseudo-op” on page 490 [|“.source Pseudo-op” on page 498

10 Assembler Language Reference

Chapter 2. Processing and Storage

The characteristics of machine architecture and the implementation of processing and storage influence
the processor’s assembler language. The assembler supports the various processors that implement the
POWER family and PowerPC architectures. The assembler can support both the POWER family and
PowerPC architectures because the two architectures share a large number of instructions.

This chapter provides an overview and comparison of the POWER family and PowerPC architectures and
tells how data is stored in main memory and in registers. It also discusses the basic functions for both the
POWER family and PowerPC instruction sets.

All the instructions discussed in this chapter are nonprivileged. Therefore, all the registers discussed in this
chapter are related to nonprivileged instructions. Privileged instructions and their related registers are
defined in the PowerPC architecture.

The following processing and storage articles provide an overview of the system microprocessor and tells
how data is stored both in main memory and in registers. This information provides some of the
conceptual background necessary to understand the function of the system microprocessor’s instruction
set and pseudo-ops.

» [‘POWER family and PowerPC Architecture Overview’]
* |“Branch Processor” on page 19
» |“Fixed-Point Processor” on page 21|

* |“Floating-Point Processor” on page 24{

« [Appendix I, “Vector Processor,” on page 597

POWER family and PowerPC Architecture Overview

A POWER family or PowerPC microprocessor contains the sequencing and processing controls for
instruction fetch, instruction execution, and interrupt action, and implements the instruction set, storage
model, and other facilities defined in the POWER family and PowerPC architectures.

A POWER family or PowerPC microprocessor contains a branch processor, a fixed-point processor, and a
floating-point processor. The microprocessor can execute the following classes of instructions:

» Branch instructions
» Fixed-point instructions
* Floating-point instructions

The following diagram illustrates a logical representation of instruction processing for the PowerPC
microprocessor.

© Copyright IBM Corp. 1997, 2006 11

Branch

Processin
> g
Fixed-Point and
Floating-Point
Instructions
Fixed-Point Float-Point
Processing Processing

Data to/from
Storage

Instructions
from Storage

Storage

Figure 1. Logical Processing Model. The process begins at the top with Branch Processing, which branches to either
fixed-point or float-point processing. These processes send and receive data from storage. Storage will also send
more instructions to Branch Processing at the top of the diagram.

The following table shows the registers for the PowerPC user instruction set architecture. These registers
are in the CPU that are used for 32-bit applications and are available to the user.

Register Bits Available
Condition Register (CR) 0-31

Link Register (LR) 0-31

Count Register (CTR) 0-31

General Purpose Registers 00-31 (GPR) 0-31 for each register
Fixed-Point Exception Register (XER) 0-31

Floating-Point Registers 00-31 (FPR) 0-63 for each register
Floating Point Status and Control Register (FPSCR) 0-31

The following table shows the registers of the POWER family user instruction set architecture. These
registers are in the CPU that are used for 32-bit applications and are available to the user.

Register Bits Available
Condition Register (CR) 0-31
Link Register (LR) 0-31

12 Assembler Language Reference

Register

Bits Available

Count Register (CTR)

0-31

General Purpose Registers 00-31 (GPR)

0-31 for each register

Multiply-Quotient Register (MQ)

0-31

Fixed-Point Exception Register (XER)

0-31

Floating-Point Registers 00-31 (FPR)

0-63 for each register

Floating Point Status and Control Register (FPSCR)

0-31

The processing unit is a word-oriented, fixed-point processor functioning in tandem with a

doubleword-oriented, floating-point processor. The microprocessor uses 32-bit word-aligned instructions. It
provides for byte, halfword, and word operand fetches and stores for fixed point, and word and doubleword

operand fetches and stores for floating point. These fetches and stores can occur between main storage
and a set of 32 general-purpose registers, and between main storage and a set of 32 floating-point

registers.

Instruction Forms

All instructions are four bytes long and are word-aligned. Therefore, when the processor fetches
instructions (for example, branch instructions), the two low-order bits are ignored. Similarly, when the
processor develops an instruction address, the two low-order bits of the address are 0.

Bits 0-5 always specify the op code. Many instructions also have an extended op code (for example,
XO-form instructions). The remaining bits of the instruction contain one or more fields. The alternative

fields for the various instruction forms are shown in the following:

e | Form
Bits Value
0-5 OPCD
6-29 LI
30 AA
31 LK
e B Form
Bits Value
0-5 OPCD
6-10 BO
11-15 BI
16-29 BD
30 AA
31 LK
+ SC Form
Bits Value
0-5 OPCD
6-10 Vi
11-15 Vi

Chapter 2. Processing and Storage

13

Bits Value
16-29 Y/
30 X0
31 /
* D Form
Bits Value
0-5 OPCD
6-10 RT, RS, FRT, FRS, TO, or BF, /, and L
11-15 RA
16-31 D, SI, or Ul
* DS Form
Bits Value
0-5 OPCD
6-10 RT or RS
11-15 RA
16-29 DS
30-31 XO
e X Instruction Format
Bits Value

0-5 OPCD
6-10 RT, FRT, RS, FRS, TO, BT, or BF, /, and L
11-15 RA, FRA, SR, SPR, or BFA and //
16-20 RB, FRB, SH, NB, or U and /
21-30 XO or EO
31 Rc

— XL Instruction Format

Bits Value

0-5 OPCD
6-10 RT or RS
11-20 spror/, FXM and /
21-30 XO or EO
31 Rc

— XFX Instruction Format

Bits Value

0-5 OPCD
6-10 RT or RS
11-20 spr or/, FXM and /

14 Assembler Language Reference

Bits Value
21-30 XO or EO
31 Rc

— XFL Instruction Format

Bits Value
0-5 OPCD
6 /
7-14 FLM
15 /
16-20 FRB
21-30 XO or EO
31 Rc

— XO Instruction Format

Bits Value
0-5 OPCD
6-10 RT
11-15 RA
16-20 RB
21 OE
22-30 XO or EO
31 Rc
« AForm

Bits Value
0-5 OPCD
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30 X0
31 Rc
* M Form

Bits Value
0-5 OPCD
6-10 RS
“11-15 RA
16-20 RB or SH
21-25 MB
26-30 ME

Chapter 2. Processing and Storage

15

Bits Value
31 Rc

For some instructions, an instruction field is reserved or must contain a particular value. This is not
indicated in the previous figures, but is shown in the syntax for instructions in which these conditions are
required. If a reserved field does not have all bits set to 0, or if a field that must contain a particular value
does not contain that value, the instruction form is invalid. See ['Detection Error Conditions” on page 6| for
more information on invalid instruction forms.

Split-Field Notation

In some cases an instruction field occupies more than one contiguous sequence of bits, or occupies a
contiguous sequence of bits that are used in permuted order. Such a field is called a split field. In the
previous figures and in the syntax for individual instructions, the name of a split field is shown in lowercase
letters, once for each of the contiguous bit sequences. In the description of an instruction with a split field,
and in certain other places where the individual bits of a split field are identified, the name of the field in
lowercase letters represents the concatenation of the sequences from left to right. In all other cases, the
name of the field is capitalized and represents the concatenation of the sequences in some order, which
does not have to be left to right. The order is described for each affected instruction.

Instruction Fields
AA (30) Specifies an Absolute Address bit:

0 Indicates an immediate field that specifies an address relative to the current instruction
address. For I-form branches, the effective address of the branch target is the sum of the
LI field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family) and the address of
the branch instruction. For B-form branches, the effective address of the branch target is
the sum of the BD field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family) and
the address of the branch instruction.

1 Indicates an immediate field that specifies an absolute address. For I-form branches, the
effective address of the branch target is the LI field sign-extended to 64 bits (PowerPC) or
32 bits (POWER family). For B-form branches, the effective address of the branch target is
the BD field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family).

BA (11:15) Specifies a bit in the Condition Register (CR) to be used as a source.

BB (16:20) Specifies a bit in the CR to be used as a source.

BD (16:29) Specifies a 14-bit signed two’s-complement branch displacement that is concatenated on the right
with 0b00 and sign-extended to 64 bits (PowerPC) or 32 bits (POWER family). This is an immediate
field.

BF (6:8) Specifies one of the CR fields or one of the Floating-Point Status and Control Register (FPSCR)
fields as a target. For POWER family, if i=BF(6:8), then the i field refers to bits i*4 to (i*4)+3 of the
register.

BFA (11:13) Specifies one of the CR fields or one of the FPSCR fields as a source. For POWER family, if
j=BFA(11:13), then the j field refers to bits j*4 to (j*4)+3 of the register.
Bl (11:15) Specifies a bit in the CR to be used as the condition of a branch conditional instruction.

16 Assembler Language Reference

BO (6:10) Specifies options for the branch conditional instructions. The possible encodings for the BO field are:
BO Description

0000x Decrement Count Register (CTR). Branch if the decremented CTR value is not equal to 0
and the condition is false.

0001x Decrement CTR. Branch if the decremented CTR value is 0 and the condition is false.
001xx Branch if the condition is false.

0100x Decrement CTR. Branch if the decremented CTR value is not equal to 0 and the condition
is true.

0101x Decrement CTR. Branch if the decremented CTR value is equal to 0 and the condition is
true.

011x Branch if the condition is true.
1x00x Decrement CTR. Branch if the decremented CTR value is not equal to 0.

1x01x Decrement CTR. Branch if bits 32-63 of the CTR are 0 (PowerPC) or branch if the
decremented CTR value is equal to 0 (POWER family).

1x1xx Branch always.

BT (6:10) Specifies a bit in the CR or in the FPSCR as the target for the result of an instruction.

D (16:31) Specifies a 16-bit signed two’s-complement integer that is sign-extended to 64 bits (PowerPC) or 32
bits (POWER family). This is an immediate field.

EO (21:30) Specifies a10-bit extended op code used in X-form instructions.

EO’ (22:30) Specifies a 9-bit extended op code used in XO-form instructions.

FL1 (16:19) Specifies a 4-bit field in the@ (Supervisor Call) instruction.

FL2 (27:29) Specifies a 3-bit field in the svc instruction.

FLM (7:14) Specifies a field mask that specifies the FPSCR fields which are to be updated by the
instruction:

Bit Description

7 FPSCR field 0 (bits 00:03)
8 FPSCR field 1 (bits 04:07)
FPSCR field 2 (bits 08:11)
10 FPSCR field 3 (bits 12:15)
11 FPSCR field 4 (bits 16:19)
12 FPSCR field 5 (bits 20:23)
13 FPSCR field 6 (bits 24:27)
14 FPSCR field 7 (bits 28:31)
FRA (11:15) Specifies a floating-point register (FPR) as a source of an operation.
FRB (16:20) Specifies an FPR as a source of an operation.
FRC (21:25) Specifies an FPR as a source of an operation.
FRS (6:10) Specifies an FPR as a source of an operation.
FRT (6:10) Specifies an FPR as the target of an operation.

Chapter 2. Processing and Storage 17

FXM (12:19)

I (16:19)
LEV (20:26)

LI (6:29)

LK (31)

MB (21:25) and
ME (26:30)

NB (16:20)

OPCD (0:5)
OE (21)

RA (11:15)

RB (16:20)

Rc (31)

Specifies a field mask that specifies the CR fields that are to be updated by the instruction:
Bit Description

12 CR field 0 (bits 00:03)

13 CR field 1 (bits 04:07)

14 CR field 2 (bits 08:11)

15 CR field 3 (bits 12:15)

16 CR field 4 (bits 16:19)
17 CR field 5 (bits 20:23)
18 CR field 6 (bits 24:27)
19 CR field 7 (bits 28:31)

Specifies the data to be placed into a field in the FPSCR. This is an immediate field.

This is an immediate field in the@ instruction that addresses the sve routine by b’1” || LEV ||
b’00000 if the SA field is equal to 0.

Specifies a 24-bit signed two’s-complement integer that is concatenated on the right with 0b00 and
sign-extended to 64 bits (PowerPC) or 32 bits (POWER family). This is an immediate field.

Link bit:

0 Do not set the Link Register.

1 Set the Link Register. If the instruction is a branch instruction, the address of the instruction
following the branch instruction is placed in the Link Register. If the instruction is an
instruction, the address of the instruction following the sve instruction is placed into the Link
Register.

(POWER family) Specifies a 32-bit string. This string consists of a substring of ones surrounded by

zeros, or a substring of zeros surrounded by ones. The encoding is:

MB (21:25)
Index to start bit of substring of ones.

ME (26:30)
Index to stop bit of substring of ones.

Let mstart=MB and mstop=ME:
If mstart < mstop + 1 then

mask(mstart..mstop) = ones

mask(all other) = zeros
If mstart = mstop + 1 then

mask(0:31) = ones
If mstart > mstop + 1 then

mask (mstop+1..mstart-1) = zeros

mask(all other) = ones
Specifies the number of bytes to move in an immediate string load or store.
Primary op code field.
Enables setting the 0V and SO fields in the XER for extended arithmetic.
Specifies a general-purpose register (GPR) to be used as a source or target.
Specifies a GPR to be used as a source.

Record bit:
0 Do not set the CR.
1 Set the CR to reflect the result of the operation.

For fixed-point instructions, CR bits (0:3) are set to reflect the result as a signed quantity.
Whether the result is an unsigned quantity or a bit string can be determined from the EQ
bit.

For floating-point instructions, CR bits (4:7) are set to reflect Floating-Point Exception,
Floating-Point Enabled Exception, Floating-Point Invalid Operation Exception, and
Floating-Point Overflow Exception.

18 Assembler Language Reference

RS (6:10) Specifies a GPR to be used as a source.

RT (6:10) Specifies a GPR to be used as a target.
SA (30) SVC Absolute:
(] [svq routine at address *1* || LEV || b’00000’
1 svc routine at address x’1FEQ’
SH (16:20) Specifies a shift amount.
Sl (16:31) Specifies a 16-bit signed integer. This is an immediate field.

SPR (11:20) Specifies an SPR for the [mtspr and [mfspr] instructions. See the mtspr and mfspr instructions for
information on the SPR encodings.

SR (11:15) Specifies one of the 16 Segment Registers. Bit 11 is ignored.

TO (6:10) Specifies the conditions on which to trap. See [Fixed-Point Trap Instructions| for more information on
condition encodings.

TO Bit ANDed with Condition

0 Compares less than.
1 Compares greater than.
2 Compares equal.
3 Compares logically less than.
4 Compares logically greater than.
U (16:19) Used as the data to be placed into the FPSCR. This is an immediate field.
Ul (16:31) Specifies a 16-bit unsigned integer. This is an immediate field.
XO (21:30, Extended op code field.
22:30, 26:30, or
30)

Related Information
[Chapter 2, “Processing and Storage,” on page 11

[‘Branch Processor.’]

[‘Fixed-Point Processor’ on page 21|

[‘Floating-Point Processor’ on page 24|

Branch Processor

The branch processor has three 32-bit registers that are related to nonprivileged instructions:
+ Condition Register

» Link Register

» Count Register

These registers are 32-bit registers. The PowerPC architecture supports both 32- and 64-bit
implementations.

For both POWER family and PowerPC, the branch processor instructions include the branch instructions,

Condition Register field and logical instructions, and the system call instructions for PowerPC or the
supervisor linkage instructions for POWER family.

Branch Instructions
Use branch instructions to change the sequence of instruction execution.

Chapter 2. Processing and Storage 19

Since all branch instructions are on word boundaries, the processor performing the branch ignores bits 30
and 31 of the generated branch target address. All branch instructions can be used in unprivileged state.

A branch instruction computes the target address in one of four ways:

» Target address is the sum of a constant and the address of the branch instruction itself.
» Target address is the absolute address given as an operand to the instruction.

» Target address is the address found in the Link Register.

» Target address is the address found in the Count Register.

Using the first two of these methods, the target address can be computed sufficiently ahead of the branch
instructions to prefetch instructions along the target path.

Using the third and fourth methods, prefetching instructions along the branch path is also possible
provided the Link Register or the Count Register is loaded sufficiently ahead of the branch instruction.

The branch instructions include Branch Unconditional and Branch Conditional. In the various target forms,
branch instructions generally either branch unconditionally only, branch unconditionally and provide a
return address, branch conditionally only, or branch conditionally and provide a return address. If a branch
instruction has the Link bit set to 1, then the Link Register is altered to store the return address for use by
an invoked subroutine. The return address is the address of the instruction immediately following the
branch instruction.

The assembler supports various extended mnemonics for branch instructions that incorporate the B0 field
only or the B0 field and a partial BI field into the mnemonics. See [‘Extended Mnemonics of Branch|
Instructions” on page 89|for more information.

System Call Instruction

The PowerPC system call instructions are called supervisor call instructions in POWER family. Both types
of instructions generate an interrupt for the system to perform a service. The system call and supervisor
call instructions are:

* [*sc (System Call) Instruction” on page 360| (PowerPC)
* [“svc (Supervisor Call) Instruction” on page 446 (POWER family)

For more information about how these instructions are different, see [‘Functional Differences for POWER|
ffamily and PowerPC Instructions” on page 114.|

Condition Register Instructions

The condition register instructions copy one CR field to another CR field or perform logical operations on
CR bits. The assembler supports several extended mnemonics for the Condition Register instructions. See
[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96| for information on extended
mnemonics for condition register instructions.

Related Information
[Chapter 2, “Processing and Storage,” on page 11/

|“POWER family and PowerPC Architecture Overview” on page 11 |

[‘Fixed-Point Processor’ on page 21

[‘Floating-Point Processor” on page 24

[Appendix |, “Vector Processor,” on page 597

20 Assembler Language Reference

Fixed-Point Processor

The PowerPC fixed-point processor uses the following registers for nonprivileged instructions.
» Thirty-two 32-bit General-Purpose Registers (GPRs).
* One 32-bit Fixed-Point Exception Register.

The POWER family fixed-point processor uses the following registers for nonprivileged instructions. These
registers are:

+ Thirty-two 32-bit GPRs
* One 32-bit Fixed-Point Exception Register
* One 32-bit Multiply-Quotient (MQ) Register

The GPRs are the principal internal storage mechanism in the fixed-point processor.

Fixed-Point Load and Store Instructions

The fixed-point load instructions move information from a location addressed by the effective address (EA)
into one of the GPRs. The load instructions compute the EA when moving data. If the storage access does
not cause an alignment interrupt or a data storage interrupt, the byte, halfword, or word addressed by the
EA is loaded into a target GPR. See [‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99
for information on extended mnemonics for fixed-point load instructions.

The fixed-point store instructions perform the reverse function. If the storage access does not cause an
alignment interrupt or a data storage interrupt, the contents of a source GPR are stored in the byte,
halfword, or word in storage addressed by the EA.

In user programs, load and store instructions which access unaligned data locations (for example, an
attempt to load a word which is not on a word boundary) will be executed, but may incur a performance
penalty. Either the hardware performs the unaligned operation, or an alignment interrupt occurs and an
operating system alignment interrupt handler is invoked to perform the unaligned operation.

Fixed-Point Load and Store with Update Instructions

Load and store instructions have an "update” form, in which the base GPR is updated with the EA in
addition to the regular move of information from or to memory.

For POWER family load instructions, there are four conditions which result in the EA not being saved in
the base GPR:

1. The GPR to be updated is the same as the target GPR. In this case, the updated register contains
data loaded from memory.

2. The GPR to be updated is GPR 0.
3. The storage access causes an alignment interrupt.
4. The storage access causes a data storage interrupt.

For POWER family store instructions, conditions 2, 3, and 4 result in the EA not being saved into the base
GPR.

For PowerPC load and store instructions, conditions 1 and 2 above result in an invalid instruction form.
In user programs, load and store with update instructions which access an unaligned data location will be

performed by either the hardware or the alignment interrupt handler of the underlying operating system. An
alignment interrupt will result in the EA not being in the base GPR.

Chapter 2. Processing and Storage 21

Fixed-Point String Instructions

The Fixed-Point String instructions allow the movement of data from storage to registers or from registers
to storage without concern for alignment. These instructions can be used for a short move between
arbitrary storage locations or to initiate a long move between unaligned storage fields. Load String Indexed
and Store String Indexed instructions of zero length do not alter the target register.

Fixed-Point Address Computation Instructions

There are several address computation instructions in POWER family. These are merged into the
arithmetic instructions for PowerPC.

Fixed-Point Arithmetic Instructions

The fixed-point arithmetic instructions treat the contents of registers as 32-bit signed integers. Several
subtract mnemonics are provided as extended mnemonics of addition mnemonics. See
IMnemonics of Fixed-Point Arithmetic Instructions” on page 97] for information on these extended
mnemonics.

There are differences between POWER family and PowerPC for all of the fixed-point divide instructions
and for some of the fixed-point multiply instructions. To assemble a program that will run on both
architectures, the milicode routines for division and multiplication should be used. See
[Routines” on page 80| for information on the available milicode routines.

Fixed-Point Compare Instructions

The fixed-point compare instructions algebraically or logically compare the contents of register RA with one
of the following:

» The sign-extended value of the SI field
» The UI field
* The contents of register RB

Algebraic comparison compares two signed integers. Logical comparison compares two unsigned integers.
There are different input operand formats for POWER family and PowerPC, for example, the L operand for

PowerPC. There are also invalid instruction form restrictions for PowerPC. The assembler checks for
invalid instruction forms in PowerPC assembly modes.

Extended mnemonics for fixed-point compare instructions are discussed in|[‘Extended Mnemonics off
[Fixed-Point Compare Instructions” on page 98/

Fixed-Point Trap Instructions

Fixed-point trap instructions test for a specified set of conditions. Traps can be defined for events that
should not occur during program execution, such as an index out of range or the use of an invalid
character. If a defined trap condition occurs, the system trap handler is invoked to handle a program
interruption. If the defined trap conditions do not occur, normal program execution continues.

The contents of register RA are compared with the sign-extended SI field or with the contents of register
RB, depending on the particular trap instruction. In 32-bit implementations, only the contents of the
low-order 32 bits of registers RA and RB are used in the comparison.

The comparison results in five conditions that are ANDed with the TO field. If the result is not 0, the system
trap handler is invoked. The five resulting conditions are:

TO Field Bit ANDed with Condition
0 Less than
1 Greater than

22 Assembler Language Reference

TO Field Bit ANDed with Condition

2 Equal
3 Logically less than
4 Logically greater than

Extended mnemonics for the most useful T0 field values are provided, and a standard set of codes is
provided for the most common combinations of trap conditions. See |[“Extended Mnemonics of Fixed-Point|
[Trap Instructions” on page 100 for information on these extended mnemonics and codes.

Fixed-Point Logical Instructions

Fixed-point logical instructions perform logical operations in a bit-wise fashion. The extended mnemonics
for the no-op instruction and the OR and NOR instructions are discussed in [‘Extended Mnemonics of|
[Fixed-Point Logical Instructions” on page 100

Fixed-Point Rotate and Shift Instructions

The fixed-point processor performs rotate operations on data from a GPR. These instructions rotate the
contents of a register in one of the following ways:

» The result of the rotation is inserted into the target register under the control of a mask. If the mask bit
is 1, the associated bit of the rotated data is placed in the target register. If the mask bit is 0, the
associated data bit in the target register is unchanged.

» The result of the rotation is ANDed with the mask before being placed into the target register.

The rotate left instructions allow (in concept) right-rotation of the contents of a register. For 32-bit
implementations, an n-bit right-rotation can be performed by a left-rotation of 32-n.

The fixed-point shift instructions logically perform left and right shifts. The result of a shift instruction is
placed in the target register under the control of a generated mask.

Some POWER family shift instructions involve the MQ register. This register is also updated.
Extended mnemonics are provided for extraction, insertion, rotation, shift, clear, and clear left and shift left

operations. See [‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107 for
information on these mnemonics.

Fixed-Point Move to or from Special-Purpose Registers Instructions

Several instructions move the contents of one Special-Purpose Register (SPR) into another SPR or into a
General-Purpose Register (GPR). These instructions are supported by a set of extended mnemonics that
have each SPR encoding incorporated into the extended mnemonic. These include both nonprivileged and
privileged instructions.

Note: The SPR field length is 10 bits for PowerPC and 5 bits for POWER family. To maintain
source-code compatibility for POWER family and PowerPC, the low-order 5 bits and high-order 5 bits
of the SPR number must be reversed prior to being used as the input operand to the
instruction or the instruction. The numbers defined in the encoding tables for the mfspr and
mtspr instructions have already had their low-order 5 bits and high-order 5 bits reversed. When
using thecommand to debug a program, remember that the low-order 5 bits and high-order 5
bits of the SPR number are reversed in the output from the dbx command.

There are different sets of SPRs for POWER family and PowerPC. Encodings for the same SPRs are
identical for POWER family and PowerPC except for moving from the DEC (Decrement) SPR.

Chapter 2. Processing and Storage 23

Moving from the DEC SPR is privileged in PowerPC, but nonprivileged in POWER family. One bit in the
SPR field is 1 for privileged operations, but 0 for nonprivileged operations. Thus, the encoding number for
the DEC SPR for the mfdec instruction has different values in PowerPC and POWER family. The DEC
encoding number is 22 for PowerPC and 6 for POWER family. If the mfdec instruction is used, the
assembler determines the DEC encoding based on the current assembly mode. The following list shows
the assembler processing of the mfdec instruction for each assembly mode value:

* If the assembly mode is pwr, pwr2, or 601, the DEC encoding is 6.
+ |If the assembly mode is ppc, 603, or 604, the DEC encoding is 22.

If the default assembly mode, which treats POWER family/PowerPC incompatibility errors as
instructional warnings, is used, the DEC encoding is 6. Instructional warning 158 reports that the DEC
SPR encoding 6 is used to generate the object code. The warning can be suppressed with the -W flag.

 |f the assembly mode is any, the DEC encoding is 6. If the -w flag is used, a warning message (158)
reports that the DEC SPR encoding 6 is used to generate the object code.

 |If the assembly mode is com, an error message reports that the mfdec instruction is not supported. No
object code is generated. In this situation, the mfspr instruction must be used to encode the DEC
number.

For more information on SPR encodings, see [‘Extended Mnemonics of Moving from or to Special-Purpose]
[Registers” on page 102.|

Related Information
[Chapter 2, “Processing and Storage,” on page 11

[‘POWER family and PowerPC Architecture Overview” on page 11

[‘Branch Processor” on page 19

[‘Floating-Point Processor.”]

[Appendix |, “Vector Processor,” on page 597

Floating-Point Processor

The POWER family and PowerPC floating-point processors have the same register set for nonprivileged
instructions. The registers are:

» Thirty-two 64-bit floating-point registers

* One 32-bit Floating-Point Status and Control Register (FPSCR)

The floating-point processor provides high-performance execution of floating-point operations. Instructions
are provided to perform arithmetic, comparison, and other operations in floating-point registers, and to
move floating-point data between storage and the floating-point registers.

PowerPC and POWER2 also support conversion operations in floating-point registers.

Floating-Point Numbers

A floating-point number consists of a signed exponent and a signed significand, and expresses a quantity
that is the product of the signed fraction and the number 2**exponent. Encodings are provided in the data
format to represent:

* Finite numeric values
e +- Infinity
» Values that are "Not a Number” (NaN)

24 Assembler Language Reference

Operations involving infinities produce results obeying traditional mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits a variable diagnostic information field. They may be
used to indicate uninitialized variables and can be produced by certain invalid operations.

Interpreting the Contents of a Floating-Point Register

There are thirty-two 64-bit floating-point registers, numbered from floating-point register 0-31. All
floating-point instructions provide a 5-bit field that specifies which floating-point registers to use in the
execution of the instruction. Every instruction that interprets the contents of a floating-point register as a
floating-point value uses the double-precision floating-point format for this interpretation.

All floating-point instructions other than loads and stores are performed on operands located in
floating-point registers and place the results in a floating-point register. The Floating-Point Status and
Control Register and the Condition Register maintain status information about the outcome of some
floating-point operations.

Load and store double instructions transfer 64 bits of data without conversion between storage and a
floating-point register in the floating-point processor. Load single instructions convert a stored single
floating-format value to the same value in double floating format and transfer that value into a floating-point
register. Store single instructions do the opposite, converting valid single-precision values in a
floating-point register into a single floating-format value, prior to storage.

Floating-Point Load and Store Instructions

Floating-point load instructions for single and double precision are provided. Double-precision data is
loaded directly into a floating-point register. The processor converts single-precision data to double
precision prior to loading the data into a floating-point register, since the floating-point registers support
only floating-point double-precision operands.

Floating-point store instructions for single and double precision are provided. Single-precision stores
convert floating-point register contents to single precision prior to storage.

POWER?2 provides load and store floating-point quad instructions. These are primarily to improve the
performance of arithmetic operations on large volumes of numbers, such as array operations. Data access
is normally a performance bottleneck for these types of operations. These instructions transfer 128 bits of

data, rather than 64 bits, in one load or store operation (that is, one storage reference). The 128 bits of
data is treated as two doubleword operands, not as one quadword operand.

Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, with data modification as described
for each particular instruction. These instructions do not modify the FPSCR.

Floating-Point Arithmetic Instructions

Floating-point arithmetic instructions perform arithmetic operations on floating-point data contained in
floating-point registers.

Floating-Point Multiply-Add Instructions

Floating-point multiply-add instructions combine a multiply operation and an add operation without an
intermediate rounding operation. The fractional part of the intermediate product is 106 bits wide, and all
106 bits are used in the add or subtract portion of the instruction.

Chapter 2. Processing and Storage 25

Floating-Point Compare Instructions

Floating-point compare instructions perform ordered and unordered comparisons of the contents of two
FPRs. The CR field specified by the BF field is set based on the result of the comparison. The comparison
sets one bit of the designated CR field to 1, and sets all other bits to 0. The Floating-Point Condition Code
(FPCC) (bits 16:19) is set in the same manner.

The CR field and the FPCC are interpreted as follows:

Condition-Register Field and Floating-Point Condition Code Interpretation
Bit Name Description
0 FL (FRA) < (FRB)
1 FG (FRA) > (FRB)
FE (FRA) = (FRB)
FU (FRA) ? (FRB) (unordered)

Floating-Point Conversion Instructions

Floating-point conversion instructions are only provided for PowerPC and POWER2. These instructions
convert a floating-point operand in an FPR into a 32-bit signed fixed-point integer. The CR1 field and the
FPSCR are altered.

Floating-Point Status and Control Register Instructions

Floating-Point Status and Control Register Instructions manipulate data in the FPSCR.

Related Information
[Chapter 2, “Processing and Storage,” on page 11/

[‘POWER family and PowerPC Architecture Overview” on page 11|

[‘Branch Processor” on page 19

[‘Fixed-Point Processor’ on page 21)

[Appendix |, “Vector Processor,” on page 597

26 Assembler Language Reference

Chapter 3. Syntax and Semantics

This overview explains the syntax and semantics of assembler language, including the following items:
:

+ [‘Reserved Words” on page 28]

* [“Line Format” on page 28|

[‘Statements” on page 29|

[‘Symbols” on page 31|

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

Character Set

All letters and numbers are allowed. The assembler discriminates between uppercase and lowercase
letters. To the assembler, the variables Name and name identify distinct symbols.

Some blank spaces are required, while others are optional. The assembler allows you to substitute tabs
for spaces.

The following characters have special meaning in the operating system assembler language:

, (comma) Operand separator. Commas are allowed in statements only between operands, for
example:
a 3,4,5

(pound sign) Comments. All text following a # to the end of the line is ignored by the assembler. A

can be the first character in a line, or it can be preceded by any number of characters,
blank spaces, or both. For example:

a 3,4,5 # Puts the sum of GPR4 and GPR5 into GPR3.

: (colon) Defines a label. The : always appears immediately after the last character of the label
name and defines a label equal to the value contained in the location counter at the
time the assembler encounters the label. For example:
add: a 3,4,5 # Puts add equal to the address

where the a instruction is found.

; (semicolon) Instruction separator. A semicolon separates two instructions that appear on the same
line. Spaces around the semicolon are optional. A single instruction on one line does
not have to end with a semicolon.

To keep the assembiler listing clear and easily understandable, it is suggested that each
line contain only one instruction. For example:

a 3,4,5 # These two lines have
a 4,3,5 # the same effect as...
a 3,4,5; a 4,3,5 # ...this Tine.
$ (dollar sign) Refers to the current value in the assembler’s current location counter. For example:

dino: .long 1,2,3
size: .long § - dino

Related Information
[‘Reserved Words” on page 2§

['Line Format” on page 28|

© Copyright IBM Corp. 1997, 2006 27

[‘Statements” on page 29

[‘Symbols” on page 31|

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

Thesubroutine.

“.comm Pseudo-op” on page 471 ||“.csect Pseudo-op” on page 473,|".double Pseudo-op” on page 475
“.dsect Pseudo-op” on page 477/["float Pseudo-op” on page 483/|“.lcomm Pseudo-op” on page 486]|“.£|
Pseudo-op” on page 503,[|“.toc Pseudo-op” on page 504 [‘.tocof Pseudo-op” on page 504.|

Reserved Words

There are no reserved words in the operating system assembler language. The mnemonics for instructions
and pseudo-ops are not reserved. They can be used in the same way as any other symbols.

There may be restrictions on the names of symbols that are passed to programs written in other
languages.

Related Information
[‘Character Set” on page 27|

[‘Statements” on page 29

[‘Symbols” on page 31|

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

The [atof| subroutine.

.comm Pseudo-op” on page 471 ,||".csect Pseudo-op” on page 473|.double Pseudo-op” on page 475,
“.dsect Pseudo-op” on page 477]["float Pseudo-op” on page 483][".lcomm Pseudo-op” on page 486/[".c|
Pseudo-op” on page 503,[|“.toc Pseudo-op” on page 504 [".tocof Pseudo-op” on page 504.|

Line Format

The assembler supports a free-line format for source lines, which does not require that items be in a
particular column position.

For all instructions, a separator character (space or tab) is recommended between the mnemonic and
operands of the statement for readability. With the AIX assembler, Branch Conditional instructions need a
separator character (space or tab) between the mnemonic and operands for unambiguous processing by
the assembler. (See [‘Migration of Branch Conditional Statements with No Separator after Mnemonic” on|
for more information.)

28 Assembler Language Reference

The assembler language puts no limit on the number of characters that can appear on a single input line.
If a code line is longer than one line on a terminal, line wrapping will depend on the editor used. However,
the listing will only display 512 ASCII characters per line.

Blank lines are allowed; the assembler ignores them.

Related Information
[‘Character Set” on page 27|

[‘Reserved Words” on page 2§

“‘Statements”

['Symbols” on page 31|

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

Thesubroutine.

The [*.comm Pseudo-op” on page 471[“.csect Pseudo-op” on page 473]'.double Pseudo-op” on page 475)
“.dsect Pseudo-op” on page 477 |['.float Pseudo-op” on page 483J]“.Icomm Pseudo-op” on page 486/|".ic
Pseudo-op” on page 503,|[“.toc Pseudo-op” on page 504,[‘.tocof Pseudo-op” on page 504

Statements

The assembler language has three kinds of statements: instruction statements, pseudo-operation
statements, and null statements. The assembler also uses separator characters, labels, mnemonics,
operands, and comments.

Instruction Statements and Pseudo-Operation Statements
An instruction or pseudo-op statement has the following syntax:

[label] mnemonic [operand[,operand2...]] [# comment]

The assembler recognizes the end of a statement when one of the following appears:
* An ASCII new-line character

* A # (pound sign) (comment character)

* A (semicolon)

Null Statements

A null statement does not have a mnemonic or any operands. It can contain a label, a comment, or both.
Processing a null statement does not change the value of the location counter.

Null statements are useful primarily for making assembler source code easier for people to read.
A null statement has the following syntax:
[label] [# comment]

The spaces between the label and the comment are optional.

Chapter 3. Syntax and Semantics 29

If the null statement has a label, the label receives the value of the next statement, even if the next
statement is on a different line. The assembler gives the label the value contained in the current location
counter. For example:

here:
a 3,4,5

is synonymous with
here: a 3,4,5

Note: Certain pseudo-ops (.csect,|.comm| and |.Icomm| for example) may prevent a null statement’s
label from receiving the value of the address of the next statement.

Separator Characters

The separator characters are spaces, tabs, and commas. Commas separate operands. Spaces or tabs
separate the other parts of a statement. A tab can be used wherever a space is shown in this book.

The spaces shown in the syntax of an instruction or pseudo-op are required.
Branch Conditional instructions need a separator character (space or tab) between the mnemonic and

operands for unambiguous processing by the assembler. (See[“Migration of Branch Conditionall
[Statements with No Separator after Mnemonic” on page 121| for more information.)

Optionally, you can put one or more spaces after a comma, before a pound sign (#), and after a #.

Labels

The label entry is optional. A line may have zero, one, or more labels. Moreover, a line may have a label
but no other contents.

To define a label, place a symbol before the : (colon). The assembler gives the label the value contained
in the assembler’s current location counter. This value represents a relocatable address. For example:

subtr: sf 3,4,5

The Tabel subtr: receives the value

of the address of the sf instruction.

You can now use subtr in subsequent statements
to refer to this address.

If the label is in a statement with an instruction that causes data alignment, the label receives its value
before the alignment occurs. For example:

Assume that the location counter now

contains the value of 98.

place: .Tong expr

When the assembler processes this statement, it

sets place to address 98. But the .long is a pseudo-op that
aligns expr on a fullword. Thus, the assembler puts

expr at the next available fullword boundary, which is
address 100. In this case, place is not actually the address
at which expr is stored; referring to place will not put you
at the Tocation of expr.

P

Mnemonics

The mnemonic field identifies whether a statement is an instruction statement or a pseudo-op statement.
Each mnemonic requires a certain number of operands in a certain format.

For an instruction statement, the mnemonic field contains an abbreviation Iike@ (Add Immediate) or
(Subtract From). This mnemonic describes an operation where the system microprocessor processes a

30 Assembler Language Reference

single machine instruction that is associated with a numerical operation code (op code). All instructions are
4 bytes long. When the assembler encounters an instruction, the assembler increments the location
counter by the required number of bytes.

For a pseudo-op statement, the mnemonic represents an instruction to the assembler program itself. There
is no associated op code, and the mnemonic does not describe an operation to the processor. Some
pseudo-ops increment the location counter; others do not. See the |“Pseudo-ops Overview” on page 463|
for a list of pseudo-ops that change the location counter.

Operands

The existence and meaning of the operands depends on the mnemonic used. Some mnemonics do not
require any operands. Other mnemonics require one or more operands.

The assembler interprets each operand in context with the operand’s mnemonic. Many operands are
expressions that refer to registers or symbols. For instruction statements, operands can be immediate data
directly assembled into the instruction.

Comments

Comments are optional and are ignored by the assembler. Every line of a comment must be preceded by
a # (pound sign); there is no other way to designate comments.

Related Information
[‘Character Set” on page 27

[‘Reserved Words” on page 28§

[‘Line Format” on page 28|

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

The [atof| subroutine.

“.comm Pseudo-op” on page 471 ,|[.csect Pseudo-op” on page 473 [“.double Pseudo-op” on page 475
“.dsect Pseudo-op” on page 477/ float Pseudo-op” on page 483 [“.lcomm Pseudo-op” on page 486]"tc|
Pseudo-op” on page 503,[|“.toc Pseudo-op” on page 504 [[‘tocof Pseudo-op” on page 504

Symbols
A symbol is a single character or combination of characters used as a label or operand.

Constructing Symbols

Symbols may consist of numeric digits, underscores, periods, uppercase or lowercase letters, or any
combination of these. The symbol cannot contain any blanks or special characters, and cannot begin with
a digit. Uppercase and lowercase letters are distinct.

If a symbol must contain blank or special characters because of external references, the
pseudo-op can be used to treat a local name as a synonym or alias for the external reference name.

Chapter 3. Syntax and Semantics 31

From the assembler’s and loader’s perspective, the length of a symbol name is limited only by the amount
of storage you have.

Note: Other routines linked to the assembler language files may have their own constraints on symbol
length.

With the exception of control section (csect) or Table of Contents (TOC) entry names, symbols may be
used to represent storage locations or arbitrary data. The value of a symbol is always a 32-bit quantity.

The following are valid examples of symbol names:
* READER

* XC2345

* result.a

* resultA

* balance_old

* _label9

e .myspot

The following are not valid symbol names:

7_sum (Begins with a digit.)

#ofcredits (The # makes this a comment.)
aaxl (Contains *, a special character.)
IN AREA (Contains a blank.)

You can define a symbol by using it in one of two ways:
* As a label for an instruction or pseudo-op
+ As the name operand of a|.set| L[comm| [Icomm| |.dsect] |.csect, or|.rename|pseudo-op

Defining a Symbol with a Label

You can define a symbol by using it as a label. For example:

.using dataval[RW],5
loop:

bgt cont

bdz loop
cont: 1 3,dataval

a 4,3,4

.csect dataval[RW]
dataval: .short 10

The assembler gives the value of the location counter at the instruction or pseudo-op’s leftmost byte. In
the example here, the object code for the I instruction contains the location counter value for dataval.

At run time, an address is calculated from the dataval label, the offset, and GPR 5, which needs to contain
the address of csect dataval[RW]. In the example, them instruction uses the 16 bits of data stored at the
dataval label’s address.

The value referred to by the symbol actually occupies a memory location. A symbol defined by a label is a
relocatable value.

32 Assembler Language Reference

The symbol itself does not exist at run time. However, you can change the value at the address
represented by a symbol at run time if some code changes the contents of the location represented by the
dataval label.

Defining a Symbol with a Pseudo-op

Use a symbol as the name operand of a pseudo-op to define the symbol. This pseudo-op has the
format:

.set name,exp
The assembler evaluates the exp operand, then assigns the value and type of the exp operand to the

symbol name. When the assembler encounters that symbol in an instruction, the assembler puts the
symbol’s value into the instruction’s object code.

For example:
.set number, 10
ai 4,4 ,number

In the preceding example, the object code for the @l instruction contains the value assigned to number, that
is, 10.

The value of the symbol is assembled directly into the instruction and does not occupy any storage space.
A symbol defined with a .set pseudo-op can have an absolute or relocatable type, depending on the type
of the exp operand. Also, because the symbol occupies no storage, you cannot change the value of the
symbol at run time; reassembling the file will give the symbol a new value.

A symbol also can be defined by using it as the name operand of a|.comm| |.lcomm| |.csect, [.dsect, or
pseudo-op. Except in the case of the .dsect pseudo-op, the value assigned to the symbol
describes storage space.

CSECT Entry Names
A symbol can also be defined when used as the qualname operand of the pseudo-op. When used

in this context, the symbol is defined as the name of a csect with the specified storage mapping class.
Once defined, the symbol takes on a storage mapping class that corresponds to the name qualifier.

A qualname operand takes the form of:

symbol[XX]

OR

symbol{ XX}

where XX is the storage mapping class.

For more information, see the [“.csect Pseudo-op” on page 473

The Special Symbol TOC

Provisions have been made for the special symbol TOC. In XCOFF format modules, this symbol is
reserved for the TOC anchor, or the first entry in the TOC. The symbol TOC has been predefined in the
assembler so that the symbol TOC can be referred to if its use is required. The .toc pseudo-op creates the
TOC anchor entry. For example, the following data declaration declares a word that contains the address
of the beginning of the TOC:

Chapter 3. Syntax and Semantics 33

.long TOC[TCO]

This symbol is undefined unless a .toc pseudo-op is contained within the assembler file.

For more information, see the [“.toc Pseudo-op” on page 504

TOC Entry Names

A symbol can be defined when used as the Name operand of the .tc pseudo-op. When used in this
manner, the symbol is defined as the name of a TOC entry with a storage mapping class of TC.

The Name operand takes the form of:

symbol[TC]

For more information, see the |“.tc Pseudo-op” on page 503.|

Using a Symbol before Defining It

It is possible to use a symbol before you define it. Using a symbol and then defining it later in the same
file is called forward referencing. For example, the following is acceptable:

Assume that GPR 6 contains the address of .csect data[RW].
1 5,ten(6)

.csect data[RW]
ten: .Tong 10

If the symbol is not defined in the file in which it occurs, it may be an external symbol or an undefined
symbol. When the assembler finds undefined symbols, it gives an error message unless theElflag of the
as command is used to suppress this error message. External symbols may be declared in a statement
using the [.extern Pseudo-op” on page 481

Declaring an External Symbol

If a local symbol is used that is defined in another module, the .extern pseudo-op is used to declare that
symbol in the local file as an external symbol. Any undefined symbols that do not appear in a statement
with the .extern or pseudo-op will be flagged with an error.

Related Information
[‘Character Set” on page 27|

[‘Reserved Words” on page 2§

[Line Format” on page 2§

[‘Statements” on page 29

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

Thesubroutine.

34 Assembler Language Reference

“.comm Pseudo-op” on page 471 ,[[‘.csect Pseudo-op” on page 473 [“.double Pseudo-op” on page 475
“.dsect Pseudo-op” on page 477 [".float Pseudo-op” on page 483J]“.Icomm Pseudo-op” on page 486]
Pseudo-op” on page 503,[|“.toc Pseudo-op” on page 504 [[‘tocof Pseudo-op” on page 504

Constants

The assembler language provides four kinds of constants:
» Arithmetic constants

+ [‘Character Constants” on page 37]

+ [‘Symbolic Constants” on page 37|

* |“String Constants” on page 3—7|

When the assembler encounters an arithmetic or character constant being used as an instruction’s
operand, the value of that constant is assembled into the instruction. When the assembler encounters a
symbol being used as a constant, the value of the symbol is assembled into the instruction.

Arithmetic Constants

The assembler language provides four kinds of arithmetic constants:
* Decimal

e Octal

* Hexadecimal

* Floating point

In 32-bit mode, the largest signed positive integer number that can be represented is the decimal value
(2**31) - 1. The largest negative value is -(2**31). In 64-bit mode, the largest signed positive integer
number that can be represented is (2**63)-1. The largest negative value is -(2**63). Regardless of the
base (for example, decimal, hexadecimal, or octal), the assembler regards integers as 32-bit constants.

The interpretation of a constant is dependent upon the assembly mode. In 32-bit mode, the AlIX assembler
behaves in the same manner as earlier AIX versions: the assembler regards integers as 32-bit constants.
In 64-bit mode, all constants are interpreted as 64-bit values. This may lead to results that differ from
expectations. For example, in 32-bit mode, the hexadecimal value OxFFFFFFFF is equivalent to the
decimal value of "-1". In 64-bit mode, however, the decimal equivalent is 4294967295. To obtain the value
"-1" the hexadecimal constant OxFFFF_FFFF_FFFF_FFFF (or the octal equivalent), or the decimal value
-1, should be used.

In both 32-bit and 64-bit mode, the result of integer expressions may be truncated if the size of the target
storage area is too small to contain an expression result. (In this context, truncation refers to the removal
of the excess most-significant bits.)

To improve readability of large constants, especially 64-bit values, the assembler will accept constants
containing the underscore ("_") character. The underscore may appear anywhere within the number
except the first numeric position. For example, consider the following table:

Constant Value Valid/Invalid?

1_800_500 Valid

O0xFFFFFFFF_00000000 Valid
0b111010_00100_00101_00000000001000_00 Valid (this is the "Id 4,8(5)" instruction)
0x_FFFF Invalid

Chapter 3. Syntax and Semantics 35

The third example shows a binary representation of an instruction where the underscore characters are
used to delineate the various fields within the instruction. The last example contains a hexadecimal prefix,
but the character immediately following is not a valid digit; the constant is therefore invalid.

Arithmetic Evaluation

In 32-bit mode, arithmetic evaluation takes place using 32-bit math. For the .llong pseudo-op, which is
used to specify a 64-bit quantity, any evaluation required to initialize the value of the storage area uses
32-bit arithmetic.

For 64-bit mode, arithmetic evaluation uses 64-bit math. No sign extension occurs, even if a number might
be considered negative in a 32-bit context. Negative numbers must be specified using decimal format, or
(for example, in hexadecimal format) by using a full complement of hexadecimal digits (16 of them).

Decimal Constants

Base 10 is the default base for arithmetic constants. If you want to specify a decimal number, type the
number in the appropriate place:

ai 5,4,10

Add the decimal value 10 to the contents

of GPR 4 and put the result in GPR 5.

Do not prefix decimal numbers with a 0. A leading zero indicates that the number is octal.

Octal Constants

To specify that a number is octal, prefix the number with a 0:
ai 5,4,0377

Add the octal value 0377 to the contents

of GPR 4 and put the result in GPR 5.

Hexadecimal Constants

To specify a hexadecimal number, prefix the number with 0X or 0x. You can use either uppercase or
lowercase for the hexadecimal numerals A through F.

ai 5,4,0xF

Add the hexadecimal value OxF to the

contents of GPR 4 and put the result
in GPR 5.

Binary Constants
To specify a binary number, prefix the number with 6B or 0b.

ori 3,6,0b0010 0001

OR (the decimal value) 33 with the
contents of GPR 6 and put the result
in GPR 3.

Floating-Point Constants
A floating-point constant has the following components in the specified order:

Integer Part Must be one or more digits.

Decimal Point . (period). Optional if no fractional part follows.

Fraction Part Must be one or more digits. The fraction part is optional.

Exponent Part Optional. Consists of an e or E, possibly followed by a + or -, followed by one or more
digits.

For assembler input, you can omit the fraction part. For example, the following are valid floating-point
constants:

* 0.45
* le+h

36 Assembler Language Reference

* 4E-11
* 0.99E6
e 357.22el2

Floating-point constants are allowed only where fcon expressions are found.
There is no bounds checking for the operand.

Note:In AIX 4.3 and later, the assembler uses the strtold subroutine to perform the conversion to
floating point. Check current documentation for restrictions and return values.

Character Constants

To specify an ASCII character constant, prefix the constant with a * (single quotation mark). Character
constants can appear anywhere an arithmetic constant is allowed, but you can only specify one character
constant at a time. For example A represents the ASCII code for the character A.

Character constants are convenient when you want to use the code for a particular character as a
constant, for example:

cal 3,'X(0)

Loads GPR 3 with the ASCII code for

the character X (that is, 0x58).

After the cal instruction executes, GPR 3 will

contain binary
0x0000 0000 0000 0000 0000 00OO 0101 1000.

Symbolic Constants

A symbol can be used as a constant by giving the symbol a value. The value can then be referred to by
the symbol name, instead of by using the value itself.

Using a symbol as a constant is convenient if a value occurs frequently in a program. Define the symbolic
constant once by giving the value a name. To change its value, simply change the definition (not every
reference to it) in the program. The changed file must be reassembled before the new symbol constant is
valid.

A symbolic constant can be defined by using it as a label or by using it in a statement.

String Constants

String constants differ from other types of constants in that they can be used only as operands to certain
pseudo-ops, such as the|.rename| |.byte} or|.string| pseudo-ops.

The syntax of string constants consists of any number of characters enclosed in "” (double quotation
marks):

"any number of characters"

To use a " in a string constant, use double quotation marks twice. For example:

"a double quote character is specified like this

Related Information
[‘Character Set” on page 27|

[‘Reserved Words” on page 2§

[‘Line Format” on page 28|

Chapter 3. Syntax and Semantics 37

[‘Statements” on page 29

[‘Symbols” on page 31|

[‘Expressions” on page 39|

Thesubroutine.

“.comm Pseudo-op” on page 471 ||'.csect Pseudo-op” on page 473,|".double Pseudo-op” on page 475
“.dsect Pseudo-op” on page 477/["float Pseudo-op” on page 483/|“.lcomm Pseudo-op” on page 486]|“£|
Pseudo-op” on page 503,[|“.toc Pseudo-op” on page 504 [‘.tocof Pseudo-op” on page 504.|

Operators

All operators evaluate from left to right except for the unary operators, which evaluate from right to left.

The assembler provides the following unary operators:

+ unary positive
- unary negative
~ one’s complement (unary)

The assembler provides the following binary operators:

multiplication
division

right shift

left shift

bitwise inclusive or
bitwise AND
bitwise exclusive or
addition

subtraction

> — AV O~ *

'+

Parentheses can be used in expressions to change the order in which the assembler evaluates the
expression. Operations within parentheses are performed before operations outside parentheses. Where
nested parentheses are involved, processing starts with the innermost set of parentheses and proceeds
outward.

Operator Precedence
Operator precedence for 32-bit expressions is shown in the following figure.

Highest Priority

~

nary -, unary +,

S~ D —

(
unary -
* < >
| ~ &
+

v

Lowest Priority

38 Assembler Language Reference

In 32-bit mode, all the operators perform 32-bit signed integer operations. In 64-bit mode, all computations
are performed using 64-bit signed integer operations.

The division operator produces an integer result; the remainder has the same sign as the dividend. For
example:

Operation Result Remainder
8/3 2 2
8/-3 -2 2
(-8)/3 -2 -2
(-8)/(-3) 2 -2

The left shift (<) and right shift (>) operators take an integer bit value for the right-hand operand. For
example:

.set mydata,l

.set newdata,mydata<2

Shifts 1 left 2 bits.

Assigns the result to newdata.

Related Information
[‘Character Set” on page 27

[‘Reserved Words” on page 28§

[‘Line Format” on page 28|

[‘Statements” on page 29

[‘Symbols” on page 31|

[‘Constants” on page 35|

“Expressions”
The subroutine.

“.comm Pseudo-op” on page 471 ,|[‘.csect Pseudo-op” on page 473 |“.double Pseudo-op” on page 475)
“.dsect Pseudo-op” on page 477/[float Pseudo-op” on page 483[[*.lcomm Pseudo-op” on page 486/ tc|
Pseudo-op” on page 503,[|“.toc Pseudo-op” on page 504 [[*.tocof Pseudo-op” on page 504

Expressions

A term is the smallest element that the assembler parser can recognize when processing an expression.
Each term has a value and a type. An expression is formed by one or more terms. The assembler
evaluates each expression into a single value, and uses that value as an operand. Each expression also
has a type. If an expression is formed by one term, the expression has the same type as the type of the
term. If an expression consists of more than one term, the type is determined by the expression handler
according to certain rules applied to all the types of terms contained in the expression. Expression types
are important because:

* Some pseudo-ops and instructions require expressions with a particular type.
» Only certain operators are allowed in certain types of expressions.

Chapter 3. Syntax and Semantics 39

Object Mode Considerations

One aspect of assembly language expressions is that of the object mode and relocation vs. the size of the
data value being calculated. In 32-bit mode, relocation is applied to 32-bit quantities; expressions resulting
in a requirement for relocation (for example, a reference to an external symbol) can not have their value
stored in any storage area other than a word. For the .llong pseudo-op, it is worthwhile to point out that
expressions used to initialize the contents of a .llong may not require relocation. In 64-bit mode, relocation
is applied to double-word quantities. Thus, expression results that require relocation can not have their
value stored in a location smaller than a double-word.

Arithmetic evaluations of expressions in 32-bit mode is consistent with the behavior found in prior releases
of the assembler. Integer constants are considered to be 32-bit quantities, and the calculations are 32-bit
calculations. In 64-bit mode constants are 64-bit values, and expressions are evaluated using 64-bit
calculations.

Types and Values of Terms

The following is a list of all the types of terms and an abbreviated name for each type:
« [Absolute (E ABS)|

+ [Relocatable (E REL)|

« [External relocatable (E EXT)|

[TOC-relative relocatable (E TREL)|

+ [TOCOF relocatable (E TOCOF)|

Absolute Terms
A term is absolute if its value does not change upon program relocation. In other words, a term is absolute
if its value is independent of any possible code relocation operation.

An absolute term is one of the following items:
A constant (including all the kinds of constants defined in [‘Constants” on page 35).
» A symbol set to an absolute expression.

The value of an absolute term is the constant value.

Relocatable Terms

A term is relocatable if its value changes upon program relocation. The value of a relocatable term
depends on the location of the control section containing it. If the control section moves to a different
storage location (for example, a csect is relocated by the binder at bind time), the value of the relocatable
term changes accordingly.

A relocatable term is one of the following items:

» A label defined within a csect that does not have TD or TC as its Storage Mapping Class (SMC)
* A symbol set to a relocatable expression

A label defined within a dsect

* A dsect name

» Alocation counter reference (which uses $, the dollar sign)

If it is not used as a displacement for a D-form instruction, the value of a csect label or a location counter
reference is its relocatable address, which is the sum of the containing csect address and the offset
relative to the containing csect. If it is used as a displacement for a D-form instruction, the assembler
implicitly subtracts the containing csect address so that only the the offset is used for the displacement. A
csect address is the offset relative to the beginning of the first csect of the file.

40 Assembler Language Reference

A dsect is a reference control section that allows you to describe the layout of data in a storage area
without actually reserving any storage. A dsect provides a symbolic format that is empty of data. The
assembler does assign location counter values to the labels that are defined in a dsect. The values are the
offsets relative to the beginning of the dsect. The data in a dsect at run time can be referenced
symbolically by using the labels defined in a dsect.

Relocatable terms based on a dsect location counter (either the dsect name or dsect labels) are
meaningful only in the context of a .using statement. Since this is the only way to associate a base
address with a dsect, the addressability of the dsect is established in combination with the storage area.

A relocatable term may be based on any control section, either csect or dsect, in all the contexts except if
it is used as a relocatable address constant. If a csect label is used as an address constant, it represents
a relocatable address, and its value is the offset relative to the csect plus the address of the csect. A dsect
label cannot be used as a relocatable address constant since a dsect is only a data template and has no
address.

If two dsect labels are defined in the same dsect, their difference can be used as an absolute address
constant.

External Relocatable Terms

A term is external relocatable (E_EXT) if it is an external symbol (a symbol not defined, but declared within
the current module, or defined in the current module and globally visible), a csect name, or a TOC entry
name.

This term is relocatable because its value will change if it, or its containing control section, is relocated.
An external relocatable term or expression cannot be used as the operand of a .set pseudo-op.

An external relocatable term is one of the following items:

* A symbol defined wi