
AIX 5L Version 5.3

Technical Reference: Base Operating
System and Extensions, Volume 1

SC23-4913-06

���

AIX 5L Version 5.3

Technical Reference: Base Operating
System and Extensions, Volume 1

SC23-4913-06

���

Note
Before using this information and the product it supports, read the information in Appendix C, “Notices,” on page 1359.

Seventy Edition (October 2009)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6B013, 11501 Burnet Road, Austin, Texas
78758-3400. To send comments electronically, use this commercial Internet address: pserinfo@us.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . xxi
Highlighting . xxi
Case-Sensitivity in AIX . xxi
ISO 9000 . xxi
32-Bit and 64-Bit Support for the Single UNIX Specification. xxii
Related Publications . xxii

Base Operating System (BOS) Runtime Services (A-P) 1
a64l or l64a Subroutine. 1
abort Subroutine . 2
abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine 3
access, accessx, or faccessx Subroutine . 4
acct Subroutine. 7
acl_chg or acl_fchg Subroutine . 8
acl_get or acl_fget Subroutine . 10
acl_put or acl_fput Subroutine . 12
acl_set or acl_fset Subroutine . 14
aclx_convert Subroutine . 16
aclx_get or aclx_fget Subroutine . 17
aclx_gettypeinfo Subroutine. 20
aclx_gettypes Subroutine . 21
aclx_print or aclx_printStr Subroutine . 23
aclx_put or aclx_fput Subroutine . 25
aclx_scan or aclx_scanStr Subroutine . 27
acos, acosf, acosl, acosd32, acosd64, or acosd128 Subroutines 29
acosh, acoshf, acoshl, acoshd32, acoshd64, and acoshd128 Subroutines. 30
addproj Subroutine . 31
addprojdb Subroutine . 32
addssys Subroutine. 34
adjtime Subroutine . 35
agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list Subroutine 36
aio_cancel or aio_cancel64 Subroutine . 38
aio_error or aio_error64 Subroutine . 42
aio_fsync Subroutine . 45
aio_nwait Subroutine . 47
aio_nwait_timeout Subroutine . 49
aio_read or aio_read64 Subroutine . 50
aio_return or aio_return64 Subroutine . 55
aio_suspend or aio_suspend64 Subroutine . 58
aio_write or aio_write64 Subroutine . 61
alloc, dealloc, print, read_data, read_regs, symbol_addrs, write_data, and write_regs Subroutine . . . 66
alloclmb Subroutine. 68
arm_end Subroutine . 69
arm_end Dual Call Subroutine. 71
arm_getid Subroutine . 73
arm_getid Dual Call Subroutine . 75
arm_init Subroutine . 77
arm_init Dual Call Subroutine . 79
arm_start Subroutine . 81
arm_start Dual Call Subroutine . 82
arm_stop Subroutine . 84
arm_stop Dual Call Subroutine . 86
arm_update Subroutine . 88

© Copyright IBM Corp. 1994, 2009 iii

arm_update Dual Call Subroutine . 89
asinh, asinhf, asinhl, asinhd32, asinhd64, and asinhd128 Subroutines 90
asinf, asinl, asin, asind32, asind64, and asind128 Subroutines 91
assert Macro . 92
atan2f, atan2l, atan2, atan2d32, atan2d64, and atan2d128 Subroutines 93
atan, atanf, atanl, atand32, atand64, and atand128 Subroutines 94
atanh, atanhf, atanhl, atanhd32, atanhd64, and atanhd128 Subroutines 95
atof atoff Subroutine . 97
atol or atoll Subroutine . 98
audit Subroutine . 99
auditbin Subroutine . 101
auditevents Subroutine . 103
auditlog Subroutine . 105
auditobj Subroutine . 106
auditpack Subroutine. 109
auditproc Subroutine . 110
auditread, auditread_r Subroutines. 112
auditwrite Subroutine . 113
authenticate Subroutine . 114
authenticatex Subroutine . 116
basename Subroutine . 118
bcopy, bcmp, bzero or ffs Subroutine . 119
bessel: j0, j1, jn, y0, y1, or yn Subroutine . 120
bindprocessor Subroutine . 121
brk or sbrk Subroutine . 123
bsearch Subroutine . 124
btowc Subroutine . 125
buildproclist Subroutine . 126
buildtranlist or freetranlist Subroutine . 127
_check_lock Subroutine. 128
_clear_lock Subroutine . 129
cabs, cabsf, or cabsl Subroutine . 130
cacos, cacosf, or cacosl Subroutine . 130
cacosh, cacoshf, or cacoshl Subroutines . 131
carg, cargf, or cargl Subroutine . 132
casin, casinf, or casinl Subroutine . 132
casinh, casinfh, or casinlh Subroutine . 133
catan, catanf, or catanl Subroutine. 133
catanh, catanhf, or catanhl Subroutine . 134
catclose Subroutine . 135
catgets Subroutine . 136
catopen Subroutine . 137
cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 Subroutines 138
ccos, ccosf, or ccosl Subroutine. 139
ccosh, ccoshf, or ccoshl Subroutine . 140
ccsidtocs or cstoccsid Subroutine . 140
ceil, ceilf, ceill, ceild32, ceild64, and ceild128 Subroutines 141
cexp, cexpf, or cexpl Subroutine . 142
cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine 143
chacl or fchacl Subroutine . 145
chdir Subroutine . 148
chmod or fchmod Subroutine. 149
chown, fchown, lchown, chownx, or fchownx Subroutine. 152
chpass Subroutine . 155
chpassx Subroutine . 157
chprojattr Subroutine . 159

iv AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

chprojattrdb Subroutine . 160
chroot Subroutine . 161
chssys Subroutine. 163
cimag, cimagf, or cimagl Subroutine . 164
ckuseracct Subroutine . 165
ckuserID Subroutine . 167
class, _class, finite, isnan, or unordered Subroutines 168
clock Subroutine . 170
clock_getcpuclockid Subroutine . 170
clock_getres, clock_gettime, and clock_settime Subroutine 171
clock_nanosleep Subroutine . 173
clog, clogf, or clogl Subroutine . 175
close Subroutine . 176
compare_and_swap Subroutine . 177
compile, step, or advance Subroutine . 178
confstr Subroutine . 182
conj, conjf, or conjl Subroutine . 183
conv Subroutines . 184
copysign, copysignf, copysignl , copysignd32, copysignd64, and copysignd128 Subroutines 186
coredump Subroutine . 187
cosf, cosl, cos, cosd32, cosd64, and cosd128 Subroutines 188
cosh, coshf, coshl, coshd32, coshd64, and coshd128 Subroutines 189
cpow, cpowf, or cpowl Subroutine . 190
cproj, cprojf, or cprojl Subroutine . 191
creal, crealf, or creall Subroutine . 192
crypt, encrypt, or setkey Subroutine . 192
csid Subroutine . 194
csin, csinf, or csinl Subroutine . 195
csinh, csinhf, or csinhl Subroutine . 195
csqrt, csqrtf, or csqrtl Subroutine . 196
CT_HOOKx and CT_GEN macros . 196
CT_TRCON macro . 198
ctan, ctanf, or ctanl Subroutine . 199
ctanh, ctanhf, or ctanhl Subroutine. 200
ctermid Subroutine . 200
ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine 201
ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine 204
ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine 206
ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine 208
ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or

isascii Subroutines. 209
cuserid Subroutine . 211
defssys Subroutine . 212
delssys Subroutine . 213
dirname Subroutine . 215
disclaim and disclaim64 Subroutines . 216
dlclose Subroutine. 217
dlerror Subroutine . 218
dlopen Subroutine . 219
dlsym Subroutine . 221
drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, or srand48 Subroutine 222
drem Subroutine . 224
_end, _etext, or _edata Identifier . 225
ecvt, fcvt, or gcvt Subroutine . 226
EnableCriticalSections, BeginCriticalSection, and EndCriticalSection Subroutine 228
erf, erff, erfl, erfd32, erfd64, and erfd128 Subroutines 228

Contents v

erfc, erfcf, erfcl, erfcd32, erfcd64, and erfcd128 Subroutines 230
errlog Subroutine . 231
errlog_close Subroutine. 233
errlog_find_first, errlog_find_next, and errlog_find_sequence Subroutines 233
errlog_open Subroutine . 235
errlog_set_direction Subroutine . 236
errlog_write Subroutine . 237
exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine 238
exit, atexit, unatexit, _exit, or _Exit Subroutine . 245
exp, expf, expl, expd32, expd64, and expd128 Subroutines 247
exp2, exp2f, exp2l, exp2d32, exp2d64, and exp2d128 Subroutines 249
expm1, expm1f, expm1l, expm1d32, expm1d64, and expm1d128 Subroutine 250
fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 Subroutines 251
fattach Subroutine . 252
fchdir Subroutine . 253
fclear or fclear64 Subroutine . 254
fclose or fflush Subroutine . 256
fcntl, dup, or dup2 Subroutine . 257
fdetach Subroutine . 263
fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 Subroutines 264
fe_dec_getround and fe_dec_setround Subroutines 265
feclearexcept Subroutine . 267
fegetenv or fesetenv Subroutine . 267
fegetexceptflag or fesetexceptflag Subroutine. 268
fegetround or fesetround Subroutine . 269
feholdexcept Subroutine . 269
fence Subroutine . 270
feof, ferror, clearerr, or fileno Macro . 272
feraiseexcept Subroutine . 273
fetch_and_add Subroutine . 273
fetch_and_and or fetch_and_or Subroutine . 274
fetestexcept Subroutine . 275
feupdateenv Subroutine. 276
finfo or ffinfo Subroutine . 276
flockfile, ftrylockfile, funlockfile Subroutine . 278
floor, floorf, floorl, floord32, floord64, floord128, nearest, trunc, itrunc, and uitrunc Subroutines. . . . 279
fma, fmaf, fmal, and fmad128 Subroutines . 281
fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 Subroutines 283
fminf, fminl, fmind32, fmind64, and fmind128 Subroutines 284
fmod, fmodf, fmodl, fmodd32, fmodd64, and fmodd128 Subroutines 285
fmtmsg Subroutine . 286
fnmatch Subroutine . 288
fopen, fopen64, freopen, freopen64 or fdopen Subroutine 290
fork, f_fork, or vfork Subroutine . 293
fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine 296
fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine 297
fp_cpusync Subroutine . 299
fp_flush_imprecise Subroutine . 301
fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subroutine 301
fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp, fp_iop_sqrt,

fp_iop_convert, or fp_iop_vxsoft Subroutines . 303
fp_raise_xcp Subroutine . 304
fp_read_rnd or fp_swap_rnd Subroutine. 305
fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine 306
fp_trap Subroutine. 308
fp_trapstate Subroutine . 310

vi AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

fpclassify Macro . 312
fread or fwrite Subroutine . 313
freehostent Subroutine . 315
freelmb Subroutine . 316
frevoke Subroutine . 316
frexpd32, frexpd64, and frexpd128 Subroutines . 317
frexpf, frexpl, or frexp Subroutine . 318
fscntl Subroutine . 319
fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64

Subroutine. 320
fsync or fsync_range Subroutine . 324
ftok Subroutine . 325
ftw or ftw64 Subroutine . 326
fwide Subroutine . 329
fwprintf, wprintf, swprintf Subroutines . 329
fwscanf, wscanf, swscanf Subroutines . 334
gai_strerror Subroutine . 338
gamma Subroutine . 339
gencore or coredump Subroutine . 340
genpagvalue Subroutine . 342
get_malloc_log Subroutine. 343
get_malloc_log_live Subroutine . 344
get_speed, set_speed, or reset_speed Subroutines 345
getargs Subroutine . 346
getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr Subroutine 347
getauthdb or getauthdb_r Subroutine . 349
getc, getchar, fgetc, or getw Subroutine . 350
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines 352
getconfattr or putconfattr Subroutine . 353
getconfattrs Subroutine . 358
getcontext or setcontext Subroutine . 360
getcwd Subroutine . 361
getdate Subroutine . 362
getdtablesize Subroutine . 365
getea Subroutine . 366
getenv Subroutine . 367
getevars Subroutine . 368
getfilehdr Subroutine . 369
getfirstprojdb Subroutine . 370
getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent Subroutine 371
getgid, getegid or gegidx Subroutine . 373
getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine 374
getgrgid_r Subroutine . 375
getgrnam_r Subroutine . 376
getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine 377
getgroupattrs Subroutine . 381
getgroups Subroutine . 385
getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine 386
getgrset Subroutine . 388
getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer, or setitimer Subroutine 389
getiopri Subroutine . 392
getipnodebyaddr Subroutine . 393
getipnodebyname Subroutine . 394
getlogin Subroutine . 396
getlogin_r Subroutine . 397
getnextprojdb Subroutine . 398

Contents vii

getopt Subroutine . 399
getpagesize Subroutine . 402
getpaginfo Subroutine . 402
getpagvalue or getpagvalue64 Subroutine . 403
getpass Subroutine . 404
getpcred Subroutine . 405
getpeereid Subroutine . 407
getpenv Subroutine . 407
getpgid Subroutine . 409
getpid, getpgrp, or getppid Subroutine . 409
getportattr or putportattr Subroutine . 410
getpri Subroutine . 413
getpriority, setpriority, or nice Subroutine . 414
getproclist, getlparlist, or getarmlist Subroutine . 416
getprocs Subroutine . 417
getproj Subroutine. 420
getprojdb Subroutine . 421
getprojs Subroutine . 422
getpw Subroutine . 423
getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine 424
getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine 426
getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent Subroutine 429
getrusage, getrusage64, times, or vtimes Subroutine 430
getroleattr, nextrole or putroleattr Subroutine . 433
gets or fgets Subroutine . 436
getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or endfsent_r Subroutine 437
getsid Subroutine . 438
getssys Subroutine . 439
getsubopt Subroutine . 440
getsubsvr Subroutine . 441
gettcbattr or puttcbattr Subroutine . 442
getthrds Subroutine . 445
gettimeofday, settimeofday, or ftime Subroutine . 447
gettimer, settimer, restimer, stime, or time Subroutine 448
gettimerid Subroutine . 451
getttyent, getttynam, setttyent, or endttyent Subroutine 452
getuid, geteuid, or getuidx Subroutine . 454
getuinfo Subroutine . 455
getuinfox Subroutine . 455
getuserattr, IDtouser, nextuser, or putuserattr Subroutine 456
getuserattrs Subroutine . 462
GetUserAuths Subroutine . 469
getuserpw, putuserpw, or putuserpwhist Subroutine 470
getuserpwx Subroutine . 472
getusraclattr, nextusracl or putusraclattr Subroutine 474
getutent, getutid, getutline, pututline, setutent, endutent, or utmpname Subroutine 476
getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine 478
getwc, fgetwc, or getwchar Subroutine . 479
getwd Subroutine . 481
getws or fgetws Subroutine . 482
glob Subroutine. 484
globfree Subroutine . 487
grantpt Subroutine. 487
HBA_CloseAdapter Subroutine . 488
HBA_FreeLibrary Subroutine . 489

viii AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

HBA_GetAdapterAttributes, HBA_GetPortAttributes, HBA_GetDiscoveredPortAttributes,
HBA_GetPortAttributesByWWN Subroutine. 489

HBA_GetAdapterName Subroutine . 492
HBA_GetEventBuffer Subroutine . 493
HBA_GetFC4Statistics Subroutine . 494
HBA_GetFcpPersistentBinding Subroutine . 495
HBA_GetFCPStatistics Subroutine. 496
HBA_GetFcpTargetMappingV2 Subroutine . 497
HBA_GetFcpTargetMapping Subroutine . 498
HBA_GetNumberOfAdapters Subroutine . 499
HBA_GetPersistentBindingV2 Subroutine . 500
HBA_GetPortStatistics Subroutine . 501
HBA_GetRNIDMgmtInfo Subroutine . 502
HBA_GetVersion Subroutine . 503
HBA_LoadLibrary Subroutine. 504
HBA_OpenAdapter Subroutine . 505
HBA_OpenAdapterByWWN Subroutine . 505
HBA_RefreshInformation Subroutine . 506
HBA_ScsiInquiryV2 Subroutine . 507
HBA_ScsiReadCapacityV2 Subroutine . 509
HBA_ScsiReportLunsV2 Subroutine . 511
HBA_SendCTPassThru Subroutine . 512
HBA_SendCTPassThruV2 Subroutine . 513
HBA_SendReadCapacity Subroutine . 514
HBA_SendReportLUNs Subroutine . 515
HBA_SendRLS Subroutine . 517
HBA_SendRNID Subroutine . 518
HBA_SendRNIDV2 Subroutine . 519
HBA_SendRPL Subroutine . 521
HBA_SendRPS Subroutine . 522
HBA_SendScsiInquiry Subroutine . 523
HBA_SetRNIDMgmtInfo Subroutine . 525
hpmInit, f_hpminit, hpmStart, f_hpmstart, hpmStop, f_hpmstop, hpmTstart, f_hpmtstart, hpmTstop,

f_hpmtstop, hpmGetTimeAndCounters, f_hpmgettimeandcounters, hpmGetCounters,
f_hpmgetcounters, hpmTerminate, and f_hpmterminate Subroutine 526

hsearch, hcreate, or hdestroy Subroutine . 529
hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128 Subroutines 530
iconv Subroutine . 532
iconv_close Subroutine . 533
iconv_open Subroutine . 534
ilogbf, ilogbl, or ilogb Subroutine . 536
imaxabs Subroutine . 537
imaxdiv Subroutine . 537
IMAIXMapping Subroutine . 538
IMAuxCreate Callback Subroutine . 539
IMAuxDestroy Callback Subroutine . 539
IMAuxDraw Callback Subroutine . 540
IMAuxHide Callback Subroutine. 541
IMBeep Callback Subroutine . 542
IMClose Subroutine . 542
IMCreate Subroutine . 543
IMDestroy Subroutine . 544
IMFilter Subroutine . 544
IMFreeKeymap Subroutine . 545
IMIndicatorDraw Callback Subroutine. 546
IMIndicatorHide Callback Subroutine . 546

Contents ix

IMInitialize Subroutine . 547
IMInitializeKeymap Subroutine . 548
IMIoctl Subroutine . 549
IMLookupString Subroutine . 551
IMProcess Subroutine . 552
IMProcessAuxiliary Subroutine . 553
IMQueryLanguage Subroutine . 554
IMSimpleMapping Subroutine . 555
IMTextCursor Callback Subroutine . 556
IMTextDraw Callback Subroutine . 557
IMTextHide Callback Subroutine . 557
IMTextStart Callback Subroutine . 558
inet_aton Subroutine . 559
initgroups Subroutine. 560
initialize Subroutine . 560
insque or remque Subroutine. 561
install_lwcf_handler Subroutine . 562
ioctl, ioctlx, ioctl32, or ioctl32x Subroutine . 563
isblank Subroutine. 566
isendwin Subroutine . 567
isfinite Macro . 568
isgreater Macro. 568
isgreaterequal Subroutine . 569
isinf Subroutine . 570
isless Macro . 570
islessequal Macro . 571
islessgreater Macro . 572
isnormal Macro . 572
isunordered Macro . 573
iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, or

iswxdigit Subroutine . 574
iswblank Subroutine . 575
iswctype or is_wctype Subroutine . 576
jcode Subroutines . 577
Japanese conv Subroutines . 578
Japanese ctype Subroutines . 580
kill or killpg Subroutine . 582
kleenup Subroutine . 583
knlist Subroutine . 584
kpidstate Subroutine . 586
_lazySetErrorHandler Subroutine . 586
l3tol or ltol3 Subroutine . 588
l64a_r Subroutine . 589
LAPI_Addr_get Subroutine . 590
LAPI_Addr_set Subroutine . 591
LAPI_Address Subroutine . 593
LAPI_Address_init Subroutine . 594
LAPI_Address_init64 Subroutine . 596
LAPI_Amsend Subroutine . 598
LAPI_Amsendv Subroutine . 603
LAPI_Fence Subroutine . 611
LAPI_Get Subroutine . 612
LAPI_Getcntr Subroutine . 615
LAPI_Getv Subroutine . 616
LAPI_Gfence Subroutine . 620
LAPI_Init Subroutine. 621

x AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_Msg_string Subroutine. 626
LAPI_Msgpoll Subroutine . 628
LAPI_Nopoll_wait Subroutine . 630
LAPI_Probe Subroutine . 631
LAPI_Purge_totask Subroutine . 632
LAPI_Put Subroutine . 634
LAPI_Putv Subroutine . 636
LAPI_Qenv Subroutine . 640
LAPI_Resume_totask Subroutine . 643
LAPI_Rmw Subroutine . 644
LAPI_Rmw64 Subroutine . 648
LAPI_Senv Subroutine . 652
LAPI_Setcntr Subroutine . 654
LAPI_Setcntr_wstatus Subroutine . 656
LAPI_Term Subroutine . 657
LAPI_Util Subroutine . 659
LAPI_Waitcntr Subroutine . 670
LAPI_Xfer Subroutine . 672
layout_object_create Subroutine . 685
layout_object_editshape or wcslayout_object_editshape Subroutine 686
layout_object_getvalue Subroutine. 689
layout_object_setvalue Subroutine . 691
layout_object_shapeboxchars Subroutine . 693
layout_object_transform or wcslayout_object_transform Subroutine 694
layout_object_free Subroutine . 697
ldahread Subroutine . 698
ldclose or ldaclose Subroutine . 699
ldexpd32, ldexpd64, and ldexpd128 Subroutines . 700
ldexp, ldexpf, or ldexpl Subroutine . 701
ldfhread Subroutine . 703
ldgetname Subroutine . 704
ldlread, ldlinit, or ldlitem Subroutine . 706
ldlseek or ldnlseek Subroutine . 707
ldohseek Subroutine . 709
ldopen or ldaopen Subroutine . 709
ldrseek or ldnrseek Subroutine . 711
ldshread or ldnshread Subroutine . 712
ldsseek or ldnsseek Subroutine . 714
ldtbindex Subroutine . 715
ldtbread Subroutine . 716
ldtbseek Subroutine . 717
lgamma, lgammaf, lgammal, lgammad32, lgammad64, and lgammad128 Subroutine 718
lineout Subroutine . 719
link Subroutine . 721
lio_listio or lio_listio64 Subroutine . 722
listea Subroutine . 727
llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 Subroutines 728
llround, llroundf, llroundl, llroundd32, llroundd64, and llroundd128 Subroutines 729
load and loadAndInit Subroutines . 730
loadbind Subroutine . 734
loadquery Subroutine . 736
localeconv Subroutine . 738
lockfx, lockf, flock, or lockf64 Subroutine . 742
log10, log10f, log10l, log10d32, log10d64, and log10d128 Subroutine 746
log1p, log1pf, log1pl, log1pd32, log1pd64, and log1pd128 Subroutines 747
log2, log2f, log2l, log2d32, log2d64, and log2d128 Subroutine 748

Contents xi

logbd32, logbd64, and logbd128 Subroutines . 749
ilogbd32, ilogbd64, and ilogbd128 Subroutines . 750
logbf, logbl, or logb Subroutine . 751
log, logf, logl, logd32, logd64, and logd128 Subroutines 752
loginfailed Subroutine . 754
loginrestrictions Subroutine . 755
loginrestrictionsx Subroutine . 758
loginsuccess Subroutine . 761
lpar_get_info Subroutine . 762
lpar_set_resources Subroutine . 765
lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 Subroutines 766
lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128 Subroutines. 767
lsearch or lfind Subroutine . 768
lseek, llseek or lseek64 Subroutine . 770
lvm_querylv Subroutine . 771
lvm_querypv Subroutine . 775
lvm_queryvg Subroutine . 778
lvm_queryvgs Subroutine . 781
malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign

Subroutine. 782
madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout,

omout, fmout, m_out, sdiv, or itom Subroutine. 789
madvise Subroutine . 791
makecontext or swapcontext Subroutine . 792
matherr Subroutine . 793
MatchAllAuths, MatchAnyAuths, MatchAllAuthsList, or MatchAnyAuthsList Subroutine 794
mblen Subroutine . 795
mbrlen Subroutine. 796
mbrtowc Subroutine . 797
mbsadvance Subroutine . 798
mbscat, mbscmp, or mbscpy Subroutine . 799
mbschr Subroutine . 800
mbsinit Subroutine . 801
mbsinvalid Subroutine . 802
mbslen Subroutine . 802
mbsncat, mbsncmp, or mbsncpy Subroutine . 803
mbspbrk Subroutine . 804
mbsrchr Subroutine . 805
mbsrtowcs Subroutine . 806
mbstomb Subroutine . 807
mbstowcs Subroutine . 808
mbswidth Subroutine. 809
mbtowc Subroutine . 809
memccpy, memchr, memcmp, memcpy, memset or memmove Subroutine 811
mincore Subroutine . 812
MIO_aio_read64 Subroutine . 813
MIO_aio_suspend64 Subroutine . 814
MIO_aio_write64 Subroutine . 815
MIO_close Subroutine . 816
MIO_fcntl Subroutine. 820
MIO_ffinfo Subroutine . 821
MIO_fstat64 Subroutine. 822
MIO_fsync Subroutine . 823
MIO_ftruncate64 Subroutine . 823
MIO_lio_listio64 Subroutine . 824
MIO_lseek64 Subroutine . 825

xii AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

MIO_open64 Subroutine . 826
MIO_open Subroutine . 832
MIO_read Subroutine . 837
MIO_write Subroutine . 838
mkdir Subroutine . 839
mknod or mkfifo Subroutine . 841
mktemp or mkstemp Subroutine . 842
mlock and munlock Subroutine . 844
mlockall and munlockall Subroutine . 845
mmap or mmap64 Subroutine . 847
mntctl Subroutine . 851
modf, modff, modfl, modfd32, modfd64, and modfd128 Subroutines 852
moncontrol Subroutine . 853
monitor Subroutine . 855
monstartup Subroutine . 860
mprotect Subroutine . 863
mq_close Subroutine. 865
mq_getattr Subroutine . 866
mq_notify Subroutine . 867
mq_open Subroutine . 868
mq_receive Subroutine . 870
mq_send Subroutine . 872
mq_setattr Subroutine . 873
mq_receive, mq_timedreceive Subroutine . 874
mq_send, mq_timedsend Subroutine . 876
mq_unlink Subroutine . 878
msem_init Subroutine . 879
msem_lock Subroutine . 880
msem_remove Subroutine . 881
msem_unlock Subroutine . 882
msgctl Subroutine . 883
msgget Subroutine . 885
msgrcv Subroutine . 886
msgsnd Subroutine . 889
msgxrcv Subroutine . 891
msleep Subroutine . 893
msync Subroutine . 894
mt__trce Subroutine . 895
munmap Subroutine . 897
mwakeup Subroutine. 898
nan, nanf, nanl, nand32, nand64, and nand128 Subroutines 899
nanosleep Subroutine . 900
nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and nearbyintd128 Subroutines 901
nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, or nexttowardl Subroutine 902
nextafterd32, nextafterd64, nextafterd128, nexttowardd32, nexttowardd64, and nexttowardd128

Subroutines . 904
newpass Subroutine . 905
newpassx Subroutine . 907
nftw or nftw64 Subroutine . 909
nl_langinfo Subroutine . 911
nlist, nlist64 Subroutine . 913
ns_addr Subroutine . 914
ns_ntoa Subroutine . 915
odm_add_obj Subroutine . 916
odm_change_obj Subroutine . 917
odm_close_class Subroutine . 918

Contents xiii

odm_create_class Subroutine . 919
odm_err_msg Subroutine . 920
odm_free_list Subroutine . 921
odm_get_by_id Subroutine . 922
odm_get_list Subroutine . 923
odm_get_obj, odm_get_first, or odm_get_next Subroutine 925
odm_initialize Subroutine . 927
odm_lock Subroutine. 927
odm_mount_class Subroutine . 929
odm_open_class or odm_open_class_rdonly Subroutine 930
odm_rm_by_id Subroutine . 931
odm_rm_class Subroutine . 932
odm_rm_obj Subroutine . 933
odm_run_method Subroutine. 935
odm_set_path Subroutine . 936
odm_set_perms Subroutine . 937
odm_terminate Subroutine. 937
odm_unlock Subroutine . 938
open, openx, open64, creat, or creat64 Subroutine. 939
opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64, readdir64, telldir64, seekdir64,

rewinddir64, or closedir64 Subroutine . 947
pam_acct_mgmt Subroutine . 950
pam_authenticate Subroutine . 951
pam_chauthtok Subroutine . 953
pam_close_session Subroutine . 954
pam_end Subroutine . 955
pam_get_data Subroutine . 956
pam_get_item Subroutine . 957
pam_get_user Subroutine . 958
pam_getenv Subroutine. 959
pam_getenvlist Subroutine. 960
pam_open_session Subroutine . 961
pam_putenv Subroutine. 962
pam_set_data Subroutine . 963
pam_set_item Subroutine . 964
pam_setcred Subroutine . 965
pam_sm_acct_mgmt Subroutine . 967
pam_sm_authenticate Subroutine . 968
pam_sm_chauthtok Subroutine . 969
pam_sm_close_session Subroutine . 971
pam_sm_open_session Subroutine . 972
pam_sm_setcred Subroutine . 973
pam_start Subroutine . 974
pam_strerror Subroutine . 977
passwdexpired Subroutine. 977
passwdexpiredx Subroutine . 978
passwdpolicy Subroutine . 980
passwdstrength Subroutine . 982
pathconf or fpathconf Subroutine . 983
pause Subroutine . 986
pcap_close Subroutine . 986
pcap_compile Subroutine . 987
pcap_datalink Subroutine . 988
pcap_dispatch Subroutine . 988
pcap_dump Subroutine . 990
pcap_dump_close Subroutine . 990

xiv AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pcap_dump_open Subroutine . 991
pcap_file Subroutine . 992
pcap_fileno Subroutine . 992
pcap_geterr Subroutine . 993
pcap_is_swapped Subroutine . 994
pcap_lookupdev Subroutine . 994
pcap_lookupnet Subroutine . 995
pcap_loop Subroutine . 996
pcap_major_version Subroutine . 997
pcap_minor_version Subroutine . 998
pcap_next Subroutine . 999
pcap_open_live Subroutine . 999
pcap_open_live_sb Subroutine . 1000
pcap_open_offline Subroutine . 1001
pcap_perror Subroutine . 1002
pcap_setfilter Subroutine . 1003
pcap_snapshot Subroutine . 1004
pcap_stats Subroutine . 1004
pcap_strerror Subroutine . 1005
pclose Subroutine . 1006
perfstat_cpu Subroutine . 1007
perfstat_cpu_total Subroutine . 1008
perfstat_disk Subroutine . 1010
perfstat_diskadapter Subroutine . 1012
perfstat_diskpath Subroutine . 1013
perfstat_disk_total Subroutine . 1015
perfstat_logicalvolume Subroutine . 1017
perfstat_memory_page Subroutine . 1018
perfstat_memory_total Subroutine . 1019
perfstat_netbuffer Subroutine . 1020
perfstat_netinterface Subroutine . 1022
perfstat_netinterface_total Subroutine . 1023
perfstat_pagingspace Subroutine . 1024
perfstat_partial_reset Subroutine . 1026
perfstat_partition_total Subroutine . 1028
perfstat_protocol Subroutine . 1029
perfstat_reset Subroutine. 1030
perfstat_tape Subroutine . 1031
perfstat_tape_total Subroutine . 1032
perfstat_volumegroup Subroutine. 1033
perror Subroutine . 1034
pipe Subroutine . 1035
plock Subroutine . 1036
pm_cycles Subroutine . 1037
pm_delete_program Subroutine . 1038
pm_delete_program_group Subroutine . 1039
pm_delete_program_mygroup Subroutine . 1040
pm_delete_program_mythread Subroutine . 1041
pm_delete_program_pgroup Subroutine . 1042
pm_delete_program_pthread Subroutine . 1043
pm_delete_program_thread Subroutine . 1044
pm_error Subroutine . 1045
pm_get_data, pm_get_tdata, pm_get_Tdata, pm_get_data_cpu, pm_get_tdata_cpu,

pm_get_Tdata_cpu, pm_get_data_lcpu, pm_get_tdata_lcpu and pm_get_Tdata_lcpu Subroutine . 1046
pm_get_data_group, pm_get_tdata_group and pm_get_Tdata_group Subroutine 1049
pm_get_data_group_mx and pm_get_tdata_group_mx Subroutine 1050

Contents xv

pm_get_data_mx, pm_get_tdata_mx, pm_get_data_cpu_mx, pm_get_tdata_cpu_mx,
pm_get_data_lcpu_mx and pm_get_tdata_lcpu_mx Subroutine 1052

pm_get_data_mygroup, pm_get_tdata_mygroup or pm_get_Tdata_mygroup Subroutine 1054
pm_get_data_mygroup_mx or pm_get_tdata_mygroup_mx Subroutine 1056
pm_get_data_mythread, pm_get_tdata_mythread or pm_get_Tdata_mythread Subroutine 1057
pm_get_data_mythread_mx or pm_get_tdata_mythread_mx Subroutine 1058
pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine 1060
pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx Subroutine 1062
pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine 1063
pm_get_data_pthread_mx or pm_get_tdata_pthread_mx Subroutine 1065
pm_get_data_thread, pm_get_tdata_thread or pm_get_Tdata_thread Subroutine 1067
pm_get_data_thread_mx or pm_get_tdata_thread_mx Subroutine 1069
pm_get_proctype Subroutine . 1070
pm_get_program Subroutine . 1071
pm_get_program_group Subroutine . 1072
pm_get_program_group_mx and pm_get_program_group_mm Subroutines 1073
pm_get_program_mx and pm_get_program_mm Subroutines 1076
pm_get_program_mygroup Subroutine . 1077
pm_get_program_mygroup_mx and pm_get_program_mygroup_mm Subroutines 1079
pm_get_program_mythread Subroutine . 1080
pm_get_program_mythread_mx and pm_get_program_mythread_mm Subroutines 1081
pm_get_program_pgroup Subroutine . 1083
pm_get_program_pgroup_mx and pm_get_program_pgroup_mm Subroutines 1085
pm_get_program_pthread Subroutine . 1087
pm_get_program_pthread_mx and pm_get_program_pthread_mm Subroutines 1088
pm_get_program_thread Subroutine . 1090
pm_get_program_thread_mx and pm_get_program_thread_mm Subroutines. 1091
pm_init Subroutine . 1093
pm_initialize Subroutine . 1095
pm_reset_data Subroutine . 1097
pm_reset_data_group Subroutine . 1098
pm_reset_data_mygroup Subroutine . 1099
pm_reset_data_mythread Subroutine . 1100
pm_reset_data_pgroup Subroutine . 1101
pm_reset_data_pthread Subroutine . 1103
pm_reset_data_thread Subroutine . 1104
pm_set_program Subroutine . 1105
pm_set_program_group Subroutine . 1106
pm_set_program_group_mx and pm_set_program_group_mm Subroutines 1108
pm_set_program_mx and pm_set_program_mm Subroutines 1110
pm_set_program_mygroup Subroutine . 1112
pm_set_program_mygroup_mx and pm_set_program_mygroup_mm Subroutines 1113
pm_set_program_mythread Subroutine. 1116
pm_set_program_mythread_mx and pm_set_program_mythread_mm Subroutines. 1117
pm_set_program_pgroup Subroutine . 1119
pm_set_program_pgroup_mx and pm_set_program_pgroup_mm Subroutines 1121
pm_set_program_pthread Subroutine . 1123
pm_set_program_pthread_mx and pm_set_program_pthread_mm Subroutines 1125
pm_set_program_thread Subroutine. 1127
pm_set_program_thread_mx and pm_set_program_thread_mm Subroutines 1129
pm_start and pm_tstart Subroutine . 1131
pm_start_group and pm_tstart_group Subroutine . 1132
pm_start_mygroup and pm_tstart_mygroup Subroutine 1133
pm_start_mythread and pm_tstart_mythread Subroutine 1135
pm_start_pgroup and pm_tstart_pgroup Subroutine 1136
pm_start_pthread and pm_tstart_pthread Subroutine 1137

xvi AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pm_start_thread and pm_tstart_thread Subroutine 1139
pm_stop and pm_tstop Subroutine . 1140
pm_stop_group and pm_tstop_group Subroutine . 1141
pm_stop_mygroup and pm_tstop_mygroup Subroutine 1142
pm_stop_mythread and pm_tstop_mythread Subroutine 1143
pm_stop_pgroup and pm_tstop_pgroup Subroutine 1144
pm_stop_pthread and pm_tstop_pthread Subroutine 1146
pm_stop_thread and pm_tstop_thread Subroutine 1147
poll Subroutine . 1148
pollset_create, pollset_ctl, pollset_destroy, pollset_poll, and pollset_query Subroutines 1151
popen Subroutine . 1154
posix_fadvise Subroutine . 1155
posix_fallocate Subroutine . 1156
posix_madvise Subroutine . 1157
posix_openpt Subroutine . 1158
posix_spawn or posix_spawnp Subroutine . 1159
posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen Subroutine 1163
posix_spawn_file_actions_adddup2 Subroutine. 1164
posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine 1165
posix_spawnattr_destroy or posix_spawnattr_init Subroutine 1166
posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine 1167
posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine 1168
posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine 1169
posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine 1170
posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine 1171
posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine 1172
posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event

Subroutine . 1173
powf, powl, pow, powd32, powd64, and powd128 Subroutines 1176
printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine 1178
profil Subroutine . 1186
proj_execve Subroutine . 1188
projdballoc Subroutine . 1189
projdbfinit Subroutine . 1189
projdbfree Subroutine . 1191
psdanger Subroutine . 1191
psignal Subroutine or sys_siglist Vector . 1192
pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_key, pthdb_mutex, pthdb_mutexattr, pthdb_pthread,

pthdb_pthread_key, pthdb_rwlock, or pthdb_rwlockattr Subroutine 1193
pthdb_attr_detachstate,pthdb_attr_addr, pthdb_attr_guardsize,pthdb_attr_inheritsched,

pthdb_attr_schedparam,pthdb_attr_schedpolicy, pthdb_attr_schedpriority,pthdb_attr_scope,
pthdb_attr_stackaddr,pthdb_attr_stacksize, or pthdb_attr_suspendstate Subroutine. 1195

pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine 1197
pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared Subroutine. 1198
pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling, pthdb_mutexattr_protocol,

pthdb_mutexattr_pshared or pthdb_mutexattr_type Subroutine 1199
pthdb_mutex_addr, pthdb_mutex_lock_count, pthdb_mutex_owner, pthdb_mutex_pshared,

pthdb_mutex_prioceiling, pthdb_mutex_protocol, pthdb_mutex_state or pthdb_mutex_type
Subroutine . 1201

pthdb_mutex_waiter, pthdb_cond_waiter, pthdb_rwlock_read_waiter or pthdb_rwlock_write_waiter
Subroutine . 1203

pthdb_pthread_arg Subroutine . 1204
pthdb_pthread_context or pthdb_pthread_setcontext Subroutine 1207
pthdb_pthread_hold, pthdb_pthread_holdstate or pthdb_pthread_unhold Subroutine 1208
pthdb_pthread_sigmask, pthdb_pthread_sigpend or pthdb_pthread_sigwait Subroutine 1209
pthdb_pthread_specific Subroutine . 1210

Contents xvii

pthdb_pthread_tid or pthdb_tid_pthread Subroutine 1211
pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutine 1212
pthdb_rwlock_addr, pthdb_rwlock_lock_count, pthdb_rwlock_owner, pthdb_rwlock_pshared or

pthdb_rwlock_state Subroutine . 1213
pthdb_session_committed Subroutines. 1215
pthread_atfork Subroutine . 1218
pthread_attr_destroy Subroutine . 1219
pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines. 1220
pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine 1222
pthread_attr_getschedparam Subroutine . 1223
pthread_attr_getschedpolicy, pthread_attr_setschedpolicy Subroutine 1224
pthread_attr_getstackaddr Subroutine . 1225
pthread_attr_getstacksize Subroutine . 1226
pthread_attr_init Subroutine . 1227
pthread_attr_getdetachstate or pthread_attr_setdetachstate Subroutines 1228
pthread_attr_getscope and pthread_attr_setscope Subroutines 1229
pthread_attr_getukeyset_np or pthread_attr_setukeyset_np Subroutine 1231
pthread_attr_setschedparam Subroutine . 1232
pthread_attr_setstackaddr Subroutine . 1233
pthread_attr_setstacksize Subroutine . 1234
pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np Subroutine 1235
pthread_barrier_destroy or pthread_barrier_init Subroutine 1236
pthread_barrier_wait Subroutine . 1238
pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine 1239
pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutine 1240
pthread_cancel Subroutine . 1241
pthread_cleanup_pop or pthread_cleanup_push Subroutine 1242
pthread_cond_destroy or pthread_cond_init Subroutine 1243
PTHREAD_COND_INITIALIZER Macro . 1245
pthread_cond_signal or pthread_cond_broadcast Subroutine 1245
pthread_cond_wait or pthread_cond_timedwait Subroutine 1246
pthread_condattr_destroy or pthread_condattr_init Subroutine 1248
pthread_condattr_getclock, pthread_condattr_setclock Subroutine. 1250
pthread_condattr_getpshared Subroutine . 1251
pthread_condattr_setpshared Subroutine . 1252
pthread_create Subroutine . 1253
pthread_create_withcred_np Subroutine . 1255
pthread_delay_np Subroutine . 1257
pthread_equal Subroutine . 1257
pthread_exit Subroutine . 1258
pthread_get_expiration_np Subroutine . 1260
pthread_getconcurrency or pthread_setconcurrency Subroutine 1261
pthread_getcpuclockid Subroutine . 1262
pthread_getrusage_np Subroutine . 1262
pthread_getschedparam Subroutine . 1265
pthread_getspecific or pthread_setspecific Subroutine 1266
pthread_getthrds_np Subroutine . 1268
pthread_getunique_np Subroutine . 1271
pthread_join or pthread_detach Subroutine . 1272
pthread_key_create Subroutine . 1273
pthread_key_delete Subroutine . 1274
pthread_kill Subroutine . 1275
pthread_lock_global_np Subroutine . 1276
pthread_mutex_init or pthread_mutex_destroy Subroutine. 1277
pthread_mutex_getprioceiling or pthread_mutex_setprioceiling Subroutine. 1279
PTHREAD_MUTEX_INITIALIZER Macro . 1280

xviii AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine 1280
pthread_mutex_timedlock Subroutine . 1282
pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine 1283
pthread_mutexattr_getkind_np Subroutine . 1285
pthread_mutexattr_getprioceiling or pthread_mutexattr_setprioceiling Subroutine 1286
pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol Subroutine 1287
pthread_mutexattr_getpshared or pthread_mutexattr_setpshared Subroutine 1289
pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutine 1290
pthread_mutexattr_setkind_np Subroutine . 1291
pthread_once Subroutine. 1293
PTHREAD_ONCE_INIT Macro . 1294
pthread_rwlock_init or pthread_rwlock_destroy Subroutine 1294
pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines 1296
pthread_rwlock_timedrdlock Subroutine . 1297
pthread_rwlock_timedwrlock Subroutine . 1299
pthread_rwlock_unlock Subroutine . 1300
pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines 1301
pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines. 1303
pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared Subroutines 1304
pthread_self Subroutine . 1305
pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel Subroutines 1306
pthread_setschedparam Subroutine . 1307
pthread_setschedprio Subroutine . 1309
pthread_sigmask Subroutine . 1310
pthread_signal_to_cancel_np Subroutine . 1310
pthread_spin_destroy or pthread_spin_init Subroutine 1311
pthread_spin_lock or pthread_spin_trylock Subroutine 1312
pthread_spin_unlock Subroutine . 1313
pthread_suspend_np, pthread_unsuspend_np and pthread_continue_np Subroutine 1314
pthread_unlock_global_np Subroutine . 1315
pthread_yield Subroutine . 1316
ptrace, ptracex, ptrace64 Subroutine . 1317
ptsname Subroutine . 1330
putc, putchar, fputc, or putw Subroutine . 1331
putconfattrs Subroutine . 1333
putenv Subroutine . 1336
putgrent Subroutine. 1336
putgroupattrs Subroutine . 1337
puts or fputs Subroutine . 1341
putuserattrs Subroutine . 1343
putuserpwx Subroutine . 1347
putwc, putwchar, or fputwc Subroutine . 1349
putws or fputws Subroutine . 1351
pwdrestrict_method Subroutine . 1352

Appendix A. Base Operating System Error Codes for Services That Require Path-Name
Resolution . 1355

Related Information . 1355

Appendix B. ODM Error Codes . 1357
Related Information . 1358

Appendix C. Notices . 1359
Trademarks. 1360

Index . 1361

Contents xix

xx AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

About This Book

This book provides experienced C programmers with complete detailed information about Base Operating
System runtime services for the AIX operating system. Runtime services are listed alphabetically, and
complete descriptions are given for them. This volume contains AIX services that begin with the letters A
through P. To use the book effectively, you should be familiar with commands, system calls, subroutines,
file formats, and special files. This publication is also available on the documentation CD that is shipped
with the operating system.

This book is part of the six-volume technical reference set, AIX 5L Version 5.3 Technical Reference, that
provides information on system calls, kernel extension calls, and subroutines in the following volumes:

v AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L
Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2 provide information
on system calls, subroutines, functions, macros, and statements associated with base operating system
runtime services.

v AIX 5L Version 5.3 Technical Reference: Communications Volume 1 and AIX 5L Version 5.3 Technical
Reference: Communications Volume 2 provide information on entry points, functions, system calls,
subroutines, and operations related to communications services.

v AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.3
Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,
device driver operations, file system operations, subroutines, the configuration subsystem, the
communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,
the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and
the serial DASD subsystem.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.

Monospace Identifies examples of specific data values, examples of
text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

Case-Sensitivity in AIX
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 1994, 2009 xxi

32-Bit and 64-Bit Support for the Single UNIX Specification
Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX
Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even
more open and portable for applications, while remaining compatible with previous releases of AIX.
To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The
Open Group’s UNIX 03 specification, which can be accessed online or downloaded from
http://www.unix.org/ .

Related Publications
The following books contain information about or related to application programming interfaces:

v Operating system and device management

v Networks and communication management

v AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

v AIX 5L Version 5.3 Communications Programming Concepts

v AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts

v AIX 5L Version 5.3 Files Reference

xxii AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Base Operating System (BOS) Runtime Services (A-P)

a64l or l64a Subroutine

Purpose
Converts between long integers and base-64 ASCII strings.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

long a64l (String)
char *String;

char *l64a (LongInteger)
long LongInteger;

Description
The a64l and l64a subroutines maintain numbers stored in base-64 ASCII characters. This is a notation in
which long integers are represented by up to 6 characters, each character representing a digit in a
base-64 notation.

The following characters are used to represent digits:

Character Description
. Represents 0.
/ Represents 1.
0 -9 Represents the numbers 2-11.
A-Z Represents the numbers 12-37.
a-z Represents the numbers 38-63.

Parameters

String Specifies the address of a null-terminated character string.
LongInteger Specifies a long value to convert.

Return Values
The a64l subroutine takes a pointer to a null-terminated character string containing a value in base-64
representation and returns the corresponding long value. If the string pointed to by the String parameter
contains more than 6 characters, the a64l subroutine uses only the first 6.

Conversely, the l64a subroutine takes a long parameter and returns a pointer to the corresponding
base-64 representation. If the LongInteger parameter is a value of 0, the l64a subroutine returns a pointer
to a null string.

The value returned by the l64a subroutine is a pointer into a static buffer, the contents of which are
overwritten by each call.

© Copyright IBM Corp. 1994, 2009 1

If the *String parameter is a null string, the a64l subroutine returns a value of 0L.

If LongInteger is 0L, the l64a subroutine returns a pointer to a null string.

Related Information
Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

List of Multithread Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

abort Subroutine

Purpose
Sends a SIGIOT signal to end the current process.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int abort (void)

Description
The abort subroutine sends a SIGIOT signal to the current process to terminate the process and produce
a memory dump. If the signal is caught and the signal handler does not return, the abort subroutine does
not produce a memory dump.

If the SIGIOT signal is neither caught nor ignored, and if the current directory is writable, the system
produces a memory dump in the core file in the current directory and prints an error message.

The abnormal-termination processing includes the effect of the fclose subroutine on all open streams and
message-catalog descriptors, and the default actions defined as the SIGIOT signal. The SIGIOT signal is
sent in the same manner as that sent by the raise subroutine with the argument SIGIOT.

The status made available to the wait or waitpid subroutine by the abort subroutine is the same as a
process terminated by the SIGIOT signal. The abort subroutine overrides blocking or ignoring the SIGIOT
signal.

Note: The SIGABRT signal is the same as the SIGIOT signal.

Return Values
The abort subroutine does not return a value.

Related Information
The exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245), atexit (“exit, atexit, unatexit, _exit,
or _Exit Subroutine” on page 245), or _exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245)
subroutine, fclose (“fclose or fflush Subroutine” on page 256) subroutine, kill (“kill or killpg Subroutine” on
page 582), or killpg (“kill or killpg Subroutine” on page 582) subroutine, raise subroutine, sigaction,
sigvec, signal subroutine, wait or waidtpid subroutine.

The dbx command.

2 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine

Purpose
Computes absolute value, division, and double precision multiplication of integers.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int abs (i)
int i;

#include <stdlib.h>

long labs (i)
long i;

#include <stdlib.h>

div_t div (Numerator, Denominator)
int Numerator: Denominator;

#include <stdlib.h>

void imul_dbl (i, j, Result)
long i, j;
long *Result;

#include <stdlib.h>

ldiv_t ldiv (Numerator, Denominator)
long Numerator: Denominator;

#include <stdlib.h>

void umul_dbl (i, j, Result)
unsigned long i, j;
unsigned long *Result;

#include <stdlib.h>

long long int llabs(i)
long long int i;

#include <stdlib.h>

lldiv_t lldiv (Numerator, Denominator)
long long int Numerator, Denominator;

Description
The abs subroutine returns the absolute value of its integer operand.

Note: A twos-complement integer can hold a negative number whose absolute value is too large for the
integer to hold. When given this largest negative value, the abs subroutine returns the same value.

The div subroutine computes the quotient and remainder of the division of the number represented by the
Numerator parameter by that specified by the Denominator parameter. If the division is inexact, the sign of
the resulting quotient is that of the algebraic quotient, and the magnitude of the resulting quotient is the
largest integer less than the magnitude of the algebraic quotient. If the result cannot be represented (for
example, if the denominator is 0), the behavior is undefined.

Base Operating System (BOS) Runtime Services (A-P) 3

The labs and ldiv subroutines are included for compatibility with the ANSI C library, and accept long
integers as parameters, rather than as integers.

The imul_dbl subroutine computes the product of two signed longs, i and j, and stores the double long
product into an array of two signed longs pointed to by the Result parameter.

The umul_dbl subroutine computes the product of two unsigned longs, i and j, and stores the double
unsigned long product into an array of two unsigned longs pointed to by the Result parameter.

The llabs and lldiv subroutines compute the absolute value and division of long long integers. These
subroutines operate under the same restrictions as the abs and div subroutines.

Note: When given the largest negative value, the llabs subroutine (like the abs subroutine) returns the
same value.

Parameters

i Specifies, for the abs subroutine, some integer; for labs and imul_dbl, some long integer; for
the umul_dbl subroutine, some unsigned long integer; for the llabs subroutine, some long long
integer.

Numerator Specifies, for the div subroutine, some integer; for the ldiv subroutine, some long integer; for
lldiv, some long long integer.

j Specifies, for the imul_dbl subroutine, some long integer; for the umul_dbl subroutine, some
unsigned long integer.

Denominator Specifies, for the div subroutine, some integer; for the ldiv subroutine, some long integer; for
lldiv, some long long integer.

Result Specifies, for the imul_dbl subroutine, some long integer; for the umul_dbl subroutine, some
unsigned long integer.

Return Values
The abs, labs, and llabs subroutines return the absolute value. The imul_dbl and umul_dbl subroutines
have no return values. The div subroutine returns a structure of type div_t. The ldiv subroutine returns a
structure of type ldiv_t, comprising the quotient and the remainder. The structure is displayed as:
struct ldiv_t {

int quot; /* quotient */
int rem; /* remainder */

};

The lldiv subroutine returns a structure of type lldiv_t, comprising the quotient and the remainder.

access, accessx, or faccessx Subroutine

Purpose
Determines the accessibility of a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int access (PathName, Mode)
char *PathName;

4 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int Mode;

int accessx (PathName, Mode, Who)
char *PathName;
int Mode, Who;

int faccessx (FileDescriptor, Mode, Who)
int FileDescriptor;
int Mode, Who;

Description
The access, accessx, and faccessx subroutines determine the accessibility of a file system object. The
accessx and faccessx subroutines allow the specification of a class of users or processes for whom
access is to be checked.

The caller must have search permission for all components of the PathName parameter.

Parameters

PathName Specifies the path name of the file. If the PathName parameter refers to a symbolic link,
the access subroutine returns information about the file pointed to by the symbolic link.

FileDescriptor Specifies the file descriptor of an open file.
Mode Specifies the access modes to be checked. This parameter is a bit mask containing 0 or

more of the following values, which are defined in the sys/access.h file:

R_OK Check read permission.

W_OK Check write permission.

X_OK Check execute or search permission.

F_OK Check the existence of a file.

If none of these values are specified, the existence of a file is checked.
Who Specifies the class of users for whom access is to be checked. This parameter must be

one of the following values, which are defined in the sys/access.h file:

ACC_SELF
Determines if access is permitted for the current process. The effective user and
group IDs, the concurrent group set and the privilege of the current process are
used for the calculation.

ACC_INVOKER
Determines if access is permitted for the invoker of the current process. The real
user and group IDs, the concurrent group set, and the privilege of the invoker
are used for the calculation.

Note: The expression access (PathName, Mode) is equivalent to accessx
(PathName, Mode, ACC_INVOKER).

ACC_OTHERS
Determines if the specified access is permitted for any user other than the object
owner. The Mode parameter must contain only one of the valid modes. Privilege
is not considered in the calculation.

ACC_ALL
Determines if the specified access is permitted for all users. The Mode
parameter must contain only one of the valid modes. Privilege is not considered
in the calculation .
Note: The accessx subroutine shows the same behavior by both the user and
root with ACC_ALL.

Base Operating System (BOS) Runtime Services (A-P) 5

Return Values
If the requested access is permitted, the access, accessx, and faccessx subroutines return a value of 0.
If the requested access is not permitted or the function call fails, a value of -1 is returned and the errno
global variable is set to indicate the error.

The access subroutine indicates success for X_OK even if none of the execute file permission bits are
set.

Error Codes
The access and accessx subroutines fail if one or more of the following are true:

EACCES Search permission is denied on a component of the PathName prefix.
EFAULT The PathName parameter points to a location outside the allocated address space of

the process.
ELOOP Too many symbolic links were encountered in translating the PathName parameter.
ENAMETOOLONG A component of the PathName parameter exceeded 255 characters or the entire

PathName parameter exceeded 1022 characters.
ENOENT A component of the PathName does not exist or the process has the disallow

truncation attribute set.
ENOENT The named file does not exist.
ENOENT The PathName parameter was null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOTDIR A component of the PathName is not a directory.
ESTALE The process root or current directory is located in a virtual file system that has been

unmounted.

The faccessx subroutine fails if the following is true:

EBADF The value of the FileDescriptor parameter is not valid.

The access, accessx, and faccessx subroutines fail if one or more of the following is true:

EACCES The file protection does not allow the requested access.
EIO An I/O error occurred during the operation.
ENOMEM Unable to allocate memory.
EROFS Write access is requested for a file on a read-only file system.

If Network File System (NFS) is installed on your system, the accessx and faccessx subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.
ETXTBSY Write access is requested for a shared text file that is being executed.
EINVAL The value of the Mode argument is invalid.

Related Information
The acl_get (“acl_get or acl_fget Subroutine” on page 10) subroutine, chacl (“chacl or fchacl Subroutine”
on page 145) subroutine, statx subroutine, statacl subroutine.

The aclget command, aclput command, chmod command, chown command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

6 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

acct Subroutine

Purpose
Enables and disables process accounting.

Library
Standard C Library (libc.a)

Syntax
int acct (Path)
char *Path;

Description
The acct subroutine enables the accounting routine when the Path parameter specifies the path name of
the file to which an accounting record is written for each process that terminates. When the Path
parameter is a 0 or null value, the acct subroutine disables the accounting routine.

If the Path parameter refers to a symbolic link, the acct subroutine causes records to be written to the file
pointed to by the symbolic link.

If Network File System (NFS) is installed on your system, the accounting file can reside on another node.

Note: To ensure accurate accounting, each node must have its own accounting file. Although no two
nodes should share accounting files, a node’s accounting files can be located on any node in the
network.

The calling process must have root user authority to use the acct subroutine.

Parameters

Path Specifies a pointer to the path name of the file or a null pointer.

Return Values
Upon successful completion, the acct subroutine returns a value of 0. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes
The acct subroutine is unsuccessful if one or more of the following are true:

EACCES Write permission is denied for the named accounting file.
EACCES The file named by the Path parameter is not an ordinary file.
EBUSY An attempt is made to enable accounting when it is already enabled.
ENOENT The file named by the Path parameter does not exist.
EPERM The calling process does not have root user authority.
EROFS The named file resides on a read-only file system.

If NFS is installed on the system, the acct subroutine is unsuccessful if the following is true:

ETIMEDOUT The connection timed out.

Base Operating System (BOS) Runtime Services (A-P) 7

acl_chg or acl_fchg Subroutine

Purpose
Changes the AIXC ACL type access control information on a file.

Library
Security Library (libc.a)

Syntax
#include <sys/access.h>

int acl_chg (Path, How, Mode, Who)
char * Path;
int How;
int Mode;
int Who;

int acl_fchg (FileDescriptor, How, Mode, Who)
int FileDescriptor;
int How;
int Mode;
int Who;

Description
The acl_chg and acl_fchg subroutines modify the AIXC ACL-type-based access control information of a
specified file. This call can fail for file system objects with any non-AIXC ACL.

Parameters

FileDescriptor Specifies the file descriptor of an open file.
How Specifies how the permissions are to be altered for the affected entries of the Access

Control List (ACL). This parameter takes one of the following values:

ACC_PERMIT
Allows the types of access included in the Mode parameter.

ACC_DENY
Denies the types of access included in the Mode parameter.

ACC_SPECIFY
Grants the access modes included in the Mode parameter and restricts the
access modes not included in the Mode parameter.

Mode Specifies the access modes to be changed. The Mode parameter is a bit mask containing
zero or more of the following values:

R_ACC
Allows read permission.

W_ACC
Allows write permission.

X_ACC Allows execute or search permission.
Path Specifies a pointer to the path name of a file.

8 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Who Specifies which entries in the ACL are affected. This parameter takes one of the following
values:

ACC_OBJ_OWNER
Changes the owner entry in the base ACL.

ACC_OBJ_GROUP
Changes the group entry in the base ACL.

ACC_OTHERS
Changes all entries in the ACL except the base entry for the owner.

ACC_ALL
Changes all entries in the ACL.

Return Values
On successful completion, the acl_chg and acl_fchg subroutines return a value of 0. Otherwise, a value
of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The acl_chg subroutine fails and the access control information for a file remains unchanged if one or
more of the following is true:

EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.
ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).
ENOENT The Path parameter was null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOTDIR A component of the Path prefix is not a directory.
ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The acl_fchg subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The FileDescriptor value is not valid.

The acl_chg or acl_fchg subroutine fails and the access control information for a file remains unchanged
if one or more of the following is true:

EINVAL The How parameter is not one of ACC_PERMIT, ACC_DENY, or ACC_SPECIFY.
EINVAL The Who parameter is not ACC_OWNER, ACC_GROUP, ACC_OTHERS, or ACC_ALL.
EROFS The named file resides on a read-only file system.

The acl_chg or acl_fchg subroutine fails and the access control information for a file remains unchanged
if one or more of the following is true:

EIO An I/O error occurred during the operation.
EPERM The effective user ID does not match the ID of the owner of the file and the invoker does not

have root user authority.

Base Operating System (BOS) Runtime Services (A-P) 9

If Network File System (NFS) is installed on your system, the acl_chg and acl_fchg subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The acl_get (“acl_get or acl_fget Subroutine”) subroutine, acl_put (“acl_put or acl_fput Subroutine” on
page 12) subroutine, acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine, chacl (“chacl or
fchacl Subroutine” on page 145) subroutine, chmod (“chmod or fchmod Subroutine” on page 149)
subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

acl_get or acl_fget Subroutine

Purpose
Gets the access control information of a file if the ACL associated is of the AIXC type.

Library
Security Library (libc.a)

Syntax
#include <sys/access.h>

char *acl_get (Path)
char * Path;

char *acl_fget (FileDescriptor)
int FileDescriptor;

Description
The acl_get and acl_fget subroutines retrieve the access control information for a file system object. This
information is returned in a buffer pointed to by the return value. The structure of the data in this buffer is
unspecified. The value returned by these subroutines should be used only as an argument to the acl_put
or acl_fput subroutines to copy or restore the access control information. Note that acl_get and acl_fget
subroutines could fail if the ACL associated with the file system object is of a different type than AIXC. It is
recommended that applications make use of aclx_get and aclx_fget subroutines to retrieve the ACL.

The buffer returned by the acl_get and acl_fget subroutines is in allocated memory. After usage, the caller
should deallocate the buffer using the free subroutine.

Parameters

Path Specifies the path name of the file.
FileDescriptor Specifies the file descriptor of an open file.

10 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
On successful completion, the acl_get and acl_fget subroutines return a pointer to the buffer containing
the access control information. Otherwise, a null pointer is returned and the errno global variable is set to
indicate the error.

Error Codes
The acl_get subroutine fails if one or more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.
ENOTDIR A component of the Path prefix is not a directory.
ENOENT A component of the Path does not exist or the process has the disallow truncation

attribute (see the ulimit subroutine).
ENOENT The Path parameter was null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The acl_fget subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_get or acl_fget subroutine fails if the following is true:

EIO An I/O error occurred during the operation.

If Network File System (NFS) is installed on your system, the acl_get and acl_fget subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.

Security

Access Control The invoker must have search permission for all components of the Path prefix.
Audit Events None.

Related Information
The acl_chg or acl_fchg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_put or acl_fput
(“acl_put or acl_fput Subroutine” on page 12) subroutine, acl_set or acl_fset (“acl_set or acl_fset
Subroutine” on page 14) subroutine, chacl (“chacl or fchacl Subroutine” on page 145) subroutine, chmod
(“chmod or fchmod Subroutine” on page 149) subroutine, stat subroutine, statacl subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 11

acl_put or acl_fput Subroutine

Purpose
Sets AIXC ACL type access control information of a file.

Library
Security Library (libc.a)

Syntax
#include <sys/access.h>

int acl_put (Path, Access, Free)
char * Path;
char * Access;
int Free;

int acl_fput (FileDescriptor, Access, Free)
int FileDescriptor;
char * Access;
int Free;

Description
The acl_put and acl_fput subroutines set the access control information of a file system object. This
information is contained in a buffer returned by a call to the acl_get or acl_fget subroutine. The structure
of the data in this buffer is unspecified. However, the entire Access Control List (ACL) for a file cannot
exceed one memory page (4096 bytes) in size. Note that acl_put/acl_fput operation could fail if the
existing ACL associated with the file system object is of a different kind or if the underlying physical file
system does not support AIXC ACL type. It is recommended that applications make use of aclx_put and
aclx_fput subroutines to set the ACL instead of acl_put/acl_fput routines.

Parameters

Path Specifies the path name of a file.
FileDescriptor Specifies the file descriptor of an open file.
Access Specifies a pointer to the buffer containing the access control information.
Free Specifies whether the buffer space is to be deallocated. The following values are valid:

0 Space is not deallocated.

1 Space is deallocated.

Return Values
On successful completion, the acl_put and acl_fput subroutines return a value of 0. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The acl_put subroutine fails and the access control information for a file remains unchanged if one or
more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ELOOP Too many symbolic links were encountered in translating the Path parameter.

12 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path
parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see
the ulimit subroutine).

ENOENT The Path parameter was null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOTDIR A component of the Path prefix is not a directory.
ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The acl_fput subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_put or acl_fput subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

EINVAL The Access parameter does not point to a valid access control buffer.
EINVAL The Free parameter is not 0 or 1.
EIO An I/O error occurred during the operation.
EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_put and acl_fput subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Event Information
chacl Path
fchacl FileDescriptor

Related Information
The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget
Subroutine” on page 10) subroutine, acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine,
chacl (“chacl or fchacl Subroutine” on page 145) subroutine, chmod (“chmod or fchmod Subroutine” on
page 149) subroutine, stat subroutine, statacl subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 13

acl_set or acl_fset Subroutine

Purpose
Sets the AIXC ACL type access control information of a file.

Library
Security Library (libc.a)

Syntax
#include <sys/access.h>

int acl_set (Path, OwnerMode, GroupMode, DefaultMode)
char * Path;
int OwnerMode;
int GroupMode;
int DefaultMode;

int acl_fset (FileDescriptor, OwnerMode, GroupMode, DefaultMode)
int * FileDescriptor;
int OwnerMode;
int GroupMode;
int DefaultMode;

Description
The acl_set and acl_fset subroutines set the base entries of the Access Control List (ACL) of the file. All
other entries are discarded. Other access control attributes are left unchanged. Note that if the file system
object is associated with any other ACL type access control information, it will be replaced with just the
Base mode bits information. It is strongly recommended that applications stop using these interfaces and
instead make use of aclx_put and aclx_fput subroutines to set the ACL.

Parameters

DefaultMode Specifies the access permissions for the default class.
FileDescriptor Specifies the file descriptor of an open file.
GroupMode Specifies the access permissions for the group of the file.
OwnerMode Specifies the access permissions for the owner of the file.
Path Specifies a pointer to the path name of a file.

The mode parameters specify the access permissions in a bit mask containing zero or more of the
following values:

R_ACC Authorize read permission.
W_ACC Authorize write permission.
X_ACC Authorize execute or search permission.

Return Values
Upon successful completion, the acl_set and acl_fset subroutines return the value 0. Otherwise, the value
-1 is returned and the errno global variable is set to indicate the error.

14 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The acl_set subroutine fails and the access control information for a file remains unchanged if one or
more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.
ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).
ENOENT The Path parameter was null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOTDIR A component of the Path prefix is not a directory.
ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The acl_fset subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The file descriptor FileDescriptor is not valid.

The acl_set or acl_fset subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

EIO An I/O error occurred during the operation.
EPERM The effective user ID does not match the ID of the owner of the file and the invoker does

not have root user authority.
EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_set and acl_fset subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Event Information
chacl Path
fchacl FileDescriptor

Related Information
The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget
Subroutine” on page 10) subroutine, acl_put (“acl_put or acl_fput Subroutine” on page 12) subroutine,
chacl (“chacl or fchacl Subroutine” on page 145) subroutine, chmod (“chmod or fchmod Subroutine” on
page 149) subroutine, stat subroutine, statacl subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

Base Operating System (BOS) Runtime Services (A-P) 15

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_convert Subroutine

Purpose
Converts the access control information from one ACL type to another.

Library
Security Library (libc.a)

Syntax
#include <sys/acl.h>

int aclx_convert (from_acl, from_sz, from_type, to_acl, to_sz, to_type, fs_obj_path)
void * from_acl;
size_t from_sz;
acl_type_t from_type;
void * to_acl;
size_t * to_sz;
acl_type_t to_type;
char * fs_obj_path;

Description
The aclx_convert subroutine converts the access control information from the binary input given in
from_acl of the ACL type from_type into a binary ACL of the type to_type and stores it in to_acl. Values
from_type and to_type can be any ACL types supported in the system.

The ACL conversion takes place with the help of an ACL type-specific algorithm. Because the conversion
is approximate, it can result in a potential loss of access control. Therefore, the user of this call must make
sure that the converted ACL satisfies the required access controls. The user can manually review the
access control information after the conversion for the file system object to ensure that the conversion was
successful and satisfied the requirements of the intended access control.

Parameters

from_acl Points to the ACL that has to be converted.
from_sz Indicates the size of the ACL information pointed to by from_acl.
from_type Indicates the ACL type information of the ACL. The acl_type is 64 bits in size and is

unique on the system. If the given acl_type is not supported in the system, this function
fails and errno is set to EINVAL.

to_acl Points to a buffer in which the target binary ACL has to be stored. The amount of memory
available in this buffer is indicated by the to_sz parameter.

to_sz Indicates the amount of memory, in bytes, available in to_acl. If to_sz contains less than
the required amount of memory for storing the converted ACL, *to_sz is set to the
required amount of memory and ENOSPC is returned by errno.

to_type Indicates the ACL type to which conversion needs to be done. The ACL type is 64 bits in
size and is unique on the system. If the given acl_type is not supported in the system,
this function fails and errno is set to EINVAL

fs_obj_path File System Object Path for which the ACL conversion is being requested. Gets
information about the object, such as whether it is file or directory.

16 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
On successful completion, the aclx_convert subroutine returns a value of 0. Otherwise, -1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The aclx_convert subroutine fails if one or more of the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine, either in from_type or in to_type. This errno could also be returned if the binary
ACL given in from_acl is not the type specified by from_type.

ENOSPC Insufficient storage space is available in to_acl.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events: If the auditing subsystem has been properly configured and is enabled, the aclx_convert
subroutine generates the following audit record (event) every time the command is executed:

Event Information
FILE_Acl Lists access controls.

Related Information
The aclget command, aclput command, aclconvert command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_get or aclx_fget Subroutine

Purpose
Gets the access control information for a file system object.

Library
Security Library (libc.a)

Syntax
#include <sys/acl.h>

int aclx_get (Path, ctl_flags, acl_type, acl, acl_sz, mode_info)
char * Path;
uint64_t ctl_flags;
acl_type_t * acl_type;
void * acl;
size_t * acl_sz;
mode_t * mode_info;

int aclx_fget (FileDescriptor, ctl_flags, acl_type, acl, acl_sz, mode_info)
int FileDescriptor;
uint64_t ctl_flags;
acl_type_t * acl_type;

Base Operating System (BOS) Runtime Services (A-P) 17

void * acl;
size_t * acl_sz;
mode_t * mode_info;

Description
The aclx_get and aclx_fget subroutines retrieve the access control information for a file system object in
the native ACL format. Native ACL format is the format as defined for the particular ACL type in the
system. These subroutines are advanced versions of the acl_get and acl_fget subroutines and should be
used instead of the older versions. The aclx_get and aclx_fget subroutines provide for more control for
the user to interact with the underlying file system directly.

In the earlier versions (acl_get or acl_fget), OS libraries found out the ACL size from the file system and
allocated the required memory buffer space to hold the ACL information. The caller does all this now with
the aclx_get and aclx_fget subroutines. Callers are responsible for finding out the size and allocating
memory for the ACL information, and later freeing the same memory after it is used. These subroutines
allow for an acl_type input and output argument. The data specified in this argument can be set to a
particular ACL type and a request for the ACL on the file system object of the same type. Some physical
file systems might do emulation to return the ACL type requested, if the ACL type that exists on the file
system object is different. If the acl_type pointer points to a data area with a value of ACL_ANY or 0, then
the underlying physical file system has to return the type of the ACL associated with the file system object.

The ctl_flags parameter is a bit mask that allows for control over the aclx_get requests.

The value returned by these subroutines can be use as an argument to the aclx_get or aclx_fget
subroutines to copy or restore the access control information.

Parameters

Path Specifies the path name of the file system object.
FileDescriptor Specifies the file descriptor of an open file.
ctl_flags This 64-bit sized bit mask provides control over the ACL retrieval. The following flag value

is defined:

GET_ACLINFO_ONLY
Gets only the ACL type and length information from the underlying file system.
When this bit is set, the acl argument can be set to NULL. In all other cases,
these must be valid buffer pointers (or else an error is returned). If this bit is not
specified, then all the other information about the ACL, such as ACL data and
mode information, is returned.

acl_type Points to a buffer that will hold ACL type information. The ACL type is 64 bits in size and
is unique on the system. The caller can provide an ACL type in this area and a request
for the ACL on the file system object of the same type. If the ACL type requested does
not match the one on the file system object, the physical file system might return an error
or emulate and provide the ACL information in the ACL type format requested. If the caller
does not know the ACL type and wants to retrieve the ACL associated with the file
system object, then the caller should set the buffer value pointed to by acl_type to
ACL_ANY or 0.

acl Points to a buffer where the ACL retrieved is stored. The size of this buffer is indicated by
the acl_sz parameter.

acl_sz Indicates the size of the buffer area passed through the acl parameter.
mode_info Pointer to a buffer where the mode word associated with the file system object is

returned. Note that this mode word’s meaning and formations depend entirely on the ACL
type concerned.

18 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
On successful completion, the aclx_put and aclx_fput subroutines return a value of 0. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_get subroutine fails if one or more of the following is true:

EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.
ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).
ENOENT The Path parameter was null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOTDIR A component of the Path prefix is not a directory.
ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The aclx_fget subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The aclx_get or aclx_fget subroutine fails if one or more of the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine.

EIO An I/O error occurred during the operation.
ENOSPC Input buffer size acl_sz is not sufficient to store the ACL data in acl.

If Network File System (NFS) is installed on your system, the aclx_get and aclx_fget subroutines can
also fail if the following condition is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events: None

Related Information
The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_put (“acl_get or acl_fget
Subroutine” on page 10) subroutine, acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine,
chacl (“chacl or fchacl Subroutine” on page 145) subroutine, chmod (“chmod or fchmod Subroutine” on
page 149) subroutine, stat subroutine, statacl subroutine, “aclx_convert Subroutine” on page 16.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 19

aclx_gettypeinfo Subroutine

Purpose
Retrieves the ACL characteristics given to an ACL type.

Library
Security Library (libc.a)

Syntax
#include <sys/acl.h>

int aclx_gettypeinfo (Path, acl_type, buffer, buffer_sz)
char * Path;
acl_type_t acl_type;
caddr_t buffer;
size_t * buffer_sz;

Description
The aclx_gettypeinfo subroutine helps obtain characteristics and capabilities of an ACL type on the file
system. The buffer space provided by the caller is where the ACL type-related information is returned. If
the length of this buffer is not enough to fit the characteristics for the ACL type requested, then
aclx_gettypeinfo returns an error and sets the buffer_len field to the amount of buffer space needed.

Parameters

Path Specifies the path name of the file.
acl_type ACL type for which the characteristics are sought.
buffer Specifies the pointer to a buffer space, where the characteristics of acl_type for the file

system is returned. The structure of data returned is ACL type-specific. Refer to the ACL
type-specific documentation for more details.

buffer_sz Points to an area that specifies the length of the buffer buffer in which the characteristics
of acl_type are returned by the file system. This is an input/output parameter. If the length
of the buffer provided is not sufficient to store all the ACL type characteristic information,
then the file system returns an error and indicates the length of the buffer required in this
variable. The length is specified in number of bytes.

Return Values
On successful completion, the aclx_gettypeinfo subroutine returns a value of 0. Otherwise, -1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The aclx_gettypeinfo subroutine fails and the access control information for a file remains unchanged if
one or more of the following is true:

EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.
ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).

20 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ENOENT The Path parameter was null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOSPC Buffer space provided is not enough to store all the acl_type characteristics of the file

system.
ENOTDIR A component of the Path prefix is not a directory.
ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

If Network File System (NFS) is installed on your system, the acl_gettypeinfo subroutine can also fail if
the following condition is true:

ETIMEDOUT The connection timed out.

Security
Auditing Events: None

Related Information
The “aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_gettypes Subroutine

Purpose
Retrieves the list of ACL types supported for the file system associated with the path provided.

Library
Security Library (libc.a)

Syntax
#include <sys/acl.h>

int aclx_gettypes (Path, acl_type_list, acl_type_list_len)
char * Path;
acl_types_list_t * acl_type_list;
size_t * acl_type_list_len;

Description
The aclx_gettypes subroutine helps obtain the list of ACL types supported on the particular file system. A
file system can implement policies to support one to many ACL types simultaneously. The first ACL type in
the list is the default ACL type for the file system. This default ACL type is used in ACL conversions if the
target ACL type is not supported on the file system. Each file system object in the file system is associated
with only one piece of ACL data of a particular ACL type.

Base Operating System (BOS) Runtime Services (A-P) 21

Parameters

Path Specifies the path name of the file system object within the file system for which the list
of supported ACLs are being requested.

acl_type_list Specifies the pointer to a buffer space, where the list of ACL types is returned. The size
of this buffer is indicated using the acl_type_list_len argument in bytes.

acl_type_list_len Pointer to a buffer that specifies the length of the buffer acl_type_list in which the list of
ACLs is returned by the file system. This is an input/output parameter. If the length of the
buffer is not sufficient to store all the ACL types, the file system returns an error and
indicates the length of the buffer required in this same area. The length is specified in
bytes.
If the subroutine call is successful, this field contains the number of bytes of information
stored in the acl_type_list buffer. This information can be used by the caller to get the
number of ACL type entries returned.

Return Values
On successful completion, the aclx_gettypes subroutine returns a value of 0. Otherwise, -1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The aclx_gettypes subroutine fails and the access control information for a file remains unchanged if one
or more of the following is true:

EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.
ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).
ENOENT The Path parameter was null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOSPC The acl_type_list buffer provided is not enough to store all the ACL types supported

by this file system.
ENOTDIR A component of the Path prefix is not a directory.
ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

If Network File System (NFS) is installed on your system, the acl_gettypes subroutine can also fail if the
following condition is true:

ETIMEDOUT The connection timed out.

Security
Access Control: Caller must have search permission for all components of the Path prefix.

Auditing Events: None

Related Information
The aclget command, aclput command.

22 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_print or aclx_printStr Subroutine

Purpose
Converts the binary access control information into nonbinary, readable format.

Library
Security Library (libc.a)

Syntax
#include <sys/acl.h>

int aclx_print (acl_file, acl, acl_sz, acl_type, fs_obj_path, flags)
FILE * acl_file;
void * acl;
size_t acl_sz;
acl_type_t acl_type;
char * fs_obj_path;
int32_t flags;

int aclx_printStr (str, str_sz, acl, acl_sz, acl_type, fs_obj_path, flags)
char * str;
size_t * str_sz;
void * acl;
size_t acl_sz;
acl_type_t acl_type;
char * fs_obj_path;
int32_t flags;

Description
The aclx_print and aclx_printStr subroutines print the access control information in a nonbinary, readable
text format. These subroutines take the ACL information in binary format as input, convert it into text
format, and print that text format output to either a file or a string. The aclx_print subroutine prints the
ACL text to the file specified by acl_file. The aclx_printStr subroutine prints the ACL text to str. The
amount of space available in str is specified in str_sz. If this memory is insufficient, the subroutine sets
str_sz to the needed amount of memory and returns an ENOSPC error.

Parameters

acl_file Points to the file into which the textual output is printed.
str Points to the string into which the textual output should be printed.
str_sz Indicates the amount of memory in bytes available in str. If the text representation of acl

requires more space than str_sz, this subroutine updates the str_sz with the amount of
memory required and fails by setting errno to ENOSPC.

acl Points to a buffer which contains the binary ACL data that has to be printed. The size of
this buffer is indicated by the acl_sz parameter.

acl_sz Indicates the size of the buffer area passed through the acl parameter.
acl_type Indicates the ACL type information of the acl. The ACL type is 64 bits in size and is

unique on the system. If the given ACL type is not supported in the system, this function
fails and errno is set to EINVAL.

Base Operating System (BOS) Runtime Services (A-P) 23

fs_obj_path File System Object Path for which the ACL data format and print are being requested.
Gets information about the object (such as whether the object is a file or directory, who
the owner is, and the associated group ID).

flags Allows for control over the print operation. A value of ACL_VERBOSE indicates whether
additional information has to be printed in text format in comments. This bit is set when
the aclget command is issued with the -v (verbose) option.

Return Values
On successful completion, the aclx_print and aclx_printStr subroutines return a value of 0. Otherwise, -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_print subroutine fails if one or more of the following is true:

Note: The errors in the following list occur only because aclx_print calls the fprintf subroutine internally.
For more information about these errors, refer to the fprintf subroutine.

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file specified by
the acl_file parameter, and the process would be delayed in the write operation.

EBADF The file descriptor underlying the file specified by the acl_file parameter is not a valid
file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the file size limit of this process
or the maximum file size. For more information, refer to the ulimit subroutine.

EINTR The write operation terminated because of a signal was received, and either no data
was transferred or a partial transfer was not reported.

EIO The process is a member of a background process group attempting to perform a
write to its controlling terminal, the TOSTOP flag is set, the process is neither ignoring
nor blocking the SIGTTOU signal, and the process group of the process has no
parent process.

ENOSPC No free space remains on the device that contains the file.
ENOSPC Insufficient storage space is available.
ENXIO A request was made of a nonexistent device, or the request was outside the

capabilities of the device.
EPIPE An attempt was made to write to a pipe or first-in-first-out (FIFO) that is not open for

reading by any process. A SIGPIPE signal is sent to the process.

The aclx_printStr subroutine fails if the following is true:

ENOSPC Input buffer size strSz is not sufficient to store the text representation of acl in str.
ENOSPC Insufficient storage space is available. This error is returned by sprintf, which is called by the

aclx_printStr subroutine internally.

The aclx_print or aclx_printStr subroutine fails if the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine. This errno can also be returned if the acl is not of the type specified by acl_type.

Related Information
The “printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1178,
“aclx_scan or aclx_scanStr Subroutine” on page 27.

The aclget command, aclput command.

24 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_put or aclx_fput Subroutine

Purpose
Stores the access control information for a file system object.

Library
Security Library (libc.a)

Syntax
#include <sys/acl.h>

int aclx_put (Path, ctl_flags, acl_type, acl, acl_sz, mode_info)
char * Path;
uint64_t ctl_flags;
acl_type_t acl_type;
void * acl;
size_t acl_sz;
mode_t mode_info;

int aclx_fput (FileDescriptor, ctl_flags, acl_type, acl, acl_sz, mode_info)
int FileDescriptor;
uint64_t ctl_flags;
acl_type_t acl_type;
void * acl;
size_t acl_sz;
mode_t mode_info;

Description
The aclx_put and aclx_fput subroutines store the access control information for a file system object in the
native ACL format. Native ACL format is the format as defined for the particular ACL type in the system.
These subroutines are advanced versions of the acl_put and acl_fput subroutines and should be used
instead of the older versions. The aclx_put and aclx_fput subroutines provide for more control for the
user to interact with the underlying file system directly.

A caller specifies the ACL type in the acl_type argument and passes the ACL information in the acl
argument. The acl_sz parameter indicates the size of the ACL data. The ctl_flags parameter is a bitmask
that allows for variation of aclx_put requests.

The value provided to these subroutines can be obtained by invoking aclx_get or aclx_fget subroutines to
copy or restore the access control information.

The aclx_put and aclx_fput subroutines can also be used to manage the special bits (such as SGID and
SUID) in the mode word associated with the file system object. For example, you can set the mode_info
value to any special bit mask (as in the mode word defined for the file system), and a request can be
made to set the same bits using the ctl_flags argument. Note that special privileges (such as root) might
be required to set these bits.

Parameters

Path Specifies the path name of the file system object.

Base Operating System (BOS) Runtime Services (A-P) 25

FileDescriptor Specifies the file descriptor of an open file system object. This 64-bit sized bit mask
provides control over the ACL retrieval. These bits are divided as follows:

Lower 16 bits
System-wide (nonphysical file-system-specific) ACL control flags

32 bits Reserved.

Last 16 bits
Any physical file-system-defined options (that are specific to physical file system
ACL implementation).

ctl_flags Bit mask with the following system-wide flag values defined:

SET_MODE_S_BITS
Indicates that the mode_info value is set by the caller and the ACL put
operation needs to consider this value while completing the ACL put operation.

SET_ACL
Indicates that the acl argument points to valid ACL data that needs to be
considered while the ACL put operation is being performed.

Note: Both of the preceding values can be specified by the caller by ORing the two
masks.

acl_type Indicates the type of ACL to be associated with the file object. If the acl_type specified is
not among the ACL types supported for the file system, then an error is returned.

acl Points to a buffer where the ACL information exists. This ACL information is associated
with the file system object specified. The size of this buffer is indicated by the acl_sz
parameter.

acl_sz Indicates the size of the ACL information sent through the acl parameter.
mode_info This value indicates any mode word information that needs to be set for the file system

object in question as part of this ACL put operation. When mode bits are being altered by
specifying the SET_MODE_S_BITS flag (in ctl_flags) ACL put operation fails if the caller
does not have the required privileges.

Return Values
On successful completion, the aclx_put and aclx_fput subroutines return a value of 0. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_put subroutine fails and the access control information for a file remains unchanged if one or
more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.
ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).
ENOENT The Path parameter was null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOTDIR A component of the Path prefix is not a directory.
ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

26 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The aclx_fput subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The aclx_put or aclx_fput subroutine fails if one or more of the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine.

EIO An I/O error occurred during the operation.
EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_put and acl_fput subroutines can also
fail if the following condition is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Event Information
chacl Path-based event
fchacl FileDescriptor-based event

Related Information
The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget
Subroutine” on page 10) subroutine, acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine,
chacl (“chacl or fchacl Subroutine” on page 145) subroutine, chmod (“chmod or fchmod Subroutine” on
page 149) subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_scan or aclx_scanStr Subroutine

Purpose
Reads the access control information that is in nonbinary, readable text format, and converts it into ACL
type-specific native format binary ACL data.

Library
Security Library (libc.a)

Syntax
#include <sys/acl.h>

int aclx_scan (acl_file, acl, acl_sz, acl_type, err_file)
FILE * acl_file;
void * acl;

Base Operating System (BOS) Runtime Services (A-P) 27

size_t * acl_sz;
acl_type_t acl_type;
FILE * err_file;

int aclx_scanStr (str, acl, acl_sz, acl_type)
char * str;
void * acl;
size_t * acl_sz;
acl_type_t acl_type;

Description
The aclx_scan and aclx_scanStr subroutines read the access control information from the input given in
nonbinary, readable text format and return a binary ACL data in the ACL type-specific native format. The
aclx_scan subroutine provides the ACL data text in the file specified by acl_file. In the case of
aclx_scanStr, the ACL data text is provided in the string pointed to by str. When the err_file parameter is
not Null, it points to a file to which any error messages are written out by the aclx_scan subroutine in
case of syntax errors in the input ACL data. The errors can occur if the syntax of the input text data does
not adhere to the required ACL type-specific data specifications.

Parameters

acl_file Points to the file from which the ACL text output is read.
str Points to the string from which the ACL text output is printed.
acl Points to a buffer in which the binary ACL data has to be stored. The amount of memory

available in this buffer is indicated by the acl_sz parameter.
acl_sz Indicates the amount of memory, in bytes, available in the acl parameter.
acl_type Indicates the ACL type information of the acl. The ACL type is 64 bits in size and is

unique on the system. If the given ACL type is not supported in the system, this function
fails and errno is set to EINVAL.

err_file File pointer to an error file. When this pointer is supplied, the subroutines write out any
errors in the syntax/composition of the ACL input data.

Return Values
On successful completion, the aclx_scan and aclx_scanStr subroutines return a value of 0. Otherwise, -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_scan subroutine fails if one or more of the following is true:

Note: The errors in the following list occur only because aclx_scan calls the fscanf subroutine internally.
For more information about these errors, refer to the fscanf subroutine.

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file specified by
the acl_file parameter, and the process would be delayed in the write operation.

EBADF The file descriptor underlying the file specified by the acl_file parameter is not a valid
file descriptor open for writing.

EINTR The write operation terminated because of a signal was received, and either no data
was transferred or a partial transfer was not reported.

EIO The process is a member of a background process group attempting to perform a
write to its controlling terminal, the TOSTOP flag is set, the process is neither ignoring
nor blocking the SIGTTOU signal, and the process group of the process has no
parent process.

ENOSPC Insufficient storage space is available.

28 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The aclx_scanStr subroutine fails if the following is true:

ENOSPC Insufficient storage space is available. This error is returned by sscanf, which is called by
the aclx_scanStr subroutine internally.

The aclx_scan or aclx_scanStr subroutine fails if the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine. This errno can also be returned if the text ACL given in the input/file string is not of
the type specified by acl_type.

Related Information
The “aclx_print or aclx_printStr Subroutine” on page 23, fscanf Subroutine.

The aclget command, aclput command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

acos, acosf, acosl, acosd32, acosd64, or acosd128 Subroutines

Purpose
Computes the inverse cosine of a given value.

Syntax
#include <math.h>

float acosf (x)
float x;

long double acosl (x)
long double x;

double acos (x)
double x;
_Decimal32 acosd32 (x)
_Decimal32 x;

_Decimal64 acosd64 (x)
_Decimal64 x;

_Decimal128 acosd128 (x)
_Decimal128 x;

Description
The acosf, acosl, acos, acosd32, acosd64, and acosd128 subroutines compute the principal value of
the arc cosine of the x parameter. The value of x should be in the range [-1,1].

An application wishing to check for error situations should set the errno global variable to zero and call
fetestexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Base Operating System (BOS) Runtime Services (A-P) 29

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, these subroutines return the arc cosine of x, in the range [0, pi] radians.

For finite values of x not in the range [-1,1], a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is +1, 0 is returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

Related Information
The “acosh, acoshf, acoshl, acoshd32, acoshd64, and acoshd128 Subroutines.”

math.h in AIX 5L Version 5.3 Files Reference.

acosh, acoshf, acoshl, acoshd32, acoshd64, and acoshd128
Subroutines

Purpose
Computes the inverse hyperbolic cosine.

Syntax
#include <math.h>

float acoshf (x)
float x;

long double acoshl (X)
long double x;

double acosh (x)
double x;
_Decimal32 acoshd32 (x)
_Decimal32 x;

_Decimal64 acoshd64 (x)
_Decimal64 x;

_Decimal128 acoshd128 (x)
_Decimal128 x;

Description
The acoshf, acoshl, acoshd32, acoshd64, and acoshd128 subroutines compute the inverse hyperbolic
cosine of the x parameter.

The acosh subroutine returns the hyperbolic arc cosine specified by the x parameter, in the range 1 to the
+HUGE_VAL value.

30 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

An application wishing to check for error situations should set errno to zero and call
fetestexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if the errno global variable
is nonzero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is
nonzero, an error has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the acoshf, acoshl, acoshd32, acoshd64, and acoshd128 subroutines
return the inverse hyperbolic cosine of the given argument.

For finite values of x < 1, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is +1, 0 is returned.

If x is +Inf, +Inf is returned.

If x is −Inf, a domain error occurs, and a NaN is returned.

Error Codes
The acosh subroutine returns NaNQ (not-a-number) and sets errno to EDOM if the x parameter is less
than the value of 1.

Related Information
math.h in AIX 5L Version 5.3 Files Reference.

addproj Subroutine

Purpose
Adds an API-based project definition to the kernel project registry.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

addproj(struct project *)

Description
The addproj subroutine defines the application-based project definition to the kernel repository. An
application can assign a project defined in this way using the proj_execve system call.

Projects that are added this way are marked as being specified by applications so that they do not overlap
with system administrator-specified projects defined using the projctl command. The PROJFLAG_API flag
is turned on in the structure project to indicate that the project definition was added by an application.

Base Operating System (BOS) Runtime Services (A-P) 31

Projects added by a system administrator using the projctl command are flagged as being derived from
the local or LDAP-based project repositories by the PROJFLAGS_LDAP or PROJFLAGS_PDF flag. If one
of these flags is specified, the addproj subroutine fails with EPERM.

The getproj routine can be used to determine the origin of a loaded project.

The addproj validates the input project number to ensure that it is within the expected range of
0x00000001 - 0x00ffffff. It also validates that the project name is a POSIX compliant alphanumeric
character string. If any invalid input is found errno will be set to EINVAL and the addproj subroutine
returns -1.

Parameters

project Points to a project structure that holds the definition of the project to be added.

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid Project Name / Number or the passed pointer is NULL
EEXIST Project Definition exists
EPERM Permission Denied, not a privileged user

Related Information
The “addprojdb Subroutine,” “chprojattr Subroutine” on page 159, “getproj Subroutine” on page 420,
“getprojs Subroutine” on page 422, rmproj Subroutine.

addprojdb Subroutine

Purpose
Adds a project definition to the specified project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

addprojdb(void *handle, struct project *project, char *comment)

Description
The addprojdb subroutine appends the project definition stored in the struct project variable into the
project database named by the handle parameter. The project database must be initialized before calling

32 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

this subroutine. The projdballoc subroutine is provided for this purpose. This routine verifies whether the
supplied project definition already exists. If it does exist, the addprojdb subroutine sets errno to EEXIST
and returns -1.

The addprojdb subroutine validates the input project number to ensure that it is within the expected range
0x00000001 - 0x00ffffff and validates that the project name is a POSIX-compliant alphanumeric character
string. If any invalid input is found, the addprojdb subroutine sets errno to EINVAL and returns -1.

If the user does not have privilege to add an entry to project database, the addprojdb subroutine sets
errno to EACCES and returns -1.

There is an internal state (that is, the current project) associated with the project database. When the
project database is initialized, the current project is the first project in the database. The addprojdb
subroutine appends the specified project to the end of the database. It advances the current project
assignment to the next project in the database, which is the end of the project data base. At this point, a
call to the getnextprojdb subroutine would fail, because there are no additional project definitions. To read
the project definition that was just added, use the getprojdb subroutine. To read other projects, first call
getfirstprojdb subroutine to reset the internal current project assignment so that subsequent reads can be
performed.

The format of the records added to the project database are given as follows:
ProjectName:ProjectNumber:AggregationStatus:Comment::

Example:
Biology:4756:no:Project Created by projctl command::

Parameters

handle Pointer to project database handle
project Pointer to a project structure that holds the definition of the project to be added
comment Pointer to a character string that holds the comments about the project

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid project name or number, or the passed pointer is NULL.
EEXIST Project definition already exists.
EPERM Permission denied. The user is not a privileged user.

Related Information
The “addproj Subroutine” on page 31, “chprojattrdb Subroutine” on page 160, “getfirstprojdb Subroutine”
on page 370, “getnextprojdb Subroutine” on page 398, “getprojdb Subroutine” on page 421, “projdballoc
Subroutine” on page 1189, “projdbfinit Subroutine” on page 1189, “projdbfree Subroutine” on page 1191,
rmprojdb Subroutine.

Base Operating System (BOS) Runtime Services (A-P) 33

addssys Subroutine

Purpose
Adds the SRCsubsys record to the subsystem object class.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int addssys (SRCSubsystem)
struct SRCsubsys *SRCSubsystem;

Description
The addssys subroutine adds a record to the subsystem object class. You must call the defssys
subroutine to initialize the SRCSubsystem buffer before your application program uses the SRCsubsys
structure. The SRCsubsys structure is defined in the /usr/include/sys/srcobj.h file.

The executable running with this subroutine must be running with the group system.

Parameters

SRCSubsystem A pointer to the SRCsubsys structure.

Return Values
Upon successful completion, the addssys subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes
The addssys subroutine fails if one or more of the following are true:

SRC_BADFSIG Invalid stop force signal.
SRC_BADNSIG Invalid stop normal signal.
SRC_CMDARG2BIG Command arguments too long.
SRC_GRPNAM2BIG Group name too long.
SRC_NOCONTACT Contact not signal, sockets, or message queue.
SRC_NONAME No subsystem name specified.
SRC_NOPATH No subsystem path specified.
SRC_PATH2BIG Subsystem path too long.
SRC_STDERR2BIG stderr path too long.
SRC_STDIN2BIG stdin path too long.
SRC_STDOUT2BIG stdout path too long.
SRC_SUBEXIST New subsystem name already on file.
SRC_SUBSYS2BIG Subsystem name too long.
SRC_SYNEXIST New subsystem synonym name already on file.
SRC_SYN2BIG Synonym name too long.

34 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Security
Privilege Control: This command has the Trusted Path attribute. It has the following kernel privilege:

SET_PROC_AUDIT
Files Accessed:

Mode File
644 /etc/objrepos/SRCsubsys
Auditing Events:

If the auditing subsystem has been properly configured and is enabled, the addssys subroutine generates
the following audit record (event) each time the subroutine is executed:

Event Information
SRC_addssys Lists the SRCsubsys records added.

See ″Setting Up Auditing″ in Security for details about selecting and grouping audit events, and configuring
audit event data collection.

Files

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.
/usr/include/spc.h Defines external interfaces provided by the SRC subroutines.
/usr/include/sys/srcobj.h Defines object structures used by the SRC.

Related Information
The chssys (“chssys Subroutine” on page 163) subroutine, defssys (“defssys Subroutine” on page 212)
subroutine, delssys (“delssys Subroutine” on page 213) subroutine.

The auditpr command, chssys command, mkssys command, rmssys command.

Auditing Overview (“audit Subroutine” on page 99) and System Resource Controller in Operating system
and device management.

Defining Your Subsystem to the SRC, System Resource Controller (SRC) Overview for Programmers in
AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

List of SRC Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

adjtime Subroutine

Purpose
Corrects the time to allow synchronization of the system clock.

Library
Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 35

Syntax
#include <sys/time.h>
int adjtime (Delta, Olddelta)
struct timeval *Delta;
struct timeval *Olddelta;

Description
The adjtime subroutine makes small adjustments to the system time, as returned by the gettimeofday
subroutine, advancing or retarding it by the time specified by the Delta parameter of the timeval structure.
If the Delta parameter is negative, the clock is slowed down by periodically subtracting a small amount
from it until the correction is complete. If the Delta parameter is positive, a small amount is periodically
added to the clock until the correction is complete. The skew used to perform the correction is generally
ten percent. If the clock is sampled frequently enough, an application program can see time apparently
jump backwards. For information on a way to avoid this, see “gettimeofday, settimeofday, or ftime
Subroutine” on page 447. A time correction from an earlier call to the adjtime subroutine may not be
finished when the adjtime subroutine is called again. If the Olddelta parameter is nonzero, then the
structure pointed to will contain, upon return, the number of microseconds still to be corrected from the
earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local area network.
Such time servers would slow down the clocks of some machines and speed up the clocks of others to
bring them to the average network time.

The adjtime subroutine is restricted to the users with root user authority.

Parameters

Delta Specifies the amount of time to be altered.
Olddelta Contains the number of microseconds still to be corrected from an earlier call.

Return Values
A return value of 0 indicates that the adjtime subroutine succeeded. A return value of -1 indicates than an
error occurred, and errno is set to indicate the error.

Error Codes

The adjtime subroutine fails if the following are true:

EFAULT An argument address referenced invalid memory.
EPERM The process’s effective user ID does not have root user

authority.

agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list
Subroutine

Purpose
Aggregate advanced accounting data.

Library
The libaacct.a library.

36 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#define <sys/aacct.h>
int agg_arm_stat(tran_list, arm_list);
struct aacct_tran_rec *tran_list
struct agg_arm_stat **arm_list
int agg_proc_stat(sortcrit1, sortcrit2, sortcrit3, sortcrit4, tran_list, proc_list);
int sortcrit1, sortcrit2, sortcrit3, sortcrit4
struct aacct_tran_rec *tran_list
struct agg_proc_stat **proc_list
int agg_lpar_stat(l_type, *tran_list, l_list);
int l_type
struct aacct_tran_rec *tran_list
union agg_lpar_rec *l_list
void free_agg_list(list);
void *list

Description
The agg_proc_stat, agg_lpar_stat, and agg_arm_stat subroutines return a linked list of aggregated
transaction records for process, LPAR, and ARM, respectively.

The agg_proc_stat subroutine performs the process record aggregation based on the criterion values
passed as input parameters. The aggregated process transaction records are sorted based on the sorting
criteria values sortcrit1, sortcrit2, sortcrit3, and sortcrit4. These four can be one of the following values
defined in the sys/aacct.h file:

v CRIT_UID

v CRIT_GID

v CRIT_PROJ

v CRIT_CMD

v CRIT_NONE

The order of their usage determines the sorting order applied to the retrieved aggregated list of process
transaction records. For example, the sort criteria values of PROJ_GID, PROJ_PROJ, PROJ_UID,
PROJ_NONE first sorts the aggregated list on group IDs, which are further sorted based on project IDs,
followed by another level of sorting based on user IDs.

Some of the process transaction records (of type TRID_agg_proc) cannot be aggregated based on group
IDs and command names. For such records, agg_proc_stat returns an asterisk (*) character as the
command name and a value of -2 as the group ID. This indicates to the caller that these records cannot
be aggregated.

If the aggregation is not necessary on a specific criteria, agg_proc_stat returns a value of -1 in the
respective field. For example, if the aggregation is not necessary on the group ID (CRIT_GID), the
retrieved list of aggregation records has a value of -1 filled in the group ID fields.

The agg_lpar_stat retrieves an aggregated list of LPAR transaction records. Because there are several
types of LPAR transaction records, the caller must specify the type of LPAR transaction record that is to
be aggregated. The transaction record type can be one of the following values, defined in the sys/aacct.h
file:

v AGG_CPUMEM

v AGG_FILESYS

v AGG_NETIF

v AGG_DISK

v AGG_VTARGET

v AGG_VCLIENT

Base Operating System (BOS) Runtime Services (A-P) 37

The agg_lpar_stat subroutine uses a union argument of type struct agg_lpar_rec. For this argument, the
caller must provide the address of the linked list to which the aggregated records should be returned.

The agg_arm_list retrieves an aggregated list of ARM transaction records from the list of transaction
records provided as input. The aggregated transaction records are returned to the caller through the
structure pointer of type struct agg_arm_stat.

The free_agg_list subroutine frees the memory allocated to the aggregated records returned by the
agg_proc_stat, agg_lpar_stat, or agg_arm_stat subroutine.

Parameters

arm_list Pointer to the linked list of struct agg_arm_stat nodes to be returned.
l_list Pointer to union agg_lpar_rec address to which the aggregated LPAR records are

returned.
l_type Integer value that represents the type of LPAR resource to be aggregated.
list Pointer to the aggregated list to be freed.
proc_list Pointer to the linked list of struct agg_proc_stat nodes to be returned.
sortcrit1, sortcrit2, sortcrit3,
sortcrit4

Integer values that represent the sorting criteria to be passed to agg_proc_stat.

tran_list Pointer to the input list of transaction records

Security
No restrictions. Any user can call this function.

Return Values

0 The call to the subroutine was successful.
-1 The call to the subroutine failed.

Error Codes

EINVAL The passed pointer is NULL.
ENOMEM Insufficient memory.
EPERM Permission denied. Unable to read the data file.

Related Information
The “buildproclist Subroutine” on page 126, “buildtranlist or freetranlist Subroutine” on page 127,
“getproclist, getlparlist, or getarmlist Subroutine” on page 416.

Understanding the Advanced Accounting Subsystem.

aio_cancel or aio_cancel64 Subroutine
The aio_cancel or aio_cancel64 subroutine includes information for the POSIX AIO aio_cancel
subroutine (as defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_cancel subroutine.

POSIX AIO aio_cancel Subroutine

Purpose
Cancels one or more outstanding asynchronous I/O requests.

38 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_cancel (fildes, aiocbp)
int fildes;
struct aiocb *aiocbp;

Description
The aio_cancel subroutine cancels one or more asynchronous I/O requests currently outstanding against
the fildes parameter. The aiocbp parameter points to the asynchronous I/O control block for a particular
request to be canceled. If aiocbp is NULL, all outstanding cancelable asynchronous I/O requests against
fildes are canceled.

Normal asynchronous notification occurs for asynchronous I/O operations that are successfully canceled. If
there are requests that cannot be canceled, the normal asynchronous completion process takes place for
those requests when they are completed.

For requested operations that are successfully canceled, the associated error status is set to
ECANCELED, and a -1 is returned. For requested operations that are not successfully canceled, the
aiocbp parameter is not modified by the aio_cancel subroutine.

If aiocbp is not NULL, and if fildes does not have the same value as the file descriptor with which the
asynchronous operation was initiated, unspecified results occur.

The implementation of the subroutine defines which operations are cancelable.

Parameters

fildes Identifies the object to which the outstanding asynchronous I/O requests were originally queued.
aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_cancel and aio_cancel64 subroutines can be called from the process environment only.

Return Values
The aio_cancel subroutine returns AIO_CANCELED to the calling process if the requested operation(s)
were canceled. AIO_NOTCANCELED is returned if at least one of the requested operations cannot be
canceled because it is in progress. In this case, the state of the other operations, referenced in the call to
aio_cancel is not indicated by the return value of aio_cancel. The application may determine the state of

Base Operating System (BOS) Runtime Services (A-P) 39

affairs for these operations by using the aio_error subroutine. AIO_ALLDONE is returned if all of the
operations are completed. Otherwise, the subroutine returns -1 and sets the errno global variable to
indicate the error.

Error Codes

EBADF The fildes parameter is not a valid file descriptor.

Related Information
“aio_error or aio_error64 Subroutine” on page 42, “aio_nwait Subroutine” on page 47, “aio_nwait_timeout
Subroutine” on page 49, “aio_read or aio_read64 Subroutine” on page 50, “aio_return or aio_return64
Subroutine” on page 55, “aio_suspend or aio_suspend64 Subroutine” on page 58, “aio_write or
aio_write64 Subroutine” on page 61, and “lio_listio or lio_listio64 Subroutine” on page 722.

The Asynchronous I/O Subsystem and Communications I/O Subsystem in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs describes the files, commands, and subroutines used for low-level, stream, terminal,
and asynchronous I/O interfaces.

Legacy AIO aio_cancel Subroutine

Purpose
Cancels one or more outstanding asynchronous I/O requests.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

aio_cancel (FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb *aiocbp;

aio_cancel64 (FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description
The aio_cancel subroutine attempts to cancel one or more outstanding asynchronous I/O requests issued
on the file associated with the FileDescriptor parameter. If the pointer to the aio control block (aiocb)
structure (the aiocbp parameter) is not null, then an attempt is made to cancel the I/O request associated
with this aiocb. The aiocbp parameter used by the thread calling aix_cancel must have had its request
initiated by this same thread. Otherwise, a -1 is returned and errno is set to EINVAL. However, if the
aiocbp parameter is null, then an attempt is made to cancel all outstanding asynchronous I/O requests
associated with the FileDescriptor parameter without regard to the initiating thread.

The aio_cancel64 subroutine is similar to the aio_cancel subroutine except that it attempts to cancel
outstanding large file enabled asynchronous I/O requests. Large file enabled asynchronous I/O requests
make use of the aiocb64 structure instead of the aiocb structure. The aiocb64 structure allows
asynchronous I/O requests to specify offsets in excess of OFF_MAX (2 gigbytes minus 1).

40 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

In the large file enabled programming environment, aio_cancel is redefined to be aio_cancel64.

When an I/O request is canceled, the aio_error (“aio_error or aio_error64 Subroutine” on page 42)
subroutine called with the handle to the corresponding aiocb structure returns ECANCELED.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AIO definitions. In the source file enter:
#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:
->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters

FileDescriptor Identifies the object to which the outstanding asynchronous I/O requests were originally queued.
aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
struct aiocb
{

int aio_whence;
off_t aio_offset;
char *aio_buf;
ssize_t aio_return;
int aio_errno;
size_t aio_nbytes;
union {

int reqprio;
struct {

int version:8;
int priority:8;
int cache_hint:16;

} ext;
} aio_u1;
int aio_flag;
int aio_iocpfd;
aio_handle_t aio_handle;

}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Environment
The aio_cancel and aio_cancel64 subroutines can be called from the process environment only.

Return Values

AIO_CANCELED Indicates that all of the asynchronous I/O requests were canceled successfully. The
aio_error subroutine call with the handle to the aiocb structure of the request will return
ECANCELED.

AIO_NOTCANCELED Indicates that the aio_cancel subroutine did not cancel one or more outstanding I/O
requests. This may happen if an I/O request is already in progress. The corresponding error
status of the I/O request is not modified.

Base Operating System (BOS) Runtime Services (A-P) 41

AIO_ALLDONE Indicates that none of the I/O requests is in the queue or in progress.
-1 Indicates that the subroutine was not successful. Sets the errno global variable to identify

the error.

A return code can be set to the following errno value:

EBADF Indicates that the FileDescriptor parameter is not valid.

Related Information
“aio_error or aio_error64 Subroutine,” “aio_nwait Subroutine” on page 47, “aio_nwait_timeout Subroutine”
on page 49, “aio_read or aio_read64 Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on
page 55, “aio_suspend or aio_suspend64 Subroutine” on page 58, and “aio_write or aio_write64
Subroutine” on page 61, “lio_listio or lio_listio64 Subroutine” on page 722.

The Asynchronous I/O Subsystem and Communications I/O Subsystem in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs describes the files, commands, and subroutines used for low-level, stream, terminal,
and asynchronous I/O interfaces.

aio_error or aio_error64 Subroutine
The aio_error or aio_error64 subroutine includes information for the POSIX AIO aio_error subroutine (as
defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_error subroutine.

POSIX AIO aio_error Subroutine

Purpose
Retrieves error status for an asynchronous I/O operation.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_error (aiocbp)
const struct aiocb *aiocbp;

Description
The aio_error subroutine returns the error status associated with the aiocb structure. This structure is
referenced by the aiocbp parameter. The error status for an asynchronous I/O operation is the
synchronous I/O errno value that would be set by the corresponding read, write, or fsync subroutine. If
the subroutine has not yet completed, the error status is equal to EINPROGRESS.

Parameters

aiocbp Points to the aiocb structure associated with the I/O operation.

42 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_error and aio_error64 subroutines can be called from the process environment only.

Return Values
If the asynchronous I/O operation has completed successfully, the aio_error subroutine returns a 0. If
unsuccessful, the error status (as described for the read, write, and fsync subroutines) is returned. If the
asynchronous I/O operation has not yet completed, EINPROGRESS is returned.

Error Codes

EINVAL The aiocbp parameter does not refer to an asynchronous operation whose return status has not yet
been retrieved.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_fsync Subroutine” on page 45, “aio_nwait
Subroutine” on page 47, “aio_nwait_timeout Subroutine” on page 49, “aio_read or aio_read64 Subroutine”
on page 50, “aio_return or aio_return64 Subroutine” on page 55, “aio_write or aio_write64 Subroutine” on
page 61, “close Subroutine” on page 176, “exec: execl, execle, execlp, execv, execve, execvp, or exect
Subroutine” on page 238, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245, “fork, f_fork, or
vfork Subroutine” on page 293, “fsync or fsync_range Subroutine” on page 324, “lio_listio or lio_listio64
Subroutine” on page 722, and “lseek, llseek or lseek64 Subroutine” on page 770.

read, readx, readv, readvx, or pread Subroutine and write, writex, writev, writevx or pwrite Subroutines in
AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

Legacy AIO aio_error Subroutine

Purpose
Retrieves the error status of an asynchronous I/O request.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int
aio_error(handle)
aio_handle_t handle;

int aio_error64(handle)
aio_handle_t handle;

Base Operating System (BOS) Runtime Services (A-P) 43

Description
The aio_error subroutine retrieves the error status of the asynchronous request associated with the
handle parameter. The error status is the errno value that would be set by the corresponding I/O
operation. The error status is EINPROG if the I/O operation is still in progress.

The aio_error64 subroutine is similar to the aio_error subroutine except that it retrieves the error status
associated with an aiocb64 control block.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AIO definitions. In the source file enter:
#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:
->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters

handle The handle field of an aio control block (aiocb or aiocb64) structure set by a previous call of the
aio_read, aio_read64, aio_write, aio_write64, lio_listio, aio_listio64 subroutine. If a random memory
location is passed in, random results are returned.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
struct aiocb
{

int aio_whence;
off_t aio_offset;
char *aio_buf;
ssize_t aio_return;
int aio_errno;
size_t aio_nbytes;
union {

int reqprio;
struct {

int version:8;
int priority:8;
int cache_hint:16;

} ext;
} aio_u1;
int aio_flag;
int aio_iocpfd;
aio_handle_t aio_handle;

}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Environment
The aio_error and aio_error64 subroutines can be called from the process environment only.

Return Values

0 Indicates that the operation completed successfully.
ECANCELED Indicates that the I/O request was canceled due to an aio_cancel subroutine call.

44 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EINPROG Indicates that the I/O request has not completed.

An errno value described in the aio_read (“aio_read or aio_read64 Subroutine” on page 50),
aio_write (“aio_write or aio_write64 Subroutine” on page 61), and lio_listio (“lio_listio or lio_listio64
Subroutine” on page 722) subroutines: Indicates that the operation was not queued successfully.
For example, if the aio_read subroutine is called with an unusable file descriptor, it (aio_read)
returns a value of -1 and sets the errno global variable to EBADF. A subsequent call of the
aio_error subroutine with the handle of the unsuccessful aio control block (aiocb) structure
returns EBADF.

An errno value of the corresponding I/O operation: Indicates that the operation was initiated
successfully, but the actual I/O operation was unsuccessful. For example, calling the aio_write
subroutine on a file located in a full file system returns a value of 0, which indicates the request
was queued successfully. However, when the I/O operation is complete (that is, when the aio_error
subroutine no longer returns EINPROG), the aio_error subroutine returns ENOSPC. This indicates
that the I/O was unsuccessful.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_read or aio_read64 Subroutine” on page 50,
“aio_nwait Subroutine” on page 47, “aio_nwait_timeout Subroutine” on page 49, “aio_return or
aio_return64 Subroutine” on page 55, “aio_suspend or aio_suspend64 Subroutine” on page 58, “aio_write
or aio_write64 Subroutine” on page 61, “lio_listio or lio_listio64 Subroutine” on page 722, and “lio_listio or
lio_listio64 Subroutine” on page 722.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

aio_fsync Subroutine

Purpose
Synchronizes asynchronous files.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_fsync (op, aiocbp)
int op;
struct aiocb *aiocbp;

Description
The aio_fsync subroutine asynchronously forces all I/O operations to the synchronized I/O completion
state. The function call returns when the synchronization request has been initiated or queued to the file or
device (even when the data cannot be synchronized immediately).

If the op parameter is set to O_DSYNC, all currently queued I/O operations are completed as if by a call to
the fdatasync subroutine. If the op parameter is set to O_SYNC, all currently queued I/O operations are

Base Operating System (BOS) Runtime Services (A-P) 45

completed as if by a call to the fsync subroutine. If the aio_fsync subroutine fails, or if the operation
queued by aio_fsync fails, outstanding I/O operations are not guaranteed to be completed.

If aio_fsync succeeds, it is only the I/O that was queued at the time of the call to aio_fsync that is
guaranteed to be forced to the relevant completion state. The completion of subsequent I/O on the file
descriptor is not guaranteed to be completed in a synchronized fashion.

The aiocbp parameter refers to an asynchronous I/O control block. The aiocbp value can be used as an
argument to the aio_error and aio_return subroutines in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding. When the request is queued, the
error status for the operation is EINPROGRESS. When all data has been successfully transferred, the
error status is reset to reflect the success or failure of the operation. If the operation does not complete
successfully, the error status for the operation is set to indicate the error. The aio_sigevent member
determines the asynchronous notification to occur when all operations have achieved synchronized I/O
completion. All other members of the structure referenced by the aiocbp parameter are ignored. If the
control block referenced by aiocbp becomes an illegal address prior to asynchronous I/O completion, the
behavior is undefined.

If the aio_fsync subroutine fails or aiocbp indicates an error condition, data is not guaranteed to have
been successfully transferred.

Parameters

op Determines the way all currently queued I/O operations are completed.
aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_error and aio_error64 subroutines can be called from the process environment only.

Return Values
The aio_fsync subroutine returns a 0 to the calling process if the I/O operation is successfully queued.
Otherwise, it returns a -1, and sets the errno global variable to indicate the error.

Error Codes

EAGAIN The requested asynchronous operation was not queued due to temporary resource limitations.
EBADF The aio_fildes member of the aiocb structure referenced by the aiocbp parameter is not a valid

file descriptor open for writing.

In the event that any of the queued I/O operations fail, the aio_fsync subroutine returns the error condition
defined for the read and write subroutines. The error is returned in the error status for the asynchronous
fsync subroutine, which can be retrieved using the aio_error subroutine.

46 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
“fcntl, dup, or dup2 Subroutine” on page 257, “fsync or fsync_range Subroutine” on page 324, and “open,
openx, open64, creat, or creat64 Subroutine” on page 939.

read, readx, readv, readvx, or pread Subroutine and write, writex, writev, writevx or pwrite Subroutines in
AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

aio_nwait Subroutine

Purpose
Suspends the calling process until a certain number of asynchronous I/O requests are completed.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_nwait (cnt, nwait, list)
int cnt;
int nwait;
struct aiocb **list;

Description
Although the aio_nwait subroutine is included with POSIX AIO, it is not part of the standard definitions for
POSIX AIO.

The aio_nwait subroutine suspends the calling process until a certain number (nwait) of asynchronous I/O
requests are completed. These requests are initiated at an earlier time by the lio_listio subroutine, which
uses the LIO_NOWAIT_AIOWAIT cmd parameter. The aio_nwait subroutine fills in the aiocb pointers to
the completed requests in list and returns the number of valid entries in list. The cnt parameter is the
maximum number of aiocb pointers that list can hold (cnt >= nwait). The subroutine also returns when
less than nwait number of requests are done if there are no more pending aio requests.

Note: If the lio_listio64 subroutine is used, the aiocb structure changes to aiocb64.

Note: The aio control block’s errno field continues to have the value EINPROG until after the aio_nwait
subroutine is completed. The aio_nwait subroutine updates this field when the lio_listio subroutine
has run with the LIO_NOWAIT_AIOWAIT cmd parameter. No utility, such as aio_error, can be used
to look at this value until after the aio_nwait subroutine is completed.

The aio_suspend subroutine returns after any one of the specified requests gets done. The aio_nwait
subroutine returns after a certain number (nwait or more) of requests are completed.

There are certain limitations associated with the aio_nwait subroutine, and a comparison between it and
the aio_suspend subroutine is necessary. The following table is a comparison of the two subroutines:

aio_suspend: aio_nwait:
Requires users to build a list of control blocks, each
associated with an I/O operation they want to wait for.

Requires the user to provide an array to put aiocb address
information into. No specific aio control blocks need to be
known.

Returns when any one of the specified control blocks
indicates that the I/O associated with that control
block completed.

Returns when nwait amount of requests are done or no other
requests are to be processed.

Base Operating System (BOS) Runtime Services (A-P) 47

aio_suspend: aio_nwait:
The aio control blocks may be updated before the
subroutine is called. Other polling methods (such as
the aio_error subroutine) can also be used to view
the aio control blocks.

Updates the aio control blocks itself when it is called. Other
polling methods can’t be used until after the aio_nwait
subroutine is called enough times to cover all of the aio
requests specified with the lio_listio subroutine.
Is only used in accordance with the LIO_NOWAIT_AIOWAIT
command, which is one of the commands associated with the
lio_listio subroutine. If the lio_listio subroutine is not first
used with the LIO_NOWAIT_AIOWAIT command, aio_nwait
can not be called. The aio_nwait subroutine only affects those
requests called by one or more lio_listio calls for a specified
process.

Parameters

cnt Specifies the number of entries in the list array. This number must be greater than 0 and less than 64
000.

nwait Specifies the minimal number of requests to wait on. This number must be greater than 0 and less than
or equal to the value specified by the cnt parameter.

list An array of pointers to aio control structures defined in the aio.h file.

Return Values
The return value is the total number of requests the aio_nwait subroutine has waited on to complete. It
can not be more than cnt. Although nwait is the desired amount of requests to find, the actual amount
returned could be less than, equal to, or greater than nwait. The return value indicates how much of the
list array to access.

The return value may be greater than the nwait value if the lio_listio subroutine initiated more than nwait
requests and the cnt variable is larger than nwait. The nwait parameter represents a minimal value desired
for the return value, and cnt is the maximum value possible for the return.

The return value may be less than the nwait value if some of the requests initiated by the lio_listio
subroutine occur at a time of high activity, and there is a lack of resources available for the number of
requests. EAGAIN (error try again later) may be returned in some request’s aio control blocks, but these
requests will not be seen by the aio_nwait subroutine. In this situation aiocb addresses not found on the
list have to be accessed by using the aio_error subroutine after the aio_nwait subroutine is called. You
may need to increase the aio parameters max servers or max requests if this occurs. Increasing the
parameters will ensure that the system is well tuned, and an EAGAIN error is less likely to occur.

In the event of an error, the aio_nwait subroutine returns a value of -1 and sets the errno global variable
to identify the error. Return codes can be set to the following errno values:

EBUSY An aio_nwait call is in process.
EINVAL The application has retrieved all of the aiocb pointers, but the user buffer does not have enough space

for them.
EINVAL There are no outstanding async I/O calls.
EINVAL Specifies cnt or nwait values that are not valid.

Related Information
The “aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page
42, “aio_nwait_timeout Subroutine” on page 49, “aio_read or aio_read64 Subroutine” on page 50,

48 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

“aio_return or aio_return64 Subroutine” on page 55, “aio_suspend or aio_suspend64 Subroutine” on page
58, “aio_write or aio_write64 Subroutine” on page 61, and “lio_listio or lio_listio64 Subroutine” on page
722.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

aio_nwait_timeout Subroutine

Purpose
Extends the capabilities of the aio_nwait subroutine by specifying timeout values.

Library
Standard C library (libc.a).

Syntax
int aio_nwait_timeout (cnt, nwait, list, timeout)
int cnt;
int nwait;
struct aiocbp **list;
int timeout;

Description
The aio_nwait_timeout subroutine waits for a certain number of asynchronous I/O operations to complete
as specified by the nwait parameter, or until the call has blocked for a certain duration specified by the
timeout parameter.

Parameters

cnt Indicates the maximum number of pointers to the aiocbp structure that can be copied into the list array.
list An array of pointers to aio control structures defined in the aio.h file.
nwait Specifies the number of asynchronous I/O operations that must complete before the aio_nwait_timout

subroutine returns.
timeout Specified in units of milliseconds.

A timeout value of -1 indicates that the subroutine behaves like the aio_nwait subroutine, blocking until
all of the requested I/O operations complete or until there are no more asynchronous I/O requests
pending from the process.

A timeout value of 0 indicates that the subroutine returns immediately with the current completed number
of asynchronous I/O requests. All other positive timeout values indicate that the subroutine must block
until either the timeout value is reached or the requested number of asynchronous I/O operations
complete.

Return Values
The return value is the total number of requests the aio_nwait subroutine has waited on to complete. It
can not be more than cnt. Although nwait is the desired amount of requests to find, the actual amount
returned could be less than, equal to, or greater than nwait. The return value indicates how much of the
list array to access.

Base Operating System (BOS) Runtime Services (A-P) 49

The return value may be greater than the nwait value if the lio_listio subroutine initiated more than nwait
requests and the cnt variable is larger than nwait. The nwait parameter represents a minimal value desired
for the return value, and cnt is the maximum value possible for the return.

The return value may be less than the nwait value if some of the requests initiated by the lio_listio
subroutine occur at a time of high activity, and there is a lack of resources available for the number of
requests. The EAGAIN return code (error try again later) might be returned in some request’s aio control
blocks, but these requests will not be seen by the aio_nwait subroutine. In this situation, theaiocb
structure addresses that are not found on the list must be accessed using the aio_error subroutine after
the aio_nwait subroutine is called. You might need to increase the aio parameters max servers or max
requests if this occurs. Increasing the parameters will ensure that the system is well tuned, and an
EAGAIN error is less likely to occur. The return value might be less than the nwait value due to the setting
of the new timeout parameter in the following cases:

v timeout > 0 and a timeout has occurred before nwait requests are done

v timeout = 0 and the current requests completed at the time of the aio_nwait_timeout call are less then
nwait parameter

In the event of an error, the aio_nwait subroutine returns a value of -1 and sets the errno global variable
to identify the error. Return codes can be set to the following errno values:

EBUSY An aio_nwait call is in process.
EINVAL The application has retrieved all of the aiocb pointers, but the user buffer does not have enough space

for them.
EINVAL There are no outstanding async I/O calls.

Related Information
“aio_nwait Subroutine” on page 47, “aio_suspend or aio_suspend64 Subroutine” on page 58, “aio_cancel
or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42, “aio_read or
aio_read64 Subroutine,” “aio_return or aio_return64 Subroutine” on page 55, “aio_write or aio_write64
Subroutine” on page 61, and “lio_listio or lio_listio64 Subroutine” on page 722.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

aio_read or aio_read64 Subroutine

The aio_read or aio_read64 subroutine includes information for the POSIX AIO aio_read subroutine (as
defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_read subroutine.

POSIX AIO aio_read Subroutine

Purpose
Asynchronously reads a file.

Library
Standard C Library (libc.a)

50 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <aio.h>

int aio_read (aiocbp)
struct aiocb *aiocbp;

Description
The aio_read subroutine reads aio_nbytes from the file associated with aio_fildes into the buffer pointed to
by aio_buf. The subroutine returns when the read request has been initiated or queued to the file or device
(even when the data cannot be delivered immediately).

The aiocbp value may be used as an argument to the aio_error and aio_return subroutines in order to
determine the error status and return status, respectively, of the asynchronous operation while it is
proceeding. If an error condition is encountered during queuing, the function call returns without having
initiated or queued the request. The requested operation takes place at the absolute position in the file as
given by aio_offset , as if the lseek subroutine were called immediately prior to the operation with an offset
equal to aio_offset and a whence equal to SEEK_SET. After a successful call to enqueue an
asynchronous I/O operation, the value of the file offset for the file is unspecified.

The aio_lio_opcode field is ignored by the aio_read subroutine.

If prioritized I/O is supported for this file, the asynchronous operation is submitted at a priority equal to the
scheduling priority of the process minus aiocbp->aio_reqprio.

The aiocbp parameter points to an aiocb structure. If the buffer pointed to by aio_buf or the control block
pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, the behavior is
undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If synchronized I/O is enabled on the file associated with aio_fildes, the behavior of this subroutine is
according to the definitions of synchronized I/O data integrity completion and synchronized I/O file integrity
completion.

For any system action that changes the process memory space while an asynchronous I/O is outstanding,
the result of that action is undefined.

For regular files, no data transfer occurs past the offset maximum established in the open file description.

If you use the aio_read or aio_read64 subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

Parameters

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Base Operating System (BOS) Runtime Services (A-P) 51

Execution Environment
The aio_read and aio_read64 subroutines can be called from the process environment only.

Return Values
The aio_read subroutine returns 0 to the calling process if the I/O operation is successfully queued.
Otherwise, it returns a -1 and sets the errno global variable to indicate the error.

Error Codes

EAGAIN The requested asynchronous I/O operation was not queued due to system resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to the aio_read
subroutine, or asynchronously. If any of the conditions below are detected synchronously, the aio_read
subroutine returns -1 and sets the errno global variable to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation is set to -1,
and the error status of the asynchronous operation is set to the corresponding value.

EBADF The aio_fildes parameter is not a valid file descriptor open for reading.
EINVAL The file offset value implied by aio_offset is invalid, aio_reqprio is an invalid value, or aio_nbytes is

an invalid value. The aio_read or aio_read64 subroutine was used with a file descriptor obtained
from a call to the shm_open subroutine.

If the aio_read subroutine successfully queues the I/O operation but the operation is subsequently
canceled or encounters an error, the return status of the asynchronous operation is one of the values
normally returned by the read subroutine. In addition, the error status of the asynchronous operation is set
to one of the error statuses normally set by the read subroutine, or one of the following values:

EBADF The aio_fildes argument is not a valid file descriptor open for reading.
ECANCELED The requested I/O was canceled before the I/O completed due to an explicit aio_cancel request.
EINVAL The file offset value implied by aio_offset is invalid.

The following condition may be detected synchronously or asynchronously:

EOVERFLOW The file is a regular file, aio_nbytes is greater than 0, and the starting offset in aio_offset is before
the end-of-file and is at or beyond the offset maximum in the open file description associated with
aio_fildes.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,
“aio_nwait Subroutine” on page 47, “aio_nwait_timeout Subroutine” on page 49, “lio_listio or lio_listio64
Subroutine” on page 722, “aio_return or aio_return64 Subroutine” on page 55, “aio_suspend or
aio_suspend64 Subroutine” on page 58, “aio_write or aio_write64 Subroutine” on page 61, “close
Subroutine” on page 176, “exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on
page 238, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245, “fork, f_fork, or vfork Subroutine”
on page 293, and “lseek, llseek or lseek64 Subroutine” on page 770.

The read, readx, readv, readvx, or pread Subroutine in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

Legacy AIO aio_read Subroutine

52 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Purpose
Reads asynchronously from a file.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_read(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb *aiocbp;

int aio_read64(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description
The aio_read subroutine reads asynchronously from a file. Specifically, the aio_read subroutine reads
from the file associated with the FileDescriptor parameter into a buffer.

The aio_read64 subroutine is similar to the aio_read subroutine execpt that it takes an aiocb64 reference
parameter. This allows the aio_read64 subroutine to specify offsets in excess of OFF_MAX (2 gigbytes
minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64 .

If you use the aio_read or aio_read64 subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

The details of the read are provided by information in the aiocb structure, which is pointed to by the
aiocbp parameter. This information includes the following fields:

aio_buf Indicates the buffer to use.
aio_nbytes Indicates the number of bytes to read.

When the read request has been queued, the aio_read subroutine updates the file pointer specified by the
aio_whence and aio_offset fields in the aiocb structure as if the requested I/O were already completed. It
then returns to the calling program. The aio_whence and aio_offset fields have the same meaning as the
whence and offset parameters in the lseek (“lseek, llseek or lseek64 Subroutine” on page 770) subroutine.
The subroutine ignores them for file objects that are not capable of seeking.

If an error occurs during the call, the read request is not queued. To determine the status of a request, use
the aio_error (“aio_error or aio_error64 Subroutine” on page 42) subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set the
AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The event structure in the aiocb structure is currently not in use but is included for future
compatibility.

Base Operating System (BOS) Runtime Services (A-P) 53

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AIO definitions. In the source file enter:
#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:
->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Since prioritized I/O is not supported at this time, the aio_reqprio field of the structure is not presently
used.

Parameters

FileDescriptor Identifies the object to be read as returned from a call to open.
aiocbp Points to the asynchronous I/O control block structure associated with the I/O operation.

aiocb Structure
The aiocb and the aiocb64 structures are defined in the aio.h file and contain the following members:
struct aiocb
{

int aio_whence;
off_t aio_offset;
char *aio_buf;
ssize_t aio_return;
int aio_errno;
size_t aio_nbytes;
union {

int reqprio;
struct {

int version:8;
int priority:8;
int cache_hint:16;

} ext;
} aio_u1;
int aio_flag;
int aio_iocpfd;
aio_handle_t aio_handle;

}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Environment
The aio_read and aio_read64 subroutines can be called from the process environment only.

Return Values
When the read request queues successfully, the aio_read subroutine returns a value of 0. Otherwise, it
returns a value of -1 and sets the global variable errno to identify the error.

Return codes can be set to the following errno values:

EAGAIN Indicates that the system resources required to queue the request are not available. Specifically, the
transmit queue may be full, or the maximum number of opens may be reached.

EBADF Indicates that the FileDescriptor parameter is not valid.
EFAULT Indicates that the address specified by the aiocbp parameter is not valid.

54 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EINVAL Indicates that the aio_whence field does not have a valid value, or that the resulting pointer is not valid.
The aio_read or aio_read64 subroutine was used with a file descriptor obtained from a call to the
shm_open subroutine.

When using I/O Completion Ports with AIO Requests, return codes can also be set to the following errno
values:

EBADF Indicates that the aio_iocpfd field in the aiocb structure is not a valid I/O Completion Port file
descriptor.

EINVAL Indicates that an I/O Completion Port service failed when attempting to start the AIO Request.
EPERM Indicates that I/O Completion Port services are not available.

Note: Other error codes defined in the sys/errno.h file can be returned by the aio_error subroutine if an
error during the I/O operation is encountered.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_nwait Subroutine” on page 47,
“aio_nwait_timeout Subroutine” on page 49, “aio_error or aio_error64 Subroutine” on page 42, “aio_return
or aio_return64 Subroutine,” “aio_suspend or aio_suspend64 Subroutine” on page 58, “aio_write or
aio_write64 Subroutine” on page 61, “lio_listio or lio_listio64 Subroutine” on page 722.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

aio_return or aio_return64 Subroutine
The aio_return or aio_return64 subroutine includes information for the POSIX AIO aio_return subroutine
(as defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_return subroutine.

POSIX AIO aio_return Subroutine

Purpose
Retrieves the return status of an asynchronous I/O operation.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

size_t aio_return (aiocbp);
struct aiocb *aiocbp;

Description
The aio_return subroutine returns the return status associated with the aiocb structure. The return status
for an asynchronous I/O operation is the value that would be returned by the corresponding read, write, or
fsync subroutine call. If the error status for the operation is equal to EINPROGRESS, the return status for
the operation is undefined. The aio_return subroutine can be called once to retrieve the return status of a

Base Operating System (BOS) Runtime Services (A-P) 55

given asynchronous operation. After that, if the same aiocb structure is used in a call to aio_return or
aio_error, an error may be returned. When the aiocb structure referred to by aiocbp is used to submit
another asynchronous operation, the aio_return subroutine can be successfully used to retrieve the return
status of that operation.

Parameters

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_return and aio_return64 subroutines can be called from the process environment only.

Return Values
If the asynchronous I/O operation has completed, the return status (as described for the read, write, and
fsync subroutines) is returned. If the asynchronous I/O operation has not yet completed, the results of the
aio_return subroutine are undefined.

Error Codes

EINVAL The aiocbp parameter does not refer to an asynchronous operation whose return status has not yet
been retrieved.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,
“aio_nwait Subroutine” on page 47, “aio_nwait_timeout Subroutine” on page 49, “aio_read or aio_read64
Subroutine” on page 50, “aio_suspend or aio_suspend64 Subroutine” on page 58, “aio_write or
aio_write64 Subroutine” on page 61, “close Subroutine” on page 176, “exec: execl, execle, execlp, execv,
execve, execvp, or exect Subroutine” on page 238, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on
page 245, “fork, f_fork, or vfork Subroutine” on page 293, “lio_listio or lio_listio64 Subroutine” on page 722,
and “lseek, llseek or lseek64 Subroutine” on page 770.

The read, readx, readv, readvx, or pread Subroutine in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

Legacy AIO aio_return Subroutine

Purpose
Retrieves the return status of an asynchronous I/O request.

Library
Standard C Library (libc.a)

56 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <aio.h>

int aio_return(handle)
aio_handle_t handle;

int aio_return64(handle)
aio_handle_t handle;

Description
The aio_return subroutine retrieves the return status of the asynchronous I/O request associated with the
aio_handle_t handle if the I/O request has completed. The status returned is the same as the status that
would be returned by the corresponding read or write function calls. If the I/O operation has not
completed, the returned status is undefined.

The aio_return64 subroutine is similar to the aio_return subroutine except that it retrieves the error status
associated with an aiocb64 control block.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AIO definitions. In the source file enter:
#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:
->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters

handle The handle field of an aio control block (aiocb or aiocb64) structure is set by a previous call of the
aio_read, aio_read64, aio_write, aio_write64, lio_listio, aio_listio64 subroutine. If a random memory
location is passed in, random results are returned.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
struct aiocb
{

int aio_whence;
off_t aio_offset;
char *aio_buf;
ssize_t aio_return;
int aio_errno;
size_t aio_nbytes;
union {

int reqprio;
struct {

int version:8;
int priority:8;
int cache_hint:16;

} ext;
} aio_u1;
int aio_flag;
int aio_iocpfd;
aio_handle_t aio_handle;

}

Base Operating System (BOS) Runtime Services (A-P) 57

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Environment
The aio_return and aio_return64 subroutines can be called from the process environment only.

Return Values
The aio_return subroutine returns the status of an asynchronous I/O request corresponding to those
returned by read or write functions. If the error status returned by the aio_error subroutine call is
EINPROG, the value returned by the aio_return subroutine is undefined.

Examples
An aio_read request to read 1000 bytes from a disk device eventually, when the aio_error subroutine
returns a 0, causes the aio_return subroutine to return 1000. An aio_read request to read 1000 bytes
from a 500 byte file eventually causes the aio_return subroutine to return 500. An aio_write request to
write to a read-only file system results in the aio_error subroutine eventually returning EROFS and the
aio_return subroutine returning a value of -1.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,
“aio_nwait Subroutine” on page 47, “aio_nwait_timeout Subroutine” on page 49, “aio_read or aio_read64
Subroutine” on page 50, “aio_suspend or aio_suspend64 Subroutine,” “aio_write or aio_write64
Subroutine” on page 61, “close Subroutine” on page 176, “exec: execl, execle, execlp, execv, execve,
execvp, or exect Subroutine” on page 238, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245,
“fork, f_fork, or vfork Subroutine” on page 293, “lio_listio or lio_listio64 Subroutine” on page 722, and
“lseek, llseek or lseek64 Subroutine” on page 770.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

aio_suspend or aio_suspend64 Subroutine
The aio_suspend subroutine includes information for the POSIX AIO aio_suspend subroutine (as defined
in the IEEE std 1003.1-2001), and the Legacy AIO aio_suspend subroutine.

POSIX AIO aio_suspend Subroutine

Purpose
Waits for an asynchronous I/O request.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_suspend (list, nent,

58 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

timeout)
const struct aiocb * const list[];
int nent;
const struct timespec *timeout;

Description
The aio_suspend subroutine suspends the calling thread until at least one of the asynchronous I/O
operations referenced by the list parameter has completed, until a signal interrupts the function, or, if
timeout is not NULL, until the time interval specified by timeout has passed. If any of the aiocb structures
in the list correspond to completed asynchronous I/O operations (the error status for the operation is not
equal to EINPROGRESS) at the time of the call, the subroutine returns without suspending the calling
thread. The list parameter is an array of pointers to asynchronous I/O control blocks. The nent parameter
indicates the number of elements in the array. Each aiocb structure pointed to has been used in initiating
an asynchronous I/O request through the aio_read, aio_write, or lio_listio subroutine. This array may
contain NULL pointers, which are ignored. If this array contains pointers that refer to aiocb structures that
have not been used in submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of the I/O
operations referenced by list are completed, the aio_suspend subroutine returns with an error. If the
Monotonic Clock option is supported, the clock that is used to measure this time interval is the
CLOCK_MONOTONIC clock.

Parameters

list Array of asynchronous I/O operations.
nent Indicates the number of elements in the list array.
timeout Specifies the time the subroutine has to complete the operation.

Execution Envrionment
The aio_suspend and aio_suspend64 subroutines can be called from the process environment only.

Return Values
If the aio_suspend subroutine returns after one or more asynchronous I/O operations have completed, it
returns a 0. Otherwise, it returns a -1 and sets the errno global variable to indicate the error.

The application can determine which asynchronous I/O completed by scanning the associated error and
returning status using the aio_error and aio_return subroutines, respectively.

Error Codes

EAGAIN No asynchronous I/O indicated in the list referenced by list completed in the time interval indicated by
timeout.

EINTR A signal interrupted the aio_suspend subroutine. Since each asynchronous I/O operation may possibly
provoke a signal when it completes, this error return may be caused by the completion of one (or more)
of the very I/O operations being awaited.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,
“aio_nwait Subroutine” on page 47, “aio_nwait_timeout Subroutine” on page 49, “aio_read or aio_read64
Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on page 55, “aio_write or aio_write64
Subroutine” on page 61, and “lio_listio or lio_listio64 Subroutine” on page 722.

Legacy AIO aio_suspend Subroutine

Base Operating System (BOS) Runtime Services (A-P) 59

Purpose
Suspends the calling process until one or more asynchronous I/O requests is completed.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

aio_suspend(count, aiocbpa)
int count;
struct aiocb *aiocbpa[];

aio_suspend64(count, aiocbpa)
int count;
struct aiocb64 *aiocbpa[];

Description
The aio_suspend subroutine suspends the calling process until one or more of the count parameter
asynchronous I/O requests are completed or a signal interrupts the subroutine. Specifically, the
aio_suspend subroutine handles requests associated with the aio control block (aiocb) structures
pointed to by the aiocbpa parameter.

The aio_suspend64 subroutine is similar to the aio_suspend subroutine except that it takes an array of
pointers to aiocb64 structures. This allows the aio_suspend64 subroutine to suspend on asynchronous
I/O requests submitted by either the aio_read64, aio_write64, or the lio_listio64 subroutines.

In the large file enabled programming environment, aio_suspend is redefined to be aio_suspend64.

The array of aiocb pointers may include null pointers, which will be ignored. If one of the I/O requests is
already completed at the time of the aio_suspend call, the call immediately returns.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AIO definitions. In the source file enter:
#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:
->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters

count Specifies the number of entries in the aiocbpa array.
aiocbpa Points to the aiocb or aiocb64 structures associated with the asynchronous I/O operations.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
struct aiocb
{

int aio_whence;
off_t aio_offset;
char *aio_buf;
ssize_t aio_return;

60 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int aio_errno;
size_t aio_nbytes;
union {

int reqprio;
struct {

int version:8;
int priority:8;
int cache_hint:16;

} ext;
} aio_u1;
int aio_flag;
int aio_iocpfd;
aio_handle_t aio_handle;

}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Envrionment
The aio_suspend and aio_suspend64 subroutines can be called from the process environment only.

Return Values
If one or more of the I/O requests completes, the aio_suspend subroutine returns the index into the
aiocbpa array of one of the completed requests. The index of the first element in the aiocbpa array is 0. If
more than one request has completed, the return value can be the index of any of the completed requests.

In the event of an error, the aio_suspend subroutine returns a value of -1 and sets the errno global
variable to identify the error. Return codes can be set to the following errno values:

EINTR Indicates that a signal or event interrupted the aio_suspend subroutine call.
EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is not valid.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,
“aio_nwait Subroutine” on page 47, “aio_nwait_timeout Subroutine” on page 49, “aio_read or aio_read64
Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on page 55, “aio_write or aio_write64
Subroutine,” and “lio_listio or lio_listio64 Subroutine” on page 722.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

aio_write or aio_write64 Subroutine
The aio_write subroutine includes information for the POSIX AIO aio_write subroutine (as defined in the
IEEE std 1003.1-2001), and the Legacy AIO aio_write subroutine.

POSIX AIO aio_write Subroutine

Purpose
Asynchronously writes to a file.

Base Operating System (BOS) Runtime Services (A-P) 61

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_write (aiocbp)
struct aiocb *aiocbp;

Description
The aio_write subroutine writes aio_nbytes to the file associated with aio_fildes from the buffer pointed to
by aio_buf. The subroutine returns when the write request has been initiated or queued to the file or
device.

The aiocbp parameter may be used as an argument to the aio_error and aio_return subroutines in order
to determine the error status and return status, respectively, of the asynchronous operation while it is
proceeding.

The aiocbp parameter points to an aiocb structure. If the buffer pointed to by aio_buf or the control block
pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, the behavior is
undefined.

If O_APPEND is not set for the aio_fildes file descriptor, the requested operation takes place at the
absolute position in the file as given by aio_offset. This is done as if the lseek subroutine were called
immediately prior to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. If
O_APPEND is set for the file descriptor, write operations append to the file in the same order as the calls
were made. After a successful call to enqueue an asynchronous I/O operation, the value of the file offset
for the file is unspecified.

The aio_lio_opcode field is ignored by the aio_write subroutine.

If prioritized I/O is supported for this file, the asynchronous operation is submitted at a priority equal to the
scheduling priority of the process minus aiocbp->aio_reqprio.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If synchronized I/O is enabled on the file associated with aio_fildes, the behavior of this subroutine is
according to the definitions of synchronized I/O data integrity completion, and synchronized I/O file integrity
completion.

For any system action that changes the process memory space while an asynchronous I/O is outstanding,
the result of that action is undefined.

For regular files, no data transfer occurs past the offset maximum established in the open file description
associated with aio_fildes.

If you use the aio_write or aio_write64subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

Parameters

aiocbp Points to the aiocb structure associated with the I/O operation.

62 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
int aio_fildes
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_write and aio_write64 subroutines can be called from the process environment only.

Return Values
The aio_write subroutine returns a 0 to the calling process if the I/O operation is successfully queued.
Otherwise, a -1 is returned and the errno global variable is set to indicate the error.

Error Codes

EAGAIN The requested asynchronous I/O operation was not queued due to system resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to aio_write, or
asynchronously. If any of the conditions below are detected synchronously, the aio_write subroutine
returns a -1 and sets the errno global variable to the corresponding value. If any of the conditions below
are detected asynchronously, the return status of the asynchronous operation is set to -1, and the error
status of the asynchronous operation is set to the corresponding value.

EBADF The aio_fildes parameter is not a valid file descriptor open for writing.
EINVAL The file offset value implied by aio_offset is invalid, aio_reqprio is an invalid value, or aio_nbytes is

an invalid value. The aio_write or aio_write64 subroutine was used with a file descriptor obtained
from a call to the shm_open subroutine.

If the aio_write subroutine successfully queues the I/O operation, the return status of the asynchronous
operation is one of the values normally returned by the write subroutine call. If the operation is
successfully queued but is subsequently canceled or encounters an error, the error status for the
asynchronous operation contains one of the values normally set by the write subroutine call, or one of the
following:

EBADF The aio_fildes parameter is not a valid file descriptor open for writing.
EINVAL The file offset value implied by aio_offset would be invalid.
ECANCELED The requested I/O was canceled before the I/O completed due to an aio_cancel request.

The following condition may be detected synchronously or asynchronously:

EFBIG The file is a regular file, aio_nbytes is greater than 0, and the starting offset in aio_offset is at or
beyond the offset maximum in the open file description associated with aio_fildes.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,
“aio_nwait Subroutine” on page 47, “aio_nwait_timeout Subroutine” on page 49, “lio_listio or lio_listio64
Subroutine” on page 722, “aio_read or aio_read64 Subroutine” on page 50, “aio_suspend or
aio_suspend64 Subroutine” on page 58, “aio_return or aio_return64 Subroutine” on page 55, “close
Subroutine” on page 176, “exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on
page 238

Base Operating System (BOS) Runtime Services (A-P) 63

page 238, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245, “fork, f_fork, or vfork Subroutine”
on page 293, and “lseek, llseek or lseek64 Subroutine” on page 770.

The read, readx, readv, readvx, or pread Subroutine in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

Legacy AIO aio_write Subroutine

Purpose
Writes to a file asynchronously.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_write(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb *aiocbp;

int aio_write64(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description
The aio_write subroutine writes asynchronously to a file. Specifically, the aio_write subroutine writes to
the file associated with the FileDescriptor parameter from a buffer. To handle this, the subroutine uses
information from the aio control block (aiocb) structure, which is pointed to by the aiocbp parameter. This
information includes the following fields:

aio_buf Indicates the buffer to use.
aio_nbytes Indicates the number of bytes to write.

The aio_write64 subroutine is similar to the aio_write subroutine except that it takes an aiocb64
reference parameter. This allows the aio_write64 subroutine to specify offsets in excess of OFF_MAX (2
gigbytes minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64.

If you use the aio_write or aio_write64 subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

When the write request has been queued, the aio_write subroutine updates the file pointer specified by
the aio_whence and aio_offset fields in the aiocb structure as if the requested I/O completed. It then
returns to the calling program. The aio_whence and aio_offset fields have the same meaning as the
whence and offset parameters in the lseek (“lseek, llseek or lseek64 Subroutine” on page 770) subroutine.
The subroutine ignores them for file objects that are not capable of seeking.

If an error occurs during the call, the write request is not initiated or queued. To determine the status of a
request, use the aio_error (“aio_error or aio_error64 Subroutine” on page 42) subroutine.

64 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

To have the calling process receive the SIGIO signal when the I/O operation completes, set the
AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The event structure in the aiocb structure is currently not in use but is included for future
compatibility.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AIO definitions. In the source file enter:
#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:
->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Since prioritized I/O is not supported at this time, the aio_reqprio field of the structure is not presently
used.

Parameters

FileDescriptor Identifies the object to be written as returned from a call to open.
aiocbp Points to the asynchronous I/O control block structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:
struct aiocb
{

int aio_whence;
off_t aio_offset;
char *aio_buf;
ssize_t aio_return;
int aio_errno;
size_t aio_nbytes;
union {

int reqprio;
struct {

int version:8;
int priority:8;
int cache_hint:16;

} ext;
} aio_u1;
int aio_flag;
int aio_iocpfd;
aio_handle_t aio_handle;

}

#define aio_reqprio aio_u1.reqprio
#define aio_version aio_u1.ext.version
#define aio_priority aio_u1.ext.priority
#define aio_cache_hint aio_u1.ext.cache_hint

Execution Environment
The aio_write and aio_write64 subroutines can be called from the process environment only.

Return Values
When the write request queues successfully, the aio_write subroutine returns a value of 0. Otherwise, it
returns a value of -1 and sets the errno global variable to identify the error.

Base Operating System (BOS) Runtime Services (A-P) 65

Return codes can be set to the following errno values:

EAGAIN Indicates that the system resources required to queue the request are not available. Specifically, the
transmit queue may be full, or the maximum number of opens may have been reached.

EBADF Indicates that the FileDescriptor parameter is not valid.
EFAULT Indicates that the address specified by the aiocbp parameter is not valid.
EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is not

valid. The aio_write or aio_write64 subroutine was used with a file descriptor obtained from a call to
the shm_open subroutine.

When using I/O Completion Ports with AIO Requests, return codes can also be set to the following errno
values:

EBADF Indicates that the aio_iocpfd field in the aiocb structure is not a valid I/O Completion Port file
descriptor.

EINVAL Indicates that an I/O Completion Port service failed when attempting to start the AIO Request.
EPERM Indicates that I/O Completion Port services are not available.

Note: Other error codes defined in the /usr/include/sys/errno.h file may be returned by the aio_error
subroutine if an error during the I/O operation is encountered.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,
“aio_nwait Subroutine” on page 47, “aio_nwait_timeout Subroutine” on page 49, “aio_read or aio_read64
Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on page 55, “aio_suspend or
aio_suspend64 Subroutine” on page 58, “lio_listio or lio_listio64 Subroutine” on page 722.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

alloc, dealloc, print, read_data, read_regs, symbol_addrs, write_data,
and write_regs Subroutine

Purpose
Provide access to facilities needed by the pthread debug library and supplied by the debugger or
application.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int alloc (user, len, bufp)
pthdb_user_t user;
size_t len;
void **bufp;

66 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int dealloc (user, buf)
pthdb_user_t user;
void *buf;

int print (user, str)
pthdb_user_t user;
char *str;

int read_data (user, buf, addr, size)
pthdb_user_t user;
void *buf;
pthdb_addr_t addr;
int size;

int read_regs (user, tid, flags, context)
pthdb_user_t user;
tid_t tid;
unsigned long long flags;
struct context64 *context;

int symbol_addrs (user, symbols[],count)
pthdb_user_t user;
pthdb_symbol_t symbols[];
int count;

int write_data (user, buf, addr, size)
pthdb_user_t user;
void *buf;
pthdb_addr_t addr;
int size;

int write_regs (user, tid, flags, context)
pthdb_user_t user;
tid_t tid;
unsigned long long flags;
struct context64 *context;

Description
int alloc()

Allocates len bytes of memory and returns the address. If successful, 0 is returned; otherwise, a
nonzero number is returned. This call back function is always required.

int dealloc()
Takes a buffer and frees it. If successful, 0 is returned; otherwise, a nonzero number is returned.
This call back function is always required.

int print()
Prints the character string to the debugger’s stdout. If successful, 0 is returned; otherwise, a
nonzero number is returned. This call back is for debugging the library only. If you aren’t
debugging the pthread debug library, pass a NULL value for this call back.

int read_data()
Reads the requested number of bytes of data at the requested location from an active process or
core file and returns the data through a buffer. If successful, 0 is returned; otherwise, a nonzero
number is returned. This call back function is always required.

int read_regs()
Reads the context information of a debuggee kernel thread from an active process or from a core
file. The information should be formatted in context64 form for both a 32-bit and a 64-bit process.
If successful, 0 is returned; otherwise, a nonzero number is returned. This function is only required
when using the pthdb_pthread_context and pthdb_pthread_setcontext subroutines.

int symbol_addrs()
Resolves the address of symbols in the debuggee. The pthread debug library calls this subroutine
to get the address of known debug symbols. If the symbol has a name of NULL or ″″, set the
address to 0LL instead of doing a lookup or returning an error. If successful, 0 is returned;

Base Operating System (BOS) Runtime Services (A-P) 67

otherwise, a nonzero number is returned. In introspective mode, when the
PTHDB_FLAG_SUSPEND flag is set, the application can use the pthread debug library by
passing NULL, or it can use one of its own.

int write_data()
Writes the requested number of bytes of data to the requested location. The libpthdebug.a library
may use this to write data to the active process. If successful, 0 is returned; otherwise, a nonzero
number is returned. This call back function is required when the PTHDB_FLAG_HOLD flag is set
and when using the pthdb_pthread_setcontext subroutine.

int write_regs()
Writes requested context information to specified debuggee’s kernel thread id. If successful, 0 is
returned; otherwise, a nonzero number is returned. This subroutine is only required when using
the pthdb_pthread_setcontext subroutine.

Note: If the write_data and write_regs subroutines are NULL, the pthread debug library will not try to
write data or regs. If the pthdb_pthread_set_context subroutine is called when the write_data
and write_regs subroutines are NULL, PTHDB_NOTSUP is returned.

Parameters

user User handle.
symbols Array of symbols.
count Number of symbols.
buf Buffer.
addr Address to be read from or wrote to.
size Size of the buffer.
flags Session flags, must accept PTHDB_FLAG_GPRS,

PTHDB_FLAG_SPRS, PTHDB_FLAG_FPRS, and
PTHDB_FLAG_REGS.

tid Thread id.
flags Flags that control which registers are read or wrote.
context Context structure.
len Length of buffer to be allocated or reallocated.
bufp Pointer to buffer.
str String to be printed.

Return Values
If successful, these subroutines return 0; otherwise they return a nonzero value.

Related Information
The “malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign
Subroutine” on page 782.

alloclmb Subroutine

Purpose
Allocates a contiguous block of contiguous real memory for exclusive use by the caller. The block of
memory reserved will be the size of a system LMB.

Syntax
#include <sys/dr.h>

int alloclmb(long long *laddr, int flags)

68 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The alloclmb() subroutine reserves an LMB sized block of contiguous real memory for exclusive use by
the caller. It returns the partition logical address of that memory in *laddr.

alloclmb() is only valid in an LPAR environment, and it fails (with ENOTSUP) if called in another
environment.

Only a privileged user should call alloclmb().

Parameters

laddr On successful return, contains the logical address of the allocated LMB.
flags Must be 0.

Execution Environment
This alloclmb() interface should only be called from the process environment.

Return Values

0 The LMB is successfully allocated.

Error Codes

ENOTSUP LMB allocation not supported on this system.
EINVAL Invalid flags value.
EINVAL Not in the process environment.
ENOMEM A free LMB could not be made available.

Related Information
“freelmb Subroutine” on page 316

arm_end Subroutine

Purpose
The arm_end subroutine is used to mark the end of an application. This subroutine call must always be
called when a program that issued an arm_init (“arm_init Subroutine” on page 77) subroutine call
terminates. In the PTX® implementation of ARM, application data structures may persist after arm_end is
issued.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_ret_stat_t ARM_API arm_end(arm_appl_id_t appl_id, /* application id
*/

arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Base Operating System (BOS) Runtime Services (A-P) 69

Description
By calling the arm_end subroutine, an application program signals to the ARM library that it has ceased
issuing ARM subroutine calls for the application specified and that the library code can remove references
to the application. As far as the calling program is concerned, all references to transactions defined for the
named application can be removed as well.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Note that, in the PTX implementation of ARM, multiple processes can issue arm_init (“arm_init
Subroutine” on page 77) subroutine calls for a given application with the effect that multiple simultaneous
definitions of the application are effective. The ARM library code points all these definitions to a single
application structure in the ARM private shared memory area. A use-count keeps track of the number of
simultaneous definitions. Each time arm_init is issued for the application name, the counter is
incremented and each time the arm_end subroutine call is issued for the associated appl_id, the counter
is decremented. No call to arm_end is permitted to decrement the counter less than zero.

Only when the counter reaches zero is the application structure inactivated. As long as the counter is
non-zero, transactions defined for the application remain active and new transactions can be defined for
the application. It does not matter which process created the definition of the application.

This implementation was chosen because it makes perfect sense in a PTX environment. Any more
restrictive implementation would have increased memory use significantly and would be useless for PTX
monitoring purposes.

Parameters
appl_id

The identifier is returned by an earlier call to arm_init, “arm_init Subroutine” on page 77. The PTX
implementation does not require that the arm_init subroutine call was issued by the same
program or process now issuing the arm_end subroutine call. However, each time the arm_end
subroutine call is issued against an appl_id, the use-count of the transaction structure is
decremented. When the count reaches zero, the application structure and all associated
transaction structures are marked as inactive. Subsequent arm_init calls can reactivate the
application structure but transaction structures formerly associated with the application are not
automatically activated. Each transaction must be reactivated through the arm_getid (“arm_getid
Subroutine” on page 73) subroutine call.

The appl_id is used to look for an application structure. If none is found, no action is taken and the
function returns -1. If one is found, the use-count of the application structure is decremented. If
that makes the counter zero, the use-counts of all associated transaction structures are set to
zero. The total number of application structures that have been initialized for the calling process
but not ended is decremented. If this count reaches zero, access to the shared memory from the
process is released and the count of users of the shared memory area is decremented. If the
count of users of the shared memory segment reaches zero, the shared memory segment is
deleted.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

70 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information
1208, arm_init (“arm_init Subroutine” on page 77) subroutine, arm_getid (“arm_getid Subroutine” on page
73) subroutine.

arm_end Dual Call Subroutine

Purpose
The arm_end subroutine is used to mark the end of an application. This subroutine call must always be
called when a program that issued an arm_init (“arm_init Dual Call Subroutine” on page 79) subroutine
call terminates. In the PTX implementation of ARM, application data structures may persist after arm_end
is issued. This may not be the case for the lower library implementation.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_ret_stat_t ARM_API arm_end(arm_appl_id_t appl_id, /* application id
*/

arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
By calling the arm_end subroutine, an application program signals to the ARM library that it has ceased
issuing ARM subroutine calls for the application specified and that the library code can remove references
to the application. As far as the calling program is concerned, all references to transactions defined for the
named application can be removed as well.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value of
zero, that return value is passed to the caller. If the value returned by the lower library is non-zero, the
return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Note that, in the PTX implementation of ARM, multiple processes can issue arm_init (“arm_init Dual Call
Subroutine” on page 79) subroutine calls for a given application with the effect that multiple simultaneous
definitions of the application are effective. The ARM library code points all these definitions to a single
application structure in the ARM private shared memory area. A use-count keeps track of the number of
simultaneous definitions. Each time arm_init is issued for the application name, the counter is
incremented and each time the arm_end subroutine call is issued for the associated appl_id, the counter
is decremented. No call to arm_end is permitted to decrement the counter less than zero.

Base Operating System (BOS) Runtime Services (A-P) 71

Only when the counter reaches zero is the application structure inactivated. As long as the counter is
non-zero, transactions defined for the application remain active and new transactions can be defined for
the application. It does not matter which process created the definition of the application.

This implementation was chosen because it makes perfect sense in a PTX environment. Any more
restrictive implementation would have increased memory use significantly and would be useless for PTX
monitoring purposes.

For the implementation of arm_end in the lower library, other restrictions may exist.

Parameters
appl_id

The identifier returned by an earlier call to arm_init (“arm_init Dual Call Subroutine” on page 79).
The identifier is passed to the arm_end function of the lower library. If the lower library returns a
zero, a zero is returned to the caller. After the invocation of the lower library, the
PTX implementation attempts to translate the appl_id argument to its own identifier from the
cross-reference table created by arm_init (“arm_init Dual Call Subroutine” on page 79). If one can
be found, it is used for the PTX implementation; if no cross reference is found, the appl_id is used
as passed in. The PTX implementation does not require that the arm_init subroutine call was
issued by the same program or process now issuing the arm_end subroutine call. However, each
time the arm_end subroutine call is issued against an appl_id, the use-count of the transaction
structure is decremented. When the count reaches zero, the application structure and all
associated transaction structures are marked as inactive. Subsequent arm_init calls can reactivate
the application structure but transaction structures formerly associated with the application are not
automatically activated. Each transaction must be reactivated through the arm_getid (“arm_getid
Dual Call Subroutine” on page 75) subroutine call.

In the PTX implementation, the appl_id (as retrieved from the cross-reference table) is used to
look for an application structure. If none is found, no action is taken and the PTX function is
considered to have failed. If one is found, the use-count of the application structure is
decremented. If that makes the counter zero, the use-counts of all associated transaction
structures are set to zero. The total number of application structures that have been initialized for
the calling process but not ended is decremented. If this count reaches zero, access to the shared
memory from the process is released and the count of users of the shared memory area is
decremented. If the count of users of the shared memory segment reaches zero, the shared
memory segment is deleted.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the
call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed
but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than
zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

72 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
v “arm_init Dual Call Subroutine” on page 79

v “arm_getid Dual Call Subroutine” on page 75

arm_getid Subroutine

Purpose
The arm_getid subroutine is used to register a transaction as belonging to an application and assign a
unique identifier to the application/transaction pair. In the PTX implementation of ARM, multiple instances
of a transaction within one application can’t be defined. A transaction must be registered before any ARM
measurements can begin.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_tran_id_t arm_getid(arm_appl_id_t appl_id, /* application handle
*/

arm_ptr_t *tran_name, /* transaction name */
arm_ptr_t *tran_detail, /* transaction additional info */
arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
Each transaction needs to be defined by a unique name within an application. Transactions can be defined
so they best fit the application environment. For example, if a given environment has thousands of unique
transactions, it may be feasible to define groups of similar transactions to prevent data overload. In other
situations, you may want to use generated transaction names that reflect what data a transaction carries
along with the transaction type. For example, the type of SQL query could be analyzed to group customer
query transactions according to complexity, such as customer_simple, customer, customer_complex.
Whichever method is used to name transactions, in the PTX implementation of the ARM API,
measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Note that the use-count for a transaction structure is either one or zero. This ensures that as long as the
application structure is active, so are all transactions for which an arm_getid call was issued after the
application was activated by an arm_init (“arm_init Subroutine” on page 77) call. The transaction
use-count is reset to zero by the arm_end (“arm_end Subroutine” on page 69) call if this call causes the
application use-count to go to zero.

Note that the implementation of arm_getid doesn’t allow unique instances of a transaction to be defined.
The tran_id associated with a transaction is stored in the ARM shared memory area and will remain
constant throughout the life of the shared memory area. Consequently, subsequent executions of a

Base Operating System (BOS) Runtime Services (A-P) 73

program that defines one or more transactions under a given application will usually have the same
ID returned for the transactions each time. The same is true when different programs define the same
transaction within an application: As long as the shared memory area exists, they will all have the same
ID returned. This is done to minimize the use of memory for transaction definitions and because it makes
no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate transaction
names to pass on the arm_getid subroutine call.

Parameters
appl_id

The identifier returned by an earlier call to arm_init (“arm_init Subroutine” on page 77). The PTX
implementation does not require that the arm_init subroutine call was issued by the same
program or process now issuing the arm_getid subroutine call. However, the number of issued
arm_init subroutine calls for the application name must exceed the number of issued arm_end
subroutine calls for this appl_id.

The appl_id is used to look for an application structure. If one is not found or if the use-count of
the one found is zero, no action is taken and the function returns -1.

tran_name

A unique transaction name. The name only needs to be unique within the appl_id. The maximum
length is 128 characters including the terminating zero. The argument is converted to a key by
removing all blanks and truncating the string to 32 characters, including a terminating zero. This
key is used to look for a transaction structure (that belongs to the application identified in the first
argument) in the library’s private shared memory area. If a transaction structure is found, its
use-count is set to one and the transaction ID stored in the structure is returned to the caller. If the
structure is not found, one is created and assigned the next free transaction ID, given a use-count
of one and added to the application’s linked list of transactions. The new assigned transaction ID
is returned to the caller.

Up-to 64 bytes, including the terminating zero, of the tran_name parameter is saved as the
description of the SpmiCx context that represents the transaction in the Spmi hierarchy. The key
is used as the short name of the context.

tran_detail

Can be passed in as NULL or some means of specifying a unique instance of the transaction. In
the PTX implementation of the ARM API, this parameter is ignored. Consequently, it is not
possible to define unique instances of a transaction. If specified as non-NULL, this parameter must
be a string not exceeding 128 bytes in length, including the terminating zero.

For the implementation to take this argument in use, another context level would have to be
defined between the application context and the transaction context. This was deemed excessive.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns an tran_id application identifier. If the subroutine fails, a value less
than zero is returned. In compliance with the ARM API specifications, the error return value can be passed
to the arm_start (“arm_start Subroutine” on page 81) subroutine, which will cause arm_start to function
as a no-operation.

74 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information
arm_init (“arm_init Subroutine” on page 77) subroutine, arm_end (“arm_end Subroutine” on page 69)
subroutine.

arm_getid Dual Call Subroutine

Purpose
The arm_getid subroutine is used to register a transaction as belonging to an application and assign a
unique identifier to the application/transaction pair. In the PTX implementation of ARM, multiple instances
of a transaction within one application can’t be defined. The lower library implementation of this subroutine
may provide support for instances of transactions. A transaction must be registered before any ARM
measurements can begin.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_tran_id_t arm_getid(arm_appl_id_t appl_id, /* application handle
*/

arm_ptr_t *tran_name, /* transaction name */
arm_ptr_t *tran_detail, /* transaction additional info */
arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
Each transaction needs to be defined by a unique name within an application. Transactions can be defined
so they best fit the application environment. For example, if a given environment has thousands of unique
transactions, it may be feasible to define groups of similar transactions to prevent data overload. In other
situations, you may want to use generated transaction names that reflect what data a transaction carries
along with the transaction type. For example, the type of SQL query could be analyzed to group customer
query transactions according to complexity, such as customer_simple, customer, customer_complex.
Whichever method is used to name transactions, in the PTX implementation of the ARM API,
measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value
greater than zero, that return value is passed to the caller as the transaction ID. If the returned value from
the lower library is zero or negative, the return value is the one generated by the PTX library code.

Base Operating System (BOS) Runtime Services (A-P) 75

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Note that the use-count for a transaction structure is either one or zero. This ensures that as long as the
application structure is active, so are all transactions for which an arm_getid call was issued after the
application was activated by an arm_init (“arm_init Dual Call Subroutine” on page 79) call. The transaction
use-count is reset to zero by the arm_end (“arm_end Dual Call Subroutine” on page 71) call if this call
causes the application use-count to go to zero.

Note that the implementation of arm_getid doesn’t allow unique instances of a transaction to be defined.
The tran_id associated with a transaction is stored in the ARM shared memory area and will remain
constant throughout the life of the shared memory area. Consequently, subsequent executions of a
program that defines one or more transactions under a given application will usually have the same
ID returned for the transactions each time. The same is true when different programs define the same
transaction within an application: As long as the shared memory area exists, they will all have the same
ID returned. This is done to minimize the use of memory for transaction definitions and because it makes
no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate transaction
names to pass on the arm_getid subroutine call.

Regardless of the implementation restrictions of the PTX library, the lower library may or may not have its
own implementation restrictions.

Parameters
appl_id

The identifier returned by an earlier call to arm_init (“arm_init Dual Call Subroutine” on page 79).
The identifier is passed to the arm_getid function of the lower library. If the lower library returns
an identifier greater than zero, that identifier is the one that’ll eventually be returned to the caller.
After the invocation of the lower library, the PTX implementation attempts to translate the appl_id
argument to its own identifier by consulting the cross-reference table created by arm_init. If one
can be found, it is used for the PTX implementation; if no cross reference is found, the appl_id is
used as passed in. The PTX implementation does not require that the arm_init subroutine call
was issued by the same program or process now issuing the arm_getid subroutine call. However,
the number of issued arm_init subroutine calls for the application name must exceed the number
of issued arm_end subroutine calls for this appl_id.

In the PTX implementation, the appl_id (as retrieved from the cross-reference table) is used to
look for an application structure. If one is not found or if the use-count of the one found is zero,
the PTX implementation is considered to have failed and no action is taken by the PTX library.

tran_name

A unique transaction name. The name only needs to be unique within the appl_id. The maximum
length is 128 characters including the terminating zero. In the PTX implementation, the argument
is converted to a key by removing all blanks and truncating the string to 32 characters, including a
terminating zero. This key is used to look for a transaction structure (that belongs to the
application identified in the first argument) in the library’s private shared memory area. If a
transaction structure is found, its use-count is set to one and the transaction ID stored in the
structure is saved. If the structure is not found, one is created and assigned the next free
transaction ID, given a use-count of one and added to the application’s linked list of transactions.
The new assigned transaction ID is saved. If the call to the lower library was successful, a
cross-reference is created from the lower library’s transaction ID to the PTX library’s transaction ID
for use by arm_start (“arm_start Dual Call Subroutine” on page 82).

76 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Up-to 64 bytes, including the terminating zero, of the tran_name parameter is saved as the
description of the SpmiCx context that represents the transaction in the Spmi hierarchy. The key
is used as the short name of the context.

tran_detail

Can be passed in as NULL or some means of specifying a unique instance of the transaction. In
the PTX implementation of the ARM API, this parameter is ignored. Consequently, it is not
possible to define unique instances of a transaction. If specified as non-NULL, this parameter must
be a string not exceeding 128 bytes in length, including the terminating zero.

For the implementation to take this argument in use, another context level would have to be
defined between the application context and the transaction context. This was deemed excessive.

For the lower library implementation of this subroutine call, the tran_detail argument may have
significance. If so, it’s transparent to the PTX implementation.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.In the current API definition, the last three arguments are for future use and they
are ignored in the implementation.

Return Values
If successful, the subroutine returns an tran_id application identifier. If the subroutine fails, a value less
than zero is returned. In compliance with the ARM API specifications, the error return value can be passed
to the arm_start (“arm_start Dual Call Subroutine” on page 82) subroutine, which will cause arm_start to
function as a no-operation.

If the call to the lower library was successful, the tran_id transaction identifier returned is the one
assigned by the lower library. If the subroutine call to the lower library failed but the PTX implementation
didn’t fail, the tran_id returned is the one assigned by the PTX library. If both implementations fail, a value
less than zero is returned. In compliance with the ARM API specification, an error return value can be
passed to the arm_start (“arm_start Dual Call Subroutine” on page 82) subroutine, which will cause
arm_start to function as a no-operation.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information
arm_init (“arm_init Dual Call Subroutine” on page 79) subroutine, arm_end (“arm_end Dual Call
Subroutine” on page 71) subroutine.

arm_init Subroutine

Purpose
The arm_init subroutine is used to define an application or a unique instance of an application to the ARM
library. In the PTX implementation of ARM, instances of applications can’t be defined. An application must
be defined before any other ARM subroutine is issued.

Base Operating System (BOS) Runtime Services (A-P) 77

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_appl_id_t arm_init(arm_ptr_t *appname, /* application name
*/

arm_ptr_t *appl_user_id, /* Name of the application user */
arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
Each application needs to be defined by a unique name. An application can be defined as loosely or as
rigidly as required. It may be defined as a single execution of one program, multiple (possibly
simultaneous) executions of one program, or multiple executions of multiple programs that together
constitute an application. Any one user of ARM may define the application so it best fits the measurement
granularity desired. Measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Note that the implementation of arm_init doesn’t allow unique instances of an application to be defined.
The appl_id associated with an application is stored in the ARM shared memory area and will remain
constant throughout the life of the shared memory area. Consequently, subsequent executions of a
program that defines one or more applications will usually have the same ID returned for the application
each time. The same is true when different programs define the same application: As long as the shared
memory area exists, they will all have the same ID returned. This is done to minimize the use of memory
for application definitions and because it makes no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate application
names to pass on the arm_init subroutine call.

Parameters
appname

A unique application name. The maximum length is 128 characters including the terminating zero.
The argument is converted to a key by removing all blanks and truncating the string to 32
characters, including a terminating zero. This key is used to look for an application structure in the
library’s private shared memory area. If a structure is found, its use-count is incremented and the
application ID stored in the structure is returned to the caller. If the structure is not found, one is
created, assigned the next free application ID and given a use-count of one. The new assigned
application ID is returned to the caller.

Up-to 64 bytes, including the terminating zero, of the appname parameter is saved as the
description of the SpmiCx context that represents the application in the Spmi hierarchy. The key
is used as the short name of the context.

appl_user_id

Can be passed in as NULL or some means of specifying a user ID for the application. This allows
the calling program to define unique instances of an application. In the PTX implementation of the

78 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ARM API, this parameter is ignored. Consequently, it is not possible to define unique instances of
an application. If specified as non-NULL, this parameter must be a string not exceeding 128 bytes
in length, including the terminating zero.

For the implementation to take this argument in use, another context level would have to be
defined between the application context and the transaction context. This was deemed excessive.

flags, data, data_size
In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns an appl_id application identifier. If the subroutine fails, a value less
than zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

arm_init Dual Call Subroutine

Purpose
The arm_init subroutine is used to define an application or a unique instance of an application to the ARM
library. While, in the PTX implementation of ARM, instances of applications can’t be defined, the ARM
implementation in the lower library may permit this. An application must be defined before any other ARM
subroutine is issued.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_appl_id_t arm_init(arm_ptr_t *appname, /* application name
*/

arm_ptr_t *appl_user_id, /* Name of the application user */
arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
Each application needs to be defined by a unique name. An application can be defined as loosely or as
rigidly as required. It may be defined as a single execution of one program, multiple (possibly
simultaneous) executions of one program, or multiple executions of multiple programs that together
constitute an application. Any one user of ARM may define the application so it best fits the measurement
granularity desired. For the PTX implementation, measurements are always collected for each unique
combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

Base Operating System (BOS) Runtime Services (A-P) 79

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value
greater than zero, that return value is passed to the caller as the application ID. If the returned value from
the lower library is zero or negative, the return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Note that the implementation of arm_init doesn’t allow unique instances of an application to be defined.
The appl_id associated with an application is stored in the ARM shared memory area and will remain
constant throughout the life of the shared memory area. Consequently, subsequent executions of a
program that defines one or more applications will usually have the same ID returned for the application
each time. The same is true when different programs define the same application: As long as the shared
memory area exists, they will all have the same ID returned. This is done to minimize the use of memory
for application definitions and because it makes no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate application
names to pass on the arm_init subroutine call.

Regardless of the implementation restrictions of the PTX library, the lower library may or may not have its
own implementation restrictions.

Parameters
appname

A unique application name. The maximum length is 128 characters including the terminating zero.
The PTX library code converts this value to a key by removing all blanks and truncating the string
to 32 characters, including a terminating zero. This key is used to look for an application structure
in the library’s private shared memory area. If a structure is found, its use-count is incremented
and the application ID stored in the structure is saved. If the structure is not found, one is created,
assigned the next free application ID and given a use-count of one. The new assigned application
ID is saved. If the call to the lower library was successful, a cross-reference is created from the
lower library’s application ID to the PTX library’s application ID for use by arm_getid (“arm_getid
Dual Call Subroutine” on page 75) and arm_end (“arm_end Dual Call Subroutine” on page 71).

Up-to 64 bytes, including the terminating zero, of the appname parameter is saved as the
description of the SpmiCx context that represents the application in the Spmi hierarchy. The key
is used as the short name of the context.

appl_user_id

Can be passed in as NULL or some means of specifying a user ID for the application. This allows
the calling program to define unique instances of an application. In the PTX implementation of the
ARM API, this parameter is ignored. Consequently, it is not possible to define unique instances of
an application. If specified as non-NULL, this parameter must be a string not exceeding 128 bytes
in length, including the terminating zero.

For the PTX implementation to take this argument in use, another context level would have to be
defined between the application context and the transaction context. This was deemed excessive.

For the lower library implementation of this subroutine call, the appl_user_id argument may have
significance. If so, it’s transparent to the PTX implementation.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

80 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
If the call to the lower library was successful, the subroutine returns an appl_id application identifier as
returned from the lower library. If the subroutine call to the lower library fails but the PTX implementation
doesn’t fail, the appl_id returned is the one assigned by the PTX library. If both implementations fail, a
value less than zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

arm_start Subroutine

Purpose
The arm_start subroutine is used to mark the beginning of the execution of a transaction. Measurement of
the transaction response time starts at the execution of this subroutine.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_start_handle_t arm_start(arm_tran_id_t tran_id, /* transaction name identifier
*/

arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
Each arm_start subroutine call marks the beginning of another instance of a transaction within an
application. Multiple instances (simultaneous executions of the transaction) may exist. Control information
for the transaction instance is held until the execution of a matching arm_stop (“arm_stop Subroutine” on
page 84) subroutine call, at which time the elapsed time is calculated and used to update transaction
measurement metrics for the transaction. Metrics are accumulated for each unique combination of the
following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Parameters
tran_id

The identifier is returned by an earlier call to arm_getid, “arm_getid Subroutine” on page 73. The
PTX implementation does not require that the arm_getid subroutine call was issued by the same

Base Operating System (BOS) Runtime Services (A-P) 81

program or process now issuing the arm_start subroutine call. However, the transaction’s
application structure must be active, which means that the number of issued arm_init subroutine
calls for the application name must exceed the number of issued arm_end subroutine calls for the
application’s appl_id. If an application was inactivated by issuing a sufficient number of arm_end
calls, all transactions defined for that application will have their use_count set to zero. The count
remains zero (and the transaction inactive) until a new arm_getid subroutine is issued for the
transaction.

The tran_id argument is used to look for a transaction structure. If one is not found or if the
use-count of the one found is zero, no action is taken and the function returns -1. If one is found,
a transaction instance structure (called a slot structure) is allocated, assigned the next free
instance ID, and updated with the start time of the transaction instance. The assigned instance ID
is returned to the caller.

In compliance with the ARM API specifications, if the tran_id passed is one returned from a
previous arm_getid subroutine call that failed, the arm_start subroutine call functions as a
no-operation function. It will return a NULL start_handle, which can be passed to subsequent
arm_update (“arm_update Subroutine” on page 88) and arm_stop (“arm_stop Subroutine” on
page 84) subroutine calls with the effect that those calls are no-operation functions.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns a start_handle, which uniquely defines this transaction execution
instance. If the subroutine fails, a value less than zero is returned. In compliance with the ARM
API specifications, the error return value can be passed to the arm_update (“arm_update Subroutine” on
page 88) and arm_stop (“arm_stop Subroutine” on page 84) subroutines, which will cause those
subroutines to operate as no-operation functions.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information
arm_init (“arm_init Subroutine” on page 77) subroutine, arm_getid (“arm_getid Subroutine” on page 73)
subroutine, arm_end (“arm_end Subroutine” on page 69) subroutine.

arm_start Dual Call Subroutine

Purpose
The arm_start subroutine is used to mark the beginning of the execution of a transaction. Measurement of
the transaction response time starts at the execution of this subroutine.

Library
ARM Library (libarm.a).

82 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include arm.h

arm_start_handle_t arm_start(arm_tran_id_t tran_id, /* transaction name identifier
*/

arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
Each arm_start subroutine call marks the beginning of another instance of a transaction within an
application. Multiple instances (simultaneous executions of the transaction) may exist. Control information
for the transaction instance is held until the execution of a matching arm_stop (“arm_stop Dual Call
Subroutine” on page 86) subroutine call, at which time the elapsed time is calculated and used to update
transaction measurement metrics for the transaction. Metrics are accumulated for each unique combination
of the following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value
greater than zero, that return value is passed to the caller as the start handle. If the value returned by the
lower library is zero or negative, the return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Parameters
tran_id

The identifier is returned by an earlier call to arm_getid, “arm_getid Dual Call Subroutine” on page
75. The identifier is passed to the arm_start function of the lower library. If the lower library
returns an identifier greater than zero, that identifier is the one that’ll eventually be returned to the
caller. After the invocation of the lower library, the PTX implementation attempts to translate the
tran_id argument to its own identifier from the cross-reference table created by arm_getid. If one
can be found, it is used for the PTX implementation; if no cross reference is found, the tran_idis
used as passed in.The PTX implementation does not require that the arm_getid subroutine call
was issued by the same program or process now issuing the arm_start subroutine call. However,
the transaction’s application structure must be active, which means that the number of issued
arm_init subroutine calls for the application name must exceed the number of issued arm_end
subroutine calls for the application’s appl_id. If an application was inactivated by issuing a
sufficient number of arm_end calls, all transactions defined for that application will have their
use_count set to zero. The count remains zero (and the transaction inactive) until a new
arm_getid subroutine is issued for the transaction.

In the PTX implementation, the tran_id (as retrieved from the cross-reference table) is used to look
for a transaction structure. If one is not found or if the use-count of the one found is zero, the PTX
implementation is considered to have failed and no action is taken by the PTX library. If one is
found, a transaction instance structure (called a slot structure) is allocated, assigned the next free
instance ID, and updated with the start time of the transaction instance. The assigned instance ID
is saved as the start_handle. If the call to the lower library was successful, a cross-reference is
created from the lower library’s start_handle to the PTX library’s start_handle for use by
arm_update (“arm_update Dual Call Subroutine” on page 89) and arm_stop (“arm_stop Dual Call
Subroutine” on page 86).

Base Operating System (BOS) Runtime Services (A-P) 83

In compliance with the ARM API specifications, if the tran_id passed is one returned from a
previous arm_getid subroutine call that failed, the arm_start subroutine call functions as a
no-operation function. It will return a NULL start_handle, which can be passed to subsequent
arm_update (“arm_update Dual Call Subroutine” on page 89) and arm_stop (“arm_stop Dual Call
Subroutine” on page 86) subroutine calls with the effect that those calls are no-operation functions.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.In the current API definition, the last three arguments are for future use and they
are ignored in the implementation.

Return Values
If successful, the subroutine returns a start_handle, which uniquely defines this transaction execution
instance. If the subroutine fails, a value less than zero is returned. In compliance with the ARM
API specifications, the error return value can be passed to the arm_update (“arm_update Dual Call
Subroutine” on page 89) and arm_stop (“arm_stop Dual Call Subroutine” on page 86) subroutines, which
will cause those subroutines to operate as no-operation functions.

If the call to the lower library was successful, the start_handle instance ID returned is the one assigned
by the lower library. If the subroutine call to the lower library failed but the PTX implementation didn’t fail,
the start_handle returned is the one assigned by the PTX library. If both implementations fail, a value less
than zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information
arm_init (“arm_init Dual Call Subroutine” on page 79) subroutine, arm_getid (“arm_getid Dual Call
Subroutine” on page 75) subroutine, arm_end (“arm_end Dual Call Subroutine” on page 71) subroutine.

arm_stop Subroutine

Purpose
The arm_stop subroutine is used to mark the end of the execution of a transaction. Measurement of the
transaction response time completes at the execution of this subroutine.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_ret_stat_t arm_stop(arm_start_handle_t arm_handle,
const arm_status_t comp_status,
arm_flag_t flags,
arm_data_t * data,
arm_data_sz_t data_size);

84 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
Each arm_stop subroutine call marks the end of an instance of a transaction within an application.
Multiple instances (simultaneous executions of the transaction) may exist. Control information for the
transaction instance is held from the execution of the arm_start (“arm_start Subroutine” on page 81)
subroutine call and until the execution of a matching arm_stop subroutine call, at which time the elapsed
time is calculated and used to update transaction measurement metrics for the transaction. Metrics are
accumulated for each unique combination of the following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Parameters
arm_handle

The identifier is returned by an earlier call to arm_start, “arm_start Subroutine” on page 81. The
arm_handle argument is used to look for a slot structure created by the arm_start (“arm_start
Subroutine” on page 81) call, which returned this arm_handle. If one is not found, no action is
taken and the function returns -1. If one is found, a post structure is allocated and added to the
linked list of post structures used to pass data to the SpmiArmd daemon. The post structure is
updated with the start time from the slot structure, the path to the transaction context, and the stop
time of the transaction instance.

In compliance with the ARM API specifications, if the start_handle passed is one returned from a
previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a
no-operation function, the arm_stop subroutine call executes as a no-operation function. It will
return a zero to indicate successful completion.

comp_status

User supplied transaction completion code. The following codes are defined:

v ARM_GOOD - successful completion. Response time is calculated. The response time is
calculated as a fixed point value in milliseconds and saved in the metric resptime. In addition,
the weighted average response time is calculated as a floating point value using a variable
weight that defaults to 75%. The average response time is calculated as weight percent of the
previous value of the average plus (100 - weight) percent of the latest response time
observation. The value of weight can be changed from the SpmiArmd daemon’s configuration
file /etc/perf/SpmiArmd.cf. In addition, the maximum and minimum response time for this
transaction is updated, if required. Finally the count of successful transaction executions is
incremented.

v ARM_ABORT - transaction aborted. The aborted counter is incremented. No other updates
occur.

v ARM_FAILED - transaction failed. The failed counter is incremented. No other updates occur.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

Base Operating System (BOS) Runtime Services (A-P) 85

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information
arm_init (“arm_init Subroutine” on page 77) subroutine, arm_getid (“arm_getid Subroutine” on page 73)
subroutine, arm_start (“arm_start Subroutine” on page 81) subroutine, arm_end (“arm_end Subroutine” on
page 69) subroutine.

arm_stop Dual Call Subroutine

Purpose
The arm_stop subroutine is used to mark the end of the execution of a transaction. Measurement of the
transaction response time completes at the execution of this subroutine.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_ret_stat_t arm_stop(arm_start_handle_t arm_handle, /* unique transaction handle
*/

const arm_status_t comp_status, /* Good=0, Abort=1, Failed=2 */
arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
Each arm_stop subroutine call marks the end of an instance of a transaction within an application.
Multiple instances (simultaneous executions of the transaction) may exist. Control information for the
transaction instance is held from the execution of the arm_start (“arm_start Dual Call Subroutine” on page
82) subroutine call and until the execution of a matching arm_stop subroutine call, at which time the
elapsed time is calculated and used to update transaction measurement metrics for the transaction.
Metrics are accumulated for each unique combination of the following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value of
zero, that return value is passed to the caller. If the value returned by the lower library is non-zero, the
return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

86 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters
arm_handle

The identifier is returned by an earlier call to arm_start, “arm_start Dual Call Subroutine” on page
82. The identifier is passed to the arm_stop function of the lower library. If the lower library
returns a zero return code, that return code is returned to the caller. After the invocation of the
lower library, the PTX implementation attempts to translate the arm_handleargument to its own
identifier from the cross-reference table created by arm_start. If one can be found, it is used for
the PTX implementation; if no cross reference is found, the arm_handle is used as passed in. The
PTX implementation uses the start_handle argument to look for the slot structure created by the
arm_start subroutine call. If one is found, a post structure is allocated and added to the linked list
of post structures used to pass data to the SpmiArmd daemon. The post structure is updated with
the start time from the slot structure, the path to the transaction context, and the stop time of the
transaction instance. If no slot structure was found, the PTX implementation is considered to have
failed.

In compliance with the ARM API specifications, if the start_handle passed is one returned from a
previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a
no-operation function, the arm_stop subroutine call executes as a no-operation function. It will
return a zero to indicate successful completion.

comp_status

User supplied transaction completion code. The following codes are defined:

v ARM_GOOD - successful completion. Response time is calculated. The response time is
calculated as a fixed point value in milliseconds and saved in the metric resptime. In addition,
the weighted average response time (in respavg) is calculated as a floating point value using a
variable weight, that defaults to 75%. The average response time is calculated as weight
percent of the previous value of the average plus (100 - weight) percent of the latest response
time observation. The value of weight can be changed from the SpmiArmd daemon’s
configuration file /etc/perf/SpmiArmd.cf. In addition, the maximum and minimum response time
for this transaction is updated, if required. Finally the count of successful transaction executions
is incremented.

v ARM_ABORT - transaction aborted. The aborted counter is incremented. No other updates
occur.

v ARM_FAILED - transaction failed. The failed counter is incremented. No other updates occur.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.In the current API definition, the last three arguments are for future use and they
are ignored in the implementation.

Return Values
If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the
call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed
but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than
zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Base Operating System (BOS) Runtime Services (A-P) 87

Related Information
arm_init (“arm_init Dual Call Subroutine” on page 79) subroutine, arm_getid (“arm_getid Dual Call
Subroutine” on page 75) subroutine, arm_start (“arm_start Dual Call Subroutine” on page 82) subroutine,
arm_end (“arm_end Dual Call Subroutine” on page 71) subroutine.

arm_update Subroutine

Purpose
The arm_update subroutine is used to collect information about a transaction’s progress. It is a
no-operation subroutine in the PTX implementation.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_ret_stat_t arm_update(arm_start_handle_t arm_handle, /* unique transaction handle
*/

arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
The arm_update subroutine is implemented as a no-operation in the PTX version of the ARM API. It is
intended to be used for providing status information for a long-running transaction. Because there’s no
feasible way to display such information in current PTX monitors, the subroutine is a NULL function.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product. It is implemented as a NULL subroutine call.

Parameters
start_handle

The identifier is returned by an earlier call to arm_start, “arm_start Subroutine” on page 81. The
start_handle argument is used to look for the slot structure created by the arm_start subroutine
call. If one is not found, no action is taken and the function returns -1. Otherwise a zero is
returned.

In compliance with the ARM API specifications, if the start_handle passed is one returned from a
previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a
no-operation function, the arm_update subroutine call executes as a no-operation function. It will
return a zero to indicate successful completion.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

88 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information
arm_init (“arm_init Subroutine” on page 77) subroutine, arm_getid (“arm_getid Subroutine” on page 73)
subroutine, arm_start (“arm_start Subroutine” on page 81) subroutine, arm_stop (“arm_stop Subroutine”
on page 84) subroutine, arm_end (“arm_end Subroutine” on page 69) subroutine.

arm_update Dual Call Subroutine

Purpose
The arm_update subroutine is used to collect information about a transaction’s progress. It is a
no-operation subroutine in the PTX implementation but may be fully implemented by the lower library.

Library
ARM Library (libarm.a).

Syntax
#include arm.h

arm_ret_stat_t arm_update(arm_start_handle_t arm_handle, /* unique transaction handle
*/

arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description
The arm_update subroutine is implemented as a no-operation in the PTX version of the ARM API. It is
intended to be used for providing status information for a long-running transaction. Because there’s no
feasible way to display such information in current PTX monitors, the subroutine is a NULL function.

The lower library implementation of the arm_update subroutine is always invoked.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product. It is implemented as a NULL subroutine call.

Parameters
start_handle

The identifier is returned by an earlier call to arm_start, “arm_start Dual Call Subroutine” on page
82. The identifier is passed to the arm_update function of the lower library. If the lower library
returns a zero return code., that return code is returned to the caller. After the invocation of the
lower library, the PTX implementation attempts to translate the arm_handleargument to its own
identifier from the cross-reference table created by arm_start. If one can be found, it is used for
the PTX implementation; if no cross reference is found, the arm_handle is used as passed in. The
PTX implementation uses the start_handle argument to look for the slot structure created by the
arm_start subroutine call. If one is found the PTX implementation is considered to have
succeeded, otherwise it is considered to have failed.

Base Operating System (BOS) Runtime Services (A-P) 89

In compliance with the ARM API specifications, if the start_handle passed is one returned from a
previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a
no-operation function, the arm_update subroutine call executes as a no-operation function. It will
return a zero to indicate successful completion.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.In the current API definition, the last three arguments are for future use and they
are ignored in the implementation.

Return Values
If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the
call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed
but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than
zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information
arm_init (“arm_init Dual Call Subroutine” on page 79) subroutine, arm_getid (“arm_getid Dual Call
Subroutine” on page 75) subroutine, arm_start (“arm_start Dual Call Subroutine” on page 82) subroutine,
arm_stop (“arm_stop Dual Call Subroutine” on page 86) subroutine, arm_end (“arm_end Dual Call
Subroutine” on page 71) subroutine.

asinh, asinhf, asinhl, asinhd32, asinhd64, and asinhd128 Subroutines

Purpose
Computes the inverse hyperbolic sine.

Syntax
#include <math.h>

float asinhf (x)
float x;

long double asinhl (x)
long double x;

double asinh (x)
double x;
_Decimal32 asinhd32 (x)
_Decimal32 x;

_Decimal64 asinhd64 (x)
_Decimal64 x;

_Decimal128 asinhd128 (x)
_Decimal128 x;

90 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The asinhf, asinhl, asinh, asinhd32, asinhd64, and asinhd128 subroutines compute the inverse
hyperbolic sine of thex parameter.

An application wishing to check for error situations should set errno to zero and call
fetestexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if the errno global variable
is nonzero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is
nonzero, an error has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the asinhf, asinhl, asinh, asinhd32, asinhd64, and asinhd128 subroutines
return the inverse hyperbolic sine of the given argument.

If x is NaN, a NaN is returned.

If x is 0, or ±Inf, x is returned.

If x is subnormal, a range error may occur and x will be returned.

Related Information
math.h in AIX 5L Version 5.3 Files Reference.

asinf, asinl, asin, asind32, asind64, and asind128 Subroutines

Purpose
Computes the arc sine.

Syntax
#include <math.h>

float asinf (x)
float x;

long double asinl (x)
long double x;

double asin (x)
double x;
_Decimal32 asind32 (x)
_Decimal32 x;

_Decimal64 asind64 (x)
_Decimal64 x;

_Decimal128 asind128 (x)
_Decimal128 x;

Description
The asinf, asinl, asin, asind32, asind64, and asind128 subroutines compute the principal value of the
arc sine of the x parameter. The value of x should be in the range [-1,1].

Base Operating System (BOS) Runtime Services (A-P) 91

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the asinf, asinl, asin, asind32, asind64, and asind128 subroutines return
the arc sine of x, in the range [-pi /2, pi/2] radians.

For finite values of x not in the range [-1,1], a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 0, x is returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

If x is subnormal, a range error may occur and x is returned.

Related Information
The “asinh, asinhf, asinhl, asinhd32, asinhd64, and asinhd128 Subroutines” on page 90.

math.h in AIX 5L Version 5.3 Files Reference.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

assert Macro

Purpose
Verifies a program assertion.

Library
Standard C Library (libc.a)

Syntax
#include <assert.h>

void assert (Expression)
int Expression;

Description
The assert macro puts error messages into a program. If the specified expression is false, the assert
macro writes the following message to standard error and stops the program:
Assertion failed: Expression, file FileName, line LineNumber

92 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

In the error message, the FileName value is the name of the source file and the LineNumber value is the
source line number of the assert statement.

Parameters

Expression Specifies an expression that can be evaluated as true or false. This expression is evaluated in
the same manner as the C language IF statement.

Related Information
The abort (“abort Subroutine” on page 2) subroutine.

The cpp command.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

atan2f, atan2l, atan2, atan2d32, atan2d64, and atan2d128 Subroutines

Purpose
Computes the arc tangent.

Syntax
#include <math.h>

float atan2f (y, x)
float y, float x;

long double atan2l (y, x)
long double y, long double x;

double atan2 (y, x)
double y, x;
_Decimal32 atan2d32 (y, x)
_Decimal32 y, x;

_Decimal64 atan2d64 (y, x)
_Decimal64 y, x;

_Decimal128 atan2d128 (y, x)
_Decimal128 y, x;

Description
The atan2f, atan2l, atan2, atan2d32, atan2d64 and atan2d128 subroutines compute the principal value
of the arc tangent of y/x, using the signs of both parameters to determine the quadrant of the return value.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

y Specifies the value to compute.
x Specifies the value to compute.

Base Operating System (BOS) Runtime Services (A-P) 93

Return Values
Upon successful completion, the atan2f, atan2l, atan2, atan2d32, atan2d64, and atan2d128 subroutines
return the arc tangent of y/x in the range [-pi, pi] radians.

If y is 0 and x is < 0, ±pi is returned.

If y is 0 and x is > 0, 0 is returned.

If y is < 0 and x is 0, -pi/2 is returned.

If y is > 0 and x is 0, pi/2 is returned.

If x is 0, a pole error does not occur.

If either x or y is NaN, a NaN is returned.

If the result underflows, a range error may occur and y/x is returned.

If y is 0 and x is −0, ±x is returned.

If y is 0 and x is +0, 0 is returned.

For finite values of ±y >0, if x is −Inf, ±x is returned.

For finite values of ±y >0, if x is +Inf, 0 is returned.

For finite values of x, if y is ±Inf, ±x/2 is returned.

If y is ±Inf and x is -Inf, ±3pi/4 is returned.

If y is ±Inf and x is +Inf, ±pi/4 is returned.

If both arguments are 0, a domain error does not occur.

Related Information
math.h in AIX 5L Version 5.3 Files Reference.

atan, atanf, atanl, atand32, atand64, and atand128 Subroutines

Purpose
Computes the arc tangent.

Syntax
#include <math.h>

float atanf (x)
float x;

long double atanl (x)
long double x;

double atan (x)
double x;
_Decimal32 atand32 (x)
_Decimal32 x;

94 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

_Decimal64 atand64 (x)
_Decimal64 x;

_Decimal128 atand128 (x)
_Decimal128 x;

Description
The atanf, atanl, atan, atand32, atand64, and atand128 subroutines compute the principal value of the
arc tangent of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the atanf, atanl, atan, atand32, atand64, and atand128 subroutines return
the arc tangent of x in the range [-pi /2, pi/2] radians.

If x is NaN, a NaN is returned.

If x is 0, x is returned.

If x is ±Inf, ±x/2 is returned.

If x is subnormal, a range error may occur and x is returned.

Related Information
The “atan2f, atan2l, atan2, atan2d32, atan2d64, and atan2d128 Subroutines” on page 93 and “atanh,
atanhf, atanhl, atanhd32, atanhd64, and atanhd128 Subroutines.”

math.h in AIX 5L Version 5.3 Files Reference.

atanh, atanhf, atanhl, atanhd32, atanhd64, and atanhd128 Subroutines

Purpose
Computes the inverse hyperbolic tangent.

Syntax
#include <math.h>

float atanhf (x)
float x;

long double atanhl (x)
long double x;

double atanh (x)
double x;

Base Operating System (BOS) Runtime Services (A-P) 95

_Decimal32 atanhd32 (x)
_Decimal32 x;

_Decimal64 atanhd64 (x)
_Decimal64 x;

_Decimal128 atanhd128 (x)
_Decimal128 x;

Description
The atanhf, atanhl, atanh, atanhd32, atanhd64, and atanhd128 subroutines compute the inverse
hyperbolic tangent of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the atanhf, atanhl, atanh, atanhd32, atanhd64, and atanhd128 subroutines
return the inverse hyperbolic tangent of the given argument.

If x is ±1, a pole error occurs, and atanhf, atanhl , atanh, atanhd32, atanhd64, and atanhd128 return
the value of the macro HUGE_VALF, HUGE_VALL, HUGE_VAL, HUGE_VAL_D32, HUGE_VAL_D64, and
HUGE_VAL_D128 respectively, with the same sign as the correct value of the function.

For finite |x|>1, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 0, x is returned.

If x is ±Inf, a domain error shall occur, and a NaN is returned.

If x is subnormal, a range error may occur and x is returned.

Error Codes
The atanhf, atanhl, atanh, atanhd32, atanhd64, and atanhd128 subroutines return NaNQ and set errno
to EDOM if the absolute value of x is greater than the value of one.

Related Information
“exp, expf, expl, expd32, expd64, and expd128 Subroutines” on page 247

math.h in AIX 5L Version 5.3 Files Reference.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

96 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

atof atoff Subroutine

Purpose
Converts an ASCII string to a floating-point or double floating-point number.

Libraries
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

double atof (NumberPointer)
const char *NumberPointer;

float atoff (NumberPointer)
char *NumberPointer;

Description
The atof subroutine converts a character string, pointed to by the NumberPointer parameter, to a
double-precision floating-point number. The atoff subroutine converts a character string, pointed to by the
NumberPointer parameter, to a single-precision floating-point number. The first unrecognized character
ends the conversion.

Except for behavior on error, the atof subroutine is equivalent to the strtod subroutine call, with the
EndPointer parameter set to (char**) NULL.

Except for behavior on error, the atoff subroutine is equivalent to the strtof subroutine call, with the
EndPointer parameter set to (char**) NULL.

These subroutines recognize a character string when the characters are in one of two formats: numbers or
numeric symbols.

v For a string to be recognized as a number, it should contain the following pieces in the following order:

1. An optional string of white-space characters

2. An optional sign

3. A nonempty string of digits optionally containing a radix character

4. An optional exponent in E-format or e-format followed by an optionally signed integer.

v For a string to be recognized as a numeric symbol, it should contain the following pieces in the following
order:

1. An optional string of white-space characters

2. An optional sign

3. One of the strings: INF, infinity, NaNQ, NaNS, or NaN (case insensitive)

The atoff subroutine is not part of the ANSI C Library. These subroutines are at least as accurate as
required by the IEEE Standard for Binary Floating-Point Arithmetic. The atof subroutine accepts at least 17
significant decimal digits. The atoff and subroutine accepts at least 9 leading 0’s. Leading 0’s are not
counted as significant digits.

Parameters

NumberPointer Specifies a character string to convert.
EndPointer Specifies a pointer to the character that ended the scan or a null value.

Base Operating System (BOS) Runtime Services (A-P) 97

Return Values
Upon successful completion, the atof, and atoff subroutines return the converted value. If no conversion
could be performed, a value of 0 is returned and the errno global variable is set to indicate the error.

Error Codes
If the conversion cannot be performed, a value of 0 is returned, and the errno global variable is set to
indicate the error.

If the conversion causes an overflow (that is, the value is outside the range of representable values), +/-
HUGE_VAL is returned with the sign indicating the direction of the overflow, and the errno global variable
is set to ERANGE.

If the conversion would cause an underflow, a properly signed value of 0 is returned and the errno global
variable is set to ERANGE.

The atoff subroutine has only one rounding error. (If the atof subroutine is used to create a
double-precision floating-point number and then that double-precision number is converted to a
floating-point number, two rounding errors could occur.)

Related Information
The scanf subroutine, atol, or atoi subroutine, wstrtol, watol, or watoi subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

atol or atoll Subroutine

Purpose
Converts a string to a long integer.

Syntax
#include <stdlib.h>

long long atoll (nptr)
const char *nptr;

long atol (nptr)
const char *nptr;

Description
The atoll and atol subroutines (str) are equivalent to strtoll(nptr, (char **)NULL, 10) and
strtol(nptr, (char **)NULL, 10), respectively. If the value cannot be represented, the behavior is
undefined.

Parameters

nptr Points to the string to be converted into a long integer.

98 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
The atoll and atol subroutines return the converted value if the value can be represented.

Related Information
strtol, strtoul, strtoll, strtoull, or atoi Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating
System and Extensions Volume 2.

audit Subroutine

Purpose
Enables and disables system auditing.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int audit (Command, Argument)
int Command;
int Argument;

Description
The audit subroutine enables or disables system auditing.

When auditing is enabled, audit records are created for security-relevant events. These records can be
collected through the auditbin (“auditbin Subroutine” on page 101) subroutine, or through the /dev/audit
special file interface.

Base Operating System (BOS) Runtime Services (A-P) 99

Parameters

Command Defined in the sys/audit.h file, can be one of the following values:

AUDIT_QUERY
Returns a mask indicating the state of the auditing subsystem. The mask is a logical
ORing of the AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and AUDIT_FULLPATH flags.
The Argument parameter is ignored.

AUDIT_ON
Enables auditing. If auditing is already enabled, only the failure-mode behavior
changes. The Argument parameter specifies recovery behavior in the event of failure
and may be either 0 or the value AUDIT_PANIC or AUDIT_FULLPATH.
Note: If AUDIT_PANIC is specified, bin-mode auditing must be enabled before the
audit subroutine call.

AUDIT_OFF
Disables the auditing system if auditing is enabled. If the auditing system is disabled,
the audit subroutine does nothing. The Argument parameter is ignored.

AUDIT_RESET
Disables the auditing system (as does AUDIT_OFF) and resets the auditing system. If
auditing is already disabled, only the system configuration is reset. Resetting the audit
configuration involves clearing the audit events and audited objects table, and
terminating bin and stream auditing. The Argument parameter is ignored.

AUDIT_EVENT_THRESHOLD
Audit event records will be buffered until a total of Argument records have been
saved, at which time the audit event records will be flushed to disk. An Argument
value of zero disables this functionality. This parameter only applies to AIX 4.1.4 and
later.

AUDIT_BYTE_THRESHOLD
Audit event data will be buffered until a total of Argument bytes of data have been
saved, at which time the audit event data will be flushed to disk. An Argument value
of zero disables this functionality. This parameter only applies to AIX 4.1.4 and later.

Argument Specifies the behavior when a bin write fails (for AUDIT_ON) or specifies the size of the audit
event buffer (for AUDIT_EVENT_THRESHOLD and AUDIT_BYTE_THRESHOLD). For all
other commands, the value of Argument is ignored. The valid values are:

AUDIT_PANIC
The operating system halts abruptly if an audit record cannot be written to a bin.
Note: If AUDIT_PANIC is specified, bin-mode auditing must be enabled before the
audit subroutine call.

AUDIT_FULLPATH
The operating system starts capturing full pathname for the FILE_Open, FILE_Read,
FILE_Write auditing events.

BufferSize
The number of bytes or audit event records which will be buffered. This parameter is
valid only with the command AUDIT_BYTE_THRESHOLD and
AUDIT_EVENT_THRESHOLD. A value of zero will disable either byte (for
AUDIT_BYTE_THRESHOLD) or event (for AUDIT_EVENT_THRESHOLD) buffering.

Return Values
For a Command value of AUDIT_QUERY, the audit subroutine returns, upon successful completion, a
mask indicating the state of the auditing subsystem. The mask is a logical ORing of the AUDIT_ON,
AUDIT_OFF, AUDIT_PANIC, AUDIT_NO_PANIC, and AUDIT_FULLPATH flags. For any other Command
value, the audit subroutine returns 0 on successful completion.

100 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If the audit subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The audit subroutine fails if either of the following is true:

EINVAL The Command parameter is not one of AUDIT_ON, AUDIT_OFF, AUDIT_RESET, or
AUDIT_QUERY.

EINVAL The Command parameter is AUDIT_ON and the Argument parameter specifies values other than
AUDIT_PANIC or AUDIT_FULLPATH.

EPERM The calling process does not have root user authority.

Files

dev/audit Specifies the audit pseudo-device from which the audit records are read.

Related Information
The auditbin (“auditbin Subroutine”) subroutine, auditevents (“auditevents Subroutine” on page 103)
subroutine, auditlog (“auditlog Subroutine” on page 105) subroutine, auditobj (“auditobj Subroutine” on
page 106) subroutine, auditproc (“auditproc Subroutine” on page 110) subroutine.

The audit command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditbin Subroutine

Purpose
Defines files to contain audit records.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditbin (Command, Current, Next, Threshold)
int Command;
int Current;
int Next;
int Threshold;

Description
The auditbin subroutine establishes an audit bin file into which the kernel writes audit records. Optionally,
this subroutine can be used to establish an overflow bin into which records are written when the current
bin reaches the size specified by the Threshold parameter.

Base Operating System (BOS) Runtime Services (A-P) 101

Parameters

Command If nonzero, this parameter is a logical ORing of the following values, which are defined in the
sys/audit.h file:

AUDIT_EXCL
Requests exclusive rights to the audit bin files. If the file specified by the Current
parameter is not the kernel’s current bin file, the auditbin subroutine fails immediately
with the errno variable set to EBUSY.

AUDIT_WAIT
The auditbin subroutine should not return until:

bin full The kernel writes the number of bytes specified by the Threshold parameter to
the file descriptor specified by the Current parameter. Upon successful
completion, the auditbin subroutine returns a 0. The kernel writes subsequent
audit records to the file descriptor specified by the Next parameter.

bin failure
An attempt to write an audit record to the file specified by the Current
parameter fails. If this occurs, the auditbin subroutine fails with the errno
variable set to the return code from the auditwrite subroutine.

bin contention
Another process has already issued a successful call to the auditbin
subroutine. If this occurs, the auditbin subroutine fails with the errno variable
set to EBUSY.

system shutdown
The auditing system was shut down. If this occurs, the auditbin subroutine
fails with the errno variable set to EINTR.

Current A file descriptor for a file to which the kernel should immediately write audit records.
Next Specifies the file descriptor that will be used as the current audit bin if the value of the Threshold

parameter is exceeded or if a write to the current bin fails. If this value is -1, no switch occurs.
Threshold Specifies the maximum size of the current bin. If 0, the auditing subsystem will not switch bins. If

it is nonzero, the kernel begins writing records to the file specified by the Next parameter, if
writing a record to the file specified by the Cur parameter would cause the size of this file to
exceed the number of bytes specified by the Threshold parameter. If no next bin is defined and
AUDIT_PANIC was specified when the auditing subsystem was enabled, the system is shut
down. If the size of the Threshold parameter is too small to contain a bin header and a bin tail,
the auditbin subroutine fails and the errno variable is set to EINVAL.

Return Values
If the auditbin subroutine is successful, a value of 0 returns.

If the auditbin subroutine fails, a value of -1 returns and the errno global variable is set to indicate the
error. If this occurs, the result of the call does not indicate whether any records were written to the bin.

Error Codes
The auditbin subroutine fails if any of the following is true:

EBADF The Current parameter is not a file descriptor for a regular file open for writing, or the Next
parameter is neither -1 nor a file descriptor for a regular file open for writing.

EBUSY The Command parameter specifies AUDIT_EXCL and the kernel is not writing audit records to the
file specified by the Current parameter.

EBUSY The Command parameter specifies AUDIT_WAIT and another process has already registered a
bin.

EINTR The auditing subsystem is shut down.

102 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EINVAL The Command parameter specifies a nonzero value other than AUDIT_EXCL or AUDIT_WAIT.
EINVAL The Threshold parameter value is less than the size of a bin header and trailer.
EPERM The caller does not have root user authority.

Related Information
The audit (“audit Subroutine” on page 99) subroutine, auditevents (“auditevents Subroutine”) subroutine,
auditlog (“auditlog Subroutine” on page 105) subroutine, auditobj (“auditobj Subroutine” on page 106)
subroutine, auditproc (“auditproc Subroutine” on page 110) subroutine.

The audit command.

The audit file format.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditevents Subroutine

Purpose
Gets or sets the status of system event auditing.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditevents (Command, Classes, NClasses)
int Command;
struct audit_class *Classes;
int NClasses;

Description
The auditevents subroutine queries or sets the audit class definitions that control event auditing. Each
audit class is a set of one or more audit events.

System auditing need not be enabled before calling the auditevents subroutine. The audit (“audit
Subroutine” on page 99)subroutine can be directed with the AUDIT_RESET command to clear all event
lists.

Base Operating System (BOS) Runtime Services (A-P) 103

Parameters

Command Specifies whether the event lists are to be queried or set. The values, defined in the sys/audit.h
file, for the Command parameter are:

AUDIT_SET
Sets the lists of audited events after first clearing all previous definitions.

AUDIT_GET
Queries the lists of audited events.

AUDIT_LOCK
Queries the lists of audited events. This value also blocks any other process attempting
to set or lock the list of audit events. The lock is released when the process holding the
lock dies or calls the auditevents subroutine with the Command parameter set to
AUDIT_SET.

Classes Specifies the array of a_event structures for the AUDIT_SET operation, or after an AUDIT_GET
or AUDIT_LOCK operation. The audit_class structure is defined in the sys/audit.h file and
contains the following members:

ae_name
A pointer to the name of the audit class.

ae_list
A pointer to a list of null-terminated audit event names for this audit class. The list is
ended by a null name (a leading null byte or two consecutive null bytes).
Note: Event and class names are limited to 15 significant characters.

ae_len The length of the event list in the ae_list member. This length includes the terminating
null bytes. On an AUDIT_SET operation, the caller must set this member to indicate the
actual length of the list (in bytes) pointed to by ae_list. On an AUDIT_GET or
AUDIT_LOCK operation, the auditevents subroutine sets this member to indicate the
actual size of the list.

NClasses Serves a dual purpose. For AUDIT_SET, the NClasses parameter specifies the number of
elements in the events array. For AUDIT_GET and AUDIT_LOCK, the NClasses parameter
specifies the size of the buffer pointed to by the Classes parameter.

Attention: Only 32 audit classes are supported. One class is implicitly defined by the system to
include all audit events (ALL). The administrator of your system should not attempt to define more
than 31 audit classes.

Security
The calling process must have root user authority in order to use the auditevents subroutine.

Return Codes
If the auditevents subroutine completes successfully, the number of audit classes is returned if the
Command parameter is AUDIT_GET or AUDIT_LOCK. A value of 0 is returned if the Command parameter
is AUDIT_SET. If this call fails, a value of -1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The auditevents subroutine fails if one or more of the following are true:

EPERM The calling process does not have root user authority.
EINVAL The value of Command is not AUDIT_SET, AUDIT_GET, or AUDIT_LOCK.
EINVAL The Command parameter is AUDIT_SET, and the value of the NClasses parameter is

greater than or equal to 32.
EINVAL A class name or event name is longer than 15 significant characters.

104 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ENOSPC The value of Command is AUDIT_GET or AUDIT_LOCK and the size of the buffer specified
by the NClasses parameter is not large enough to hold the list of event structures and
names. If this occurs, the first word of the buffer is set to the required buffer size.

EFAULT The Classes parameter points outside of the process’ address space.
EFAULT The ae_list member of one or more audit_class structures passed for an AUDIT_SET

operation points outside of the process’ address space.
EFAULT The Command value is AUDIT_GET or AUDIT_LOCK and the size of the Classes buffer is

not large enough to hold an integer.
EBUSY Another process has already called the auditevents subroutine with AUDIT_LOCK.
ENOMEM Memory allocation failed.

Related Information
The audit (“audit Subroutine” on page 99) subroutine, auditbin (“auditbin Subroutine” on page 101)
subroutine, auditlog (“auditlog Subroutine”) subroutine, auditobj (“auditobj Subroutine” on page 106)
subroutine, auditproc (“auditproc Subroutine” on page 110) subroutine, auditread (“auditread, auditread_r
Subroutines” on page 112) subroutine, auditwrite (“auditwrite Subroutine” on page 113)subroutine.

The audit command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditlog Subroutine

Purpose
Appends an audit record to the audit trail file.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditlog (Event, Result, Buffer, BufferSize)
char *Event;
int Result;
char *Buffer;
int BufferSize;

Description
The auditlog subroutine generates an audit record. The kernel audit-logging component appends a record
for the specified Event if system auditing is enabled, process auditing is not suspended, and the Event
parameter is in one or more of the audit classes for the current process.

The audit logger generates the audit record by adding the Event and Result parameters to the audit
header and including the resulting information in the Buffer parameter as the audit tail.

Parameters

Event The name of the audit event to be generated. This parameter should be the name of an audit
event. Audit event names are truncated to 15 characters plus null.

Base Operating System (BOS) Runtime Services (A-P) 105

Result Describes the result of this event. Valid values are defined in the sys/audit.h file and include
the following:

AUDIT_OK
The event was successful.

AUDIT_FAIL
The event failed.

AUDIT_FAIL_ACCESS
The event failed because of any access control denial.

AUDIT_FAIL_DAC
The event failed because of a discretionary access control denial.

AUDIT_FAIL_PRIV
The event failed because of a privilege control denial.

AUDIT_FAIL_AUTH
The event failed because of an authentication denial.

Other nonzero values of the Result parameter are converted into the AUDIT_FAIL value.
Buffer Points to a buffer containing the tail of the audit record. The format of the information in this

buffer depends on the event name.
BufferSize Specifies the size of the Buffer parameter, including the terminating null.

Return Values
Upon successful completion, the auditlog subroutine returns a value of 0. If auditlog fails, a value of -1 is
returned and the errno global variable is set to indicate the error.

The auditlog subroutine does not return any indication of failure to write the record where this is due to
inappropriate tailoring of auditing subsystem configuration files or user-written code. Accidental omissions
and typographical errors in the configuration are potential causes of such a failure.

Error Codes
The auditlog subroutine fails if any of the following are true:

EFAULT The Event or Buffer parameter points outside of the process’ address space.
EINVAL The auditing system is either interrupted or not initialized.
EINVAL The length of the audit record is greater than 32 kilobytes.
EPERM The process does not have root user authority.
ENOMEM Memory allocation failed.

Related Information
The audit (“audit Subroutine” on page 99) subroutine, auditbin (“auditbin Subroutine” on page 101)
subroutine, auditevents (“auditevents Subroutine” on page 103) subroutine, auditobj (“auditobj
Subroutine”) subroutine, auditproc (“auditproc Subroutine” on page 110) subroutine, auditwrite
(“auditwrite Subroutine” on page 113) subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditobj Subroutine

Purpose
Gets or sets the auditing mode of a system data object.

106 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditobj (Command, Obj_Events, ObjSize)
int Command;
struct o_event *Obj_Events;
int ObjSize;

Description
The auditobj subroutine queries or sets the audit events to be generated by accessing selected objects.
For each object in the file system name space, it is possible to specify the event generated for each
access mode. Using the auditobj subroutine, an administrator can define new audit events in the system
that correspond to accesses to specified objects. These events are treated the same as system-defined
events.

System auditing need not be enabled to set or query the object audit events. The audit subroutine can be
directed with the AUDIT_RESET command to clear the definitions of object audit events.

Parameters

Command Specifies whether the object audit event lists are to be read or written. The valid values,
defined in the sys/audit.h file, for the Command parameter are:

AUDIT_SET
Sets the list of object audit events, after first clearing all previous definitions.

AUDIT_GET
Queries the list of object audit events.

AUDIT_LOCK
Queries the list of object audit events and also blocks any other process attempting
to set or lock the list of audit events. The lock is released when the process holding
the lock dies or calls the auditobj subroutine with the Command parameter set to
AUDIT_SET.

Base Operating System (BOS) Runtime Services (A-P) 107

Obj_Events Specifies the array of o_event structures for the AUDIT_SET operation or for after the
AUDIT_GET or AUDIT_LOCK operation. The o_event structure is defined in the
sys/audit.h file and contains the following members:

o_type Specifies the type of the object, in terms of naming space. Currently, only one
object-naming space is supported:

AUDIT_FILE
Denotes the file system naming space.

o_name Specifies the name of the object.

o_event
Specifies any array of event names to be generated when the object is accessed.
Note that event names are currently limited to 16 bytes, including the trailing null.
The index of an event name in this array corresponds to an access mode. Valid
indexes are defined in the audit.h file and include the following:

v AUDIT_READ

v AUDIT_WRITE

v AUDIT_EXEC

Note: The C++ compiler will generate a warning indicating that o_event is defined both as
a structure and a field within that structure. Although the o_event field can be used within
C++, the warning can by bypassed by defining O_EVENT_RENAME. This will replace the
o_event field with o_event_array. o_event is the default field.

ObjSize For an AUDIT_SET operation, the ObjSize parameter specifies the number of object audit
event definitions in the array pointed to by the Obj_Events parameter. For an AUDIT_GET or
AUDIT_LOCK operation, the ObjSize parameter specifies the size of the buffer pointed to by
the Obj_Events parameter.

Return Values
If the auditobj subroutine completes successfully, the number of object audit event definitions is returned if
the Command parameter is AUDIT_GET or AUDIT_LOCK. A value of 0 is returned if the Command
parameter is AUDIT_SET. If this call fails, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The auditobj subroutine fails if any of the following are true:

EFAULT The Obj_Events parameter points outside the address space of the process.
EFAULT The Command parameter is AUDIT_SET, and one or more of the o_name members points

outside the address space of the process.
EFAULT The Command parameter is AUDIT_GET or AUDIT_LOCK, and the buffer size of the

Obj_Events parameter is not large enough to hold the integer.
EINVAL The value of the Command parameter is not AUDIT_SET, AUDIT_GET or AUDIT_LOCK.
EINVAL The Command parameter is AUDIT_SET, and the value of one or more of the o_type

members is not AUDIT_FILE.
EINVAL An event name was longer than 15 significant characters.
ENOENT The Command parameter is AUDIT_SET, and the parent directory of one of the file-system

objects does not exist.
ENOSPC The value of the Command parameter is AUDIT_GET or AUDIT_LOCK, and the size of the

buffer as specified by the ObjSize parameter is not large enough to hold the list of event
structures and names. If this occurs, the first word of the buffer is set to the required buffer
size.

ENOMEM Memory allocation failed.
EBUSY Another process has called the auditobj subroutine with AUDIT_LOCK.

108 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EPERM The caller does not have root user authority.

Related Information
The audit (“audit Subroutine” on page 99)subroutine, auditbin (“auditbin Subroutine” on page 101)
subroutine, auditevents (“auditevents Subroutine” on page 103) subroutine, auditlog (“auditlog
Subroutine” on page 105) subroutine, auditproc (“auditproc Subroutine” on page 110) subroutine.

The audit command.

The audit.h file.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditpack Subroutine

Purpose
Compresses and uncompresses audit bins.

Library
Security Library (libc.a)

Syntax
#include <sys/audit.h>
#include <stdio.h>

char *auditpack (Expand, Buffer)
int Expand;
char *Buffer;

Description
The auditpack subroutine can be used to compress or uncompress bins of audit records.

Parameters

Expand Specifies the operation. Valid values, as defined in the sys/audit.h header file, are one of the
following:

AUDIT_PACK
Performs standard compression on the audit bin.

AUDIT_UNPACK
Unpacks the compressed audit bin.

Buffer Specifies the buffer containing the bin to be compressed or uncompressed. This buffer must contain
a standard bin as described in the audit.h file.

Return Values
If the auditpack subroutine is successful, a pointer to a buffer containing the processed audit bin is
returned. If unsuccessful, a null pointer is returned and the errno global variable is set to indicate the
error.

Base Operating System (BOS) Runtime Services (A-P) 109

Error Codes
The auditpack subroutine fails if one or more of the following values is true:

EINVAL The Expand parameter is not one of the valid values (AUDIT_PACK or AUDIT_UNPACK).
EINVAL The Expand parameter is AUDIT_UNPACK and the packed data in Buffer does not unpack to its

original size.
EINVAL The Expand parameter is AUDIT_PACK and the bin in the Buffer parameter is already

compressed, or the Expand parameter is AUDIT_UNPACK and the bin in the Buffer parameter
is already unpacked.

ENOSPC The auditpack subroutine is unable to allocate space for a new buffer.

Related Information
The auditread (“auditread, auditread_r Subroutines” on page 112) subroutine.

The auditcat command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditproc Subroutine

Purpose
Gets or sets the audit state of a process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditproc (ProcessID, Command, Argument, Length)
int ProcessID;
int Command;
char * Argument;
int Length;

Description
The auditproc subroutine queries or sets the auditing state of a process. There are two parts to the
auditing state of a process:

v The list of classes to be audited for this process. Classes are defined by the auditevents (“auditevents
Subroutine” on page 103) subroutine. Each class includes a set of audit events. When a process
causes an audit event, that event may be logged in the audit trail if it is included in one or more of the
audit classes of the process.

v The audit status of the process. Auditing for a process may be suspended or resumed. Functions that
generate an audit record can first check to see whether auditing is suspended. If process auditing is
suspended, no audit events are logged for a process. For more information, see the auditlog (“auditlog
Subroutine” on page 105) subroutine.

110 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

ProcessID The process ID of the process to be affected. If ProcessID is 0, the auditproc subroutine
affects the current process.

Command The action to be taken. Defined in the audit.h file, valid values include:

AUDIT_KLIST_EVENTS
Sets the list of audit classes to be audited for the process and also sets the user’s
default audit classes definition within the kernel. The Argument parameter is a pointer
to a list of null-terminated audit class names. The Length parameter is the length of
this list, including null bytes.

AUDIT_QEVENTS
Returns the list of audit classes defined for the current process if ProcessID is 0.
Otherwise, it returns the list of audit classes defined for the specified process ID. The
Argument parameter is a pointer to a character buffer. The Length parameter
specifies the size of this buffer. On return, this buffer contains a list of null-terminated
audit class names. A null name terminates the list.

AUDIT_EVENTS
Sets the list of audit classes to be audited for the process. The Argument parameter
is a pointer to a list of null-terminated audit class names. The Length parameter is the
length of this list, including null bytes.

AUDIT_QSTATUS
Returns the audit status of the current process. You can only check the status of the
current process. If the ProcessID parameter is nonzero, a -1 is returned and the
errno global variable is set to EINVAL. The Length and Argument parameters are
ignored. A return value of AUDIT_SUSPEND indicates that auditing is suspended. A
return value of AUDIT_RESUME indicates normal auditing for this process.

AUDIT_STATUS
Sets the audit status of the current process. The Length parameter is ignored, and
the ProcessID parameter must be zero. If Argument is AUDIT_SUSPEND, the audit
status is set to suspend event auditing for this process. If the Argument parameter is
AUDIT_RESUME, the audit status is set to resume event auditing for this process.

Argument A character pointer for the audit class buffer for an AUDIT_EVENT or AUDIT_QEVENTS value
of the Command parameter or an integer defining the audit status to be set for an
AUDIT_STATUS operation.

Length Size of the audit class character buffer.

Return Values
The auditproc subroutine returns the following values upon successful completion:

v The previous audit status (AUDIT_SUSPEND or AUDIT_RESUME), if the call queried or set the audit
status (the Command parameter specified AUDIT_QSTATUS or AUDIT_STATUS)

v A value of 0 if the call queried or set audit events (the Command parameter specified
AUDIT_QEVENTS or AUDIT_EVENTS)

Error Codes
If the auditproc subroutine fails if one or more of the following are true:

EINVAL An invalid value was specified for the Command parameter.
EINVAL The Command parameter is set to the AUDIT_QSTATUS or AUDIT_STATUS value and the

pid value is nonzero.
EINVAl The Command parameter is set to the AUDIT_STATUS value and the Argument parameter

is not set to AUDIT_SUSPEND or AUDIT_RESUME.
ENOSPC The Command parameter is AUDIT_QEVENTS, and the buffer size is insufficient. In this

case, the first word of the Argument parameter is set to the required size.

Base Operating System (BOS) Runtime Services (A-P) 111

EFAULT The Command parameter is AUDIT_QEVENTS or AUDIT_EVENTS and the Argument
parameter points to a location outside of the process’ allocated address space.

ENOMEM Memory allocation failed.
EPERM The caller does not have root user authority.

Related Information
The audit (“audit Subroutine” on page 99) subroutine, auditbin (“auditbin Subroutine” on page 101)
subroutine, auditevents (“auditevents Subroutine” on page 103) subroutine, auditlog (“auditlog
Subroutine” on page 105) subroutine, auditobj (“auditobj Subroutine” on page 106) subroutine, auditwrite
(“auditwrite Subroutine” on page 113) subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditread, auditread_r Subroutines

Purpose
Reads an audit record.

Library
Security Library (libc.a)

Syntax
#include <sys/audit.h>
#include <stdio.h>
char *auditread (FilePointer, AuditRecord)
FILE *FilePointer;
struct aud_rec *AuditRecord;

char *auditread_r (FilePointer, AuditRecord, RecordSize, StreamInfo)
FILE *FilePointer;
struct aud_rec *AuditRecord;
size_t RecordSize;
void **StreamInfo;

Description
The auditread subroutine reads the next audit record from the specified file descriptor. Bins on this input
stream are unpacked and uncompressed if necessary.

The auditread subroutine can not be used on more than one FilePointer as the results can be
unpredictable. Use the auditread_r subroutine instead.

The auditread_r subroutine reads the next audit from the specified file descriptor. This subroutine is
thread safe and can be used to handle multiple open audit files simultaneously by multiple threads of
execution.

The auditread_r subroutine is able to read multiple versions of audit records. The version information
contained in an audit record is used to determine the correct size and format of the record. When an input
record header is larger than AuditRecord, an error is returned. In order to provide for binary compatibility
with previous versions, if RecordSize is the same size as the original (struct aud_rec), the input record is
converted to the original format and returned to the caller.

112 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

FilePointer Specifies the file descriptor from which to read.
AuditRecord Specifies the buffer to contain the header. The first short in this buffer must contain a valid

number for the header.
RecordSize The size of the buffer referenced by AuditRecord.
StreamInfo A pointer to an opaque datatype used to hold information related to the current value of

FilePointer. For each new value of FilePointer, a new StreamInfo pointer must be used.
StreamInfo must be initialized to NULL by the user and is initialized by auditread_r when
first used. When FilePointer has been closed, the value of StreamInfo can be passed to
the free subroutine to be deallocated.

Return Values
If the auditread subroutine completes successfully, a pointer to a buffer containing the tail of the audit
record is returned. The length of this buffer is returned in the ah_length field of the header file. If this
subroutine is unsuccessful, a null pointer is returned and the errno global variable is set to indicate the
error.

Error Codes
The auditread subroutine fails if one or more of the following is true:

EBADF The FilePointer value is not valid.
ENOSPC The auditread subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the read subroutine.

Related Information
The auditpack (“auditpack Subroutine” on page 109) subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditwrite Subroutine

Purpose
Writes an audit record.

Library
Security Library (libc.a)

Syntax
#include <sys/audit.h>
#include <stdio.h>

int auditwrite (Event, Result, Buffer1, Length1, Buffer2, Length2, ...)
char * Event;
int Result;
char * Buffer1, *Buffer2 ...;

int Length1, Length2 ...;

Base Operating System (BOS) Runtime Services (A-P) 113

Description
The auditwrite subroutine builds the tail of an audit record and then writes it with the auditlog subroutine.
The tail is built by gathering the specified buffers. The last buffer pointer must be a null.

If the auditwrite subroutine is to be called from a program invoked from the inittab file, the setpcred
subroutine should be called first to establish the process’ credentials.

Parameters

Event Specifies the name of the event to be logged.
Result Specifies the audit status of the event. Valid values are defined in the sys/audit.h file

and are listed in the auditlog subroutine.
Buffer1, Buffer2 Specifies the character buffers containing audit tail information. Note that numerical

values must be passed by reference. The correct size can be computed with the
sizeof C function.

Length1, Length2 Specifies the lengths of the corresponding buffers.

Return Values
If the auditwrite subroutine completes successfully, a value of 0 is returned. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The auditwrite subroutine fails if the following is true:

ENOSPC The auditwrite subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the auditlog subroutine.

Related Information
The auditlog (“auditlog Subroutine” on page 105) subroutine, setpcred subroutine.

The inittab file.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

authenticate Subroutine

Purpose
Verifies a user’s name and password.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int authenticate (UserName, Response, Reenter, Message)
char *UserName;
char *Response;
int *Reenter;
char **Message;

114 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The authenticate subroutine maintains requirements users must satisfy to be authenticated to the system.
It is a recallable interface that prompts for the user’s name and password. The user must supply a
character string at the prompt issued by the Message parameter. The Response parameter returns the
user’s response to the authenticate subroutine. The calling program makes no assumptions about the
number of prompt messages the user must satisfy for authentication.

The Reenter parameter indicates when a user has satisfied all prompt messages. The parameter remains
nonzero until a user has passed all prompts. After the returned value of Reenter is 0, the return code
signals whether authentication has succeeded or failed. When progressing through prompts for a user, the
value of Reenter must be maintained by the caller between invocations of authenticate.

The authenticate subroutine ascertains the authentication domains the user can attempt. The subroutine
reads the SYSTEM line from the user’s stanza in the /etc/security/user file. Each token that appears in
the SYSTEM line corresponds to a method that can be dynamically loaded and processed. Likewise, the
system can provide multiple or alternate authentication paths.

The authenticate routine maintains internal state information concerning the next prompt message
presented to the user. If the calling program supplies a different user name before all prompts are
complete for the user, the internal state information is reset and prompt messages begin again. The calling
program maintains the value of the Reenter parameter while processing prompts for a given user.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no authentication
required, the user is not required to respond to any prompt messages. Otherwise, the user is always
initially prompted to supply a password.

The authenticate subroutine can be called initially with the cleartext password in the Response parameter.
If the user supplies a password during the initial invocation but does not have a password, authentication
fails. If the user wants the authenticate subroutine to supply a prompt message, the Response parameter
is a null pointer on initial invocation.

The authenticate subroutine sets the AUTHSTATE environment variable used by name resolution
subroutines, such as the getpwnam subroutine. This environment variable indicates the registry to which
to user authenticated. Values for the AUTHSTATE environment variable include DCE, compat, and token
names that appear in a SYSTEM grammar. A null value can exist if the cron daemon or other utilities that
do not require authentication is called.

Parameters

UserName Points to the user’s name that is to be authenticated.
Response Specifies a character string containing the user’s response to an authentication prompt.
Reenter Points to a Boolean value that signals whether the authenticate subroutine has completed

processing. If the Reenter parameter is a nonzero value, the authenticate subroutine expects the
user to satisfy the prompt message provided by the Message parameter. If the Reenter parameter is
0, the authenticate subroutine has completed processing.

Message Points to a pointer that the authenticate subroutine allocates memory for and fills in. This string is
suitable for printing and issues prompt messages (if the Reenter parameter is a nonzero value). It
also issues informational messages such as why the user failed authentication (if the Reenter
parameter is 0). The calling application is responsible for freeing this memory.

Return Values
Upon successful completion, the authenticate subroutine returns a value of 0. If this subroutine fails, it
returns a value of 1.

Base Operating System (BOS) Runtime Services (A-P) 115

Error Codes
The authenticate subroutine is unsuccessful if one of the following values is true:

ENOENT Indicates that the user is unknown to the system.
ESAD Indicates that authentication is denied.
EINVAL Indicates that the parameters are not valid.
ENOMEM Indicates that memory allocation (malloc) failed.

Note: The DCE mechanism requires credentials on successful authentication that apply only to the
authenticate process and its children.

Related Information
The ckuserID (“ckuserID Subroutine” on page 167) subroutine.

authenticatex Subroutine

Purpose
Verifies a user’s name and password.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int authenticatex (UserName, Response, Reenter, Message, State)
char *UserName;
char *Response;
int *Reenter;
char **Message;
void **State;

Description
The authenticatex subroutine maintains requirements that users must satisfy to be authenticated to the
system. It is a recallable interface that prompts for the user’s name and password. The user must supply a
character string at the prompt issued by the Message parameter. The Response parameter returns the
user’s response to the authenticatex subroutine. The calling program makes no assumptions about the
number of prompt messages the user must satisfy for authentication. The authenticatex subroutine
maintains information about the results of each part of the authentication process in the State parameter.
This parameter can be shared with the chpassx, loginrestrictionsx and passwdexpiredx subroutines.
The proper sequence of library routines for authenticating a user in order to create a new session is:

1. Call the loginrestrictionsx subroutine to determine which administrative domains allow the user to log
in.

2. Call the authenticatex subroutine to perform authentication using those administrative domains that
grant login access.

3. Call the passwdexpiredx subroutine to determine if any of the passwords used during the
authentication process have expired and must be changed in order for the user to be granted access.

4. If the passwdexpiredx subroutine indicated that one or more passwords have expired and must be
changed by the user, call the chpassx subroutine to update all of the passwords that were used for
the authentication process.

116 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The Reenter parameter remains a nonzero value until the user satisfies all prompt messages or answers
incorrectly. When the Reenter parameter is 0, the return code signals whether authentication passed or
failed. The value of the Reenter parameter must be 0 on the initial call. A nonzero value for the Reenter
parameter must be passed to the authenticatex subroutine on subsequent calls. A new authentication can
be begun by calling the authenticatex subroutine with a 0 value for the Reenter parameter or by using a
different value for UserName.

The State parameter contains information about the authentication process. The State parameter from an
earlier call to loginrestrictionsx can be used to control how authentication is performed. Administrative
domains that do not permit the user to log in cause those administrative domains to be ignored during
authentication even if the user has the correct authentication information.

The authenticatex subroutine ascertains the authentication domains the user can attempt. The subroutine
uses the SYSTEM attribute for the user. Each token that is displayed in the SYSTEM line corresponds to a
method that can be dynamically loaded and processed. Likewise, the system can provide multiple or
alternate authentication paths.

The authenticatex subroutine maintains internal state information concerning the next prompt message
presented to the user. If the calling program supplies a different user name before all prompts are
complete for the user, the internal state information is reset and prompt messages begin again. The
authenticatex subroutine requires that the State parameter be initialized to reference a null value when
changing user names or that the State parameter from an earlier call to loginrestrictionsx for the new
user be provided.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no authentication
required, the user is not required to respond to any prompt messages. Otherwise, the user is always
initially prompted to supply a password.

The authenticatex subroutine can be called initially with the cleartext password in the Response
parameter. If the user supplies a password during the initial invocation but does not have a password,
authentication fails. If the user wants the authenticatex subroutine to supply a prompt message, the
Response parameter is a null pointer on initial invocation.

The authenticatex subroutine sets the AUTHSTATE environment variable used by name resolution
subroutines, such as the getpwnam subroutine. This environment variable indicates the first registry to
which the user authenticated. Values for the AUTHSTATE environment variable include DCE, compat, and
token names that appear in a SYSTEM grammar. A null value can exist if the cron daemon or another
utility that does not require authentication is called.

Parameters

Message Points to a pointer that the authenticatex subroutine allocates memory for and fills in. This
string is suitable for printing and issues prompt messages (if the Reenter parameter is a
nonzero value). It also issues informational messages, such as why the user failed
authentication (if the Reenter parameter is 0). The calling application is responsible for
freeing this memory.

Reenter Points to an integer value that signals whether the authenticatex subroutine has completed
processing. If the integer referenced by the Reenter parameter is a nonzero value, the
authenticatex subroutine expects the user to satisfy the prompt message provided by the
Message parameter. If the integer referenced by the Reenter parameter is 0, the
authenticatex subroutine has completed processing. The initial value of the integer
referenced by Reenter must be 0 when the authenticatex function is initially invoked and
must not be modified by the calling application until the authenticationx subroutine has
completed processing.

Response Specifies a character string containing the user’s response to an authentication prompt.

Base Operating System (BOS) Runtime Services (A-P) 117

State Points to a pointer that the authenticatex subroutine allocates memory for and fills in. The
State parameter can also be the result of an earlier call to the loginrestrictionsx subroutine.
This parameter contains information about the results of the authentication process for each
term in the user’s SYSTEM attribute. The calling application is responsible for freeing this
memory when it is no longer needed for a subsequent call to the passwdexpiredx or
chpassx subroutines.

UserName Points to the user’s name that is to be authenticated.

Return Values
Upon successful completion, the authenticatex subroutine returns a value of 0. If this subroutine fails, it
returns a value of 1.

Error Codes
The authenticatex subroutine is unsuccessful if one of the following values is true:

EINVAL The parameters are not valid.
ENOENT The user is unknown to the system.
ENOMEM Memory allocation (malloc) failed.
ESAD Authentication is denied.

Note: Additional information about the behavior of a loadable authentication module can be found in the
documentation for that module.

Related Information
The “authenticate Subroutine” on page 114, “chpassx Subroutine” on page 157, “loginrestrictionsx
Subroutine” on page 758, “passwdexpiredx Subroutine” on page 978.

basename Subroutine

Purpose
Return the last element of a path name.

Library
Standard C Library (libc.a)

Syntax
#include <libgen.h>

char *basename (char *path)

Description
Given a pointer to a character string that contains a path name, the basename subroutine deletes trailing
″/″ characters from path, and then returns a pointer to the last component of path. The ″/″ character is
defined as trailing if it is not the first character in the string.

If path is a null pointer or points to an empty string, a pointer to a static constant ″.″ is returned.

Return Values
The basename function returns a pointer to the last component of path.

118 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The basename function returns a pointer to a static constant ″.″ if path is a null pointer or points to an
empty string.

The basename function may modify the string pointed to by path and may return a pointer to static
storage that may then be overwritten by a subsequent call to the basename subroutine.

Examples

Input string Output string
″/usr/lib″ ″lib″
″/usr/″ ″usr″
″/″ ″/″

Related Information
The dirname (“dirname Subroutine” on page 215) subroutine.

bcopy, bcmp, bzero or ffs Subroutine

Purpose
Performs bit and byte string operations.

Library
Standard C Library (libc.a)

Syntax
#include <strings.h>

void bcopy (Source, Destination, Length)
const void *Source,
char *Destination;
size_t Length;

int bcmp (String1, String2, Length)
const void *String1, *String2;
size_t Length;

void bzero (String,Length)
char *String;
int Length;

int ffs (Index)
int Index;

Description

Note: The bcopy subroutine takes parameters backwards from the strcpy subroutine.

The bcopy, bcmp, and bzero subroutines operate on variable length strings of bytes. They do not check
for null bytes as do the string routines.

The bcopy subroutine copies the value of the Length parameter in bytes from the string in the Source
parameter to the string in the Destination parameter.

Base Operating System (BOS) Runtime Services (A-P) 119

The bcmp subroutine compares the byte string in the String1 parameter against the byte string of the
String2 parameter, returning a zero value if the two strings are identical and a nonzero value otherwise.
Both strings are assumed to be Length bytes long.

The bzero subroutine zeroes out the string in the String parameter for the value of the Length parameter
in bytes.

The ffs subroutine finds the first bit set in the Index parameter passed to it and returns the index of that
bit. Bits are numbered starting at 1. A return value of 0 indicates that the value passed is 0.

Related Information
The memcmp, memccpy, memchr, memcpy, memmove, memset (“memccpy, memchr, memcmp,
memcpy, memset or memmove Subroutine” on page 811) subroutines, strcat, strncat, strxfrm, strcpy,
strncpy, or strdup subroutine, strcmp, strncmp, strcasecmp, strncasecmp, or strcoll subroutine,
strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok subroutine, swab subroutine.

List of String Manipulation Subroutines and Subroutines, Example Programs, and Libraries in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

bessel: j0, j1, jn, y0, y1, or yn Subroutine

Purpose
Computes Bessel functions.

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double j0 (x)
double x;

double j1 (x)
double x;

double jn (n, x)
int n;
double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

Description
Bessel functions are used to compute wave variables, primarily in the field of communications.

The j0 subroutine and j1 subroutine return Bessel functions of x of the first kind, of orders 0 and 1,
respectively. The jn subroutine returns the Bessel function of x of the first kind of order n.

120 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The y0 subroutine and y1 subroutine return the Bessel functions of x of the second kind, of orders 0 and
1, respectively. The yn subroutine returns the Bessel function of x of the second kind of order n. The value
of x must be positive.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the
j0.c file, for example:
cc j0.c -lm

Parameters

x Specifies some double-precision floating-point value.
n Specifies some integer value.

Return Values
When using libm.a (-lm), if x is negative, y0, y1, and yn return the value NaNQ. If x is 0, y0, y1, and yn
return the value -HUGE_VAL.

When using libmsaa.a (-lmsaa), values too large in magnitude cause the functions j0, j1, y0, and y1 to
return 0 and to set the errno global variable to ERANGE. In addition, a message indicating TLOSS error is
printed on the standard error output.

Nonpositive values cause y0, y1, and yn to return the value -HUGE and to set the errno global variable to
EDOM. In addition, a message indicating argument DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the matherr subroutine when using libmsaa.a
(-lmsaa).

Related Information
The matherr (“matherr Subroutine” on page 793) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

bindprocessor Subroutine

Purpose
Binds kernel threads to a processor.

Library
Standard C library (libc.a)

Syntax
#include <sys/processor.h>

int bindprocessor (What, Who, Where)
int What;
int Who;
cpu_t Where;

Base Operating System (BOS) Runtime Services (A-P) 121

Description
The bindprocessor subroutine binds a single kernel thread, or all kernel threads in a process, to a
processor, forcing the bound threads to be scheduled to run on that processor. It is important to
understand that a process itself is not bound, but rather its kernel threads are bound. Once kernel threads
are bound, they are always scheduled to run on the chosen processor, unless they are later unbound.
When a new thread is created, it has the same bind properties as its creator. This applies to the initial
thread in the new process created by the fork subroutine: the new thread inherits the bind properties of
the thread which called fork. When the exec subroutine is called, thread properties are left unchanged.

The bindprocessor subroutine will fail if the target process has a Resource Attachment.

Programs that use processor bindings should become Dynamic Logical Partitioning (DLPAR) aware. Refer
to Dynamic Logical Partitioning in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs for more information.

Parameters

What Specifies whether a process or a thread is being bound to a processor. The What parameter can
take one of the following values:

BINDPROCESS
A process is being bound to a processor.

BINDTHREAD
A thread is being bound to a processor.

Who Indicates a process or thread identifier, as appropriate for the What parameter, specifying the
process or thread which is to be bound to a processor.

Where If the Where parameter is a bind CPU identifier, it specifies the processor to which the process or
thread is to be bound. A value of PROCESSOR_CLASS_ANY unbinds the specified process or
thread, which will then be able to run on any processor.

The sysconf subroutine can be used to retrieve information about the number of online processors
in the system.

Return Values
On successful completion, the bindprocessor subroutine returns 0. Otherwise, a value of -1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The bindprocessor subroutine is unsuccessful if one of the following is true:

EINVAL The What parameter is invalid, or the Where parameter indicates an invalid processor number or
a processor class which is not currently available.

ESRCH The specified process or thread does not exist.
EPERM The caller does not have root user authority, and the Who parameter specifies either a process,

or a thread belonging to a process, having a real or effective user ID different from that of the
calling process. The target process has a Resource Attachment.

Related Information
The bindprocessor command.

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, sysconf subroutine,
thread_self subroutine.

122 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Dynamic Logical Partitioning in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

brk or sbrk Subroutine

Purpose
Changes data segment space allocation.

Library
Standard C Library (libc.a)

Syntax
#include <unistd .h>

int brk (EndDataSegment)
char *EndDataSegment;

void *sbrk (Increment)
intptr_t Increment;

Description
The brk and sbrk subroutines dynamically change the amount of space allocated for the data segment of
the calling process. (For information about segments, see the exec subroutine. For information about the
maximum amount of space that can be allocated, see the ulimit and getrlimit subroutines.)

The change is made by resetting the break value of the process, which determines the maximum space
that can be allocated. The break value is the address of the first location beyond the current end of the
data region. The amount of available space increases as the break value increases. The available space
is initialized to a value of 0 at the time it is used. The break value can be automatically rounded up to a
size appropriate for the memory management architecture.

The brk subroutine sets the break value to the value of the EndDataSegment parameter and changes the
amount of available space accordingly.

The sbrk subroutine adds to the break value the number of bytes contained in the Increment parameter
and changes the amount of available space accordingly. The Increment parameter can be a negative
number, in which case the amount of available space is decreased.

Parameters

EndDataSegment Specifies the effective address of the maximum available data.
Increment Specifies any integer.

Return Values
Upon successful completion, the brk subroutine returns a value of 0, and the sbrk subroutine returns the
old break value. If either subroutine is unsuccessful, a value of -1 is returned and the errno global variable
is set to indicate the error.

Error Codes
The brk subroutine and the sbrk subroutine are unsuccessful and the allocated space remains unchanged
if one or more of the following are true:

Base Operating System (BOS) Runtime Services (A-P) 123

ENOMEM The requested change allocates more space than is allowed by a system-imposed
maximum. (For information on the system-imposed maximum on memory space, see the
ulimit system call.)

ENOMEM The requested change sets the break value to a value greater than or equal to the start
address of any attached shared-memory segment. (For information on shared memory
operations, see the shmat subroutine.)

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutines, getrlimit (“getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine” on page 426)
subroutine, shmat subroutine, shmdt subroutine, ulimit subroutine.

The _end (“_end, _etext, or _edata Identifier” on page 225), _etext (“_end, _etext, or _edata Identifier” on
page 225), or _edata (“_end, _etext, or _edata Identifier” on page 225) identifier.

Subroutine Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

bsearch Subroutine

Purpose
Performs a binary search.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

void *bsearch (Key, Base, NumberOfElements, Size, ComparisonPointer)

const void *Key;
const void *Base;
size_t NumberOfElements;
size_t Size;
int (*ComparisonPointer) (const void *, const void *);

Description
The bsearch subroutine is a binary search routine.

The bsearch subroutine searches an array of NumberOfElements objects, the initial member of which is
pointed to by the Base parameter, for a member that matches the object pointed to by the Key parameter.
The size of each member in the array is specified by the Size parameter.

The array must already be sorted in increasing order according to the provided comparison function
ComparisonPointer parameter.

Parameters

Key Points to the object to be sought in the array.
Base Points to the element at the base of the table.
NumberOfElements Specifies the number of elements in the array.

124 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ComparisonPointer Points to the comparison function, which is called with two arguments that point to
the Key parameter object and to an array member, in that order.

Size Specifies the size of each member in the array.

Return Values
If the Key parameter value is found in the table, the bsearch subroutine returns a pointer to the element
found.

If the Key parameter value is not found in the table, the bsearch subroutine returns the null value. If two
members compare as equal, the matching member is unspecified.

For the ComparisonPointer parameter, the comparison function compares its parameters and returns a
value as follows:

v If the first parameter is less than the second parameter, the ComparisonPointer parameter returns a
value less than 0.

v If the first parameter is equal to the second parameter, the ComparisonPointer parameter returns a
value of 0.

v If the first parameter is greater than the second parameter, the ComparisonPointer parameter returns a
value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained in the elements
in addition to the values being compared.

The Key and Base parameters should be of type pointer-to-element and cast to type pointer-to-character.
Although declared as type pointer-to-character, the value returned should be cast into type
pointer-to-element.

Related Information
The hsearch (“hsearch, hcreate, or hdestroy Subroutine” on page 529) subroutine, lsearch (“lsearch or
lfind Subroutine” on page 768) subroutine, qsort subroutine.

Knuth, Donald E.; The Art of Computer Programming, Volume 3. Reading, Massachusetts,
Addison-Wesley, 1981.

Searching and Sorting Example Program and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

btowc Subroutine

Purpose
Single-byte to wide-character conversion.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
#include <wchar.h>

wint_t btowc (intc);

Base Operating System (BOS) Runtime Services (A-P) 125

Description
The btowc function determines whether c constitutes a valid (one-byte) character in the initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
The btowc function returns WEOF if c has the value EOF or if (unsigned char) c does not constitute a
valid (one-byte) character in the initial shift state. Otherwise, it returns the wide-character representation of
that character.

Related Information
The wctob subroutine.

buildproclist Subroutine

Purpose
Retrieves a list of process transaction records based on the criteria specified.

Library
The libaacct.a library.

Syntax
#define <sys/aacct.h>
int buildproclist(crit, crit_list, n_crit, p_list, sublist)
int crit;
union proc_crit *crit_list;
int n_crit;
struct aacct_tran_rec *p_list;
struct aacct_tran_rec **sublist;

Description
The buildproclist subroutine retrieves a subset of process transaction records from the master process
transaction records that are given as input based on the selection criteria provided. This selection criteria
can be one of the following values defined in sys/aacct.h:

v CRIT_UID

v CRIT_GID

v CRIT_PROJ

v CRIT_CMD

For example, if the criteria is specified as CRIT_UID, the list of process transaction records for specific
user IDs will be retrieved. The list of user IDs are passed through the crit_list argument of type union
proc_crit. Based on the specified criteria, the caller has to pass an array of user IDs, group IDs, project
IDs or command names in this union.

Usually, the master list of transaction records is obtained by a prior call to the getproclist subroutine.

Parameters

crit Integer value representing the selection criteria for the process records.
crit_list Pointer to union proc_crit where the data for the selection criteria is passed.
n_crit Number of elements to be considered for the selection, such as the number of user IDs.
p_list Master list of process transaction records.

126 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

sublist Pointer to the linked list of aacct_tran_rec structures, which hold the retrieved process
transaction records.

Security
No restrictions. Any user can call this function.

Return Values

0 The call to the subroutine was successful.
-1 The call to the subroutine failed.

Error Codes

EINVAL The passed pointer is NULL.
ENOMEM Insufficient memory.
EPERM Permission denied. Unable to read the data file.

Related Information
The “buildproclist Subroutine” on page 126, “buildtranlist or freetranlist Subroutine,” “getfilehdr Subroutine”
on page 369.

The acctrpt command.

Understanding the Advanced Accounting Subsystem.

buildtranlist or freetranlist Subroutine

Purpose
Read the advanced accounting records from the advanced accounting data file.

Library
The libaacct.a library.

Syntax
#define <sys/aacct.h>
buildtranlist(filename, trid[], ntrids, begin_time, end_time, tran_list)
char *filename;
unsigned int trid[];
unsigned int ntrids;
long long begin_time;
long long end_time;
struct aacct_tran_rec **tran_list;
freetranlist(tran_list)
struct aacct_tran_rec *tran_list;

Description
The buildtranlist subroutine retrieves the transaction records of the specified transaction type from the
accounting data file. The required transaction IDs are passed as arguments, and these IDs are defined in
sys/aacct.h. The list of transaction records are returned to the calling program through the tran_list pointer
argument.

Base Operating System (BOS) Runtime Services (A-P) 127

This API can be called multiple times with different accounting data file names to generate a consolidated
list of transaction records from multiple data files. It appends the new file data to the end of the linked list
pointed to by the tran_list argument. In addition, it internally sorts the transaction records based on the
time of transaction so users can get a time-sorted list of transaction records from this routine. This
subroutine can also be used to retrieve the intended transaction records for a particular interval of time by
specifying the begin and end times of this interval as arguments.

The freetranlist subroutine frees the memory allocated to these transaction records. It can be used to
deallocate memory that has been allocated to the transaction record lists created by routines such as
buildtranlist, getproclist, getlparlist, and getarmlist.

Parameters

begin_time Specifies the start timestamp for collecting records in a particular intervals. The input is
in seconds since EPOCH. Specifying -1 retrieves all the records.

end_time Specifies the end timestamp for collecting records in a particular intervals. The input is
in seconds since EPOCH. Specifying -1 retrieves all the records.

filename Name of the advanced accounting data file.
ntrids Count of transaction IDs passed in the array trid.
tran_list Pointer to the linked list of aacct_tran_rec structures that are to be returned to the

caller or freed.
trid An array of transaction record type identifiers.

Security
No restrictions. Any user can call this function.

Return Values

0 The call to the subroutine was successful.
-1 The call to the subroutine failed.

Error Codes

EINVAL The passed pointer is NULL.
ENOENT Specified data file does not exist.
ENOMEM Insufficient memory.
EPERM Permission denied. Unable to read the data file.

Related Information
The “buildproclist Subroutine” on page 126, “getproclist, getlparlist, or getarmlist Subroutine” on page 416.

Understanding the Advanced Accounting Subsystem.

_check_lock Subroutine

Purpose
Conditionally updates a single word variable atomically.

Library
Standard C library (libc.a)

128 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <sys/atomic_op.h>

boolean_t _check_lock (word_addr, old_val, new_val)
atomic_p word_addr;
int old_val;
int new_val;

Parameters

word_addr Specifies the address of the single word variable.
old_val Specifies the old value to be checked against the value of the single word variable.
new_val Specifies the new value to be conditionally assigned to the single word variable.

Description
The _check_lock subroutine performs an atomic (uninterruptible) sequence of operations. The
compare_and_swap subroutine is similar, but does not issue synchronization instructions and therefore is
inappropriate for updating lock words.

Note: The word variable must be aligned on a full word boundary.

Return Values

FALSE Indicates that the single word variable was equal to the old value and has been set to the new
value.

TRUE Indicates that the single word variable was not equal to the old value and has been left
unchanged.

Related Information
The _clear_lock (“_clear_lock Subroutine”) subroutine.

_clear_lock Subroutine

Purpose
Stores a value in a single word variable atomically.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

void _clear_lock (word_addr, value)
atomic_p word_addr;
int value

Parameters

word_addr Specifies the address of the single word variable.
value Specifies the value to store in the single word variable.

Base Operating System (BOS) Runtime Services (A-P) 129

Description
The _clear_lock subroutine performs an atomic (uninterruptible) sequence of operations.

This subroutine has no return values.

Note: The word variable must be aligned on a full word boundary.

Related Information
The _check_lock (“_check_lock Subroutine” on page 128) subroutine.

cabs, cabsf, or cabsl Subroutine

Purpose
Returns a complex absolute value.

Syntax
#include <complex.h>

double cabs (z)
double complex z;

float cabsf (z)
float complex z;

long double cabsl (z)
long double complex z;

Description
The cabs, cabsf, or cabsl subroutines compute the complex absolute value (also called norm, modulus,
or magnitude) of the z parameter.

Parameters

z Specifies the value to be computed.

Return Values
Returns the complex absolute value.

cacos, cacosf, or cacosl Subroutine

Purpose
Computes the complex arc cosine.

Syntax
#include <complex.h>

double complex cacos (z)
double complex z;

float complex cacosf (z)

130 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

float complex z;

long double complex cacosl (z)
long double complex z;

Description
The cacos, cacosf, or cacosl subroutine computes the complex arc cosine of z, with branch cuts outside
the interval [–1, +1] along the real axis.

Parameters

z Specifies the value to be computed.

Return Values
The cacos, cacosf, or cacosl subroutine returns the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, pi] along the real axis.

cacosh, cacoshf, or cacoshl Subroutines

Purpose
Computes the complex arc hyperbolic cosine.

Syntax
#include <complex.h>

double complex cacosh (z)
double complex z;

float complex cacoshf (z)
float complex z;

long double complex cacoshl (z)
long double complex z;

Description
The cacosh, cacoshf, or cacoshl subroutine computes the complex arc hyperbolic cosine of the z
parameter, with a branch cut at values less than 1 along the real axis.

Parameters

z Specifies the value to be computed.

Return Values
The cacosh, cacoshf, or cacoshl subroutine returns the complex arc hyperbolic cosine value, in the
range of a half-strip of non-negative values along the real axis and in the interval [-i pi , +i pi] along the
imaginary axis.

Related Information
The “ccosh, ccoshf, or ccoshl Subroutine” on page 140.

Base Operating System (BOS) Runtime Services (A-P) 131

carg, cargf, or cargl Subroutine

Purpose
Returns the complex argument value.

Syntax
#include <complex.h>

double carg (z)
double complex z;

float cargf (z)
float complex z;

long double cargl (z)
long double complex z;

Description
The carg, cargf, or cargl subroutine computes the argument (also called phase angle) of the z parameter,
with a branch cut along the negative real axis.

Parameters

z Specifies the value to be computed.

Return Values
The carg, cargf, or cargl subroutine returns the value of the argument in the interval [-pi, +pi].

Related Information
The “cimag, cimagf, or cimagl Subroutine” on page 164, “conj, conjf, or conjl Subroutine” on page 183, and
“cproj, cprojf, or cprojl Subroutine” on page 191.

casin, casinf, or casinl Subroutine

Purpose
Computes the complex arc sine.

Syntax
#include <complex.h>

double complex casin (z)
double complex z;

float complex casinf (z)
float complex z;

long double complex casinl (z)
long double complex z;

Description
The casin, casinf, or casinl subroutine computes the complex arc sine of the z parameter, with branch
cuts outside the interval [–1, +1] along the real axis.

132 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

z Specifies the value to be computed.

Return Values
The casin, casinf, or casinl subroutine returns the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

Related Information
The “csin, csinf, or csinl Subroutine” on page 195.

casinh, casinfh, or casinlh Subroutine

Purpose
Computes the complex arc hyperbolic sine.

Syntax
#include <complex.h>

double complex casinh (z)
double complex z;

float complex casinhf (z)
float complex z;

long double complex casinhl (z)
long double complex z;

Description
The casinh, casinfh, and casinlh subroutines compute the complex arc hyperbolic sine of the z
parameter, with branch cuts outside the interval [-i, +i] along the imaginary axis.

Parameters

z Specifies the value to be computed.

Return Values
The casinh, casinfh, and casinlh subroutines return the complex arc hyperbolic sine value, in the range
of a strip mathematically unbounded along the real axis and in the interval [-i pi/2, +i pi/2] along the
imaginary axis.

Related Information
The “casin, casinf, or casinl Subroutine” on page 132.

catan, catanf, or catanl Subroutine

Purpose
Computes the complex arc tangent.

Base Operating System (BOS) Runtime Services (A-P) 133

Syntax
#include <complex.h>

double complex catan (z)
double complex z;

float complex catanf (z)
float complex z;

long double complex catanl (z)
long double complex z;

Description
The catan, catanf, and catanl subroutines compute the complex arc tangent of z, with branch cuts
outside the interval [-i, +i] along the imaginary axis.

Parameters

z Specifies the value to be computed.

Return Values
The catan, catanf, and catanl subroutines return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

Related Information
“catanh, catanhf, or catanhl Subroutine”

catanh, catanhf, or catanhl Subroutine

Purpose
Computes the complex arc hyperbolic tangent.

Syntax
#include <complex.h>

double complex catanh (z)
double complex z;

float complex catanhf (z)
float complex z;

long double complex catanhl (z)
long double complex z;

Description
The catanh, catanhf, and catanhl subroutines compute the complex arc hyperbolic tangent of z, with
branch cuts outside the interval [-1, +1] along the real axis.

Parameters

z Specifies the value to be computed.

134 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
The catanh, catanhf, and catanhl subroutines return the complex arc hyperbolic tangent value, in the
range of a strip mathematically unbounded along the real axis and in the interval [-i pi/2, +i pi/2] along the
imaginary axis.

Related Information
“catan, catanf, or catanl Subroutine” on page 133

catclose Subroutine

Purpose
Closes a specified message catalog.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types.h>

int catclose (CatalogDescriptor)
nl_catd CatalogDescriptor;

Description
The catclose subroutine closes a specified message catalog. If your program accesses several message
catalogs and you reach the maximum number of opened catalogs (specified by the NL_MAXOPEN
constant), you must close some catalogs before opening additional ones. If you use a file descriptor to
implement the nl_catd data type, the catclose subroutine closes that file descriptor.

The catclose subroutine closes a message catalog only when the number of calls it receives matches the
total number of calls to the catopen subroutine in an application. All message buffer pointers obtained by
prior calls to the catgets subroutine are not valid when the message catalog is closed.

Parameters

CatalogDescriptor Points to the message catalog returned from a call to the catopen subroutine.

Return Values
The catclose subroutine returns a value of 0 if it closes the catalog successfully, or if the number of calls
it receives is fewer than the number of calls to the catopen subroutine.

The catclose subroutine returns a value of -1 if it does not succeed in closing the catalog. The catclose
subroutine is unsuccessful if the number of calls it receives is greater than the number of calls to the
catopen subroutine, or if the value of the CatalogDescriptor parameter is not valid.

Related Information
The catgets (“catgets Subroutine” on page 136) subroutine, catopen (“catopen Subroutine” on page 137)
subroutine.

For more information about the Message Facility, see Message Facility Overview for Programming in AIX
5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 135

For more information about subroutines and libraries, see Subroutines Overview in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

catgets Subroutine

Purpose
Retrieves a message from a catalog.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types>

char *catgets (CatalogDescriptor, SetNumber, MessageNumber, String)
nl_catd CatalogDescriptor;
int SetNumber, MessageNumber;
const char * String;

Description
The catgets subroutine retrieves a message from a catalog after a successful call to the catopen
subroutine. If the catgets subroutine finds the specified message, it loads it into an internal character
string buffer, ends the message string with a null character, and returns a pointer to the buffer.

The catgets subroutine uses the returned pointer to reference the buffer and display the message.
However, the buffer can not be referenced after the catalog is closed.

Parameters

CatalogDescriptor Specifies a catalog description that is returned by the catopen subroutine.
SetNumber Specifies the set ID.
MessageNumber Specifies the message ID. The SetNumber and MessageNumber parameters

specify a particular message to retrieve in the catalog.
String Specifies the default character-string buffer.

Return Values
If the catgets subroutine is unsuccessful for any reason, it returns the user-supplied default message
string specified by the String parameter.

Related Information
The catclose (“catclose Subroutine” on page 135) subroutine, catopen (“catopen Subroutine” on page
137) subroutine.

For more information about the Message Facility, see Message Facility Overview for Programming in AIX
5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

For more information about subroutines and libraries, see Subroutines Overview in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

136 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

catopen Subroutine

Purpose
Opens a specified message catalog.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types.h>

nl_catd catopen (CatalogName, Parameter)
const char *CatalogName;
int Parameter;

Description
The catopen subroutine opens a specified message catalog and returns a catalog descriptor used to
retrieve messages from the catalog. The contents of the catalog descriptor are complete when the catgets
subroutine accesses the message catalog. The nl_catd data type is used for catalog descriptors and is
defined in the nl_types.h file.

If the catalog file name referred to by the CatalogName parameter contains a leading / (slash), it is
assumed to be an absolute path name. If the catalog file name is not an absolute path name, the user
environment determines which directory paths to search. The NLSPATH environment variable defines the
directory search path. When this variable is used, the setlocale subroutine must be called before the
catopen subroutine.

A message catalog descriptor remains valid in a process until that process or a successful call to one of
the exec functions closes it.

You can use two special variables, %N and %L, in the NLSPATH environment variable. The %N variable
is replaced by the catalog name referred to by the call that opens the message catalog. The %L variable
is replaced by the value of the LC_MESSAGES category.

The value of the LC_MESSAGES category can be set by specifying values for the LANG, LC_ALL, or
LC_MESSAGES environment variable. The value of the LC_MESSAGES category indicates which
locale-specific directory to search for message catalogs. For example, if the catopen subroutine specifies
a catalog with the name mycmd, and the environment variables are set as follows:
NLSPATH=../%N:./%N:/system/nls/%L/%N:/system/nls/%N LANG=fr_FR

then the application searches for the catalog in the following order:
../mycmd
./mycmd
/system/nls/fr_FR/mycmd
/system/nls/mycmd

If you omit the %N variable in a directory specification within the NLSPATH environment variable, the
application assumes that it defines a catalog name and opens it as such and will not traverse the rest of
the search path.

If the NLSPATH environment variable is not defined, the catopen subroutine uses the default path. See
the /etc/environment file for the NLSPATH default path. If the LC_MESSAGES category is set to the

Base Operating System (BOS) Runtime Services (A-P) 137

default value C, and the LC__FASTMSG environment variable is set to true, then subsequent calls to the
catgets subroutine generate pointers to the program-supplied default text.

The catopen subroutine treats the first file it finds as a message file. If you specify a non-message file in a
NLSPATH, for example, /usr/bin/ls, catopen treats /usr/bin/ls as a message catalog. Thus no messages
are found and default messages are returned. If you specify /tmp in a NLSPATH, /tmp is opened and
searched for messages and default messages are displayed.

Parameters

CatalogName Specifies the catalog file to open.
Parameter Determines the environment variable to use in locating the message catalog. If the value

of the Parameter parameter is 0, use the LANG environment variable without regard to
the LC_MESSAGES category to locate the catalog. If the value of the Parameter
parameter is the NL_CAT_LOCALE macro, use the LC_MESSAGES category to locate
the catalog.

Return Values
The catopen subroutine returns a catalog descriptor. If the LC_MESSAGES category is set to the default
value C, and the LC__FASTMSG environment variable is set to true, the catopen subroutine returns a
value of -1.

If the LC_MESSAGES category is not set to the default value C but the catopen subroutine returns a
value of -1, an error has occurred during creation of the structure of the nl_catd data type or the catalog
name referred to by the CatalogName parameter does not exist.

Related Information
The catclose (“catclose Subroutine” on page 135) subroutine, catgets (“catgets Subroutine” on page 136)
subroutine, exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutines, setlocale subroutine.

The environment file.

For more information about the Message Facility, see the Message Facility Overview for Programming in
AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

For more information about subroutines and libraries, see the Subroutines Overview in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 Subroutines

Purpose
Computes the cube root.

Syntax
#include <math.h>

float cbrtf (x)
float x;

long double cbrtl (x)
long double x;

double cbrt (x)

138 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

double x;
_Decimal32 cbrtd32 (x)
_Decimal32 x;

_Decimal64 cbrtd64 (x)
_Decimal64 x;
_Decimal128 cbrtd128 (x)
_Decimal128 x;

Description
The cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 subroutines compute the real cube root of the x
argument.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 subroutines return the
cube root of x.

If x is NaN, an NaN is returned.

If x is ±0 or ±Inf, x is returned.

Related Information
math.h in AIX 5L Version 5.3 Files Reference.

ccos, ccosf, or ccosl Subroutine

Purpose
Computes the complex cosine.

Syntax
#include <complex.h>

double complex ccos (z)
double complex z;

float complex ccosf (z)
float complex z;

long double complex ccosl (z)
long double complex z;

Description
The ccos, ccosf, and ccosl subroutines compute the complex cosine of z.

Parameters

z Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 139

Return Values
The ccos, ccosf, and ccosl subroutines return the complex cosine value.

Related Information
“cacos, cacosf, or cacosl Subroutine” on page 130

ccosh, ccoshf, or ccoshl Subroutine

Purpose
Computes the complex hyperbolic cosine.

Syntax
#include <complex.h>

double complex ccosh (z)
double complex z;

float complex ccoshf (z)
float complex z;

long double complex ccoshl (z)
long double complex z;

Description
The ccosh, ccoshf, and ccoshl subroutines compute the complex hyperbolic cosine of z.

Parameters

z Specifies the value to be computed.

Return Values
The ccosh, ccoshf, and ccoshl subroutines return the complex hyperbolic cosine value.

Related Information
“cacosh, cacoshf, or cacoshl Subroutines” on page 131

ccsidtocs or cstoccsid Subroutine

Purpose
Provides conversion between coded character set IDs (CCSID) and code set names.

Library
The iconv Library (libiconv.a)

Syntax
#include <iconv.h>

CCSID cstoccsid (* Codeset)
const char *Codeset;

140 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

char *ccsidtocs (CCSID)
CCSID CCSID;

Description
The cstoccsid subroutine returns the CCSID of the code set specified by the Codeset parameter. The
ccsidtocs subroutine returns the code set name of the CCSID specified by CCSID parameter. CCSIDs
are registered IBM coded character set IDs.

Parameters

Codeset Specifies the code set name to be converted to its corresponding CCSID.
CCSID Specifies the CCSID to be converted to its corresponding code set name.

Return Values
If the code set is recognized by the system, the cstoccsid subroutine returns the corresponding CCSID.
Otherwise, null is returned.

If the CCSID is recognized by the system, the ccsidtocs subroutine returns the corresponding code set
name. Otherwise, a null pointer is returned.

Related Information
For more information about code set conversion, see Converters Overview for Programming in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

The National Language Support Overview for Programming in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

ceil, ceilf, ceill, ceild32, ceild64, and ceild128 Subroutines

Purpose
Compute the ceiling value.

Syntax
#include <math.h>

float ceilf (x)
float x;

long double ceill (x)
long double x;

double ceil (x)
double x;

_Decimal32 ceild32(x)
_Decimal32 x;

_Decimal64 ceild64(x)
_Decimal64 x;

_Decimal128 ceild128(x)
_Decimal128 x;

Base Operating System (BOS) Runtime Services (A-P) 141

Description
The ceilf, ceill, ceil, ceild32, ceild64, and ceild128 subroutines compute the smallest integral value that
is not less than x.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the smallest integral value to be computed.

Return Values
Upon successful completion, the ceilf, ceill , ceil, ceild32, ceild64, and ceild128 subroutines return the
smallest integral value that is not less than x, expressed as a type float, long double, double,
_Decimal32, _Decimal64, or _Decimal128 respectively.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and the ceilf, ceill, ceil, ceild32, ceild64,
and ceild128 subroutines return the value of the macro HUGE_VALF, HUGE_VALL, HUGE_VAL,
HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, “floor, floorf, floorl,
floord32, floord64, floord128, nearest, trunc, itrunc, and uitrunc Subroutines” on page 279, and “class,
_class, finite, isnan, or unordered Subroutines” on page 168.

math.h in AIX 5L Version 5.3 Files Reference.

cexp, cexpf, or cexpl Subroutine

Purpose
Performs complex exponential computations.

Syntax
#include <complex.h>

double complex cexp (z)
double complex z;

float complex cexpf (z)
float complex z;

long double complex cexpl (z)
long double complex z;

Description
The cexp, cexpf, and cexpl subroutines compute the complex exponent of z, defined as ez .

142 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

z Specifies the value to be computed.

Return Values
The cexp, cexpf, and cexpl subroutines return the complex exponential value of z.

Related Information
The “clog, clogf, or clogl Subroutine” on page 175.

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine

Purpose
Gets and sets input and output baud rates.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

speed_t cfgetospeed (TermiosPointer)
const struct termios *TermiosPointer;

int cfsetospeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

speed_t cfgetispeed (TermiosPointer)
const struct termios *TermiosPointer;

int cfsetispeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

Description
The baud rate subroutines are provided for getting and setting the values of the input and output baud
rates in the termios structure. The effects on the terminal device described below do not become effective
and not all errors are detected until the tcsetattr function is successfully called.

The input and output baud rates are stored in the termios structure. The supported values for the baud
rates are shown in the table that follows this discussion.

The termios.h file defines the type speed_t as an unsigned integral type.

The cfgetospeed subroutine returns the output baud rate stored in the termios structure pointed to by the
TermiosPointer parameter.

The cfsetospeed subroutine sets the output baud rate stored in the termios structure pointed to by the
TermiosPointer parameter to the value specified by the Speed parameter.

The cfgetispeed subroutine returns the input baud rate stored in the termios structure pointed to by the
TermiosPointer parameter.

Base Operating System (BOS) Runtime Services (A-P) 143

The cfsetispeed subroutine sets the input baud rate stored in the termios structure pointed to by the
TermiosPointer parameter to the value specified by the Speed parameter.

Certain values for speeds have special meanings when set in the termios structure and passed to the
tcsetattr function. These values are discussed in the tcsetattr subroutine.

The following table lists possible baud rates:

Baud Rate Values

Name Description

B0 Hang up

B5 50 baud

B75 75 baud

B110 110 baud

B134 134 baud

B150 150 baud

B200 200 baud

B300 300 baud

B600 600 baud

B1200 1200 baud

B1800 1800 baud

B2400 2400 baud

B4800 4800 baud

B9600 9600 baud

B19200 19200 baud

B38400 38400 baud

The termios.h file defines the name symbols of the table.

Parameters

TermiosPointer Points to a termios structure.
Speed Specifies the baud rate.

Return Values
The cfgetospeed and cfgetispeed subroutines return exactly the value found in the termios data
structure, without interpretation.

Both the cfsetospeed and cfsetispeed subroutines return a value of 0 if successful and -1 if
unsuccessful.

Examples
To set the output baud rate to 0 (which forces modem control lines to stop being asserted), enter:
cfsetospeed (&my_termios, B0);
tcsetattr (stdout, TCSADRAIN, &my_termios);

144 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The tcsetattr subroutine.

The termios.h file.

Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

chacl or fchacl Subroutine

Purpose
Changes the AIXC ACL type access control information of a file.

Library
Standard C Library (libc.a)

Syntax
#include <sys/acl.h>
#include <sys/mode.h>

int chacl (Path, ACL, ACLSize)
char *Path;
struct acl *ACL;
int ACLSize;

int fchacl (FileDescriptor, ACL, ACLSize)
int FileDescriptor;
struct acl *ACL;
int ACLSize;

Description
The chacl and fchacl subroutines set the access control attributes of a file according to the AIXC ACL
Access Control List (ACL) structure pointed to by the ACL parameter. Note that these routines could fail if
the current ACL associated with the file system object is of a different type or if the underlying physical file
system does not support AIXC ACL type. It is strongly recommended that applications stop using these
interfaces and instead make use of aclx_get /aclx_fget and aclx_put/aclx_fput subroutines to change
the ACL.

Parameters

Path Specifies the path name of the file.

Base Operating System (BOS) Runtime Services (A-P) 145

ACL Specifies the AIXC ACL to be established on the file. The format of an AIXC ACL is
defined in the sys/acl.h file and contains the following members:

acl_len
Specifies the size of the ACL (Access Control List) in bytes, including the base
entries.

Note: The entire ACL for a file cannot exceed one memory page (4096 bytes).

acl_mode
Specifies the file mode.

The following bits in the acl_mode member are defined in the sys/mode.h file and are
significant for this subroutine:

S_ISUID
Enables the setuid attribute on an executable file.

S_ISGID
Enables the setgid attribute on an executable file. Enables the group-inheritance
attribute on a directory.

S_ISVTX
Enables linking restrictions on a directory.

S_IXACL
Enables extended ACL entry processing. If this attribute is not set, only the base
entries (owner, group, and default) are used for access authorization checks.

Other bits in the mode, including the following, are ignored:

u_access
Specifies access permissions for the file owner.

g_access
Specifies access permissions for the file group.

o_access
Specifies access permissions for the default class of others.

acl_ext[]
Specifies an array of the extended entries for this access control list.

The members for the base ACL (owner, group, and others) can contain the following bits,
which are defined in the sys/access.h file:

R_ACC
Allows read permission.

W_ACC
Allows write permission.

X_ACC Allows execute or search permission.
FileDescriptor Specifies the file descriptor of an open file.
ACLSize Specifies the size of the buffer containing the ACL.

Note: The chacl subroutine requires the Path, ACL, and ACLSize parameters. The fchacl subroutine
requires the FileDescriptor, ACL, and ACLSize parameters.

ACL Data Structure for chacl
Each access control list structure consists of one struct acl structure containing one or more struct
acl_entry structures with one or more struct ace_id structures.

If the struct ace_id structure has id_type set to ACEID_USER or ACEID_GROUP, there is only one
id_data element. To add multiple IDs to an ACL you must specify multiple struct ace_id structures when
id_type is set to ACEID_USER or ACEID_GROUP. In this case, no error is returned for the multiple

146 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

elements, and the access checking examines only the first element. Specifically, the errno value EINVAL
is not returned for acl_len being incorrect in the ACL structure although more than one uid or gid is
specified.

Return Values
Upon successful completion, the chacl and fchacl subroutines return a value of 0. If the chacl or fchacl
subroutine fails, a value of -1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The chacl subroutine fails and the access control information for a file remains unchanged if one or more
of the following are true:

ENOTDIR A component of the Path prefix is not a directory.
ENOENT A component of the Path does not exist or has the disallow truncation attribute (see the

ulimit subroutine).
ENOENT The Path parameter was null.
EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path parameter

exceeded 1023 characters.

The chacl or fchacl subroutine fails and the access control information for a file remains unchanged if one
or more of the following are true:

EROFS The file specified by the Path parameter resides on a read-only file system.
EFAULT The ACL parameter points to a location outside of the allocated address space of the process.
EINVAL The ACL parameter does not point to a valid ACL.
EINVAL The acl_len member in the ACL is not valid.
EIO An I/O error occurred during the operation.
ENOSPC The size of the ACL parameter exceeds the system limit of one memory page (4KB).
EPERM The effective user ID does not match the ID of the owner of the file, and the invoker does not

have root user authority.

The fchacl subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The file descriptor FileDescriptor is not valid.

If Network File System (NFS) is installed on your system, the chacl and fchacl subroutines can also fail if
the following is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Base Operating System (BOS) Runtime Services (A-P) 147

Auditing Events:

Event Information
chacl Path
fchacl FileDescriptor

Related Information
The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget
Subroutine” on page 10) subroutine, acl_put (“acl_put or acl_fput Subroutine” on page 12) subroutine,
acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine, chmod (“chmod or fchmod Subroutine”
on page 149) subroutine, stat subroutine, statacl subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

chdir Subroutine

Purpose
Changes the current directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int chdir (Path)
const char *Path;

Description
The chdir subroutine changes the current directory to the directory indicated by the Path parameter.

Parameters

Path A pointer to the path name of the directory. If the Path parameter refers to a symbolic link, the chdir
subroutine sets the current directory to the directory pointed to by the symbolic link. If Network File
System (NFS) is installed on the system, this path can cross into another node.

The current directory, also called the current working directory, is the starting point of searches for path
names that do not begin with a / (slash). The calling process must have search access to the directory
specified by the Path parameter.

Return Values
Upon successful completion, the chdir subroutine returns a value of 0. Otherwise, a value of -1 is returned
and the errno global variable is set to identify the error.

148 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The chdir subroutine fails and the current directory remains unchanged if one or more of the following are
true:

EACCES Search access is denied for the named directory.
ENOENT The named directory does not exist.
ENOTDIR The path name is not a directory.

The chdir subroutine can also be unsuccessful for other reasons. See Appendix A. Base Operating
System Error Codes for Services That Require Path-Name Resolution (Appendix A, “Base Operating
System Error Codes for Services That Require Path-Name Resolution,” on page 1355) for a list of
additional error codes.

If NFS is installed on the system, the chdir subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The chroot (“chroot Subroutine” on page 161) subroutine.

The cd command.

Appendix A, “Base Operating System Error Codes for Services That Require Path-Name Resolution,” on
page 1355.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

chmod or fchmod Subroutine

Purpose
Changes file system object’s base file mode bits.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

int chmod (Path, Mode)
const char *Path;
mode_t Mode;

int fchmod (FileDescriptor, Mode)
int FileDescriptor;
mode_t Mode;

Description
The chmod subroutine sets the access permissions of the file specified by the Path parameter. If Network
File System (NFS) is installed on your system, this path can cross into another node.

Base Operating System (BOS) Runtime Services (A-P) 149

Use the fchmod subroutine to set the access permissions of an open file pointed to by the FileDescriptor
parameter.

If FileDescriptor references a shared memory object, the fchmod subroutine affects the S_IRUSR,
S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits.

The access control information is set according to the Mode parameter. Note that these routines will
replace any existing ACL associated with the file system object.

Parameters

FileDescriptor Specifies the file descriptor of an open file or shared memory object.

150 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Mode Specifies the bit pattern that determines the access permissions. The Mode parameter
is constructed by logically ORing one or more of the following values, which are defined
in the sys/mode.h file:

S_ISUID
Enables the setuid attribute for an executable file. A process executing this
program acquires the access rights of the owner of the file.

S_ISGID
Enables the setgid attribute for an executable file. A process executing this
program acquires the access rights of the group of the file. Also, enables the
group-inheritance attribute for a directory. Files created in this directory have a
group equal to the group of the directory.

The following attributes apply only to files that are directly executable. They have no
meaning when applied to executable text files such as shell scripts and awk scripts.

S_ISVTX
Enables the link/unlink attribute for a directory. Files cannot be linked to in
this directory. Files can only be unlinked if the requesting process has write
permission for the directory and is either the owner of the file or the directory.

S_ISVTX
Enables the save text attribute for an executable file. The program is not
unmapped after usage.

S_ENFMT
Enables enforcement-mode record locking for a regular file. File locks
requested with the lockf subroutine are enforced.

S_IRUSR
Permits the file’s owner to read it.

S_IWUSR
Permits the file’s owner to write to it.

S_IXUSR
Permits the file’s owner to execute it (or to search the directory).

S_IRGRP
Permits the file’s group to read it.

S_IWGRP
Permits the file’s group to write to it.

S_IXGRP
Permits the file’s group to execute it (or to search the directory).

S_IROTH
Permits others to read the file.

S_IWOTH
Permits others to write to the file.

S_IXOTH
Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod subroutine but not with the
chmod subroutine.

Path Specifies the full path name of the file.

Return Values
Upon successful completion, the chmod subroutine and fchmod subroutines return a value of 0. If the
chmod subroutine or fchmod subroutine is unsuccessful, a value of -1 is returned, and the errno global
variable is set to identify the error.

Base Operating System (BOS) Runtime Services (A-P) 151

Error Codes
The chmod subroutine is unsuccessful and the file permissions remain unchanged if one of the following
is true:

ENOTDIR A component of the Path prefix is not a directory.
EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENOENT The named file does not exist.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path parameter

exceeded 1023 characters.
The fchmod subroutine is unsuccessful and the file permissions remain unchanged if the following is true:
EBADF The value of the FileDescriptor parameter is not valid.
The chmod or fchmod subroutine is unsuccessful and the access control information for a file remains unchanged if
one of the following is true:
EPERM The effective user ID does not match the owner of the file, and the process does not have

appropriate privileges.
EROFS The named file resides on a read-only file system.
EIO An I/O error occurred during the operation.
If NFS is installed on your system, the chmod and fchmod subroutines can also be unsuccessful if the following is
true:
ESTALE The root or current directory of the process is located in a virtual file system that has been

unmounted.
ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

If you receive the EBUSY error, toggle the enforced locking attribute in the Mode parameter and retry
your operation. The enforced locking attribute should never be used on a file that is part of the Trusted
Computing Base.

Related Information
The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget
Subroutine” on page 10) subroutine, acl_put (“acl_put or acl_fput Subroutine” on page 12) subroutine,
acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine, chacl (“chacl or fchacl Subroutine” on
page 145) subroutine, statacl subroutine, stat subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

chown, fchown, lchown, chownx, or fchownx Subroutine

Purpose
Changes file ownership.

Library
Standard C Library (libc.a)

152 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
Syntax for the chown, fchown, and lchown Subroutines:

#include <sys/types.h>
#include <unistd.h>

int chown (Path, Owner, Group)
const char *Path;
uid_t Owner;
gid_t Group;

int fchown (FileDescriptor, Owner, Group)

int FileDescriptor;
uid_t Owner;
gid_t Group;

int lchown (Path, Owner, Group)

const char *fname
uid_t uid
gid_tgid

Syntax for the chownx and fchownx Subroutines:

#include <sys/types.h>
#include <sys/chownx.h>

int chownx (Path, Owner, Group, Flags)

char *Path;
uid_t Owner;
gid_t Group;
int Flags;

int fchownx (FileDescriptor, Owner, Group, Flags)

int FileDescriptor;
uid_t Owner;
gid_t Group;
int Flags;

Description
The chown, chownx, fchown, fchownx, and lchown subroutines set the file owner and group IDs of the
specified file system object. Root user authority is required to change the owner of a file.

A function lchown function sets the owner ID and group ID of the named file similarity to chown function
except in the case where the named file is a symbolic link. In this case lchown function changes the
ownership of the symbolic link file itself, while chown function changes the ownership of the file or
directory to which the symbolic link refers.

Parameters

FileDescriptor Specifies the file descriptor of an open file.

Base Operating System (BOS) Runtime Services (A-P) 153

Flags Specifies whether the file owner ID or group ID should be changed. This parameter is
constructed by logically ORing the following values:

T_OWNER_AS_IS
Ignores the value specified by the Owner parameter and leaves the owner ID of
the file unaltered.

T_GROUP_AS_IS
Ignores the value specified by the Group parameter and leaves the group ID of
the file unaltered.

Group Specifies the new group of the file. For the chown, fchown, and lchown commands, if
this value is -1, the group is not changed. (A value of -1 indicates only that the group is
not changed; it does not indicate a group that is not valid. An owner or group ID cannot
be invalid.) For the chownx and fchownx commands, the subroutines change the Group
to -1 if -1 is supplied for Group and T_GROUP_AS_IS is not set.

Owner Specifies the new owner of the file. For the chown, fchown, and lchown commands, if
this value is -1, the group is not changed. (A value of -1 indicates only that the group is
not changed; it does not indicate a group that is not valid. An owner or group ID cannot
be invalid.) For the chownx and fchownx commands, the subroutines change the Owner
to -1 if -1 is supplied for Owner and T_OWNER_AS_IS is not set

Path Specifies the full path name of the file. If Path resolves to a symbolic link, the ownership
of the file or directory pointed to by the symbolic link is changed.

Return Values
Upon successful completion, the chown, chownx, fchown, fchownx, and lchown subroutines return a
value of 0. If the chown, chownx, fchown, fchownx, or lchown subroutine is unsuccessful, a value of -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The chown, chownx, or lchown subroutine is unsuccessful and the owner and group of a file remain
unchanged if one of the following is true:

EACCES Search permission is denied on a component of the Path parameter.
EDQUOT The new group for the file system object cannot be set because the group’s quota of disk

blocks or i-nodes has been exhausted on the file system.
EFAULT The Path parameter points to a location outside of the allocated address space of the

process.
EINVAL The owner or group ID supplied is not valid.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path parameter

exceeded 1023 characters.
ENOENT A symbolic link was named, but the file to which it refers does not exist; or a component of

the Path parameter does not exist; or the process has the disallow truncation attribute set;
or the Path parameter is null.

ENOTDIR A component of the path prefix is not a directory.
EPERM The effective user ID does not match the owner of the file, and the calling process does not

have the appropriate privileges.
EROFS The named file resides on a read-only file system.
ESTALE The root or current directory of the process is located in a virtual file system that has been

unmounted.

The fchown or fchownx subroutine is unsuccessful and the file owner and group remain unchanged if
one of the following is true:

EBADF The named file resides on a read-only file system.

154 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EDQUOT The new group for the file system object cannot be set because the group’s quota of disk
blocks or i-nodes has been exhausted on the file system.

EIO An I/O error occurred during the operation.

Security
Access Control: The invoker must have search permission for all components of the Path parameter.

chpass Subroutine

Purpose
Changes user passwords.

Library
Standard C Library (libc.a)

Thread Safe Security Library (libs_r.a)

Syntax
int chpass (UserName, Response, Reenter, Message)
char *UserName;
char *Response;
int *Reenter;
char **Message;

Description
The chpass subroutine maintains the requirements that the user must meet to change a password. This
subroutine is the basic building block for changing passwords and handles password changes for local,
NIS, and DCE user passwords.

The Message parameter provides a series of messages asking for old and new passwords, or providing
informational messages, such as the reason for a password change failing. The first Message prompt is a
prompt for the old password. This parameter does not prompt for the old password if the user has a real
user ID of 0 (zero) and is changing a local user, or if the user has no current password. The chpass
subroutine does not prompt a user with root authority for an old password. It informs the program that no
message was sent and that it should invoke chpass again. If the user satisfies the first Message
parameter’s prompt, the system prompts the user to enter the new password. Each message is contained
in the Message parameter and is displayed to the user. The Response parameter returns the user’s
response to the chpass subroutine.

The Reenter parameter indicates when a user has satisfied all prompt messages. The parameter remains
nonzero until a user has passed all prompts. After the returned value of Reenter is 0, the return code
signals whether the password change has succeeded or failed. When progressing through prompts for a
user, the value of Reenter must be maintained by the caller between invocations of chpass.

The chpass subroutine maintains internal state information concerning the next prompt message to
present to the user. If the calling program supplies a different user name before all prompt messages are
complete for the user, the internal state information is reset and prompt messages begin again. State
information is also kept in the Reenter variable. The calling program must maintain the value of Reenter
between calls to chpass.

The chpass subroutine determines the administration domain to use during password changes. It
determines if the user is defined locally, defined in Network Information Service (NIS), or defined in

Base Operating System (BOS) Runtime Services (A-P) 155

Distributed Computing Environment (DCE). Password changes occur only in these domains. System
administrators may override this convention with the registry value in the /etc/security/user file. If the
registry value is defined, the password change can only occur in the specified domain. System
administrators can use this registry value if the user is administered on a remote machine that periodically
goes down. If the user is allowed to log in through some other authentication method while the server is
down, password changes remain to follow only the primary server.

The chpass subroutine allows the user to change passwords in two ways. For normal (non-administrative)
password changes, the user must supply the old password, either on the first call to the chpass
subroutine or in response to the first message from chpass. If the user is root, real user ID of 0, local
administrative password changes are handled by supplying a null pointer for the Response parameter
during the initial call

Users that are not administered locally are always queried for their old password.

The chpass subroutine is always in one of the following states:

1. Initial state: The caller invokes the chpass subroutine with NULL response parameter and receives the
initial password prompt in the message parameter.

2. Verify initial password: The caller invokes the chpass subroutine with the results of prompting the user
with earlier message parameter as the response parameter. The caller is given a prompt to enter the
new password in the message parameter.

3. Enter new password: The caller invokes the chpass subroutine with the results of prompting user with
the new password prompt in the response parameter. The caller will be given a prompt to repeat the
new password in the message parameter.

4. Verify new password: The caller invokes the chpass subroutine with the results of prompting the user
to repeat the new password in the response parameter. The chpass subroutine then performs the
actual password change.

Any step in the above process can result in the chpass subroutine terminating the dialog. This is signalled
when the reenter variable is set to 0. The return code indicates the nature of the failure.

Note: Set the setuid and owner to root for your own programs that use the chpass subroutine.

Parameters

UserName Specifies the user’s name whose password is to be changed.
Response Specifies a character string containing the user’s response to the last prompt.
Reenter Points to a Boolean value used to signal whether the chpass subroutine has completed

processing. If the Reenter parameter is a nonzero value, the chpass subroutine expects the
user to satisfy the prompt message provided by the Message parameter. If the Reenter
parameter is 0, the chpass subroutine has completed processing.

Message Points to a pointer that the chpass subroutine allocates memory for and fills in. This
replacement string is then suitable for printing and issues challenge messages (if the Reenter
parameter is a nonzero value). The string can also issue informational messages such as why
the user failed to change the password (if the Reenter parameter is 0). The calling application
is responsible for freeing this memory.

Return Values
Upon successful completion, the chpass subroutine returns a value of 0. If the chpass subroutine is
unsuccessful, it returns the following values:

-1 Indicates the call failed in the thread safe library libs_r.a. ERRNO will indicate the failure code.
1 Indicates that the password change was unsuccessful and the user should attempt again. This return value

occurs if a password restriction is not met, such as if the password is not long enough.

156 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

2 Indicates that the password change was unsuccessful and the user should not attempt again. This return
value occurs if the user enters an incorrect old password or if the network is down (the password change
cannot occur).

Error Codes
The chpass subroutine is unsuccessful if one of the following values is true:

ENOENT Indicates that the user cannot be found.
ESAD Indicates that the user did not meet the criteria to change the password.
EPERM Indicates that the user did not have permission to change the password.
EINVAL Indicates that the parameters are not valid.
ENOMEM Indicates that memory allocation (malloc) failed.

Related Information
The authenticate (“authenticate Subroutine” on page 114) subroutine.

chpassx Subroutine

Purpose
Changes multiple method passwords.

Library
Standard C Library (libc.a)

Thread Safe Security Library (libs_r.a)

Syntax
int chpassx (UserName, Response, Reenter, Message, State)
char *UserName;
char *Response;
int *Reenter;
char **Message;
void **State;

Description
The chpassx subroutine maintains the requirements that the user must meet to change a password. This
subroutine is the basic building block for changing passwords, and it handles password changes for local,
NIS, and loadable authentication module user passwords. It uses information provided by the
authenticatex and passwdexpiredx subroutines to indicate which passwords were used when a user
authenticated and whether or not those passwords are expired.

The Message parameter provides a series of messages asking for old and new passwords, or providing
informational messages, such as the reason for a password change failing. The first Message prompt is a
prompt for the old password. This parameter does not prompt for the old password if the user has a real
user ID of 0 and is changing a local user, or if the user has no current password. The chpassx subroutine
does not prompt a user with root authority for an old password when only a local password is being
changed. It informs the program that no message was sent and that it should invoke chpass again. If the
user satisfies the first Message parameter’s prompt, the system prompts the user to enter the new
password. Each message is contained in the Message parameter and is displayed to the user. The
Response parameter returns the user’s response to the chpass subroutine.

Base Operating System (BOS) Runtime Services (A-P) 157

The Reenter parameter remains a nonzero value until the user satisfies all of the prompt messages or until
the user incorrectly responds to a prompt message. When the Reenter parameter is 0, the return code
signals whether the password change completed or failed. The calling application must initialize the
Reenter parameter to 0 before the first call to the chpassx subroutine and the application cannot modify
the Reenter parameter until the sequence of chpassx subroutine calls has completed.

The authenticatex subroutine ascertains the authentication domains the user can attempt. The subroutine
uses the SYSTEM attribute for the user. Each token that is displayed in the SYSTEM line corresponds to a
method that can be dynamically loaded and processed. Likewise, the system can provide multiple or
alternate authentication paths.

The State parameter contains information from an earlier call to the authenticatex or passwdexpirex
subroutines. That information indicates which administration domains were used when the user was
authenticated and which passwords have expired and can be changed by the user. The State parameter
must be initialized to null when the chpassx subroutine is not being called after an earlier call to the
authenticatex or passwdexpiredx subroutines, or if the calling program does not wish to use the
information from an earlier call.

The chpassx subroutine maintains internal state information concerning the next prompt message to
present to the user. If the calling program supplies a different user name before all prompt messages are
complete for the user, the internal state information is reset and prompt messages begin again.

The chpassx subroutine determines the administration domain to use during password changes. It
determines if the user is defined locally, defined in Network Information Service (NIS), defined in
Distributed Computing Environment (DCE), or defined in another administrative domain supported by a
loadable authentication module. Password changes use the user’s SYSTEM attribute and information in
the State parameter. When the State parameter includes information from an earlier call to the
authenticatex subroutine, only the administrative domains that were used for authentication are changed.
When the State parameter includes information from an earlier call to the passwdexpiredx subroutine,
only the administrative domains that have expired passwords are changed. The State parameter can
contain information from calls to both authenticatex and passwdexpiredx, in which case passwords that
were used for authentication are changed, even if they are not expired, so that passwords remain
synchronized between administrative domains.

The chpassx subroutine allows the user to change passwords in two ways. For normal (nonadministrative)
password changes, the user must supply the old password, either on the first call to the chpassx
subroutine or in response to the first message from chpassx. If the user is root (with a real user ID of 0),
local administrative password changes are handled by supplying a null pointer for the Response parameter
during the initial call.

Users that are not administered locally are always queried for their old password.

The chpassx subroutine is always in one of three states: entering the old password, entering the new
password, or entering the new password again. If any of these states do not need to be complied with, the
chpassx subroutine returns a null challenge.

Parameters

Message Points to a pointer that the chpassx subroutine allocates memory for and fills in. This
replacement string is then suitable for printing and issues challenge messages (if the Reenter
parameter is a nonzero value). The string can also issue informational messages, such as
why the user failed to change the password (if the Reenter parameter is 0). The calling
application is responsible for freeing this memory.

158 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Reenter Points to an integer value used to signal whether the chpassx subroutine has completed
processing. If the Reenter parameter is a nonzero value, the chpassx subroutine expects the
user to satisfy the prompt message provided by the Message parameter. If the Reenter
parameter is 0, the chpassx subroutine has completed processing.

Response Specifies a character string containing the user’s response to the last prompt.
State Points to a pointer that the chpassx subroutine allocates memory for and fills in. The State

parameter can also be the result of an earlier call to the authenticatex or passwdexpiredx
subroutines. This parameter contains information about each password that has been
changed for the user. The calling application is responsible for freeing this memory after the
chpassx subroutine has completed.

UserName Specifies the user’s name whose password is to be changed.

Return Values
Upon successful completion, the chpassx subroutine returns a value of 0. If this subroutine fails, it returns
the following values:

-1 The call failed in the libs_r.a thread safe library. errno indicates the failure code.
1 The password change was unsuccessful and the user should try again. This return value occurs if a

password restriction is not met (for example, the password is not long enough).
2 The password change was unsuccessful and the user should not try again. This return value occurs if

the user enters an incorrect old password or if the network is down (the password change cannot occur).

Error Codes
The chpassx subroutine is unsuccessful if one of the following values is true:

EINVAL The parameters are not valid.
ENOENT The user cannot be found.
ENOMEM Memory allocation (malloc) failed.
EPERM The user did not have permission to change the password.
ESAD The user did not meet the criteria to change the password.

Related Information
The “authenticatex Subroutine” on page 116, “passwdexpiredx Subroutine” on page 978.

chprojattr Subroutine

Purpose
Updates and modifies the project attributes in kernel project registry for the given project.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

chprojattr(struct project *, int cmd)

Description
The chprojattr subroutine alters the attributes of a project defined in the kernel project registry. A pointer
to struct project containing the project definition and the operation command is sent as input arguments.
The following operations are permitted:

Base Operating System (BOS) Runtime Services (A-P) 159

v PROJ_ENABLE_AGGR - Enables aggregation for the specified project

v PROJ_DISABLE_AGGR - Disables aggregation for the specified project

If PROJ_ENABLE_AGGR is passed, then the aggregation status bit is set to 1. If PROJ_DISABLE_AGGR
is passed, then the aggregation status bit set to 0.

Note: To initialize the project structure, the user must call the getprojdef subroutine before calling the
chprojattr subroutine.

Parameters

project Pointer containing the project definition.
cmd An integer command indicating whether to perform a set or clear operation.

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid arguments passed. The passed command flag is invalid or the passed pointer is NULL.
ENONENT Project not found.

Related Information
The “addproj Subroutine” on page 31, “chprojattrdb Subroutine,” “getproj Subroutine” on page 420,
“getprojs Subroutine” on page 422, rmproj Subroutine.

chprojattrdb Subroutine

Purpose
Updates the project attributes in the project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

chprojattrdb(void *handle, struct project *project, int cmd)

Description
The chprojattrdb subroutine alters the attributes of the named project in the specified project database,
which is controlled through the handle parameter. The following commands are permitted:

v PROJ_ENABLE_AGGR — Enables aggregation for the specified project

160 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v PROJ_DISABLE_AGGR — Disables aggregation for the specified project

The project database must be initialized before calling this subroutine. The projdballoc subroutine is
provided for this purpose. The chprojattrdb subroutine must be called after the getprojdb subroutine,
which sets the record pointer to point to the project that needs to be modified.

Note: The chprojattrdb subroutine must be called after the getprojdb subroutine, which makes the
named project the current project.

Parameters

handle Pointer to the handle allocated for the project database.
project Pointer containing the project definition.
cmd An integer command indicating whether to perform a set or clear operation.

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid arguments passed. The passed command flag is invalid or the passed pointer is NULL.
ENONENT Project not found.

Related Information
The “addprojdb Subroutine” on page 32, “chprojattr Subroutine” on page 159, “getfirstprojdb Subroutine”
on page 370, “getnextprojdb Subroutine” on page 398, “getprojdb Subroutine” on page 421, “projdballoc
Subroutine” on page 1189, “projdbfinit Subroutine” on page 1189, “projdbfree Subroutine” on page 1191,
rmprojdb Subroutine.

chroot Subroutine

Purpose
Changes the effective root directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int chroot (const char * Path)
char *Path;

Base Operating System (BOS) Runtime Services (A-P) 161

Description
The chroot subroutine causes the directory named by the Path parameter to become the effective root
directory. If the Path parameter refers to a symbolic link, the chroot subroutine sets the effective root
directory to the directory pointed to by the symbolic link. If Network File System (NFS) is installed on your
system, this path can cross into another node.

The effective root directory is the starting point when searching for a file’s path name that begins with /
(slash). The current directory is not affected by the chroot subroutine.

The calling process must have root user authority in order to change the effective root directory. The
calling process must also have search access to the new effective root directory.

The .. (double period) entry in the effective root directory is interpreted to mean the effective root directory
itself. Thus, this directory cannot be used to access files outside the subtree rooted at the effective root
directory.

Parameters

Path Pointer to the new effective root directory.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The chroot subroutine fails and the effective root directory remains unchanged if one or more of the
following are true:

ENOENT The named directory does not exist.
EACCES The named directory denies search access.
EPERM The process does not have root user authority.

The chroot subroutine can be unsuccessful for other reasons. See Appendix A. Base Operating System
Error Codes for Services that Require Path-Name Resolution (Appendix A, “Base Operating System Error
Codes for Services That Require Path-Name Resolution,” on page 1355) for a list of additional errors.

If NFS is installed on the system, the chroot subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The chdir (“chdir Subroutine” on page 148) subroutine.

The chroot command.

Appendix A, “Base Operating System Error Codes for Services That Require Path-Name Resolution,” on
page 1355.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

162 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

chssys Subroutine

Purpose
Modifies the subsystem objects associated with the SubsystemName parameter.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int chssys(SubsystemName, SRCSubsystem)
char *SubsystemName;
struct SRCsubsys *SRCSubsystem;

Description
The chssys subroutine modifies the subsystem objects associated with the specified subsystem with the
values in the SRCsubsys structure. This action modifies the objects associated with subsystem in the
following object classes:

v Subsystem Environment

v Subserver Type

v Notify

The Subserver Type and Notify object classes are updated only if the subsystem name has been changed.

The SRCsubsys structure is defined in the /usr/include/sys/srcobj.h file.

The program running with this subroutine must be running with the group system.

Parameters

SRCSubsystem Points to the SRCsubsys structure.
SubsystemName Specifies the name of the subsystem.

Return Values
Upon successful completion, the chssys subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the odmerrno variable is set to indicate the error, or a System Resource Controller (SRC) error
code is returned.

Error Codes
The chssys subroutine is unsuccessful if one or more of the following are true:

SRC_NONAME No subsystem name is specified.
SRC_NOPATH No subsystem path is specified.
SRC_BADNSIG Invalid stop normal signal.
SRC_BADFSIG Invalid stop force signal.
SRC_NOCONTACT Contact not signal, sockets, or message queues.
SRC_SSME Subsystem name does not exist.
SRC_SUBEXIST New subsystem name is already on file.
SRC_SYNEXIST New subsystem synonym name is already on file.

Base Operating System (BOS) Runtime Services (A-P) 163

SRC_NOREC The specified SRCsubsys record does not exist.
SRC_SUBSYS2BIG Subsystem name is too long.
SRC_SYN2BIG Synonym name is too long.
SRC_CMDARG2BIG Command arguments are too long.
SRC_PATH2BIG Subsystem path is too long.
SRC_STDIN2BIG stdin path is too long.
SRC_STDOUT2BIG stdout path is too long.
SRC_STDERR2BIG stderr path is too long.
SRC_GRPNAM2BIG Group name is too long.

Security
Privilege Control: This command has the Trusted Path attribute. It has the following kernel privilege:
SET_PROC_AUDIT kernel privilege

Files Accessed:

Mode File
644 /etc/objrepos/SRCsubsys
644 /etc/objrepos/SRCsubsvr
644 /etc/objrepos/SRCnotify
Auditing Events:
Event Information
SRC_Chssys

Files

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.
/etc/objrepos/SRCnotify SRC Notify Method object class.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information
The addssys (“addssys Subroutine” on page 34) subroutine, delssys (“delssys Subroutine” on page 213)
subroutine.

The chssys command, mkssys command, rmssys command.

System Resource Controller in Operating system and device management.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller (SRC)
Overview for Programmers in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

cimag, cimagf, or cimagl Subroutine

Purpose
Performs complex imaginary computations.

164 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <complex.h>

double cimag (z)
double complex z;

float cimagf (z)
float complex z;

long double cimagl (z)
long double complex z;

Description
The cimag, cimagf, and cimagl subroutines compute the imaginary part of z.

Parameters

z Specifies the value to be computed.

Return Values
The cimag, cimagf, and cimagl subroutines return the imaginary part value (as a real).

Related Information
“carg, cargf, or cargl Subroutine” on page 132, “conj, conjf, or conjl Subroutine” on page 183, “cproj, cprojf,
or cprojl Subroutine” on page 191, and “creal, crealf, or creall Subroutine” on page 192.

ckuseracct Subroutine

Purpose
Checks the validity of a user account.

Library
Security Library (libc.a)

Syntax
#include <login.h>

int ckuseracct (Name, Mode, TTY)
char *Name;
int Mode;
char *TTY;

Description

Note: This subroutine is obsolete and is provided only for backwards compatibility. Use the
loginrestrictions subroutine, which performs a superset of the functions of the ckuseracct
subroutine, instead.

The ckuseracct subroutine checks the validity of the user account specified by the Name parameter. The
Mode parameter gives the mode of the account usage, and the TTY parameter defines the terminal being
used for the access. The ckuseracct subroutine checks for the following conditions:

v Account existence

Base Operating System (BOS) Runtime Services (A-P) 165

v Account expiration

The Mode parameter specifies other mode-specific checks.

Parameters

Name Specifies the login name of the user whose account is to be validated.
Mode Specifies the manner of usage. Valid values as defined in the login.h file are listed below. The Mode

parameter must be one of these or 0:

S_LOGIN
Verifies that local logins are permitted for this account.

S_SU Verifies that the su command is permitted and that the current process has a group ID that
can invoke the su command to switch to the account.

S_DAEMON
Verifies the account can be used to invoke daemon or batch programs using the src or cron
subsystems.

S_RLOGIN
Verifies the account can be used for remote logins using the rlogind or telnetd programs.

TTY Specifies the terminal of the originating activity. If this parameter is a null pointer or a null string, no
TTY origin checking is done.

Security

Files Accessed:

Mode File
r /etc/passwd
r /etc/security/user

Return Values
If the account is valid for the specified usage, the ckuseracct subroutine returns a value of 0. Otherwise,
a value of -1 is returned and the errno global variable is set to the appropriate error code.

Error Codes
The ckuseracct subroutine fails if one or more of the following are true:

ENOENT The user specified in the Name parameter does not have an account.
ESTALE The user’s account is expired.
EACCES The specified terminal does not have access to the specified account.
EACCES The Mode parameter is S_SU, and the current process is not permitted to use the su

command to access the specified user.
EACCES Access to the account is not permitted in the specified Mode.
EINVAL The Mode parameter is not one of S_LOGIN, S_SU, S_DAEMON, S_RLOGIN.

Related Information
The ckuserID (“ckuserID Subroutine” on page 167) subroutine, getpcred (“getpcred Subroutine” on page
405) subroutine, getpenv (“getpenv Subroutine” on page 407) subroutine, setpcred subroutine, setpenv
subroutine.

The login command, rlogin command, su command, telnet command.

166 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The cron daemon.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

ckuserID Subroutine

Purpose
Authenticates the user.

Note: This subroutine is obsolete and is provided for backwards compatibility. Use the authenticate
(“authenticate Subroutine” on page 114) subroutine, instead.

Library
Security Library (libc.a)

Syntax
#include <login.h>
int ckuserID (User, Mode)
int Mode;
char *User;

Description
The ckuserID subroutine authenticates the account specified by the User parameter. The mode of the
authentication is given by the Mode parameter. The login and su commands continue to use the
ckuserID subroutine to process the /etc/security/user auth1 and auth2 authentication methods.

The ckuserID subroutine depends on the authenticate (“authenticate Subroutine” on page 114)
subroutine to process the SYSTEM attribute in the /etc/security/user file. If authentication is successful,
the passwdexpired (“passwdexpired Subroutine” on page 977) subroutine is called.

Errors caused by grammar or load modules during a call to the authenticate subroutine are displayed to
the user if the user was authenticated. These errors are audited with the USER_Login audit event if the
user failed authentication.

Parameters

User Specifies the name of the user to be authenticated.
Mode Specifies the mode of authentication. This parameter is a bit mask and may contain one or more of

the following values, which are defined in the login.h file:

S_PRIMARY
The primary authentication methods defined for the User parameter are checked. All
primary authentication checks must be passed.

S_SECONDARY
The secondary authentication methods defined for the User parameter are checked.
Secondary authentication checks are not required to be successful.

Primary and secondary authentication methods for each user are set in the /etc/security/user file
by defining the auth1 and auth2 attributes. If no primary methods are defined for a user, the
SYSTEM attribute is assumed. If no secondary methods are defined, there is no default.

Base Operating System (BOS) Runtime Services (A-P) 167

Security

Files Accessed:

Mode File
r /etc/passwd
r /etc/security/passwd
r /etc/security/user
r /etc/security/login.cfg

Return Values
If the account is valid for the specified usage, the ckuserID subroutine returns a value of 0. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The ckuserID subroutine fails if one or more of the following are true:

ESAD Security authentication failed for the user.
EINVAL The Mode parameter is neither S_PRIMARY nor S_SECONDARY or the Mode parameter is both

S_PRIMARY and S_SECONDARY.

Related Information
The authenticate (“authenticate Subroutine” on page 114) subroutine, ckuseracct (“ckuseracct
Subroutine” on page 165) subroutine, getpcred (“getpcred Subroutine” on page 405) subroutine,getpenv
(“getpenv Subroutine” on page 407) subroutine, passwdexpired (“passwdexpired Subroutine” on page
977) subroutine, setpcred subroutine, setpenv subroutine.

The login command, su command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

class, _class, finite, isnan, or unordered Subroutines

Purpose
Determines classifications of floating-point numbers.

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>
#include <float.h>

int
class(x)
double x;

#include <math.h>
#include <float.h>

168 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int
_class(x)
double x;

#include <math.h>

int finite(x)
double x;

#include <math.h>

int isnan(x)
double x;

#include <math.h>

int unordered(x, y)
double x, y;

Description
The class subroutine, _class subroutine, finite subroutine, isnan subroutine, and unordered subroutine
determine the classification of their floating-point value. The unordered subroutine determines if a
floating-point comparison involving x and y would generate the IEEE floating-point unordered condition
(such as whether x or y is a NaN).

The class subroutine returns an integer that represents the classification of the floating-point x parameter.
Since class is a reversed key word in C++. The class subroutine can not be invoked in a C++ program.
The _class subroutine is an interface for C++ program using the class subroutine. The interface and the
return value for class and _class subroutines are identical. The values returned by the class subroutine
are defined in the float.h header file. The return values are the following:

FP_PLUS_NORM Positive normalized, nonzero x
FP_MINUS_NORM Negative normalized, nonzero x
FP_PLUS_DENORM Positive denormalized, nonzero x
FP_MINUS_DENORM Negative denormalized, nonzero x
FP_PLUS_ZERO x = +0.0
FP_MINUS_ZERO x = -0.0
FP_PLUS_INF x = +INF
FP_MINUS_INF x = -INF
FP_NANS x = Signaling Not a Number (NaNS)
FP_NANQ x = Quiet Not a Number (NaNQ)

Since class is a reserved keyword in C++, the class subroutine cannot be invoked in a C++ program. The
_class subroutine is an interface for the C++ program using the class subroutine. The interface and the
return values for class and _class subroutines are identical.

The finite subroutine returns a nonzero value if the x parameter is a finite number; that is, if x is not +-,
INF, NaNQ, or NaNS.

The isnan subroutine returns a nonzero value if the x parameter is an NaNS or a NaNQ. Otherwise, it
returns 0.

The unordered subroutine returns a nonzero value if a floating-point comparison between x and y would
be unordered. Otherwise, it returns 0.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the
class.c file, for example, enter:
cc class.c -lm

Base Operating System (BOS) Runtime Services (A-P) 169

Parameters

x Specifies some double-precision floating-point value.
y Specifies some double-precision floating-point value.

Error Codes
The finite, isnan, and unordered subroutines neither return errors nor set bits in the floating-point
exception status, even if a parameter is an NaNS.

Related Information
List of Numerical Manipulation Services and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

clock Subroutine

Purpose
Reports central processing unit (CPU) time used.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

clock_t clock (void);

Description
The clock subroutine reports the amount of CPU time used. The reported time is the sum of the CPU time
of the calling process and its terminated child processes for which it has executed wait, system, or
pclose subroutines. To measure the amount of time used by a program, the clock subroutine should be
called at the beginning of the program, and that return value should be subtracted from the return value of
subsequent calls to the clock subroutine. To find the time in seconds, divide the value returned by the
clock subroutine by the value of the macro CLOCKS_PER_SEC, which is defined in the time.h file.

Return Values
The clock subroutine returns the amount of CPU time used.

Related Information
The getrusage, times (“getrusage, getrusage64, times, or vtimes Subroutine” on page 430) subroutine,
pclose (“pclose Subroutine” on page 1006) subroutine, system subroutine, vtimes (“getrusage,
getrusage64, times, or vtimes Subroutine” on page 430) subroutine, wait, waitpid, wait3 subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

clock_getcpuclockid Subroutine

Purpose
Accesses a process CPU-time clock.

170 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <time.h>
int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);

Description
The clock_getcpuclockid subroutine returns the clock ID of the CPU-time clock of the process specified
by pid. If the process described by pid exists and the calling process has permission, the clock ID of this
clock returns in clock_id.

If pid is zero, the clock_getcpuclockid subroutine returns the clock ID specified in clock_id of the
CPU-time clock of the process making the call.

To obtain the CPU-time clock ID of other processes, the calling process should be root or have the same
effective or real user ID as the process that owns the targetted CPU-time clock.

Parameters

clock_id Specifies the clock ID of the CPU-time clock.
pid Specifies the process ID of the CPU-time clock.

Return Values
Upon successful completion, the clock_getcpuclockid subroutine returns 0; otherwise, an error code is
returned indicating the error.

Error Codes

ENOTSUP The function is not supported with checkpoint-restart processes.
EPERM The requesting process does not have permission to access the CPU-time clock for the

process.
ESRCH No process can be found corresponding to the process specified by pid.

Related Information
“clock_getres, clock_gettime, and clock_settime Subroutine,” timer_create subroutine.

clock_getres, clock_gettime, and clock_settime Subroutine

Purpose
Clock and timer functions.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

int clock_getres (clock_id, res)
clockid_t clock_id;
struct timespec *res;

int clock_gettime (clock_id, tp)
clockid_t clock_id;
struct timespec *tp;

Base Operating System (BOS) Runtime Services (A-P) 171

int clock_settime (clock_id, tp)
clockid_t clock_id;
const struct timespec *tp;

Description
The clock_getres subroutine returns the resolution of any clock. Clock resolutions are
implementation-defined and cannot be set by a process. If the res parameter is not NULL, the resolution of
the specified clock is stored in the location pointed to by the res parameter. If the res parameter is NULL,
the clock resolution is not returned. If the time parameter of the clock_settime subroutine is not a multiple
of the res parameter, the value is truncated to a multiple of the res parameter.

The clock_gettime subroutine returns the current value, tp, for the specified clock, clock_id.

The clock_settime subroutine sets the specified clock, clock_id, to the value specified by the tp
parameter. Time values that are between two consecutive non-negative integer multiples of the resolution
of the specified clock will be truncated down to the smaller multiple of the resolution.

A clock may be system-wide (visible to all processes) or per-process (measuring time that is meaningful
only within a process). All implementations support a clock_id of CLOCK_REALTIME as defined in the
time.h file. This clock represents the Realtime clock for the system. For this clock the values returned by
the clock_gettime subroutine and specified by the clock_settime subroutine represent the amount of
time (in seconds and nanoseconds) since the epoch.

If the value of the CLOCK_REALTIME clock is set through the clock_settime subroutine, the new value
of the clock is used to determine the time of expiration for absolute time services based upon the
CLOCK_REALTIME clock. This applies to the time at which armed absolute timers expire. If the absolute
time requested at the invocation of such a time service is before the new value of the clock, the time
service expires immediately as if the clock had reached the requested time normally.

Setting the value of the CLOCK_REALTIME clock through the clock_settime subroutine has no effect on
threads that are blocked waiting for a relative time service based upon this clock, including the nanosleep
subroutine; nor on the expiration of relative timers based upon this clock. Consequently, these time
services expire when the requested relative interval elapses, independently of the new or old value of the
clock.

A clock_id of CLOCK_MONOTONIC is defined in the time.h file. This clock represents the monotonic
clock for the system. For this clock, the value returned by the clock_gettime subroutine represents the
amount of time (in seconds and nanoseconds) since an unspecified point in the past. This point does not
change after system start time (for example, this clock cannot have backward jumps). The value of the
CLOCK_MONOTONIC clock cannot be set through the clock_settime subroutine. This subroutine fails if
it is invoked with a clock_id parameter of CLOCK_MONOTONIC.

The calling process should have SYS_OPER authority to set the value of the CLOCK_REALTIME clock.

Process CPU-time clocks are supported by the system. For these clocks, the values returned by
clock_gettime and specified by clock_settime represent the amount of execution time of the process
associated with the clock. Clockid_t values for CPU-time clocks are obtained by calling
clock_getcpuclockid. A special clockid_t value, CLOCK_PROCESS_CPUTIME_ID, is defined in the
time.h file. This value represents the CPU-time clock of the calling process when one of the clock_* or
timer_* functions is called.

To get or set the value of a CPU-time clock, the calling process must have root permissions or have the
same effective or real user ID as the process that owns the targeted CPU-time clock. The same rule
applies to a process that tries to get the resolution of a CPU-time clock.

172 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Thread CPU-time clocks are supported by the system. For these clocks, the values returned by
clock_gettime and specified by clock_settime represent the amount of execution time of the thread
associated with the clock. Clockid_t values for thread CPU-time clocks are obtained by calling the
pthread_getcpuclockid subroutine. A special clockid_t value, CLOCK_THREAD_CPUTIME_ID, is
defined in the time.h file. This value represents the thread CPU-time clock of the calling thread when one
of the clock_*() or timer_* functions is called.

To get or set the value of a thread CPU-time clock, the calling thread must be a thread in the same
process as the one that owns the targeted thread CPU-time clock. The same rule applies to a thread that
tries to get the resolution of a thread CPU-time clock.

Parameters

clock_id Specifies the clock.
res Stores the resolution of the specified clock.
tp Stores the current value of the specified clock.

Return Values
If successful, 0 is returned. If unsuccessful, -1 is returned, and errno will be set to indicate the error.

Error Codes
The clock_getres, clock_gettime, and clock_settime subroutines fail if:

EINVAL The clock_id parameter does not specify a known clock.
ENOTSUP The function is not supported with checkpoint-restart processes.

The clock_settime subroutine fails if:

EINVAL The tp parameter to the clock_settime subroutine is outside the range for the given clock ID.
EINVAL The tp parameter specified a nanosecond value less than zero or greater than or equal to 1000

million.
EINVAL The value of the clock_id argument is CLOCK_MONOTONIC.

The clock_settime subroutine might fail if:

EPERM The requesting process does not have the appropriate privilege to set the specified clock.

Related Information
“clock_getcpuclockid Subroutine” on page 170, “ctime, localtime, gmtime, mktime, difftime, asctime, or
tzset Subroutine” on page 201, “pthread_getcpuclockid Subroutine” on page 1262, and “nanosleep
Subroutine” on page 900.

The timer_create and timer_getoverrun subroutines in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

The time command in AIX 5L Version 5.3 Commands Reference, Volume 5.

clock_nanosleep Subroutine

Purpose
Specifies clock for high resolution sleep.

Base Operating System (BOS) Runtime Services (A-P) 173

Syntax
#include <time.h>
int clock_nanosleep(clockid_t clock_id, int flags,

const struct timespec *rqtp, struct timespec *rmtp);

Description
If the TIMER_ABSTIME flag is not set in the flags argument, the clock_nanosleep subroutine causes the
current thread to be suspended from execution until either the time interval specified by the rqtp argument
has elapsed, or a signal is delivered to the calling thread and its action is to invoke a signal-catching
function, or the process is terminated. The clock_id argument specifies the clock used to measure the time
interval.

If the TIMER_ABSTIME flag is set in the flags argument, the clock_nanosleep subroutine causes the
current thread to be suspended from execution until either the time value of the clock specified by clock_id
reaches the absolute time specified by the rqtp argument, or a signal is delivered to the calling thread and
its action is to invoke a signal-catching function, or the process is terminated. If, at the time of the call, the
time value specified by rqtp is less than or equal to the time value of the specified clock, then the
clock_nanosleep subroutine returns immediately and the calling process shall not be suspended.

The suspension time caused by this function might be longer than requested either because the argument
value is rounded up to an integer multiple of the sleep resolution, or because of the scheduling of other
activity by the system. Except for the case of being interrupted by a signal, the suspension time for the
relative clock_nanosleep subroutine (that is, with the TIMER_ABSTIME flag not set) shall not be less
than the time interval specified by the rqtp argument, as measured by the corresponding clock. The
suspension for the absolute clock_nanosleep subroutine (that is, with the TIMER_ABSTIME flag set) is in
effect at least until the value of the corresponding clock reaches the absolute time specified by the rqtp
argument, except for the case of being interrupted by a signal.

The clock_nanosleep subroutine has no effect on the action or blocking of any signal.

The subroutine fails if the clock_id argument refers to a process or a thread CPU-time clock.

Parameters

clock_id Specifies the clock used to measure the time.
flags Identifies the type of timeout. If TIMER_ABSTIME is set, the time value pointed to by rqtp is an

absolute time value; otherwise, it is a time interval.
rmtp Points to the timespec structure used to return the remaining amount of time in an interval (the

requested time minus the time actually slept) if the sleep is interrupted.
rqtp Points to the timespec structure that contains requested sleep time.

Return Values
The clock_nanosleep subroutine returns 0 when the requested time has elapsed.

The clock_nanosleep subroutine returns the corresponding error value when it has been interrupted by a
signal. For the relative clock_nanosleepsubroutine, when the rmtp argument is not NULL, the referenced
timespec structure is updated to contain the amount of time remaining in the interval (the requested time
minus the time actually slept). If the rmtp argument is NULL, the remaining time is not returned. The
absolute clock_nanosleep subroutine has no effect on the structure referenced by the rmtp argument.

Error Codes

EINTR The clock_nanosleep subroutine was interrupted by a signal.

174 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EINVAL The rqtp parameter specified a nanosecond value less than 0 or greater than or equal to 1000
million; or the TIMER_ABSTIME flag was specified in the flags parameter and the rqtp parameter
is outside the range for the clock specified by clock_id; or the clock_id parameter does not specify
a known clock, or specifies the CPU-time clock of the calling thread.

ENOTSUP The clock_id argument specifies a clock for which the clock_nanosleep subroutine is not
supported, such as a CPU-time clock.

ENOTSUP The subroutine is not supported with checkpoint-restarted processes.

Files
timer.h

Related Information
“clock_getres, clock_gettime, and clock_settime Subroutine” on page 171, “nanosleep Subroutine” on page
900, “pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1246, sleep subroutine.

The timer.h file.

The Base Definitions volume of IEEE Std 1003.1-2001.

clog, clogf, or clogl Subroutine

Purpose
Computes the complex natural logarithm.

Syntax
#include <complex.h>

double complex clog (z)
double complex z;

float complex clogf (z)
float complex z;

long double complex clogl (z)
long double complex z;

Description
The clog, clogf, and clogl subroutines compute the complex natural (base e) logarithm of z, with a
branch cut along the negative real axis.

Parameters

z Specifies the value to be computed.

Return Values
The clog, clogf, and clogl subroutines return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-i pi, +i pi] along the imaginary axis.

Related Information
“cexp, cexpf, or cexpl Subroutine” on page 142

Base Operating System (BOS) Runtime Services (A-P) 175

close Subroutine

Purpose
Closes a file descriptor.

Syntax
#include <unistd.h>

int close (
FileDescriptor)
int FileDescriptor;

Description
The close subroutine closes the file or shared memory object associated with the FileDescriptor
parameter. If Network File System (NFS) is installed on your system, this file can reside on another node.

All file regions associated with the file specified by the FileDescriptor parameter that this process has
previously locked with the lockf or fcntl subroutine are unlocked. This occurs even if the process still has
the file open by another file descriptor.

If the FileDescriptor parameter resulted from an open (“open, openx, open64, creat, or creat64
Subroutine” on page 939) subroutine that specified O_DEFER, and this was the last file descriptor, all
changes made to the file since the last fsync subroutine are discarded.

If the FileDescriptor parameter is associated with a mapped file, it is unmapped. The shmat subroutine
provides more information about mapped files.

The close subroutine attempts to cancel outstanding asynchronous I/O requests on this file descriptor. If
the asynchronous I/O requests cannot be canceled, the application is blocked until the requests have
completed.

If the FileDescriptor parameter is associated with a shared memory object and the shared memory object
remains referenced at the last close (that is, a process has it mapped), the entire contents of the memory
object persists until the memory object becomes unreferenced. If this is the last close of a shared memory
object and the close results in the memory object becoming unreferenced, and the memory object has
been unlinked, the memory object is removed. The shm_open subroutine provides more information about
shared memory objects.

The close subroutine is blocked until all subroutines which use the file descriptor return to usr space. For
example, when a thread is calling close and another thread is calling select with the same file descriptor,
the close subroutine does not return until the select call returns.

When all file descriptors associated with a pipe or FIFO special file have been closed, any data remaining
in the pipe or FIFO is discarded. If the link count of the file is 0 when all file descriptors associated with
the file have been closed, the space occupied by the file is freed, and the file is no longer accessible.

Note: If the FileDescriptor parameter refers to a device and the close subroutine actually results in a
device close, and the device close routine returns an error, the error is returned to the application.
However, the FileDescriptor parameter is considered closed and it may not be used in any
subsequent calls.

All open file descriptors are closed when a process exits. In addition, file descriptors may be closed
during the exec subroutine if the close-on-exec flag has been set for that file descriptor.

176 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

FileDescriptor Specifies a valid open file descriptor.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to identify the error. If the close subroutine is interrupted by a signal that is caught, it
returns a value of -1, the errno global variable is set to EINTR and the state of the FileDescriptor
parameter is closed.

Error Codes
The close subroutine is unsuccessful if the following is true:

EBADF The FileDescriptor parameter does not specify a valid open file descriptor.
EINTR Specifies that the close subroutine was interrupted by a signal.

The close subroutine may also be unsuccessful if the file being closed is NFS-mounted and the server is
down under the following conditions:

v The file is on a hard mount.

v The file is locked in any manner.

The close subroutine may also be unsuccessful if NFS is installed and the following is true:

ETIMEDOUT The connection timed out.

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutines, fcntl (“fcntl, dup, or dup2 Subroutine” on page 257) subroutine, ioctl (“ioctl, ioctlx, ioctl32, or
ioctl32x Subroutine” on page 563) subroutine, lockfx (“lockfx, lockf, flock, or lockf64 Subroutine” on page
742) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page
939) subroutine, pipe (“pipe Subroutine” on page 1035) subroutine, socket subroutine.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

compare_and_swap Subroutine

Purpose
Conditionally updates or returns a single word variable atomically.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

boolean_t compare_and_swap (word_addr, old_val_addr, new_val)
atomic_p word_addr;
int *old_val_addr;
int new_val;

Base Operating System (BOS) Runtime Services (A-P) 177

Description
The compare_and_swap subroutine performs an atomic operation which compares the contents of a
single word variable with a stored old value. If the values are equal, a new value is stored in the single
word variable and TRUE is returned; otherwise, the old value is set to the current value of the single word
variable and FALSE is returned.

The compare_and_swap subroutine is useful when a word value must be updated only if it has not been
changed since it was last read.

Note: The word containing the single word variable must be aligned on a full word boundary.

Note: If compare_and_swap is used as a locking primitive, insert an isync at the start of any critical
sections.

Parameters

word_addr Specifies the address of the single word variable.
old_val_addr Specifies the address of the old value to be checked against (and conditionally updated

with) the value of the single word variable.
new_val Specifies the new value to be conditionally assigned to the single word variable.

Return Values

TRUE Indicates that the single word variable was equal to the old value, and has been set to the new
value.

FALSE Indicates that the single word variable was not equal to the old value, and that its current value has
been returned in the location where the old value was previously stored.

Related Information
The fetch_and_add (“fetch_and_add Subroutine” on page 273) subroutine, fetch_and_and
(“fetch_and_and or fetch_and_or Subroutine” on page 274) subroutine, fetch_and_or (“fetch_and_and or
fetch_and_or Subroutine” on page 274) subroutine.

compile, step, or advance Subroutine

Purpose
Compiles and matches regular-expression patterns.

Note: Commands use the regcomp, regexec, regfree, and regerror subroutines for the functions
described in this article.

Library
Standard C Library (libc.a)

Syntax
#define INIT declarations
#define GETC() getc_code
#define PEEKC() peekc_code
#define UNGETC(c) ungetc_code
#define RETURN(pointer) return_code
#define ERROR(val) error_code

178 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

#include <regexp.h>
#include <NLregexp.h>

char *compile (InString, ExpBuffer, EndBuffer, EndOfFile)
char * ExpBuffer;
char * InString, * EndBuffer;
int EndOfFile;

int step (String, ExpBuffer)
const char * String, *ExpBuffer;

int advance (String, ExpBuffer)
const char *String, *ExpBuffer;

Description
The /usr/include/regexp.h file contains subroutines that perform regular-expression pattern matching.
Programs that perform regular-expression pattern matching use this source file. Thus, only the regexp.h
file needs to be changed to maintain regular expression compatibility between programs.

The interface to this file is complex. Programs that include this file define the following six macros before
the #include <regexp.h> statement. These macros are used by the compile subroutine:

INIT This macro is used for dependent declarations and initializations. It is
placed right after the declaration and opening { (left brace) of the compile
subroutine. The definition of the INIT buffer must end with a ; (semicolon).
INIT is frequently used to set a register variable to point to the beginning of
the regular expression so that this register variable can be used in the
declarations for the GETC, PEEKC, and UNGETC macros. Otherwise, you
can use INIT to declare external variables that GETC, PEEKC, and
UNGETC require.

GETC() This macro returns the value of the next character in the regular
expression pattern. Successive calls to the GETC macro should return
successive characters of the pattern.

PEEKC() This macro returns the next character in the regular expression.
Successive calls to the PEEKC macro should return the same character,
which should also be the next character returned by the GETC macro.

UNGETC(c) This macro causes the parameter c to be returned by the next call to the
GETC and PEEKC macros. No more than one character of pushback is
ever needed, and this character is guaranteed to be the last character read
by the GETC macro. The return value of the UNGETC macro is always
ignored.

RETURN(pointer) This macro is used for normal exit of the compile subroutine. The pointer
parameter points to the first character immediately following the compiled
regular expression. This is useful for programs that have memory
allocation to manage.

Base Operating System (BOS) Runtime Services (A-P) 179

ERROR(val) This macro is used for abnormal exit from the compile subroutine. It
should never contain a return statement. The val parameter is an error
number. The error values and their meanings are:

Error Meaning

11 Interval end point too large

16 Bad number

25 \ digit out of range

36 Illegal or missing delimiter

41 No remembered search String

42 \ (?\) imbalance

43 Too many \.(

44 More than two numbers given in \{ \}

45 } expected after \.

46 First number exceeds second in \{ \}

49 [] imbalance

50 Regular expression overflow

70 Invalid endpoint in range

The compile subroutine compiles the regular expression for later use. The InString parameter is never
used explicitly by the compile subroutine, but you can use it in your macros. For example, you can use
the compile subroutine to pass the string containing the pattern as the InString parameter to compile and
use the INIT macro to set a pointer to the beginning of this string. The example in the “Examples” on page
181 section uses this technique. If your macros do not use InString, then call compile with a value of
((char *) 0) for this parameter.

The ExpBuffer parameter points to a character array where the compiled regular expression is to be
placed. The EndBuffer parameter points to the location that immediately follows the character array where
the compiled regular expression is to be placed. If the compiled expression cannot fit in
(EndBuffer-ExpBuffer) bytes, the call ERROR(50) is made.

The EndOfFile parameter is the character that marks the end of the regular expression. For example, in
the ed command, this character is usually / (slash).

The regexp.h file defines other subroutines that perform actual regular-expression pattern matching. One
of these is the step subroutine.

The String parameter of the step subroutine is a pointer to a null-terminated string of characters to be
checked for a match.

The Expbuffer parameter points to the compiled regular expression, obtained by a call to the compile
subroutine.

The step subroutine returns the value 1 if the given string matches the pattern, and 0 if it does not match.
If it matches, then step also sets two global character pointers: loc1, which points to the first character
that matches the pattern, and loc2, which points to the character immediately following the last character
that matches the pattern. Thus, if the regular expression matches the entire string, loc1 points to the first
character of the String parameter and loc2 points to the null character at the end of the String parameter.

180 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The step subroutine uses the global variable circf, which is set by the compile subroutine if the regular
expression begins with a ^ (circumflex). If this variable is set, step only tries to match the regular
expression to the beginning of the string. If you compile more than one regular expression before
executing the first one, save the value of circf for each compiled expression and set circf to that saved
value before each call to step.

Using the same parameters that were passed to it, the step subroutine calls a subroutine named
advance. The step function increments through the String parameter and calls the advance subroutine
until it returns a 1, indicating a match, or until the end of String is reached. To constrain the String
parameter to the beginning of the string in all cases, call the advance subroutine directly instead of calling
the step subroutine.

When the advance subroutine encounters an * (asterisk) or a \{ \} sequence in the regular expression, it
advances its pointer to the string to be matched as far as possible and recursively calls itself, trying to
match the rest of the string to the rest of the regular expression. As long as there is no match, the
advance subroutine backs up along the string until it finds a match or reaches the point in the string that
initially matched the * or \{ \}. You can stop this backing-up before the initial point in the string is reached.
If the locs global character is equal to the point in the string sometime during the backing-up process, the
advance subroutine breaks out of the loop that backs up and returns 0. This is used for global
substitutions on the whole line so that expressions such as s/y*//g do not loop forever.

Note: In 64-bit mode, these interfaces are not supported: they fail with a return code of 0. In order to use
the 64-bit version of this functionality, applications should migrate to the fnmatch, glob, regcomp,
and regexec functions which provide full internationalized regular expression functionality
compatible with ISO 9945-1:1996 (IEEE POSIX 1003.1) and with the UNIX98 specification.

Parameters

InString Specifies the string containing the pattern to be compiled. The InString parameter is not used
explicitly by the compile subroutine, but it may be used in macros.

ExpBuffer Points to a character array where the compiled regular expression is to be placed.
EndBuffer Points to the location that immediately follows the character array where the compiled regular

expression is to be placed.
EndOfFile Specifies the character that marks the end of the regular expression.
String Points to a null-terminated string of characters to be checked for a match.

Examples
The following is an example of the regular expression macros and calls:
#define INIT register char *sp=instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c) (--sp)
#define RETURN(c) return;
#define ERROR(c) regerr()

#include <regexp.h>
. . .
compile (patstr,expbuf, &expbuf[ESIZE], '\0');
. . .
if (step (linebuf, expbuf))

succeed();
. . .

Related Information
The regcmp or regex subroutine, regcomp subroutine, regerror subroutine, regexec subroutine, regfree
subroutine.

Base Operating System (BOS) Runtime Services (A-P) 181

List of String Manipulation Services and Subroutines, Example Programs, and Libraries in AIX 5L Version
5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

confstr Subroutine

Purpose
Gets configurable variables.

Library
Standard C library (libc.a)

Syntax
#include <unistd.h>

size_t confstr (int name, char * buf, size_t len);

Description
The confstr subroutine determines the current setting of certain system parameters, limits, or options that
are defined by a string value. It is mainly used by applications to find the system default value for the
PATH environment variable. Its use and purpose are similar to those of the sysconf subroutine, but it
returns string values rather than numeric values.

If the Len parameter is not 0 and the Name parameter has a system-defined value, the confstr subroutine
copies that value into a Len-byte buffer pointed to by the Buf parameter. If the string returns a value longer
than the value specified by the Len parameter, including the terminating null byte, then the confstr
subroutine truncates the string to Len-1 bytes and adds a terminating null byte to the result. The
application can detect that the string was truncated by comparing the value returned by the confstr
subroutine with the value specified by the Len parameter.

Parameters

Name Specifies the system variable setting to be returned. Valid values for the Name parameter are defined
in the unistd.h file.

Buf Points to the buffer into which the confstr subroutine copies the value of the Name parameter.
Len Specifies the size of the buffer storing the value of the Name parameter.

Return Values
If the value specified by the Name parameter is system-defined, the confstr subroutine returns the size of
the buffer needed to hold the entire value. If this return value is greater than the value specified by the Len
parameter, the string returned as the Buf parameter is truncated.

If the value of the Len parameter is set to 0 and the Buf parameter is a null value, the confstr subroutine
returns the size of the buffer needed to hold the entire system-defined value, but does not copy the string
value. If the value of the Len parameter is set to 0 but the Buf parameter is not a null value, the result is
unspecified.

182 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The confstr subroutine will fail if:

EINVAL The value of the name argument is invalid.

Example
To find out what size buffer is needed to store the string value of the Name parameter, enter:
confstr(_CS_PATH, NULL, (size_t) 0)

The confstr subroutine returns the size of the buffer.

Files

/usr/include/limits.h Contains system-defined limits.
/usr/include/unistd.h Contains system-defined environment variables.

Related Information
The pathconf (“pathconf or fpathconf Subroutine” on page 983) subroutine, sysconf subroutine.

The unistd.h header file.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

conj, conjf, or conjl Subroutine

Purpose
Computes the complex conjugate.

Syntax
#include <complex.h>

double complex conj (z)
double complex z;

float complex conjf (z)
float complex z;

long double complex conjl (z)
long double complex z;

Description
The conj, conjf, or conjl subroutines compute the complex conjugate of z, by reversing the sign of its
imaginary part.

Parameters

z Specifies the value to be computed.

Return Values
The conj, conjf, or conjl subroutines return the complex conjugate value.

Base Operating System (BOS) Runtime Services (A-P) 183

Related Information
The “carg, cargf, or cargl Subroutine” on page 132, “cimag, cimagf, or cimagl Subroutine” on page 164,
“cproj, cprojf, or cprojl Subroutine” on page 191, “creal, crealf, or creall Subroutine” on page 192.

conv Subroutines

Purpose
Translates characters.

Library
Standard C Library (libc.a)

Syntax
#include <ctype.h>

int toupper (Character)
int Character;

int tolower (Character)
int Character;

int _toupper (Character)
int Character;

int _tolower (Character)
int Character;

int toascii (Character)
int Character;

int NCesc (Pointer, CharacterPointer)
NLchar *Pointer;
char *CharacterPointer;

int NCtoupper (Xcharacter)
int Xcharacter;

int NCtolower (Xcharacter)
int Xcharacter;

int _NCtoupper (Xcharacter)
int Xcharacter;

int _NCtolower (Xcharacter)
int Xcharacter;

int NCtoNLchar (Xcharacter)
int Xcharacter;

int NCunesc (CharacterPointer, Pointer)
char *CharacterPointer;
NLchar *Pointer;

184 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int NCflatchr (Xcharacter)
int Xcharacter;

Description
The toupper and the tolower subroutines have as domain an int, which is representable as an unsigned
char or the value of EOF: -1 through 255.

If the parameter of the toupper subroutine represents a lowercase letter and there is a corresponding
uppercase letter (as defined by LC_CTYPE), the result is the corresponding uppercase letter. If the
parameter of the tolower subroutine represents an uppercase letter, and there is a corresponding
lowercase letter (as defined by LC_CTYPE), the result is the corresponding lowercase letter. All other
values in the domain are returned unchanged. If case-conversion information is not defined in the current
locale, these subroutines determine character case according to the ″C″ locale.

The _toupper and _tolower subroutines accomplish the same thing as the toupper and tolower
subroutines, but they have restricted domains. The _toupper routine requires a lowercase letter as its
parameter; its result is the corresponding uppercase letter. The _tolower routine requires an uppercase
letter as its parameter; its result is the corresponding lowercase letter. Values outside the domain cause
undefined results.

The NCxxxxxx subroutines translate all characters, including extended characters, as code points. The
other subroutines translate traditional ASCII characters only. The NCxxxxxx subroutines are obsolete and
should not be used if portability and future compatibility are a concern.

The value of the Xcharacter parameter is in the domain of any legal NLchar data type. It can also have a
special value of -1, which represents the end of file (EOF).

If the parameter of the NCtoupper subroutine represents a lowercase letter according to the current
collating sequence configuration, the result is the corresponding uppercase letter. If the parameter of the
NCtolower subroutine represents an uppercase letter according to the current collating sequence
configuration, the result is the corresponding lowercase letter. All other values in the domain are returned
unchanged.

The _NCtoupper and _NCtolower routines are macros that perform the same function as the NCtoupper
and NCtolower subroutines, but have restricted domains and are faster. The _NCtoupper macro requires
a lowercase letter as its parameter; its result is the corresponding uppercase letter. The _NCtolower
macro requires an uppercase letter as its parameter; its result is the corresponding lowercase letter.
Values outside the domain cause undefined results.

The NCtoNLchar subroutine yields the value of its parameter with all bits turned off that are not part of an
NLchar data type.

The NCesc subroutine converts the NLchar value of the Pointer parameter into one or more ASCII bytes
stored in the character array pointed to by the CharacterPointer parameter. If the NLchar data type
represents an extended character, it is converted into a printable ASCII escape sequence that uniquely
identifies the extended character. NCesc returns the number of bytes it wrote. The display symbol table
lists the escape sequence for each character.

The opposite conversion is performed by the NCunesc macro, which translates an ordinary ASCII byte or
escape sequence starting at CharacterPointer into a single NLchar at Pointer. NCunesc returns the
number of bytes it read.

Base Operating System (BOS) Runtime Services (A-P) 185

The NCflatchr subroutine converts its parameter value into the single ASCII byte that most closely
resembles the parameter character in appearance. If no ASCII equivalent exists, it converts the parameter
value to a ? (question mark).

Note: The setlocale subroutine may affect the conversion of the decimal point symbol and the thousands
separator.

Parameters

Character Specifies the character to be converted.
Xcharacter Specifies an NLchar value to be converted.
CharacterPointer Specifies a pointer to a single-byte character array.
Pointer Specifies a pointer to an escape sequence.

Related Information
The Japanese conv (“Japanese conv Subroutines” on page 578) subroutines, ctype (“ctype, isalpha,
isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or isascii Subroutines” on
page 209) subroutines, getc, fgetc, getchar, or getw (“getc, getchar, fgetc, or getw Subroutine” on page
350) subroutine, getwc, fgetwc, or getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 479)
subroutine, setlocale subroutine.

List of Character Manipulation Services and Subroutines, Example Programs, and Libraries in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

copysign, copysignf, copysignl , copysignd32, copysignd64, and
copysignd128 Subroutines

Purpose
Perform number manipulation.

Syntax
#include <math.h>

double copysign (x, y)
double x, double y;

float copysignf (x, y)
float x, float y;

long double copysignl (x, y)
long double x, long double y;

_Decimal32 copysignd32(x, y)
_Decimal32 x;
_Decimal32 y;

_Decimal64 copysignd64(x, y)
_Decimal64 x;
_Decimal64 y;

_Decimal128 copysignd128(x, y)
_Decimal128 x;
_Decimal128 y;

186 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The copysign, copysignf, copysignl, copysignd32, copysignd64, and copysignd128 subroutines
produce a value with the magnitude of x and the sign of y.

Parameters

x Specifies the magnitude.
y Specifies the sign.

Return Values
Upon successful completion, the copysign, copysignf, copysignl, copysignd32, copysignd64, and
copysignd128 subroutines return a value with a magnitude of x and a sign of y.

Related Information
signbit in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

coredump Subroutine

Purpose
Creates a core file without terminating the calling process.

Library
Standard C library (libc.a)

Syntax
#include <core.h>

int coredump(coredumpinfop)
struct coredumpinfo *coredumpinfop ;

Description
The coredump subroutine creates a core file of the calling process without terminating the calling
process. The created core file contains the memory image of the process, and this can be used with the
dbx command for debugging purposes. In multithreaded processes, only one thread at a time should
attempt to call this subroutine. Subsequent calls to coredump while a core dump (initiated by another
thread) is in progress will fail.

Applications expected to use this facility need to be built with the -bM:UR binder flag, otherwise the
routine will fail with an error code of ENOTSUP.

The coredumpinfo structure has the following fields:

Member Type Member Name Description
unsigned int length Length of the core file name
char * name Points to a character string that

contains the name of the core file
int reserved[8] Reserved fields for future use

Base Operating System (BOS) Runtime Services (A-P) 187

Parameters

coredumpinfop Points to the coredumpinfo structure

If a NULL pointer is passed as an argument, the default file named core in the current directory is used.

Return Values
Upon successful completion, the coredump subroutine returns a value of 0. If the coredump subroutine is
not successful, a value of -1 is returned and the errno global variable is set to indicate the error

Error Codes

EINVAL Invalid argument.
EACCES Search permission is denied on a component of the path prefix, the file exists and

the pwrite permission is denied, or the file does not exist and write permission is
denied for the parent directory of the file to be created.

EINPROGRESS A core dump is already in progress.
ENOMEM Not enough memory.
ENOTSUP Routine not supported.
EFAULT Invalid user address.

Related Information
The adb command, dbx command.

The core file format.

cosf, cosl, cos, cosd32, cosd64, and cosd128 Subroutines

Purpose
Computes the cosine.

Syntax
#include <math.h>

float cosf (x)
float x;

long double cosl (x)
long double x;

double cos (x)
double x;
_Decimal32 cosd32 (x)
_Decimal32 x;

_Decimal64 cosd64 (x)
_Decimal64 x;

_Decimal128 cosd128 (x)
_Decimal128 x;

Description
The cosf, cosl, cos, cosd32, cosd64, and cosd218 subroutines compute the cosine of the x, parameter
(measured in radians).

188 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the cosf, cosl, cos, cosd32, cosd64, and cosd128 subroutines return the
cosine of x.

If x is NaN, a NaN is returned.

If x is ±0, the value 1.0 is returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite,
isnan, or unordered Subroutines” on page 168.

sin, sinl, cos, cosl, tan, or tanl Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating
System and Extensions Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

cosh, coshf, coshl, coshd32, coshd64, and coshd128 Subroutines

Purpose
Computes the hyperbolic cosine.

Syntax
#include <math.h>

float coshf (x)
float x;

long double coshl (x)
long double x;

double cosh (x)
double x;
_Decimal32 coshd32 (x)
_Decimal32 x;

_Decimal64 coshd64 (x)
_Decimal64 x;

_Decimal128 coshd128 (x)
_Decimal128 x;

Base Operating System (BOS) Runtime Services (A-P) 189

Description
The coshf, coshl, cosh, coshd32, coshd64, and coshd128 subroutines compute the hyperbolic cosine
of the x parameter.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the coshf, coshl, cosh, coshd32, coshd64, and coshd128 subroutines
return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error occurs and the coshf, coshl, cosh, coshd32,
coshd64, and coshd128 subroutines return the value of the macro HUGE_VALF, HUGE_VALL,
HUGE_VAL, HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If x is NaN, a NaN is returned.

If x is ±0, the value 1.0 is returned.

If x is ±Inf, +Inf is returned.

Related Information
“acosh, acoshf, acoshl, acoshd32, acoshd64, and acoshd128 Subroutines” on page 30, “feclearexcept
Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite, isnan, or
unordered Subroutines” on page 168

sinh, sinhf, or sinhl Subroutine and tanh, tanhf, or tanhl Subroutine in AIX 5L Version 5.3 Technical
Reference: Base Operating System and Extensions Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

cpow, cpowf, or cpowl Subroutine

Purpose
Computes the complex power.

Syntax
#include <complex.h>

double complex cpow (x, y)
double complex x;
double complex y;

float complex cpowf (x, y)
float complex x;
float complex y;

190 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

long double complex cpowl (x, y)
long double complex x;
long double complex y;

Description
The cpow, cpowf, and cpowl subroutines compute the complex power function xy , with a branch cut for
the first parameter along the negative real axis.

Parameters

x Specifies the base value.
y Specifies the power the base value is raised to.

Return Values
The cpow, cpowf, and cpowl subroutines return the complex power function value.

Related Information
“cabs, cabsf, or cabsl Subroutine” on page 130 and “csqrt, csqrtf, or csqrtl Subroutine” on page 196

math.h in AIX 5L Version 5.3 Files Reference.

cproj, cprojf, or cprojl Subroutine

Purpose
Computes the complex projection functions.

Syntax
#include <complex.h>

double complex cproj (z)
double complex z;

float complex cprojf (z)
float complex z;

long double complex cprojl (z)
long double complex z;

Description
The cproj, cprojf, and cprojl subroutines compute a projection of z onto the Riemann sphere: z projects
to z, except that all complex infinities (even those with one infinite part and one NaN part) project to
positive infinity on the real axis. If z has an infinite part, cproj(z) shall be equivalent to:
INFINITY + I * copysign(0.0, cimag(z))

Parameters

z Specifies the value to be projected.

Return Values
The cproj, cprojf, and cprojl subroutines return the value of the projection onto the Riemann sphere.

Base Operating System (BOS) Runtime Services (A-P) 191

Related Information
“carg, cargf, or cargl Subroutine” on page 132,“cimag, cimagf, or cimagl Subroutine” on page 164, “conj,
conjf, or conjl Subroutine” on page 183, and “creal, crealf, or creall Subroutine.”

math.h in AIX 5L Version 5.3 Files Reference.

creal, crealf, or creall Subroutine

Purpose
Computes the real part of a specified value.

Syntax
#include <complex.h>

double creal (z)
double complex z;

float crealf (z)
float complex z;

long double creall (z)
long double complex z;

Description
The creal, crealf, and creall subroutines compute the real part of the value specified by the z parameter.

Parameters

z Specifies the real to be computed.

Return Values
These subroutines return the real part value.

Related Information
“carg, cargf, or cargl Subroutine” on page 132, “cimag, cimagf, or cimagl Subroutine” on page 164, “conj,
conjf, or conjl Subroutine” on page 183, and “cproj, cprojf, or cprojl Subroutine” on page 191

crypt, encrypt, or setkey Subroutine

Purpose
Encrypts or decrypts data.

Library
Standard C Library (libc.a)

Syntax
char *crypt (PW, Salt)
const char * PW, * Salt;

192 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

void encrypt (Block, EdFlag)
char Block[64];
int EdFlag;

void setkey (Key)
const char * Key;

Description
The crypt and encrypt subroutines encrypt or decrypt data. The crypt subroutine performs a one-way
encryption of a fixed data array with the supplied PW parameter. The subroutine uses the Salt parameter
to vary the encryption algorithm.

The encrypt subroutine encrypts or decrypts the data supplied in the Block parameter using the key
supplied by an earlier call to the setkey subroutine. The data in the Block parameter on input must be an
array of 64 characters. Each character must be an char 0 or char 1.

If you need to statically bind functions from libc.a for crypt do the following:

1. Create a file and add the following:
#!
___setkey
___encrypt
___crypt

2. Perform the linking.

3. Add the following to the make file:
-bI:YourFileName

where YourFileName is the name of the file you created in step 1. It should look like the following:
LDFLAGS=bnoautoimp -bI:/lib/syscalls.exp -bI:YourFileName -lc

These subroutines are provided for compatibility with UNIX system implementations.

Parameters

Block Identifies a 64-character array containing the values (char) 0 and (char) 1. Upon return, this buffer
contains the encrypted or decrypted data.

EdFlag Determines whether the subroutine encrypts or decrypts the data. If this parameter is 0, the data
is encrypted. If this is a nonzero value, the data is decrypted. If the /usr/lib/libdes.a file does not
exist and the EdFlag parameter is set to nonzero, the encrypt subroutine returns the ENOSYS
error code.

Key Specifies an 64-element array of 0’s and 1’s cast as a const char data type. The Key parameter
is used to encrypt or decrypt data.

PW Specifies up to an 8-character string to be encrypted.
Salt Specifies a 2-character string chosen from the following:

A-Z Uppercase alpha characters

a-z Lowercase alpha characters

0-9 Numeric characters

. Period

/ Slash
The Salt parameter is used to vary the hashing algorithm in one of 4096 different ways.

Base Operating System (BOS) Runtime Services (A-P) 193

Return Values
The crypt subroutine returns a pointer to the encrypted password. The static area this pointer indicates
may be overwritten by subsequent calls.

Error Codes
The encrypt subroutine returns the following:

ENOSYS The encrypt subroutine was called with the EdFlag parameter which was set to a nonzero value.
Also, the /usr/lib/libdes.a file does not exist.

Related Information
The newpass (“newpass Subroutine” on page 905) subroutine.

The login command, passwd command, su command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

csid Subroutine

Purpose
Returns the character set ID (charsetID) of a multibyte character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int csid (String)
const char *String;

Description
The csid subroutine returns the charsetID of the multibyte character pointed to by the String parameter.
No validation of the character is performed. The parameter must point to a value in the character range of
the current code set defined in the current locale.

Parameters

String Specifies the character to be tested.

Return Values
Successful completion returns an integer value representing the charsetID of the character. This integer
can be a number from 0 through n, where n is the maximum character set defined in the CHARSETID field of
the charmap. See ″Understanding the Character Set Description (charmap) Source File″ in Operating
system and device management for more information.

Related Information
The mbstowcs (“mbstowcs Subroutine” on page 808) subroutine, wcsid subroutine.

194 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

National Language Support Overview and Understanding the Character Set Description (charmap) Source
File in AIX 5L Version 5.3 National Language Support Guide and Reference.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

csin, csinf, or csinl Subroutine

Purpose
Computes the complex sine.

Syntax
#include <complex.h>

double complex csin (z)
double complex z;

float complex csinf (z)
float complex z;

long double complex csinl (z)
long double complex z;

Description
The csin, csinf, and csinl subroutines compute the complex sine of the value specified by the z
parameter.

Parameters

z Specifies the value to be computed.

Return Values
The csin, csinf, and csinl subroutines return the complex sine value.

Related Information
“casin, casinf, or casinl Subroutine” on page 132

csinh, csinhf, or csinhl Subroutine

Purpose
Computes the complex hyperbolic sine.

Syntax
#include <complex.h>

double complex csinh (z)
double complex z;

float complex csinhf (z)
float complex z;

long double complex csinhl (z)
long double complex z;

Base Operating System (BOS) Runtime Services (A-P) 195

Description
The csinh, csinhf, and csinhl subroutines compute the complex hyperbolic sine of the value specified by
the z parameter.

Parameters

z Specifies the value to be computed.

Return Values
The csinh, csinhf, and csinhl subroutines return the complex hyperbolic sine value.

Related Information
“casinh, casinfh, or casinlh Subroutine” on page 133

csqrt, csqrtf, or csqrtl Subroutine

Purpose
Computes complex square roots.

Syntax
#include <complex.h>
double complex csqrt (z)
double complex z;

float complex csqrtf (z)
float complex z;

long double complex csqrtl (z)
long double complex z;

Description
The csqrt, csqrtf, and csqrtl subroutines compute the complex square root of the value specified by the z
parameter, with a branch cut along the negative real axis.

Parameters

z Specifies the value to be computed.

Return Values
The csqrt, csqrtf, and csqrtl subroutines return the complex square root value, in the range of the right
half-plane (including the imaginary axis).

Related Information
“cabs, cabsf, or cabsl Subroutine” on page 130, “cpow, cpowf, or cpowl Subroutine” on page 190

CT_HOOKx and CT_GEN macros

Purpose
Record a trace event into Component Trace, LMT or system trace buffers.

196 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
The following set of macros is provided to record a trace entry:

#include <sys/ras_trace.h>
CT_HOOK0(ras_block_t cb, int level, int mem_dest,long hkwd);
CT_HOOK1(ras_block_t cb, int level, int mem_dest, long hkwd, long d1);
CT_HOOK2(ras_block_t cb, int level, int mem_dest, long hkwd, long d1, long d2);
CT_HOOK3(ras_block_t cb, int level, int mem_dest, long hkwd, long d1, long d2, long d3);
CT_HOOK4(ras_block_t cb, int level, \
int mem_dest, long hkwd, long d1, long d2, \
long d3, long d4);
CT_HOOK5(ras_block_t cb, int level, int mem_dest, \
long hkwd, long d1, long d2, long d3, \
long d4, long d5);
CT_GEN (ras_block_t cb, int level, long hkwd, long data, long len, void *buf);

Description
The CT_HOOKx macros allow you to record a trace hook. The "x" is the number of data words you want
in this trace event.

The CT_GEN macro is used to record a generic trace hook.

All traces are timestamped.

Restriction: If the cb input parameter has a value of RAS_BLOCK_NULL, no tracing will be performed.

Parameters

ras_block_t cb The cb parameter is the RAS control block that refers to the component that this trace entry
belongs to.

int level The level parameter allows filtering of different trace entries. The higher this level is, the more this
trace will be considered as debug or detail information. In other words, this trace entry will appear
only if the level of the trace entry is less than or equal to the level of trace chosen for memory or
system trace mode.

Ten levels of trace are available (CT_LEVEL_0 to CT_LEVEL_9, corresponding to value 0 to 9)
with four special levels:

v minimal (CT_LVL_MINIMAL (=CT_LEVEL_1))

v normal (CT_LVL_NORMAL (=CT_LEVEL_3))

v detail (CT_LVL_DETAIL (=CT_LEVEL_7))

v default (CT_LVL_DEFAULT (= CT_LVL_MINIMAL (in 5.3 ML 5)))

When you are porting an existing driver or subsystem from the existing system trace to
component trace, trace existing entries at CT_LVL_DEFAULT.

Base Operating System (BOS) Runtime Services (A-P) 197

int mem_dest For CT_HOOKx macros, the mem_dest parameter indicates the memory destination for this trace
entry. It is an ORed value with the following possible settings:

v MT_RARE: the trace entry is saved in the rare buffer of lightweight memory trace if the level
condition of the memory trace mode for this control block is satisfied, meaning that the current
level of trace for the memory trace mode is greater than or equal to the level of this trace entry.

v MT_COMMON: the trace entry is saved in the common buffer of the lightweight memory trace if
the level condition of the memory trace mode for this control block is satisfied.

v MT_PRIV: the trace entry is saved in the private memory buffer of the component if the level
condition of the memory trace mode for this control block is satisfied.

v MT_SYSTEM: the trace entry is saved in the existing system trace if the level condition of the
system trace mode for this control block is satisfied, if the system trace is running, and if the
hook meets any additional criteria specified as part of the system trace. For example, if
MT_SYSTEM is not set, the trace entry is not saved in the existing system trace.

Only one of the MT_RARE, MT_COMMON and MT_PRIV values should be used, but you can
combine ORed with MT_SYSTEM. Otherwise, the trace entry will be duplicated in several memory
buffers.

The mem_dest parameter is not needed for the CT_GEN macro because lightweight memory
trace cannot accommodate generic entries. CT_GEN checks the memory trace and system trace
levels to determine whether the generic entry should enter the private memory buffer and system
trace buffers respectively.

The hkwd, d1, d2, d3, d4, d5, len and buf parameters are the same as those used for the existing
TRCHKx or TRCGEN macros. The TRCHKx refers to the TRCHKLnT macros where n is from 0 to 5. For
example, TRCHKL1T (hkwd, d1). The TRCGEN macros refer to the TRCGEN and TRCGENT macros.

For the hookword, OR the hookID with a subhookID if needed. For the CT_HOOKx macro, the subhook is
ORed into the hookword. For the CT_GEN macro, the subhook is the d1 parameter.

Related Information
Trace Facility in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The trcgenk and trcgenkt kernel services.

The trchook, trchook64, utrchook and utrchook64 subroutine.

The ras_register and ras_unregister exported kernel services.

The RAS_BLOCK_NULL Exported Data Structure in AIX 5L Version 5.3 Technical Reference: Kernel and
Subsystems Volume 1.

CT_TRCON macro

Purpose
Return information on whether any trace is active at a certain level for a component.

Syntax
#include <sys/ras_trace.h>
CT_TRCON(cb, level)

198 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The CT_TRCON macro allows you to ascertain whether any type of trace (Component Trace, lightweight
memory trace or system trace) will record events for the component specified at the trace detail level
specified.

Note: If the cb input parameter has a value of RAS_BLOCK_NULL, the CT_TRCON macro indicates that
the trace is off.

Parameters

ras_block_t cb The cb parameter is the RAS control block pointer that refers to the component that this
trace entry belongs to.

int level Specifies the trace detail level.

Related Information
Component Trace Facility in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming
Concepts.

The “CT_HOOKx and CT_GEN macros” on page 196.

The ras_register/ras_unregister exported kernel services.

The ras_control exported kernel services.

The RAS_BLOCK_NULL Exported Data Structure in AIX 5L Version 5.3 Technical Reference: Kernel and
Subsystems Volume 1.

ctan, ctanf, or ctanl Subroutine

Purpose
Computes complex tangents.

Syntax
#include <complex.h>

double complex ctan (z)
double complex z;

float complex ctanf (z)
float complex z;

long double complex ctanl (z)
long double complex z;

Description
The ctan, ctanf, and ctanl subroutines compute the complex tangent of the value specified by the z
parameter.

Parameters

z Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 199

Return Values
The ctan, ctanf, and ctanl subroutines return the complex tangent value.

Related Information
“catan, catanf, or catanl Subroutine” on page 133

math.h in AIX 5L Version 5.3 Files Reference.

ctanh, ctanhf, or ctanhl Subroutine

Purpose
Computes the complex hyperbolic tangent.

Syntax
#include <complex.h>

double complex ctanh (z)
double complex z;

float complex ctanhf (z)
float complex z;

long double complex ctanhl (z)
long double complex z;

Description
The ctanh, ctanhf, and ctanhl subroutines compute the complex hyperbolic tangent of z.

Parameters

z Specifies the value to be computed.

Return Values
The ctanh, ctanhf, and ctanhl subroutines return the complex hyperbolic tangent value.

Related Information
“catanh, catanhf, or catanhl Subroutine” on page 134

ctermid Subroutine

Purpose
Generates the path name of the controlling terminal.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
char *ctermid (String)
char *String;

200 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The ctermid subroutine generates the path name of the controlling terminal for the current process and
stores it in a string.

Note: File access permissions depend on user access. Access to a file whose path name the ctermid
subroutine has returned is not guaranteed.

The difference between the ctermid and ttyname subroutines is that the ttyname subroutine must be
handed a file descriptor and returns the actual name of the terminal associated with that file descriptor.
The ctermid subroutine returns a string (the /dev/tty file) that refers to the terminal if used as a file name.
Thus, the ttyname subroutine is useful only if the process already has at least one file open to a terminal.

Parameters

String If the String parameter is a null pointer, the string is stored in an internal static area and the address
is returned. The next call to the ctermid subroutine overwrites the contents of the internal static
area.

If the String parameter is not a null pointer, it points to a character array of at least L_ctermid
elements as defined in the stdio.h file. The path name is placed in this array and the value of the
String parameter is returned.

Related Information
The isatty or ttyname subroutine.

Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine

Purpose
Converts the formats of date and time representations.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

char *ctime (Clock)
const time_t *Clock;

struct tm *localtime (Clock)
const time_t *Clock;

struct tm *gmtime (Clock)
const time_t *Clock;

time_t mktime(Timeptr)
struct tm *Timeptr;

double difftime(Time1, Time0)
time_t Time0, Time1;

Base Operating System (BOS) Runtime Services (A-P) 201

char *asctime (Tm)
const struct tm *Tm;

void tzset ()
extern long int timezone;
extern int daylight;
extern char *tzname[];

Description
Attention: Do not use the tzset subroutine when linking with both libc.a and libbsd.a. The tzset
subroutine sets the global external variable called timezone, which conflicts with the timezone
subroutine in libbsd.a. This name collision may cause unpredictable results.

Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a multithreaded
environment. See the multithread alternatives in the ctime_r (“ctime_r, localtime_r, gmtime_r, or
asctime_r Subroutine” on page 208), localtime_r, gmtime_r, or asctime_r subroutine article.

The ctime subroutine converts a time value pointed to by the Clock parameter, which represents the time
in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into a 26-character string
in the following form:
Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime subroutine converts the long integer pointed to by the Clock parameter, which contains the
time in seconds since 00:00:00 UTC, 1 January 1970, into a tm structure. The localtime subroutine
adjusts for the time zone and for daylight-saving time, if it is in effect. Use the time-zone information as
though localtime called tzset.

The gmtime subroutine converts the long integer pointed to by the Clock parameter into a tm structure
containing the Coordinated Universal Time (UTC), which is the time standard the operating system uses.

Note: UTC is the international time standard intended to replace GMT.

The tm structure is defined in the time.h file, and it contains the following members:
int tm_sec; /* Seconds (0 - 59) */
int tm_min; /* Minutes (0 - 59) */
int tm_hour; /* Hours (0 - 23) */
int tm_mday; /* Day of month (1 - 31) */
int tm_mon; /* Month of year (0 - 11) */
int tm_year; /* Year - 1900 */
int tm_wday; /* Day of week (Sunday = 0) */
int tm_yday; /* Day of year (0 - 365) */
int tm_isdst; /* Nonzero = Daylight saving time */

The mktime subroutine is the reverse function of the localtime subroutine. The mktime subroutine
converts the tm structure into the time in seconds since 00:00:00 UTC, 1 January 1970. The tm_wday and
tm_yday fields are ignored, and the other components of the tm structure are not restricted to the ranges
specified in the /usr/include/time.h file. The value of the tm_isdst field determines the following actions of
the mktime subroutine:

0 Initially presumes that Daylight Savings Time (DST) is not in effect.
>0 Initially presumes that DST is in effect.
-1 Actively determines whether DST is in effect from the specified time and the local time zone. Local time zone

information is set by the tzset subroutine.

202 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Upon successful completion, the mktime subroutine sets the values of the tm_wday and tm_yday fields
appropriately. Other fields are set to represent the specified time since January 1, 1970. However, the
values are forced to the ranges specified in the /usr/include/time.h file. The final value of the tm_mday
field is not set until the values of the tm_mon and tm_year fields are determined.

Note: The mktime subroutine cannot convert time values before 00:00:00 UTC, January 1, 1970 and
after 03:14:07 UTC, January 19, 2038.

The difftime subroutine computes the difference between two calendar times: the Time1 and -Time0
parameters.

The asctime subroutine converts a tm structure to a 26-character string of the same format as ctime.

If the TZ environment variable is defined, then its value overrides the default time zone, which is the U.S.
Eastern time zone. The environment facility contains the format of the time zone information specified by
TZ. TZ is usually set when the system is started with the value that is defined in either the
/etc/environment or /etc/profile files. However, it can also be set by the user as a regular environment
variable for performing alternate time zone conversions.

The tzset subroutine sets the timezone, daylight, and tzname external variables to reflect the setting of
TZ. The tzset subroutine is called by ctime and localtime, and it can also be called explicitly by an
application program.

The timezone external variable contains the difference, in seconds, between UTC and local standard time.
For example, the value of timezone is 5 * 60 * 60 for U.S. Eastern Standard Time.

The daylight external variable is nonzero when a daylight-saving time conversion should be applied. By
default, this conversion follows the standard U.S. conventions; other conventions can be specified. The
default conversion algorithm adjusts for the peculiarities of U.S. daylight saving time in 1974 and 1975.

The tzname external variable contains the name of the standard time zone (tzname[0]) and of the time
zone when Daylight Savings Time is in effect (tzname[1]). For example:
char *tzname[2] = {"EST", "EDT"};

The time.h file contains declarations of all these subroutines and externals and the tm structure.

Parameters

Clock Specifies the pointer to the time value in seconds.
Timeptr Specifies the pointer to a tm structure.
Time1 Specifies the pointer to a time_t structure.
Time0 Specifies the pointer to a time_t structure.
Tm Specifies the pointer to a tm structure.

Return Values
Attention: The return values point to static data that is overwritten by each call.

The tzset subroutine returns no value.

The mktime subroutine returns the specified time in seconds encoded as a value of type time_t. If the
time cannot be represented, the function returns the value (time_t)-1.

The localtime and gmtime subroutines return a pointer to the struct tm.

Base Operating System (BOS) Runtime Services (A-P) 203

The ctime and asctime subroutines return a pointer to a 26-character string.

The difftime subroutine returns the difference expressed in seconds as a value of type double.

Related Information
The getenv (“getenv Subroutine” on page 367) subroutine, gettimer (“gettimer, settimer, restimer, stime, or
time Subroutine” on page 448) subroutine, strftime subroutine.

Time data manipulation services in Operating system and device management.

National Language Support Overview for Programming in AIX 5L Version 5.3 National Language Support
Guide and Reference.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64
Subroutine

Purpose
Converts the formats of date and time representations.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

char *ctime64 (Clock)
const time64_t *Clock;

struct tm *localtime64 (Clock)
const time64_t *Clock;

struct tm *gmtime64 (Clock)
const time64_t *Clock;

time64_t mktime64(Timeptr)
struct tm *Timeptr;

double difftime64(Time1, Time0)
time64_t Time0, Time1;

char *asctime64 (Tm)
const struct tm *Tm;

Description
Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a multithreaded
environment. See “ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine” on page 206 for
multithread alternatives.

The ctime64 subroutine converts a time value pointed to by the Clock parameter, which represents the
time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into a 26-character
string in the following form:

204 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime64 subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime64 subroutine converts the 64 bit long pointed to by the Clock parameter, which contains the
time in seconds since 00:00:00 UTC, 1 January 1970, into a tm structure. The localtime64 subroutine
adjusts for the time zone and for daylight saving time, if it is in effect. Use the time-zone information as
though localtime64 called tzset.

The gmtime64 subroutine converts the 64 bit long pointed to by the Clock parameter into a tm structure
containing the Coordinated Universal Time (UTC), which is the time standard that the operating system
uses.

Note: UTC is the international time standard intended to replace GMT.

The mktime64 subroutine is the reverse function of the localtime64 subroutine. The mktime64 subroutine
converts the tm structure into the time in seconds since 00:00:00 UTC, 1 January 1970. The tm_wday
and tm_yday fields are ignored, and the other components of the tm structure are not restricted to the
ranges specified in the /usr/include/time.h file. The value of the tm_isdst field determines the following
actions of the mktime64 subroutine:

0 Initially presumes that Daylight Savings Time (DST) is not in effect.

>0 Initially presumes that DST is in effect.

-1 Actively determines whether DST is in effect from the specified time and the local
time zone. Local time zone information is set by the tzset subroutine.

Upon successful completion, the mktime64 subroutine sets the values of the tm_wday and tm_yday
fields appropriately. Other fields are set to represent the specified time since January 1, 1970. However,
the values are forced to the ranges specified in the /usr/include/time.h file. The final value of the
tm_mday field is not set until the values of the tm_mon and tm_year fields are determined.

Note: The mktime64 subroutine cannot convert time values before 00:00:00 UTC, January 1, 1970 and
after 23:59:59 UTC, December 31, 9999.

Note: The difftime64 subroutine computes the difference between two calendar times: the Time1 and
Time0 parameters.

Note: The asctime64 subroutine converts a tm structure to a 26-character string of the same format as
ctime64.

Parameters

Clock Specifies the pointer to the time value in seconds.
Timeptr Specifies the pointer to a tm structure.
Time1 Specifies the pointer to a time64_t structure.
Time0 Specifies the pointer to a time64_t structure.
Tm Specifies the pointer to a tm structure.

Return Values
Attention: The return values point to static data that is overwritten by each call.

Base Operating System (BOS) Runtime Services (A-P) 205

The mktime64 subroutine returns the specified time in seconds encoded as a value of type time64_t. If
the time cannot be represented, the function returns the value (time64_t)-1.

The localtime64 and gmtime64 subroutines return a pointer to the tm struct .

The ctime64 and asctime64 subroutines return a pointer to a 26-character string.

The difftime64 subroutine returns the difference expressed in seconds as a value of type long double.

Related Information
“ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine,” “getenv Subroutine” on page 367,
“gettimer, settimer, restimer, stime, or time Subroutine” on page 448, strftime subroutine.

Time data manipulation services in Operating system and device management.

National Language Support Overview for Programming in AIX 5L Version 5.3 National Language Support
Guide and Reference.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine

Purpose
Converts the formats of date and time representations.

Library
Thread-Safe C Library (libc_r.a)

Syntax
#include <time.h>

char *ctime64_r(Timer, BufferPointer)
const time64_t * Timer;
char * BufferPointer;

struct tm *localtime64_r(Timer, CurrentTime)
const time64_t * Timer;
struct tm * CurrentTime;

struct tm *gmtime64_r (Timer, XTime)
const time64_t * Timer;
struct tm * XTime;

char *asctime64_r (TimePointer, BufferPointer)
const struct tm * TimePointer;
char * BufferPointer;

Description
The ctime64_r subroutine converts a time value pointed to by the Timer parameter, which represents the
time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into the character
array pointed to by the BufferPointer parameter. The character array should have a length of at least 26
characters so the converted time value fits without truncation. The converted time value string takes the
form of the following example:

206 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here. Thus, ctime will only return dates up to
December 31, 9999.

The ctime64_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime64_r subroutine converts the time64_t structure pointed to by the Timer parameter, which
contains the time in seconds since 00:00:00 UTC, January 1, 1970, into the tm structure pointed to by the
CurrentTime parameter. The localtime64_r subroutine adjusts for the time zone and for daylight saving
time, if it is in effect.

The gmtime64_r subroutine converts the time64_t structure pointed to by the Timer parameter into the tm
structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of these
subroutines, externals, and the tm structure.

The asctime64_r subroutine converts the tm structure pointed to by the TimePointer parameter into a
26-character string in the same format as the ctime64_r subroutine. The results are placed into the
character array, BufferPointer. The BufferPointer parameter points to the resulting character array, which
takes the form of the following example:
Sun Sept 16 01:03:52 1973\n\0

Programs using this subroutine must link to the libpthreads.a library.

Parameters

Timer Points to a time64_t structure, which contains the number of seconds since 00:00:00 UTC,
January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.
CurrentTime Points to a tm structure. The result of the localtime64_r subroutine is placed here.
XTime Points to a tm structure used for the results of the gmtime64_r subroutine.
TimePointer Points to a tm structure used as input to the asctime64_r subroutine.

Return Values
The localtime64_r and gmtime64_r subroutines return a pointer to the tm structure. The asctime64_r
returns NULL if either TimePointer or BufferPointer is NULL.

The ctime64_r and asctime64_r subroutines return a pointer to a 26-character string. The ctime64_r
subroutine returns NULL if the BufferPointer is NULL.

The difftime64 subroutine returns the difference expressed in seconds as a value of type long double.

Files

/usr/include/time.h Defines time macros, data types, and structures.

Related Information
“ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine” on page 204

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 207

ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine

Purpose
Converts the formats of date and time representations.

Library
Thread-Safe C Library (libc_r.a)

Syntax
#include <time.h>

char *ctime_r(Timer, BufferPointer)
const time_t * Timer;
char * BufferPointer;

struct tm *localtime_r(Timer, CurrentTime)
const time_t * Timer;
struct tm * CurrentTime;

struct tm *gmtime_r(Timer, XTime)
const time_t * Timer;
struct tm * XTime;

char *asctime_r(TimePointer, BufferPointer)
const struct tm * TimePointer;
char * BufferPointer;

Description
The ctime_r subroutine converts a time value pointed to by the Timer parameter, which represents the
time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into the character
array pointed to by the BufferPointer parameter. The character array should have a length of at least 26
characters so the converted time value fits without truncation. The converted time value string takes the
form of the following example:
Sun Sep 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime_r subroutine converts the time_t structure pointed to by the Timer parameter, which
contains the time in seconds since 00:00:00 UTC, January 1, 1970, into the tm structure pointed to by the
CurrentTime parameter. The localtime_r subroutine adjusts for the time zone and for daylight saving time,
if it is in effect.

The gmtime_r subroutine converts the time_t structure pointed to by the Timer parameter into the tm
structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of these
subroutines, externals, and the tm structure.

208 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The asctime_r subroutine converts the tm structure pointed to by the TimePointer parameter into a
26-character string in the same format as the ctime_r subroutine. The results are placed into the character
array, BufferPointer. The BufferPointer parameter points to the resulting character array, which takes the
form of the following example:
Sun Sep 16 01:03:52 1973\n\0

Programs using this subroutine must link to the libpthreads.a library.

Parameters

Timer Points to a time_t structure, which contains the number of seconds since 00:00:00 UTC,
January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.
CurrentTime Points to a tm structure. The result of the localtime_r subroutine is placed here.
XTime Points to a tm structure used for the results of the gmtime_r subroutine.
TimePointer Points to a tm structure used as input to the asctime_r subroutine.

Return Values
The localtime_r and gmtime_r subroutines return a pointer to the tm structure. The asctime_r returns
NULL if either TimePointer or BufferPointer are NULL.

The ctime_r and asctime_r subroutines return a pointer to a 26-character string. The ctime_r subroutine
returns NULL if the BufferPointer is NULL.

Files

/usr/include/time.h
Defines time macros, data types, and structures.

Related Information
The ctime, localtime, gmtime, mktime, difftime, asctime, or tzset (“ctime, localtime, gmtime, mktime,
difftime, asctime, or tzset Subroutine” on page 201) subroutine.

Subroutines, Example Programs, and Libraries and List of Multi-threaded Programming Subroutines in AIX
5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, or isascii Subroutines

Purpose
Classifies characters.

Library
Standard Character Library (libc.a)

Syntax
#include <ctype.h>

Base Operating System (BOS) Runtime Services (A-P) 209

int isalpha (Character)
int Character;

int isupper (Character)
int Character;

int islower (Character)
int Character;

int isdigit (Character)
int Character;

int isxdigit (Character)
int Character;

int isalnum (Character)
int Character;

int isspace (Character)
int Character;

int ispunct (Character)
int Character;

int isprint (Character)
int Character;

int isgraph (Character)
int Character;

int iscntrl (Character)
int Character;

int isascii (Character)
int Character;

Description
The ctype subroutines classify character-coded integer values specified in a table. Each of these
subroutines returns a nonzero value for True and 0 for False.

Note: The ctype subroutines should only be used on character data that can be represented by a single
byte value (0 through 255). Attempting to use the ctype subroutines on multi-byte locale data may
give inconsistent results. Wide character classification routines (such as iswprint, iswlower, etc.)
should be used with dealing with multi-byte character data.

Locale Dependent Character Tests
The following subroutines return nonzero (True) based upon the character class definitions for the current
locale.

isalnum Returns nonzero for any character for which the isalpha or isdigit subroutine would return
nonzero. The isalnum subroutine tests whether the character is of the alpha or digit class.

isalpha Returns nonzero for any character for which the isupper or islower subroutines would return
nonzero. The isalpha subroutine also returns nonzero for any character defined as an alphabetic
character in the current locale, or for a character for which none of the iscntrl, isdigit, ispunct,
or isspace subroutines would return nonzero. The isalpha subroutine tests whether the
character is of the alpha class.

isupper Returns nonzero for any uppercase letter [A through Z]. The isupper subroutine also returns
nonzero for any character defined to be uppercase in the current locale. The isupper subroutine
tests whether the character is of the upper class.

islower Returns nonzero for any lowercase letter [a through z]. The islower subroutine also returns
nonzero for any character defined to be lowercase in the current locale. The islower subroutine
tests whether the character is of the lower class.

isspace Returns nonzero for any white-space character (space, form feed, new line, carriage return,
horizontal tab or vertical tab). The isspace subroutine tests whether the character is of the
space class.

210 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ispunct Returns nonzero for any character for which the isprint subroutine returns nonzero, except the
space character and any character for which the isalnum subroutine would return nonzero. The
ispunct subroutine also returns nonzero for any locale-defined character specified as a
punctuation character. The ispunct subroutine tests whether the character is of the punct class.

isprint Returns nonzero for any printing character. Returns nonzero for any locale-defined character that
is designated a printing character. This routine tests whether the character is of the print class.

isgraph Returns nonzero for any character for which the isprint character returns nonzero, except the
space character. The isgraph subroutine tests whether the character is of the graph class.

iscntrl Returns nonzero for any character for which the isprint subroutine returns a value of False (0)
and any character that is designated a control character in the current locale. For the C locale,
control characters are the ASCII delete character (0127 or 0x7F), or an ordinary control character
(less than 040 or 0x20). The iscntrl subroutine tests whether the character is of the cntrl class.

Locale Independent Character Tests
The following subroutines return nonzero for the same characters, regardless of the locale:

isdigit Character is a digit in the range [0 through 9].
isxdigit Character is a hexadecimal digit in the range [0 through 9], [A through F], or [a through f].
isascii Character is an ASCII character with a value in the range [0 through 0177], or [0 through 0x7F].

Parameter

Character Indicates the character to be tested (integer value).

Return Codes
The ctype subroutines return nonzero (True) if the character specified by the Character parameter is a
member of the selected character class; otherwise, a 0 (False) is returned.

Related Information
The setlocale subroutine.

List of Character Manipulation Services and Subroutines, Example Programs, and Libraries in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

cuserid Subroutine

Purpose
Gets the alphanumeric user name associated with the current process.

Library
Standard C Library (libc.a)

Use the libc_r.a library to access the thread-safe version of this subroutine.

Syntax
#include <stdio.h>

Base Operating System (BOS) Runtime Services (A-P) 211

char *cuserid (Name)
char *Name;

Description
The cuserid subroutine gets the alphanumeric user name associated with the current process. This
subroutine generates a character string representing the name of a process’s owner.

Note: The cuserid subroutine duplicates functionality available with the getpwuid and getuid
subroutines. Present applications should use the getpwuid and getuid subroutines.

If the Name parameter is a null pointer, then a character string of size L_cuserid is dynamically allocated
with malloc, and the character string representing the name of the process owner is stored in this area.
The cuserid subroutine then returns the address of this area. Multithreaded application programs should
use this functionality to obtain thread specific data, and then continue to use this pointer in subsequent
calls to the curserid subroutine. In any case, the application program must deallocate any dynamically
allocated space with the free subroutine when the data is no longer needed.

If the Name parameter is not a null pointer, the character string is stored into the array pointed to by the
Name parameter. This array must contain at least the number of characters specified by the constant
L_cuserid. This constant is defined in the stdio.h file.

If the user name cannot be found, the cuserid subroutine returns a null pointer; if the Name parameter is
not a null pointer, a null character (’\0’) is stored in Name [0].

Parameter

Name Points to a character string representing a user name.

Related Information
The endpwent (“getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine” on page
424) subroutine, getlogin (“getlogin Subroutine” on page 396), getpwent (“getpwent, getpwuid, getpwnam,
putpwent, setpwent, or endpwent Subroutine” on page 424), getpwnam (“getpwent, getpwuid, getpwnam,
putpwent, setpwent, or endpwent Subroutine” on page 424), getpwuid (“getpwent, getpwuid, getpwnam,
putpwent, setpwent, or endpwent Subroutine” on page 424), or putpwent (“getpwent, getpwuid,
getpwnam, putpwent, setpwent, or endpwent Subroutine” on page 424) subroutine.

Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

defssys Subroutine

Purpose
Initializes the SRCsubsys structure with default values.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

212 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

void defssys(SRCSubsystem)
struct SRCsubsys *SRCSubsystem;

Description
The defssys subroutine initializes the SRCsubsys structure of the /usr/include/sys/srcobj.h file with the
following default values:

Field Value
display SRCYES
multi SRCNO
contact SRCSOCKET
waittime TIMELIMIT
priority 20
action ONCE
standerr /dev/console
standin /dev/console
standout /dev/console

All other numeric fields are set to 0, and all other alphabetic fields are set to an empty string.

This function must be called to initialize the SRCsubsys structure before an application program uses this
structure to add records to the subsystem object class.

Parameters

SRCSubsystem Points to the SRCsubsys structure.

Related Information
The addssys (“addssys Subroutine” on page 34) subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller (SRC)
Overview for Programmers in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

delssys Subroutine

Purpose
Removes the subsystem objects associated with the SubsystemName parameter.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int delssys (SubsystemName)
char *SubsystemName;

Base Operating System (BOS) Runtime Services (A-P) 213

Description
The delssys subroutine removes the subsystem objects associated with the specified subsystem. This
removes all objects associated with that subsystem from the following object classes:

v Subsystem

v Subserver Type

v Notify

The program running with this subroutine must be running with the group system.

Parameter

SubsystemName Specifies the name of the subsystem.

Return Values
Upon successful completion, the delssys subroutine returns a positive value. If no record is found, a value
of 0 is returned. Otherwise, -1 is returned and the odmerrno variable is set to indicate the error. See
″Appendix B. ODM Error Codes (Appendix B, “ODM Error Codes,” on page 1357)″ for a description of
possible odmerrno values.

Security
Privilege Control:

SET_PROC_AUDIT kernel privilege

Files Accessed:

Mode File
644 /etc/objrepos/SRCsubsys
644 /etc/objrepos/SRCsubsvr
644 /etc/objrepos/SRCnotify

Auditing Events:

Event Information
SRC_Delssys Lists in an audit log the name of the subsystem being removed.

Files

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
/etc/objrepos/SRCsubsvr SRC Subsystem Configuration object class.
/etc/objrepos/SRCnotify SRC Notify Method object class.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.
/usr/include/sys/srcobj.h Defines object structures used by the SRC.
/usr/include/spc.h Defines external interfaces provided by the SRC subroutines.

Related Information
The addssys (“addssys Subroutine” on page 34) subroutine, chssys (“chssys Subroutine” on page 163)
subroutine.

214 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The chssys command, mkssys command, rmssys command.

List of SRC Subroutines and System Resource Controller (SRC) Overview for Programmers in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

dirname Subroutine

Purpose
Report the parent directory name of a file path name.

Library
Standard C Library (libc.a)

Syntax
#include <libgen.h>

char *dirname (path)
char *path

Description
Given a pointer to a character string that contains a file system path name, the dirname subroutine
returns a pointer to a string that is the parent directory of that file. Trailing ″/″ characters in the path are not
counted as part of the path.

If path is a null pointer or points to an empty string, a pointer to a static constant ″.″ is returned.

The dirname and basename subroutines together yield a complete path name. dirname (path) is the
directory where basename (path) is found.

Parameters

path Character string containing a file system path name.

Return Values
The dirname subroutine returns a pointer to a string that is the parent directory of path. If path or *path is
a null pointer or points to an empty string, a pointer to a string ″.″ is returned. The dirname subroutine
may modify the string pointed to by path and may return a pointer to static storage that may then be
overwritten by sequent calls to the dirname subroutine.

Examples
A simple file name and the strings ″.″ and ″..″ all have ″.″ as their return value.

Input string Output string
/usr/lib /usr
/usr/ /
usr .
/ /
. .
.. .

The following code reads a path name, changes directory to the appropriate directory, and opens the file.

Base Operating System (BOS) Runtime Services (A-P) 215

char path [MAXPATHEN], *pathcopy;
int fd;
fgets (path, MAXPATHEN, stdin);
pathcopy = strdup (path);
chdir (dirname (pathcopy));
fd = open (basename (path), O_RDONLY);

Related Information
The basename (“basename Subroutine” on page 118) or chdir (“chdir Subroutine” on page 148)
subroutine.

disclaim and disclaim64 Subroutines

Purpose
Disclaims the content of a memory address range.

Syntax
#include <sys/shm.h>
int disclaim (Address, Length, Flag)
char *Address;
unsigned int Length, Flag;

int disclaim64(Address, Length, Flag)
void *Address;
size_t Length;
unsigned long Flag;

Description
The disclaim and disclaim64 subroutines mark an area of memory having content that is no longer
needed. The system then stops paging the memory area. These subroutines cannot be used on memory
that is mapped to a file by the shmat subroutine.

Parameters

Address Points to the beginning of the memory area.
Length Specifies the length of the memory area in bytes.
Flag Must be the DISCLAIM_ZEROMEM value, which indicates that each memory location in the

address range should be set to zero.

Return Values
When successful, the disclaim and disclaim64 subroutines return a value of 0.

Error Codes
If the disclaim and disclaim64 subroutines are not successful, they returns a value of -1 and set the
errno global variable to indicate the error. The disclaim and disclaim64 subroutines are not successful if
one or more of the following are true:

EFAULT The calling process does not have write access to the area of memory that begins at the
Address parameter and extends for the number of bytes specified by the Length parameter.

EINVAL The value of the Flag parameter is not valid.
EINVAL The memory area is mapped to a file.

216 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The shm.h file in AIX 5L Version 5.3 Files Reference.

The shmat and shmctl subroutines in AIX 5L Version 5.3 Technical Reference: Base Operating System
and Extensions Volume 2.

The List of Memory Manipulation Services in the AIX 5L Version 5.3 General Programming Concepts.

The System Calls Available to Kernel Extensions in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

The Allocation and reclamation of paging space slots in the Performance management and tuning.

The Understanding Memory Mapping in AIX 5L Version 5.3 General Programming Concepts.

dlclose Subroutine

Purpose
Closes and unloads a module loaded by the dlopen subroutine.

Syntax
#include <dlfcn.h>

int dlclose(Data);
void *Data;

Description
The dlclose subroutine is used to remove access to a module loaded with the dlopen subroutine. In
addition, access to dependent modules of the module being unloaded is removed as well.

The dlclose subroutine performs C++ termination, like the terminateAndUnload subroutine does.

Modules being unloaded with the dlclose subroutine will not be removed from the process’s address
space if they are still required by other modules. Nevertheless, subsequent uses of Data are invalid, and
further uses of symbols that were exported by the module being unloaded result in undefined behavior.

Parameters

Data A loaded module reference returned from a previous call to dlopen.

Return Values
Upon successful completion, 0 (zero) is returned. Otherwise, errno is set to EINVAL, and the return value
is also EINVAL. Even if the dlclose subroutine succeeds, the specified module may still be part of the
process’s address space if the module is still needed by other modules.

Error Codes

EINVAL The Data parameter does not refer to a module opened by dlopen that is still open. The
parameter may be corrupt or the module may have been unloaded by a previous call to dlclose.

Base Operating System (BOS) Runtime Services (A-P) 217

Related Information
The dlerror (“dlerror Subroutine”) subroutine, dlopen (“dlopen Subroutine” on page 219) subroutine, load
(“load and loadAndInit Subroutines” on page 730) subroutine, loadquery (“loadquery Subroutine” on page
736) subroutine, unload subroutine, loadbind (“loadbind Subroutine” on page 734) subroutine.

The ld command.

The Shared Libraries and Shared Memory Overview and Subroutines Overview in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

dlerror Subroutine

Purpose
Returns a pointer to information about the last dlopen, dlsym, or dlclose error.

Syntax
#include <dlfcn.h>

char *dlerror(void);

Description
The dlerror subroutine is used to obtain information about the last error that occurred in a dynamic
loading routine (that is, dlopen , dlsym , or dlclose). The returned value is a pointer to a null-terminated
string without a final newline. Once a call is made to this function, subsequent calls without any intervening
dynamic loading errors will return NULL.

Applications can avoid calling the dlerror subroutine, in many cases, by examining errno after a failed call
to a dynamic loading routine. If errno is ENOEXEC, the dlerror subroutine will return additional
information. In all other cases, dlerror will return the string corresponding to the value of errno.

The dlerror function may invoke loadquery to ascertain reasons for a failure. If a call is made to load or
unload between calls to dlopen and dlerror, incorrect information may be returned.

Return Values
A pointer to a static buffer is returned; a NULL value is returned if there has been no error since the last call
to dlerror. Applications should not write to this buffer; they should make a copy of the buffer if they wish to
preserve the buffer’s contents.

Related Information
The load (“load and loadAndInit Subroutines” on page 730) subroutine, loadbind (“loadbind Subroutine”
on page 734) subroutine, loadquery (“loadquery Subroutine” on page 736)subroutine, unload subroutine,
dlopen (“dlopen Subroutine” on page 219) subroutine, dlclose (“dlclose Subroutine” on page 217)
subroutine.

The ld command.

The Shared Libraries and Shared Memory Overview and Subroutines Overview in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

218 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

dlopen Subroutine

Purpose
Dynamically loads a module into the calling process.

Syntax
#include <dlfcn.h>

void *dlopen (FilePath, Flags);
const char *FilePath;
int Flags;

Description
The dlopen subroutine loads the module specified by FilePath into the executing process’s address
space. Dependents of the module are automatically loaded as well. If the module is already loaded, it is
not loaded again, but a new, unique value will be returned by the dlopen subroutine.

The dlopen subroutine is a portable way of dynamically loading shared libraries. It performs C++ static
initialization of the modules that it loads, like the loadAndInit subroutine does.

The value returned by the dlopen might be used in subsequent calls to dlsym and dlclose. If an error
occurs during the operation, dlopen returns NULL.

If the main application was linked with the -brtl option, then the runtime linker is invoked by dlopen. If the
module being loaded was linked with runtime linking enabled, both intra-module and inter-module
references are overridden by any symbols available in the main application. If runtime linking was enabled,
but the module was not built enabled, then all inter-module references will be overridden, but some
intra-module references will not be overridden.

If the module being opened with dlopen or any of its dependents is being loaded for the first time,
initialization routines for these newly-loaded routines are called (after runtime linking, if applicable) before
dlopen returns. Initialization routines are the functions specified with the -binitfini: linker option when the
module was built. (See the ld command for more information about this option.)

After calling the initialization functions for all newly-loaded modules, C++ static initialization is performed. If
you call the dlopen subroutine from within an initialization function or a C++ static initialization function,
modules loaded by the nested dlopen subroutine might be initialized before completely initializing the
originally loaded modules.

If a dlopen subroutine is called from within a binitfini function, the initialization of the current module is
abandoned for other modules.

Note: If the module being loaded has read-other permission, the module is loaded into the global shared
library segment. Modules loaded into the global shared library segment are not unloaded even if
they are no longer being used. Use the slibclean command to remove unused modules from the
global shared library segment. To load the module in the process private region, unload the module
completely using the slibclean command, and then unset its read-other permission.

The LIBPATH or LD_LIBRARY_PATH environment variables can be used to specify a list of directories in
which the dlopen subroutine searches for the named module. The running application also contains a set
of library search paths that were specified when the application was linked. The dlopen subroutine
searches the modules based on the mechanism that the load subroutine (“load and loadAndInit
Subroutines” on page 730) defines, because the dlopen subroutine internally calls the load subroutine
with the L_LIBPATH_EXEC flag.

Base Operating System (BOS) Runtime Services (A-P) 219

FilePath Specifies the name of a file containing the loadable module. This parameter can be contain an
absolute path, a relative path, or no path component. If FilePath contains a slash character,
FilePath is used directly, and no directories are searched.

If the FilePath parameter is /unix, dlopen returns a value that can be used to look up symbols in
the current kernel image, including those symbols found in any kernel extension that was
available at the time the process began execution.

If the value of FilePath is NULL, a value for the main application is returned. This allows
dynamically loaded objects to look up symbols in the main executable, or for an application to
examine symbols available within itself.

Flags
Specifies variations of the behavior of dlopen. Either RTLD_NOW or RTLD_LAZY must always be
specified. Other flags may be OR’ed with RTLD_NOW or RTLD_LAZY.

RTLD_NOW Load all dependents of the module being loaded and resolve all symbols.
RTLD_LAZY Specifies the same behavior as RTLD_NOW. In a future release of the operating

system, the behavior of the RTLD_LAZY may change so that loading of dependent
modules is deferred of resolution of some symbols is deferred.

RTLD_GLOBAL Allows symbols in the module being loaded to be visible when resolving symbols
used by other dlopen calls. These symbols will also be visible when the main
application is opened with dlopen(NULL, mode).

RTLD_LOCAL Prevent symbols in the module being loaded from being used when resolving
symbols used by other dlopen calls. Symbols in the module being loaded can only
be accessed by calling dlsym subroutine. If neither RTLD_GLOBAL nor
RTLD_LOCAL is specified, the default is RTLD_LOCAL. If both flags are specified,
RTLD_LOCAL is ignored.

RTLD_MEMBER The dlopen subroutine can be used to load a module that is a member of an archive.
The L_LOADMEMBER flag is used when the load subroutine is called. The module
name FilePath names the archive and archive member according to the rules outlined
in the load subroutine.

RTLD_NOAUTODEFER Prevents deferred imports in the module being loaded from being automatically
resolved by subsequent loads. The L_NOAUTODEFER flag is used when the load
subroutine is called.

Ordinarily, modules built for use by the dlopen and dlsym sub routines will not
contain deferred imports. However, deferred imports can be still used. A module
opened with dlopen may provide definitions for deferred imports in the main
application, for modules loaded with the load subroutine (if the L_NOAUTODEFER
flag was not used), and for other modules loaded with the dlopen subroutine (if the
RTLD_NOAUTODEFER flag was not used).

Return Values
Upon successful completion, dlopen returns a value that can be used in calls to the dlsym and dlclose
subroutines. The value is not valid for use with the loadbind and unload subroutines.

If the dlopen call fails, NULL (a value of 0) is returned and the global variable errno is set. If errno
contains the value ENOEXEC, further information is available via the dlerror function.

Error Codes
See the load subroutine for a list of possible errno values and their meanings.

220 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The dlclose (“dlclose Subroutine” on page 217) subroutine, dlerror (“dlerror Subroutine” on page 218)
subroutine, load (“load and loadAndInit Subroutines” on page 730) subroutine, loadbind (“loadbind
Subroutine” on page 734) subroutine, loadquery (“loadquery Subroutine” on page 736)subroutine, unload
subroutine.

The ld command.

Subroutines Overviewdi in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

The Dynamically loading a shared library section in the XL C/C++ V8.0 for AIX Programming Guide book.

dlsym Subroutine

Purpose
Looks up the location of a symbol in a module that is loaded with dlopen.

Syntax
#include <dlfcn.h>

void *dlsym(Handle, Symbol);
void *Handle;
const char *Symbol;

Description
The dlsym subroutine looks up a named symbol exported from a module loaded by a previous call to the
dlopen subroutine. Only exported symbols are found by dlsym. See the ld command to see how to export
symbols from a module.

Handle Specifies a value returned by a previous call to dlopen or one of the special handles
RTLD_DEFAULT, RTLD_NEXT or RTLD_MYSELF.

Symbol Specifies the name of a symbol exported from the referenced module in the form of a
NULL-terminated string or the special symbol name RTLD_ENTRY.

Note: C++ symbol names should be passed to dlsym in mangled form; dlsym does not perform any
name demangling on behalf of the calling application.

In case of the special handle RTLD_DEFAULT, dlsym searches for the named symbol starting with the
first module loaded. It then proceeds through the list of initial loaded modules and any global modules
obtained with dlopen until a match is found. This search follows the default model employed to relocate all
modules within the process.

In case of the special handle RTLD_NEXT, dlsym searches for the named symbol in the modules that
were loaded following the module from which the dlsym call is being made.

In case of the special handle RTLD_MYSELF, dlsym searches for the named symbol in the modules that
were loaded starting with the module from which the dlsym call is being made.

In case of the special symbol name RTLD_ENTRY, dlsym returns the module’s entry point. The entry
point, if present, is the value of the module’s loader section symbol marked as entry point.

Base Operating System (BOS) Runtime Services (A-P) 221

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.xlcpp8a.doc/proguide/ref/dynamic_load.htm

In case of RTLD_DEFAULT, RTLD_NEXT, and RTLD_MYSELF, if the modules being searched have
been loaded from dlopen calls, dlsym searches the module only if the caller is part of the same dlopen
dependency hierarchy, or if the module was given global search access. See dlopen for a discussion of
the RTLD_GLOBAL mode.

A search for the named symbol is based upon breadth-first ordering of the module and its dependants. If
the module was constructed using the -G or -brtl linker option, the module’s dependants will include all
modules named on the ld command line, in the original order. The dependants of a module that was not
linked with the -G or -brtl linker option will be listed in an unspecified order.

Return Values
If the named symbol is found, its address is returned. If the named symbol is not found, NULL is returned
and errno is set to 0. If Handle or Symbol is invalid, NULL is returned and errno is set to EINVAL .

If the first definition found is an export of an imported symbol, this definition will satisfy the search. The
address of the imported symbol is returned. If the first definition is a deferred import, the definition is
ignored and the search continues.

If the named symbol refers to a BSS symbol (uninitialized data structure), the search continues until an
initialized instance of the symbol is found or the module and all of its dependants have been searched. If
an initialized instance is found, its address is returned; otherwise, the address of the first uninitialized
instance is returned.

Error Codes

EINVAL If the Handle parameter does not refer to a module opened by dlopen that is still loaded or if the
Symbol parameter points to an invalid address, the dlsym subroutine returns NULL and errno is
set to EINVAL.

Related Information
The dlclose (“dlclose Subroutine” on page 217) subroutine, dlerror (“dlerror Subroutine” on page 218)
subroutine, dlopen (“dlopen Subroutine” on page 219) subroutine, load (“load and loadAndInit
Subroutines” on page 730) subroutine, loadbind (“loadbind Subroutine” on page 734) subroutine,
loadquery (“loadquery Subroutine” on page 736)subroutine, unload subroutine.

The ld command.

drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48,
seed48, or srand48 Subroutine

Purpose
Generate uniformly distributed pseudo-random number sequences.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

double drand48 (void)

222 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

double erand48 (xsubi)
unsigned short int xsubi[3];

long int jrand48 (xsubi)
unsigned short int xsubi[3];

void lcong48 (Parameter)
unsigned short int Parameter[7];

long int lrand48 (void)

long int mrand48 (void)

long int nrand48 (xsubi)
unsigned short int xsubi[3];

unsigned short int *seed48 (Seed16v)
unsigned short int Seed16v[3];

void srand48 (SeedValue)
long int SeedValue;

Description
Attention: Do not use the drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48,
seed48, or srand48 subroutine in a multithreaded environment.

This family of subroutines generates pseudo-random numbers using the linear congruential algorithm and
48-bit integer arithmetic.

The drand48 subroutine and the erand48 subroutine return positive double-precision floating-point values
uniformly distributed over the interval [0.0, 1.0).

The lrand48 subroutine and the nrand48 subroutine return positive long integers uniformly distributed over
the interval [0,2**31).

The mrand48 subroutine and the jrand48 subroutine return signed long integers uniformly distributed over
the interval [-2**31, 2**31).

The srand48 subroutine, seed48 subroutine, and lcong48 subroutine initialize the random-number
generator. Programs must call one of them before calling the drand48, lrand48 or mrand48 subroutines.
(Although it is not recommended, constant default initializer values are supplied if the drand48, lrand48 or
mrand48 subroutines are called without first calling an initialization subroutine.) The erand48, nrand48,
and jrand48 subroutines do not require that an initialization subroutine be called first.

The previous value pointed to by the seed48 subroutine is stored in a 48-bit internal buffer, and a pointer
to the buffer is returned by the seed48 subroutine. This pointer can be ignored if it is not needed, or it can
be used to allow a program to restart from a given point at a later time. In this case, the pointer is
accessed to retrieve and store the last value pointed to by the seed48 subroutine, and this value is then
used to reinitialize, by means of the seed48 subroutine, when the program is restarted.

All the subroutines work by generating a sequence of 48-bit integer values, x[i], according to the linear
congruential formula:
x[n+1] = (ax[n] + c)mod m, n is > = 0

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless the lcong48 subroutine has
been called, the multiplier value a and the addend value c are:
a = 5DEECE66D base 16 = 273673163155 base 8

c = B base 16 = 13 base 8

Base Operating System (BOS) Runtime Services (A-P) 223

Parameters

xsubi Specifies an array of three shorts, which, when concatenated together, form a 48-bit integer.
SeedValue Specifies the initialization value to begin randomization. Changing this value changes the

randomization pattern.
Seed16v Specifies another seed value; an array of three unsigned shorts that form a 48-bit seed value.
Parameter Specifies an array of seven shorts, which specifies the initial xsubi value, the multiplier value a and

the add-in value c.

Return Values
The value returned by the drand48, erand48, jrand48, lrand48, nrand48, and mrand48 subroutines is
computed by first generating the next 48-bit x[i] in the sequence. Then the appropriate number of bits,
according to the type of data item to be returned, are copied from the high-order (most significant) bits of
x[i] and transformed into the returned value.

The drand48, lrand48, and mrand48 subroutines store the last 48-bit x[i] generated into an internal buffer;
this is why they must be initialized prior to being invoked.

The erand48, jrand48, and nrand48 subroutines require the calling program to provide storage for the
successive x[i] values in the array pointed to by the xsubi parameter. This is why these routines do not
have to be initialized; the calling program places the desired initial value of x[i] into the array and pass it
as a parameter.

By using different parameters, the erand48, jrand48, and nrand48 subroutines allow separate modules of
a large program to generate independent sequences of pseudo-random numbers. In other words, the
sequence of numbers that one module generates does not depend upon how many times the subroutines
are called by other modules.

The lcong48 subroutine specifies the initial x[i] value, the multiplier value a, and the addend value c. The
Parameter array elements Parameter[0-2] specify x[i], Parameter[3-5] specify the multiplier a, and
Parameter[6] specifies the 16-bit addend c. After lcong48 has been called, a subsequent call to either the
srand48 or seed48 subroutine restores the standard a and c specified before.

The initializer subroutine seed48 sets the value of x[i] to the 48-bit value specified in the array pointed to
by the Seed16v parameter. In addition, seed48 returns a pointer to a 48-bit internal buffer that contains
the previous value of x[i] that is used only by seed48. The returned pointer allows you to restart the
pseudo-random sequence at a given point. Use the pointer to copy the previous x[i] value into a temporary
array. Then call seed48 with a pointer to this array to resume processing where the original sequence
stopped.

The initializer subroutine srand48 sets the high-order 32 bits of x[i] to the 32 bits contained in its
parameter. The low order 16 bits of x[i] are set to the arbitrary value 330E16.

Related Information
The rand, srand subroutine, random, srandom, initstate, or setstate subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

drem Subroutine

Purpose
Computes the IEEE Remainder as defined in the IEEE Floating-Point Standard.

224 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double drem (x, y)
double x, y;

Description
The drem subroutine calculates the remainder r equal to x minus n to the x power multiplied by y (r = x -
n * y), where the n parameter is the integer nearest the exact value of x divided by y (x/y). If |n -x/y| =
1/2, then the n parameter is an even value. Therefore, the remainder is computed exactly, and the
absolute value of r (|r|) is less than or equal to the absolute value of y divided by 2 (|y|/2).

The IEEE Remainder differs from the fmod subroutine in that the IEEE Remainder always returns an r
parameter such that |r| is less than or equal to |y|/2, while FMOD returns an r such that |r| is less than
or equal to |y|. The IEEE Remainder is useful for argument reduction for transcendental functions.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. For example:
compile the drem.c file:
cc drem.c -lm

Note: For new development, the remainder subroutine is the preferred interface.

Parameters

x Specifies double-precision floating-point value.
y Specifies a double-precision floating-point value.

Return Values
The drem subroutine returns a NaNQ value for (x, 0) and (+/-INF, y).

Related Information
The floor, ceil, nearest, trunc, rint, itrunc, fmod, fabs, or uitruns (“floor, floorf, floorl, floord32, floord64,
floord128, nearest, trunc, itrunc, and uitrunc Subroutines” on page 279) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

_end, _etext, or _edata Identifier

Purpose
Define the first addresses following the program, initialized data, and all data.

Syntax
extern _end;

extern _etext;

extern _edata;

Base Operating System (BOS) Runtime Services (A-P) 225

Description
The external names _end, _etext, and _edata are defined by the loader for all programs. They are not
subroutines but identifiers associated with the following addresses:

_etext The first address following the program text.
_edata The first address following the initialized data region.
_end The first address following the data region that is not initialized. The name end (with no

underscore) defines the same address as does _end (with underscore).

The break value of the program is the first location beyond the data. When a program begins running, this
location coincides with end. However, many factors can change the break value, including:

v The brk or sbrk subroutine

v The malloc subroutine

v The standard I/O subroutines

v The -p flag with the cc command

Therefore, use the brk or sbrk(0) subroutine, not the end address, to determine the break value of the
program.

Related Information
The brk or sbrk (“brk or sbrk Subroutine” on page 123) subroutine, malloc (“malloc, free, realloc, calloc,
mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine” on page 782) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

ecvt, fcvt, or gcvt Subroutine

Purpose
Converts a floating-point number to a string.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *ecvt (Value, NumberOfDigits, DecimalPointer, Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char *fcvt (Value, NumberOfDigits, DecimalPointer, Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char *gcvt (Value, NumberOfDigits, Buffer;)
double Value;
int NumberOfDigits;
char *Buffer;

Description
The ecvt, fcvt, and gcvt subroutines convert floating-point numbers to strings.

226 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The ecvt subroutine converts the Value parameter to a null-terminated string and returns a pointer to it.
The NumberOfDigits parameter specifies the number of digits in the string. The low-order digit is rounded
according to the current rounding mode. The ecvt subroutine sets the integer pointed to by the
DecimalPointer parameter to the position of the decimal point relative to the beginning of the string. (A
negative number means the decimal point is to the left of the digits given in the string.) The decimal point
itself is not included in the string. The ecvt subroutine also sets the integer pointed to by the Sign
parameter to a nonzero value if the Value parameter is negative and sets a value of 0 otherwise.

The fcvt subroutine operates identically to the ecvt subroutine, except that the correct digit is rounded for
C or FORTRAN F-format output of the number of digits specified by the NumberOfDigits parameter.

Note: In the F-format, the NumberOfDigits parameter is the number of digits desired after the decimal
point. Large numbers produce a long string of digits before the decimal point, and then
NumberOfDigits digits after the decimal point. Generally, the gcvt and ecvt subroutines are more
useful for large numbers.

The gcvt subroutine converts the Value parameter to a null-terminated string, stores it in the array pointed
to by the Buffer parameter, and then returns the Buffer parameter. The gcvt subroutine attempts to
produce a string of the NumberOfDigits parameter significant digits in FORTRAN F-format. If this is not
possible, the E-format is used. The gcvt subroutine suppresses trailing zeros. The string is ready for
printing, complete with minus sign, decimal point, or exponent, as appropriate. The radix character is
determined by the current locale (see setlocale subroutine). If the setlocale subroutine has not been
called successfully, the default locale, POSIX, is used. The default locale specifies a . (period) as the radix
character. The LC_NUMERIC category determines the value of the radix character within the current
locale.

The ecvt, fcvt, and gcvt subroutines represent the following special values that are specified in
ANSI/IEEE standards 754-1985 and 854-1987 for floating-point arithmetic:

Quiet NaN Indicates a quiet not-a-number (NaNQ)
Signalling NaN Indicates a signaling NaNS
Infinity Indicates a INF value

The sign associated with each of these values is stored in the Sign parameter.

Note: A value of 0 can be positive or negative. In the IEEE floating-point, zeros also have signs and set
the Sign parameter appropriately.

Attention: All three subroutines store the strings in a static area of memory whose contents are
overwritten each time one of the subroutines is called.

Parameters

Value Specifies some double-precision floating-point value.
NumberOfDigits Specifies the number of digits in the string.
DecimalPointer Specifies the position of the decimal point relative to the beginning of the string.
Sign Specifies that the sign associated with the return value is placed in the Sign parameter. In

IEEE floating-point, since 0 can be signed, the Sign parameter is set appropriately for
signed 0.

Buffer Specifies a character array for the string.

Base Operating System (BOS) Runtime Services (A-P) 227

Related Information
The atof, strtod, atoff, or strtof (“atof atoff Subroutine” on page 97) subroutine, fp_read_rnd, or
fp_swap_rnd (“fp_read_rnd or fp_swap_rnd Subroutine” on page 305) subroutine, printf (“printf, fprintf,
sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1178) subroutine, scanf
subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

EnableCriticalSections, BeginCriticalSection, and EndCriticalSection
Subroutine

Purpose
Enables a thread to be exempted from timeslicing and signal suspension, and protects critical sections.

Library
Standard C Library (libc.a)

Syntax
#include <sys/thread_ctl.h>

int EnableCriticalSections(void);
void BeginCriticalSection(void);
void EndCriticalSection(void);

Description
When called, the EnableCriticalSections subroutine enables the thread to be exempted from timeslicing
and signal suspension. Once that is done, the thread can call the BeginCriticalSection and
EndCriticalSection subroutines to protect critical sections. Calling the BeginCriticalSection and
EndCriticalSection subroutines with exemption disabled has no effect. The subroutines are safe for use
by multithreaded applications.

Once the service is enabled, the thread can protect critical sections by calling the BeginCriticalSection
and EndCriticalSection subroutines. Calling the BeginCriticalSection subroutine will exempt the thread
from timeslicing and suspension. Calling the EndCriticalSection subroutine will clear exemption for the
thread.

The BeginCriticalSection subroutine will not make a system call. The EndCriticalSection subroutine
might make a system call if the thread was granted a benefit during the critical section. The purpose of the
system call would be to notify the kernel that any posted but undelivered stop signals can be delivered,
and any postponed timeslice can now be completed.

Return Values
The EnableCriticalSections subroutine returns a zero.

erf, erff, erfl, erfd32, erfd64, and erfd128 Subroutines

Purpose
Computes the error and complementary error functions.

228 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double erf (x)
double x;

float erff (x)
float x;

long double erfl (x)
long double x;
_Decimal32 erfd32 (x)
_Decimal32 x;

_Decimal64 erfd64 (x)
_Decimal64 x;

_Decimal128 erfd128 (x)
_Decimal128 x;

Description
The erf, erff, erfl, erfd32, erfd64, and erfd128 subroutines return the error function of the x parameter,
defined for the erf subroutine as the following:
erf(x) = (2/sqrt(pi) * (integral [0 to x] of exp(-(t**2)) dt)

erfc(x) = 1.0 - erf(x)

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the
erf.c file, for example, enter:
cc erf.c -lm

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies a double-precision floating-point value.

Return Values
Upon successful completion, the erf, erff, erfl, erfd32, erfd64, and erfd128 subroutines return the value of
the error function.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is ±Inf, ±1 is returned.

If x is subnormal, a range error may occur, and 2 * x/sqrt(pi) should be returned.

Base Operating System (BOS) Runtime Services (A-P) 229

Related Information
“erfc, erfcf, erfcl, erfcd32, erfcd64, and erfcd128 Subroutines,” “exp, expf, expl, expd32, expd64, and
expd128 Subroutines” on page 247, “feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on
page 275, and “class, _class, finite, isnan, or unordered Subroutines” on page 168.

The sqrt, sqrtf, or sqrtl Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

math.h in AIX 5L Version 5.3 Files Reference.

erfc, erfcf, erfcl, erfcd32, erfcd64, and erfcd128 Subroutines

Purpose
Computes the complementary error function.

Syntax
#include <math.h>

float erfcf (x)
float x;

long double erfcl (x)
long double x;

double erfc (x)
double x;
_Decimal32 erfcd32 (x)
_Decimal32 x;
_Decimal64 erfcd64 (x)
_Decimal64 x;

_Decimal128 erfcd128 (x)
_Decimal128 x;

Description
The erfcf, erfcl, erfc, erfcd32, erfcd64, and erfcd128 subroutines compute the complementary error
function 1.0 - erf(x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

230 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, the erfcf, erfcl, erfc, erfcd32, erfcd64, and erfcd128 subroutines return the
value of the complementary error function.

If the correct value would cause underflow and is not representable, a range error may occur. Either 0.0 (if
representable), or an implementation-defined value is returned.

If x is NaN, a NaN is returned.

If x is ±0, +1 is returned.

If x is -Inf, +2 is returned.

If x is +Inf, +0 is returned.

If the correct value would cause underflow and is representable, a range error may occur and the correct
value is returned.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite,
isnan, or unordered Subroutines” on page 168.

math.h in AIX 5L Version 5.3 Files Reference.

errlog Subroutine

Purpose
Logs an application error to the system error log.

Library
Run-Time Services Library (librts.a)

Syntax
#include <sys/errids.h>
int errlog (ErrorStructure, Length)
void *ErrorStructure;
unsigned int Length;

Description
The errlog subroutine writes an error log entry to the /dev/error file. The errlog subroutine is used by
application programs.

The transfer from the err_rec structure to the error log is by a write subroutine to the /dev/error special
file.

The errdemon process reads from the /dev/error file and writes the error log entry to the system error
log. The timestamp, machine ID, node ID, and Software Vital Product Data associated with the resource
name (if any) are added to the entry before going to the log.

Base Operating System (BOS) Runtime Services (A-P) 231

Parameters

ErrorStructure Points to an error record structure containing an error record. Valid error record structures
are typed in the /usr/include/sys/err_rec.h file. The two error record structures available
are err_rec and err_rec0. The err_rec structure is used when the detail_data field is
required. When the detail_data field is not required, the err_rec0 structure is used.

struct err_rec0 {
unsigned int error_id;
char resource_name[ERR_NAMESIZE];

};
struct err_rec {

unsigned int error_id;
char resource_name[ERR_NAMESIZE];
char detail_data[1];

};

The fields of the structures err_rec and err_rec0 are:

error_id
Specifies an index for the system error template database, and is assigned by
the errupdate command when adding an error template. Use the errupdate
command with the -h flag to get a #define statement for this 8-digit hexadecimal
index.

resource_name
Specifies the name of the resource that has detected the error. For software
errors, this is the name of a software component or an executable program. For
hardware errors, this is the name of a device or system component. It does not
indicate that the component is faulty or needs replacement instead, it is used to
determine the appropriate diagnostic modules to be used to analyze the error.

detail_data
Specifies an array from 0 to ERR_REC_MAX bytes of user-supplied data. This
data may be displayed by the errpt command in hexadecimal, alphanumeric, or
binary form, according to the data_encoding fields in the error log template for
this error_id field.

Length Specifies the length in bytes of the err_rec structure, which is equal to the size of the
error_id and resource_name fields plus the length in bytes of the detail_data field.

Return Values

0 The entry was logged successfully.
-1 The entry was not logged.

Files

/dev/error Provides standard device driver interfaces required by the error
log component.

/usr/include/sys/errids.h Contains definitions for error IDs.
/usr/include/sys/err_rec.h Contains structures defined as arguments to the errsave kernel

service and the errlog subroutine.
/var/adm/ras/errlog Maintains the system error log.

Related Information
The errclear, errdead, errinstall, errlogger, errmsg, errpt, errstop, and errupdate commands.

232 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The errlog_open, errlog_close, errlog_find_first, errlog_find_next, errlog_find_sequence,
errlog_set_direction, and errlog_write subroutines.

The /dev/error special file.

The errdemon daemon.

The errsave kernel service.

Error Logging Overview in Messages Guide and Reference.

errlog_close Subroutine

Purpose
Closes an open error log file.

Syntax
library liberrlog.a

#include <sys/errlog.h>

int errlog_close(handle)
errlog_handle_t handle;

Description
The error log specified by the handle argument is closed. The handle must have been returned from a
previous errlog_open call.

Return Values
Upon successful completion, the errlog_close subroutine returns 0.

If an error occurs, the errlog_close subroutine returns LE_ERR_INVARG.

Related Information
The errlog_open, errlog_find_first, errlog_find_next, errlog_find_sequence, errlog_set_direction,
errlog_write, and errlog subroutines.

errlog_find_first, errlog_find_next, and errlog_find_sequence
Subroutines

Purpose
Retrieves an error log entry using supplied criteria.

Syntax
library liberrlog.a

#include <sys/errlog.h>

int errlog_find_first(handle, filter, result)
errlog_handle_t handle;
errlog_match_t *filter;
errlog_entry_t *result;

Base Operating System (BOS) Runtime Services (A-P) 233

int errlog_find_next(handle, result)
errlog_handle_t handle;
errlog_entry_t *result;

int errlog_find_sequence(handle, sequence, result)
errlog_handle_t handle;
int sequence;
errlog_entry_t *result;

Description
The errlog_find_first subroutine finds the first occurrence of the search argument specified by filter using
the direction specified by the errlog_set_direction subroutine. The reverse direction is used if none was
specified. In other words, by default, entries are searched starting with the most recent entry.

The errlog_match_t structure, pointed to by the filter parameter, defines a test expression or set of
expressions to be applied to each errlog entry.

If the value passed in the filter parameter is null, the errlog_find_first subroutine returns the first entry in
the log, and the errlog_find_next subroutine can then be used to return subsequent entries. To read all
log entries in the desired direction, open the log, then issue errlog_find_next calls.

To define a basic expression, em_field must be set to the field in the errlog entry to be tested, em_op
must be set to the relational operator to be applied to that field, and either em_intvalue or em_strvalue
must be set to the value to test against. Basic expressions may be combined by attaching them to em_left
and em_right of another errlog_match_t structure and setting em_op of that structure to a binary or
unary operator. These complex expressions may then be combined with other basic or complex
expressions in the same fashion to build a tree that can define a filter of arbitrary complexity.

The errlog_find_next subroutine finds the next error log entry matching the criteria specified by a
previous errlog_find_first call. The search continues in the direction specified by the
errlog_set_direction subroutine or the reverse direction by default.

The errlog_find_sequence subroutine returns the entry matching the specified error log sequence
number, found in the el_sequence field of the errlog_entry structure.

Parameters
The handle contains the handle returned by a prior call to errlog_open.

The filter parameter points to an errlog_match_t element defining the search argument, or the first of an
argument tree.

The sequence parameter contains the sequence number of the entry to be retrieved.

The result parameter must point to the area to contain the returned error log entry.

Return Values
Upon successful completion, the errlog_find_first, errlog_find_next, and errlog_find_sequence
subroutines return 0, and the memory referenced by result contains the found entry.

The following errors may be returned:

LE_ERR_INVARG A parameter error was detected.
LE_ERR_NOMEM Memory could not be allocated.
LE_ERR_IO An i/o error occurred.
LE_ERR_DONE No more entries were found.

234 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Examples
The code below demonstrates how to search for all errlog entries in a date range and with a class of H
(hardware) or S (software).
{

extern int begintime, endtime;

errlog_match_t beginstamp, endstamp, andstamp;
errlog_match_t hardclass, softclass, orclass;
errlog_match_t andtop;
int ret;
errlog_entry_t result;

/*
* Select begin and end times
*/
beginstamp.em_op = LE_OP_GT; /* Expression 'A' */
beginstamp.em_field = LE_MATCH_TIMESTAMP;
beginstamp.em_intvalue=begintime;

endstamp.em_op = LE_OP_LT; /* Expression 'B' */
endstamp.em_field = LE_MATCH_TIMESTAMP;
endstamp.em_intvalue=endtime;

andstamp.em_op = LE_OP_AND; /* 'A' and 'B' */
andstamp.em_left = &beginstamp;
andstamp.em_right = &endstamp;

/*
* Select the classes we're interested in.
*/
hardclass.em_op = LE_OP_EQUAL; /* Expression 'C' */
hardclass.em_field = LE_MATCH_CLASS;
hardclass.em_strvalue = "H";

softclass.em_op = LE_OP_EQUAL; /* Expression 'D' */
softclass.em_field = LE_MATCH_CLASS;
softclass.em_strvalue = "S";

orclass.em_op = LE_OP_OR; /* 'C' or 'D' */
orclass.em_left = &hardclass;
orclass.em_right = &softclass;

andtop.em_op = LE_OP_AND; /* ('A' and 'B') and ('C' or 'D') */
andtop.em_left = &andstamp;
andtop.em_right = &orclass;

ret = errlog_find_first(handle, &andtop, &result);
}

The errlog_find_first function will return the first entry matching filter. Successive calls to the
errlog_find_next function will return successive entries that match the filter specified in the most recent
call to the errlog_find_first function. When no more matching entries are found, the errlog_find_first and
errlog_find_next functions will return the value LE_ERR_DONE.

Related Information
The errlog_open, errlog_close, errlog_set_direction, errlog_write, and errlog subroutines.

errlog_open Subroutine

Purpose
Opens an error log and returns a handle for use with other liberrlog.a functions.

Base Operating System (BOS) Runtime Services (A-P) 235

Syntax
library liberrlog.a

#include <fcntl.h>
#include <sys/errlog.h>

int errlog_open(path, mode, magic, handle)
char *path;
int mode;
unsigned int magic;
errlog_handle_t *handle;

Description
The error log specified by the path argument will be opened using mode. The handle pointed to by the
handle parameter must be used with subsequent operations.

Parameters
The path parameter specifies the path to the log file to be opened. If path is NULL, the default errlog file
will be opened. The valid values for mode are the same as they are for the open system subroutine. They
can be found in the fcntl.h files.

The magic argument takes the LE_MAGIC value, indicating which version of the errlog_entry_t structure
this application was compiled with.

Return Values
Upon successful completion, the errlog_open subroutine returns a 0 and sets the memory pointed to by
handle to a handle used by subsequent liberrlog operations.

Upon error, the errlog_open subroutine returns one of the following:

LE_ERR_INVARG A parameter error was detected.
LE_ERR_NOFILE The log file does not exist.
LE_ERR_NOMEM Memory could not be allocated.
LE_ERR_IO An i/o error occurred.
LE_ERR_INVFILE The file is not a valid error log.

Related Information
The errlog_close, errlog_find_first, errlog_find_next, errlog_find_sequence, errlog_set_direction,
errlog_write, and errlog subroutines.

The /usr/include/fcntl.h include files found in AIX 5L Version 5.3 Files Reference.

errlog_set_direction Subroutine

Purpose
Sets the direction for the error log find functions.

Syntax
library liberrlog.a

#include <sys/errlog.h>

236 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int errlog_set_direction(handle, direction)
errlog_handle_t handle;
int direction;

Description
The errlog_find_next and errlog_find_sequence subroutines search the error log starting with the most
recent log entry and going backward in time, by default. The errlog_set_direction subroutine is used to
alter this direction.

Parameters
The handle parameter must contain a handle returned by a previous errlog_open call.

The direction parameter must be LE_FORWARD or LE_REVERSE. LE_REVERSE is the default if the
errlog_set_direction subroutine is not used.

Return Values
Upon successful completion, the errlog_set_direction subroutine returns 0.

If a parameter is invalid, the errlog_set_direction subroutine returns LE_ERR_INVARG.

Related Information
The errlog_open, errlog_close, errlog_find_first, errlog_find_next, errlog_find_sequence,
errlog_write, and errlog subroutines.

errlog_write Subroutine

Purpose
Changes the previously read error log entry.

Syntax
library liberrlog.a

#include <sys/errlog.h>

int errlog_write(handle, entry)
errlog_handle_t handle;
errlog_entry_t *entry;

Description
The errlog_write subroutine is used to update the most recently read log entry. Neither the length nor the
sequence number of the entry may be changed. The entry is simply updated in place.

If the errlog_write subroutine is used in a multi-threaded application, the program should obtain a lock
around the read/write pair to avoid conflict.

Parameters
The handle parameter must contain a handle returned by a previous errlog_open call.

The entry parameter must point to an entry returned by the previous error log find function.

Base Operating System (BOS) Runtime Services (A-P) 237

Return Values
Upon successful completion, the errlog_write subroutine returns 0.

If a parameter is invalid, the errlog_write subroutine returns LE_ERR_INVARG.

The errlog_write subroutine may also return one of the following:

LE_ERR_INVFILE The data on file is invalid.
LE_ERR_IO An i/o error occurred.
LE_ERR_NOWRITE The entry to be written didn’t match the entry being

updated.

Related Information
The errlog_open, errlog_close, errlog_find_first, errlog_find_next, errlog_find_sequence,
errlog_set_direction, and errlog subroutines.

The /usr/include/sys/errlog.h include file.

exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine

Purpose
Executes a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

extern
char **environ;

int execl (
Path,
Argument0 [, Argument1, ...], 0)
const char *Path, *Argument0, *Argument
1, ...;

int execle (
Path,
Argument0 [, Argument1, ...], 0,

EnvironmentPointer)
const
char *Path, *Argument0, *Argum
ent
1, ...;
char *const EnvironmentPointer[];

int execlp (
File,

238 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Argument0 [, Argument1
, ...], 0)
const char *File, *Argument0, *Argument
1, ...;

int execv (
Path,
ArgumentV)
const char *Path;
char *const ArgumentV[];

int execve (
Path,
ArgumentV,

EnvironmentPointer)
const char *Path;
char
*const ArgumentV[], *EnvironmentPointer
[];

int execvp (
File,
ArgumentV)
const char *File;
char *const ArgumentV[];

int exect (
Path,
ArgumentV,
EnvironmentPointer)
char *Path, *ArgumentV, *EnvironmentPointer [];

Description
The exec subroutine, in all its forms, executes a new program in the calling process. The exec subroutine
does not create a new process, but overlays the current program with a new one, which is called the
new-process image. The new-process image file can be one of three file types:

v An executable binary file in XCOFF file format. .

v An executable text file that contains a shell procedure (only the execlp and execvp subroutines allow
this type of new-process image file).

v A file that names an executable binary file or shell procedure to be run.

The new-process image inherits the following attributes from the calling process image: session
membership, supplementary group IDs, process signal mask, and pending signals.

The last of the types mentioned is recognized by a header with the following syntax:
#! Path [String]

The #! is the file magic number, which identifies the file type. The path name of the file to be executed is
specified by the Path parameter. The String parameter is an optional character string that contains no tab
or space characters. If specified, this string is passed to the new process as an argument in front of the
name of the new-process image file. The header must be terminated with a new-line character. When
called, the new process passes the Path parameter as ArgumentV[0]. If a String parameter is specified in

Base Operating System (BOS) Runtime Services (A-P) 239

the new process image file, the exec subroutine sets ArgumentV[0] to the String and Path parameter
values concatenated together. The rest of the arguments passed are the same as those passed to the
exec subroutine.

The exec subroutine attempts to cancel outstanding asynchronous I/O requests by this process. If the
asynchronous I/O requests cannot be canceled, the application is blocked until the requests have
completed.

The exec subroutine is similar to the load (“load and loadAndInit Subroutines” on page 730) subroutine,
except that the exec subroutine does not have an explicit library path parameter. Instead, the exec
subroutine uses either the LIBPATH or LD_LIBRARY_PATH environment variable. The LIBPATH variable,
when set, is used in favor of LD_LIBRARY_PATH; otherwise, LD_LIBRARY_PATH is used. These library
path variables are ignored when the program that the exec subroutine is run on has more privilege than
the calling program (for example, an suid program).

The exect subroutine is included for compatibility with older programs being traced with the ptrace
command. The program being executed is forced into hardware single-step mode.

Note: exect is not supported in 64-bit mode.

Note: Currently, a Graphics Library program cannot be overlaid with another Graphics Library program.
The overlaying program can be a nongraphics program. For additional information, see the
/usr/lpp/GL/README file.

Parameters

Path Specifies a pointer to the path name of the new-process
image file. If Network File System (NFS) is installed on your
system, this path can cross into another node. Data is copied
into local virtual memory before proceeding.

File Specifies a pointer to the name of the new-process image file.
Unless the File parameter is a full path name, the path prefix
for the file is obtained by searching the directories named in
the PATH environment variable. The initial environment is
supplied by the shell.
Note: The execlp subroutine and the execvp subroutine take
File parameters, but the rest of the exec subroutines take
Path parameters. (For information about the environment, see
the environment miscellaneous facility and the sh command.)

Argument0 [, Argument1, ...] Point to null-terminated character strings. The strings
constitute the argument list available to the new process. By
convention, at least the Argument0 parameter must be
present, and it must point to a string that is the same as the
Path parameter or its last component.

ArgumentV Specifies an array of pointers to null-terminated character
strings. These strings constitute the argument list available to
the new process. By convention, the ArgumentV parameter
must have at least one element, and it must point to a string
that is the same as the Path parameter or its last component.
The last element of the ArgumentV parameter is a null pointer.

EnvironmentPointer An array of pointers to null-terminated character strings.
These strings constitute the environment for the new process.
The last element of the EnvironmentPointer parameter is a
null pointer.

When a C program is run, it receives the following parameters:

240 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

main (ArgumentCount, ArgumentV, EnvironmentPointer)
int ArgumentCount;
char *ArgumentV[], *EnvironmentPointer[
];

In this example, the ArgumentCount parameter is the argument count, and the ArgumentV parameter is an
array of character pointers to the arguments themselves. By convention, the value of the ArgumentCount
parameter is at least 1, and the ArgumentV[0] parameter points to a string containing the name of the
new-process image file.

The main routine of a C language program automatically begins with a runtime start-off routine. This
routine sets the environ global variable so that it points to the environment array passed to the program in
EnvironmentPointer. You can access this global variable by including the following declaration in your
program:
extern char **environ;

The execl, execv, execlp, and execvp subroutines use the environ global variable to pass the calling
process current environment to the new process.

File descriptors open in the calling process remain open, except for those whose close-on-exec flag is
set. For those file descriptors that remain open, the file pointer is unchanged. (For information about file
control, see the fcntl.h file.)

The state-of-conversion descriptors and message-catalog descriptors in the new process image are
undefined. For the new process, an equivalent of the setlocale subroutine, specifying the LC_ALL value
for its category and the ″C″ value for its locale, is run at startup.

If the new program requires shared libraries, the exec subroutine finds, opens, and loads each of them
into the new-process address space. The referenced counts for shared libraries in use by the issuer of the
exec are decremented. Shared libraries are searched for in the directories listed in the LIBPATH
environment variable. If any of these files is remote, the data is copied into local virtual memory.

The exec subroutines reset all caught signals to the default action. Signals that cause the default action
continue to do so after the exec subroutines. Ignored signals remain ignored, the signal mask remains the
same, and the signal stack state is reset. (For information about signals, see the sigaction subroutine.)

If the SetUserID mode bit of the new-process image file is set, the exec subroutine sets the effective user
ID of the new process to the owner ID of the new-process image file. Similarly, if the SetGroupID mode bit
of the new-process image file is set, the effective group ID of the new process is set to the group ID of the
new-process image file. The real user ID and real group ID of the new process remain the same as those
of the calling process. (For information about the SetID modes, see the chmod subroutine.)

At the end of the exec operation the saved user ID and saved group ID of the process are always set to
the effective user ID and effective group ID, respectively, of the process.

When one or both of the set ID mode bits is set and the file to be executed is a remote file, the file user
and group IDs go through outbound translation at the server. Then they are transmitted to the client node
where they are translated according to the inbound translation table. These translated IDs become the
user and group IDs of the new process.

Note: setuid and setgid bids on shell scripts do not affect user or group IDs of the process finally
executed.

Profiling is disabled for the new process.

The new process inherits the following attributes from the calling process:

Base Operating System (BOS) Runtime Services (A-P) 241

v Nice value (see the getpriority subroutine, setpriority subroutine, nice subroutine)

v Process ID

v Parent process ID

v Process group ID

v semadj values (see the semop subroutine)

v tty group ID (see the exit, atexit, or _exit subroutine, sigaction subroutine)

v trace flag (see request 0 of the ptrace subroutine)

v Time left until an alarm clock signal (see the incinterval subroutine, setitimer subroutine, and alarm
subroutine)

v Current directory

v Root directory

v File-mode creation mask (see the umask subroutine)

v File size limit (see the ulimit subroutine)

v Resource limits (see the getrlimit subroutine, setrlimit subroutine, and vlimit subroutine)

v tms_utime, tms_stime, tms_cutime, and tms_ctime fields of the tms structure (see the times subroutine)

v Login user ID

Upon successful completion, the exec subroutines mark for update the st_atime field of the file.

Examples
1. To run a command and pass it a parameter, enter:

execlp("ls", "ls", "-al", 0);

The execlp subroutine searches each of the directories listed in the PATH environment variable for the
ls command, and then it overlays the current process image with this command. The execlp
subroutine is not returned, unless the ls command cannot be executed.

Note: This example does not run the shell command processor, so operations interpreted by the shell,
such as using wildcard characters in file names, are not valid.

2. To run the shell to interpret a command, enter:
execl("/usr/bin/sh", "sh", "-c", "ls -l *.c",
0);

This runs the sh command with the -c flag, which indicates that the following parameter is the
command to be interpreted. This example uses the execl subroutine instead of the execlp subroutine
because the full path name /usr/bin/sh is specified, making a path search unnecessary.

Running a shell command in a child process is generally more useful than simply using the exec
subroutine, as shown in this example. The simplest way to do this is to use the system subroutine.

3. The following is an example of a new-process file that names a program to be run:
#! /usr/bin/awk -f
{ for (i = NF; i > 0; --i) print $i }

If this file is named reverse, entering the following command on the command line:
reverse chapter1 chapter2

This command runs the following command:
/usr/bin/awk -f reverse chapter1 chapter2

Note: The exec subroutines use only the first line of the new-process image file and ignore the rest of
it. Also, the awk command interprets the text that follows a # (pound sign) as a comment.

242 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, the exec subroutines do not return because the calling process image is
overlaid by the new-process image. If the exec subroutines return to the calling process, the value of -1 is
returned and the errno global variable is set to identify the error.

Error Codes
If the exec subroutine is unsuccessful, it returns one or more of the following error codes:

EACCES The new-process image file is not an ordinary file.
EACCES The mode of the new-process image file denies execution permission.
ENOEXEC The exec subroutine is neither an execlp subroutine nor an execvp subroutine. The

new-process image file has the appropriate access permission, but the magic number in its
header is not valid.

ENOEXEC The new-process image file has a valid magic number in its header, but the header is
damaged or is incorrect for the machine on which the file is to be run.

ETXTBSY The new-process image file is a pure procedure (shared text) file that is currently open for
writing by some process.

ENOMEM The new process requires more memory than is allowed by the system-imposed maximum,
the MAXMEM compiler option.

E2BIG The number of bytes in the new-process argument list is greater than the system-imposed
limit. This limit is a system configurable value that can be set by superusers or system group
users using SMIT. Refer to Kernel Tunable Parameters for details.

EFAULT The Path, ArgumentV, or EnvironmentPointer parameter points outside of the process
address space.

EPERM The SetUserID or SetGroupID mode bit is set on the process image file. The translation
tables at the server or client do not allow translation of this user or group ID.

If the exec subroutine is unsuccessful because of a condition requiring path name resolution, it returns
one or more of the following error codes:

EACCES Search permission is denied on a component of the path prefix. Access could be denied due
to a secure mount.

EFAULT The Path parameter points outside of the allocated address space of the process.
EIO An input/output (I/O) error occurred during the operation.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of a path name exceeded 255 characters and the process has the disallow

truncation attribute (see the ulimit subroutine), or an entire path name exceeded 1023
characters.

ENOENT A component of the path prefix does not exist.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOENT The path name is null.
ENOTDIR A component of the path prefix is not a directory.
ESTALE The root or current directory of the process is located in a virtual file system that has been

unmounted.

In addition, some errors can occur when using the new-process file after the old process image has been
overwritten. These errors include problems in setting up new data and stack registers, problems in
mapping a shared library, or problems in reading the new-process file. Because returning to the calling
process is not possible, the system sends the SIGKILL signal to the process when one of these errors
occurs.

If an error occurred while mapping a shared library, an error message describing the reason for error is
written to standard error before the signal SIGKILL is sent to the process. If a shared library cannot be
mapped, the subroutine returns one of the following error codes:

Base Operating System (BOS) Runtime Services (A-P) 243

ENOENT One or more components of the path name of the shared library file do not exist.
ENOTDIR A component of the path prefix of the shared library file is not a directory.
ENAMETOOLONG A component of a path name prefix of a shared library file exceeded 255 characters, or an

entire path name exceeded 1023 characters.
EACCES Search permission is denied for a directory listed in the path prefix of the shared library

file.
EACCES The shared library file mode denies execution permission.
ENOEXEC The shared library file has the appropriate access permission, but a magic number in its

header is not valid.
ETXTBSY The shared library file is currently open for writing by some other process.
ENOMEM The shared library requires more memory than is allowed by the system-imposed

maximum.
ESTALE The process root or current directory is located in a virtual file system that has been

unmounted.
EPROCLIM If WLM is running, the limit on the number of processes, threads, or logins in the class

may have been met.

If NFS is installed on the system, the exec subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The alarm (“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer, or setitimer
Subroutine” on page 389) or incinterval (“getinterval, incinterval, absinterval, resinc, resabs, alarm,
ualarm, getitimer, or setitimer Subroutine” on page 389) subroutine, chmod (“chmod or fchmod
Subroutine” on page 149) or fchmod (“chmod or fchmod Subroutine” on page 149) subroutine, exit (“exit,
atexit, unatexit, _exit, or _Exit Subroutine” on page 245) subroutine, fcntl (“fcntl, dup, or dup2 Subroutine”
on page 257) subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, getrusage
(“getrusage, getrusage64, times, or vtimes Subroutine” on page 430) or times (“getrusage, getrusage64,
times, or vtimes Subroutine” on page 430) subroutine, nice (“getpriority, setpriority, or nice Subroutine” on
page 414) subroutine, profil (“profil Subroutine” on page 1186) subroutine, ptrace (“ptrace, ptracex,
ptrace64 Subroutine” on page 1317) subroutine.

The “posix_spawn or posix_spawnp Subroutine” on page 1159.

The semop subroutine, settimer (“gettimer, settimer, restimer, stime, or time Subroutine” on page 448)
subroutine, sigaction, signal, or sigvec subroutine, shmat subroutine, system subroutine, ulimit
subroutine, umask subroutine.

The awk command, ksh command, sh command.

The environment file.

The XCOFF object (a.out) file format.

The varargs macros.

Asynchronous I/O Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming
Concepts.

244 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

exit, atexit, unatexit, _exit, or _Exit Subroutine

Purpose
Terminates a process.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

void exit (Status)
int Status;

void _exit (Status)
int Status;

void _Exit (Status)
int Status;

#include <sys/limits.h>

int atexit (Function)
void (*Function) (void);

int unatexit (Function)
void (*Function)(void);

Description
The exit subroutine terminates the calling process after calling the standard I/O library _cleanup function
to flush any buffered output. Also, it calls any functions registered previously for the process by the atexit
subroutine. The atexit subroutine registers functions called at normal process termination for cleanup
processing. Normal termination occurs as a result of either a call to the exit subroutine or a return
statement in the main function.

Each function a call to the atexit subroutine registers must return. This action ensures that all registered
functions are called.

Finally, the exit subroutine calls the _exit subroutine, which completes process termination and does not
return. The _exit subroutine terminates the calling process and causes the following to occur:

The _Exit subroutine is functionally equivalent to the _exit subroutine. The _Exit subroutine does not call
functions registered with atexit or any registered signal handlers. The way the subroutine is implemented
determines whether open streams are flushed or closed, and whether temporary files are removed. The
calling process is terminated with the consequences described below.

v All of the file descriptors, directory streams, conversion descriptors, and message catalog descriptors
open in the calling process are closed.

v If the parent process of the calling process is executing a wait or waitpid, and has not set its
SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it is notified of the calling process’ termination and
the low order eight bits (that is, bits 0377) of status are made available to it. If the parent is not waiting,
the child’s status is made available to it when the parent subsequently executes wait or waitpid.

v If the parent process of the calling process is not executing a wait or waitpid, and has neither set its
SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, the calling process is transformed into a zombie
process. A zombie process is an inactive process that is deleted at some later time when its parent
process executes wait or waitpid.

Base Operating System (BOS) Runtime Services (A-P) 245

v Termination of a process does not directly terminate its children. The sending of a SIGHUP signal
indirectly terminates children in some circumstances. This can be accomplished in one of two ways. If
the implementation supports the SIGCHLD signal, a SIGCHLD is sent to the parent process. If the
parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the status is discarded,
and the lifetime of the calling process ends immediately. If SA_NOCLDWAIT is set, it is implementation
defined whether a SIGCHLD signal is sent to the parent process.

v The parent process ID of all of the calling process’ existing child processes and zombie processes are
set to the process ID of an implementation defined system process.

v Each attached shared memory segment is detached and the value of shm_nattch (see shmget) in the
data structure associated with its shared memory ID is decremented by 1.

v For each semaphore for which the calling process has set a semadj value (see semop), that value is
added to the semval of the specified semaphore.

v If the process is a controlling process, the SIGHUP signal is sent to each process in the foreground
process group of the controlling terminal belonging to the calling process.

v If the process is a controlling process, the controlling terminal associated with the session is
disassociated from the session, allowing it to be acquired by a new controlling process.

v If the exit of the process causes a process group to become orphaned, and if any member of the newly
orphaned process group is stopped, a SIGHUP signal followed by a SIGCONT signal is sent to each
process in the newly orphaned process group.

v All open named semaphores in the calling process are closed as if by appropriate calls to sem_close.

v Memory mappings that were created in the process are unmapped before the process is destroyed.

v Any blocks of typed memory that were mapped in the calling process are unmapped, as if the munmap
subroutine was implicitly called to unmap them.

v All open message queue descriptors in the calling process are closed.

v Any outstanding cancelable asynchronous I/O operations may be canceled. Those asynchronous I/O
operations that are not canceled complete as if the _Exit subroutine had not yet occurred, but any
associated signal notifications are suppressed.

The _Exit subroutine may block awaiting such I/O completion. The implementation defines whether any
I/O is canceled, and which I/O may be canceled upon _Exit.

v Threads terminated by a call to _Exit do not invoke their cancelation cleanup handlers or per thread
data destructors.

v If the calling process is a trace controller process, any trace streams that were created by the calling
process are shut down.

The unatexit() subroutine is used to unregister functions that were previously registered by the atexit()
subroutine. If the referenced function is found, it is removed from the list of functions that are called at
normal program termination.

Parameters

Status Indicates the status of the process. May be set to 0, EXIT_SUCCESS, EXIT_FAILURE, or any
other value, though only the least significant 8 bits are available to a waiting parent process.

Function Specifies a function to be called at normal process termination for cleanup processing. You may
specify a number of functions to the limit set by the ATEXIT_MAX function, which is defined in
the sys/limits.h file. A pushdown stack of functions is kept so that the last function registered is
the first function called.

Return Values
Upon successful completion, the atexit subroutine returns a value of 0. Otherwise, a nonzero value is
returned. The exit and _exit subroutines do not return a value.

246 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The unatexit() subroutine returns a value of 0 if the function referenced by Function is found and removed
from the atexit list. Otherwise, a non-zero value is returned.

Related Information
“acct Subroutine” on page 7, “lockfx, lockf, flock, or lockf64 Subroutine” on page 742, “lockfx, lockf, flock,
or lockf64 Subroutine” on page 742, “lockfx, lockf, flock, or lockf64 Subroutine” on page 742, and
“getrusage, getrusage64, times, or vtimes Subroutine” on page 430.

longjmp Subroutine, semop Subroutine, shmget Subroutine, sigaction, sigvec, or signal
Subroutine, and wait, waitpid, or wait3 Subroutine in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

Asynchronous I/O Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming
Concepts.

unistd.h in AIX 5L Version 5.3 Files Reference.

exp, expf, expl, expd32, expd64, and expd128 Subroutines

Purpose
Computes exponential, logarithm, and power functions.

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double exp (x)
double x;

float expf (x)
float x;

long double expl (x)
long double x;

_Decimal32 expd32 (x)
_Decimal32 x;
_Decimal64 expd64 (x)
_Decimal64 x;

_Decimal128 expd128 (x)
_Decimal128 x;

Description
These subroutines are used to compute exponential, logarithm, and power functions.

The exp, expf, expl, expd32, expd64, and expd128 subroutines returns exp (x).

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Base Operating System (BOS) Runtime Services (A-P) 247

Parameters

x Specifies some double-precision floating-point value.
y Specifies some double-precision floating-point value.

Return Values
Upon successful completion, the exp, expf, expl, expd32, expd64, and expd128 subroutines return the
exponential value of x.

If the correct value would cause overflow, a range error occurs and the exp, expf, expl, expd32, expd64,
and expd128 subroutine returns the value of the macro HUGE_VAL, HUGE_VALF, HUGE_VALL,
HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and either
0.0 (if supported), or an implementation-defined value is returned.

If x is NaN, a NaN is returned.

If x is ±0, 1 is returned.

If x is -Inf, +0 is returned.

If x is +Inf, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Error Codes
When using the libm.a library:

exp If the correct value would overflow, the exp subroutine returns a HUGE_VAL value and the errno
global variable is set to a ERANGE value.

When using libmsaa.a(-lmsaa):

exp If the correct value would overflow, the exp subroutine returns a HUGE_VAL value. If the correct
value would underflow, the exp subroutine returns 0. In both cases errno is set to ERANGE.

expl If the correct value would overflow, the expl subroutine returns a HUGE_VAL value. If the correct
value would underflow, the expl subroutine returns 0. In both cases errno is set to ERANGE.

expl If the correct value overflows, the expl subroutine returns a HUGE_VAL value and errno is set to
ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
library.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite,
isnan, or unordered Subroutines” on page 168.

The matherr (“matherr Subroutine” on page 793)subroutine, sinh, cosh, or tanh subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

248 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

math.h in AIX 5L Version 5.3 Files Reference.

exp2, exp2f, exp2l, exp2d32, exp2d64, and exp2d128 Subroutines

Purpose
Computes the base 2 exponential.

Syntax
#include <math.h>

double exp2 (x)
double x;

float exp2f (x)
float x;

long double exp2l (x)
long double x;
_Decimal32 exp2d32 (x)
_Decimal32 x;

_Decimal64 exp2d64 (x)
_Decimal64 x;

_Decimal128 exp2d128 (x)
_Decimal128 x;

Description
The exp2, exp2f, exp2l, exp2d32, exp2d64, and exp2d128 subroutines compute the base 2 exponential
of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept (FE_ALL_EXCEPT) before calling these subroutines. On return, if errno is nonzero or
fetestexcept (FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an
error has occurred.

Parameters

x Specifies the base 2 exponential to be computed.

Return Values
Upon successful completion, the exp2, exp2f, exp2l, exp2d32, exp2d64, or exp2d128 subroutine returns
2x .

If the correct value causes overflow, a range error occurs and the exp2, exp2f, exp2l, exp2d32, exp2d64,
and exp2d128 subroutines return the value of the macro (HUGE_VAL, HUGE_VALF, HUGE_VALL,
HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively).

If the correct value causes underflow and is not representable, a range error occurs, and 0.0 is returned.

If x is NaN, NaN is returned.

Base Operating System (BOS) Runtime Services (A-P) 249

If x is ±0, 1 is returned.

If x is -Inf, 0 is returned.

If x is +Inf, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Related Information
math.h in AIX 5L Version 5.3 Files Reference.

expm1, expm1f, expm1l, expm1d32, expm1d64, and expm1d128
Subroutine

Purpose
Computes exponential functions.

Syntax
#include <math.h>

float expm1f (x)
float x;

long double expm1l (x)
long double x;

double expm1 (x)
double x;
_Decimal32 expm1d32 (x)
_Decimal32 x;

_Decimal64 expm1d64 (x)
_Decimal64 x;
_Decimal128 expm1d128 (x)
_Decimal128 x;

Description
The expm1f, expm1l, expm1, expm1d32, expm1d64, and expm1d128 subroutines compute ex- 1.0.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the expm1f, expm1l, expm1, expm1d32, expm1d64, and expm1d128
subroutines return ex- 1.0.

250 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If the correct value would cause overflow, a range error occurs and the expm1f, expm1l, expm1,
expm1d32, expm1d64, and expm1d128 subroutines return the value of the macro HUGE_VALF,
HUGE_VALL, HUGE_VAL, HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is -Inf, -1 is returned.

If x is +Inf, x is returned.

If x is subnormal, a range error may occur and x is returned.

Related Information
“exp, expf, expl, expd32, expd64, and expd128 Subroutines” on page 247, “feclearexcept Subroutine” on
page 267, “fetestexcept Subroutine” on page 275, “ilogbf, ilogbl, or ilogb Subroutine” on page 536, and
“log, logf, logl, logd32, logd64, and logd128 Subroutines” on page 752.

math.h in AIX 5L Version 5.3 Files Reference.

fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 Subroutines

Purpose
Determines the absolute value.

Syntax
#include <math.h>

float fabsf (x)
float x;

long double fabsl (x)
long double x;

double fabs (x)
double x;

_Decimal32 fabsd32 (x)
_Decimal32 x;

_Decimal64 fabsd64 (x)
_Decimal64 x;

_Decimal128 fabsd128 (x)
_Decimal128 x;

Description
The fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 subroutines compute the absolute value of the x
parameter, |x|.

Parameters

x Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 251

Return Values
Upon successful completion, the fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 subroutines return
the absolute value of x.

If x is NaN, a NaN is returned.

If x is ±0, +0 is returned.

If x is ±Inf, +Inf is returned.

Related Information
The “class, _class, finite, isnan, or unordered Subroutines” on page 168.

math.h in AIX 5L Version 5.3 Files Reference.

fattach Subroutine

Purpose
Attaches a STREAMS-based file descriptor to a file.

Library
Standard C Library (libc.a)

Syntax
#include <stropts.h>
int fattach(int fildes, const char *path);

Description
The fattach subroutine attaches a STREAMS-based file descriptor to a file, effectively associating a
pathname with fildes. The fildes argument must be a valid open file descriptor associated with a
STREAMS file. The path argument points to a pathname of an existing file. The process must have
appropriate privileges, or must be the owner of the file named by path and have write permission. A
successful call to fattach subroutine causes all pathnames that name the file named by path to name the
STREAMS file associated with fildes, until the STEAMS file is detached from the file. A STREAMS file can
be attached to more than one file and can have several pathnames associated with it.

The attributes of the named STREAMS file are initialized as follows: the permissions, user ID, group ID,
and times are set to those of the file named by path, the number of links is set to 1, and the size and
device identifier are set to those of the STREAMS file associated with fildes. If any attributes of the named
STREAMS file are subsequently changed (for example, by chmod subroutine), neither the attributes of the
underlying file nor the attributes of the STREAMS file to which fildes refers are affected.

File descriptors referring to the underlying file, opened prior to an fattach subroutine, continue to refer to
the underlying file.

Parameters

fildes A file descriptor identifying an open STREAMS-based object.
path An existing pathname which will be associated with fildes.

252 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Value

0 Successful completion.
-1 Not successful and errno set to one of the following.

Errno Value

EACCES Search permission is denied for a component of the path prefix, or the process is the owner
of path but does not have write permission on the file named by path.

EBADF The file referred to by fildes is not an open file descriptor.
ENOENT A component of path does not name an existing file or path is an empty string.
ENOTDIR A component of the path prefix is not a directory.
EPERM The effective user ID of the process is not the owner of the file named by path and the

process does not have appropriate privilege.
EBUSY The file named by path is currently a mount point or has a STREAMS file attached to it.
ENAMETOOLONG The size of path exceeds {PATH_MAX}, or a component of path is longer than

{NAME_MAX}.
ELOOP Too many symbolic links wer encountered in resolving path.
EINVAL The fildes argument does not refer to a STREAMS file.
ENOMEM Insufficient storage space is available.

Related Specifics
The fdetach (“fdetach Subroutine” on page 263) subroutine, isastream subroutine.

fchdir Subroutine

Purpose
Directory pointed to by the file descriptor becomes the current working directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int fchdir (int Fildes)

Description
The fchdir subroutine causes the directory specified by the Fildes parameter to become the current
working directory.

Parameter

Fildes A file descriptor identifying an open directory obtained from a call to the open subroutine.

Return Values

0 Successful completion
-1 Not successful and errno set to one of the following.

Base Operating System (BOS) Runtime Services (A-P) 253

Error Codes

EACCES Search access if denied.
EBADF The file referred to by Fildes is not an open file descriptor.
ENOTDIR The open file descriptor does not refer to a directory.

Related Information
The chdir (“chdir Subroutine” on page 148) subroutine, chroot (“chroot Subroutine” on page 161)
subroutine, open (“open, openx, open64, creat, or creat64 Subroutine” on page 939) subroutine.

fclear or fclear64 Subroutine

Purpose
Makes a hole in a file.

Library
Standard C Library (libc.a)

Syntax
off_t fclear (FileDescriptor, NumberOfBytes)
int FileDescriptor;
off_t NumberOfBytes;

off64_t fclear64 (FileDescriptor, NumberOfBytes)
int FileDescriptor;
off64_t NumberOfBytes;

Description
The fclear and fclear64 subroutines zero the number of bytes specified by the NumberOfBytes parameter
starting at the current file pointer for the file specified in the FileDescriptor parameter. If Network File
System (NFS) is installed on your system, this file can reside on another node.

The fclear subroutine can only clear up to OFF_MAX bytes of the file while fclear64 can clear up to the
maximum file size.

The fclear and fclear64 subroutines cannot be applied to a file that a process has opened with the
O_DEFER mode.

Successful completion of the fclear and fclear64 subroutines clear the SetUserID bit (S_ISUID) of the file
if any of the following are true:

v The calling process does not have root user authority.

v The effective user ID of the calling process does not match the user ID of the file.

v The file is executable by the group (S_IXGRP) or others (S_IXOTH).

This subroutine also clears the SetGroupID bit (S_ISGID) if:

v The file does not match the effective group ID or one of the supplementary group IDs of the process,

OR

v The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

254 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the subroutine fails because
the data in the file was modified before the error was detected.

In the large file enabled programming environment, fclear is redefined to be fclear64.

Parameters

FileDescriptor Indicates the file specified by the FileDescriptor parameter must be open for writing. The
FileDescriptor is a small positive integer used instead of the file name to identify a file.
This function differs from the logically equivalent write operation in that it returns full
blocks of binary zeros to the file system, constructing holes in the file.

NumberOfBytes Indicates the number of bytes that the seek pointer is advanced. If you use the fclear
and fclear64 subroutines past the end of a file, the rest of the file is cleared and the seek
pointer is advanced by NumberOfBytes. The file size is updated to include this new hole,
which leaves the current file position at the byte immediately beyond the new end-of-file
pointer.

Return Values
Upon successful completion, a value of NumberOfBytes is returned. Otherwise, a value of -1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The fclear and fclear64 subroutines fail if one or more of the following are true:

EIO I/O error.
EBADF The FileDescriptor value is not a valid file descriptor open for writing.
EINVAL The file is not a regular file.
EMFILE The file is mapped O_DEFER by one or more processes.
EAGAIN The write operation in the fclear subroutine failed due to an enforced write lock on the file.

EFBIG The current offset plus NumberOfBytes is exceeds the offset maximum established in the open
file description associated with FileDescriptor.

EFBIG An attempt was made to write a file that exceeds the process’ file size limit or the maximum file
size. If the user has set the environment variable XPG_SUS_ENV=ON prior to execution of the
process, then the SIGXFSZ signal is posted to the process when exceeding the process’ file size
limit.

If NFS is installed on the system the fclear and fclear64 subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page 939) subroutine,
truncate or ftruncate subroutines.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 255

fclose or fflush Subroutine

Purpose
Closes or flushes a stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int fclose (Stream)
FILE *Stream;

int fflush (Stream)
FILE *Stream;

Description
The fclose subroutine writes buffered data to the stream specified by the Stream parameter, and then
closes the stream. The fclose subroutine is automatically called for all open files when the exit subroutine
is invoked.

The fflush subroutine writes any buffered data for the stream specified by the Stream parameter and
leaves the stream open. The fflush subroutine marks the st_ctime and st_mtime fields of the underlying
file for update.

If the Stream parameter is a null pointer, the fflush subroutine performs this flushing action on all streams
for which the behavior is defined.

Parameters

Stream Specifies the output stream.

Return Values
Upon successful completion, the fclose and fflush subroutines return a value of 0. Otherwise, a value of
EOF is returned.

Error Codes
If the fclose and fflush subroutines are unsuccessful, the following errors are returned through the errno
global variable:

EAGAIN The O_NONBLOCK or O_NDELAY flag is set for the file descriptor underlying the Stream
parameter and the process would be delayed in the write operation.

EBADF The file descriptor underlying Stream is not valid.
EFBIG An attempt was made to write a file that exceeds the process’ file size limit or the maximum file

size. See the ulimit subroutine.
EFBIG The file is a regular file and an attempt was made to write at or beyond the offset maximum

associated with the corresponding stream.
EINTR The fflush subroutine was interrupted by a signal.

256 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EIO The process is a member of a background process group attempting to write to its controlling
terminal, the TOSTOP signal is set, the process is neither ignoring nor blocking the SIGTTOU
signal and the process group of the process is orphaned. This error may also be returned under
implementation-dependent conditions.

ENOSPC No free space remained on the device containing the file.
EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any process. A

SIGPIPE signal is sent to the process.
ENXIO A request was made of a non-existent device, or the request was outside the capabilities of the

device

Related Information
The close (“close Subroutine” on page 176) subroutine, exit, atexit, or _exit (“exit, atexit, unatexit, _exit,
or _Exit Subroutine” on page 245) subroutine, fopen, freopen, or fdopen (“fopen, fopen64, freopen,
freopen64 or fdopen Subroutine” on page 290) subroutine, setbuf, setvbuf, setbuffer, or setlinebuf
subroutine.

Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

fcntl, dup, or dup2 Subroutine

Purpose
Controls open file descriptors.

Library
Standard C Library (libc.a)

Berkeley compatibility library (libbsd.a) (for the fcntl subroutine)

Syntax
#include <fcntl.h>

int fcntl (FileDescriptor, Command, Argument)
int FileDescriptor, Command, Argument;

#include <unistd.h>

int dup2(Old, New)
int Old, New;

int dup(FileDescriptor)
int FileDescriptor;

Description
The fcntl subroutine performs controlling operations on the open file specified by the FileDescriptor
parameter. If Network File System (NFS) is installed on your system, the open file can reside on another
node. The fcntl subroutine is used to:

v Duplicate open file descriptors.

v Set and get the file-descriptor flags.

v Set and get the file-status flags.

v Manage record locks.

Base Operating System (BOS) Runtime Services (A-P) 257

v Manage asynchronous I/O ownership.

v Close multiple files.

The fcntl subroutine can provide the same functions as the dup and dup2 subroutines.

If FileDescriptor refers to a terminal device or socket, then asynchronous I/O facilities can be used. These
facilities are normally enabled by using the ioctl subroutine with the FIOASYNC, FIOSETOWN, and
FIOGETOWN commands. However, a BSD-compatible mechanism is also available if the application is
linked with the libbsd.a library.

When the FileDescriptor parameter refers to a shared memory object, the fcntl subroutine manages only
the F_DUPFD, F_DUP2FD, F_GETFD, F_SETFD, F_GETFL, and F_CLOSEM commands.

When using the libbsd.a library, asynchronous I/O is enabled by using the F_SETFL command with the
FASYNC flag set in the Argument parameter. The F_GETOWN and F_SETOWN commands get the
current asynchronous I/O owner and set the asynchronous I/O owner. However, these commands are valid
only when the file descriptor refers to a terminal device or a socket.

All applications containing the fcntl subroutine must be complied with _BSD set to a specific value.
Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

General Record Locking Information
A lock is either an enforced or advisory lock and either a read or a write lock.

Attention: Buffered I/O does not work properly when used with file locking. Do not use the standard
I/O package routines on files that are going to be locked.

For a lock to be an enforced lock, the Enforced Locking attribute of the file must be set; for example, the
S_ENFMT bit must be set, but the S_IXGRP, S_IXUSR, and S_IXOTH bits must be clear. Otherwise, the
lock is an advisory lock. A given file can have advisory or enforced locks, but not both. The description of
the sys/mode.h file includes a description of file attributes.

When a process holds an enforced lock on a section of a file, no other process can access that section of
the file with the read or write subroutine. In addition, the open (“open, openx, open64, creat, or creat64
Subroutine” on page 939) and ftruncate subroutines cannot truncate the locked section of the file, and the
fclear (“fclear or fclear64 Subroutine” on page 254) subroutine cannot modify the locked section of the file.
If another process attempts to read or modify the locked section of the file, the process either sleeps until
the section is unlocked or returns with an error indication.

When a process holds an advisory lock on a section of a file, no other process can lock that section of the
file (or an overlapping section) with the fcntl subroutine. (No other subroutines are affected.) As a result,
processes must voluntarily call the fcntl subroutine in order to make advisory locks effective.

When a process holds a read lock on a section of a file, other processes can also set read locks on that
section or on subsets of it. Read locks are also called shared locks.

A read lock prevents any other process from setting a write lock on any part of the protected area. If the
read lock is also an enforced lock, no other process can modify the protected area.

The file descriptor on which a read lock is being placed must have been opened with read access.

When a process holds a write lock on a section of a file, no other process can set a read lock or a write
lock on that section. Write locks are also called exclusive locks. Only one write lock and no read locks can
exist for a specific section of a file at any time.

258 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If the lock is also an enforced lock, no other process can read or modify the protected area.

The following general rules about file locking apply:

v Changing or unlocking part of a file in the middle of a locked section leaves two smaller sections locked
at each end of the originally locked section.

v If the calling process holds a lock on a file, that lock can be replaced by later calls to the fcntl
subroutine.

v All locks associated with a file for a given process are removed when the process closes any file
descriptor for that file.

v Locks are not inherited by a child process after a fork (“fork, f_fork, or vfork Subroutine” on page 293)
subroutine is run.

Note: Deadlocks due to file locks in a distributed system are not always detected. When such
deadlocks can possibly occur, the programs requesting the locks should set time-out timers.

Locks can start and extend beyond the current end of a file but cannot be negative relative to the
beginning of the file. A lock can be set to extend to the end of the file by setting the l_len field to 0. If
such a lock also has the l_start and l_whence fields set to 0, the whole file is locked. The l_len, l_start,
and l_whence locking fields are part of the flock structure.

Note: The following description applies to AIX 4.3 and later releases.

When an application locks a region of a file using the 32 bit locking interface (F_SETLK), and the last byte
of the lock range includes MAX_OFF (2 Gb - 1), then the lock range for the unlock request will be
extended to include MAX_END (2 ^ ^ 63 - 1).

Parameters

FileDescriptor Specifies an open file descriptor obtained from a successful call to the open subroutine,
fcntl subroutine, pipe subroutine, or shm_open subroutine. File descriptors are small
positive integers used (instead offile names) to identify files or a shared memory object.

Argument Specifies a variable whose value sets the function specified by the Command parameter.
When dealing with file locks, the Argument parameter must be a pointer to the FLOCK
structure.

Command Specifies the operation performed by the fcntl subroutine. The fcntl subroutine can
duplicate open file descriptors, set file-descriptor flags, set file descriptor locks, set
process IDs, and close open file descriptors.

Duplicating File Descriptors

F_DUPFD Returns a new file descriptor as follows:

v Lowest-numbered available file descriptor greater than or equal to the Argument parameter

v Same object references as the original file

v Same file pointer as the original file (that is, both file descriptors share one file pointer if the object is
a file)

v Same access mode (read, write, or read-write)

v Same file status flags (That is, both file descriptors share the same file status flags.)

v The close-on-exec flag (FD_CLOEXEC bit) associated with the new file descriptor is cleared

Base Operating System (BOS) Runtime Services (A-P) 259

Setting File-Descriptor Flags

F_GETFD Gets the close-on-exec flag (FD_CLOEXEC bit) that is associated with the file descriptor specified by
the FileDescriptor parameter. The Argument parameter is ignored. File descriptor flags are associated
with a single file descriptor, and do not affect others associated with the same file.

F_SETFD Assigns the value of the Argument parameter to the close-on-exec flag (FD_CLOEXEC bit) that is
associated with the FileDescriptor parameter. If the FD_CLOEXEC flag value is 0, the file remains
open across any calls to exec subroutines; otherwise, the file will close upon the successful execution
of an exec subroutine.

F_GETFL Gets the file-status flags and file-access modes for the open file description associated with the file
descriptor specified by the FileDescriptor parameter. The open file description is set at the time the file
is opened and applies only to those file descriptors associated with that particular call to the file. This
open file descriptor does not affect other file descriptors that refer to the same file with different open
file descriptions.

The file-status flags have the following values:

O_APPEND
Set append mode.

O_NONBLOCK
No delay.

The file-access modes have the following values:

O_RDONLY
Open for reading only.

O_RDWR
Open for reading and writing.

O_WRONLY
Open for writing only.

The file access flags can be extracted from the return value using the O_ACCMODE mask, which is
defined in the fcntl.h file.

F_SETFL Sets the file status flags from the corresponding bits specified by the Argument parameter. The
file-status flags are set for the open file description associated with the file descriptor specified by the
FileDescriptor parameter. The following flags may be set:

v O_APPEND or FAPPEND

v O_NDELAY or FNDELAY

v O_NONBLOCK or FNONBLOCK

v O_SYNC or FSYNC

v FASYNC

The O_NDELAY and O_NONBLOCK flags affect only operations against file descriptors derived from
the same open subroutine. In BSD, these operations apply to all file descriptors that refer to the object.

Setting File Locks

F_GETLK Gets information on the first lock that blocks the lock described in the flock structure. The Argument
parameter should be a pointer to a type struct flock, as defined in the flock.h file. The information
retrieved by the fcntl subroutine overwrites the information in the struct flock pointed to by the
Argument parameter. If no lock is found that would prevent this lock from being created, the structure
is left unchanged, except for lock type (l_type) which is set to F_UNLCK.

F_SETLK Sets or clears a file-segment lock according to the lock description pointed to by the Argument
parameter. The Argument parameter should be a pointer to a type struct flock, which is defined in
the flock.h file. The F_SETLK option is used to establish read (or shared) locks (F_RDLCK), or write
(or exclusive) locks (F_WRLCK), as well as to remove either type of lock (F_UNLCK). The lock types
are defined by the fcntl.h file. If a shared or exclusive lock cannot be set, the fcntl subroutine
returns immediately.

260 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

F_SETLKW Performs the same function as the F_SETLK option unless a read or write lock is blocked by existing
locks, in which case the process sleeps until the section of the file is free to be locked. If a signal that
is to be caught is received while the fcntl subroutine is waiting for a region, the fcntl subroutine is
interrupted, returns a -1, sets the errno global variable to EINTR. The lock operation is not done.

F_GETLK64 Gets information on the first lock that blocks the lock described in the flock64 structure. The
Argument parameter should be a pointer to an object of the type struct flock64, as defined in
the flock.h file. The information retrieved by the fcntl subroutine overwrites the information in the
struct flock64 pointed to by the Argument parameter. If no lock is found that would prevent this
lock from being created, the structure is left unchanged, except for lock type (l_type) which is set
to F_UNLCK.

F_SETLK64 Sets or clears a file-segment lock according to the lock description pointed to by the Argument
parameter. The Argument parameter should be a pointer to a type struct flock64, which is
defined in the flock.h file. The F_SETLK option is used to establish read (or shared) locks
(F_RDLCK), or write (or exclusive) locks (F_WRLCK), as well as to remove either type of lock
(F_UNLCK). The lock types are defined by the fcntl.h file. If a shared or exclusive lock cannot
be set, the fcntl subroutine returns immediately.

F_SETLKW64 Performs the same function as the F_SETLK option unless a read or write lock is blocked by
existing locks, in which case the process sleeps until the section of the file is free to be locked. If
a signal that is to be caught is received while the fcntl subroutine is waiting for a region, the fcntl
subroutine is interrupted, returns a -1, sets the errno global variable to EINTR. The lock
operation is not done.

Setting Process ID

F_GETOWN Gets the process ID or process group currently receiving SIGIO and SIGURG signals. Process
groups are returned as negative values.

F_SETOWN Sets the process or process group to receive SIGIO and SIGURG signals. Process groups are
specified by supplying a negative Argument value. Otherwise, the Argument parameter is interpreted
as a process ID.

Closing File Descriptors

F_CLOSEM Closes all file descriptors from FileDescriptor up to the number specified by the OPEN_MAX value.
Old Specifies an open file descriptor.
New Specifies an open file descriptor that is returned by the dup2 subroutine.

Compatibility Interfaces

The lockfx Subroutine
The fcntl subroutine functions similar to the lockfx subroutine, when the Command parameter is
F_SETLK, F_SETLKW, or F_GETLK, and when used in the following way:

fcntl (FileDescriptor, Command, Argument)

is equivalent to:

lockfx (FileDescriptor, Command, Argument)

The dup and dup2 Subroutines
The fcntl subroutine functions similar to the dup and dup2 subroutines, when used in the following way:
dup (FileDescriptor)

is equivalent to:

Base Operating System (BOS) Runtime Services (A-P) 261

fcntl (FileDescriptor, F_DUPFD, 0)

dup2 (Old, New)

is equivalent to:
close (New);
fcntl(Old, F_DUPFD, New)

The dup and dup2 subroutines differ from the fcntl subroutine in the following ways:

v If the file descriptor specified by the New parameter is greater than or equal to OPEN_MAX, the dup2
subroutine returns a -1 and sets the errno variable to EBADF.

v If the file descriptor specified by the Old parameter is valid and equal to the file descriptor specified by
the New parameter, the dup2 subroutine will return the file descriptor specified by the New parameter,
without closing it.

v If the file descriptor specified by the Old parameter is not valid, the dup2 subroutine will be
unsuccessful and will not close the file descriptor specified by the New parameter.

v The value returned by the dup and dup2 subroutines is equal to the New parameter upon successful
completion; otherwise, the return value is -1.

Return Values
Upon successful completion, the value returned depends on the value of the Command parameter, as
follows:

Command Return Value
F_DUPFD A new file descriptor
F_GETFD The value of the flag (only the FD_CLOEXEC bit is defined)
F_SETFD A value other than -1
F_GETFL The value of file flags
F_SETFL A value other than -1
F_GETOWN The value of descriptor owner
F_SETOWN A value other than -1
F_GETLK A value other than -1
F_SETLK A value other than -1
F_SETLKW A value other than -1
F_CLOSEM A value other than -1.

If the fcntl subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The fcntl subroutine is unsuccessful if one or more of the following are true:

EACCES The Command argument is F_SETLK; the type of lock is a shared or exclusive lock and the
segment of a file to be locked is already exclusively-locked by another process, or the type is an
exclusive lock and some portion of the segment of a file to be locked is already shared-locked or
exclusive-locked by another process.

EBADF The FileDescriptor parameter is not a valid open file descriptor.
EDEADLK The Command argument is F_SETLKW; the lock is blocked by some lock from another process

and putting the calling process to sleep, waiting for that lock to become free would cause a
deadlock.

ENOTTY The file descriptor does not refer to a terminal device or socket.
EMFILE The Command parameter is F_DUPFD, and the maximum number of file descriptors are currently

open (OPEN_MAX).
EINVAL The Command parameter is F_DUPFD, and the Argument parameter is negative or greater than or

equal to OPEN_MAX.

262 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EINVAL An illegal value was provided for the Command parameter.
EINVAL An attempt was made to lock a fifo or pipe.
ESRCH The value of the Command parameter is F_SETOWN, and the process ID specified as the

Argument parameter is not in use.
EINTR The Command parameter was F_SETLKW and the process received a signal while waiting to

acquire the lock.
EOVERFLOW The Command parameter was F_GETLK and the block lock could not be represented in the flock

structure.

The dup and dup2 subroutines fail if one or both of the following are true:

EBADF The Old parameter specifies an invalid open file descriptor or the New parameter specifies a file
descriptor that is out of range.

EMFILE The number of file descriptors exceeds the OPEN_MAX value or there is no file descriptor above the
value of the New parameter.

If NFS is installed on the system, the fcntl subroutine can fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The close (“close Subroutine” on page 176) subroutine, execl, excecv, execle, execve, execlp, execvp,
or exect (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutines, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, ioctl or ioctlx (“ioctl, ioctlx,
ioctl32, or ioctl32x Subroutine” on page 563) subroutine, lockf (“lockfx, lockf, flock, or lockf64 Subroutine”
on page 742) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on
page 939) subroutines, read subroutine, write subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

fdetach Subroutine

Purpose
Detaches STREAMS-based file from the file to which it was attached.

Library
Standard C Library (libc.a)

Syntax
#include <stropts.h>
int fdetach(const char *path);

Parameters

path Pathname of a file previous associated with a STREAMS-based object using the fattach subroutine.

Description
The fdetach subroutine detaches a STREAMS-based file from the file to which it was attached by a
previous call to fattach subroutine. The path argument points to the pathname of the attached STREAMS

Base Operating System (BOS) Runtime Services (A-P) 263

file. The process must have appropriate privileges or be the owner of the file. A successful call to fdetach
subroutine causes all pathnames that named the attached STREAMS file to again name the file to which
the STREAMS file was attached. All subsequent operations on path will operate on the underlying file and
not on the STREAMS file.

All open file descriptors established while the STREAMS file was attached to the file referenced by path
will still refer to the STREAMS file after the fdetach subroutine has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful call to
fdetach subroutine has the same effect as performing the last close subroutine on the attached file.

The umount command may be used to detach a file name if an | application exits before performing
fdetach subroutine.

Return Value

0 Successful completion.
-1 Not successful and errno set to one of the following.

Errno Value

EACCES Search permission is denied on a component of the path prefix.
EPERM The effective user ID is not the owner of path and the process does not have appropriate

privileges.
ENOTDIR A component of the path prefix is not a directory.
ENOENT A component of path parameter does not name an existing file or path is an empty string.
EINVAL The path parameter names a file that is not currently attached.
ENAMETOOLONG The size of path parameter exceeds {PATH_MAX}, or a component of path is longer than

{NAME_MAX}.
ELOOP Too many symbolic links were encountered in resolving the path parameter.
ENOMEM Insufficient storage space is available.

Related Information
The fattach (“fattach Subroutine” on page 252) subroutine, isastream subroutine.

fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 Subroutines

Purpose
Computes the positive difference between two floating-point numbers.

Syntax
#include <math.h>

double fdim (x, y)
double x;
double y;

float fdimf (x, y)
float x;
float y;

long double fdiml (x, y)
long double x;
long double y;

264 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

_Decimal32 fdimd32 (x, y);
_Decimal32 x;
_Decimal32 y;

_Decimal64 fdimd64 (x, y);
_Decimal64 x;
_Decimal64 y;

_Decimal128 fdimd128 (x, y);
_Decimal128 x;
_Decimal128 y;

Description
The fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 subroutines determine the positive difference
between their arguments. If the value of the x parameter is greater than that of the y parameter, x - y is
returned. If x is less than or equal to y, +0 is returned.

An application that wants to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if the errno is a value of
non-zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is a
value of non-zero, an error has occurred.

Parameters

x Specifies the value to be computed.
y Specifies the value to be computed.

Return Values
Upon successful completion, the fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 subroutines return
the positive difference value.

If x-y is positive and overflows, a range error occurs and the fdim, fdimf, fdiml, fdimd32, fdimd64, and
fdimd128 subroutines return the value of the HUGE_VAL, HUGE_VALF, HUGE_VALL, HUGE_VAL_D32,
HUGE_VAL_D64 and HUGE_VAL_D128 macro respectively.

If x-y is positive and underflows, a range error might occur, and 0.0 is returned.

If x or y is NaN, a NaN is returned.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, “fmax, fmaxf, fmaxl,
fmaxd32, fmaxd64, and fmaxd128 Subroutines” on page 283, and “madd, msub, mult, mdiv, pow, gcd,
invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or itom
Subroutine” on page 789.

math.h in AIX 5L Version 5.3 Files Reference.

fe_dec_getround and fe_dec_setround Subroutines

Purpose
Reads and sets the IEEE decimal floating-point rounding mode.

Base Operating System (BOS) Runtime Services (A-P) 265

Library
Standard C Library (libc.a)

Syntax
#include <fenv.h>
int fe_dec_getround ();
int fe_dec_setround (RoundMode);
int RoundMode

Description
The fe_dec_getround subroutine returns the current rounding mode. The fe_dec_setround subroutine
changes the rounding mode to the RoundMode parameter and returns the value of 0 if it successfully
completes.

Decimal floating-point rounding occurs when the infinitely precise result of a decimal floating-point
operation cannot be represented exactly in the destination decimal floating-point format. The IEEE
Standard for Decimal Floating-Point Arithmetic allows floating-point numbers to be rounded in five different
ways: round toward zero, round to nearest, round toward +INF, round toward −INF, and round to
nearest ties away from zero. Once a rounding mode is selected, it affects all subsequent decimal
floating-point operations until another rounding mode is selected.

Tip: The default decimal floating-point rounding mode is the round to nearest mode. All C main
programs begin with the rounding mode that is set to round to nearest.

The encodings of the rounding modes are defined in the ANSI C Standard. The fenv.h file contains
definitions for the rounding modes. The following table shows the fenv.h definition, the ANSI C Standard
value, and a description of each rounding mode.

fenv.h definition ANSI value Description

FE_DEC_TONEAREST 0 Round to nearest

FE_DEC_TOWARDZERO 1 Round toward 0

FE_DEC_UPWARD 2 Round toward +INF

FE_DEC_DOWNWARD 3 Round toward -INF

FE_DEC_TONEARESTFROMZERO 4 Round to nearest ties away from zero

Parameters

RoundMode Specifies one of the following modes:
FE_DEC_TOWARDZERO, FE_DEC_TONEAREST,
FE_DEC_UPWARD, FE_DEC_DOWNWARD,
FE_DEC_TONEARESTFROMZERO.

Return Values
Upon successful completion, the fe_dec_getround subroutine returns the current rounding mode.
Otherwise, it returns -1.

Upon successful completion, the fe_dec_setround subroutine returns the value of zero. Otherwise, it
returns -1.

266 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The “floor, floorf, floorl, floord32, floord64, floord128, nearest, trunc, itrunc, and uitrunc Subroutines” on
page 279, “ceil, ceilf, ceill, ceild32, ceild64, and ceild128 Subroutines” on page 141, “fmod, fmodf, fmodl,
fmodd32, fmodd64, and fmodd128 Subroutines” on page 285, “fabsf, fabsl, fabs, fabsd32, fabsd64, and
fabsd128 Subroutines” on page 251, “fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, or fp_disable Subroutine” on page 296, and the “fp_clr_flag, fp_set_flag, fp_read_flag, or
fp_swap_flag Subroutine” on page 297.

feclearexcept Subroutine

Purpose
Clears floating-point exceptions.

Syntax
#include <fenv.h>

int feclearexcept (excepts)
int excepts;

Description
The feclearexcept subroutine attempts to clear the supported floating-point exceptions represented by the
excepts parameter.

Parameters

excepts Specifies the supported floating-point exception to be cleared.

Return Values
If the excepts parameter is zero or if all the specified exceptions were successfully cleared, the
feclearexcept subroutine returns zero. Otherwise, it returns a nonzero value.

Related Information
“fegetexceptflag or fesetexceptflag Subroutine” on page 268, “feraiseexcept Subroutine” on page 273, and
“fetestexcept Subroutine” on page 275

fegetenv or fesetenv Subroutine

Purpose
Gets and sets the current floating-point environment.

Syntax
#include <fenv.h>

int fegetenv (envp)
fenv_t *envp;

int fesetenv (envp)
const fenv_t *envp;

Base Operating System (BOS) Runtime Services (A-P) 267

Description
The fegetenv subroutine stores the current floating-point environment in the object pointed to by the envp
parameter.

The fesetenv subroutine attempts to establish the floating-point environment represented by the object
pointed to by the envp parameter. The envp parameter points to an object set by a call to the fegetenv or
feholdexcept subroutines, or equal a floating-point environment macro. The fesetenv subroutine does not
raise floating-point exceptions. It only installs the state of the floating-point status flags represented
through its argument.

Parameters

envp Points to an object set by a call to the fegetenv or feholdexcept subroutines, or equal a floating-point
environment macro.

Return Values
If the representation was successfully stored, the fegetenv subroutine returns zero. Otherwise, it returns a
nonzero value. If the environment was successfully established, the fesetenv subroutine returns zero.
Otherwise, it returns a nonzero value.

Related Information
“feholdexcept Subroutine” on page 269 and “feupdateenv Subroutine” on page 276

fegetexceptflag or fesetexceptflag Subroutine

Purpose
Gets and sets floating-point status flags.

Syntax
#include <fenv.h>

int fegetexceptflag (flagp, excepts)
feexcept_t *flagp;
int excepts;

int fesetexceptflag (flagp, excepts)
const fexcept_t *flagp;
int excepts;

Description
The fegetexceptflag subroutine attempts to store an implementation-defined representation of the states
of the floating-point status flags indicated by the excepts parameter in the object pointed to by the flagp
parameter.

The fesetexceptflag subroutine attempts to set the floating-point status flags indicated by the excepts
parameter to the states stored in the object pointed to by the flagp parameter. The value pointed to by the
flagp parameter shall have been set by a previous call to the fegetexceptflag subroutine whose second
argument represented at least those floating-point exceptions represented by the excepts parameter. This
subroutine does not raise floating-point exceptions. It only sets the state of the flags.

268 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

flagp Points to the object that holds the implementation-defined representation of the states of the
floating-point status flags.

excepts Points to an implementation-defined representation of the states of the floating-point status flags.

Return Values
If the representation was successfully stored, the fegetexceptflag parameter returns zero. Otherwise, it
returns a nonzero value. If the excepts parameter is zero or if all the specified exceptions were
successfully set, the fesetexceptflag subroutine returns zero. Otherwise, it returns a nonzero value.

Related Information
“feraiseexcept Subroutine” on page 273 and “fetestexcept Subroutine” on page 275.

fegetround or fesetround Subroutine

Purpose
Gets and sets the current rounding direction.

Syntax
#include <fenv.h>

int fegetround (void)

int fesetround (round)
int round;

Description
The fegetround subroutine gets the current rounding direction.

The fesetround subroutine establishes the rounding direction represented by the round parameter. If the
round parameter is not equal to the value of a rounding direction macro, the rounding direction is not
changed.

Parameters

round Specifies the rounding direction.

Return Values
The fegetround subroutine returns the value of the rounding direction macro representing the current
rounding direction or a negative value if there is no such rounding direction macro or the current rounding
direction is not determinable.

The fesetround subroutine returns a zero value if the requested rounding direction was established.

feholdexcept Subroutine

Purpose
Saves current floating-point environment.

Base Operating System (BOS) Runtime Services (A-P) 269

Syntax
#include <fenv.h>

int feholdexcept (envp)
fenv_t *envp;

Description
The feholdexcept subroutine saves the current floating-point environment in the object pointed to by envp,
clears the floating-point status flags, and installs a non-stop (continue on floating-point exceptions) mode
for all floating-point exceptions.

Parameters

envp Points to the current floating-point environment.

Return Values
The feholdexcept subroutine returns zero if non-stop floating-point exception handling was successfully
installed.

Related Information
The “feupdateenv Subroutine” on page 276.

fence Subroutine

Purpose
Allows you to request and change the virtual shared disk fence map.

Syntax
#include <vsd_ioctl.h>
int ioctl(FileDescriptor, Command, Argument)
int FileDescriptor, Command;
void *Argument;

Description
Use this subroutine to request and change the virtual shared disk fence map. The fence map, which
controls whether virtual shared disks can send or satisfy requests from virtual shared disks at remote
nodes, is defined as:
struct vsd_FenceMap /* This is the argument to the VSD fence ioctl. */
{

ulong flags;
vsd_minorBitmap_t minornoBitmap; /* Bitmap of minor numbers to fence

(supports 10000 vsds) */
vsd_Fence_Bitmap_t nodesBitmap; /* Nodes to (un)fence these vsds from

(supports node numbers 1-2048) */

}vsd_FenceMap_t

The flags VSD_FENCE and VSD_UNFENCE are mutually exclusive — an ioctl can either fence a set of
virtual shared disks or unfence a set of virtual shared disks, but not both. The minornoBitmap denotes
which virtual shared disks are to be fenced/unfenced from the nodes specified in the nodesBitmap.

270 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters
FileDescriptor Specifies the open file descriptor for which the control operation is to be performed.

Command Specifies the control function to be performed. The value of this parameter is always
GIOCFENCE.

Argument Specifies a pointer to a vsd_fence_map structure.

The flags field of the vsd_fence_map structure determines the type of operation that is performed. The
flags could be set with one or more options using the OR operator. These options are as follows:
VSD_FENCE_FORCE If this option is specified, a node can unfence itself.
VSD_FENCE_GET Denotes a query request.
VSD_FENCE Denotes a fence request.
VSD_UNFENCE Denotes an unfence request.

Examples
The following example fences a virtual shared disk with a minor number of 7 from node 4 and 5, and
unfences a virtual shared disk with a minor number of 5 from node 1:
int fd;
vsd_FenceMap_t FenceMap;

/* Clear the FenceMap */
bzero(FenceMap, sizeof(vsd_FenceMap_t));

/* fence nodes 4,5 from minor 7 */
FenceMap.flags = VSD_FENCE;
MAP_SET(7, FenceMap.minornoBitmap);
MAP_SET(4, FenceMap.nodesBitmap);
MAP_SET(5, FenceMap.nodesBitmap);

/* Issue the fence request */
ioctl(fd,GIOCFENCE,&FenceMap);

/* Unfence node 1 from minor 5*/
bzero(FenceMap, sizeof(vsd_FenceMap_t));
FenceMap.flags = VSD_UNFENCE | VSD_FENCE_FORCE;
MAP_SET(5, FenceMap.minornoBitmap);
MAP_SET(1, FenceMap.nodesBitmap);

/* Issue the fence request */
ioctl(fd,GIOCFENCE,&FenceMap);

Return Values
If the request succeeds, the ioctl returns 0. In the case of an error, a value of -1 is returned with the global
variable errno set to identify the error.

Error Values
The fence ioctl subroutine can return the following error codes:

EACCES Indicates that an unfence was requested from a fenced node without the
VSD_FENCE_FORCE option.

EINVAL Indicates an invalid request (ambiguous flags or unidentified virtual shared
disks).

ENOCONNECT Indicates that either the primary or the secondary node for a virtual shared
disk to be fenced is not a member of the virtual shared disk group, or the
virtual shared disk in question is in the stopped state.

Base Operating System (BOS) Runtime Services (A-P) 271

ENOTREADY Indicates that the group is not active or the Recoverable virtual shared
disk subsystem is not available.

ENXIO Indicates that the Virtual shared disk driver is being unloaded.

feof, ferror, clearerr, or fileno Macro

Purpose
Checks the status of a stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int feof (Stream)
FILE *Stream;

int ferror (Stream)
FILE *Stream;

void clearerr (Stream)
FILE *Stream;

int fileno (Stream)
FILE *Stream;

Description
The feof macro inquires about the end-of-file character (EOF). If EOF has previously been detected
reading the input stream specified by the Stream parameter, a nonzero value is returned. Otherwise, a
value of 0 is returned.

The ferror macro inquires about input or output errors. If an I/O error has previously occurred when
reading from or writing to the stream specified by the Stream parameter, a nonzero value is returned.
Otherwise, a value of 0 is returned.

The clearerr macro inquires about the status of a stream. The clearerr macro resets the error indicator
and the EOF indicator to a value of 0 for the stream specified by the Stream parameter.

The fileno macro inquires about the status of a stream. The fileno macro returns the integer file descriptor
associated with the stream pointed to by the Stream parameter. Otherwise a value of -1 is returned.

Parameters

Stream Specifies the input or output stream.

Related Information
The fopen, freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290)
subroutine, open (“open, openx, open64, creat, or creat64 Subroutine” on page 939) subroutine.

Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

272 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

feraiseexcept Subroutine

Purpose
Raises the floating-point exception.

Syntax
#include <fenv.h>

int feraiseexcept (excepts)
int excepts;

Description
The feraiseexcept subroutine attempts to raise the supported floating-point exceptions represented by the
excepts parameter. The order in which these floating-point exceptions are raised is unspecified.

Parameters

excepts Points to the floating-point exceptions.

Return Values
If the argument is zero or if all the specified exceptions were successfully raised, the feraiseexcept
subroutine returns a zero. Otherwise, it returns a nonzero value.

Related Information
“feclearexcept Subroutine” on page 267, “fegetexceptflag or fesetexceptflag Subroutine” on page 268,
“fetestexcept Subroutine” on page 275.

fetch_and_add Subroutine

Purpose
Updates a single word variable atomically.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

int fetch_and_add (word_addr, value)
atomic_p word_addr;
int value;

Description
The fetch_and_add subroutine increments one word in a single atomic operation. This operation is useful
when a counter variable is shared between several threads or processes. When updating such a counter
variable, it is important to make sure that the fetch, update, and store operations occur atomically (are not
interruptible). For example, consider the sequence of events which could occur if the operations were
interruptible:

1. A process fetches the counter value and adds one to it.

Base Operating System (BOS) Runtime Services (A-P) 273

2. A second process fetches the counter value, adds one, and stores it.

3. The first process stores its value.

The result of this is that the update made by the second process is lost.

Traditionally, atomic access to a shared variable would be controlled by a mechanism such as
semaphores. Compared to such mechanisms, the fetch_and_add subroutine requires very little overhead,
and provided that the counter variable fits in a single machine word, this subroutine provides a highly
efficient way of performing this operation.

Note: The word containing the counter variable must be aligned on a full word boundary.

Parameters

word_addr Specifies the address of the word variable to be incremented.
value Specifies the value to be added to the word variable.

Return Values
This subroutine returns the original value of the word.

Related Information
The fetch_and_and (“fetch_and_and or fetch_and_or Subroutine”) subroutine, fetch_and_or
(“fetch_and_and or fetch_and_or Subroutine”) subroutine, compare_and_swap (“compare_and_swap
Subroutine” on page 177) subroutine.

fetch_and_and or fetch_and_or Subroutine

Purpose
Sets or clears bits in a single word variable atomically.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

uint fetch_and_and (word_addr, mask)
atomic_p word_addr;
int mask;

uint fetch_and_or (word_addr, mask)
atomic_p word_addr;
int mask;

Description
The fetch_and_and and fetch_and_or subroutines respectively clear and set bits in one word, according
to a bit mask, in a single atomic operation. The fetch_and_and subroutine clears bits in the word which
correspond to clear bits in the bit mask, and the fetch_and_or subroutine sets bits in the word which
correspond to set bits in the bit mask.

274 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

These operations are useful when a variable containing bit flags is shared between several threads or
processes. When updating such a variable, it is important that the fetch, bit clear or set, and store
operations occur atomically (are not interruptible). For example, consider the sequence of events which
could occur if the operations were interruptible:

1. A process fetches the flags variable and sets a bit in it.

2. A second process fetches the flags variable, sets a different bit, and stores it.

3. The first process stores its value.

The result is that the update made by the second process is lost.

Traditionally, atomic access to a shared variable would be controlled by a mechanism such as
semaphores. Compared to such mechanisms, the fetch_and_and and fetch_and_or subroutines require
very little overhead, and provided that the flags variable fits in a single machine word, they provide a
highly efficient way of performing this operation.

Note: The word containing the flag bits must be aligned on a full word boundary.

Parameters

word_addr Specifies the address of the single word variable whose bits are to be cleared or set.
mask Specifies the bit mask which is to be applied to the single word variable.

Return Values
These subroutines return the original value of the word.

Related Information
The fetch_and_add (“fetch_and_add Subroutine” on page 273) subroutine, compare_and_swap
(“compare_and_swap Subroutine” on page 177) subroutine.

fetestexcept Subroutine

Purpose
Tests floating-point exception flags.

Syntax
#include <fenv.h>

int fetestexcept (excepts)
int excepts;

Description
The fetestexcept subroutine determines which of a specified subset of the floating-point exception flags
are currently set. The excepts parameter specifies the floating-point status flags to be queried.

Parameters

excepts Specifies the floating-point status flags to be queried.

Base Operating System (BOS) Runtime Services (A-P) 275

Return Values
The fetestexcept subroutine returns the value of the bitwise-inclusive OR of the floating-point exception
macros corresponding to the currently set floating-point exceptions included in excepts.

Related Information
“feclearexcept Subroutine” on page 267, “fegetexceptflag or fesetexceptflag Subroutine” on page 268, and
“feraiseexcept Subroutine” on page 273

feupdateenv Subroutine

Purpose
Updates floating-point environment.

Syntax
#include <fenv.h>

int feupdateenv (envp)
const fenv_t *envp;

Description
The feupdateenv subroutine attempts to save the currently raised floating-point exceptions in its automatic
storage, attempts to install the floating-point environment represented by the object pointed to by the envp
parameter, and attempts to raise the saved floating-point exceptions. The envp parameter point to an
object set by a call to feholdexcept or fegetenv, or equal a floating-point environment macro.

Parameters

envp Points to an object set by a call to the feholdexcept or the fegetenv subroutine, or equal a
floating-point environment macro.

Return Values
The feupdateenv subroutine returns a zero value if all the required actions were successfully carried out.

Related Information
“fegetenv or fesetenv Subroutine” on page 267 and “feholdexcept Subroutine” on page 269.

finfo or ffinfo Subroutine

Purpose
Returns file information.

Library
Standard C library (libc.a)

Syntax
#include <sys/finfo.h>

276 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int finfo(Path1, cmd, buffer, length)
const char *Path1;
int cmd;
void *buffer;
int length;

int ffinfo (fd, cmd, buffer, length)
int fd;
int cmd;
void *buffer;
int length;

Description
The finfo and ffinfo subroutines return specific file information for the specified file.

Parameters

Path1 Path name of a file system object to query.
fd File descriptor for an open file to query.
cmd Specifies the type of file information to be returned.
buffer User supplied buffer which contains the file information upon successful return. /usr/include/sys/

finfo.h describes the buffer.
length Length of the query buffer.

Commands

F_PATHCONF When the F_PATHCONF command is specified, a file’s
implementation information is returned.
Note: The operating system provides another subroutine
that retrieves file implementation characteristics, pathconf
(“pathconf or fpathconf Subroutine” on page 983)
command. While the finfo and ffinfo subroutines can be
used to retrieve file information, it is preferred that
programs use the pathconf interface.

F_DIOCAP When the F_DIOCAP command is specified, the file’s
direct 1/0 capability information is returned. The buffer
supplied by the application is of type struct diocapbuf *.

Return Values
Upon successful completion, the finfo and ffinfo subroutines return a value of 0 and the user supplied
buffer is correctly filled in with the file information requested. If the finfo or ffinfo subroutines were
unsuccessful, a value of -1 is returned and the global errno variable is set to indicate the error.

Error Codes

EACCES Search permission is denied for a component of the path prefix.
EINVAL If the length specified for the user buffer is greater than

MAX_FINFO_BUF.

If the command argument is not supported. If F_DIOCAP command is
specified and the file object does not support Direct I/O.

ENAMETOOLONG The length of the Path parameter string exceeds the PATH_MAX
value.

ENOENT The named file does not exist or the Path parameter points to an
empty string.

ENOTDIR A component of the path prefix is not a directory.

Base Operating System (BOS) Runtime Services (A-P) 277

EBADF File descriptor provided is not valid.

Related Information
The pathconf (“pathconf or fpathconf Subroutine” on page 983) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

flockfile, ftrylockfile, funlockfile Subroutine

Purpose
Provides for explicit application-level locking of stdio (FILE*) objects.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
void flockfile (FILE * file)
int ftrylockfile (FILE * file)
void funlockfile (FILE * file)

Description
The flockfile, ftrylockfile and funlockfile functions provide for explicit application-level locking of stdio
(FILE*) objects. These functions can be used by a thread to delineate a sequence of I/O statements that
are to be executed as a unit.

The flockfile function is used by a thread to acquire ownership of a (FILE*) object.

The ftrylockfile function is used by a thread to acquire ownership of a (FILE*) object if the object is
available; ftrylockfile is a non-blocking version of flockfile.

The funlockfile function is used to relinquish the ownership granted to the thread. The behavior is
undefined if a thread other than the current owner calls the funlockfile function.

Logically, there is a lock count associated with each (FILE*) object. This count is implicitly initialised to
zero when the (FILE*) object is created. The (FILE*) object is unlocked when the count is zero. When the
count is positive, a single thread owns the (FILE*) object. When the flockfile function is called, if the count
is zero or if the count is positive and the caller owns the (FILE*) object, the count is incremented.
Otherwise, the calling thread is suspended, waiting for the count to return to zero. Each call to funlockfile
decrements the count. This allows matching calls to flockfile (or successful calls to ftrylockfile) and
funlockfile to be nested.

All functions that reference (FILE*) objects behave as if they use flockfile and funlockfile internally to
obtain ownership of these (FILE*) objects.

Return Values
None for flockfile and funlockfile. The function ftrylock returns zero for success and non-zero to indicate
that the lock cannot be acquired.

278 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Implementation Specifics
These subroutines are part of Base Operating System (BOS) subroutines.

Realtime applications may encounter priority inversion when using FILE locks. The problem occurs when a
high priority thread locks a file that is about to be unlocked by a low priority thread, but the low priority
thread is preempted by a medium priority thread. This scenario leads to priority inversion; a high priority
thread is blocked by lower priority threads for an unlimited period of time. During system design, realtime
programmers must take into account the possibility of this kind of priority inversion. They can deal with it in
a number of 7434 ways, such as by having critical sections that are guarded by file locks execute at a
high priority, so that a thread cannot be preempted while executing in its critical section.

Related Information
The getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked (“getc_unlocked,
getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines” on page 352) subroutine.

floor, floorf, floorl, floord32, floord64, floord128, nearest, trunc, itrunc,
and uitrunc Subroutines

Purpose
The floor subroutine, floorf subroutine, floorl subroutine, nearest subroutine, trunc subroutine, floord32
subroutine, floord64 subroutine, and floord128 subroutine, round floating-point numbers to floating-point
integer values.

The itrunc subroutine and uitrunc subroutine round floating-point numbers to signed and unsigned
integers, respectively.

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Standard C Library (libc.a) (separate syntax follows)

Syntax
#include <math.h>

double floor (x)
double x;

float floorf (x)
float x;

long double floorl (x)
long double x;

_Decimal32 floord32(x)
_Decimal32 x;

_Decimal64 floord64(x)
_Decimal64 x;

_Decimal128 floord128(x)
_Decimal128 x;

double nearest (x)
double x;

Base Operating System (BOS) Runtime Services (A-P) 279

double trunc (x)
double x;

Standard C Library (libc.a)
#include <stdlib.h>
#include <limits.h>

int itrunc (x)
double x;

unsigned int uitrunc (x)
double x;

Description
The floor, floorf, floorl, floord32, floord64, and floord128 subroutines return the largest floating-point
integer value that is not greater than the x parameter.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

The nearest subroutine returns the nearest floating-point integer value to the x parameter. If x lies exactly
halfway between the two nearest floating-point integer values, an even floating-point integer is returned.

The trunc subroutine returns the nearest floating-point integer value to the x parameter in the direction of
0. This is equivalent to truncating off the fraction bits of the x parameter.

Note: The default floating-point rounding mode is round to nearest. All C main programs begin with the
rounding mode set to round to nearest.

The itrunc subroutine returns the nearest signed integer to the x parameter in the direction of 0. This is
equivalent to truncating the fraction bits from the x parameter and then converting x to a signed integer.

The uitrunc subroutine returns the nearest unsigned integer to the x parameter in the direction of 0. This
action is equivalent to truncating off the fraction bits of the x parameter and then converting x to an
unsigned integer.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the
floor.c file, for example, enter:
cc floor.c -lm

The itrunc, uitrunc, trunc, and nearest subroutines are not part of the ANSI C Library.

Parameters

x Specifies a double-precision floating-point value. For the floorl subroutine, specifies a long double-precision
floating-point value.

y Specifies a double-precision floating-point value. For the floorl subroutine, specifies some long
double-precision floating-point value.

280 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, the floor, floorf, floorl, floord32, floord64, and floord128 subroutines
return the largest integral value that is not greater than x, expressed as a double, float, long double,
_Decimal32, _Decimal64, or _Decimal128, as appropriate for the return type of the function.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and thefloor, floorf, floorl, floord32,
floord64, and floord128 subroutines return the value of the macro -HUGE_VAL, -HUGE_VALF,
-HUGE_VALL, -HUGE_VAL_D32, -HUGE_VAL_D64, and -HUGE_VAL_D128, respectively.

Error Codes
The itrunc and uitrunc subroutines return the INT_MAX value if x is greater than or equal to the
INT_MAX value and the INT_MIN value if x is equal to or less than the INT_MIN value. The itrunc
subroutine returns the INT_MIN value if x is a Quiet NaN(not-a-number) or Silent NaN. The uitrunc
subroutine returns 0 if x is a Quiet NaN or Silent NaN. (The INT_MAX and INT_MIN values are defined in
the limits.h file.) The uitrunc subroutine INT_MAX if x is greater than INT_MAX and 0 if x is less than or
equal 0.0

Files

float.h Contains the ANSI C FLT_ROUNDS macro.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite,
isnan, or unordered Subroutines” on page 168.

The fp_read_rnd or fp_swap_rnd (“fp_read_rnd or fp_swap_rnd Subroutine” on page 305) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

math.h in AIX 5L Version 5.3 Files Reference.

fma, fmaf, fmal, and fmad128 Subroutines

Purpose
Floating-point multiply-add.

Syntax
#include <math.h>

double fma (x, y, z)
double x;
double y;
double z;

float fmaf (x, y, z)

Base Operating System (BOS) Runtime Services (A-P) 281

float x;
float y;
float z;

long double fmal (x, y, z)
long double x;
long double y;
long double z;

_Decimal128 fmad128 (x, y, z)
_Decimal128 x;
_Decimal128 y;
_Decimal128 z;

Description
The fma, fmaf, fmal, and fmad128 subroutines compute (x * y) + z, rounded as one ternary operation.
They compute the value (as if) to infinite precision and round once to the result format, according to the
rounding mode characterized by the value of FLT_ROUNDS.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be multiplied by the y parameter.
y Specifies the value to be multiplied by the x parameter.
z Specifies the value to be added to the product of the x and y parameters.

Return Values
Upon successful completion, the fma, fmaf, fmal, and fmad128 subroutines return (x * y) + z, rounded as
one ternary operation.

If x or y are NaN, a NaN is returned.

If x multiplied by y is an exact infinity and z is also an infinity but with the opposite sign, a domain error
occurs, and a NaN is returned.

If one of the x and y parameters is infinite, the other is zero, and the z parameter is not a NaN, a domain
error occurs, and a NaN is returned.

If one of the x and y parameters is infinite, the other is zero, and z is a NaN, a NaN is returned and a
domain error may occur.

If x*y is not 0*Inf nor Inf*0 and z is a NaN, a NaN is returned.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275

math.h in AIX 5L Version 5.3 Files Reference.

282 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 Subroutines

Purpose
Determines the maximum numeric value of two floating-point numbers.

Syntax
#include <math.h>

double fmax (x, y)
double x;
double y;

float fmaxf (x, y)
float x;
float y;

long double fmaxl (x, y)
long double x;
long double y;

_Decimal32 fmaxd32 (x, y);
_Decimal32 x;
_Decimal32 y;

_Decimal64 fmaxd64 (x, y);
_Decimal64 x;
_Decimal64 y;

_Decimal128 fmaxd128 (x, y);
_Decimal128 x;
_Decimal128 y;

Description
The fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 subroutines determine the maximum numeric
value of their arguments. NaN arguments are treated as missing data. If one argument is a NaN and the
other numeric, the fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 subroutines choose the
numeric value.

Parameters

x Specifies the value to be computed.
y Specifies the value to be computed.

Return Values
Upon successful completion, the fmaxl, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 subroutines
return the maximum numeric value of their arguments.

If one argument is a NaN, the other argument is returned.

If x and y are NaN, a NaN is returned.

Related Information
“fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 Subroutines” on page 264 and “madd, msub, mult,
mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv,
or itom Subroutine” on page 789

Base Operating System (BOS) Runtime Services (A-P) 283

math.h in AIX 5L Version 5.3 Files Reference.

fminf, fminl, fmind32, fmind64, and fmind128 Subroutines

Purpose
Determines the minimum numeric value of two floating-point numbers.

Syntax
#include <math.h>

float fminf (x, y)
float x;
float y;

long double fminl (x, y)
long double x;
long double y;

_Decimal32 fmind32 (x, y)
_Decimal32 x;
_Decimal32 y;

_Decimal64 fmind64 (x, y)
_Decimal64 x;
_Decimal64 y;

_Decimal128 fmind128 (x, y)
_Decimal128 x;
_Decimal128 y;

Description
The fminf, fminl, fmind32, fmind64, and fmind128 subroutines determine the minimum numeric value of
their arguments. NaN arguments are treated as missing data. If one argument is a NaN and the other
numeric, the fminf, fminl, fmind32, fmind64, and fmind128 subroutines choose the numeric value.

Parameters

x Specifies the value to be computed.
y Specifies the value to be computed.

Return Values
Upon successful completion, the fminf, fminl, fmind32, fmind64, and fmind128 subroutines return the
minimum numeric value of their arguments.

If one argument is a NaN, the other argument is returned.

If x and y are NaN, a NaN is returned.

Related Information
“fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 Subroutines” on page 264 and “fmax, fmaxf, fmaxl,
fmaxd32, fmaxd64, and fmaxd128 Subroutines” on page 283.

math.h in AIX 5L Version 5.3 Files Reference.

284 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

fmod, fmodf, fmodl, fmodd32, fmodd64, and fmodd128 Subroutines

Purpose
Computes the floating-point remainder value.

Syntax
#include <math.h>

float fmodf (x, y)
float x;
float y;

long double fmodl (x, y)
long double x, y;

double fmod (x, y)
double x, y;
_Decimal32 fmodd32 (x, y)
_Decimal32 x, y;

_Decimal64 fmodd64 (x, y)
_Decimal64 x, y;

_Decimal128 fmodd128 (x, y)
_Decimal128 x, y;

Description
The fmodf, fmodl, fmod, fmodd32, fmodd64, and fmodd128 subroutines return the floating-point
remainder of the division of x by y.

An application that wants to check for error situations must set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if errno is the value of
non-zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is the
value of non-zero, an error has occurred.

Parameters

x Specifies the value to be computed.
y Specifies the value to be computed.

Return Values
The fmodf, fmodl, fmod, fmodd32, fmodd64, and fmodd128 subroutines return the value x- i *y. For the
integer i such that, if y is nonzero, the result has the same sign as x and the magnitude is less than the
magnitude of y.

If the correct value will cause underflow, and is not representable, a range error might occur, and 0.0 is
returned.

If x or y is NaN, a NaN is returned.

If y is zero, a domain error occurs, and a NaN is returned.

If x is infinite, a domain error occurs, and a NaN is returned.

If x is ±0 and y is not zero, ±0 is returned.

Base Operating System (BOS) Runtime Services (A-P) 285

If x is not infinite and y is ±Inf, x is returned.

If the correct value will cause underflow, and is representable, a range error might occur and the correct
value is returned.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite,
isnan, or unordered Subroutines” on page 168.

math.h in AIX 5L Version 5.3 Files Reference.

fmtmsg Subroutine

Purpose
Display a message in the specified format on standard error, the console, or both.

Library
Standard C Library (libc.a)

Syntax
#include <fmtmsg.h>

int fmtmsg (long Classification,
const char *Label,
int Severity,
cont char *Text;
cont char *Action,
cont char *Tag)

Description
The fmtmsg subroutine can be used to display messages in a specified format instead of the traditional
printf subroutine interface.

Base on a message’s classification component, the fmtmsg subroutine either writes a formatted message
to standard error, the console, or both.

A formatted message consists of up to five parameters. The Classification parameter is not part of a
message displayed to the user, but defines the source of the message and directs the display of the
formatted message.

286 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

Classification Contains identifiers from the following groups of major classifications and
subclassifications. Any one identifier from a subclass may be used in combination with a
single identifier from a different subclass. Two or more identifiers from the same subclass
should not be used together, with the exception of identifiers from the display subclass.
(Both display subclass identifiers may be used so that messages can be displayed to
both standard error and system console).

major classifications
Identifies the source of the condition. Identifiers are: MM_HARD (hardware),
MM_SOFT (software), and MM_FIRM (firmware).

message source subclassifications
Identifies the type of software in which the problem is detected. Identifiers are:
MM_APPL (application), MM_UTIL (utility), and MM_OPSYS (operating system).

display subclassification
Indicates where the message is to be displayed. Identifiers are: MM_PRINT to
display the message on the standard error stream, MM_CONSOLE to display
the message on the system console. One or both identifiers may be used.

status subclassifications
Indicates whether the application will recover from the condition. Identifiers
are:MM_RECOVER (recoverable) and MM_RECOV (non-recoverable).

An additional identifier, MM_NULLMC, identifies that no classification component is
supplied for the message.

Label Identifies the source to the message. The format is two fields separated by a colon. The
first field is up to 10 bytes, the second field is up to 14 bytes.

Severity
Text Describes the error condition that produced the message. The character string is not

limited to a specific size. If the character string is null then a message will be issued
stating that no text has been provided.

Action Describes the first step to be taken in the error-recovery process. The fmtmsg subroutine
precedes the action string with the prefix: TO FIX:. The Action string is not limited to a
specific size.

Tag An identifier which references online documentation for the message. Suggested usage is
that tag includes the Label and a unique identifying number. A sample tag is UX:cat:146.

Environment Variables
The MSGVERB (message verbosity) environment variable controls the behavior of the fmtmsg subroutine.

MSGVERB tells the fmtmsg subroutine which message components it is to select when writing messages
to standard error. The value of MSGVERB is a colon-separated list of optional keywords. MSGVERB can
be set as follows:
MSGVERB=[keyword[:keyword[:...]]]
export MSGVERB

Valid keywords are: Label, Severity, Text, Action, and Tag. If MSGVERB contains a keyword for a
component and the component’s value is not the component’s null value, fmtmsg subroutine includes that
component in the message when writing the message to standard error. If MSGVERB does not include a
keyword for a message component, that component is not included in the display of the message. The
keywords may appear in any order. If MSGVERB is not defined, if its value is the null string, if its value is
not of the correct format, of if it contains keywords other than the valid ones listed previously, the fmtmsg
subroutine selects all components.

MSGVERB affects only which components are selected for display to standard error. All message
components are included in console messages.

Base Operating System (BOS) Runtime Services (A-P) 287

Application Usage
One or more message components may be systematically omitted from messages generated by an
application by using the null value of the parameter for that component. The table below indicates the null
values and identifiers for fmtmsg subroutine parameters. The parameters are of type char* unless
otherwise indicated.

Parameter Null-Value Identifier

label (char*)0 MM_NULLLBL

severity (type int) 0 MM_NULLSEV

class (type long) 0L MM_NULLMC

text (char*)0 MM_NULLTXT

action (char*)0 MM_NULLACT

tag (char*)0 MM_NULLTAG

Another means of systematically omitting a component is by omitting the component keywords when
defining the MSGVERB environment variable.

Return Values
The exit codes for the fmtmsg subroutine are the following:

MM_OK The function succeeded.
MM_NOTOK The function failed completely.
MM_MOMSG The function was unable to generate a message on standard error.
MM_NOCON The function was unable to generate a console message.

Examples
1. The following example of the fmtmsg subroutine:

fmtmsg(MM_PRINT, "UX:cat", MM_ERROR, "illegal option",
"refer tp cat in user's reference manual", "UX:cat:001")

produces a complete message in the specified message format:
UX:cat ERROR: illegal option
TO FIX: refer to cat in user's reference manual UX:cat:001

2. When the environment variable MSGVERB is set as follows:
MSGVERB=severity:text:action

and the Example 1 is used, the fmtmsg subroutine produces:
ERROR: illegal option
TO FIX: refer to cat in user's reference manual UX:cat:001

Related Information
The printf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on
page 1178) subroutine.

fnmatch Subroutine

Purpose
Matches file name patterns.

288 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Standard C Library (libc. a)

Syntax
#include <fnmatch.h>

int fnmatch (Pattern, String, Flags);
int Flags;
const char *Pattern, *String;

Description
The fnmatch subroutine checks the string specified by the String parameter to see if it matches the
pattern specified by the Pattern parameter.

The fnmatch subroutine can be used by an application or command that needs to read a dictionary and
apply a pattern against each entry; the find command is an example of this. It can also be used by the
pax command to process its Pattern variables, or by applications that need to match strings in a similar
manner.

Parameters

Pattern Contains the pattern to which the String parameter is to be compared. The Pattern parameter
can include the following special characters:

* (asterisk)
Matches zero, one, or more characters.

? (question mark)
Matches any single character, but will not match 0 (zero) characters.

[] (brackets)
Matches any one of the characters enclosed within the brackets. If a pair of characters
separated by a dash are contained within the brackets, the pattern matches any
character that lexically falls between the two characters in the current locale.

String Contains the string to be compared against the Pattern parameter.
Flags Contains a bit flag specifying the configurable attributes of the comparison to be performed by

the fnmatch subroutine.

The Flags parameter modifies the interpretation of the Pattern and String parameters. It is the
bitwise inclusive OR of zero or more of the following flags (defined in the fnmatch.h file):

FNM_PATHNAME
Indicates the / (slash) in the String parameter matches a / in the Pattern parameter.

FNM_PERIOD
Indicates a leading period in the String parameter matches a period in the Pattern
parameter.

FNM_NOESCAPE
Enables quoting of special characters using the \ (backslash).

FNM_IGNORECASE
Ignores uppercase and lowercase when matching alphabetic characters (available only
in AIX 5.1 or later).

If the FNM_ PATHNAME flag is set in the Flags parameter, a / (slash) in the String parameter is explicitly
matched by a / in the Pattern parameter. It is not matched by either the * (asterisk) or ? (question-mark)
special characters, nor by a bracket expression. If the FNM_PATHNAME flag is not set, the / is treated as
an ordinary character.

Base Operating System (BOS) Runtime Services (A-P) 289

If the FNM_PERIOD flag is set in the Flags parameter, then a leading period in the String parameter only
matches a period in the Pattern parameter; it is not matched by either the asterisk or question-mark
special characters, nor by a bracket expression. The setting of the FNM_PATHNAME flag determines a
period to be leading, according to the following rules:

v If the FNM_PATHNAME flag is set, a . (period) is leading only if it is the first character in the String
parameter or if it immediately follows a /.

v If the FNM_PATHNAME flag is not set, a . (period) is leading only if it is the first character of the String
parameter. If FNM_PERIOD is not set, no special restrictions are placed on matching a period.

If the FNM_NOESCAPE flag is not set in the Flags parameter, a \ (backslash) character in the Pattern
parameter, followed by any other character, will match that second character in the String parameter. For
example, \\ will match a backslash in the String parameter. If the FNM_NOESCAPE flag is set, a \
(backslash) will be treated as an ordinary character.

Return Values
If the value in the String parameter matches the pattern specified by the Pattern parameter, the fnmatch
subroutine returns 0. If there is no match, the fnmatch subroutine returns the FNM_NOMATCH constant,
which is defined in the fnmatch.h file. If an error occurs, the fnmatch subroutine returns a nonzero value.

Files

/usr/include/fnmatch.h Contains system-defined flags and constants.

Related Information
The glob (“glob Subroutine” on page 484) subroutine, globfree (“globfree Subroutine” on page 487)
subroutine, regcomp subroutine, regfree subroutine, regerror subroutine, regexec subroutine.

The find command, pax command.

Files, Directories, and File Systems for Programmers and Understanding Internationalized Regular
Expression Subroutines Ln AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs

fopen, fopen64, freopen, freopen64 or fdopen Subroutine

Purpose
Opens a stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
FILE *fopen (Path, Type)
const char *Path, *Type;

FILE *fopen64 (Path, Type)
char *Path, *Type;

FILE *freopen (Path, Type, Stream)
const char *Path, *Type;

290 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

FILE *Stream;

FILE *freopen64 (Path, Type, Stream)
char *Path, *Type;
FILE *Stream;

FILE *fdopen (FileDescriptor, Type)
int FileDescriptor;
const char *Type;

Description
The fopen and fopen64 subroutines open the file named by the Path parameter and associate a stream
with it and return a pointer to the FILE structure of this stream.

When you open a file for update, you can perform both input and output operations on the resulting
stream. However, an output operation cannot be directly followed by an input operation without an
intervening fflush subroutine call or a file positioning operation (fseek, fseeko, fseeko64, fsetpos,
fsetpos64 or rewind subroutine). Also, an input operation cannot be directly followed by an output
operation without an intervening flush or file positioning operation, unless the input operation encounters
the end of the file.

When you open a file for appending (that is, when the Type parameter is set to a), it is impossible to
overwrite information already in the file.

If two separate processes open the same file for append, each process can write freely to the file without
destroying the output being written by the other. The output from the two processes is intermixed in the
order in which it is written to the file.

Note: If the data is buffered, it is not actually written until it is flushed.

The freopen and freopen64 subroutines first attempt to flush the stream and close any file descriptor
associated with the Stream parameter. Failure to flush the stream or close the file descriptor is ignored.

The freopen and freopen64 subroutines substitute the named file in place of the open stream. The
original stream is closed regardless of whether the subsequent open succeeds. The freopen and
freopen64 subroutines returns a pointer to the FILE structure associated with the Stream parameter. The
freopen and freopen64 subroutines is typically used to attach the pre-opened streams associated with
standard input (stdin), standard output (stdout), and standard error (stderr) streams to other files.

The fdopen subroutine associates a stream with a file descriptor obtained from an openx subroutine, dup
subroutine, creat subroutine, or pipe subroutine. These subroutines open files but do not return pointers to
FILE structures. Many of the standard I/O package subroutines require pointers to FILE structures.

The Type parameter for the fdopen subroutine specifies the mode of the stream, such as r to open a file
for reading, or a to open a file for appending (writing at the end of the file). The mode value of the Type
parameter specified with the fdopen subroutine must agree with the mode of the file specified when the
file was originally opened or created.

Note: Using the fdopen subroutine with a file descriptor obtained from a call to the shm_open subroutine
must be avoided and might result in an error on the next fread, fwrite or fflush call.

The largest value that can be represented correctly in an object of type off_t will be established as the
offset maximum in the open file description.

Base Operating System (BOS) Runtime Services (A-P) 291

Parameters

Path Points to a character string that contains the name of the file to be opened.
Type Points to a character string that has one of the following values:

r Opens a text file for reading.

w Creates a new text file for writing, or opens and truncates a file to 0 length.

a Appends (opens a text file for writing at the end of the file, or creates a file for
writing).

rb Opens a binary file for reading.

wb Creates a binary file for writing, or opens and truncates a file to 0.

ab Appends (opens a binary file for writing at the end of the file, or creates a file for
writing).

r+ Opens a file for update (reading and writing).

w+ Truncates or creates a file for update.

a+ Appends (opens a text file for writing at end of file, or creates a file for writing).

r+b , rb+
Opens a binary file for update (reading and writing).

w+b , wb+
Creates a binary file for update, or opens and truncates a file to 0 length.

a+b , ab+
Appends (opens a binary file for update, writing at the end of the file, or creates
a file for writing).

Note: The operating system does not distinguish between text and binary files. The b
value in the Type parameter value is ignored.

Stream Specifies the input stream.
FileDescriptor Specifies a valid open file descriptor.

Return Values
If the fdopen, fopen, fopen64, freopen or freopen64 subroutine is unsuccessful, a null pointer is
returned and the errno global variable is set to indicate the error.

Error Codes
The fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the following is true:

EACCES Search permission is denied on a component of the path prefix, the file exists and the
permissions specified by the mode are denied, or the file does not exist and write permission
is denied for the parent directory of the file to be created.

ELOOP Too many symbolic links were encountered in resolving path.
EINTR A signal was received during the process.
EISDIR The named file is a directory and the process does not have write access to it.
ENAMETOOLONG The length of the filename exceeds PATH_MAX or a pathname component is longer than

NAME_MAX.
EMFILE The maximum number of files allowed are currently open.
ENOENT The named file does not exist or the File Descriptor parameter points to an empty string.
ENOSPC The file is not yet created and the directory or file system to contain the new file cannot be

expanded.
ENOTDIR A component of the path prefix is not a directory.
ENXIO The named file is a character- or block-special file, and the device associated with this

special file does not exist.

292 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EOVERFLOW The named file is a regular file and the size of the file cannot be represented correctly in an
object of type off_t.

EROFS The named file resides on a read-only file system and does not have write access.
ETXTBSY The file is a pure-procedure (shared-text) file that is being executed and the process does not

have write access.

The fdopen, fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the following is
true:

EINVAL The value of the Type argument is not valid.
EINVAL The value of the mode argument is not valid.
EMFILE FOPEN_MAX streams are currently open in the calling process.
EMFILE STREAM_MAX streams are currently open in the calling process.
ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result whose length

exceeds PATH_MAX.
ENOMEM Insufficient storage space is available.

The freopen and fopen subroutines are unsuccessful if the following is true:

EOVERFLOW The named file is a size larger than 2 Gigabytes.

The fdopen subroutine is unsuccessful if the following is true:

EBADF The value of the File Descriptor parameter is not valid.

POSIX

w Truncates to 0 length or creates text file for writing.
w+ Truncates to 0 length or creates text file for update.
a Opens or creates text file for writing at end of file.
a+ Opens or creates text file for update, writing at end of file.

SAA
At least eight streams, including three standard text streams, can open simultaneously. Both binary and
text modes are supported.

Related Information
The fclose or fflush (“fclose or fflush Subroutine” on page 256) subroutine, fseek, fseeko, fseeko64,
rewind, ftell, ftello, ftello64, fgetpos, fgetpos64 or fsetpos (“fseek, fseeko, fseeko64, rewind, ftell, ftello,
ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64 Subroutine” on page 320) subroutine, open, open64,
openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page 939) subroutine, setbuf,
setvbuf, setbuffer, or setlinebuf subroutine.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

fork, f_fork, or vfork Subroutine

Purpose
Creates a new process.

Base Operating System (BOS) Runtime Services (A-P) 293

Libraries
fork, f_fork, and vfork: Standard C Library (libc.a)

Syntax
#include <unistd.h>

pid_t fork(void)

pid_t f_fork(void)

int vfork(void)

Description
The fork subroutine creates a new process. The new process (child process) is an almost exact copy of
the calling process (parent process). The child process inherits the following attributes from the parent
process:

v Environment

v Close-on-exec flags (described in the exec (“exec: execl, execle, execlp, execv, execve, execvp, or
exect Subroutine” on page 238) subroutine)

v Signal handling settings (such as the SIG_DFL value, the SIG_IGN value, and the Function Address
parameter)

v Set user ID mode bit

v Set group ID mode bit

v Profiling on and off status

v Nice value

v All attached shared libraries

v Process group ID

v tty group ID (described in the exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245),
atexit, or _exit subroutine, signal subroutine, and raise subroutine)

v Current directory

v Root directory

v File-mode creation mask (described in the umask subroutine)

v File size limit (described in the ulimit subroutine)

v Attached shared memory segments (described in the shmat subroutine)

v Attached mapped file segments (described in the shmat subroutine)

v Debugger process ID and multiprocess flag if the parent process has multiprocess debugging enabled
(described in the ptrace (“ptrace, ptracex, ptrace64 Subroutine” on page 1317) subroutine).

The child process differs from the parent process in the following ways:

v The child process has only one user thread; it is the one that called the fork subroutine.

v The child process has a unique process ID.

v The child process ID does not match any active process group ID.

v The child process has a different parent process ID.

v The child process has its own copy of the file descriptors for the parent process. However, each file
descriptor of the child process shares a common file pointer with the corresponding file descriptor of the
parent process.

v All semadj values are cleared. For information about semadj values, see the semop subroutine.

v Process locks, text locks, and data locks are not inherited by the child process. For information about
locks, see the plock (“plock Subroutine” on page 1036) subroutine.

294 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v If multiprocess debugging is turned on, the trace flags are inherited from the parent; otherwise, the
trace flags are reset. For information about request 0, see the ptrace (“ptrace, ptracex, ptrace64
Subroutine” on page 1317) subroutine.

v The child process utime, stime, cutime, and cstime subroutines are set to 0. (For more information,
see the getrusage (“getrusage, getrusage64, times, or vtimes Subroutine” on page 430), times, and
vtimes subroutines.)

v Any pending alarms are cleared in the child process. (For more information, see the incinterval
(“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer, or setitimer Subroutine” on
page 389), setitimer (“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer, or
setitimer Subroutine” on page 389), and alarm (“getinterval, incinterval, absinterval, resinc, resabs,
alarm, ualarm, getitimer, or setitimer Subroutine” on page 389) subroutines.)

v The set of signals pending for the child process is initialized to an empty set.

v The child process can have its own copy of the message catalogue for the parent process.

Attention: If you are using the fork or vfork subroutines with an Enhanced X-Windows, X Toolkit, or
Motif application, open a separate display connection (socket) for the forked process. If the child process
uses the same display connection as the parent, the X Server will not be able to interpret the resulting
data.

The f_fork subroutine is similar to fork, except for:

v It is required that the child process calls one of the exec functions immediately after it is created. Since
the fork handlers are never called, the application data, mutexes and the locks are all undefined in the
child process.

The vfork subroutine is supported as a compatibility interface for older Berkeley Software Distribution
(BSD) system programs and can be used by compiling with the Berkeley Compatibility Library (libbsd.a).

In the Version 4 of the operating system, the parent process does not have to wait until the child either
exits or executes, as it does in BSD systems. The child process is given a new address space, as in the
fork subroutine. The child process does not share any parent address space.

Attention: When using the fork or vfork subroutines with an Enhanced X-Windows, X Toolkit, or Motif
application, a separate display connection (socket) should be opened for the forked process. The child
process should never use the same display connection as the parent. Display connections are embodied
with sockets, and sockets are inherited by the child process. Any attempt to have multiple processes
writing to the same display connection results in the random interleaving of X protocol packets at the word
level. The resulting data written to the socket will not be valid or undefined X protocol packets, and the X
Server will not be able to interpret it.

Attention: Although the fork and vfork subroutine may be used with Graphics Library applications, the
child process must not make any additional Graphics Library subroutine calls. The child application inherits
some, but not all of the graphics hardware resources of the parent. Drawing by the child process may
hang the graphics adapter, the Enhanced X Server, or may cause unpredictable results and place the
system into an unpredictable state.

For additional information, see the /usr/lpp/GL/README file.

Return Values
Upon successful completion, the fork subroutine returns a value of 0 to the child process and returns the
process ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and the errno global variable is set to indicate the error.

Error Codes
The fork subroutine is unsuccessful if one or more of the following are true:

Base Operating System (BOS) Runtime Services (A-P) 295

EAGAIN Exceeds the limit on the total number of processes running either systemwide or by a single user,
or the system does not have the resources necessary to create another process.

ENOMEM Not enough space exists for this process.
EPROCLIM If WLM is running, the limit on the number of processes or threads in the class may have been

met.

Related Information
The “getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer, or setitimer Subroutine”
on page 389, “bindprocessor Subroutine” on page 121, “exec: execl, execle, execlp, execv, execve,
execvp, or exect Subroutine” on page 238, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245,
“getrusage, getrusage64, times, or vtimes Subroutine” on page 430, “getinterval, incinterval, absinterval,
resinc, resabs, alarm, ualarm, getitimer, or setitimer Subroutine” on page 389, “getpriority, setpriority, or
nice Subroutine” on page 414, “plock Subroutine” on page 1036, “pthread_atfork Subroutine” on page
1218, “ptrace, ptracex, ptrace64 Subroutine” on page 1317, raise subroutine, semop subroutine,
“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer, or setitimer Subroutine” on
page 389, shmat subroutine, setpriority or getpriority (“getpriority, setpriority, or nice Subroutine” on
page 414) subroutine, sigaction, sigvec, or signal subroutine, ulimit subroutine, umask subroutine, wait,
waitpid, or wait3 subroutine.

The “posix_spawn or posix_spawnp Subroutine” on page 1159.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Process Duplication and Termination in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging ProgramsLK provides more information about forking a multi-threaded process.

fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all,
or fp_disable Subroutine

Purpose
These subroutines allow operations on the floating-point trap control.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_any_enable()
int fp_is_enabled(Mask)
fptrap_t Mask;

void fp_enable_all()
void fp_enable(Mask)
fptrap_t Mask;

void fp_disable_all()
void fp_disable(Mask)
fptrap_t Mask;

Description
Floating point traps must be enabled before traps can be generated. These subroutines aid in
manipulating floating-point traps and identifying the trap state and type.

296 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

In order to take traps on floating point exceptions, the fp_trap subroutine must first be called to put the
process in serialized state, and the fp_enable subroutine or fp_enable_all subroutine must be called to
enable the appropriate traps.

The header file fptrap.h defines the following names for the individual bits in the floating-point trap control:

TRP_INVALID Invalid Operation Summary
TRP_DIV_BY_ZERO Divide by Zero
TRP_OVERFLOW Overflow
TRP_UNDERFLOW Underflow
TRP_INEXACT Inexact Result

Parameters

Mask A 32-bit pattern that identifies floating-point traps.

Return Values
The fp_any_enable subroutine returns 1 if any floating-point traps are enabled. Otherwise, 0 is returned.

The fp_is_enabled subroutine returns 1 if the floating-point traps specified by the Mask parameter are
enabled. Otherwise, 0 is returned.

The fp_enable_all subroutine enables all floating-point traps.

The fp_enable subroutine enables all floating-point traps specified by the Mask parameter.

The fp_disable_all subroutine disables all floating-point traps.

The fp_disable subroutine disables all floating-point traps specified by the Mask parameter.

Related Information
The fp_clr_flag, fp_set_flag, fp_read_flag, fp_swap_flag (“fp_clr_flag, fp_set_flag, fp_read_flag, or
fp_swap_flag Subroutine”)subroutine, fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow,
fp_inexact, fp_any_xcp (“fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp
Subroutine” on page 301) subroutines, fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr,
fp_iop_infmzr, fp_iop_invcmp (“fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr,
fp_iop_invcmp, fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft Subroutines” on page 303) subroutines,
fp_read_rnd, and fp_swap_rnd (“fp_read_rnd or fp_swap_rnd Subroutine” on page 305) subroutines,
fp_trap (“fp_trap Subroutine” on page 308) subroutine.

Floating-Point Processor in Assembler Language Reference.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine

Purpose
Allows operations on the floating-point exception flags.

Library
Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 297

Syntax
#include <float.h>
#include <fpxcp.h>

void fp_clr_flag(Mask)
fpflag_t Mask;

void fp_set_flag(Mask)
fpflag_t Mask;

fpflag_t fp_read_flag()

fpflag_t fp_swap_flag(Mask)
fpflag_t Mask;

Description
These subroutines aid in determining both when an exception has occurred and the exception type. These
subroutines can be called explicitly around blocks of code that may cause a floating-point exception.

According to the IEEE Standard for Binary Floating-Point Arithmetic, the following types of floating-point
operations must be signaled when detected in a floating-point operation:

v Invalid operation

v Division by zero

v Overflow

v Underflow

v Inexact

An invalid operation occurs when the result cannot be represented (for example, a sqrt operation on a
number less than 0).

The IEEE Standard for Binary Floating-Point Arithmetic states: ″For each type of exception, the
implementation shall provide a status flag that shall be set on any occurrence of the corresponding
exception when no corresponding trap occurs. It shall be reset only at the user’s request. The user shall
be able to test and to alter the status flags individually, and should further be able to save and restore all
five at one time.″

Floating-point operations can set flags in the floating-point exception status but cannot clear them. Users
can clear a flag in the floating-point exception status using an explicit software action such as the
fp_swap_flag (0) subroutine.

The fpxcp.h file defines the following names for the flags indicating floating-point exception status:

FP_INVALID Invalid operation summary
FP_OVERFLOW Overflow
FP_UNDERFLOW Underflow
FP_DIV_BY_ZERO Division by 0
FP_INEXACT Inexact result

In addition to these flags, the operating system supports additional information about the cause of an
invalid operation exception. The following flags also indicate floating-point exception status and defined in
the fpxcp.h file. The flag number for each exception type varies, but the mnemonics are the same for all
ports. The following invalid operation detail flags are not required for conformance to the IEEE
floating-point exceptions standard:

FP_INV_SNAN Signaling NaN
FP_INV_ISI INF - INF

298 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

FP_INV_IDI INF / INF
FP_INV_ZDZ 0 / 0
FP_INV_IMZ INF x 0
FP_INV_CMP Unordered compare
FP_INV_SQRT Square root of a negative number
FP_INV_CVI Conversion to integer error
FP_INV_VXSOFT Software request

Parameters

Mask A 32-bit pattern that identifies floating-point exception flags.

Return Values
The fp_clr_flag subroutine resets the exception status flags defined by the Mask parameter to 0 (false).
The remaining flags in the exception status are unchanged.

The fp_set_flag subroutine sets the exception status flags defined by the Mask parameter to 1 (true). The
remaining flags in the exception status are unchanged.

The fp_read_flag subroutine returns the current floating-point exception status. The flags in the returned
exception status can be tested using the flag definitions above. You can test individual flags or sets of
flags.

The fp_swap_flag subroutine writes the Mask parameter into the floating-point status and returns the
floating-point exception status from before the write.

Users set or reset multiple exception flags using fp_set_flag and fp_clr_flag by ANDing or ORing
definitions for individual flags. For example, the following resets both the overflow and inexact flags:
fp_clr_flag (FP_OVERFLOW | FP_INEXACT)

Related Information
The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable, or fp_disable_all
(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on
page 296) subroutine, fp_any_xcp, fp_divbyzero, fp_inexact, fp_invalid_op, fp_overflow,
fp_underflow (“fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subroutine”
on page 301) subroutines, fp_iop_infdinf, fp_iop_infmzr, fp_iop_infsinf, fp_iop_invcmp, fp_iop_snan,
or fp_iop_zrdzr (“fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp,
fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft Subroutines” on page 303) subroutines, fp_read_rnd or
fp_swap_rnd (“fp_read_rnd or fp_swap_rnd Subroutine” on page 305) subroutine.

Floating-Point Exceptions Overview and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

fp_cpusync Subroutine

Purpose
Queries or changes the floating-point exception enable (FE) bit in the Machine Status register (MSR).

Note: This subroutine has been replaced by the fp_trapstate (“fp_trapstate Subroutine” on page 310)
subroutine. The fp_cpusync subroutine is supported for compatibility, but the fp_trapstate
subroutine should be used for development.

Base Operating System (BOS) Runtime Services (A-P) 299

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_cpusync (Flag);
int Flag;

Description
The fp_cpusync subroutine is a service routine used to query, set, or reset the Machine Status Register
(MSR) floating-point exception enable (FE) bit. The MSR FE bit determines whether a processor runs in
pipeline or serial mode. Floating-point traps can only be generated by the hardware when the processor is
in synchronous mode.

The fp_cpusync subroutine changes only the MSR FE bit. It is a service routine for use in developing
custom floating-point exception-handling software. If you are using the fp_enable or fp_enable_all
(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on
page 296) subroutine or the fp_sh_trap_info or fp_sh_set_stat (“fp_sh_info, fp_sh_trap_info, or
fp_sh_set_stat Subroutine” on page 306) subroutine, you must use the fp_trap (“fp_trap Subroutine” on
page 308) subroutine to place the process in serial mode.

Parameters

Flag Specifies to query or modify the MSR FE bit:

FP_SYNC_OFF
Sets the FE bit in the MSR to Off, which disables floating-point exception processing
immediately.

FP_SYNC_ON
Sets the FE bit in the MSR to On, which enables floating-exception processing for the
next floating-point operation.

FP_SYNC_QUERY
Returns the current state of the process (either FP_SYNC_ON or FP_SYNC_OFF)
without modifying it.

If called with any other value, the fp_cpusync subroutine returns FP_SYNC_ERROR.

Return Values
If called with the FP_SYNC_OFF or FP_SYNC_ON flag, the fp_cpusync subroutine returns a value
indicating which flag was in the previous state of the process.

If called with the FP_SYNC _QUERY flag, the fp_cpusync subroutine returns a value indicating the
current state of the process, either the FP_SYNC_OFF or FP_SYNC_ON flag.

Error Codes
If the fp_cpusync subroutine is called with an invalid parameter, the subroutine returns
FP_SYNC_ERROR. No other errors are reported.

Related Information
The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable
(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on
page 296

300 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

page 296) subroutine, fp_clr_flag, fpset_flag, fp_read_flag, or fp_swap_flag (“fp_clr_flag, fp_set_flag,
fp_read_flag, or fp_swap_flag Subroutine” on page 297) subroutine, sigaction, sigvec, or signal
subroutine.

Floating-Point Processor in Assembler Language Reference.

Floating-Point Exceptions in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

fp_flush_imprecise Subroutine

Purpose
Forces imprecise signal delivery.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

void fp_flush_imprecise ()

Description
The fp_flush_imprecise subroutine forces any imprecise interrupts to be reported. To ensure that no
signals are lost when a program voluntarily exits, use this subroutine in combination with the atexit (“exit,
atexit, unatexit, _exit, or _Exit Subroutine” on page 245) subroutine.

Example
The following example illustrates using the atexit subroutine to run the fp_flush_imprecise subroutine
before a program exits:
#include <fptrap.h>
#include <stdlib.h>
#include <stdio.h>

if (0!=atexit(fp_flush_imprecise))
puts ("Failure in atexit(fp_flush_imprecise) ");

Related Information
The atexit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245) subroutine, fp_any_enable,
fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable (“fp_any_enable, fp_is_enabled,
fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on page 296) subroutine, fp_clr_flag,
fp_read_flag, fp_swap_flag, or fpset_flag (“fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag
Subroutine” on page 297) subroutine, fp_cpusync (“fp_cpusync Subroutine” on page 299) subroutine,
fp_trap (“fp_trap Subroutine” on page 308) subroutine, sigaction subroutine.

Floating-Point Exceptions in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact,
fp_any_xcp Subroutine

Purpose
Tests to see if a floating-point exception has occurred.

Base Operating System (BOS) Runtime Services (A-P) 301

Library
Standard C Library (libc.a)

Syntax

#include <float.h>
#include <fpxcp.h>

int
fp_invalid_op()
int fp_divbyzero()

int fp_overflow()
int fp_underflow()

int
fp_inexact()
int fp_any_xcp()

Description
These subroutines aid in determining when an exception has occurred and the exception type. These
subroutines can be called explicitly after blocks of code that may cause a floating-point exception.

Return Values
The fp_invalid_op subroutine returns a value of 1 if a floating-point invalid-operation exception status flag
is set. Otherwise, a value of 0 is returned.

The fp_divbyzero subroutine returns a value of 1 if a floating-point divide-by-zero exception status flag is
set. Otherwise, a value of 0 is returned.

The fp_overflow subroutine returns a value of 1 if a floating-point overflow exception status flag is set.
Otherwise, a value of 0 is returned.

The fp_underflow subroutine returns a value of 1 if a floating-point underflow exception status flag is set.
Otherwise, a value of 0 is returned.

The fp_inexact subroutine returns a value of 1 if a floating-point inexact exception status flag is set.
Otherwise, a value of 0 is returned.

The fp_any_xcp subroutine returns a value of 1 if a floating-point invalid operation, divide-by-zero,
overflow, underflow, or inexact exception status flag is set. Otherwise, a value of 0 is returned.

Related Information
The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable fp_disable_all, or fp_disable
(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on
page 296) subroutine, fp_clr_flag, fp_read_flag, fp_set_flag, or fp_swap_flag (“fp_clr_flag, fp_set_flag,
fp_read_flag, or fp_swap_flag Subroutine” on page 297) subroutine, fp_read_rnd or fp_swap_rnd
(“fp_read_rnd or fp_swap_rnd Subroutine” on page 305) subroutine.

Floating-Point Processor in Assembler Language Reference.

Floating-Point Exceptions and Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

302 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr,
fp_iop_invcmp, fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft
Subroutines

Purpose
Tests to see if a floating-point exception has occurred.

Library
Standard C Library (libc.a)

Syntax
#include <float.h>
#include <fpxcp.h>

int fp_iop_snan()
int fp_iop_infsinf()

int
fp_iop_infdinf()
int fp_iop_zrdzr()

int
fp_iop_infmzr()
int fp_iop_invcmp()

int
fp_iop_sqrt()
int fp_iop_convert()

int
fp_iop_vxsoft ();

Description
These subroutines aid in determining when an exception has occurred and the exception type. These
subroutines can be called explicitly after blocks of code that may cause a floating-point exception.

Return Values
The fp_iop_snan subroutine returns a value of 1 if a floating-point invalid-operation exception status flag
is set due to a signaling NaN (NaNS) flag. Otherwise, a value of 0 is returned.

The fp_iop_infsinf subroutine returns a value of 1 if a floating-point invalid-operation exception status flag
is set due to an INF-INF flag. Otherwise, a value of 0 is returned.

The fp_iop_infdinf subroutine returns a value of 1 if a floating-point invalid-operation exception status flag
is set due to an INF/INF flag. Otherwise, a value of 0 is returned.

The fp_iop_zrdzr subroutine returns a value of 1 if a floating-point invalid-operation exception status flag
is set due to a 0.0/0.0 flag. Otherwise, a value of 0 is returned.

The fp_iop_infmzr subroutine returns a value of 1 if a floating-point invalid-operation exception status flag
is set due to an INF*0.0 flag. Otherwise, a value of 0 is returned.

The fp_iop_invcmp subroutine returns a value of 1 if a floating-point invalid-operation exception status
flag is set due to a compare involving a NaN. Otherwise, a value of 0 is returned.

The fp_iop_sqrt subroutine returns a value of 1 if a floating-point invalid-operation exception status flag is
set due to the calculation of a square root of a negative number. Otherwise, a value of 0 is returned.

Base Operating System (BOS) Runtime Services (A-P) 303

The fp_iop_convert subroutine returns a value of 1 if a floating-point invalid-operation exception status
flag is set due to the conversion of a floating-point number to an integer, where the floating-point number
was a NaN, an INF, or was outside the range of the integer. Otherwise, a value of 0 is returned.

The fp_iop_vxsoft subroutine returns a value of 1 if the VXSOFT detail bit is on. Otherwise, a value of 0
is returned.

fp_raise_xcp Subroutine

Purpose
Generates a floating-point exception.

Library
Standard C Library (libc.a)

Syntax
#include <fpxcp.h>

int fp_raise_xcp(mask)
fpflag_t mask;

Description
The fp_raise_xcp subroutine causes any floating-point exceptions defined by the mask parameter to be
raised immediately. If the exceptions defined by the mask parameter are enabled and the program is
running in serial mode, the signal for floating-point exceptions, SIGFPE, is raised.

If more than one exception is included in the mask variable, the exceptions are raised in the following
order:

1. Invalid

2. Dividebyzero

3. Underflow

4. Overflow

5. Inexact

Thus, if the user exception handler does not disable further exceptions, one call to the fp_raise_xcp
subroutine can cause the exception handler to be entered many times.

Parameters

mask Specifies a 32-bit pattern that identifies floating-point traps.

Return Values
The fp_raise_xcp subroutine returns 0 for normal completion and returns a nonzero value if an error
occurs.

Related Information
The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable
(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on
page 296) subroutine, fp_clr_flag, fp_read_flag, fp_swap_flag, or fpset_flag (“fp_clr_flag, fp_set_flag,

304 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

fp_read_flag, or fp_swap_flag Subroutine” on page 297) subroutine, fp_cpusync (“fp_cpusync Subroutine”
on page 299) subroutine, fp_trap (“fp_trap Subroutine” on page 308) subroutine, sigaction subroutine.

fp_read_rnd or fp_swap_rnd Subroutine

Purpose
Read and set the IEEE floating-point rounding mode.

Library
Standard C Library (libc.a)

Syntax
#include <float.h>

fprnd_t fp_read_rnd()
fprnd_t fp_swap_rnd(RoundMode)
fprnd_t RoundMode;

Description
The fp_read_rnd subroutine returns the current rounding mode. The fp_swap_rnd subroutine changes
the rounding mode to the RoundMode parameter and returns the value of the rounding mode before the
change.

Floating-point rounding occurs when the infinitely precise result of a floating-point operation cannot be
represented exactly in the destination floating-point format (such as double-precision format).

The IEEE Standard for Binary Floating-Point Arithmetic allows floating-point numbers to be rounded in four
different ways: round toward zero, round to nearest, round toward +INF, and round toward -INF. Once a
rounding mode is selected it affects all subsequent floating-point operations until another rounding mode is
selected.

Note: The default floating-point rounding mode is round to nearest. All C main programs begin with the
rounding mode set to round to nearest.

The encodings of the rounding modes are those defined in the ANSI C Standard. The float.h file contains
definitions for the rounding modes. Below is the float.h definition, the ANSI C Standard value, and a
description of each rounding mode.

float.h Definition ANSI Value Description

FP_RND_RZ 0 Round toward 0

FP_RND_RN 1 Round to nearest

FP_RND_RP 2 Round toward +INF

FP_RND_RM 3 Round toward -INF

The fp_swap_rnd subroutine can be used to swap rounding modes by saving the return value from
fp_swap_rnd(RoundMode). This can be useful in functions that need to force a specific rounding mode for
use during the function but wish to restore the caller’s rounding mode on exit. Below is a code fragment
that accomplishes this action:
save_mode = fp_swap_rnd (new_mode);
....desired code using new_mode
(void) fp_swap_rnd(save_mode); /*restore caller's mode*/

Base Operating System (BOS) Runtime Services (A-P) 305

Parameters

RoundMode Specifies one of the following modes: FP_RND_RZ, FP_RND_RN, FP_RND_RP, or
FP_RND_RM.

Related Information
The floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, or fabs (“floor, floorf, floorl, floord32, floord64,
floord128, nearest, trunc, itrunc, and uitrunc Subroutines” on page 279) subroutine, fp_any_enable,
fp_is_enabled, fp_enable_all, fp_enable,fp_disable_all, or fp_disable (“fp_any_enable, fp_is_enabled,
fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on page 296) subroutine, fp_clr_flag,
fp_read_flag, fp_set_flag, or fp_swap_flag (“fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag
Subroutine” on page 297) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine

Purpose
From within a floating-point signal handler, determines any floating-point exception that caused the trap in
the process and changes the state of the Floating-Point Status and Control register (FPSCR) in the user
process.

Library
Standard C Library (libc.a)

Syntax
#include <fpxcp.h>
#include <fptrap.h>
#include <signal.h>

void fp_sh_info(scp, fcp, struct_size)
struct sigcontext *scp;
struct fp_sh_info *fcp;
size_t struct_size;

void fp_sh_trap_info(scp, fcp)
struct sigcontext *scp;
struct fp_ctx *fcp;

void fp_sh_set_stat(scp, fpscr)
struct sigcontext *scp;
fpstat_t fpscr;

Description
These subroutines are for use within a user-written signal handler. They return information about the
process that was running at the time the signal occurred, and they update the Floating-Point Status and
Control register for the process.

Note: The fp_sh_trap_info subroutine is maintained for compatibility only. It has been replaced by the
fp_sh_info subroutine, which should be used for development.

306 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

These subroutines operate only on the state of the user process that was running at the time the signal
was delivered. They read and write the sigcontext structure. They do not change the state of the signal
handler process itself.

The state of the signal handler process can be modified by the fp_any_enable, fp_is_enabled,
fp_enable_all, fp_enable, fp_disable_all, or fp_disable subroutine.

fp_sh_info
The fp_sh_info subroutine returns information about the process that caused the trap by means of a
floating-point context (fp_sh_info) structure. This structure contains the following information:
typedef struct fp_sh_info {
fpstat_t fpscr;
fpflag_t trap;
short trap_mode;
char flags;
char extra;
} fp_sh_info_t;

The fields are:

fpscr The Floating-Point Status and Control register (FPSCR) in the user process at the time the
interrupt occurred.

trap A mask indicating the trap or traps that caused the signal handler to be entered. This mask is the
logical OR operator of the enabled floating-point exceptions that occurred to cause the trap. This
mask can have up to two exceptions; if there are two, the INEXACT signal must be one of them.
If the mask is 0, the SIGFPE signal was raised not by a floating-point operation, but by the kill or
raise subroutine or the kill command.

trap_mode The trap mode in effect in the process at the time the signal handler was entered. The values
returned in the fp_sh_info.trap_mode file use the following argument definitions:

FP_TRAP_OFF
Trapping off

FP_TRAP_SYNC
Precise trapping on

FP_TRAP_IMP_REC
Recoverable imprecise trapping on

FP_TRAP_IMP
Non-recoverable imprecise trapping on

flags This field is interpreted as an array of bits and should be accessed with masks. The following
mask is defined:

FP_IAR_STAT
If the value of the bit at this mask is 1, the exception was precise and the IAR points to
the instruction that caused the exception. If the value bit at this mask is 0, the exception
was imprecise.

fp_sh_trap_info
The fp_sh_trap_info subroutine is maintained for compatibility only. The fp_sh_trap_info subroutine
returns information about the process that caused the trap by means of a floating-point context (fp_ctx)
structure. This structure contains the following information:
fpstat_t fpscr;
fpflag_t trap;

The fields are:

fpscr The Floating-Point Status and Control register (FPSCR) in the user process at the time the
interrupt occurred.

Base Operating System (BOS) Runtime Services (A-P) 307

trap A mask indicating the trap or traps that caused the signal handler to be entered. This mask is the
logical OR operator of the enabled floating-point exceptions that occurred to cause the trap. This
mask can have up to two exceptions; if there are two, the INEXACT signal must be one of them. If
the mask is 0, the SIGFPE signal was raised not by a floating-point operation, but by the kill or
raise subroutine or the kill command.

fp_sh_set_stat
The fp_sh_set_stat subroutine updates the Floating-Point Status and Control register (FPSCR) in the
user process with the value in the fpscr field.

The signal handler must either clear the exception bit that caused the trap to occur or disable the trap to
prevent a recurrence. If the instruction generated more than one exception, and the signal handler clears
only one of these exceptions, a signal is raised for the remaining exception when the next floating-point
instruction is executed in the user process.

Parameters

fcp Specifies a floating-point context structure.
scp Specifies a sigcontext structure for the interrupt.
struct_size Specifies the size of the fp_sh_info structure.
fpscr Specifies which Floating-Point Status and Control register to update.

Related Information
The fp_any_enable, fp_disable_all, fp_disable, fp_enable_all, fp_enable, or fp_is_enabled
(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on
page 296) subroutine, fp_clr_flag, fp_read_flag, fp_set_flag, or fp_swap_flag (“fp_clr_flag, fp_set_flag,
fp_read_flag, or fp_swap_flag Subroutine” on page 297) subroutine, fp_trap (“fp_trap Subroutine”)
subroutine.

Floating-Point Exceptions in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

fp_trap Subroutine

Purpose
Queries or changes the mode of the user process to allow floating-point exceptions to generate traps.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_trap(flag)
int flag;

Description
The fp_trap subroutine queries and changes the mode of the user process to allow or disallow
floating-point exception trapping. Floating-point traps can only be generated when a process is executing
in a traps-enabled mode.

308 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The default state is to execute in pipelined mode and not to generate floating-point traps.

Note: The fp_trap routines only change the execution state of the process. To generate floating-point
traps, you must also enable traps. Use the fp_enable (“fp_any_enable, fp_is_enabled,
fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on page 296) and fp_enable_all
subroutines to enable traps.

Before calling the fp_trap(FP_TRAP_SYNC) routine, previous floating-point operations can set to True
certain exception bits in the Floating-Point Status and Control register (FPSCR). Enabling these
Cexceptions and calling the fp_trap(FP_TRAP_SYNC) routine does not cause an immediate trap to occur.
That is, the operation of these traps is edge-sensitive, not level-sensitive.

The fp_trap subroutine does not clear the exception history. You can query this history by using any of the
following subroutines:

v fp_any_xcp

v fp_divbyzero

v fp_iop_convert

v fp_iop_infdinf

v fp_iop_infmzr

v fp_iop_infsinf

v fp_iop_invcmp

v fp_iop_snan

v fp_iop_sqrt

v fp_iop_vxsoft

v fp_iop_zrdzr

v fp_inexact

v fp_invalid_op

v fp_overflow

v fp_underflow

Base Operating System (BOS) Runtime Services (A-P) 309

Parameters

flag Specifies a query of or change in the mode of the user process:

FP_TRAP_OFF
Puts the user process into trapping-off mode and returns the previous mode of the process,
either FP_TRAP_SYNC, FP_TRAP_IMP, FP_TRAP_IMP_REC, or FP_TRAP_OFF.

FP_TRAP_QUERY
Returns the current mode of the user process.

FP_TRAP_SYNC
Puts the user process into precise trapping mode and returns the previous mode of the
process.

FP_TRAP_IMP
Puts the user process into non-recoverable imprecise trapping mode and returns the previous
mode.

FP_TRAP_IMP_REC
Puts the user process into recoverable imprecise trapping mode and returns the previous
mode.

FP_TRAP_FASTMODE
Puts the user process into the fastest trapping mode available on the hardware platform.

Note: Some hardware models do not support all modes. If an unsupported mode is requested, the
fp_trap subroutine returns FP_TRAP_UNIMPL.

Return Values
If called with the FP_TRAP_OFF, FP_TRAP_IMP, FP_TRAP_IMP_REC, or FP_TRAP_SYNC flag, the
fp_trap subroutine returns a value indicating which flag was in the previous mode of the process if the
hardware supports the requested mode. If the hardware does not support the requested mode, the fp_trap
subroutine returns FP_TRAP_UNIMPL.

If called with the FP_TRAP_QUERY flag, the fp_trap subroutine returns a value indicating the current
mode of the process, either the FP_TRAP_OFF, FP_TRAP_IMP, FP_TRAP_IMP_REC, or
FP_TRAP_SYNC flag.

If called with FP_TRAP_FASTMODE, the fp_trap subroutine sets the fastest mode available and returns
the mode selected.

Error Codes
If the fp_trap subroutine is called with an invalid parameter, the subroutine returns FP_TRAP_ERROR.

If the requested mode is not supported on the hardware platform, the subroutine returns
FP_TRAP_UNIMPL.

fp_trapstate Subroutine

Purpose
Queries or changes the trapping mode in the Machine Status register (MSR).

Note: This subroutine replaces the fp_cpusync (“fp_cpusync Subroutine” on page 299) subroutine. The
fp_cpusync subroutine is supported for compatibility, but the fp_trapstate subroutine should be
used for development.

310 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_trapstate (int)

Description
The fp_trapstate subroutine is a service routine used to query or set the trapping mode. The trapping
mode determines whether floating-point exceptions can generate traps, and can affect execution speed.
See Floating-Point Exceptions Overview in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs for a description of precise and imprecise trapping modes. Floating-point traps
can be generated by the hardware only when the processor is in a traps-enabled mode.

The fp_trapstate subroutine changes only the trapping mode. It is a service routine for use in developing
custom floating-point exception-handling software. If you are using the fp_enable (“fp_any_enable,
fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on page 296) or
fp_enable_all subroutine or the fp_sh_info (“fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine”
on page 306) or fp_sh_set_stat subroutine, you must use the fp_trap (“fp_trap Subroutine” on page 308)
subroutine to change the process’ trapping mode.

Parameters

flag Specifies a query of, or change in, the trap mode:

FP_TRAPSTATE_OFF
Sets the trapping mode to Off and returns the previous mode.

FP_TRAPSTATE_QUERY
Returns the current trapping mode without modifying it.

FP_TRAPSTATE_IMP
Puts the process in non-recoverable imprecise trapping mode and returns the previous
state.

FP_TRAPSTATE_IMP_REC
Puts the process in recoverable imprecise trapping mode and returns the previous state.

FP_TRAPSTATE_PRECISE
Puts the process in precise trapping mode and returns the previous state.

FP_TRAPSTATE_FASTMODE
Puts the process in the fastest trap-generating mode available on the hardware platform
and returns the state selected.

Note: Some hardware models do not support all modes. If an unsupported mode is requested, the
fp_trapstate subroutine returns FP_TRAP_UNIMPL and the trapping mode is not changed.

Return Values
If called with the FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC, or
FP_TRAPSTATE_PRECISE flag, the fp_trapstate subroutine returns a value indicating the previous mode
of the process. The value may be FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,
FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE. If the hardware does not support the
requested mode, the fp_trapstate subroutine returns FP_TRAP_UNIMPL.

Base Operating System (BOS) Runtime Services (A-P) 311

If called with the FP_TRAP_QUERY flag, the fp_trapstate subroutine returns a value indicating the
current mode of the process. The value may be FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,
FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

If called with the FP_TRAPSTATE_FASTMODE flag, the fp_trapstate subroutine returns a value
indicating which mode was selected. The value may be FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,
FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

Related Information
The fp_any_enable, fp_disable_all, fp_disable, fp_enable_all, fp_enable, or fp_is_enabled
(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on
page 296) subroutine, fp_clr_flag, fp_read_flag, fpset_flag, or fp_swap_flag (“fp_clr_flag, fp_set_flag,
fp_read_flag, or fp_swap_flag Subroutine” on page 297) subroutine, sigaction, signal, or sigvec
subroutine.

The Floating-Point Processor in Assembler Language Reference.

Floating-Point Exceptions in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

fpclassify Macro

Purpose
Classifies real floating type.

Syntax
#include <math.h>

int fpclassify(x)
real-floating x;

Description
The fpclassify macro classifies the x parameter as NaN, infinite, normal, subnormal, zero, or into another
implementation-defined category. An argument represented in a format wider than its semantic type is
converted to its semantic type. Classification is based on the type of the argument.

Parameters

x Specifies the value to be classified.

Return Values
The fpclassify macro returns the value of the number classification macro appropriate to the value of its
argument.

Related Information
“isfinite Macro” on page 568, “isinf Subroutine” on page 570, “class, _class, finite, isnan, or unordered
Subroutines” on page 168, “isnormal Macro” on page 572.

The signbit Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions
Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

312 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

fread or fwrite Subroutine

Purpose
Reads and writes binary files.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
size_t fread ((void *) Pointer, Size, NumberOfItems, Stream (“Parameters” on page 314))
size_t Size, NumberOfItems (“Parameters” on page 314);
FILE *Stream (“Parameters” on page 314);
size_t fwrite (Pointer, Size, NumberOfItems, Stream (“Parameters” on page 314))
const void *Pointer (“Parameters” on page 314);
size_t Size, NumberOfItems (“Parameters” on page 314);
FILE *Stream (“Parameters” on page 314);

Description
The fread subroutine copies the number of data items specified by the NumberOfItems parameter from
the input stream into an array beginning at the location pointed to by the Pointer parameter. Each data
item has the form *Pointer.

The fread subroutine stops copying bytes if an end-of-file (EOF) or error condition is encountered while
reading from the input specified by the Stream parameter, or when the number of data items specified by
the NumberOfItems parameter have been copied. This subroutine leaves the file pointer of the Stream
parameter, if defined, pointing to the byte following the last byte read. The fread subroutine does not
change the contents of the Stream parameter.

The st_atime field will be marked for update by the first successful run of the fgetc (“getc, getchar, fgetc,
or getw Subroutine” on page 350), fgets (“gets or fgets Subroutine” on page 436), fgetwc (“getwc, fgetwc,
or getwchar Subroutine” on page 479), fgetws (“getws or fgetws Subroutine” on page 482), fread, fscanf,
getc (“getc, getchar, fgetc, or getw Subroutine” on page 350), getchar (“getc, getchar, fgetc, or getw
Subroutine” on page 350), gets (“gets or fgets Subroutine” on page 436), or scanf subroutine using a
stream that returns data not supplied by a prior call to the ungetc or ungetwc subroutine.

Note: The fread subroutine is a buffered read subroutine library call. It reads data in 4KB blocks. For
tape block sizes greater than 4KB, use the open (“open, openx, open64, creat, or creat64
Subroutine” on page 939) subroutine and read subroutine.

The fwrite subroutine writes items from the array pointed to by the Pointer parameter to the stream
pointed to by the Stream parameter. Each item’s size is specified by the Size parameter. The fwrite
subroutine writes the number of items specified by the NumberOfItems parameter. The file-position
indicator for the stream is advanced by the number of bytes successfully written. If an error occurs, the
resulting value of the file-position indicator for the stream is indeterminate.

The fwrite subroutine appends items to the output stream from the array pointed to by the Pointer
parameter. The fwrite subroutine appends as many items as specified in the NumberOfItems parameter.

The fwrite subroutine stops writing bytes if an error condition is encountered on the stream, or when the
number of items of data specified by the NumberOfItems parameter have been written. The fwrite
subroutine does not change the contents of the array pointed to by the Pointer parameter.

Base Operating System (BOS) Runtime Services (A-P) 313

The st_ctime and st_mtime fields will be marked for update between the successful run of the fwrite
subroutine and the next completion of a call to the fflush (“fclose or fflush Subroutine” on page 256) or
fclose subroutine on the same stream, the next call to the exit (“exit, atexit, unatexit, _exit, or _Exit
Subroutine” on page 245) subroutine, or the next call to the abort (“abort Subroutine” on page 2)
subroutine.

Parameters

Pointer Points to an array.
Size Specifies the size of the variable type of the array pointed to by the Pointer parameter. The

Size parameter can be considered the same as a call to sizeof subroutine.
NumberOfItems Specifies the number of items of data.
Stream Specifies the input or output stream.

Return Values
The fread and fwrite subroutines return the number of items actually transferred. If the NumberOfItems
parameter contains a 0, no characters are transferred, and a value of 0 is returned. If the NumberOfItems
parameter contains a negative number, it is translated to a positive number, since the NumberOfItems
parameter is of the unsigned type.

Error Codes
If the fread subroutine is unsuccessful because the I/O stream is unbuffered or data needs to be read into
the I/O stream’s buffer, it returns one or more of the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor specified by the Stream
parameter, and the process would be delayed in the fread operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is not a valid file descriptor
open for reading.

EINTR Indicates that the read operation was terminated due to receipt of a signal, and no data was
transferred.

Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.
Refer to the signal subroutine regarding sa_restart.

EIO Indicates that the process is a member of a background process group attempting to perform
a read from its controlling terminal, and either the process is ignoring or blocking the
SIGTTIN signal or the process group has no parent process.

ENOMEM Indicates that insufficient storage space is available.
ENXIO Indicates that a request was made of a nonexistent device.

If the fwrite subroutine is unsuccessful because the I/O stream is unbuffered or the I/O stream’s buffer
needs to be flushed, it returns one or more of the following error codes:

EAGAIN Indicates that the O_NONBLOCK or O_NDELAY flag is set for the file descriptor specified
by the Stream parameter, and the process is delayed in the write operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is not a valid file
descriptor open for writing.

EFBIG Indicates that an attempt was made to write a file that exceeds the file size of the process
limit or the systemwide maximum file size.

EINTR Indicates that the write operation was terminated due to the receipt of a signal, and no data
was transferred.

EIO Indicates that the process is a member of a background process group attempting to perform
a write to its controlling terminal, the TOSTOP signal is set, the process is neither ignoring
nor blocking the SIGTTOU signal, and the process group of the process is orphaned.

314 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ENOSPC Indicates that there was no free space remaining on the device containing the file.
EPIPE Indicates that an attempt is made to write to a pipe or first-in-first-out (FIFO) process that is

not open for reading by any process. A SIGPIPE signal is sent to the process.

The fwrite subroutine is also unsuccessful due to the following error conditions:

ENOMEM Indicates that insufficient storage space is available.
ENXIO Indicates that a request was made of a nonexistent device, or the request was outside the

capabilities of the device.

Related Information
The abort (“abort Subroutine” on page 2) subroutine, exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine”
on page 245) subroutine, fflush or fclose (“fclose or fflush Subroutine” on page 256) subroutine, fopen,
freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290) subroutine,
getc, getchar, fgetc, or getw (“getc, getchar, fgetc, or getw Subroutine” on page 350) subroutine, getwc,
fgetwc, or getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 479) subroutine, gets or fgets
(“gets or fgets Subroutine” on page 436) subroutine, getws or fgetws (“getws or fgetws Subroutine” on
page 482) subroutine, open (“open, openx, open64, creat, or creat64 Subroutine” on page 939)
subroutine, print, fprintf, or sprintf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or
vwsprintf Subroutine” on page 1178) subroutine, putc, putchar, fputc, or putw (“putc, putchar, fputc, or
putw Subroutine” on page 1331) subroutine, putwc, putwchar, or fputwc (“putwc, putwchar, or fputwc
Subroutine” on page 1349) subroutine, puts or fputs (“puts or fputs Subroutine” on page 1341)subroutine,
putws or fputws (“putws or fputws Subroutine” on page 1351) subroutine, read subroutine, scanf, fscanf,
sscanf, or wsscanf subroutine, ungetc or ungetwc subroutine, write subroutine.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

freehostent Subroutine

Purpose
To free memory allocated by getipnodebyname and getipnodebyaddr.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>
void freehostent (ptr)
struct hostent * ptr;

Description
The freehostent subroutine frees any dynamic storage pointed to by elements of ptr. This includes the
hostent structure and the data areas pointed to by the h_name, h_addr_list, and h_aliases members of
the hostent structure.

Related Information
The getipnodebyaddr subroutine and getipnodebyname subroutine.

Base Operating System (BOS) Runtime Services (A-P) 315

freelmb Subroutine

Purpose
Returns a block of memory allocated by alloclmb() to the system.

Syntax
#include <sys/dr.h>

int freelmb(long long laddr

Description
The freelmb() subroutine returns a block of memory, allocated by allocmb(), for general system use.

Parameters

laddr A previously allocated LMB address.

Execution Environment
This freelmb() interface should only be called from the process environment.

Return Values

0 The LMB is successfully freed.

Error Codes

ENOTSUP LMB allocation not supported on this system.
EINVAL laddr does not describe a previously allocated LMB.
EINVAL Not in the process environment.

Related Information
“alloclmb Subroutine” on page 68

frevoke Subroutine

Purpose
Revokes access to a file by other processes.

Library
Standard C Library (libc.a)

Syntax
int frevoke (FileDescriptor)
int FileDescriptor;

Description
The frevoke subroutine revokes access to a file by other processes.

316 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

All accesses to the file are revoked, except through the file descriptor specified by the FileDescriptor
parameter to the frevoke subroutine. Subsequent attempts to access the file, using another file descriptor
established before the frevoke subroutine was called, fail and cause the process to receive a return value
of -1, and the errno global variable is set to EBADF .

A process can revoke access to a file only if its effective user ID is the same as the file owner ID or if the
invoker has root user authority.

Note: The frevoke subroutine has no affect on subsequent attempts to open the file. To ensure exclusive
access to the file, the caller should change the mode of the file before issuing the frevoke
subroutine. Currently the frevoke subroutine works only on terminal devices.

Parameters

FileDescriptor A file descriptor returned by a successful open subroutine.

Return Values
Upon successful completion, the frevoke subroutine returns a value of 0.

If the frevoke subroutine fails, it returns a value of -1 and the errno global variable is set to indicate the
error.

Error Codes
The frevoke subroutine fails if the following is true:

EBADF The FileDescriptor value is not the valid file descriptor of a terminal.
EPERM The effective user ID of the calling process is not the same as the file owner ID.
EINVAL Revocation of access rights is not implemented for this file.

frexpd32, frexpd64, and frexpd128 Subroutines

Purpose
Extracts the mantissa and exponent from a decimal floating-point number.

Syntax
#include <math.h>

_Decimal32 frexpd32 (num, exp)
_Decimal32 num;
int *exp;

_Decimal64 frexpd64 (num, exp)
_Decimal64 num;
int *exp;

_Decimal128 frexpd128 (num, exp)
_Decimal128 num;
int *exp;

Description
The frexpd32, frexpd64, and frexpd128 subroutines break a decimal floating-point number into a
mantissa and an integral power of 10. The integer exponent is stored in the int object pointed to by the
exp parameter.

Base Operating System (BOS) Runtime Services (A-P) 317

Parameters

num Specifies the decimal floating-point number to be broken
into a mantissa and an integral power of 10.

exp Points to where the integer exponent is stored.

Return Values
For finite arguments, the frexpd32, frexpd64, and frexpd128 subroutines return the mantissa value in the
x parameter, such that the num parameter equals the x parameter times 10 raised to the power exp
parameter.

If num is NaN, a NaN is returned, and the value of the *exp is not specified.

If num is ±0, ±0 is returned, and the value of the *exp is 0.

If num is ±Inf, num is returned, and the value of the *exp is not specified.

Related Information
The “modf, modff, modfl, modfd32, modfd64, and modfd128 Subroutines” on page 852

frexpf, frexpl, or frexp Subroutine

Purpose
Extracts the mantissa and exponent from a double precision number.

Syntax
#include <math.h>

float frexpf (num, exp)
float num;
int *exp;

long double frexpl (num, exp)
long double num;
int *exp;

double frexp (num, exp)
double num;
int *exp;

Description
The frexpf, frexpl, and frexp subroutines break a floating-point number num into a normalized fraction
and an integral power of 2. The integer exponent is stored in the int object pointed to by exp.

Parameters

num Specifies the floating-point number to be broken into a normalized fraction and an integral power of 2.
exp Points to where the integer exponent is stored.

Return Values
For finite arguments, the frexpf, frexpl, and frexp subroutines return the value x, such that x has a
magnitude in the interval [½ ,1) or 0, and num equals x times 2 raised to the power exp.

318 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If num is NaN, a NaN is returned, and the value of *exp is unspecified.

If num is ±0, ±0 is returned, and the value of *exp is 0.

If num is ±Inf, num is returned, and the value of *exp is unspecified.

Related Information
“class, _class, finite, isnan, or unordered Subroutines” on page 168 and “modf, modff, modfl, modfd32,
modfd64, and modfd128 Subroutines” on page 852

math.h in AIX 5L Version 5.3 Files Reference.

fscntl Subroutine

Purpose
Controls file system control operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <j2/j2_cntl.h>
#include <sys/vmount.h>

int fscntl (vfs_id, Command, Argument, ArgumentSize)
int vfs_id;
int Command;
char *Argument;
int ArgumentSize;

Description
The fscntl subroutine performs a variety of file system-specific functions. These functions typically require
root user authority.

The Enhanced Journaled File System (JFS2) supports several Command values that can be used by
applications. Each of these Command values requires root authority.

FSCNTL_FREEZE
The file system specified by vfs_id is ″frozen″ for a specified amount of time. The act of freezing a
file system produces a nearly consistent on-disk image of the file system, and writes all dirty file
system metadata and user data to the disk. In its frozen state, the file system is read-only, and
anything that attempts to modify the file system or its contents must wait for the freeze to end. The
Argument is treated as an integral timeout value in seconds (instead of a pointer). The file system
is thawed by FSCNTL_THAW or when the timeout expires. The timeout, which must be a positive
value, can be renewed using FSCNTL_REFREEZE. The ArgumentSize must be 0.

Note: For all applications using this interface, use FSCNTL_THAW to thaw the file system rather
than waiting for the timeout to expire. If the timeout expires, an error log entry is generated
as an advisory.

FSCNTL_REFREEZE
The file system specified by vfs_id, which must be already frozen, has its timeout value reset. If
the command is used on a file system that is not frozen, an error is returned. The Argument is

Base Operating System (BOS) Runtime Services (A-P) 319

treated as an integral timeout value in seconds (instead of a pointer). The file system is thawed by
FSCNTL_THAW or when the new timeout expires. The timeout must be a positive value. The
ArgumentSize must be 0.

FSCNTL_THAW
The file system specified by vfs_id is thawed. Modifications to the file system are still allowed after
it is thawed, and the file system image might no longer be consistent after the thaw occurs. If the
file system is not frozen at the time of the call, an error is returned. The Argument and
ArgumentSize must both be 0.

The Journaled File System (JFS) supports only internal fscntl interfaces. Application programs should not
call this function on a JFS file system, because fscntl is reserved for system management commands,
such as the chfs command.

Parameters

vfs_id Identifies the file system to be acted upon. This information is returned by the stat
subroutine in the st_vfs field of the stat.h file.

Command Identifies the operation to be performed.
Argument Specifies a pointer to a block of file system specific information that defines how the

operation is to be performed.
ArgumentSize Defines the size of the buffer pointed to by the Argument parameter.

Return Values
Upon successful completion, the fscntl subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The fscntl subroutine fails if any of the following errors are true:

EINVAL The vfs_id parameter does not identify a valid file system.
EINVAL The Command parameter is not recognized by the file system.
EINVAL The timeout specified to FSCNTL_FREEZE or FSCNTL_REFREEZE is invalid.
EALREADY The Command parameter was FSCNTL_FREEZE and the file system specified was already

frozen.
EALREADY The Command parameter was FSCNTL_REFREEZE or FSCNTL_THAW and the file system

specified was not frozen.

Related Information
The chfs command.

The stat.h file.

Understanding File-System Helpers in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs explains file system helpers and examines file system-helper execution syntax.

fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos,
fgetpos64, fsetpos, or fsetpos64 Subroutine

Purpose
Repositions the file pointer of a stream.

320 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int fseek (Stream, Offset, Whence)
FILE *Stream;
long int Offset;
int Whence;

void rewind (Stream)
FILE *Stream;

long int ftell (Stream)
FILE *Stream;

int fgetpos (Stream, Position)
FILE *Stream;
fpos_t *Position;

int fsetpos (Stream, Position)
FILE *Stream;
const fpos_t *Position;

int fseeko (Stream, Offset, Whence)
FILE *Stream;
off_t Offset;
int Whence;

int fseeko64 (Stream, Offset, Whence)
FILE *Stream;
off64_t Offset;
int Whence;

off_t int ftello (Stream)
FILE *Stream;

off64_t int ftello64 (Stream)
FILE *Stream;

int fgetpos64 (Stream, Position)
FILE *Stream;
fpos64_t *Position;

int fsetpos64 (Stream, Position)
FILE *Stream;
const fpos64_t *Position;

Description
The fseek, fseeko and fseeko64 subroutines set the position of the next input or output operation on the
I/O stream specified by the Stream parameter. The position if the next operation is determined by the
Offset parameter, which can be either positive or negative.

The fseek, fseeko and fseeko64 subroutines set the file pointer associated with the specified Stream as
follows:

v If the Whence parameter is set to the SEEK_SET value, the pointer is set to the value of the Offset
parameter.

v If the Whence parameter is set to the SEEK_CUR value, the pointer is set to its current location plus
the value of the Offset parameter.

Base Operating System (BOS) Runtime Services (A-P) 321

v If the Whence parameter is set to the SEEK_END value, the pointer is set to the size of the file plus the
value of the Offset parameter.

The fseek, fseeko, and fseeko64 subroutine are unsuccessful if attempted on a file that has not been
opened using the fopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290)
subroutine. In particular, the fseek subroutine cannot be used on a terminal or on a file opened with the
popen (“popen Subroutine” on page 1154) subroutine. The fseek and fseeko subroutines will also fail
when the resulting offset is larger than can be properly returned.

The rewind subroutine is equivalent to calling the fseek subroutine using parameter values of
(Stream,SEEK_SET,SEEK_SET), except that the rewind subroutine does not return a value. Do not use
the rewind subroutine in situations where the fseek subroutine might fail (for example, when the fseek
subroutine is used with buffered I/O streams). In this case, use the fseek subroutine, so error conditions
can be checked.

The fseek, fseeko, fseeko64 and rewind subroutines undo any effects of the ungetc and ungetwc
subroutines and clear the end-of-file (EOF) indicator on the same stream.

The fseek, fseeko, and fseeko64 function allows the file-position indicator to be set beyond the end of
existing data in the file. If data is written later at this point, subsequent reads of data in the gap will return
bytes of the value 0 until data is actually written into the gap.

A successful calls to the fsetpos or fsetpos64 subroutines clear the EOF indicator and undoes any effects
of the ungetc and ungetwc subroutines.

After an fseek, fseeko, fseeko64 or a rewind subroutine, the next operation on a file opened for update
can be either input or output.

ftell, ftello and ftello64 subroutines return the position current value of the file-position indicator for the
stream pointed to by the Stream parameter. ftell and ftello will fail if the resulting offset is larger than can
be properly returned.

The fgetpos and fgetpos64 subroutines store the current value of the file-position indicator for the stream
pointed to by the Stream parameter in the object pointed to by the Position parameter. The fsetpos and
fsetpos64 set the file-position indicator for Stream according to the value of the Position parameter, which
must be the result of a prior call to fgetpos or fgetpos64 subroutine. fgetpos and fsetpos will fail if the
resulting offset is larger than can be properly returned.

Parameters

Stream Specifies the input/output (I/O) stream.
Offset Determines the position of the next operation.
Whence Determines the value for the file pointer associated with the Stream parameter.
Position Specifies the value of the file-position indicator.

Return Values
Upon successful completion, the fseek, fseeko and fseeko64 subroutine return a value of 0. Otherwise, it
returns a value of -1.

Upon successful completion, the ftell, ftello and ftello64 subroutine return the offset of the current byte
relative to the beginning of the file associated with the named stream. Otherwise, a long int value of -1 is
returned and the errno global variable is set.

Upon successful completion, the fgetpos, fgetpos64, fsetpos and fsetpos64 subroutines return a value
of 0. Otherwise, a nonzero value is returned and the errno global variable is set to the specific error.

322 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
If the fseek, fseeko, fseeko64, ftell, ftello, or ftello64 subroutines are unsuccessful because the stream
is unbuffered or the stream buffer needs to be flushed and the call to the subroutine causes an underlying
lseek or write subroutine to be invoked, it returns one or more of the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor, delaying the process in the
write operation.

EBADF Indicates that the file descriptor underlying the Stream parameter is not open for writing.
EFBIG Indicates that an attempt has been made to write to a file that exceeds the file-size limit of the

process or the maximum file size.
EFBIG Indicates that the file is a regular file and that an attempt was made to write at or beyond the

offset maximum associated with the corresponding stream.
EINTR Indicates that the write operation has been terminated because the process has received a

signal, and either no data was transferred, or the implementation does not report partial
transfers for this file.

EIO Indicates that the process is a member of a background process group attempting to perform a
write subroutine to its controlling terminal, the TOSTOP flag is set, the process is not ignoring
or blocking the SIGTTOU signal, and the process group of the process is orphaned. This error
may also be returned under implementation-dependent conditions.

ENOSPC Indicates that no remaining free space exists on the device containing the file.
EPIPE Indicates that an attempt has been made to write to a pipe or FIFO that is not open for reading

by any process. A SIGPIPE signal will also be sent to the process.
EINVAL Indicates that the Whence parameter is not valid. The resulting file-position indicator will be set

to a negative value. The EINVAL error code does not apply to the ftell and rewind
subroutines.

ESPIPE Indicates that the file descriptor underlying the Stream parameter is associated with a pipe,
FIFO, or socket.

EOVERFLOW Indicates that for fseek, the resulting file offset would be a value that cannot be represented
correctly in an object of type long.

EOVERFLOW Indicates that for fseeko, the resulting file offset would be a value that cannot be represented
correctly in an object of type off_t.

ENXIO Indicates that a request was made of a non-existent device, or the request was outside the
capabilities of the device.

The fgetpos and fsetpos subroutines are unsuccessful due to the following conditions:

EINVAL Indicates that either the Stream or the Position parameter is not valid. The EINVAL error code
does not apply to the fgetpos subroutine.

EBADF Indicates that the file descriptor underlying the Stream parameter is not open for writing.
ESPIPE Indicates that the file descriptor underlying the Stream parameter is associated with a pipe,

FIFO, or socket.

The fseek, fseeko, ftell, ftello, fgetpos, and fsetpos subroutines are unsuccessful under the following
condition:

EOVERFLOW The resulting could not be returned properly.

Related Information
The closedir (“opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64, readdir64, telldir64,
seekdir64, rewinddir64, or closedir64 Subroutine” on page 947) subroutine, fopen, fopen64, freopen,
freopen64 or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290)
subroutine, lseek or lseek64 (“lseek, llseek or lseek64 Subroutine” on page 770)subroutine, opendir,
readdir, rewinddir, seekdir, or telldir (“opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64,

Base Operating System (BOS) Runtime Services (A-P) 323

readdir64, telldir64, seekdir64, rewinddir64, or closedir64 Subroutine” on page 947)subroutine, popen
(“popen Subroutine” on page 1154) subroutine, ungetc or ungetwc subroutine, write, writex, writev, or
writevx subroutine.

Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

fsync or fsync_range Subroutine

Purpose
Writes changes in a file to permanent storage.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int fsync (FileDescriptor)
int FileDescriptor;

int fsync_range (FileDescriptor, how, start, length)
int FileDescriptor;
int how;
off_t start;
off_t length;

Description
The fsync subroutine causes all modified data in the open file specified by the FileDescriptor parameter to
be saved to permanent storage. On return from the fsync subroutine, all updates have been saved on
permanent storage.

The fsync_range subroutine causes all modified data in the specified range of the open file specified by
the FileDescriptor parameter to be saved to permanent storage. On return from the fsync_range
subroutine, all updates in the specified range have been saved on permanent storage.

Data written to a file that a process has opened for deferred update (with the O_DEFER flag) is not written
to permanent storage until another process issues an fsync_range or fsync call against this file or runs a
synchronous write subroutine (with the O_SYNC flag) on this file. See the fcntl.h file and the open
subroutine for descriptions of the O_DEFER and O_SYNC flags respectively.

Note: The file identified by the FileDescriptor parameter must be open for writing when the fsync_range
or fsync subroutine is issued or the call is unsuccessful. This restriction was not enforced in BSD
systems.

Parameters

FileDescriptor A valid, open file descriptor.

324 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

how How to flush, O_DSYNC, O_NOCACHE or O_SYNC.

O_DSYNC
Write file data and metadata to retrieve the data for the specified range.

O_NOCACHE
Write the data in the range and release full memory pages in the byte range.
The data will no longer be cached.

O_SYNC
Write all modified file data and metadata for the specified range.

start Starting file offset.
length Length, or zero for everything.

Return Values
Upon successful completion, the fsync subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Upon successful completion, the fsync_range subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The fsync or fsync_range subroutine is unsuccessful if one or more of the following are true:

EIO An I/O error occurred while reading from or writing to the file system.
EBADF The FileDescriptor parameter is not a valid file descriptor open for writing.
EINVAL The file is not a regular file.
EINTR The subroutine was interrupted by a signal.

Related Information
The open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page 939) subroutine,
sync subroutine, write, writex, writev, or writevx subroutine.

The fcntl.h file.

Files, Directories, and File Systems Overview for Programmers in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs contains information about i-nodes, file
descriptors, file-space allocation, and more.

ftok Subroutine

Purpose
Generates a standard interprocess communication key.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/ipc.h>

Base Operating System (BOS) Runtime Services (A-P) 325

key_t ftok (Path, ID)
char *Path;
int ID;

Description
Attention: If the Path parameter of the ftok subroutine names a file that has been removed while keys
still refer to it, the ftok subroutine returns an error. If that file is then re-created, the ftok subroutine will
probably return a key different from the original one.

Attention: Each installation should define standards for forming keys. If standards are not adhered to,
unrelated processes may interfere with each other’s operation.

Attention: The ftok subroutine does not guarantee unique key generation. However, the occurrence of
key duplication is very rare and mostly for across file systems.

The ftok subroutine returns a key, based on the Path and ID parameters, to be used to obtain
interprocess communication identifiers. The ftok subroutine returns the same key for linked files if called
with the same ID parameter. Different keys are returned for the same file if different ID parameters are
used.

All interprocess communication facilities require you to supply a key to the msgget, semget, and shmget
subroutines in order to obtain interprocess communication identifiers. The ftok subroutine provides one
method for creating keys, but other methods are possible. For example, you can use the project ID as the
most significant byte of the key, and use the remaining portion as a sequence number.

Parameters

Path Specifies the path name of an existing file that is accessible to the process.
ID Specifies a character that uniquely identifies a project.

Return Values
When successful, the ftok subroutine returns a key that can be passed to the msgget, semget, or
shmget subroutine.

Error Codes
The ftok subroutine returns the value (key_t)-1 if one or more of the following are true:

v The file named by the Path parameter does not exist.

v The file named by the Path parameter is not accessible to the process.

v The ID parameter has a value of 0.

Related Information
The msgget (“msgget Subroutine” on page 885) subroutine, semget subroutine, shmget subroutine.

Subroutines Overview and Understanding Memory Mapping in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

ftw or ftw64 Subroutine

Purpose
Walks a file tree.

326 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Standard C Library (libc.a)

Syntax
#include <ftw.h>

int ftw (Path, Function, Depth)
char *Path;
int (*Function(const char*, const struct stat*, int);
int Depth;

int ftw64 (Path, Function, Depth)
char *Path;
int (*Function(const char*, const struct stat64*, int);
int Depth;

Description
The ftw and ftw64 subroutines recursively searches the directory hierarchy that descends from the
directory specified by the Path parameter.

For each file in the hierarchy, the ftw and ftw64 subroutines call the function specified by the Function
parameter. ftw passes it a pointer to a null-terminated character string containing the name of the file, a
pointer to a stat structure containing information about the file, and an integer. ftw64 passes it a pointer to
a null-terminated character string containing the name of the file, a pointer to a stat64 structure containing
information about the file, and an integer.

The integer passed to the Function parameter identifies the file type with one of the following values:

FTW_F Regular file
FTW_D Directory
FTW_DNR Directory that cannot be read
FTW_SL Symbolic Link
FTW_NS File for which the stat structure could not be executed successfully

If the integer is FTW-DNR, the files and subdirectories contained in that directory are not processed.

If the integer is FTW-NS, the stat structure contents are meaningless. An example of a file that causes
FTW-NS to be passed to the Function parameter is a file in a directory for which you have read
permission but not execute (search) permission.

The ftw and ftw64 subroutines finish processing a directory before processing any of its files or
subdirectories.

The ftw and ftw64 subroutines continue the search until the directory hierarchy specified by the Path
parameter is completed, an invocation of the function specified by the Function parameter returns a
nonzero value, or an error is detected within the ftw and ftw64 subroutines, such as an I/O error.

The ftw and ftw64 subroutines traverse symbolic links encountered in the resolution of the Path
parameter, including the final component. Symbolic links encountered while walking the directory tree
rooted at the Path parameter are not traversed.

The ftw and ftw64 subroutines use one file descriptor for each level in the tree. The Depth parameter
specifies the maximum number of file descriptors to be used. In general, the ftw and ftw64 subroutines
runs faster if the value of the Depth parameter is at least as large as the number of levels in the tree.

Base Operating System (BOS) Runtime Services (A-P) 327

However, the value of the Depth parameter must not be greater than the number of file descriptors
currently available for use. If the value of the Depth parameter is 0 or a negative number, the effect is the
same as if it were 1.

Because the ftw and ftw64 subroutines are recursive, it is possible for it to terminate with a memory fault
due to stack overflow when applied to very deep file structures.

The ftw and ftw64 subroutines use the malloc subroutine to allocate dynamic storage during its operation.
If the ftw and ftw64 subroutined is terminated prior to its completion, such as by the longjmp subroutine
being executed by the function specified by the Function parameter or by an interrupt routine, the ftw and
ftw64 subroutines cannot free that storage. The storage remains allocated. A safe way to handle interrupts
is to store the fact that an interrupt has occurred, and arrange to have the function specified by the
Function parameter return a nonzero value the next time it is called.

Parameters

Path Specifies the directory hierarchy to be searched.
Function Specifies the file type.
Depth Specifies the maximum number of file descriptors to be used. Depth cannot be greater than

OPEN_MAX which is described in the sys/limits.h header file.

Return Values
If the tree is exhausted, the ftw and ftw64 subroutines returns a value of 0. If the subroutine pointed to by
fn returns a nonzero value, ftw and ftw64 subroutines stops its tree traversal and returns whatever value
was returned by the subroutine pointed to by fn. If the ftw and ftw64 subroutines detects an error, it
returns a -1 and sets the errno global variable to indicate the error.

Error Codes
If the ftw or ftw64 subroutines detect an error, a value of -1 is returned and the errno global variable is
set to indicate the error.

The ftw and ftw64 subroutine are unsuccessful if:

EACCES Search permission is denied for any component of the Path parameter or read
permission is denied for Path.

ENAMETOOLONG The length of the path exceeds PATH_MAX while _POSIX_NO_TRUNC is in effect.
ENOENT The Path parameter points to the name of a file that does not exist or points to an empty

string.
ENOTDIR A component of the Path parameter is not a directory.

The ftw subroutine is unsuccessful if:

EOVERFLOW A file in Path is of a size larger than 2 Gigabytes.

Related Information
The malloc, free, realloc, calloc, mallopt, mallinfo, or alloca (“malloc, free, realloc, calloc, mallopt,
mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine” on page 782) subroutine, setjmp or
longjmp subroutine, signal subroutine, stat subroutine.

Searching and Sorting Example Program and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

328 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

fwide Subroutine

Purpose
Set stream orientation.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
#include <wchar.h>

int fwid (FILE * stream, int mode),

Description
The fwide function determines the orientation of the stream pointed to by stream. If mode is greater than
zero, the function first attempts to make the stream wide-oriented. If mode is less than zero, the function
first attempts to make the stream byte-oriented. Otherwise, mode is zero and the function does not alter
the orientation of the stream.

If the orientation of the stream has already been determined, fwide does not change it.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call fwide, then check errno and if it is non-zero, assume an error
has occurred.

A call to fwide with mode set to zero can be used to determine the current orientation of a stream.

Return Values
The fwide function returns a value greater than zero if, after the call, the stream has wide-orientation, a
value less than zero if the stream has byte-orientation, or zero if the stream has no orientation.

Errors
The fwide function may fail if:

EBADF The stream argument is not a valid stream.

Related Information
The wchar.h file

fwprintf, wprintf, swprintf Subroutines

Purpose
Print formatted wide-character output.

Library
Standard Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 329

Syntax
#include <stdio.h>
#include <wchar.h>

int fwprintf (FILE * stream, const wchar_t * format, . . .)
int wprintf (const wchar_t * format, . .)
int swprintf (wchar_t *s, size_t n, const wchar_t * format, . . .)

Description
The fwprintf function places output on the named output stream. The wprintf function places output on
the standard output stream stdout. The swprintf function places output followed by the null
wide-character in consecutive wide-characters starting at *s; no more than n wide-characters are written,
including a terminating null wide-character, which is always added (unless n is zero).

Each of these functions converts, formats and prints its arguments under control of the format
wide-character string. The format is composed of zero or more directives: ordinary wide-characters,
which are simply copied to the output stream and conversion specifications , each of which results in
the fetching of zero or more arguments. The results are undefined if there are insufficient arguments for
the format. If the format is exhausted while arguments remain, the excess arguments are evaluated but
are otherwise ignored.

EX Conversions can be applied to the nth argument after the format in the argument list, rather than to
the next unused argument. In this case, the conversion wide-character % (see below) is replaced by the
sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}], giving the position of the
argument in the argument list. This feature provides for the definition of format wide-character strings that
select arguments in an order appropriate to specific languages (see the EXAMPLES section).

In format wide-character strings containing the %n$ form of conversion specifications, numbered
arguments in the argument list can be referenced from the format wide-character string as many times as
required.

In format wide-character strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

All forms of the fwprintf functions allow for the insertion of a language-dependent radix character in the
output string, output as a wide-character value. The radix character is defined in the program’s locale
(category LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character defaults to a period (.).

EX Each conversion specification is introduced by the % wide-character or by the wide-character
sequence %n$,after which the following appear in sequence:

v Zero or more flags (in any order), which modify the meaning of the conversion specification.

v An optional minimum field width. If the converted value has fewer wide-characters than the field width,
it will be padded with spaces by default on the left; it will be padded on the right, if the left-adjustment
flag (-), described below, is given to the field width. The field width takes the form of an asterisk (*),
described below, or a decimal integer.

v An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x and X
conversions; the number of digits to appear after the radix character for the e, E and f conversions; the
maximum number of significant digits for the g and G conversions; or the maximum number of
wide-characters to be printed from a string in s conversions. The precision takes the form of a period (.)
followed either by an asterisk (*), described below, or an optional decimal digit string, where a null digit
string is treated as 0. If a precision appears with any other conversion wide-character, the behaviour is
undefined.

v An optional l (lowercase L), L, h, H, D or DD specifies one of the following conversions:

– An optional l specifying that a following c conversion wide-character applies to a wint_t argument.

330 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

– An optional l specifying that a following s conversion wide-character applies to a wchar_t argument.

– An optional l specifying that a following d, i, o, u, x or X conversion wide-character applies to a type
long int or unsigned long int argument.

– An optional l specifying that a following n conversion wide-character applies to a pointer to a type
long int argument.

– An optional L specifying that a following e, E, f, g or G conversion wide-character applies to a type
long double argument.

– An optional h specifying that a following d, i, o, u, x or X conversion wide-character applies to a type
short int or type unsigned short int argument (the argument that will be promoted according to the
integral promotions, and its value will be converted to type short int or unsigned short int before
printing).

– An optional h specifying that a following n conversion wide-character applies to a pointer to a type
short int argument.

– An optional H specifying that a following e, E, f, g, or G conversion wide-character applies to a
_Decimal32 parameter.

– An optional D specifying that a following e, E, f, g, or G conversion wide-character applies to a
_Decimal64 parameter.

– An optional DD specifying that a following e, E, f, g, or G conversion wide-character applies to a
_Decimal128 parameter.

If an l, L , h, H, D, or DD appears with any other conversion wide-character, the behavior is undefined.

v A conversion wide-character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an argument of type int
supplies the field width or precision. Arguments specifying field width, or precision, or both must appear in
that order before the argument, if any, to be converted. A negative field width is taken as a - flag followed
by a positive field width. A negative precision is taken as if EX the precision were omitted. In format
wide-character strings containing the %n$ form of a conversion specification, a field width or precision may
be indicated by the sequence *m$, where m is a decimal integer in the range [1, {NL_ARGMAX}] giving
the position in the argument list (after the format argument) of an integer argument containing the field
width or precision, for example:
wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$), or unnumbered
argument specifications (that is, % and *), but normally not both. The only exception to this is that %% can
be mixed with the %n$ form. The results of mixing numbered and unnumbered argument specifications in
a format wide-character string are undefined. When numbered argument specifications are used,
specifying the Nth argument requires that all the leading arguments, from the first to the (N-1)th, are
specified in the format wide-character string.

The flag wide-characters and their meanings are:

’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g or %G) will be formatted
with thousands’ grouping wide-characters. For other conversions the behaviour is undefined. The
non-monetary grouping wide-character is used.

- The result of the conversion will be left-justified within the field. The conversion will be right-justified if
this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or -). The conversion will begin with
a sign only when a negative value is converted if this flag is not specified.

space If the first wide-character of a signed conversion is not a sign or if a signed conversion results in no
wide-characters, a space will be prefixed to the result. This means that if the space and + flags both
appear, the space flag will be ignored.

Base Operating System (BOS) Runtime Services (A-P) 331

This flag specifies that the value is to be converted to an alternative form. For o conversion, it
increases the precision (if necessary) to force the first digit of the result to be 0. For x or X
conversions, a non-zero result will have 0x (or 0X) prefixed to it. For e, E, f, g or G conversions, the
result will always contain a radix character, even if no digits follow it. Without this flag, a radix
character appears in the result of these conversions only if a digit follows it. For g and G conversions,
trailing zeros will not be removed from the result as they normally are. For other conversions, the
behavior is undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any indication of sign or
base) are used to pad to the field width; no space padding is performed. If the 0 and - flags both
appear, the 0 flag will be ignored. For d, i, o, u, x and X conversions, if a precision is specified, the 0
flag will be ignored. If the 0 and ’ flags both appear, the grouping wide-characters are inserted before
zero padding. For other conversions, the behavior is undefined.

The conversion wide-characters and their meanings are:

d,i The int argument is converted to a signed decimal in the style [-] dddd. The precision specifies the
minimum number of digits to appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The result of converting 0 with an
explicit precision of 0 is no wide-characters.

o The unsigned int argument is converted to unsigned octal format in the style dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be represented in
fewer digits, it will be expanded with leading zeros. The default precision is 1. The result of converting
0 with an explicit precision of 0 is no wide-characters.

u The unsigned int argument is converted to unsigned decimal format in the style dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be represented in
fewer digits, it will be expanded with leading zeros. The default precision is 1. The result of converting
0 with an explicit precision of 0 is no wide-characters.

x The unsigned int argument is converted to unsigned hexadecimal format in the style dddd; the letters
abcdef are used. The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting 0 with an explicit precision of 0 is no wide-characters.

X Behaves the same as the x conversion wide-character except that letters ABCDEF are used instead of
abcdef.

f The double argument is converted to decimal notation in the style [-] ddd.ddd, where the number of
digits after the radix character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is explicitly 0 and no # flag is present, no radix character appears. If a radix
character appears, at least one digit appears before it. The value is rounded to the appropriate number
of digits.
The fwprintf family of functions may make available wide-character string representations for infinity
and NaN.

e, E The double argument is converted in the style [-] d.ddde +/- dd, where there is one digit before the
radix character (which is non-zero if the argument is non-zero) and the number of digits after it is equal
to the precision; if the precision is missing, it is taken as 6; if the precision is 0 and no # flag is
present, no radix character appears. The value is rounded to the appropriate number of digits. The E
conversion wide-character will produce a number with E instead of e introducing the exponent. The
exponent always contains at least two digits. If the value is 0, the exponent is 0.
The fwprintf family of functions may make available wide-character string representations for infinity
and NaN.

g, G The double argument is converted in the style f or e (or in the style E in the case of a G conversion
wide-character), with the precision specifying the number of significant digits. If an explicit precision is
0, it is taken as 1. The style used depends on the value converted; style e (or E) will be used only if
the exponent resulting from such a conversion is less than -4 or greater than or equal to the precision.
Trailing zeros are removed from the fractional portion of the result; a radix character appears only if it
is followed by a digit.
The fwprintf family of functions may make available wide-character string representations for infinity
and NaN.

332 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

c If no l (ell) qualifier is present, the int argument is converted to a wide-character as if by calling the
btowc function and the resulting wide-character is written. Otherwise the wint_t argument is converted
to wchar_t, and written.

s If no l (ell) qualifier is present, the argument must be a pointer to a character array containing a
character sequence beginning in the initial shift state. Characters from the array are converted as if by
repeated calls to the mbrtowc function, with the conversion state described by an mbstate_t object
initialised to zero before the first character is converted, and written up to (but not including) the
terminating null wide-character. If the precision is specified, no more than that many wide-characters
are written. If the precision is not specified or is greater than the size of the array, the array must
contain a null wide-character.
If an l (ell) qualifier is present, the argument must be a pointer to an array of type wchar_t. Wide
characters from the array are written up to (but not including) a terminating null wide-character. If no
precision is specified or is greater than the size of the array, the array must contain a null
wide-character. If a precision is specified, no more than that many wide-characters are written.

p The argument must be a pointer to void. The value of the pointer is converted to a sequence of
printable wide-characters, in an implementation-dependent manner. The argument must be a pointer to
an integer into which is written the number of wide-characters written to the output so far by this call to
one of the fwprintf functions. No argument is converted.

C Same as lc.
S Same as ls.
% Output a % wide-character; no argument is converted. The entire conversion specification must be

%%.

If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion
is wider than the field width, the field is simply expanded to contain the conversion result. Characters
generated by fwprintf and wprintf are printed as if fputwc had been called.

The st_ctime and st_mtime fields of the file will be marked for update between the call to a successful
execution of fwprintf or wprintf and the next successful completion of a call to fflush or fclose on the
same stream or a call to exit or abort.

Return Values
Upon successful completion, these functions return the number of wide-characters transmitted excluding
the terminating null wide-character in the case of swprintf or a negative value if an output error was
encountered.

Error Codes
For the conditions under which fwprintf and wprintf will fail and may fail, refer to fputwc .In addition, all
forms of fwprintf may fail if:

EILSEQ A wide-character code that does not correspond to a valid character has been detected
EINVAL There are insufficient arguments.

In addition, wprintf and fwprintf may fail if:
ENOMEM Insufficient storage space is available.

Examples
To print the language-independent date and time format, the following statement could be used:
wprintf (format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:
L"%s, %s %d, %d:%.2d\n"

Base Operating System (BOS) Runtime Services (A-P) 333

producing the message:
Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:
L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:
Sonntag, 3. July, 10:02

Related Information
The btowc (“btowc Subroutine” on page 125) subroutine, fputwc (“putwc, putwchar, or fputwc Subroutine”
on page 1349) subroutine, fwscanf (“fwscanf, wscanf, swscanf Subroutines”) subroutine, setlocale
subroutine, mbrtowc (“mbrtowc Subroutine” on page 797) subroutine.

The wchar.h file.

fwscanf, wscanf, swscanf Subroutines

Purpose
Convert formatted wide-character input.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
#include <wchar.h>

int fwscanf (FILE * stream, const wchar_t * format, ...);
int wscanf (const wchar_t * format, ...);
int swscanf (const wchar_t * s, const wchar_t * format, ...);

Description
The fwscanf function reads from the named input stream. The wscanf function reads from the standard
input stream stdin. The swscanf function reads from the wide-character string s. Each function reads
wide-characters, interprets them according to a format, and stores the results in its arguments. Each
expects, as arguments, a control wide-character string format described below, and a set of pointer
arguments indicating where the converted input should be stored. The result is undefined if there are
insufficient arguments for the format. If the format is exhausted while arguments remain, the excess
arguments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather than to the
next unused argument. In this case, the conversion wide-character % (see below) is replaced by the
sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}]. This feature provides for the
definition of format wide-character strings that select arguments in an order appropriate to specific
languages. In format wide-character strings containing the %n$ form of conversion specifications, it is
unspecified whether numbered arguments in the argument list can be referenced from the format
wide-character string more than once.

The format can contain either form of a conversion specification, that is, % or %n$, but the two forms
cannot normally be mixed within a single format wide-character string. The only exception to this is that
%% or %* can be mixed with the %n$ form.

334 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The fwscanf function in all its forms allows for detection of a language-dependent radix character in the
input string, encoded as a wide-character value. The radix character is defined in the program’s locale
(category LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
radix character defaults to a period (.).

The format is a wide-character string composed of zero or more directives. Each directive is composed of
one of the following: one or more white-space wide-characters (space, tab, newline, vertical-tab or
form-feed characters); an ordinary wide-character (neither % nor a white-space character); or a conversion
specification. Each conversion specification is introduced by a % or the sequence %n$ after which the
following appear in sequence:

v An optional assignment-suppressing character *.

v An optional non-zero decimal integer that specifies the maximum field width.

v An optional size modifier h, H, l (lowercase L), L, D, or DD indicating the size of the receiving object.

– Must precede the c, s and [conversion wide-characters with the l (lowercase L) if the corresponding
argument is a pointer to wchar_t.

– Must precede the d, i and n conversion wide-characters with the h if the corresponding argument is
a pointer to short int or with the l (lowercase L) if it is a pointer to long int.

– Must precede the o, u and x conversion wide-characters with the h if the corresponding argument is
a pointer to unsigned short int or with l (lowercase L) if it is a pointer to unsigned long int.

– Must precede the e, f and g conversion wide-characters with l (lowercase L) if the corresponding
argument is a pointer to double or with the L if it is a pointer to long double.

– Must precede the e, f and g conversion wide-characters with the H if the corresponding argument is
a pointer to_Decimal32.

– Must precede the e, f and g conversion wide-characters with the D if the corresponding argument is
a pointer to_Decimal64.

– Must precede the e, f and g conversion wide-characters with the DD if the corresponding argument
is a pointer to_Decimal128.

If an l (lowercase L), L, h, H, D, or DD appears with any other conversion wide-character, the behavior
is undefined.

v A conversion wide-character that specifies the type of conversion to be applied. The valid conversion
wide-characters are described below.

The fwscanf functions execute each directive of the format in turn. If a directive fails, as detailed below,
the function returns. Failures are described as input failures (due to the unavailability of input bytes) or
matching failures (due to inappropriate input).

A directive composed of one or more white-space wide-characters is executed by reading input until no
more valid input can be read, or up to the first wide-character which is not a white-space wide-character,
which remains unread.

A directive that is an ordinary wide-character is executed as follows. The next wide-character is read from
the input and compared with the wide-character that comprises the directive; if the comparison shows that
they are not equivalent, the directive fails, and the differing and subsequent wide-characters remain
unread.

A directive that is a conversion specification defines a set of matching input sequences, as described
below for each conversion wide-character. A conversion specification is executed in the following steps:

Input white-space wide-characters (as specified by iswspace) are skipped, unless the conversion
specification includes a [, c or n conversion character.

An item is read from the input, unless the conversion specification includes an n conversion
wide-character. An input item is defined as the longest sequence of input wide-characters, not exceeding

Base Operating System (BOS) Runtime Services (A-P) 335

any specified field width, which is an initial subsequence of a matching sequence. The first wide-character,
if any, after the input item remains unread. If the length of the input item is 0, the execution of the
conversion specification fails; this condition is a matching failure, unless end-of-file, an encoding error, or a
read error prevented input from the stream, in which case it is an input failure.

Except in the case of a % conversion wide-character, the input item (or, in the case of a %n conversion
specification, the count of input wide-characters) is converted to a type appropriate to the conversion
wide-character. If the input item is not a matching sequence, the execution of the conversion specification
fails; this condition is a matching failure. Unless assignment suppression was indicated by a *, the result of
the conversion is placed in the object pointed to by the first argument following the format argument that
has not already received a conversion result if the conversion specification is introduced by %, or in the
nth argument if introduced by the wide-character sequence %n$. If this object does not have an
appropriate type, or if the result of the conversion cannot be represented in the space provided, the
behavior is undefined.

The following conversion wide-characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of wcstol with the value 10 for the base argument. In the absence of a size modifier, the
corresponding argument must be a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the subject sequence
of wcstol with 0 for the base argument. In the absence of a size modifier, the corresponding argument
must be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for the subject
sequence of wcstoul with the value 8 for the base argument. In the absence of a size modifier, the
corresponding argument must be a pointer to unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of wcstoul with the value 10 for the base argument. In the absence of a size modifier, the
corresponding argument must be a pointer to unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected for the
subject sequence of wcstoul with the value 16 for the base argument. In the absence of a size
modifier, the corresponding argument must be a pointer to unsigned int.

e, f, g Matches an optionally signed floating-point number, whose format is the same as expected for the
subject sequence of wcstod . In the absence of a size modifier, the corresponding argument must be a
pointer to float.
If the fwprintf family of functions generates character string representations for infinity and NaN (a
7858 symbolic entity encoded in floating-point format) to support the ANSI/IEEE Std 754:1985
standard, the fwscanf5 family of functions will recognise them as input.

s Matches a sequence of non white-space wide-characters. If no l (ell) qualifier is present, characters
from the input field are converted as if by repeated calls to the wcrtomb function, with the conversion
state described by an mbstate_t object initialised to zero before the first wide-character is converted.
The corresponding argument must be a pointer to a character array large enough to accept the
sequence and the terminating null character, which will be added automatically.
Otherwise, the corresponding argument must be a pointer to an array of wchar_t large enough to
accept the sequence and the terminating null wide-character, which will be added automatically.

[Matches a non-empty sequence of wide-characters from a set of expected wide-characters (the
scanset). If no l (ell) qualifier is present, wide-characters from the input field are converted as if by
repeated calls to the wcrtomb function, with the conversion state described by an mbstate_t object
initialised to zero before the first wide-character is converted. The corresponding argument must be a
pointer to a character array large enough to accept the sequence and the terminating null character,
which will be added automatically.
If an l (ell) qualifier is present, the corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence and the terminating null wide-character, which will be added
automatically

336 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The conversion specification includes all subsequent wide characters in the format string up to and
including the matching right square bracket (]). The wide-characters between the square brackets (the
scanlist) comprise the scanset, unless the wide-character after the left square bracket is a circumflex
(^), in which case the scanset contains all wide-characters that do not appear in the scanlist between
the circumflex and the right square bracket. If the conversion specification begins with [] or [^], the
right square bracket is included in the scanlist and the next right square bracket is the matching right
square bracket that ends the conversion specification; otherwise the first right square bracket is the one
that ends the conversion specification. If a - is in the scanlist and is not the first wide-character, nor the
second where the first wide-character is a ^;, nor the last wide-character, the behavior is
implementation-dependent.

c Matches a sequence of wide-characters of the number specified by the field width (1 if no field width is
present in the conversion specification). If no l (ell) qualifier is present, wide-characters from the input
field are converted as if by repeated calls to the wcrtomb function, with the conversion state described
by an mbstate_t object initialised to zero before the first wide-character is converted. The
corresponding argument must be a pointer to a character array large enough to accept the sequence.
No null character is added.
Otherwise, the corresponding argument must be a pointer to an array of wchar_t large enough to
accept the sequence. No null wide-character is added.

p Matches an implementation-dependent set of sequences, which must be the same as the set of
sequences that is produced by the %p conversion of the corresponding fwprintf functions. The
corresponding argument must be a pointer to a pointer to void. The interpretation of the input item is
implementation-dependent. If the input item is a value converted earlier during the same program
execution, the pointer that results will compare equal to that value; otherwise the behavior of the %p
conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to the integer into which is to be
written the number of wide-characters read from the input so far by this call to the fwscanf functions.
Execution of a %n conversion specification does not increment the assignment count returned at the
completion of execution of the function.

C Same as lc.
S Same as ls.
% Matches a single %; no conversion or assignment occurs. The complete conversion specification must

be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion characters E, G and X are also valid and behave the same as, respectively, e, g and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any
wide-characters matching the current conversion specification (except for %n) have been read (other than
leading white-space, where permitted), execution of the current conversion specification terminates with an
input failure. Otherwise, unless execution of the current conversion specification is terminated with a
matching failure, execution of the following conversion specification (if any) is terminated with an input
failure.

Reaching the end of the string in swscanf is equivalent to encountering end-of-file for fwscanf.

If conversion terminates on a conflicting input, the offending input is left unread in the input. Any trailing
white space (including newline) is left unread unless matched by a conversion specification. The success
of literal matches and suppressed assignments is only directly determinable via the %n conversion
specification.

The fwscanf and wscanf functions may mark the st_atime field of the file associated with stream for
update. The st_atime field will be marked for update by the first successful execution of fgetc, fgetwc,
fgets, fgetws, fread, getc, getwc, getchar, getwchar, gets, fscanf or fwscanf using stream that returns
data not supplied by a prior call to ungetc.

Base Operating System (BOS) Runtime Services (A-P) 337

In format strings containing the % form of conversion specifications, each argument in the argument list is
used exactly once.

Return Values
Upon successful completion, these functions return the number of successfully matched and assigned
input items; this number can be 0 in the event of an early matching failure. If the input ends before the first
matching failure or conversion, EOF is returned. If a read error occurs the error indicator for the stream is
set, EOF is returned, and errno is set to indicate the error.

Error Codes
For the conditions under which the fwscanf functions will fail and may fail, refer to fgetwc. In addition,
fwscanf may fail if:

EILSEQ Input byte sequence does not form a valid character.
EINVAL There are insufficient arguments.

Examples
The call:
int i, n; float x; char name[50];
n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:
25 54.32E-1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the string
Hamster.

The call:
int i; float x; char name[50];
(void) wscanf(L"%2d%f%*d %[0123456789]", &i, &x, name);

with input:
56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar will
return the character a.

Related Information
The getwc (“getwc, fgetwc, or getwchar Subroutine” on page 479) subroutine, fwprintf (“fwprintf, wprintf,
swprintf Subroutines” on page 329) subroutine, setlocale subroutine, wcstod subroutine, wcstol
subroutine, wcstoul subroutine, wctomb subroutine.

The wchar.h file.

gai_strerror Subroutine

Purpose
Facilitates consistent error information from EAI_* values returned by the getaddrinfo subroutine.

Library
Library (libc.a)

338 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <sys/socket.h>
#include <netdb.h>
char *
gai_strerror (ecode)
int ecode;
int
gai_strerror_r (ecode, buf, buflen)
int ecode;
char *buf;
int buflen;

Description
For multithreaded environments, the second version should be used. In gai_strerror_r, buf is a pointer to
a data area to be filled in. buflen is the length (in bytes) available in buf.

It is the caller’s responsibility to insure that buf is sufficiently large to store the requested information,
including a trailing null character. It is the responsibility of the function to insure that no more than buflen
bytes are written into buf.

Return Values
If successful, a pointer to a string containing an error message appropriate for the EAI_* errors is returned.
If ecode is not one of the EAI_* values, a pointer to a string indicating an unknown error is returned.

Related Information
The getaddrinfo Subroutine, freeaddrinfo Subroutine, and getnameinfo Subroutine articles in AIX 5L
Version 5.3 Technical Reference: Communications Volume 2.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

gamma Subroutine

Purpose
Computes the natural logarithm of the gamma function.

Libraries
The gamma:
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

extern int signgam;

double gamma (x)
double x;

Description
The gamma subroutine computes the logarithm of the gamma function.

The sign of gamma(x) is returned in the external integer signgam.

Base Operating System (BOS) Runtime Services (A-P) 339

Note: Compile any routine that uses subroutines from the libm.a with the -lm flag. To compile the
lgamma.c file, enter:

cc lgamma.c -lm

Parameters

x Specifies the value to be computed.

Related Information
“exp, expf, expl, expd32, expd64, and expd128 Subroutines” on page 247, “feclearexcept Subroutine” on
page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite, isnan, or unordered
Subroutines” on page 168.

The exp, expm1, log, log10, log1p or pow (“exp, expf, expl, expd32, expd64, and expd128 Subroutines”
on page 247) subroutine, matherr (“matherr Subroutine” on page 793) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

math.h in AIX 5L Version 5.3 Files Reference.

gencore or coredump Subroutine

Purpose
Creates a core file without terminating the process.

Library
Standard C Library (libc.a)

Syntax
#include <core.h>

int gencore (coredumpinfop)
struct coredumpinfo *coredumpinfop;

int coredump (coredumpinfop)
struct coredumpinfo *coredumpinfop;

Description
The gencore and coredump subroutines create a core file of a process without terminating it. The core
file contains the snapshot of the process at the time the call is made and can be used with the dbx
command for debugging purposes.

If any thread of the process is in a system call when its snapshot core file is generated, the register
information returned may not be reliable (except for the stack pointer). To save all user register contents
when a system call is made so that they are available to the gencore and coredump subroutines, the
application should be built using the "-bM:UR" flags.

340 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If any thread of the process is sleeping inside the kernel or stopped (possibly for job control), the caller of
the gencore and coredump subroutines will also be blocked until the thread becomes runnable again.
Thus, these subroutines may take a long time to complete depending upon the target process state.

The coredump subroutine always generates a core file for the process from which it is called. This
subroutine has been replaced by the gencore subroutine and is being provided for compatibility reasons
only.

The gencore subroutine creates a core file for the process whose process ID is specified in the pid field of
the coredumpinfo structure. For security measures, the user ID (uid) and group ID (gid) of the core file
are set to the uid and gid of the process.

Both these subroutines return success even if the core file cannot be created completely because of
filesystem space constraints. When using the dbx command with an incomplete core file, dbx may warn
that the core file is truncated.

In the ″Change / Show Characteristics of Operating System″ smitty screen, there are two options
regarding the creation of the core file. The core file will always be created in the default core format and
will ignore the value specified in the ″Use pre-430 style CORE dump″ option. However, the value
specified for the ″Enable full CORE dump″ option will be considered when creating the core file.
Resource limits of the target process for file and coredump will be enforced.

The coredumpinfo structure contains the following fields:

Member Type Member Name Description

unsigned int length Length of the core file name.

char * name Name of the core file.

pid_t pid ID of the process to be coredumped.

int flags Flags-version flag. Set this to
COREGEN_VERSION_1.

Note: The pid and flags fields are required for the gencore subroutine, but are ignored for the coredump
subroutine

Parameters

coredumpinfop Specifies the address of the coredumpinfo structure that provides the file name to save
the core snapshot and its length. For the gencore subroutine, it also provides the
process id of the process whose core is to be dumped and a flag which includes version
flag bits. The version flag value must be set to COREGEN_VERSION_1.

Return Values
Upon successful completion, the gencore and coredump subroutines return a 0. If unsuccessful, a -1 is
returned, and the errno global variable is set to indicate the error

Error Codes

EACCES Search permission is denied on a component of the path prefix, the file exists and
permissions specified by the mode are denied, or the file does not exist and write
permission is denied for the parent directory of the file to be created.

ENOENT The name field in the coredumpinfo parameter points to an empty string.
EINTR The subroutine was interrupted by a signal before it could complete.

Base Operating System (BOS) Runtime Services (A-P) 341

ENAMETOOLONG The value of the length field in the coredumpinfop structure or the length of the
absolute path of the specified core file name is greater than MAXPATHLEN (as defined
in the sys/param.h file).

EINVAL The value of the length field in the coredumpinfop structure is 0.
EAGAIN The target process is already in the middle of another gencore or coredump

subroutine.
ENOMEM Unable to allocate memory resources to complete the subroutine.

In addition to the above, the following errno values can be set when the gencore subroutine is
unsuccessful:

EPERM The real or effective user ID of the calling process does
not match the real or effective user ID of target process or
the calling process does not have root user authority.

ESRCH There is no process whose ID matches the value specified
in the pid field of the coredumpinfop parameter or the
process is exiting.

EINVAL The flags field in the coredumpinfop parameter is not set
to a valid version value.

Related Information
The adb Command, in AIX 5L Version 5.3 Commands Reference, Volume 1.

The dbx command, and gencore Command in AIX 5L Version 5.3 Commands Reference, Volume 2.

The core file format in AIX 5L Version 5.3 Files Reference.

genpagvalue Subroutine

Purpose
Sets the current process credentials.

Library
Security Library (libc.a)

Syntax
#include <pag.h>
int genpagvalue(pag_name, pag_value,pag_flags);
char * pag_name;
uint64_t * pag_value;
int pag_flags;

Description
The genpagvalue subroutine generates a new PAG value for a given PAG name. For this function to
succeed, the PAG name must be registered with the operating system before calling the genpagvalue
subroutine. The genpagvalue subroutine is limited to maintaining information about the last generated
PAG number and accordingly generating a new number. This service can optionally store the PAG value in
the process’s cred structure. It does not monitor the PAG values stored in the cred structure by other
means.

The PAG value returned is of size 64 bits. The number of significant bits is determined by the requested
PAG type. 32-bit PAGs have 32 significant bits. 64-bit PAGs have 62 significant bits.

342 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

A process must have root authority to invoke this function for 32-bit PAG types. Any process may invoke
this function for 64-bit PAG types.

The pag_flags parameter with the value PAG_SET_VALUE causes the generated value to be atomically
stored in the process’s credentials. The pag_flags parameter with both the PAG_SET_VALUE and
PAG_COPY_CRED values set causes the current process’s credentials to be duplicated before the
generated value is stored.

Parameters

pag_name The name parameter is a 1 to 4 character, NULL terminated name for the PAG type. Typical
values include afs, dfs, pki and krb5.

pag_value This pointer points to a buffer where the OS will return the newly generated PAG value.
pag_flags These flags control the behavior of the getpagvalue subroutine. This must be set to 0 or one or

more of the values PAG_SET_VALUE or PAG_COPY_CRED.

Return Values
A value of 0 is returned upon successful completion. If the genpagvalue subroutine fails a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The genpagvalue subroutine fails if one or more of the following are true:

EINVAL The PAG value cannot be generated because the named PAG type does not exist as part of the
table.

EPERM The process does not have the correct authority to use the service.

Other errors might be set by subroutines invoked by the genpagvalue subroutine.

Related Information
__pag_getid System Call, __pag_getname System Call, __pag_getvalue System Call, __pag_setname
System Call, __pag_setvalue System Call, kcred_genpagvalue Kernel Service, kcred_getpagid Kernel
Service, kcred_getpagname Kernel Service in AIX 5L Version 5.3 Technical Reference: Kernel and
Subsystems Volume 1.

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

get_malloc_log Subroutine

Purpose
Retrieves information about the malloc subsystem.

Syntax
#include <malloc.h>
size_t get_malloc_log (addr, buf, bufsize)
void *addr;
void *buf;
size_t bufsize;

Base Operating System (BOS) Runtime Services (A-P) 343

Description
The get_malloc_log subroutine retrieves a record of currently active malloc allocations. These records are
stored as an array of malloc_log structures, which are copied from the process heap into the buffer
specified by the buf parameter. No more than bufsize bytes are copied into the buffer. Only records
corresponding to the heap of which addr is a member are copied, unless addr is NULL, in which case
records from all heaps are copied. The addr parameter must be either a pointer to space allocated
previously by the malloc subsystem or NULL.

Parameters

addr Pointer to a space allocated by the malloc subsystem.
buf Specifies into which buffer the malloc_log structures are stored.
bufsize Specifies the number of bytes that can be copied into the buffer.

Return Values
The get_malloc_log subroutine returns the number of bytes actually transferred into the bufsize
parameter. If Malloc Log is not enabled, 0 is returned. If addr is not a pointer allocated by the malloc
subsystem, 0 is returned and the errno global variable is set to EINVAL.

Related Information
“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine”
on page 782, and “get_malloc_log_live Subroutine.”

reset_malloc_log Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2.

get_malloc_log_live Subroutine

Purpose
Provides information about the malloc subsystem.

Syntax
#include <malloc.h>
struct malloc_log* get_malloc_log_live (addr)
void *addr;

Description
The get_malloc_log_live subroutine provides access to a record of currently active malloc allocations.
The information is stored as an array of malloc_log structures, which are located in the process heap.
This data is volatile and subject to update. The addr parameter must be either a pointer to space allocated
previously by the malloc subsystem or NULL.

Parameters

addr Pointer to space allocated previously by the malloc subsystem

Return Values
The get_malloc_log_live subroutine returns a pointer to the process heap at which the records of current
malloc allocations are stored. If the addr parameter is NULL, a pointer to the beginning of the array is
returned. If addr is a pointer to space allocated previously by the malloc subsystem, the pointer returned

344 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

corresponds to records of the same heap as addr. If Malloc Log is not enabled, NULL is returned. If addr
is not a pointer allocated by the malloc subsystem, NULL is returned and the errno global variable is set
to EINVAL.

Related Information
“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine”
on page 782, and “get_malloc_log Subroutine” on page 343.

reset_malloc_log Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2.

get_speed, set_speed, or reset_speed Subroutines

Purpose
Set and get the terminal baud rate.

Library
Standard C Library (libc.a)

Syntax
#include <sys/str_tty.h>

int get_speed (FileDescriptor)
int FileDescriptor;

int set_speed (FileDescriptor, Speed)
int FileDescriptor;
int Speed;

int reset_speed (FileDescriptor)
int FileDescriptor;

Description
The baud rate functions set_speed subroutine and get_speed subroutine are provided top allow the user
applications to program any value of the baud rate that is supported by the asynchronous adapter, but that
cannot be expressed using the termios subroutines cfsetospeed, cfsetispeed, cfgetospeed, and
cfsgetispeed. Those subroutines are indeed limited to the set values {BO, B50, ..., B38400} described in
<termios.h>.

Interaction with the termios Baud flags:

If the terminal’s device driver supports these subroutines, it has two interfaces for baud rate manipulation.

Operation for Baud Rate:

normal mode: This is the default mode, in which a termios supported speed is in use.

speed-extended mode: This mode is entered either by calling set_speed subroutine a non-termios
supported speed at the configuration of the line.

In this mode, all the calls to tcgetattr subroutine or TCGETS ioctl subroutine will have B50 in the returned
termios structure.

If tcsetatt subroutine or TCSETS, TCSETAF, or TCSETAW ioctl subroutines is called and attempt to set
B50, the actual baud rate is not changed. If is attempts to set any other termios-supported speed, the

Base Operating System (BOS) Runtime Services (A-P) 345

driver will switch back to the normal mode and the requested baud rate is set. Calling reset_speed
subroutine is another way to switch back to the normal mode.

Parameters

FileDescriptor Specifies an open file descriptor.
Speed The integer value of the requested speed.

Return Values
Upon successful completion, set_speed and reset_speed return a value of 0, and get_speed returns a
positive integer specifying the current speed of the line. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes

EINVAL The FileDescriptor parameter does not specify a valid file descriptor for a tty the recognizes the
set_speed, get_speed and reset_speed subroutines, or the Speed parameter of set_speed is
not supported by the terminal.

Plus all the errno codes that may be set in case of failure in an ioctl subroutine issued to a streams
based tty.

Related Information
cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed (“cfgetospeed, cfsetospeed, cfgetispeed, or
cfsetispeed Subroutine” on page 143) subroutines.

getargs Subroutine

Purpose
Gets arguments of a process.

Library
Standard C library (libc.a)

Syntax
#include <procinfo.h>
#include <sys/types.h>

int getargs (processBuffer, bufferLen, argsBuffer, argsLen)
struct procsinfo *processBuffer
or struct procentry64 *processBuffer;
int bufferLen;
char *argsBuffer;
int argsLen;

Description
The getargs subroutine returns a list of parameters that were passed to a command when it was started.
Only one process can be examined per call to getargs.

346 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The getargs subroutine uses the pi_pid field of processBuffer to determine which process to look for.
bufferLen should be set to the size of struct procsinfo or struct procentry64. Parameters are returned in
argsBuffer, which should be allocated by the caller. The size of this array must be given in argsLen.

On return, argsBuffer consists of a succession of strings, each terminated with a null character (ascii `\0’).
Hence, two consecutive NULLs indicate the end of the list.

Note: The arguments may be changed asynchronously by the process, but results are not guaranteed to
be consistent.

Parameters
processBuffer

Specifies the address of a procsinfo or procentry64 structure, whose pi_pid field should contain
the pid of the process that is to be looked for.

bufferLen
Specifies the size of a single procsinfo or procentry64 structure.

argsBuffer
Specifies the address of an array of characters to be filled with a series of strings representing the
parameters that are needed. An extra NULL character marks the end of the list. This array must be
allocated by the caller.

argsLen
Specifies the size of the argsBuffer array. No more than argsLen characters are returned.

Return Values
If successful, the getargs subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The getargs subroutine does not succeed if the following are true:

ESRCH The specified process does not exist.
EFAULT The copy operation to the buffer was not successful or the processBuffer or

argsBuffer parameters are invalid.
EINVAL The bufferLen parameter does not contain the size of a single procsinfo or

procentry64 structure.
ENOMEM There is no memory available in the address space.

Related Information
The getevars (“getevars Subroutine” on page 368), getpid (“getpid, getpgrp, or getppid Subroutine” on
page 409), getpgrp (“getpid, getpgrp, or getppid Subroutine” on page 409), getppid (“getpid, getpgrp, or
getppid Subroutine” on page 409), getprocs or getthrds (“getthrds Subroutine” on page 445) subroutines.

The ps command.

getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr
Subroutine

Purpose
Accesses the host information in the audit host database.

Base Operating System (BOS) Runtime Services (A-P) 347

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getaudithostattr (Hostname, Attribute, Value, Type)
char *Hostname;
char *Attribute;
void *Value;
int Type;

char *IDtohost (ID);
char *ID;

char *hosttoID (Hostname, Count);
char *Hostname;
int Count;

char *nexthost (void);

int putaudithostattr (Hostname, Attribute, Value, Type);
char *Hostname;
char *Attribute;
void *Value;
int Type;

Description
These subroutines access the audit host information.

The getaudithostattr subroutine reads a specified attribute from the host database. If the database is not
already open, this subroutine does an implicit open for reading.

Similarly the putaudithostattr subroutine writes a specified attribute into the host database. If the
database is not already open, this subroutine does an implicit open for reading and writing. Data changed
by the putaudithostattr must be explicitly committed by calling the putaudithostattr subroutine with a
Type of SEC_COMMIT. Until all the data is committed, only these subroutines within the process return
written data.

New entries in the host database must first be created by invoking putaudithostattr with the SEC_NEW
type.

The IDtohost subroutine converts an 8 byte host identifier into a hostname.

The hosttoID subroutine converts a hostname to a pointer to an array of valid 8 byte host identifiers. A
pointer to the array of identifiers is returned on success. A NULL pointer is returned on failure. The
number of known host identifiers is returned in *Count.

The nexthost subroutine returns a pointer to the name of the next host in the audit host database.

Parameters

Attribute Specifies which attribute is read. The following possible
attributes are defined in the usersec.h file:

S_AUD_CPUID
Host identifier list. The attribute type is
SEC_LIST.

348 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Count Specifies the number of 8 byte host identifier entries that
are available in the IDarray parameter or that have been
returned in the IDarray parameter.

Hostname Specifies the name of the host for the operation.
ID An 8 byte host identifier.
IDarray Specifies a pointer to an array of 1 or more 8 byte host

identifiers.
Type Specifies the type of attribute expected. Valid types are

defined in usersec.h. The only valid Type value is
SEC_LIST.

Value The return value for read operations and the new value for
write operations.

Return Values
On successful completion, the getaudithostattr, IDtohost, hosttoID, nexthost, or putaudithostattr
subroutine returns 0. If unsuccessful, the subroutine returns non-zero.

Error Codes
The getaudithostattr, IDtohost, hosttoID, nexthost, or putaudithostattr subroutine fails if the following
is true:

EINVAL If invalid attribute Name or if Count is equal to zero for the
hosttoID subroutine.

ENOENT If there is no matching Hostname entry in the database.

Related Information
The auditmerge command, auditpr command, auditselect command, auditstream command.

The auditread (“auditread, auditread_r Subroutines” on page 112) subroutine.

getauthdb or getauthdb_r Subroutine

Purpose
Finds the current administrative domain.

Library
Standard C Library (libc.a)

Syntax
#include <usersec.h>

int getauthdb (Value)
authdb_t *Value;

int getauthdb_r (Value)
authdb_t *Value;

Description
The getauthdb and getauthdb_r subroutines return the value of the current authentication domain in the
Value parameter. The getauthdb subroutine returns the value of the current process-wide authentication
domain. The getauthdb_r subroutine returns the authentication domain for the current thread if one has
been set. The subroutines return -1 if no administrative domain has been set.

Base Operating System (BOS) Runtime Services (A-P) 349

Parameters

Value A pointer to a variable of type authdb_t. The authdb_t
type is a 16-character array that contains the name of a
loadable authentication module.

Return Values

1 The value returned is from the process-wide data.
0 The value returned is from the thread-specific data. An

authentication database module has been specified by an
earlier call to the setauthdb subroutine. The name of the
current database module has been copied to the Value
parameter.

-1 The subroutine failed. An authentication database module
has not been specified by an earlier call to the setauthdb
subroutine.

Related Information
setauthdb or setauthdb_r Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System
and Extensions Volume 2.

getc, getchar, fgetc, or getw Subroutine

Purpose
Gets a character or word from an input stream.

Library
Standard I/O Package (libc.a)

Syntax
#include <stdio.h>

int getc (Stream)
FILE *Stream;

int fgetc (Stream)
FILE *Stream;

int getchar (void)

int getw (Stream)
FILE *Stream;

Description
The getc macro returns the next byte as an unsigned char data type converted to an int data type from
the input specified by the Stream parameter and moves the file pointer, if defined, ahead one byte in the
Stream parameter. The getc macro cannot be used where a subroutine is necessary; for example, a
subroutine pointer cannot point to it.

Because it is implemented as a macro, the getc macro does not work correctly with a Stream parameter
value that has side effects. In particular, the following does not work:
getc(*f++)

350 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

In such cases, use the fgetc subroutine.

The fgetc subroutine performs the same function as the getc macro, but fgetc is a true subroutine, not a
macro. The fgetc subroutine runs more slowly than getc but takes less disk space.

The getchar macro returns the next byte from stdin (the standard input stream). The getchar macro is
equivalent to getc(stdin).

The first successful run of the fgetc, fgets, fgetwc, fgetws, fread, fscanf, getc, getchar, gets or scanf
subroutine using a stream that returns data not supplied by a prior call to the ungetc or ungetwc
subroutine marks the st_atime field for update.

The getc and getchar macros have also been implemented as subroutines for ANSI compatibility. To
access the subroutines instead of the macros, insert #undef getc or #undef getchar at the beginning of
the source file.

The getw subroutine returns the next word (int) from the input specified by the Stream parameter and
increments the associated file pointer, if defined, to point to the next word. The size of a word varies from
one machine architecture to another. The getw subroutine returns the constant EOF at the end of the file
or when an error occurs. Since EOF is a valid integer value, the feof and ferror subroutines should be
used to check the success of getw. The getw subroutine assumes no special alignment in the file.

Because of additional differences in word length and byte ordering from one machine architecture to
another, files written using the putw subroutine are machine-dependent and may not be readable using
the getw macro on a different type of processor.

Parameters

Stream Points to the file structure of an open file.

Return Values
Upon successful completion, the getc, fgetc, getchar, and getw subroutines return the next byte or int
data type from the input stream pointed by the Stream parameter. If the stream is at the end of the file, an
end-of-file indicator is set for the stream and the integer constant EOF is returned. If a read error occurs,
the errno global variable is set to reflect the error, and a value of EOF is returned. The ferror and feof
subroutines should be used to distinguish between the end of the file and an error condition.

Error Codes
If the stream specified by the Stream parameter is unbuffered or data needs to be read into the stream’s
buffer, the getc, getchar, fgetc, or getw subroutine is unsuccessful under the following error conditions:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the stream
specified by the Stream parameter. The process would be delayed in the fgetc subroutine
operation.

EBADF Indicates that the file descriptor underlying the stream specified by the Stream parameter is
not a valid file descriptor opened for reading.

EFBIG Indicates that an attempt was made to read a file that exceeds the process’ file-size limit or
the maximum file size. See the ulimit subroutine.

EINTR Indicates that the read operation was terminated due to the receipt of a signal, and either no
data was transferred, or the implementation does not report partial transfer for this file.
Note: Depending upon which library routine the application binds to, this subroutine may
return EINTR. Refer to the signal subroutine regarding sa_restart.

EIO Indicates that a physical error has occurred, or the process is in a background process group
attempting to perform a read subroutine call from its controlling terminal, and either the
process is ignoring (or blocking) the SIGTTIN signal or the process group is orphaned.

Base Operating System (BOS) Runtime Services (A-P) 351

EPIPE Indicates that an attempt is made to read from a pipe or first-in-first-out (FIFO) that is not
open for reading by any process. A SIGPIPE signal will also be sent to the process.

EOVERFLOW Indicates that the file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.

The getc, getchar, fgetc, or getw subroutine is also unsuccessful under the following error conditions:

ENOMEM Indicates insufficient storage space is available.
ENXIO Indicates either a request was made of a nonexistent device or the request was outside the

capabilities of the device.

Related Information
The feof, ferror, clearerr, or fileno (“feof, ferror, clearerr, or fileno Macro” on page 272) subroutine,
freopen, fopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page
290)subroutine, fread or fwrite (“fread or fwrite Subroutine” on page 313) subroutine, getwc, fgetwc, or
getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 479)subroutine, get or fgets (“gets or fgets
Subroutine” on page 436) subroutine, putc, putchar, fputc, or putw (“putc, putchar, fputc, or putw
Subroutine” on page 1331) subroutine, scanf, sscanf, fscanf, or wsscanf subroutine.

List of Character Manipulation Services, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked
Subroutines

Purpose
stdio with explicit client locking.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>

int getc_unlocked (FILE * stream);
int getchar_unlocked (void);
int putc_unlocked (int c, FILE * stream);
int putchar_unlocked (int c);

Description
Versions of the functions getc, getchar, putc, and putchar respectively named getc_unlocked,
getchar_unlocked, putc_unlocked, and putchar_unlocked are provided which are functionally identical
to the original versions with the exception that they are not required to be implemented in a thread-safe
manner. They may only safely be used within a scope protected by flockfile (or ftrylockfile) and
funlockfile. These functions may safely be used in a multi-threaded program if and only if they are called
while the invoking thread owns the (FILE*) object, as is the case after a successful call of the flockfile or
ftrylockfile functions.

Return Values
See getc, getchar, putc, and putchar.

352 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The getc or getchar (“getc, getchar, fgetc, or getw Subroutine” on page 350) subroutine, putc or putchar
(“putc, putchar, fputc, or putw Subroutine” on page 1331) subroutine.

getconfattr or putconfattr Subroutine

Purpose
Accesses the system information in the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
#include <userconf.h>

int getconfattr (sys, Attribute, Value, Type)
char * sys;
char * Attribute;
void *Value;
int Type;

int putconfattr (sys, Attribute, Value, Type)
char * sys;
char * Attribute;
void *Value;
int Type;

Description
The getconfattr subroutine reads a specified attribute from the system information database. The
putconfattr subroutine writes a specified attribute to the system information database.

Parameters
sys System attribute. The following possible attributes are defined in the userconf.h file.

v SC_SYS_LOGIN

v SC_SYS_USER

v SC_SYS_ADMUSER

v SC_SYS_AUDIT SEC_LIST

v SC_SYS_AUSERS SEC_LIST

v SC_SYS_ASYS SEC_LIST

v SC_SYS_ABIN SEC_LIST

v SC_SYS_ASTREAM SEC_LIST

Users can define parameter the system attribute parameter. In this case the parameter value is
used as a stanza name. The stanza name contains the specified attribute and value in the
Attribute and Value parameters. The putconfattr subroutine creates this stanza in the file
associated with the attribute. The getconfattr subroutine retrieves the value for the specified
attribute and the user defined stanza.

Attribute
Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

Base Operating System (BOS) Runtime Services (A-P) 353

S_CORECOMP
Core compression status. The attribute type is SEC_CHAR.

S_COREPATH
Core path specification status. The attribute type is SEC_CHAR.

S_COREPNAME
Core path specification location. The attribute type is SEC_CHAR.

S_CORENAMING
Core naming status. The attribute type is SEC_CHAR.

S_PGRP
Principle group name. The attribute type is SEC_CHAR.

S_GROUPS
Groups to which the user belongs. The attribute type is SEC_LIST.

S_ADMGROUPS
Groups for which the user is an administrator. The attribute type is SEC_LIST.

S_ADMIN
Administrative status of a user. The attribute type is SEC_BOOL.

S_AUDITCLASSES
Audit classes to which the user belongs. The attribute type is SEC_LIST.

S_AUTHSYSTEM
Defines the user’s authentication method. The attribute type is SEC_CHAR.

S_HOME
Home directory. The attribute type is SEC_CHAR.

S_SHELL
Initial program run by a user. The attribute type is SEC_CHAR.

S_GECOS
Personal information for a user. The attribute type is SEC_CHAR.

S_USRENV
User-state environment variables. The attribute type is SEC_LIST.

S_SYSENV
Protected-state environment variables. The attribute type is SEC_LIST.

S_LOGINCHK
Specifies whether the user account can be used for local logins. The attribute type is
SEC_BOOL.

S_HISTEXPIRE
Defines the period of time (in weeks) that a user cannot reuse a password. The attribute
type is SEC_INT.

S_HISTSIZE
Specifies the number of previous passwords that the user cannot reuse. The attribute type
is SEC_INT.

S_MAXREPEAT
Defines the maximum number of times a user can repeat a character in a new password.
The attribute type is SEC_INT.

S_MINAGE
Defines the minimum age in weeks that the user’s password must exist before the user
can change it. The attribute type is SEC_INT.

354 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

S_PWDCHECKS
Defines the password restriction methods for this account. The attribute type is SEC_LIST.

S_MINALPHA
Defines the minimum number of alphabetic characters required in a new user’s password.
The attribute type is SEC_INT.

S_MINDIFF
Defines the minimum number of characters required in a new password that were not in
the old password. The attribute type is SEC_INT.

S_MINLEN
Defines the minimum length of a user’s password. The attribute type is SEC_INT.

S_MINOTHER
Defines the minimum number of non-alphabetic characters required in a new user’s
password. The attribute type is SEC_INT.

S_DICTIONLIST
Defines the password dictionaries for this account. The attribute type is SEC_LIST.

S_SUCHK
Specifies whether the user account can be accessed with the su command. Type
SEC_BOOL.

S_REGISTRY
Defines the user’s authentication registry. The attribute type is SEC_CHAR.

S_RLOGINCHK
Specifies whether the user account can be used for remote logins using the telnet or
rlogin commands. The attribute type is SEC_BOOL.

S_DAEMONCHK
Specifies whether the user account can be used for daemon execution of programs and
subsystems using the cron daemon or src. The attribute type is SEC_BOOL.

S_TPATH
Defines how the account may be used on the trusted path. The attribute type is
SEC_CHAR. This attribute must be one of the following values:

nosak The secure attention key is not enabled for this account.

notsh The trusted shell cannot be accessed from this account.

always
This account may only run trusted programs.

on Normal trusted-path processing applies.

S_TTYS
List of ttys that can or cannot be used to access this account. The attribute type is
SEC_LIST.

S_SUGROUPS
Groups that can or cannot access this account. The attribute type is SEC_LIST.

S_EXPIRATION
Expiration date for this account, in seconds since the epoch. The attribute type is
SEC_CHAR.

S_AUTH1
Primary authentication methods for this account. The attribute type is SEC_LIST.

Base Operating System (BOS) Runtime Services (A-P) 355

S_AUTH2
Secondary authentication methods for this account. The attribute type is SEC_LIST.

S_UFSIZE
Process file size soft limit. The attribute type is SEC_INT.

S_UCPU
Process CPU time soft limit. The attribute type is SEC_INT.

S_UDATA
Process data segment size soft limit. The attribute type is SEC_INT.

S_USTACK
Process stack segment size soft limit. Type: SEC_INT.

S_URSS
Process real memory size soft limit. Type: SEC_INT.

S_UCORE
Process core file size soft limit. The attribute type is SEC_INT.

S_PWD
Specifies the value of the passwd field in the /etc/passwd file. The attribute type is
SEC_CHAR.

S_UMASK
File creation mask for a user. The attribute type is SEC_INT.

S_LOCKED
Specifies whether the user’s account can be logged into. The attribute type is
SEC_BOOL.

S_UFSIZE_HARD
Process file size hard limit. The attribute type is SEC_INT.

S_UCPU_HARD
Process CPU time hard limit. The attribute type is SEC_INT.

S_UDATA_HARD
Process data segment size hard limit. The attribute type is SEC_INT.

S_USTACK_HARD
Process stack segment size hard limit. Type: SEC_INT.

S_URSS_HARD
Process real memory size hard limit. Type: SEC_INT.

S_UCORE_HARD
Process core file size hard limit. The attribute type is SEC_INT.

Note: These values are string constants that should be used by applications both for convenience
and to permit optimization in latter implementations.

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_INT
The format of the attribute is an integer.

For the getconfattr subroutine, the user should supply a pointer to a defined integer
variable. For the putconfattr subroutine, the user should supply an integer.

SEC_CHAR
The format of the attribute is a null-terminated character string.

356 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated. The
last string in the series is terminated by two successive null characters.

SEC_BOOL
The format of the attribute from the getconfattr subroutine is an integer with the value of
either 0 (false) or 1 (true). The format of the attribute for the putconfattr subroutine is a
null-terminated string containing one of the following strings: true, false, yes, no, always, or
never.

SEC_COMMIT
For the putconfattr subroutine, this value specified by itself indicates that the changes to
the named sys value or stanza are to be committed to permanent storage. The Attribute
and Value parameters are ignored. If no stanza name is specified, all outstanding changes
to the system information databases are committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the database.

Security

Files Accessed:

Mode File
rw /etc/security/user
rw /etc/security/limits
rw /etc/security/login.cfg
rw /usr/lib/security/mkuser.default
rw /etc/security/audit/config

Return Values
If successful, the getconfattr subroutine returns a value of zero.

If unsuccessful, the getconfattr subroutine returns a value of -1.

Error Codes

ENOENT The value that the Sys parameter specifies does not exist.
ENOATTR The specified Attribute variable is not defined for this Sys parameter.
EINVAL The Attribute or Type variable for the specified Sys parameter is not valid.
EACCESS The user does not have access to the specified Attribute variable.

Files

/etc/passwd Contains user IDs.

Related Information
The “getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 456.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 357

getconfattrs Subroutine

Purpose
Accesses system information in the system information database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
#include <userconf.h>

int getconfattrs (Sys, Attributes, Count)
char * Sys;
dbattr_t * Attributes;
int Count

Description
The getconfattrs subroutine accesses system configuration information.

The getconfattrs subroutine reads one or more attributes from the system configuration database. If the
database is not already open, this subroutine does an implicit open for reading.

The Attributes array contains information about each attribute that is to be written. The dbattr_t data
structure contains the following fields:

attr_name
The name of the desired attribute.

attr_idx
Used internally by the getconfattrs subroutine.

attr_type
The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag
The results of the request to read the desired attribute.

attr_un
A union containing the values to be written. Its union members that follow correspond to the
definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char
Attributes of type SEC_CHAR and SEC_LIST store a pointer to the value to be written.

un_int Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be
written.

un_long
Attributes of type SEC_LONG contain the value of the attribute to be written.

un_llong
Attributes of type SEC_LLONG contain the value of the attribute to be written.

attr_domain
The authentication domain containing the attribute. The getconfattrs subroutine is responsible for
managing the memory referenced by this pointer.

358 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Use the setuserdb and enduserdb subroutines to open and close the system configuration database.
Failure to explicitly open and close the system database can result in loss of memory and performance.

Parameters

Sys Specifies the name of the subsystem for which the attributes are to be read.
Attributes A pointer to an array of one or more elements of type dbattr_t. The list of system attributes

is defined in the usersec.h header file.
Count The number of array elements in Attributes.

Security
Files accessed:

Mode File
r /etc/security/.ids
r /etc/security/audit/config
r /etc/security/audit/events
r /etc/security/audit/objects
r /etc/security/login.cfg
r /etc/security/portlog
r /etc/security/roles
r /usr/lib/security/methods.cfg
r /usr/lib/security/mkuser.default

Return Values
If the value of the Sys or Attributes parameter is NULL, or the value of the Count parameter is less than 1,
the getconfattrs subroutine returns a value of -1, and sets the errno global variable to indicate the error.
Otherwise, the subroutine returns a value of zero. The getconfattrs subroutine does not check the validity
of the Sys parameter. Each element in the Attributes array must be examined on a successful call to the
getconfattrs subroutine to determine whether the Attributes array entry is successfully retrieved.

Error Codes
The getconfattrs subroutine returns an error that indicates that the system attribute does or does not
exist. Additional errors can indicate an error querying the information databases for the requested
attributes.

EINVAL The Attributes parameter is NULL.
EINVAL The Count parameter is less than 1.
ENOENT The specified Sys does not exist.

If the getconfattrs subroutine fails to query an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

EACCES The user does not have access to the attribute specified in the attr_name field.
EINVAL The attr_type field in the Attributes entry contains an invalid type.
EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.
ENOMEM Memory could not be allocated to store the return value.
ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

system table.

Base Operating System (BOS) Runtime Services (A-P) 359

Files

/etc/security/.ids The next available user and group ID values.
/etc/security/audit/config Bin and stream mode audit configuration parameters.
/etc/security/audit/events Format strings for audit event records.
/etc/security/audit/objects File system objects that are explicitly audited.
/etc/security/login.cfg Miscellaneous login relation parameters.
/etc/security/portlog Port login failure and locking history.
/etc/security/roles Definitions of administrative roles.
/usr/lib/security/methods.cfg Definitions of loadable authentication modules.
/usr/lib/security/mkuser.default Default user attributes for administrative and nonadministrative

users.

Related Information
The “getconfattr or putconfattr Subroutine” on page 353.

The “getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 456.

The “getconfattr or putconfattr Subroutine” on page 353.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getcontext or setcontext Subroutine

Purpose
Initializes the structure pointed to by ucp to the context of the calling process.

Library
(libc.a)

Syntax
#include <ucontext.h>

int getcontext (ucontext_t *ucp);

int setcontext (const uncontext_t *ucp);

Description
The getcontext subroutine initalizes the structure pointed to by ucp to the current user context of the
calling process. The ucontext_t type that ucp points to defines the user context and includes the contents
of the calling process’ machine registers, the signal mask, and the current execution stack.

The setcontext subroutine restores the user context pointed to by ucp. A successful call to setcontext
subroutine does not return; program execution resumes at the point specified by the ucp argument passed
to setcontext subroutine. The ucp argument should be created either by a prior call to getcontext
subroutine, or by being passed as an argument to a signal handler. If the ucp argument was created with
getcontext subroutine, program execution continues as if the corresponding call of getcontext subroutine
had just returned. If the ucp argument was created with makecontext subroutine, program execution
continues with the function passed to makecontext subroutine. When that function returns, the process
continues as if after a call to setcontext subroutine with the ucp argument that was input to makecontext
subroutine. If the ucp argument was passed to a signal handler, program execution continues with the

360 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

program instruction following the instruction interrupted by the signal. If the uc_link member of the
ucontext_t structure pointed to by the ucp arguement is equal to 0, then this context is the main context,
and the process will exit when this context returns.

Parameters

ucp A pointer to a user stucture.

Return Values
If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The getcontext and setcontext subroutines are unsuccessful if one of the following is true:

EINVAL NULL ucp address
EFAULT Invalid ucp address

Related Information
The makecontext (“makecontext or swapcontext Subroutine” on page 792) subroutine, setjmp subroutine,
sigaltstack subroutine, sigaction subroutine, sigprocmask subroutine, and sigsetjmp subroutine.

getcwd Subroutine

Purpose
Gets the path name of the current directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

char *getcwd (Buffer, Size)
char *Buffer;
size_t Size;

Description
The getcwd subroutine places the absolute path name of the current working directory in the array pointed
to by the Buffer parameter, and returns that path name. The size parameter specifies the size in bytes of
the character array pointed to by the Buffer parameter.

Parameters

Buffer Points to string space that will contain the path name. If the Buffer parameter value is a null
pointer, the getcwd subroutine, using the malloc subroutine, obtains the number of bytes of free
space as specified by the Size parameter. In this case, the pointer returned by the getcwd
subroutine can be used as the parameter in a subsequent call to the free subroutine. Starting the
getcwd subroutine with a null pointer as the Buffer parameter value is not recommended.

Base Operating System (BOS) Runtime Services (A-P) 361

Size Specifies the length of the string space. The value of the Size parameter must be at least 1 greater than
the length of the path name to be returned.

Return Values
If the getcwd subroutine is unsuccessful, a null value is returned and the errno global variable is set to
indicate the error. The getcwd subroutine is unsuccessful if the Size parameter is not large enough or if
an error occurs in a lower-level function.

In UNIX03 mode, the getcwd subroutine returns a null value if the actual path name is longer than the
value defined by PATH_MAX (see the limits.h file). In the pervious mode, the getcwd subroutine returns
a truncated path name if the path name is longer than PATH_MAX. The previous behavior is disabled by
setting the environment variable XPG_SUS_ENV=ON.

Error Codes
If the getcwd subroutine is unsuccessful, it returns one or more of the following error codes:

EACCES Indicates that read or search permission was denied for a component of the path name
EINVAL Indicates that the Size parameter is 0 or a negative number.
ENOMEM Indicates that insufficient storage space is available.
ERANGE Indicates that the Size parameter is greater than 0, but is smaller than the length of the

path name plus 1.

Related Information
The “getwd Subroutine” on page 481,“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca,
valloc, or posix_memalign Subroutine” on page 782.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

getdate Subroutine

Purpose
Convert user format date and time.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

struct tm *getdate (const char *string)
extern int getdate_err

Description
The getdate subroutine converts user definable date and/or time specifications pointed to by string, into a
struct tm. The structure declaration is in the time.h header file (see ctime subroutine).

User supplied templates are used to parse and interpret the input string. The templates are contained in
text files created by the user and identified by the environment variable DATEMSK. The DATEMSK

362 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

variable should be set to indicate the full pathname of the file that contains the templates. The first line in
the template that matches the input specification is used for interpretation and conversation into the
internal time format.

The templates should follow a format where complex field descriptors are preceded by simpler ones. For
example:
%M
%H:%M
%m/%d/%y
%m/%d/%y %H:%M:%S

The following field descriptors are supported:

%% Same as %.
%a Abbreviated weekday name.
%A Full weekday name.
%b Abbreviated month name.
%B Full month name.
%c Locale’s appropriate date and time representation.
%C Century number (00-99; leading zeros are permitted but not required)
%d Day of month (01 - 31: the leading zero is optional.
%e Same as %d.
%D Date as %m/%d/%y.
%h Abbreviated month name.
%H Hour (00 - 23)
%I Hour (01 - 12)
%m Month number (01 - 12)
%M Minute (00 - 59)
%n Same as \n.
%p Locale’s equivalent of either AM or PM.
%r Time as %I:%M:%S %p
%R Time as %H: %M
%S Seconds (00 - 61) Leap seconds are allowed but are not predictable through use of algorithms.
%t Same as tab.
%T Time as %H: %M:%S
%w Weekday number (Sunday = 0 - 6)
%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year within century.

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year within the century.
When a century is not otherwise specified, values in the range 69-99 refer to years in the
twentieth century (1969 to 1999, inclusive); values in the range 00-68 refer to 2000 to 2068,
inclusive.

%Y Year as ccyy (such as 1986)
%Z Time zone name or no characters if no time zone exists. If the time zone supplied by %Z is not

the same as the time zone getdate subroutine expects, an invalid input specification error will
result. The getdate subroutine calculates an expected time zone based on information supplied
to the interface (such as hour, day, and month).

The match between the template and input specification performed by the getdate subroutine is case
sensitive.

The month and weekday names can consist of any combination of upper and lower case letters. The used
can request that the input date or time specification be in a specific language by setting the LC_TIME
category (See the setlocale subroutine).

Base Operating System (BOS) Runtime Services (A-P) 363

Leading zero’s are not necessary for the descriptors that allow leading zero’s. However, at most two digits
are allowed for those descriptors, including leading zero’s. Extra whitespace in either the template file or in
string is ignored.

The field descriptors %c, %x, and %X will not be supported if they include unsupported field descriptors.

Example 1 is an example of a template. Example 2 contains valid input specifications for the template.
Example 3 shows how local date and time specifications can be defined in the template.

The following rules apply for converting the input specification into the internal format:

v If only the weekday is given, today is assumed if the given month is equal to the current day and next
week if it is less.

v If only the month is given, the current month is assumed if the given month is equal to the current
month and next year if it is less and no year is given (the first day of month is assumed if no day is
given).

v If no hour, minute, and second are given, the current hour, minute and second are assumed.

v If no date is given, today is assumed if the given hour is greater than the current hour and tomorrow is
assumed if it is less.

Return Values
Upon successful completion, the getdate subroutine returns a pointer to struct tm; otherwise, it returns a
null pointer and the external variable getdate_err is set to indicate the error.

Error Codes
Upon failure, a null pointer is returned and the variable getdate_err is set to indicate the error.

The following is a complete list of the getdate_err settings and their corresponding descriptions:

1 The DATEMSK environment variable is null or undefined.
2 The template file cannot be opened for reading.
3 Failed to get file status information.
4 The template file is not a regular file.
5 An error is encountered while reading the template file.
6 Memory allocation failed (not enough memory available.
7 There is no line in the template that matches the input.
8 Invalid input specification, Example: February 31 or a time is specified that can not be represented in a

time_t (representing the time in seconds since 00:00:00 UTC, January 1, 1970).

Examples
1. The following example shows the possible contents of a template:

%m
%A %B %d, %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d, %m, %Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p, %B %dnd
&A den %d. %B %Y %H.%M Uhr

2. The following are examples of valid input specifications for the template in Example 1:

364 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

getdate ("10/1/87 4 PM")
getdate ("Friday")
getdate ("Friday September 18, 1987, 10:30:30")
getdate ("24,9,1986 10:30")
getdate ("at monday the 1st of december in 1986")
getdate ("run job at 3 PM. december 2nd")

If the LC_TIME category is set to a German locale that includes freitag as a weekday name and
oktober as a month name, the following would be valid:
getdate ("freitag den 10. oktober 1986 10.30 Uhr")

3. The following examples shows how local date and time specification can be defined in the template.

Invocation Line in Template

getdate (″11/27/86″) %m/%d/%y

getdate (″27.11.86″0 %d.%m.%y

getdate (″86-11-27″) %y-%m-%d

getdate (″Friday 12:00:00″) %A %H:%M:%S

4. The following examples help to illustrate the above rules assuming that the current date Mon Sep 22
12:19:47 EDT 1986 and the LC_TIME category is set to the default ″C″ locale.

Input Line in Template Date

Mon %a Mon Sep 22 12:19:47 EDT 1986

Sun %a Sun Sep 28 12:19:47 EDT 1986

Fri %a Fri Sep 26 12:19:47 EDT 1986

September %B Mon Sep1 12:19:47 EDT 1986

January %B Thu Jan 1 12:19:47 EDT 1986

December %B Mon Dec 1 12:19:47 EDT 1986

Sep Mon %b %a Mon Sep 1 12:19:47 EDT 1986

Jan Fri %b %a Fri Jan 2 12:19:47 EDT 1986

Dec Mon %b %a Mon Dec 1 12:19:47 EDT 1986

Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:47 EDT 1986

Fri 9 %a %H Fri Sep 26 12:19:47 EDT 1986

Feb 10:30 %b %H: %S Sun Feb 1 12:19:47 EDT 1986

10:30 %H: %M Tue Sep 23 12:19:47 EDT 1986

13:30 %H: %M Mon Sep 22 12:19:47 EDT 1986

Related Information
The ctime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine” on page 201), ctype
(“ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or isascii
Subroutines” on page 209), setlocale, strftime, and times (“getrusage, getrusage64, times, or vtimes
Subroutine” on page 430) subroutines.

getdtablesize Subroutine

Purpose
Gets the descriptor table size.

Base Operating System (BOS) Runtime Services (A-P) 365

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int getdtablesize (void)

Description
The getdtablesize subroutine is used to determine the size of the file descriptor table.

The size of the file descriptor table for a process is set by the ulimit command or by the setrlimit
subroutine. The getdtablesize subroutine returns the current size of the table as reported by the getrlimit
subroutine. If getrlimit reports that the table size is unlimited, getdtablesize instead returns the value of
OPEN_MAX, which is the largest possible size of the table.

Note: The getdtablesize subroutine returns a runtime value that is specific to the version of the operating
system on which the application is running. In AIX 4.3.1, getdtablesize returns a value that is set in
the limits file, which can be different from system to system.

Return Values
The getdtablesize subroutine returns the size of the descriptor table.

Related Information
The close (“close Subroutine” on page 176) subroutine, open (“open, openx, open64, creat, or creat64
Subroutine” on page 939) subroutine, select subroutine.

getea Subroutine

Purpose
Reads the value of an extended attribute.

Syntax
#include <sys/ea.h>

ssize_t getea(const char *path, const char *name,
void *value, size_t size);

ssize_t fgetea(int filedes, const char *name, void *value, size_t size);
ssize_t lgetea(const char *path, const char *name,

void *value, size_t size);

Description
Extended attributes are name:value pairs associated with the file system objects (such as files, directories,
and symlinks). They are extensions to the normal attributes that are associated with all objects in the file
system (that is, the stat(2) data).

Do not define an extended attribute name with the eight characters prefix "(0xF8)SYSTEM(0xF8)". Prefix
"(0xF8)SYSTEM(0xF8)" is reserved for system use only.

Note: The 0xF8 prefix represents a non-printable character.

The getea subroutine retrieves the value of the extended attribute identified by name and associated with
the given path in the file system. The length of the attribute value is returned. The fgetea subroutine is

366 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

identical to getea, except that it takes a file descriptor instead of a path. The lgetea subroutine is identical
to getea, except, in the case of a symbolic link, the link itself is interrogated rather than the file that it
refers to.

Parameters

path The path name of the file.
name The name of the extended attribute. An extended attribute name is a NULL-terminated string.
value A pointer to a buffer in which the attribute will be stored. The value of an extended attribute is

an opaque byte stream of specified length.
size The size of the buffer. If size is 0, getea returns the current size of the named extended

attribute, which can be used to estimate whether the size of a buffer is sufficiently large
enough to hold the value associated with the extended attribute.

filedes A file descriptor for the file.

Return Values
If the getea subroutine succeeds, a nonnegative number is returned that indicates the size of the extended
attribute value. Upon failure, -1 is returned and errno is set appropriately.

Error Codes

EACCES Caller lacks read permission on the base file, or lacks the appropriate ACL privileges for
named attribute read.

EFAULT A bad address was passed for path, name, or value.
EFORMAT File system is capable of supporting EAs, but EAs are disabled.
EINVAL A path-like name should not be used (such as zml/file, . and ..).
ENAMETOOLONG The path or name value is too long.
ENOATTR The named attribute does not exist, or the process has no access to this attribute.
ERANGE The size of the value buffer is too small to hold the result.
ENOTSUP Extended attributes are not supported by the file system.

The errors documented for the stat(2) system call are also applicable here.

Related Information
“listea Subroutine” on page 727, removeea Subroutine, setea Subroutine, stateea Subroutine.

getenv Subroutine

Purpose
Returns the value of an environment variable.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *getenv (Name)
const char *Name;

Base Operating System (BOS) Runtime Services (A-P) 367

Description
The getenv subroutine searches the environment list for a string of the form Name=Value. Environment
variables are sometimes called shell variables because they are frequently set with shell commands.

Parameters

Name Specifies the name of an environment variable. If a string of the proper form is not present in the
current environment, the getenv subroutine returns a null pointer.

Return Values
The getenv subroutine returns a pointer to the value in the current environment, if such a string is present.
If such a string is not present, a null pointer is returned. The getenv subroutine normally does not modify
the returned string. The putenv subroutine, however, may overwrite or change the returned string. Do not
attempt to free the returned pointer. The getenv subroutine returns a pointer to the user’s copy of the
environment (which is static), until the first invocation of the putenv subroutine that adds a new
environment variable. The putenv subroutine allocates an area of memory large enough to hold both the
user’s environment and the new variable. The next call to the getenv subroutine returns a pointer to this
newly allocated space that is not static. Subsequent calls by the putenv subroutine use the realloc
subroutine to make space for new variables. Unsuccessful completion returns a null pointer.

Related Information
The putenv (“putenv Subroutine” on page 1336) subroutine.

getevars Subroutine

Purpose
Gets environment of a process.

Library
Standard C library (libc.a)

Syntax
#include <procinfo.h>
#include <sys/types.h>

int getevars (processBuffer, bufferLen, argsBuffer, argsLen)
struct procsinfo *processBuffer
or struct procentry64 *processBuffer;
int bufferLen;
char *argsBuffer;
int argsLen;

Description
The getevars subroutine returns the environment that was passed to a command when it was started.
Only one process can be examined per call to getevars.

The getevars subroutine uses the pi_pid field of processBuffer to determine which process to look for.
bufferLen should be set to size of struct procsinfo or struct procentry64. Parameters are returned in
argsBuffer, which should be allocated by the caller. The size of this array must be given in argsLen.

368 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

On return, argsBuffer consists of a succession of strings, each terminated with a null character (ascii `\0’).
Hence, two consecutive NULLs indicate the end of the list.

Note: The arguments may be changed asynchronously by the process, but results are not guaranteed to
be consistent.

Parameters
processBuffer

Specifies the address of a procsinfo or procentry64 structure, whose pi_pid field should contain
the pid of the process that is to be looked for.

bufferLen
Specifies the size of a single procsinfo or procentry64 structure.

argsBuffer
Specifies the address of an array of characters to be filled with a series of strings representing the
parameters that are needed. An extra NULL character marks the end of the list. This array must be
allocated by the caller.

argsLen
Specifies the size of the argsBuffer array. No more than argsLen characters are returned.

Return Values
If successful, the getevars subroutine returns zero. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The getevars subroutine does not succeed if the following are true:

ESRCH The specified process does not exist.
EFAULT The copy operation to the buffer was not successful or the processBuffer or argsBuffer

parameters are invalid.
EINVAL The bufferLen parameter does not contain the size of a single procsinfo or procentry64

structure.
ENOMEM There is no memory available in the address space.

Related Information
The getargs (“getargs Subroutine” on page 346), getpid (“getpid, getpgrp, or getppid Subroutine” on page
409), getpgrp (“getpid, getpgrp, or getppid Subroutine” on page 409), getppid (“getpid, getpgrp, or
getppid Subroutine” on page 409), getprocs or getthrds (“getthrds Subroutine” on page 445) subroutines.

The ps command.

getfilehdr Subroutine

Purpose
Retrieves the header details of the advanced accounting data file.

Library
The libaacct.a library.

Base Operating System (BOS) Runtime Services (A-P) 369

Syntax
#define <sys/aacct.h>
getfilehdr(filename, hdrinfo)
char *filename;
struct aacct_file_header *hdrinfo;

Description
The getfilehdr subroutine retrieves the advanced accounting data file header information in a structure of
type aacct_file_header and returns it to the caller through the structure pointer passed to it. The data file
header contains the system details such as the name of the host, the partition number, and the system
model.

Parameters

filename Name of the advanced accounting data file.
hdrinfo Pointer to the aacct_file_header structure in which the header information is returned.

Security
No restrictions. Any user can call this function.

Return Values

0 The call to the subroutine was successful.
-1 The call to the subroutine failed.

Error Codes

EINVAL The passed pointer is NULL.
ENOENT Specified data file does not exist.
EPERM Permission denied. Unable to read the data file.

Related Information
The “buildproclist Subroutine” on page 126, “buildtranlist or freetranlist Subroutine” on page 127,
“getproclist, getlparlist, or getarmlist Subroutine” on page 416.

Understanding the Advanced Accounting Subsystem.

getfirstprojdb Subroutine

Purpose
Retrieves details of the first project from the specified project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

getfirstprojdb(void *handle, struct project *project, char *comm)

370 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The getfirstprojdb subroutine retrieves the first project definitions from the project database, which is
controlled through the handle parameter. The caller must initialize the project database prior to calling this
routine with the projdballoc routine. Upon successful completion, the project information is copied to the
project structure specified by the caller. In addition, the associated project comment, if present, is copied to
the buffer pointed to by the comm parameter. The comment buffer is allocated by the caller and must have
a length of 1024 bytes.

There is an internal state (that is, the current project) associated with the project database. When the
project database is initialized, the current project is the first project in the database. The getnextprojdb
subroutine returns the current project and advances the current project assignment to the next project in
the database so that successive calls read each project entry in the database. The getfirstprojdb
subroutine can be used to reset the database, so that the initial project is the current project assignment.

Parameters

handle Pointer to the projdb handle.
project Pointer to project structure where the retrieved data is stored.
comm Pointer to the comment buffer.

Security
No restriction. Any user can call this function.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid arguments, if passed pointer is NULL.
ENOENT No projects available.

Related Information
The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 160, “getnextprojdb Subroutine”
on page 398, “getprojdb Subroutine” on page 421, “getprojs Subroutine” on page 422, “projdballoc
Subroutine” on page 1189, “projdbfinit Subroutine” on page 1189, “projdbfree Subroutine” on page 1191,
rmprojdb Subroutine.

getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent
Subroutine

Purpose
Gets information about a file system.

Library
Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 371

Syntax
#include <fstab.h>

struct fstab *getfsent()

struct fstab *getfsspec (Special)
char *Special;

struct fstab *getfsfile(File)
char *File;

struct fstab *getfstype(Type)
char *Type;

void setfsent()

void endfsent()

Description
The getfsent subroutine reads the next line of the /etc/filesystems file, opening the file if necessary.

The setfsent subroutine opens the /etc/filesystems file and positions to the first record.

The endfsent subroutine closes the /etc/filesystems file.

The getfsspec and getfsfile subroutines sequentially search from the beginning of the file until a matching
special file name or file-system file name is found, or until the end of the file is encountered. The
getfstype subroutine does likewise, matching on the file-system type field.

Note: All information is contained in a static area, which must be copied to be saved.

Parameters

Special Specifies the file-system file name.
File Specifies the file name.
Type Specifies the file-system type.

Return Values
The getfsent, getfsspec, getfstype, and getfsfile subroutines return a pointer to a structure that contains
information about a file system. The header file fstab.h describes the structure. A null pointer is returned
when the end of file (EOF) is reached or if an error occurs.

Files

/etc/filesystems Centralizes file system characteristics.

Related Information
The getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent (“getvfsent,
getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine” on page 478) subroutine.

The filesystems file.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

372 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

getgid, getegid or gegidx Subroutine

Purpose
Gets the process group IDs.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
#include <sys/types.h>

gid_t getgid (void);

gid_t getegid (void);

#include <id.h>

gid_t getgidx (int type);

Description
The getgid subroutine returns the real group ID of the calling process.

The getegid subroutine returns the effective group ID of the calling process.

The getgidx subroutine returns the group ID indicated by the type parameter of the calling process.

These subroutines are part of Base Operating System (BOS) Runtime.

Return Values
The getgid, getegidand getgidx subroutines return the requested group ID. The getgid and getegid
subroutines are always successful.

The getgidx subroutine will return -1 and set the global errno variable to EINVAL if the type parameter is
not one of ID_REAL, ID_EFFECTIVE or ID_SAVED.

Parameters

type Specifies the group ID to get. Must be one of ID_REAL (real group ID), ID_EFFECTIVE (effective
group ID) or ID_SAVED (saved set-group ID).

Error Codes
If the getgidx subroutine fails the following is returned:

EINVAL Indicates the value of the type parameter is invalid.

Related Information
The “getgroups Subroutine” on page 385, initgroups subroutine, setgid subroutine, setgroups
subroutine.

The groups command, setgroups command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 373

getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine

Purpose
Accesses the basic group information in the user database.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <grp.h>

struct group *getgrent ();

struct group *getgrgid (GID)
gid_t GID;

struct group *getgrnam (Name)
const char * Name;

void setgrent ();

void endgrent ();

Description
Attention: The information returned by the getgrent, getgrnam, and getgrgid subroutines is stored in a
static area and is overwritten on subsequent calls. You must copy this information to save it.

Attention: These subroutines should not be used with the getgroupattr subroutine. The results are
unpredictable.

The setgrent subroutine opens the user database if it is not already open. Then, this subroutine sets the
cursor to point to the first group entry in the database.

The getgrent, getgrnam, and getgrgid subroutines return information about the requested group. The
getgrent subroutine returns the next group in the sequential search. The getgrnam subroutine returns the
first group in the database whose name matches that of the Name parameter. The getgrgid subroutine
returns the first group in the database whose group ID matches the GID parameter. The endgrent
subroutine closes the user database.

Note: An ! (exclamation mark) is written into the gr_passwd field. This field is ignored and is present only
for compatibility with older versions of UNIX.

These subroutines also return the list of user members for the group. Currently, the list is limited to 2000
entries (this could change in the future to where all the entries for the group are returned).

The Group Structure
The group structure is defined in the grp.h file and has the following fields:

gr_name Contains the name of the group.
gr_passwd Contains the password of the group.

Note: This field is no longer used.
gr_gid Contains the ID of the group.
gr_mem Contains the members of the group.

374 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If the Network Information Service (NIS) is enabled on the system, these subroutines attempt to retrieve
the group information from the NIS authentication server.

Parameters

GID Specifies the group ID.
Name Specifies the group name.

Group Specifies the basic group information to enter into the user database.

Return Values
If successful, the getgrent, getgrnam, and getgrgid subroutines return a pointer to a valid group
structure. Otherwise, a null pointer is returned.

Error Codes
These subroutines fail if one or more of the following are returned:

EIO Indicates that an input/output (I/O) error has occurred.
EINTR Indicates that a signal was caught during the getgrnam or getgrgid subroutine.
EMFILE Indicates that the maximum number of file descriptors specified by the OPEN_MAX value

are currently open in the calling process.
ENFILE Indicates that the maximum allowable number of files is currently open in the system.

To check an application for error situations, set the errno global variable to a value of 0 before calling the
getgrgid subroutine. If the errno global variable is set on return, an error occurred.

File

/etc/group Contains basic group attributes.

Related Information
“putgrent Subroutine” on page 1336

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getgrgid_r Subroutine

Purpose
Gets a group database entry for a group ID.

Library
Thread-Safe C Library (libc_r.a)

Syntax
#include <sys/types.h>
#include <grp.h>

int getgrgid_r(gid_t gid,

Base Operating System (BOS) Runtime Services (A-P) 375

struct group *grp,
char *buffer,
size_t bufsize,
struct group **result);

Description
The getgrgid_r subroutine updates the group structure pointed to by grp and stores a pointer to that
structure at the location pointed to by result. The structure contains an entry from the group database with
a matching gid. Storage referenced by the group structure is allocated from the memory provided with the
buffer parameter, which is bufsize characters in size. The maximum size needed for this buffer can be
determined with the {_SC_GETGR_R_SIZE_MAX} sysconf parameter. A NULL pointer is returned at the
location pointed to by result on error or if the requested entry is not found.

Return Values
Upon successful completion, getgrgid_r returns a pointer to a struct group with the structure defined in
<grp.h> with a matching entry if one is found. The getgrgid_r function returns a null pointer if either the
requested entry was not found, or an error occurred. On error, errno will be set to indicate the error.

The return value points to a static area that is overwritten by a subsequent call to the getgrent, getgrgid,
or getgrnam subroutine.

If successful, the getgrgid_r function returns zero. Otherwise, an error number is returned to indicate the
error.

Error Codes
The getgrgid_r function fails if:

ERANGE Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced
by the resulting group structure.

Applications wishing to check for error situations should set errno to 0 before calling getgrgid_r. If errno is
set on return, an error occurred.

Related Information
The getgrent, getgrgid, getgrnam, setgrent, endgrent (“getgrent, getgrgid, getgrnam, setgrent, or
endgrent Subroutine” on page 374) subroutine.

The <grp.h>, <limits.h>, and <sys/types.h> header files.

getgrnam_r Subroutine

Purpose
Search a group database for a name.

Library
Thread-Safe C Library (libc_r.a)

Syntax
#include <sys/types.h>
#include <grp.h>

int getgrnam_r (const char **name,

376 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

struct group *grp,
char *buffer,
size_t bufsize,
struct group **result);

Description
The getgrnam_r function updates the group structure pointed to by grp and stores pointer to that
structure at the location pointed to by result. The structure contains an entry from the group database with
a matching gid or name. Storage referenced by the group structure is allocated from the memory provided
with the buffer parameter, which is bufsize characters in size. The maximum size needed for this buffer
can be determined with the {_SC_GETGR_R_SIZE_MAX} sysconf parameter. A NULL pointer is returned
at the location pointed to by result on error or if the requested entry is not found.

Return Values
The getgrnam_r function returns a pointer to a struct group with the structure defined in <grp.h> with a
matching entry if one is found. The getgrnam_r function returns a null pointer if either the requested entry
was not found, or an error occurred. On error, errno will be set to indicate the error.

The return value points to a static area that is overwritten by a subsequent call to the getgrent, getgrgid,
or getgrnam subroutine.

If successful, the getgrnam_r function returns zero. Otherwise, an error number is returned to indicate the
error.

Error Codes
The getgrnam_r function fails if:

ERANGE Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced
by the resulting group structure.

Applications wishing to check for error situations should set errno to 0 before calling getgrnam_r. If errno
is set on return, an error occurred.

Related Information
The getgrent, getgrgid, getgrnam, setgrent, endgrent (“getgrent, getgrgid, getgrnam, setgrent, or
endgrent Subroutine” on page 374) subroutine.

The <grp.h>, <limits.h>, and <sys/types.h> header files.

getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine

Purpose
Accesses the group information in the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getgroupattr (Group, Attribute, Value, Type)
char * Group;

Base Operating System (BOS) Runtime Services (A-P) 377

char * Attribute;
void * Value;
int Type;

int putgroupattr (Group, Attribute, Value, Type)
char *Group;
char *Attribute;
void *Value;
int Type;

char *IDtogroup (GID)
gid_t GID;

char *nextgroup (Mode, Argument)
int Mode, Argument;

Description
Attention: These subroutines and the setpwent and setgrent subroutines should not be used
simultaneously. The results can be unpredictable.

These subroutines access group information. Because of their greater granularity and extensibility, you
should use them instead of the getgrent, putgrent, getgrnam, getgrgid, setgrent, and endgrent
subroutines.

The getgroupattr subroutine reads a specified attribute from the group database. If the database is not
already open, the subroutine will do an implicit open for reading.

Similarly, the putgroupattr subroutine writes a specified attribute into the group database. If the database
is not already open, the subroutine does an implicit open for reading and writing. Data changed by
putgroupattr must be explicitly committed by calling the putgroupattr subroutine with a Type parameter
specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls within the
process will return the written data.

New entries in the user and group databases must first be created by invoking putgroupattr with the
SEC_NEW type.

The IDtogroup subroutine translates a group ID into a group name.

The nextgroup subroutine returns the next group in a linear search of the group database. The
consistency of consecutive searches depends upon the underlying storage-access mechanism and is not
guaranteed by this subroutine.

The setuserdb and enduserdb subroutines should be used to open and close the user database.

Parameters

Argument Presently unused and must be specified as null.

378 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Attribute Specifies which attribute is read. The following possible values are defined in the usersec.h
file:

S_ID Group ID. The attribute type is SEC_INT.

S_USERS
Members of the group. The attribute type is SEC_LIST.

S_ADMS
Administrators of the group. The attribute type is SEC_LIST.

S_ADMIN
Administrative status of a group. Type: SEC_BOOL.

S_GRPEXPORT
Specifies if the DCE registry can overwrite the local group information with the DCE
group information during a DCE export operation. The attribute type is SEC_BOOL.

Additional user-defined attributes may be used and will be stored in the format specified by
the Type parameter.

GID Specifies the group ID to be translated into a group name.
Group Specifies the name of the group for which an attribute is to be read.
Mode Specifies the search mode. Also can be used to delimit the search to one or more user

credential databases. Specifying a non-null Mode value implicitly rewinds the search. A null
mode continues the search sequentially through the database. This parameter specifies one
of the following values as a bit mask (defined in the usersec.h file):

S_LOCAL
The local database of groups are included in the search.

S_SYSTEM
All credentials servers for the system are searched.

Type Specifies the type of attribute expected. Valid values are defined in the usersec.h file and
include:

SEC_INT
The format of the attribute is an integer. The buffer returned by the getgroupattr
subroutine and the buffer supplied by the putgroupattr subroutine are defined to
contain an integer.

SEC_CHAR
The format of the attribute is a null-terminated character string.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated.
The last string in the series is terminated by two successive null characters.

SEC_BOOL
A pointer to an integer (int *) that has been cast to a null pointer.

SEC_COMMIT
For the putgroupattr subroutine, this value specified by itself indicates that changes
to the named group are committed to permanent storage. The Attribute and Value
parameters are ignored. If no group is specified, changes to all modified groups are
committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the database.

SEC_NEW
If using the putgroupattr subroutine, updates all the group database files with the
new group name.

Value Specifies the address of a pointer for the getgroupattr subroutine. The getgroupattr
subroutine will return the address of a buffer in the pointer. For the putgroupattr subroutine,
the Value parameter specifies the address of a buffer in which the attribute is stored. See the
Type parameter for more details.

Base Operating System (BOS) Runtime Services (A-P) 379

Security

Files Accessed:

Mode File
rw /etc/group (write access for putgroupattr)
rw /etc/security/group (write access for putgroupattr)

Return Values
The getgroupattr and putgroupattr subroutines, when successfully completed, return a value of 0.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

The IDtogroup and nextgroup subroutines return a character pointer to a buffer containing the requested
group name, if successfully completed. Otherwise, a null pointer is returned and the errno global variable
is set to indicate the error.

Error Codes

Note: All of these subroutines return errors from other subroutines.

These subroutines fail if the following is true:

EACCES Access permission is denied for the data request.

The getgroupattr and putgroupattr subroutines fail if one or more of the following are true:

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of attribute.
Limited testing is possible and all errors may not be detected.

EINVAL The Type parameter contains more than one of the SEC_INT, SEC_BOOL, SEC_CHAR,
SEC_LIST, or SEC_COMMIT attributes.

EINVAL The Type parameter specifies that an individual attribute is to be committed, and the Group
parameter is null.

ENOENT The specified Group parameter does not exist or the attribute is not defined for this group.
EPERM Operation is not permitted.

The IDtogroup subroutine fails if the following is true:

ENOENT The GID parameter could not be translated into a valid group name on the system.

The nextgroup subroutine fails if one or more of the following are true:

EINVAL The Mode parameter is not null, and does not specify either S_LOCAL or S_SYSTEM.
EINVAL The Argument parameter is not null.
ENOENT The end of the search was reached.

Related Information
The getuserattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 456) subroutine,
getuserpw (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page 470) subroutine, setpwdb
subroutine, setuserdb subroutine.

380 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getgroupattrs Subroutine

Purpose
Retrieves multiple group attributes in the group database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getgroupattrs (Group, Attributes, Count)
char * Group;
dbattr_t * Attributes;
int Count

Description
Attention: Do not use this subroutine and the setpwent and setgrent subroutines simultaneously. The
results can be unpredictable.

The getgroupattrs subroutine accesses group information. Because of its greater granularity and
extensibility, use it instead of the getgrent routines.

The getgroupattrs subroutine reads one or more attributes from the group database. If the database is
not already open, this subroutine does an implicit open for reading. A call to the getgroupattrs subroutine
with an Attributes parameter of null and Count parameter of 0 for every new group verifies that the group
exists.

The Attributes array contains information about each attribute that is to be read. The dbattr_t data
structure contains the following fields:

attr_name
The name of the desired attribute.

attr_idx
Used internally by the getgroupattrs subroutine.

attr_type
The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag
The results of the request to read the desired attribute.

attr_un
A union containing the returned values. Its union members that follow correspond to the definitions
of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char
Attributes of type SEC_CHAR and SEC_LIST store a pointer to the returned attribute in
this member when the requested attribute is successfully read. The caller is responsible
for freeing this memory.

un_int Attributes of type SEC_INT and SEC_BOOL store the value of the attribute in this
member when the requested attribute is successfully read.

Base Operating System (BOS) Runtime Services (A-P) 381

un_long
Attributes of type SEC_LONG store the value of the attribute in this member when the
requested attribute is successfully read.

un_llong
Attributes of type SEC_LLONG store the value of the attribute in this member when the
requested attribute is successfully read.

attr_domain
The authentication domain containing the attribute. The getgroupattrs subroutine is responsible
for managing the memory referenced by this pointer.
If attr_domain is specified for an attribute, the get request is sent only to that domain.
If attr_domain is not specified (that is, set to NULL), getgroupattrs searches the domains in a
predetermined order. The search starts with the local file system and continues with the domains
specified in the /usr/lib/security/methods.cfg file. This search space can be restricted with the
setauthdb subroutine so that only the domain specified in the setauthdb call is searched.
If attr_domain is not specified, the getgroupattrs subroutine sets this field to the name of the
domain from which the value is retrieved. If the request for a NULL domain was not satisfied, the
request is tried from the local files using the default stanza.

Use the setuserdb and enduserdb subroutines to open and close the group database. Failure to explicitly
open and close the group database can result in loss of memory and performance.

Parameters

Group Specifies the name of the group for which the attributes are to be read.
Attributes A pointer to an array of 0 or more elements of type dbattr_t. The list of group attributes is

defined in the usersec.h header file.
Count The number of array elements in Attributes. A Count parameter of 0 can be used to

determine if the group exists.

Security
Files accessed:

Mode File
rw /etc/group
rw /etc/security/group

Return Values
If Group exists, the getgroupattrs subroutine returns 0. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error. Each element in the Attributes array must be examined on a
successful call to getgroupattrs to determine if the Attributes array entry was successfully retrieved.

Error Codes
The getgroupattrs subroutine returns an error that indicates that the group does or does not exist.
Additional errors can indicate an error querying the information databases for the requested attributes.

EINVAL The Count parameter is less than zero.
EINVAL The Attributes parameter is null and the Count parameter is greater than 0.
ENOENT The specified Group parameter does not exist.

If the getgroupattrs subroutine fails to query an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

382 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EACCES The user does not have access to the attribute specified in the attr_name field.
EINVAL The attr_type field in the Attributes entry contains an invalid type.
EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.
ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

user or group.
ENOMEM Memory could not be allocated to store the return value.

Examples
The following sample test program displays the output to a call to getgroupattrs. In this example, the
system has a user named foo.
attribute name : id
attribute flag : 0
attribute domain : files
attribute value : 204

attribute name : admin
attribute flag : 0
attribute domain : files
attribute value : 0

attribute name : adms
attribute flag : 0
attribute domain : files
attribute value :

attribute name : registry
attribute flag : 0
attribute domain :
attribute value : compat

*/
#include <stdio.h>
#include <usersec.h>

#define NATTR 4
#define GROUPNAME "bar"

char * ConvertToComma(char *); /* Convert from SEC_LIST to SEC_CHAR with
'\0' replaced with ',' */

main() {

dbattr_t attributes[NATTR];
int i;
int rc;

memset (&attributes, 0, sizeof(attributes));

/*
* Fill in the attributes array with "id", "expires" and
* "SYSTEM" attributes.
*/

attributes[0].attr_name = S_ID;
attributes[0].attr_type = SEC_INT;;

attributes[1].attr_name = S_ADMIN;
attributes[1].attr_type = SEC_BOOL;

attributes[2].attr_name = S_ADMS;
attributes[2].attr_type = SEC_LIST;

attributes[3].attr_name = S_REGISTRY;

Base Operating System (BOS) Runtime Services (A-P) 383

attributes[3].attr_type = SEC_CHAR;

/*
* Make a call to getuserattrs.
*/

setuserdb(S_READ);

rc = getgroupattrs(GROUPNAME, attributes, NATTR);

enduserdb();

if (rc) {
printf("getgroupattrsattrs failed\n");
exit(-1);
}

for (i = 0; i < NATTR; i++) {
printf("attribute name : %s \n", attributes[i].attr_name);
printf("attribute flag : %d \n", attributes[i].attr_flag);

if (attributes[i].attr_flag) {

/*
* No attribute value. Continue.
*/
printf("\n");
continue;
}
/*
* We have a value.
*/
printf("attribute domain : %s \n", attributes[i].attr_domain);
printf("attribute value : ");

switch (attributes[i].attr_type)
{
case SEC_CHAR:
if (attributes[i].attr_char) {

printf("%s\n", attributes[i].attr_char);
free(attributes[i].attr_char);
}
break;
case SEC_LIST:
if (attributes[i].attr_char) {

printf("%s\n", ConvertToComma(
attributes[i].attr_char));

free(attributes[i].attr_char);
}

break;
case SEC_INT:
case SEC_BOOL:

printf("%d\n", attributes[i].attr_int);
break;

default:
break;

}
printf("\n");
}
exit(0);

}

/*
* ConvertToComme:
* replaces NULLs in str with commas.
*/

char *
ConvertToComma(char *str)

384 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

{
char *s = str;

if (! str || ! *str)
return(s);

for (; *str; str++) {
while(*(++str));
*str = ',';

}

*(str-1) = 0;
return(s);

}

The following output for the call is expected:
attribute name : id
attribute flag : 0
attribute domain : files
attribute value : 204

attribute name : admin
attribute flag : 0
attribute domain : files
attribute value : 0

attribute name : adms
attribute flag : 0
attribute domain : files
attribute value :

attribute name : registry
attribute flag : 0
attribute domain :
attribute value : compat

Files

/etc/group Contains group IDs.

Related Information
The “getuserattrs Subroutine” on page 462, setuserdb Subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getgroups Subroutine

Purpose
Gets the supplementary group ID of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <unistd.h>

Base Operating System (BOS) Runtime Services (A-P) 385

int getgroups (NGroups, GIDSet)
int NGroups;
gid_t GIDSet [];

Description
The getgroups subroutine gets the supplementary group ID of the process. The list is stored in the array
pointed to by the GIDSet parameter. The NGroups parameter indicates the number of entries that can be
stored in this array. The getgroups subroutine never returns more than the number of entries specified by
the NGROUPS_MAX constant. (The NGROUPS_MAX constant is defined in the limits.h file.) If the value
in the NGroups parameter is 0, the getgroups subroutine returns the number of groups in the
supplementary group.

Parameters

GIDSet Points to the array in which the supplementary group ID of the user’s process is stored.
NGroups Indicates the number of entries that can be stored in the array pointed to by the GIDSet

parameter.

Return Values
Upon successful completion, the getgroups subroutine returns the number of elements stored into the
array pointed to by the GIDSet parameter. If the getgroups subroutine is unsuccessful, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The getgroups subroutine is unsuccessful if either of the following error codes is true:

EFAULT The NGroups and GIDSet parameters specify an array that is partially or completely outside of
the allocated address space of the process.

EINVAL The NGroups parameter is smaller than the number of groups in the supplementary group.

Related Information
The getgid (“getgid, getegid or gegidx Subroutine” on page 373) subroutine, initgroups (“initgroups
Subroutine” on page 560) subroutine, setgid subroutine, setgroups subroutine.

The groups command, setgroups command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine

Purpose
Accesses the group screen information in the SMIT ACL database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

386 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int getgrpaclattr (Group, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

char *nextgrpacl(void)

int putgrpaclattr (Group, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

Description
The getgrpaclattr subroutine reads a specified group attribute from the SMIT ACL database. If the
database is not already open, this subroutine does an implicit open for reading.

Similarly, the putgrpaclattr subroutine writes a specified attribute into the user SMIT ACL database. If the
database is not already open, this subroutine does an implicit open for reading and writing. Data changed
by the putgrpaclattr subroutine must be explicitly committed by calling the putgrpaclattr subroutine with
a Type parameter specifying SEC_COMMIT. Until all the data is committed, only the getgrpaclattr
subroutine within the process returns written data.

The nextgrpacl subroutine returns the next group in a linear search of the group SMIT ACL database. The
consistency of consecutive searches depends upon the underlying storage-access mechanism and is not
guaranteed by this subroutine.

The setacldb and endacldb subroutines should be used to open and close the database.

Parameters

Attribute Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

S_SCREENS
String of SMIT screens. The attribute type is SEC_LIST.

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated. The
last string in the series must be an empty (zero character count) string.

For the getgrpaclattr subroutine, the user should supply a pointer to a defined character
pointer variable. For the putgrpaclattr subroutine, the user should supply a character
pointer.

SEC_COMMIT
For the putgrpaclattr subroutine, this value specified by itself indicates that changes to
the named group are to be committed to permanent storage. The Attribute and Value
parameters are ignored. If no group is specified, the changes to all modified groups are
committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the group SMIT ACL database.

SEC_NEW
Updates the group SMIT ACL database file with the new group name when using the
putgrpaclattr subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the Attribute and
Type parameters. See the Type parameter for more details.

Base Operating System (BOS) Runtime Services (A-P) 387

Return Values
If successful, the getgrpaclattr returns 0. Otherwise, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
Possible return codes are:

EACCES Access permission is denied for the data request.
ENOENT The specified Group parameter does not exist or the attribute is not defined for this group.
ENOATTR The specified user attribute does not exist for this group.
EINVAL The Attribute parameter does not contain one of the defined attributes or null.
EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of

attribute.
EPERM Operation is not permitted.

Related Information
The getgrpaclattr, nextgrpacl, or putgrpaclattr (“getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine” on
page 386) subroutine, setacldb, or endacldb subroutine.

getgrset Subroutine

Purpose
Accesses the concurrent group set information in the user database.

Library
Standard C Library (libc.a)

Syntax
char *getgrset (User)
const char * User;

Description
The getgrset subroutine returns a pointer to the comma separated list of concurrent group identifiers for
the named user.

If the Network Information Service (NIS) is enabled on the system, these subroutines attempt to retrieve
the user information from the NIS authentication server.

Parameters

User Specifies the user name.

Return Values
If successful, the getgrset subroutine returns a pointer to a list of supplementary groups. This pointer must
be freed by the user.

Error Codes
A NULL pointer is returned on error. The value of the errno global variable is undefined on error.

388 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

File

/etc/group Contains basic group attributes.

Related Information
List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm,
getitimer, or setitimer Subroutine

Purpose
Manipulates the expiration time of interval timers.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>

int getinterval (TimerID, Value)
timer_t TimerID;
struct itimerstruc_t *Value;

int incinterval (TimerID, Value, OValue)
timer_t TimerID;
struct itimerstruc_t *Value, *OValue;

int absinterval (TimerID, Value, OValue)
timer_t TimerID;
struct itimerstruc_t *Value, *OValue;

int resabs (TimerID, Resolution, Maximum)
timer_t TimerID;
struct timestruc_t *Resolution, *Maximum;

int resinc (TimerID, Resolution, Maximum)
timer_t TimerID;
struct timestruc_t *Resolution, *Maximum;

#include <unistd.h>

unsigned int alarm (Seconds)
unsigned int Seconds;

useconds_t ualarm (Value, Interval)
useconds_t Value, Interval;

int setitimer (Which, Value, OValue)
int Which;
struct itimerval *Value, *OValue;

Base Operating System (BOS) Runtime Services (A-P) 389

int getitimer (Which, Value)
int Which;
struct itimerval *Value;

Description
The getinterval, incinterval, and absinterval subroutines manipulate the expiration time of interval timers.
These functions use a timer value defined by the struct itimerstruc_t structure, which includes the
following fields:
struct timestruc_t it_interval; /* timer interval period */
struct timestruc_t it_value; /* timer interval expiration */

If the it_value field is nonzero, it indicates the time to the next timer expiration. If it_value is 0, the
per-process timer is disabled. If the it_interval member is nonzero, it specifies a value to be used in
reloading the it_value field when the timer expires. If it_interval is 0, the timer is to be disabled after its
next expiration (assuming it_value is nonzero).

The getinterval subroutine returns a value from the struct itimerstruc_t structure to the Value parameter.
The it_value field of this structure represents the amount of time in the current interval before the timer
expires, should one exist for the per-process timer specified in the TimerID parameter. The it_interval
field has the value last set by the incinterval or absinterval subroutine. The fields of the Value parameter
are subject to the resolution of the timer.

The incinterval subroutine sets the value of a per-process timer to a given offset from the current timer
setting. The absinterval subroutine sets the value of the per-process timer to a given absolute value. If
the specified absolute time has already expired, the absinterval subroutine will succeed and the expiration
notification will be made. Both subroutines update the interval timer period. Time values smaller than the
resolution of the specified timer are rounded up to this resolution. Time values larger than the maximum
value of the specified timer are rounded down to the maximum value.

The resinc and resabs subroutines return the resolution and maximum value of the interval timer
contained in the TimerID parameter. The resolution of the interval timer is contained in the Resolution
parameter, and the maximum value is contained in the Maximum parameter. These values might not be
the same as the values returned by the corresponding system timer, the gettimer subroutine. In addition, it
is likely that the maximum values returned by the resinc and resabs subroutines will be different.

Note: If a nonprivileged user attempts to submit a fine granularity timer (that is, a timer request of less
than 10 milliseconds), the timer request is raised to 10 milliseconds.

The alarm subroutine causes the system to send the calling thread’s process a SIGALRM signal after the
number of real-time seconds specified by the Seconds parameter have elapsed. Since the signal is sent to
the process, in a multi-threaded process another thread than the one that called the alarm subroutine may
receive the SIGALRM signal. Processor scheduling delays may prevent the process from handling the
signal as soon as it is generated. If the value of the Seconds parameter is 0, a pending alarm request, if
any, is canceled. Alarm requests are not stacked. Only one SIGALRM generation can be scheduled in this
manner. If the SIGALRM signal has not yet been generated, the call results in rescheduling the time at
which the SIGALRM signal is generated. If several threads in a process call the alarm subroutine, only the
last call will be effective.

The ualarm subroutine sends a SIGALRM signal to the invoking process in a specified number of
seconds. The getitimer subroutine gets the value of an interval timer. The setitimer subroutine sets the
value of an interval timer.

Parameters

TimerID Specifies the ID of the interval timer.

390 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Value Points to a struct itimerstruc_t structure.
OValue Represents the previous time-out period.
Resolution Resolution of the timer.
Maximum Indicates the maximum value of the interval timer.
Seconds Specifies the number of real-time seconds to elapse before the first SIGALRM signal.
Interval Specifies the number of microseconds between subsequent periodic SIGALRM signals. If a

nonprivileged user attempts to submit a fine granularity timer (that is, a timer request of
less than 10 milliseconds), the timer request interval is automatically raised to 10
milliseconds.

Which Identifies the type of timer. Valid values are:

ITIMER_PROF
Decrements in process virtual time and when the system runs on behalf of the
process. It is designed for use by interpreters in statistically profiling the execution
of interpreted programs. Each time the ITIMER_PROF timer expires, the
SIGPROF signal occurs. Because this signal may interrupt in-progress system
calls, programs using this timer must be prepared to restart interrupted system
calls.

ITIMER_REAL
Decrements in real time. A SIGALRM signal occurs when this timer expires.

ITMER_REAL_TH
Real-time, per-thread timer. Decrements in real time and delivers a SIGTALRM
signal when it expires. The SIGTALRM is sent to the thread that sets the timer.
Each thread has its own timer and can manipulate its own timer. This timer is only
supported with the 1:1 thread model. If the timer is used in M:N thread model,
undefined results might occur.

ITIMER_VIRTUAL
Decrements in process virtual time. It runs only during process execution. A
SIGVTALRM signal occurs when it expires.

Return Values
If these subroutines are successful, a value of 0 is returned. If an error occurs, a value of -1 is returned
and the errno global variable is set.

The alarm subroutine returns the amount of time (in seconds) remaining before the system is scheduled to
generate the SIGALARM signal from the previous call to alarm. It returns a 0 if there was no previous
alarm request.

The ualarm subroutine returns the number of microseconds previously remaining in the alarm clock.

Error Codes
If the getinterval, incinterval, absinterval, resinc, resabs, setitimer, getitimer, or setitimer subroutine
is unsuccessful , a value of -1 is returned and the errno global variable is set to one of the following error
codes:

EINVAL Indicates that the TimerID parameter does not correspond to an ID returned by the
gettimerid subroutine, or a value structure specified a nanosecond value less than 0 or
greater than or equal to one thousand million (1,000,000,000).

EIO Indicates that an error occurred while accessing the timer device.
EFAULT Indicates that a parameter address has referenced invalid memory.

The alarm subroutine is always successful. No return value is reserved to indicate an error for it.

Base Operating System (BOS) Runtime Services (A-P) 391

Related Information
The gettimer (“gettimer, settimer, restimer, stime, or time Subroutine” on page 448) subroutine, gettimerid
(“gettimerid Subroutine” on page 451) subroutine, sigaction, sigvec, or signal subroutine.

Time data manipulation services in Operating system and device management.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Signal Management in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs provides more information about signal management in multi-threaded processes.

getiopri Subroutine

Purpose
Enables the getting of a process I/O priority.

Syntax
short getiopri (ProcessID);
pid_t ProcessID;

Description
The getiopri subroutine returns the I/O scheduling priority of a process. If the target process ID does not
match the process ID of the caller, the caller must either be running as root, or have an effective and real
user ID that matches the target process.

Parameters

ProcessID Specifies the process ID. If this value is -1, the current process scheduling priority is
returned.

Return Values
Upon successful completion, the getiopri subroutine returns the I/O scheduling priority of a thread in the
process. A returned value of IOPRIORITY_UNSET indicates that the I/O priority was not set. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Errors

EPERM The calling process is not root. It does not have the same process ID as the target
process, and does not have the same real effective user ID as the target process.

ESRCH No process can be found corresponding to the specified ProcessID.

Implementation Specifics
1. Implementation requires an additional field in the proc structure.

2. The default setting for process I/O priority is IOPRIORITY_UNSET.

3. Once set, process I/O priorities should be inherited across a fork. I/O priorities should not be inherited
across an exec.

4. The setiopri system call generates an auditing event using audit_svcstart if auditing is enabled on the
system (audit_flag is true).

392 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The “getpri Subroutine” on page 413, setiopri subroutine, setpri subroutine.

getipnodebyaddr Subroutine

Purpose
Address-to-nodename translation.

Library
Standard C Library (libc.a)

(libaixinet)

Syntax
#include <sys/socket.h>
#include <netdb.h>
struct hostent *getipnodebyaddr(src, len, af, error_num)
const void *src;
size_t len;
int af;
int *error_num;

Description
The getipnodebyaddr subroutine has the same arguments as the gethostbyaddr subroutine but adds an
error number. It is thread-safe.

The getipnodebyaddr subroutine is similar in its name query to the gethostbyaddr subroutine except in
one case. If af equals AF_INET6 and the IPv6 address is an IPv4-mapped IPv6 address or an
IPv4-compatible address, then the first 12 bytes are skipped over and the last 4 bytes are used as an IPv4
address with af equal to AF_INET to lookup the name.

If the getipnodebyaddr subroutine is returning success, then the single address that is returned in the
hostent structure is a copy of the first argument to the function with the same address family and length
that was passed as arguments to this function.

All of the information returned by getipnodebyaddr is dynamically allocated: the hostent structure and the
data areas pointed to by the h_name, h_addr_lisy, and h_aliases members of the hostent structure. To
return this information to the system the function freehostent is called.

Parameters

src Specifies a node address. It is a pointer to either a 4-byte (IPv4) or 16-byte (IPv6) binary
format address.

af Specifies the address family which is either AF_INET or AF_INET6.

len Specifies the length of the node binary format address.

error_num Returns argument to the caller with the appropriate error code.

Return Values
The getipnodebyaddr subroutine returns a pointer to a hostent structure on success.

Base Operating System (BOS) Runtime Services (A-P) 393

The getipnodebyaddr subroutine returns a null pointer if an error occurs. The error_num parameter is set
to indicate the error.

Error Codes

HOST_NOT_FOUND The host specified by the name parameter was not found.

TRY_AGAIN The local server did not receive a response from an authoritative server.
Try again later.

NO_RECOVERY This error code indicates an unrecoverable error.

NO_ADDRESS The requested name is valid but does not have an Internet address at the
name server.

Related Information
The freehostent subroutine and getipnodebyname subroutine.

getipnodebyname Subroutine

Purpose
Nodename-to-address translation.

Library
Standard C Library (libc.a)

(libaixinet)

Syntax
#include <libc.a>
#include <netdb.h>
struct hostent *getipnodebyname(name, af, flags, error_num)
const char *name;
int af;
int flags;
int *error_num;

Description
The commonly used functions gethostbyname and gethostbyname2 are inadequate for many
applications. You could not specify the type of addresses desired in gethostbyname. In gethostbyname2,
a global option (RES_USE_INET6) is required when IPV6 addresses are used. Also, gethostbyname2
needed more control over the type of addresses required.

The getipnodebyname subroutine gives the caller more control over the types of addresses required and
is thread safe. It also does not need a global option like RES_USE_INET6.

The name argument can be either a node name or a numeric (either a dotted-decimal IPv4 or
colon-seperated IPv6) address.

The flags parameter values include AI_DEFAULT, AI_V4MAPPED, AI_ALL and AI_ADDRCONFIG. The
special flags value AI_DEFAULT is designed to handle most applications. Its definition is:
#define AI_DEFAULT (AI_V4MAPPED | AI_ADDRCONFIG)

When porting simple applications to use IPv6, simply replace the call:
hp = gethostbyname(name);

394 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

with
hp = getipnodebyname(name, AF_INET6, AI_DEFAULT, &error_num);

To modify the behavior of the getipnodebyname subroutine, constant values can be logically-ORed into
the flags parameter.

A flags value of 0 implies a strict interpretation of the af parameter. If af is AF_INET then only IPv4
addresses are searched for and returned. If af is AF_INET6 then only IPv6 addresses are searched for
and returned.

If the AI_V4MAPPED flag is specified along with an af of AF_INET6, then the caller accepts IPv4-mapped
IPv6 addresses. That is, if a query for IPv6 addresses fails, then a query for IPv4 addresses is made and
if any are found, then they are returned as IPv4-mapped IPv6 addresses. The AI_V4MAPPED flag is only
valid with an af of AF_INET6.

If the AI_ALL flag is used in conjunction the AI_V4MAPPED flag and af is AF_INET6, then the caller wants
all addresses. The addresses returned are IPv6 addresses and/or IPv4-mapped IPv6 addresses. Only if
both queries (IPv6 and IPv4) fail does getipnodebyname return NULL. Again, the AI_ALL flag is only valid
with an af of AF_INET6.

The AI_ADDRCONFIG flag is used to specify that a query for IPv6 addresses should only occur if the
node has at least one IPv6 source address configured and a query for IPv4 addresses should only occur if
the node has at least one IPv4 source address configured. For example, if the node only has IPv4
addresses configured, af equals AF_INET6, and the node name being looked up has both IPv4 and IPv6
addresses, then if only the AI_ADDRCONFIG flag is specified, getipnodebyname will return NULL. If the
AI_V4MAPPED flag is specified with the AI_ADDRCONFIG flag (AI_DEFAULT), then any IPv4 addresses
found will be returned as IPv4-mapped IPv6 addresses.

There are 4 different situations when the name argument is a literal address string:

1. name is a dotted-decimal IPv4 address and af is AF_INET. If the query is successful, then h_name
points to a copy of name, h_addrtype is the af argument, h_length is 4, h_aliases is a NULL pointer,
h_addr_list[0] points to the 4-byte binary address and h_addr_list[1] is a NULL pointer.

2. name is a colon-separated IPv6 address and af is AF_INET6. If the query is successful, then h_name
points to a copy of name, h_addrtype is the af parameter, h_length is 16, h_aliases is a NULL pointer,
h_addr_list[0] points to the 16-byte binary address and h_addr_list[1] is a NULL pointer.

3. name is a dotted-decimal IPv4 address and af is AF_INET6. If the AI_V4MAPPED flag is specified
and the query is successful, then h_name points to an IPv4-mapped IPv6 address string, h_addrtype is
the af argument, h_length is 16, h_aliases is a NULL pointer, h_addr_list[0] points to the 16-byte
binary address and h_addr_list[1] is a NULL pointer.

4. name is a colon-separated IPv6 address and af is AF_INET. This is an error, getipnodebyname
returns a NULL pointer and error_num equals HOST_NOT_FOUND.

Parameters

name Specifies either a node name or a numeric (either a dotted-decimal IPv4 or
colon-separated IPv6) address.

af Specifies the address family which is either AF_INET or AF_INET6.

flags Controls the types of addresses searched for and the types of addresses returned.

error_num Returns argument to the caller with the appropriate error code.

Return Values
The getipnodebyname subroutine returns a pointer to a hostent structure on success.

Base Operating System (BOS) Runtime Services (A-P) 395

The getipnodebyname subroutine returns a null pointer if an error occurs. The error_num parameter is
set to indicate the error.

Error Codes

HOST_NOT_FOUND The host specified by the name parameter was not found.

TRY_AGAIN The local server did not receive a response from an authoritative server.
Try again later.

NO_RECOVERY The host specified by the nameparameter was not found. This error code
indicates an unrecoverable error.

NO_ADDRESS The requested name is valid but does not have an Internet address at the
name server.

Related Information
The freehostent subroutine and getipnodebyaddr subroutine.

getlogin Subroutine

Purpose
Gets a user’s login name.

Library
Standard C Library (libc.a)

Syntax
include <sys/types.h>
include <unistd.h>
include <limits.h>

char *getlogin (void)

Description
Attention: Do not use the getlogin subroutine in a multithreaded environment. To access the
thread-safe version of this subroutines, see the getlogin_r (“getlogin_r Subroutine” on page 397)
subroutine.

Attention: The getlogin subroutine returns a pointer to an area that may be overwritten by successive
calls.

The getlogin subroutine returns a pointer to the login name in the /etc/utmp file. You can use the
getlogin subroutine with the getpwnam (“getpwent, getpwuid, getpwnam, putpwent, setpwent, or
endpwent Subroutine” on page 424) subroutine to locate the correct password file entry when the same
user ID is shared by several login names.

If the getlogin subroutine cannot find the login name in the /etc/utmp file, it returns the process
LOGNAME environment variable. If the getlogin subroutine is called within a process that is not attached
to a terminal, it returns the value of the LOGNAME environment variable. If the LOGNAME environment
variable does not exist, a null pointer is returned.

Return Values
The return value can point to static data whose content is overwritten by each call. If the login name is not
found, the getlogin subroutine returns a null pointer.

396 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
If the getlogin function is unsuccessful, it returns one or more of the following error codes:

EMFILE Indicates that the OPEN_MAX file descriptors are currently open in the calling process.
ENFILE Indicates that the maximum allowable number of files is currently open in the system.
ENXIO Indicates that the calling process has no controlling terminal.

Files

/etc/utmp Contains a record of users logged into the system.

Related Information
The getgrent, getgrgid, getgrnam, putgrent, setgrent, or endgrent (“getgrent, getgrgid, getgrnam,
setgrent, or endgrent Subroutine” on page 374) subroutine, getlogin_r (“getlogin_r Subroutine”)
subroutine, getpwent, getpwuid, setpwent, or endpwent (“getpwent, getpwuid, getpwnam, putpwent,
setpwent, or endpwent Subroutine” on page 424) subroutine, getpwnam (“getpwent, getpwuid, getpwnam,
putpwent, setpwent, or endpwent Subroutine” on page 424) subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getlogin_r Subroutine

Purpose
Gets a user’s login name.

Library
Thread-Safe C Library (libc_r.a)

Syntax
int getlogin_r (Name, Length)
char * Name;
size_t Length;

Description
The getlogin_r subroutine gets a user’s login name from the /etc/utmp file and places it in the Name
parameter. Only the number of bytes specified by the Length parameter (including the ending null value)
are placed in the Name parameter.

Applications that call the getlogin_r subroutine must allocate memory for the login name before calling the
subroutine. The name buffer must be the length of the Name parameter plus an ending null value.

If the getlogin_r subroutine cannot find the login name in the utmp file or the process is not attached to a
terminal, it places the LOGNAME environment variable in the name buffer. If the LOGNAME environment
variable does not exist, the Name parameter is set to null and the getlogin_r subroutine returns a -1.

Parameters

Name Specifies a buffer for the login name. This buffer should be the length of the Length parameter
plus an ending null value.

Base Operating System (BOS) Runtime Services (A-P) 397

Length Specifies the total length in bytes of the Name parameter. No more bytes than the number
specified by the Length parameter are placed in the Name parameter, including the ending null
value.

Return Values
If successful, the getlogin_r function returns 0. Otherwise, an error number is returned to indicate the
error.

Error Codes
If the getlogin_r subroutine does not succeed, it returns one of the following error codes:

EINVAL Indicates that the Name parameter is not valid.
EMFILE Indicates that the OPEN_MAX file descriptors are currently open in the calling process.
ENFILE Indicates that the maximum allowable number of files are currently open in the system.
ENXIO Indicates that the calling process has no controlling terminal.
ERANGE Indicates that the value of Length is smaller than the length of the string to be returned,

including the terminating null character.

File

/etc/utmp Contains a record of users logged into the system.

Related Information
The getgrent_r, getgrgid_r, getgrnam_r, setgrent_r, or endgrent_r (“getgrent, getgrgid, getgrnam,
setgrent, or endgrent Subroutine” on page 374) subroutine, getlogin (“getlogin Subroutine” on page 396)
subroutine, getpwent_r, getpwnam_r, putpwent_r, getpwuid_r, setpwent_r, or endpwent_r (“getpwent,
getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine” on page 424) subroutine.

List of Security and Auditing Subroutines, List of Multithread Subroutines, and Subroutines Overview in AIX
5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

getnextprojdb Subroutine

Purpose
Retrieves the next project from the specified project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

getnextprojdb(void *handle, struct project *project, char *comm)

Description
The getnextprojdb subroutine retrieves the next project definitions from the project database named
through the handle parameter. The caller must initialize the project database prior to calling this routine
with the projdballoc routine. Upon successful completion, the project information is copied to the project

398 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

structure specified by the caller. In addition, the associated project comment, if present, is copied to the
buffer pointed to by the comm parameter. The comment buffer is allocated by the caller and must have a
length of 1024 bytes.

There is an internal state (that is, the current project) associated with the project database. When the
project database is initialized, the current project is the first project in the database. The getnextprojdb
subroutine returns the current project and advances the current project assignment to the next project in
the database so that successive calls read each project entry in the database. When the last project is
read, the current project assignment is advanced to the end of the database. Any attempt to read beyond
the end of the project database results in a failure.

Parameters

handle Pointer to the projdb handle.
project Pointer to project structure where the retrieved data is stored.
comm Comment associated with the project in the database.

Security
No restriction. Any user can call this function.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid arguments, if passed pointer is NULL.
ENOENT End of the project database.
ENOENT No projects available.

Related Information
The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 160, “getfirstprojdb Subroutine”
on page 370, “getprojdb Subroutine” on page 421, “getprojs Subroutine” on page 422, “projdballoc
Subroutine” on page 1189, “projdbfinit Subroutine” on page 1189, “projdbfree Subroutine” on page 1191,
rmprojdb Subroutine.

getopt Subroutine

Purpose
Returns the next flag letter specified on the command line.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

Base Operating System (BOS) Runtime Services (A-P) 399

int getopt (ArgumentC, ArgumentV, OptionString)
int ArgumentC;
char *const ArgumentV [];
const char *OptionString;

extern int optind;
extern int optopt;
extern int opterr;
extern char * optarg;

Description
The optind parameter indexes the next element of the ArgumentV parameter to be processed. It is
initialized to 1 and the getopt subroutine updates it after calling each element of the ArgumentV
parameter.

The getopt subroutine returns the next flag letter in the ArgumentV parameter list that matches a letter in
the OptionString parameter. If the flag takes an argument, the getopt subroutine sets the optarg parameter
to point to the argument as follows:

v If the flag was the last letter in the string pointed to by an element of the ArgumentV parameter, the
optarg parameter contains the next element of the ArgumentV parameter and the optind parameter is
incremented by 2. If the resulting value of the optind parameter is not less than the ArgumentC
parameter, this indicates a missing flag argument, and the getopt subroutine returns an error message.

v Otherwise, the optarg parameter points to the string following the flag letter in that element of the
ArgumentV parameter and the optind parameter is incremented by 1.

Parameters

ArgumentC Specifies the number of parameters passed to the routine.
ArgumentV Specifies the list of parameters passed to the routine.
OptionString Specifies a string of recognized flag letters. If a letter is followed by a : (colon), the flag is

expected to take a parameter that may or may not be separated from it by white space.
optind Specifies the next element of the ArgumentV array to be processed.
optopt Specifies any erroneous character in the OptionString parameter.
opterr Indicates that an error has occurred when set to a value other than 0.
optarg Points to the next option flag argument.

Return Values
The getopt subroutine returns the next flag letter specified on the command line. A value of -1 is returned
when all command line flags have been parsed. When the value of the ArgumentV [optind] parameter is
null, *ArgumentV [optind] is not the - (minus) character, or ArgumentV [optind] points to the ″-″ (minus)
string, the getopt subroutine returns a value of -1 without changing the value. If ArgumentV [optind] points
to the ″- -″ (double minus) string, the getopt subroutine returns a value of -1 after incrementing the value
of the optind parameter.

Error Codes
If the getopt subroutine encounters an option character that is not specified by the OptionString
parameter, a ? (question mark) character is returned. If it detects a missing option argument and the first
character of OptionString is a : (colon), then a : (colon) character is returned. If this subroutine detects a
missing option argument and the first character of OptionString is not a colon, it returns a ? (question
mark). In either case, the getopt subroutine sets the optopt parameter to the option character that caused
the error. If the application has not set the opterr parameter to 0 and the first character of OptionString is
not a : (colon), the getopt subroutine also prints a diagnostic message to standard error.

400 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Examples
The following code fragment processes the flags for a command that can take the mutually exclusive flags
a and b, and the flags f and o, both of which require parameters.
#include <unistd.h> /*Needed for access subroutine constants*/
main (argc, argv)
int argc;
char **argv;
{

int c;
extern int optind;
extern char *optarg;
.
.
.
while ((c = getopt(argc, argv, "abf:o:")) != EOF)

{
switch (c)
{

case 'a':
if (bflg)

errflg++;
else

aflg++;
break;

case 'b':
if (aflg)

errflg++;
else

bflg++;
break;

case 'f':
ifile = optarg;
break;

case 'o':
ofile = optarg;
break;

case '?':
errflg++;

} /* case */

if (errflg)
{

fprintf(stderr, "usage: . . . ");
exit(2);

}
} /* while */

for (; optind < argc; optind++)
{

if (access(argv[optind], R_OK))
{

.

.

.
}

} /* for */
} /* main */

Related Information
The getopt command.

List of Executable Program Creation Subroutines, Subroutines Overview, and List of Multithread
Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 401

getpagesize Subroutine

Purpose
Gets the system page size.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int getpagesize()

Description
The getpagesize subroutine returns the number of bytes in a page. Page granularity is the granularity for
many of the memory management calls.

The page size is determined by the system and may not be the same as the underlying hardware page
size.

Related Information
The brk or sbrk (“brk or sbrk Subroutine” on page 123) subroutine.

The pagesize command.

Program Address Space Overview and Subroutines Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

getpaginfo Subroutine

Purpose
Retrieves a Process Authentication Group (PAG) flags for a given PAG type.

Library
Security Library (libc.a)

Syntax
#include <pag.h>

int getpaginfo (name, infop, infosz)
char * name;
struct paginfo * infop;
int infosz;

Description
The getpaginfo subroutine retrieves the PAG flags for a given PAG name. For this function to succeed,
the PAG name must be registered with the operating system before this subroutine is called. The infop
parameter must be a valid, referenced PAG info structure of the size specified by infosz.

402 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

name A 1-character to 4-character, NULL-terminated name for the PAG type. Typical values include afs, dfs,
pki, and krb5.

infop Points to a paginfo struct where the operating system returns the PAG flags.
infosz Indicates the size of the PAG info structure.

Return Values
A value of 0 is returned upon successful completion. If the getpaginfo subroutine fails a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The getpaginfo subroutine fails if the following condition is true:

EINVAL The named PAG type does not exist as part of the table.

Other errors might be set by subroutines invoked by the getpaginfo subroutine.

Related Information
__pag_getid System Call, __pag_getname System Call, __pag_getvalue System Call, __pag_setname
System Call, __pag_setvalue System Call, kcred_genpagvalue Kernel Service, kcred_getpagid Kernel
Service, and kcred_getpagname Kernel Service.

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts.

getpagvalue or getpagvalue64 Subroutine

Purpose
Returns the Process Authentication Group (PAG) value for a given PAG type.

Library
Security Library (libc.a)

Syntax
#include <pag.h>

int getpagvalue (name)
char * name;

uint64_t getpagvalue64(name);
char * name;

Description
The getpagvalue and getpagvalue64 subroutines retrieve the PAG value for a given PAG name. For
these functions to succeed, the PAG name must be registered with the operating system before these
subroutines are called.

Parameters

name A 1-character to 4-character, NULL-terminated name for the PAG type. Typical values include afs, dfs,
pki, and krb5.

Base Operating System (BOS) Runtime Services (A-P) 403

Return Values
The getpagvalue and getpagvalue64 subroutines return a PAG value upon successful completion. Upon
a failure, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The getpagvalue and getpagvalue64 subroutines fail if the following condition is true:

EINVAL The named PAG type does not exist as part of the table.

Other errors might be set by subroutines invoked by the getpagvalue and getpagvalue64 subroutines.

Related Information
__pag_getid System Call, __pag_getname System Call, __pag_getvalue System Call, __pag_setname
System Call, __pag_setvalue System Call, kcred_genpagvalue Kernel Service, kcred_getpagid Kernel
Service, and kcred_getpagname Kernel Service.

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts.

getpass Subroutine

Purpose
Reads a password.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *getpass (Prompt)
char *Prompt;

Description
Attention: The characters are returned in a static data area. Subsequent calls to this subroutine
overwrite the static data area.

The getpass subroutine does the following:

v Opens the controlling terminal of the current process.

v Writes the characters specified by the Prompt parameter to that device.

v Reads from that device the number of characters up to the value of the PASS_MAX constant until a
new-line or end-of-file (EOF) character is detected.

v Restores the terminal state and closes the controlling terminal.

During the read operation, character echoing is disabled.

The getpass subroutine is not safe in a multithreaded environment. To use the getpass subroutine in a
threaded application, the application must keep the integrity of each thread.

404 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

Prompt Specifies a prompt to display on the terminal.

Return Values
If this subroutine is successful, it returns a pointer to the string. If an error occurs, the subroutine returns a
null pointer and sets the errno global variable to indicate the error.

Error Codes
If the getpass subroutine is unsuccessful, it returns one or more of the following error codes:

EINTR Indicates that an interrupt occurred while the getpass subroutine was reading the terminal device. If a
SIGINT or SIGQUIT signal is received, the getpass subroutine terminates input and sends the signal to the
calling process.

ENXIO Indicates that the process does not have a controlling terminal.

Note: Any subroutines called by the getpass subroutine may set other error codes.

Related Information
The getuserpw (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page 470) subroutine, newpass
(“newpass Subroutine” on page 905) subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getpcred Subroutine

Purpose
Reads the current process credentials.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

char **getpcred (Which)
int Which;

Description
The getpcred subroutine reads the specified process security credentials and returns a pointer to a NULL
terminated array of pointers in allocated memory. Each pointer in the array points to a string containing an
attribute/value pair in allocated memory. It’s the responsibility of the caller to free each individual string as
well as the array of pointers.

Base Operating System (BOS) Runtime Services (A-P) 405

Parameters

Which Specifies which credentials are read. This parameter is a bit mask and can contain one or more
of the following values, as defined in the usersec.h file:

CRED_RUID
Real user name

CRED_LUID
Login user name

CRED_RGID
Real group name

CRED_GROUPS
Supplementary group ID

CRED_AUDIT
Audit class of the current process
Note: A process must have root user authority to retrieve this credential. Otherwise, the
getpcred subroutine returns a null pointer and the errno global variable is set to
EPERM.

CRED_RLIMITS
BSD resource limits
Note: Use the getrlimit (“getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine”
on page 426) subroutine to control resource consumption.

CRED_UMASK
The umask.

If the Which parameter is null, all credentials are returned.

Return Values
When successful, the getpcred subroutine returns a pointer to a NULL terminated array of string pointers
containing the requested values. If the getpcred subroutine is unsuccessful, a NULL pointer is returned
and the errno global variable is set to indicate the error.

Error Codes
The getpcred subroutine fails if either of the following are true:

EINVAL The Which parameter contains invalid credentials requests.
EPERM The process does not have the proper authority to retrieve the requested credentials.

Other errors can also be set by any subroutines invoked by the getpcred subroutine.

Related Information
The ckuseracct (“ckuseracct Subroutine” on page 165) subroutine, ckuserID (“ckuserID Subroutine” on
page 167) subroutine, getpenv (“getpenv Subroutine” on page 407) subroutine, setpenv subroutine,
setpcred subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

406 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

getpeereid Subroutine

Purpose
Gets the effective user ID and effective group ID of a peer on a connected UNIX domain socket.

Syntax
#include <sys/types.h>
int getpeereid (int socket, uid_t *euid, gid_t *egid)

Description
The getpeereid subroutine returns the effective user and group IDs of the peer connected to a stream
socket in the UNIX domain. The effective user and group IDs are saved in the socket, to be returned,
when the peer calls connect or listen.

Parameters

socket Specifies the descriptor number of a connected socket.
euid The effective user ID of the peer socket.
egid The effective group ID of the peer socket.

Return Values
When the getpeereid subroutine successfully completes, a value of 0 is returned and the euid and egid
parameters hold the effective user ID and group ID, respectively.

If the getpeereid subroutine is unsuccessful, the system handler returns a value of -1 to the calling
program and sets the errno global variable to an error code that indicates the specific error.

Error Codes
The getpeereid subroutine is unsuccessful if any of the following errors occurs:

EBADF The socket parameter is not valid.
ENOTSOCK The socket parameter refers to a file, not a socket.
ENOTCONN The socket is not connected.
ENOBUFS Insufficient resources were available in the system to complete the call.
EFAULT The address parameter is not in a writable part of the user address space.

Note: The getpeerid technology used to support this function in AIX was originally published by D. J.
Bernstein, Associate Professor, Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago. In addition, the specific getpeerid syntax reflected originated with
William Erik Baxter. All the aforementioned are used by AIX with permission.

getpenv Subroutine

Purpose
Reads the current process environment.

Library
Security Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 407

Syntax
#include <usersec.h>

char **getpenv (Which)
int Which;

Description
The getpenv subroutine reads the specified environment variables and returns them in a character buffer.

Parameters

Which Specifies which environment variables are to be returned. This parameter is a bit mask and may
contain one or more of the following values, as defined in the usersec.h file:

PENV_USR
The normal user-state environment. Typically, the shell variables are contained here.

PENV_SYS
The system-state environment. This data is located in system space and protected from
unauthorized access.

All variables are returned by setting the Which parameter to logically OR the PENV_USER and
PENV_SYSTEM values.

The variables are returned in a null-terminated array of character pointers in the form var=val.
The user-state environment variables are prefaced by the string USRENVIRON:, and the
system-state variables are prefaced with SYSENVIRON:. If a user-state environment is requested,
the current directory is always returned in the PWD variable. If this variable is not present in the
existing environment, the getpenv subroutine adds it to the returned string.

Return Values
Upon successful return, the getpenv subroutine returns the environment values. If the getpenv subroutine
fails, a null value is returned and the errno global variable is set to indicate the error.

Note: This subroutine can partially succeed, returning only the values that the process permits it to read.

Error Codes
The getpenv subroutine fails if one or more of the following are true:

EINVAL The Which parameter contains values other than PENV_USR or PENV_SYS.

Other errors can also be set by subroutines invoked by the getpenv subroutine.

Related Information
The ckuseracct (“ckuseracct Subroutine” on page 165) subroutine, ckuserID (“ckuserID Subroutine” on
page 167) subroutine, getpcred (“getpcred Subroutine” on page 405) subroutine, setpenv subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

408 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

getpgid Subroutine

Purpose
Returns the process group ID of the calling process.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
pid_t getpgid (Pid)
(pid_ Pid)

Description
The getpgid subroutine returns the process group ID of the process whose process ID is equal to that
specified by the Pid parameter. If the value of the Pid parameter is equal to (pid_t)0, the getpgid
subroutine returns the process group ID of the calling process.

Parameter

Pid The process ID of the process to return the process group ID for.

Return Values

id The process group ID of the requested process
-1 Not successful and errno set to one of the following.

Error Code

ESRCH There is no process with a process ID equal to Pid.

EPERM The process whose process ID is equal to Pid is not in the same session as the calling
process.

EINVAL The value of the Pid argument is invalid.

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, getpid (“getpid, getpgrp, or
getppid Subroutine”) subroutine, getsid (“getsid Subroutine” on page 438) subroutine, setpgid subroutine,
setsid subroutine.

getpid, getpgrp, or getppid Subroutine

Purpose
Returns the process ID, process group ID, and parent process ID.

Base Operating System (BOS) Runtime Services (A-P) 409

Syntax
#include <unistd.h>

pid_t getpid (void)

pid_t getpgrp (void)

pid_t getppid (void)

Description
The getpid subroutine returns the process ID of the calling process.

The getpgrp subroutine returns the process group ID of the calling process.

The getppid subroutine returns the process ID of the calling process’ parent process.

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutines, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, setpgid subroutine, setpgrp
subroutine, sigaction, sigvec, or signal subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

getportattr or putportattr Subroutine

Purpose
Accesses the port information in the port database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getportattr (Port, Attribute, Value, Type)
char * Port;
char * Attribute;
void * Value;
int Type;

int putportattr (Port, Attribute, Value, Type)
char *Port;
char *Attribute;
void *Value;
int Type;

Description
The getportattr or putportattr subroutine accesses port information. The getportattr subroutine reads a
specified attribute from the port database. If the database is not already open, the getportattr subroutine
implicitly opens the database for reading. The putportattr subroutine writes a specified attribute into the
port database. If the database is not already open, the putportattr subroutine implicitly opens the
database for reading and writing. The data changed by the putportattr subroutine must be explicitly
committed by calling the putportattr subroutine with a Type parameter equal to the SEC_COMMIT value.
Until all the data is committed, only these subroutines within the process return the written data.

410 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Values returned by these subroutines are in dynamically allocated buffers. You do not need to move the
values prior to the next call.

Use the setuserdb or enduserdb subroutine to open and close the port database.

Parameters

Port Specifies the name of the port for which an attribute is read.
Attribute Specifies the name of the attribute read. This attribute can be one of the following values defined in

the usersec.h file:

S_HERALD
Defines the initial message printed when the getty or login command prompts for a login
name. This value is of the type SEC_CHAR.

S_SAKENABLED
Indicates whether or not trusted path processing is allowed on this port. This value is of
the type SEC_BOOL.

S_SYNONYM
Defines the set of ports that are synonym attributes for the given port. This value is of the
type SEC_LIST.

S_LOGTIMES
Defines when the user can access the port. This value is of the type SEC_LIST.

S_LOGDISABLE
Defines the number of unsuccessful login attempts that result in the system locking the
port. This value is of the type SEC_INT.

S_LOGINTERVAL
Defines the time interval in seconds within which S_LOGDISABLE number of
unsuccessful login attempts must occur before the system locks the port. This value is of
the type SEC_INT.

S_LOGREENABLE
Defines the time interval in minutes after which a system-locked port is unlocked. This
value is of the type SEC_INT.

S_LOGDELAY
Defines the delay factor in seconds between unsuccessful login attempts. This value is of
the type SEC_INT.

S_LOCKTIME
Defines the time in seconds since the epoch (zero time, January 1, 1970) that the port
was locked. This value is of the type SEC_INT.

S_ULOGTIMES
Lists the times in seconds since the epoch (midnight, January 1, 1970) when unsuccessful
login attempts occurred. This value is of the type SEC_LIST.

S_USERNAMEECHO
Indicates whether user name input echo and user name masking is enabled for the port.
This value is of the type SEC_BOOL.

S_PWDPROMPT
Defines the password prompt message printed when requesting password input. This
value is of the type SEC_CHAR.

Value Specifies the address of a buffer in which the attribute is stored with putportattr or is to be read
getportattr.

Base Operating System (BOS) Runtime Services (A-P) 411

Type Specifies the type of attribute expected. The following types are valid and defined in the usersec.h
file:

SEC_INT
Indicates the format of the attribute is an integer. The buffer returned by the getportattr
subroutine and the buffer supplied by the putportattr subroutine are defined to contain an
integer.

SEC_CHAR
Indicates the format of the attribute is a null-terminated character string.

SEC_LIST
Indicates the format of the attribute is a list of null-terminated character strings. The list
itself is null terminated.

SEC_BOOL
An integer with a value of either 0 or 1, or a pointer to a character pointing to one of the
following strings:

v True

v Yes

v Always

v False

v No

v Never

SEC_COMMIT
Indicates that changes to the specified port are committed to permanent storage if
specified alone for the putportattr subroutine. The Attribute and Value parameters are
ignored. If no port is specified, changes to all modified ports are committed.

SEC_DELETE
Deletes the corresponding attribute from the database.

SEC_NEW
Updates all of the port database files with the new port name when using the putportattr
subroutine.

Security
Access Control: The calling process must have access to the port information in the port database.

File Accessed:

rw /etc/security/login.cfg
rw /etc/security/portlog

Return Values
The getportattr and putportattr subroutines return a value of 0 if completed successfully. Otherwise, a
value of -1 is returned and the errno global value is set to indicate the error.

Error Codes
These subroutines are unsuccessful if the following values are true:

EACCES Indicates that access permission is denied for the data requested.
ENOENT Indicates that the Port parameter does not exist or the attribute is not defined for the

specified port.
ENOATTR Indicates that the specified port attribute does not exist for the specified port.

412 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EINVAL Indicates that the Attribute parameter does not contain one of the defined attributes or is a
null value.

EINVAL Indicates that the Value parameter does not point to a valid buffer or to valid data for this
type of attribute.

EPERM Operation is not permitted.

Related Information
The setuserdb or enduserdb subroutine.

List of Security and Auditing Services in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

getpri Subroutine

Purpose
Returns the scheduling priority of a process.

Library
Standard C Library (libc.a)

Syntax
int getpri (ProcessID)
pid_t ProcessID;

Description
The getpri subroutine returns the scheduling priority of a process.

Parameters

ProcessID Specifies the process ID. If this value is 0, the current process scheduling priority is returned.

Return Values
Upon successful completion, the getpri subroutine returns the scheduling priority of a thread in the
process. Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The getpri subroutine is unsuccessful if one of the following is true:

EPERM A process was located, but its effective and real user ID did not match that of the process
running the getpri subroutine, and the calling process did not have root user authority.

ESRCH No process can be found corresponding to that specified by the ProcessID parameter.

Base Operating System (BOS) Runtime Services (A-P) 413

Related Information
The setpri subroutine.

Performance-Related Subroutines in Performance management.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

getpriority, setpriority, or nice Subroutine

Purpose
Gets or sets the nice value.

Libraries
getpriority, setpriority: Standard C Library (libc.a)

nice: Standard C Library (libc.a)

Berkeley Compatibility Library (libbsd.a)

Syntax
#include <sys/resource.h>

int getpriority(Which, Who)
int Which;
int Who;

int setpriority(Which, Who, Priority)
int Which;
int Who;
int Priority;

#include <unistd.h>

int nice(Increment)
int Increment;

Description
The nice value of the process, process group, or user, as indicated by the Which and Who parameters is
obtained with the getpriority subroutine and set with the setpriority subroutine.

The getpriority subroutine returns the highest priority nice value (lowest numerical value) pertaining to any
of the specified processes. The setpriority subroutine sets the nice values of all of the specified
processes to the specified value. If the specified value is less than -20, a value of -20 is used; if it is
greater than 20, a value of 20 is used. Only processes that have root user authority can lower nice values.

The nice subroutine increments the nice value by the value of the Increment parameter.

Note: Nice values are only used for the scheduling policy SCHED_OTHER, where they are combined with
a calculation of recent cpu usage to determine the priority value.

To provide upward compatibility with older programs, the nice interface, originally found in AT®&T System
V, is supported.

414 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: Process priorities in AT&T System V are defined in the range of 0 to 39, rather than -20 to 20 as in
BSD, and the nice library routine is supported by both. Accordingly, two versions of the nice are
supported by AIX Version 3. The default version behaves like the AT&T System V version, with the
Increment parameter treated as the modifier of a value in the range of 0 to 39 (0 corresponds to
-20, 39 corresponds to 9, and priority 20 is not reachable with this interface).

If the behavior of the BSD version is desired, compile with the Berkeley Compatibility Library (libbsd.a).
The Increment parameter is treated as the modifier of a value in the range -20 to 20.

Parameters

Which Specifies one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.
Who Interpreted relative to the Which parameter (a process identifier, process group identifier, and

a user ID, respectively). A zero value for the Who parameter denotes the current process,
process group, or user.

Priority Specifies a value in the range -20 to 20. Negative nice values cause more favorable
scheduling.

Increment Specifies a value that is added to the current process nice value. Negative values can be
specified, although values exceeding either the high or low limit are truncated.

Return Values
On successful completion, the getpriority subroutine returns an integer in the range -20 to 20. A return
value of -1 can also indicate an error, and in this case the errno global variable is set.

On successful completion, the setpriority subroutine returns 0. Otherwise, -1 is returned and the global
variable errno is set to indicate the error.

On successful completion, the nice subroutine returns the new nice value minus {NZERO}. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Note: A value of -1 can also be returned. In that case, the calling process should also check the errno
global variable.

Error Codes
The getpriority and setpriority subroutines are unsuccessful if one of the following is true:

ESRCH No process was located using the Which and Who parameter values specified.
EINVAL The Which parameter was not recognized.

In addition to the errors indicated above, the setpriority subroutine is unsuccessful if one of the following
is true:

EPERM A process was located, but neither the effective nor real user ID of the caller of the process
executing the setpriority subroutine has root user authority.

EACCES The call to setpriority would have changed the priority of a process to a value lower than
its current value, and the effective user ID of the process executing the call did not have
root user authority.

The nice subroutine is unsuccessful if the following is true:

EPERM The Increment parameter is negative and the calling process does not have appropriate
privileges.

Base Operating System (BOS) Runtime Services (A-P) 415

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutines.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

getproclist, getlparlist, or getarmlist Subroutine

Purpose
Retrieve the transaction records from the advanced accounting data file.

Library
The libaacct.a library.

Syntax
#include <sys/aacct.h>
int getproclist(filename, begin_time, end_time, p_list);
int getlparlist(filename, begin_time, end_time, l_list);
int getarmlist(filename, begin_time, end_time, t_list);
char *filename;
long long begin_time;
long long end_time;
struct aacct_tran **p_list, **l_list, **t_list

Description
The getproclist, getlparlist, and getarmlist subroutines parse the specified advanced accounting data file
and retrieve the process, LPAR, and ARM transaction records, respectively. The retrieved transaction
records are returned in the form of a linked list of type struct aacct_tran_rec.

These APIs can be called multiple times with different accounting data file names in order to generate a
consolidated list of transaction records from multiple data files. They append the new file data to the end
of the linked list pointed to by the p_list, l_list, and t_list arguments. They also internally sort the
transaction records based on the time of transaction, which gives users a time-sorted list of transaction
records from these routines.

The getproclist, getlparlist, and getarmlist subroutines can also be used to retrieve the intended
transaction records for a particular interval of time by passing the begin and end times of the interval as
arguments to these routines. If these interval arguments are specified as -1, transaction records for all the
intervals are retrieved.

Parameters

begin_time Specifies the start timestamp for collecting records in a particular intervals. The input is
in seconds since EPOCH. Specifying -1 retrieves all the records.

end_time Specifies the end timestamp for collecting records in a particular intervals. The input is
in seconds since EPOCH. Specifying -1 retrieves all the records.

filename Name of the advanced accounting data file.
l_list Pointers to the linked list of aacct_tran_rec structures, which hold the retrieved LPAR

records.
p_list Pointers to the linked list of aacct_tran_rec structures, which hold the retrieved process

records.
t_list Pointers to the linked list of aacct_tran_rec structures, which hold the retrieved ARM

records.

416 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Security
No restrictions. Any user can call this function.

Return Values

0 The call to the subroutine was successful.
-1 The call to the subroutine failed.

Error Codes

EINVAL The passed pointer is NULL.
ENOENT Specified data file does not exist.
EPERM Permission denied. Unable to read the data file.
ENOMEM Insufficient memory.

Related Information
The “agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list Subroutine” on page 36, “buildproclist
Subroutine” on page 126, “buildtranlist or freetranlist Subroutine” on page 127.

Understanding the Advanced Accounting Subsystem.

getprocs Subroutine

Purpose
Gets process table entries.

Library
Standard C library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 417

Syntax

#include <procinfo.h>
#include <sys/types.h>

int
getprocs (ProcessBuffer, ProcessSize, FileBuffer, FileSize, IndexPointer, Count)
struct procsinfo *ProcessBuffer;
or struct procsinfo64 *ProcessBuffer;
int ProcessSize;
struct fdsinfo *FileBuffer;
int FileSize;
pid_t *IndexPointer;
int Count;

int
getprocs64 (ProcessBuffer, ProcessSize, FileBuffer, FileSize, IndexPointer, Count)
struct procentry64 *ProcessBuffer;
int ProcessSize;
struct fdsinfo64 *FileBuffer;
int FileSize;
pid_t *IndexPointer;
int Count;

Description
The getprocs subroutine returns information about processes, including process table information defined
by the procsinfo structure, and information about the per-process file descriptors defined by the fdsinfo
structure.

The getprocs subroutine retrieves up to Count process table entries, starting with the process table entry
corresponding to the process identifier indicated by IndexPointer, and places them in the array of
procsinfo structures indicated by the ProcessBuffer parameter. File descriptor information corresponding
to the retrieved processes are stored in the array of fdsinfo structures indicated by the FileBuffer
parameter.

On return, the process identifier referenced by IndexPointer is updated to indicate the next process table
entry to be retrieved. The getprocs subroutine returns the number of process table entries retrieved.

The getprocs subroutine is normally called repeatedly in a loop, starting with a process identifier of zero,
and looping until the return value is less than Count, indicating that there are no more entries to retrieve.

Note: The process table may change while the getprocs subroutine is accessing it. Returned entries will
always be consistent, but since processes can be created or destroyed while the getprocs
subroutine is running, there is no guarantee that retrieved entries will still exist, or that all existing
processes have been retrieved.

When used in 32-bit mode, limits larger than can be represented in 32 bits are truncated to
RLIM_INFINITY. Large rusage and other values are truncated to INT_MAX. Alternatively, the struct
procsinfo64 and sizeof (struct procsinfo64) can be used by 32-bit getprocs to return full 64-bit process
information. Note that the procsinfo structure not only increases certain procsinfo fields from 32 to 64
bits, but that it contains additional information not present in procsinfo. The struct procsinfo64 contains
the same data as struct procsinfo when compiled in a 64-bit program.

418 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

In AIX 5.1 and later, 64-bit applications are required to use getprocs64() and procentry64. Note that
struct procentry64 contains the same information as struct procsinfo64, with the addition of support for
the 64-bit time_t and dev_t, and the 256-bit sigset_t. The procentry64 structure also contains a new
version of struct ucred (struct ucred_ext) and a new, expanded struct rusage (struct trusage64) as
described in <sys/cred.h> and <sys/resource.h> respectively. Application developers are also
encouraged to use getprocs64() in 32-bit applications to obtain 64-bit process information as this interface
provides the new, larger types. The getprocs() interface will still be supported for 32-bit applications using
struct procsinfo or struct procsinfo64 but will not be available to 64-bit applications.

Parameters
ProcessBuffer

Specifies the starting address of an array of procsinfo, procsinfo64, or procentry64 structures to
be filled in with process table entries. If a value of NULL is passed for this parameter, the
getprocs subroutine scans the process table and sets return values as normal, but no process
entries are retrieved.

Note: The ProcessBuffer parameter of getprocs subroutine contains two struct rusage fields
named pi_ru and pi_cru. Each of these fields contains two struct timeval fields named
ru_utime and ru_stime. The tv_usec field in both of the struct timeval contain
nanoseconds instead of microseconds. These values cone from the struct user fields
named U_ru and U_cru. The pi_cru_* fields also contain the page faults for reaped child
which roll back to parent. This field is updated before the child can become zombie.

ProcessSize
Specifies the size of a single procsinfo, procsinfo64, or procentry64 structure.

FileBuffer
Specifies the starting address of an array of fdsinfo, or fdsinfo64 structures to be filled in with
per-process file descriptor information. If a value of NULL is passed for this parameter, the
getprocs subroutine scans the process table and sets return values as normal, but no file
descriptor entries are retrieved.

FileSize
Specifies the size of a single fdsinfo, or fdsinfo64 structure.

IndexPointer
Specifies the address of a process identifier which indicates the required process table entry. A
process identifier of zero selects the first entry in the table. The process identifier is updated to
indicate the next entry to be retrieved.

Note: The IndexPointer does not have to correspond to an existing process, and may in fact
correspond to a different process than the one you expect. There is no guarantee that the
process slot pointed to by IndexPointer will contain the same process between successive
calls to getprocs() or getprocs64().

Count Specifies the number of process table entries requested.

Return Values
If successful, the getprocs subroutine returns the number of process table entries retrieved; if this is less
than the number requested, the end of the process table has been reached. A value of 0 is returned when
the end of the process table has been reached. Otherwise, a value of -1 is returned, and the errno global
variable is set to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 419

Error Codes
The getprocs subroutine does not succeed if the following are true:

EINVAL The ProcessSize or FileSize parameters are invalid, or the IndexPointer parameter does not
point to a valid process identifier, or the Count parameter is not greater than zero.

EFAULT The copy operation to one of the buffers was not successful.

Related Information
The getpid (“getpid, getpgrp, or getppid Subroutine” on page 409), getpgrp (“getpid, getpgrp, or getppid
Subroutine” on page 409), or getppid (“getpid, getpgrp, or getppid Subroutine” on page 409) subroutines,
the getthrds (“getthrds Subroutine” on page 445) subroutine

The ps command.

getproj Subroutine

Purpose
Retrieves the project definition from the kernel project registry for the requested project name.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

getproj(struct project *, int flag)

Description
The getproj subroutine functions similar to the getprojs subroutine with the exception that the getproj
subroutine retrieves the definition only for the project name or number, which is passed as its argument.
The flag parameter indicates what is passed. The flag parameter has the following values:

v PROJ_NAME — Indicates that the supplied project definition only has the project name. The getproj
subroutine queries the kernel to obtain a match for the supplied project name and returns the matching
entry.

v PROJ_NUM — Indicates that the supplied project definition only has the project number. The getproj
subroutine queries the kernel to obtain a match for the supplied project number and returns the
matching entry.

Generally, the projects are loaded from the system project definition file or LDAP, or from both. When more
than one of these project repositories are used, project name and project ID collisions are possible. These
projects are differentiated by the kernel using an origin flag. This origin flag designates the project
repository from where the project definition is obtained. If the caller wants to retrieve the project definition
that belongs to a specific project repository, the specific origin value should be passed in the flags field of
the project structure. Valid project origins values that can be passed are defined in the sys/aacct.h file. If
the projects are currently loaded from the project repository represented by the origin value, getproj
returns the specified project if it exists. If the origin value is not passed, the first project reference found in
the kernel registry is returned. Regardless of whether the origin is passed or not, getproj always returns
the project origin flags in the output project structure.

420 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

project Pointer holding the project whose information is required.
flag An integer flag that indicates whether the match needs to be performed on the supplied

project name or number.

Security
There are no restrictions. Any user can call this function.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid argument. The flag parameter is not valid or the passed pointer is NULL.
ENOENT Project not found.

Related Information
The “addproj Subroutine” on page 31, “chprojattr Subroutine” on page 159, “getprojdb Subroutine,”
“getprojs Subroutine” on page 422, rmproj Subroutine.

getprojdb Subroutine

Purpose
Retrieves the specified project record from the project database.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

getprojdb(void *handle, struct project *project, int flag)

Description
The getprojdb subroutine searches the project database associated with the handle parameter for the
specified project. The project database must be initialized before calling this subroutine. The routines
projdballoc and projdbfinit are provided for this purpose. The flag parameter indicates the type of
search. The following flags are defined:

v PROJ_NAME — Search by product name. The getprojdb subroutine scans the file to obtain a match
for the supplied project name and returns the matching entry.

v PROJ_NUM — Search by product number. The getprojdb subroutine scans the file to obtain a match
for the supplied project number and returns the matching entry.

The entire database is searched. If the specified record is found, the getprojdb subroutine stores the
relevant project information into the struct project buffer, which is passed as an argument to this

Base Operating System (BOS) Runtime Services (A-P) 421

subroutine. The specified project is then made the current project in the database. If the specified project
is not found, the database is reset so that the first project in the database is the current project.

Parameters

handle Pointer to the handle allocated for the project database.
project Pointer holding the project name whose information is required.
flag Integer flag indicating what type of information is sent for matching; that is, whether the match

needs to be performed by project name or number.

Security
No restrictions. Any user can call this function.

Return Values

0 Success
-1 Failure

Error Codes

ENOENT Project definition not found.
EINVAL Invalid arguments if flag is not valid or passed pointer is NULL.

Related Information
The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 160, “getfirstprojdb Subroutine”
on page 370, “getnextprojdb Subroutine” on page 398, “getproj Subroutine” on page 420, “projdballoc
Subroutine” on page 1189, “projdbfinit Subroutine” on page 1189, “projdbfree Subroutine” on page 1191,
rmprojdb Subroutine.

getprojs Subroutine

Purpose
Retrieves the project details from the kernel project registry.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

getprojs(struct project *, int *)

Description
The getprojs subroutine retrieves the specified number of project definitions from the kernel project
registry. The number of definitions to be retrieved is passed as an argument to this subroutine, and it is
also passed with a buffer of type struct project, where the retrieved project definitions are stored.

When the getprojs subroutine is called with a NULL value passed instead of a pointer to a struct project,
the getprojs subroutine returns the total number of defined projects in the kernel project registry. This
number can be used by any subsequent calls to retrieve the project details.

422 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If the integer value passed is smaller than the number of project definitions available, then the project
buffer will be filled with as many entries as requested. If the value is greater than the number of available
definitions, then the available records are filled in the structure and the integer value is updated with the
number of records actually retrieved.

Generally, the projects are loaded from the system project definition file or LDAP, or from both. When more
than one of these project repositories are used, project name and project ID collisions are possible. These
projects are differentiated by the kernel using an origin flag. This origin flag designates the project
repository from where the project definition is obtained. Valid project origins values that can be passed are
defined in the sys/aacct.h file. The getproj subroutine also returns this origin information in the flags field
of the output project structures.

Parameters

pointer Points to a project structure where the retrieved data is stored.
int An integer that indicates the number of elements to be retrieved.

Security
There are no restrictions. Any user can call this function.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid arguments if passed int pointer is NULL
ENOENT No projects available.

Related Information
The “addproj Subroutine” on page 31, “chprojattr Subroutine” on page 159, “getproj Subroutine” on page
420, rmproj Subroutine.

getpw Subroutine

Purpose
Retrieves a user’s /etc/passwd file entry.

Library
Standard C Library (libc.a)

Syntax
int getpw (UserID, Buffer)
uid_t UserID
char *Buffer

Description
The getpw subroutine opens the /etc/passwd file and returns, in the Buffer parameter, the /etc/passwd
file entry of the user specified by the UserID parameter.

Base Operating System (BOS) Runtime Services (A-P) 423

Parameters

Buffer Specifies a character buffer large enough to hold any /etc/passwd entry.
UserID Specifies the ID of the user for which the entry is desired.

Return Values
The getpw subroutine returns:

0 Successful completion
-1 Not successful.

getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent
Subroutine

Purpose
Accesses the basic user information in the user database.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwent ()

struct passwd *getpwuid (UserID)
uid_t UserID;

struct passwd *getpwnam (Name)
char *Name;

int putpwent (Password, File)
struct passwd *Password;
FILE *File;

void setpwent ()

void endpwent ()

Description
Attention: All information generated by the getpwent, getpwnam, and getpwuid subroutines is stored
in a static area. Subsequent calls to these subroutines overwrite this static area. To save the information in
the static area, applications should copy it.

These subroutines access the basic user attributes.

The setpwent subroutine opens the user database if it is not already open. Then, this subroutine sets the
cursor to point to the first user entry in the database. The endpwent subroutine closes the user database.

The getpwent, getpwnam, and getpwuid subroutines return information about a user. These subroutines
do the following:

424 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

getpwent Returns the next user entry in the sequential search.
getpwnam Returns the first user entry in the database whose name matches the Name parameter.
getpwuid Returns the first user entry in the database whose ID matches the UserID parameter.

The putpwent subroutine writes a password entry into a file in the colon-separated format of the
/etc/passwd file.

The passwd Structure
The getpwent, getpwnam, and getpwuid subroutines return a passwd structure. The passwd structure
is defined in the pwd.h file and has the following fields:

pw_name Contains the name of the user name.
pw_passwd Contains the user’s encrypted password.

Note: If the password is not stored in the /etc/passwd file and the invoker does not have
access to the shadow file that contains passwords, this field contains an undecryptable string,
usually an * (asterisk).

pw_uid Contains the user’s ID.
pw_gid Identifies the user’s principal group ID.
pw_gecos Contains general user information.
pw_dir Identifies the user’s home directory.
pw_shell Identifies the user’s login shell.

Note: If Network Information Services (NIS) is enabled on the system, these subroutines attempt to
retrieve the information from the NIS authentication server before attempting to retrieve the
information locally.

Parameters

File Points to an open file whose format is similar to the /etc/passwd file format.
Name Specifies the user name.
Password Points to a password structure. This structure contains user attributes.
UserID Specifies the user ID.

Security

Files Accessed:

Mode File
rw /etc/passwd (write access for the putpwent subroutine only)
r /etc/security/passwd (if the password is desired)

Return Values
The getpwent, getpwnam, and getpwuid subroutines return a pointer to a valid password structure if
successful. Otherwise, a null pointer is returned.

The getpwent subroutine will return a null pointer and an errno value of ENOATTR when it detects a
corrupt entry. To get subsequent entries following the corrupt entry, call the getpwent subroutine again.

Files

/etc/passwd Contains user IDs and their passwords

Base Operating System (BOS) Runtime Services (A-P) 425

Related Information
The getgrent (“getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine” on page 374) subroutine,
getgroupattr (“getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine” on page 377) subroutine,
getuserattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 456) subroutine,
getuserpw, putuserpw, or putuserpwhist (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page
470) subroutine, setuserdb subroutine.

List of Security and Auditing Subroutines, Subroutines, Example Programs, and Libraries in AIX 5L Version
5.3 General Programming Concepts: Writing and Debugging Programs.

getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine

Purpose
Controls maximum system resource consumption.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/resource.h>

int setrlimit(Resource1, RLP)
int Resource1;
struct rlimit *RLP;

int setrlimit64 (Resource1, RLP)
int Resource1;
struct rlimit64 *RLP;

int getrlimit (Resource1, RLP)
int Resource1;
struct rlimit *RLP;

int getrlimit64 (Resource1, RLP)
int Resource1;
struct rlimit64 *RLP;

#include <sys/vlimit.h>

vlimit (Resource2, Value)
int Resource2, Value;

Description
The getrlimit subroutine returns the values of limits on system resources used by the current process and
its children processes. The setrlimit subroutine sets these limits. The vlimit subroutine is also supported,
but the getrlimit subroutine replaces it.

A resource limit is specified as either a soft (current) or hard limit. A calling process can raise or lower its
own soft limits, but it cannot raise its soft limits above its hard limits. A calling process must have root user
authority to raise a hard limit.

426 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: The initial values returned by the getrlimit subroutine are the ulimit values in effect when the
process was started. For maxdata programs the initial soft limit for data is set to the lower of data
ulimit value or a value corresponding to the number of data segments reserved for data segments.
When a program is executing using the large address-space model, the operating system attempts
to modify the soft limit on data size to match the maxdata value. If the maxdata value is larger than
the current hard limit on data size, either the program will not execute if the XPG_SUS_ENV
environment variable has the value set to ON, or the soft limit will be set to the current hard limit. If
the maxdata value is smaller than the size of the program’s static data, the program will not
execute.

The rlimit structure specifies the hard and soft limits for a resource, as defined in the sys/resource.h file.
The RLIM_INFINITY value defines an infinite value for a limit.

When compiled in 32-bit mode, RLIM_INFINITY is a 32-bit value; when compiled in 64-bit mode, it is a
64-bit value. 32-bit routines should use RLIM64_INFINITY when setting 64-bit limits with the setrlimit64
routine, and recognize this value when returned by getrlimit64.

This information is stored as per-process information. This subroutine must be executed directly by the
shell if it is to affect all future processes created by the shell.

Note: Raising the data limit does not raise the program break value. Use the brk/sbrk subroutines to
raise the break value. If the proper memory segments are not initialized at program load time,
raising your memory limit will not allow access to this memory. Use the -bmaxdata flag of the ld
command to set up these segments at load time.

When compiled in 32-bit mode, the struct rlimit values may be returned as RLIM_SAVED_MAX or
RLIM_SAVED_CUR when the actual resource limit is too large to represent as a 32-bit rlim_t.

These values can be used by library routines which set their own rlimits to save off potentially 64-bit
rlimit values (and prevent them from being truncated by the 32-bit struct rlimit). Unless the library routine
intends to permanently change the rlimits, the RLIM_SAVED_MAX and RLIM_SAVED_CUR values can
be used to restore the 64-bit rlimits.

Application limits may be further constrained by available memory or implementation defined constants
such as OPEN_MAX (maximum available open files).

Base Operating System (BOS) Runtime Services (A-P) 427

Parameters

Resource1 Can be one of the following values:

RLIMIT_AS
The maximum size of a process’ total available memory, in bytes. This limit is not
enforced.

RLIMIT_CORE
The largest size, in bytes, of a core file that can be created. This limit is enforced
by the kernel. If the value of the RLIMIT_FSIZE limit is less than the value of the
RLIMIT_CORE limit, the system uses the RLIMIT_FSIZE limit value as the soft limit.

RLIMIT_CPU
The maximum amount of central processing unit (CPU) time, in seconds, to be used
by each process. If a process exceeds its soft CPU limit, the kernel will send a
SIGXCPU signal to the process. After the hard limit is reached, the process will be
killed with SIGXCPU, even if it handles, blocks, or ignores that signal.

RLIMIT_DATA
The maximum size, in bytes, of the data region for a process. This limit defines how
far a program can extend its break value with the sbrk subroutine. This limit is
enforced by the kernel. If the XPG_SUS_ENV=ON environment variable is set in the
user’s environment before the process is executed and a process attempts to set
the limit lower than current usage, the operation fails with errno set to EINVAL. If
the XPG_SUS_ENV environment variable is not set, the operation fails with errno
set to EFAULT.

RLIMIT_FSIZE
The largest size, in bytes, of any single file that can be created. When a process
attempts to write, truncate, or clear beyond its soft RLIMIT_FSIZE limit, the
operation will fail with errno set to EFBIG. If the environment variable
XPG_SUS_ENV=ON is set in the user’s environment before the process is
executed, then the SIGXFSZ signal is also generated.

RLIMIT_NOFILE
This is a number one greater than the maximum value that the system may assign
to a newly-created descriptor.

RLIMIT_STACK
The maximum size, in bytes, of the stack region for a process. This limit defines
how far a program stack region can be extended. Stack extension is performed
automatically by the system. This limit is enforced by the kernel. When the stack
limit is reached, the process receives a SIGSEGV signal. If this signal is not caught
by a handler using the signal stack, the signal ends the process.

RLIMIT_RSS
The maximum size, in bytes, to which the resident set size of a process can grow.
This limit is not enforced by the kernel. A process may exceed its soft limit size
without being ended.

RLP Points to the rlimit or rlimit64 structure, which contains the soft (current) and hard limits. For
the getrlimit subroutine, the requested limits are returned in this structure. For the setrlimit
subroutine, the desired new limits are specified here.

Resource2 The flags for this parameter are defined in the sys/vlimit.h, and are mapped to
corresponding flags for the setrlimit subroutine.

Value Specifies an integer used as a soft-limit parameter to the vlimit subroutine.

Return Values
On successful completion, a return value of 0 is returned, changing or returning the resource limit.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error. If the current
limit specified is beyond the hard limit, the setrlimit subroutine sets the limit to to max limit and returns
successfully.

428 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit subroutine is unsuccessful if one of the
following is true:

EFAULT The address specified for the RLP parameter is not valid.
EINVAL The Resource1 parameter is not a valid resource, or the limit specified in the RLP parameter

is invalid.
EPERM The limit specified to the setrlimit subroutine would have raised the maximum limit value,

and the caller does not have root user authority.

Related Information
The sigaction, sigvec, or signal subroutines, sigstack subroutine, ulimit subroutine.

getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent
Subroutine

Purpose
Accesses the /etc/rpc file.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>

struct rpcent *getrpcent ()
struct rpcent *getrpcbyname (Name)
char *Name;
struct rpcent *getrpcbynumber (Number)
int Number;
void setrpcent (StayOpen)
int StayOpen
void endrpcent

Description
Attention: Do not use the getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent
subroutine in a multithreaded environment.

Attention: The information returned by the getrpcbyname, and getrpcbynumber subroutines is stored
in a static area and is overwritten on subsequent calls. Copy the information to save it.

The getprcbyname and getrpcbynumber subroutines each return a pointer to an object with the rpcent
structure. This structure contains the broken-out fields of a line from the /etc/rpc file. The getprcbyname
and getrpcbynumber subroutines searches the rpc file sequentially from the beginning of the file until it
finds a matching RPC program name or number, or until it reaches the end of the file. The getrpcent
subroutine reads the next line of the file, opening the file if necessary.

The setrpcent subroutine opens and rewinds the /etc/rpc file. If the StayOpen parameter does not equal
0, the rpc file is not closed after a call to the getrpcent subroutine.

The setrpcent subroutine rewinds the rpc file. The endrpcent subroutine closes it.

Base Operating System (BOS) Runtime Services (A-P) 429

The rpc file contains information about Remote Procedure Call (RPC) programs. The rpcent structure is in
the /usr/include/netdb.h file and contains the following fields:

r_name Contains the name of the server for an RPC program
r_aliases Contains an alternate list of names for RPC programs. This list ends with a 0.
r_number Contains a number associated with an RPC program.

Parameters

Name Specifies the name of a server for rpc program.
Number Specifies the rpc program number for service.
StayOpen Contains a value used to indicate whether to close the rpc file.

Return Values
These subroutines return a null pointer when they encounter the end of a file or an error.

Files

/etc/rpc Contains information about Remote Procedure Call (RPC) programs.

Related Information
Remote Procedure Call (RPC) for Programming in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs

getrusage, getrusage64, times, or vtimes Subroutine

Purpose
Displays information about resource use.

Libraries
getrusage, getrusage64, times: Standard C Library (libc.a)

vtimes: Berkeley Compatibility Library (libbsd.a)

Syntax
#include <sys/times.h>
#include <sys/resource.h>

int getrusage (Who, RUsage)
int Who;
struct rusage *RUsage;

int getrusage64 (Who, RUsage)
int Who;
struct rusage64 *RUsage;

#include <sys/types.h>
#include <sys/times.h>

clock_t times (Buffer)
struct tms *Buffer;

430 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

#include <sys/times.h>

vtimes (ParentVM, ChildVM)
struct vtimes *ParentVm, ChildVm;

Description
The getrusage subroutine displays information about how resources are used by the current process or all
completed child processes.

When compiled in 64-bit mode, rusage counters are 64 bits. If getrusage is compiled in 32-bit mode,
rusage counters are 32 bits. If the kernel’s value of a usage counter has exceeded the capacity of the
corresponding 32-bit rusage value being returned, the rusage value is set to INT_MAX.

The getrusage64 subroutine can be called to make 64-bit rusage counters explicitly available in a 32-bit
environment.

In AIX 5.1 and later, 64-bit quantities are also available to 64-bit applications through the getrusage()
interface in the ru_utime and ru_stime fields of struct rusage.

The times subroutine fills the structure pointed to by the Buffer parameter with time-accounting
information. All time values reported by the times subroutine are measured in terms of the number of
clock ticks used. Applications should use sysconf (_SC_CLK_TCK) to determine the number of clock
ticks per second.

The tms structure defined in the /usr/include/sys/times.h file contains the following fields:
time_t tms_utime;

time_t tms_stime;

time_t tms_cutime;

time_t tms_cstime;

This information is read from the calling process as well as from each completed child process for which
the calling process executed a wait subroutine.

tms_utime The CPU time used for executing instructions in the user space of the calling process
tms_stime The CPU time used by the system on behalf of the calling process.
tms_cutime The sum of the tms_utime and the tms_cutime values for all the child processes.
tms_cstime The sum of the tms_stime and the tms_cstime values for all the child processes.

Note: The system measures time by counting clock interrupts. The precision of the values reported by the
times subroutine depends on the rate at which the clock interrupts occur.

The vtimes subroutine is supported to provide compatibility with earlier programs.

The vtimes subroutine returns accounting information for the current process and for the completed child
processes of the current process. Either the ParentVm parameter, the ChildVm parameter, or both may be
0. In that case, only the information for the nonzero pointers is returned.

After a call to the vtimes subroutine, each buffer contains information as defined by the contents of the
/usr/include/sys/vtimes.h file.

Parameters

Who Specifies a value of RUSAGE_THREAD, RUSAGE_SELF, or RUSAGE_CHILDREN.

Base Operating System (BOS) Runtime Services (A-P) 431

RUsage Points to a buffer described in the /usr/include/sys/resource.h file. The fields are interpreted
as follows:

ru_utime
The total amount of time running in user mode.

ru_stime
The total amount of time spent in the system executing on behalf of the processes.

ru_maxrss
The maximum size, in kilobytes, of the used resident set size.

ru_ixrss
An integral value indicating the amount of memory used by the text segment that was
also shared among other processes. This value is expressed in units of kilobytes *
seconds-of-execution and is calculated by adding the number of shared memory
pages in use each time the internal system clock ticks, and then averaging over
one-second intervals.

ru_idrss
An integral value of the amount of unshared memory in the data segment of a
process (expressed in units of kilobytes * seconds-of-execution).

ru_minflt
The number of page faults serviced without any I/O activity. In this case, I/O activity is
avoided by reclaiming a page frame from the list of pages awaiting reallocation.

ru_majflt
The number of page faults serviced that required I/O activity.

ru_nswap
The number of times a process was swapped out of main memory.

ru_inblock
The number of times the file system performed input.

ru_oublock
The number of times the file system performed output.
Note: The numbers that the ru_inblock and ru_oublock fields display account for
real I/O only; data supplied by the caching mechanism is charged only to the first
process to read or write the data.

ru_msgsnd
The number of IPC messages sent.

ru_msgrcv
The number of IPC messages received.

ru_nsignals
The number of signals delivered.

ru_nvcsw
The number of times a context switch resulted because a process voluntarily gave up
the processor before its time slice was completed. This usually occurs while the
process waits for availability of a resource.

ru_nivcsw
The number of times a context switch resulted because a higher priority process ran
or because the current process exceeded its time slice.

Buffer Points to a tms structure.
ParentVm Points to a vtimes structure that contains the accounting information for the current process.
ChildVm Points to a vtimes structure that contains the accounting information for the terminated child

processes of the current process.

432 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, the getrusage and getrusage64 subroutines return a value of 0. Otherwise,
a value of -1 is returned and the errno global variable is set to indicate the error.

Upon successful completion, the times subroutine returns the elapsed real time in units of ticks, whether
profiling is enabled or disabled. This reference time does not change from one call of the times subroutine
to another. If the times subroutine fails, it returns a value of -1 and sets the errno global variable to
indicate the error.

Error Codes

The getrusage and getrusage64 subroutines do not run successfully if either of the following is true:
EINVAL The Who parameter is not a valid value.
EFAULT The address specified for RUsage is not valid.
The times subroutine does not run successfully if the following is true:
EFAULT The address specified by the buffer parameter is not valid.

Related Information
The gettimer, settimer, restimer, stime, or time (“gettimer, settimer, restimer, stime, or time Subroutine”
on page 448) subroutine, wait, waitpid, or wait3 subroutine.

Performance-Related Subroutines in Performance management.

getroleattr, nextrole or putroleattr Subroutine

Purpose
Accesses the role information in the roles database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getroleattr(Role, Attribute, Value, Type)
char *Role;
char *Attribute;
void *Value;
int Type;

char *nextrole(void)

int putroleattr(Role, Attribute, Value, Type)
char *Role;
char *Attribute;
void *Value;
int Type;

Description
The getroleattr subroutine reads a specified attribute from the role database. If the database is not
already open, this subroutine does an implicit open for reading.

Similarly, the putroleattr subroutine writes a specified attribute into the role database. If the database is
not already open, this subroutine does an implicit open for reading and writing. Data changed by the

Base Operating System (BOS) Runtime Services (A-P) 433

putroleattr subroutine must be explicitly committed by calling the putroleattr subroutine with a Type
parameter specifying SEC_COMMIT. Until all the data is committed, only the getroleattr subroutine within
the process returns written data.

The nextrole subroutine returns the next role in a linear search of the role database. The consistency of
consecutive searches depends upon the underlying storage-access mechanism and is not guaranteed by
this subroutine.

The setroledb and endroledb subroutines should be used to open and close the role database.

Parameters

Attribute Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

S_ROLELIST
List of roles included by this role. The attribute type is SEC_LIST.

S_AUTHORIZATIONS
List of authorizations included by this role. The attribute type is SEC_LIST.

S_GROUPS
List of groups required for this role. The attribute type is SEC_LIST.

S_SCREENS
List of SMIT screens required for this role. The attribute type is SEC_LIST.

S_VISIBILITY
Number value stating the visibility of the role. The attribute type is SEC_INT.

S_MSGCAT
Message catalog file name. The attribute type is SEC_CHAR.

S_MSGNUMBER
Message number within the catalog. The attribute type is SEC_INT.

434 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_INT
The format of the attribute is an integer.

For the getroleattr subroutine, the user should supply a pointer to a defined integer
variable.

For the putroleattr subroutine, the user should supply an integer.

SEC_CHAR
The format of the attribute is a null-terminated character string.

For the getroleattr subroutine, the user should supply a pointer to a defined character
pointer variable. For the putroleattr subroutine, the user should supply a character
pointer.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated. The
last string in the series must be an empty (zero character count) string.

For the getroleattr subroutine, the user should supply a pointer to a defined character
pointer variable. For the putroleattr subroutine, the user should supply a character
pointer.

SEC_COMMIT
For the putroleattr subroutine, this value specified by itself indicates that changes to the
named role are to be committed to permanent storage. The Attribute and Value
parameters are ignored. If no role is specified, the changes to all modified roles are
committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the database.

SEC_NEW
Updates the role database file with the new role name when using the putroleattr
subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the Attribute and
Type parameters. See the Type parameter for more details.

Return Values
If successful, the getroleattr returns 0. Otherwise, a value of -1 is returned and the errno global variables
is set to indicate the error.

Error Codes
Possible return codes are:

EACCES Access permission is denied for the data request.
ENOENT The specified Role parameter does not exist.
ENOATTR The specified role attribute does not exist for this role.
EINVAL The Attribute parameter does not contain one of the defined attributes or null.
EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of

attribute.
EPERM Operation is not permitted.

Related Information
The getuserattr, nextusracl, or putusraclattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine”
on page 456) subroutine, setroledb, or endacldb subroutine.

Base Operating System (BOS) Runtime Services (A-P) 435

gets or fgets Subroutine

Purpose
Gets a string from a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>
char *gets (String)
char *String;

char *fgets (String, Number, Stream)
char *String;
int Number;
FILE *Stream;

Description
The gets subroutine reads bytes from the standard input stream, stdin, into the array pointed to by the
String parameter. It reads data until it reaches a new-line character or an end-of-file condition. If a new-line
character stops the reading process, the gets subroutine discards the new-line character and terminates
the string with a null character.

The fgets subroutine reads bytes from the data pointed to by the Stream parameter into the array pointed
to by the String parameter. The fgets subroutine reads data up to the number of bytes specified by the
Number parameter minus 1, or until it reads a new-line character and transfers that character to the String
parameter, or until it encounters an end-of-file condition. The fgets subroutine then terminates the data
string with a null character.

The first successful run of the fgetc (“getc, getchar, fgetc, or getw Subroutine” on page 350), fgets,
fgetwc (“getwc, fgetwc, or getwchar Subroutine” on page 479), fgetws (“getws or fgetws Subroutine” on
page 482), fread (“fread or fwrite Subroutine” on page 313), fscanf, getc (“getc, getchar, fgetc, or getw
Subroutine” on page 350), getchar (“getc, getchar, fgetc, or getw Subroutine” on page 350), gets or scanf
subroutine using a stream that returns data not supplied by a prior call to the ungetc or ungetwc
subroutine marks the st_atime field for update.

Parameters

String Points to a string to receive bytes.
Stream Points to the FILE structure of an open file.
Number Specifies the upper bound on the number of bytes to read.

Return Values
If the gets or fgets subroutine encounters the end of the file without reading any bytes, it transfers no
bytes to the String parameter and returns a null pointer. If a read error occurs, the gets or fgets
subroutine returns a null pointer and sets the errno global variable (errors are the same as for the fgetc
(“getc, getchar, fgetc, or getw Subroutine” on page 350) subroutine). Otherwise, the gets or fgets
subroutine returns the value of the String parameter.

Note: Depending upon which library routine the application binds to, this subroutine may return
EINTR. Refer to the signal subroutine regarding the SA_RESTART value.

436 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The feof, ferror, clearerr, or fileno (“feof, ferror, clearerr, or fileno Macro” on page 272) macro, fopen,
freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290) subroutine,
fread (“fread or fwrite Subroutine” on page 313) subroutine, getc, getchar, fgetc, or getw (“getc, getchar,
fgetc, or getw Subroutine” on page 350) subroutine, getwc, fgetwc, or getwchar (“getwc, fgetwc, or
getwchar Subroutine” on page 479) subroutine, getws or fgetws (“getws or fgetws Subroutine” on page
482) subroutine, puts or fputs (“puts or fputs Subroutine” on page 1341) subroutine, putws or fputws
(“putws or fputws Subroutine” on page 1351) subroutine, scanf, fscanf, or sscanf subroutine, ungetc or
ungetwc subroutine.

List of String Manipulation Services, Subroutines Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or
endfsent_r Subroutine

Purpose
Gets information about a file system.

Library
Thread-Safe C Library (libc_r.a)

Syntax
#include <fstab.h>

int getfsent_r (FSSent, FSFile, PassNo)
struct fstab * FSSent;
AFILE_t * FSFile;
int * PassNo;

int getfsspec_r (Special, FSSent, FSFile, PassNo)
const char * Special;
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int getfsfile_r (File, FSSent, FSFile, PassNo)
const char * File;
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int getfstype_r (Type, FSSent, FSFile, PassNo)
const char * Type;
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int setfsent_r (FSFile, PassNo)
AFILE_t * FSFile;
int *PassNo;

int endfsent_r (FSFile)
AFILE_t *FSFile;

Base Operating System (BOS) Runtime Services (A-P) 437

Description
The getfsent_r subroutine reads the next line of the /etc/filesystems file, opening it necessary.

The setfsent_r subroutine opens the filesystems file and positions to the first record.

The endfsent_r subroutine closes the filesystems file.

The getfsspec_r and getfsfile_r subroutines search sequentially from the beginning of the file until a
matching special file name or file-system file name is found, or until the end of the file is encountered. The
getfstype_r subroutine behaves similarly, matching on the file-system type field.

Programs using this subroutine must link to the libpthreads.a library.

Parameters

FSSent Points to a structure containing information about the file system. The FSSent parameter must be
allocated by the caller. It cannot be a null value.

FSFile Points to an attribute structure. The FSFile parameter is used to pass values between
subroutines.

PassNo Points to an integer. The setfsent_r subroutine initializes the PassNo parameter.
Special Specifies a special file name to search for in the filesystems file.
File Specifies a file name to search for in the filesystems file.
Type Specifies a type to search for in the filesystems file.

Return Values

0 Indicates that the subroutine was successful.
-1 Indicates that the subroutine was not successful.

Files

/etc/filesystems Centralizes file-system characteristics.

Related Information
The getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent (“getvfsent,
getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine” on page 478) subroutine.

The filesystems file in AIX 5L Version 5.3 Files Reference.

List of Multithread Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

getsid Subroutine

Purpose
Returns the session ID of the calling process.

Library
(libc.a)

438 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <unistd.h>

pid_t getsid (pid_ t pid)

Description
The getsid subroutine returns the process group ID of the process that is the session leader of the
process specified by pid. If pid is equal to pid_t subroutine, it specifies the calling process.

Parameters

pid A process ID of the process being queried.

Return Values
Upon successful completion, getsid subroutine returns the process group ID of the session leaded of the
specified process. Otherwise, it returns (pid_t)-1 and set errno to indicate the error.

id The session ID of the requested process.
-1 Not successful and the errno global variable is set to one of the following error codes.

Error Codes

ESRCH There is no process with a process ID equal to pid.

EPERM The process specified by pid is not in the same session as the calling process.
ESRCH There is no process with a process ID equal to pid.

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutines, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutines, getpid (“getpid, getpgrp, or
getppid Subroutine” on page 409) subroutines, setpgid subroutines.

getssys Subroutine

Purpose
Reads a subsystem record.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int getssys(SubsystemName, SRCSubsystem)
char * SubsystemName;
struct SRCsubsys * SRCSubsystem;

Base Operating System (BOS) Runtime Services (A-P) 439

Description
The getssys subroutine reads a subsystem record associated with the specified subsystem and returns
the ODM record in the SRCsubsys structure.

The SRCsubsys structure is defined in the sys/srcobj.h file.

Parameters

SRCSubsystem Points to the SRCsubsys structure.
SubsystemName Specifies the name of the subsystem to be read.

Return Values
Upon successful completion, the getssys subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes
If the getssys subroutine fails, the following is returned:

SRC_NOREC Subsystem name does not exist.

Files

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

Related Information
The addssys (“addssys Subroutine” on page 34) subroutine, delssys (“delssys Subroutine” on page 213)
subroutine, getsubsvr (“getsubsvr Subroutine” on page 441) subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller (SRC)
Overview for Programmers in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

getsubopt Subroutine

Purpose
Parse suboptions from a string.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int getsubopt (char **optionp,
char * const * tokens,
char ** valuep)

Description
The getsubopt subroutine parses suboptions in a flag parameter that were initially parsed by the getopt
subroutine. These suboptions are separated by commas and may consist of either a single token, or a

440 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

token-value pair separated by an equal sign. Because commas delimit suboptions in the option string, they
are not allowed to be part of the suboption or the value of a suboption. similarly, because the equal sign
separates a token from its value, a token must not contain an equal sign.

The getsubopt subroutine takes the address of a pointer to the option string, a vector of possible tokens,
and the address of a value string pointer. It returns the index of the token that matched the suboption in
the input string or -1 if there was no match. If the option string at *optionp contains only one suboption, the
getsubopt subroutine updates *optionp to point to the start of the next suboption. It the suboption has an
associated value, the getsubopt subroutine updates *valuep to point to the value’s first character.
Otherwise it sets *valuep to a NULL pointer.

The token vector is organized as a series of pointers to strings. The end of the token vector is identified by
a NULL pointer.

When the getsubopt subroutine returns, if *valuep is not a NULL pointer then the suboption processed
included a value. The calling program may use this information to determine if the presence or lack of a
value for this suboption is an error.

Additionally, when the getsubopt subroutine fails to match the suboption with the tokens in the tokens
array, the calling program should decide if this is an error, or if the unrecognized option should be passed
on to another program.

Return Values
The getsubopt subroutine returns the index of the matched token string, or -1 if no token strings were
matched.

Related Information
The getopt (“getopt Subroutine” on page 399) subroutine.

getsubsvr Subroutine

Purpose
Reads a subsystem record.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int getsubsvr(SubserverName, SRCSubserver)
char *SubserverName;
struct SRCSubsvr *SRCSubserver;

Description
The getsubsvr subroutine reads a subsystem record associated with the specified subserver and returns
the ODM record in the SRCsubsvr structure.

The SRCsubsvr structure is defined in the sys/srcobj.h file and includes the following fields:

char sub_type[30];

Base Operating System (BOS) Runtime Services (A-P) 441

char subsysname[30];
short sub_code;

Parameters

SRCSubserver Points to the SRCsubsvr structure.
SubserverName Specifies the subserver to be read.

Return Values
Upon successful completion, the getsubsvr subroutine returns a value of 0. Otherwise, it returns a value
of -1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes
If the getsubsvr subroutine fails, the following is returned:

SRC_NOREC The specified SRCsubsvr record does not exist.

Files

/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.

Related Information
The getssys (“getssys Subroutine” on page 439) subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller (SRC)
Overview for Programmers in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

gettcbattr or puttcbattr Subroutine

Purpose
Accesses the TCB information in the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int gettcbattr (Entry, Attribute, Value, Type)
char * Entry;
char * Attribute;
void * Value;
int Type;

int puttcbattr (Entry, Attribute, Value, Type)
char *Entry;
char *Attribute;
void *Value;
int Type;

442 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
These subroutines access Trusted Computing Base (TCB) information.

The gettcbattr subroutine reads a specified attribute from the tcbck database. If the database is not
already open, the subroutine will do an implicit open for reading.

Similarly, the puttcbattr subroutine writes a specified attribute into the tcbck database. If the database is
not already open, the subroutine does an implicit open for reading and writing. Data changed by
puttcbattr must be explicitly committed by calling the puttcbattr subroutine with a Type parameter
specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls within the
process will return the written data.

New entries in the tcbck databases must first be created by invoking puttcbattr with the SEC_NEW type.

The tcbck database usually defines all the files and programs that are part of the TCB, but the root user
or a member of the security group can choose to define only those files considered to be security-relevant.

Parameters

Attribute Specifies which attribute is read. The following possible values are defined in the sysck.h
file:

S_ACL The access control list for the file. Type: SEC_CHAR.

S_CHECKSUM
The checksum of the file. Type: SEC_CHAR.

S_CLASS
The logical group of the file. The attribute type is SEC_LIST.

S_GROUP
The file group. The attribute type is SEC_CHAR.

S_LINKS
The hard links to this file. Type: SEC_LIST.

S_MODE
The File mode. Type: SEC_CHAR.

S_OWNER
The file owner. Type: SEC_CHAR.

S_PROGRAM
The associated checking program for the file. Type: SEC_CHAR.

S_SIZE
The size of the file in bytes. Type: SEC_LONG.

S_SOURCE
The source for the file. Type: SEC_CHAR.

S_SYMLINKS
The symbolic links to the file. Type: SEC_LIST.

S_TARGET
The target file (if file is a symbolic link). Type: SEC_CHAR.

S_TCB The Trusted Computer Base. The attribute type is SEC_BOOL.

S_TYPE
The type of file. The attribute type is SEC_CHAR.

Additional user-defined attributes may be used and will be stored in the format specified by
the Type parameter.

Entry Specifies the name of the file for which an attribute is to be read or written.

Base Operating System (BOS) Runtime Services (A-P) 443

Type Specifies the type of attribute expected. Valid values are defined in the usersec.h file and
include:

SEC_BOOL
A pointer to an integer (int *) that has been cast to a null pointer.

SEC_CHAR
The format of the attribute is a null-terminated character string.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated.
The last string in the series is terminated by two successive null characters.

SEC_LONG
The format of the attribute is a 32-bit integer.

Value Specifies the address of a pointer for the gettcbattr subroutine. The gettcbattr subroutine
will return the address of a buffer in the pointer. For the puttcbattr subroutine, the Value
parameter specifies the address of a buffer in which the attribute is stored. See the Type
parameter for more details.

Security

Files Accessed:

Mode File
rw /etc/security/sysck.cfg (write access for puttcbattr)

Return Values
The gettcbattr and puttcbattr subroutines, when successfully completed, return a value of 0. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

Note: These subroutines return errors from other subroutines.

These subroutines fail if the following is true:

EACCES Access permission is denied for the data request.

The gettcbattr and puttcbattr subroutines fail if one or more of the following are true:

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of attribute.
Limited testing is possible and all errors may not be detected.

EINVAL The Entry parameter is null or contains a pointer to a null string.
EINVAL The Type parameter contains more than one of the SEC_BOOL, SEC_CHAR, SEC_LIST, or

SEC_LONG attributes.
EINVAL The Type parameter specifies that an individual attribute is to be committed, and the Entry

parameter is null.
ENOENT The specified Entry parameter does not exist or the attribute is not defined for this entry.
EPERM Operation is not permitted.

444 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The getuserattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 456) subroutine,
getuserpw (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page 470) subroutine, setpwdb
subroutine, setuserdb subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getthrds Subroutine

Purpose
Gets kernel thread table entries.

Library
Standard C library (libc.a)

Syntax
#include <procinfo.h>
#include <sys/types.h>

int
getthrds (ProcessIdentifier, ThreadBuffer, ThreadSize, IndexPointer, Count)
pid_t ProcessIdentifier;
struct thrdsinfo *ThreadBuffer;
or struct thrdsinfo64 *ThreadBuffer;
int ThreadSize;
tid_t *IndexPointer;
int Count;

int
getthrds64 (ProcessIdentifier, ThreadBuffer, ThreadSize, IndexPointer, Count)
pid_t ProcessIdentifier;
struct thrdentry64 *ThreadBuffer;
int ThreadSize;
tid64_t *IndexPointer;
int Count;

Description
The getthrds subroutine returns information about kernel threads, including kernel thread table information
defined by the thrdsinfo or thrdsinfo64 structure.

The getthrds subroutine retrieves up to Count kernel thread table entries, starting with the entry
corresponding to the thread identifier indicated by IndexPointer, and places them in the array of thrdsinfo
or thrdsinfo64, or thrdentry64 structures indicated by the ThreadBuffer parameter.

On return, the kernel thread identifier referenced by IndexPointer is updated to indicate the next kernel
thread table entry to be retrieved. The getthrds subroutine returns the number of kernel thread table
entries retrieved.

If the ProcessIdentifier parameter indicates a process identifier, only kernel threads belonging to that
process are considered. If this parameter is set to -1, all kernel threads are considered.

Base Operating System (BOS) Runtime Services (A-P) 445

The getthrds subroutine is normally called repeatedly in a loop, starting with a kernel thread identifier of
zero, and looping until the return value is less than Count, indicating that there are no more entries to
retrieve.

1. Do not use information from the procsinfo structure (see the getprocs (“getprocs Subroutine” on page
417) subroutine) to determine the value of the Count parameter; a process may create or destroy
kernel threads in the interval between a call to getprocs and a subsequent call to getthrds.

2. The kernel thread table may change while the getthrds subroutine is accessing it. Returned entries
will always be consistent, but since kernel threads can be created or destroyed while the getthrds
subroutine is running, there is no guarantee that retrieved entries will still exist, or that all existing
kernel threads have been retrieved.

When used in 32-bit mode, limits larger than can be represented in 32 bits are truncated to
RLIM_INFINITY. Large values are truncated to INT_MAX. 64-bit applications are required to use
getthrds64() and struct thrdentry64. Note that struct thrdentry64 contains the same information as
struct thrdsinfo64 with the only difference being support for the 64-bit tid_t and the 256-bit sigset_t.
Application developers are also encouraged to use getthrds64() in 32-bit applications to obtain 64-bit
thread information as this interface provides the new, larger types. The getthrds() interface will still be
supported for 32-bit applications using struct thrdsinfo or struct thrdsinfo64, but will not be available to
64-bit applications.

Parameters
ProcessIdentifier

Specifies the process identifier of the process whose kernel threads are to be retrieved. If this
parameter is set to -1, all kernel threads in the kernel thread table are retrieved.

ThreadBuffer
Specifies the starting address of an array of thrdsinfo or thrdsinfo64, or thrdentry64 structures
which will be filled in with kernel thread table entries. If a value of NULL is passed for this
parameter, the getthrds subroutine scans the kernel thread table and sets return values as
normal, but no kernel thread table entries are retrieved.

ThreadSize
Specifies the size of a single thrdsinfo, thrdsinfo64, or thrdentry64 structure.

IndexPointer
Specifies the address of a kernel thread identifier which indicates the required kernel thread table
entry (this does not have to correspond to an existing kernel thread). A kernel thread identifier of
zero selects the first entry in the table. The kernel thread identifier is updated to indicate the next
entry to be retrieved.

Count Specifies the number of kernel thread table entries requested.

Return Value
If successful, the getthrds subroutine returns the number of kernel thread table entries retrieved; if this is
less than the number requested, the end of the kernel thread table has been reached. A value of 0 is
returned when the end of the kernel thread table has been reached. Otherwise, a value of -1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The getthrds subroutine fails if the following are true:

EINVAL The ThreadSize is invalid, or the IndexPointer parameter does not point to a valid kernel
thread identifier, or the Count parameter is not greater than zero.

ESRCH The process specified by the ProcessIdentifier parameter does not exist.
EFAULT The copy operation to one of the buffers failed.

446 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The getpid (“getpid, getpgrp, or getppid Subroutine” on page 409), getpgrp (“getpid, getpgrp, or getppid
Subroutine” on page 409), or getppid (“getpid, getpgrp, or getppid Subroutine” on page 409) subroutines,
the getprocs (“getprocs Subroutine” on page 417) subroutine.

The ps command.

gettimeofday, settimeofday, or ftime Subroutine

Purpose
Displays, gets and sets date and time.

Libraries
gettimeofday, settimeofday: Standard C Library (libc.a)

ftime: Berkeley Compatibility Library (libbsd.a)

Syntax
#include <sys/time.h>
int gettimeofday (Tp, Tzp)
struct timeval *Tp;
void *Tzp;
int settimeofday (Tp, Tzp)
struct timeval *Tp;
struct timezone *Tzp;

#include <sys/types.h>
#include <sys/timeb.h>
int ftime (Tp)
struct timeb *Tp;

Description
Current Greenwich time and the current time zone are displayed with the gettimeofday subroutine, and
set with the settimeofday subroutine. The time is expressed in seconds and microseconds since midnight
(0 hour), January 1, 1970. The resolution of the system clock is hardware-dependent, and the time may be
updated either continuously or in ″ticks.″ If the Tzp parameter has a value of 0, the time zone information
is not returned or set.

If a recent adjtime subroutine call is causing the clock to be adjusted backwards, it is possible that two
closely spaced gettimeofday calls will observe that time has moved backwards. You can set the
GETTOD_ADJ_MONOTONIC environment value to cause the returned value to never decrease. After this
environment variable is set, the returned value briefly remains constant as necessary to always report a
nondecreasing time of day. This extra processing adds significant pathlength to gettimeofday. Although
any setting of this environment variable requires this extra processing, setting it to 1 is recommended for
future compatibility.

The Tp parameter returns a pointer to a timeval structure that contains the time since the epoch began in
seconds and microseconds.

The timezone structure indicates both the local time zone (measured in minutes of time westward from
Greenwich) and a flag that, if nonzero, indicates that daylight saving time applies locally during the
appropriate part of the year.

Base Operating System (BOS) Runtime Services (A-P) 447

In addition to the difference in timer granularity, the timezone structure distinguishes these subroutines
from the POSIX gettimer and settimer subroutines, which deal strictly with Greenwich Mean Time.

The ftime subroutine fills in a structure pointed to by its argument, as defined by <sys/timeb.h>. The
structure contains the time in seconds since 00:00:00 UTC (Coordinated Universal Time), January 1, 1970,
up to 1000 milliseconds of more-precise interval, the local timezone (measured in minutes of time
westward from UTC), and a flag that, if nonzero, indicates that Daylight Saving time is in effect, and the
values stored in the timeb structure have been adjusted accordingly.

Parameters

Tp Pointer to a timeval structure, defined in the sys/time.h file.
Tzp Pointer to a timezone structure, defined in the sys/time.h file.

Return Values
If the subroutine succeeds, a value of 0 is returned. If an error occurs, a value of -1 is returned and errno
is set to indicate the error.

Error Codes
If the settimeofday subroutine is unsuccessful, the errno value is set to EPERM to indicate that the
process’s effective user ID does not have root user authority.

No errors are defined for the gettimeofday or ftime subroutine.

gettimer, settimer, restimer, stime, or time Subroutine

Purpose
Gets or sets the current value for the specified systemwide timer.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/types.h>

int gettimer(TimerType, Value)
timer_t TimerType;
struct timestruc_t * Value;

#include <sys/timers.h>
#include <sys/types.h>

int gettimer(TimerType, Value)
timer_t TimerType;
struct itimerspec * Value;

int settimer(TimerType, TimePointer)
int TimerType;
const struct timestruc_t *TimePointer;

448 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int restimer(TimerType, Resolution, MaximumValue)
int TimerType;
struct timestruc_t *Resolution, *MaximumValue;

int stime(Tp)
long *Tp;

#include <sys/types.h>

time_t time(Tp)
time_t *Tp;

Description
The settimer subroutine is used to set the current value of the TimePointer parameter for the systemwide
timer, specified by the TimerType parameter.

When the gettimer subroutine is used with the function prototype in sys/timers.h, then except for the
parameters, the gettimer subroutine is identical to the getinterval (“getinterval, incinterval, absinterval,
resinc, resabs, alarm, ualarm, getitimer, or setitimer Subroutine” on page 389) subroutine. Use of the
getinterval subroutine is recommended, unless the gettimer subroutine is required for a
standards-conformant application. The description and semantics of the gettimer subroutine are subject to
change between releases, pending changes in the draft standard upon which the current gettimer
subroutine description is based.

When the gettimer subroutine is used with the function prototype in /sys/timers.h, the gettimer
subroutine returns an itimerspec structure to the pointer specified by the Value parameter. The it_value
member of the itimerspec structure represents the amount of time in the current interval before the timer
(specified by the TimerType parameter) expires, or a zero interval if the timer is disabled. The members of
the pointer specified by the Value parameter are subject to the resolution of the timer.

When the gettimer subroutine is used with the function prototype in sys/time.h, the gettimer subroutine
returns a timestruc structure to the pointer specified by the Value parameter. This structure holds the
current value of the system wide timer specified by the Value parameter.

The resolution of any timer can be obtained by the restimer subroutine. The Resolution parameter
represents the resolution of the specified timer. The MaximumValue parameter represents the maximum
possible timer value. The value of these parameters are the resolution accepted by the settimer
subroutine.

Note: If a nonprivileged user attempts to submit a fine granularity timer (that is, a timer request of less
than 10 milliseconds), the timer request is raised to 10 milliseconds.

The time subroutine returns the time in seconds since the Epoch (that is, 00:00:00 GMT, January 1,
1970). The Tp parameter points to an area where the return value is also stored. If the Tp parameter is a
null pointer, no value is stored.

The stime subroutine is implemented to provide compatibility with older AIX, AT&T System V, and BSD
systems. It calls the settimer subroutine using the TIMEOFDAY timer.

Parameters

Value Points to a structure of type itimerspec.

Base Operating System (BOS) Runtime Services (A-P) 449

TimerType Specifies the systemwide timer:

TIMEOFDAY
(POSIX system clock timer) This timer represents the time-of-day clock for
the system. For this timer, the values returned by the gettimer subroutine
and specified by the settimer subroutine represent the amount of time since
00:00:00 GMT, January 1, 1970.

TimePointer Points to a structure of type struct timestruc_t.
Resolution The resolution of a specified timer.
MaximumValue The maximum possible timer value.
Tp Points to a structure containing the time in seconds.

Return Values
The gettimer, settimer, restimer, and stime subroutines return a value of 0 (zero) if the call is
successful. A return value of -1 indicates an error occurred, and errno is set.

The time subroutine returns the value of time in seconds since Epoch. Otherwise, a value of ((time_t) - 1)
is returned and the errno global variable is set to indicate the error.

Error Codes
If an error occurs in the gettimer, settimer, restimer, or stime subroutine, a return value of - 1 is
received and the errno global variable is set to one of the following error codes:

EINVAL The TimerType parameter does not specify a known systemwide timer, or the TimePointer
parameter of the settimer subroutine is outside the range for the specified systemwide timer.

EFAULT A parameter address referenced memory that was not valid.
EIO An error occurred while accessing the timer device.
EPERM The requesting process does not have the appropriate privilege to set the specified timer.

If the time subroutine is unsuccessful, a return value of -1 is received and the errno global variable is set
to the following:

EFAULT A parameter address referenced memory that was not valid.

Related Information
The asctime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine” on page 201)
subroutine, clock (“clock Subroutine” on page 170) subroutine, ctime (“ctime, localtime, gmtime, mktime,
difftime, asctime, or tzset Subroutine” on page 201) subroutine, difftime (“ctime, localtime, gmtime,
mktime, difftime, asctime, or tzset Subroutine” on page 201) subroutine, getinterval (“getinterval,
incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer, or setitimer Subroutine” on page 389)
subroutine, gmtime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine” on page
201) subroutine, localtime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine” on
page 201) subroutine, mktime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine”
on page 201) subroutine, strftime subroutine, strptime subroutine, utime subroutine.

Time data manipulation services in Operating system and device management.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

450 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

gettimerid Subroutine

Purpose
Allocates a per-process interval timer.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/events.h>

timer_t gettimerid(timertype, notifytype)
int timertype;
int notifytype;

Description
The gettimerid subroutine is used to allocate a per-process interval timer based on the timer with the
given timer type. The unique ID is used to identify the interval timer in interval timer requests. (For more
information, see getinterval subroutine). The particular timer type, the timertype parameter, is defined in
the sys/time.h file and can identify either a system-wide timer or a per-process timer. The mechanism by
which the process is to be notified of the expiration of the timer event is the notifytype parameter, which is
defined in the sys/events.h file.

The timertype parameter represents one of the following timer types:

TIMEOFDAY POSIX system clock timer. This timer represents the time-of-day clock for the
system. For this timer, the values returned by the gettimer subroutine and
specified by the settimer subroutine represent the amount of time since 00:00:00
GMT, January 1, 1970, in nanoseconds.

TIMERID_ALRM Alarm timer. This timer schedules the delivery of a SIGALRM signal at a timer
specified in the call to the settimer subroutine.

TIMERID_REAL Real-time timer. The real-time timer decrements in real time. A SIGALRM signal
is delivered when this timer expires.

TIMERID_REAL_TH Real-time, per-thread timer. Decrements in real time and delivers a SIGTALRM
signal when it expires. The SIGTALRM is sent to the thread that sets the timer.
Each thread has its own timer and can manipulate its own timer. This timer is
only supported with the 1:1 thread model. If the timer is used in M:N thread
model, undefined results might occur.

TIMERID_VIRTUAL Virtual timer. The virtual timer decrements in process virtual time. it runs only
when the process is executing in user mode. A SIGVTALRM signal is delivered
when it expires.

TIMERID_PROF Profiling timer. The profiling timer decrements both when running in user mode
and when the system is running for the process. It is designed to be used by
processes to profile their execution statistically. A SIGPROF signal is delivered
when the profiling timer expires.

Interval timers with a notification value of DELIVERY_SIGNAL are inherited across an exec subroutine.

Parameters

notifytype Notifies the process of the expiration of the timer event.
timertype Identifies either a system-wide timer or a per-process timer.

Base Operating System (BOS) Runtime Services (A-P) 451

Return Values
If the gettimerid subroutine succeeds, it returns a timer_t structure that can be passed to the per-process
interval timer subroutines, such as the getinterval subroutine. If an error occurs, the value -1 is returned
and errno is set.

Error Codes
If the gettimerid subroutine fails, the value -1 is returned and errno is set to one of the following error
codes:

EAGAIN The calling process has already allocated all of the interval timers associated with the specified
timer type for this implementation.

EINVAL The specified timer type is not defined.

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, getinterval, incinterval,
absinterval, resinc, or resabs (“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm,
getitimer, or setitimer Subroutine” on page 389) subroutine, gettimer, settimer, or restimer (“gettimer,
settimer, restimer, stime, or time Subroutine” on page 448) subroutine, reltimerid subroutine.

Time data manipulation services in Operating system and device management.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

getttyent, getttynam, setttyent, or endttyent Subroutine

Purpose
Gets a tty description file entry.

Library
Standard C Library (libc.a)

Syntax
#include <ttyent.h>

struct ttyent *getttyent()
struct ttyent *getttynam(Name)
char *Name;
void setttyent()
void endttyent()

Description
Attention: Do not use the getttyent, getttynam, setttyent, or endttyent subroutine in a multithreaded
environment.

The getttyent and getttynam subroutines each return a pointer to an object with the ttyent structure. This
structure contains the broken-out fields of a line from the tty description file. The ttyent structure is in the
/usr/include/sys/ttyent.h file and contains the following fields:

452 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

tty_name The name of the character special file in the /dev directory. The character special file must
reside in the /dev directory.

ty_getty The command that is called by the init process to initialize tty line characteristics. This is
usually the getty command, but any arbitrary command can be used. A typical use is to initiate
a terminal emulator in a window system.

ty_type The name of the default terminal type connected to this tty line. This is typically a name from
the termcap database. The TERM environment variable is initialized with this name by the
getty or login command.

ty_status A mask of bit fields that indicate various actions to be allowed on this tty line. The following is a
description of each flag:

TTY_ON
Enables logins (that is, the init process starts the specified getty command on this
entry).

TTY_SECURE
Allows a user with root user authority to log in to this terminal. The TTY_ON flag must
be included.

ty_window The command to execute for a window system associated with the line. The window system is
started before the command specified in the ty_getty field is executed. If none is specified,
this is null.

ty_comment The trailing comment field. A leading delimiter and white space is removed.

The getttyent subroutine reads the next line from the tty file, opening the file if necessary. The setttyent
subroutine rewinds the file. The endttyent subroutine closes it.

The getttynam subroutine searches from the beginning of the file until a matching name (specified by the
Name parameter) is found (or until the EOF is encountered).

Parameters

Name Specifies the name of a tty description file.

Return Values
These subroutines return a null pointer when they encounter an EOF (end-of-file) character or an error.

Files

/usr/lib/libodm.a Specifies the ODM (Object Data Manager) library.
/usr/lib/libcfg.a Archives device configuration subroutines.
/etc/termcap Defines terminal capabilities.

Related Information
The ttyslot subroutine.

The getty command, init command, login command.

List of Files and Directories Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 453

getuid, geteuid, or getuidx Subroutine

Purpose
Gets the real or effective user ID of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <unistd.h>

uid_t getuid(void)

uid_t geteuid(void)

#include <id.h>

uid_t getuidx (int type);

Description
The getuid subroutine returns the real user ID of the current process. The geteuid subroutine returns the
effective user ID of the current process.

The getuidx subroutine returns the user ID indicated by the type parameter of the calling process.

These subroutines are part of Base Operating System (BOS) Runtime.

Return Values
The getuid, geteuid and getuidx subroutines return the corresponding user ID. The getuid and geteuid
subroutines always succeed.

The getuidx subroutine will return -1 and set the global errno variable to EINVAL if the type parameter is
not one of ID_REAL, ID_EFFECTIVE, ID_SAVED or ID_LOGIN.

Parameters

type Specifies the user ID to get. Must be one of ID_REAL (real user ID), ID_EFFECTIVE (effective user
ID), ID_SAVED (saved set-user ID) or ID_LOGIN (login user ID).

Error Codes
If the getuidx subroutine fails the following is returned:

EINVAL Indicates the value of the type parameter is invalid.

Related Information
The setuid subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

454 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

getuinfo Subroutine

Purpose
Finds a value associated with a user.

Library
Standard C Library (libc.a)

Syntax
char *getuinfo (Name)
char *Name;

Description
The getuinfo subroutine finds a value associated with a user. This subroutine searches a user information
buffer for a string of the form Name=Value and returns a pointer to the Value substring if the Name value
is found. A null value is returned if the Name value is not found.

The INuibp global variable points to the user information buffer:
extern char *INuibp;

This variable is initialized to a null value.

If the INuibp global variable is null when the getuinfo subroutine is called, the usrinfo subroutine is called
to read user information from the kernel into a local buffer. The INUuibp is set to the address of the local
buffer. If the INuibp external variable is not set, the usrinfo subroutine is automatically called the first time
the getuinfo subroutine is called.

Parameter

Name Specifies a user name.

Related Information
List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getuinfox Subroutine

Purpose
Finds a value associated with a user.

Library
Standard C Library (libc.a)

Syntax
char *getuinfox (Name)
char *Name;

Base Operating System (BOS) Runtime Services (A-P) 455

Description
The getuinfox subroutine finds a value associated with a user. This subroutine searches a privileged
kernel buffer for a string of the form Name=Value and returns a pointer to the Value substring if the Name
value is found. A Null value is returned if the Name value is not found. The caller is responsible for freeing
the memory returned by the getuinfox subroutine.

Parameters

Name Specifies a name.

Return Values
Upon success, the getuinfox subroutine returns a pointer to the Value substring.

Error Codes
A Null value is returned if the Name value is not found.

getuserattr, IDtouser, nextuser, or putuserattr Subroutine

Purpose
Accesses the user information in the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getuserattr (User, Attribute, Value, Type)
char * User;
char * Attribute;
void * Value;
int Type;

char *IDtouser(UID)
uid__t UID;

char *nextuser (Mode, Argument)
int Mode, Argument;

int putuserattr (User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

Description
Attention: These subroutines and the setpwent and setgrent subroutines should not be used
simultaneously. The results can be unpredictable.

These subroutines access user information. Because of their greater granularity and extensibility, you
should use them instead of the getpwent routines.

456 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The getuserattr subroutine reads a specified attribute from the user database. If the database is not
already open, this subroutine does an implicit open for reading. A call to the getuserattr subroutine for
every new user verifies that the user exists.

Similarly, the putuserattr subroutine writes a specified attribute into the user database. If the database is
not already open, this subroutine does an implicit open for reading and writing. Data changed by the
putuserattr subroutine must be explicitly committed by calling the putuserattr subroutine with a Type
parameter specifying SEC_COMMIT. Until all the data is committed, only these subroutines within the
process return written data.

New entries in the user and group databases must first be created by invoking putuserattr with the
SEC_NEW type.

The IDtouser subroutine translates a user ID into a user name.

The nextuser subroutine returns the next user in a linear search of the user database. The consistency of
consecutive searches depends upon the underlying storage-access mechanism and is not guaranteed by
this subroutine.

The setuserdb and enduserdb subroutines should be used to open and close the user database.

The enduserdb subroutine frees all memory allocated by the getuserattr subroutine.

Parameters
Argument

Presently unused and must be specified as null.

Attribute
Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

S_CORECOMP
Core compression status. The attribute type is SEC_CHAR.

S_COREPATH
Core path specification status. The attribute type is SEC_CHAR.

S_COREPNAME
Core path specification location. The attribute type is SEC_CHAR.

S_CORENAMING
Core naming status. The attribute type is SEC_CHAR.

S_ID User ID. The attribute type is SEC_INT.

S_PGID
Principle group ID. The attribute type is SEC_INT.

S_PGRP
Principle group name. The attribute type is SEC_CHAR.

S_GROUPS
Groups to which the user belongs. The attribute type is SEC_LIST.

S_ADMGROUPS
Groups for which the user is an administrator. The attribute type is SEC_LIST.

S_ADMIN
Administrative status of a user. The attribute type is SEC_BOOL.

S_AUDITCLASSES
Audit classes to which the user belongs. The attribute type is SEC_LIST.

Base Operating System (BOS) Runtime Services (A-P) 457

S_AUTHSYSTEM
Defines the user’s authentication method. The attribute type is SEC_CHAR.

S_HOME
Home directory. The attribute type is SEC_CHAR.

S_SHELL
Initial program run by a user. The attribute type is SEC_CHAR.

S_GECOS
Personal information for a user. The attribute type is SEC_CHAR.

S_USRENV
User-state environment variables. The attribute type is SEC_LIST.

S_SYSENV
Protected-state environment variables. The attribute type is SEC_LIST.

S_LOGINCHK
Specifies whether the user account can be used for local logins. The attribute type is
SEC_BOOL.

S_HISTEXPIRE
Defines the period of time (in weeks) that a user cannot reuse a password. The attribute
type is SEC_INT.

S_HISTSIZE
Specifies the number of previous passwords that the user cannot reuse. The attribute type
is SEC_INT.

S_MAXREPEAT
Defines the maximum number of times a user can repeat a character in a new password.
The attribute type is SEC_INT.

S_MINAGE
Defines the minimum age in weeks that the user’s password must exist before the user
can change it. The attribute type is SEC_INT.

S_PWDCHECKS
Defines the password restriction methods for this account. The attribute type is SEC_LIST.

S_MINALPHA
Defines the minimum number of alphabetic characters required in a new user’s password.
The attribute type is SEC_INT.

S_MINDIFF
Defines the minimum number of characters required in a new password that were not in
the old password. The attribute type is SEC_INT.

S_MINLEN
Defines the minimum length of a user’s password. The attribute type is SEC_INT.

S_MINOTHER
Defines the minimum number of non-alphabetic characters required in a new user’s
password. The attribute type is SEC_INT.

S_DICTIONLIST
Defines the password dictionaries for this account. The attribute type is SEC_LIST.

S_SUCHK
Specifies whether the user account can be accessed with the su command. Type
SEC_BOOL.

S_REGISTRY
Defines the user’s authentication registry. The attribute type is SEC_CHAR.

458 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

S_RLOGINCHK
Specifies whether the user account can be used for remote logins using the telnet or
rlogin commands. The attribute type is SEC_BOOL.

S_DAEMONCHK
Specifies whether the user account can be used for daemon execution of programs and
subsystems using the cron daemon or src. The attribute type is SEC_BOOL.

S_TPATH
Defines how the account may be used on the trusted path. The attribute type is
SEC_CHAR. This attribute must be one of the following values:

nosak The secure attention key is not enabled for this account.

notsh The trusted shell cannot be accessed from this account.

always
This account may only run trusted programs.

on Normal trusted-path processing applies.

S_TTYS
List of ttys that can or cannot be used to access this account. The attribute type is
SEC_LIST.

S_SUGROUPS
Groups that can or cannot access this account. The attribute type is SEC_LIST.

S_EXPIRATION
Expiration date for this account is a string in the form MMDDhhmmyy, where MM is the
month, DD is the day, hh is the hour in 0 to 24 hour notation, mm is the minutes past the
hour, and yy is the last two digits of the year. The attribute type is SEC_CHAR. For more
information about password expiration, see the /etc/security/user file.

S_AUTH1
Primary authentication methods for this account. The attribute type is SEC_LIST.

S_AUTH2
Secondary authentication methods for this account. The attribute type is SEC_LIST.

S_UFSIZE
Process file size soft limit. The attribute type is SEC_INT.

S_UCPU
Process CPU time soft limit. The attribute type is SEC_INT.

S_UDATA
Process data segment size soft limit. The attribute type is SEC_INT.

S_USTACK
Process stack segment size soft limit. Type: SEC_INT.

S_URSS
Process real memory size soft limit. Type: SEC_INT.

S_UCORE
Process core file size soft limit. The attribute type is SEC_INT.

S_UNOFILE
Process file descriptor table size soft limit. The attribute type is SEC_INT.

S_PWD
Specifies the value of the passwd field in the /etc/passwd file. The attribute type is
SEC_CHAR.

Base Operating System (BOS) Runtime Services (A-P) 459

S_UMASK
File creation mask for a user. The attribute type is SEC_INT.

S_LOCKED
Specifies whether the user’s account can be logged into. The attribute type is
SEC_BOOL.

S_ROLES
Defines the administrative roles for this account. The attribute type is SEC_LIST.

S_UFSIZE_HARD
Process file size hard limit. The attribute type is SEC_INT.

S_UCPU_HARD
Process CPU time hard limit. The attribute type is SEC_INT.

S_UDATA_HARD
Process data segment size hard limit. The attribute type is SEC_INT.

S_USREXPORT
Specifies if the DCE registry can overwrite the local user information with the DCE user
information during a DCE export operation. The attribute type is SEC_BOOL.

S_USTACK_HARD
Process stack segment size hard limit. Type: SEC_INT.

S_URSS_HARD
Process real memory size hard limit. Type: SEC_INT.

S_UCORE_HARD
Process core file size hard limit. The attribute type is SEC_INT.

S_UNOFILE_HARD
Process file descriptor table size hard limit. The attribute type is SEC_INT.

Note: These values are string constants that should be used by applications both for convenience
and to permit optimization in latter implementations. Additional user-defined attributes may
be used and will be stored in the format specified by the Type parameter.

Mode Specifies the search mode. This parameter can be used to delimit the search to one or more user
credentials databases. Specifying a non-null Mode value also implicitly rewinds the search. A null
Mode value continues the search sequentially through the database. This parameter must include
one of the following values specified as a bit mask; these are defined in the usersec.h file:

S_LOCAL
Locally defined users are included in the search.

S_SYSTEM
All credentials servers for the system are searched.

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_INT
The format of the attribute is an integer.

For the getuserattr subroutine, the user should supply a pointer to a defined integer
variable. For the putuserattr subroutine, the user should supply an integer.

SEC_CHAR
The format of the attribute is a null-terminated character string.

460 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

For the getuserattr subroutine, the user should supply a pointer to a defined character
pointer variable. For the putuserattr subroutine, the user should supply a character
pointer.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated. The
last string in the series is terminated by two successive null characters.

For the getuserattr subroutine, the user should supply a pointer to a defined character
pointer variable. For the putuserattr subroutine, the user should supply a character
pointer.

SEC_BOOL
The format of the attribute from getuserattr is an integer with the value of either 0 (false)
or 1 (true). The format of the attribute for putuserattr is a null-terminated string containing
one of the following strings: true, false, yes, no, always, or never.

For the getuserattr subroutine, the user should supply a pointer to a defined integer
variable. For the putuserattr subroutine, the user should supply a character pointer.

SEC_COMMIT
For the putuserattr subroutine, this value specified by itself indicates that changes to the
named user are to be committed to permanent storage. The Attribute and Value
parameters are ignored. If no user is specified, the changes to all modified users are
committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the database.

SEC_NEW
Updates all the user database files with the new user name when using the putuserattr
subroutine.

UID Specifies the user ID to be translated into a user name.

User Specifies the name of the user for which an attribute is to be read.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the Attribute and
Type parameters. See the Type parameter for more details.

Security

Files Accessed:

Mode File
rw /etc/passwd
rw /etc/group
rw /etc/security/user
rw /etc/security/limits
rw /etc/security/group
rw /etc/security/environ

Return Values
If successful, the getuserattr subroutine with the S_LOGINCHK or S_RLOGINCHK attribute specified and
the putuserattr subroutine return 0. Otherwise, a value of -1 is returned and the errno global variable is
set to indicate the error. For all other attributes, the getuserattr subroutine returns 0.

Base Operating System (BOS) Runtime Services (A-P) 461

If successful, the IDtouser and nextuser subroutines return a character pointer to a buffer containing the
requested user name. Otherwise, a null pointer is returned and the errno global variable is set to indicate
the error.

Error Codes
If any of these subroutines fail, the following is returned:

EACCES Access permission is denied for the data request.

If the getuserattr and putuserattr subroutines fail, one or more of the following is returned:

ENOENT The specified User parameter does not exist.
EINVAL The Attribute parameter does not contain one of the defined attributes or null.
EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of attribute.

Limited testing is possible and all errors may not be detected.
EPERM Operation is not permitted.
ENOATTR The specified attribute is not defined for this user.

If the IDtouser subroutine fails, one or more of the following is returned:

ENOENT The specified User parameter does not exist

If the nextuser subroutine fails, one or more of the following is returned:

EINVAL The Mode parameter is not one of null, S_LOCAL, or S_SYSTEM.
EINVAL The Argument parameter is not null.
ENOENT The end of the search was reached.

Files

/etc/passwd Contains user IDs.

Related Information
The “getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine” on page 377, “getuserpw, putuserpw,
or putuserpwhist Subroutine” on page 470, setpwdb subroutine, setuserdb subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

getuserattrs Subroutine

Purpose
Retrieves multiple user attributes in the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

462 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int getuserattrs (User, Attributes, Count)
char * User;
dbattr_t * Attributes;
int Count

Description
Attention: Do not use this subroutine and the setpwent and setgrent subroutines simultaneously. The
results can be unpredictable.

The getuserattrs subroutine accesses user information. Because of its greater granularity and
extensibility, use it instead of the getpwent routines.

The getuserattrs subroutine reads one or more attributes from the user database. If the database is not
already open, this subroutine does an implicit open for reading. A call to the getuserattrs subroutine with
an Attributes parameter of null and Count parameter of 0 for every new user verifies that the user exists.

The Attributes array contains information about each attribute that is to be read. The dbattr_t data
structure contains the following fields:

attr_name
The name of the desired attribute.

attr_idx
Used internally by the getuserattrs subroutine.

attr_type
The type of the desired attribute. The following possible attributes are defined in the usersec.h
file:

S_CORECOMP
Core compression status. The attribute type is SEC_CHAR.

S_COREPATH
Core path specification status. The attribute type is SEC_CHAR.

S_COREPNAME
Core path specification location. The attribute type is SEC_CHAR.

S_CORENAMING
Core naming status. The attribute type is SEC_CHAR.

S_ID User ID. The attribute type is SEC_INT.

S_PGID
Principle group ID. The attribute type is SEC_INT.

S_PGRP
Principle group name. The attribute type is SEC_CHAR.

S_GROUPS
Groups to which the user belongs. The attribute type is SEC_LIST.

S_ADMGROUPS
Groups for which the user is an administrator. The attribute type is SEC_LIST.

S_ADMIN
Administrative status of a user. The attribute type is SEC_BOOL.

S_AUDITCLASSES
Audit classes to which the user belongs. The attribute type is SEC_LIST.

S_AUTHSYSTEM
Defines the user’s authentication method. The attribute type is SEC_CHAR.

Base Operating System (BOS) Runtime Services (A-P) 463

S_HOME
Home directory. The attribute type is SEC_CHAR.

S_SHELL
Initial program run by a user. The attribute type is SEC_CHAR.

S_GECOS
Personal information for a user. The attribute type is SEC_CHAR.

S_USRENV
User-state environment variables. The attribute type is SEC_LIST.

S_SYSENV
Protected-state environment variables. The attribute type is SEC_LIST.

S_LOGINCHK
Specifies whether the user account can be used for local logins. The attribute type is
SEC_BOOL.

S_HISTEXPIRE
Defines the period of time (in weeks) that a user cannot reuse a password. The attribute
type is SEC_INT.

S_HISTSIZE
Specifies the number of previous passwords that the user cannot reuse. The attribute type
is SEC_INT.

S_MAXREPEAT
Defines the maximum number of times a user can repeat a character in a new password.
The attribute type is SEC_INT.

S_MINAGE
Defines the minimum age in weeks that the user’s password must exist before the user
can change it. The attribute type is SEC_INT.

S_PWDCHECKS
Defines the password restriction methods for this account. The attribute type is SEC_LIST.

S_MINALPHA
Defines the minimum number of alphabetic characters required in a new user’s password.
The attribute type is SEC_INT.

S_MINDIFF
Defines the minimum number of characters required in a new password that were not in
the old password. The attribute type is SEC_INT.

S_MINLEN
Defines the minimum length of a user’s password. The attribute type is SEC_INT.

S_MINOTHER
Defines the minimum number of non-alphabetic characters required in a new user’s
password. The attribute type is SEC_INT.

S_DICTIONLIST
Defines the password dictionaries for this account. The attribute type is SEC_LIST.

S_SUCHK
Specifies whether the user account can be accessed with the su command. Type
SEC_BOOL.

S_REGISTRY
Defines the user’s authentication registry. The attribute type is SEC_CHAR.

464 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

S_RLOGINCHK
Specifies whether the user account can be used for remote logins using the telnet or
rlogin commands. The attribute type is SEC_BOOL.

S_DAEMONCHK
Specifies whether the user account can be used for daemon execution of programs and
subsystems using the cron daemon or src. The attribute type is SEC_BOOL.

S_TPATH
Defines how the account may be used on the trusted path. The attribute type is
SEC_CHAR. This attribute must be one of the following values:

nosak The secure attention key is not enabled for this account.

notsh The trusted shell cannot be accessed from this account.

always
This account may only run trusted programs.

on Normal trusted-path processing applies.

S_TTYS
List of ttys that can or cannot be used to access this account. The attribute type is
SEC_LIST.

S_SUGROUPS
Groups that can or cannot access this account. The attribute type is SEC_LIST.

S_EXPIRATION
Expiration date for this account is a string in the form MMDDhhmmyy, where MM is the
month, DD is the day, hh is the hour in 0 to 24 hour notation, mm is the minutes past the
hour, and yy is the last two digits of the year. The attribute type is SEC_CHAR.

S_AUTH1
Primary authentication methods for this account. The attribute type is SEC_LIST.

S_AUTH2
Secondary authentication methods for this account. The attribute type is SEC_LIST.

S_UFSIZE
Process file size soft limit. The attribute type is SEC_INT.

S_UCPU
Process CPU time soft limit. The attribute type is SEC_INT.

S_UDATA
Process data segment size soft limit. The attribute type is SEC_INT.

S_USTACK
Process stack segment size soft limit. Type: SEC_INT.

S_URSS
Process real memory size soft limit. Type: SEC_INT.

S_UCORE
Process core file size soft limit. The attribute type is SEC_INT.

S_UNOFILE
Process file descriptor table size soft limit. The attribute type is SEC_INT.

S_PWD
Specifies the value of the passwd field in the /etc/passwd file. The attribute type is
SEC_CHAR.

Base Operating System (BOS) Runtime Services (A-P) 465

S_UMASK
File creation mask for a user. The attribute type is SEC_INT.

S_LOCKED
Specifies whether the user’s account can be logged into. The attribute type is
SEC_BOOL.

S_ROLES
Defines the administrative roles for this account. The attribute type is SEC_LIST.

S_UFSIZE_HARD
Process file size hard limit. The attribute type is SEC_INT.

S_UCPU_HARD
Process CPU time hard limit. The attribute type is SEC_INT.

S_UDATA_HARD
Process data segment size hard limit. The attribute type is SEC_INT.

S_USREXPORT
Specifies if the DCE registry can overwrite the local user information with the DCE user
information during a DCE export operation. The attribute type is SEC_BOOL.

S_USTACK_HARD
Process stack segment size hard limit. Type: SEC_INT.

S_URSS_HARD
Process real memory size hard limit. Type: SEC_INT.

S_UCORE_HARD
Process core file size hard limit. The attribute type is SEC_INT.

S_UNOFILE_HARD
Process file descriptor table size hard limit. The attribute type is SEC_INT.

attr_flag
The results of the request to read the desired attribute.

attr_un
A union containing the returned values. Its union members that follow correspond to the definitions
of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char
Attributes of type SEC_CHAR and SEC_LIST store a pointer to the returned attribute in
this member when the requested attribute is successfully read. The caller is responsible
for freeing this memory.

un_int Attributes of type SEC_INT and SEC_BOOL store the value of the attribute in this
member when the requested attribute is successfully read.

un_long
Attributes of type SEC_LONG store the value of the attribute in this member when the
requested attribute is successfully read.

un_llong
Attributes of type SEC_LLONG store the value of the attribute in this member when the
requested attribute is successfully read.

attr_domain
The authentication domain containing the attribute. The getuserattrs subroutine is responsible for
managing the memory referenced by this pointer.
If attr_domain is specified for an attribute, the get request is sent only to that domain.
If attr_domain is not specified (that is, set to NULL), getuserattrs searches the domains known to
the system and sets this field to the name of the domain from which the value is retrieved. This

466 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

search space can be restricted with the setauthdb subroutine so that only the domain specified in
the setauthdb call is searched.
If the request for a NULL domain was not satisfied, the request is tried from the local files using
the default stanza.

Use the setuserdb and enduserdb subroutines to open and close the user database. Failure to explicitly
open and close the user database can result in loss of memory and performance.

Parameters

User Specifies the name of the user for which the attributes are to be read.
Attributes A pointer to an array of zero or more elements of type dbattr_t. The list of user attributes is

defined in the usersec.h header file.
Count The number of array elements in Attributes.

Security
Files accessed:

Mode File
rw /etc/passwd
rw /etc/group
rw /etc/security/user
rw /etc/security/limits
rw /etc/security/group
rw /etc/security/environ

Return Values
If User exists, the getuserattrs subroutine returns 0. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error. Each element in the Attributes array must be examined on a
successful call to getuserattrs to determine if the Attributes array entry was successfully retrieved.

Error Codes
The getuserattrs subroutine returns an error that indicates that the user does or does not exist. Additional
errors can indicate an error querying the information databases for the requested attributes.

EINVAL The Count parameter is less than 0.
EINVAL The Attributes parameter is null and the Count parameter is greater than 0.
ENOENT The specified User parameter does not exist.

If the getuserattrs subroutine fails to query an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

EACCES The user does not have access to the attribute specified in the attr_name field.
EINVAL The attr_type field in the Attributes entry contains an invalid type.
EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.
ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

user or group.

Examples
The following sample test program displays the output to a call to getuserattrs. In this example, the
system has a user named foo.

Base Operating System (BOS) Runtime Services (A-P) 467

#include <stdio.h>
#include <usersec.h>

#define NATTR 3
#define USERNAME "foo"

main() {

dbattr_t attributes[NATTR];
int i;
int rc;

memset (&attributes, 0, sizeof(attributes));

/*
* Fill in the attributes array with "id", "expires" and
* "SYSTEM" attributes.
*/

attributes[0].attr_name = S_ID;
attributes[0].attr_type = SEC_INT;;

attributes[1].attr_name = S_ADMIN;
attributes[1].attr_type = SEC_BOOL;

attributes[2].attr_name = S_AUTHSYSTEM;
attributes[2].attr_type = SEC_CHAR;

/*
* Make a call to getuserattrs.
*/

setuserdb(S_READ);

rc = getuserattrs(USERNAME, attributes, NATTR);

enduserdb();

if (rc) {
printf("getuserattrs failed\n");
exit(-1);
}

for (i = 0; i < NATTR; i++) {
printf("attribute name : %s \n", attributes[i].attr_name);
printf("attribute flag : %d \n", attributes[i].attr_flag);

if (attributes[i].attr_flag) {

/*
* No attribute value. Continue.
*/
printf("\n");
continue;
}
/*
* We have a value.
*/
printf("attribute domain : %s \n", attributes[i].attr_domain);
printf("attribute value : ");

switch (attributes[i].attr_type)
{
case SEC_CHAR:
if (attributes[i].attr_char) {

printf("%s\n", attributes[i].attr_char);

468 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

free(attributes[i].attr_char);
}

break;
case SEC_INT:
case SEC_BOOL:

printf("%d\n", attributes[i].attr_int);
break;

default:
break;

}
printf("\n");
}
exit(0);
}

The following output for the call is expected:
attribute name : id
attribute flag : 0
attribute domain : files
attribute value : 206

attribute name : admin
attribute flag : 0
attribute domain : files
attribute value : 0

attribute name : SYSTEM
attribute flag : 0
attribute domain : files
attribute value : compat

Files

/etc/passwd Contains user IDs.

Related Information
The “getgroupattrs Subroutine” on page 381, “getuserpw, putuserpw, or putuserpwhist Subroutine” on page
470, setpwdb Subroutinesetuserdb Subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

GetUserAuths Subroutine

Purpose
Accesses the set of authorizations of a user.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

char *GetUserAuths(void);

Base Operating System (BOS) Runtime Services (A-P) 469

Description
The GetUserAuths subroutine returns the list of authorizations associated with the real user ID and group
set of the process. By default, the ALL authorization is returned for the root user.

Return Values
If successful, the GetUserAuths subroutine returns a list of authorizations associated with the user. The
format of the list is a series of concatenated strings, each null-terminated. A null string terminates the list.
Otherwise, a null pointer is returned and the errno global variable is set to indicate the error.

getuserpw, putuserpw, or putuserpwhist Subroutine

Purpose
Accesses the user authentication data.

Library
Security Library (libc.a)

Syntax
#include <userpw.h>

struct userpw *getuserpw (User)
char *User;

int putuserpw (Password)
struct userpw *Password;

int putuserpwhist (Password, Message)
struct userpw *Password;
char **Message;

Description
These subroutines may be used to access user authentication information. Because of their greater
granularity and extensibility, you should use them instead of the getpwent routines.

The getuserpw subroutine reads the user’s locally defined password information. If the setpwdb
subroutine has not been called, the getuserpw subroutine will call it as setpwdb (S_READ). This can cause
problems if the putuserpw subroutine is called later in the program.

The putuserpw subroutine updates or creates a locally defined password information stanza in the
/etc/security/passwd file. The password entry created by the putuserpw subroutine is used only if there
is an ! (exclamation point) in the /etc/passwd file’s password field. The user application can use the
putuserattr subroutine to add an ! to this field.

The putuserpw subroutine will open the authentication database read/write if no other access has taken
place, but the program should call setpwdb (S_READ | S_WRITE) before calling the putuserpw subroutine.

The putuserpwhist subroutine updates or creates a locally defined password information stanza in the
etc/security/passwd file. The subroutine also manages a database of previous passwords used for
password reuse restriction checking. It is recommended to use the putuserpwhist subroutine, rather than
the putuserpw subroutine, to ensure the password is added to the password history database.

470 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

Password Specifies the password structure used to update the password information for this user. This
structure is defined in the userpw.h file and contains the following members:

upw_name
Specifies the user’s name. (The first eight characters must be unique, since longer names
are truncated.)

upw_passwd
Specifies the user’s password.

upw_lastupdate
Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, January 1, 1970),
when the password was last updated.

upw_flags
Specifies attributes of the password. This member is a bit mask of one or more of the
following values, defined in the userpw.h file.

PW_NOCHECK
Specifies that new passwords need not meet password restrictions in effect for the
system.

PW_ADMCHG
Specifies that the password was last set by an administrator and must be changed
at the next successful use of the login or su command.

PW_ADMIN
Specifies that password information for this user may only be changed by the root
user.

Message Indicates a message that specifies an error occurred while updating the password history database.
Upon return, the value is either a pointer to a valid string within the memory allocated storage or a
null pointer.

User Specifies the name of the user for which password information is read. (The first eight characters
must be unique, since longer names are truncated.)

Security
Files Accessed:

Mode File
rw /etc/security/passwd

Return Values
If successful, the getuserpw subroutine returns a valid pointer to a userpw structure. Otherwise, a null
pointer is returned and the errno global variable is set to indicate the error. If the user exists but there is
no user entry in the /etc/security/passwd file, the getuserpw subroutine returns success with the name
field set to user name, the password field set to NULL, the lastupdate field set to 0 and the flags field set
to 0. If the user exists and there is an entry in the /etc/security/passwd file but one or more fields are
missing, the getuserpw subroutine returns the fields that exist.

If the user exists but there is no user entry in the /etc/security/passwd file, the putuserpw subroutine
creates a user stanza in the /etc/security/passwd file. If the user exists and there is an entry in the
/etc/security/passwd file but one or more fields are missing, the putuserpw subroutine updates the fields
that exist and creates the fields that are missing.

Base Operating System (BOS) Runtime Services (A-P) 471

If successful, the putuserpwhist subroutine returns a value of 0. If the subroutine failed to update or
create a locally defined password information stanza in the /etc/security/passwd file, the putuserpwhist
subroutine returns a nonzero value. If the subroutine was unable to update the password history database,
a message is returned in the Message parameter and a return code of 0 is returned. If the user exists but
there is no user entry in the /etc/security/passwd file, the putuserpwhist subroutine creates a user
stanza in the /etc/security/passwd file and updates the password history. If the user exists and there is
an entry in the /etc/security/passwd file but one or more fields are missing, the putuserpwhist
subroutine updates the fields that exist, creates the fields that are missing and modifies the password
history.

Error Codes
The getuserpw, putuserpw, and putuserpwhist subroutines fail if the following values are true:

EACCES The user is not able to open the files that contain the password attributes.
ENOENT The user does not exist in the /etc/passwd file.

Subroutines invoked by the getuserpw, putuserpw, or putuserpwhist subroutines can also set errors.

Files

/etc/security/passwd Contains user passwords.

Related Information
The “getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine” on page 377, “getuserattr, IDtouser,
nextuser, or putuserattr Subroutine” on page 456, setpwdb or endpwdb subroutine, setuserdb
subroutine.

List of Security and Auditing Subroutines and Subroutines, Example Programs, and Libraries in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

getuserpwx Subroutine

Purpose
Accesses the user authentication data.

Library
Security Library (libc.a)

Syntax
#include <userpw.h>

struct userpwx *getuserpwx (User)
char * User;

Description
The getuserpwx subroutine accesses user authentication information. Because of its greater granularity
and extensibility, use it instead of the getpwent routines.

The getuserpwx subroutine reads the user’s password information from the local administrative domain or
from a loadable authentication module that supports the required user attributes.

472 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The getuserpw subroutine opens the authentication database read-only if no other access has taken
place, but the program should call setpwdb (S_READ) followed by endpwdb after access to the
authentication database is no longer required.

The data returned by getuserpwx is stored in allocated memory and must be freed by the caller when the
data is no longer required. The entire structure can be freed by invoking the free subroutine with the
pointer returned by getuserpwx.

Parameters

User Specifies the name of the user for which password information is read.

Security
Files accessed:

Mode File
r /etc/passwd
r /etc/security/passwd

Return Values
If successful, the getuserpwx subroutine returns a valid pointer to a userpwx structure. Otherwise, a null
pointer is returned and the errno global variable is set to indicate the error. The fields in a userpwx
structure are defined in the userpw.h file, and they include the following members:

upw_name Specifies the user’s name.
upw_passwd Specifies the user’s encrypted password.
upw_lastupdate Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, 1 January

1970), when the password was last updated.
upw_flags Specifies attributes of the password. This member is a bit mask of one or more of

the following values, defined in the userpw.h file:

PW_NOCHECK
Specifies that new passwords need not meet password restrictions in
effect for the system.

PW_ADMCHG
Specifies that the password was last set by an administrator and must
be changed at the next successful use of the login or su command.

PW_ADMIN
Specifies that password information for this user can only be changed by
the root user.

upw_authdb Specifies the administrative domain containing the authentication data.

Error Codes
The getuserpwx subroutine fails if one of the following values is true:

EACCES The user is not able to open the files that contain the password attributes.
ENOENT The user does not have an entry in the /etc/security/passwd file or other

administrative domain.

Subroutines invoked by the getuserpwx subroutine can also set errors.

Base Operating System (BOS) Runtime Services (A-P) 473

Files

/etc/security/passwd Contains user passwords.

Related Information
The “getgroupattrs Subroutine” on page 381, “getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on
page 456, “getuserattrs Subroutine” on page 462, setpwdb Subroutinesetuserdb Subroutine.

getusraclattr, nextusracl or putusraclattr Subroutine

Purpose
Accesses the user screen information in the SMIT ACL database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getusraclattr(User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

char *nextusracl(void)

int putusraclattr(User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

Description
The getusraclattr subroutine reads a specified user attribute from the SMIT ACL database. If the
database is not already open, this subroutine does an implicit open for reading.

Similarly, the putusraclattr subroutine writes a specified attribute into the user SMIT ACL database. If the
database is not already open, this subroutine does an implicit open for reading and writing. Data changed
by the putusraclattr subroutine must be explicitly committed by calling the putusraclattr subroutine with a
Type parameter specifying SEC_COMMIT. Until all the data is committed, only the getusraclattr
subroutine within the process returns written data.

The nextusracl subroutine returns the next user in a linear search of the user SMIT ACL database. The
consistency of consecutive searches depends upon the underlying storage-access mechanism and is not
guaranteed by this subroutine.

The setacldb and endacldb subroutines should be used to open and close the database.

474 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

Attribute Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

S_SCREENS
String of SMIT screens. The attribute type is SEC_LIST.

S_ACLMODE
String specifying the SMIT ACL database search scope. The attribute type is SEC_CHAR.

S_FUNCMODE
String specifying the databases to be searched. The attribute type is SEC_CHAR.

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_CHAR
The format of the attribute is a null-terminated character string.

For the getusraclattr subroutine, the user should supply a pointer to a defined character
pointer variable. For the putusraclattr subroutine, the user should supply a character
pointer.

SEC_LIST
The format of the attribute is a series of concatenated strings, each null-terminated. The
last string in the series must be an empty (zero character count) string.

For the getusraclattr subroutine, the user should supply a pointer to a defined character
pointer variable. For the putusraclattr subroutine, the user should supply a character
pointer.

SEC_COMMIT
For the putusraclattr subroutine, this value specified by itself indicates that changes to
the named user are to be committed to permanent storage. The Attribute and Value
parameters are ignored. If no user is specified, the changes to all modified users are
committed to permanent storage.

SEC_DELETE
The corresponding attribute is deleted from the user SMIT ACL database.

SEC_NEW
Updates the user SMIT ACL database file with the new user name when using the
putusraclattr subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the Attribute and
Type parameters. See the Type parameter for more details.

Return Values
If successful, the getusraclattr returns 0. Otherwise, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
Possible return codes are:

EACCES Access permission is denied for the data request.
ENOENT The specified User parameter does not exist or the attribute is not defined for this user.
ENOATTR The specified user attribute does not exist for this user.
EINVAL The Attribute parameter does not contain one of the defined attributes or null.
EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of attribute.
EPERM Operation is not permitted.

Base Operating System (BOS) Runtime Services (A-P) 475

Related Information
The getgrpaclattr, nextgrpacl, or putgrpaclattr (“getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine” on
page 386) subroutine, setacldb, or endacldb subroutine.

getutent, getutid, getutline, pututline, setutent, endutent, or utmpname
Subroutine

Purpose
Accesses utmp file entries.

Library
Standard C Library (libc.a)

Syntax
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (ID)
struct utmp *ID;

struct utmp *getutline (Line)
struct utmp *Line;

void pututline (Utmp)
struct utmp *Utmp;

void setutent ()

void endutent ()

void utmpname (File)
char *File;

Description
The getutent, getutid, and getutline subroutines return a pointer to a structure of the following type:
struct utmp
> {
> char ut_user[256]; /* User name */
> char ut_id[14]; /* /etc/inittab ID */
> char ut_line[64]; /* Device name (console, lnxx) */
> pid_t ut_pid; /* Process ID */
> short ut_type; /* Type of entry */
> int __time_t_space; /* for 32vs64-bit time_t PPC */
> time_t ut_time; /* time entry was made */
> struct exit_status
> {
> short e_termination; /* Process termination status */
> short e_exit; /* Process exit status */
> }
> ut_exit; /* The exit status of a process
> /* marked as DEAD_PROCESS. */
> char ut_host[256]; /* host name */

476 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

> int __dbl_word_pad; /* for double word alignment */
> int __reservedA[2];
> int __reservedV[6];
> };

The getutent subroutine reads the next entry from a utmp-like file. If the file is not open, this subroutine
opens it. If the end of the file is reached, the getutent subroutine fails.

The pututline subroutine writes the supplied Utmp parameter structure into the utmp file. It is assumed
that the user of the pututline subroutine has searched for the proper entry point using one of the getut
subroutines. If not, the pututline subroutine calls getutid to search forward for the proper place. If so,
pututline does not search. If the pututline subroutine does not find a matching slot for the entry, it adds a
new entry to the end of the file.

The setutent subroutine resets the input stream to the beginning of the file. Issue a setuid call before
each search for a new entry if you want to examine the entire file.

The endutent subroutine closes the file currently open.

The utmpname subroutine changes the name of a file to be examined from /etc/utmp to any other file.
The name specified is usually /var/adm/wtmp. If the specified file does not exist, no indication is given.
You are not aware of this fact until your first attempt to reference the file. The utmpname subroutine does
not open the file. It closes the old file, if currently open, and saves the new file name.

The most current entry is saved in a static structure. To make multiple accesses, you must copy or use the
structure between each access. The getutid and getutline subroutines examine the static structure first. If
the contents of the static structure match what they are searching for, they do not read the utmp file.
Therefore, you must fill the static structure with zeros after each use if you want to use these subroutines
to search for multiple occurrences.

If the pututline subroutine finds that it is not already at the correct place in the file, the implicit read it
performs does not overwrite the contents of the static structure returned by the getutent subroutine, the
getuid subroutine, or the getutline subroutine. This allows you to get an entry with one of these
subroutines, modify the structure, and pass the pointer back to the pututline subroutine for writing.

These subroutines use buffered standard I/O for input. However, the pututline subroutine uses an
unbuffered nonstandard write to avoid race conditions between processes trying to modify the utmp and
wtmp files.

Parameters

ID If you specify a type of RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME in the ID parameter,
the getutid subroutine searches forward from the current point in the utmp file until an entry with
a ut_type matching ID->ut_type is found.
If you specify a type of INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or
DEAD_PROCESS in the ID parameter, the getutid subroutine returns a pointer to the first entry
whose type is one of these four and whose ut_id field matches Id->ut_id. If the end of the file is
reached without a match, the getutid subroutine fails.

Line The getutline subroutine searches forward from the current point in the utmp file until it finds an
entry of type LOGIN_PROCESS or USER_PROCESS that also has a ut_line string matching the
Line->ut_line parameter string. If the end of file is reached without a match, the getutline
subroutine fails.

Utmp Points to the utmp structure.
File Specifies the name of the file to be examined.

Base Operating System (BOS) Runtime Services (A-P) 477

Return Values
These subroutines fail and return a null pointer if a read or write fails due to a permission conflict or
because the end of the file is reached.

Files

/etc/utmp Path to the utmp file, which contains a record of users logged into the system.
/var/adm/wtmp Path to the wtmp file, which contains accounting information about users logged

in.

Related Information
The ttyslot subroutine.

The failedlogin, utmp, or wtmp file.

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or
endvfsent Subroutine

Purpose
Gets a vfs file entry.

Library
Standard C Library(libc.a)

Syntax
#include <sys/vfs.h>
#include <sys/vmount.h>

struct vfs_ent *getvfsent()

struct vfs_ent *getvfsbytype(vfsType)
int vfsType;

struct vfs_ent *getvfsbyname(vfsName)
char *vfsName;

struct vfs_ent *getvfsbyflag(vfsFlag)
int vfsFlag;

void setvfsent()

void endvfsent()

Description
Attention: All information is contained in a static area and so must be copied to be saved.

The getvfsent subroutine, when first called, returns a pointer to the first vfs_ent structure in the file. On
the next call, it returns a pointer to the next vfs_ent structure in the file. Successive calls are used to
search the entire file.

The vfs_ent structure is defined in the vfs.h file and it contains the following fields:

478 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

char vfsent_name;
int vfsent_type;
int vfsent_flags;
char *vfsent_mnt_hlpr;
char *vfsent_fs_hlpr;

The getvfsbytype subroutine searches from the beginning of the file until it finds a vfs type matching the
vfsType parameter. The subroutine then returns a pointer to the structure in which it was found.

The getvfsbyname subroutine searches from the beginning of the file until it finds a vfs name matching
the vfsName parameter. The search is made using flattened names; the search-string uses ASCII
equivalent characters.

The getvfsbytype subroutine searches from the beginning of the file until it finds a type matching the
vfsType parameter.

The getvfsbyflag subroutine searches from the beginning of the file until it finds the entry whose flag
corresponds flags defined in the vfs.h file. Currently, these are VFS_DFLT_LOCAL and
VFS_DFLT_REMOTE.

The setvfsent subroutine rewinds the vfs file to allow repeated searches.

The endvfsent subroutine closes the vfs file when processing is complete.

Parameters

vfsType Specifies a vfs type.
vfsName Specifies a vfs name.
vfsFlag Specifies either VFS_DFLT_LOCAL or VFS_DFLT_REMOTE.

Return Values
The getvfsent, getvfsbytype, getvfsbyname, and getvfsbyflag subroutines return a pointer to a vfs_ent
structure containing the broken-out fields of a line in the /etc/vfs file. If an end-of-file character or an error
is encountered on reading, a null pointer is returned.

Files

/etc/vfs Describes the virtual file system (VFS) installed on the system.

Related Information
The getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent (“getfsent, getfsspec, getfsfile,
getfstype, setfsent, or endfsent Subroutine” on page 371) subroutine.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

getwc, fgetwc, or getwchar Subroutine

Purpose
Gets a wide character from an input stream.

Base Operating System (BOS) Runtime Services (A-P) 479

Library
Standard I/O Package (libc.a)

Syntax
#include <stdio.h>

wint_t getwc (Stream)
FILE *Stream;

wint_t fgetwc (Stream)
FILE *Stream;

wint_t getwchar (void)

Description
The fgetwc subroutine obtains the next wide character from the input stream specified by the Stream
parameter, converts it to the corresponding wide character code, and advances the file position indicator
the number of bytes corresponding to the obtained multibyte character. The getwc subroutine is equivalent
to the fgetwc subroutine, except that when implemented as a macro, it may evaluate the Stream
parameter more than once. The getwchar subroutine is equivalent to the getwc subroutine with stdin (the
standard input stream).

The first successful run of the fgetc (“getc, getchar, fgetc, or getw Subroutine” on page 350), fgets (“gets
or fgets Subroutine” on page 436), fgetwc, fgetws (“getws or fgetws Subroutine” on page 482), fread
(“fread or fwrite Subroutine” on page 313), fscanf, getc (“getc, getchar, fgetc, or getw Subroutine” on page
350), getchar (“getc, getchar, fgetc, or getw Subroutine” on page 350), gets (“gets or fgets Subroutine” on
page 436), or scanf subroutine using a stream that returns data not supplied by a prior call to the ungetc
or ungetwc subroutine marks the st_atime field for update.

Parameters

Stream Specifies input data.

Return Values
Upon successful completion, the getwc and fgetwc subroutines return the next wide character from the
input stream pointed to by the Stream parameter. The getwchar subroutine returns the next wide
character from the input stream pointed to by stdin.

If the end of the file is reached, an indicator is set and WEOF is returned. If a read error occurs, an error
indicator is set, WEOF is returned, and the errno global variable is set to indicate the error.

Error Codes
If the getwc, fgetwc, or getwchar subroutine is unsuccessful because the stream is not buffered or data
needs to be read into the buffer, it returns one of the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the
Stream parameter, delaying the process.

EBADF Indicates that the file descriptor underlying the Stream parameter is not valid and
cannot be opened for reading.

EINTR Indicates that the process has received a signal that terminates the read operation.
EIO Indicates that a physical error has occurred, or the process is in a background process

group attempting to read from the controlling terminal, and either the process is
ignoring or blocking the SIGTTIN signal or the process group is orphaned.

EOVERFLOW Indicates that the file is a regular file and an attempt has been made to read at or
beyond the offset maximum associated with the corresponding stream.

480 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The getwc, fgetwc, or getwchar subroutine is also unsuccessful due to the following error conditions:

ENOMEM Indicates that storage space is insufficient.
ENXIO Indicates that the process sent a request to a nonexistent device, or the device cannot

handle the request.
EILSEQ Indicates that the wc wide-character code does not correspond to a valid character.

Related Information
Other wide character I/O subroutines: getws or fgetws (“getws or fgetws Subroutine” on page 482)
subroutine, putwc, putwchar, or fputwc (“putwc, putwchar, or fputwc Subroutine” on page 1349)
subroutine, putws or fputws (“putws or fputws Subroutine” on page 1351) subroutine, ungetwc
subroutine.

Related standard I/O subroutines: fopen, freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or
fdopen Subroutine” on page 290) subroutine, gets or fgets (“gets or fgets Subroutine” on page 436)
subroutine, fread (“fread or fwrite Subroutine” on page 313) subroutine, fwrite (“fread or fwrite Subroutine”
on page 313) subroutine, printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf (“printf,
fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1178) subroutine,
putc, putchar, fputc, or putw (“putc, putchar, fputc, or putw Subroutine” on page 1331) subroutine, puts
or fputs (“puts or fputs Subroutine” on page 1341) subroutine.

Subroutines, Example Programs, and Libraries and Understanding Wide Character Input/Output
Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

getwd Subroutine

Purpose
Gets current directory path name.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

char *getwd (PathName)
char *PathName;

Description
The getwd subroutine determines the absolute path name of the current directory, then copies that path
name into the area pointed to by the PathName parameter.

The maximum path-name length, in characters, is set by the PATH_MAX value, as specified in the
limits.h file.

Base Operating System (BOS) Runtime Services (A-P) 481

Parameters

PathName Points to the full path name.

Return Values
If the call to the getwd subroutine is successful, a pointer to the absolute path name of the current
directory is returned. If an error occurs, the getwd subroutine returns a null value and places an error
message in the PathName parameter.

In UNIX03 mode, the getwd subroutine returns a null value if the actual path name is longer than the
value defined by PATH_MAX. In the previous mode, the getwd subroutine returns a truncated path name
if the path name is longer than PATH_MAX. The previous behavior can be disabled setting the
environment variable XPG_SUS_ENV=ON.

Related Information
The “getcwd Subroutine” on page 361.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

getws or fgetws Subroutine

Purpose
Gets a string from a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>

wchar_t *fgetws (WString, Number, Stream)
wchar_t *WString;
int Number;
FILE *Stream;

wchar_t *getws (WString)
wchar_t *WString;

Description
The fgetws subroutine reads characters from the input stream, converts them to the corresponding wide
character codes, and places them in the array pointed to by the WString parameter. The subroutine
continues until either the number of characters specified by the Number parameter minus 1 are read or the
subroutine encounters a new-line or end-of-file character. The fgetws subroutine terminates the wide
character string specified by the WString parameter with a null wide character.

The getws subroutine reads wide characters from the input stream pointed to by the standard input
stream (stdin) into the array pointed to by the WString parameter. The subroutine continues until it
encounters a new-line or the end-of-file character, then it discards any new-line character and places a null
wide character after the last character read into the array.

482 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

WString Points to a string to receive characters.
Stream Points to the FILE structure of an open file.
Number Specifies the maximum number of characters to read.

Return Values
If the getws or fgetws subroutine reaches the end of the file without reading any characters, it transfers
no characters to the String parameter and returns a null pointer. If a read error occurs, the getws or
fgetws subroutine returns a null pointer and sets the errno global variable to indicate the error.

Error Codes
If the getws or fgetws subroutine is unsuccessful because the stream is not buffered or data needs to be
read into the stream’s buffer, it returns one or more of the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the Stream
parameter, and the process is delayed in the fgetws subroutine.

EBADF Indicates that the file descriptor specifying the Stream parameter is not a read-access file.
EINTR Indicates that the read operation is terminated due to the receipt of a signal, and either no

data was transferred or the implementation does not report partial transfer for this file.
EIO Indicates that insufficient storage space is available.
ENOMEM Indicates that insufficient storage space is available.
EILSEQ Indicates that the data read from the input stream does not form a valid character.

Related Information
Other wide character I/O subroutines: fgetwc (“getwc, fgetwc, or getwchar Subroutine” on page 479)
subroutine, fputwc (“putwc, putwchar, or fputwc Subroutine” on page 1349) subroutine, fputws (“putws or
fputws Subroutine” on page 1351) subroutine, getwc (“getwc, fgetwc, or getwchar Subroutine” on page
479) subroutine, getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 479) subroutine, putwc
(“putwc, putwchar, or fputwc Subroutine” on page 1349) subroutine, putwchar (“putwc, putwchar, or fputwc
Subroutine” on page 1349) subroutine, putws (“putws or fputws Subroutine” on page 1351) subroutine,
ungetwc subroutine.

Related standard I/O subroutines: fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on
page 290) subroutine, fgetc (“getc, getchar, fgetc, or getw Subroutine” on page 350) subroutine, fgets
(“gets or fgets Subroutine” on page 436) subroutine, fopen (“fopen, fopen64, freopen, freopen64 or fdopen
Subroutine” on page 290) subroutine, fprintf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf,
vsprintf, or vwsprintf Subroutine” on page 1178) subroutine, fputc (“putc, putchar, fputc, or putw
Subroutine” on page 1331) subroutine, fputs (“puts or fputs Subroutine” on page 1341) subroutine, fread
(“fread or fwrite Subroutine” on page 313) subroutine, freopen (“fopen, fopen64, freopen, freopen64 or
fdopen Subroutine” on page 290) subroutine, fscanf subroutine, fwrite (“fread or fwrite Subroutine” on
page 313) subroutine, getc (“getc, getchar, fgetc, or getw Subroutine” on page 350) subroutine, getchar
(“getc, getchar, fgetc, or getw Subroutine” on page 350) subroutine, gets (“gets or fgets Subroutine” on
page 436) subroutine, printf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf
Subroutine” on page 1178) subroutine, putc (“putc, putchar, fputc, or putw Subroutine” on page 1331)
subroutine, putchar (“putc, putchar, fputc, or putw Subroutine” on page 1331) subroutine, puts (“puts or
fputs Subroutine” on page 1341) subroutine, putw (“putc, putchar, fputc, or putw Subroutine” on page
1331) subroutine, scanf subroutine, sprintf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf,
vsprintf, or vwsprintf Subroutine” on page 1178) subroutine, ungetc subroutine.

Understanding Wide Character Input/Output Subroutines and Subroutines, Example Programs, and
Libraries in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 483

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

glob Subroutine

Purpose
Generates path names.

Library
Standard C Library (libc.a)

Syntax
#include <glob.h>

int glob (Pattern, Flags, (Errfunc)(), Pglob)
const char *Pattern;
int Flags;
int *Errfunc (Epath, Eerrno)
const char *Epath;
int Eerrno;
glob_t *Pglob;

Description
The glob subroutine constructs a list of accessible files that match the Pattern parameter.

The glob subroutine matches all accessible path names against this pattern and develops a list of all
matching path names. To have access to a path name, the glob subroutine requires search permission on
every component of a path except the last, and read permission on each directory of any file name
component of the Pattern parameter that contains any of the special characters * (asterisk), ? (question
mark), or [(left bracket). The glob subroutine stores the number of matched path names and a pointer to
a list of pointers to path names in the Pglob parameter. The path names are in sort order, based on the
setting of the LC_COLLATE category in the current locale. The first pointer after the last path name is a
null character. If the pattern does not match any path names, the returned number of matched paths is
zero.

Parameters
Pattern

Contains the file name pattern to compare against accessible path names.

Flags Controls the customizable behavior of the glob subroutine.

The Flags parameter controls the behavior of the glob subroutine. The Flags value is the bitwise
inclusive OR of any of the following constants, which are defined in the glob.h file:

GLOB_APPEND
Appends path names located with this call to any path names previously located. If the
GLOB_APPEND constant is not set, new path names overwrite previous entries in the
Pglob array. The GLOB_APPEND constant should not be set on the first call to the glob
subroutine. It may, however, be set on subsequent calls.

The GLOB_APPEND flag can be used to append a new set of path names to those found
in a previous call to the glob subroutine. If the GLOB_APPEND flag is specified in the
Flags parameter, the following rules apply:

484 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v If the application sets the GLOB_DOOFFS flag in the first call to the glob subroutine, it
is also set in the second. The value of the Pglob parameter is not modified between the
calls.

v If the application did not set the GLOB_DOOFFS flag in the first call to the glob
subroutine, it is not set in the second.

v After the second call, the Pglob parameter points to a list containing the following:

– Zero or more null characters, as specified by the GLOB_DOOFFS flag.

– Pointers to the path names that were in the Pglob list before the call, in the same
order as after the first call to the glob subroutine.

– Pointers to the new path names generated by the second call, in the specified order.

v The count returned in the Pglob parameter is the total number of path names from the
two calls.

v The application should not modify the Pglob parameter between the two calls.

It is the caller’s responsibility to create the structure pointed to by the Pglob parameter.
The glob subroutine allocates other space as needed.

GLOB_DOOFFS
Uses the gl_offs structure to specify the number of null pointers to add to the beginning of
the gl_pathv component of the Pglob parameter.

GLOB_ERR
Causes the glob subroutine to return when it encounters a directory that it cannot open or
read. If the GLOB_ERR flag is not set, the glob subroutine continues to find matches if it
encounters a directory that it cannot open or read.

GLOB_MARK
Specifies that each path name that is a directory should have a / (slash) appended.

GLOB_NOCHECK
If the Pattern parameter does not match any path name, the glob subroutine returns a list
consisting only of the Pattern parameter, and the number of matched patterns is one.

GLOB_NOSORT
Specifies that the list of path names need not be sorted. If the GLOB_NOSORT flag is not
set, path names are collated according to the current locale.

GLOB_QUOTE
If the GLOB_QUOTE flag is set, a \ (backslash) can be used to escape metacharacters.

Errfunc
Specifies an optional subroutine that, if specified, is called when the glob subroutine detects an
error condition.

Pglob Contains a pointer to a glob_t structure. The structure is allocated by the caller. The array of
structures containing the file names matching the Pattern parameter are defined by the glob
subroutine. The last entry is a null pointer.

Epath Specifies the path that failed because a directory could not be opened or read.

Eerrno Specifies the errno value of the failure indicated by the Epath parameter. This value is set by the
opendir, readdir, or stat subroutines.

Return Values
On successful completion, the glob subroutine returns a value of 0. The Pglob parameter returns the
number of matched path names and a pointer to a null-terminated list of matched and sorted path names.
If the number of matched path names in the Pglob parameter is zero, the pointer in the Pglob parameter is
undefined.

Base Operating System (BOS) Runtime Services (A-P) 485

Error Codes
If the glob subroutine terminates due to an error, it returns one of the nonzero constants below. These are
defined in the glob.h file. In this case, the Pglob values are still set as defined in the Return Values
section.

GLOB_ABORTED Indicates the scan was stopped because the GLOB_ERROR flag was set or the
subroutine specified by the errfunc parameter returned a nonzero value.

GLOB_NOSPACE Indicates a failed attempt to allocate memory.

If, during the search, a directory is encountered that cannot be opened or read and the Errfunc parameter
is not a null value, the glob subroutine calls the subroutine specified by the errfunc parameter with two
arguments:

v The Epath parameter specifies the path that failed.

v The Eerrno parameter specifies the value of the errno global variable from the failure, as set by the
opendir, readdir, or stat subroutine.

If the subroutine specified by the Errfunc parameter is called and returns nonzero, or if the GLOB_ERR
flag is set in the Flags parameter, the glob subroutine stops the scan and returns GLOB_ABORTED after
setting the Pglob parameter to reflect the paths already scanned. If GLOB_ERR is not set and either the
Errfunc parameter is null or *errfunc returns zero, the error is ignored.

The Pglob parameter has meaning even if the glob subroutine fails. Therefore, the glob subroutine can
report partial results in the event of an error. However, if the number of matched path names is 0, the
pointer in the Pglob parameter is unspecified even if the glob subroutine did not return an error.

Examples
The GLOB_NOCHECK flag can be used with an application to expand any path name using wildcard
characters. However, the GLOB_NOCHECK flag treats the pattern as just a string by default. The sh
command can use this facility for option parameters, for example.

The GLOB_DOOFFS flag can be used by applications that build an argument list for use with the execv,
execve, or execvp subroutine. For example, an application needs to do the equivalent of ls -l *.c, but
for some reason cannot. The application could still obtain approximately the same result using the
sequence:
globbuf.gl_offs = 2;
glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] ="-l";
execvp ("ls", &globbuf.gl_pathv[0]);

Using the same example, ls -l *.c *.h could be approximated using the GLOB_APPEND flag as
follows:
globbuf.gl_offs = 2;
glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
glob ("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);

The new path names generated by a subsequent call with the GLOB_APPEND flag set are not sorted
together with the previous path names. This is the same way the shell handles path name expansion
when multiple expansions are done on a command line.

Related Information
The exec: execl, execv, execle, execve, execlp, execvp, or exect (“exec: execl, execle, execlp, execv,
execve, execvp, or exect Subroutine” on page 238) subroutine, fnmatch (“fnmatch Subroutine” on page
288) subroutine, opendir, readdir, telldir, seekdir, rewinddir, or closedir (“opendir, readdir, telldir,

486 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

seekdir, rewinddir, closedir, opendir64, readdir64, telldir64, seekdir64, rewinddir64, or closedir64
Subroutine” on page 947) subroutine, statx, stat, lstat, fstatx, fstat, fullstat, or ffullstat subroutine.

The ls command.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

globfree Subroutine

Purpose
Frees all memory associated with the pglob parameter.

Library
Standard C Library (libc.a)

Syntax
#include <glob.h>

void globfree (pglob)
glob_t *pglob;

Description
The globfree subroutine frees any memory associated with the pglob parameter due to a previous call to
the glob subroutine.

Parameters

pglob Structure containing the results of a previous call to the glob subroutine.

Related Information
The glob (“glob Subroutine” on page 484) subroutine.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

grantpt Subroutine

Purpose
Changes the mode and ownership of a pseudo-terminal device.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int grantpt (FileDescriptor)
int FileDescriptor;

Base Operating System (BOS) Runtime Services (A-P) 487

Description
The grantpt subroutine changes the mode and the ownership of the slave pseudo-terminal associated
with the master pseudo-terminal device defined by the FileDescriptor parameter. The user ID of the slave
pseudo-terminal is set to the real UID of the calling process. The group ID of the slave pseudo-terminal is
set to an unspecified group ID. The permission mode of the slave pseudo-terminal is set to readable and
writeable by the owner, and writeable by the group.

Parameters

FileDescriptor Specifies the file descriptor of the master pseudo-terminal device.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The grantpt function may fail if:

EBADF The fildes argument is not a valid open file descriptor.
EINVAL The fildes argument is not associated with a master pseudo-terminal device.
EACCES The corresponding slave pseudo-terminal device could not be accessed.

Related Information
The unlockpt subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

HBA_CloseAdapter Subroutine

Purpose
Closes the adapter opened by the HBA_OpenAdapter subroutine.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

void HBA_CloseAdapter (handle)
HBA_HANDLE handle;

Description
The HBA_CloseAdapter subroutine closes the file associated with the file handle that was the result of a
call to the HBA_OpenAdapter subroutine. The HBA_CloseAdapter subroutine calls the close subroutine,
and applies it to the file handle. After performing the operation, the handle is set to NULL.

Parameters

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

488 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The “HBA_OpenAdapter Subroutine” on page 505.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_FreeLibrary Subroutine

Purpose
Frees all the resources allocated to build the Common HBA API Library.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_FreeLibrary ()

Description
The HBA_FreeLibrary subroutine frees all resources allocated to build the Common HBA API library. This
subroutine must be called after calling any other routine from the Common HBA API library.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

HBA_STATUS_OK A value of 0 on successful
completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

Related Information
The “HBA_LoadLibrary Subroutine” on page 504.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_GetAdapterAttributes, HBA_GetPortAttributes,
HBA_GetDiscoveredPortAttributes, HBA_GetPortAttributesByWWN
Subroutine

Purpose
Gets the attributes of the end device’s adapter, port, or remote port.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Base Operating System (BOS) Runtime Services (A-P) 489

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetAdapterAttributes (handle, hbaattributes)
HBA_STATUS HBA_GetAdapterPortAttributes (handle, portindex, portattributes)
HBA_STATUS HBA_GetDiscoveredPortAttributes (handle, portindex, discoveredportindex, portattributes)
HBA_STATUS HBA_GetPortAttributesByWWN (handle, PortWWN, portattributes)

HBA_HANDLE handle;
HBA_ADAPTERATTRIBUTES *hbaattributes;
HBA_UINT32 portindex;
HBA_PORTATTRIBUTES *portattributes;
HBA_UINT32 discoveredportindex;
HBA_WWN PortWWN;

Description
The HBA_GetAdapterAttributes subroutine queries the ODM and makes system calls to gather
information pertaining to the adapter. This information is returned to the HBA_ADAPTERATTRIBUTES
structure. This structure is defined in the /usr/include/sys/hbaapi.h file.

The HBA_GetAdapterAttributes, HBA_GetAdapterPortAttributes, HBA_GetDiscoveredPortAttributes,
and HBA_GetPortAttributesByWWN subroutines return the attributes of the adapter, port or remote port.

These attributes include:

v Manufacturer

v SerialNumber

v Model

v ModelDescription

v NodeWWN

v NodeSymbolicName

v HardwareVersion

v DriverVersion

v OptionROMVersion

v FirmwareVersion

v VendorSpecificID

v NumberOfPorts

v Drivername

The HBA_GetAdapterPortAttributes, HBA_GetDiscoveredPortAttributes, and
HBA_GetPortAttributesByWWN subroutines also query the ODM and make system calls to gather
information. The gathered information pertains to the port attached to the adapter or discovered on the
network. The attributes are stored in the HBA_PORTATTRIBUTES structure. This structure is defined in
the /usr/include/sys/hbaapi.h file.

These attributes include:

v NodeWWN

v PortWWN

v PortFcId

v PortType

v PortState

v PortSupportedClassofService

v PortSupportedFc4Types

490 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v PortActiveFc4Types

v OSDeviceName

v PortSpeed

v NumberofDiscoveredPorts

v PortSymbolicName

v PortSupportedSpeed

v PortMaxFrameSize

v FabricName

The HBA_GetAdapterPortAttributes subroutine returns the attributes of the attached port.

The HBA_GetDiscoveredPortAttributes, and HBA_GetPortAttributesByWWN subroutines return the
same information. However, these subroutines differ in the way they are called, and in the way they
acquire the information.

Parameters

handle Specifies the open file descriptor obtained from a successful call to the open
subroutine.

hbaatributes Points to an HBA_AdapterAttributes structure, which is used to store information
pertaining to the Host Bus Adapter.

portindex Specifies the index number of the port where the information was obtained.
portattributes Points to an HBA_PortAttributes structure used to store information pertaining to the

port attached to the Host Bus Adapter.
discoveredportindex Specifies the index of the attached port discovered over the network.
PortWWN Specifies the world wide name or port name of the target device.

Return Values
Upon successful completion, the attributes and a value of HBA_STATUS_OK, or 0 are returned.

If no information for a particular attribute is available, a null value is returned for that attribute.
HBA_STATUS_ERROR or 1 is returned if certain ODM queries or system calls fail while trying to retrieve
the attributes.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

HBA_STATUS_OK A value of 0 on successful completion.
HBA_STATUS_ERROR A value of 1 if an error occurred.
HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file

handle.
HBA_STATUS_ERROR_ARG A value of 4 if there was a bad argument.
HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not

recognized.

Related Information
“HBA_GetAdapterName Subroutine” on page 492, and “HBA_GetNumberOfAdapters Subroutine” on page
499.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

Base Operating System (BOS) Runtime Services (A-P) 491

HBA_GetAdapterName Subroutine

Purpose
Gets the name of a Common Host Bus Adapter.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetAdapterName (adapterindex, adaptername)
HBA_UINT32 adapterindex;
char *adaptername;

Description
The HBA_GetAdapterName subroutine gets the name of a Common Host Bus Adapter. The adapterindex
parameter is an index into an internal table containing all FCP adapters on the machine. The adapterindex
parameter is used to search the table and obtain the adapter name. The name of the adapter is returned
in the form of mgfdomain-model-adapterindex. The name of the adapter is used as an argument for the
HBA_OpenAdapter subroutine. From the HBA_OpenAdapter subroutine, the file descriptor will be
obtained where additional Common HBA API routines can then be called using the file descriptor as the
argument.

Parameters

adapterindex Specifies the index of the adapter held in the adapter table for which the name of the adapter
is to be returned.

adaptername Points to a character string that will be used to hold the name of the adapter.

Return Values
Upon successful completion, the HBA_GetAdapterName subroutine returns the name of the adapter and
a 0, or a status code of HBA_STATUS_OK. If unsuccessful, a null value will be returned for adaptername
and an value of 1, or a status code of HBA_STATUS_ERROR.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

HBA_STATUS_OK A value of 0 on successful completion.
HBA_STATUS_ERROR A value of 1 if an error occurred.
HBA_STATUS_ERROR_NOT_SUPPORTED A value of 2 if the function is not supported.
HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file

handle.
HBA_STATUS_ERROR_ARG A value of 4 if there was a bad argument.
HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was

not recognized.
HBA_STATUS_ERROR_ILLEGAL_INDEX A value of 6 if an index was not

recognized.
HBA_STATUS_ERROR_MORE_DATA A value of 7 if a larger buffer is required.
HBA_STATUS_ERROR_STALE_DATA A value of 8 if information has changed

since the last call to the
HBA_RefreshInformation subroutine.

492 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

HBA_STATUS_SCSI_CHECK_CONDITION A value of 9 if a SCSI Check Condition was
reported.

HBA_STATUS_ERROR_BUSY A value of 10 if the adapter was busy or
reserved. Try again later.

HBA_STATUS_ERROR_TRY_AGAIN A value of 11 if the request timed out. Try
again later.

HBA_STATUS_ERROR_UNAVAILABLE A value of 12 if the referenced HBA has
been removed or deactivated.

Related Information
The “HBA_GetNumberOfAdapters Subroutine” on page 499.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_GetEventBuffer Subroutine

Purpose
Removes and returns the next events from the HBA’s event queue.

Syntax
HBA_STATUS HBA_GetEventBuffer(

HBA_HANDLE handle,
HBA_EVENTINFO *pEventBuffer,
HBA_UINT32 *pEventCount,

);

Description
The HBA_GetEventBuffer function removes and returns the next events from the HBA’s event queue.
The number of events returned is the lesser of the value of the EventCount parameter at the time of the
call and the number of entries available in the event queue.

Parameters

handle A handle to an open HBA.
pEventBuffer Pointer to a buffer to receive events.
pEventCount Pointer to the number of event records that fit in the space allocated for the buffer to receive

events. It is set to the size (in event records) of the buffer for receiving events on call, and is
returned as the number of events actually delivered.

Return Values
The value of the HBA_GetEventBuffer function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that no errors were
encountered and pEventCount indicates the number of event records returned. A valid status return value
that most closely describes the result of the function should be returned to indicate a reason with no
required value.

The return values for the following parameters are as follows:

pEventBuffer Remains unchanged. The buffer to which it points contains event records representing
previously undelivered events.

Base Operating System (BOS) Runtime Services (A-P) 493

pEventCount Remains unchanged. The value of the integer to which it points contains the number of
event records that actually were delivered.

Error Codes

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetFC4Statistics Subroutine,” “HBA_GetFCPStatistics Subroutine” on page 496,
“HBA_GetFcpTargetMappingV2 Subroutine” on page 497, “HBA_GetPersistentBindingV2 Subroutine” on
page 500, “HBA_OpenAdapterByWWN Subroutine” on page 505, “HBA_ScsiInquiryV2 Subroutine” on
page 507, “HBA_ScsiReadCapacityV2 Subroutine” on page 509, “HBA_ScsiReportLunsV2 Subroutine” on
page 511, “HBA_SendCTPassThruV2 Subroutine” on page 513, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

HBA_GetFC4Statistics Subroutine

Purpose
Returns traffic statistics for a specific FC-4 protocol through a specific local HBA and local end port.

Syntax
HBA_STATUS HBA_GetFC4Statistics(

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_UINT8 FC4type,
HBA_FC4STATISTICS *statistics

);

Description
The HBA_GetFC4Statistics function returns traffic statistics for a specific FC-4 protocol through a specific
local HBA and local end port.

Note: Basic Link Service, Extended Link Service, and CT each have specific Data Structure TYPE values,
so their traffic can be requested.

Parameters

handle A handle to an open HBA containing the end port for which FC-4 statistics can return.
hbaPortWWN The Port Name of the local HBA end port for which FC-4 statistics can return.
FC4type The Data Structure TYPE assigned by FC-FS to the FC-4 protocol for which FC-4 statistics

are requested.
statistics A pointer to an FC-4 Statistics structure in which the statistics for the specified FC-4 protocol

can be returned.

Return Values
The value of the HBA_GetFC4Statistics function is a valid status return value that indicates the reason
for completion of the requested function. HBA_STATUS_OK is returned to indicate that the statistics for
the specified FC-4 and end port have been returned. A valid status return value that most closely
describes the result of the function should be returned to indicate a reason with no required value.

494 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The return value for the following parameter is as follows:

statistics Remains unchanged. The structure to which it points contains the statistics for the specified FC-4
protocol.

Error Codes

HBA_STATUS_ERROR_ILLEGAL_WWN Indicates that the HBA referenced by handle does not
contain an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_UNSUPPORTED_FC4 Indicates that the specified HBA end port does not
support the specified FC-4 protocol.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFCPStatistics Subroutine” on page 496,
“HBA_GetFcpTargetMappingV2 Subroutine” on page 497, “HBA_GetPersistentBindingV2 Subroutine” on
page 500, “HBA_OpenAdapterByWWN Subroutine” on page 505, “HBA_ScsiInquiryV2 Subroutine” on
page 507, “HBA_ScsiReadCapacityV2 Subroutine” on page 509, “HBA_ScsiReportLunsV2 Subroutine” on
page 511, “HBA_SendCTPassThruV2 Subroutine” on page 513, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

HBA_GetFcpPersistentBinding Subroutine

Purpose
Gets persistent binding information of SCSI LUNs.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetFcpPersistentBinding (handle, binding)
HBA_HANDLE handle;
PHBA_FCPBinding binding;

Description
For the specified HBA_HANDLE, the HBA_GetFcpPersistentBinding subroutine returns the full binding
information of local SCSI LUNs to FCP LUNs for each child of the specified HBA_HANDLE. Applications
must allocate memory for the HBA_FCPBINDING structure, and also pass to the subroutine the number of
entries allocated. If the subroutine determines that the structure is not large enough to represent the full
binding information, it will set the NumberOfEntries variable to the correct value and return an error.

Parameters

handle An HBA_HANDLE to an open adapter.

Base Operating System (BOS) Runtime Services (A-P) 495

binding A pointer to a structure containing the binding information of the handle’s children. The
HBA_FCPBINDING structure has the following form:

struct HBA_FCPBinding {
HBA_UINT32 NumberOfEntries;
HBA_FCPBINDINGENTRY entry[1]; /* Variable length array */

};

The size of the structure is determined by the calling application, and is passed in by the
NumberOfEntries variable.

Return Values
Upon successful completion, HBA_STATUS_OK is returned, and the binding parameter points to the full
binding structure. If the application has not allocated enough space for the full binding,
HBA_STATUS_ERROR_MORE_DATA is returned and the NumberOfEntries field in the binding structure is
set to the correct value.

Error Codes
If there is insufficient space allocated for the full binding. HBA_STATUS_ERROR_MORE_DATA is
returned.

Related Information
The “HBA_GetFcpTargetMapping Subroutine” on page 498.

HBA_GetFCPStatistics Subroutine

Purpose
Returns traffic statistics for a specific OS SCSI logical unit provided by the FCP protocol on a specific local
HBA.

Syntax
HBA_STATUS HBA_GetFCPStatistics(

HBA_HANDLE handle,
const HBA_SCSIID *lunit,
HBA_FC4STATISTICS *statistics

);

Description
The HBA_GetFCPStatistics function returns traffic statistics for a specific OS SCSI logical unit provided
by the FCP protocol on a specific local HBA.

Parameters

handle A handle to an open HBA containing the end port for which FCP-2 statistics can be returned.
lunit Pointer to a structure specifying the OS SCSI logical unit for which FCP-2 statistics are

requested.
statistics Pointer to a FC-4 Statistics structure in which the FCP-2 statistics for the specified logical unit

can be returned.

Return Values
The value of the HBA_GetFCPStatistics function is a valid status return value that indicates the reason
for completion of the requested function. HBA_STATUS_OK is returned to indicate that FCP-2 statistics

496 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

have been returned for the specified HBA. A valid status return value that most closely describes the result
of the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

statistics Remains unchanged. The structure to which it points contains the FCP-2 statistics for the
specified HBA and logical unit.

Error Codes

HBA_STATUS_ERROR_INVALID_LUN The HBA referenced by handle does not support the
logical unit referenced by lunit.

HBA_STATUS_ERROR_UNSUPPORTED_FC4 The specified HBA end port does not support FCP-2.
HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFcpTargetMappingV2 Subroutine,” “HBA_GetPersistentBindingV2 Subroutine” on page 500,
“HBA_OpenAdapterByWWN Subroutine” on page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507,
“HBA_ScsiReadCapacityV2 Subroutine” on page 509, “HBA_ScsiReportLunsV2 Subroutine” on page 511,
“HBA_SendCTPassThruV2 Subroutine” on page 513, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

HBA_GetFcpTargetMappingV2 Subroutine

Purpose
Returns the mapping between OS targets or logical units and FCP targets or logical units offered by the
specified HBA end port at the time the function call is processed.

Syntax
HBA_STATUS HBA_GetFcpTargetMappingV2(

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_FCPTARGETMAPPINGV2 *pMapping

);

Description
The HBA_GetFcpTargetMappingV2 function returns the mapping between OS identification of SCSI
targets or logical units and FCP identification of targets or logical units offered by the specified HBA end
port at the time the function call is processed. Space in the pMapping structure permitting, one mapping
entry is returned for each FCP logical unit represented in the OS and one mapping entry is returned for
each FCP target that is represented in the OS but for which no logical units are represented in the OS. No
target mapping entries are returned to represent FCP objects that are not represented in the OS (that is,
objects that are unmapped).

The mappings returned include a Logical Unit Unique Device Identifier (LUID) for each logical unit that
provides one. For logical units that provide more than one LUID, the LUID returned is the type 3 (FC
Name_Identifier) LUID with the smallest identifier value if any LUID of type 3 is provided; otherwise, the
type 2 (IEEE EUI-64) LUID with the smallest identifier value if any LUID of type 2 is provided; otherwise,
the type 1 (T10 vendor identification) LUID with the smallest identifier value if any LUID of type 1 is
provided; otherwise, the type 0 (vendor specific) LUID with the smallest identifier value. If the logical unit
provides no LUID, the value of the first four bytes of the LUID field are 0.

Base Operating System (BOS) Runtime Services (A-P) 497

Parameters

handle A handle to an open HBA containing the end port for which target mappings are requested.
hbaPortWWN Port Name of the local HBA end port for which target mappings are requested.
pMapping Pointer to an HBA_FCPTARGETMAPPINGV2 structure. The size of this structure shall be

limited by the NumberOfEntries value within the structure.

Return Values
The value of the HBA_GetFcpTargetMappingV2 function is a valid status return value that indicates the
reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that all
mapping entries have been returned for the specified end port. A valid status return value that most closely
describes the result of the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

pMapping Remains unchanged. The structure to which it points contains mapping information from OS
identifications of SCSI logical units to FCP identifications of logical units for the specified local
HBA end port. The number of entries in the structure is the minimum of the number of entries
specified at function call or the full mapping. The value of the NumberOfEntries field of the
returned structure is the total number of mappings the end port has established. This is true even
when the function returns an error stating that the buffer is too small to return all of the
established mappings. An upper-level application can either allocate a sufficiently large buffer and
check this value after a read, or do a read of the NumberOfEntries value separately and allocate a
new buffer given the size to accommodate the entire mapping structure.

Error Codes

HBA_STATUS_ERROR_MORE_DATA More space in the buffer is required to contain mapping
information.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end
port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_SUPPORTED The HBA referenced by handle does not support target
mapping.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetPersistentBindingV2 Subroutine” on page 500,
“HBA_OpenAdapterByWWN Subroutine” on page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507,
“HBA_ScsiReadCapacityV2 Subroutine” on page 509, “HBA_ScsiReportLunsV2 Subroutine” on page 511,
“HBA_SendCTPassThruV2 Subroutine” on page 513, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

HBA_GetFcpTargetMapping Subroutine

Purpose
Gets mapping of OS identification to FCP indentification for each child of the specified HBA_HANDLE.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

498 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetFcpTargetMapping (handle, mapping)
HBA_HANDLE handle;
PHBA_FCPTARGETMAPPING mapping;

Description
For the specified HBA_HANDLE, the HBA_GetFcpTargetMapping subroutine maps OS identification of
all its SCSI logical units to their FCP indentification. Applications must allocate memory for the
HBA_FCPTargetMapping structure, and also pass to the subroutine the number of entries allocated. If the
subroutine determines that the structure is not large enough to represent the entire mapping, it will set the
NumberOfEntries variable to the correct value and return an error.

Parameters

handle An HBA_HANDLE to an open adapter.
mapping A pointer to a structure containing a mapping of the handle’s children. The

HBA_FCPTARGETMAPPING structure has the following form:

struct HBA_FCPTargetMapping (
HBA_UINT32 NumberOfEntries;
HBA_FCPSCSIENTRY entry[1] /* Variable length array containing mappings */
);

The size of the structure is determined by the calling application, and is passed in by the
NumberOfEntries variable.

Return Values
If successful, HBA_STATUS_OK is returned and the mapping parameter points to the full mapping
structure. If the application has not allocated enough space for the full mapping,
HBA_STATUS_ERROR_MORE_DATA is returned, and the NumberOfEntries field in the mapping structure
is set to the correct value.

Error Codes
If there is insufficient space allocated for the full mapping, HBA_STATUS_ERROR_MORE_DATA is
returned.

Related Information
Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_GetNumberOfAdapters Subroutine

Purpose
Returns the number of adapters discovered on the system.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Base Operating System (BOS) Runtime Services (A-P) 499

Syntax
#include <sys/hbaapi.h>

HBA_UINT32 HBA_GetNumberOfAdapters ()

Description
The HBA_GetNumberOfAdapters subroutine returns the number of HBAs supported by the library. The
value returned is the current number of HBAs and reflects dynamic change of the HBA inventory without
requiring a restart of the system, driver, or library.

Return Values
The HBA_GetNumberOfAdapters subroutine returns an integer representing the number of adapters on
the machine.

Related Information
The “HBA_GetAdapterName Subroutine” on page 492.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_GetPersistentBindingV2 Subroutine

Purpose
Returns persistent bindings between an FCP target and a SCSI ID for a specified HBA end port.

Syntax
HBA_STATUS HBA_GetPersistentBindingV2(

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_FCPTARGETMAPPINGV2 *binding

);

Description
The HBA_GetFcpPersistentBindingV2 function returns persistent bindings between an FCP target and a
SCSI ID for a specified HBA end port. The binding information can include bindings to Logical Unit Unique
Device Identifiers (LUIDs).

Parameters

handle A handle to an open HBA containing the end port for which persistent binding can be returned.
hbaPortWWN The Port Name of the local HBA end port for which persistent binding can be returned.
binding Pointer to an HBA_FCPBINDING2 structure. The NumberOfEntries field in the structure limits

the number of entries that are returned.

Return Values
The value of the HBA_GetPersistentBindingV2 function is a valid status return value that indicates the
reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that all binding
entries have been returned for the specified end port. A valid status return value that most closely
describes the result of the function should be returned to indicate a reason with no required value.

500 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The return value for the following parameter is as follows:

binding Remains unchanged. The structure to which it points contains binding information from OS
identifications of SCSI logical units to FCP and LUID identifications of logical units for the specified
HBA end port. The number of entries in the structure is the minimum of the number of entries
specified at function call or the full set of bindings. The NumberOfEntries field contains the total
number of bindings established by the end port. An application can either call
HBA_GetPersistentBindingV2 with NumberOfEntries set to 0 to retrieve the number of entries
available, or allocate a sufficiently large buffer to retrieve entries at first call. The Status field of
each HBA_FCPBINDINGENTRY2 substructure is 0.

Error Codes

HBA_STATUS_ERROR_MORE_DATA More space in the buffer is required to contain binding
information.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end
port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_SUPPORTED The HBA referenced by handle does not support
persistent binding.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_OpenAdapterByWWN Subroutine” on page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507,
“HBA_ScsiReadCapacityV2 Subroutine” on page 509, “HBA_ScsiReportLunsV2 Subroutine” on page 511,
“HBA_SendCTPassThruV2 Subroutine” on page 513, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

HBA_GetPortStatistics Subroutine

Purpose
Gets the statistics for a Host Bus Adapter (HBA).

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetPortStatistics (handle, portindex, portstatistics)
HBA_HANDLE handle;
HBA_UINT32 portindex;
HBA_PORTSTATISTICS *portstatistics;

Description
The HBA_GetPortStatistics subroutine retrieves the statistics for the specified adapter. Only single-port
adapters are supported, and the portindex parameter is disregarded. The exact meaning of events being
counted for each statistic is vendor specific. The HBA_PORTSTATISTICS structure includes the following
fields:

v SecondsSinceLastReset

Base Operating System (BOS) Runtime Services (A-P) 501

v TxFrames

v TxWords

v RxFrames

v RxWords

v LIPCount

v NOSCount

v ErrorFrames

v DumpedFrames

v LinkFailureCount

v LossOfSyncCount

v LossOfSignalCount

v PrimitiveSeqProtocolErrCount

v InvalidTxWordCount

v InvalidCRCCount

Parameters

handle HBA_HANDLE to an open adapter.
portindex Not used.
portstatistics Pointer to an HBA_PORTSTATISTICS structure.

Return Values
Upon successful completion, HBA_STATUS_OK is returned. If the subroutine is unable to retrieve the
statistics for an HBA, it returns HBA_STATUS_ERROR.

HBA_GetRNIDMgmtInfo Subroutine

Purpose
Sends a SCSI GET RNID command to a remote port of the end device.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_GetRNIDMgmtInfo (handle, pInfo)
HBA_HANDLE handle;
HBA_MGMTINFO *pInfo;

Description
The HBA_SetRNIDMgmtInfo subroutine sends a SCSI GET RNID (Request Node Identification Data)
command through a call to ioctl with the SCIOLCHBA operation as its argument. The arg parameter for
the SCIOLCHBA operation is the address of a scsi_chba structure. This structure is defined in the
/usr/include/sys/scsi_buf.h file. The scsi_chba parameter block allows the caller to select the GET RNID
command to be sent to the adapter. The pInfo structure stores the RNID data returned from SCIOLCHBA.
The pInfo structure is defined in the /usr/include/sys/hbaapi.h file. The structure includes:

v wwn

v unittype

502 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v PortId

v NumberOfAttachedNodes

v IPVersion

v UDPort

v IPAddress

v reserved

v TopologyDiscoveryFlags

If successful, the GET RNID data in pInfo is returned from the adapter.

Parameters

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.
pInfo Specifies the structure containing the information to get or set from the RNID command

Return Values
Upon successful completion, the HBA_GetRNIDMgmtInfo subroutine returns a pointer to a structure
containing the data from the GET RNID command and a value of HBA_STATUS_OK, or a value of 0. If
unsuccessful, a null value is returned along with a value of HBA_STATUS_ERROR, or a value of 1.

Upon successful completion, the HBA_SetRNIDMgmtInfo subroutine returns a value of
HBA_STATUS_OK, or a value of 0. If unsuccessful, an HBA_STATUS_ERROR value, or a value of 1 is
returned.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

HBA_STATUS_OK A value of 0 on successful completion.
HBA_STATUS_ERROR A value of 1 if an error occurred.
HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

Related Information
“HBA_SendScsiInquiry Subroutine” on page 523, “HBA_SendReadCapacity Subroutine” on page 514,
“HBA_SendCTPassThru Subroutine” on page 512, “HBA_SendReportLUNs Subroutine” on page 515,
“HBA_SendRNID Subroutine” on page 518, and “HBA_SetRNIDMgmtInfo Subroutine” on page 525.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Special Files in AIX 5L Version 5.3 Files Reference.

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI
Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error
Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

HBA_GetVersion Subroutine

Purpose
Returns the version number of the Common HBA API.

Base Operating System (BOS) Runtime Services (A-P) 503

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_UINT32 HBA_GetVersion ()

Description
The HBA_GetVersion subroutine returns the version number representing the release of the Common
HBA API.

Return Values
Upon successful completion, the HBA_GetVersion subroutine returns an integer value designating the
version number of the Common HBA API.

Related Information
“HBA_LoadLibrary Subroutine” and “HBA_FreeLibrary Subroutine” on page 489.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_LoadLibrary Subroutine

Purpose
Loads a vendor specific library from the Common HBA API.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_LoadLibrary ()

Description
The HBA_LoadLibrary subroutine loads a vendor specific library from the Common HBA API. This library
must be called first before calling any other routine from the Common HBA API.

Return Values
The HBA_LoadLibrary subroutine returns a value of 0, or HBA_STATUS_OK.

Related Information
The “HBA_FreeLibrary Subroutine” on page 489.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

504 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

HBA_OpenAdapter Subroutine

Purpose
Opens the specified adapter for reading.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_HANDLE HBA_OpenAdapter (adaptername)
char *adaptername;

Description
The HBA_OpenAdapter subroutine opens the adapter for reading for the purpose of getting it ready for
additional calls from other subroutines in the Common HBA API.

The HBA_OpenAdapter subroutine allows an application to open a specified HBA device, giving the
application access to the device through the HBA_HANDLE return value. The library ensures that all
access to this HBA_HANDLE between HBA_OpenAdapter and HBA_CloseAdapter calls is to the same
device.

Parameters

adaptername Specifies a string that contains the description of the adapter as returned by the
HBA_GetAdapterName subroutine.

Return Values
If successful, the HBA_OpenAdapter subroutine returns an HBA_HANDLE with a value greater than 0. If
unsuccessful, the subroutine returns a 0.

Related Information
“HBA_CloseAdapter Subroutine” on page 488, and “HBA_GetAdapterName Subroutine” on page 492.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_OpenAdapterByWWN Subroutine

Purpose
Attempts to open a handle to the HBA that contains a Node_Name or N_Port_Name matching the wwn
argument.

Syntax
HBA_STATUS HBA_OpenAdapterByWWN(

HBA_HANDLE *pHandle,
HBA_WWN wwn

);

Base Operating System (BOS) Runtime Services (A-P) 505

Description
The HBA_OpenAdapterByWWN function attempts to open a handle to the HBA that contains a
Node_Name or N_Port_Name matching the wwn argument. The specified Name_Identifier matches the
Node_Name or N_Port_Name of the HBA. Discovered end ports (remote end ports) are not checked for a
match.

Parameters

pHandle Pointer to a handle. The value at entry is irrelevant.
wwn Name_Identifier to match the Node_Name or N_Port_Name of the HBA to open.

Return Values
The value of the HBA_OpenAdapterByWWN function is a valid status return value that indicates the
reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that the handle
contains a valid HBA handle.

The return values for the following parameter is as follows:

pHandle Remains unchanged. If the open succeeds, the value to which it points is a handle to the
requested HBA. On failure, the value is undefined.

Error Codes

HBA_STATUS_ERROR_ILLEGAL_WWN There is no HBA with a Node_Name or N_Port_Name
that matches wwn.

HBA_STATUS_ERROR_AMBIGUOUS_WWN Multiple HBAs have a matching Name_Identifier. This
can occur if the Node_Names of multiple HBAs are
identical.

HBA_STATUS_ERROR Returned to indicate any other problem with opening the
HBA.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_GetPersistentBindingV2 Subroutine” on page 500, “HBA_ScsiInquiryV2 Subroutine” on page
507, “HBA_ScsiReadCapacityV2 Subroutine” on page 509, “HBA_ScsiReportLunsV2 Subroutine” on page
511, “HBA_SendCTPassThruV2 Subroutine” on page 513, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

HBA_RefreshInformation Subroutine

Purpose
Refreshes stale information from the Host Bus Adapter.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

506 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <sys/hbaapi.h>

void HBA_RefreshInformation (handle)
HBA_HANDLE handle;

Description
The HBA_RefreshInformation subroutine refreshes stale information from the Host Bus Adapter. This
would reflect changes to information obtained from calls to the HBA_GetAdapterPortAttributes, or
HBA_GetDiscoveredPortAttributes subroutine. Once the application calls the HBA_RefreshInformation
subroutine, it can proceed to the attributes’s call to get the new data.

Parameters

handle Specifies the open file descriptor obtained from a successful call to the open subroutine for which the
refresh operation is to be performed.

Related Information
Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_ScsiInquiryV2 Subroutine

Purpose
Sends a SCSI INQUIRY command to a remote end port.

Syntax
HBA_STATUS HBA_ScsiInquiryV2 (

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_WWN discoveredPortWWN,
HBA_UINT64 fcLUN,
HBA_UINT8 CDB_Byte1,
HBA_UINT8 CDB_Byte2,
void *pRspBuffer,
HBA_UINT32 *pRspBufferSize,
HBA_UINT8 *pScsiStatus,
void *pSenseBuffer,
HBA_UINT32 *pSenseBufferSize

);

Description
The HBA_ScsiInquiryV2 function sends a SCSI INQUIRY command to a remote end port.

A SCSI command is never sent to an end port that does not have SCSI target functionality. If sending a
SCSI command causes a SCSI overlapped command condition with a correctly operating target, the
command does not get sent. Proper use of tagged commands is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

Parameters

handle Open HBA through which the SCSI INQUIRY command can be issued.
hbaPortWWN The Port Name for a local HBA end port through which the SCSI INQUIRY command can

be issued.

Base Operating System (BOS) Runtime Services (A-P) 507

discoveredPortWWN The Port Name for an end port to which the SCSI INQUIRY command can be sent.
fcLUN The SCSI LUN to which the SCSI INQUIRY command can be sent.
CDB_Byte1 The second byte of the CDB for the SCSI INQUIRY command. This contains control flag

bits. At the time this standard was written, the effects of the value of CDB_Byte1 on a
SCSI INQUIRY command were as follows:

v 0

– Requests the standard SCSI INQUIRY data.

v 1

– Requests the vital product data (EVPD) specified by CDB_Byte2.

v 2

– Requests command support data (CmdDt) for the command specified in
CDB_Byte2.

v Other values

– Can cause SCSI Check Condition.
CDB_Byte2 The third byte of the CDB for the SCSI INQUIRY command. If CDB_Byte1 is 1,

CDB_Byte2 is the Vital Product Data page code to request. If CDB_Byte1 is 2,
CDB_Byte2 is the Operation Code of the command support data requested. For other
values of CDB_Byte1, the value of CDB_Byte2 is unspecified, and values other than 0
can cause a SCSI Check Condition.

pRspBuffer A pointer to a buffer to receive the SCSI INQUIRY command response.
pRspBufferSize A pointer to the size in bytes of the buffer to receive the SCSI INQUIRY command

response.
pScsiStatus A pointer to a buffer to receive SCSI status.
pSenseBuffer A pointer to a buffer to receive SCSI sense data.
pSenseBufferSize A pointer to the size in bytes of the buffer to receive SCSI sense data.

Return Values
The value of the HBA_ScsiInquiryV2 function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete payload
of a reply to the SCSI INQUIRY command has been returned. A valid status return value that most closely
describes the result of the function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

pRspBuffer Remains unchanged. If the function value is HBA_STATUS_OK, the buffer to which it points
contains the response to the SCSI INQUIRY command.

pRspBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the
response returned by the command. This cannot exceed the size passed as an argument at
this pointer.

pScsiStatus Remains unchanged. The value of the byte to which it points is the SCSI status. If the
function value is HBA_STATUS_OK or HBA_STATUS_SCSI_CHECK_CONDITION, the
value of the SCSI status can be interpreted based on the SCSI spec. A SCSI status of
HBA_STATUS_OK indicates that a SCSI response is in the response buffer. A SCSI status
of HBA_STATUS_SCSI_CHECK_CONDITION indicates that no value is stored in the
response, and the sense buffer contains failure information if available.

pSenseBuffer Remains unchanged. If the function value is HBA_STATUS_SCSI_CHECK_CONDITION, the
buffer to which it points contains the sense data for the command.

pSenseBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the
sense information returned by the command. This cannot exceed the size passed as an
argument at this pointer.

508 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end
port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_A_TARGET The identified remote end port does not have SCSI
Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY Unable to send the requested command without causing
a SCSI overlapped command condition.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_GetPersistentBindingV2 Subroutine” on page 500, “HBA_OpenAdapterByWWN Subroutine” on
page 505, “HBA_ScsiReadCapacityV2 Subroutine,” “HBA_ScsiReportLunsV2 Subroutine” on page 511,
“HBA_SendCTPassThruV2 Subroutine” on page 513, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

HBA_ScsiReadCapacityV2 Subroutine

Purpose
Sends a SCSI READ CAPACITY command to a remote end port.

Syntax
HBA_STATUS HBA_ScsiReadCapacityV2(

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_WWN discoveredPortWWN,
HBA_UINT64 fcLUN,
void *pRspBuffer,
HBA_UINT32 *pRspBufferSize,
HBA_UINT8 *pScsiStatus,
void *pSenseBuffer,
HBA_UINT32 *pSenseBufferSize

);

Description
The HBA_ScsiReadCapacityV2 function sends a SCSI READ CAPACITY command to a remote end port.

A SCSI command is never sent to an end port that does not have SCSI target functionality. If sending a
SCSI command causes a SCSI overlapped command condition with a correctly operating target, the
command will not be sent. Proper use of tagged commands is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

Parameters

handle A handle to an open HBA through which the SCSI READ CAPACITY command is issued.
hbaPortWWN The Port Name for a local HBA end port through which the SCSI READ CAPACITY command

is issued.
discoveredPortWWN The Port Name for an end port to which the SCSI READ CAPACITY command is sent.
fcLUN The SCSI LUN to which the SCSI READ CAPACITY command is sent.
pRspBuffer Pointer to a buffer to receive the SCSI READ CAPACITY command response.

Base Operating System (BOS) Runtime Services (A-P) 509

pRspBufferSize Pointer to the size in bytes of the buffer to receive the SCSI READ CAPACITY command
response.

pScsiStatus Pointer to a buffer to receive SCSI status.
pSenseBuffer Pointer to a buffer to receive SCSI sense data.
pSenseBufferSize Pointer to the size in bytes of the buffer to receive SCSI sense data.

Return Values
The value of the HBA_ScsiReadCapacityV2 function is a valid status return value that indicates the
reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that the
complete payload of a reply to the SCSI READ CAPACITY command has been returned. A valid status
return value that most closely describes the result of the function should be returned to indicate a reason
with no required value.

The return values for the following parameters are as follows:

pRspBuffer Remains unchanged. If the function value is HBA_STATUS_OK, the buffer to which it
points contains the response to the SCSI READ CAPACITY command.

pRspBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the
response returned by the command. This cannot exceed the size passed as an argument
at this pointer.

pScsiStatus Remains unchanged. The value of the byte to which it points is the SCSI status. If the
function value is HBA_STATUS_OK or HBA_STATUS_SCSI_CHECK_CONDITION, the
value of the SCSI status can be interpreted based on the SCSI spec. A SCSI status of
HBA_STATUS_OK indicates that a SCSI response is in the response buffer. A SCSI
status of HBA_STATUS_SCSI_CHECK_CONDITION indicates that no value is stored in
the response, and the sense buffer contains failure information if available.

pSenseBuffer Remains unchanged. If the function value is HBA_STATUS_SCSI_CHECK_CONDITION,
the buffer to which it points contains the sense data for the command.

pSenseBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the
sense information returned by the command. This cannot exceed the size passed as an
argument at this pointer.

Error Codes

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end
port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_A_TARGET The identified remote end port does not have SCSI
Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY Unable to send the requested command without causing
a SCSI overlapped command condition.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_GetPersistentBindingV2 Subroutine” on page 500, “HBA_OpenAdapterByWWN Subroutine” on
page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507, “HBA_ScsiReportLunsV2 Subroutine” on page
511, “HBA_SendCTPassThruV2 Subroutine” on page 513, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

510 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

HBA_ScsiReportLunsV2 Subroutine

Purpose
Sends a SCSI REPORT LUNS command to Logical Unit Number 0 of a remote end port.

Syntax
HBA_STATUS HBA_ScsiReportLUNsV2(

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_WWN discoveredPortWWN,
void *pRspBuffer,
HBA_UINT32 *pRspBufferSize,
HBA_UINT8 *pScsiStatus,
void *pSenseBuffer,
HBA_UINT32 *pSenseBufferSize

);

Description
The HBA_ScsiReportLunsV2 function shall send a SCSI REPORT LUNS command to Logical Unit
Number 0 of a remote end port.

A SCSI command is never sent to an end port that does not have SCSI target functionality. If sending a
SCSI command causes a SCSI overlapped command condition with a correctly operating target, the
command will not be sent. Proper use of tagged commands is an acceptable means of avoiding a SCSI
overlapped command condition with targets that support tagged commands.

Parameters

handle A handle to an open HBA through which the SCSI REPORT LUNS command is issued.
hbaPortWWN The Port Name for a local HBA end port through which the SCSI REPORT LUNS command is

issued.
discoveredPortWWN The Port Name for an end port to which the SCSI REPORT LUNS command is sent.
pRspBuffer Pointer to a buffer to receive the SCSI REPORT LUNS command response.
pRspBufferSize Pointer to the size in bytes of the buffer to receive the SCSI REPORT LUNS command

response.
pScsiStatus Pointer to a buffer to receive SCSI status.
pSenseBuffer Pointer to a buffer to receive SCSI sense data.
pSenseBufferSize Pointer to the size in bytes of the buffer to receive SCSI sense data.

Return Values
The value of the HBA_ScsiReportLunsV2 function is a valid status return value that indicates the reason
for completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete
payload of a reply to the SCSI REPORT LUNS command has been returned. A valid status return value
that most closely describes the result of the function should be returned to indicate a reason with no
required value.

The return values for the following parameters are as follows:

pRspBuffer Remains unchanged. If the function value is HBA_STATUS_OK, the buffer to which it
points contains the response to the SCSI REPORT LUNS command.

pRspBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the
response returned by the command. This cannot exceed the size passed as an argument
at this pointer.

Base Operating System (BOS) Runtime Services (A-P) 511

pScsiStatus Remains unchanged. The value of the byte to which it points is the SCSI status. If the
function value is HBA_STATUS_OK or HBA_STATUS_SCSI_CHECK_CONDITION, the
value of the SCSI status can be interpreted based on the SCSI spec. A SCSI status of
HBA_STATUS_OK indicates that a SCSI response is in the response buffer. A SCSI
status of HBA_STATUS_SCSI_CHECK_CONDITION indicates that no value is stored in
the response, and the sense buffer contains failure information if available.

pSenseBuffer Remains unchanged. If the function value is HBA_STATUS_SCSI_CHECK_CONDITION,
the buffer to which it points contains the sense data for the command.

pSenseBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the
sense information returned by the command. This cannot exceed the size passed as an
argument at this pointer.

Error Codes

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end
port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_A_TARGET The identified remote end port does not have SCSI
Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY Unable to send the requested command without causing
a SCSI overlapped command condition.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_GetPersistentBindingV2 Subroutine” on page 500, “HBA_OpenAdapterByWWN Subroutine” on
page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507, “HBA_ScsiReadCapacityV2 Subroutine” on page
509, “HBA_SendCTPassThruV2 Subroutine” on page 513, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

HBA_SendCTPassThru Subroutine

Purpose
Sends a CT pass through frame.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendCTPassThru (handle, pReqBuffer, ReqBufferSize, pRspBuffer, RspBufferSize)
HBA_HANDLE handle;
void *pReqBuffer;
HBA_UINT32 ReqBufferSize;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;

Description
The HBA_SendCTPassThru subroutine sends a CT pass through frame to a fabric connected to the
specified handle. The CT frame is routed in the fabric according to the GS_TYPE field in the CT frame.

512 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

handle HBA_HANDLE to an open adapter.
pReqBuffer Pointer to a buffer that contains the CT request.
ReqBufferSize Size of the request buffer.
pRspBuffer Pointer to a buffer that receives the response of the command.
RspBufferSize Size of the response buffer.

Return Values
If successful, HBA_STATUS_OK is returned, and the pRspBuffer parameter points to the CT response.

Error Codes
If the adapter specified by the handle parameter is connected to an arbitrated loop, the
HBA_SendCTPassThru subroutine returns HBA_STATUS_ERROR_NOT_SUPPORTED. This subroutine
is only valid when connected to a fabric.

Related Information
Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_SendCTPassThruV2 Subroutine

Purpose
Sends a CT request payload.

Syntax
HBA_STATUS HBA_SendCTPassThruV2(

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
void *pReqBuffer,
HBA_UINT32 *ReqBufferSize,
void *pRspBuffer,
HBA_UINT32 *pRspBufferSize,

);

Description
The HBA_SendCTPassThruV2 function sends a CT request payload. An HBA should decode this CT_IU
request by, routing the CT frame in a fabric according to the GS_TYPE field within the CT frame.

Parameters

handle A handle to an open HBA through which the CT request is issued.
hbaPortWWN The Port Name for a local HBA Nx_Port through which the CT request is issued.
pReqBuffer Pointer to a buffer containing the full CT payload, including the CT header, to be sent with byte

ordering.
ReqBufferSize The size of the full CT payload, including the CT header, in bytes.
pRSPBuffer Pointer to a buffer for the CT response.
pRSPBufferSize Pointer to the size in bytes of the buffer for the CT response payload.

Base Operating System (BOS) Runtime Services (A-P) 513

Return Values
The value of the SendCTPassThruV2 function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete reply to
the CT Passthru command has been returned. A valid status return value that most closely describes the
result of the function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

pRspBuffer Remains unchanged. The buffer to which it points contains the CT response payload,
including the CT header received in response to the frame sent, with byte ordering. If the
size of the actual response exceeds the size of the response buffer, trailing data is
truncated from the response so that the returned data equals the size of the buffer.

pRspBufferSize Remains unchanged. The value of the integer to which it points is set to the size (in
bytes) of the actual response data.

Error Codes

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an
Nx_Port with Port Name hbaPortWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_GetPersistentBindingV2 Subroutine” on page 500, “HBA_OpenAdapterByWWN Subroutine” on
page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507, “HBA_ScsiReadCapacityV2 Subroutine” on page
509, “HBA_ScsiReportLunsV2 Subroutine” on page 511, “HBA_SendRLS Subroutine” on page 517,
“HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521, “HBA_SendRPS
Subroutine” on page 522

HBA_SendReadCapacity Subroutine

Purpose
Sends a SCSI READ CAPACITY command to a Fibre Channel port.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendReadCapacity (handle, portWWN, fcLUN, pRspBuffer, RspBufferSize, pSenseBuffer,
SenseBufferSize)
HBA_HANDLE handle;
HBA_WWN portWWN;
HBA_UINT64 fcLUN;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;
void *pSenseBuffer;
HBA_UINT32 SenseBufferSize;

514 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The HBA_SendReadCapacity subroutine sends a SCSI READ CAPACITY command to the Fibre
Channel port connected to the handle parameter and specified by the portWWN and fcLUN parameters.

Parameters

handle HBA_HANDLE to an open adapter.
portWWN Port world-wide name of an adapter.
fcLUN Fibre Channel LUN to send the SCSI READ CAPACITY command to.
pRspBuffer Pointer to a buffer that receives the response of the command.
RspBufferSize Size of the response buffer.
pSenseBuffer Pointer to a buffer that receives sense information.
SenseBufferSize Size of the sense buffer.

Return Values
If successful, HBA_STATUS_OK is returned and the pRspBuffer parameter points to the response to the
READ CAPACITY command. If an error occurs, HBA_STATUS_ERROR is returned.

Error Codes
If the portWWN value is not a valid world-wide name connected to the specified handle,
HBA_STATUS_ERROR_ILLEGAL_WWN is returned. On any other types of failures,
HBA_STATUS_ERROR is returned.

Related Information
The “HBA_SendScsiInquiry Subroutine” on page 523.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define
devices.

HBA_SendReportLUNs Subroutine

Purpose
Sends a SCSI REPORT LUNs command to a remote port of the end device.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendReportLUNs (handle, PortWWN, pRspBuffer, RspBufferSize, pSenseBuffer, SenseBufferSize)
HBA_HANDLE handle;
HBA_WWN PortWWN;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;
void *pSenseBuffer;
HBA_UINT32 SenseBufferSize;

Description
The HBA_SendReportLUNs subroutine sends a SCSI REPORT LUNs command through a call to ioctl
with the SCIOLCMD operation as its argument. The arg parameter for the SCIOLCMD operation is the
address of a scsi_iocmd structure. This structure is defined in the /usr/include/sys/scsi_buf.h file. The

Base Operating System (BOS) Runtime Services (A-P) 515

scsi_iocmd parameter block allows the caller to select the SCSI and LUN IDs to be queried. The caller
also specifies the SCSI command descriptor block area, command length (SCSI command block length),
the time-out value for the command, and a flags field.

If successful, the report LUNs data is returned in pRspBuffer. The returned report LUNs data must be
examined to see if the requested LUN exists.

Parameters

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.
PortWWN Specifies the world wide name or port name of the target device.
pRspBuffer Points to a buffer containing the requested instruction for a send/read capacity request to an

open adapter.
RspBufferSize Specifies the size of the buffer to the pRspBuffer parameter.
pSenseBuffer Points to a buffer containing the data returned from a send/read capacity request to an open

adapter.
SenseBufferSize Specifies the size of the buffer to the pSenseBuffer parameter.

Return Values
Upon successful completion, the HBA_SendReportLUNs subroutine returns a buffer in bytes containing
the SCSI report of LUNs, a buffer containing the SCSI sense data, and a value of HBA_STATUS_OK, or a
value of 0.

If unsuccessful, an empty buffer for the SCSI report of LUNs, a response buffer containing the failure, and
a value of HBA_STATUS_ERROR, or a value of 1 is returned.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

HBA_STATUS_OK A value of 0 on successful completion.
HBA_STATUS_ERROR A value of 1 if an error occurred.
HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.
HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not recognized.
HBA_STATUS_SCSI_CHECK_CONDITION A value of 9 if a SCSI Check Condition was reported.

Related Information
“HBA_SendScsiInquiry Subroutine” on page 523, “HBA_SendReadCapacity Subroutine” on page 514,
“HBA_SendCTPassThru Subroutine” on page 512, “HBA_SendRNID Subroutine” on page 518,
“HBA_SetRNIDMgmtInfo Subroutine” on page 525, and “HBA_GetRNIDMgmtInfo Subroutine” on page
502.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Special Files in AIX 5L Version 5.3 Files Reference.

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI
Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error
Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

516 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

HBA_SendRLS Subroutine

Purpose
Issues a Read Link Error Status Block (RLS) Extended Link Service through the specified HBA end port.

Syntax
HBA_STATUS HBA_SendRLS (

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_WWN destWWN,
void *pRspBuffer,
HBA_UINT32 *pRspBufferSize,

);

Description
The HBA_SendRLS function issues a Read Link Error Status Block (RLS) Extended Link Service through
the specified HBA end port to request a specified remote FC_Port to return the Link Error Status Block
associated with the destination Port Name.

Parameters

handle A handle to an open HBA through which the ELS is sent.
hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.
destWWN Port Name of the remote FC_Port to which the ELS is sent.
pRspBuffer Pointer to a buffer to receive the ELS response.
pRSPBufferSize Pointer to the size in bytes of pRspBuffer. A size of 28 is sufficient for the largest response.

Return Values
The value of the HBA_SendRLS function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC
to the RLS ELS has been returned. A valid status return value that most closely describes the result of the
function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

pRspBuffer Remains unchanged. The buffer to which it points contains the payload data from the
RLS Reply. Note that if the ELS was rejected, this is the LS_RJT payload. If the size of
the reply payload exceeds the size specified in the pRspBufferSize parameter at entry to
the function, the returned data is truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the size in bytes
of the complete ELS reply payload. This can exceed the size specified as an argument.
This indicates that the data in pRspBuffer has been truncated.

Error Codes

HBA_STATUS_ERROR_ELS_REJECT The RNID ELS was rejected by the destination FC_Port.
HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.
HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Base Operating System (BOS) Runtime Services (A-P) 517

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_GetPersistentBindingV2 Subroutine” on page 500, “HBA_OpenAdapterByWWN Subroutine” on
page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507, “HBA_ScsiReadCapacityV2 Subroutine” on page
509, “HBA_ScsiReportLunsV2 Subroutine” on page 511, “HBA_SendCTPassThruV2 Subroutine” on page
513, “HBA_SendRNIDV2 Subroutine” on page 519, “HBA_SendRPL Subroutine” on page 521,
“HBA_SendRPS Subroutine” on page 522

HBA_SendRNID Subroutine

Purpose
Sends an RNID command through a call to SCIOLPAYLD to a remote port of the end device.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendRNID (handle, wwn, wwntype, pRspBuffer, RspBufferSize)
HBA_HANDLE handle;
HBA_WWN wwn;
HBA_WWNTYPE wwntype;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;

Description
The HBA_SendRNID subroutine sends a SCSI RNID command with the Node Identification Data Format
set to indicate the default Topology Discovery format. This is done through a call to ioctl with the
SCIOLPAYLD operation as its argument. The arg parameter for the SCIOLPAYLD operation is the
address of an scsi_trans_payld structure. This structure is defined in the /usr/include/sys/scsi_buf.h
file. The scsi_trans_payld parameter block allows the caller to select the SCSI and LUN IDs to be queried.
In addition, the caller must specify the fcph_rnid_payld_t structure to hold the command and the topology
format for SCIOLPAYLD. The structure for the fcph_rnid_payld_t structure is defined in the
/usr/include/sys/fcph.h file.

If successful, the RNID data is returned in pRspBuffer. The returned RNID data must be examined to see
if the requested information exists.

Parameters

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.
wwn Specifies the world wide name or port name of the target device.
wwntype Specifies the type of the world wide name or port name of the target device.
pRspBuffer Points to a buffer containing the requested instruction for a send/read capacity request to an

open adapter.
RspBufferSize Specifies the size of the buffer to the pRspBuffer parameter.

Return Values
Upon successful completion, the HBA_SendRNID subroutine returns a buffer in bytes containing the SCSI
RNID data and a value of HBA_STATUS_OK, or a value of 0. If unsuccessful, an empty buffer for the
SCSI RNID and a value of HBA_STATUS_ERROR, or a value of 1 is returned.

518 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

HBA_STATUS_OK A value of 0 on successful completion.
HBA_STATUS_ERROR A value of 1 if an error occurred.
HBA_STATUS_ERROR_NOT_SUPPORTED A value of 2 if the function is not supported.
HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.
HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not recognized.

Related Information
“HBA_SendScsiInquiry Subroutine” on page 523, “HBA_SendReadCapacity Subroutine” on page 514,
“HBA_SendCTPassThru Subroutine” on page 512, “HBA_SendReportLUNs Subroutine” on page 515,
“HBA_SetRNIDMgmtInfo Subroutine” on page 525, and “HBA_GetRNIDMgmtInfo Subroutine” on page
502.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Special Files in AIX 5L Version 5.3 Files Reference.

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI
Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error
Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

HBA_SendRNIDV2 Subroutine

Purpose
Issues an RNID ELS to another FC_Port requesting a specified Node Identification Data Format.

Syntax
HBA_STATUS HBA_SendRNIDV2(

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_WWN destWWN,
HBA_UINT32 destFCID,
HBA_UINT32 NodeIdDataFormat,
void *pRspBuffer,
HBA_UINT32 *pRspBufferSize,

);

Description
The HBA_SendRNIDV2 function issues an RNID ELS to another FC_Port requesting a specified Node
Identification Data Format.

The destFCID parameter can be set to allow the RNID ELS to be sent to an FC_Port that might not be
registered with the name server. If destFCID is set to x’00 00 00’, the parameter is ignored. If destFCID is
not 0, the HBA API library verifies that the destWWN/destFCID pair match in order to limit visibility that can
violate scoping mechanisms (such as soft zoning):

v If the destWWN/destFCID pair matches an entry in the discovered ports table, the RNID is sent.

v If there is no entry in the discovered ports table for the destWWN or destFCID, the RNID is sent.

v If there is an entry in the discovered ports table for the destWWN, but the destFCID does not match,
then the request is rejected.

Base Operating System (BOS) Runtime Services (A-P) 519

v On completion of the HBA_SendRNIDV2, if the Common Identification Data Length is nonzero in the
RNID response, the API library compares the N_Port_Name in the Common Identification Data of the
RNID response with destWWN and fails the operation without returning the response data if they do not
match. If the Common Identification Data Length is 0 in the RNID response, this test is omitted.

Parameters

handle A handle to an open HBA through which the ELS is sent.
hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.
destWWN Port Name of the remote FC_Port to which the ELS is sent.
destFCID Address identifier of the destination to which the ELS is sent if destFCID is nonzero. destFCID

is ignored if destFCID is 0.
NodeIdDataFormat Valid value for Node Identification Data Format.
pRSPBuffer Pointer to a buffer to receive the ELS response.
pRSPBufferSize Pointer to the size in bytes of pRspBuffer.

Return Values
The value of the HBA_SendRNIDV2 function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC
to the RNID ELS has been returned. A valid status return value that most closely describes the result of
the function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

pRspBuffer Remains unchanged. The buffer to which it points contains the payload data from the
RNID Reply. Note that if the ELS was rejected, this is the LS_RJT payload. If the size of
the reply payload exceeds the size specified in the pRspBufferSize parameter at entry to
the function, the returned data is truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the size in bytes
of the complete ELS reply payload. This can exceed the size specified as an argument.
This indicates that the data in pRspBuffer has been truncated.

Error Codes

HBA_STATUS_ERROR_ELS_REJECT The RNID ELS was rejected by the destination end port.
HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.
HBA_STATUS_ERROR_ILLEGAL_FCID The destWWN/destFCID pair conflicts with a discovered

Port Name/address identifier pair known by the HBA
referenced by handle.

HBA_STATUS_ERROR_ILLEGAL_FCID The N_Port_Name in the RNID response does not
match the destWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_GetPersistentBindingV2 Subroutine” on page 500, “HBA_OpenAdapterByWWN Subroutine” on
page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507, “HBA_ScsiReadCapacityV2 Subroutine” on page
509, “HBA_ScsiReportLunsV2 Subroutine” on page 511, “HBA_SendCTPassThruV2 Subroutine” on page
513, “HBA_SendRLS Subroutine” on page 517, “HBA_SendRPL Subroutine” on page 521,
“HBA_SendRPS Subroutine” on page 522

520 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

HBA_SendRPL Subroutine

Purpose
Issues a Read Port List (RPL) Extended Link Service through the specified HBA to a specified end port or
domain controller.

Syntax
HBA_STATUS HBA_SendRPL (

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_WWN agent_wwn,
HBA_UINT32 agent_domain,
HBA_UINT32 portIndex,
void *pRspBuffer,
HBA_UINT32 *pRspBufferSize,

);

Description
The HBA_SendRPL function issues a Read Port List (RPL) Extended Link Service through the specified
HBA to a specified end port or domain controller.

Parameters

handle A handle to an open HBA through which the ELS is sent.
hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.
agent_wwn Port Name of an FC_Port that is requested to provide its list of FC_Ports if agent_wwn is

nonzero. If agent_wwn is 0, it is ignored.
agent_domain Domain number and the domain controller for that domain shall be the entity that shall be

requested to provide its list of FC_Ports if agent_wwn is 0. If agent_wwn is nonzero,
agent_domain is ignored.

portIndex Index of the first FC_Port requested in the response list.
Note: If the recipient has proper compliance, the index of the first FC_Port in the complete list
maintained by the recipient of the request is 0.

pRSPBuffer Pointer to a buffer to receive the ELS response.
pRSPBufferSize Pointer to the size in bytes of pRspBuffer.

Note: If the responding entity has proper compliance, it truncates the list in the response to
the number of FC_Ports that fit.

Return Values
The value of the HBA_SendRPL function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC
to the RPL ELS has been returned. A valid status return value that most closely describes the result of the
function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

pRspBuffer Remains unchanged. The buffer to which it points contains the payload data from the
RPL Reply. If the ELS was rejected, this is the LS_RJT payload. If the size of the reply
payload exceeds the size specified in the pRspBufferSize parameter at entry to the
function, the returned data is truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the size in bytes
of the complete ELS reply payload. This can exceed the size specified as an argument.
This indicates that the data in pRspBuffer has been truncated.
Note: Truncation is not necessary if the responding entity is of proper compliance.

Base Operating System (BOS) Runtime Services (A-P) 521

Error Codes

HBA_STATUS_ERROR_ELS_REJECT The RPL ELS was rejected by the destination end port.
HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.
HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_GetPersistentBindingV2 Subroutine” on page 500, “HBA_OpenAdapterByWWN Subroutine” on
page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507, “HBA_ScsiReadCapacityV2 Subroutine” on page
509, “HBA_ScsiReportLunsV2 Subroutine” on page 511, “HBA_SendCTPassThruV2 Subroutine” on page
513, “HBA_SendRLS Subroutine” on page 517, “HBA_SendRNIDV2 Subroutine” on page 519,
“HBA_SendRPS Subroutine”

HBA_SendRPS Subroutine

Purpose
Issues a Read Port Status Block (RPS) Extended Link Service through the specified HBA to a specified
FC_Port or domain controller.

Syntax
HBA_STATUS HBA_SendRPS (

HBA_HANDLE handle,
HBA_WWN hbaPortWWN,
HBA_WWN agent_wwn,
HBA_UINT32 agent_domain,
HBA_WWN object_wwn,
HBA_UINT32 object_port_number,
void *pRspBuffer,
HBA_UINT32 *pRspBufferSize,

);

Description
The HBA_SendRPS function issues a Read Port Status Block (RPS) Extended Link Service through the
specified HBA to a specified FC_Port or domain controller.

Parameters

handle A handle to an open HBA through which the ELS is sent.
hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.
agent_wwn Port Name of an FC_Port that is requested to provide Port Status if agent_wwn is nonzero.

agent_wwn is ignored if its value is 0.
agent_domain Domain number for the domain controller that is requested to provide Port status if agent_wwn

is 0. agent_domain is ignored if agent_wwn is nonzero.
object_wwn Port Name of an FC_Port for which Port Status is returned if object_wwn is nonzero.

object_wwn is ignored if its value is 0.
object_port_number Relative port number of the FC_Port for which Port Status is returned if object_wwn is 0. The

relative port number is defined in a vendor-specific manner within the entity to which the
request is sent. object_port_number is ignored if object_wwn is nonzero.

pRspBuffer Pointer to a buffer to receive the ELS response.
pRSPBufferSize Pointer to the size in bytes of pRspBuffer. A size of 56 is sufficient for the largest response.

522 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
The value of the HBA_SendRPS function is a valid status return value that indicates the reason for
completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC
to the RPS ELS has been returned. A valid status return value that most closely describes the result of the
function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

pRspBuffer Remains unchanged. The buffer to which it points contains the payload data from the
RPS Reply. If the ELS was rejected, this is the LS_RJT payload. If the size of the reply
payload exceeds the size specified in the pRspBufferSize parameter at entry to the
function, the returned data is truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the size in bytes
of the complete ELS reply payload. This can exceed the size specified as an argument.
This indicates that the data in pRspBuffer has been truncated.

Error Codes

HBA_STATUS_ERROR_ELS_REJECT The RPS ELS was rejected by the destination end port.
HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.
HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information
“HBA_GetEventBuffer Subroutine” on page 493, “HBA_GetFC4Statistics Subroutine” on page 494,
“HBA_GetFCPStatistics Subroutine” on page 496, “HBA_GetFcpTargetMappingV2 Subroutine” on page
497, “HBA_GetPersistentBindingV2 Subroutine” on page 500, “HBA_OpenAdapterByWWN Subroutine” on
page 505, “HBA_ScsiInquiryV2 Subroutine” on page 507, “HBA_ScsiReadCapacityV2 Subroutine” on page
509, “HBA_ScsiReportLunsV2 Subroutine” on page 511, “HBA_SendCTPassThruV2 Subroutine” on page
513, “HBA_SendRLS Subroutine” on page 517, “HBA_SendRNIDV2 Subroutine” on page 519,
“HBA_SendRPL Subroutine” on page 521

HBA_SendScsiInquiry Subroutine

Purpose
Sends a SCSI device inquiry command to a remote port of the end device.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SendScsiInquiry (handle, PortWWN, fcLUN, EVPD, PageCode, pRspBuffer, RspBufferSize, pSenseBuffer,
SenseBufferSize)
HBA_HANDLE handle;
HBA_WWN PortWWN;
HBA_UINT64 fcLUN;
HBA_UINT8 EVPD;
HBA_UINT32 PageCode;
void *pRspBuffer;
HBA_UINT32 RspBufferSize;
void *pSenseBuffer;
HBA_UINT32 SenseBufferSize;

Base Operating System (BOS) Runtime Services (A-P) 523

Description
The HBA_SendScsiInquiry subroutine sends a SCSI INQUIRY command through a call to ioctl with the
SCIOLINQU operation as its argument. The arg parameter for the SCIOLINQU operation is the address of
an scsi_inquiry structure. This structure is defined in the /usr/include/sys/scsi_buf.h file. The
scsi_inquiry parameter block allows the caller to select the SCSI and LUN IDs to be queried. If successful,
the inquiry data is returned in the pRspBuffer parameter. Successful completion occurs if a device
responds at the requested SCSI ID, but the returned inquiry data must be examined to see if the
requested LUN exists.

Parameters

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.
PortWWN Specifies the world wide name or port name of the target device.
fcLUN Specifies the fcLUN.
EVPD Specifies the value for the EVPD bit. If the value is 1, the Vital Product Data page code

will be specified by the PageCode parameter.
PageCode Specifies the Vital Product Data that is to be requested if the EVPD parameter is set to

1.
pRspBuffer Points to a buffer containing the requested instruction for a send/read capacity request to

an open adapter. The size of this buffer must not be greater than 255 bytes.
RspBufferSize Specifies the size of the buffer to the pRspBuffer parameter.
pSenseBuffer Points to a buffer containing the data returned from a send/read capacity request to an

open adapter.
SenseBufferSize Specifies the size of the buffer to the pSenseBuffer parameter.

Return Values
Upon successful completion, the HBA_SendScsiInquiry subroutine returns a buffer in bytes containing
the SCSI inquiry, a buffer containing the SCSI sense data, and a value of HBA_STATUS_OK, or a value of
0.

If unsuccessful, an empty buffer for the SCSI inquiry, a response buffer containing the failure, and a value
of HBA_STATUS_ERROR, or a value of 1 is returned.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

HBA_STATUS_OK A value of 0 on successful completion.
HBA_STATUS_ERROR A value of 1 if an error occurred.
HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.
HBA_STATUS_ERROR_ARG A value of 4 if there was a bad argument.
HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not recognized.
HBA_STATUS_SCSI_CHECK_CONDITION A value of 9 if a SCSI Check Condition was reported.

Related Information
“HBA_SendReportLUNs Subroutine” on page 515, “HBA_SendReadCapacity Subroutine” on page 514,
“HBA_SendCTPassThru Subroutine” on page 512, “HBA_SendRNID Subroutine” on page 518,
“HBA_SetRNIDMgmtInfo Subroutine” on page 525, and “HBA_GetRNIDMgmtInfo Subroutine” on page
502.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Special Files in AIX 5L Version 5.3 Files Reference.

524 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI
Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error
Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

HBA_SetRNIDMgmtInfo Subroutine

Purpose
Sends a SCSI SET RNID command to a remote port of the end device.

Library
Common Host Bus Adapter Library (libHBAAPI.a)

Syntax
#include <sys/hbaapi.h>

HBA_STATUS HBA_SetRNIDMgmtInfo (handle, info)
HBA_HANDLE handle;
HBA_MGMTINFO info;

Description
The HBA_SetRNIDMgmtInfo subroutine sends a SCSI SET RNID (Request Node Identification Data)
command with the SCIOLCHBA operation as its argument. This is done through a call to ioctl. The arg
parameter for the SCIOLCHBA operation is the address of a scsi_chba structure. This structure is
defined in the /usr/include/sys/scsi_buf.h file. The scsi_chba parameter block allows the caller to select
the SET RNID command to be sent to the adapter. The info structure stores the RNID data to be set. The
info structure is defined in the /usr/include/sys/hbaapi.h file. The structure includes:

v wwn

v unittype

v PortId

v NumberOfAttachedNodes

v IPVersion

v UDPort

v IPAddress

v reserved

v TopologyDiscoveryFlags

If successful, the SET RNID data in info is sent to the adapter.

Parameters

handle Specifies the open file descriptor obtained from a successful call to the open subroutine.
info Specifies the structure containing the information to be set or received from the RNID command

Return Values
Upon successful completion, the HBA_SetRNIDMgmtInfo subroutine returns a value of
HBA_STATUS_OK, or a value of 0. If unsuccessful, a value of HBA_STATUS_ERROR, or a 1 is returned.

Error Codes
The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

Base Operating System (BOS) Runtime Services (A-P) 525

HBA_STATUS_OK A value of 0 on successful completion.
HBA_STATUS_ERROR A value of 1 if an error occurred.
HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

Related Information
“HBA_SendScsiInquiry Subroutine” on page 523, “HBA_SendReadCapacity Subroutine” on page 514,
“HBA_SendCTPassThru Subroutine” on page 512, “HBA_SendReportLUNs Subroutine” on page 515,
“HBA_SendRNID Subroutine” on page 518, and “HBA_GetRNIDMgmtInfo Subroutine” on page 502.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Special Files in AIX 5L Version 5.3 Files Reference.

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI
Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error
Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

hpmInit, f_hpminit, hpmStart, f_hpmstart, hpmStop, f_hpmstop,
hpmTstart, f_hpmtstart, hpmTstop, f_hpmtstop,
hpmGetTimeAndCounters, f_hpmgettimeandcounters,
hpmGetCounters, f_hpmgetcounters, hpmTerminate, and
f_hpmterminate Subroutine

Purpose
Provides application instrumentation for performance monitoring.

Library
HPM Library (libhpm.a)

HPM Library (libhpm.a) includes four additional subroutines for threaded applications.

Syntax
#include <libhpm.h>

void hpmInit(int taskID, char *progName);
void f_hpminit(int taskID, char *progName);

void hpmStart(int instID, char *label);
void f_hpmstart(int instID, char *label);

void hpmStop(int instID);
void f_hpmstop(int instID);

(libhpm_r only)
void hpmTstart(int instID, char *label);
void f_hpmtstart(int instID, char *label);
(libhpm_r only)
void hpmTstop(int instID);
void f_hpmtstop(int instID);

void hpmGetTimeAndCounters(int numCounters, double *time, long long *values);
void f_hpmgettimeandcounters(int numCounters, double *time, long long *values);

526 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

void hpmGetCounters(long long *values);
void f_hpmgetcounters(long long *values);

void hpmTerminate(int taskID);
void f_hpmterminate(int taskID);

Description
The hpmInit and f_hpminit subroutines initialize tasks specified by the taskID and progName parameters.

The hpmStart and f_hpmstart subroutines debut an instrumented code segment. If more than 100
instrumented sections are required, the HPM_NUM_INST_PTS environment variable can be set to indicate
the higher value and instID should be less than this value.

The hpmStop and f_hpmstop subroutines indicate the end of the instrumented code segment instID. For
each call to hpmStart and f_hpmstart, there should be a corresponding call to hpmStop and f_hpmstop
with the matching instID.

The hpmTstart and f_hpmtstart subroutines perform the same function as hpmStart and f_hpmstart, but
are used in threaded applications.

The hpmTstop and f_hpmtstop subroutines perform the same function as hpmStop and f_hpmstop, but
are used in threaded applications.

The hpmGetTimeAndCounters and f_hpmgettimeandcounters subroutines are used to return the time
in seconds and the accumulated counts since the call to hpmInit or f_hpminit.

The hpmGetCounters and f_hpmgetcounters subroutines return all the accumulated counts since the
call to hpmInit or f_hpminit. To minimize intrusion and overhead, the hpmGetCounters and
f_hpmgetcounters subroutines do not perform any check on the size of the values array. The number of
counters can be obtained from the pm_info2_t.maxpmcs structure element supplied by pm_initialize or
by using the pmlist -s command. Alternatively, the application can use the current maximum value of 8.

The hpmTerminate and f_hpmterminate subroutines end the taskID and generate the output.
Applications that do not call hpmTerminate or f_hpmterminate, do not generate performance information.

A summary report for each task is written by default in the progName_pid_taskID.hpm file, where
progName is the second parameter to the hpmInit subroutine. If progName contains a space or tab
character, or is otherwise invalid, a diagnostic message is written to stderr and the library exits with an
error to avoid further problems.

The output file name can be defined with the HPM_OUTPUT_NAME environment flag. The libhpm still
adds the file name suffix _taskID.hpm for the performance files. By using this environment variable, you
can specify the date and time for the output file name. For example:
MYDATE=$(date +"m%d:11/21/08M%S")
export HPM_OUTPUT_NAME=myprogram_$MYDATE

where the output file for task 27 will have the following name:
myprogram_yyyymmdd:HHMMSS_0027.hpm

The GUI and .viz output is deactivated by default. The aligned set of performance files named
progName_pid_taskID.viz or HPM_OUTPUT_NAME_taskID.viz will not be generated (the generation of
the .viz file was previously activated by default and avoided with the HPM_VIZ_OUTPUT = FALSE
environment variable).

Base Operating System (BOS) Runtime Services (A-P) 527

Parameters

instID Specifies the instrumented section ID as an integer value greater than 0 and less than 100.
label Specifies a label with a character string.
numCounters Specifies an integer value that indicates the number of counters to be accessed.
progName Specifies a program name using a character string label.
taskID Specifies a node ID with an integer value.
time Specifies a double precision float.
values Specifies an array of type long long of size numCounters.

Execution Environment
Functionality provided by the libhpm library is dependent upon corresponding functions in the libpmapi
and libm libraries. Therefore, the -lpmapi -lm link flags must be specified when compiling applications.

Return Values
No return values are defined.

Error Codes
Upon failure, these libhpm subroutines either write error messages explicitly to stderr or use the PMAPI
pm_error function. The pm_error function is called following an error return from any of the following
subroutines:

v pm_init_private

v pm_set_program_mygroup

v pm_stop_mygroup

v pm_get_data_mygroup

v pm_start_mygroup

v pm_stop_mythread

v pm_get_data_mythread

v pm_start_mythread

v pm_get_data_mythread

Diagnostic messages are explicitly written to stderr or stdout in the following situations:

v pm_cycles or gettimeofday returns an error

v The value of the instID parameter is invalid

v An event set is out of range

v The libHPMevents file or HPM_flags.env file has an incorrect format

v There are internal errors.

Error messages that are not fatal are written to stdout or stderr with the text WARNING.

Related Information
The “getrusage, getrusage64, times, or vtimes Subroutine” on page 430, “pm_initialize Subroutine” on
page 1095.

Performance Monitor API Programming in AIX 5L Version 5.3 Performance Tools Guide and Reference.

528 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

hsearch, hcreate, or hdestroy Subroutine

Purpose
Manages hash tables.

Library
Standard C Library (libc.a)

Syntax
#include <search.h>

ENTRY *hsearch (Item, Action)
ENTRY Item;
Action Action;

int hcreate (NumberOfElements)
size_t NumberOfElements;
void hdestroy ()

Description
Attention: Do not use the hsearch, hcreate, or hdestroy subroutine in a multithreaded environment.

The hsearch subroutine searches a hash table. It returns a pointer into a hash table that indicates the
location of the given item. The hsearch subroutine uses open addressing with a multiplicative hash
function.

The hcreate subroutine allocates sufficient space for the table. You must call the hcreate subroutine
before calling the hsearch subroutine. The NumberOfElements parameter is an estimate of the maximum
number of entries that the table will contain. This number may be adjusted upward by the algorithm in
order to obtain certain mathematically favorable circumstances.

The hdestroy subroutine deletes the hash table. This action allows you to start a new hash table since
only one table can be active at a time. After the call to the hdestroy subroutine, the data can no longer be
considered accessible.

Parameters

Item Identifies a structure of the type ENTRY as defined in the search.h file. It contains
two pointers:

Item.key
Points to the comparison key. The key field is of the char type.

Item.data
Points to any other data associated with that key. The data field is of the
void type.

Pointers to data types other than the char type should be declared to
pointer-to-character.

Base Operating System (BOS) Runtime Services (A-P) 529

Action Specifies the value of the Action enumeration parameter that indicates what is to be
done with an entry if it cannot be found in the table. Values are:

ENTER Enters the value of the Item parameter into the table at the appropriate point.
If the table is full, the hsearch subroutine returns a null pointer.

FIND Does not enter the value of the Item parameter into the table. If the value of
the Item parameter cannot be found, the hsearch subroutine returns a null
pointer. If the value of the Item parameter is found, the subroutine returns
the address of the item in the hash table.

NumberOfElements Provides an estimate of the maximum number of entries that the table contains.
Under some circumstances, the hcreate subroutine may actually make the table
larger than specified.

Return Values
The hcreate subroutine returns a value of 0 if it cannot allocate sufficient space for the table.

Related Information
The bsearch (“bsearch Subroutine” on page 124) subroutine, lsearch (“lsearch or lfind Subroutine” on
page 768) subroutine, malloc (“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc,
or posix_memalign Subroutine” on page 782) subroutine, strcmp subroutine, tsearch subroutine.

Searching and Sorting Example Program and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128 Subroutines

Purpose
Computes the Euclidean distance function and complex absolute value.

Libraries
IEEE Math Library (libm.a)
System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double hypot (x, y)
double x, y;

float hypotf (x, y)
float x;
float y;

long double hypotl (x, y)
long double x;
long double y;
_Decimal32 hypotd32 (x, y)
_Decimal32 x, y;

_Decimal64 hypotd64 (x, y)
_Decimal64 x, y;

_Decimal128 hypotd128 (x, y)
_Decimal128 x, y;

530 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128 subroutines compute the value of the
square root of x2 + y2 without undue overflow or underflow.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies some double-precision floating-point value.
y Specifies some double-precision floating-point value.

Return Values
Upon successful completion, the hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128
subroutines return the length of the hypotenuse of a right-angled triangle with sides of length x and y.

If the correct value would cause overflow, a range error occurs and the hypotf, hypotl, hypotd32,
hypotd64, and hypotd128 subroutines return the value of the macro HUGE_VALF, HUGE_VALL,
HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If x or y is ±Inf, +Inf is returned (even if one of x or y is NaN).

If x or y is NaN, and the other is not ±Inf, a NaN is returned.

If both arguments are subnormal and the correct result is subnormal, a range error may occur and the
correct result is returned.

Error Codes
When using the libm.a (-lm) library, if the correct value overflows, the hypot subroutine returns a
HUGE_VAL value.

Note: (hypot (INF, value) and hypot (value, INF) are both equal to +INF for all values, even if value =
NaN.

When using libmsaa.a (-lmsaa), if the correct value overflows, the hypot subroutine returns HUGE_VAL
and sets the global variable errno to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
(-lmsaa) library.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite,
isnan, or unordered Subroutines” on page 168.

The matherr (“matherr Subroutine” on page 793) subroutine, sqrt subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

math.h in AIX 5L Version 5.3 Files Reference.

Base Operating System (BOS) Runtime Services (A-P) 531

iconv Subroutine

Purpose
Converts a string of characters in one character code set to another character code set.

Library
The iconv Library (libiconv.a)

Syntax
#include <iconv.h>

size_t iconv (CD, InBuf, InBytesLeft, OutBuf, OutBytesLeft)
iconv_t CD;
char **OutBuf, **InBuf;
size_t *OutBytesLeft, *InBytesLeft;

Description
The iconv subroutine converts the string specified by the InBuf parameter into a different code set and
returns the results in the OutBuf parameter. The required conversion method is identified by the CD
parameter, which must be valid conversion descriptor returned by a previous, successful call to the
iconv_open subroutine.

On calling, the InBytesLeft parameter indicates the number of bytes in the InBuf buffer to be converted,
and the OutBytesLeft parameter indicates the number of bytes remaining in the OutBuf buffer that do not
contain converted data. These values are updated upon return so they indicate the new state of their
associated buffers.

For state-dependent encodings, calling the iconv subroutine with the InBuf buffer set to null will reset the
conversion descriptor in the CD parameter to its initial state. Subsequent calls with the InBuf buffer,
specifying other than a null pointer, may cause the internal state of the subroutine to be altered a
necessary.

Parameters

CD Specifies the conversion descriptor that points to the correct code set converter.
InBuf Points to a buffer that contains the number of bytes in the InBytesLeft parameter to be

converted.
InBytesLeft Points to an integer that contains the number of bytes in the InBuf parameter.
OutBuf Points to a buffer that contains the number of bytes in the OutBytesLeft parameter that has

been converted.
OutBytesLeft Points to an integer that contains the number of bytes in the OutBuf parameter.

Return Values
Upon successful conversion of all the characters in the InBuf buffer and after placing the converted
characters in the OutBuf buffer, the iconv subroutine returns 0, updates the InBytesLeft and OutBytesLeft
parameters, and increments the InBuf and OutBuf pointers. Otherwise, it updates the varibles pointed to
by the parameters to indicate the extent to the conversion, returns the number of bytes still left to be
converted in the input buffer, and sets the errno global variable to indicate the error.

Error Codes
If the iconv subroutine is unsuccessful, it updates the variables to reflect the extent of the conversion
before it stopped and sets the errno global variable to one of the following values:

532 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EILSEQ Indicates an unusable character. If an input character does not belong to the input code set, no
conversion is attempted on the unusable on the character. In InBytesLeft parameters indicates the bytes
left to be converted, including the first byte of the unusable character. InBuf parameter points to the first
byte of the unusable character sequence.

The values of OutBuf and OutBytesLeft are updated according to the number of bytes available in the
output buffer that do not contain converted data.

E2BIG Indicates an output buffer overflow. If the OutBuf buffer is too small to contain all the converted
characters, the character that causes the overflow is not converted. The InBytesLeft parameter indicates
the bytes left to be converted (including the character that caused the overflow). The InBuf parameter
points to the first byte of the characters left to convert.

EINVAL Indicates the input buffer was truncated. If the original value of InBytesLeft is exhausted in the middle of
a character conversion or shift/lock block, the InBytesLeft parameter indicates the number of bytes
undefined in the character being converted.

If an input character of shift sequence is truncated by the InBuf buffer, no conversion is attempted on the
truncated data, and the InBytesLeft parameter indicates the bytes left to be converted. The InBuf
parameter points to the first bytes if the truncated sequence. The OutBuf and OutBytesLeft values are
updated according to the number of characters that were previously converted. Because some encoding
may have ambiguous data, the EINVAL return value has a special meaning at the end of stream
conversion. As such, if a user detects an EOF character on a stream that is being converted and the last
return code from the iconv subroutine was EINVAL, the iconv subroutine should be called again, with
the same InBytesLeft parameter and the same character string pointed to by the InBuf parameter as
when the EINVAL return occurred. As a result, the converter will either convert the string as is or declare
it an unusable sequence (EILSEQ).

Files

/usr/lib/nls/loc/iconv/* Contains code set converter methods.

Related Information
The iconv command, genxlt command.

The iconv_close (“iconv_close Subroutine”) subroutine, iconv_open (“iconv_open Subroutine” on page
534) subroutine.

iconv_close Subroutine

Purpose
Closes a specified code set converter.

Library
iconv Library (libiconv.a)

Syntax
#include <iconv.h>

int iconv_close (CD)
iconv_t CD;

Description
The iconv_close subroutine closes a specified code set converter and deallocates any resources used by
the converter.

Base Operating System (BOS) Runtime Services (A-P) 533

Parameters

CD Specifies the conversion descriptor to be closed.

Return Values
When successful, the iconv_close subroutine returns a value of 0. Otherwise, it returns a value of -1 and
sets the errno global variable to indicate the error.

Error Codes
The following error code is defined for the iconv_close subroutine:

EBADF The conversion descriptor is not valid.

Related Information
The iconv (“iconv Subroutine” on page 532) subroutine, iconv_open (“iconv_open Subroutine”)
subroutine.

The genxlt command, iconv command.

National Language Support Overview and Converters Overview for Programming in AIX 5L Version 5.3
National Language Support Guide and Reference

iconv_open Subroutine

Purpose
Opens a character code set converter.

Library
iconv Library (libiconv.a)

Syntax
#include <iconv.h>

iconv_t iconv_open (ToCode, FromCode)
const char *ToCode, *FromCode;

Description
The iconv_open subroutine initializes a code set converter. The code set converter is used by the iconv
subroutine to convert characters from one code set to another. The iconv_open subroutine finds the
converter that performs the character code set conversion specified by the FromCode and ToCode
parameters, initializes that converter, and returns a conversion descriptor of type iconv_t to identify the
code set converter.

The iconv_open subroutine first searches the LOCPATH environment variable for a converter, using the
two user-provided code set names, based on the file name convention that follows:
FromCode: "IBM-850"
ToCode: "ISO8859-1"
conversion file: "IBM-850_ISO8859-1"

534 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The conversion file name is formed by concatenating the ToCode code set name onto the FromCode code
set name, with an _ (underscore) between them.

The LOCPATH environment variable contains a list of colon-separated directory names. The system
default for the LOCPATH environment variable is:
LOCPATH=/usr/lib/nls/loc

See Locales in AIX 5L Version 5.3 National Language Support Guide and Reference for more information
on the LOCPATH environment variable.

The iconv_open subroutine first attempts to find the specified converter in an iconv subdirectory under
any of the directories specified by the LOCPATH environment variable, for example, /usr/lib/nls/loc/iconv.
If the iconv_open subroutine cannot find a converter in any of these directories, it looks for a conversion
table in an iconvTable subdirectory under any of the directories specified by the LOCPATH environment
variable, for example, /usr/lib/nls/loc/iconvTable.

If the iconv_open subroutine cannot find the specified converter in either of these locations, it returns
(iconv_t) -1 to the calling process and sets the errno global variable.

The iconvTable directories are expected to contain conversion tables that are the output of the genxlt
command. The conversion tables are limited to single-byte stateless code sets. See the ″List of PC, ISO,
and EBCDIC Code Set Converters″ in AIX 5L Version 5.3 National Language Support Guide and
Reference for more information.

If the named converter is found, the iconv_open subroutine will perform the load subroutine operation
and initialize the converter. A converter descriptor (iconv_t) is returned.

Note: When a process calls the exec subroutine or a fork subroutine, all of the opened converters are
discarded.

The iconv_open subroutine links the converter function using the load subroutine, which is similar to the
exec subroutine and effectively performs a run-time linking of the converter program. Since the
iconv_open subroutine is called as a library function, it must ensure that security is preserved for certain
programs. Thus, when the iconv_open subroutine is called from a set root ID program (a program with
permission —-s—s—x), it will ignore the LOCPATH environment variable and search for converters only in
the /usr/lib/nls/loc/iconv directory.

Parameters

ToCode Specifies the destination code set.
FromCode Specifies the originating code set.

Return Values
A conversion descriptor (iconv_t) is returned if successful. Otherwise, the subroutine returns -1, and the
errno global variable is set to indicate the error.

Error Codes

EINVAL The conversion specified by the FromCode and ToCode parameters is not supported by the
implementation.

EMFILE The number of file descriptors specified by the OPEN_MAX configuration variable is currently
open in the calling process.

ENFILE Too many files are currently open in the system.
ENOMEM Insufficient storage space is available.

Base Operating System (BOS) Runtime Services (A-P) 535

Files

/usr/lib/nls/loc/iconv Contains loadable method converters.
/usr/lib/nls/loc/iconvTable Contains conversion tables for single-byte stateless code sets.

Related Information
The “iconv Subroutine” on page 532, “iconv_close Subroutine” on page 533.

The genxlt command, iconv command.

Code Sets for National Language Support, List of PC, ISO, and EBCDIC Code Set Converters, National
Language Support Overview , and Converters Overview for Programming in AIX 5L Version 5.3 National
Language Support Guide and Reference.

ilogbf, ilogbl, or ilogb Subroutine

Purpose
Returns an unbiased exponent.

Syntax
#include <math.h>

int ilogbf (x)
float x;

int ilogbl (x)
long double x;

int ilogb (x)
double x;

Description
The ilogbf, ilogbl, and ilogb subroutines return the exponent part of the x parameter. The return value is
the integral part of logr | x | as a signed integral value, for nonzero x, where r is the radix of the machine’s
floating-point arithmetic (r=2).

An application wishing to check for error situations should set thre errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the ilogbf, ilogbl, and ilogb subroutines return the exponent part of x as a
signed integer value. They are equivalent to calling the corresponding logb function and casting the
returned value to type int.

If x is 0, a domain error occurs, and the value FP_ILOGB0 is returned.

536 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If x is ±Inf, a domain error occurs, and the value {INT_MAX} is returned.

If x is a NaN, a domain error occurs, and the value FP_ILOGBNAN is returned.

If the correct value is greater than {INT_MAX}, {INT_MAX} is returned and a domain error occurs.

If the correct value is less than {INT_MIN}, {INT_MIN} is returned and a domain error occurs.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in AIX 5L Version 5.3 Files Reference.

imaxabs Subroutine

Purpose
Returns absolute value.

Syntax
#include <inttypes.h>

intmax_t imaxabs (j)
intmax_t j;

Description
The imaxabs subroutine computes the absolute value of an integer j. If the result cannot be represented,
the behavior is undefined.

Parameters

j Specifies the value to be computed.

Return Values
The imaxabs subroutine returns the absolute value.

Related Information
The “imaxdiv Subroutine.”

inttypes.h File in AIX 5L Version 5.3 Files Reference.

imaxdiv Subroutine

Purpose
Returns quotient and remainder.

Syntax
#include <inttypes.h>

imaxdiv_t imaxdiv (numer, denom)
intmax_t numer;
intmax_t denom;

Base Operating System (BOS) Runtime Services (A-P) 537

Description
The imaxdiv subroutine computes numer / denom and numer % denom in a single operation.

Parameters

numer Specifies the numerator value to be computed.
denom Specifies the denominator value to be computed.

Return Values
The imaxdiv subroutine returns a structure of type imaxdiv_t, comprising both the quotient and the
remainder. The structure contains (in either order) the members quot (the quotient) and rem (the
remainder), each of which has type intmax_t.

If either part of the result cannot be represented, the behavior is undefined.

Related Information
The “imaxabs Subroutine” on page 537.

inttypes.h File in AIX 5L Version 5.3 Files Reference.

IMAIXMapping Subroutine

Purpose
Translates a pair of Key and State parameters to a string and returns a pointer to this string.

Library
Input Method Library (libIM.a)

Syntax
caddr_t IMAIXMapping(IMMap, Key, State, NBytes)
IMMap IMMap;
KeySym Key;
uint State;
int * NBytes;

Description
The IMAIXMapping subroutine translates a pair of Key and State parameters to a string and returns a
pointer to this string.

This function handles the diacritic character sequence and Alt-NumPad key sequence.

Parameters

IMMap Identifies the keymap.
Key Specifies the key symbol to which the string is mapped.
State Specifies the state to which the string is mapped.
NBytes Returns the length of the returning string.

538 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
If the length set by the NBytes parameter has a positive value, the IMAIXMapping subroutine returns a
pointer to the returning string.

Note: The returning string is not null-terminated.

IMAuxCreate Callback Subroutine

Purpose
Tells the application program to create an auxiliary area.

Syntax
int IMAuxCreate(IM, AuxiliaryID, UData)
IMObject IM;
caddr_t *AuxiliaryID;
caddr_t UData;

Description
The IMAuxCreate subroutine is invoked by the input method of the operating system to create an auxiliary
area. The auxiliary area can contain several different forms of data and is not restricted by the interface.

Most input methods display one auxiliary area at a time, but callbacks must be capable of handling
multiple auxiliary areas.

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
AuxiliaryID Identifies the newly created auxiliary area.
UData Identifies an argument passed by the IMCreate subroutine.

Return Values
On successful return of the IMAuxCreate subroutine, a newly created auxiliary area is set to the
AuxiliaryID value and the IMError global variable is returned. Otherwise, the IMNoError value is returned.

Related Information
The IMCreate (“IMCreate Subroutine” on page 543) subroutine.

Input Methods, National Language Support Overview, and Using Callbacksin AIX 5L Version 5.3 National
Language Support Guide and Reference

IMAuxDestroy Callback Subroutine

Purpose
Tells the application to destroy the auxiliary area.

Base Operating System (BOS) Runtime Services (A-P) 539

Syntax
int IMAuxDestroy(IM, AuxiliaryID, UData)
IMObject IM;
caddr_t AuxiliaryID;
caddr_t UData;

Description
The IMAuxDestroy subroutine is called by the input method of the operating system to tell the application
to destroy an auxiliary area.

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
AuxiliaryID Identifies the auxiliary area to be destroyed.
UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxDestroy subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

Related Information
The IMCreate (“IMCreate Subroutine” on page 543) subroutine.

Input Methods, and National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3
National Language Support Guide and Reference.

IMAuxDraw Callback Subroutine

Purpose
Tells the application program to draw the auxiliary area.

Syntax
int IMAuxDraw(IM, AuxiliaryID, AuxiliaryInformation, UData)
IMObject IM;
caddr_t AuxiliaryID;
IMAuxInfo * AuxiliaryInformation;
caddr_t UData;

Description
The IMAuxDraw subroutine is invoked by the input method to draw an auxiliary area. The auxiliary area
should have been previously created.

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
AuxiliaryID Identifies the auxiliary area.

540 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

AuxiliaryInformation Points to the IMAuxInfo structure.
UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxDraw subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

Related Information
The IMAuxCreate (“IMAuxCreate Callback Subroutine” on page 539) subroutine, IMCreate (“IMCreate
Subroutine” on page 543) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National
Language Support Guide and Reference.

IMAuxHide Callback Subroutine

Purpose
Tells the application program to hide an auxiliary area.

Syntax
int IMAuxHide(IM, AuxiliaryID, UData)

IMObject IM;
caddr_t AuxiliaryID;
caddr_t UData;

Description
The IMAuxHide subroutine is called by the input method to hide an auxiliary area.

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
AuxiliaryID Identifies the auxiliary area to be hidden.
UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxHide subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

Related Information
The IMAuxCreate (“IMAuxCreate Callback Subroutine” on page 539) subroutine, IMCreate (“IMCreate
Subroutine” on page 543) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National
Language Support Guide and Reference.

Base Operating System (BOS) Runtime Services (A-P) 541

IMBeep Callback Subroutine

Purpose
Tells the application program to emit a beep sound.

Syntax
int IMBeep(IM, Percent, UData)
IMObject IM;
int Percent;
caddr_t UData;

Description
The IMBeep subroutine tells the application program to emit a beep sound.

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
Percent Specifies the beep level. The value range is from -100 to 100, inclusively. A -100 value means no beep.
UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMBeep subroutine returns the IMError global variable. Otherwise, the IMNoError
value is returned.

Related Information
The IMCreate (“IMCreate Subroutine” on page 543) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National
Language Support Guide and Reference.

IMClose Subroutine

Purpose
Closes the input method.

Library
Input Method Library (libIM.a)

Syntax
void IMClose(IMfep)
IMFep IMfep;

Description
The IMClose subroutine closes the input method. Before the IMClose subroutine is called, all previously
created input method instances must be destroyed with the IMDestroy subroutine, or memory will not be
cleared.

542 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

IMfep Specifies the input method.

Related Information
The IMDestroy (“IMDestroy Subroutine” on page 544) subroutine.

Input Method Overview and National Language Support Overview in AIX 5L Version 5.3 National
Language Support Guide and Reference.

IMCreate Subroutine

Purpose
Creates one instance of an IMObject object for a particular input method.

Library
Input Method Library (libIM.a)

Syntax
IMObject IMCreate(IMfep, IMCallback, UData)
IMFep IMfep;
IMCallback *IMCallback;
caddr_t UData;

Description
The IMCreate subroutine creates one instance of a particular input method. Several input method
instances can be created under one input method.

Parameters

IMfep Specifies the input method.
IMCallback Specifies a pointer to the caller-supplied IMCallback structure.
UData Optionally specifies an application’s own information to the callback functions. With this

information, the application can avoid external references from the callback functions. The input
method does not change this parameter, but merely passes it to the callback functions. The
UData parameter is usually a pointer to the application data structure, which contains the
information about location, font ID, and so forth.

Return Values
The IMCreate subroutine returns a pointer to the created input method instance of type IMObject. If the
subroutine is unsuccessful, a null value is returned and the imerrno global variable is set to indicate the
error.

Related Information
The IMDestroy (“IMDestroy Subroutine” on page 544) subroutine, IMFilter (“IMFilter Subroutine” on page
544) subroutine, IMLookupString (“IMLookupString Subroutine” on page 551) subroutine, IMProcess
(“IMProcess Subroutine” on page 552) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

Base Operating System (BOS) Runtime Services (A-P) 543

IMDestroy Subroutine

Purpose
Destroys an input method instance.

Library
Input Method Library (libIM.a)

Syntax
void IMDestroy(IM)
IMObject IM;

Description
The IMDestroy subroutine destroys an input method instance.

Parameters

IM Specifies the input method instance to be destroyed.

Related Information
The IMClose (“IMClose Subroutine” on page 542) subroutine, IMCreate (“IMCreate Subroutine” on page
543) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

IMFilter Subroutine

Purpose
Determines if a keyboard event is used by the input method for internal processing.

Library
Input Method Library (libIM.a)

Syntax
int IMFilter(Im, Key, State, String, Length)
IMObect Im;
Keysym Key;
uint State, * Length;
caddr_t * String;

Description
The IMFilter subroutine is used to process a keyboard event and determine if the input method for this
operating system uses this event. The return value indicates:

v The event is filtered (used by the input method) if the return value is IMInputUsed. Otherwise, the input
method did not accept the event.

v Independent of the return value, a string may be generated by the keyboard event if pre-editing is
complete.

544 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: The buffer returned from the IMFilter subroutine is owned by the input method editor and can not
continue between calls.

Parameters

Im Specifies the input method instance.
Key Specifies the keysym for the event.
State Defines the state of the keysym. A value of 0 means that the keysym is not redefined.
String Holds the returned string if one exists. A null value means that no composed string is ready.
Length Defines the length of the input string. If the string is not null, returns the length.

Return Values

IMInputUsed The input method for this operating system filtered the event.
IMInputNotUsed The input method for this operating system did not use the event.

Related Information
Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

IMFreeKeymap Subroutine

Purpose
Frees resources allocated by the IMInitializeKeymap subroutine.

Library
Input Method Library (libIM.a)

Syntax
void IMFreeKeymap(IMMap)
IMMap IMMap;

Description
The IMFreeKeymap subroutine frees resources allocated by the IMInitializeKeymap subroutine.

Parameters

IMMap Identifies the keymap.

Related Information
The IMInitializeKeymap (“IMInitializeKeymap Subroutine” on page 548) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

Base Operating System (BOS) Runtime Services (A-P) 545

IMIndicatorDraw Callback Subroutine

Purpose
Tells the application program to draw the indicator.

Syntax
int IMIndicatorDraw(IM, IndicatorInformation, UData)
IMObject IM;
IMIndicatorInfo *IndicatorInformation;
caddr_t UData;

Description
The IMIndicatorDraw callback subroutine is called by the input method when the value of the indicator is
changed. The application program then draws the indicator.

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
IndicatorInformation Points to the IMIndicatorInfo structure that holds the current value of the

indicator. The interpretation of this value varies among phonic languages.
However, the input method provides a function to interpret this value.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error happens, the IMIndicatorDraw subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

Related Information
The IMCreate (“IMCreate Subroutine” on page 543) subroutine, IMIndicatorHide (“IMIndicatorHide
Callback Subroutine”) subroutine.

Input Methods, National Language Support Overview and Using Callbacks in AIX 5L Version 5.3 National
Language Support Guide and Reference.

IMIndicatorHide Callback Subroutine

Purpose
Tells the application program to hide the indicator.

Syntax
int IMIndicatorHide(IM, UData)
IMObject IM;
caddr_t UData;

Description
The IMIndicatorHide subroutine is called by the input method to tell the application program to hide the
indicator.

546 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
UData Specifies an argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMIndicatorHide subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

Related Information
The IMCreate (“IMCreate Subroutine” on page 543) subroutine, IMIndicatorDraw (“IMIndicatorDraw
Callback Subroutine” on page 546) subroutine.

Input Methods, National Language Support Overview and Understanding Callbacks in AIX 5L Version 5.3
National Language Support Guide and Reference.

IMInitialize Subroutine

Purpose
Initializes the input method for a particular language.

Library
Input Method Library (libIM.a)

Syntax
IMFep IMInitialize(Name)
char *Name;

Description
The IMInitialize subroutine initializes an input method. The IMCreate, IMFilter, and IMLookupString
subroutines use the input method to perform input processing of keyboard events in the form of keysym
state modifiers. The IMInitialize subroutine finds the input method that performs the input processing
specified by the Name parameter and returns an Input Method Front End Processor (IMFep) descriptor.

Before calling any of the key event-handling functions, the application must create an instance of an
IMObject object using the IMFep descriptor. Each input method can produce one or more instances of
IMObject object with the IMCreate subroutine.

When the IMInitialize subroutine is called, strings returned from the input method are encoded in the code
set of the locale. Each IMFep description inherits the code set of the locale when the input method is
initialized. The locale setting does not change the code set of the IMFep description after it is created.

The IMInitialize subroutine calls the load subroutine to load a file whose name is in the form Name.im.
The Name parameter is passed to the IMInitialize subroutine. The loadable input method file is accessed
in the directories specified by the LOCPATH environment variable. The default location for loadable
input-method files is the /usr/lib/nls/loc directory. If none of the LOCPATH directories contain the input
method specified by the Name parameter, the default location is searched.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

Base Operating System (BOS) Runtime Services (A-P) 547

The name of the input method file usually corresponds to the locale name, which is in the form
Language_territory.codesest@modifier. In the environment, the modifier is in the form @im=modifier.
The IMInitialize subroutine converts the @im= substring to @ when searching for loadable input-method
files.

Parameters

Name Specifies the language to be used. Each input method is dynamically linked to the application
program.

Return Values
If IMInitialize succeeds, it returns an IMFep handle. Otherwise, null is returned and the imerrno global
variable is set to indicate the error.

Files

/usr/lib/nls/loc Contains loadable input-method files.

Related Information
The IMCreate (“IMCreate Subroutine” on page 543) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

IMInitializeKeymap Subroutine

Purpose
Initializes the keymap associated with a specified language.

Library
Input Method Library (libIM.a)

Syntax
IMMap IMInitializeKeymap(Name)
char *Name;

Description
The IMInitializeKeymap subroutine initializes an input method keymap (imkeymap). The IMAIXMapping
and IMSimpleMapping subroutines use the imkeymap to perform mapping of keysym state modifiers to
strings. The IMInitializeKeymap subroutine finds the imkeymap that performs the keysym mapping and
returns an imkeymap descriptor, IMMap. The strings returned by the imkeymap mapping functions are
treated as unsigned bytes.

The applications that use input methods usually do not need to manage imkeymaps separately. The
imkeymaps are managed internally by input methods.

The IMInitializeKeymap subroutine searches for an imkeymap file whose name is in the form Name.im.
The Name parameter is passed to the IMInitializeKeymap subroutine. The imkeymap file is accessed in
the directories specified by the LOCPATH environment variable. The default location for input method files
is the /usr/lib/nls/loc directory. If none of the LOCPATH directories contain the keymap method specified
by the Name parameter, the default location is searched.

548 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The name of the imkeymap file usually corresponds to the locale name, which is in the form
Language_territory.codesest@modifier. In the AIXwindows environment, the modifier is in the form
@im=modifier. The IMInitializeKeymap subroutine converts the @im= substring to @ (at sign) when
searching for loadable input method files.

Parameters

Name Specifies the name of the imkeymap.

Return Values
The IMInitializeKeymap subroutine returns a descriptor of type IMMap. Returning a null value indicates
the occurrence of an error. The IMMap descriptor is defined in the im.h file as the caddr_t structure. This
descriptor is used for keymap manipulation functions.

Files

/usr/lib/nls/loc Contains loadable input-method files.

Related Information
The IMFreeKeymap (“IMFreeKeymap Subroutine” on page 545), IMQueryLanguage (“IMQueryLanguage
Subroutine” on page 554) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

IMIoctl Subroutine

Purpose
Performs a variety of control or query operations on the input method.

Library
Input Method Library (libIM.a)

Syntax
int IMIoctl(IM, Operation, Argument)
IMObject IM;
int Operation;
char *Argument;

Description
The IMIoctl subroutine performs a variety of control or query operations on the input method specified by
the IM parameter. In addition, this subroutine can be used to control the unique function of each language
input method because it provides input method-specific extensions. Each input method defines its own
function.

Parameters
IM Specifies the input method instance.

Base Operating System (BOS) Runtime Services (A-P) 549

Operation
Specifies the operation.

Argument
The use of this parameter depends on which of the following operations is performed.

IM_Refresh
Refreshes the text area, auxiliary areas, and indicator by calling the needed callback
functions if these areas are not empty. The Argument parameter is not used.

IM_GetString
Gets the current pre-editing string. The Argument parameter specifies the address of the
IMSTR structure supplied by the caller. The callback function is invoked to clear the
pre-editing if it exists.

IM_Clear
Clears the text and auxiliary areas if they exist. If the Argument parameter is not a null
value, this operation invokes the callback functions to clear the screen. The keyboard state
remains the same.

IM_Reset
Clears the auxiliary area if it currently exists. If the Argument parameter is a null value,
this operation clears only the internal buffer of the input method. Otherwise, the
IMAuxHide subroutine is called, and the input method returns to its initial state.

IM_ChangeLength
Changes the maximum length of the pre-editing string.

IM_ChangeMode
Sets the Processing Mode of the input method to the mode specified by the Argument
parameter. The valid value for Argument is:

IMNormalMode
Specifies the normal mode of pre-editing.

IMSuppressedMode
Suppresses pre-editing.

IM_QueryState
Returns the status of the text area, the auxiliary area, and the indicator. It also returns the
beep status and the processing mode. The results are stored into the caller-supplied
IMQueryState structure pointed to by the Argument parameter.

IM_QueryText
Returns detailed information about the text area. The results are stored in the
caller-supplied IMQueryText structure pointed to by the Argument parameter.

IM_QueryAuxiliary
Returns detailed information about the auxiliary area. The results are stored in the
caller-supplied IMQueryAuxiliary structure pointed to by the Argument parameter.

IM_QueryIndicator
Returns detailed information about the indicator. The results are stored in the
caller-supplied IMQueryIndicator structure pointed to by the Argument parameter.

IM_QueryIndicatorString
Returns an indicator string corresponding to the current indicator. Results are stored in the
caller-supplied IMQueryIndicatorString structure pointed to by the Argument parameter.
The caller can request either a short or long form with the format member of the
IMQueryIndicatorString structure.

550 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

IM_SupportSelection
Informs the input method whether or not an application supports an auxiliary area
selection list. The application must support selections inside the auxiliary area and
determine how selections are displayed. If this operation is not performed, the input
method assumes the application does not support an auxiliary area selection list.

Return Values
The IMIoctl subroutine returns a value to the IMError global variable that indicates the type of error
encountered. Some error types are provided in the /usr/include/imerrno.h file.

Related Information
The IMFilter (“IMFilter Subroutine” on page 544) subroutine, IMLookupString (“IMLookupString
Subroutine”) subroutine, IMProcess (“IMProcess Subroutine” on page 552) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

IMLookupString Subroutine

Purpose
Maps a Key/State (key symbol/state) pair to a string.

Library
Input Method Library (libIM.a)

Syntax
int IMLookupString(Im, Key, State, String, Length)
IMObject Im;
KeySym Key;
uint State, * Length;
caddr_t * String;

Description
The IMLookupString subroutine is used to map a Key/State pair to a localized string. It uses an internal
input method keymap (imkeymap) file to map a keysym/modifier to a string. The string returned is
encoded in the same code set as the locale of IMObject and IM Front End Processor.

Note: The buffer returned from the IMLookupString subroutine is owned by the input method editor and
can not continue between calls.

Parameters

Im Specifies the input method instance.
Key Specifies the key symbol for the event.
State Defines the state for the event. A value of 0 means that the key is not redefined.
String Holds the returned string, if one exists. A null value means that no composed string is ready.
Length Defines the length string on input. If the string is not null, identifies the length returned.

Base Operating System (BOS) Runtime Services (A-P) 551

Return Values

IMError Error encountered.
IMReturnNothing No string or keysym was returned.
IMReturnString String returned.

Related Information
Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

IMProcess Subroutine

Purpose
Processes keyboard events and language-specific input.

Library
Input Method Library (libIM.a)

Note: This subroutine will be removed in future releases. Use the IMFilter (“IMFilter Subroutine” on page
544) and IMLookupString (“IMLookupString Subroutine” on page 551) subroutines to process
keyboard events.

Syntax
int IMProcess (IM, KeySymbol, State, String, Length)
IMObject IM;
KeySym KeySymbol;
uint State;
caddr_t * String;
uint * Length;

Description
This subroutine is a main entry point to the input method of the operating system. The IMProcess
subroutine processes one keyboard event at a time. Processing proceeds as follows:

v Validates the IM parameter.

v Performs keyboard translation for all supported modifier states.

v Invokes internal function to do language-dependent processing.

v Performs any necessary callback functions depending on the internal state.

v Returns to application, setting the String and Length parameters appropriately.

Parameters

IM Specifies the input method instance.
KeySymbol Defines the set of keyboard symbols that will be handled.
State Specifies the state of the keyboard.
String Holds the returned string. Returning a null value means that the input is used or discarded by the

input method.
Note: The String parameter is not a null-terminated string.

Length Stores the length, in bytes, of the String parameter.

552 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
This subroutine returns the IMError global variable if an error occurs. The IMerrno global variable is set to
indicate the error. Some of the variable values include:

IMError Error occurred during this subroutine.
IMTextAndAuxiliaryOff No text string in the Text area, and the Auxiliary area is not shown.
IMTextOn Text string in the Text area, but no Auxiliary area.
IMAuxiliaryOn No text string in the Text area, and the Auxiliary area is shown.
IMTextAndAuxiliaryOn Text string in the Text area, and the Auxiliary is shown.

Related Information
The IMClose (“IMClose Subroutine” on page 542) subroutine, IMCreate (“IMCreate Subroutine” on page
543) subroutine IMFilter (“IMFilter Subroutine” on page 544) subroutine, IMLookupString
(“IMLookupString Subroutine” on page 551) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

IMProcessAuxiliary Subroutine

Purpose
Notifies the input method of input for an auxiliary area.

Library
Input Method Library (libIM.a)

Syntax
int IMProcessAuxiliary(IM, AuxiliaryID, Button, PanelRow

PanelColumn, ItemRow, ItemColumn, String, Length)

IMObject IM;
caddr_t AuxiliaryID;
uint Button;
uint PanelRow;
uint PanelColumn;
uint ItemRow;
uint ItemColumn;
caddr_t *String;
uint *Length;

Description
The IMProcessAuxiliary subroutine notifies the input method instance of input for an auxiliary area.

Parameters

IM Specifies the input method instance.
AuxiliaryID Identifies the auxiliary area.

Base Operating System (BOS) Runtime Services (A-P) 553

Button Specifies one of the following types of input:

IM_ABORT
Abort button is pushed.

IM_CANCEL
Cancel button is pushed.

IM_ENTER
Enter button is pushed.

IM_HELP
Help button is pushed.

IM_IGNORE
Ignore button is pushed.

IM_NO No button is pushed.

IM_OK OK button is pushed.

IM_RETRY
Retry button is pushed.

IM_SELECTED
Selection has been made. Only in this case do the PanelRow, PanelColumn,
ItemRow, and ItemColumn parameters have meaningful values.

IM_YES
Yes button is pushed.

PanelRow Indicates the panel on which the selection event occurred.
PanelColumn Indicates the panel on which the selection event occurred.
ItemRow Indicates the selected item.
ItemColumn Indicates the selected item.
String Holds the returned string. If a null value is returned, the input is used or discarded by the input

method. Note that the String parameter is not a null-terminated string.
Length Stores the length, in bytes, of the String parameter.

Related Information
The IMAuxCreate (“IMAuxCreate Callback Subroutine” on page 539) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support
Guide and Reference.

IMQueryLanguage Subroutine

Purpose
Checks to see if the specified input method is supported.

Library
Input Method Library (libIM.a)

Syntax
uint IMQueryLanguage(Name)
IMLanguage Name;

554 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The IMQueryLanguage subroutine checks to see if the input method specified by the Name parameter is
supported.

Parameters

Name Specifies the input method.

Return Values
The IMQueryLanguage subroutine returns a true value if the specified input method is supported, a false
value if not.

Related Information
The IMClose (“IMClose Subroutine” on page 542) subroutine, IMInitialize (“IMInitialize Subroutine” on
page 547) subroutine.

Input Methods, National Language Support Overview, Understanding Keyboard Mapping contains a list of
supported languages in AIX 5L Version 5.3 National Language Support Guide and Reference.

IMSimpleMapping Subroutine

Purpose
Translates a pair of KeySymbol and State parameters to a string and returns a pointer to this string.

Library
Input Method Library (libIM.a)

Syntax
caddr_t IMSimpleMapping (IMMap, KeySymbol, State, NBytes)
IMMap IMMap;
KeySym KeySymbol;
uint State;
int * NBytes;

Description
Like the IMAIXMapping subroutine, the IMSimpleMapping subroutine translates a pair of KeySymbol and
State parameters to a string and returns a pointer to this string. The parameters have the same meaning
as those in the IMAIXMapping subroutine.

The IMSimpleMapping subroutine differs from the IMAIXMapping subroutine in that it does not support
the diacritic character sequence or the Alt-NumPad key sequence.

Parameters

IMMap Identifies the keymap.
KeySymbol Key symbol to which the string is mapped.
State Specifies the state to which the string is mapped.
NBytes Returns the length of the returning string.

Base Operating System (BOS) Runtime Services (A-P) 555

Related Information
The IMAIXMapping (“IMAIXMapping Subroutine” on page 538) subroutine, IMFreeKeymap
(“IMFreeKeymap Subroutine” on page 545) subroutine, IMInitializeKeymap (“IMInitializeKeymap
Subroutine” on page 548) subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

IMTextCursor Callback Subroutine

Purpose
Asks the application to move the text cursor.

Syntax
int IMTextCursor(IM, Direction, Cursor, UData)
IMObject IM;
uint Direction;
int * Cursor;
caddr_t UData;

Description
The IMTextCursor subroutine is called by the Input Method when the Cursor Up or Cursor Down key is
input to the IMFilter and IMLookupString subroutines.

This subroutine sets the new display cursor position in the text area to the integer pointed to by the Cursor
parameter. The cursor position is relative to the top of the text area. A value of -1 indicates the cursor
should not be moved.

Because the input method does not know the actual length of the screen it always treats a text string as
one-dimensional (a single line). However, in the terminal emulator, the text string sometimes wraps to the
next line. The IMTextCursor subroutine performs this conversion from single-line to multiline text strings.
When you move the cursor up or down, the subroutine interprets the cursor position on the text string
relative to the input method.

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the Input Method instance.
Direction Specifies up or down.
Cursor Specifies the new cursor position or -1.
UData Specifies an argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMTextCursor subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

Related Information
The IMCreate (“IMCreate Subroutine” on page 543) subroutine, IMFilter (“IMFilter Subroutine” on page
544) subroutine, IMLookupString (“IMLookupString Subroutine” on page 551) subroutine, IMTextDraw
(“IMTextDraw Callback Subroutine” on page 557) subroutine.

556 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Input Methods, National Language Support Overview and Using Callbacks in AIX 5L Version 5.3 National
Language Support Guide and Reference.

IMTextDraw Callback Subroutine

Purpose
Tells the application program to draw the text string.

Syntax
int IMTextDraw(IM, TextInfo, UData)
IMObject IM;
IMTextInfo *TextInfo;
caddr_t UData;

Description
The IMTextDraw subroutine is invoked by the Input Method whenever it needs to update the screen with
its internal string. This subroutine tells the application program to draw the text string.

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
TextInfo Points to the IMTextInfo structure.
UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMTextDraw subroutine returns the IMError global variable. Otherwise, the
IMNoError value is returned.

Related Information
The IMCreate (“IMCreate Subroutine” on page 543) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National
Language Support Guide and Reference.

IMTextHide Callback Subroutine

Purpose
Tells the application program to hide the text area.

Syntax
int IMTextHide(IM, UData)
IMObject IM;
caddr_t UData;

Description
The IMTextHide subroutine is called by the input method when the text area should be cleared. This
subroutine tells the application program to hide the text area.

Base Operating System (BOS) Runtime Services (A-P) 557

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
UData Specifies an argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMTextHide subroutine returns an IMError value. Otherwise, an IMNoError value is
returned.

Related Information
The IMTextDraw (“IMTextDraw Callback Subroutine” on page 557) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National
Language Support Guide and Reference.

IMTextStart Callback Subroutine

Purpose
Notifies the application program of the length of the pre-editing space.

Syntax
int IMTextStart(IM, Space, UData)
IMObject IM;
int *Space;
caddr_t UData;

Description
The IMTextStart subroutine is called by the input method when the pre-editing is started, but prior to
calling the IMTextDraw callback subroutine. This subroutine notifies the input method of the length, in
terms of bytes, of pre-editing space. It sets the length of the available space (>=0) on the display to the
integer pointed to by the Space parameter. A value of -1 indicates that the pre-editing space is dynamic
and has no limit.

This subroutine is provided by applications that use input methods.

Parameters

IM Indicates the input method instance.
Space Maximum length of pre-editing string.
UData An argument passed by the IMCreate subroutine.

Related Information
The IMCreate (“IMCreate Subroutine” on page 543) subroutine, IMTextDraw (“IMTextDraw Callback
Subroutine” on page 557) subroutine.

Input Methods, Using Callbacks, and National Language Support Overview in AIX 5L Version 5.3 National
Language Support Guide and Reference.

558 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

inet_aton Subroutine

Purpose
Converts an ASCII string into an Internet address.

Library
Standard C Library (libc.a)

Syntax
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_aton (CharString, InternetAddr)
char * CharString;
struct in_addr * InternetAddr;

Description
The inet_aton subroutine takes an ASCII string representing the Internet address in dot notation and
converts it into an Internet address.

All applications containing the inet_aton subroutine must be compiled with _BSD set to a specific value.
Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a
library.

Parameters

CharString Contains the ASCII string to be converted to an Internet address.
InternetAddr Contains the Internet address that was converted from the ASCII string.

Return Values
Upon successful completion, the inet_aton subroutine returns 1 if CharString is a valid ASCII
representation of an Internet address.

The inet_aton subroutine returns 0 if CharString is not a valid ASCII representation of an Internet address.

Files

/etc/hosts Contains host names.
/etc/networks Contains network names.

Related Information
The endhostent subroutine, endnetent subroutine, gethostbyaddr subroutine, gethostbyname
subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine, inet_addr
subroutine, inet_lnaof subroutine, inet_makeaddr subroutine, inet_network subroutine, inet_ntoa
subroutine, sethostent subroutine, setnetent subroutine.

Sockets Overview and Network Address Translation in AIX 5L Version 5.3 Communications Programming
Concepts.

Base Operating System (BOS) Runtime Services (A-P) 559

initgroups Subroutine

Purpose
Initializes supplementary group ID.

Library
Standard C Library (libc.a)

Syntax
int initgroups (User, BaseGID)
const char *User;
int BaseGID;

Description
Attention: The initgroups subroutine uses the getgrent and getpwent family of subroutines. If the
program that invokes the initgroups subroutine uses any of these subroutines, calling the initgroups
subroutine overwrites the static storage areas used by these subroutines.

The initgroups subroutine reads the defined group membership of the specified User parameter and sets
the supplementary group ID of the current process to that value. The BaseGID parameter is always
included in the supplementary group ID. The supplementary group is normally the principal user’s group. If
the user is in more than NGROUPS_MAX groups, set in the limits.h file, only NGROUPS_MAX groups
are set, including the BaseGID group.

Parameters

User Identifies a user.
BaseGID Specifies an additional group to include in the group set.

Return Values

0 Indicates that the subroutine was success.
-1 Indicates that the subroutine failed. The errno global variable is set to indicate the error.

Related Information
The getgid (“getgid, getegid or gegidx Subroutine” on page 373) subroutine, getgrent, getgrgid,
getgrnam, putgrent, setgrent, or endgrent (“getgrent, getgrgid, getgrnam, setgrent, or endgrent
Subroutine” on page 374) subroutine, getgroups (“getgroups Subroutine” on page 385) subroutine,
setgroups subroutine.

The groups command, setgroups command.

List of Security and Auditing Subroutines, Subroutines, Example Programs, and Libraries in AIX 5L Version
5.3 General Programming Concepts: Writing and Debugging Programs.

initialize Subroutine

Purpose
Performs printer initialization.

560 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
None (provided by the formatter).

Syntax
#include <piostruct.h>

int initialize ()

Description
The initialize subroutine is invoked by the formatter driver after the setup subroutine returns.

If the -j flag passed from the qprt command has a nonzero value (true), the initialize subroutine uses the
piocmdout subroutine to send a command string to the printer. This action initializes the printer to the
proper state for printing the file. Any variables referenced by the command string should be the attribute
values from the database, overridden by values from the command line.

If the -j flag passed from the qprt command has a nonzero value (true), any necessary fonts should be
downloaded.

Return Values

0 Indicates a successful operation.

If the initialize subroutine detects an error, it uses the piomsgout subroutine to invoke an error message.
It then invokes the pioexit subroutine with a value of PIOEXITBAD.

Note: If either the piocmdout or piogetstr subroutine detects an error, it issues its own error messages
and terminates the print job.

Related Information
The piocmdout subroutine, pioexit subroutine, piogetstr subroutine, piomsgout subroutine, setup
subroutine.

Adding a New Printer Type to Your System, Printer Addition Management Subsystem: Programming
Overview, Understanding Embedded References in Printer Attribute Strings in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

Print formatter example in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

insque or remque Subroutine

Purpose
Inserts or removes an element in a queue.

Library
Standard C Library (libc.a)

Syntax
#include <search.h>

Base Operating System (BOS) Runtime Services (A-P) 561

insque (Element, Pred)
void *Element, *Pred;

remque (Element)
void *Element;

Description
The insque and remque subroutines manipulate queues built from double-linked lists. Each element in the
queue must be in the form of a qelem structure. The next and prev elements of that structure must point
to the elements in the queue immediately before and after the element to be inserted or deleted.

The insque subroutine inserts the element pointed to by the Element parameter into a queue immediately
after the element pointed to by the Pred parameter.

The remque subroutine removes the element defined by the Element parameter from a queue.

Parameters

Pred Points to the element in the queue immediately before the element to be inserted or deleted.
Element Points to the element in the queue immediately after the element to be inserted or deleted.

Related Information
Searching and Sorting Example Program in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

install_lwcf_handler Subroutine

Purpose
Registers the signal handler to dump a lightweight core file for signals that normally cause the generation
of a core file.

Library
PTools Library (libptools_ptr.a)

Syntax
void install_lwcf_handler (void);

Description
The install_lwcf_handler subroutine registers the signal handler to dump a lightweight core file for signals
that normally cause a core file to be generated. The format of lightweight core files complies with the
Parallel Tools Consortium Lightweight Core File Format.

The install_lwcf_handler subroutine uses the LIGHTWEIGHT_CORE environment variable to determine
the target lightweight core file. If the LIGHTWEIGHT_CORE environment variable is defined, a lightweight
core file will be generated. Otherwise, a normal core file will be generated.

If the LIGHTWEIGHT_CORE environment variable is defined without a value, the lightweight core file is
assigned the default file name lw_core and is created under the current working directory if it does not
already exist.

562 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If the LIGHTWEIGHT_CORE environment variable is defined with a value of STDERR, the lightweight
core file is output to the standard error output device of the process. Keyword STDERR is not
case-sensitive.

If the LIGHTWEIGHT_CORE environment variable is defined with the value of a character string other
than STDERR, the string is used as a path name for the lightweight core file generated.

If the target lightweight core file already exists, the traceback information is appended to the file.

The install_lwcf_handler subroutine can be called directly from an application to register the signal
handler. Alternatively, linker option -binitfini:install_lwcf_handler can be used when linking an
application, which specifies to execute the install_lwcf_handler subroutine when the application is
initialized. The advantage of the second method is that the application code does not need to change to
invoke the install_lwcf_handler subroutine.

Related Information
The mt__trce and sigaction subroutines.

ioctl, ioctlx, ioctl32, or ioctl32x Subroutine

Purpose
Performs control functions associated with open file descriptors.

Library
Standard C Library (libc.a)

BSD Library (libbsd.a)

Syntax
#include <sys/ioctl.h>
#include <sys/types.h>
#include <unistd.h>
#include <stropts.h>

int ioctl (FileDescriptor, Command, Argument)
int FileDescriptor, Command;
void * Argument;

int ioctlx (FileDescriptor, Command, Argument, Ext)
int FileDescriptor , Command ;
void *Argument;
int Ext;

int ioct132 (FileDescriptor, Command , Argument)
int FileDescriptor, Command;
unsigned int Argument;

int ioct132x (FileDescriptor, Command , Argument, Ext)
int FileDescriptor, Command;
unsigned int Argument;
unsigned int Ext;

Base Operating System (BOS) Runtime Services (A-P) 563

Description
The ioctl subroutine performs a variety of control operations on the object associated with the specified
open file descriptor. This function is typically used with character or block special files, sockets, or generic
device support such as the termio general terminal interface.

The control operation provided by this function call is specific to the object being addressed, as are the
data type and contents of the Argument parameter. The ioctlx form of this function can be used to pass
an additional extension parameter to objects supporting it. The ioct132 and ioct132x forms of this function
behave in the same way as ioctl and ioctlx, but allow 64-bit applications to call the ioctl routine for an
object that does not normally work with 64-bit applications.

Performing an ioctl function on a file descriptor associated with an ordinary file results in an error being
returned.

Parameters

FileDescriptor Specifies the open file descriptor for which the control operation is to be performed.
Command Specifies the control function to be performed. The value of this parameter depends on

which object is specified by the FileDescriptor parameter.
Argument Specifies additional information required by the function requested in the Command

parameter. The data type of this parameter (a void pointer) is object-specific, and is
typically used to point to an object device-specific data structure. However, in some
device-specific instances, this parameter is used as an integer.

Ext Specifies an extension parameter used with the ioctlx subroutine. This parameter is
passed on to the object associated with the specified open file descriptor. Although
normally of type int, this parameter can be used as a pointer to a device-specific
structure for some devices.

File Input/Output (FIO) ioctl Command Values
A number of file input/output (FIO) ioctl commands are available to enable the ioctl subroutine to function
similar to the fcntl subroutine:

FIOCLEX and FIONCLEX Manipulate the close-on-exec flag to determine if a file descriptor should be
closed as part of the normal processing of the exec subroutine. If the flag is
set, the file descriptor is closed. If the flag is clear, the file descriptor is left
open.

The following code sample illustrates the use of the fcntl subroutine to set
and clear the close-on-exec flag:

/* set the close-on-exec flag for fd1 */
fcntl(fd1,F_SETFD,FD_CLOEXEC);
/* clear the close-on-exec flag for fd2 */
fcntl(fd2,F_SETFD,0);

Although the fcntl subroutine is normally used to set the close-on-exec flag,
the ioctl subroutine may be used if the application program is linked with the
Berkeley Compatibility Library (libbsd.a) or the Berkeley Thread Safe Library
(libbsd_r.a) (4.2.1 and later versions). The following ioctl code fragment is
equivalent to the preceding fcntl fragment:

/* set the close-on-exec flag for fd1 */
ioctl(fd1,FIOCLEX,0);
/* clear the close-on-exec flag for fd2 */
ioctl(fd2,FIONCLEX,0);

The third parameter to the ioctl subroutine is not used for the FIOCLEX and
FIONCLEX ioctl commands.

564 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

FIONBIO Enables nonblocking I/O. The effect is similar to setting the O_NONBLOCK
flag with the fcntl subroutine. The third parameter to the ioctl subroutine for
this command is a pointer to an integer that indicates whether nonblocking I/O
is being enabled or disabled. A value of 0 disables non-blocking I/O. Any
nonzero value enables nonblocking I/O. A sample code fragment follows:

int flag;
/* enable NBIO for fd1 */
flag = 1;
ioctl(fd1,FIONBIO,&flag);
/* disable NBIO for fd2 */
flag = 0;
ioctl(fd2,FIONBIO,&flag);

FIONREAD Determines the number of bytes that are immediately available to be read on
a file descriptor. The third parameter to the ioctl subroutine for this command
is a pointer to an integer variable where the byte count is to be returned. The
following sample code illustrates the proper use of the FIONREAD ioctl
command:

int nbytes;

ioctl(fd,FIONREAD,&nbytes);
FIOASYNC Enables a simple form of asynchronous I/O notification. This command

causes the kernel to send SIGIO signal to a process or a process group when
I/O is possible. Only sockets, ttys, and pseudo-ttys implement this
functionality.

The third parameter of the ioctl subroutine for this command is a pointer to
an integer variable that indicates whether the asynchronous I/O notification
should be enabled or disabled. A value of 0 disables I/O notification; any
nonzero value enables I/O notification. A sample code segment follows:

int flag;
/* enable ASYNC on fd1 */
flag = 1;
ioctl(fd, FIOASYNC,&flag);
/* disable ASYNC on fd2 */
flag = 0;
ioctl(fd,FIOASYNC,&flag);

FIOSETOWN Sets the recipient of the SIGIO signals when asynchronous I/O notification
(FIOASYNC) is enabled. The third parameter to the ioctl subroutine for this
command is a pointer to an integer that contains the recipient identifier. If the
value of the integer pointed to by the third parameter is negative, the value is
assumed to be a process group identifier. If the value is positive, it is
assumed to be a process identifier.

Sockets support both process groups and individual process recipients, while
ttys and psuedo-ttys support only process groups. Attempts to specify an
individual process as the recipient will be converted to the process group to
which the process belongs. The following code example illustrates how to set
the recipient identifier:

int owner;
owner = -getpgrp();
ioctl(fd,FIOSETOWN,&owner);

Note: In this example, the asynchronous I/O signals are being enabled on a
process group basis. Therefore, the value passed through the owner
parameter must be a negative number.

The following code sample illustrates enabling asynchronous I/O signals to an
individual process:

int owner;
owner = getpid();
ioctl(fd,FIOSETOWN,&owner);

Base Operating System (BOS) Runtime Services (A-P) 565

FIOGETOWN Determines the current recipient of the asynchronous I/O signals of an object
that has asynchronous I/O notification (FIOASYNC) enabled. The third
parameter to the ioctl subroutine for this command is a pointer to an integer
used to return the owner ID. For example:

int owner;
ioctl(fd,FIOGETOWN,&owner);

If the owner of the asynchronous I/O capability is a process group, the value
returned in the reference parameter is negative. If the owner is an individual
process, the value is positive.

Return Values
If the ioctl subroutine fails, a value of -1 is returned. The errno global variable is set to indicate the error.

The ioctl subroutine fails if one or more of the following are true:

EBADF The FileDescriptor parameter is not a valid open file
descriptor.

EFAULT The Argument or Ext parameter is used to point to data
outside of the process address space.

EINTR A signal was caught during the ioctl or ioctlx subroutine
and the process had not enabled re-startable subroutines
for the signal.

EINTR A signal was caught during the ioctl , ioctlx , ioctl32 , or
ioct132x subroutine and the process had not enabled
re-startable subroutines for the signal.

EINVAL The Command or Argument parameter is not valid for the
specified object.

ENOTTY The FileDescriptor parameter is not associated with an
object that accepts control functions.

ENODEV The FileDescriptor parameter is associated with a valid
character or block special file, but the supporting device
driver does not support the ioctl function.

ENXIO The FileDescriptor parameter is associated with a valid
character or block special file, but the supporting device
driver is not in the configured state.

Object-specific error codes are defined in the documentation for associated objects.

Related Information
The ddioctl device driver entry point and the fp_ioctl kernel service in AIX 5L Version 5.3 Technical
Reference: Kernel and Subsystems.

The Special Files Overview in AIX 5L Version 5.3 Files Reference.

The Input and Output Handling Programmer’s Overview, the tty Subsystem Overview, in AIX 5L Version
5.3 General Programming Concepts: Writing and Debugging Programs.

The Sockets Overview and Understanding Socket Data Transfer in AIX 5L Version 5.3 Communications
Programming Concepts.

isblank Subroutine

Purpose
Tests for a blank character.

566 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <ctype.h>

int isblank (c)
int c;

Description
The isblank subroutine tests whether the c parameter is a character of class blank in the program’s
current locale.

The c parameter is a type int, the value of which the application shall ensure is a character representable
as an unsigned char or equal to the value of the macro EOF. If the parameter has any other value, the
behavior is undefined.

Parameters

c Specifies the character to be tested.

Return Values
The isblank subroutine returns nonzero if c is a <blank>; otherwise, it returns 0.

Related Information
The “ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or
isascii Subroutines” on page 209.

setlocale Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions
Volume 2.

isendwin Subroutine

Purpose
Determines whether the endwin subroutine was called without any subsequent refresh calls.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

isendwin()

Description
The isendwin subroutine determines whether the endwin subroutine was called without any subsequent
refresh calls. If the endwin was called without any subsequent calls to the wrefresh or doupdate
subroutines, the isendwin subroutine returns TRUE.

Return Values

TRUE Indicates the endwin subroutine was called without any subsequent calls to the wrefresh or doupdate
subroutines.

FALSE Indicates subsequest calls to the refresh subroutines.

Base Operating System (BOS) Runtime Services (A-P) 567

Related Information
The doupdate subroutine, endwin subroutine, wrefresh subroutine.

Curses Overview for Programming, Initializing Curses, List of Curses Subroutines in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

isfinite Macro

Purpose
Tests for finite value.

Syntax
#include <math.h>

int isfinite (x)
real-floating x;

Description
The isfinite macro determines whether its argument has a finite value (zero, subnormal, or normal, and
not infinite or NaN). An argument represented in a format wider than its semantic type is converted to its
semantic type. Determination is based on the type of the argument.

Parameters

x Specifies the value to be tested.

Return Values
The isfinite macro returns a nonzero value if its argument has a finite value.

Related Information
“fpclassify Macro” on page 312, “isinf Subroutine” on page 570, “class, _class, finite, isnan, or unordered
Subroutines” on page 168, “isnormal Macro” on page 572.

The signbit Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions
Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

isgreater Macro

Purpose
Tests if x is greater than y.

Syntax
#include <math.h>

int isgreater (x, y)
real-floating x;
real-floating y;

568 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The isgreater macro determines whether its first argument is greater than its second argument. The value
of isgreater(x, y) is equal to (x) > (y); however, unlike (x) > (y), isgreater(x, y) does not raise the invalid
floating-point exception when x and y are unordered.

Parameters

x Specifies the first value to be compared.
y Specifies the first value to be compared.

Return Values
Upon successful completion, the isgreater macro returns the value of (x) > (y).

If x or y is NaN, 0 is returned.

Related Information
“isgreaterequal Subroutine,” “isless Macro” on page 570, “islessequal Macro” on page 571, “islessgreater
Macro” on page 572, and “isunordered Macro” on page 573.

math.h in AIX 5L Version 5.3 Files Reference.

isgreaterequal Subroutine

Purpose
Tests if x is greater than or equal to y.

Syntax
#include <math.h>

int isgreaterequal (x, y)
real-floating x;
real-floating y;

Description
The isgreaterequal macro determines whether its first argument is greater than or equal to its second
argument. The value of isgreaterequal (x, y) is equal to (x) >= (y); however, unlike (x) >= (y),
isgreaterequal (x, y) does not raise the invalid floating-point exception when x and y are unordered.

Parameters

x Specifies the first value to be compared.
y Specifies the second value to be compared.

Return Values
Upon successful completion, the isgreaterequal macro returns the value of (x) >= (y).

If x or y is NaN, 0 is returned.

Base Operating System (BOS) Runtime Services (A-P) 569

Related Information
“isgreater Macro” on page 568, “isless Macro,” “islessequal Macro” on page 571, “islessgreater Macro” on
page 572, and “isunordered Macro” on page 573.

math.h in AIX 5L Version 5.3 Files Reference.

isinf Subroutine

Purpose
Tests for infinity.

Syntax
#include <math.h>

int isinf (x)
real-floating x;

Description
The isinf macro determines whether its argument value is an infinity (positive or negative). An argument
represented in a format wider than its semantic type is converted to its semantic type. Determination is
based on the type of the argument.

Parameters

x Specifies the value to be checked.

Return Values
The isinf macro returns a nonzero value if its argument has an infinite value.

Related Information
“fpclassify Macro” on page 312, “isfinite Macro” on page 568, “class, _class, finite, isnan, or unordered
Subroutines” on page 168, “isnormal Macro” on page 572.

The signbit Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions
Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

isless Macro

Purpose
Tests if x is less than y.

Syntax
#include <math.h>
int isless (x, y)
real-floating x;
real-floating y;

570 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The isless macro determines whether its first argument is less than its second argument. The value of
isless(x, y) is equal to (x) < (y); however, unlike (x) < (y), isless(x, y) does not raise the invalid
floating-point exception when x and y are unordered.

Parameters

x Specifies the first value to be compared.
y Specifies the second value to be compared.

Return Values
Upon successful completion, the isless macro returns the value of (x) < (y).

If x or y is NaN, 0 is returned.

Related Information
“isgreater Macro” on page 568, “isgreaterequal Subroutine” on page 569, “islessequal Macro,”
“islessgreater Macro” on page 572, and “isunordered Macro” on page 573.

math.h in AIX 5L Version 5.3 Files Reference.

islessequal Macro

Purpose
Tests if x is less than or equal to y.

Syntax
#include <math.h>

int islessequal (x, y)
real-floating x;
real-floating y;

Description
The islessequal macro determines whether its first argument is less than or equal to its second argument.
The value of islessequal(x, y) is equal to (x) <= (y); however, unlike (x) <= (y), islessequal(x, y) does not
raise the invalid floating-point exception when x and y are unordered.

Parameters

x Specifies the first value to be compared.
y Specifies the second value to be compared.

Return Values
Upon successful completion, the islessequal macro returns the value of (x) <= (y).

If x or y is NaN, 0 is returned.

Base Operating System (BOS) Runtime Services (A-P) 571

Related Information
“isgreater Macro” on page 568, “isgreaterequal Subroutine” on page 569, “islessequal Macro” on page
571, “islessgreater Macro,” and “isunordered Macro” on page 573.

math.h in AIX 5L Version 5.3 Files Reference.

islessgreater Macro

Purpose
Tests if x is less than or greater than y.

Syntax
#include <math.h>

int islessgreater (x, y)
real-floating x;
real-floating y;

Description
The islessgreater macro determines whether its first argument is less than or greater than its second
argument. The islessgreater(x, y) macro is similar to (x) < (y) || (x) > (y); however, islessgreater(x, y)
does not raise the invalid floating-point exception when x and y are unordered (nor does it evaluate x and
y twice).

Parameters

x Specifies the first value to be compared.
y Specifies the second value to be compared.

Return Values
Upon successful completion, the islessgreater macro returns the value of (x) < (y) || (x) > (y).

If x or y is NaN, 0 is returned.

Related Information
“isgreater Macro” on page 568, “isgreaterequal Subroutine” on page 569, “isless Macro” on page 570,
“islessequal Macro” on page 571, and “isunordered Macro” on page 573.

math.h in AIX 5L Version 5.3 Files Reference.

isnormal Macro

Purpose
Tests for a normal value.

Syntax
#include <math.h>

int isnormal (x)
real-floating x;

572 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The isnormal macro determines whether its argument value is normal (neither zero, subnormal, infinite,
nor NaN) or not. An argument represented in a format wider than its semantic type is converted to its
semantic type. Determination is based on the type of the argument.

Parameters

x Specifies the value to be tested.

Return Values
The isnormal macro returns a nonzero value if its argument has a normal value.

Related Information
“fpclassify Macro” on page 312, “isfinite Macro” on page 568, “isinf Subroutine” on page 570, “class,
_class, finite, isnan, or unordered Subroutines” on page 168.

The signbit Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions
Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

isunordered Macro

Purpose
Tests if arguments are unordered.

Syntax
#include <math.h>
int isunordered (x, y)
real-floating x;
real-floating y;

Description
The isunordered macro determines whether its arguments are unordered.

Parameters

x Specifies the first value in the order.
y Specifies the second value in the order.

Return Values
Upon successful completion, the isunordered macro returns 1 if its arguments are unordered, and 0
otherwise.

If x or y is NaN, 0 is returned.

Related Information
“isgreater Macro” on page 568, “isgreaterequal Subroutine” on page 569, “isless Macro” on page 570,
“islessequal Macro” on page 571, and “islessgreater Macro” on page 572.

Base Operating System (BOS) Runtime Services (A-P) 573

math.h in AIX 5L Version 5.3 Files Reference.

iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint,
iswpunct, iswspace, iswupper, or iswxdigit Subroutine

Purpose
Tests a wide character for membership in a specific character class.

Library
Standard C Library (libc.a)

Syntax
#include <wchar.h>

int iswalnum (WC)
wint_t WC;

int iswalpha (WC)
wint_t WC;

int iswcntrl (WC)
wint_t WC;

int iswdigit (WC)
wint_t WC;

int iswgraph (WC)
wint_t WC;

int iswlower (WC)
wint_t WC;

int iswprint (WC)
wint_t WC;

int iswpunct (WC)
wint_t WC;

int iswspace (WC)
wint_t WC;

int iswupper (WC)
wint_t WC;

int iswxdigit (WC)
wint_t WC;

Description
The isw subroutines check the character class status of the wide character code specified by the WC
parameter. Each subroutine tests to see if a wide character is part of a different character class. If the
wide character is part of the character class, the isw subroutine returns true; otherwise, it returns false.

Each subroutine is named by adding the isw prefix to the name of the character class that the subroutine
tests. For example, the iswalpha subroutine tests whether the wide character specified by the WC
parameter is an alphabetic character. The character classes are defined as follows:

alnum Alphanumeric character.
alpha Alphabetic character.
cntrl Control character. No characters in the alpha or print classes are included.
digit Numeric digit character.
graph Graphic character for printing, not including the space character or cntrl characters. Includes all

characters in the digit and punct classes.
lower Lowercase character. No characters in cntrl, digit, punct, or space are included.
print Print character. All characters in the graph class are included, but no characters in cntrl are included.

574 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

punct Punctuation character. No characters in the alpha, digit, or cntrl classes, or the space character are
included.

space Space characters.
upper Uppercase character.
xdigit Hexadecimal character.

Parameters

WC Specifies a wide character for testing.

Return Values
If the wide character tested is part of the particular character class, the isw subroutine returns a nonzero
value; otherwise it returns a value of 0.

Related Information
The iswctype subroutine, (“iswctype or is_wctype Subroutine” on page 576)setlocale subroutine,
towlower subroutine, towupper subroutine wctype subroutine.

Subroutines, Example Programs, and Libraries, Wide Character Classification Subroutines in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

iswblank Subroutine

Purpose
Tests for a blank wide-character code.

Syntax
#include <wctype.h>

int iswblank (wc)
wint_t wc;

Description
The iswblank subroutine tests whether the wc parameter is a wide-character code representing a
character of class blank in the program’s current locale.

The wc parameter is a wint_t, the value of which the application ensures is a wide-character code
corresponding to a valid character in the current locale, or equal to the value of the macro WEOF. If the
parameter has any other value, the behavior is undefined.

Parameters

wc Specifies the value to be tested.

Return Values
The iswblank subroutine returns a nonzero value if the wc parameter is a blank wide-character code;
otherwise, it returns a 0.

Base Operating System (BOS) Runtime Services (A-P) 575

Related Information
“iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, or
iswxdigit Subroutine” on page 574 and “iswctype or is_wctype Subroutine.”

setlocale Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions
Volume 2.

wctype.h in AIX 5L Version 5.3 Files Reference.

iswctype or is_wctype Subroutine

Purpose
Determines properties of a wide character.

Library
Standard C Library (libc. a)

Syntax
#include <wchar.h>

int iswctype (WC, Property)
wint_t WC;
wctype_t Property;

int is_wctype (WC, Property)
wint_t WC;
wctype_t Property;

Description
The iswctype subroutine tests the wide character specified by the WC parameter to determine if it has the
property specified by the Property parameter. The iswctype subroutine is defined for the wide-character
null value and for values in the character range of the current code set, defined in the current locale. The
is_wctype subroutine is identical to the iswctype subroutine.

The iswctype subroutine adheres to X/Open Portability Guide Issue 5.

Parameters

WC Specifies the wide character to be tested.
Property Specifies the property for which to test.

Return Values
If the WC parameter has the property specified by the Property parameter, the iswctype subroutine
returns a nonzero value. If the value specified by the WC parameter does not have the property specified
by the Property parameter, the iswctype subroutine returns a value of zero. If the value specified by the
WC parameter is not in the subroutine’s domain, the result is undefined. If the value specified by the
Property parameter is not valid (that is, not obtained by a call to the wctype subroutine, or the Property
parameter has been invalidated by a subsequent call to the setlocale subroutine that has affected the
LC_CTYPE category), the result is undefined.

576 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The “iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, or
iswxdigit Subroutine” on page 574.

Subroutines, Example Programs, and Libraries, Wide Character Classification Subroutines in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

jcode Subroutines

Purpose
Perform string conversion on 8-bit processing codes.

Library
Standard C Library (libc.a)

Syntax
#include <jcode.h>

char *jistosj(String1, String2)
char *String1, *String2;

char *jistouj(String1, String2)
char *String1, *String2;

char *sjtojis(String1, String2)
char *String1, *String2;

char *sjtouj(String1, String2)
char *String1, *String2;

char *ujtojis(String1, String2)
char *String1, *String2;

char *ujtosj(String1, String2)
char *String1, *String2;

char *cjistosj(String1, String2)
char *String1, *String2;

char *cjistouj(String1, String2)
char *String1, *String2;

char *csjtojis(String1, String2)
char *String1, *String2;

char *csjtouj(String1, String2)
char *String1, *String2;

char *cujtojis(String1, String2)
char *String1, *String2;

char *cujtosj(String1, String2)
char *String1, *String2;

Description
The jistosj, jistouj, sjtojis, sjtouj, ujtojis, and ujtosj subroutines perform string conversion on 8-bit
processing codes. The String2 parameter is converted and the converted string is stored in the String1
parameter. The overflow of the String1 parameter is not checked. Also, the String2 parameter must be a
valid string. Code validation is not permitted.

Base Operating System (BOS) Runtime Services (A-P) 577

The jistosj subroutine converts JIS to SJIS. The jistouj subroutine converts JIS to UJIS. The sjtojis
subroutine converts SJIS to JIS. The sjtouj subroutine converts SJIS to UJIS. The ujtojis subroutine
converts UJIS to JIS. The ujtosj subroutine converts UJIS to SJIS.

The cjistosj, cjistouj, csjtojis, csjtouj, cujtojis, and cujtosj macros perform code conversion on 8-bit
processing JIS Kanji characters. A character is removed from the String2 parameter, and its code is
converted and stored in the String1 parameter. The String1 parameter is returned. The validity of the
String2 parameter is not checked.

The cjistosj macro converts from JIS to SJIS. The cjistouj macro converts from JIS to UJIS. The csjtojis
macro converts from SJIS to JIS. The csjtouj macro converts from SJIS to UJIS. The cujtojis macro
converts from UJIS to JIS. The cujtosj macro converts from UJIS to SJIS.

Parameters

String1 Stores converted string or code.
String2 Stores string or code to be converted.

Related Information
The “Japanese conv Subroutines” and “Japanese ctype Subroutines” on page 580.

List of String Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

National Language Support Overview for Programming in AIX 5L Version 5.3 National Language Support
Guide and Reference.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

Japanese conv Subroutines

Purpose
Translates predefined Japanese character classes.

Library
Standard C Library (libc.a)

Syntax
#include <ctype.h>
int atojis (Character)
int Character;

int jistoa (Character)
int Character;

int _atojis (Character)
int Character;

int _jistoa (Character)
int Character;

578 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int tojupper (Character)
int Character;

int tojlower (Character)
int Character;

int _tojupper (Character)
int Character;

int _tojlower (Character)
int Character;

int toujis (Character)
int Character;

int kutentojis (Character)
int Character;

int tojhira (Character)
int Character;

int tojkata (Character)
int Character;

Description
When running the operating system with Japanese Language Support on your system, the legal value of
the Character parameter is in the range from 0 to NLCOLMAX.

The jistoa subroutine converts an SJIS ASCII equivalent to the corresponding ASCII equivalent. The
atojis subroutine converts an ASCII character to the corresponding SJIS equivalent. Other values are
returned unchanged.

The _jistoa and _atojis routines are macros that function like the jistoa and atojis subroutines, but are
faster and have no error checking function.

The tojlower subroutine converts a SJIS uppercase letter to the corresponding SJIS lowercase letter. The
tojupper subroutine converts an SJIS lowercase letter to the corresponding SJIS uppercase letter. All
other values are returned unchanged.

The _tojlower and _tojupper routines are macros that function like the tojlower and tojupper
subroutines, but are faster and have no error-checking function.

The toujis subroutine sets all parameter bits that are not 16-bit SJIS code to 0.

The kutentojis subroutine converts a kuten code to the corresponding SJIS code. The kutentojis routine
returns 0 if the given kuten code is invalid.

The tojhira subroutine converts an SJIS katakana character to its SJIS hiragana equivalent. Any value
that is not an SJIS katakana character is returned unchanged.

The tojkata subroutine converts an SJIS hiragana character to its SJIS katakana equivalent. Any value
that is not an SJIS hiragana character is returned unchanged.

The _tojhira and _tojkata subroutines attempt the same conversions without checking for valid input.

Base Operating System (BOS) Runtime Services (A-P) 579

For all functions except the toujis subroutine, the out-of-range parameter values are returned without
conversion.

Parameters

Character Character to be converted.
Pointer Pointer to the escape sequence.
CharacterPointer Pointer to a single NLchar data type.

Related Information
The “ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or
isascii Subroutines” on page 209, “conv Subroutines” on page 184, “getc, getchar, fgetc, or getw
Subroutine” on page 350, “getwc, fgetwc, or getwchar Subroutine” on page 479, and setlocale subroutine.

List of Character Manipulation Subroutines and Subroutines, Example Programs, and Libraries in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference

Japanese ctype Subroutines

Purpose
Classify characters.

Library
Standard Character Library (libc.a)

Syntax
#include <ctype.h>

int isjalpha (Character)
int Character;

int isjupper (Character)
int Character;

int isjlower (Character)
int Character;

int isjlbytekana (Character)
int Character;

int isjdigit (Character)
int Character;

int isjxdigit (Character)
int Character;

int isjalnum (Character)
int Character;

580 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int isjspace (Character)
int Character;

int isjpunct (Character)
int Character;

int isjparen (Character)
int Character;

int isparent (Character)
intCharacter;

int isjprint (Character)
int Character;

int isjgraph (Character)
int Character;

int isjis (Character)
int Character;

int isjhira (wc)
wchar_t wc;

int isjkanji (wc)
wchar_wc;

int isjkata (wc)
wchar_t wc;

Description
The Japanese ctype subroutines classify character-coded integer values specified in a table. Each of
these subroutines returns a nonzero value for True and 0 for False.

Parameters

Character Character to be tested.

Return Values
The isjprint and isjgraph subroutines return a 0 value for user-defined characters.

Related Information
The “ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or
isascii Subroutines” on page 209, and setlocale subroutine.

List of Character Manipulation Services and Subroutines, Example Programs, and Libraries in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

Base Operating System (BOS) Runtime Services (A-P) 581

kill or killpg Subroutine

Purpose
Sends a signal to a process or to a group of processes.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <signal.h>

int kill(
Process,
Signal)
pid_t Process;
int Signal;

killpg(
ProcessGroup, Signal)

int ProcessGroup, Signal;

Description
The kill subroutine sends the signal specified by the Signal parameter to the process or group of
processes specified by the Process parameter.

To send a signal to another process, either the real or the effective user ID of the sending process must
match the real or effective user ID of the receiving process, and the calling process must have root user
authority.

The processes that have the process IDs of 0 and 1 are special processes and are sometimes referred to
here as proc0 and proc1, respectively.

Processes can send signals to themselves.

Note: Sending a signal does not imply that the operation is successful. All signal operations must pass
the access checks prescribed by each enforced access control policy on the system.

The following interface is provided for BSD Compatibility:
killpg(ProcessGroup, Signal)
int ProcessGroup; Signal;

This interface is equivalent to:
if (ProcessGroup < 0)
{

errno = ESRCH;
return (-1);

}
return (kill(-ProcessGroup, Signal));

582 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

Process Specifies the ID of a process or group of processes.

If the Process parameter is greater than 0, the signal specified by the Signal parameter is
sent to the process identified by the Process parameter.

If the Process parameter is 0, the signal specified by the Signal parameter is sent to all
processes, excluding proc0 and proc1, whose process group ID matches the process group
ID of the sender.

If the value of the Process parameter is a negative value other than -1 and if the calling
process passes the access checks for the process to be signaled, the signal specified by the
Signal parameter is sent to all the processes, excluding proc0 and proc1. If the user ID of the
calling process has root user authority, all processes, excluding proc0 and proc1, are
signaled.

If the value of the Process parameter is a negative value other than -1, the signal specified
by the Signal parameter is sent to all processes having a process group ID equal to the
absolute value of the Process parameter.

If the value of the Process parameter is -1, the signal specified by the Signal parameter is
sent to all processes which the process has permission to send that signal.

Signal Specifies the signal. If the Signal parameter is a null value, error checking is performed but
no signal is sent. This parameter is used to check the validity of the Process parameter.

ProcessGroup Specifies the process group.

Return Values
Upon successful completion, the kill subroutine returns a value of 0. Otherwise, a value of -1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The kill subroutine is unsuccessful and no signal is sent if one or more of the following are true:

EINVAL The Signal parameter is not a valid signal number.
EINVAL The Signal parameter specifies the SIGKILL, SIGSTOP, SIGTSTP, or SIGCONT signal, and the Process

parameter is 1 (proc1).
ESRCH No process can be found corresponding to that specified by the Process parameter.
EPERM The real or effective user ID does not match the real or effective user ID of the receiving process, or else

the calling process does not have root user authority.

Related Information
The getpid, getpgrp, or getppid (“getpid, getpgrp, or getppid Subroutine” on page 409) subroutine,
setpgid or setpgrp subroutine, sigaction, sigvec, or signal subroutine.

The kill command.

Signal Management in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs provides more information about signal management in multi-threaded processes.

kleenup Subroutine

Purpose
Cleans up the run-time environment of a process.

Base Operating System (BOS) Runtime Services (A-P) 583

Library

Syntax
int kleenup(FileDescriptor, SigIgn, SigKeep)
int FileDescriptor;
int SigIgn[];
int SigKeep[];

Description
The kleenup subroutine cleans up the run-time environment for a trusted process by:

v Closing unnecessary file descriptors.

v Resetting the alarm time.

v Resetting signal handlers.

v Clearing the value of the real directory read flag described in the ulimit subroutine.

v Resetting the ulimit value, if it is less than a reasonable value (8192).

Parameters

FileDescriptor Specifies a file descriptor. The kleenup subroutine closes all file descriptors greater than
or equal to the FileDescriptor parameter.

SigIgn Points to a list of signal numbers. If these are nonnull values, this list is terminated by 0s.
Any signals specified by the SigIgn parameter are set to SIG_IGN. The handling of all
signals not specified by either this list or the SigKeep list are set to SIG_DFL. Some
signals cannot be reset and are left unchanged.

SigKeep Points to a list of signal numbers. If these are nonnull values, this list is terminated by 0s.
The handling of any signals specified by the SigKeep parameter is left unchanged. The
handling of all signals not specified by either this list or the SigIgn list are set to
SIG_DFL. Some signals cannot be reset and are left unchanged.

Return Values
The kleenup subroutine is always successful and returns a value of 0. Errors in closing files are not
reported. It is not an error to attempt to modify a signal that the process is not allowed to handle.

Related Information
The ulimit subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

knlist Subroutine

Purpose
Translates names to addresses in the running system.

Syntax
#include <nlist.h>

584 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int knlist(NList, NumberOfElements, Size)
struct nlist *NList;
int NumberOfElements;
int Size;

Description
The knlist subroutine allows a program to examine the list of symbols exported by kernel routines to other
kernel modules.

The first field in the nlist structure is an input parameter to the knlist subroutine. The n_value field is
modified by the knlist subroutine, and all the others remain unchanged. The nlist structure consists of the
following fields:

char *n_name Specifies the name of the symbol whose attributes are to be retrieved.
long n_value Indicates the virtual address of the object. This will also be the offset when using segment

descriptor 0 as the extension parameter of the readx or writex subroutines against the
/dev/mem file.

If the name is not found, all fields, other than n_name, are set to 0.

The nlist.h file is automatically included by the a.out.h file for compatibility. However, do not include the
a.out.h file if you only need the information necessary to use the knlist subroutine. If you do include the
a.out.h file, follow the #include statement with the line:
#undef n_name

Notes:

1. If both the nlist.h and netdb.h files are to be included, the netdb.h file should be included before the
nlist.h file in order to avoid a conflict with the n_name structure member. Likewise, if both the a.out.h
and netdb.h files are to be included, the netdb.h file should be included before the a.out.h file to
avoid a conflict with the n_name structure.

2. If the netdb.h file and either the nlist.h or syms.h file are included, the n_name field will be defined as
_n._n_name. This definition allows you to access the n_name field in the nlist or syment structure. If you
need to access the n_name field in the netent structure, undefine the n_name field by entering:
#undef n_name

before accessing the n_name field in the netent structure. If you need to access the n_name field in a
syment or nlist structure after undefining it, redefine the n_name field with:
#define n_name _n._n_name

Parameters

NList Points to an array of nlist structures.
NumberOfElements Specifies the number of structures in the array of nlist structures.
Size Specifies the size of each structure.

Return Values
Upon successful completion, knlist returns a value of 0. Otherwise, a value of -1 is returned, and the
errno global variable is set to indicate the error.

Error Codes
The knlist subroutine fails when the following is true:

EFAULT Indicates that the NList parameter points outside the limit of the array of nlist structures.

Base Operating System (BOS) Runtime Services (A-P) 585

kpidstate Subroutine

Purpose
Returns the status of a process.

Syntax
kpidstate (pid)
pid_t pid;

Description
The kpidstate subroutine returns the state of a process specified by the pid parameter. The kpidstate
subroutine can only be called by a process.

Parameters

pid Specifies the product ID.

Return Values
If the pid parameter is not valid, KP_NOTFOUND is returned. If the pid parameter is valid, the following
settings in the process state determine what is returned:

SNONE Return KP_NOTFOUND.
SIDL Return KP_INITING.
SZOMB Return KP_EXITING, also if SEXIT in pv_flag.
SSTOP Return KP_STOPPED.

Otherwise the pid is alive and KP_ALIVE is returned.

Error Codes

_lazySetErrorHandler Subroutine

Purpose
Installs an error handler into the lazy loading runtime system for the current process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/ldr.h>
#include <sys/errno.h>

typedef void (*_handler_t(
char *_module,
char *_symbol,
unsigned int _errVal))();

handler_t *_lazySetErrorHandler(err_handler)
handler_t *err_handler;

586 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
This function allows a process to install a custom error handler to be called when a lazy loading reference
fails to find the required module or function. This function should only be used when the main program or
one of its dependent modules was linked with the -blazy option. To call _lazySetErrorHandler from a
module that is not linked with the -blazy option, you must use the -lrtl option. If you use -blazy, you do
not need to specify -lrtl.

This function is not thread safe. The calling program should ensure that _lazySetErrorHandler is not
called by multiple threads at the same time.

The user-supplied error handler may print its own error message, provide a substitute function to be used
in place of the called function, or call the longjmp subroutine. To provide a substitute function that will be
called instead of the originally referenced function, the error handler should return a pointer to the
substitute function. This substitute function will be called by all subsequent calls to the intended function
from the same module. If the value returned by the error handler appears to be invalid (for example, a
NULL pointer), the default error handler will be used.

Each calling module resolves its lazy references independent of other modules. That is, if module A and B
both call foo subroutine in module C, but module C does not export foo subroutine, the error handler will
be called once when foo subroutine is called for the first time from A, and once when foo subroutine is
called for the first time from B.

The default lazy loading error handler will print a message containing: the name of module that the
program required; the name of the symbol being accessed; and the error value generated by the failure.
Since the default handler considers a lazy load error to be fatal, the process will exit with a status of 1.

During execution of a program that utilizes lazy loading, there are a few conditions that may cause an
error to occur. In all cases the current error handler will be called.

1. The referenced module (which is to be loaded upon function invocation) is unavailable or cannot be
loaded. The errVal parameter will probably indicate the reason for the error if a system call failed.

2. A function is referenced, but the loaded module does not contain a definition for the function. In this
case, errVal parameter will be EINVAL.

Some possibilities as to why either of these errors might occur:

1. The LIBPATH environment variable may contain a set of search paths that cause the application to
load the wrong version of a module.

2. A module has been changed and no longer provides the same set of symbols that it did when the
application was built.

3. The load subroutine fails due to a lack of resources available to the process.

Parameters

err_handler A pointer to the new error handler function. The new function should accept 3 arguments:

module The name of the referenced module.

symbol The name of the function being called at the time the failure occurred.

errVal The value of errno at the time the failure occurred, if a system call used to load the
module fails. For other failures, errval may be EINVAL or ENOMEM.

Note that the value of module or symbol may be NULL if the calling module has somehow been corrupted.

If the err_handler parameter is NULL, the default error handler is restored.

Base Operating System (BOS) Runtime Services (A-P) 587

Return Value
The function returns a pointer to the previous user-supplied error handler, or NULL if the default error
handler was in effect.

Related Information
The load (“load and loadAndInit Subroutines” on page 730) subroutine.

The ld command.

The Shared Library Overview and Subroutines Overview in AIX 5L Version 5.3 General Programming
Concepts.

The Shared Library and Lazy Loading in AIX 5L Version 5.3 General Programming Concepts.

l3tol or ltol3 Subroutine

Purpose
Converts between 3-byte integers and long integers.

Library
Standard C Library (libc.a)

Syntax
void l3tol (LongPointer, CharacterPointer, Number)
long *LongPointer;
char *CharacterPointer;
int Number;

void ltol3 (CharacterPointer, LongPointer, Number)
char *CharacterPointer;
long *LongPointer;
int Number;

Description
The l3tol subroutine converts a list of the number of 3-byte integers specified by the Number parameter
packed into a character string pointed to by the CharacterPointer parameter into a list of long integers
pointed to by the LongPointer parameter.

The ltol3 subroutine performs the reverse conversion, from long integers (the LongPointer parameter) to
3-byte integers (the CharacterPointer parameter).

These functions are useful for file system maintenance where the block numbers are 3 bytes long.

Parameters

LongPointer Specifies the address of a list of long integers.
CharacterPointer Specifies the address of a list of 3-byte integers.
Number Specifies the number of list elements to convert.

Related Information
The filsys.h file format.

588 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

l64a_r Subroutine

Purpose
Converts base-64 long integers to strings.

Library
Thread-Safe C Library (libc_r.a)

Syntax
#include <stdlib.h>

int l64a_r (Convert, Buffer, Length)
long Convert;
char * Buffer;
int Length;

Description
The l64a_r subroutine converts a given long integer into a base-64 string.

Programs using this subroutine must link to the libpthreads.a library.

For base-64 characters, the following ASCII characters are used:

Character Description
. Represents 0.
/ Represents 1.
0 -9 Represents the numbers 2-11.
A-Z Represents the numbers 12-37.
a-z Represents the numbers 38-63.

The l64a_r subroutine places the converted base-64 string in the buffer pointed to by the Buffer
parameter.

Parameters

Convert Specifies the long integer that is to be converted into a base-64 ASCII string.
Buffer Specifies a working buffer to hold the converted long integer.
Length Specifies the length of the Buffer parameter.

Return Values

0 Indicates that the subroutine was successful.
-1 Indicates that the subroutine was not successful. If the l64a_r subroutine is not successful, the errno global

variable is set to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 589

Error Codes
If the l64a_r subroutine is not successful, it returns the following error code:

EINVAL The Buffer parameter value is invalid or too small to hold the resulting ASCII string.

Related Information
Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

List of Multithread Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

LAPI_Addr_get Subroutine

Purpose
Retrieves a function address that was previously registered using LAPI_Addr_set.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Addr_get(hndl, addr, addr_hndl)
lapi_handle_t hndl;
void **addr;
int addr_hndl;

FORTRAN Syntax
include 'lapif.h'

LAPI_ADDR_GET(hndl, addr, addr_hndl, ierror)
INTEGER hndl
INTEGER (KIND=LAPI_ADDR_TYPE) :: addr
INTEGER addr_hndl
INTEGER ierror

Description
Type of call: local address manipulation

Use this subroutine to get the pointer that was previously registered with LAPI and is associated with the
index addr_hndl. The value of addr_hndl must be in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

Parameters
INPUT

hndl Specifies the LAPI handle.

addr_hndl Specifies the index of the function address to retrieve. You should have previously
registered the address at this index using LAPI_Addr_set. The value of this parameter
must be in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

OUTPUT

590 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

addr Returns a function address that the user registered with LAPI.

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To retrieve a header handler address that was previously registered using LAPI_Addr_set:

lapi_handle_t hndl; /* the LAPI handle */
void **addr; /* the address to retrieve */
int addr_hndl; /* the index returned from LAPI_Addr_set */

...

addr_hndl = 1;
LAPI_Addr_get(hndl, &addr, addr_hndl);

/* addr now contains the address that was previously registered */
/* using LAPI_Addr_set */

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_ADDR_HNDL_RANGE
Indicates that the value of addr_hndl is not in the range 1 <= addr_hndl <
LOC_ADDRTBL_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the addr pointer is NULL (in C) or that the value
of addr is LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Addr_set, LAPI_Qenv

LAPI_Addr_set Subroutine

Purpose
Registers the address of a function.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Addr_set(hndl, addr, addr_hndl)
lapi_handle_t hndl;
void *addr;
int addr_hndl;

Base Operating System (BOS) Runtime Services (A-P) 591

FORTRAN Syntax
include 'lapif.h'

LAPI_ADDR_SET(hndl, addr, addr_hndl, ierror)
INTEGER hndl
INTEGER (KIND=LAPI_ADDR_TYPE) :: addr
INTEGER addr_hndl
INTEGER ierror

Description
Type of call: local address manipulation

Use this subroutine to register the address of a function (addr). LAPI maintains the function address in an
internal table. The function address is indexed at location addr_hndl. In subsequent LAPI calls, addr_hndl
can be used in place of addr. The value of addr_hndl must be in the range 1 <= addr_hndl <
LOC_ADDRTBL_SZ.

For active message communication, you can use addr_hndl in place of the corresponding header handler
address. LAPI only supports this indexed substitution for remote header handler addresses (but not other
remote addresses, such as target counters or base data addresses). For these other types of addresses,
the actual address value must be passed to the API call.

Parameters
INPUT

hndl Specifies the LAPI handle.

addr Specifies the address of the function handler that the user wants to register with LAPI.

addr_hndl Specifies a user function address that can be passed to LAPI calls in place of a header
handler address. The value of this parameter must be in the range 1 <= addr_hndl <
LOC_ADDRTBL_SZ.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To register a header handler address:

lapi_handle_t hndl; /* the LAPI handle */
void *addr; /* the remote header handler address */
int addr_hndl; /* the index to associate */

...

addr = my_func;
addr_hndl = 1;
LAPI_Addr_set(hndl, addr, addr_hndl);

/* addr_hndl can now be used in place of addr in LAPI_Amsend, */
/* LAPI_Amsendv, and LAPI_Xfer calls */

...

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

592 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_ERR_ADDR_HNDL_RANGE
Indicates that the value of addr_hndl is not in the range 1 <= addr_hndl <
LOC_ADDRTBL_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Addr_get, LAPI_Amsend, LAPI_Amsendv, LAPI_Qenv, LAPI_Xfer

LAPI_Address Subroutine

Purpose
Returns an unsigned long value for a specified user address.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Address(my_addr, ret_addr)
void *my_addr;
ulong *ret_addr;

Note: This subroutine is meant to be used by FORTRAN programs. The C version of LAPI_Address is
provided for compatibility purposes only.

FORTRAN Syntax
include 'lapif.h'

LAPI_ADDRESS(my_addr, ret_addr, ierror)
INTEGER (KIND=any_type) :: my_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: ret_addr
INTEGER ierror

where:

any_type Is any FORTRAN datatype. This type declaration has the same meaning as the type void
* in C.

Description
Type of call: local address manipulation

Use this subroutine in FORTRAN programs when you need to store specified addresses in an array. In
FORTRAN, the concept of address (&) does not exist as it does in C. LAPI_Address provides FORTRAN
programmers with this function.

Parameters
INPUT

Base Operating System (BOS) Runtime Services (A-P) 593

my_addr Specifies the address to convert. The value of this parameter cannot be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

ret_addr Returns the address that is stored in my_addr as an unsigned long for use in LAPI calls.
The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

FORTRAN Examples
To retrieve the address of a variable:

! Contains the address of the target counter
integer (KIND=LAPI_ADDR_TYPE) :: cntr_addr

! Target Counter
type (LAPI_CNTR_T) :: tgt_cntr

! Return code
integer :: ierror

call LAPI_ADDRESS(tgt_cntr, cntr_addr, ierror)

! cntr_addr now contains the address of tgt_cntr

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_ORG_ADDR_NULL
Indicates that the value of my_addr is NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN).

LAPI_ERR_TGT_ADDR_NULL
Indicates that the value of ret_addr is NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Address_init, LAPI_Address_init64

LAPI_Address_init Subroutine

Purpose
Creates a remote address table.

Library
Availability Library (liblapi_r.a)

594 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

C Syntax
#include <lapi.h>

int LAPI_Address_init(hndl, my_addr, add_tab)
lapi_handle_t hndl;
void *my_addr;
void *add_tab[];

FORTRAN Syntax
include 'lapif.h'

LAPI_ADDRESS_INIT(hndl, my_addr, add_tab, ierror)
INTEGER hndl
INTEGER (KIND=LAPI_ADDR_TYPE) :: my_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: add_tab(*)
INTEGER ierror

Description
Type of call: collective communication (blocking)

LAPI_Address_init exchanges virtual addresses among tasks of a parallel application. Use this
subroutine to create tables of such items as header handlers, target counters, and data buffer addresses.

LAPI_Address_init is a collective call over the LAPI handle hndl, which fills the table add_tab with the
virtual address entries that each task supplies. Collective calls must be made in the same order at all
participating tasks.

The addresses that are stored in the table add_tab are passed in using the my_addr parameter. Upon
completion of this call, add_tab[i] contains the virtual address entry that was provided by task i. The array
is opaque to the user.

Parameters
INPUT

hndl Specifies the LAPI handle.

my_addr Specifies the entry supplied by each task. The value of this parameter can be NULL (in C)
or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

add_tab Specifies the address table containing the addresses that are to be supplied by all tasks.
add_tab is an array of pointers, the size of which is greater than or equal to NUM_TASKS.
The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To collectively transfer target counter addresses for use in a communication API call, in which all nodes
are either 32-bit or 64-bit:

lapi_handle_t hndl; /* the LAPI handle */
void *addr_tbl[NUM_TASKS]; /* the table for all tasks' addresses */
lapi_cntr_t tgt_cntr; /* the target counter */

...

LAPI_Address_init(hndl, (void *)&tgt_cntr, addr_tbl);

Base Operating System (BOS) Runtime Services (A-P) 595

/* for communication with task t, use addr_tbl[t] */
/* as the address of the target counter */

...

For a combination of 32-bit and 64-bit nodes, use LAPI_Address_init64.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_COLLECTIVE_PSS
Indicates that a collective call was made while in persistent subsystem
(PSS) mode.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the add_tab pointer is NULL (in C) or that the
value of add_tab is LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Address, LAPI_Address_init64

LAPI_Address_init64 Subroutine

Purpose
Creates a 64-bit remote address table.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Address_init64(hndl, my_addr, add_tab)
lapi_handle_t hndl;
lapi_long_t my_addr;
lapi_long_t *add_tab;

FORTRAN Syntax
include 'lapif.h'

LAPI_ADDRESS_INIT64(hndl, my_addr, add_tab, ierror)
INTEGER hndl
INTEGER (KIND=LAPI_ADDR_TYPE) :: my_addr
INTEGER (KIND=LAPI_LONG_LONG_TYPE) :: add_tab(*)
INTEGER ierror

Description
Type of call: collective communication (blocking)

596 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_Address_init64 exchanges virtual addresses among a mixture of 32-bit and 64-bit tasks of a
parallel application. Use this subroutine to create 64-bit tables of such items as header handlers, target
counters, and data buffer addresses.

LAPI_Address_init64 is a collective call over the LAPI handle hndl, which fills the 64-bit table add_tab
with the virtual address entries that each task supplies. Collective calls must be made in the same order at
all participating tasks.

The addresses that are stored in the table add_tab are passed in using the my_addr parameter. Upon
completion of this call, add_tab[i] contains the virtual address entry that was provided by task i. The array
is opaque to the user.

Parameters
INPUT

hndl Specifies the LAPI handle.

my_addr Specifies the address entry that is supplied by each task. The value of this parameter can
be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN). To ensure 32-bit/64-bit
interoperability, it is passed as a lapi_long_t type in C.

OUTPUT

add_tab Specifies the 64-bit address table that contains the 64-bit values supplied by all tasks.
add_tab is an array of type lapi_long_t (in C) or LAPI_LONG_LONG_TYPE (in
FORTRAN). The size of add_tab is greater than or equal to NUM_TASKS. The value of
this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To collectively transfer target counter addresses for use in a communication API call with a mixed task
environment (any combination of 32-bit and 64-bit):

lapi_handle_t hndl; /* the LAPI handle */
lapi_long_t addr_tbl[NUM_TASKS]; /* the table for all tasks' addresses */
lapi_long_t tgt_cntr; /* the target counter */

...

LAPI_Address_init64(hndl, (lapi_long_t)&tgt_cntr, addr_tbl);

/* For communication with task t, use addr_tbl[t] as the address */
/* of the target counter. For mixed (32-bit and 64-bit) jobs, */
/* use the LAPI_Xfer subroutine for communication. */

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_COLLECTIVE_PSS
Indicates that a collective call was made while in persistent subsystem
(PSS) mode.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the add_tab pointer is NULL (in C) or that the
value of add_tab is LAPI_ADDR_NULL (in FORTRAN).

Base Operating System (BOS) Runtime Services (A-P) 597

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Address, LAPI_Address_init, LAPI_Xfer

LAPI_Amsend Subroutine

Purpose
Transfers a user message to a remote task, obtaining the target address on the remote task from a
user-specified header handler.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

typedef void (compl_hndlr_t) (hndl, user_info);

lapi_handle_t *hndl; /* pointer to LAPI context passed in from LAPI_Amsend */
void *user_info; /* buffer (user_info) pointer passed in */

/* from header handler (void *(hdr_hndlr_t)) */

typedef void *(hdr_hndlr_t)(hndl, uhdr, uhdr_len, msg_len, comp_h, user_info);

lapi_handle_t *hndl; /* pointer to LAPI context passed in from LAPI_Amsend */
void *uhdr; /* uhdr passed in from LAPI_Amsend */
uint *uhdr_len; /* uhdr_len passed in from LAPI_Amsend */
ulong *msg_len; /* udata_len passed in fom LAPI_Amsend */
compl_hndlr_t **comp_h; /* function address of completion handler */

/* (void (compl_hndlr_t)) that needs to be filled */
/* out by this header handler function. */

void **user_info; /* pointer to the parameter to be passed */
/* in to the completion handler */

int LAPI_Amsend(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len,
tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;
uint tgt;
void *hdr_hdl;
void *uhdr;
uint uhdr_len;
void *udata;
ulong udata_len;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;

FORTRAN Syntax
include 'lapif.h'

INTEGER SUBROUTINE COMPL_H (hndl, user_info)
INTEGER hndl
INTEGER user_info

598 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

INTEGER FUNCTION HDR_HDL (hndl, uhdr, uhdr_len, msg_len, comp_h, user_info)
INTEGER hndl
INTEGER uhdr
INTEGER uhdr_len
INTEGER (KIND=LAPI_LONG_TYPE) :: msg_len
EXTERNAL INTEGER FUNCTION comp_h
TYPE (LAPI_ADDR_T) :: user_info

LAPI_AMSEND(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len,
tgt_cntr, org_cntr, cmpl_cntr, ierror)

INTEGER hndl
INTEGER tgt
EXTERNAL INTEGER FUNCTION hdr_hdl
INTEGER uhdr
INTEGER uhdr_len
TYPE (LAPI_ADDR_T) :: udata
INTEGER (KIND=LAPI_LONG_TYPE) :: udata_len
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
TYPE (LAPI_CNTR_T) :: cmpl_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data to a target task, where it is desirable to run a handler on the target
task before message delivery begins or after delivery completes. LAPI_Amsend allows the user to provide
a header handler and optional completion handler. The header handler is used to specify the target buffer
address for writing the data, eliminating the need to know the address on the origin task when the
subroutine is called.

User data (uhdr and udata) are sent to the target task. Once these buffers are no longer needed on the
origin task, the origin counter is incremented, which indicates the availability of origin buffers for
modification. Using the LAPI_Xfer call with the LAPI_AM_XFER type provides the same type of transfer,
with the option of using a send completion handler instead of the origin counter to specify buffer
availability.

Upon arrival of the first data packet at the target, the user’s header handler is invoked. Note that a header
handler must be supplied by the user because it returns the base address of the buffer in which LAPI will
write the data sent from the origin task (udata). See RSCT for AIX 5L: LAPI Programming Guide for an
optimization exception to this requirement that a buffer address be supplied to LAPI for single-packet
messages.

The header handler also provides additional information to LAPI about the message delivery, such as the
completion handler. LAPI_Amsend and similar calls (such as LAPI_Amsendv and corresponding
LAPI_Xfer transfers) also allow the user to specify their own message header information, which is
available to the header handler. The user may also specify a completion handler parameter from within the
header handler. LAPI will pass the information to the completion handler at execution.

Note that the header handler is run inline by the thread running the LAPI dispatcher. For this reason, the
header handler must be non-blocking because no other progress on messages will be made until it
returns. It is also suggested that execution of the header handler be simple and quick. The completion
handler, on the other hand, is normally enqueued for execution by a separate thread. It is possible to
request that the completion handler be run inline. See RSCT for AIX 5L: LAPI Programming Guide for
more information on inline completion handlers.

If a completion handler was not specified (that is, set to LAPI_ADDR_NULL in FORTRAN or its pointer
set to NULL in C), the arrival of the final packet causes LAPI to increment the target counter on the

Base Operating System (BOS) Runtime Services (A-P) 599

remote task and send an internal message back to the origin task. The message causes the completion
counter (if it is not NULL in C or LAPI_ADDR_NULL in FORTRAN) to increment on the origin task.

If a completion handler was specified, the above steps take place after the completion handler returns. To
guarantee that the completion handler has executed on the target, you must wait on the completion
counter. See RSCT for AIX 5L: LAPI Programming Guide for a time-sequence diagram of events in a
LAPI_Amsend call.

User details

As mentioned above, the user must supply the address of a header handler to be executed on the target
upon arrival of the first data packet. The signature of the header handler is as follows:
void *hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len, ulong *msg_len,

compl_hndlr_t **cmpl_hndlr, void **user_info);

The value returned by the header handler is interpreted by LAPI as an address for writing the user data
(udata) that was passed to the LAPI_Amsend call. The uhdr and uhdr_len parameters are passed by
LAPI into the header handler and contain the information passed by the user to the corresponding
parameters of the LAPI_Amsend call.

Use of LAPI_Addr_set

Remote addresses are commonly exchanged by issuing a collective LAPI_Address_init call within a few
steps of initializing LAPI. LAPI also provides the LAPI_Addr_set mechanism, whereby users can register
one or more header handler addresses in a table, associating an index value with each address. This
index can then be passed to LAPI_Amsend instead of an actual address. On the target side, LAPI will
use the index to get the header handler address. Note that, if all tasks use the same index for their header
handler, the initial collective communication can be avoided. Each task simply registers its own header
handler address using the well-known index. Then, on any LAPI_Amsend calls, the reserved index can be
passed to the header handler address parameter.

Role of the header handler

The user optionally returns the address of a completion handler function through the cmpl_hndlr parameter
and a completion handler parameter through the user_info parameter. The address passed through the
user_info parameter can refer to memory containing a datatype defined by the user and then cast to the
appropriate type from within the completion handler if desired.

The signature for a user completion handler is as follows:
typedef void (compl_hndlr_t)(lapi_handle_t *hndl, void *completion_param);

The argument returned by reference through the user_info member of the user’s header handler will be
passed to the completion_param argument of the user’s completion handler. See the C Examples for an
example of setting the completion handler and parameter in the header handler.

As mentioned above, the value returned by the header handler must be an address for writing the user
data sent from the origin task. There is one exception to this rule. In the case of a single-packet message,
LAPI passes the address of the packet in the receive FIFO, allowing the entire message to be consumed
within the header handler. In this case, the header handler should return NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN) so that LAPI does not copy the message to a target buffer. See RSCT
for AIX 5L: LAPI Programming Guide for more information (including a sample header handler that uses
this method for fast retrieval of a single-packet message).

Passing additional information through lapi_return_info_t

600 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI allows additional information to be passed to and returned from the header handler by passing a
pointer to lapi_return_info_t through the msg_len argument. On return from a header handler that is
invoked by a call to LAPI_Amsend, the ret_flags member of lapi_return_info_t can contain one of these
values: LAPI_NORMAL (the default), LAPI_SEND_REPLY (to run the completion handler inline), or
LAPI_LOCAL_STATE (no reply is sent). The dgsp_handle member of lapi_return_info_t should not be
used in conjunction with LAPI_Amsend.

For a complete description of the lapi_return_info_t type, see RSCT for AIX 5L: LAPI Programming
Guide

Inline execution of completion handlers

Under normal operation, LAPI uses a separate thread for executing user completion handlers. After the
final packet arrives, completion handler pointers are placed in a queue to be handled by this thread. For
performance reasons, the user may request that a given completion handler be run inline instead of being
placed on this queue behind other completion handlers. This mechanism gives users a greater degree of
control in prioritizing completion handler execution for performance-critical messages.

LAPI places no restrictions on completion handlers that are run ″normally″ (that is, by the completion
handler thread). Inline completion handlers should be short and should not block, because no progress
can be made while the main thread is executing the handler. The user must use caution with inline
completion handlers so that LAPI’s internal queues do not fill up while waiting for the handler to complete.
I/O operations must not be performed with an inline completion handler.

Parameters
INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0
<= tgt < NUM_TASKS.

hdr_hdl Specifies the pointer to the remote header handler function to be invoked at the target.
The value of this parameter can take an address handle that has already been registered
using LAPI_Addr_set. The value of this parameter cannot be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

uhdr Specifies the pointer to the user header data. This data will be passed to the user header
handler on the target. If uhdr_len is 0, The value of this parameter can be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

uhdr_len Specifies the length of the user’s header. The value of this parameter must be a multiple
of the processor’s word size in the range 0 <= uhdr_len <= MAX_UHDR_SZ.

udata Specifies the pointer to the user data. If udata_len is 0, The value of this parameter can
be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

udata_len Specifies the length of the user data in bytes. The value of this parameter must be in the
range 0 <= udata_len <= the value of LAPI constant LAPI_MAX_MSG_SZ.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented after the
completion handler (if specified) completes or after the completion of data transfer. If the
value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the target
counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin
counter is incremented after data is copied out of the origin address (in C) or the origin (in

Base Operating System (BOS) Runtime Services (A-P) 601

FORTRAN). If the value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the counter at the origin that signifies completion of the completion handler. It is
updated once the completion handler completes. If no completion handler is specified, the
counter is incremented at the completion of message delivery. If the value of this
parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the completion counter is
not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DATA_LEN Indicates that the value of udata_len is greater than the value of LAPI
constant LAPI_MAX_MSG_SZ.

LAPI_ERR_HDR_HNDLR_NULL
Indicates that the value of the hdr_hdl passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_ORG_ADDR_NULL
Indicates that the value of the udata parameter passed in is NULL (in C)
or LAPI_ADDR_NULL (in FORTRAN), but the value of udata_len is
greater than 0.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

LAPI_ERR_UHDR_LEN Indicates that the uhdr_len value passed in is greater than
MAX_UHDR_SZ or is not a multiple of the processor’s doubleword size.

LAPI_ERR_UHDR_NULL Indicates that the uhdr passed in is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but uhdr_len is not 0.

C Examples
To send an active message and then wait on the completion counter:

/* header handler routine to execute on target task */
void *hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

ulong *msg_len, compl_hndlr_t **cmpl_hndlr,
void **user_info)

{
/* set completion handler pointer and other information */
/* return base address for LAPI to begin its data copy */
}

{
lapi_handle_t hndl; /* the LAPI handle */
int task_id; /* the LAPI task ID */
int num_tasks; /* the total number of tasks */
void *hdr_hndlr_list[NUM_TASKS]; /* the table of remote header handlers */
int buddy; /* the communication partner */
lapi_cntr_t cmpl_cntr; /* the completion counter */
int data_buffer[DATA_LEN]; /* the data to transfer */

602 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

.

.

.
/* retrieve header handler addresses */
LAPI_Address_init(hndl, (void *)&hdr_hndlr, hdr_hndlr_list);

/*
** up to this point, all instructions have executed on all
** tasks. we now begin differentiating tasks.
*/
if (sender) { /* origin task */

/* initialize data buffer, cmpl_cntr, etc. */
.
.
.
/* synchronize before starting data transfer */
LAPI_Gfence(hndl);

LAPI_Amsend(hndl, buddy, (void *)hdr_hndlr_list[buddy], NULL,
0,&(data_buffer[0]),DATA_LEN*(sizeof(int)),
NULL, NULL, cmpl_cntr);

/* Wait on completion counter before continuing. Completion */
/* counter will update when message completes at target. */

} else { /* receiver */
.
.
.
/* to match the origin's synchronization before data transfer */
LAPI_Gfence(hndl);

}

.

.

.
}

For a complete program listing, see RSCT for AIX 5L: LAPI Programming Guide. Sample code illustrating
the LAPI_Amsend call can be found in the LAPI sample files. See RSCT for AIX 5L: LAPI Programming
Guide for more information about the sample programs that are shipped with LAPI.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Addr_get, LAPI_Addr_set, LAPI_Getcntr, LAPI_Msgpoll, LAPI_Qenv,
LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Amsendv Subroutine

Purpose
Transfers a user vector to a remote task, obtaining the target address on the remote task from a
user-specified header handler.

Base Operating System (BOS) Runtime Services (A-P) 603

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

typedef void (compl_hndlr_t) (hndl, user_info);
lapi_handle_t *hndl; /* the LAPI handle passed in from LAPI_Amsendv */
void *user_info; /* the buffer (user_info) pointer passed in */

/* from vhdr_hndlr (void *(vhdr_hndlr_t)) */

typedef lapi_vec_t *(vhdr_hndlr_t) (hndl, uhdr, uhdr_len, len_vec, comp_h, uinfo);

lapi_handle_t *hndl; /* pointer to the LAPI handle passed in from LAPI_Amsendv */
void *uhdr; /* uhdr passed in from LAPI_Amsendv */
uint *uhdr_len; /* uhdr_len passed in from LAPI_Amsendv */
ulong *len_vec[]; /* vector of lengths passed in LAPI_Amsendv */
compl_hndlr_t **comp_h; /* function address of completion handler */

/* (void (compl_hndlr_t)) that needs to be */
/* filled out by this header handler function */

void **user_info; /* pointer to the parameter to be passed */
/* in to the completion handler */

int LAPI_Amsendv(hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec,
tgt_cntr, org_cntr, cmpl_cntr);

lapi_handle_t hndl;
uint tgt;
void *hdr_hdl;
void *uhdr;
uint uhdr_len;
lapi_vec_t *org_vec;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;

FORTRAN Syntax
include 'lapif.h'

INTEGER SUBROUTINE COMPL_H (hndl, user_info)
INTEGER hndl
INTEGER user_info(*)

INTEGER FUNCTION VHDR_HDL (hndl, uhdr, uhdr_len, len_vec, comp_h, user_info)
INTEGER hndl
INTEGER uhdr
INTEGER uhdr_len
INTEGER (KIND=LAPI_LONG_TYPE) :: len_vec
EXTERNAL INTEGER FUNCTION comp_h
TYPE (LAPI_ADDR_T) :: user_info

LAPI_AMSENDV(hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec,
tgt_cntr, org_cntr, cmpl_cntr, ierror)

INTEGER hndl
INTEGER tgt
EXTERNAL INTEGER FUNCTION hdr_hdl
INTEGER uhdr
INTEGER uhdr_len
TYPE (LAPI_VEC_T) :: org_vec
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
TYPE (LAPI_CNTR_T) :: cmpl_cntr
INTEGER ierror

604 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
Type of call: point-to-point communication (non-blocking)

LAPI_Amsendv is the vector-based version of the LAPI_Amsend call. You can use it to specify
multi-dimensional and non-contiguous descriptions of the data to transfer. Whereas regular LAPI calls
allow the specification of a single data buffer address and length, the vector versions allow the
specification of a vector of address and length combinations. Additional information is allowed in the data
description on the origin task and the target task.

Use this subroutine to transfer a vector of data to a target task, when you want a handler to run on the
target task before message delivery begins or after message delivery completes.

To use LAPI_Amsendv, you must provide a header handler, which returns the address of the target vector
description that LAPI uses to write the data that is described by the origin vector. The header handler is
used to specify the address of the vector description for writing the data, which eliminates the need to
know the description on the origin task when the subroutine is called. The header handler is called upon
arrival of the first data packet at the target.

Optionally, you can also provide a completion handler. The header handler provides additional information
to LAPI about the message delivery, such as the completion handler. You can also specify a completion
handler parameter from within the header handler. LAPI passes the information to the completion handler
at execution.

With the exception of the address that is returned by the completion handler, the use of counters, header
handlers, and completion handlers in LAPI_Amsendv is identical to that of LAPI_Amsend. In both cases,
the user header handler returns information that LAPI uses for writing at the target. See LAPI_Amsend for
more information. This section presents information that is specific to the vector version of the call
(LAPI_Amsendv).

LAPI vectors are structures of type lapi_vec_t, defined as follows:
typedef struct {

lapi_vectype_t vec_type;
uint num_vecs;
void **info;
ulong *len;

} lapi_vec_t;

vec_type is an enumeration that describes the type of vector transfer, which can be:
LAPI_GEN_GENERIC, LAPI_GEN_IOVECTOR, or LAPI_GEN_STRIDED_XFER.

For transfers of type LAPI_GEN_GENERIC and LAPI_GEN_IOVECTOR, the fields are used as follows:

num_vecs indicates the number of data vectors to transfer. Each data vector is defined by a base
address and data length.

info is the array of addresses.

len is the array of data lengths.

For example, consider the following vector description:
vec_type = LAPI_GEN_IOVECTOR
num_vecs = 3
info = {addr_0, addr_1, addr_2}
len = {len_0, len_1, len_2}

On the origin side, this example would tell LAPI to read len_0 bytes from addr_0, len_1 bytes from addr_1,
and len_2 bytes from addr_2. As a target vector, this example would tell LAPI to write len_0 bytes to
addr_0, len_1 bytes to addr_1, and len_2 bytes to addr_2.

Base Operating System (BOS) Runtime Services (A-P) 605

Recall that vector transfers require an origin and target vector. For LAPI_Amsendv calls, the origin vector
is passed to the API call on the origin task. The address of the target vector is returned by the header
handler.

For transfers of type LAPI_GEN_GENERIC, the target vector description must also have type
LAPI_GEN_GENERIC. The contents of the info and len arrays are unrestricted in the generic case; the
number of vectors and the length of vectors on the origin and target do not need to match. In this case,
LAPI transfers a given number of bytes in noncontiguous buffers specified by the origin vector to a set of
noncontiguous buffers specified by the target vector.

If the sum of target vector data lengths (say TGT_LEN) is less than the sum of origin vector data lengths
(say ORG_LEN), only the first TGT_LEN bytes from the origin buffers are transferred and the remaining
bytes are discarded. If TGT_LEN is greater than ORG_LEN, all ORG_LEN bytes are transferred. Consider
the following example:
Origin_vector: {

num_vecs = 3;
info = {orgaddr_0, orgaddr_1, orgaddr_2};
len = {5, 10, 5}

}

Target_vector: {
num_vecs = 4;
info = {tgtaddr_0, tgtaddr_1, tgtaddr_2, tgtaddr_3};
len = {12, 2, 4, 2}

}

LAPI copies data as follows:

1. 5 bytes from orgaddr_0 to tgtaddr_0 (leaves 7 bytes of space at a 5-byte offset from tgtaddr_0)

2. 7 bytes from orgaddr_1 to remaining space in tgtaddr_0 (leaves 3 bytes of data to transfer from
orgaddr_1)

3. 2 bytes from orgaddr_1 to tgtaddr_1 (leaves 1 byte to transfer from orgaddr_1)

4. 1 byte from orgaddr_1 followed by 3 bytes from orgaddr_2 to tgt_addr_2 (leaves 3 bytes to transfer
from orgaddr_2)

5. 2 bytes from orgaddr_2 to tgtaddr_3

LAPI will copy data from the origin until the space described by the target is filled. For example:
Origin_vector: {

num_vecs = 1;
info = {orgaddr_0};
len = {20}

}

Target_vector: {
num_vecs = 2;
info = {tgtaddr_0, tgtaddr_1};
len = {5, 10}

}

LAPI will copy 5 bytes from orgaddr_0 to tgtaddr_0 and the next 10 bytes from orgaddr_0 to tgtaddr_1.
The remaining 5 bytes from orgaddr_0 will not be copied.

For transfers of type LAPI_GEN_IOVECTOR, the lengths of the vectors must match and the target vector
description must match the origin vector description. More specifically, the target vector description must:

v also have type LAPI_GEN_IOVECTOR

v have the same num_vecs as the origin vector

v initialize the info array with num_vecs addresses in the target address space. For LAPI vectors
origin_vector and target_vector described similarly to the example above, data is copied as follows:

606 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

1. transfer origin_vector.len[0] bytes from the address at origin_vector.info[0] to the address at
target_vector.info[0]

2. transfer origin_vector.len[1] bytes from the address at origin_vector.info[1] to the address at
target_vector.info[1]

3. transfer origin_vector.len[n] bytes from the address at origin_vector.info[n] to the address at
target_vector.info[n], for n = 2 to n = [num_vecs-3]

4. transfer origin_vector.len[num_vecs-2] bytes from the address at origin_vector.info[num_vecs-2] to
the address at target_vector.info[num_vecs-2]

5. copy origin_vector.len[num_vecs-1] bytes from the address at origin_vector.info[num_vecs-1] to the
address at target_vector.info[num_vecs-1]

Strided vector transfers

For transfers of type LAPI_GEN_STRIDED_XFER, the target vector description must match the origin
vector description. Rather than specifying the set of address and length pairs, the info array of the origin
and target vectors is used to specify a data block ″template″, consisting of a base address, block size and
stride. LAPI thus expects the info array to contain three integers. The first integer contains the base
address, the second integer contains the block size to copy, and the third integer contains the byte stride.
In this case, num_vecs indicates the number of blocks of data that LAPI should copy, where the first block
begins at the base address. The number of bytes to copy in each block is given by the block size and the
starting address for all but the first block is given by previous address + stride. The total amount of data to
be copied will be num_vecs*block_size. Consider the following example:
Origin_vector {

num_vecs = 3;
info = {orgaddr, 5, 8}

}

Based on this description, LAPI will transfer 5 bytes from orgaddr, 5 bytes from orgaddr+8 and 5 bytes
from orgaddr+16.

Call details

As mentioned above, counter and handler behavior in LAPI_Amsendv is nearly identical to that of
LAPI_Amsend. A short summary of that behavior is provided here. See the LAPI_Amsend description for
full details.

This is a non-blocking call. The calling task cannot change the uhdr (origin header) and org_vec data until
completion at the origin is signaled by the org_cntr being incremented. The calling task cannot assume
that the org_vec structure can be changed before the origin counter is incremented. The structure (of type
lapi_vec_t) that is returned by the header handler cannot be modified before the target counter has been
incremented. Also, if a completion handler is specified, it may execute asynchronously, and can only be
assumed to have completed after the target counter increments (on the target) or the completion counter
increments (at the origin).

The length of the user-specified header (uhdr_len) is constrained by the implementation-specified
maximum value MAX_UHDR_SZ. uhdr_len must be a multiple of the processor’s doubleword size. To get
the best bandwidth, uhdr_len should be as small as possible.

If the following requirement is not met, an error condition occurs:

v If a strided vector is being transferred, the size of each block must not be greater than the stride size in
bytes.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If the
overlapping regions exist on the target side, the contents of the target buffer are undefined after the
operation.

Base Operating System (BOS) Runtime Services (A-P) 607

Parameters
hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0
<= tgt < NUM_TASKS.

hdr_hdl Points to the remote header handler function to be invoked at the target. The value of this
parameter can take an address handle that had been previously registered using the
LAPI_Addr_set/LAPI_Addr_get mechanism. The value of this parameter cannot be NULL
(in C) or LAPI_ADDR_NULL (in FORTRAN).

uhdr Specifies the pointer to the local header (parameter list) that is passed to the handler
function. If uhdr_len is 0, The value of this parameter can be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

uhdr_len Specifies the length of the user’s header. The value of this parameter must be a multiple
of the processor’s doubleword size in the range 0 <= uhdr_len <= MAX_UHDR_SZ.

org_vec Points to the origin vector.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented after the
completion handler (if specified) completes or after the completion of data transfer. If the
value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the target
counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin
counter is incremented after data is copied out of the origin address (in C) or the origin (in
FORTRAN). If the value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the counter at the origin that signifies completion of the completion handler. It is
updated once the completion handler completes. If no completion handler is specified, the
counter is incremented at the completion of message delivery. If the value of this
parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the completion counter is
not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
1. To send a LAPI_GEN_IOVECTOR using active messages:

/* header handler routine to execute on target task */
lapi_vec_t *hdr_hndlr(lapi_handle_t *handle, void *uhdr, uint *uhdr_len,

ulong *len_vec[], compl_hndlr_t **completion_handler,
void **user_info)

{
/* set completion handler pointer and other info */

/* set up the vector to return to LAPI */
/* for a LAPI_GEN_IOVECTOR: num_vecs, vec_type, and len must all have */
/* the same values as the origin vector. The info array should */
/* contain the buffer addresses for LAPI to write the data */
vec->num_vecs = NUM_VECS;
vec->vec_type = LAPI_GEN_IOVECTOR;
vec->len = (unsigned long *)malloc(NUM_VECS*sizeof(unsigned long));
vec->info = (void **) malloc(NUM_VECS*sizeof(void *));
for(i=0; i < NUM_VECS; i++) {

vec->info[i] = (void *) &data_buffer[i];
vec->len[i] = (unsigned long)(sizeof(int));

608 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

}

return vec;
}

{

.

.

.

void *hdr_hndlr_list[NUM_TASKS]; /* table of remote header handlers */
lapi_vec_t *vec; /* data for data transfer */

vec->num_vecs = NUM_VECS;
vec->vec_type = LAPI_GEN_IOVECTOR;
vec->len = (unsigned long *) malloc(NUM_VECS*sizeof(unsigned long));
vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

/* each vec->info[i] gets a base address */
/* each vec->len[i] gets the number of bytes to transfer from vec->info[i] */

LAPI_Amsendv(hndl, tgt, (void *) hdr_hdl_list[buddy], NULL, 0, vec,
tgt_cntr, org_cntr, cmpl_cntr);

/* data will be copied as follows: */
/* len[0] bytes of data starting from address info[0] */
/* len[1] bytes of data starting from address info[1] */
.
.
.
/* len[NUM_VECS-1] bytes of data starting from address info[NUM_VECS-1] */

}

The above example could also illustrate the LAPI_GEN_GENERIC type, with the following
modifications:

v Both vectors would need LAPI_GEN_GENERIC as the vec_type.

v There are no restrictions on symmetry of number of vectors and lengths between the origin and
target sides.

2. To send a LAPI_STRIDED_VECTOR using active messages:

/* header handler routine to execute on target task */
lapi_vec_t *hdr_hndlr(lapi_handle_t *handle, void *uhdr, uint *uhdr_len,

ulong *len_vec[], compl_hndlr_t **completion_handler,
void **user_info)

{

int block_size; /* block size */
int data_size; /* stride */
.
.
.
vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */

/* must match that of the origin vector */
vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as origin vector */

/* see comments in origin vector setup for a description of how data */
/* will be copied based on these settings. */
vec->info[0] = buffer_address; /* starting address for data copy */
vec->info[1] = block_size; /* bytes of data to copy */
vec->info[2] = stride; /* distance from copy block to copy block */
.

Base Operating System (BOS) Runtime Services (A-P) 609

.

.
return vec;

}

{
.
.
.
lapi_vec_t *vec; /* data for data transfer */

vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */
/* must match that of the target vector */

vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as target vector */

vec->info[0] = buffer_address; /* starting address for data copy */
vec->info[1] = block_size; /* bytes of data to copy */
vec->info[2] = stride; /* distance from copy block to copy block */
/* data will be copied as follows: */
/* block_size bytes will be copied from buffer_address */
/* block_size bytes will be copied from buffer_address+stride */
/* block_size bytes will be copied from buffer_address+(2*stride) */
/* block_size bytes will be copied from buffer_address+(3*stride) */
.
.
.
/* block_size bytes will be copied from buffer_address+((NUM_VECS-1)*stride) */
.
.
.
/* if uhdr isn't used, uhdr should be NULL and uhdr_len should be 0 */
/* tgt_cntr, org_cntr and cmpl_cntr can all be NULL */
LAPI_Amsendv(hndl, tgt, (void *) hdr_hdl_list[buddy], uhdr, uhdr_len,

vec, tgt_cntr, org_cntr, cmpl_cntr);
.
.
.

}

For complete examples, see the sample programs shipped with LAPI.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HDR_HNDLR_NULL
Indicates that the hdr_hdl passed in is NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride * num_vecs) is greater than the
value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR
Indicates that the org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but its length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the sum of org_vec->len is greater than the value of LAPI
constant LAPI_MAX_MSG_SZ.

610 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_ERR_ORG_VEC_NULL Indicates that org_vec is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL
Indicates that the strided vector address org_vec->info[0] is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

LAPI_ERR_UHDR_LEN Indicates that the uhdr_len value passed in is greater than
MAX_UHDR_SZ or is not a multiple of the processor’s doubleword size.

LAPI_ERR_UHDR_NULL Indicates that the uhdr passed in is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but uhdr_len is not 0.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Address_init, LAPI_Addr_get, LAPI_Addr_set, LAPI_Amsend, LAPI_Getcntr,
LAPI_Getv, LAPI_Putv, LAPI_Qenv, LAPI_Waitcntr, LAPI_Xfer

LAPI_Fence Subroutine

Purpose
Enforces order on LAPI calls.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Fence(hndl)
lapi_handle_t hndl;

FORTRAN Syntax
include 'lapif.h'

LAPI_FENCE(hndl, ierror)
INTEGER hndl
INTEGER ierror

Description
Type of call: Local data synchronization (blocking) (may require progress on the remote task)

Use this subroutine to enforce order on LAPI calls. If a task calls LAPI_Fence, all the LAPI operations that
were initiated by that task, before the fence using the LAPI context hndl, are guaranteed to complete at
the target tasks. This occurs before any of its communication operations using hndl, initiated after the

Base Operating System (BOS) Runtime Services (A-P) 611

LAPI_Fence, start transmission of data. This is a data fence which means that the data movement is
complete. This is not an operation fence which would need to include active message completion handlers
completing on the target.

LAPI_Fence may require internal protocol processing on the remote side to complete the fence request.

Parameters
INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

C Examples
To establish a data barrier in a single task:

lapi_handle_t hndl; /* the LAPI handle */

...

/* API communication call 1 */
/* API communication call 2 */

...

/* API communication call n */

LAPI_Fence(hndl);

/* all data movement from above communication calls has completed by this point */
/* any completion handlers from active message calls could still be running. */

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Amsend, LAPI_Gfence

LAPI_Get Subroutine

Purpose
Copies data from a remote task to a local task.

Library
Availability Library (liblapi_r.a)

612 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

C Syntax
#include <lapi.h>

int LAPI_Get(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr)
lapi_handle_t hndl;
uint tgt;
ulong len;
void *tgt_addr;
void *org_addr;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;

FORTRAN Syntax
include 'lapif.h'

LAPI_GET(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, ierror)
INTEGER hndl
INTEGER tgt
INTEGER (KIND=LAPI_LONG_TYPE) :: len
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: org_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data from a remote (target) task to a local (origin) task. Note that in this
case the origin task is actually the receiver of the data. This difference in transfer type makes the counter
behavior slightly different than in the normal case of origin sending to target.

The origin buffer will still increment on the origin task upon availability of the origin buffer. But in this case,
the origin buffer becomes available once the transfer of data is complete. Similarly, the target counter will
increment once the target buffer is available. Target buffer availability in this case refers to LAPI no longer
needing to access the data in the buffer.

This is a non-blocking call. The caller cannot assume that data transfer has completed upon the return of
the function. Instead, counters should be used to ensure correct buffer addresses as defined above.

Note that a zero-byte message does not transfer data, but it does have the same semantic with respect to
counters as that of any other message.

Parameters
INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task that is the source of the data. The value of this
parameter must be in the range 0 <= tgt < NUM_TASKS.

len Specifies the number of bytes of data to be copied. This parameter must be in the range 0
<= len <= the value of LAPI constant LAPI_MAX_MSG_SZ.

tgt_addr Specifies the target buffer address of the data source. If len is 0, The value of this
parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented once the data

Base Operating System (BOS) Runtime Services (A-P) 613

buffer on the target can be modified. If the value of this parameter is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), the target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin
counter is incremented after data arrives at the origin. If the value of this parameter is
NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

OUTPUT

org_addr Specifies the local buffer address into which the received data is copied. If len is 0, The
value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

{
/* initialize the table buffer for the data addresses */

/* get remote data buffer addresses */
LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);
.
.
.
LAPI_Get(hndl, tgt, (ulong) data_len, (void *) (data_buffer_list[tgt]),

(void *) data_buffer, tgt_cntr, org_cntr);

/* retrieve data_len bytes from address data_buffer_list[tgt] on task tgt. */
/* write the data starting at address data_buffer. tgt_cntr and org_cntr */
/* can be NULL. */

}

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DATA_LEN Indicates that the value of udata_len is greater than the value of LAPI
constant LAPI_MAX_MSG_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_ORG_ADDR_NULL
Indicates that the org_addr passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), but len is greater than 0.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

LAPI_ERR_TGT_ADDR_NULL
Indicates that the tgt_addr passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), but len is greater than 0.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Address_init, LAPI_Getcntr, LAPI_Put, LAPI_Qenv, LAPI_Waitcntr, LAPI_Xfer

614 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_Getcntr Subroutine

Purpose
Gets the integer value of a specified LAPI counter.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Getcntr(hndl, cntr, val)
lapi_handle_t hndl;
lapi_cntr_t *cntr;
int *val;

FORTRAN Syntax
include 'lapif.h'

LAPI_GETCNTR(hndl, cntr, val, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr
INTEGER val
INTEGER ierror

Description
Type of call: Local counter manipulation

This subroutine gets the integer value of cntr. It is used to check progress on hndl.

Parameters
INPUT

hndl Specifies the LAPI handle.

cntr Specifies the address of the counter. The value of this parameter cannot be NULL (in C)
or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

val Returns the integer value of the counter cntr. The value of this parameter cannot be NULL
(in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

{
lapi_cntr_t cntr;
int val;

/* cntr is initialized */

/* processing/communication takes place */

Base Operating System (BOS) Runtime Services (A-P) 615

LAPI_Getcntr(hndl, &cntr, &val)

/* val now contains the current value of cntr */
}

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr pointer is NULL (in C) or that the value of cntr is
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the val pointer is NULL (in C) or that the value
of val is LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getv, LAPI_Put, LAPI_Putv,
LAPI_Rmw, LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Getv Subroutine

Purpose
Copies vectors of data from a remote task to a local task.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Getv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr)
lapi_handle_t hndl;
uint tgt;
lapi_vec_t *tgt_vec;
lapi_vec_t *org_vec;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;

typedef struct {
lapi_vectype_t vec_type; /* operation code */
uint num_vecs; /* number of vectors */
void **info; /* vector of information */
ulong *len; /* vector of lengths */

} lapi_vec_t;

FORTRAN Syntax
include 'lapif.h'

LAPI_GETV(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, ierror)
INTEGER hndl
INTEGER tgt

616 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_vec
TYPE (LAPI_VEC_T) :: org_vec
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
INTEGER ierror

The 32-bit version of the LAPI_VEC_T type is defined as:
TYPE LAPI_VEC_T

SEQUENCE
INTEGER(KIND = 4) :: vec_type
INTEGER(KIND = 4) :: num_vecs
INTEGER(KIND = 4) :: info
INTEGER(KIND = 4) :: len

END TYPE LAPI_VEC_T

The 64-bit version of the LAPI_VEC_T type is defined as:
TYPE LAPI_VEC_T

SEQUENCE
INTEGER(KIND = 4) :: vec_type
INTEGER(KIND = 4) :: num_vecs
INTEGER(KIND = 8) :: info
INTEGER(KIND = 8) :: len

END TYPE LAPI_VEC_T

Description
Type of call: point-to-point communication (non-blocking)

This subroutine is the vector version of the LAPI_Get call. Use LAPI_Getv to transfer vectors of data from
the target task to the origin task. Both the origin and target vector descriptions are located in the address
space of the origin task. But, the values specified in the info array of the target vector must be addresses
in the address space of the target task.

The calling program cannot assume that the origin buffer can be changed or that the contents of the origin
buffers on the origin task are ready for use upon function return. After the origin counter (org_cntr) is
incremented, the origin buffers can be modified by the origin task. After the target counter (tgt_cntr) is
incremented, the target buffers can be modified by the target task. If you provide a completion counter
(cmpl_cntr), it is incremented at the origin after the target counter (tgt_cntr) has been incremented at the
target. If the values of any of the counters or counter addresses are NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN), the data transfer occurs, but the corresponding counter increments do not occur.

If any of the following requirements are not met, an error condition occurs:

v The vector types org_vec−>vec_type and tgt_vec->vec_type must be the same.

v If a strided vector is being transferred, the size of each block must not be greater than the stride size in
bytes.

v The length of any vector that is pointed to by tgt_vec must be equal to the length of the corresponding
vector that is pointed to by org_vec.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If the
overlapping regions exist on the origin side, the contents of the origin buffer are undefined after the
operation.

See LAPI_Amsendv for details about commuication using different LAPI vector types. (LAPI_Getv does
not support the LAPI_GEN_GENERIC type.)

Parameters
INPUT

Base Operating System (BOS) Runtime Services (A-P) 617

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0
<= tgt < NUM_TASKS.

tgt_vec Points to the target vector description.

org_vec Points to the origin vector description.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented once the data
buffer on the target can be modified. If the value of this parameter is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), the target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin
counter is incremented after data arrives at the origin. If the value of this parameter is
NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To get a LAPI_GEN_IOVECTOR:

{

/* retrieve a remote data buffer address for data to transfer, */
/* such as through LAPI_Address_init */

/* task that calls LAPI_Getv sets up both org_vec and tgt_vec */
org_vec->num_vecs = NUM_VECS;
org_vec->vec_type = LAPI_GEN_IOVECTOR;
org_vec->len = (unsigned long *)
malloc(NUM_VECS*sizeof(unsigned long));
org_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

/* each org_vec->info[i] gets a base address on the origin task */
/* each org_vec->len[i] gets the number of bytes to write to */
/* org_vec->info[i] */

tgt_vec->num_vecs = NUM_VECS;
tgt_vec->vec_type = LAPI_GEN_IOVECTOR;
tgt_vec->len = (unsigned long *)
malloc(NUM_VECS*sizeof(unsigned long));
tgt_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

/* each tgt_vec->info[i] gets a base address on the target task */
/* each tgt_vec->len[i] gets the number of bytes to transfer */
/* from vec->info[i] */
/* For LAPI_GEN_IOVECTOR, num_vecs, vec_type, and len must be */
/* the same */

LAPI_Getv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr);
/* tgt_cntr and org_cntr can both be NULL */

/* data will be retrieved as follows: */
/* org_vec->len[0] bytes will be retrieved from */
/* tgt_vec->info[0] and written to org_vec->info[0] */
/* org_vec->len[1] bytes will be retrieved from */
/* tgt_vec->info[1] and written to org_vec->info[1] */
.
.
.
/* org_vec->len[NUM_VECS-1] bytes will be retrieved */

618 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

/* from tgt_vec->info[NUM_VECS-1] and written to */
/* org_vec->info[NUM_VECS-1] */

}

For examples of other vector types, see LAPI_Amsendv.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride * num_vecs) is greater than the
value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block size.

LAPI_ERR_ORG_VEC_ADDR
Indicates that some org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN). but the corresponding length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the total sum of all org_vec->len[i] (where [i] is in the range
0 <= i <= org_vec->num_vecs) is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL Indicates that the org_vec is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL
Indicates that the strided vector base address org_vec->info[0] is NULL (in
C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL
Indicates that the strided vector address tgt_vec->info[0] is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

LAPI_ERR_TGT_EXTENT Indicates that tgt_vec’s extent (stride * num_vecs) is greater than the
value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

LAPI_ERR_TGT_STRIDE Indicates that the tgt_vec’s stride is less than its block size.

LAPI_ERR_TGT_VEC_ADDR Indicates that the tgt_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but its length (tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN Indicates that the sum of tgt_vec->len is greater than the value of LAPI
constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL Indicates that tgt_vec is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_TGT_VEC_TYPE Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_VEC_LEN_DIFF Indicates that org_vec and tgt_vec have different lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF Indicates that org_vec and tgt_vec have different num_vecs.

Base Operating System (BOS) Runtime Services (A-P) 619

LAPI_ERR_VEC_TYPE_DIFF
Indicates that org_vec and tgt_vec have different vector types (vec_type).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Amsendv, LAPI_Getcntr, LAPI_Putv, LAPI_Qenv, LAPI_Waitcntr

LAPI_Gfence Subroutine

Purpose
Enforces order on LAPI calls across all tasks and provides barrier synchronization among them.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Gfence(hndl)
lapi_handle_t hndl;

FORTRAN Syntax
include 'lapif.h'

LAPI_GFENCE(hndl, ierror)
INTEGER hndl
INTEGER ierror

Description
Type of call: collective data synchronization (blocking)

Use this subroutine to enforce global order on LAPI calls. This is a collective call. Collective calls must be
made in the same order at all participating tasks.

On completion of this call, it is assumed that all LAPI communication associated with hndl from all tasks
has quiesced. Although hndl is local, it represents a set of tasks that were associated with it at LAPI_Init,
all of which must participate in this operation for it to complete. This is a data fence, which means that the
data movement is complete. This is not an operation fence, which would need to include active message
completion handlers completing on the target.

Parameters
INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

620 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Fence

LAPI_Init Subroutine

Purpose
Initializes a LAPI context.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Init(hndl,lapi_info)
lapi_handle_t *hndl;
lapi_info_t *lapi_info;

FORTRAN Syntax
include 'lapif.h'

LAPI_INIT(hndl,lapi_info,ierror)
INTEGER hndl
TYPE (LAPI_INFO_T) :: lapi_info
INTEGER ierror

Description
Type of call: Local initialization

Use this subroutine to instantiate and initialize a new LAPI context. A handle to the newly-created LAPI
context is returned in hndl. All subsequent LAPI calls can use hndl to specify the context of the LAPI
operation. Except for LAPI_Address() and LAPI_Msg_string(), the user cannot make any LAPI calls
before calling LAPI_Init().

The lapi_info structure (lapi_info_t) must be ″zeroed out″ before any fields are filled in. To do this in C,
use this statement: bzero (lapi_info, size of (lapi_info_t)). In FORTRAN, you need to ″zero out″ each
field manually in the LAPI_INFO_T type. Fields with a description of Future support should not be used
because the names of those fields might change.

The lapi_info_t structure is defined as follows:
typedef struct {

lapi_dev_t protocol; /* Protocol device returned */
lapi_lib_t lib_vers; /* LAPI library version -- user-supplied */
uint epoch_num; /* No longer used */

Base Operating System (BOS) Runtime Services (A-P) 621

int num_compl_hndlr_thr; /* Number of completion handler threads */
uint instance_no; /* Instance of LAPI to initialize [1-16] */
int info6; /* Future support */
LAPI_err_hndlr *err_hndlr; /* User-registered error handler */
com_thread_info_t *lapi_thread_attr; /* Support thread att and init function */
void *adapter_name; /* What adapter to initialize, i.e. css0, ml0 */
lapi_extend_t *add_info; /* Additional structure extension */

} lapi_info_t;

The fields are used as follows:

protocol LAPI sets this field to the protocol that has been initialized.

lib_vers Is used to indicate a library version to LAPI for compatibility purposes. Valid values for this
field are:

L1_LIB Provides basic functionality (this is the default).

L2_LIB Provides the ability to use counters as structures.

LAST_LIB Provides the most current level of functionality. For new users of LAPI,
lib_vers should be set to LAST_LIB.

This field must be set to L2_LIB or LAST_LIB to use LAPI_Nopoll_wait and
LAPI_Setcntr_wstatus.

epoch_num This field is no longer used.

num_compl_hndlr_thr
Indicates to LAPI the number of completion handler threads to initialize.

instance_no Specifies the instance of LAPI to initialize (1 to 16).

info6 This field is for future use.

err_hndlr Use this field to optionally pass a callback pointer to an error-handler routine.

lapi_thread_attr
Supports thread attributes and initialization function.

adapter_name Is used in persistent subsystem (PSS) mode to pass an adapter name.

add_info Is used for additional information in standalone UDP mode.

Parameters
INPUT/OUTPUT

lapi_info Specifies a structure that provides the parallel job information with which this LAPI context
is associated. The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN).

OUTPUT

hndl Specifies a pointer to the LAPI handle to initialize.

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_ALL_HNDL_IN_USE
All available LAPI instances are in use.

622 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_ERR_BOTH_NETSTR_SET
Both the MP_LAPI_NETWORK and MP_LAPI_INET statements are set
(only one should be set).

LAPI_ERR_CSS_LOAD_FAILED
LAPI is unable to load the communication utility library.

LAPI_ERR_HNDL_INVALID The lapi_handle_t * passed to LAPI for initialization is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_INFO_NONZERO_INFO
The future support fields in the lapi_info_t structure that was passed to
LAPI are not set to zero (and should be).

LAPI_ERR_INFO_NULL The lapi_info_t pointer passed to LAPI is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_MEMORY_EXHAUSTED
LAPI is unable to obtain memory from the system.

LAPI_ERR_MSG_API Indicates that the MP_MSG_API environment variable is not set correctly.

LAPI_ERR_NO_NETSTR_SET
No network statement is set. Note that if running with POE, this will be
returned if MP_MSG_API is not set correctly.

LAPI_ERR_NO_UDP_HNDLR You passed a value of NULL (in C) or LAPI_ADDR_NULL (in FORTRAN)
for both the UDP handler and the UDP list. One of these (the UDP handler
or the UDP list) must be initialized for standalone UDP initialization. This
error is returned in standalone UDP mode only.

LAPI_ERR_PSS_NON_ROOT You tried to initialize the persistent subsystem (PSS) protocol as a
non-root user.

LAPI_ERR_SHM_KE_NOT_LOADED
LAPI’s shared memory kernel extension is not loaded.

LAPI_ERR_SHM_SETUP LAPI is unable to set up shared memory. This error will be returned if
LAPI_USE_SHM=only and tasks are assigned to more than one node.

LAPI_ERR_UDP_PKT_SZ The UDP packet size you indicated is not valid.

LAPI_ERR_UNKNOWN An internal error has occurred.

LAPI_ERR_USER_UDP_HNDLR_FAIL
The UDP handler you passed has returned a non-zero error code. This
error is returned in standalone UDP mode only.

C Examples
The following environment variable must be set before LAPI is initialized:

MP_MSG_API=[lapi | [lapi,mpi | mpi,lapi] | mpi_lapi]

The following environment variables are also commonly used:

MP_EUILIB=[ip | us] (ip is the default)

MP_PROCS=number_of_tasks_in_job

LAPI_USE_SHM=[yes | no | only] (no is the default)

To initialize LAPI, follow these steps:

Base Operating System (BOS) Runtime Services (A-P) 623

1. Set environment variables (as described in RSCT for AIX 5L: LAPI Programming Guide) before the
user application is invoked. The remaining steps are done in the user application.

2. Clear lapi_info_t, then set any fields.

3. Call LAPI_Init.

For systems running PE

Both US and UDP/IP are supported for shared handles as long as they are the same for both handles.
Mixed transport protocols such as LAPI IP and shared user space (US) are not supported.

To initialize a LAPI handle:

{
lapi_handle_t hndl;
lapi_info_t info;

bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

LAPI_Init(&hndl, &info);
}

To initialize a LAPI handle and register an error handler:

void my_err_hndlr(lapi_handle_t *hndl, int *error_code, lapi_err_t *err_type,
int *task_id, int *src)

{
/* examine passed parameters and delete desired information */

if (user wants to terminate) {
LAPI_Term(*hndl); /* will terminate LAPI */
exit(some_return_code);

}

/* any additional processing */

return; /* signals to LAPI that error is non-fatal; execution should continue */
}

{
lapi_handle_t hndl;
lapi_info_t info;

bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

/* set error handler pointer */
info.err_hndlr = (LAPI_err_hndlr) my_err_hndlr;

LAPI_Init(&hndl, &info);
}

For standalone systems (not running PE)

To initialize a LAPI handle for UDP/IP communication using a user handler:

int my_udp_hndlr(lapi_handle_t *hndl, lapi_udp_t *local_addr, lapi_udp_t *addr_list,
lapi_udpinfo_t *info)

{
/* LAPI will allocate and free addr_list pointer when using */
/* a user handler */

624 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

/* use the AIX inet_addr call to convert an IP address */
/* from a dotted quad to a long */
task_0_ip_as_long = inet_addr(task_0_ip_as_string);
addr_list[0].ip_addr = task_0_ip_as_long;
addr_list[0].port_no = task_0_port_as_unsigned;

task_1_ip_as_long = inet_addr(task_1_ip_as_string);
addr_list[1].ip_addr = task_1_ip_as_long;
addr_list[1].port_no = task_1_port_as_unsigned;
.
.
.
task_num_tasks-1_ip_as_long = inet_addr(task_num_tasks-1_ip_as_string);
addr_list[num_tasks-1].ip_addr = task_num_tasks-1_ip_as_long;
addr_list[num_tasks-1].port_no = task_num_tasks-1_port_as_unsigned;

}

{
lapi_handle_t hndl;
lapi_info_t info;
lapi_extend_t extend_info;

bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */
bzero(&extend_info, sizeof(lapi_extend_t)); /* clear lapi_extend_info */

extend_info.udp_hndlr = (udp_init_hndlr *) my_udp_hndlr;
info.add_info = &extend_info;

LAPI_Init(&hndl, &info);
}

To initialize a LAPI handle for UDP/IP communication using a user list:

{
lapi_handle_t hndl;
lapi_info_t info;
lapi_extend_t extend_info;
lapi_udp_t *addr_list;

bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */
bzero(&extend_info, sizeof(lapi_extend_t)); /* clear lapi_extend_info */

/* when using a user list, the user is responsible for allocating */
/* and freeing the list pointer */
addr_list = malloc(num_tasks);

/* Note, since we need to know the number of tasks before LAPI is */
/* initialized, we can't use LAPI_Qenv. getenv("MP_PROCS") will */
/* do the trick. */

/* populate addr_list */
/* use the AIX inet_addr call to convert an IP address */
/* from a dotted quad to a long */
task_0_ip_as_long = inet_addr(task_0_ip_as_string);
addr_list[0].ip_addr = task_0_ip_as_long;
addr_list[0].port_no = task_0_port_as_unsigned;

task_1_ip_as_long = inet_addr(task_1_ip_as_string);
addr_list[1].ip_addr = task_1_ip_as_long;
addr_list[1].port_no = task_1_port_as_unsigned;
.
.

Base Operating System (BOS) Runtime Services (A-P) 625

.
task_num_tasks-1_ip_as_long = inet_addr(task_num_tasks-1_ip_as_string);
addr_list[num_tasks-1].ip_addr = task_num_tasks-1_ip_as_long;
addr_list[num_tasks-1].port_no = task_num_tasks-1_port_as_unsigned;

/* then assign to extend pointer */
extend_info.add_udp_addrs = addr_list;

info.add_info = &extend_info;

LAPI_Init(&hndl, &info);
.
.
.

/* user's responsibility only in the case of user list */
free(addr_list);

}

See the LAPI sample programs for complete examples of initialization in standalone mode.

To initialize a LAPI handle for user space (US) communication in standalone mode:

export MP_MSG_API=lapi
export MP_EUILIB=us
export MP_PROCS= /* number of tasks in job */
export MP_PARTITION= /* unique job key */
export MP_CHILD= /* unique task ID */
export MP_LAPI_NETWORK=@1:164,sn0 /* LAPI network information */

run LAPI jobs as normal

See the README.LAPI.STANDALONE.US file in the standalone/us directory of the LAPI sample files for
complete details.

Location
/usr/lib/liblapi_r.a

Related Information
Books: RSCT for AIX 5L: LAPI Programming Guide for information about

v Initializing LAPI on systems running PE

v Initializing LAPI on standalone systems

v Bulk message transfer

Subroutines: LAPI_Msg_string, LAPI_Term

LAPI_Msg_string Subroutine

Purpose
Retrieves the message that is associated with a subroutine return code.

Library
Availability Library (liblapi_r.a)

626 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

C Syntax
#include <lapi.h>

LAPI_Msg_string(error_code, buf)
int error_code;
void *buf;

FORTRAN Syntax
include 'lapif.h'

LAPI_MSG_STRING(error_code, buf, ierror)
INTEGER error_code
CHARACTER buf(LAPI_MAX_ERR_STRING)
INTEGER ierror

Description
Type of call: local queries

Use this subroutine to retrieve the message string that is associated with a LAPI return code. LAPI tries to
find the messages of any return codes that come from the AIX operating system or its communication
subsystem.

Parameters
INPUT

error_code Specifies the return value of a previous LAPI call.

OUTPUT

buf Specifies the buffer to store the message string.

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To get the message string associated with a LAPI return code:
{

char msg_buf[LAPI_MAX_ERR_STRING]; /* constant defined in lapi.h */
int rc, errc;

rc = some_LAPI_call();

errc = LAPI_Msg_string(rc, msg_buf);

/* msg_buf now contains the message string for the return code */

}

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CATALOG_FAIL Indicates that the message catalog cannot be opened. An English-only
string is copied into the user’s message buffer (buf).

LAPI_ERR_CODE_UNKNOWN
Indicates that error_code is outside of the range known to LAPI.

LAPI_ERR_RET_PTR_NULL Indicates that the value of the buf pointer is NULL (in C) or that the value
of buf is LAPI_ADDR_NULL (in FORTRAN).

Base Operating System (BOS) Runtime Services (A-P) 627

Location
/usr/lib/liblapi_r.a

Related Information
RSCT for AIX 5L: LAPI Programming Guide contains information about

v Initializing LAPI

v Bulk message transfer

Subroutines: LAPI_Msg_string, LAPI_Term.

LAPI_Msgpoll Subroutine

Purpose
Allows the calling thread to check communication progress.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Msgpoll(hndl, cnt, info)
lapi_handle_t hndl;
uint cnt;
lapi_msg_info_t *info;

typedef struct {
lapi_msg_state_t status; /* Message status returned from LAPI_Msgpoll */
ulong reserve[10]; /* Reserved */

} lapi_msg_info_t;

FORTRAN Syntax
include 'lapif.h'

LAPI_MSGPOLL(hndl, cnt, info, ierror)
INTEGER hndl
INTEGER cnt
TYPE (LAPI_MSG_STATE_T) :: info
INTEGER ierror

Description
Type of call: local progress monitor (blocking)

The LAPI_Msgpoll subroutine allows the calling thread to check communication progress. With this
subroutine, LAPI provides a means of running the dispatcher several times until either progress is made or
a specified maximum number of dispatcher loops have executed. Here, progress is defined as the
completion of either a message send operation or a message receive operation.

LAPI_Msgpoll is intended to be used when interrupts are turned off. If the user has not explicitly turned
interrupts off, LAPI temporarily disables interrupt mode while in this subroutine because the dispatcher is
called, which will process any pending receive operations. If the LAPI dispatcher loops for the specified

628 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

maximum number of times, the call returns. If progress is made before the maximum count, the call will
return immediately. In either case, LAPI will report status through a data structure that is passed by
reference.

The lapi_msg_info_t structure contains a flags field (status), which is of type lapi_msg_state_t. Flags in
the status field are set as follows:

LAPI_DISP_CNTR If the dispatcher has looped cnt times without making progress

LAPI_SEND_COMPLETE If a message send operation has completed

LAPI_RECV_COMPLETE If a message receive operation has completed

LAPI_BOTH_COMPLETE If both a message send operation and a message receive operation have
completed

LAPI_POLLING_NET If another thread is already polling the network or shared memory
completion

Parameters
INPUT

hndl Specifies the LAPI handle.

cnt Specifies the maximum number of times the dispatcher should loop with no progress
before returning.

info Specifies a status structure that contains the result of the LAPI_Msgpoll() call.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To loop through the dispatcher no more than 1000 times, then check what progress has been made:
{

lapi_msg_info_t msg_info;
int cnt = 1000;
.
.
.
LAPI_Msgpoll(hndl, cnt, &msg_info);

if (msg_info.status & LAPI_BOTH_COMPLETE) {
/* both a message receive and a message send have been completed */

} else if (msg_info.status & LAPI_RECV_COMPLETE) {
/* just a message receive has been completed */

} else if (msg_info.status & LAPI_SEND_COMPLETE) {
/* just a message send has been completed */

} else {
/* cnt loops and no progress */

}

}

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

Base Operating System (BOS) Runtime Services (A-P) 629

LAPI_ERR_MSG_INFO_NULL
Indicates that the info pointer is NULL (in C) or that the value of info is
LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Getcntr, LAPI_Probe, LAPI_Setcntr, LAPI_Waitcntr

LAPI_Nopoll_wait Subroutine

Purpose
Waits for a counter update without polling.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

void LAPI_Nopoll_wait(hndl, cntr_ptr, val, cur_cntr_val)
lapi_handle_t hndl;
lapi_cntr_t *cntr_ptr;
int val;
int *cur_cntr_val;

FORTRAN Syntax
include 'lapif.h'

int LAPI_NOPOLL_WAIT(hndl, cntr, val, cur_cntr_val, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr
INTEGER val
INTEGER cur_cntr_val
INTEGER ierror

Description
Type of call: recovery (blocking)

This subroutine waits for a counter update without polling (that is, without explicitly invoking LAPI’s internal
communication dispatcher). This call may or may not check for message arrivals over the LAPI context
hndl. The cur_cntr_val variable is set to the current counter value. Although it has higher latency than
LAPI_Waitcntr, LAPI_Nopoll_wait frees up the processor for other uses.

Note: To use this subroutine, the lib_vers field in the lapi_info_t structure must be set to L2_LIB or
LAST_LIB.

Parameters
INPUT

hndl Specifies the LAPI handle.

630 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

val Specifies the relative counter value (starting from 1) that the counter needs to reach
before returning.

cur_cntr_val Specifies the integer value of the current counter. The value of The value of this parameter
can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

cntr_ptr Points to the lapi_cntr_t structure in C.

cntr Is the lapi_cntr_t structure in FORTRAN.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr_ptr pointer is NULL (in C) or that the value of cntr is
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_CNTR_VAL Indicates that the val passed in is less than or equal to 0.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_MULTIPLE_WAITERS
Indicates that more than one thread is waiting for the counter.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

Restrictions
Use of this subroutine is not recommended on a system that is running Parallel Environment (PE).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Init, LAPI_Purge_totask, LAPI_Resume_totask, LAPI_Setcntr_wstatus

LAPI_Probe Subroutine

Purpose
Transfers control to the communication subsystem to check for arriving messages and to make progress in
polling mode.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Probe(hndl)
lapi_handle_t hndl;

Base Operating System (BOS) Runtime Services (A-P) 631

FORTRAN Syntax
include 'lapif.h'

int LAPI_PROBE(hndl, ierror)
INTEGER hndl
INTEGER ierror

Description
Type of call: local progress monitor (non-blocking)

This subroutine transfers control to the communication subsystem in order to make progress on messages
associated with the context hndl. A LAPI_Probe operation lasts for one round of the communication
dispatcher.

Note: There is no guarantee about receipt of messages on the return from this function.

Parameters
INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Getcntr, LAPI_Msgpoll, LAPI_Nopoll_wait, LAPI_Waitcntr

LAPI_Purge_totask Subroutine

Purpose
Allows a task to cancel messages to a given destination.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Purge_totask(hndl, dest)
lapi_handle_t hndl;
uint dest;

632 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

FORTRAN Syntax
include 'lapif.h'

int LAPI_PURGE_TOTASK(hndl, dest, ierror)
INTEGER hndl
INTEGER dest
INTEGER ierror

Description
Type of call: recovery

This subroutine cancels messages and resets the state corresponding to messages in flight or submitted
to be sent to a particular target task. This is an entirely local operation. For correct behavior a similar
invocation is expected on the destination (if it exists). This function cleans up all the state associated with
pending messages to the indicated target task. It is assumed that before the indicated task starts
communicating with this task again, it also purges this instance (or that it was terminated and initialized
again). It will also wake up all threads that are in LAPI_Nopoll_wait depending on how the arguments are
passed to the LAPI_Nopoll_wait function. The behavior of LAPI_Purge_totask is undefined if LAPI
collective functions are used.

Note: This subroutine should not be used when the parallel application is running in a PE/LoadLeveler
environment.

LAPI_Purge_totask is normally used after connectivity has been lost between two tasks. If connectivity is
restored, the tasks can restored for LAPI communication by calling LAPI_Resume_totask.

Parameters
INPUT

hndl Specifies the LAPI handle.

dest Specifies the destination instance ID to which pending messages need to be cancelled.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
Use of this subroutine is not recommended on a system that is running Parallel Environment (PE).

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_TGT Indicates that dest is outside the range of tasks defined in the job.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Init, LAPI_Nopoll_wait, LAPI_Resume_totask, LAPI_Term

Base Operating System (BOS) Runtime Services (A-P) 633

LAPI_Put Subroutine

Purpose
Transfers data from a local task to a remote task.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Put(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, cmpl_cntr)
lapi_handle_t hndl;
uint tgt;
ulong len;
void *tgt_addr;
void *org_addr;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;

FORTRAN Syntax
include 'lapif.h'

int LAPI_PUT(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, ierror)
INTEGER hndl
INTEGER tgt
INTEGER (KIND=LAPI_LONG_TYPE) :: len
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_addr
INTEGER org_addr
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
TYPE (LAPI_CNTR_T) :: cmpl_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data from a local (origin) task to a remote (target) task. The origin counter
will increment on the origin task upon origin buffer availability. The target counter will increment on the
target and the completion counter will increment at the origin task upon message completion. Because
there is no completion handler, message completion and target buffer availability are the same in this
case.

This is a non-blocking call. The caller cannot assume that the data transfer has completed upon the return
of the function. Instead, counters should be used to ensure correct buffer accesses as defined above.

Note that a zero-byte message does not transfer data, but it does have the same semantic with respect to
counters as that of any other message.

Parameters
INPUT

hndl Specifies the LAPI handle.

634 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0
<= tgt < NUM_TASKS.

len Specifies the number of bytes to be transferred. This parameter must be in the range 0 <=
len <= the value of LAPI constant LAPI_MAX_MSG_SZ.

tgt_addr Specifies the address on the target task where data is to be copied into. If len is 0, The
value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

org_addr Specifies the address on the origin task from which data is to be copied. If len is 0, The
value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented upon message
completion. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the
target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin
counter is incremented at buffer availability. If this parameter is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the completion counter address (in C) or the completion counter (in FORTRAN)
that is a reflection of tgt_cntr. The completion counter is incremented at the origin after
tgt_cntr is incremented. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), the completion counter is not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
{

/* initialize the table buffer for the data addresses */

/* get remote data buffer addresses */
LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);
.
.
.
LAPI_Put(hndl, tgt, (ulong) data_len, (void *)(data_buffer_list[tgt]),

(void *) data_buffer, tgt_cntr, org_cntr, compl_cntr);

/* transfer data_len bytes from local address data_buffer. */
/* write the data starting at address data_buffer_list[tgt] on */
/* task tgt. tgt_cntr, org_cntr, and compl_cntr can be NULL. */

}

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DATA_LEN Indicates that the value of len is greater than the value of LAPI constant
LAPI_MAX_MSG_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_ORG_ADDR_NULL
Indicates that the org_addr parameter passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), but len is greater than 0.

Base Operating System (BOS) Runtime Services (A-P) 635

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

LAPI_ERR_TGT_ADDR_NULL
Indicates that the tgt_addr parameter passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), but len is greater than 0.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Get, LAPI_Getcntr, LAPI_Qenv, LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Putv Subroutine

Purpose
Transfers vectors of data from a local task to a remote task.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Putv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;
uint tgt;
lapi_vec_t *tgt_vec;
lapi_vec_t *org_vec;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;

typedef struct {
lapi_vectype_t vec_type; /* operation code */
uint num_vecs; /* number of vectors */
void **info; /* vector of information */
ulong *len; /* vector of lengths */

} lapi_vec_t;

FORTRAN Syntax
include 'lapif.h'

LAPI_PUTV(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr , cmpl_cntr, ierror)
INTEGER hndl
INTEGER tgt
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_vec
TYPE (LAPI_VEC_T) :: org_vec
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr
TYPE (LAPI_CNTR_T) :: org_cntr
TYPE (LAPI_CNTR_T) :: cmpl_cntr
INTEGER ierror

636 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The 32-bit version of the LAPI_VEC_T type is defined as:
TYPE LAPI_VEC_T

SEQUENCE
INTEGER(KIND = 4) :: vec_type
INTEGER(KIND = 4) :: num_vecs
INTEGER(KIND = 4) :: info
INTEGER(KIND = 4) :: len

END TYPE LAPI_VEC_T

The 64-bit version of the LAPI_VEC_T type is defined as:
TYPE LAPI_VEC_T

SEQUENCE
INTEGER(KIND = 4) :: vec_type
INTEGER(KIND = 4) :: num_vecs
INTEGER(KIND = 8) :: info
INTEGER(KIND = 8) :: len

END TYPE LAPI_VEC_T

Description
Type of call: point-to-point communication (non-blocking)

LAPI_Putv is the vector version of the LAPI_Put call. Use this subroutine to transfer vectors of data from
the origin task to the target task. The origin vector descriptions and the target vector descriptions are
located in the address space of the origin task. However, the values specified in the info array of the target
vector must be addresses in the address space of the target task.

The calling program cannot assume that the origin buffer can be changed or that the contents of the target
buffers on the target task are ready for use upon function return. After the origin counter (org_cntr) is
incremented, the origin buffers can be modified by the origin task. After the target counter (tgt_cntr) is
incremented, the target buffers can be modified by the target task. If you provide a completion counter
(cmpl_cntr), it is incremented at the origin after the target counter (tgt_cntr) has been incremented at the
target. If the values of any of the counters or counter addresses are NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN), the data transfer occurs, but the corresponding counter increments do not occur.

If a strided vector is being transferred, the size of each block must not be greater than the stride size in
bytes.

The length of any vector pointed to by org_vec must be equal to the length of the corresponding vector
pointed to by tgt_vec.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If the
overlapping regions exist on the target side, the contents of the target buffer are undefined after the
operation.

See LAPI_Amsendv for more information about using the various vector types. (LAPI_Putv does not
support the LAPI_GEN_GENERIC type.)

Parameters
INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0
<= tgt < NUM_TASKS.

tgt_vec Points to the target vector description.

org_vec Points to the origin vector description.

Base Operating System (BOS) Runtime Services (A-P) 637

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented upon message
completion. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the
target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin
counter is incremented at buffer availability. If this parameter is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the completion counter address (in C) or the completion counter (in FORTRAN)
that is a reflection of tgt_cntr. The completion counter is incremented at the origin after
tgt_cntr is incremented. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), the completion counter is not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples
To put a LAPI_GEN_IOVECTOR:
{

/* retrieve a remote data buffer address for data to transfer, */
/* such as through LAPI_Address_init */

/* task that calls LAPI_Putv sets up both org_vec and tgt_vec */
org_vec->num_vecs = NUM_VECS;
org_vec->vec_type = LAPI_GEN_IOVECTOR;
org_vec->len = (unsigned long *)
malloc(NUM_VECS*sizeof(unsigned long));
org_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

/* each org_vec->info[i] gets a base address on the origin task */
/* each org_vec->len[i] gets the number of bytes to transfer */
/* from org_vec->info[i] */

tgt_vec->num_vecs = NUM_VECS;
tgt_vec->vec_type = LAPI_GEN_IOVECTOR;
tgt_vec->len = (unsigned long *)
malloc(NUM_VECS*sizeof(unsigned long));
tgt_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

/* each tgt_vec->info[i] gets a base address on the target task */
/* each tgt_vec->len[i] gets the number of bytes to write to vec->info[i] */
/* For LAPI_GEN_IOVECTOR, num_vecs, vec_type, and len must be the same */

LAPI_Putv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, compl_cntr);
/* tgt_cntr, org_cntr and compl_cntr can all be NULL */

/* data will be transferred as follows: */
/* org_vec->len[0] bytes will be retrieved from */
/* org_vec->info[0] and written to tgt_vec->info[0] */
/* org_vec->len[1] bytes will be retrieved from */
/* org_vec->info[1] and written to tgt_vec->info[1] */
.
.
.
/* org_vec->len[NUM_VECS-1] bytes will be retrieved */
/* from org_vec->info[NUM_VECS-1] and written to */
/* tgt_vec->info[NUM_VECS-1] */

}

See the example in LAPI_Amsendv for information on other vector types.

638 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride * num_vecs) is greater than the
value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR
Indicates that the org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but its length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the sum of org_vec->len is greater than the value of LAPI
constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL Indicates that the org_vec is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL
Indicates that the strided vector address org_vec->info[0] is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL
Indicates that the strided vector address tgt_vec->info[0] is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

LAPI_ERR_TGT_EXTENT Indicates that tgt_vec’s extent (stride * num_vecs) is greater than the
value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

LAPI_ERR_TGT_STRIDE Indicates that the tgt_vec stride is less than block.

LAPI_ERR_TGT_VEC_ADDR Indicates that the tgt_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but its length (tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN Indicates that the sum of tgt_vec->len is greater than the value of LAPI
constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL Indicates that tgt_vec is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_TGT_VEC_TYPE Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_VEC_LEN_DIFF Indicates that org_vec and tgt_vec have different lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF Indicates that org_vec and tgt_vec have different num_vecs.

LAPI_ERR_VEC_TYPE_DIFF
Indicates that org_vec and tgt_vec have different vector types (vec_type).

Location
/usr/lib/liblapi_r.a

Base Operating System (BOS) Runtime Services (A-P) 639

Related Information
Subroutines: LAPI_Amsendv, LAPI_Getcntr, LAPI_Getv, LAPI_Qenv, LAPI_Setcntr, LAPI_Waitcntr,
LAPI_Xfer

LAPI_Qenv Subroutine

Purpose
Used to query LAPI for runtime task information.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapif.h>

int LAPI_Qenv(hndl, query, ret_val)
lapi_handle_t hndl;
lapi_query_t query;
int *ret_val; /* ret_val's type varies (see Additional query types) */

FORTRAN Syntax
include 'lapif.h'

LAPI_QENV(hndl, query, ret_val, ierror)
INTEGER hndl
INTEGER query
INTEGER ret_val /* ret_val's type varies (see Additional query types) */
INTEGER ierror

Description
Type of call: local queries

Use this subroutine to query runtime settings and statistics from LAPI. LAPI defines a set of query types
as an enumeration in lapi.h for C and explicitly in the 32-bit and 64-bit versions of lapif.h for FORTRAN.

For example, you can query the size of the table that LAPI uses for the LAPI_Addr_set subroutine using
a query value of LOC_ADDRTBL_SZ:
LAPI_Qenv(hndl, LOC_ADDRTBL_SZ, &ret_val);

ret_val will contain the upper bound on the table index. A subsequent call to LAPI_Addr_set (hndl, addr,
addr_hndl); could then ensure that the value of addr_hndl is between 0 and ret_val.

When used to show the size of a parameter, a comparison of values, or a range of values, valid values for
the query parameter of the LAPI_Qenv subroutine appear in SMALL, BOLD capital letters. For example:

NUM_TASKS

is a shorthand notation for:

LAPI_Qenv(hndl, NUM_TASKS, ret_val)

640 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

In C, lapi_query_t defines the valid types of LAPI queries:

typedef enum {
TASK_ID=0, /* Query the task ID of the current task in the job */
NUM_TASKS, /* Query the number of tasks in the job */
MAX_UHDR_SZ, /* Query the maximum user header size for active messaging */
MAX_DATA_SZ, /* Query the maximum data length that can be sent */
ERROR_CHK, /* Query and set parameter checking on (1) or off (0) */
TIMEOUT, /* Query and set the current communication timeout setting */

/* in seconds */
MIN_TIMEOUT, /* Query the minimum communication timeout setting in seconds */
MAX_TIMEOUT, /* Query the maximum communication timeout setting in seconds */
INTERRUPT_SET, /* Query and set interrupt mode on (1) or off (0) */
MAX_PORTS, /* Query the maximum number of available communication ports */
MAX_PKT_SZ, /* This is the payload size of 1 packet */
NUM_REX_BUFS, /* Number of retransmission buffers */
REX_BUF_SZ, /* Size of each retransmission buffer in bytes */
LOC_ADDRTBL_SZ, /* Size of address store table used by LAPI_Addr_set */
EPOCH_NUM, /* No longer used by LAPI (supports legacy code) */
USE_THRESH, /* No longer used by LAPI (supports legacy code) */
RCV_FIFO_SIZE, /* No longer used by LAPI (supports legacy code) */
MAX_ATOM_SIZE,/* Query the maximum atom size for a DGSP accumulate transfer*/
BUF_CP_SIZE, /* Query the size of the message buffer to save (default 128b)*/
MAX_PKTS_OUT, /* Query the maximum number of messages outstanding / */

/* destination */
ACK_THRESHOLD, /* Query and set the threshold of acknowledgments going */

/* back to the source */
QUERY_SHM_ENABLED, /* Query to see if shared memory is enabled */
QUERY_SHM_NUM_TASKS, /* Query to get the number of tasks that use shared */

/* memory */
QUERY_SHM_TASKS, /* Query to get the list of task IDs that make up shared */

/* memory; pass in an array of size QUERY_SHM_NUM_TASKS */
QUERY_STATISTICS, /* Query to get packet statistics from LAPI, as */

/* defined by the lapi_statistics_t structure. For */
/* this query, pass in 'lapi_statistics_t *' rather */
/* than 'int *ret_val'; otherwise, the data will */
/* overflow the buffer. */

PRINT_STATISTICS, /* Query debug print function to print out statistics */
QUERY_SHM_STATISTICS,/* Similar query as QUERY_STATISTICS for shared */

/* memory path. */
QUERY_LOCAL_SEND_STATISTICS ,/* Similar query as QUERY_STATISTICS */

/* for local copy path. */
BULK_XFER, /* Query to see if bulk transfer is enabled (1) or disabled (0) */
BULK_MIN_MSG_SIZE, /* Query the current bulk transfer minimum message size */
LAST_QUERY

} lapi_query_t;

typedef struct {
lapi_long_t Tot_dup_pkt_cnt; /* Total duplicate packet count */
lapi_long_t Tot_retrans_pkt_cnt; /* Total retransmit packet count */
lapi_long_t Tot_gho_pkt_cnt; /* Total Ghost packet count */
lapi_long_t Tot_pkt_sent_cnt; /* Total packet sent count */
lapi_long_t Tot_pkt_recv_cnt; /* Total packet receive count */
lapi_long_t Tot_data_sent; /* Total data sent */
lapi_long_t Tot_data_recv; /* Total data receive */
} lapi_statistics_t;

In FORTRAN, the valid types of LAPI queries are defined in lapif.h as follows:

integer TASK_ID,NUM_TASKS,MAX_UHDR_SZ,MAX_DATA_SZ,ERROR_CHK
integer TIMEOUT,MIN_TIMEOUT,MAX_TIMEOUT
integer INTERRUPT_SET,MAX_PORTS,MAX_PKT_SZ,NUM_REX_BUFS
integer REX_BUF_SZ,LOC_ADDRTBL_SZ,EPOCH_NUM,USE_THRESH
integer RCV_FIFO_SIZE,MAX_ATOM_SIZE,BUF_CP_SIZE
integer MAX_PKTS_OUT,ACK_THRESHOLD,QUERY_SHM_ENABLED

Base Operating System (BOS) Runtime Services (A-P) 641

integer QUERY_SHM_NUM_TASKS,QUERY_SHM_TASKS
integer QUERY_STATISTICS,PRINT_STATISTICS
integer QUERY_SHM_STATISTICS,QUERY_LOCAL_SEND_STATISTICS
integer BULK_XFER,BULK_MIN_MSG_SIZE,
integer LAST_QUERY
parameter (TASK_ID=0,NUM_TASKS=1,MAX_UHDR_SZ=2,MAX_DATA_SZ=3)
parameter (ERROR_CHK=4,TIMEOUT=5,MIN_TIMEOUT=6)
parameter (MAX_TIMEOUT=7,INTERRUPT_SET=8,MAX_PORTS=9)
parameter (MAX_PKT_SZ=10,NUM_REX_BUFS=11,REX_BUF_SZ=12)
parameter (LOC_ADDRTBL_SZ=13,EPOCH_NUM=14,USE_THRESH=15)
parameter (RCV_FIFO_SIZE=16,MAX_ATOM_SIZE=17,BUF_CP_SIZE=18)
parameter (MAX_PKTS_OUT=19,ACK_THRESHOLD=20)
parameter (QUERY_SHM_ENABLED=21,QUERY_SHM_NUM_TASKS=22)
parameter (QUERY_SHM_TASKS=23,QUERY_STATISTICS=24)
parameter (PRINT_STATISTICS=25)
parameter (QUERY_SHM_STATISTICS=26,QUERY_LOCAL_SEND_STATISTICS=27)
parameter (BULK_XFER=28,BULK_MIN_MSG_SIZE=29)
parameter (LAST_QUERY=30)

Additional query types
LAPI provides additional query types for which the behavior of LAPI_Qenv is slightly different:

PRINT_STATISTICS When passed this query type, LAPI sends data transfer statistics to
standard output. In this case, ret_val is unaffected. However, LAPI’s error
checking requires that the value of ret_val is not NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN) for all LAPI_Qenv types (including
PRINT_STATISTICS).

QUERY_LOCAL_SEND_STATISTICS
When passed this query type, LAPI_Qenv interprets ret_val as a pointer
to type lapi_statistics_t. Upon function return, the fields of the structure
contain LAPI’s data transfer statistics for data transferred through
intra-task local copy. The packet count will be 0.

QUERY_SHM_STATISTICS When passed this query type, LAPI_Qenv interprets ret_val as a pointer
to type lapi_statistics_t. Upon function return, the fields of the structure
contain LAPI’s data transfer statistics for data transferred through shared
memory.

QUERY_SHM_TASKS When passed this query type, LAPI_Qenv returns a list of task IDs with
which this task can communicate using shared memory. ret_val must be
an int * with enough space to hold NUM_TASKS integers. For each task i,
if it is possible to use shared memory, ret_val[i] will contain the shared
memory task ID. If it is not possible to use shared memory, ret_val[i] will
contain -1.

QUERY_STATISTICS When passed this query type, LAPI_Qenv interprets ret_val as a pointer
to type lapi_statistics_t. Upon function return, the fields of the structure
contain LAPI’s data transfer statistics for data transferred using the user
space (US) protocol or UDP/IP.

Parameters
INPUT

hndl Specifies the LAPI handle.

query Specifies the type of query you want to request. In C, the values for query are defined by
the lapi_query_t enumeration in lapi.h. In FORTRAN, these values are defined explicitly
in the 32-bit version and the 64-bit version of lapif.h.

OUTPUT

642 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ret_val Specifies the reference parameter for LAPI to store as the result of the query. The value of
this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_QUERY_TYPE Indicates that the query passed in is not valid.

LAPI_ERR_RET_PTR_NULL Indicates that the value of the ret_val pointer is NULL (in C) or that the
value of ret_val is LAPI_ADDR_NULL (in FORTRAN).

C Examples
To query runtime values from LAPI:
{

int task_id;
lapi_statistics_t stats;
.
.
.
LAPI_Qenv(hndl, TASK_ID, &task_id);
/* task_id now contains the task ID */
.
.
.
LAPI_Qenv(hndl, QUERY_STATISTICS, (int *)&stats);
/* the fields of the stats structure are now

filled in with runtime values */
.
.
.

}

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Put, LAPI_Senv, LAPI_Xfer

LAPI_Resume_totask Subroutine

Purpose
Re-enables the sending of messages to the task.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Resume_totask(hndl, dest)
lapi_handle_t hndl;
uint dest;

Base Operating System (BOS) Runtime Services (A-P) 643

FORTRAN Syntax
include 'lapif.h'

int LAPI_RESUME_TOTASK(hndl, dest, ierror)
INTEGER hndl
INTEGER dest
INTEGER ierror

Description
Type of call: recovery

This subroutine is used in conjunction with LAPI_Purge_totask. It enables LAPI communication to be
reestablished for a task that had previously been purged. The purged task must either restart LAPI or
execute a LAPI_Purge_totask/LAPI_Resume_totask sequence for this task.

Parameters
INPUT

hndl Specifies the LAPI handle.

dest Specifies the destination instance ID with which to resume communication.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
Use of this subroutine is not recommmended on a system that is running Parallel Environment (PE).

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Init, LAPI_Nopoll_wait, LAPI_Purge_totask, LAPI_Term

LAPI_Rmw Subroutine

Purpose
Provides data synchronization primitives.

Library
Availability Library (liblapi_r.a)

644 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

C Syntax
#include <lapi.h>

int LAPI_Rmw(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)

lapi_handle_t hndl;
RMW_ops_t op;
uint tgt;
int *tgt_var;
int *in_val;
int *prev_tgt_val;
lapi_cntr_t *org_cntr;

FORTRAN Syntax
include 'lapif.h'

LAPI_RMW(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr, ierror)
INTEGER hndl
INTEGER op
INTEGER tgt
INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_var
INTEGER in_val
INTEGER prev_tgt_val
TYPE (LAPI_CNTR_T) :: org_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

Use this subroutine to synchronize two independent pieces of data, such as two tasks sharing a common
data structure. The operation is performed at the target task (tgt) and is atomic. The operation takes an
input value (in_val) from the origin and performs one of four operations (op) on a variable (tgt_var) at the
target (tgt), and then replaces the target variable (tgt_var) with the results of the operation (op). The
original value (prev_tgt_val) of the target variable (tgt_var) is returned to the origin.

The operations (op) are performed over the context referred to by hndl. The outcome of the execution of
these calls is as if the following code was executed atomically:

*prev_tgt_val = *tgt_var;
*tgt_var = f(*tgt_var, *in_val);

where:

f(a,b) = a + b for FETCH_AND_ADD

f(a,b) = a | b for FETCH_AND_OR (bitwise or)

f(a,b) = b for SWAP

For COMPARE_AND_SWAP, in_val is treated as a pointer to an array of two integers, and the op is the
following atomic operation:

if(*tgt_var == in_val[0]) {
*prev_tgt_val = TRUE;
*tgt_var = in_val[1];

} else {
*prev_tgt_val = FALSE;

}

Base Operating System (BOS) Runtime Services (A-P) 645

All LAPI_Rmw calls are non-blocking. To test for completion, use the LAPI_Getcntr and LAPI_Waitcntr
subroutines. LAPI_Rmw does not include a target counter (tgt_cntr), so LAPI_Rmw calls do not provide
any indication of completion on the target task (tgt).

Parameters
INPUT

hndl Specifies the LAPI handle.

op Specifies the operation to be performed. The valid operations are:

v COMPARE_AND_SWAP

v FETCH_AND_ADD

v FETCH_AND_OR

v SWAP

tgt Specifies the task ID of the target task where the read-modify-write (Rmw) variable
resides. The value of this parameter must be in the range 0 <= tgt < NUM_TASKS.

tgt_var Specifies the target read-modify-write (Rmw) variable (in FORTRAN) or its address (in C).
The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

in_val Specifies the value that is passed in to the operation (op). This value cannot be NULL (in
C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

prev_tgt_val Specifies the location at the origin in which the previous tgt_var on the target task is
stored before the operation (op) is executed. The value of this parameter can be NULL (in
C) or LAPI_ADDR_NULL (in FORTRAN).

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). If
prev_tgt_val is set, the origin counter (org_cntr) is incremented when prev_tgt_val is
returned to the origin side. If prev_tgt_val is not set, the origin counter (org_cntr) is
updated after the operation (op) is completed at the target side.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
1. To synchronize a data value between two tasks (with FETCH_AND_ADD):

{

int local_var;
int *addr_list;

/* both tasks initialize local_var to a value */

/* local_var addresses are exchanged and stored */
/* in addr_list (using LAPI_Address_init). */
/* addr_list[tgt] now contains the address of */
/* local_var on tgt */
.
.
.
/* add value to local_var on some task */

646 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

/* use LAPI to add value to local_var on remote task */
LAPI_Rmw(hndl, FETCH_AND_ADD, tgt, addr_list[tgt],

value, prev_tgt_val, &org_cntr);

/* local_var on the remote task has been increased */
/* by value. prev_tgt_val now contains the value */
/* of local_var on remote task before the addition */

}

2. To synchronize a data value between two tasks (with SWAP):

{

int local_var;
int *addr_list;

/* local_var addresses are exchanged and stored */
/* in addr_list (using LAPI_Address_init). */
/* addr_list[tgt] now contains the address of */
/* local_var on tgt. */
.
.
.
/* local_var is assigned some value */

/* assign local_var to local_var on remote task */
LAPI_Rmw(hndl, SWAP, tgt, addr_list[tgt],

local_var, prev_tgt_val, &org_cntr);

/* local_var on the remote task is now equal to */
/* local_var on the local task. prev_tgt_val now */
/* contains the value of local_var on the remote */
/* task before the swap. */

}

3. To conditionally swap a data value (with COMPARE_AND_SWAP):

{

int local_var;
int *addr_list;
int in_val[2];

/* local_var addresses are exchanged and stored */
/* in addr_list (using LAPI_Address_init). */
/* addr_list[tgt] now contains the address of */
/* local_var on tgt. */
.
.
.
/* if local_var on remote_task is equal to comparator, */
/* assign value to local_var on remote task */

in_val[0] = comparator;
in_val[1] = value;

LAPI_Rmw(hndl, COMPARE_AND_SWAP, tgt, addr_list[tgt],
in_val, prev_tgt_val, &org_cntr);

/* local_var on the remote task is now in_val[1] if it */
/* had previously been equal to in_val[0]. If the swap */
/* was performed, prev_tgt_val now contains TRUE; */
/* otherwise, it contains FALSE. */

}

Base Operating System (BOS) Runtime Services (A-P) 647

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_IN_VAL_NULL Indicates that the in_val pointer is NULL (in C) or that the value of in_val
is LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_RMW_OP Indicates that op is not valid.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

LAPI_ERR_TGT_VAR_NULL Indicates that the tgt_var address is NULL (in C) or that the value of
tgt_var is LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Address_init, LAPI_Getcntr, LAPI_Qenv, LAPI_Rmw64, LAPI_Setcntr,
LAPI_Waitcntr, LAPI_Xfer

LAPI_Rmw64 Subroutine

Purpose
Provides data synchronization primitives for 64-bit applications.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Rmw64(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)

lapi_handle_t hndl;
Rmw_ops_t op;
uint tgt;
long long *tgt_var;
long long *in_val;
long long *prev_tgt_val;
lapi_cntr_t *org_cntr;

FORTRAN Syntax
include 'lapif.h'

LAPI_RMW64(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr, ierror)

INTEGER hndl
INTEGER op
INTEGER tgt

648 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_var
INTEGER (KIND=LAPI_LONG_LONG_TYPE) :: in_val, prev_tgt_val
TYPE (LAPI_CNTR_T) :: org_cntr
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

This subroutine is the 64-bit version of LAPI_Rmw. It is used to synchronize two independent pieces of
64-bit data, such as two tasks sharing a common data structure. The operation is performed at the target
task (tgt) and is atomic. The operation takes an input value (in_val) from the origin and performs one of
four operations (op) on a variable (tgt_var) at the target (tgt), and then replaces the target variable
(tgt_var) with the results of the operation (op). The original value (prev_tgt_val) of the target variable
(tgt_var) is returned to the origin.

The operations (op) are performed over the context referred to by hndl. The outcome of the execution of
these calls is as if the following code was executed atomically:

*prev_tgt_val = *tgt_var;
*tgt_var = f(*tgt_var, *in_val);

where:

f(a,b) = a + b for FETCH_AND_ADD

f(a,b) = a | b for FETCH_AND_OR (bitwise or)

f(a,b) = b for SWAP

For COMPARE_AND_SWAP, in_val is treated as a pointer to an array of two integers, and the op is the
following atomic operation:

if(*tgt_var == in_val[0]) {
*prev_tgt_val = TRUE;
*tgt_var = in_val[1];

} else {
*prev_tgt_val = FALSE;

}

This subroutine can also be used on a 32-bit processor.

All LAPI_Rmw64 calls are non-blocking. To test for completion, use the LAPI_Getcntr and LAPI_Waitcntr
subroutines. LAPI_Rmw64 does not include a target counter (tgt_cntr), so LAPI_Rmw64 calls do not
provide any indication of completion on the target task (tgt).

Parameters
INPUT

hndl Specifies the LAPI handle.

op Specifies the operation to be performed. The valid operations are:

v COMPARE_AND_SWAP

v FETCH_AND_ADD

v FETCH_AND_OR

v SWAP

Base Operating System (BOS) Runtime Services (A-P) 649

tgt Specifies the task ID of the target task where the read-modify-write (Rmw64) variable
resides. The value of this parameter must be in the range 0 <= tgt < NUM_TASKS.

tgt_var Specifies the target read-modify-write (Rmw64) variable (in FORTRAN) or its address (in
C). The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

in_val Specifies the value that is passed in to the operation (op). This value cannot be NULL (in
C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

prev_tgt_val Specifies the location at the origin in which the previous tgt_var on the target task is
stored before the operation (op) is executed. The value of this parameter can be NULL (in
C) or LAPI_ADDR_NULL (in FORTRAN).

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). If
prev_tgt_val is set, the origin counter (org_cntr) is incremented when prev_tgt_val is
returned to the origin side. If prev_tgt_val is not set, the origin counter (org_cntr) is
updated after the operation (op) is completed at the target side.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
1. To synchronize a data value between two tasks (with FETCH_AND_ADD):

{

long long local_var;
long long *addr_list;

/* both tasks initialize local_var to a value */

/* local_var addresses are exchanged and stored */
/* in addr_list (using LAPI_Address_init64) */
/* addr_list[tgt] now contains address of */
/* local_var on tgt */
.
.
.
/* add value to local_var on some task */

/* use LAPI to add value to local_var on remote task */
LAPI_Rmw64(hndl, FETCH_AND_ADD, tgt, addr_list[tgt],

value, prev_tgt_val, &org_cntr);

/* local_var on remote task has been increased */
/* by value. prev_tgt_val now contains value of */
/* local_var on remote task before the addition */

}

2. To synchronize a data value between two tasks (with SWAP):

{

long long local_var;
long long *addr_list;

650 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

/* local_var addresses are exchanged and stored */
/* in addr_list (using LAPI_Address_init64). */
/* addr_list[tgt] now contains the address of */
/* local_var on tgt. */
.
.
.
/* local_var is assigned some value */

/* assign local_var to local_var on the remote task */
LAPI_Rmw64(hndl, SWAP, tgt, addr_list[tgt],

local_var, prev_tgt_val, &org_cntr);

/* local_var on the remote task is now equal to local_var */
/* on the local task. prev_tgt_val now contains the value */
/* of local_var on the remote task before the swap. */

}

3. To conditionally swap a data value (with COMPARE_AND_SWAP):

{

long long local_var;
long long *addr_list;
long long in_val[2];

/* local_var addresses are exchanged and stored */
/* in addr_list (using LAPI_Address_init64). */
/* addr_list[tgt] now contains the address of */
/* local_var on tgt. */
.
.
.
/* if local_var on remote_task is equal to comparator, */
/* assign value to local_var on the remote task */

in_val[0] = comparator;
in_val[1] = value;

LAPI_Rmw64(hndl, COMPARE_AND_SWAP, tgt, addr_list[tgt],
in_val, prev_tgt_val, &org_cntr);

/* local_var on remote task is now in_val[1] if it */
/* had previously been equal to in_val[0]. If the */
/* swap was performed, prev_tgt_val now contains */
/* TRUE; otherwise, it contains FALSE. */

}

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_IN_VAL_NULL Indicates that the in_val pointer is NULL (in C) or that the value of in_val
is LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_RMW_OP Indicates that op is not valid.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

Base Operating System (BOS) Runtime Services (A-P) 651

LAPI_ERR_TGT_VAR_NULL Indicates that the tgt_var address is NULL (in C) or that the value of
tgt_var is LAPI_ADDR_NULL (in FORTRAN).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Address_init64, LAPI_Getcntr, LAPI_Qenv, LAPI_Rmw, LAPI_Setcntr,
LAPI_Waitcntr, LAPI_Xfer

LAPI_Senv Subroutine

Purpose
Used to set a runtime variable.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapif.h>

int LAPI_Senv(hndl, query, set_val)
lapi_handle_t hndl;
lapi_query_t query;
int set_val;

FORTRAN Syntax
include 'lapif.h'

LAPI_SENV(hndl, query, set_val, ierror)
INTEGER hndl
INTEGER query
INTEGER set_val
INTEGER ierror

Description
Type of call: local queries

Use this subroutine to set runtime attributes for a specific LAPI instance. In C, the lapi_query_t
enumeration defines the attributes that can be set at runtime. These attributes are defined explicitly in
FORTRAN. See LAPI_Qenv for more information.

You can use LAPI_Senv to set these runtime attributes: ACK_THRESHOLD, ERROR_CHK,
INTERRUPT_SET, and TIMEOUT.

Parameters
INPUT

hndl Specifies the LAPI handle.

query Specifies the type of query that you want to set. In C, the values for query are defined by
the lapi_query_t enumeration in lapi.h. In FORTRAN, these values are defined explicitly
in the 32-bit version and the 64-bit version of lapif.h.

652 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

set_val Specifies the integer value of the query that you want to set.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
The following values can be set using LAPI_Senv:

ACK_THRESHOLD:
int value;
LAPI_Senv(hndl, ACK_THRESHOLD, value);
/* LAPI sends packet acknowledgements (acks) in groups, waiting until */
/* ACK_THRESHOLD packets have arrived before returning a group of acks */
/* The valid range for ACK_THRESHOLD is (1 <= value <= 30) */
/* The default is 30. */

ERROR_CHK:
boolean toggle;
LAPI_Senv(hndl, ERROR_CHK, toggle);
/* Indicates whether LAPI should perform error checking. If set, LAPI */
/* calls will perform bounds-checking on parameters. Error checking */
/* is disabled by default. */

INTERRUPT_SET:
boolean toggle;
LAPI_Senv(hndl, INTERRUPT_SET, toggle);
/* Determines whether LAPI will respond to interrupts. If interrupts */
/* are disabled, LAPI will poll for message completion. */
/* toggle==True will enable interrupts, False will disable. */
/* Interrupts are enabled by default. */

TIMEOUT:
int value;
LAPI_Senv(hndl, TIMEOUT, value);
/* LAPI will time out on a communication if no response is received */
/* within timeout seconds. Valid range is (10 <= timeout <= 86400). */
/* 86400 seconds = 24 hours. Default value is 900 (15 minutes). */

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_QUERY_TYPE Indicates the query passed in is not valid.

LAPI_ERR_SET_VAL Indicates the set_val pointer is not in valid range.

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Qenv

Base Operating System (BOS) Runtime Services (A-P) 653

LAPI_Setcntr Subroutine

Purpose
Used to set a counter to a specified value.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Setcntr(hndl, cntr, val)
lapi_handle_t hndl;
lapi_cntr_t *cntr;
int val;

FORTRAN Syntax
include 'lapif.h'

LAPI_SETCNTR(hndl, cntr, val, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr
INTEGER val
INTEGER ierror

Description
Type of call: Local counter manipulation

This subroutine sets cntr to the value specified by val. Because the LAPI_Getcntr/LAPI_Setcntr
sequence cannot be made atomic, you should only use LAPI_Setcntr when you know there will not be
any competing operations.

Parameters
INPUT

hndl Specifies the LAPI handle.

val Specifies the value to which the counter needs to be set.

INPUT/OUTPUT

cntr Specifies the address of the counter to be set (in C) or the counter structure (in
FORTRAN). The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
To initialize a counter for use in a communication API call:

654 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

{
lapi_cntr_t my_tgt_cntr, *tgt_cntr_array;
int initial_value, expected_value, current_value;
lapi_handle_t hndl;
.
.
.
/*
* Note: the code below is executed on all tasks
*/

/* initialize, allocate and create structures */
initial_value = 0;
expected_value = 1;

/* set the cntr to zero */
LAPI_Setcntr(hndl, &my_tgt_cntr, initial_value);
/* set other counters */
.
.
.
/* exchange counter addresses, LAPI_Address_init synchronizes */
LAPI_Address_init(hndl, &my_tgt_cntr, tgt_cntr_array);
/* more address exchanges */
.
.
.
/* Communication calls using my_tgt_cntr */
LAPI_Put(....., tgt_cntr_array[tgt],);
.
.
.
/* Wait for counter to reach value */
for (;;) {

LAPI_Getcntr(hndl, &my_tgt_cntr, ¤t_value);
if (current_value >= expected_value) {

break; /* out of infinite loop */
} else {

LAPI_Probe(hndl);
}

}
.
.
.
/* Quiesce/synchronize to ensure communication using our counter is done */
LAPI_Gfence(hndl);
/* Reset the counter */
LAPI_Setcntr(hndl, &my_tgt_cntr, initial_value);
/*
* Synchronize again so that no other communication using the counter can
* begin from any other task until we're all finished resetting the counter.
*/
LAPI_Gfence(hndl);

/* More communication calls */
.
.
.

}

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr value passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

Base Operating System (BOS) Runtime Services (A-P) 655

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Getcntr, LAPI_Waitcntr

LAPI_Setcntr_wstatus Subroutine

Purpose
Used to set a counter to a specified value and to set the associated destination list array and destination
status array to the counter.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Setcntr_wstatus(hndl, cntr, num_dest, dest_list, dest_status)

lapi_handle_t hndl;
lapi_cntr_t *cntr;
int num_dest;
uint *dest_list;
int *dest_status;

FORTRAN Syntax
include 'lapif.h'

LAPI_SETCNTR_WSTATUS(hndl, cntr, num_dest, dest_list, dest_status, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr
INTEGER num_dest
INTEGER dest_list(*)
INTEGER dest_status
INTEGER ierror

Description
Type of call: recovery

This subroutine sets cntr to 0. Use LAPI_Setcntr_wstatus to set the associated destination list array
(dest_list) and destination status array (dest_status) to the counter. Use a corresponding
LAPI_Nopoll_wait call to access these arrays. These arrays record the status of a task from where the
thread calling LAPI_Nopoll_wait() is waiting for a response.

The return values for dest_status are:

LAPI_MSG_INITIAL The task is purged or is not received.

LAPI_MSG_RECVD The task is received.

LAPI_MSG_PURGED The task is purged, but not received.

656 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_MSG_PURGED_RCVD The task is received and then purged.

LAPI_MSG_INVALID Not valid; the task is already purged.

Note: To use this subroutine, the lib_vers field in the lapi_info_t structure must be set to L2_LIB or
LAST_LIB.

Parameters
INPUT

hndl Specifies the LAPI handle.

num_dest Specifies the number of tasks in the destination list.

dest_list Specifies an array of destinations waiting for this counter update. If the value of this
parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), no status is returned to
the user.

INPUT/OUTPUT

cntr Specifies the address of the counter to be set (in C) or the counter structure (in
FORTRAN). The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

OUTPUT

dest_status Specifies an array of status that corresponds to dest_list. The value of this parameter can
be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
Use of this subroutine is not recommmended on a system that is running Parallel Environment (PE).

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr value passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of dest_status is NULL in C (or
LAPI_ADDR_NULL in FORTRAN), but the value of dest_list is not NULL
in C (or LAPI_ADDR_NULL in FORTRAN).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Getcntr, LAPI_Nopoll_wait, LAPI_Purge_totask, LAPI_Setcntr

LAPI_Term Subroutine

Purpose
Terminates and cleans up a LAPI context.

Base Operating System (BOS) Runtime Services (A-P) 657

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Term(hndl)
lapi_handle_t hndl;

FORTRAN Syntax
include 'lapif.h'

LAPI_TERM(hndl, ierror)
INTEGER hndl
INTEGER ierror

Description
Type of call: local termination

Use this subroutine to terminate the LAPI context that is specified by hndl. Any LAPI notification threads
that are associated with this context are terminated. An error occurs when any LAPI calls are made using
hndl after LAPI_Term is called.

A DGSP that is registered under that LAPI handle remains valid even after LAPI_Term is called on hndl.

Parameters
INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
To terminate a LAPI context (represented by hndl):
LAPI_Term(hndl);

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Init, LAPI_Purge_totask, LAPI_Resume_totask

658 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_Util Subroutine

Purpose
Serves as a wrapper function for such data gather/scatter operations as registration and reservation, for
updating UDP port information, and for obtaining pointers to locking and signaling functions that are
associated with a shared LAPI lock.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Util(hndl, util_cmd)
lapi_handle_t hndl;
lapi_util_t *util_cmd;

FORTRAN Syntax
include 'lapif.h'

LAPI_UTIL(hndl, util_cmd, ierror)
INTEGER hndl
TYPE (LAPI_UTIL_T) :: util_cmd
INTEGER ierror

Description
Type of call: Data gather/scatter program (DGSP), UDP port information, and lock sharing utilities

This subroutine is used for several different operations, which are indicated by the command type value in
the beginning of the command structure. The lapi_util_t structure is defined as:
typedef union {

lapi_util_type_t Util_type;
lapi_reg_dgsp_t RegDgsp;
lapi_dref_dgsp_t DrefDgsp;
lapi_resv_dgsp_t ResvDgsp;
lapi_reg_ddm_t DdmFunc;
lapi_add_udp_port_t Udp;
lapi_pack_dgsp_t PackDgsp;
lapi_unpack_dgsp_t UnpackDgsp;
lapi_thread_func_t ThreadFunc;

} lapi_util_t;

The enumerated type lapi_util_type_t has these values:

Table 1. lapi_util_type_t types

Value of Util_type Union member as interpreted by LAPI_Util

LAPI_REGISTER_DGSP lapi_reg_dgsp_t

LAPI_UNRESERVE_DGSP lapi_dref_dgsp_t

LAPI_RESERVE_DGSP lapi_resv_dgsp_t

LAPI_REG_DDM_FUNC lapi_reg_ddm_t

LAPI_ADD_UDP_DEST_PORT lapi_add_udp_port_t

LAPI_DGSP_PACK lapi_pack_dgsp_t

LAPI_DGSP_UNPACK lapi_unpack_dgsp_t

Base Operating System (BOS) Runtime Services (A-P) 659

Table 1. lapi_util_type_t types (continued)

Value of Util_type Union member as interpreted by LAPI_Util

LAPI_GET_THREAD_FUNC lapi_thread_func_t

hndl is not checked for command type LAPI_REGISTER_DGSP, LAPI_RESERVE_DGSP, or
LAPI_UNRESERVE_DGSP.

LAPI_REGISTER_DGSP
You can use this operation to register a LAPI DGSP that you have created. To register a LAPI DGSP,
lapi_dgsp_descr_t idgsp must be passed in. LAPI returns a handle (lapi_dg_handle_t dgsp_handle) to
use for all future LAPI calls. The dgsp_handle that is returned by a register operation is identified as a
lapi_dg_handle_t type, which is the appropriate type for LAPI_Xfer and LAPI_Util calls that take a
DGSP. This returned dgsp_handle is also defined to be castable to a pointer to a lapi_dgsp_descr_t for
those situations where the LAPI user requires read-only access to information that is contained in the
cached DGSP. The register operation delivers a DGSP to LAPI for use in future message send, receive,
pack, and unpack operations. LAPI creates its own copy of the DGSP and protects it by reference count.
All internal LAPI operations that depend on a DGSP cached in LAPI ensure the preservation of the DGSP
by incrementing the reference count when they begin a dependency on the DGSP and decrementing the
count when that dependency ends. A DGSP, once registered, can be used from any LAPI instance.
LAPI_Term does not discard any DGSPs.

You can register a DGSP, start one or more LAPI operations using the DGSP, and then unreserve it with
no concern about when the LAPI operations that depend on the DGSP will be done using it. See
LAPI_RESERVE_DGSP and LAPI_UNRESERVE_DGSP for more information.

In general, the DGSP you create and pass in to the LAPI_REGISTER_DGSP call using the dgsp
parameter is discarded after LAPI makes and caches its own copy. Because DGSP creation is complex,
user errors may occur, but extensive error checking at data transfer time would hurt performance. When
developing code that creates DGSPs, you can invoke extra validation at the point of registration by setting
the LAPI_VERIFY_DGSP environment variable. LAPI_Util will return any detected errors. Any errors that
exist and are not detected at registration time will cause problems during data transfer. Any errors detected
during data transfer will be reported by an asynchronous error handler. A segmentation fault is one
common symptom of a faulty DGSP. If multiple DGSPs are in use, the asynchronous error handler will not
be able to identify which DGSP caused the error. For more information about asynchronous error handling,
see LAPI_Init.

LAPI_REGISTER_DGSP uses the lapi_reg_dgsp_t command structure.

Table 2. The lapi_reg_dgsp_t fields

lapi_reg_dgsp_t field lapi_reg_dgsp_t field type lapi_reg_dgsp_t usage

Util_type lapi_util_type_t LAPI_REGISTER_DGSP

idgsp lapi_dgsp_descr_t IN - pointer to DGSP program

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_RESERVE_DGSP
You can use this operation to reserve a DGSP. This operation is provided because a LAPI client might
cache a LAPI DGSP handle for later use. The client needs to ensure the DGSP will not be discarded
before the cached handle is used. A DGSP handle, which is defined to be a pointer to a DGSP description
that is already cached inside LAPI, is passed to this operation. The DGSP handle is also defined to be a
structure pointer, so that client programs can get direct access to information in the DGSP. Unless the
client can be certain that the DGSP will not be ″unreserved″ by another thread while it is being accessed,

660 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

the client should bracket the access window with its own reserve/unreserve operation. The client is not to
modify the cached DGSP, but LAPI has no way to enforce this. The reserve operation increments the user
reference count, thus protecting the DGSP until an unreserve operation occurs. This is needed because
the thread that placed the reservation will expect to be able to use or examine the cached DGSP until it
makes an unreserve call (which decrements the user reference count), even if the unreserve operation
that matches the original register operation occurs within this window on some other thread.

LAPI_RESERVE_DGSP uses the lapi_resv_dgsp_t command structure.

Table 3. The lapi_resv_dgsp_t fields

lapi_resv_dgsp_t field lapi_resv_dgsp_t field type lapi_resv_dgsp_t usage

Util_type lapi_util_type_t LAPI_RESERVE_DGSP

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_UNRESERVE_DGSP
You can use this operation to unregister or unreserve a DGSP. This operation decrements the user
reference count. If external and internal reference counts are zero, this operation lets LAPI free the DGSP.
All operations that decrement a reference count cause LAPI to check to see if the counts have both
become 0 and if they have, dispose of the DGSP. Several internal LAPI activities increment and
decrement a second reference count. The cached DGSP is disposable only when all activities (internal
and external) that depend on it and use reference counting to preserve it have discharged their reference.
The DGSP handle is passed to LAPI as a value parameter and LAPI does not nullify the caller’s handle. It
is your responsibility to not use this handle again because in doing an unreserve operation, you have
indicated that you no longer count on the handle remaining valid.

LAPI_UNRESERVE_DGSP uses the lapi_dref_dgsp_t command structure.

Table 4. The lapi_dref_dgsp_t fields

lapi_dref_dgsp_t field lapi_dref_dgsp_t field type lapi_dref_dgsp_t usage

Util_type lapi_util_type_t LAPI_UNRESERVE_DGSP

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_REG_DDM_FUNC
You can use this operation to register data distribution manager (DDM) functions. It works in conjunction
with the DGSM CONTROL instruction. Primarily, it is used for MPI_Accumulate, but LAPI clients can
provide any DDM function. It is also used to establish a callback function for processing data that is being
scattered into a user buffer on the destination side.

The native LAPI user can install a callback without affecting the one MPI has registered for
MPI_Accumulate. The function prototype for the callback function is:
typedef long ddm_func_t (/* return number of bytes processed */

void *in, /* pointer to inbound data */
void *inout, /* pointer to destination space */
long bytes, /* number of bytes inbound */
int operand, /* CONTROL operand value */
int operation /* CONTROL operation value */

);

Base Operating System (BOS) Runtime Services (A-P) 661

A DDM function acts between the arrival of message data and the target buffer. The most common usage
is to combine inbound data with data already in the target buffer. For example, if the target buffer is an
array of integers and the incoming message consists of integers, the DDM function can be written to add
each incoming integer to the value that is already in the buffer. The operand and operation fields of the
DDM function allow one DDM function to support a range of operations with the CONTROL instruction by
providing the appropriate values for these fields.

See RSCT for AIX 5L: LAPI Programming Guide for more information about DGSP programming.

LAPI_REG_DDM_FUNC uses the lapi_reg_ddm_t command structure. Each call replaces the previous
function pointer, if there was one.

Table 5. The lapi_reg_ddm_t fields

lapi_reg_ddm_t field lapi_reg_ddm_t field type lapi_reg_ddm_t usage

Util_type lapi_util_type_t LAPI_REG_DDM_FUNC

ddm_func ddm_func_t * IN - DDM function pointer

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_DGSP_PACK
You can use this operation to gather data to a pack buffer from a user buffer under control of a DGSP. A
single buffer may be packed by a series of calls. The caller provides a position value that is initialized to
the starting offset within the buffer. Each pack operation adjusts position, so the next pack operation can
begin where the previous pack operation ended. In general, a series of pack operations begins with
position initialized to 0, but any offset is valid. There is no state carried from one pack operation to the
next. Each pack operation starts at the beginning of the DGSP it is passed.

LAPI_DGSP_PACK uses the lapi_pack_dgsp_t command structure.

Table 6. The lapi_pack_dgsp_t fields

lapi_pack_dgsp_t field lapi_pack_dgsp_t field type lapi_pack_dgsp_t usage

Util_type lapi_util_type_t LAPI_DGSP_PACK

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

in_buf void * IN - source buffer to pack

bytes ulong IN - number of bytes to pack

out_buf void * OUT - output buffer for pack

out_size ulong IN - output buffer size in bytes

position ulong IN/OUT - current buffer offset

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_DGSP_UNPACK
You can use this operation to scatter data from a packed buffer to a user buffer under control of a DGSP.
A single buffer may be unpacked by a series of calls. The caller provides a position value that is initialized
to the starting offset within the packed buffer. Each unpack operation adjusts position, so the next unpack
operation can begin where the previous unpack operation ended. In general, a series of unpack operations
begins with position initialized to 0, but any offset is valid. There is no state carried from one unpack
operation to the next. Each unpack operation starts at the beginning of the DGSP it is passed.

662 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_DGSP_UNPACK uses the lapi_unpack_dgsp_t command structure.

Table 7. The lapi_unpack_dgsp_t fields

lapi_unpack_dgsp_t field lapi_unpack_dgsp_t field type lapi_unpack_dgsp_t usage

Util_type lapi_util_type_t LAPI_DGSP_UNPACK

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

buf void * IN - source buffer for unpack

in_size ulong IN - source buffer size in bytes

out_buf void * OUT - output buffer for unpack

bytes ulong IN - number of bytes to unpack

out_size ulong IN - output buffer size in bytes

position ulong IN/OUT - current buffer offset

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_ADD_UDP_DEST_PORT
You can use this operation to update UDP port information about the destination task. This operation can
be used when you have written your own UDP handler (udp_hndlr) and you need to support recovery of
failed tasks. You cannot use this operation under the POE runtime environment.

LAPI_ADD_UDP_DEST_PORT uses the lapi_add_udp_port_t command structure.

Table 8. The lapi_add_udp_port_t fields

lapi_add_udp_port_t field lapi_add_udp_port_t field type lapi_add_udp_port_t usage

Util_type lapi_util_type_t LAPI_ADD_UDP_DEST_PORT

tgt uint IN - destination task ID

udp_port lapi_udp_t * IN - UDP port information for the target

instance_no uint IN - Instance number of UDP

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_GET_THREAD_FUNC
You can use this operation to retrieve various shared locking and signaling functions. Retrieval of these
functions is valid only after LAPI is initialized and before LAPI is terminated. You should not call any of
these functions after LAPI is terminated.

LAPI_GET_THREAD_FUNC uses the lapi_thread_func_t command structure.

Table 9. The lapi_thread_func_t fields

lapi_thread_func_t field lapi_thread_func_t field type lapi_thread_func_t usage

Util_type lapi_util_type_t LAPI_GET_THREAD_FUNC

mutex_lock lapi_mutex_lock_t OUT - mutex lock function pointer

mutex_unlock lapi_mutex_unlock_t OUT - mutex unlock function pointer

mutex_trylock lapi_mutex_trylock_t OUT - mutex try lock function pointer

mutex_getowner lapi_mutex_getowner_t OUT - mutex get owner function pointer

cond_wait lapi_cond_wait_t OUT - condition wait function pointer

cond_timedwait lapi_cond_timedwait_t OUT - condition timed wait function pointer

Base Operating System (BOS) Runtime Services (A-P) 663

Table 9. The lapi_thread_func_t fields (continued)

lapi_thread_func_t field lapi_thread_func_t field type lapi_thread_func_t usage

cond_signal lapi_cond_signal_t OUT - condition signal function pointer

cond_init lapi_cond_init_t OUT - initialize condition function pointer

cond_destroy lapi_cond_destroy_t OUT - destroy condition function pointer

LAPI uses the pthread library for thread ID management. You can therefore use pthread_self() to get the
running thread ID and lapi_mutex_getowner_t to get the thread ID that owns the shared lock. Then, you
can use pthread_equal() to see if the two are the same.

Mutex thread functions: LAPI_GET_THREAD_FUNC includes the following mutex thread functions:
mutex lock, mutex unlock, mutex try lock, and mutex get owner.

Mutex lock function pointer
int (*lapi_mutex_lock_t)(lapi_handle_t hndl);

This function acquires the lock that is associated with the specified LAPI handle. The call blocks if the lock
is already held by another thread. Deadlock can occur if the calling thread is already holding the lock. You
are responsible for preventing and detecting deadlocks.

Parameters

INPUT

hndl Specifies the LAPI handle.

Return values

0 Indicates that the lock was acquired successfully.

EINVAL Is returned if the lock is not valid because of an incorrect hndl value.

Mutex unlock function pointer
int (*lapi_mutex_unlock_t)(lapi_handle_t hndl);

This function releases the lock that is associated with the specified LAPI handle. A thread should only
unlock its own locks.

Parameters

INPUT

hndl Specifies the LAPI handle.

Return values

0 Indicates that the lock was released successfully.

EINVAL Is returned if the lock is not valid because of an incorrect hndl value.

Mutex try lock function pointer
int (*lapi_mutex_trylock_t)(lapi_handle_t hndl);

This function tries to acquire the lock that is associated with the specified LAPI handle, but returns
immediately if the lock is already held.

Parameters

664 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

INPUT

hndl Specifies the LAPI handle.

Return values

0 Indicates that the lock was acquired successfully.

EBUSY Indicates that the lock is being held.

EINVAL Is returned if the lock is not valid because of an incorrect hndl value.

Mutex get owner function pointer
int (*lapi_mutex_getowner_t)(lapi_handle_t hndl, pthread_t *tid);

This function gets the pthread ID of the thread that is currently holding the lock associated with the
specified LAPI handle. LAPI_NULL_THREAD_ID indicates that the lock is not held at the time the function
is called.

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

tid Is a pointer to hold the pthread ID to be retrieved.

Return values

0 Indicates that the lock owner was retrieved successfully.

EINVAL Is returned if the lock is not valid because of an incorrect hndl value.

Condition functions: LAPI_GET_THREAD_FUNC includes the following condition functions: condition
wait, condition timed wait, condition signal, initialize condition, and destroy condition.

Condition wait function pointer
int (*lapi_cond_wait_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function waits on a condition variable (cond). The user must hold the lock associated with the LAPI
handle (hndl) before making the call. Upon the return of the call, LAPI guarantees that the lock is still
being held. The same LAPI handle must be supplied to concurrent lapi_cond_wait_t operations on the
same condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be waited on.

Return values

0 Indicates that the condition variable has been signaled.

EINVAL Indicates that the value specified by hndl or cond is not valid.

Condition timed wait function pointer

Base Operating System (BOS) Runtime Services (A-P) 665

int (*lapi_cond_timedwait_t)(lapi_handle_t hndl,
lapi_cond_t *cond,
struct timespec *timeout);

This function waits on a condition variable (cond). The user must hold the lock associated with the LAPI
handle (hndl) before making the call. Upon the return of the call, LAPI guarantees that the lock is still
being held. The same LAPI handle must be supplied to concurrent lapi_cond_timedwait_t operations on
the same condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be waited on.

timeout Is a pointer to the absolute time structure specifying the timeout.

Return values

0 Indicates that the condition variable has been signaled.

ETIMEDOUT Indicates that time specified by timeout has passed.

EINVAL Indicates that the value specified by hndl, cond, or timeout is not valid.

Condition signal function pointer
int (*lapi_cond_wait_t)(lapi_handle_t hndl, lapi_cond_t *cond);
typedef int (*lapi_cond_signal_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function signals a condition variable (cond) to wake up a thread that is blocked on the condition. If
there are multiple threads waiting on the condition variable, which thread to wake up is decided randomly.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be signaled.

Return values

0 Indicates that the condition variable has been signaled.

EINVAL Indicates that the value specified by hndl or cond is not valid.

Initialize condition function pointer
int (*lapi_cond_init_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function initializes a condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be initialized.

Return values

0 Indicates that the condition variable was initialized successfully.

666 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EAGAIN Indicates that the system lacked the necessary resources (other than
memory) to initialize another condition variable.

ENOMEM Indicates that there is not enough memory to initialize the condition
variable.

EINVAL Is returned if the hndl value is not valid.

Destroy condition function pointer
int (*lapi_cond_destroy_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function destroys a condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be destroyed.

Return values

0 Indicates that the condition variable was destroyed successfully.

EBUSY Indicates that the implementation has detected an attempt to destroy the
object referenced by cond while it is referenced (while being used in a
lapi_cond_wait_t or lapi_cond_timedwait_t by another thread, for
example).

EINVAL Indicates that the value specified by hndl or cond is not valid.

Parameters
INPUT

hndl Specifies the LAPI handle.

INPUT/OUTPUT

util_cmd Specifies the command type of the utility function.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DGSP Indicates that the DGSP that was passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN) or is not a registered DGSP.

LAPI_ERR_DGSP_ATOM Indicates that the DGSP has an atom_size that is less than 0 or greater
than MAX_ATOM_SIZE.

LAPI_ERR_DGSP_BRANCH Indicates that the DGSP attempted a branch that fell outside of the code
array. This is returned only in validation mode.

LAPI_ERR_DGSP_COPY_SZ Is returned with DGSP validation turned on when MCOPY block < 0 or
COPY instruction with bytes < 0. This is returned only in validation mode.

LAPI_ERR_DGSP_FREE Indicates that LAPI tried to free a DGSP that is not valid or is no longer
registered. There should be one LAPI_UNRESERVE_DGSP operation to

Base Operating System (BOS) Runtime Services (A-P) 667

close the LAPI_REGISTER_DGSP operation and one
LAPI_UNRESERVE_DGSP operation for each LAPI_RESERVE_DGSP
operation.

LAPI_ERR_DGSP_OPC Indicates that the DGSP opcode is not valid. This is returned only in
validation mode.

LAPI_ERR_DGSP_STACK Indicates that the DGSP has a greater GOSUB depth than the allocated
stack supports. Stack allocation is specified by the dgsp->depth member.
This is returned only in validation mode.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_MEMORY_EXHAUSTED
Indicates that LAPI is unable to obtain memory from the system.

LAPI_ERR_UDP_PORT_INFO
Indicates that the udp_port information pointer is NULL (in C) or that the
value of udp_port is LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_UTIL_CMD Indicates that the command type is not valid.

C Examples
1. To create and register a DGSP:

{
/*
** DGSP code array. DGSP instructions are stored
** as ints (with constants defined in lapi.h for
** the number of integers needed to store each
** instruction). We will have one COPY and one ITERATE
** instruction in our DGSP. We use LAPI's constants
** to allocate the appropriate storage.
*/
int code[LAPI_DGSM_COPY_SIZE+LAPI_DGSM_ITERATE_SIZE];

/* DGSP description */
lapi_dgsp_descr_t dgsp_d;

/*
** Data structure for the xfer call.
*/
lapi_xfer_t xfer_struct;

/* DGSP data structures */
lapi_dgsm_copy_t *copy_p; /* copy instruction */
lapi_dgsm_iterate_t *iter_p; /* iterate instruction */
int *code_ptr; /* code pointer */

/* constant for holding code array info */
int code_less_iterate_size;

/* used for DGSP registration */
lapi_reg_dgsp_t reg_util;

/*
** Set up dgsp description
*/

/* set pointer to code array */
dgsp_d.code = &code[0];

668 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

/* set size of code array */
dgsp_d.code_size = LAPI_DGSM_COPY_SIZE + LAPI_DGSM_ITERATE_SIZE;

/* not using DGSP gosub instruction */
dgsp_d.depth = 1;

/*
** set density to show internal gaps in the
** DGSP data layout
*/
dgsp_d.density = LAPI_DGSM_SPARSE;

/* transfer 4 bytes at a time */
dgsp_d.size = 4;

/* advance the template by 8 for each iteration */
dgsp_d.extent = 8;

/*
** ext specifies the memory 'footprint' of
** data to be transferred. The lext specifies
** the offset from the base address to begin
** viewing the data. The rext specifies the
** length from the base address to use.
*/
dgsp_d.lext = 0;
dgsp_d.rext = 4;
/* atom size of 0 lets LAPI choose the packet size */
dgsp_d.atom_size = 0;

/*
** set up the copy instruction
*/
copy_p = (lapi_dgsm_copy_t *)(dgsp_d.code);
copy_p->opcode = LAPI_DGSM_COPY;

/* copy 4 bytes at a time */
copy_p->bytes = (long) 4;

/* start at offset 0 */
copy_p->offset = (long) 0;

/* set code pointer to address of iterate instruction */
code_less_iterate_size = dgsp_d.code_size - LAPI_DGSM_ITERATE_SIZE;
code_ptr = ((int *)(code))+code_less_iterate_size;

/*
** Set up iterate instruction
*/
iter_p = (lapi_dgsm_iterate_t *) code_ptr;
iter_p->opcode = LAPI_DGSM_ITERATE;
iter_p->iter_loc = (-code_less_iterate_size);

/* Set up and do DGSP registration */
reg_util.Util_type = LAPI_REGISTER_DGSP;
reg_util.idgsp = &dgsp_d;
LAPI_Util(hndl, (lapi_util_t *)®_util);

/*
** LAPI returns a usable DGSP handle in
** reg_util.dgsp_handle
** Use this handle for subsequent reserve/unreserve
** and Xfer calls. On the receive side, this
** handle can be returned by the header handler using the
** return_info_t mechanism. The DGSP will then be used for

Base Operating System (BOS) Runtime Services (A-P) 669

** scattering data.
*/

}

2. To reserve a DGSP handle:

{

reg_util.dgsp_handle = dgsp_handle;

/*
** dgsp_handle has already been created and
** registered as in the above example
*/

reg_util.Util_type = LAPI_RESERVE_DGSP;
LAPI_Util(hndl, (lapi_util_t *)®_util);

/*
** LAPI's internal reference count to dgsp_handle
** will be incremented. DGSP will
** remain available until an unreserve is
** done for each reserve, plus one more for
** the original registration.
*/

}

3. To unreserve a DGSP handle:

{

reg_util.dgsp_handle = dgsp_handle;

/*
** dgsp_handle has already created and
** registered as in the above example, and
** this thread no longer needs it.
*/

reg_util.Util_type = LAPI_UNRESERVE_DGSP;
LAPI_Util(hndl, (lapi_util_t *)®_util);

/*
** An unreserve is required for each reserve,
** plus one more for the original registration.
*/

}

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Init, LAPI_Xfer

LAPI_Waitcntr Subroutine

Purpose
Waits until a specified counter reaches the value specified.

670 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Waitcntr(hndl, cntr, val, cur_cntr_val)
lapi_handle_t hndl;
lapi_cntr_t *cntr;
int val;
int *cur_cntr_val;

FORTRAN Syntax
include 'lapif.h'

LAPI_WAITCNTR(hndl, cntr, val, cur_cntr_val, ierror)
INTEGER hndl
TYPE (LAPI_CNTR_T) :: cntr
INTEGER val
INTEGER cur_cntr_val
INTEGER ierror

Description
Type of call: local progress monitor (blocking)

This subroutine waits until cntr reaches or exceeds the specified val. Once cntr reaches val, cntr is
decremented by the value of val. In this case, ″decremented″ is used (as opposed to ″set to zero″)
because cntr could have contained a value that was greater than the specified val when the call was
made. This call may or may not check for message arrivals over the LAPI context hndl. The cur_cntr_val
variable is set to the current counter value.

Parameters
INPUT

hndl Specifies the LAPI handle.

val Specifies the value the counter needs to reach.

INPUT/OUTPUT

cntr Specifies the counter structure (in FORTRAN) to be waited on or its address (in C). The
value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

cur_cntr_val Specifies the integer value of the current counter. This value can be NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions
LAPI statistics are not reported for shared memory communication and data transfer, or for messages that
a task sends to itself.

C Examples
To wait on a counter to reach a specified value:

Base Operating System (BOS) Runtime Services (A-P) 671

{

int val;
int cur_cntr_val;
lapi_cntr_t some_cntr;
.
.
.
LAPI_Waitcntr(hndl, &some_cntr, val, &cur_cntr_val);
/* Upon return, some_cntr has reached val */

}

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr pointer is NULL (in C) or that the value of cntr is
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

Location
/usr/lib/liblapi_r.a

Related Information
Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getcntr, LAPI_Getv, LAPI_Put,
LAPI_Putv, LAPI_Rmw, LAPI_Rmw64, LAPI_Setcntr, LAPI_Xfer

LAPI_Xfer Subroutine

Purpose
Serves as a wrapper function for LAPI data transfer functions.

Library
Availability Library (liblapi_r.a)

C Syntax
#include <lapi.h>

int LAPI_Xfer(hndl, xfer_cmd)
lapi_handle_t hndl;
lapi_xfer_t *xfer_cmd;

typedef struct {
uint src; /* Target task ID */
uint reason; /* LAPI return codes */
ulong reserve[6]; /* Reserved */

} lapi_sh_info_t;

typedef void (scompl_hndlr_t)(lapi_handle_t *hndl, void *completion_param,
lapi_sh_info_t *info);

672 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

FORTRAN Syntax
include 'lapif.h'

LAPI_XFER(hndl, xfer_cmd, ierror)
INTEGER hndl
TYPE (fortran_xfer_type) :: xfer_cmd
INTEGER ierror

Description
Type of call: point-to-point communication (non-blocking)

The LAPI_Xfer subroutine provides a superset of the functionality of these subroutines: LAPI_Amsend,
LAPI_Amsendv, LAPI_Put, LAPI_Putv, LAPI_Get, LAPI_Getv, and LAPI_Rmw. In addition, LAPI_Xfer
provides data gather/scatter program (DGSP) messages transfer.

In C, the LAPI_Xfer command is passed a pointer to a union. It examines the first member of the union,
Xfer_type, to determine the transfer type, and to determine which union member was passed. LAPI_Xfer
expects every field of the identified union member to be set. It does not examine or modify any memory
outside of the identified union member. LAPI_Xfer treats all union members (except status) as read-only
data.

This subroutine provides the following functions:

v The remote address fields are expanded to be of type lapi_long_t, which is long enough for a 64-bit
address. This allows a 32-bit task to send data to 64-bit addresses, which may be important in
client/server programs.

v LAPI_Xfer allows the origin counter to be replaced with a send completion callback.

v LAPI_Xfer is used to transfer data using LAPI’s data gather/scatter program (DGSP) interface.

The lapi_xfer_t structure is defined as:
typedef union {

lapi_xfer_type_t Xfer_type;
lapi_get_t Get;
lapi_am_t Am;
lapi_rmw_t Rmw;
lapi_put_t Put;
lapi_getv_t Getv;
lapi_putv_t Putv;
lapi_amv_t Amv;
lapi_amdgsp_t Dgsp;

} lapi_xfer_t;

Though the lapi_xfer_t structure applies only to the C version of LAPI_Xfer, the following tables include
the FORTRAN equivalents of the C datatypes.

Table 10 list the values of the lapi_xfer_type_t structure for C and the explicit Xfer_type values for
FORTRAN.

Table 10. LAPI_Xfer structure types

Value of Xfer_type (C or FORTRAN)
Union member as interpreted by
LAPI_Xfer (C)

Value of fortran_xfer_type
(FORTRAN)

LAPI_AM_XFER lapi_am_t LAPI_AM_T

LAPI_AMV_XFER lapi_amv_t LAPI_AMV_T

LAPI_DGSP_XFER lapi_amdgsp_t LAPI_AMDGSP_T

LAPI_GET_XFER lapi_get_t LAPI_GET_T

LAPI_GETV_XFER lapi_getv_t LAPI_GETV_T

Base Operating System (BOS) Runtime Services (A-P) 673

Table 10. LAPI_Xfer structure types (continued)

Value of Xfer_type (C or FORTRAN)
Union member as interpreted by
LAPI_Xfer (C)

Value of fortran_xfer_type
(FORTRAN)

LAPI_PUT_XFER lapi_put_t LAPI_PUT_T

LAPI_PUTV_XFER lapi_putv_t LAPI_PUTV_T

LAPI_RMW_XFER lapi_rmw_t LAPI_RMW_T

lapi_am_t details
Table 11 shows the correspondence among the parameters of the LAPI_Amsend subroutine, the fields of
the C lapi_am_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_am_t
fields are listed in Table 11 in the order that they occur in the lapi_xfer_t structure.

Table 11. LAPI_Amsend and lapi_am_t equivalents

lapi_am_t field name
(C)

lapi_am_t field type
(C) Equivalent FORTRAN datatype

Equivalent LAPI_Amsend
parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_AM_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN: pad

hdr_hdl lapi_long_t INTEGER(KIND = 8) hdr_hdl

uhdr_len uint INTEGER(KIND = 4) uhdr_len

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (64-bit): pad2

uhdr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

uhdr

udata void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

udata

udata_len ulong INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

udata_len

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: sinfo

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

cmpl_cntr

When the origin data buffer is free to be used, the pointer to the send completion handler (shdlr) is called

674 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

with the send completion data (sinfo) if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in
FORTRAN). Otherwise, the behavior is identical to that of LAPI_Amsend.

lapi_amv_t details
Table 12 shows the correspondence among the parameters of the LAPI_Amsendv subroutine, the fields
of the C lapi_amv_t structure and their datatypes, and the equivalent FORTRAN datatypes. The
lapi_amv_t fields are listed in Table 12 in the order that they occur in the lapi_xfer_t structure.

Table 12. LAPI_Amsendv and lapi_amv_t equivalents

lapi_amv_t field
name (C)

lapi_amv_t field type
(C) Equivalent FORTRAN datatype

Equivalent LAPI_Amsendv
parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_AMV_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN: pad

hdr_hdl lapi_long_t INTEGER(KIND = 8) hdr_hdl

uhdr_len uint INTEGER(KIND = 4) uhdr_len

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (64-bit): pad2

uhdr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

uhdr

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: sinfo

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad2

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

cmpl_cntr

lapi_amdgsp_t details
Table 13 on page 676 shows the correspondence among the fields of the C lapi_amdgsp_t structure and
their datatypes, how they are used in LAPI_Xfer, and the equivalent FORTRAN datatypes. The
lapi_amdgsp_t fields are listed in Table 13 on page 676 in the order that they occur in the lapi_xfer_t
structure.

Base Operating System (BOS) Runtime Services (A-P) 675

Table 13. The lapi_amdgsp_t fields

lapi_amdgsp_t field
name (C)

lapi_amdgsp_t field
type (C) Equivalent FORTRAN datatype LAPI_Xfer usage

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) LAPI_DGSP_XFER

flags int INTEGER(KIND = 4) This field allows users to specify
directives or hints to LAPI. If you
do not want to use any directives
or hints, you must set this field to
0. See “The lapi_amdgsp_t flags
field” for more information.

tgt uint INTEGER(KIND = 4) target task

none none INTEGER(KIND = 4) pad (padding alignment for
FORTRAN only)

hdr_hdl lapi_long_t INTEGER(KIND = 8) header handler to invoke at target

uhdr_len uint INTEGER(KIND = 4) user header length (multiple of
processor’s doubleword size)

none none INTEGER(KIND = 4) pad2 (padding alignment for
64-bit FORTRAN only)

uhdr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

pointer to user header

udata void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

pointer to user data

udata_len ulong INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

user data length

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

send completion handler
(optional)

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

data pointer to pass to send
completion handler (optional)

tgt_cntr lapi_long_t INTEGER(KIND = 8) target counter (optional)

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

origin counter (optional)

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

completion counter (optional)

dgsp lapi_dg_handle_t INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

Handle of a registered DGSP

status lapi_status_t INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

Status to return (future use)

none none INTEGER(KIND = 4) pad3 (padding alignment for
64-bit FORTRAN only)

When the origin data buffer is free to be modified, the send completion handler (shdlr) is called with the
send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in FORTRAN).

See “Using lapi_am_dgsp_t for scatter-side DGSP processing” on page 677 for more information.

The lapi_amdgsp_t flags field: One or more flags can be set using the | (bitwise or) operator. User
directives are always followed and could result in incorrect results if used improperly. Appropriate hints
might improve performance, but they may be ignored by LAPI. Inappropriate hints might degrade
performance, but they will not cause incorrect results.

676 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The following directive flags are defined:

USE_TGT_VEC_TYPE Instructs LAPI to use the vector type of the target vector (tgt_vec). In other
words, tgt_vec is to be interpreted as type lapi_vec_t; otherwise, it is
interpreted as type lapi_lvec_t. The lapi_lvec_t type uses lapi_long_t.
The lapi_vec_t type uses void * or long. Incorrect results will occur if one
type is used in place of the other.

BUFFER_BOTH_CONTIGUOUS
Instructs LAPI to treat all data to be transferred as contiguous, which can
improve performance. If this flag is set when non-contiguous data is sent,
data will likely be corrupted.

The following hint flags are defined:

LAPI_NOT_USE_BULK_XFER
Instructs LAPI not to use bulk transfer, independent of the current setting
for the task.

LAPI_USE_BULK_XFER Instructs LAPI to use bulk transfer, independent of the current setting for
the task.

If neither of these hint flags is set, LAPI will use the behavior defined for the task. If both of these hint
flags are set, LAPI_NOT_USE_BULK_XFER will take precedence.

These hints may or may not be honored by the communication library.

Using lapi_am_dgsp_t for scatter-side DGSP processing: Beginning with AIX 5.2, LAPI allows
additional information to be returned from the header handler through the use of the lapi_return_info_t
datatype. See RSCT for AIX 5L: LAPI Programming Guide for more information about lapi_return_info_t.
In the case of transfer type lapi_am_dgsp_t, this mechanism can be used to instruct LAPI to run a user
DGSP to scatter data on the receive side.

To use this mechanism, pass a lapi_return_info_t * pointer back to LAPI through the msg_len member of
the user header handler. The dgsp_handle member of the passed structure must point to a DGSP
description that has been registered on the receive side. See LAPI_Util and RSCT for AIX 5L: LAPI
Programming Guide for details on building and registering DGSPs.

lapi_get_t details
Table 14 shows the correspondence among the parameters of the LAPI_Get subroutine, the fields of the C
lapi_get_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_get_t fields
are listed in Table 14 in the order that they occur in the lapi_xfer_t structure.

Table 14. LAPI_Get and lapi_get_t equivalents

lapi_get_t field name
(C)

lapi_get_t field type
(C) Equivalent FORTRAN datatype Equivalent LAPI_Get parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_GET_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN: pad

Base Operating System (BOS) Runtime Services (A-P) 677

Table 14. LAPI_Get and lapi_get_t equivalents (continued)

lapi_get_t field name
(C)

lapi_get_t field type
(C) Equivalent FORTRAN datatype Equivalent LAPI_Get parameter

tgt_addr lapi_long_t INTEGER(KIND = 8) tgt_addr

org_addr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_addr

len ulong INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

len

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

chndlr compl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: chndlr

cinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: cinfo

When the origin data buffer has completely arrived, the pointer to the completion handler (chndlr) is called
with the completion data (cinfo), if chndlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in
FORTRAN). Otherwise, the behavior is identical to that of LAPI_Get.

lapi_getv_t details
Table 15 shows the correspondence among the parameters of the LAPI_Getv subroutine, the fields of the
C lapi_getv_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_getv_t
fields are listed in Table 14 on page 677 in the order that they occur in the lapi_xfer_t structure.

Table 15. LAPI_Getv and lapi_getv_t equivalents

lapi_getv_t field
name (C)

lapi_getv_t field type
(C) Equivalent FORTRAN datatype

Equivalent LAPI_Getv
parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_GETV_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (64-bit): pad

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_vec

tgt_vec void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

tgt_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

678 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Table 15. LAPI_Getv and lapi_getv_t equivalents (continued)

lapi_getv_t field
name (C)

lapi_getv_t field type
(C) Equivalent FORTRAN datatype

Equivalent LAPI_Getv
parameter

chndlr compl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: chndlr

cinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: cinfo

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad2

The flags field accepts USE_TGT_VEC_TYPE (see “The lapi_amdgsp_t flags field” on page 676) to
indicate that tgt_vec is to be interpreted as type lapi_vec_t; otherwise, it is interpreted as type
lapi_lvec_t. Note the corresponding field is lapi_vec_t in the LAPI_Getv call.

When the origin data buffer has completely arrived, the pointer to the completion handler (chndlr) is called
with the completion data (cinfo) if chndlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in
FORTRAN). Otherwise, the behavior is identical to that of LAPI_Getv.

lapi_put_t details
Table 16 shows the correspondence among the parameters of the LAPI_Put subroutine, the fields of the C
lapi_put_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_put_t fields
are listed in Table 16 in the order that they occur in the lapi_xfer_t structure.

Table 16. LAPI_Put and lapi_put_t equivalents

lapi_put_t field name
(C)

lapi_put_t field type
(C) Equivalent FORTRAN datatype Equivalent LAPI_Put parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_PUT_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN: pad

tgt_addr lapi_long_t INTEGER(KIND = 8) tgt_addr

org_addr void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_addr

len ulong INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

len

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: sinfo

Base Operating System (BOS) Runtime Services (A-P) 679

Table 16. LAPI_Put and lapi_put_t equivalents (continued)

lapi_put_t field name
(C)

lapi_put_t field type
(C) Equivalent FORTRAN datatype Equivalent LAPI_Put parameter

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

cmpl_cntr

When the origin data buffer is free to be used, the pointer to the send completion handler (shdlr) is called
with the send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in
FORTRAN). Otherwise, the behavior is identical to that of LAPI_Put.

lapi_putv_t details
Table 17 shows the correspondence among the parameters of the LAPI_Putv subroutine, the fields of the
C lapi_putv_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_putv_t
fields are listed in Table 16 on page 679 in the order that they occur in the lapi_xfer_t structure.

Table 17. LAPI_Putv and lapi_putv_t equivalents

lapi_putv_t field
name (C)

lapi_putv_t field type
(C) Equivalent FORTRAN datatype

Equivalent LAPI_Putv
parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_PUT_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in
FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (64-bit): pad

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: sinfo

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_vec

tgt_vec void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

tgt_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

cmpl_cntr

The flags field accepts USE_TGT_VEC_TYPE (see “The lapi_amdgsp_t flags field” on page 676) to

680 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

indicate that tgt_vec is to be interpreted as lapi_vec_t; otherwise, it is interpreted as a lapi_lvec_t. Note
that the corresponding field is lapi_vec_t in the LAPI_Putv call.

When the origin data buffer is free to be modified, the pointer to the send completion handler (shdlr) is
called with the send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL
(in FORTRAN). Otherwise, the behavior is identical to that of LAPI_Putv.

lapi_rmw_t details
Table 18 shows the correspondence among the parameters of the LAPI_Rmw subroutine, the fields of the
C lapi_rmw_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_rmw_t
fields are listed in Table 16 on page 679 in the order that they occur in the lapi_xfer_t structure.

Table 18. LAPI_Rmw and lapi_rmw_t equivalents

lapi_rmw_t field
name (C)

lapi_rmw_t field type
(C) Equivalent FORTRAN datatype

Equivalent LAPI_Rmw
parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:
LAPI_RMW_XFER

op Rmw_ops_t INTEGER(KIND = 4) op

tgt uint INTEGER(KIND = 4) tgt

size uint INTEGER(KIND = 4) implicit in C

LAPI_Xfer parameter in
FORTRAN: size (must be 32 or
64)

tgt_var lapi_long_t INTEGER(KIND = 8) tgt_var

in_val void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

in_val

prev_tgt_val void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

prev_tgt_val

org_cntr lapi_cntr t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

org_cntr

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)
INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in
FORTRAN: shdlr

none none INTEGER(KIND = 4) LAPI_Xfer parameter in
FORTRAN (32-bit): pad

When the origin data buffer is free to be used, the pointer to the send completion handler (shdlr) is called
with the send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in
FORTRAN). The size value must be either 32 or 64, indicating whether you want the in_val and
prev_tgt_val fields to point to a 32-bit or 64-bit quantity, respectively. Otherwise, the behavior is identical to
that of LAPI_Rmw.

Parameters
INPUT

hndl Specifies the LAPI handle.

xfer_cmd Specifies the name and parameters of the data transfer function.

Base Operating System (BOS) Runtime Services (A-P) 681

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values
LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DATA_LEN Indicates that the value of udata_len or len is greater than the value of
LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_DGSP Indicates that the DGSP that was passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN) or is not a registered DGSP.

LAPI_ERR_DGSP_ATOM Indicates that the DGSP has an atom_size that is less than 0 or greater
than MAX_ATOM_SIZE.

LAPI_ERR_DGSP_BRANCH Indicates that the DGSP attempted a branch that fell outside the code
array.

LAPI_ERR_DGSP_CTL Indicates that a DGSP control instruction was encountered in a non-valid
context (such as a gather-side control or scatter-side control with an atom
size of 0 at gather, for example).

LAPI_ERR_DGSP_OPC Indicates that the DGSP op-code is not valid.

LAPI_ERR_DGSP_STACK Indicates that the DGSP has greater GOSUB depth than the allocated
stack supports. Stack allocation is specified by the dgsp->depth member.

LAPI_ERR_HDR_HNDLR_NULL
Indicates that the hdr_hdl passed in is NULL (in C) or LAPI_ADDR_NULL
(in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in
terminated state).

LAPI_ERR_IN_VAL_NULL Indicates that the in_val pointer is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_MEMORY_EXHAUSTED
LAPI is unable to obtain memory from the system.

LAPI_ERR_OP_SZ Indicates that the lapi_rmw_t size field is not set to 32 or 64.

LAPI_ERR_ORG_ADDR_NULL
Indicates either that the udata parameter passed in is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN) and udata_len is greater than 0, or
that the org_addr passed in is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN) and len is greater than 0.

Note: if Xfer_type = LAPI_DGSP_XFER, the case in which udata is NULL
(in C) or LAPI_ADDR_NULL (in FORTRAN) and udata_len is greater than
0 is valid, so an error is not returned.

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride * num_vecs) is greater than the
value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR
Indicates that the org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but its length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the sum of org_vec->len is greater than the value of LAPI
constant LAPI_MAX_MSG_SZ.

682 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAPI_ERR_ORG_VEC_NULL Indicates that the org_vec value is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_RMW_OP Indicates the op is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL
Indicates that the strided vector address org_vec->info[0] is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL
Indicates that the strided vector address tgt_vec->info[0] is NULL (in C) or
LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the
job.

LAPI_ERR_TGT_ADDR_NULL
Indicates that ret_addr is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_TGT_EXTENT Indicates that tgt_vec’s extent (stride * num_vecs) is greater than the
value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()
was called.

LAPI_ERR_TGT_STRIDE Indicates that the tgt_vec stride is less than block.

LAPI_ERR_TGT_VAR_NULL Indicates that the tgt_var address is NULL (in C) or that the value of
tgt_var is LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT_VEC_ADDR Indicates that the tgt_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but its length (tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN Indicates that the sum of tgt_vec->len is greater than the value of LAPI
constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL Indicates that tgt_vec is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN).

LAPI_ERR_TGT_VEC_TYPE Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_UHDR_LEN Indicates that the uhdr_len value passed in is greater than
MAX_UHDR_SZ or is not a multiple of the processor’s doubleword size.

LAPI_ERR_UHDR_NULL Indicates that the uhdr passed in is NULL (in C) or LAPI_ADDR_NULL (in
FORTRAN), but uhdr_len is not 0.

LAPI_ERR_VEC_LEN_DIFF Indicates that org_vec and tgt_vec have different lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF Indicates that org_vec and tgt_vec have different num_vecs.

LAPI_ERR_VEC_TYPE_DIFF
Indicates that org_vec and tgt_vec have different vector types (vec_type).

LAPI_ERR_XFER_CMD Indicates that the Xfer_cmd is not valid.

C Examples
1. To run the sample code shown in LAPI_Get using the LAPI_Xfer interface:

{

lapi_xfer_t xfer_struct;

/* initialize the table buffer for the data addresses */

Base Operating System (BOS) Runtime Services (A-P) 683

/* get remote data buffer addresses */
LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);
.
.
.
/* retrieve data_len bytes from address data_buffer_list[tgt] on */
/* task tgt. write the data starting at address data_buffer. */
/* tgt_cntr and org_cntr can be NULL. */

xfer_struct.Get.Xfer_type = LAPI_GET_XFER;
xfer_struct.Get.flags = 0;
xfer_struct.Get.tgt = tgt;
xfer_struct.Get.tgt_addr = data_buffer_list[tgt];
xfer_struct.Get.org_addr = data_buffer;
xfer_struct.Get.len = data_len;
xfer_struct.Get.tgt_cntr = tgt_cntr;
xfer_struct.Get.org_cntr = org_cntr;

LAPI_Xfer(hndl, &xfer_struct);

}

2. To implement the LAPI_STRIDED_VECTOR example from LAPI_Amsendv using the LAPI_Xfer
interface:

{
lapi_xfer_t xfer_struct; /* info for LAPI_Xfer call */
lapi_vec_t vec; /* data for data transfer */
.
.
.
vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */

/* must match that of the target vector */
vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as target vector */

vec->info[0] = buffer_address; /* starting address for data copy */
vec->info[1] = block_size; /* bytes of data to copy */
vec->info[2] = stride; /* distance from copy block to copy block */
/* data will be copied as follows: */
/* block_size bytes will be copied from buffer_address */
/* block_size bytes will be copied from buffer_address+stride */
/* block_size bytes will be copied from buffer_address+(2*stride) */
/* block_size bytes will be copied from buffer_address+(3*stride) */
.
.
.
/* block_size bytes will be copied from buffer_address+((NUM_VECS-1)*stride) */
.
.
.
xfer_struct.Amv.Xfer_type = LAPI_AMV_XFER;
xfer_struct.Amv.flags = 0;
xfer_struct.Amv.tgt = tgt;
xfer_struct.Amv.hdr_hdl = hdr_hdl_list[tgt];
xfer_struct.Amv.uhdr_len = uhdr_len; /* user header length */
xfer_struct.Amv.uhdr = uhdr;

/* LAPI_AMV_XFER allows the use of a send completion handler */
/* If non-null, the shdlr function is invoked at the point */
/* the origin counter would increment. Note that both the */
/* org_cntr and shdlr can be used. */
/* The user's shdlr must be of type scompl_hndlr_t *. */
/* scompl_hndlr_t is defined in /usr/include/lapi.h */
xfer_struct.shdlr = shdlr;

684 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

/* Use sinfo to pass user-defined data into the send */
/* completion handler, if desired. */
xfer_struct.sinfo = sinfo; /* send completion data */

xfer_struct.org_vec = vec;
xfer_struct.tgt_cntr = tgt_cntr;
xfer_struct.org_cntr = org_cntr;
xfer_struct.cmpl_cntr = cmpl_cntr;

LAPI_Xfer(hndl, &xfer_struct);
.
.
.

}

See the LAPI_Amsendv subroutine for more information about the header handler definition.

Location
/usr/lib/liblapi_r.a

Related Information
Books: RSCT for AIX 5L: LAPI Programming Guide for information about bulk message transfer

Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getv, LAPI_Put, LAPI_Putv, LAPI_Rmw

layout_object_create Subroutine

Purpose
Initializes a layout context.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_create (locale_name, layout_object)
const char * locale_name;
LayoutObject * layout_object;

Description
The layout_object_create subroutine creates the LayoutObject structure associated with the locale
specified by the locale_name parameter. The LayoutObject structure is a symbolic link containing all the
data and methods necessary to perform the layout operations on context dependent and bidirectional
characters of the locale specified.

When the layout_object_create subroutine completes without errors, the layout_object parameter points
to a valid LayoutObject structure that can be used by other BIDI subroutines. The returned LayoutObject
structure is initialized to an initial state that defines the behavior of the BIDI subroutines. This initial state is
locale dependent and is described by the layout values returned by the layout_ object_getvalue
subroutine. You can change the layout values of the LayoutObject structure using the
layout_object_setvalue subroutine. Any state maintained by the LayoutObject structure is independent
of the current global locale set with the setlocale subroutine.

Base Operating System (BOS) Runtime Services (A-P) 685

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs

Parameters

locale_name Specifies a locale. It is recommended that you use the LC_CTYPE category by calling the
setlocale (LC_CTYPE,NULL) subroutine.

layout_object Points to a valid LayoutObject structure that can be used by other layout subroutines. This
parameter is used only when the layout_object_create subroutine completes without
errors.

The layout_object parameter is not set and a non-zero value is returned if a valid
LayoutObject structure cannot be created.

Return Values
Upon successful completion, the layout_object_create subroutine returns a value of 0. The layout_object
parameter points to a valid handle.

Error Codes
If the layout_object_create subroutine fails, it returns the following error codes:

LAYOUT_EINVAL The locale specified by the locale_name parameter is not available.
LAYOUT_EMFILE The OPEN_MAX value of files descriptors are currently open in the calling process.
LAYOUT_ENOMEM Insufficient storage space is available.

Related Information
The “layout_object_editshape or wcslayout_object_editshape Subroutine,” “layout_object_free Subroutine”
on page 697, “layout_object_getvalue Subroutine” on page 689, “layout_object_setvalue Subroutine” on
page 691, “layout_object_shapeboxchars Subroutine” on page 693, “layout_object_transform or
wcslayout_object_transform Subroutine” on page 694.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3
National Language Support Guide and Reference.

layout_object_editshape or wcslayout_object_editshape Subroutine

Purpose
Edits the shape of the context text.

Library
Layout library (libi18n.a)

686 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax

#include <sys/lc_layout.h>

int layout_editshape (layout_object, EditType, index, InpBuf, Inpsize, OutBuf, OutSize)
LayoutObject layout_object;
BooleanValue EditType;
size_t *index;
const char *InpBuf;
size_t *Inpsize;
void *OutBuf;
size_t *OutSize;

int wcslayout_object_editshape(layout_object, EditType, index, InpBuf, Inpsize, OutBuf, OutSize)
LayoutObject layout_object;
BooleanValue EditType;
size_t *index;
const wchar t *InpBuf;
size_t *InpSize;
void *OutBuf;
size_t *OutSize;

Description
The layout_object_editshape and wcslayout_object_editshape subroutines provide the shapes of the
context text. The shapes are defined by the code element specified by the index parameter and any
surrounding code elements specified by the ShapeContextSize layout value of the LayoutObject structure.
The layout_object parameter specifies this LayoutObject structure.

Use the layout_object_editshape subroutine when editing code elements of one byte. Use the
wcslayout_object_editshape subroutine when editing single code elements of multibytes. These
subroutines do not affect any state maintained by the layout_object_transform or
wcslayout_object_transform subroutine.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs

Parameters

layout_object Specifies the LayoutObject structure created by the layout_object_create subroutine.

Base Operating System (BOS) Runtime Services (A-P) 687

EditType Specifies the type of edit shaping. When the EditType parameter stipulates the EditInput
field, the subroutine reads the current code element defined by the index parameter and
any preceding code elements defined by ShapeContextSize layout value of the
LayoutObject structure. When the EditType parameter stipulates the EditReplace field, the
subroutine reads the current code element defined by the index parameter and any
surrounding code elements defined by ShapeContextSize layout value of the LayoutObject
structure.
Note: The editing direction defined by the Orientation and TEXT_VISUAL of the
TypeOfText layout values of the LayoutObject structure determines which code elements
are preceding and succeeding.

When the ActiveShapeEditing layout value of the LayoutObject structure is set to True, the
LayoutObject structure maintains the state of the EditInput field that may affect
subsequent calls to these subroutines with the EditInput field defined by the EditType
parameter. The state of the EditInput field of LayoutObject structure is not affected when
the EditType parameter is set to the EditReplace field. To reset the state of the EditInput
field to its initial state, call these subroutines with the InpBuf parameter set to NULL. The
state of the EditInput field is not affected if errors occur within the subroutines.

index Specifies an offset (in bytes) to the start of a code element in the InpBuf parameter on
input. The InpBuf parameter provides the base text to be edited. In addition, the context of
the surrounding code elements is considered where the minimum set of code elements
needed for the specific context dependent script(s) is identified by the ShapeContextSize
layout value.

If the set of surrounding code elements defined by the index, InpBuf, and InpSize
parameters is less than the size of front and back of the ShapeContextSize layout value,
these subroutines assume there is no additional context available. The caller must provide
the minimum context if it is available. The index parameter is in units associated with the
type of the InpBuf parameter.

On return, the index parameter is modified to indicate the offset to the first code element of
the InpBuf parameter that required shaping. The number of code elements that required
shaping is indicated on return by the InpSize parameter.

InpBuf Specifies the source to be processed. A Null value with the EditInput field in the EditType
parameter indicates a request to reset the state of the EditInput field to its initial state.

Any portion of the InpBuf parameter indicates the necessity for redrawing or shaping.
InpSize Specifies the number of code elements to be processed in units on input. These units are

associated with the types for these subroutines. A value of -1 indicates that the input is
delimited by a Null code element.

On return, the value is modified to the actual number of code elements needed by the
InpBuf parameter. A value of 0 when the value of the EditType parameter is the EditInput
field indicates that the state of the EditInput field is reset to its initial state. If the OutBuf
parameter is not NULL, the respective shaped code elements are written into the OutBuf
parameter.

OutBuf Contains the shaped output text. You can specify this parameter as a Null pointer to
indicate that no transformed text is required. If Null, the subroutines return the index and
InpSize parameters, which specify the amount of text required, to be redrawn.

The encoding of the OutBuf parameter depends on the ShapeCharset layout value defined
in layout_object parameter. If the ActiveShapeEditing layout value is set to False, the
encoding of the OutBuf parameter is to be the same as the code set of the locale
associated with the specified LayoutObject structure.

688 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

OutSize Specifies the size of the output buffer on input in number of bytes. Only the code elements
required to be shaped are written into the OutBuf parameter.

The output buffer should be large enough to contain the shaped result; otherwise, only
partial shaping is performed. If the ActiveShapeEditing layout value is set to True, the
OutBuf parameter should be allocated to contain at least the number of code elements in
the InpBuf parameter multiplied by the value of the ShapeCharsetSize layout value.

On return, the OutSize parameter is modified to the actual number of bytes placed in the
output buffer.

When the OutSize parameter is specified as 0, the subroutines calculate the size of an
output buffer large enough to contain the transformed text from the input buffer. The result
will be returned in this field. The content of the buffers specifies by the InpBuf and OutBuf
parameters, and the value of the InpSize parameter, remain unchanged.

Return Values
Upon successful completion, these subroutines return a value of 0. The index and InpSize parameters
return the minimum set of code elements required to be redrawn.

Error Codes
If these subroutines fail, they return the following error codes:

LAYOUT_EILSEQ Shaping stopped due to an input code element that cannot be shaped. The
index parameter indicates the code element that caused the error. This code
element is either a valid code element that cannot be shaped according to the
ShapeCharset layout value or an invalid code element not defined by the code
set defined in the LayoutObject structure. Use the mbtowc or wctomb
subroutine in the same locale as the LayoutObject structure to determine if
the code element is valid.

LAYOUT_E2BIG The output buffer is too small and the source text was not processed. The
index and InpSize parameters are not guaranteed on return.

LAYOUT_EINVAL Shaping stopped due to an incomplete code element or shift sequence at the
end of input buffer. The InpSize parameter indicates the number of code
elements successfully transformed.
Note: You can use this error code to determine the code element causing the
error.

LAYOUT_ERANGE Either the index parameter is outside the range as defined by the InpSize
parameter, more than 15 embedding levels are in the source text, or the
InpBuf parameter contains unbalanced Directional Format (Push/Pop).

Related Information
The “layout_object_create Subroutine” on page 685, “layout_object_free Subroutine” on page 697,
“layout_object_getvalue Subroutine,” “layout_object_setvalue Subroutine” on page 691,
“layout_object_shapeboxchars Subroutine” on page 693, “layout_object_transform or
wcslayout_object_transform Subroutine” on page 694.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3
National Language Support Guide and Reference.

layout_object_getvalue Subroutine

Purpose
Queries the current layout values of a LayoutObject structure.

Base Operating System (BOS) Runtime Services (A-P) 689

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_getvalue(layout_object, values, index)
LayoutObject layout_object;
LayoutValues values;
int *index;

Description
The layout_object_getvalue subroutine queries the current setting of layout values within the
LayoutObject structure. The layout_object parameter specifies the LayoutObject structure created by the
layout_object_create subroutine.

The name field of the LayoutValues structure contains the name of the layout value to be queried. The
value field is a pointer to where the layout value is stored. The values are queried from the LayoutObject
structure and represent its current state.

For example, if the layout value to be queried is of type T, the value parameter must be of type T*. If T
itself is a pointer, the layout_object_getvalue subroutine allocates space to store the actual data. The
caller must free this data by calling the free(T) subroutine with the returned pointer.

When setting the value field, an extra level of indirection is present that is not present using the
layout_object_setvalue parameter. When you set a layout value of type T, the value field contains T.
However, when querying the same layout value, the value field contains &T.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs

Parameters

layout_object Specifies the LayoutObject structure created by the layout_object_create subroutine.
values Specifies an array of layout values of type LayoutValueRec that are to be queried in the

LayoutObject structure. The end of the array is indicated by name=0.
index Specifies a layout value to be queried. If the value cannot be queried, the index parameter

causing the error is returned and the subroutine returns a non-zero value.

Return Values
Upon successful completion, the layout_object_getvalue subroutine returns a value of 0. All layout values
were successfully queried.

Error Codes
If the layout_object_getvalue subroutine fails, it returns the following values:

LAYOUT_EINVAL The layout value specified by the index parameter is unknown or the layout_object
parameter is invalid.

LAYOUT_EMOMEM Insufficient storage space is available.

690 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Examples
The following example queries whether the locale is bidirectional and gets the values of the in and out
orienations.
#include <sys/lc_layout.h>
#include <locale.h>
main()
{
LayoutObject plh;
int RC=0;
LayoutValues layout;
LayoutTextDescriptor Descr;
int index;

RC=layout_object_create(setlocale(LC_CTYPE,""),&plh); /* create object */
if (RC) {printf("Create error !!\n"); exit(0);}

layout=malloc(3*sizeof(LayoutValueRec));
/* allocate layout array */

layout[0].name=ActiveBidirection; /* set name */
layout[1].name=Orientation; /* set name */
layout[1].value=(caddr_t)&Descr;

/* send address of memory to be allocated by function */

layout[2].name=0; /* indicate end of array */
RC=layout_object_getvalue(plh,layout,&index);
if (RC) {printf("Getvalue error at %d !!\n",index); exit(0);}
printf("ActiveBidirection = %d \n",*(layout[0].value));

/*print output*/
printf("Orientation in = %x out = %x \n", Descr->>in, Descr->>out);

free(layout); /* free layout array */
free (Descr); /* free memory allocated by function */
RC=layout_object_free(plh); /* free layout object */
if (RC) printf("Free error !!\n");
}

Related Information
The “layout_object_create Subroutine” on page 685, “layout_object_editshape or
wcslayout_object_editshape Subroutine” on page 686, “layout_object_free Subroutine” on page 697,
“layout_object_setvalue Subroutine,” “layout_object_shapeboxchars Subroutine” on page 693, and
“layout_object_transform or wcslayout_object_transform Subroutine” on page 694.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3
National Language Support Guide and Reference.

layout_object_setvalue Subroutine

Purpose
Sets the layout values of a LayoutObject structure.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

Base Operating System (BOS) Runtime Services (A-P) 691

int layout_object_setvalue(layout_object, values, index)
LayoutObject layout_object;
LayoutValues values;
int *index;

Description
The layout_object_setvalue subroutine changes the current layout values of the LayoutObject structure.
The layout_object parameter specifies the LayoutObject structure created by the layout_object_create
subroutine. The values are written into the LayoutObject structure and may affect the behavior of
subsequent layout functions.

Note: Some layout values do alter internal states maintained by a LayoutObject structure.

The name field of the LayoutValueRec structure contains the name of the layout value to be set. The value
field contains the actual value to be set. The value field is large enough to support all types of layout
values. For more information on layout value types, see ″Layout Values for the Layout Library″ in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs

Parameters

layout_object Specifies the LayoutObject structure returned by the layout_object_create subroutine.
values Specifies an array of layout values of the type LayoutValueRec that this subroutine sets. The end

of the array is indicated by name=0.
index Specifies a layout value to be queried. If the value cannot be queried, the index parameter

causing the error is returned and the subroutine returns a non-zero value. If an error is
generated, a subset of the values may have been previously set.

Return Values
Upon successful completion, the layout_object_setvalue subroutine returns a value of 0. All layout values
were successfully set.

Error Codes
If the layout_object_setvalue subroutine fails, it returns the following values:

LAYOUT_EINVAL The layout value specified by the index parameter is unknown, its value is invalid, or the
layout_object parameter is invalid.

LAYOUT_EMFILE The (OPEN_MAX) file descriptors are currently open in the calling process.
LAYOUT_ENOMEM Insufficient storage space is available.

Examples
The following example sets the TypeofText value to Implicit and the out value to Visual.
#include <sys/lc_layout.h>
#include <locale.h>

main()
{
LayoutObject plh;
int RC=0;
LayoutValues layout;
LayoutTextDescriptor Descr;

692 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int index;

RC=layout_object_create(setlocale(LC_CTYPE,""),&plh); /* create object */
if (RC) {printf("Create error !!\n"); exit(0);}

layout=malloc(2*sizeof(LayoutValueRec)); /*allocate layout array*/
Descr=malloc(sizeof(LayoutTextDescriptorRec)); /* allocate text descriptor */
layout[0].name=TypeOfText; /* set name */
layout[0].value=(caddr_t)Descr; /* set value */
layout[1].name=0; /* indicate end of array */

Descr->in=TEXT_IMPLICIT;
Descr->out=TEXT_VISUAL; RC=layout_object_setvalue(plh,layout,&index);
if (RC) printf("SetValue error at %d!!\n",index); /* check return code */
free(layout); /* free allocated memory */
free (Descr);
RC=layout_object_free(plh); /* free layout object */
if (RC) printf("Free error !!\n");
}

Related Information
The “layout_object_create Subroutine” on page 685, “layout_object_editshape or
wcslayout_object_editshape Subroutine” on page 686, “layout_object_free Subroutine” on page 697,
“layout_object_getvalue Subroutine” on page 689, “layout_object_shapeboxchars Subroutine,” and
“layout_object_transform or wcslayout_object_transform Subroutine” on page 694.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3
National Language Support Guide and Reference.

layout_object_shapeboxchars Subroutine

Purpose
Shapes box characters.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_shapeboxchars(layout_object, InpBuf, InpSize, OutBuf)
LayoutObject layout_object;
const char *InpBuf;
const size_t InpSize;
char *OutBuf;

Description
The layout_object_shapeboxchars subroutine shapes box characters into the VT100 box character set.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs

Base Operating System (BOS) Runtime Services (A-P) 693

Parameters

layout_object Specifies the LayoutObject structure created by the layout_object_create subroutine.
InpBuf Specifies the source text to be processed.
InpSize Specifies the number of code elements to be processed.
OutBuf Contains the shaped output text.

Return Values
Upon successful completion, this subroutine returns a value of 0.

Error Codes
If this subroutine fails, it returns the following values:

LAYOUT_EILSEQ Shaping stopped due to an input code element that cannot be mapped into the VT100 box
character set.

LAYOUT_EINVAL Shaping stopped due to an incomplete code element or shift sequence at the end of the
input buffer.

Related Information
The “layout_object_create Subroutine” on page 685, “layout_object_editshape or
wcslayout_object_editshape Subroutine” on page 686, “layout_object_free Subroutine” on page 697,
“layout_object_getvalue Subroutine” on page 689, “layout_object_setvalue Subroutine” on page 691, and
“layout_object_transform or wcslayout_object_transform Subroutine.”

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3
National Language Support Guide and Reference.

layout_object_transform or wcslayout_object_transform Subroutine

Purpose
Transforms text according to the current layout values of a LayoutObject structure.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>
int layout_object_transform (layout_object, InpBuf, InpSize, OutBuf, OutSize, InpToOut, OutToInp, BidiLvl)
LayoutObject layout_object;
const char *InpBuf;
size_t *InpSize;
void * OutBuf;
size_t *OutSize;
size_t *InpToOut;
size_t *OutToInp;
unsigned char *BidiLvl;

int wcslayout_object_transform (layout_object, InpBuf, InpSize, OutBuf, OutSize, InpToOut, OutToInp, BidiLvl)
LayoutObject layout_object;
const char *InpBuf;
size_t *InpSize;
void *OutBuf;

694 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Size_t *OutSize;
size_t *InpToOut;
size_t *OutToInp;
unsigned char *BidiLvl;

Description
The layout_object_transform and wcslayout_object_transform subroutines transform the text specified
by the InpBuf parameter according to the current layout values in the LayoutObject structure. Any layout
value whose type is LayoutTextDescriptor describes the attributes within the InpBuf and OutBuf
parameters. If the attributes are the same as the InpBuf and OutBuf parameters themselves, a null
transformation is done with respect to that specific layout value.

The output of these subroutines may be one or more of the following results depending on the setting of
the respective parameters:

OutBuf, OutSize Any transformed data is stored in the OutBuf parameter.
InpToOut A cross reference from each code element of the InpBuf parameter to the transformed

data.
OutToInp A cross reference to each code element of the InpBuf parameter from the transformed

data.
BidiLvl A weighted value that represents the directional level of each code element of the

InpBuf parameter. The level is dependent on the internal directional algorithm of the
LayoutObject structure.

You can specify each of these output parameters as Null to indicate that no output is needed for the
specific parameter. However, you should set at least one of these parameters to a nonNULL value to
perform any significant work.

To perform shaping of a text string without reordering of code elements, set the TypeOfText layout value to
TEXT_VISUAL and the in and out values of the Orientation layout value alike. These layout values are in
the LayoutObject structure.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs

Parameters

layout_object Specifies the LayoutObject structure created by the layout_object_create subroutine.
InpBuf Specifies the source text to be processed. This parameter cannot be null.
InpSize Specifies the units of code elements processed associated with the bytes for the

layout_object_transform and wcslayout_object_transform subroutines. A value of -1
indicates that the input is delimited by a null code element. On return, the value is modified
to the actual number of code elements processed in the InBuf parameter. However, if the
value in the OutSize parameter is zero, the value of the InpSize parameter is not changed.

OutBuf Contains the transformed data. You can specify this parameter as a null pointer to indicate
that no transformed data is required.

The encoding of the OutBuf parameter depends on the ShapeCharset layout value defined
in the LayoutObject structure. If the ActiveShapeEditing layout value is set to True, the
encoding of the OutBuf parameter is the same as the code set of the locale associated with
the LayoutObject structure.

Base Operating System (BOS) Runtime Services (A-P) 695

OutSize Specifies the size of the output buffer in number of bytes. The output buffer should be large
enough to contain the transformed result; otherwise, only a partial transformation is
performed. If the ActiveShapeEditing layout value is set to True, the OutBuf parameter
should be allocated to contain at least the number of code elements multiplied by the
ShapeCharsetSize layout value.

On return, the OutSize parameter is modified to the actual number of bytes placed in this
parameter.

When you specify the OutSize parameter as 0, the subroutine calculates the size of an
output buffer to be large enough to contain the transformed text. The result is returned in
this field. The content of the buffers specified by the InpBuf and OutBuf parameters, and a
value of the InpSize parameter remains unchanged.

InpToOut Represents an array of values with the same number of code elements as the InpBuf
parameter if InpToOut parameter is not a null pointer.

On output, the nth value in InpToOut parameter corresponds to the nth code element in
InpBuf parameter. This value is the index in OutBuf parameter which identifies the
transformed ShapeCharset element of the nth code element in InpBuf parameter. You can
specify the InpToOut parameter as null if no index array from the InpBuf to OutBuf
parameters is desired.

OutTolnp Represents an array of values with the same number of code elements as contained in the
OutBuf parameter if the OutToInp parameter is not a null pointer.

On output, the nth value in the OutTolnp parameter corresponds to the nth ShapeCharset
element in the OutBuf parameter. This value is the index in the InpBuf parameter which
identifies the original code element of the nth ShapeCharset element in the OutBuf
parameter. You can specify the OutTolnp parameter as NULL if no index array from the
OutBuf to InpBuf parameters is desired.

BidiLvl Represents an array of values with the same number of elements as the source text if the
BidiLvl parameter is not a null pointer. The nth value in the BidiLvl parameter corresponds
to the nth code element in the InpBuf parameter. This value is the level of this code
element as determined by the bidirectional algorithm. You can specify the BidiLvl parameter
as null if a levels array is not desired.

Return Values
Upon successful completion, these subroutines return a value of 0.

Error Codes
If these subroutines fail, they return the following values:

LAYOUT_EILSEQ Transformation stopped due to an input code element that cannot be
shaped or is invalid. The InpSize parameter indicates the number of the
code element successfully transformed.
Note: You can use this error code to determine the code element
causing the error.

This code element is either a valid code element but cannot be shaped
into the ShapeCharset layout value or is an invalid code element not
defined by the code set of the locale of the LayoutObject structure. You
can use the mbtowc and wctomb subroutines to determine if the code
element is valid when used in the same locale as the LayoutObject
structure.

LAYOUT_E2BIG The output buffer is full and the source text is not entirely processed.

696 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LAYOUT_EINVAL Transformation stopped due to an incomplete code element or shift
sequence at the end of the input buffer. The InpSize parameter indicates
the number of the code elements successfully transformed.
Note: You can use this error code to determine the code element
causing the error.

LAYOUT_ERANGE More than 15 embedding levels are in the source text or the InpBuf
parameter contains unbalanced Directional Format (Push/Pop).

When the size of OutBuf parameter is not large enough to contain the
entire transformed text, the input text state at the end of the
LAYOUT_E2BIG error code is returned. To resume the transformation on
the remaining text, the application calls the layout_object_transform
subroutine with the same LayoutObject structure, the same InpBuf
parameter, and InpSize parameter set to 0.

Examples
The following is an example of transformation of both directional re-ordering and shaping.

Notes:

1. Uppercase represent left-to-right characters; lowercase represent right-to-left characters.

2. xyz represent the shapes of cde.
Position: 0123456789
InpBuf: AB cde 12Z

Position: 0123456789
OutBuf: AB 12 zyxZ

Position: 0123456789
ToTarget: 0128765349

Position: 0123456789
ToSource: 0127865439

Position: 0123456789
BidiLevel: 0001111220

Related Information
The “layout_object_create Subroutine” on page 685, “layout_object_editshape or
wcslayout_object_editshape Subroutine” on page 686, “layout_object_free Subroutine,”
“layout_object_getvalue Subroutine” on page 689, “layout_object_setvalue Subroutine” on page 691, and
“layout_object_shapeboxchars Subroutine” on page 693.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3
National Language Support Guide and Reference.

layout_object_free Subroutine

Purpose
Frees a LayoutObject structure.

Library
Layout library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

Base Operating System (BOS) Runtime Services (A-P) 697

int layout_object_free(layout_object)
LayoutObject layout_object;

Description
The layout_object_free subroutine releases all the resources of the LayoutObject structure created by
the layout_object_create subroutine. The layout_object parameter specifies this LayoutObject structure.

Note: If you are developing internationalized applications that may support multibyte locales, please see
Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs

Parameters

layout_object Specifies a LayoutObject structure returned by the layout_object_create subroutine.

Return Values
Upon successful completion, the layout_object_free subroutine returns a value of 0. All resources
associated with the layout_object parameter are successfully deallocated.

Error Codes
If the layout_object_free subroutine fails, it returns the following error code:

LAYOUT_EFAULT Errors occurred while processing the request.

Related Information
The “layout_object_create Subroutine” on page 685, “layout_object_editshape or
wcslayout_object_editshape Subroutine” on page 686, “layout_object_getvalue Subroutine” on page 689,
“layout_object_setvalue Subroutine” on page 691, “layout_object_shapeboxchars Subroutine” on page 693,
and “layout_object_transform or wcslayout_object_transform Subroutine” on page 694.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3
National Language Support Guide and Reference.

ldahread Subroutine

Purpose
Reads the archive header of a member of an archive file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ar.h>
#include <ldfcn.h>

698 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int ldahread(ldPointer, ArchiveHeader)
LDFILE *ldPointer;
ARCHDR *ArchiveHeader;

Description
If the TYPE(ldPointer) macro from the ldfcn.h file is the archive file magic number, the ldahread
subroutine reads the archive header of the extended common object file currently associated with the
ldPointer parameter into the area of memory beginning at the ArchiveHeader parameter.

Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to
ldopen or ldaopen.

ArchiveHeader Points to a ARCHDR structure.

Return Values
The ldahread subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldahread routine fails if the TYPE(ldPointer) macro does not represent an archive file, or if it cannot
read the archive header.

Related Information
The ldfhread (“ldfhread Subroutine” on page 703) subroutine, ldgetname (“ldgetname Subroutine” on
page 704) subroutine, ldlread, ldlinit, or ldlitem (“ldlread, ldlinit, or ldlitem Subroutine” on page 706)
subroutine, ldshread or ldnshread (“ldshread or ldnshread Subroutine” on page 712) subroutine, ldtbread
(“ldtbread Subroutine” on page 716) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ldclose or ldaclose Subroutine

Purpose
Closes a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldclose(ldPointer)
LDFILE *ldPointer;

int ldaclose(ldPointer)
LDFILE *ldPointer;

Base Operating System (BOS) Runtime Services (A-P) 699

Description
The ldopen and ldclose subroutines provide uniform access to both simple object files and object files
that are members of archive files. Thus, an archive of common object files can be processed as if it were
a series of simple common object files.

If the ldfcn.h file TYPE(ldPointer) macro is the magic number of an archive file, and if there are any more
files in the archive, the ldclose subroutine reinitializes the ldfcn.h file OFFSET(ldPointer) macro to the file
address of the next archive member and returns a failure value. The ldfile structure is prepared for a
subsequent ldopen.

If the TYPE(ldPointer) macro does not represent an archive file, the ldclose subroutine closes the file and
frees the memory allocated to the ldfile structure associated with ldPointer.

The ldaclose subroutine closes the file and frees the memory allocated to the ldfile structure associated
with the ldPointer parameter regardless of the value of the TYPE(ldPointer) macro.

Parameters

ldPointer Pointer to the LDFILE structure that was returned as the result of a successful call to ldopen or
ldaopen.

Return Values
The ldclose subroutine returns a SUCCESS or FAILURE value.

The ldaclose subroutine always returns a SUCCESS value and is often used in conjunction with the
ldaopen subroutine.

Error Codes
The ldclose subroutine returns a failure value if there are more files to archive.

Related Information
The ldaopen or ldopen (“ldopen or ldaopen Subroutine” on page 709) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

ldexpd32, ldexpd64, and ldexpd128 Subroutines

Purpose
Loads exponent of a decimal floating-point number.

Syntax
#include <math.h>

_Decimal32 ldexpd32 (x, exp)
_Decimal32 x;
int exp;

_Decimal64 ldexpd64 (x, exp)
_Decimal64 x;
int exp;

700 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

_Decimal128 ldexpd128 (x, exp)
_Decimal128 x;
int exp;

Description
The ldexpd32, ldexpd64, and ldexpd128 subroutines compute the quantity x * 10exp.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.
exp Specifies the exponent of 10.

Return Values
Upon successful completion, the ldexpd32, ldexpd64, and ldexpd128 subroutines return x multiplied by
10, raised to the power exp.

If the ldexpd32, ldexpd64, or ldexpd128 subroutines would cause overflow, a range error occurs and the
ldexpd32, ldexpd64, and ldexpd128 subroutines return ±HUGE_VAL_D32, ±HUGE_VAL_D64, and
±HUGE_VAL_D128 (according to the sign of x), respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is
returned.

If x is NaN, a NaN is returned.

If x is ±0 or Inf, x is returned.

If exp is 0, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite,
isnan, or unordered Subroutines” on page 168

math.h in in AIX 5L Version 5.3 Files Reference.

ldexp, ldexpf, or ldexpl Subroutine

Purpose
Loads exponent of a floating-point number.

Syntax
#include <math.h>
float ldexpf (x, exp)
float x;

Base Operating System (BOS) Runtime Services (A-P) 701

int exp;

long double ldexpl (x, exp)
long double x;
int exp;

double ldexp (x, exp)
double x;
int exp;

Description
The ldexpf, ldexpl, and ldexp subroutines compute the quantity x * 2exp.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.
exp Specifies the exponent of 2.

Return Values
Upon successful completion, the ldexpf, ldexpl, and ldexp subroutines return x multiplied by 2, raised to
the power exp.

If the ldexpf, ldexpl, or ldexp subroutines would cause overflow, a range error occurs and the ldexpf,
ldexpl, and ldexp subroutines return ±HUGE_VALF, ±HUGE_VALL, and ±HUGE_VAL (according to the
sign of x), respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is
returned.

If x is NaN, a NaN is returned.

If x is ±0 or Inf, x is returned.

If exp is 0, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Error Codes
If the result of the ldexp or ldexpl subroutine overflows, then +/- HUGE_VAL is returned, and the global
variable errno is set to ERANGE.

If the result of the ldexp or ldexpl subroutine underflows, 0 is returned, and the errno global variable is
set to a ERANGE value.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite,
isnan, or unordered Subroutines” on page 168

702 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

math.h in AIX 5L Version 5.3 Files Reference.

ldfhread Subroutine

Purpose
Reads the file header of an XCOFF file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldfhread (ldPointer, FileHeader)
LDFILE *ldPointer;
void *FileHeader;

Description
The ldfhread subroutine reads the file header of the object file currently associated with the ldPointer
parameter into the area of memory beginning at the FileHeader parameter. For AIX 4.3.2 and above, it is
the responsibility of the calling routine to provide a pointer to a buffer large enough to contain the file
header of the associated object file. Since the ldopen subroutine provides magic number information (via
the HEADER(ldPointer).f_magic macro), the calling application can always determine whether the
FileHeader pointer should refer to a 32-bit FILHDR or 64-bit FILHDR_64 structure.

Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to ldopen or
ldaopen subroutine.

FileHeader Points to a buffer large enough to accommodate a FILHDR structure, according to the object
mode of the file being read.

Return Values
The ldfhread subroutine returns Success or Failure.

Error Codes
The ldfhread subroutine fails if it cannot read the file header.

Note: In most cases, the use of ldfhread can be avoided by using the HEADER (ldPointer) macro
defined in the ldfcn.h file. The information in any field or fieldname of the header file may be
accessed using the header (ldPointer) fieldname macro.

Examples
The following is an example of code that opens an object file, determines its mode, and uses the ldfhread
subroutine to acquire the file header. This code would be compiled with both _XCOFF32_ and
XCOFF64 defined:
#define __XCOFF32__
#define __XCOFF64__

#include <ldfcn.h>

Base Operating System (BOS) Runtime Services (A-P) 703

/* for each FileName to be processed */

if ((ldPointer = ldopen(fileName, ldPointer)) != NULL)
{

FILHDR FileHead32;
FILHDR_64 FileHead64;
void *FileHeader;

if (HEADER(ldPointer).f_magic == U802TOCMAGIC)
FileHeader = &FileHead32;

else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)
FileHeader = &FileHead64;

else
FileHeader = NULL;

if (FileHeader && (ldfhread(ldPointer, FileHeader) == SUCCESS))
{

/* ...successfully read header... */
/* ...process according to magic number... */

}
}

Related Information
The ldahread (“ldahread Subroutine” on page 698) subroutine, ldgetname (“ldgetname Subroutine”)
subroutine, ldlread, ldlinit, or ldlitem (“ldlread, ldlinit, or ldlitem Subroutine” on page 706) subroutine,
ldopen (“ldopen or ldaopen Subroutine” on page 709) subroutine, ldshread or ldnshread (“ldshread or
ldnshread Subroutine” on page 712) subroutine, ldtbread (“ldtbread Subroutine” on page 716) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

ldgetname Subroutine

Purpose
Retrieves symbol name for common object file symbol table entry.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

char *ldgetname (ldPointer, Symbol)
LDFILE *ldPointer;
void *Symbol;

Description
The ldgetname subroutine returns a pointer to the name associated with Symbol as a string. The string is
in a static buffer local to the ldgetname subroutine that is overwritten by each call to the ldgetname
subroutine and must therefore be copied by the caller if the name is to be saved.

704 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The common object file format handles arbitrary length symbol names with the addition of a string table.
The ldgetname subroutine returns the symbol name associated with a symbol table entry for an
XCOFF-format object file.

The calling routine to provide a pointer to a buffer large enough to contain a symbol table entry for the
associated object file. Since the ldopen subroutine provides magic number information (via the
HEADER(ldPointer).f_magic macro), the calling application can always determine whether the Symbol
pointer should refer to a 32-bit SYMENT or 64-bit SYMENT_64 structure.

The maximum length of a symbol name is BUFSIZ, defined in the stdio.h file.

Parameters

ldPointer Points to an LDFILE structure that was returned as the result of a successful call to the ldopen or
ldaopen subroutine.

Symbol Points to an initialized 32-bit or 64-bit SYMENT structure.

Error Codes
The ldgetname subroutine returns a null value (defined in the stdio.h file) for a COFF-format object file if
the name cannot be retrieved. This situation can occur if one of the following is true:

v The string table cannot be found.

v The string table appears invalid (for example, if an auxiliary entry is handed to the ldgetname
subroutine wherein the name offset lies outside the boundaries of the string table).

v The name’s offset into the string table is past the end of the string table.

Typically, the ldgetname subroutine is called immediately after a successful call to the ldtbread subroutine
to retrieve the name associated with the symbol table entry filled by the ldtbread subroutine.

Examples
The following is an example of code that determines the object file type before making a call to the
ldtbread and ldgetname subroutines.
#define __XCOFF32__
#define __XCOFF64__

#include <ldfcn.h>

SYMENT Symbol32;
SYMENT_64 Symbol64;
void *Symbol;

if (HEADER(ldPointer).f_magic == U802TOCMAGIC)
Symbol = &Symbol32;

else if (HEADER(ldPointer).f_magic == U64_TOCMAGIC)
Symbol = &Symbol64;

else
Symbol = NULL;

if (Symbol)
/* for each symbol in the symbol table */
for (symnum = 0 ; symnum < HEADER(ldPointer).f_nsyms ; symnum++)
{

if (ldtbread(ldPointer,symnum,Symbol) == SUCCESS)
{

char *name = ldgetname(ldPointer,Symbol)

if (name)
{

Base Operating System (BOS) Runtime Services (A-P) 705

/* Got the name... */
.
.

}

/* Increment symnum by the number of auxiliary entries */
if (HEADER(ldPointer).f_magic == U802TOCMAGIC)

symnum += Symbol32.n_numaux;
else if (HEADER(ldPointer).f_magic == U64_TOCMAGIC)

symnum += Symbol64.n_numaux;
}
else
{

/* Should have been a symbol...indicate the error */
.
.

}
}

Related Information
The ldahread (“ldahread Subroutine” on page 698) subroutine, ldfhread (“ldfhread Subroutine” on page
703) subroutine, ldlread, ldlinit, or ldlitem (“ldlread, ldlinit, or ldlitem Subroutine”)subroutine, ldshread or
ldnshread (“ldshread or ldnshread Subroutine” on page 712) subroutine, ldtbread (“ldtbread Subroutine”
on page 716) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

ldlread, ldlinit, or ldlitem Subroutine

Purpose
Manipulates line number entries of a common object file function.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldlread (ldPointer, FunctionIndex, LineNumber, LineEntry)
LDFILE *ldPointer;
int FunctionIndex;
unsigned short LineNumber;
void *LineEntry;

int ldlinit (ldPointer, FunctionIndex)
LDFILE *ldPointer;
int FunctionIndex;

int ldlitem (ldPointer, LineNumber, LineEntry)
LDFILE *ldPointer;
unsigned short LineNumber;
void *LineEntry;

706 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The ldlread subroutine searches the line number entries of the XCOFF file currently associated with the
ldPointer parameter. The ldlread subroutine begins its search with the line number entry for the beginning
of a function and confines its search to the line numbers associated with a single function. The function is
identified by the FunctionIndex parameter, the index of its entry in the object file symbol table. The ldlread
subroutine reads the entry with the smallest line number equal to or greater than the LineNumber
parameter into the memory beginning at the LineEntry parameter. It is the responsibility of the calling
routine to provide a pointer to a buffer large enough to contain the line number entry for the associated
object file type. Since the ldopen subroutine provides magic number information (via the
HEADER(ldPointer).f_magic macro), the calling application can always determine whether the LineEntry
pointer should refer to a 32-bit LINENO or 64-bit LINENO_64 structure.

The ldlinit and ldlitem subroutines together perform the same function as the ldlread subroutine. After an
initial call to the ldlread or ldlinit subroutine, the ldlitem subroutine may be used to retrieve successive
line number entries associated with a single function. The ldlinit subroutine simply locates the line number
entries for the function identified by the FunctionIndex parameter. The ldlitem subroutine finds and reads
the entry with the smallest line number equal to or greater than the LineNumber parameter into the
memory beginning at the LineEntry parameter.

Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the
ldopen , lddopen,or ldaopen subroutine.

LineNumber Specifies the index of the first LineNumber parameter entry to be read.
LineEntry Points to a buffer that will be filled in with a LINENO structure from the object file.
FunctionIndex Points to the symbol table index of a function.

Return Values
The ldlread, ldlinit, and ldlitem subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldlread subroutine fails if there are no line number entries in the object file, if the FunctionIndex
parameter does not index a function entry in the symbol table, or if it finds no line number equal to or
greater than the LineNumber parameter. The ldlinit subroutine fails if there are no line number entries in
the object file or if the FunctionIndex parameter does not index a function entry in the symbol table. The
ldlitem subroutine fails if it finds no line number equal to or greater than the LineNumber parameter.

Related Information
The ldahread (“ldahread Subroutine” on page 698) subroutine, ldfhread (“ldfhread Subroutine” on page
703) subroutine, ldgetname (“ldgetname Subroutine” on page 704) subroutine, ldshread or ldnshread
(“ldshread or ldnshread Subroutine” on page 712) subroutine, ldtbread (“ldtbread Subroutine” on page
716) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ldlseek or ldnlseek Subroutine

Purpose
Seeks to line number entries of a section of a common object file.

Base Operating System (BOS) Runtime Services (A-P) 707

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldlseek (ldPointer, SectionIndex)
LDFILE *ldPointer;
unsigned short SectionIndex;

int ldnlseek (ldPointer, SectionName)
LDFILE *ldPointer;
char *SectionName;

Description
The ldlseek subroutine seeks to the line number entries of the section specified by the SectionIndex
parameter of the common object file currently associated with the ldPointer parameter. The first section
has an index of 1.

The ldnlseek subroutine seeks to the line number entries of the section specified by the SectionName
parameter.

Both subroutines determine the object mode of the associated file before seeking to the relocation entries
of the indicated section.

Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the
ldopen or ldaopen subroutine.

SectionIndex Specifies the index of the section whose line number entries are to be seeked to.
SectionName Specifies the name of the section whose line number entries are to be seeked to.

Return Values
The ldlseek and ldnlseek subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldlseek subroutine fails if the SectionIndex parameter is greater than the number of sections in the
object file. The ldnlseek subroutine fails if there is no section name corresponding with the SectionName
parameter. Either function fails if the specified section has no line number entries or if it cannot seek to the
specified line number entries.

Related Information
The ldohseek (“ldohseek Subroutine” on page 709) subroutine, ldrseek or ldnrseek (“ldrseek or ldnrseek
Subroutine” on page 711)subroutine, ldsseek or ldnsseek (“ldsseek or ldnsseek Subroutine” on page 714)
subroutine, ldtbseek (“ldtbseek Subroutine” on page 717) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

708 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ldohseek Subroutine

Purpose
Seeks to the optional file header of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldohseek (ldPointer)
LDFILE *ldPointer;

Description
The ldohseek subroutine seeks to the optional auxiliary header of the common object file currently
associated with the ldPointer parameter. The subroutine determines the object mode of the associated file
before seeking to the end of its file header.

Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to ldopen or
ldaopen subroutine.

Return Values
The ldohseek subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldohseek subroutine fails if the object file has no optional header, if the file is not a 32-bit or 64-bit
object file, or if it cannot seek to the optional header.

Related Information
The ldlseek or ldnlseek (“ldlseek or ldnlseek Subroutine” on page 707) subroutine, ldrseek or ldnrseek
(“ldrseek or ldnrseek Subroutine” on page 711)subroutine, ldsseek or ldnsseek (“ldsseek or ldnsseek
Subroutine” on page 714) subroutine, ldtbseek (“ldtbseek Subroutine” on page 717) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ldopen or ldaopen Subroutine

Purpose
Opens an object or archive file for reading.

Library
Object File Access Routine Library (libld.a)

Base Operating System (BOS) Runtime Services (A-P) 709

Syntax
#include <stdio.h>
#include <ldfcn.h>

LDFILE *ldopen(FileName, ldPointer)
char *FileName;
LDFILE *ldPointer;

LDFILE *ldaopen(FileName, ldPointer)
char *FileName;
LDFILE *ldPointer;

LDFILE *lddopen(FileDescriptor, type, ldPointer)
int FileDescriptor;
char *type;
LDFILE *ldPointer;

Description
The ldopen and ldclose subroutines provide uniform access to both simple object files and object files
that are members of archive files. Thus, an archive of object files can be processed as if it were a series
of ordinary object files.

If the ldPointer is null, the ldopen subroutine opens the file named by the FileName parameter and
allocates and initializes an LDFILE structure, and returns a pointer to the structure.

If the ldPointer parameter is not null and refers to an LDFILE for an archive, the structure is updated for
reading the next archive member. In this case, and if the value of the TYPE(ldPointer) macro is the archive
magic number ARTYPE.

The ldopen and ldclose subroutines are designed to work in concert. The ldclose subroutine returns
failure only when the ldPointer refers to an archive containing additional members. Only then should the
ldopen subroutine be called with a num-null ldPointer argument. In all other cases, in particular whenever
a new FileName parameter is opened, the ldopen subroutine should be called with a null ldPointer
argument.

If the value of the ldPointer parameter is not null, the ldaopen subroutine opens the FileName parameter
again and allocates and initializes a new LDFILE structure, copying the TYPE, OFFSET, and HEADER
fields from the ldPointer parameter. The ldaopen subroutine returns a pointer to the new ldfile structure.
This new pointer is independent of the old pointer, ldPointer. The two pointers may be used concurrently to
read separate parts of the object file. For example, one pointer may be used to step sequentially through
the relocation information, while the other is used to read indexed symbol table entries.

The lddopen function accesses the previously opened file referenced by the FileDescriptor parameter. In
all other respects, it functions the same as the ldopen subroutine.

For AIX 4.3.2 and above, the functions transparently open both 32-bit and 64-bit object files, as well as
both small format and large format archive files. Once a file or archive is successfully opened, the calling
application can examine the HEADER(ldPointer).f_magic field to check the magic number of the file or
archive member associated with ldPointer. (This is necessary due to an archive potentially containing
members that are not object files.) The magic numbers U802TOCMAGIC and (for AIX 4.3.2 and above)
U803XTOCMAGIC are defined in the ldfcn.h file. If the value of TYPE(ldPointer) is the archive magic

710 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

numberARTYPE, the flags field can be checked for the archive type. Large format archives will have the
flag bit AR_TYPE_BIG set in LDFLAGS(ldPointer). Large format archives are available on AIX 4.3 and
later.

Parameters

FileName Specifies the file name of an object file or archive.
ldPointer Points to an LDFILE structure.
FileDescriptor Specifies a valid open file descriptor.
type Points to a character string specifying the mode for the open file. The fdopen function is

used to open the file.

Error Codes
Both the ldopen and ldaopen subroutines open the file named by the FileName parameter for reading.
Both functions return a null value if the FileName parameter cannot be opened, or if memory for the
LDFILE structure cannot be allocated.

A successful open does not ensure that the given file is a common object file or an archived object file.

Examples
The following is an example of code that uses the ldopen and ldclose subroutines:
/* for each FileName to be processed */

ldPointer = NULL;
do

if((ldPointer = ldopen(FileName, ldPointer)) != NULL)

/* check magic number */
/* process the file */

"
"

while(ldclose(ldPointer) == FAILURE);

Related Information
The ldclose or ldaclose (“ldclose or ldaclose Subroutine” on page 699) subroutine, fopen, fopen64,
freopen, freopen64, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290)
subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ldrseek or ldnrseek Subroutine

Purpose
Seeks to the relocation entries of a section of an XCOFF file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

Base Operating System (BOS) Runtime Services (A-P) 711

int ldrseek (ldPointer, SectionIndex)
ldfile *ldPointer;
unsigned short SectionIndex;

int ldnrseek (ldPointer, SectionName)
ldfile *ldPointer;
char *SectionName;

Description
The ldrseek subroutine seeks to the relocation entries of the section specified by the SectionIndex
parameter of the common object file currently associated with the ldPointer parameter.

The ldnrseek subroutine seeks to the relocation entries of the section specified by the SectionName
parameter.

For AIX 4.3.2 and above, both subroutines determine the object mode of the associated file before seeking
to the relocation entries of the indicated section.

Parameters

ldPointer Points to an LDFILE structure that was returned as the result of a successful call to the
ldopen, lddopen, or ldaopen subroutines.

SectionIndex Specifies an index for the section whose relocation entries are to be sought.
SectionName Specifies the name of the section whose relocation entries are to be sought.

Return Values
The ldrseek and ldnrseek subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldrseek subroutine fails if the contents of the SectionIndex parameter are greater than the number of
sections in the object file. The ldnrseek subroutine fails if there is no section name corresponding with the
SectionName parameter. Either function fails if the specified section has no relocation entries or if it cannot
seek to the specified relocation entries.

Note: The first section has an index of 1.

Related Information
The ldohseek (“ldohseek Subroutine” on page 709) subroutine, ldlseek or ldnlseek (“ldlseek or ldnlseek
Subroutine” on page 707) subroutine, ldsseek or ldnsseek (“ldsseek or ldnsseek Subroutine” on page
714)subroutine, ldtbseek (“ldtbseek Subroutine” on page 717) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ldshread or ldnshread Subroutine

Purpose
Reads a section header of an XCOFF file.

712 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldshread (ldPointer, SectionIndex, SectionHead)
LDFILE *ldPointer;
unsigned short SectionIndex;
void *SectionHead;

int ldnshread (ldPointer, SectionName, SectionHead)
LDFILE *ldPointer;
char *SectionName;
void *SectionHead;

Description
The ldshread subroutine reads the section header specified by the SectionIndex parameter of the
common object file currently associated with the ldPointer parameter into the area of memory beginning at
the location specified by the SectionHead parameter.

The ldnshread subroutine reads the section header named by the SectionName argument into the area of
memory beginning at the location specified by the SectionHead parameter. It is the responsibility of the
calling routine to provide a pointer to a buffer large enough to contain the section header of the associated
object file. Since the ldopen subroutine provides magic number information (via the HEADER(ldPointer
).f_magic macro), the calling application can always determine whether the SectionHead pointer should
refer to a 32-bit SCNHDR or 64-bit SCNHDR_64 structure.

Only the first section header named by the SectionName argument is returned by the ldshread
subroutine.

Parameters

ldPointer Points to an LDFILE structure that was returned as the result of a successful call to the
ldopen, lldopen, or ldaopen subroutine.

SectionIndex Specifies the index of the section header to be read.
Note: The first section has an index of 1.

SectionHead Points to a buffer large enough to accept either a 32-bit or a 64-bit SCNHDR structure,
according to the object mode of the file being read.

SectionName Specifies the name of the section header to be read.

Return Values
The ldshread and ldnshread subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldshread subroutine fails if the SectionIndex parameter is greater than the number of sections in the
object file. The ldnshread subroutine fails if there is no section with the name specified by the
SectionName parameter. Either function fails if it cannot read the specified section header.

Base Operating System (BOS) Runtime Services (A-P) 713

Examples
The following is an example of code that opens an object file, determines its mode, and uses the
ldnshread subroutine to acquire the .text section header. This code would be compiled with both
__XCOFF32__ and __XCOFF64__ defined:
#define __XCOFF32__
#define __XCOFF64__

#include <ldfcn.h>

/* for each FileName to be processed */

if ((ldPointer = ldopen(FileName, ldPointer)) != NULL)
{

SCNHDR SectionHead32;
SCNHDR_64 SectionHead64;
void *SectionHeader;

if (HEADER(ldPointer).f_magic == U802TOCMAGIC)
SectionHeader = &SectionHead32;

else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)
SectionHeader = &SectionHead64;

else
SectionHeader = NULL;

if (SectionHeader && (ldnshread(ldPointer, ".text", SectionHeader) == SUCCESS))
{

/* ...successfully read header... */
/* ...process according to magic number... */

}
}

Related Information
The ldahread (“ldahread Subroutine” on page 698) subroutine, ldfhread (“ldfhread Subroutine” on page
703) subroutine, ldgetname (“ldgetname Subroutine” on page 704) subroutine, ldlread, ldlinit, or ldlitem
(“ldlread, ldlinit, or ldlitem Subroutine” on page 706)subroutine, ldtbread (“ldtbread Subroutine” on page
716) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ldsseek or ldnsseek Subroutine

Purpose
Seeks to an indexed or named section of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldsseek (ldPointer, SectionIndex)

714 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LDFILE *ldPointer;
unsigned short SectionIndex;

int ldnsseek (ldPointer, SectionName)
LDFILE *ldPointer;
char *SectionName;

Description
The ldsseek subroutine seeks to the section specified by the SectionIndex parameter of the common
object file currently associated with the ldPointer parameter. The subroutine determines the object mode of
the associated file before seeking to the indicated section.

The ldnsseek subroutine seeks to the section specified by the SectionName parameter.

Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the
ldopen or ldaopen subroutine.

SectionIndex Specifies the index of the section whose line number entries are to be seeked to.
SectionName Specifies the name of the section whose line number entries are to be seeked to.

Return Values
The ldsseek and ldnsseek subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldsseek subroutine fails if the SectionIndex parameter is greater than the number of sections in the
object file. The ldnsseek subroutine fails if there is no section name corresponding with the SectionName
parameter. Either function fails if there is no section data for the specified section or if it cannot seek to the
specified section.

Note: The first section has an index of 1.

Related Information
The ldlseek or ldnlseek (“ldlseek or ldnlseek Subroutine” on page 707) subroutine, ldohseek (“ldohseek
Subroutine” on page 709) subroutine, ldrseek or ldnrseek (“ldrseek or ldnrseek Subroutine” on page 711)
subroutine, ldtbseek (“ldtbseek Subroutine” on page 717) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ldtbindex Subroutine

Purpose
Computes the index of a symbol table entry of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

Base Operating System (BOS) Runtime Services (A-P) 715

long ldtbindex (ldPointer)
LDFILE *ldPointer;

Description
The ldtbindex subroutine returns the index of the symbol table entry at the current position of the common
object file associated with the ldPointer parameter.

The index returned by the ldtbindex subroutine may be used in subsequent calls to the ldtbread
subroutine. However, since the ldtbindex subroutine returns the index of the symbol table entry that
begins at the current position of the object file, if the ldtbindex subroutine is called immediately after a
particular symbol table entry has been read, it returns the index of the next entry.

Parameters

ldPointer Points to the LDFILE structure that was returned as a result of a successful call to the ldopen or
ldaopen subroutine.

Return Values
The ldtbindex subroutine returns the value BADINDEX upon failure. Otherwise a value greater than or
equal to zero is returned.

Error Codes
The ldtbindex subroutine fails if there are no symbols in the object file or if the object file is not positioned
at the beginning of a symbol table entry.

Note: The first symbol in the symbol table has an index of 0.

Related Information
The ldtbread (“ldtbread Subroutine”) subroutine, ldtbseek (“ldtbseek Subroutine” on page 717) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

ldtbread Subroutine

Purpose
Reads an indexed symbol table entry of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldtbread (ldPointer, SymbolIndex, Symbol)
LDFILE *ldPointer;
long SymbolIndex;
void *Symbol;

716 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The ldtbread subroutine reads the symbol table entry specified by the SymbolIndex parameter of the
common object file currently associated with the ldPointer parameter into the area of memory beginning at
the Symbol parameter. It is the responsibility of the calling routine to provide a pointer to a buffer large
enough to contain the symbol table entry of the associated object file. Since the ldopen subroutine
provides magic number information (via the HEADER(ldPointer).f_magic macro), the calling application
can always determine whether the Symbol pointer should refer to a 32-bit SYMENT or 64-bit SYMENT_64
structure.

Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the
ldopen or ldaopen subroutine.

SymbolIndex Specifies the index of the symbol table entry to be read.
Symbol Points to a either a 32-bit or a 64-bit SYMENT structure.

Return Values
The ldtbread subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldtbread subroutine fails if the SymbolIndex parameter is greater than or equal to the number of
symbols in the object file, or if it cannot read the specified symbol table entry.

Note: The first symbol in the symbol table has an index of 0.

Related Information
The ldahread (“ldahread Subroutine” on page 698) subroutine, ldfhread (“ldfhread Subroutine” on page
703) subroutine, ldgetname (“ldgetname Subroutine” on page 704) subroutine, ldlread, ldlinit, or ldlitem
(“ldlread, ldlinit, or ldlitem Subroutine” on page 706) subroutine, ldshread or ldnshread (“ldshread or
ldnshread Subroutine” on page 712) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ldtbseek Subroutine

Purpose
Seeks to the symbol table of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldtbseek (ldPointer)
LDFILE *ldPointer;

Base Operating System (BOS) Runtime Services (A-P) 717

Description
The ldtbseek subroutine seeks to the symbol table of the common object file currently associated with the
ldPointer parameter.

Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the ldopen or
ldaopen subroutine.

Return Values
The ldtbseek subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldtbseek subroutine fails if the symbol table has been stripped from the object file or if the subroutine
cannot seek to the symbol table.

Related Information
The ldlseek or ldnlseek (“ldlseek or ldnlseek Subroutine” on page 707) subroutine, ldohseek (“ldohseek
Subroutine” on page 709) subroutine, ldrseek or ldnrseek (“ldrseek or ldnrseek Subroutine” on page 711)
subroutine, ldsseek or ldnsseek (“ldsseek or ldnsseek Subroutine” on page 714) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

lgamma, lgammaf, lgammal, lgammad32, lgammad64, and lgammad128
Subroutine

Purpose
Computes the log gamma.

Syntax
#include <math.h>

extern int signgam;

double lgamma (x)
double x;

float lgammaf (x)
float x;

long double lgammal (x)
long double x;
_Decimal32 lgammad32 (x)
_Decimal32 x;

_Decimal64 lgammad64 (x)
_Decimal64 x;

_Decimal128 lgammad128 (x)
_Decimal128 x;

718 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The sign of Gamma (x) is returned in the external integer signgam for the lgamma, lgammaf, and
lgammal subroutines.

The lgamma, lgammaf, and lgammal subroutines are not reentrant. A function that is not required to be
reentrant is not required to be thread-safe.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the lgamma, lgammaf, lgammal, lgammad32, lgammad64, and
lgammad128 subroutines return the logarithmic gamma of x.

If x is a non-positive integer, a pole error shall occur and the lgamma, lgammaf, lgammal, lgammad32,
lgammad64, and lgammad128 subroutines will return +HUGE_VAL, +HUGE_VALF, +HUGE_VALL,
+HUGE_VAL_D32, +HUGE_VAL_D64, and +HUGE_VAL_D128 respectively.

If the correct value would cause overflow, a range error shall occur and the lgamma, lgammaf, lgammal,
lgammad32, lgammad64, and lgammad128 subroutines will return ±HUGE_VAL, ±HUGE_VALF,
±HUGE_VALL, +HUGE_VAL_D32, +HUGE_VAL_D64, and +HUGE_VAL_D128 respectively.

If x is NaN, a NaN is returned.

If x is 1 or 2, +0 is returned.

If x is ±Inf, +Inf is returned.

Related Information
“exp, expf, expl, expd32, expd64, and expd128 Subroutines” on page 247, “feclearexcept Subroutine” on
page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite, isnan, or unordered
Subroutines” on page 168.

math.h in AIX 5L Version 5.3 Files Reference.

lineout Subroutine

Purpose
Formats a print line.

Library
None (provided by the print formatter)

Base Operating System (BOS) Runtime Services (A-P) 719

Syntax
#include <piostruct.h>

int lineout (fileptr)
FILE *fileptr;

Description
The lineout subroutine is invoked by the formatter driver only if the setup subroutine returns a non-null
pointer. This subroutine is invoked for each line of the document being formatted. The lineout subroutine
reads the input data stream from the fileptr parameter. It then formats and outputs the print line until it
recognizes a situation that causes vertical movement on the page.

The lineout subroutine should process all characters to be printed and all printer commands related to
horizontal movement on the page.

The lineout subroutine should not output any printer commands that cause vertical movement on the
page. Instead, it should update the vpos (new vertical position) variable pointed to by the shars_vars
structure that it shares with the formatter driver to indicate the new vertical position on the page. It should
also refresh the shar_vars variables for vertical increment and vertical decrement (reverse line-feed)
commands.

When the lineout subroutine returns, the formatter driver sends the necessary commands to the printer to
advance to the new vertical position on the page. This position is specified by the vpos variable. The
formatter driver automatically handles top and bottom margins, new pages, initial pages to be skipped, and
progress reports to the qdaemon daemon.

The following conditions can cause vertical movements:

v Line-feed control character or variable line-feed control sequence

v Vertical-tab control character

v Form-feed control character

v Reverse line-feed control character

v A line too long for the printer that wraps to the next line

Other conditions unique to a specific printer also cause vertical movement.

Parameters

fileptr Specifies a file structure for the input data stream.

Return Values
Upon successful completion, the lineout subroutine returns the number of bytes processed from the input
data stream. It excludes the end-of-file character and any control characters or escape sequences that
result only in vertical movement on the page (for example, line feed or vertical tab).

If a value of 0 is returned and the value in the vpos variable pointed to by the shars_vars structure has
not changed, or there are no more data bytes in the input data stream, the formatter driver assumes that
printing is complete.

If the lineout subroutine detects an error, it uses the piomsgout subroutine to issue an error message. It
then invokes the pioexit subroutine with a value of PIOEXITBAD.

720 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: If either the piocmdout or piogetstr subroutine detects an error, it automatically issues its own
error messages and terminates the print job.

Related Information
The piocmdout subroutine, pioexit subroutine, piogetstr subroutine, piomsgout subroutine, setup
subroutine.

Adding a New Printer Type to Your System and Printer Addition Management Subsystem: Programming
Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Print formatter example in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

link Subroutine

Purpose
Creates an additional directory entry for an existing file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int link (Path1, Path2)
const char *Path1, *Path2;

Description
The link subroutine creates an additional hard link (directory entry) for an existing file. Both the old and
the new links share equal access rights to the underlying object.

Parameters

Path1 Points to the path name of an existing file.
Path2 Points to the path name of the directory entry to be created.

Notes:

1. If Network File System (NFS) is installed on your system, these paths can cross into another node.

2. With hard links, both the Path1 and Path2 parameters must reside on the same file system. If Path1 is
a symbolic link, an error is returned. Creating links to directories requires root user authority.

Return Values
Upon successful completion, the link subroutine returns a value of 0. Otherwise, a value of -1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The link subroutine is unsuccessful if one of the following is true:

EACCES Indicates the requested link requires writing in a directory that denies write permission.

Base Operating System (BOS) Runtime Services (A-P) 721

EDQUOT Indicates the directory in which the entry for the new link is being placed cannot be extended, or disk
blocks could not be allocated for the link because the user or group quota of disk blocks or i-nodes on
the file system containing the directory has been exhausted.

EEXIST Indicates the link named by the Path2 parameter already exists.
EMLINK Indicates the file already has the maximum number of links.
ENOENT Indicates the file named by the Path1 parameter does not exist.
ENOSPC Indicates the directory in which the entry for the new link is being placed cannot be extended because

there is no space left on the file system containing the directory.
EPERM Indicates the file named by the Path1 parameter is a directory, and the calling process does not have

root user authority.
EROFS Indicates the requested link requires writing in a directory on a read-only file system.
EXDEV Indicates the link named by the Path2 parameter and the file named by the Path1 parameter are on

different file systems, or the file named by Path1 refers to a named STREAM.

The link subroutine can be unsuccessful for other reasons. See Appendix A, “Base Operating System
Error Codes for Services That Require Path-Name Resolution,” on page 1355 for a list of additional errors.

If NFS is installed on the system, the link subroutine is unsuccessful if the following is true:

ETIMEDOUT Indicates the connection timed out.

Related Information
The symlink subroutine, unlink subroutine.

The link or unlink command, ln command, rm command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

lio_listio or lio_listio64 Subroutine

The lio_listio or lio_listio64 subroutine includes information for the POSIX AIO lio_listio subroutine (as
defined in the IEEE std 1003.1-2001), and the Legacy AIO lio_listio subroutine.

POSIX AIO lio_listio Subroutine

Purpose
Initiates a list of asynchronous I/O requests with a single call.

Syntax
#include <aio.h>
int lio_listio(mode, list, nent, sig)
int mode;
struct aiocb *restrict const list[restrict];
int nent;
struct sigevent *restrict sig;

Description
The lio_listio subroutine initiates a list of I/O requests with a single function call.

The mode parameter takes one of the values (LIO_WAIT, LIO_NOWAIT or LIO_NOWAIT_AIOWAIT)
declared in <aio.h> and determines whether the subroutine returns when the I/O operations have been

722 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

completed, or as soon as the operations have been queued. If the mode parameter is set to LIO_WAIT,
the subroutine waits until all I/O is complete and the sig parameter is ignored.

If the mode parameter is set to LIO_NOWAIT or LIO_NOWAIT_AIOWAIT, the subroutine returns
immediately. If LIO_NOWAIT is set, asynchronous notification occurs, according to the sig parameter,
when all I/O operations complete. If sig is NULL, no asynchronous notification occurs. If sig is not NULL,
asynchronous notification occurs when all the requests in list have completed. If LIO_NOWAIT_AIOWAIT
is set, the aio_nwait subroutine must be called for the aio control blocks to be updated. For more
information, see the “aio_nwait Subroutine” on page 47.

The I/O requests enumerated by list are submitted in an unspecified order.

The list parameter is an array of pointers to aiocb structures. The array contains nent elements. The array
may contain NULL elements, which are ignored.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The supported
operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in <aio.h>. The
LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode element is equal to
LIO_READ, an I/O operation is submitted as if by a call to aio_read with the aiocbp equal to the address
of the aiocb structure. If the aio_lio_opcode element is equal to LIO_WRITE, an I/O operation is submitted
as if by a call to aio_write with the aiocbp argument equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a manner
identical to that of the corresponding aiocb structure when used by the aio_read and aio_write
subroutines.

The nent parameter specifies how many elements are members of the list.

The behavior of the lio_listio subroutine is altered according to the definitions of synchronized I/O data
integrity completion and synchronized I/O file integrity completion if synchronized I/O is enabled on the file
associated with aio_fildes .

For regular files, no data transfer occurs past the offset maximum established in the open file description.

Parameters

mode Determines whether the subroutine returns when the I/O operations are completed, or as soon as
the operations are queued.

list An array of pointers to aio control structures defined in the aio.h file.
nent Specifies the length of the array.
sig Determines when asynchronous notification occurs.

Execution Environment
The lio_listio and lio_listio64 subroutines can be called from the process environment only.

Base Operating System (BOS) Runtime Services (A-P) 723

Return Values

EAGAIN The resources necessary to queue all the I/O requests were not available. The
application may check the error status of each aiocb to determine the individual
request(s) that failed.

The number of entries indicated by nent would cause the system-wide limit (AIO_MAX)
to be exceeded.

EINVAL The mode parameter is not a proper value, or the value of nent was greater than
AIO_LISTIO_MAX.

EINTR A signal was delivered while waiting for all I/O requests to complete during an
LIO_WAIT operation. Since each I/O operation invoked by the lio_listio subroutine may
provoke a signal when it completes, this error return may be caused by the completion
of one (or more) of the very I/O operations being awaited. Outstanding I/O requests are
not canceled, and the application examines each list element to determine whether the
request was initiated, canceled, or completed.

EIO One or more of the individual I/O operations failed. The application may check the error
status for each aiocb structure to determine the individual request(s) that failed.

If the lio_listio subroutine succeeds or fails with errors of EAGAIN, EINTR, or EIO, some of the I/O
specified by the list may have been initiated. If the lio_listio subroutine fails with an error code other than
EAGAIN, EINTR, or EIO, no operations from the list were initiated. The I/O operation indicated by each list
element can encounter errors specific to the individual read or write function being performed. In this
event, the error status for each aiocb control block contains the associated error code. The error codes
that can be set are the same as would be set by the read or write subroutines, with the following
additional error codes possible:

EAGAIN The requested I/O operation was not queued due to resource limitations.
ECANCELED The requested I/O was canceled before the I/O completed due to an aio_cancel

request.
EFBIG The aio_lio_opcode argument is LIO_WRITE, the file is a regular file, aio_nbytes is

greater than 0, and aio_offset is greater than or equal to the offset maximum in the
open file description associated with aio_fildes.

EINPROGRESS The requested I/O is in progress.
EOVERFLOW The aio_lio_opcode argument is set to LIO_READ, the file is a regular file, aio_nbytes is

greater than 0, and the aio_offset argument is before the end-of-file and is greater than
or equal to the offset maximum in the open file description associated with aio_fildes.

Related Information
“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,
“aio_read or aio_read64 Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on page 55,
“aio_suspend or aio_suspend64 Subroutine” on page 58, “aio_write or aio_write64 Subroutine” on page
61, “close Subroutine” on page 176, “exec: execl, execle, execlp, execv, execve, execvp, or exect
Subroutine” on page 238, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245, “fork, f_fork, or
vfork Subroutine” on page 293, and “lseek, llseek or lseek64 Subroutine” on page 770.

The read, readx, readv, readvx, or pread Subroutine in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

Legacy AIO lio_listio Subroutine

Purpose
Initiates a list of asynchronous I/O requests with a single call.

724 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <aio.h>

int lio_listio (cmd,
list, nent, eventp)
int cmd, nent;
struct liocb * list[];
struct event * eventp;

int lio_listio64
(cmd, list,nent, eventp)
int cmd, nent; struct liocb64 *list;
struct event *eventp;

Description
The lio_listio subroutine allows the calling process to initiate the nent parameter asynchronous I/O
requests. These requests are specified in the liocb structures pointed to by the elements of the list array.
The call may block or return immediately depending on the cmd parameter. If the cmd parameter requests
that I/O completion be asynchronously notified, a SIGIO signal is delivered when all I/O operations are
completed.

The lio_listio64 subroutine is similar to the lio_listio subroutine except that it takes an array of pointers to
liocb64 structures. This allows the lio_listio64 subroutine to specify offsets in excess of OFF_MAX (2
gigbytes minus 1).

In the large file enabled programming environment, lio_listio is redefined to be lio_listio64.

Note: The pointer to the event structure eventp parameter is currently not in use, but is included for future
compatibility.

Base Operating System (BOS) Runtime Services (A-P) 725

Parameters

cmd The cmd parameter takes one of the following values:

LIO_WAIT
Queues the requests and waits until they are complete before returning.

LIO_NOWAIT
Queues the requests and returns immediately, without waiting for them to complete. The event
parameter is ignored.

LIO_NOWAIT_AIOWAIT
Queues the requests and returns immediately, without waiting for them to complete. The aio_nwait
subroutine must be called for the aio control blocks to be updated. Use of the aio_suspend
subroutine and the aio_cancel subroutine on these requests are not supported, nor is any form of
asynchronous notification for individual requests.

LIO_ASYNC
Queues the requests and returns immediately, without waiting for them to complete. An enhanced
signal is delivered when all the operations are completed. Currently this command is not
implemented.

LIO_ASIG
Queues the requests and returns immediately, without waiting for them to complete. A SIGIO signal
is generated when all the I/O operations are completed.

LIO_NOWAIT_GMCS
Queues the requests and returns immediately, without waiting for them to complete. The
GetMultipleCompletionStatus subroutine must be called to retrieve the completion status for the
requests. The aio control blocks are not updated. Use of the aio_suspend subroutine and the
aio_cancel subroutine on these requests are not supported, nor is any form of asynchronous
notification.

list Points to an array of pointers to liocb structures. The structure array contains nent elements:

lio_aiocb
The asynchronous I/O control block associated with this I/O request. This is an actual aiocb
structure, not a pointer to one.

lio_fildes
Identifies the file object on which the I/O is to be performed.

lio_opcode
This field may have one of the following values defined in the /usr/include/sys/aio.h file:

LIO_READ
Indicates that the read I/O operation is requested.

LIO_WRITE
Indicates that the write I/O operation is requested.

LIO_NOP
Specifies that no I/O is requested (that is, this element will be ignored).

nent Specifies the number of entries in the array of pointers to listio structures.
eventp Points to an event structure to be used when the cmd parameter is set to the LIO_ASYNC value. This

parameter is currently ignored.

Execution Environment
The lio_listio and lio_listio64 subroutines can be called from the process environment only.

Return Values
When the lio_listio subroutine is successful, it returns a value of 0. Otherwise, it returns a value of -1 and
sets the errno global variable to identify the error. The returned value indicates the success or failure of

726 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

the lio_listio subroutine itself and not of the asynchronous I/O requests (except when the command is
LIO_WAIT). The aio_error subroutine returns the status of each I/O request.

If the lio_listio subroutine succeeds or fails with errors of EAGAIN, EINTR, or EIO, some of the I/O
specified by the list might have been initiated. If the lio_listio subroutine fails with an error code other than
EAGAIN, EINTR, or EIO, no operations from the list were initiated. The I/O operation indicated by each list
element can encounter errors specific to the individual read or write function being performed. In this
event, the error status for each aiocb control block contains the associated error code. The error codes
that can be set are the same as would be set by the read or write subroutines, with the following additional
error codes possible:

EAGAIN Indicates that the system resources required to queue the request are not available. Specifically, the
transmit queue may be full, or the maximum number of opens may have been reached.

EINTR Indicates that a signal or event interrupted the lio_listio subroutine call.
EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is not valid.
EIO One or more of the individual I/O operations failed. The application can check the error status for each

aiocb structure to determine the individual request that failed.

Related Information
The aio_cancel or aio_cancel64 (“aio_cancel or aio_cancel64 Subroutine” on page 38) subroutine,
aio_error or aio_error64 (“aio_error or aio_error64 Subroutine” on page 42) subroutine, aio_read or
aio_read64 (“aio_read or aio_read64 Subroutine” on page 50) subroutine, aio_return or aio_return64
(“aio_return or aio_return64 Subroutine” on page 55) subroutine, aio_suspend or aio_suspend64
(“aio_suspend or aio_suspend64 Subroutine” on page 58) subroutine, aio_write or aio_write64 (“aio_write
or aio_write64 Subroutine” on page 61) subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in
AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

listea Subroutine

Purpose
Lists the extended attributes associated with a file.

Syntax
#include <sys/ea.h>

ssize_t listea(const char *path, char *list, size_t size);
ssize_t flistea (int filedes, char *list, size_t size);
ssize_t llistea (const char *path, char *list, size_t size);

Description
Extended attributes are name:value pairs associated with the file system objects (such as files, directories,
and symlinks). They are extensions to the normal attributes that are associated with all objects in the file
system (that is, the stat(2) data).

Do not define an extended attribute name with eight characters prefix "(0xF8)SYSTEM(0xF8)". Prefix
"(0xF8)SYSTEM(0xF8)" is reserved for system use only.

Note: The 0xF8 prefix represents a non-printable character.

Base Operating System (BOS) Runtime Services (A-P) 727

The listea subroutine retrieves the list of extended attribute names associated with the given path in the
file system. The list is the set of (NULL-terminated) names, one after the other. Names of extended
attributes to which the calling process does not have access might be omitted from the list. The length of
the attribute name list is returned. The flistea subroutine is identical to listea, except that it takes a file
descriptor instead of a path. The llistea subroutine is identical to listea, except, in the case of a symbolic
link, the link itself is interrogated, not the file that it refers to.

An empty buffer of size 0 can be passed into these calls to return the current size of the list of extended
attribute names, which can be used to estimate whether the size of a buffer is sufficiently large to hold the
list of names.

Parameters

path The path name of the file.
list A pointer to a buffer in which the list of attributes will be stored.
size The size of the buffer.
filedes A file descriptor for the file.

Return Values
If the listea subroutine succeeds, a nonnegative number is returned that indicates the length in bytes of
the attribute name list. Upon failure, -1 is returned and errno is set appropriately.

Error Codes

EACCES Caller lacks read permission on the base file, or lacks the appropriate ACL privileges for
named attribute read.

EFAULT A bad address was passed for path or list.
EFORMAT File system is capable of supporting EAs, but EAs are disabled.
ENOTSUP Extended attributes are not supported by the file system.
ERANGE The size of the value buffer is too small to hold the result.

Related Information
“getea Subroutine” on page 366, removeea Subroutine, setea Subroutine, stateea Subroutine.

llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 Subroutines

Purpose
Round to the nearest integer value using current rounding direction.

Syntax
#include <math.h>

long long llrint (x)
double x;

long long llrintf (x)
float x;

long long llrintl (x)
long double x;

long long llrintd32(x)
_Decimal32 x;

728 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

long long llrintd64(x)
_Decimal64 x;

long long llrintd128(x)
_Decimal128 x;

Description
The llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 subroutines round the x parameter to the
nearest integer value, according to the current rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be rounded.

Return Values
Upon successful completion, the llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 subroutines return
the rounded integer value.

If x is NaN, a domain error occurs, and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is −Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, a domain error occur and an
unspecified value is returned.

If the correct value is negative and too large to represent as a long long, a domain error occurs and an
unspecified value is returned.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in AIX 5L Version 5.3 Files Reference.

llround, llroundf, llroundl, llroundd32, llroundd64, and llroundd128
Subroutines

Purpose
Round to the nearest integer value.

Syntax
#include <math.h>

long long llround (x)
double x;

long long llroundf (x)

Base Operating System (BOS) Runtime Services (A-P) 729

float x;

long long llroundl (x)
long double x;

long long llroundd32(x)
_Decimal32 x;

long long llroundd64(x)
_Decimal64 x;

long long llroundd128(x)
_Decimal128 x;

Description
The llround, llroundf, llroundl, llroundd32, llroundd64, and llroundd128 subroutines round the x
parameter to the nearest integer value, rounding halfway cases away from zero, regardless of the current
rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be rounded.

Return Values
Upon successful completion, the llround, llroundf, llroundl, llroundd32, llroundd64, and llroundd128
subroutines return the rounded integer value.

If x is NaN, a domain error occurs, and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is –Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, a domain error occurs and an
unspecified value is returned.

If the correct value is negative and too large to represent as a long long, a domain error occurs and an
unspecified value is returned.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in AIX 5L Version 5.3 Files Reference.

load and loadAndInit Subroutines

Purpose
Loads a module into the current process.

730 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
int *load (ModuleName, Flags, LibraryPath)
char *ModuleName;
uint Flags;
char *LibraryPath;

int *loadAndInit (ModuleName, Flags, LibraryPath)
char *ModuleName;
uint Flags;
char *LibraryPath;

Description
The load and loadAndInit subroutines load the specified module into the calling process’s address space.
A module can be a regular file or a member of an archive. When adding a new module to the address
space of a 32-bit process, the load operation may cause the break value to change.

The load subroutine is not a preferred method to load C++ modules. Use loadAndInit subroutine instead.
The loadAndInit subroutine uses the same interface as load but performs C++ initialization.

The exec subroutine is similar to the load subroutine, except that:

v The load subroutine does not replace the current program with a new one.

v The exec subroutine does not have an explicit library path parameter; it has only the LIBPATH and
LD_LIBRARY_PATH environment variables. Also, these library path environment variables are ignored
when the program using the exec subroutine has more privilege than the caller (for example, in the
case of a set-UID program).

A large application can be split up into one or more modules in one of two ways that allow execution within
the same process. The first way is to create each of the application’s modules separately and use load to
explicitly load a module when it is needed. The other way is to specify the relationship between the
modules when they are created by defining imported and exported symbols.

Modules can import symbols from other modules. Whenever symbols are imported from one or more other
modules, these modules are automatically loaded to resolve the symbol references if the required modules
are not already loaded, and if the imported symbols are not specified as deferred imports. These modules
can be archive members in libraries or individual files and can have either shared or private file
characteristics that control how and where they are loaded.

Shared modules (typically members of a shared library archive) are loaded into the shared library region,
when their access permissions allow sharing, that is, when they have read-other permission. Private
modules, and shared modules without the required permissions for sharing, are loaded into the process
private region.

When the loader resolves a symbol, it uses the file name recorded with that symbol to find the module that
exports the symbol. If the file name contains any / (slash) characters, it is used directly and must name an
appropriate file or archive member. However, if the file name is a base name (contains no / characters),
the loader searches the directories specified in the default library path for a file (i.e. a module or an
archive) with that base name.

The LibraryPath is a string containing one or more directory path names separated by colons. See the
section “Searching for Dependent Modules” on page 732 for information on library path searching.

(This paragraph only applies to AIX 4.3.1 and previous releases.) When a process is executing under
ptrace control, portions of the process’s address space are recopied after the load processing completes.
For a 32-bit process, the main program text (loaded in segment 1) and shared library modules (loaded in
segment 13) are recopied. Any breakpoints or other modifications to these segments must be reinserted

Base Operating System (BOS) Runtime Services (A-P) 731

after the load call. For a 64-bit process, shared library modules are recopied after a load call. The
debugger will be notified by setting the W_SLWTED flag in the status returned by wait, so that it can
reinsert breakpoints.

(This paragraph only applies to AIX 4.3.2 and later releases.) When a process executing under ptrace
control calls load, the debugger is notified by setting the W_SLWTED flag in the status returned by wait.
Any modules newly loaded into the shared library segments will be copied to the process’s private copy of
these segments, so that they can be examined or modified by the debugger.

If the program calling the load subroutine was linked on AIX 4.2 or a later release, the load subroutine will
call initialization routines (init routines) for the new module and any of its dependents if they were not
already loaded.

Modules loaded by this subroutine are automatically unloaded when the process terminates or when the
exec subroutine is executed. They are explicitly unloaded by calling the unload subroutine.

Searching for Dependent Modules
The load operation and the exec operation differ slightly in their dependent module search mechanism.
When a module is added to the address space of a running process (the load operation), the rules
outlined in the next section are used to find the named module. Note that dependency relationships may
be loosely defined as a tree but recursive relationships between modules may also exist. The following
components may used to create a complete library search path:

1. If the L_LIBPATH_EXEC flag is set, the library search path used at exec-time.

2. The value of the LibraryPath parameter if it is non-null. Note that a null string is a valid search path
which refers to the current working directory. If the LibraryPath parameter is NULL, the value of the
LIBPATH environment variable, or alternatively the LD_LIBRARY_PATH environment variable (if
LIBPATH is not set), is used instead.

3. The library search path contained in the loader section of the module being loaded (the ModuleName
parameter).

4. The library search path contained in the loader section of the module whose immediate dependents
are being loaded. Note that this per-module information changes when searching for each module’s
immediate dependents.

To find the ModuleName module, components 1 and 2 are used. To find dependents, components 1, 2, 3
and 4 are used in order. Note that if any modules that are already part of the running process satisfy the
dependency requirements of the newly loaded module(s), pre-existing modules are not loaded again.

For each colon-separated portion of the aggregate search specification, if the base name is not found the
search continues. The first instance of the base name found is used; if the file is not of the proper form, or
in the case of an archive does not contain the required archive member, or does not export a definition of
a required symbol, an error occurs. The library path search is not performed when either a relative or an
absolute path name is specified for a dependent module.

The library search path stored within the module is specified at link-edit time.

The load subroutine may cause the calling process to fail if the module specified has a very long chain of
dependencies, (for example, lib1.a, which depends on lib2.a, which depends on lib3.a, etc). This is
because the loader processes such relationships recursively on a fixed-size stack. This limitation is
exposed only when processing a dependency chain that has over one thousand elements.

732 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

ModuleName Points to the name of the module to be loaded. The module name consists of a path name,
and, an optional member name. If the path name contains at least on / character, the name is
used directly, and no directory searches are performed to locate the file. If the path name
contains no / characters, it is treated as a base name, and should be in one of the directories
listed in the library path.

The library path is either the value of the LibraryPath parameter if not a null value, or the value
of the LIBPATH environment variable (if set; otherwise, LD_LIBRARY_PATH environment
variable, if set) or the library path used at process exec time (if the L_LIBPATH_EXEC is set).
If no library path is provided, the module should be in the current directory.

The ModuleName parameter may explicitly name an archive member. The syntax is
pathname(member) where pathname follows the rules specified in the previous paragraph, and
member is the name of a specific archive member. The parentheses are a required portion of
the specification and no intervening spaces are allowed. If an archive member is named, the
L_LOADMEMBER flag must be added to the Flags parameter. Otherwise, the entire
ModuleName parameter is treated as an explicit filename.

Flags Modifies the behavior of the load and the loadAndInit services as follows (see the ldr.h file). If
no special behavior is required, set the value of the flags parameter to 0 (zero). For
compatibility, a value of 1 (one) may also be specified.

L_LIBPATH_EXEC
Specifies that the library path used at process exec time should be prepended to any
library path specified in the load call (either as an argument or environment variable).
It is recommended that this flag be specified in all calls to the load subroutine.

L_LOADMEMBER

Indicates that the ModuleName parameter may specify an archive member. The
ModuleName argument is searched for parentheses, and if found the parameter is
treated as a filename/member name pair. If this flag is present and the ModuleName
parameter does not contain parenthesis the entire ModuleName parameter is treated
as a filename specification. Under either condition the filename is expected to be
found within the library path or the current directory.

L_NOAUTODEFER
Specifies that any deferred imports in the module being loaded must be explicitly
resolved by use of the loadbind subroutine. This allows unresolved imports to be
explicitly resolved at a later time with a specified module. If this flag is not specified,
deferred imports (marked for deferred resolution) are resolved at the earliest
opportunity when any subsequently loaded module exports symbols matching
unresolved imports.

LibraryPath Points to a character string that specifies the default library search path.

If the LibraryPath parameter is NULL, the LIBPATH environment variable is used, if set;
otherwise, the LD_LIBRARY_PATH environment variable is used. See the section “Searching
for Dependent Modules” on page 732 for more information.

The library path is used to locate dependent modules that are specified as basenames (that is,
their pathname components do not contain a / (slash) character.

Note the difference between setting the LibraryPath parameter to null, and having the
LibraryPath parameter point to a null string (″ ″). A null string is a valid library path which
consists of a single directory: the current directory.

Return Values
Upon successful completion, the load and loadAndInit subroutines return the pointer to function for the
entry point of the module. If the module has no entry point, the address of the data section of the module
is returned.

Base Operating System (BOS) Runtime Services (A-P) 733

Error Codes
If the load and loadAndInit subroutines fail, a null pointer is returned, the module is not loaded, and
errno global variable is set to indicate the error. The load and loadAndInit subroutines fail if one or more
of the following are true of a module to be explicitly or automatically loaded:

EACCES Indicates the file is not an ordinary file, or the mode of the program file denies execution
permission, or search permission is denied on a component of the path prefix.

EINVAL Indicates the file or archive member has a valid magic number in its header, but the header is
damaged or is incorrect for the machine on which the file is to be run.

ELOOP Indicates too many symbolic links were encountered in translating the path name.
ENOEXEC Indicates an error occurred when loading or resolving symbols for the specified module. This

can be due to an attempt to load a module with an invalid XCOFF header, a failure to resolve
symbols that were not defined as deferred imports or several other load time related
problems. The loadquery subroutine can be used to return more information about the load
failure. If the main program was linked on a AIX 4.2 or later system, and if runtime linking is
used, the load and the loadAndInit subroutines will fail if the runtime linker could not resolve
some symbols. In this case, errno will be set to ENOEXEC, but the loadquery subroutine
will not return any additional information.

ENOMEM Indicates the program requires more memory than is allowed by the system-imposed
maximum.

ETXTBSY Indicates the file is currently open for writing by some process.
ENAMETOOLONG Indicates a component of a path name exceeded 255 characters, or an entire path name

exceeded 1023 characters.
ENOENT Indicates a component of the path prefix does not exist, or the path name is a null value. For

the dlopen subroutine, RTLD_MEMBER is not used when trying to open a member within
the archive file.

ENOTDIR Indicates a component of the path prefix is not a directory.
ESTALE Indicates the process root or current directory is located in a virtual file system that has been

unmounted.

Related Information
The dlopen (“dlopen Subroutine” on page 219) subroutine, exec (“exec: execl, execle, execlp, execv,
execve, execvp, or exect Subroutine” on page 238) subroutine, loadbind (“loadbind Subroutine”)
subroutine, loadquery (“loadquery Subroutine” on page 736) subroutine, ptrace (“ptrace, ptracex,
ptrace64 Subroutine” on page 1317) subroutine, unload subroutine.

The ld command.

The Shared Library Overview and Subroutines Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

The Dynamically loading a shared library section in the XL C/C++ V8.0 for AIX Programming Guide book.

loadbind Subroutine

Purpose
Provides specific run-time resolution of a module’s deferred symbols.

Syntax
int loadbind(Flag, ExportPointer, ImportPointer)
int Flag;
void *ExportPointer, *ImportPointer;

734 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.xlcpp8a.doc/proguide/ref/dynamic_load.htm

Description
The loadbind subroutine controls the run-time resolution of a previously loaded object module’s
unresolved imported symbols.

The loadbind subroutine is used when two modules are loaded. Module A, an object module loaded at
run time with the load subroutine, has designated that some of its imported symbols be resolved at a later
time. Module B contains exported symbols to resolve module A’s unresolved imports.

To keep module A’s imported symbols from being resolved until the loadbind service is called, you can
specify the load subroutine flag, L_NOAUTODEFER, when loading module A.

(This paragraph only applies to AIX 4.3.1 and previous releases.) When a 32-bit process is executing
under ptrace control, portions of the process’s address space are recopied after the loadbind processing
completes. The main program text (loaded in segment 1) and shared library modules (loaded in segment
13) are recopied. Any breakpoints or other modifications to these segments must be reinserted after the
loadbind call.

(This paragraph only applies to AIX 4.3.2 and later releases.) When a 32-bit process executing under
ptrace control calls loadbind, the debugger is notified by setting the W_SLWTED flag in the status
returned by wait.

When a 64-bit process under ptrace control calls loadbind, the debugger is not notified and execution of
the process being debugged continues normally.

Parameters

Flag Currently not used.
ExportPointer Specifies the function pointer returned by the load subroutine when module B was loaded.
ImportPointer Specifies the function pointer returned by the load subroutine when module A was loaded.

Note: The ImportPointer or ExportPointer parameter may also be set to any exported static data area
symbol or function pointer contained in the associated module. This would typically be the function
pointer returned from the load of the specified module.

Return Values
A 0 is returned if the loadbind subroutine is successful.

Error Codes
A -1 is returned if an error is detected, with the errno global variable set to an associated error code:

EINVAL Indicates that either the ImportPointer or ExportPointer parameter is not valid (the pointer to the
ExportPointer or ImportPointer parameter does not correspond to a loaded program module or library).

ENOMEM Indicates that the program requires more memory than allowed by the system-imposed maximum.

After an error is returned by the loadbind subroutine, you may also use the loadquery subroutine to
obtain additional information about the loadbind error.

Related Information
The load (“load and loadAndInit Subroutines” on page 730)subroutine, loadquery (“loadquery Subroutine”
on page 736)subroutine, unload subroutine.

The ld command.

Base Operating System (BOS) Runtime Services (A-P) 735

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

loadquery Subroutine

Purpose
Returns error information from the load or exec subroutine; also provides a list of object files loaded for
the current process.

Syntax
int loadquery(Flags, Buffer, BufferLength)
int Flags;
void *Buffer;
unsigned int BufferLength;

Description
The loadquery subroutine obtains detailed information about an error reported on the last load or exec
subroutine executed by a calling process. The loadquery subroutine may also be used to obtain a list of
object file names for all object files that have been loaded for the current process, or the library path that
was used at process exec time.

Parameters

Buffer Points to a Buffer in which to store the information.
BufferLength Specifies the number of bytes available in the Buffer parameter.

736 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Flags Specifies the action of the loadquery subroutine as follows:

L_GETINFO
Returns a list of all object files loaded for the current process, and stores the list in the
Buffer parameter. The object file information is contained in a sequence of LD_INFO
structures as defined in the sys/ldr.h file. Each structure contains the module location in
virtual memory and the path name that was used to load it into memory. The file
descriptor field in the LD_INFO structure is not filled in by this function.

L_GETMESSAGE
Returns detailed error information describing the failure of a previously invoked load or
exec function, and stores the error message information in Buffer. Upon successful return
from this function the beginning of the Buffer contains an array of character pointers.
Each character pointer points to a string in the buffer containing a loader error message.
The character array ends with a null character pointer. Each error message string
consists of an ASCII message number followed by zero or more characters of
error-specific message data. Valid message numbers are listed in the sys/ldr.h file.

You can format the error messages returned by the L_GETMESSAGE function and write
them to standard error using the standard system command /usr/sbin/execerror as
follows:

char *buffer[1024];
buffer[0] = "execerror";
buffer[1] = "name of program that failed to load";
loadquery(L_GETMESSAGES, &buffer[2],\

sizeof buffer-2*sizeof(char*));
execvp("/usr/sbin/execerror",buffer);

This sample code causes the application to terminate after the messages are written to
standard error.

L_GETLIBPATH
Returns the library path that was used at process exec time. The library path is a null
terminated character string.

L_GETXINFO
Returns a list of all object files loaded for the current process and stores the list in the
Buffer parameter. The object file information is contained in a sequence of LD_XINFO
structures as defined in the sys/ldr.h file. Each structure contains the module location in
virtual memory and the path name that was used to load it into memory. The file
descriptor field in the LD_XINFO structure is not filled in by this function.

Return Values
Upon successful completion, loadquery returns the requested information in the caller’s buffer specified by
the Buffer and BufferLength parameters.

Error Codes
The loadquery subroutine returns with a return code of -1 and the errno global variable is set to one of
the following when an error condition is detected:

ENOMEM Indicates that the caller’s buffer specified by the Buffer and BufferLength parameters is too small to
return the information requested. When this occurs, the information in the buffer is undefined.

EINVAL Indicates the function specified in the Flags parameter is not valid.
EFAULT Indicates the address specified in the Buffer parameter is not valid.

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutine, load (“load and loadAndInit Subroutines” on page 730) subroutine, loadbind (“loadbind
Subroutine” on page 734) subroutine, unload subroutine.

Base Operating System (BOS) Runtime Services (A-P) 737

The ld command.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

The sys/ldr.h. file.

localeconv Subroutine

Purpose
Sets the locale-dependent conventions of an object.

Library
Standard C Library (libc.a)

Syntax
#include <locale.h>

struct lconv *localeconv ()

Description
The localeconv subroutine sets the components of an object using the lconv structure. The lconv
structure contains values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

The fields of the structure with the type char * are strings, any of which (except decimal_point) can point
to a null string, which indicates that the value is not available in the current locale or is of zero length. The
fields with type char are nonnegative numbers, any of which can be the CHAR_MAX value which
indicates that the value is not available in the current locale. The fields of the Iconv structure include the
following:

char *decimal_point The decimal-point character used to format non-monetary quantities.
char *thousands_sep The character used to separate groups of digits to the left of the

decimal point in formatted non-monetary quantities.
char *grouping A string whose elements indicate the size of each group of digits in

formatted non-monetary quantities.

The value of the grouping field is interpreted according to the following:

CHAR_MAX
No further grouping is to be performed.

0 The previous element is to be repeatedly used for the
remainder of the digits.

other The value is the number of digits that comprise the current
group. The next element is examined to determine the size of
the next group of digits to the left of the current group.

char *int_curr_symbol The international currency symbol applicable to the current locale,
left-justified within a four-character space-padded field. The character
sequences are in accordance with those specified in ISO 4217, ″Codes
for the Representation of Currency and Funds.″

char *currency_symbol The local currency symbol applicable to the current locale.
char *mon_decimal_point The decimal point used to format monetary quantities.
char *mon_thousands_sep The separator for groups of digits to the left of the decimal point in

formatted monetary quantities.

738 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

char *mon_grouping A string whose elements indicate the size of each group of digits in
formatted monetary quantities.

The value of the mon_grouping field is interpreted according to the
following:

CHAR_MAX
No further grouping is to be performed.

0 The previous element is to be repeatedly used for the
remainder of the digits.

other The value is the number of digits that comprise the current
group. The next element is examined to determine the size of
the next group of digits to the left of the current group.

char *positive_sign The string used to indicate a nonnegative formatted monetary quantity.
char *negative_sign The string used to indicate a negative formatted monetary quantity.
char int_frac_digits The number of fractional digits (those to the right of the decimal point)

to be displayed in a formatted monetary quantity.
char p_cs_precedes Set to 1 if the specified currency symbol (the currency_symbol or

int_curr_symbol field) precedes the value for a nonnegative formatted
monetary quantity and set to 0 if the specified currency symbol follows
the value for a nonnegative formatted monetary quantity.

char p_sep_by_space Set to 1 if the currency_symbol or int_curr_symbol field is separated by
a space from the value for a nonnegative formatted monetary quantity
and set to 0 if the currency_symbol or int_curr_symbol field is not
separated by a space from the value for a nonnegative formatted
monetary quantity.

char n_cs_precedes Set to 1 if the currency_symbol or int_curr_symbol field precedes the
value for a negative formatted monetary quantity and set to 0 if the
currency_symbol or int_curr_symbol field follows the value for a
negative formatted monetary quantity.

char n_sep_by_space Set to 1 if the currency_symbol or int_curr_symbol field is separated by
a space from the value for a negative formatted monetary quantity and
set to 0 if the currency_symbol or int_curr_symbol field is not
separated by a space from the value for a negative formatted monetary
quantity. Set to 2 if the symbol and the sign string are adjacent and
separated by a blank character.

char p_sign_posn Set to a value indicating the positioning of the positive sign (the
positive_sign fields) for nonnegative formatted monetary quantity.

char n_sign_posn Set to a value indicating the positioning of the negative sign (the
negative_sign fields) for a negative formatted monetary quantity.

The values of the p_sign_posn and n_sign_posn fields are interpreted
according to the following definitions:

0 Parentheses surround the quantity and the specified currency
symbol or international currency symbol.

1 The sign string precedes the quantity and the currency symbol
or international currency symbol.

2 The sign string follows the quantity and currency symbol or
international currency symbol.

3 The sign string immediately precedes the currency symbol or
international currency symbol.

4 The sign string immediately follows the currency symbol or
international currency symbol.

Base Operating System (BOS) Runtime Services (A-P) 739

The following table illustrates the rules that can be used by three countries to format monetary quantities:

Country Formats

Italy
Positive Format:

L.1234

Negative Format:
-L.1234

International Format:
ITL.1234

Norway
Positive Format:

krl.234.56

Negative Format:
krl.234.56-

International Format:
NOK 1.234.56

Switzerland
Positive Format:

SFrs.1.234.56

Negative Format:
SFrs.1.234.56C

International Format:
CHF 1.234.56

The following table shows the values of the monetary members of the structure returned by the
localeconv subroutine for these countries:

struct localeconv Countries

char *in_curr_symbol
Italy: ″ITL.″

Norway:
″NOK″

Switzerland:
″CHF″

char *currency_symbol
Italy: ″L.″

Norway:
″kr″

Switzerland:
″SFrs.″

char *mon_decimal_point
Italy: ″ ″

Norway:
″.″

Switzerland:
″.″

740 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

struct localeconv Countries

char *mon_thousands_sep
Italy: ″.″

Norway:
″.″

Switzerland:
″.″

char *mon_grouping
Italy: ″\3″

Norway:
″\3″

Switzerland:
″\3″

char *positive_sign
Italy: ″ ″

Norway:
″ ″

Switzerland:
″ ″

char *negative_sign
Italy: ″_″

Norway:
″_″

Switzerland:
″C″

char int_frac_digits
Italy: 0

Norway:
2

Switzerland:
2

char frac_digits
Italy: 0

Norway:
2

Switzerland:
2

char p_cs_precedes
Italy: 1

Norway:
1

Switzerland:
1

char p_sep_by_space
Italy: 0

Norway:
0

Switzerland:
0

Base Operating System (BOS) Runtime Services (A-P) 741

struct localeconv Countries

char n_cs_precedes
Italy: 1

Norway:
1

Switzerland:
1

char n_sep_by_space
Italy: 0

Norway:
0

Switzerland:
0

char p_sign_posn
Italy: 1

Norway:
1

Switzerland:
1

char n_sign_posn
Italy: 1

Norway:
2

Switzerland:
2

Return Values
A pointer to the filled-in object is returned. In addition, calls to the setlocale subroutine with the LC_ALL,
LC_MONETARY or LC_NUMERIC categories may cause subsequent calls to the localeconv subroutine
to return different values based on the selection of the locale.

Note: The structure pointed to by the return value is not modified by the program but may be overwritten
by a subsequent call to the localeconv subroutine.

Related Information
The “nl_langinfo Subroutine” on page 911, rpmatch subroutine, setlocale subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview and Setting the Locale in AIX 5L Version 5.3 National Language
Support Guide and Reference.

lockfx, lockf, flock, or lockf64 Subroutine

Purpose
Locks and unlocks sections of open files.

742 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Libraries
lockfx, lockf: Standard C Library (libc.a)

flock: Berkeley Compatibility Library (libbsd.a)

Syntax
#include <fcntl.h>

int lockfx (FileDescriptor,
Command, Argument)
int FileDescriptor;
int Command;
struct flock * Argument;

#include <sys/lockf.h>
#include <unistd.h>

int lockf
(FileDescriptor, Request, Size)
int FileDescriptor;
int Request;
off_t Size;

int lockf64 (FileDescriptor,
Request, Size)
int FileDescriptor;
int Request;
off64_t Size;

#include <sys/file.h>

int flock (FileDescriptor, Operation)
int FileDescriptor;
int Operation;

Description
Attention: Buffered I/O does not work properly when used with file locking. Do not use the standard I/O
package routines on files that are going to be locked.

The lockfx subroutine locks and unlocks sections of an open file. The lockfx subroutine provides a subset
of the locking function provided by the fcntl (“fcntl, dup, or dup2 Subroutine” on page 257) subroutine.

The lockf subroutine also locks and unlocks sections of an open file. However, its interface is limited to
setting only write (exclusive) locks.

Although the lockfx, lockf, flock, and fcntl interfaces are all different, their implementations are fully
integrated. Therefore, locks obtained from one subroutine are honored and enforced by any of the lock
subroutines.

The Operation parameter to the lockfx subroutine, which creates the lock, determines whether it is a read
lock or a write lock.

The file descriptor on which a write lock is being placed must have been opened with write access.

lockf64 is equivalent to lockf except that a 64-bit lock request size can be given. For lockf, the largest
value which can be used is OFF_MAX, for lockf64, the largest value is LONGLONG_MAX.

Base Operating System (BOS) Runtime Services (A-P) 743

In the large file enabled programming environment, lockf is redefined to be lock64.

The flock subroutine locks and unlocks entire files. This is a limited interface maintained for BSD
compatibility, although its behavior differs from BSD in a few subtle ways. To apply a shared lock, the file
must be opened for reading. To apply an exclusive lock, the file must be opened for writing.

Locks are not inherited. Therefore, a child process cannot unlock a file locked by the parent process.

Parameters

Argument A pointer to a structure of type flock, defined in the flock.h file.
Command Specifies one of the following constants for the lockfx subroutine:

F_SETLK
Sets or clears a file lock. The l_type field of the flock structure indicates
whether to establish or remove a read or write lock. If a read or write lock
cannot be set, the lockfx subroutine returns immediately with an error value of
-1.

F_SETLKW
Performs the same function as F_SETLK unless a read or write lock is blocked
by existing locks. In that case, the process sleeps until the section of the file is
free to be locked.

F_GETLK
Gets the first lock that blocks the lock described in the flock structure. If a lock
is found, the retrieved information overwrites the information in the flock
structure. If no lock is found that would prevent this lock from being created, the
structure is passed back unchanged except that the l_type field is set to
F_UNLCK.

FileDescriptor A file descriptor returned by a successful open or fcntl subroutine, identifying the file to
which the lock is to be applied or removed.

Operation Specifies one of the following constants for the flock subroutine:

LOCK_SH
Apply a shared (read) lock.

LOCK_EX
Apply an exclusive (write) lock.

LOCK_NB
Do not block when locking. This value can be logically ORed with either
LOCK_SH or LOCK_EX.

LOCK_UN
Remove a lock.

744 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Request Specifies one of the following constants for the lockf subroutine:

F_ULOCK
Unlocks a previously locked region in the file.

F_LOCK
Locks the region for exclusive (write) use. This request causes the calling
process to sleep if the requested region overlaps a locked region, and to resume
when granted the lock.

F_TEST
Tests to see if another process has already locked a region. The lockf
subroutine returns 0 if the region is unlocked. If the region is locked, then -1 is
returned and the errno global variable is set to EACCES.

F_TLOCK
Locks the region for exclusive use if another process has not already locked the
region. If the region has already been locked by another process, the lockf
subroutine returns a -1 and the errno global variable is set to EACCES.

Size The number of bytes to be locked or unlocked for the lockf subroutine. The region starts
at the current location in the open file, and extends forward if the Size value is positive
and backward if the Size value is negative. If the Size value is 0, the region starts at the
current location and extends forward to the maximum possible file size, including the
unallocated space after the end of the file.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The lockfx, lockf, and flock subroutines fail if one of the following is true:

EBADF The FileDescriptor parameter is not a valid open file descriptor.
EINVAL The function argument is not one of F_LOCK, F_TLOCK, F_TEST or F_ULOCK; or size plus the

current file offset is less than 0.
EINVAL An attempt was made to lock a fifo or pipe.
EDEADLK The lock is blocked by a lock from another process. Putting the calling process to sleep while

waiting for the other lock to become free would cause a deadlock.
ENOLCK The lock table is full. Too many regions are already locked.
EINTR The command parameter was F_SETLKW and the process received a signal while waiting to

acquire the lock.
EOVERFLOW The offset of the first, or if size is not 0 then the last, byte in the requested section cannot be

represented correctly in an object of type off_t.

The lockfx and lockf subroutines fail if one of the following is true:

EACCES The Command parameter is F_SETLK, the l_type field is F_RDLCK, and the segment of the file to be
locked is already write-locked by another process.

EACCES The Command parameter is F_SETLK, the l_type field is F_WRLCK, and the segment of a file to be
locked is already read-locked or write-locked by another process.

The flock subroutine fails if the following is true:

EWOULDBLOCK The file is locked and the LOCK_NB option was specified.

Base Operating System (BOS) Runtime Services (A-P) 745

Related Information
The close (“close Subroutine” on page 176) subroutine, exec: execl, execv, execle, execlp, execvp, or
exect (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238) subroutine,
fcntl (“fcntl, dup, or dup2 Subroutine” on page 257) subroutine, fork (“fork, f_fork, or vfork Subroutine” on
page 293) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on
page 939) subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

log10, log10f, log10l, log10d32, log10d64, and log10d128 Subroutine

Purpose
Computes the Base 10 logarithm.

Syntax
#include <math.h>

float log10f (x)
float x;

long double log10l (x)
long double x;

double log10 (x)
double x;
_Decimal32 log10d32 (x)
_Decimal32 x;

_Decimal64 log10d64 (x)
_Decimal64 x;

_Decimal128 log10d128 (x)
_Decimal128 x;

Description
The log10f, log10l, log10, log10d32, log10d64, and log10d128 subroutines compute the base 10
logarithm of the x parameter, log10 (x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the log10, log10f, log10l, log10d32, log10d64, and log10d128 subroutines
return the base 10 logarithm of x.

If x is ±0, a pole error occurs and log10, log10f, log10l, log10d32, log10d64, and log10d128 subroutines
return -HUGE_VAL, -HUGE_VALF, -HUGE_VALL, HUGE_VAL_D32, HUGE_VAL_D64, and
HUGE_VAL_D128 respectively.

746 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

For finite values of x that are less than 0, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, +Inf is returned.

Error Codes
When using the libm.a library:

log10 If the x parameter is less than 0, the log10 subroutine returns a NaNQ value and sets errno to EDOM.
If x= 0, the log10 subroutine returns a -HUGE_VAL value and sets errno to ERANGE.

When using libmsaa.a(-lmsaa):

log10 If the x parameter is not positive, the log10 subroutine returns a -HUGE_VAL value and sets errno
to EDOM. A message indicating DOMAIN error (or SING error when x = 0) is output to standard
error.

log10 If x < 0, log10l returns the value NaNQ and sets errno to EDOM. If x equals 0, log10l returns the
value -HUGE_VAL but does not modify errno.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, “class, _class, finite,
isnan, or unordered Subroutines” on page 168, and “madd, msub, mult, mdiv, pow, gcd, invert, rpow,
msqrt, mcmp, move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or itom Subroutine” on page
789.

math.h in AIX 5L Version 5.3 Files Reference.

log1p, log1pf, log1pl, log1pd32, log1pd64, and log1pd128 Subroutines

Purpose
Computes a natural logarithm.

Syntax
#include <math.h>

float log1pf (x)
float x;

long double log1pl (x)
long double x;

double log1p (x)
double x;
_Decimal32 log1pd32 (x)
_Decimal32 x;

_Decimal64 log1pd64 (x)
_Decimal64 x;

_Decimal128 log1pd128 (x)
_Decimal128 x;

Base Operating System (BOS) Runtime Services (A-P) 747

Description
The log1pf, log1pl, log1p, log1pd32, log1pd64, and log1pd128 subroutines compute loge (1.0 + x).

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the log1pf, log1pl, log1p, log1pd32, log1pd64, and log1pd128 subroutines
return the natural logarithm of 1.0 + x.

If x is -1, a pole error occurs and the log1pf, log1pl, log1p, log1pd32, log1pd64, and log1pd128
subroutines return -HUGE_VALF, -HUGE_VALL, -HUGE_VAL, -HUGE_VAL_D32, -HUGE_VAL_D64, and
-HUGE_VAL_D128 respectively.

For finite values of x that are less than -1, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is ±0, or +Inf, x is returned.

If x is subnormal, a range error may occur and x should be returned.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in AIX 5L Version 5.3 Files Reference.

log2, log2f, log2l, log2d32, log2d64, and log2d128 Subroutine

Purpose
Computes base 2 logarithm.

Syntax
#include <math.h>

double log2 (x)
double x;

float log2f (x)
float x;

long double log2l (x)
long double x;
_Decimal32 log2d32 (x)
_Decimal32 x;

_Decimal64 log2d64 (x)

748 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

_Decimal64 x;

_Decimal128 log2d128 (x)
_Decimal128 x;

Description
The log2, log2f, log2l, log2d32, log2d64, and log2d128 subroutines compute the base 2 logarithm of the
x parameter, log2 (x).

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the log2, log2f, log2l, log2d32, log2d64, and log2d128 subroutines return
the base 2 logarithm of x.

If x is ±0, a pole error occurs and the log2, log2f, log2l, log2d32, log2d64, and log2d128 subroutines
return -HUGE_VAL, -HUGE_VALF, -HUGE_VALL, -HUGE_VAL_D32, -HUGE_VAL_D64, and
-HUGE_VAL_D128 respectively.

For finite values of x that are less than 0, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, x is returned.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in AIX 5L Version 5.3 Files Reference.

logbd32, logbd64, and logbd128 Subroutines

Purpose
Computes the radix-independent exponent.

Syntax
#include <math.h>

_Decimal32 logbd32 (x)
_Decimal32 x;

_Decimal64 logbd64 (x)

Base Operating System (BOS) Runtime Services (A-P) 749

_Decimal64 x;

_Decimal128 logbd128 (x)
_Decimal128 x;

Description
The logbd32, logbd64, and logbd128 subroutines compute the exponent of x, which is the integral part of
logr | x |, as a signed floating-point value, for nonzero x, where r is the radix of the machine’s decimal
floating-point arithmetic. For AIX, FLT_RADIX r=10.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the logbd32, logbd64, and logbd128 subroutines return the exponent of x.

If x is ±0, a pole error occurs and the logbd32, logbd64, and logbd128 subroutines return
-HUGE_VAL_D32, -HUGE_VAL_D64, and -HUGE_VAL_D128, respectively.

If x is NaN, a NaN is returned.

If x is ±Inf, +Inf is returned.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in AIX 5L Version 5.3 Files Reference.

ilogbd32, ilogbd64, and ilogbd128 Subroutines

Purpose
Returns an unbiased exponent.

Syntax
#include <math.h>

int ilogbd32 (x)
_Decimal32 x;

int ilogbd64 (x)
_Decimal64 x;

int ilogbd128 (x)
_Decimal128 x;

Description
The ilogbd32, ilogbd64, and ilogbd128 subroutines return the integral part of logr | x | as a signed
integral value, for nonzero x, where r is the radix of the machine’s floating-point arithmetic (r=10).

750 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the ilogbd32, ilogbd64, and ilogbd128 subroutines return the exponent part
of x as a signed integer value. They are equivalent to calling the corresponding logb functions and casting
the returned value to type int.

If x is 0, a domain error occurs, and the value FP_ILOGB0 is returned.

If x is ±Inf, a domain error occurs, and the value {INT_MAX} is returned.

If x is a NaN, a domain error occurs, and the value FP_ILOGBNAN is returned.

If the correct value is greater than {INT_MAX}, {INT_MAX} is returned and a domain error occurs.

If the correct value is less than {INT_MIN}, {INT_MIN} is returned and a domain error occurs.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in in AIX 5L Version 5.3 Files Reference.

logbf, logbl, or logb Subroutine

Purpose
Computes the radix-independent exponent.

Syntax
#include <math.h>

float logbf (x)
float x;

long double logbl (x)
long double x;

double logb(x)
double x;

Description
The logbf and logbl subroutines compute the exponent of x, which is the integral part of logr | x |, as a
signed floating-point value, for nonzero x, where r is the radix of the machine’s floating-point arithmetic.
For AIX, FLT_RADIX r=2.

If x is subnormal, it is treated as though it were normalized; thus for finite positive x:
1 <= x * FLT_RADIX-logb(x) < FLT_RADIX

Base Operating System (BOS) Runtime Services (A-P) 751

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Note: When the x parameter is finite and not zero, the logb (x) subroutine satisfies the following equation:
1 < = scalb (|x|, -(int) logb (x)) < 2

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the logbf and logbl subroutines return the exponent of x.

If x is ±0, a pole error occurs and the logbf and logbl subroutines return -HUGE_VALF and
-HUGE_VALL, respectively.

If x is NaN, a NaN is returned.

If x is ±Inf, +Inf is returned.

Error Codes
The logb function returns -HUGE_VAL when the x parameter is set to a value of 0 and sets errno to
EDOM.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in AIX 5L Version 5.3 Files Reference.

log, logf, logl, logd32, logd64, and logd128 Subroutines

Purpose
Computes the natural logarithm.

Syntax
#include <math.h>

float logf (x)
float x;

long double logl (x)
long double x;

double log (x)
double x;
_Decimal32 logd32 (x)
_Decimal32 x;

_Decimal64 logd64 (x)
_Decimal64 x;

_Decimal128 logd128 (x)
_Decimal128 x;

752 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The logf, logl, log, logd32, logd64, and logd128 subroutines compute the natural logarithm of the x
parameter, loge (x).

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the logf, logl, log, logd32, logd64, and logd128 subroutines return the
natural logarithm of x.

If x is ±0, a pole error occurs and the logf, logl, and log subroutines return -HUGE_VALF and
-HUGE_VALL, -HUGE_VAL, HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

For finite values of x that are less than 0, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, x is returned.

Error Codes
When using the libm.a library:

log If the x parameter is less than 0, the log subroutine returns a NaNQ value and sets errno to EDOM. If
x= 0, the log subroutine returns a -HUGE_VAL value but does not modify errno.

When using libmsaa.a(-lmsaa):

log If the x parameter is not positive, the log subroutine returns a -HUGE_VAL value, and sets errno to
a EDOM value. A message indicating DOMAIN error (or SING error when x = 0) is output to
standard error.

log If x<0, the logl subroutine returns a NaNQ value

Related Information
“exp, expf, expl, expd32, expd64, and expd128 Subroutines” on page 247, “feclearexcept Subroutine” on
page 267, “fetestexcept Subroutine” on page 275, “class, _class, finite, isnan, or unordered Subroutines”
on page 168, and “log10, log10f, log10l, log10d32, log10d64, and log10d128 Subroutine” on page 746.

math.h in AIX 5L Version 5.3 Files Reference.

Base Operating System (BOS) Runtime Services (A-P) 753

loginfailed Subroutine

Purpose
Records an unsuccessful login attempt.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int loginfailed (User, Host, Tty, Reason)
char *User;
char *Host;
char *Tty;
int Reason;

Note: This subroutine is not thread-safe.

Description
The loginfailed subroutine performs the processing necessary when an unsuccessful login attempt
occurs. If the specified user name is not valid, the UNKNOWN_USER value is substituted for the user
name. This substitution prevents passwords entered as the user name from appearing on screen.

The following attributes in /etc/security/lastlog file are updated for the specified user, if the user name is
valid:

time_last_unsuccessful_login Contains the current time.
tty_last_unsuccessful_login Contains the value specified by the Tty parameter.
host_last_unsuccessful_login Contains the value specified by the Host parameter, or the

local hostname if the Host parameter is a null value.
unsuccessful_login_count Indicates the number of unsuccessful login attempts. The

loginfailed subroutine increments this attribute by one for
each failed attempt.

A login failure audit record is cut to indicate that an unsuccessful login attempt occurred. A utmp entry is
appended to /etc/security/failedlogin file, which tracks all failed login attempts.

If the current unsuccessful login and the previously recorded unsuccessful logins constitute too many
unsuccessful login attempts within too short of a time period (as specified by the logindisable and
logininterval port attributes), the port is locked. When a port is locked, a PORT_Locked audit record is
written to inform the system administrator that the port has been locked.

If the login retry delay is enabled (as specified by the logindelay port attribute), a sleep occurs before this
subroutine returns. The length of the sleep (in seconds) is determined by the logindelay value multiplied
by the number of unsuccessful login attempts that occurred in this process.

Parameters

User Specifies the user’s login name who has unsuccessfully attempted to login.
Host Specifies the name of the host from which the user attempted to login. If the Host parameter is Null, the

name of the local host is used.
Tty Specifies the name of the terminal on which the user attempted to login.

754 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Reason Specifies a reason code for the login failure. Valid values are AUDIT_FAIL and AUDIT_FAIL_AUTH
defined in the sys/audit.h file.

Security
Access Control: The calling process must have access to the account information in the user database
and the port information in the port database.

File Accessed:

Mode File
r /etc/security/user
rw /etc/security/lastlog
r /etc/security/login.cfg
rw /etc/security/portlog
w /etc/security/failedlogin

Auditing Events:

Event Information
USER_Login username
PORT_Locked portname

Return Values
Upon successful completion, the loginfailed subroutine returns a value of 0. If an error occurs, a value of
-1 is returned and errno is set to indicate the error.

Error Codes
The loginfailed subroutine fails if one or more of the following values is true:

EACCES The current process does not have access to the user or port database.
EPERM The current process does not have permission to write an audit record.

Related Information
The authenticate (“authenticate Subroutine” on page 114) subroutine, getpcred (“getpcred Subroutine” on
page 405) subroutine, getpenv (“getpenv Subroutine” on page 407) subroutine, loginrestrictions
(“loginrestrictions Subroutine”) subroutine, loginsuccess (“loginsuccess Subroutine” on page 761)
subroutine, setpcred subroutine, setpenv subroutine.

List of Security and Auditing Services in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

loginrestrictions Subroutine

Purpose
Determines if a user is allowed to access the system.

Base Operating System (BOS) Runtime Services (A-P) 755

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
#include <login.h>

int loginrestrictions (Name, Mode, Tty, Msg)
char * Name;
int Mode;
char * Tty;
char ** Msg;

Note: This subroutine is not thread-safe.

Description
The loginrestrictions subroutine determines if the user specified by the Name parameter is allowed to
access the system. The Mode parameter gives the mode of account usage and the Tty parameter defines
the terminal used for access. The Msg parameter returns an informational message explaining why the
loginrestrictions subroutine failed.

This subroutine is unsuccessful if any of the following conditions exists:

v The user’s account has expired as defined by the expires user attribute.

v The user’s account has been locked as defined by the account_locked user attribute.

v The user attempted too many unsuccessful logins as defined by the loginretries user attribute.

v The user is not allowed to access the given terminal as defined by the ttys user attribute.

v The user is not allowed to access the system at the present time as defined by the logintimes user
attribute.

v The Mode parameter is set to the S_LOGIN value or the S_RLOGIN value, and too many users are
logged in as defined by the maxlogins system attribute.

v The Mode parameter is set to the S_LOGIN value and the user is not allowed to log in as defined by
the login user attribute.

v The Mode parameter is set to the S_RLOGIN value and the user is not allowed to log in from the
network as defined by the rlogin user attribute.

v The Mode parameter is set to the S_SU value and other users are not allowed to use the su command
as defined by the su user attribute, or the group ID of the current process cannot use the su command
to switch to this user as defined by the sugroups user attribute.

v The Mode parameter is set to the S_DAEMON value and the user is not allowed to run processes from
the cron or src subsystem as defined by the daemon user attribute.

v The terminal is locked as defined by the locktime port attribute.

v The user cannot use the terminal to access the system at the present time as defined by the
logintimes port attribute.

v The user is not the root user and the /etc/nologin file exists.

Note: The loginrestrictions subroutine is not safe in a multi-threaded environment. To use
loginrestrictions in a threaded application, the application must keep the integrity of each thread.

Parameters

Name Specifies the user’s login name whose account is to be validated.

756 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Mode Specifies the mode of usage. Valid values as defined in the login.h file are listed below. The Mode
parameter has a value of 0 or one of the following values:

S_LOGIN
Verifies that local logins are permitted for this account.

S_SU Verifies that the su command is permitted and the current process has a group ID that can invoke
the su command to switch to the account.

S_DAEMON
Verifies the account can invoke daemon or batch programs through the src or cron subsystems.

S_RLOGIN
Verifies the account can be used for remote logins through the rlogind or telnetd programs.

Tty Specifies the terminal of the originating activity. If this parameter is a null pointer or a null string, no tty origin
checking is done.

Msg Returns an informative message indicating why the loginrestrictions subroutine failed. Upon return, the
value is either a pointer to a valid string within memory allocated storage or a null value. If a message is
displayed, it is provided based on the user interface.

Security
Access Control:The calling process must have access to the account information in the user database and
the port information in the port database.

File Accessed:

Mode Files
r /etc/security/user
r /etc/security/login.cfg
r /etc/security/portlog
r /etc/passwd

Return Values
If the account is valid for the specified usage, the loginrestrictions subroutine returns a value of 0.
Otherwise, a value of -1 is returned, the errno global value is set to the appropriate error code, and the
Msg parameter returns an informative message explaining why the specified account usage is invalid.

Error Codes
The loginrestrictions subroutine fails if one or more of the following values is true:

ENOENT The user specified does not have an account.
ESTALE The user’s account is expired.
EPERM The user’s account is locked, the specified terminal is locked, the user has had too many unsuccessful

login attempts, or the user cannot log in because the /etc/nologin file exists.
EACCES One of the following conditions exists:

v The specified terminal does not have access to the specified account.

v The Mode parameter is the S_SU value and the current process is not permitted to use the su
command to access the specified user.

v Access to the account is not permitted in the specified mode.

v Access to the account is not permitted at the current time.

v Access to the system with the specified terminal is not permitted at the current time.
EAGAIN The Mode parameter is either the S_LOGIN value or the S_RLOGIN value, and all the user licenses are

in use.
EINVAL The Mode parameter has a value other than S_LOGIN, S_SU, S_DAEMON, S_RLOGIN, or 0.

Base Operating System (BOS) Runtime Services (A-P) 757

Related Information
The authenticate (“authenticate Subroutine” on page 114) subroutine, getpcred (“getpcred Subroutine” on
page 405) subroutine, getpenv (“getpenv Subroutine” on page 407) subroutine, loginfailed (“loginfailed
Subroutine” on page 754) subroutine, loginsuccess (“loginsuccess Subroutine” on page 761) subroutine,
setpcred subroutine, setpenv subroutine.

The cron daemon.

The login command, rlogin command, telnet, tn, or tn3270 command, su command.

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

loginrestrictionsx Subroutine

Purpose
Determines, in multiple methods, if a user is allowed to access the system.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
#include <login.h>

int loginrestrictionsx (Name, Mode, Tty, Message, State)
char * Name;
int Mode;
char *Tty;
char **Message;
char **State;

Description
The loginrestrictionsx subroutine determines if the user specified by the Name parameter is allowed to
access the system. The Mode parameter gives the mode of account usage, and the Tty parameter defines
the terminal used for access. The Msg parameter returns an informational message explaining why the
loginrestrictionsx subroutine failed. The user’s SYSTEM attribute determines the administrative domains
to examine for permission.

The State parameter contains information about the login restrictions for the user. A call to the
authenticatex subroutine will not use an administrative domain for authentication if an earlier call to
loginrestrictionsx indicated that the user was unable to log in using that administrative domain’s
authentication data. The result is that administrative domains that are used for authentication must permit
the user to log in. The State parameter returned by loginrestrictionsx can be used as input to a
subsequent call to the authenticatex subroutine.

This subroutine is unsuccessful if any of the following conditions exists:

v The user’s account has been locked as defined by the account_locked user attribute.

v The user’s account has expired as defined by the expires user attribute.

758 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v The Mode parameter is set to the S_LOGIN value or the S_RLOGIN value, and too many users are
logged in as defined by the maxlogins system attribute.

v The Mode parameter is not set to the S_SU or S_DAEMON value, and the user is not allowed to log in
to the current host as defined by the user’s hostallowedlogin and hostdeniedlogin attributes.

v The user is not allowed to access the system at the present time as defined by the logintimes user
attribute.

v The user attempted too many unsuccessful logins as defined by the loginretries user attribute.

v The user is not allowed to access the given terminal or network protocol as defined by the ttys user
attribute. This test is not performed when the Mode parameter is set to the S_DAEMON value.

v The Mode parameter is set to the S_LOGIN value, and the user is not allowed to log in as defined by
the login user attribute.

v The Mode parameter is set to the S_RLOGIN value and the user is not allowed to log in from the
network as defined by the rlogin user attribute.

v The Mode parameter is set to the S_SU value, and other users are not allowed to use the su command
as defined by the su user attribute; or, the group ID of the current process cannot use the su command
to switch to this user as defined by the sugroups user attribute.

v The Mode parameter is set to the S_DAEMON value, and the user is not allowed to run processes from
the cron or src subsystem as defined by the daemon user attribute.

v The terminal is locked as defined by the locktime port attribute.

v The user cannot use the terminal to access the system at the present time as defined by the
logintimes port attribute.

v The user is not the root user, and the /etc/nologin file exists.

Additional restrictions can be enforced by loadable authentication modules for any administrative domain
used in the user’s SYSTEM attribute.

Parameters

Name Specifies the user’s login name whose account is to be validated.
Mode Specifies the mode of usage. The valid values in the following list are defined in the login.h

file. The Mode parameter has a value of 0 or one of the following values:

S_LOGIN
Verifies that local logins are permitted for this account.

S_SU Verifies that the su command is permitted and the current process has a group ID
that can invoke the su command to switch to the account.

S_DAEMON
Verifies that the account can invoke daemon or batch programs through the src or
cron subsystems.

S_RLOGIN
Verifies that the account can be used for remote logins through the rlogind or
telnetd programs.

Tty Specifies the terminal of the originating activity. If this parameter is a null pointer or a null
string, no tty origin checking is done. The Tty parameter can also have the value RSH or
REXEC to indicate that the caller is the rsh or rexec command.

Message Returns an informative message indicating why the loginrestrictionsx subroutine failed.
Upon return, the value is either a pointer to a valid string within memory-allocated storage or
a null value. If a message is displayed, it is provided based on the user interface.

Base Operating System (BOS) Runtime Services (A-P) 759

State Points to a pointer that the loginrestrictionsx subroutine allocates memory for and fills in.
The State parameter can also be the result of an earlier call to the authenticatex subroutine.
The State parameter contains information about the results of the loginrestrictionsx
subroutine for each term in the user’s SYSTEM attribute. The calling application is
responsible for freeing this memory when it is no longer needed for a subsequent call to the
authenticatex, passwdexpiredx, or chpassx subroutines.

Security
Access Control: The calling process must have access to the account information in the user database
and the port information in the port database.

Files accessed:

Mode File
r /etc/security/user
r /etc/security/login.cfg
r /etc/security/portlog
r /etc/passwd

Return Values
If the account is valid for the specified usage, the loginrestrictionsx subroutine returns a value of 0.
Otherwise, a value of -1 is returned, the errno global value is set to the appropriate error code, and the
Message parameter returns an informative message explaining why the specified account usage is invalid.

Error Codes
If the loginrestrictionsx subroutine fails if one of the following values is true:

EACCES One of the following conditions exists:

v The specified terminal does not have access to the specified account.

v The Mode parameter is the S_SU value, and the current process is not permitted to
use the su command to access the specified user.

v Access to the account is not permitted in the specified mode.

v Access to the account is not permitted at the current time.

v Access to the system with the specified terminal is not permitted at the current time.
EAGAIN The Mode parameter is either the S_LOGIN value or the S_RLOGIN value, and all the

user licenses are in use.
EINVAL The Mode parameter has a value other than S_LOGIN, S_SU, S_DAEMON,

S_RLOGIN, or 0.
ENOENT The user specified does not have an account.
EPERM The user’s account is locked, the specified terminal is locked, the user has had too

many unsuccessful login attempts, or the user cannot log in because the /etc/nologin
file exists.

ESTALE The user’s account is expired.

Related Information
The “authenticatex Subroutine” on page 116, “getpcred Subroutine” on page 405, “getpenv Subroutine” on
page 407, “loginfailed Subroutine” on page 754, “loginsuccess Subroutine” on page 761, “getgroupattrs
Subroutine” on page 381, “getuserpw, putuserpw, or putuserpwhist Subroutine” on page 470, setpcred
Subroutinesetpenv Subroutine.

The cron Daemon.

760 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The login Command, rlogin Command, telnet, tn, or tn3270 Command, suCommand.

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

loginsuccess Subroutine

Purpose
Records a successful log in.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int loginsuccess (User, Host, Tty, Msg)
char * User;
char * Host;
char * Tty;
char ** Msg;

Note: This subroutine is not thread-safe.

Description
The loginsuccess subroutine performs the processing necessary when a user successfully logs into the
system. This subroutine updates the following attributes in the /etc/security/lastlog file for the specified
user:

time_last_login Contains the current time.
tty_last_login Contains the value specified by the Tty parameter.
host_last_login Contains the value specified by the Host parameter or the local host

name if the Host parameter is a null value.
unsuccessful_login_count Indicates the number of unsuccessful login attempts. The

loginsuccess subroutine resets this attribute to a value of 0.

Additionally, a login success audit record is cut to indicate in the audit trail that this user has successfully
logged in.

A message is returned in the Msg parameter that indicates the time, host, and port of the last successful
and unsuccessful login. The number of unsuccessful login attempts since the last successful login is also
provided to the user.

Parameters

User Specifies the login name of the user who has successfully logged in.
Host Specifies the name of the host from which the user logged in. If the Host parameter is a null value, the name

of the local host is used.
Tty Specifies the name of the terminal which the user used to log in.

Base Operating System (BOS) Runtime Services (A-P) 761

Msg Returns a message indicating the delete time, host, and port of the last successful and unsuccessful logins.
The number of unsuccessful login attempts since the last successful login is also provided. Upon return, the
value is either a pointer to a valid string within memory allocated storage or a null pointer. It is the
responsibility of the calling program to free() the returned storage.

Security
Access Control: The calling process must have access to the account information in the user database.

File Accessed:

Mode File
rw /etc/security/lastlog

Auditing Events:

Event Information
USER_Login username

Return Values
Upon successful completion, the loginsuccess subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global value is set to indicate the error.

Error Codes
The loginsuccess subroutine fails if one or more of the following values is true:

ENOENT The specified user does not exist.
EACCES The current process does not have write access to the user database.
EPERM The current process does not have permission to write an audit record.

Related Information
The authenticate (“authenticate Subroutine” on page 114) subroutine, getpcred (“getpcred Subroutine” on
page 405) subroutine, getpenv (“getpenv Subroutine” on page 407) subroutine, loginfailed (“loginfailed
Subroutine” on page 754) subroutine, loginrestrictions (“loginrestrictions Subroutine” on page 755)
subroutine, setpcred subroutine, setpenv subroutine.

List of Security and Auditing Services in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

lpar_get_info Subroutine

Purpose
Retrieves the characteristics of the calling partition.

762 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <sys/dr.h>

int lpar_get_info (command, lparinfo, bufsize)
int command;
void *lparinfo;
size_t bufsize;

Description
The lpar_get_info subroutine retrieves processor module information, and both LPAR and
Micro-Partitioning attributes of low-frequency use and high-frequency use. Because the low-frequency
attributes, as defined in the lpar_info_format1_t structure, are static in nature, a reboot is required to
effect any change. The high-frequency attributes, as defined in the lpar_info_format2_t structure, can be
changed dynamically at any time either by the platform or through dynamic logical partitioning (DLPAR)
procedures. The latter provides a mechanism for notifying applications of changes. The signature of this
system call, its parameter types, and the order of the member fields in both the lpar_info_format1_t and
lpar_info_format2_t structures are specific to the AIX platform. If the WPAR_INFO_FORMAT command is
specified, the WPAR attributes are returned in a wpar_info_format_t structure. To request processor
module information, specify the PROC_MODULE_INFO command. The information is provided as an
array of proc_module_info_t structures. To obtain this information, you must provide a buffer of exact
length to accommodate one proc_module_info_t structure for each module type. The module count can
be obtained by using the NUM_PROC_MODULE_TYPES command, and it is in the form of a uint64_t
type. Processor module information is reported for the entire system. This information is available on
POWER6 and later systems.

To see the complete structures of lpar_info_format1_t, lpar_info_format2_t, wpar_info_format_t, and
proc_module_info_t, see the dr.h header file.

The lpar_get_info system call provides information about the operating system environment, including the
following:

v Type of partition: dedicated processor partition or micro-partition

v Type of micro-partition: capped or uncapped

v Variable capacity weight of micro-partition

v Partition name and number

v SMT-capable partition

v SMT-enabled partition

v Minimum, desired, online, and maximum number of virtual processors

v Minimum, online, and maximum number of logical processors

v Minimum, desired, online, and maximum entitled processor capacity

v Minimum, desired, online (megabytes), and maximum number of logical memory blocks (LMBs)

v Maximum number of potential installed physical processors in the server, including unlicensed and
potentially hot-pluggable

v Number of active licensed installed physical processors in the server

v Number of processors in the shared processor pool

v Workload partition static identifier

v Workload partition dynamic identifier

v Workload partition processor limits

v Socket, chip, and core topology of the system that the processor module information provides

This subroutine is used by the DRM to determine whether a client partition is migration capable and MSP
capable. The kernel presents these capabilities based on the presence of the hcall-vasi function set and

Base Operating System (BOS) Runtime Services (A-P) 763

the type of partition that is evident. If the partition is a VIOS partition, the MSP capability will be noted.
Otherwise, the OS partition migration capability will be noted.

Parameters

command Specifies whether the user wants format1, format2, workload partition, or processor
module details.

lparinfo Pointer to the user-allocated buffer that is passed in.
bufsize Size of the buffer that is passed in.

Return Values
Upon success, the lpar_get_info subroutine returns a value of 0. Upon failure, a value of -1 is returned,
and errno is set to indicate the appropriate error.

Error Codes

EFAULT Buffer size is smaller than expected.
EINVAL Invalid input parameter.
ENOSYS The hardware or the current firmware level does not support this operation.
ENOTSUP The platform does not support this operation.

Example
The following example demonstrates how to retrieve processor module information using the
lpar_get_info subroutine:
uint64_t module_count;
proc_module_info_t *buffer = NULL;
int rc = 0;

/* Retrieve the total count of modules on the system */
rc = lpar_get_info(NUM_PROC_MODULE_TYPES,

&module_count, sizeof(uint64_t));

if (rc)
return(1); /* Error */

/* Allocate buffer of exact size to accomodate module information */
buffer = malloc(module_count * sizeof(proc_module_info_t));

if (buffer == NULL)
return(2);

rc = lpar_get_info(PROC_MODULE_INFO, buffer, sizeof(buffer));

if (rc)
return(3); /* Error */

/* If rc is 0, then buffer contains an array of proc_module_info_t
* structures with module_count elements. For an element of
* index i:
*
* buffer[i].nsockets is the total number of sockets
* buffer[i].nchips is the number of chips per socket
* buffer[i].ncores is the number of cores per chip
*/

764 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The klpar_get_info Kernel Service in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems
Volume 1.

lpar_set_resources Subroutine

Purpose
Modifies the calling partition’s characteristics.

Library
Standard C Library (lib.c)

Syntax
#include <sys/dr.h>

int lpar_set_resources (lpar_resource_id,lpar_resource)
int lpar_resource_id;
void *lpar_resource;

Description
The lpar_set_resources subroutine modifies the configuration attributes (dynamic resources) on a current
partition indicated by the lpar_resource_id. The pointer to a value of the dynamic resource indicated by
lpar_resource_id is passed to this call in lpar_resource. This subroutine modifies one partition dynamic
resource at a time. To reconfigure multiple resources, multiple calls must be made. The following
resources for the calling partition can be modified:

v Entitled Capacity

v Variable Capacity Weight

v Number of online virtual CPUs

v Number of available memory in MB

These resource IDs are defined in the <sys/dr.h> header file. In order to modify the Entitled Capacity and
Variable Capacity Weight attributes, ensure that the current partition is an SPLPAR partition; otherwise, an
error is returned. The lpar_set_resources subroutine can only be called in a process owned by a root
user (super user) or a user with the CAP_EWLM_AGENT capability; otherwise, an error is returned.

Parameters

lpar_resource_id Identifies the dynamic resource whose value is being changed.
lpar_resource Pointer to a new value of the dynamic resource identified by the lpar_resource_id.

Security
The lpar_set_resources subroutine can only be called in a process owned by a root user (super user) or
a user with the CAP_EWLM_AGENT capability.

Return Values
Upon success, the lpar_set_resources subroutine returns a value of 0. Upon failure, a negative value is
returned, and errno is set to the appropriate error.

Error Codes

EINVAL Invalid configuration parameters.

Base Operating System (BOS) Runtime Services (A-P) 765

EPERM Insufficient authority.
EEXIST Resource already exists.
EBUSY Resource is busy.
EAGAIN Resource is temporarily unavailable.
ENOMEM Resource allocation failed.
ENOTREADY Resource is not ready.
ENOTSUP Operation is not supported.
EFAULT/EIO Operation failed because of an I/O error.
EINPROGRESS Operation in progress.
ENXIO Resource is not available.
ERANGE Parameter value is out of range.
All others Internal error.

lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 Subroutines

Purpose
Round to nearest integer value using the current rounding direction.

Syntax
#include <math.h>

long lrint (x)
double x;

long lrintf (x)
float x;

long lrintl (x)
long double x;

long lrintd32 (x)
_Decimal32 x;

long lrintd64 (x)
_Decimal64 x;

long lrintd128 (x)
_Decimal128 x;

Description
The lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 subroutines round the x parameter to the nearest
integer value, rounding according to the current rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be rounded.

766 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, the lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 subroutines return the
rounded integer value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is -Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, a domain error occurs and an
unspecified value is returned.

If the correct value is negative and too large to represent as a long, a domain error occurs and an
unspecified value is returned.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “llrint, llrintf, llrintl,
llrintd32, llrintd64, and llrintd128 Subroutines” on page 728.

math.h in AIX 5L Version 5.3 Files Reference.

lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128
Subroutines

Purpose
Rounds to the nearest integer value.

Syntax
#include <math.h>

long lround (x)
double x;

long lroundf (x)
float x;

long lroundl (x)
long double x;

long lroundd32(x)
_Decimal32 x;

long lroundd64(x)
_Decimal64 x;

long lroundd128(x)
_Decimal128 x;

Description
The lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128 subroutines round the x parameter
to the nearest integer value, rounding halfway cases away from zero, regardless of the current rounding
direction.

Base Operating System (BOS) Runtime Services (A-P) 767

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be rounded.

Return Values
Upon successful completion, the lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128
subroutines return the rounded integer value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is -Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, a domain error occurs and an
unspecified value is returned.

If the correct value is negative and too large to represent as a long, a domain error occurs and an
unspecified value is returned.

Related Information
“feclearexcept Subroutine” on page 267, “fetestexcept Subroutine” on page 275, and “llround, llroundf,
llroundl, llroundd32, llroundd64, and llroundd128 Subroutines” on page 729.

math.h in AIX 5L Version 5.3 Files Reference.

lsearch or lfind Subroutine

Purpose
Performs a linear search and update.

Library
Standard C Library (libc.a)

Syntax
void *lsearch (Key, Base, NumberOfElementsPointer, Width, ComparisonPointer)
const void *Key;
void *Base;
size_t Width, *NumberOfElementsPointer;
int (*ComparisonPointer) (cont void*, const void*);

void *lfind (Key, Base, NumberOfElementsPointer, Width, ComparisonPointer)
const void *Key, Base;
size_t Width, *NumberOfElementsPointer;
int (*ComparisonPointer) (cont void*, const void*);

768 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
Warning: Undefined results can occur if there is not enough room in the table for the lsearch subroutine
to add a new item.

The lsearch subroutine performs a linear search.

The algorithm returns a pointer to a table where data can be found. If the data is not in the table, the
program adds it at the end of the table.

The lfind subroutine is identical to the lsearch subroutine, except that if the data is not found, it is not
added to the table. In this case, a NULL pointer is returned.

The pointers to the Key parameter and the element at the base of the table should be of type
pointer-to-element and cast to type pointer-to-character. The value returned should be cast into type
pointer-to-element.

The comparison function need not compare every byte; therefore, the elements can contain arbitrary data
in addition to the values being compared.

Parameters

Base Points to the first element in the table.
ComparisonPointer Specifies the name (that you supply) of the comparison function

(strcmp, for example). It is called with two parameters that point to the
elements being compared.

Key Specifies the data to be sought in the table.
NumberOfElementsPointer Points to an integer containing the current number of elements in the

table. This integer is incremented if the data is added to the table.
Width Specifies the size of an element in bytes.

The comparison function compares its parameters and returns a value as follows:

v If the first parameter equals the second parameter, the ComparisonPointer parameter returns a value of
0.

v If the first parameter does not equal the second parameter, the ComparisonPointer parameter returns a
value of 1.

Return Values
If the sought entry is found, both the lsearch and lfind subroutines return a pointer to it. Otherwise, the
lfind subroutine returns a null pointer and the lsearch subroutine returns a pointer to the newly added
element.

Related Information
The bsearch (“bsearch Subroutine” on page 124) subroutine, hsearch (“hsearch, hcreate, or hdestroy
Subroutine” on page 529) subroutine, qsort subroutine, tsearch subroutine.

Donald E. Knuth. The Art of Computer Programming, Volume 3, 6.1, Algorithm S. Reading,
Massachusetts: Addison-Wesley, 1981.

Searching and Sorting Example Program and Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 769

lseek, llseek or lseek64 Subroutine

Purpose
Moves the read-write file pointer.

Library
Standard C Library (libc.a)

Syntax
off_t lseek (FileDescriptor, Offset, Whence)
int FileDescriptor, Whence;
off_t Offset;

offset_t llseek (FileDescriptor, Offset, Whence)
int FileDescriptor, Whence;
offset_t Offset;

off64_t lseek64 (FileDescriptor, Offset, Whence)
int FileDescriptor, Whence;
off64_t Offset;

Description
The lseek, llseek, and lseek64 subroutines set the read-write file pointer for the open file specified by the
FileDescriptor parameter. The lseek subroutine limits the Offset to OFF_MAX.

In the large file enabled programming environment, lseek subroutine is redefined to lseek64.

If the FileDescriptor parameter refers to a shared memory object, the lseek subroutine fails with EINVAL.

Parameters

FileDescriptor Specifies a file descriptor obtained from a successful open or fcntl subroutine.
Offset Specifies a value, in bytes, that is used in conjunction with the Whence parameter to set the

file pointer. A negative value causes seeking in the reverse direction.
Whence Specifies how to interpret the Offset parameter by setting the file pointer associated with the

FileDescriptor parameter to one of the following variables:

SEEK_SET
Sets the file pointer to the value of the Offset parameter.

SEEK_CUR
Sets the file pointer to its current location plus the value of the Offset parameter.

SEEK_END
Sets the file pointer to the size of the file plus the value of the Offset parameter.

Return Values
Upon successful completion, the resulting pointer location, measured in bytes from the beginning of the
file, is returned. If either the lseek or llseek subroutines are unsuccessful, a value of -1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The lseek or llseek subroutines are unsuccessful and the file pointer remains unchanged if any of the
following are true:

EBADF The FileDescriptor parameter is not an open file descriptor.

770 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EINVAL The resulting offset would be greater than the maximum offset allowed for the file or device
associated with FileDescriptor. The lseek subroutine was used with a file descriptor obtained
from a call to the shm_open subroutine.

EINVAL Whence is not one of the supported values.
EOVERFLOW The resulting offset is larger than can be returned properly.
ESPIPE The FileDescriptor parameter is associated with a pipe (FIFO) or a socket.

Files

/usr/include/unistd.h Defines standard macros, data types and subroutines.

Related Information
The fcntl (“fcntl, dup, or dup2 Subroutine” on page 257) subroutine, fseek, rewind, ftell, fgetpos, or
fsetpos (“fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64
Subroutine” on page 320) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64
Subroutine” on page 939) subroutine, read, readx, readv, or readvx subroutine, write, writex, writev, or
writevx subroutine.

File Systems and Directories in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

lvm_querylv Subroutine

Purpose
Queries a logical volume and returns all pertinent information.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_querylv (LV_ID, QueryLV, PVName)
struct lv_id *LV_ID;
struct querylv **QueryLV;
char *PVName;

Description

Note: The lvm_querylv subroutine uses the sysconfig system call, which requires root user authority, to
query and update kernel data structures describing a volume group. You must have root user
authority to use the lvm_querylv subroutine.

The lvm_querylv subroutine returns information for the logical volume specified by the LV_ID parameter.

The querylv structure, found in the lvm.h file, is defined as follows:
struct querylv {

char lvname[LVM_NAMESIZ];
struct unique_id vg_id;
long maxsize;
long mirror_policy;
long lv_state;

Base Operating System (BOS) Runtime Services (A-P) 771

long currentsize;
long ppsize;
long permissions;
long bb_relocation;
long write_verify;
long mirwrt_consist;
long open_close;
struct pp *mirrors[LVM_NUMCOPIES];
unsigned int stripe_exp;
unsigned int striping_width;

}
struct pp {

struct unique_id pv_id;
long lp_num;
long pp_num;
long ppstate;

}

Field Description
lvname Specifies the special file name of the logical volume and can be either the full path name

or a single file name that must reside in the /dev directory (for example, rhd1). All name
fields must be null-terminated strings of from 1 to LVM_NAMESIZ bytes, including the null
byte. If a raw or character device is not specified for the lvname field, the Logical Volume
Manager (LVM) will add an r to the file name to have a raw device name. If there is no
raw device entry for this name, the LVM will return the LVM_NOTCHARDEV error code.

vg_id Specifies the unique ID of the volume group that contains the logical volume.
maxsize Indicates the maximum size in logical partitions for the logical volume and must be in the

range of 1 to LVM_MAXLPS.
mirror_policy Specifies how the physical copies are written. The mirror_policy field should be either

LVM_SEQUENTIAL or LVM_PARALLEL to indicate how the physical copies of a logical
partition are to be written when there is more than one copy.

lv_state Specifies the current state of the logical volume and can have any of the following
bit-specific values ORed together:

LVM_LVDEFINED
The logical volume is defined.

LVM_LVSTALE
The logical volume contains stale partitions.

currentsize Indicates the current size in logical partitions of the logical volume. The size, in bytes, of
every physical partition is 2 to the power of the ppsize field.

ppsize Specifies the size of the physical partitions of all physical volumes in the volume group.
permissions Specifies the permission assigned to the logical volume and can be one of the following

values:

LVM_RDONLY
Access to this logical volume is read only.

LVM_RDWR
Access to this logical volume is read/write.

bb_relocation Specifies if bad block relocation is desired and is one of the following values:

LVM_NORELOC
Bad blocks will not be relocated.

LVM_RELOC
Bad blocks will be relocated.

write_verify Specifies if write verification for the logical volume is desired and returns one of the
following values:

LVM_NOVERIFY
Write verification is not performed for this logical volume.

LVM_VERIFY
Write verification is performed on all writes to the logical volume.

772 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Field Description
mirwrt_consist Indicates whether mirror-write consistency recovery will be performed for this logical

volume.

The LVM always ensures data consistency among mirrored copies of a logical volume
during normal I/O processing. For every write to a logical volume, the LVM generates a
write request for every mirror copy. A problem arises if the system crashes in the middle
of processing a mirrored write (before all copies are written). If mirror write consistency
recovery is requested for a logical volume, the LVM keeps additional information to allow
recovery of these inconsistent mirrors. Mirror write consistency recovery should be
performed for most mirrored logical volumes. Logical volumes, such as page space, that
do not use the existing data when the volume group is re-varied on do not need this
protection.

Values for the mirwrt_consist field are:

LVM_CONSIST
Mirror-write consistency recovery will be done for this logical volume.

LVM_NOCONSIST
Mirror-write consistency recovery will not be done for this logical volume.

open_close Specifies if the logical volume is opened or closed. Values for this field are:

LVM_QLV_NOTOPEN
The logical volume is closed.

LVM_QLVOPEN
The logical volume is opened by one or more processes.

mirrors Specifies an array of pointers to partition map lists (physical volume id, logical partition
number, physical partition number, and physical partition state for each copy of the logical
partitions for the logical volume). The ppstate field can be LVM_PPFREE,
LVM_PPALLOC, or LVM_PPSTALE. If a logical partition does not contain any copies, its
pv_id, lp_num, and pp_num fields will contain zeros.

stripe_exp Specifies the log base 2 of the logical volume strip size (the strip size multiplied by the
number of disks in an array equals the stripe size). For example, 2^20 is 1048576 (that
is, 1 MB). Therefore, if the strip size is 1 MB, the stripe_exp field is 20. If the logical
volume is not striped, the stripe_exp field is 0.

stripe_width Specifies the number of disks that form the striped logical volume. If the logical volume is
not striped, the striping_width field is 0.

The PVName parameter enables the user to query from a volume group descriptor area on a specific
physical volume instead of from the Logical Volume Manager’s (LVM) most recent, in-memory copy of the
descriptor area. This method should only be used if the volume group is varied off.

Note: The data returned is not guaranteed to be the most recent or correct, and it can reflect a back-level
descriptor area.

The PVName parameter should specify either the full path name of the physical volume that contains the
descriptor area to query, or a single file name that must reside in the /dev directory (for example,
rhdisk1). This parameter must be a null-terminated string between 1 and LVM_NAMESIZ bytes, including
the null byte, and must represent a raw device entry. If a raw or character device is not specified for the
PVName parameter, the LVM adds an r to the file name to have a raw device name. If there is no raw
device entry for this name, the LVM returns the LVM_NOTCHARDEV error code.

If a PVName parameter is specified, only the minor_num field of the LV_ID parameter need be supplied.
The LVM fills in the vg_id field and returns it to the user. If the user wishes to query from the LVM’s
in-memory copy, the PVName parameter should be set to null. When using this method of query, the
volume group must be varied on, or an error is returned.

Base Operating System (BOS) Runtime Services (A-P) 773

Note: As long as the PVName parameter is not null, the LVM will attempt a query from a physical volume
and not from its in-memory copy of data.

In addition to the PVName parameter, the caller passes the ID of the logical volume to be queried (LV_ID
parameter) and the address of a pointer to the querylv structure, specified by the QueryLV parameter.
The LVM separately allocates the space needed for the querylv structure and the struct pp arrays, and
returns the querylv structure’s address in the pointer variable passed in by the user. The user is
responsible for freeing the space by first freeing the struct pp pointers in the mirrors array and then
freeing the querylv structure.

Attention: To prevent corruption when there are many pp arrays, the caller of lvm_querylv must set
QueryLV->mirrors k != NULL.

Parameters

LV_ID Points to an lv_id structure that specifies the logical volume to query.
QueryLV Contains the address of a pointer to the querylv structure.
PVName Names the physical volume from which to use the volume group descriptor for the query. This

parameter can also be null.

Return Values
If the lvm_querylv subroutine is successful, it returns a value of 0.

Error Codes
If the lvm_querylv subroutine does not complete successfully, it returns one of the following values:

LVM_ALLOCERR The subroutine could not allocate enough space for the complete buffer.
LVM_INVALID_MIN_NUM The minor number of the logical volume is not valid.
LVM_INVALID_PARAM A parameter passed into the routine is not valid.
LVM_INV_DEVENT The device entry for the physical volume specified by the Pvname parameter is

not valid and cannot be checked to determine if it is raw.
LVM_NOTCHARDEV The physical volume name given does not represent a raw or character device.
LVM_OFFLINE The volume group containing the logical volume to query was offline.

If the query originates from the varied-on volume group’s current volume group
descriptor area, one of the following error codes is returned:

LVM_DALVOPN The volume group reserved logical volume could not be opened.
LVM_MAPFBSY The volume group is currently locked because system management on the

volume group is being done by another process.
LVM_MAPFOPN The mapped file, which contains a copy of the volume group descriptor area

used for making changes to the volume group, could not be opened.
LVM_MAPFRDWR The mapped file could not be read or written.

If a physical volume name has been passed, requesting that the query originate from a specific physical
volume, one of the following error codes is returned:

LVM_BADBBDIR The bad-block directory could not be read or written.
LVM_LVMRECERR The LVM record, which contains information about the volume group descriptor area, could

not be read.
LVM_NOPVVGDA There are no volume group descriptor areas on the physical volume specified.
LVM_NOTVGMEM The physical volume specified is not a member of a volume group.
LVM_PVDAREAD An error occurred while trying to read the volume group descriptor area from the specified

physical volume.
LVM_PVOPNERR The physical volume device could not be opened.

774 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

LVM_VGDA_BB A bad block was found in the volume group descriptor area located on the physical volume
that was specified for the query. Therefore, a query cannot be done from the specified
physical volume.

Related Information
List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

lvm_querypv Subroutine

Purpose
Queries a physical volume and returns all pertinent information.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_querypv (VG_ID, PV_ID, QueryPV, PVName)
struct unique_id * VG_ID;
struct unique_id * PV_ID;
struct querypv ** QueryPV;
char * PVName;

Description

Note: The lvm_querypv subroutine uses the sysconfig system call, which requires root user authority, to
query and update kernel data structures describing a volume group. You must have root user
authority to use the lvm_querypv subroutine.

The lvm_querypv subroutine returns information on the physical volume specified by the PV_ID
parameter.

The querypv structure, defined in the lvm.h file, contains the following fields:
struct querypv {

long ppsize;
long pv_state;
long pp_count;
long alloc_ppcount;
long pvnum_vgdas;
struct pp_map *pp_map;
char hotspare;
struct unique_id pv_id;
long freespace;

}
struct pp_map {

long pp_state;
struct lv_id lv_id;
long lp_num;
long copy;
struct unique_id fst_alt_vol;

Base Operating System (BOS) Runtime Services (A-P) 775

long fst_alt_part;
struct unique_id snd_alt_vol;
long snd_alt_part;

}

Field Description
ppsize Specifies the size of the physical partitions, which is the same for all partitions within a

volume group. The size in bytes of a physical partition is 2 to the power of ppsize.
pv_state Contains the current state of the physical volume.
pp_count Contains the total number of physical partitions on the physical volume.
alloc_ppcount Contains the number of allocated physical partitions on the physical volume.
pp_map Points to an array that has entries for each physical partition of the physical volume. Each

entry in this array will contain the pp_state that specifies the state of the physical partition
(LVM_PPFREE, LVM_PPALLOC, or LVM_PPSTALE) and the lv_id, field, the ID of the
logical volume that it is a member of. The pp_map array also contains the physical volume
IDs (fst_alt_vol and snd_alt_vol) and the physical partition numbers (fst_alt_part and
snd_alt_part) for the first and second alternate copies of the physical partition, and the
logical partition number (lp_num) that the physical partition corresponds to.

If the physical partition is free (that is, not allocated), all of its pp_map fields will be zero.

fst_alt_vol
Contains zeros if the logical partition has only one physical copy.

fst_alt_part
Contains zeros if the logical partition has only one physical copy.

snd_alt_vol
Contains zeros if the logical partition has only one or two physical copies.

snd_alt_part
Contains zeros if the logical partition has only one or two physical copies.

copy Specifies which copy of a logical partition this physical partition is allocated to. This
field will contain one of the following values:

LVM_PRIMARY
Primary and only copy of a logical partition

LVM_PRIMOF2
Primary copy of a logical partition with two physical copies

LVM_PRIMOF3
Primary copy of a logical partition with three physical copies

LVM_SCNDOF2
Secondary copy of a logical partition with two physical copies

LVM_SCNDOF3
Secondary copy of a logical partition with three physical copies

LVM_TERTOF3
Tertiary copy of a logical partition with three physical copies.

pvnum_vgdas Contains the number of volume group descriptor areas (0, 1, or 2) that are on the
specified physical volume.

hotspare Specifies that the physical volume is a hotspare.
pv_id Specifies the physical volume identifier.
freespace Specifies the number of physical partitions in the volume group.

The PVName parameter enables the user to query from a volume group descriptor area on a specific
physical volume instead of from the Logical Volume Manager’s (LVM) most recent, in-memory copy of the
descriptor area. This method should only be used if the volume group is varied off. The data returned is
not guaranteed to be most recent or correct, and it can reflect a back level descriptor area.

776 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The PVname parameter should specify either the full path name of the physical volume that contains the
descriptor area to query or a single file name that must reside in the /dev directory (for example, rhdisk1).
This field must be a null-terminated string of from 1 to LVM_NAMESIZ bytes, including the null byte, and
represent a raw or character device. If a raw or character device is not specified for the PVName
parameter, the LVM will add an r to the file name in order to have a raw device name. If there is no raw
device entry for this name, the LVM will return the LVM_NOTCHARDEV error code. If a PVName is
specified, the volume group identifier, VG_ID, will be returned by the LVM through the VG_ID parameter
passed in by the user. If the user wishes to query from the LVM in-memory copy, the PVName parameter
should be set to null. When using this method of query, the volume group must be varied on, or an error
will be returned.

Note: As long as the PVName is not null, the LVM will attempt a query from a physical volume and not
from its in-memory copy of data.

In addition to the PVName parameter, the caller passes the VG_ID parameter, indicating the volume group
that contains the physical volume to be queried, the unique ID of the physical volume to be queried, the
PV_ID parameter, and the address of a pointer of the type QueryPV. The LVM will separately allocate
enough space for the querypv structure and the struct pp_map array and return the address of the
querypv structure in the QueryPV pointer passed in. The user is responsible for freeing the space by
freeing the struct pp_map pointer and then freeing the QueryPV pointer.

Parameters

VG_ID Points to a unique_id structure that specifies the volume group of which the physical volume to query
is a member.

PV_ID Points to a unique_id structure that specifies the physical volume to query.
QueryPV Specifies the address of a pointer to a querypv structure.
PVName Names a physical volume from which to use the volume group descriptor area for the query. This

parameter can be null.

Return Values
The lvm_querypv subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_querypv subroutine fails it returns one of the following error codes:

LVM_ALLOCERR The routine cannot allocate enough space for a complete buffer.
LVM_INVALID_PARAM An invalid parameter was passed into the routine.
LVM_INV_DEVENT The device entry for the physical volume is invalid and cannot be checked to

determine if it is raw.
LVM_OFFLINE The volume group specified is offline and should be online.

If the query originates from the varied-on volume group’s current volume group descriptor area, one of the
following error codes may be returned:

LVM_DALVOPN The volume group reserved logical volume could not be opened.
LVM_MAPFBSY The volume group is currently locked because system management on the volume group is

being done by another process.
LVM_MAPFOPN The mapped file, which contains a copy of the volume group descriptor area used for making

changes to the volume group, could not be opened.
LVM_MAPFRDWR Either the mapped file could not be read, or it could not be written.

Base Operating System (BOS) Runtime Services (A-P) 777

If a physical volume name has been passed, requesting that the query originate from a specific physical
volume, then one of the following error codes may be returned:

LVM_BADBBDIR The bad-block directory could not be read or written.
LVM_LVMRECERR The LVM record, which contains information about the volume group descriptor area,

could not be read.
LVM_NOPVVGDA There are no volume group descriptor areas on this physical volume.
LVM_NOTCHARDEV A device is not a raw or character device.
LVM_NOTVGMEM The physical volume is not a member of a volume group.
LVM_PVDAREAD An error occurred while trying to read the volume group descriptor area from the specified

physical volume.
LVM_PVOPNERR The physical volume device could not be opened.
LVM_VGDA_BB A bad block was found in the volume group descriptor area located on the physical

volume that was specified for the query. Therefore, a query cannot be done from the
specified physical volume.

Related Information
List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

lvm_queryvg Subroutine

Purpose
Queries a volume group and returns pertinent information.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_queryvg (VG_ID, QueryVG, PVName)
struct unique_id *VG_ID;
struct queryvg **QueryVG;
char *PVName;

Description

Note: The lvm_queryvg subroutine uses the sysconfig system call, which requires root user authority, to
query and update kernel data structures describing a volume group. You must have root user
authority to use the lvm_queryvg subroutine.

The lvm_queryvg subroutine returns information on the volume group specified by the VG_ID parameter.

The queryvg structure , found in the lvm.h file, contains the following fields:
struct queryvg {

long maxlvs;
long ppsize;
long freespace;
long num_lvs;
long num_pvs;
long total_vgdas;
struct lv_array *lvs;
struct pv_array *pvs;

778 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

short conc_capable;
short default_mode;
short conc_status;
unsigned int maxpvs;
unsigned int maxpvpps;
unsigned int maxvgpps;

}
struct pv_array {

struct unique_id pv_id;
char state;
char res[3];
long pvnum_vgdas;

}
struct lv_array {

struct lv_id lv_id;
char lvname[LVM_NAMESIZ];
char state;
char res[3];

}

Field Description
maxlvs Specifies the maximum number of logical volumes allowed in the volume group.
ppsize Specifies the size of all physical partitions in the volume group. The size in bytes of

each physical partitions is 2 to the power of the ppsize field.
freespace Contains the number of free physical partitions in this volume group.
num_lvs Indicates the number of logical volumes.
num_pvs Indicates the number of physical volumes.
total_vgdas Specifies the total number of volume group descriptor areas for the entire volume

group.
lvs Points to an array of unique IDs, names, and states of the logical volumes in the

volume group.
pvs Points to an array of unique IDs, states, and the number of volume group descriptor

areas for each of the physical volumes in the volume group.
conc_capable Indicates that the volume group was created concurrent mode capable if the value is

equal to 1.
default_mode The behavior of this value is undefined.
conc_status Indicates that the volume group is varied on in concurrent mode.
maxpvs Specifies the maximum number of physical volumes allowed in the volume group.
maxpvpps Specifies the maximum number of physical partitions allowed for a physical volume in

the volume group.
maxvgpps Specifies the maximum number of physical partitions allowed for the entire volume

group.

The PVName parameter enables the user to query from a descriptor area on a specific physical volume
instead of from the Logical Volume Manager’s (LVM) most recent, in-memory copy of the descriptor area.
This method should only be used if the volume group is varied off. The data returned is not guaranteed to
be most recent or correct, and it can reflect a back level descriptor area. The Pvname parameter should
specify either the full path name of the physical volume that contains the descriptor area to query or a
single file name that must reside in the /dev directory (for example, rhdisk1). The name must represent a
raw device. If a raw or character device is not specified for the PVName parameter, the Logical Volume
Manager will add an r to the file name in order to have a raw device name. If there is no raw device entry
for this name, the LVM returns the LVM_NOTCHARDEV error code. This field must be a null-terminated
string of from 1 to LVM_NAMESIZ bytes, including the null byte. If a PVName is specified, the LVM will
return the VG_ID to the user through the VG_ID pointer passed in. If the user wishes to query from the
LVM in-memory copy, the PVName parameter should be set to null. When using this method of query, the
volume group must be varied on, or an error will be returned.

Note: As long as the PVName parameter is not null, the LVM will attempt a query from a physical volume
and not its in-memory copy of data.

Base Operating System (BOS) Runtime Services (A-P) 779

In addition to the PVName parameter, the caller passes the unique ID of the volume group to be queried
(VG_ID) and the address of a pointer to a queryvg structure. The LVM will separately allocate enough
space for the queryvg structure, as well as the lv_array and pv_array structures, and return the address
of the completed structure in the QueryVG parameter passed in by the user. The user is responsible for
freeing the space by freeing the lv and pv pointers and then freeing the QueryVG pointer.

Parameters

VG_ID Points to a unique_id structure that specifies the volume group to be queried.
QueryVG Specifies the address of a pointer to the queryvg structure.
PVName Specifies the name of the physical volume that contains the descriptor area to query and must

be the name of a raw device.

Return Values
The lvm_queryvg subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_queryvg subroutine fails it returns one of the following error codes:

LVM_ALLOCERR The subroutine cannot allocate enough space for a complete buffer.
LVM_FORCEOFF The volume group has been forcefully varied off due to a loss of

quorum.
LVM_INVALID_PARAM An invalid parameter was passed into the routine.
LVM_OFFLINE The volume group is offline and should be online.

If the query originates from the varied-on volume group’s current volume group descriptor area, one of the
following error codes may be returned:

LVM_DALVOPN The volume group reserved logical volume could not be opened.
LVM_INV_DEVENT The device entry for the physical volume specified by the PVName

parameter is invalid and cannot be checked to determine if it is raw.
LVM_MAPFBSY The volume group is currently locked because system management on the

volume group is being done by another process.
LVM_MAPFOPN The mapped file, which contains a copy of the volume group descriptor area

used for making changes to the volume group, could not be opened.
LVM_MAPFRDWR Either the mapped file could not be read, or it could not be written.
LVM_NOTCHARDEV A device is not a raw or character device.

If a physical volume name has been passed, requesting that the query originate from a specific physical
volume, one of the following error codes may be returned:

LVM_BADBBDIR The bad-block directory could not be read or written.
LVM_LVMRECERR The LVM record, which contains information about the volume group

descriptor area, could not be read.
LVM_NOPVVGDA There are no volume group descriptor areas on this physical volume.
LVM_NOTVGMEM The physical volume is not a member of a volume group.
LVM_PVDAREAD An error occurred while trying to read the volume group descriptor area from

the specified physical volume.
LVM_PVOPNERR The physical volume device could not be opened.
LVM_VGDA_BB A bad block was found in the volume group descriptor area located on the

physical volume that was specified for the query. Therefore, a query cannot
be done from this physical volume.

780 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

lvm_queryvgs Subroutine

Purpose
Queries volume groups and returns information to online volume groups.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_queryvgs (QueryVGS, Kmid)
struct queryvgs **QueryVGS;
mid_t Kmid;

Description

Note: The lvm_queryvgs subroutine uses the sysconfig system call, which requires root user authority,
to query and update kernel data structures describing a volume group. You must have root user
authority to use the lvm_queryvgs subroutine.

The lvm_queryvgs subroutine returns the volume group IDs and major numbers for all volume groups in
the system that are online.

The caller passes the address of a pointer to a queryvgs structure, and the Logical Volume Manager
(LVM) allocates enough space for the structure and returns the address of the structure in the pointer
passed in by the user. The caller also passes in a Kmid parameter, which identifies the entry point of the
logical device driver module:
struct queryvgs {

long num_vgs;
struct {
long major_num
struct unique_id vg_id;
} vgs [LVM_MAXVGS];

}

Field Description
num_vgs Contains the number of online volume groups on the system. The vgs is an array of the volume group

IDs and major numbers of all online volume groups in the system.

Parameters

QueryVGS Points to the queryvgs structure.
Kmid Identifies the address of the entry point of the logical volume device driver module.

Return Values
The lvm_queryvgs subroutine returns a value of 0 upon successful completion.

Base Operating System (BOS) Runtime Services (A-P) 781

Error Codes
If the lvm_queryvgs subroutine fails, it returns one of the following error codes:

LVM_ALLOCERR The routine cannot allocate enough space for the complete buffer.
LVM_INVALID_PARAM An invalid parameter was passed into the routine.
LVM_INVCONFIG An error occurred while attempting to configure this volume group into the kernel.

This error will normally result if the module ID is invalid, if the major number given
is already in use, or if the volume group device could not be opened.

Related Information
List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca,
valloc, or posix_memalign Subroutine

Purpose
Provides a complete set of memory allocation, reallocation, deallocation, and heap management tools.

Libraries
Berkeley Compatibility Library (libbsd.a)

Standard C Library (libc.a)

Malloc Subsystem APIs
v malloc

v free

v realloc

v calloc

v mallopt

v mallinfo

v mallinfo_heap

v alloca

v valloc

v posix_memalign

malloc

Syntax
#include <stdlib.h>

void *malloc (Size)
size_t Size;

Description
The malloc subroutine returns a pointer to a block of memory of at least the number of bytes specified by
the Size parameter. The block is aligned so that it can be used for any type of data. Undefined results
occur if the space assigned by the malloc subroutine is overrun.

782 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

Size Specifies the size, in bytes, of memory to allocate.

Return Values
Upon successful completion, the malloc subroutine returns a pointer to space suitably aligned for the
storage of any type of object. If the size requested is 0, malloc returns NULL in normal circumstances.
However, if the program was compiled with the defined _LINUX_SOURCE_COMPAT macro, malloc
returns a valid pointer to a space of size 0.

If the request cannot be satisfied for any reason, the malloc subroutine returns NULL.

Error Codes

ENOMEM Insufficient storage space is available to service the request.

free

Syntax
#include <stdlib.h>

void free (Pointer)
void * Pointer;

Description
The free subroutine deallocates a block of memory previously allocated by the malloc subsystem.
Undefined results occur if the Pointer parameter is not an address that has previously been allocated by
the malloc subsystem, or if the Pointer parameter has already been deallocated. If the Pointer parameter
is NULL, no action occurs.

Parameters

Pointer Specifies a pointer to space previously allocated by the malloc subsystem.

Return Values
The free subroutine does not return a value. Upon successful completion with nonzero arguments, the
realloc subroutine returns a pointer to the (possibly moved) allocated space. If the Size parameter is 0
and the Pointer parameter is not null, no action occurs.

Error Codes
The free subroutine does not set errno.

realloc

Syntax
#include <stdlib.h>

void *realloc (Pointer, Size)
void *Pointer;
size_t Size;

Base Operating System (BOS) Runtime Services (A-P) 783

Description
The realloc subroutine changes the size of the memory object pointed to by the Pointer parameter to the
number of bytes specified by the Size parameter. The Pointer must point to an address returned by a
malloc subsystem allocation routine, and must not have been previously deallocated. Undefined results
occur if Pointer does not meet these criteria.

The contents of the memory object remain unchanged up to the lesser of the old and new sizes. If the
current memory object cannot be enlarged to satisfy the request, the realloc subroutine acquires a new
memory object and copies the existing data to the new space. The old memory object is then freed. If no
memory object can be acquired to accommodate the request, the object remains unchanged.

If the Pointer parameter is null, the realloc subroutine is equivalent to a malloc subroutine of the same
size.

If the Size parameter is 0 and the Pointer parameter is not null, the realloc subroutine is equivalent to a
free subroutine of the same size.

Parameters

Pointer Specifies a Pointer to space previously allocated by the malloc subsystem.
Size Specifies the new size, in bytes, of the memory object.

Return Values
Upon successful completion with nonzero arguments, the realloc subroutine returns a pointer to the
(possibly moved) allocated space. If the Size parameter is 0 and the Pointer parameter is not null, return
behavior is equivalent to that of the free subroutine. If the Pointer parameter is null and the Size
parameter is not zero, return behavior is equivalent to that of the malloc subroutine.

Error Codes

ENOMEM Insufficient storage space is available to service the request.

calloc

Syntax
#include <stdlib.h>

void *calloc (NumberOfElements, ElementSize)
size_t NumberOfElements;
size_t ElementSize;

Description
The calloc subroutine allocates space for an array containing the NumberOfElements objects. The
ElementSize parameter specifies the size of each element in bytes. After the array is allocated, all bits are
initialized to 0.

The order and contiguity of storage allocated by successive calls to the calloc subroutine is unspecified.
The pointer returned points to the first (lowest) byte address of the allocated space. The allocated space is
aligned so that it can be used for any type of data. Undefined results occur if the space assigned by the
calloc subroutine is overrun.

784 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

NumberOfElements Specifies the number of elements in the array.
ElementSize Specifies the size, in bytes, of each element in the array.

Return Values
Upon successful completion, the calloc subroutine returns a pointer to the allocated, zero-initialized array.
If the size requested is 0, the calloc subroutine returns NULL in normal circumstances. However, if the
program was compiled with the macro _LINUX_SOURCE_COMPAT defined, the calloc subroutine returns
a valid pointer to a space of size 0.

If the request cannot be satisfied for any reason, the calloc subroutine returns NULL.

Error Codes

ENOMEM Insufficient storage space is available to service the request.

mallopt

Syntax
#include <malloc.h>
#include <stdlib.h>

int mallopt (Command, Value)
int Command;
int Value;

Description
The mallopt subroutine is provided for source-level compatibility with the System V malloc subroutine.
The mallopt subroutine supports the following commands:

Command Value Effect
M_MXFAST 0 If called before any other malloc subsystem subroutine, this enables

the Default allocation policy for the process.
M_MXFAST 1 If called before any other malloc subsystem subroutine, this enables

the 3.1 allocation policy for the process.
M_DISCLAIM 0 If called while the Default Allocator is enabled, all free memory in the

process heap is disclaimed.
M_MALIGN N If called at runtime, sets the default malloc allocation alignment to the

value N. The N value must be a power of 2 (greater than or equal to
the size of a pointer).

Parameters

Command Specifies the mallopt command to be executed.
Value Specifies the size of each element in the array.

Base Operating System (BOS) Runtime Services (A-P) 785

Return Values
Upon successful completion, the mallopt subroutine returns 0. Otherwise, 1 is returned. If an invalid
alignment is requested (one that is not a power of 2), mallopt fails with a return value of 1, although
subsequent calls to malloc are unaffected and continue to provide the alignment value from before the
failed mallopt call.

Error Codes
The mallopt subroutine does not set errno.

mallinfo

Syntax
#include <malloc.h>
#include <stdlib.h>

struct mallinfo mallinfo();

Description
The mallinfo subroutine can be used to obtain information about the heap managed by the malloc
subsystem.

Return Values
The mallinfo subroutine returns a structure of type struct mallinfo, filled in with relevant information and
statistics about the heap. The contents of this structure can be interpreted using the definition of struct
mallinfo in the /usr/include/malloc.h file.

Error Codes
The mallinfo subroutine does not set errno.

mallinfo_heap

Syntax
#include <malloc.h>
#include <stdlib.h>

struct mallinfo_heap mallinfo_heap (Heap)
int Heap;

Description
In a multiheap context, the mallinfo_heap subroutine can be used to obtain information about a specific
heap managed by the malloc subsystem.

Parameters

Heap Specifies which heap to query.

Return Values
mallinfo_heap returns a structure of type struct mallinfo_heap, filled in with relevant information and
statistics about the heap. The contents of this structure can be interpreted using the definition of struct
mallinfo_heap in the /usr/include/malloc.h file.

786 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The mallinfo_heap subroutine does not set errno.

alloca

Syntax
#include <stdlib.h>

char *alloca (Size)
int Size;

Description
The alloca subroutine returns a pointer to a block of memory of at least the number of bytes specified by
the Size parameter. The space is allocated from the stack frame of the caller and is automatically freed
when the calling subroutine returns.

If alloca is used in code compiled with the C++ compiler, #pragma alloca must be added to the source
before the reference to alloca. Alternatively, the -ma compiler option can be used during compilation.

Parameters

Size Specifies the size, in bytes, of memory to allocate.

Return Values
The alloca subroutine returns a pointer to space of the requested size.

Error Codes
The alloca subroutine does not set errno.

valloc

Syntax
#include <stdlib.h>

void *valloc (Size)
size_t Size;

Description
The valloc subroutine is supported as a compatibility interface in the Berkeley Compatibility Library
(libbsd.a), as well as in libc.a. The valloc subroutine has the same effect as malloc, except that the
allocated memory is aligned to a multiple of the value returned by sysconf (_ SC_PAGESIZE).

Parameters

Size Specifies the size, in bytes, of memory to allocate.

Base Operating System (BOS) Runtime Services (A-P) 787

Return Values
Upon successful completion, the valloc subroutine returns a pointer to a memory object that is Size bytes
in length, aligned to a page-boundary. Undefined results occur if the space assigned by the valloc
subroutine is overrun.

If the request cannot be satisfied for any reason, valloc returns NULL.

Error Codes

ENOMEM Insufficient storage space is available to service the request.

posix_memalign

Syntax
#include <stdlib.h>

int posix_memalign(void **Pointer2Pointer, Align, Size)
void ** Pointer2Pointer;
size_t Align;
size_t Size;

Description
The posix_memalign subroutine allocates Size bytes of memory aligned on a boundary specified by
Align. The address of this memory is stored in Pointer2Pointer.

Parameters

Pointer2Pointer Specifies the location in which the address should be copied.
Align Specifies the alignment of the allocated memory, in bytes. The Align parameter must

be a power-of-two multiple of the size of a pointer.
Size Specifies the size, in bytes, of memory to allocate.

Return Values
Upon successful completion, posix_memalign returns 0. Otherwise, an error number is returned to
indicate the error.

Error Codes

EINVAL The value of Align is not a power-of-two multiple of the size of a pointer.
ENOMEM Insufficient storage space is available to service the request.

Related Information
The _end, _etext, or _edata (“_end, _etext, or _edata Identifier” on page 225) identifier.

User Defined Malloc Replacement, Debug Malloc, Malloc Multiheap, Malloc Buckets, Malloc Log, Malloc
Trace, System Memory Allocation Using the malloc Subsystem, Subroutines, Example Programs, and
Libraries in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs, and
Paging space and virtual memory in Operating system and device management.

788 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move,
min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or itom
Subroutine

Purpose
Multiple-precision integer arithmetic.

Library
Berkeley Compatibility Library (libbsd.a)

Syntax
#include <mp.h>
#include <stdio.h>

typedef struct mint {int Length; short * Value} MINT;

madd(a, b, c)
msub(a,b,c)
mult(a,b,c)
mdiv(a,b, q, r)
pow(a,b, m,c)
gcd(a,b,c)
invert(a,b,c)
rpow(a,n,c)
msqrt(a,b,r)
mcmp(a,b)
move(a,b)
min(a)
omin(a)
fmin(a,f)
m_in(a, n,f)
mout(a)
omout(a)
fmout(a,f)
m_out(a,n,f)
MINT *a, *b, *c, *m, *q, *r;
FILE * f;
int n;

sdiv(a,n,q,r)
MINT *a, *q;
short n;
short *r;

MINT *itom(n)

Description
These subroutines perform arithmetic on integers of arbitrary Length. The integers are stored using the
defined type MINT. Pointers to a MINT can be initialized using the itom subroutine, which sets the initial
Value to n. After that, space is managed automatically by the subroutines.

The madd subroutine, msub subroutine, and mult subroutine assign to c the sum, difference, and
product, respectively, of a and b.

The mdiv subroutine assigns to q and r the quotient and remainder obtained from dividing a by b.

Base Operating System (BOS) Runtime Services (A-P) 789

The sdiv subroutine is like the mdiv subroutine except that the divisor is a short integer n and the
remainder is placed in a short whose address is given as r.

The msqrt subroutine produces the integer square root of a in b and places the remainder in r.

The rpow subroutine calculates in c the value of a raised to the (regular integral) power n, while the pow
subroutine calculates this with a full multiple precision exponent b and the result is reduced modulo m.

Note: The pow subroutine is also present in the IEEE Math Library, libm.a, and the System V Math
Library, libmsaa.a. The pow subroutine in libm.a or libmsaa.a may be loaded in error unless the
libbsd.a library is listed before the libm.a or libmsaa.a library on the command line.

The gcd subroutine returns the greatest common denominator of a and b in c, and the invert subroutine
computes c such that a*c mod b=1, for a and b relatively prime.

The mcmp subroutine returns a negative, 0, or positive integer value when a is less than, equal to, or
greater than b, respectively.

The move subroutine copies a to b. The min subroutine and mout subroutine do decimal input and output
while the omin subroutine and omout subroutine do octal input and output. More generally, the fmin
subroutine and fmout subroutine do decimal input and output using file f, and the m_in subroutine and
m_out subroutine do inputs and outputs with arbitrary radix n. On input, records should have the form of
strings of digits terminated by a new line; output records have a similar form.

Programs that use the multiple-precision arithmetic functions must link with the libbsd.a library.

Bases for input and output should be less than or equal to 10.

pow is also the name of a standard math library routine.

Parameters

Length Specifies the length of an integer.
Value Specifies the initial value to be used in the routine.
a Specifies the first operand of the multiple-precision routines.
b Specifies the second operand of the multiple-precision routines.
c Contains the integer result.
f A pointer of the type FILE that points to input and output files used with input/output routines.
m Indicates modulo.
n Provides a value used to specify radix with m_in and m_out, power with rpow, and divisor with sdiv.
q Contains the quotient obtained from mdiv.
r Contains the remainder obtained from mdiv, sdiv, and msqrt.

Error Codes
Error messages and core images are displayed as a result of illegal operations and running out of
memory.

Files

/usr/lib/libbsd.a Object code library.

Related Information
The bc command, dc command.

790 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

madvise Subroutine

Purpose
Advises the system of expected paging behavior.

Library
Standard C Library (libc.a).

Syntax
#include <sys/types.h>
#include <sys/mman.h>

int madvise(addr, len, behav)
caddr_t addr;
size_t len;
int behav;

Description
The madvise subroutine permits a process to advise the system about its expected future behavior in
referencing a mapped file region or anonymous memory region.

The madvise subroutine has no functionality and is supported for compatibility only.

Parameters

addr Specifies the starting address of the memory region. Must be a multiple of the page size returned by the
sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the memory region. If the len value is not a multiple of page size as
returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter, the length
of the region will be rounded up to the next multiple of the page size.

behav Specifies the future behavior of the memory region. The following values for the behav parameter are
defined in the /usr/include/sys/mman.h file:

Value Paging Behavior Message

MADV_NORMAL
The system provides no further special treatment for the memory region.

MADV_RANDOM
The system expects random page references to that memory region.

MADV_SEQUENTIAL
The system expects sequential page references to that memory region.

MADV_WILLNEED
The system expects the process will need these pages.

MADV_DONTNEED
The system expects the process does not need these pages.

MADV_SPACEAVAIL
The system will ensure that memory resources are reserved.

Base Operating System (BOS) Runtime Services (A-P) 791

Return Values
When successful, the madvise subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

Error Codes
If the madvise subroutine is unsuccessful, the errno global variable can be set to one of the following
values:

EINVAL The behav parameter is invalid.
ENOSPC The behav parameter specifies MADV_SPACEAVAIL and resources cannot be reserved.

Related Information
The mmap (“mmap or mmap64 Subroutine” on page 847) subroutine, sysconf subroutine.

List of Memory Manipulation Services and Understanding Paging Space Programming Requirements in
AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

makecontext or swapcontext Subroutine

Purpose
Modifies the context specified by ucp.

Library
(libc.a)

Syntax
#include <ucontext.h>

void makecontext (ucontext_t *ucp, (void *func) (), int argc, ...);
int swapcontext (uncontext_t *oucp, const uncontext_t *ucp);

Description
The makecontext subroutine modifies the context specified by ucp, which has been initialized using
getcontext subroutine. When this context is resumed using swapcontext subroutine or setcontext
subroutine, program execution continues by calling func parameter, passing it the arguments that follow
argc in the makecontext subroutine.

Before a call is made to makecontext subroutine, the context being modified should have a stack
allocated for it. The value of argc must match the number of integer argument passed to func parameter,
otherwise the behavior is undefined.

The uc_link member is used to determine the context that will be resumed when the context being
modified by makecontext subroutine returns. The uc_link member should be initialized prior to the call to
makecontext subroutine.

The swapcontext subroutine function saves the current context in the context structure pointed to by oucp
parameter and sets the context to the context structure pointed to by ucp.

Parameters

ucp A pointer to a user structure.

792 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

oucp A pointer to a user structure.
func A pointer to a function to be called when ucp is restored.
argc The number of arguments being passed to func parameter.

Return Values
On successful completion, swapcontext subroutine returns 0. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

-1 Not successful and the errno global variable is set to one of the following error codes.

Error Codes

ENOMEM The ucp argument does not have enough stack left to complete the operation.

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutine, exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245) subroutine, wait
subroutine, getcontext (“getcontext or setcontext Subroutine” on page 360)subroutine, sigaction
subroutine, and sigprocmask subroutine.

matherr Subroutine

Purpose
Math error handling function.

Library
System V Math Library (libmsaa.a)

Syntax
#include <math.h>

int matherr (x)
struct exception *x;

Description
The matherr subroutine is called by math library routines when errors are detected.

You can use matherr or define your own procedure for handling errors by creating a function named
matherr in your program. Such a user-designed function must follow the same syntax as matherr. When
an error occurs, a pointer to the exception structure will be passed to the user-supplied matherr function.
This structure, which is defined in the math.h file, includes:
int type;
char *name;
double arg1, arg2, retval;

Base Operating System (BOS) Runtime Services (A-P) 793

Parameters

type Specifies an integer describing the type of error that has occurred from the following list defined by the
math.h file:

DOMAIN
Argument domain error

SING Argument singularity

OVERFLOW
Overflow range error

UNDERFLOW
Underflow range error

TLOSS Total loss of significance

PLOSS
Partial loss of significance.

name Points to a string containing the name of the routine that caused the error.
arg1 Points to the first argument with which the routine was invoked.
arg2 Points to the second argument with which the routine was invoked.
retval Specifies the default value that is returned by the routine unless the user’s matherr function sets it to a

different value.

Return Values
If the user’s matherr function returns a non-zero value, no error message is printed, and the errno global
variable will not be set.

Error Codes
If the function matherr is not supplied by the user, the default error-handling procedures, described with
the math library routines involved, will be invoked upon error. In every case, the errno global variable is
set to EDOM or ERANGE and the program continues.

Related Information
The bessel: j0, j1, jn, y0, y1, yn (“bessel: j0, j1, jn, y0, y1, or yn Subroutine” on page 120) subroutine,
exp, expm1, log, log10, log1p, pow (“exp, expf, expl, expd32, expd64, and expd128 Subroutines” on
page 247) subroutine, lgamma (“gamma Subroutine” on page 339) subroutine, hypot, cabs (“hypot,
hypotf, hypotl, hypotd32, hypotd64, and hypotd128 Subroutines” on page 530) subroutine, sin, cos, tan,
asin, acos, atan,atan2 subroutine, sinh, cosh, tanh subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

MatchAllAuths, MatchAnyAuths, MatchAllAuthsList, or
MatchAnyAuthsList Subroutine

Purpose
Compare authorizations.

Library
Security Library (libc.a)

794 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <usersec.h>

int MatchAllAuths(CommaListOfAuths)
char *CommaListOfAuths;

int MatchAllAuthsList(CommaListOfAuths, NSListOfAuths)
char *CommaListOfAuths;
char *NSListOfAuths;

int MatchAnyAuths(CommaListOfAuths)
char *CommaListOfAuths;

int MatchAnyAuthsList(CommaListOfAuths, NSListOfAuths)
char *CommaListOfAuths;
char *NSListOfAuths;

Description
The MatchAllAuthsList subroutine compares the CommaListOfAuths against the NSListOfAuths. It
returns a non-zero value if all the authorizations in CommaListOfAuths are contained in NSListOfAuths.
The MatchAllAuths subroutine calls the MatchAllAuthsList subroutine passing in the results of the
GetUserAuths subroutine in place of NSListOfAuths. If NSListOfAuths contains the OFF keyword,
MatchAllAuthsList will return a zero value. If NSListOfAuths contains the ALL keyword and not the OFF
keyword, MatchAllAuthsList will return a non-zero value.

The MatchAnyAuthsList subroutine compares the CommaListOfAuths against the NSListOfAuths. It
returns a non-zero value if one or more of the authorizations in CommaListOfAuths are contained in
NSListOfAuths. The MatchAnyAuths subroutine calls the MatchAnyAuthsList subroutine passing in the
results of the GetUserAuths subroutine in place of NSListOfAuths. If NSListOfAuths contains the OFF
keyword, MatchAnyAuthsList will return a zero value. If NSListOfAuths contains the ALL keyword and not
the OFF keyword, MatchAnyAuthsList will return a non-zero value.

Parameters

CommaListOfAuths Specifies one or more authorizations, each separated by a comma.
NSListOfAuths Specifies zero or more authorizations. Each authorization is null terminated. The last

entry in the list must be a null string.

Return Values
The subroutines return a non-zero value if a proper match was found. Otherwise, they will return zero. If
an error occurs, the subroutines will return zero and set errno to indicate the error. If the subroutine
returns zero and no error occurred, errno is set to zero.

mblen Subroutine

Purpose
Determines the length in bytes of a multibyte character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

Base Operating System (BOS) Runtime Services (A-P) 795

int mblen(MbString, Number)
const char *MbString;
size_t Number;

Description
The mblen subroutine determines the length, in bytes, of a multibyte character.

Parameters

Mbstring Points to a multibyte character string.
Number Specifies the maximum number of bytes to consider.

Return Values
The mblen subroutine returns 0 if the MbString parameter points to a null character. It returns -1 if a
character cannot be formed from the number of bytes specified by the Number parameter. If MbString is a
null pointer, 0 is returned.

Related Information
The “mbslen Subroutine” on page 802, “mbstowcs Subroutine” on page 808, and “mbtowc Subroutine” on
page 809.

Subroutines, Example Programs, and Libraries, in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview and Multibyte Code and Wide Character Code Conversion
Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

mbrlen Subroutine

Purpose
Get number of bytes in a character (restartable).

Library
Standard Library (libc.a)

Syntax
#include <wchar.h>

size_t mbrlen (const char *s, size_t n, mbstate_t *ps)

Description
If s is not a null pointer, mbrlen determines the number of bytes constituting the character pointed to by s.
It is equivalent to:
mbstate_t internal;
mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

If ps is a null pointer, the mbrlen function uses its own internal mbstate_t object, which is initialized at
program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is used to
completely describe the current conversion state of the associated character sequence. The
implementation will behave as if no function defined in this specification calls mbrlen.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

796 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
The mbrlen function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null wide-character
positive If the next n or fewer bytes complete a valid character; the value returned is the number of

bytes that complete the character.
(size_t)-2 If the next n bytes contribute to an incomplete but potentially valid character, and all n bytes

have been processed. When n has at least the value of the MB_CUR_MAX macro, this case
can only occur if s points at a sequence of redundant shift sequences (for implementations with
state-dependent encodings).

(size_t)-1 If an encoding error occurs, in which case the next n or fewer bytes do not contribute to a
complete and valid character. In this case, EILSEQ is stored in errno and the conversion state
is undefined.

Error Codes
The mbrlen function may fail if:

EINVAL ps points to an object that contains an invalid conversion state.
EILSEQ Invalid character sequence is detected.

Related Information
The mbsinit (“mbsinit Subroutine” on page 801) subroutine, mbrtowc (“mbrtowc Subroutine”) subroutine.

mbrtowc Subroutine

Purpose
Convert a character to a wide-character code (restartable).

Library
Standard Library (libc.a)

Syntax
#include <wchar.h>

size_t mbrtowc (wchar_t * pwc, const char * s, size_t n, mbstate_t * ps) ;

Description
If s is a null pointer, the mbrtowc function is equivalent to the call:
mbrtowc(NULL, '''', 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc function inspects at most n bytes beginning at the byte pointed to by
s to determine the number of bytes needed to complete the next character (including any shift sequences).
If the function determines that the next character is completed, it determines the value of the
corresponding wide-character and then, if pwc is not a null pointer, stores that value in the object pointed
to by pwc. If the corresponding wide-character is the null wide-character, the resulting state described is
the initial conversion state.

If ps is a null pointer, the mbrtowc function uses its own internal mbstate_t object, which is initialized at
program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is used to

Base Operating System (BOS) Runtime Services (A-P) 797

completely describe the current conversion state of the associated character sequence. The
implementation will behave as if no function defined in this specification calls mbrtowc.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
The mbrtowc function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to the null wide-character
(which is the value stored).

positive If the next n or fewer bytes complete a valid character (which is the value stored); the value
returned is the number of bytes that complete the character.

(size_t)-2 If the next n bytes contribute to an incomplete but potentially valid character, and all n bytes
have been processed (no value is stored). When n has at least the value of the MB_CUR_MAX
macro, this case can only occur if s points at a sequence of redundant shift sequences (for
implementations with state-dependent encodings).

(size_t)-1 If an encoding error occurs, in which case the next n or fewer bytes do not contribute to a
complete and valid character (no value is stored). In this case, EILSEQ is stored in errno and
the conversion state is undefined.

Error Codes
The mbrtowc function may fail if:

EINVAL ps points to an object that contains an invalid conversion state.
EILSEQ Invalid character sequence is detected.

Related Information
The mbsinit (“mbsinit Subroutine” on page 801) subroutine.

mbsadvance Subroutine

Purpose
Advances to the next multibyte character.

Note: The mbsadvance subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI,
or X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbsadvance (S)
const char *S;

Description
The mbsadvance subroutine locates the next character in a multibyte character string. The LC_CTYPE
category affects the behavior of the mbsadvance subroutine.

798 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

S Contains a multibyte character string.

Return Values
If the S parameter is not a null pointer, the mbsadvance subroutine returns a pointer to the next multibyte
character in the string pointed to by the S parameter. The character at the head of the string pointed to by
the S parameter is skipped. If the S parameter is a null pointer or points to a null string, a null pointer is
returned.

Examples
To find the next character in a multibyte string, use the following:
#include <mbstr.h>
#include <locale.h>
#include <stdlib.h>

main()
{

char *mbs, *pmbs;
(void) setlocale(LC_ALL, "");
/*
** Let mbs point to the beginning of a multi-byte string.
*/
pmbs = mbs;
while(pmbs){

pmbs = mbsadvance(mbs);
/* pmbs points to the next multi-byte character
** in mbs */

}

Related Information
The mbsinvalid (“mbsinvalid Subroutine” on page 802) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

mbscat, mbscmp, or mbscpy Subroutine

Purpose
Performs operations on multibyte character strings.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbscat(MbString1, MbString2)
char *MbString1, *MbString2;

int mbscmp(MbString1, MbString2)
char *MbString1, *MbString2;

Base Operating System (BOS) Runtime Services (A-P) 799

char *mbscpy(MbString1, MbString2)
char *MbString1, *MbString2;

Description
The mbscat, mbscmp, and mbscpy subroutines operate on null-terminated multibyte character strings.

The mbscat subroutine appends multibyte characters from the MbString2 parameter to the end of the
MbString1 parameter, appends a null character to the result, and returns MbString1.

The mbscmp subroutine compares multibyte characters based on their collation weights as specified in
the LC_COLLATE category. The mbscmp subroutine compares the MbString1 parameter to the
MbString2 parameter, and returns an integer greater than 0 if MbString1 is greater than MbString2. It
returns 0 if the strings are equivalent and returns an integer less than 0 if MbString1 is less than
MbString2.

The mbscpy subroutine copies multibyte characters from the MbString2 parameter to the MbString1
parameter and returns MbString1. The copy operation terminates with the copying of a null character.

Related Information
The mbsncat, mbsncmp, mbsncpy (“mbsncat, mbsncmp, or mbsncpy Subroutine” on page 803)
subroutine, wcscat, wcscmp, wcscpy subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

mbschr Subroutine

Purpose
Locates a character in a multibyte character string.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbschr(MbString, MbCharacter)
char *MbString;
mbchar_t MbCharacter;

Description
The mbschr subroutine locates the first occurrence of the value specified by the MbCharacter parameter
in the string pointed to by the MbString parameter. The MbCharacter parameter specifies a multibyte
character represented as an integer. The terminating null character is considered to be part of the string.

The LC_CTYPE category affects the behavior of the mbschr subroutine.

800 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

MbString Points to a multibyte character string.
MbCharacter Specifies a multibyte character represented as an integer.

Return Values
The mbschr subroutine returns a pointer to the value specified by the MbCharacter parameter within the
multibyte character string, or a null pointer if that value does not occur in the string.

Related Information
The “mbspbrk Subroutine” on page 804, “mbsrchr Subroutine” on page 805, “mbstomb Subroutine” on
page 807, wcschr subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

mbsinit Subroutine

Purpose
Determine conversion object status.

Library
Standard Library (libc.a)

Syntax
#include <wchar.h>

int mbsinit (const mbstate_t * p) ;

Description
If ps is not a null pointer, the mbsinit function determines whether the object pointed to by ps describes
an initial conversion state.

The mbstate_t object is used to describe the current conversion state from a particular character
sequence to a wide-character sequence (or vice versa) under the rules of a particular setting of the
LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning of a new
character sequence in the initial shift state. A zero valued mbstate_t object is at least one way to describe
an initial conversion state. A zero valued mbstate_t object can be used to initiate conversion involving any
character sequence, in any LC_CTYPE category setting.

Return Values
The mbsinit function returns non-zero if ps is a null pointer, or if the pointed-to object describes an initial
conversion state; otherwise, it returns zero.

If an mbstate_t object is altered by any of the functions described as restartable, and is then used with
a different character sequence, or in the other conversion direction, or with a different LC_CTYPE category
setting than on earlier function calls, the behavior is undefined.

Base Operating System (BOS) Runtime Services (A-P) 801

Related Information
The “mbrlen Subroutine” on page 796, “mbrtowc Subroutine” on page 797, wctomb subroutine,
“mbsrtowcs Subroutine” on page 806, wcsrtombs subroutine.

mbsinvalid Subroutine

Purpose
Validates characters of multibyte character strings.

Note: The mbsinvalid subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbsinvalid (S)
const char *S;

Description
The mbsinvalid subroutine examines the string pointed to by the S parameter to determine the validity of
characters. The LC_CTYPE category affects the behavior of the mbsinvalid subroutine.

Parameters

S Contains a multibyte character string.

Return Values
The mbsinvalid subroutine returns a pointer to the byte following the last valid multibyte character in the S
parameter. If all characters in the S parameter are valid multibyte characters, a null pointer is returned. If
the S parameter is a null pointer, the behavior of the mbsinvalid subroutine is unspecified.

Related Information
The “mbsadvance Subroutine” on page 798.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference

mbslen Subroutine

Purpose
Determines the number of characters (code points) in a multibyte character string.

Note: The mbslen subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

802 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

size_t mbslen(MbString)
char *mbs;

Description
The mbslen subroutine determines the number of characters (code points) in a multibyte character string.
The LC_CTYPE category affects the behavior of the mbslen subroutine.

Parameters

MbString Points to a multibyte character string.

Return Values
The mbslen subroutine returns the number of multibyte characters in a multibyte character string. It
returns 0 if the MbString parameter points to a null character or if a character cannot be formed from the
string pointed to by this parameter.

Related Information
The mblen (“mblen Subroutine” on page 795) subroutine, mbstowcs (“mbstowcs Subroutine” on page
808) subroutine, mbtowc (“mbtowc Subroutine” on page 809) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview and Multibyte Code and Wide Character Code Conversion
Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

mbsncat, mbsncmp, or mbsncpy Subroutine

Purpose
Performs operations on a specified number of null-terminated multibyte characters.

Note: These subroutines are specific to the manufacturer. They are not defined in the POSIX, ANSI, or
X/Open standards. Use of these subroutines may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbsncat(MbString1, MbString2, Number)
char * MbString1, * MbString2;
size_t Number;

Base Operating System (BOS) Runtime Services (A-P) 803

int mbsncmp(MbString1, MbString2, Number)
char *MbString1, *MbString2;
size_t Number;

char *mbsncpy(MbString1, MbString2, Number)
char *MbString1, *MbString2;
size_t Number;

Description
The mbsncat, mbsncmp, and mbsncpy subroutines operate on null-terminated multibyte character
strings.

The mbsncat subroutine appends up to the specified maximum number of multibyte characters from the
MbString2 parameter to the end of the MbString1 parameter, appends a null character to the result, and
then returns the MbString1 parameter.

The mbsncmp subroutine compares the collation weights of multibyte characters. The LC_COLLATE
category specifies the collation weights for all characters in a locale. The mbsncmp subroutine compares
up to the specified maximum number of multibyte characters from the MbString1 parameter to the
MbString2 parameter. It then returns an integer greater than 0 if MbString1 is greater than MbString2. It
returns 0 if the strings are equivalent. It returns an integer less than 0 if MbString1 is less than MbString2.

The mbsncpy subroutine copies up to the value of the Number parameter of multibyte characters from the
MbString2 parameter to the MbString1 parameter and returns MbString1. If MbString2 is shorter than
Number multi-byte characters, MbString1 is padded out to Number characters with null characters.

Parameters

MbString1 Contains a multibyte character string.
MbString2 Contains a multibyte character string.
Number Specifies a maximum number of characters.

Related Information
The “mbscat, mbscmp, or mbscpy Subroutine” on page 799, “mbscat, mbscmp, or mbscpy Subroutine” on
page 799, “mbscat, mbscmp, or mbscpy Subroutine” on page 799, wcsncat subroutine, wcsncmp
subroutine, wcsncpy subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

mbspbrk Subroutine

Purpose
Locates the first occurrence of multibyte characters or code points in a string.

Note: The mbspbrk subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

804 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <mbstr.h>

char *mbspbrk(MbString1, MbString2)
char *MbString1, *MbString2;

Description
The mbspbrk subroutine locates the first occurrence in the string pointed to by the MbString1 parameter,
of any character of the string pointed to by the MbString2 parameter.

Parameters

MbString1 Points to the string being searched.
MbString2 Pointer to a set of characters in a string.

Return Values
The mbspbrk subroutine returns a pointer to the character. Otherwise, it returns a null character if no
character from the string pointed to by the MbString2 parameter occurs in the string pointed to by the
MbString1 parameter.

Related Information
The “mbschr Subroutine” on page 800, “mbsrchr Subroutine,” “mbstomb Subroutine” on page 807,
wcspbrk subroutine, wcswcs subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

mbsrchr Subroutine

Purpose
Locates a character or code point in a multibyte character string.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbsrchr(MbString, MbCharacter)
char *MbString;
int MbCharacter;

Description
The mbschr subroutine locates the last occurrence of the MbCharacter parameter in the string pointed to
by the MbString parameter. The MbCharacter parameter is a multibyte character represented as an
integer. The terminating null character is considered to be part of the string.

Base Operating System (BOS) Runtime Services (A-P) 805

Parameters

MbString Points to a multibyte character string.
MbCharacter Specifies a multibyte character represented as an integer.

Return Values
The mbsrchr subroutine returns a pointer to the MbCharacter parameter within the multibyte character
string. It returns a null pointer if MbCharacter does not occur in the string.

Related Information
The “mbschr Subroutine” on page 800, “mbspbrk Subroutine” on page 804, “mbstomb Subroutine” on page
807, wcsrchr subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference

mbsrtowcs Subroutine

Purpose
Convert a character string to a wide-character string (restartable).

Library
Standard Library (libc.a)

Syntax
#include <wchar.h>

size_t mbsrtowcs ((wchar_t * dst, const char ** src, size_t len, mbstate_t * ps) ;

Description
The mbsrtowcs function converts a sequence of characters, beginning in the conversion state described
by the object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding
wide-characters. If dst is not a null pointer, the converted characters are stored into the array pointed to by
dst. Conversion continues up to and including a terminating null character, which is also stored.
Conversion stops early in either of the following cases:

v When a sequence of bytes is encountered that does not form a valid character.

v When len codes have been stored into the array pointed to by dst (and dst is not a null pointer).

Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null character) or the address just past the last character
converted (if any). If conversion stopped due to reaching a terminating null character, and if dst is not a
null pointer, the resulting state described is the initial conversion state.

If ps is a null pointer, the mbsrtowcs function uses its own internal mbstate_t object, which is initialised at
program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is used to
completely describe the current conversion state of the associated character sequence. The
implementation will behave as if no function defined in this specification calls mbsrtowcs.

806 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
If the input conversion encounters a sequence of bytes that do not form a valid character, an encoding
error occurs. In this case, the mbsrtowcs function stores the value of the macro EILSEQ in errno and
returns (size_t)-1); the conversion state is undefined. Otherwise, it returns the number of characters
successfully converted, not including the terminating null (if any).

Error Codes
The mbsrtowcs function may fail if:

EINVAL ps points to an object that contains an invalid conversion state.
EILSEQ Invalid character sequence is detected.

Related Information
The “mbsinit Subroutine” on page 801, “mbrtowc Subroutine” on page 797.

mbstomb Subroutine

Purpose
Extracts a multibyte character from a multibyte character string.

Note: The mbstomb subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

mbchar_t mbstomb (MbString)
const char *MbString;

Description
The mbstomb subroutine extracts the multibyte character pointed to by the MbString parameter from the
multibyte character string. The LC_CTYPE category affects the behavior of the mbstomb subroutine.

Parameters

MbString Contains a multibyte character string.

Return Values
The mbstomb subroutine returns the code point of the multibyte character as a mbchar_t data type. If an
unusable multibyte character is encountered, a value of 0 is returned.

Related Information
The “mbschr Subroutine” on page 800, “mbspbrk Subroutine” on page 804, “mbsrchr Subroutine” on page
805.

Base Operating System (BOS) Runtime Services (A-P) 807

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

mbstowcs Subroutine

Purpose
Converts a multibyte character string to a wide character string.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

size_t mbstowcs(WcString, String, Number)
wchar_t *WcString;
const char *String;
size_t Number;

Description
The mbstowcs subroutine converts the sequence of multibyte characters pointed to by the String
parameter to wide characters and places the results in the buffer pointed to by the WcString parameter.
The multibyte characters are converted until a null character is reached or until the number of wide
characters specified by the Number parameter have been processed.

Parameters

WcString Points to the area where the result of the conversion is stored.
String Points to a multibyte character string.
Number Specifies the maximum number of wide characters to be converted.

Return Values
The mbstowcs subroutine returns the number of wide characters converted, not including a null
terminator, if any. If an invalid multibyte character is encountered, a value of -1 is returned. The WcString
parameter does not include a null terminator if the value Number is returned.

If WcString is a null wide character pointer, the mbstowcs subroutine returns the number of elements
required to store the wide character codes in an array.

Error Codes
The mbstowcs subroutine fails if the following occurs:

EILSEQ Invalid byte sequence is detected.

Related Information
The “mblen Subroutine” on page 795, “mbslen Subroutine” on page 802, “mbtowc Subroutine” on page
809, wcstombs subroutine, wctomb subroutine.

808 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview for Programming and Multibyte Code and Wide Character Code
Conversion Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

mbswidth Subroutine

Purpose
Determines the number of multibyte character string display columns.

Note: The mbswidth subroutine is specific to this manufacturer. It is not defined in the POSIX, ANSI, or
X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

int mbswidth (MbString, Number)
const char *MbString;
size_t Number;

Description
The mbswidth subroutine determines the number of display columns required for a multibyte character
string.

Parameters

MbString Contains a multibyte character string.
Number Specifies the number of bytes to read from the s parameter.

Return Values
The mbswidth subroutine returns the number of display columns that will be occupied by the MbString
parameter if the number of bytes (specified by the Number parameter) read from the MbString parameter
form valid multibyte characters. If the MbString parameter points to a null character, a value of 0 is
returned. If the MbString parameter does not point to valid multibyte characters, -1 is returned. If the
MbString parameter is a null pointer, the behavior of the mbswidth subroutine is unspecified.

Related Information
The wcswidth subroutine, wcwidth subroutine.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and
Reference.

mbtowc Subroutine

Purpose
Converts a multibyte character to a wide character.

Base Operating System (BOS) Runtime Services (A-P) 809

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int mbtowc (WideCharacter, String, Number)
wchar_t *WideCharacter;
const char *String;
size_t Number;

Description
The mbtowc subroutine converts a multibyte character to a wide character and returns the number of
bytes of the multibyte character.

The mbtowc subroutine determines the number of bytes that comprise the multibyte character pointed to
by the String parameter. It then converts the multibyte character to a corresponding wide character and, if
the WideCharacter parameter is not a null pointer, places it in the location pointed to by the WideCharacter
parameter. If the WideCharacter parameter is a null pointer, the mbtowc subroutine returns the number of
converted bytes but does not change the WideCharacter parameter value. If the WideCharacter parameter
returns a null value, the multibyte character is not converted.

Parameters

WideCharacter Specifies the location where a wide character is to be placed.
String Specifies a multibyte character.
Number Specifies the maximum number of bytes of a multibyte character.

Return Values
The mbtowc subroutine returns a value of 0 if the String parameter is a null pointer. The subroutine
returns a value of -1 if the bytes pointed to by the String parameter do not form a valid multibyte character
before the number of bytes specified by the Number parameter (or fewer) have been processed. It then
sets the errno global variable to indicate the error. Otherwise, the number of bytes comprising the
multibyte character is returned.

Error Codes
The mbtowc subroutine fails if the following occurs:

EILSEQ Invalid byte sequence is detected.

Related Information
The “mblen Subroutine” on page 795, “mbslen Subroutine” on page 802, “mbstowcs Subroutine” on page
808, wcstombs subroutine, wctomb subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview and Multibyte Code and Wide Character Code Conversion
Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

810 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

memccpy, memchr, memcmp, memcpy, memset or memmove
Subroutine

Purpose
Performs memory operations.

Library
Standard C Library (libc.a)

Syntax
#include <memory.h>

void *memccpy (Target, Source, C, N)
void *Target;
const void *Source;
int C;
size_t N;

void *memchr (S, C, N)
const void *S;
int C;
size_t N;

int memcmp (Target, Source, N)
const void *Target, *Source;
size_t N;

void *memcpy (Target, Source, N)
void *Target;
const void *Source;
size_t N;

void *memset (S, C, N)
void *S;
int C;
size_t N;

void *memmove (Target, Source, N)
void *Source;
const void *Target;
size_t N;

Description
The memory subroutines operate on memory areas. A memory area is an array of characters bounded by
a count. The memory subroutines do not check for the overflow of any receiving memory area. All of the
memory subroutines are declared in the memory.h file.

The memccpy subroutine copies characters from the memory area specified by the Source parameter into
the memory area specified by the Target parameter. The memccpy subroutine stops after the first
character specified by the C parameter (converted to the unsigned char data type) is copied, or after N
characters are copied, whichever comes first. If copying takes place between objects that overlap, the
behavior is undefined.

The memcmp subroutine compares the first N characters as the unsigned char data type in the memory
area specified by the Target parameter to the first N characters as the unsigned char data type in the
memory area specified by the Source parameter.

The memcpy subroutine copies N characters from the memory area specified by the Source parameter to
the area specified by the Target parameter and then returns the value of the Target parameter.

Base Operating System (BOS) Runtime Services (A-P) 811

The memset subroutine sets the first N characters in the memory area specified by the S parameter to the
value of character C and then returns the value of the S parameter.

Like the memcpy subroutine, the memmove subroutine copies N characters from the memory area
specified by the Source parameter to the area specified by the Target parameter. However, if the areas of
the Source and Target parameters overlap, the move is performed nondestructively, proceeding from right
to left.

The memccpy subroutine is not in the ANSI C library.

Parameters

Target Points to the start of a memory area.
Source Points to the start of a memory area.
C Specifies a character to search.
N Specifies the number of characters to search.
S Points to the start of a memory area.

Return Values
The memccpy subroutine returns a pointer to character C after it is copied into the area specified by the
Target parameter, or a null pointer if the C character is not found in the first N characters of the area
specified by the Source parameter.

The memchr subroutine returns a pointer to the first occurrence of the C character in the first N
characters of the memory area specified by the S parameter, or a null pointer if the C character is not
found.

The memcmp subroutine returns the following values:

Less than 0 If the value of the Target parameter is less than the values of the Source parameter.
Equal to 0 If the value of the Target parameter equals the value of the Source parameter.
Greater than 0 If the value of the Target parameter is greater than the value of the Source parameter.

Related Information
The swab subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

mincore Subroutine

Purpose
Determines residency of memory pages.

Library
Standard C Library (libc.a).

812 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
int mincore (addr, len, * vec)
caddr_t addr;
size_t len;
char *vec;

Description
The mincore subroutine returns the primary-memory residency status for regions created from calls made
to the mmap (“mmap or mmap64 Subroutine” on page 847) subroutine. The status is returned as a
character for each memory page in the range specified by the addr and len parameters. The least
significant bit of each character returned is set to 1 if the referenced page is in primary memory.
Otherwise, the bit is set to 0. The settings of the other bits in each character are undefined.

Parameters

addr Specifies the starting address of the memory pages whose residency is to be determined. Must be a multiple
of the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name
parameter.

len Specifies the length, in bytes, of the memory region whose residency is to be determined. If the len value is
not a multiple of the page size as returned by the sysconf subroutine using the _SC_PAGE_SIZE value for
the Name parameter, the length of the region is rounded up to the next multiple of the page size.

vec Specifies the character array where the residency status is returned. The system assumes that the character
array specified by the vec parameter is large enough to encompass a returned character for each page
specified.

Return Values
When successful, the mincore subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

Error Codes
If the mincore subroutine is unsuccessful, the errno global variable is set to one of the following values:

EFAULT A part of the buffer pointed to by the vec parameter is out of range or otherwise inaccessible.
EINVAL The addr parameter is not a multiple of the page size as returned by the sysconf subroutine using the

_SC_PAGE_SIZE value for the Name parameter.
ENOMEM Addresses in the (addr, addr + len) range are invalid for the address space of the process, or specify one

or more pages that are not mapped.

Related Information
The mmap (“mmap or mmap64 Subroutine” on page 847) subroutine, sysconf subroutine.

List of Memory Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

MIO_aio_read64 Subroutine

Purpose
Read asynchronously from a file through MIO library.

Library
Modular I/O Library (libmio.a)

Base Operating System (BOS) Runtime Services (A-P) 813

Syntax
#include <libmio.h>

int MIO_aio_read64(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description
This subroutine is an entry point of the MIO library for the Legacy AIO aio_read64 subroutine. Use this
subroutine to instrument your application with the MIO library. You can replace the Legacy AIO
aio_read64 kernel I/O subroutine with this equivalent MIO subroutine. See Modular I/O in Performance
management for MIO library implementation.

Use this subroutine to read asynchronously from an open file specified by the FileDescriptor parameter.
The FileDescriptor parameter results from an MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call aio_read64.

Return Values
The return values are those of the corresponding standard POSIX system call aio_read64.

Error Codes
The error codes are those of the corresponding standard POSIX system call aio_read64.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The aio_read64 , MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_ftruncate64, MIO_fstat64,
MIO_fcntl, MIO_ffinfo, and MIO_fsync subroutines.

MIO_aio_suspend64 Subroutine

Purpose
Suspend the calling process until one or more asynchronous I/O requests are completed.

Library
Modular I/O Library (libmio.a)

Syntax
#include <libmio.h>

int MIO_aio_suspend64(Count, aiocbplist)
int Count;
struct aiocb64 **aiocbplist;

814 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
This subroutine is an entry point of the MIO library for the Legacy AIO aio_suspend64 subroutine. Use
this subroutine to instrument your application with the MIO library. You can replace the Legacy AIO
aio_suspend64 kernel I/O subroutine with this equivalent MIO subroutine. SeeModular I/O in
Performance management for the MIO library implementation.

The aio_suspend64 subroutine suspends the calling process until one or more of the Count parameter
asynchronous I/O requests are completed or a signal interrupts the subroutine. Specifically, the
aio_suspend64 subroutine handles requests associated with the aio control block (aiocb) structures
pointed to by the aiocbplist parameter.

Parameters
The parameters are those of the corresponding standard POSIX system call aio_suspend64.

Return Values
The return values are those of the corresponding standard POSIX system call aio_suspend64.

Error Codes
The error codes are those of the corresponding standard POSIX system call aio_suspend64.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The aio_suspend64 , MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_ftruncate64,
MIO_fstat64, MIO_fcntl, MIO_ffinfo, and MIO_fsync subroutines.

MIO_aio_write64 Subroutine

Purpose
Write asynchronously to a file through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_aio_write64(FileDescriptor, aiocbp)
int FileDescriptor;struct aiocb64 *aiocbp;
struct aiocb64 *aiocbp;

Description
This subroutine is an entry point of the MIO library for the Legacy AIO aio_write64 subroutine. Use this
subroutine to instrument your application with the MIO library. You can replace the Legacy AIO
aio_write64 kernel I/O subroutine with this equivalent MIO subroutine. See Modular I/O in Performance
management for the MIO library implementation.

Base Operating System (BOS) Runtime Services (A-P) 815

Use this subroutine to write asynchronously to an open file specified by the FileDescriptor parameter. The
FileDescriptor parameter results from an MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call aio_write64.

Return Values
The return values are those of the corresponding standard POSIX system call aio_write64.

Error Codes
The error codes are those of the corresponding standard POSIX system call aio_write64.

Location
/usr/lib/libmio.a

Related Information
Modular I/O in Performance management.

The aio_write64 , MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_ftruncate64, MIO_fstat64,
MIO_fcntl, MIO_ffinfo, and MIO_fsync subroutines.

MIO_close Subroutine

Purpose
Close a file descriptor through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_close (FileDescriptor)

int FileDescriptor;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application with
the MIO library. You can replace the close kernel I/O subroutine with this equivalent MIO subroutine. See
the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to close a file with the FileDescriptor parameter through the Modular I/O (MIO) library.
The FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call close.

Return Values
The return values are those of the corresponding standard POSIX system call close.

816 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The error codes are those of the corresponding standard POSIX system call close.

Standard Output
MIO library outputs are flushed on the MIO_close subroutine call in the stats file.

The following is the information found in the diagnostic output file. It contains debug information:

v If you set the stats option of the trace module (trace/stats), it runs diagnostics from the trace module.

v If you set the stats option of the pf module (pf/stats), it runs diagnostics from the pf module.

v If you set the stats option of the recov module (recov/stats), it runs diagnostics from the recovery trace.

v If you set the nostats option of the trace or the pf module, these diagnostics are suppressed.

The diagnostic file name is defined in the MIO_STATS environment variable if the stats option is set to the
default value of mioout.

To separate the trace, pf or recov module diagnostics from other outputs, set the stats options to the
following other file names:

v trace/stats=<tracefile>

v pf/stats=<pffile>

v recov/stats=<recovfile>

The tracefile, pffile and recovfile are templates for the file names of module diagnostics output. You can
give file names for the output of the trace, pf or recov module diagnostics.

Standard output includes the following information:

Header, which contains the following information:

v Date

v Hostname

v Enabled or disabled AIO

v Program name

v MIO library version

v Environment variables

Debug, which contains the following information:

v The list of all the debug options

v The table of all of the modules’ definitions if the DEF debug option is set

v Open request made to the MIO_open64 subroutine if the OPEN debug option is set

v The modules invoked if the MODULES debug option is set

Trace module diagnostic, which contains the following information:

v Time if the TIMESTAMP debug option is set

v Trace on close or on intermediate interrupt

v Trace module position in module_list

v Processed file name

v Rate, which is the amount of data divided by the total time. The total time here means the cumulative
amount of time spent beneath the trace module

v Demand rate, which is the amount of data divided by the length of time when the file is opened
(including the time of opening and closing the file)

Base Operating System (BOS) Runtime Services (A-P) 817

v The current (when tracing) file size and the maximum size of the file during this file processing

v File system information: file type and sector size

v Open mode and flags of the file

v For each subroutine, the following information is displayed:

name of the subroutine
count of calling of this subroutine
time of processing for this subroutine

v For read or write subroutines, the following information is displayed:

requested (requested size to read or write)
total (real size read or write: returned by AIX system call)
min (minimum size to read or write)
max (maximum size to read or write)

v For the seek subroutine, the following information is displayed:

the average seek delta (total seek delta/seek count)

v For the aread or awrite subroutine:

count, time and rate of transfer time including suspend, and read or write time

v For the fcntl subroutine, the number of pages is returned.

The following is an example of a trace diagnostic:

date
Trace oncloseor intermediate:
previous module or calling program<->next module:file name:
(total transferred bytes/total time)=rate

demand rate=rate/s=total transferred bytes/(close time-open time)
current size=actual size of the file

max_size=max size of the file
mode=file open mode
FileSystemType=file system type given by fststat(stat_b.f_vfstype)
sector size=Minimum direct i/o transfer size
oflags=file open flags
open open count open time
fcntl fcntl count fcntl time
read read count read time requested size total size minimum maximum
aread aread count aread time requested size total size minimum maximum
suspend count time rate
write write count write time requested size total size minimum maximum
seek seek count seek time average seek delta
size
page fcntl page_info count

The following is a sample of a trace diagnostic:
MIO statistics file : Tue May 10 14:14:08 2005
hostname=host1 : with Legacy aio available
Program=example
MIO library libmio.a 3.0.0.60 AIX 5.1 32 bit addressing built
Apr 19 2005 15:08:17
MIO_INSTALL_PATH=
MIO_STATS =example.stats
MIO_DEBUG =OPEN
MIO_FILES = *.dat [trace/stats]
MIO_DEFAULTS = trace/kbytes

MIO_DEBUG OPEN =T

818 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Opening file file.dat
modules[11]=trace/stats

==
Trace close : program <-> aix : file.dat : (4800/0.04)=111538.02 kbytes/s

demand rate=42280.91 kbytes/s=4800/(0.12-0.01))
current size=0 max_size=1600

mode =0640 FileSystemType=JFS sector size=4096
oflags =0x302=RDWR CREAT TRUNC
open 1 0.00
write 100 0.02 1600 1600 16384 16384
read 200 0.02 3200 3200 16384 16384
seek 101 0.01 average seek delta=-48503
fcntl 1 0.00
trunc 1 0.01
close 1 0.00
size 100

==

The following is a template of the pf module diagnostic:

pf close for<name of the file in the cache>
pf close for global or private cache <global cache number>
<nb_pg_compute>page of<page-size> <sector_size> bytes per sector
<nb_real_pg_not_pf>/<nb_pg_not_pf> pages not preread for write
<nb_unused_pf>unused prefetches out of<nb_start_pf>
prefetch=<nb_pg_to_pf>
<number> of write behind
<number> of page syncs forced by ill formed writes
<number> of pages retained over close
<unit> transferred / Number of requests
program --> <bytes written into the cache by parent>/
<number of write from parent>--> pf -->
<written out of the cache from the child>/<number of partial page written>
program --> <bytes read out of the cache by parent>/
<number of read from parent><– pf <–
<bytes read in from child of the cache>/<number of page read from child>

The following is explanation of the terms in the pf module template:

v nb_pg_compute= number of page compute by cache_size/ page size

v nb_real_pg_not_pf= real number page not prefetch because of pffw option (suppress number of page
prefetch because sector not valid)

v nb_pg_not_pf= page of unused prefetch

v nb_unused_pf= number of started prefetch

v nb_pg_to_pf= number of page to prefetch

The following is a sample of the pf module diagnostic:
pf close for /home/user1/pthread/258/SM20182_0.SCR300
50 pages of 2097152 bytes 131072 bytes per sector
133/133 pages not preread for write
23 unused prefetches out of 242 : prefetch=2
95 write behinds
mbytes transferred / Number of requests
program --> 257/257 --> pf --> 257/131 --> aix
program <-- 269/269 <-- pf <-- 265/133 <-- aix

The following is the recov module output:

Base Operating System (BOS) Runtime Services (A-P) 819

If open or write routine failed, the recov module, if set, is called. The recov module adds the following
comments in the output file:

v The value of the open_command option

v The value of the command option

v The errno

v The index of retry

The following is a sample of the recov module:
15:30:00

recov : command=ls -l file=file.dat errno=28 try=0
recov : failure : new_ret=-1

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The close, MIO_open64, MIO_lseek64, MIO_read, MIO_write, MIO_ftruncate64, MIO_fstat64,
MIO_fcntl, MIO_ffinfo, MIO_fsync subroutines.

MIO_fcntl Subroutine

Purpose
Control open file descriptors through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_fcntl (FileDescriptor, Command, Argument)

int FileDescriptor, Command, Argument;

Description
This subroutine is an entry point of the MIO library, offering the same features as the fcntl subroutine. Use
this subroutine to instrument your application with the MIO library. You can replace the fcntl kernel I/O
subroutine with this equivalent MIO subroutine. See Modular I/O in Performance management for the MIO
library implementation.

Use this subroutine to perform controlling operations on the open file specified by the FileDescriptor
parameter. The FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call fcntl.

Return Values
The return values are those of the corresponding standard POSIX system call fcntl.

820 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The error codes are those of the corresponding standard POSIX system call fcntl.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The fcntl , MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_ftruncate64, MIO_fstat64,
MIO_ffinfo, and MIO_fsync subroutines.

MIO_ffinfo Subroutine

Purpose
Return file information through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_ffinfo (FileDescriptor, Command, Buffer, Length)

int FileDescriptor;

int Command;

struct diocapbuf *Buffer;

int Length;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application with
the MIO library. You can replace the ffinfo kernel I/O subroutine with this equivalent MIO subroutine. See
the Modular I/O in Performance management for MIO library implementation.

Use this subroutine to obtain specific file information for the open file referenced by the FileDescriptor
parameter. The FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call ffinfo.

Return Values
The return values are those of the corresponding standard POSIX system call ffinfo.

Error Codes
The error codes are those of the corresponding standard POSIX system call ffinfo.

Location
/usr/lib/libmio.a

Base Operating System (BOS) Runtime Services (A-P) 821

Related Information
The Modular I/O in Performance management.

The ffinfo, MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_ftruncate64, MIO_fstat64,
MIO_fcntl, and MIO_fsync subroutines.

MIO_fstat64 Subroutine

Purpose
Provide information about a file through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_fstat64 (Filedescriptor, Buffer)

int FileDescriptor;

struct stat64 *Buffer;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application with
the MIO library. You can replace the fstat64 kernel I/O subroutine with this equivalent MIO subroutine.
See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to obtain information about the open file referenced by FileDescriptor parameter. The
FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call fstat64.

Return Values
The return values are those of the corresponding standard POSIX system call fstat64.

Error Codes
The error codes are those of the corresponding standard POSIX system call fstat64.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

Thefstat64 , MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_ftruncate64, MIO_fcntl,
MIO_ffinfo, and MIO_fsync subroutines.

822 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

MIO_fsync Subroutine

Purpose
Save changes in a file to permanent storage through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_fsync (FileDescriptor)

int FileDescriptor;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application with
the MIO library. You can replace the fsync kernel I/O subroutine with this equivalent MIO subroutine. See
the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to save to permanent storage all modified data in the specified range of the open file
specified by the FileDescriptor parameter. The FileDescriptor parameter results from the MIO_open64
subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call fsync.

Return Values
The return values are those of the corresponding standard POSIX system call fsync.

Error Codes
The error codes are those of the corresponding standard POSIX system call fsync.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The fsync , MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_ftruncate64, MIO_fstats64,
MIO_fcntl, and MIO_ffinfo subroutines.

MIO_ftruncate64 Subroutine

Purpose
Change the length of regular files through the MIO library.

Library
Modular I/O library (libmio.a)

Base Operating System (BOS) Runtime Services (A-P) 823

Syntax
#include <libmio.h>

int MIO_ftruncate64 (FileDescriptor, Length)

int FileDescriptor;

int64 Length;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application with
the MIO library. You can replace the ftruncate64 kernel I/O subroutine with this equivalent MIO
subroutine. See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to change the length of the open file specified by the FileDescriptor parameter through
Modular I/O (MIO) library. The FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call ftruncate64.

Return Values
The return values are those of the corresponding standard POSIX system call ftruncate64.

Error Codes
The error codes are those of the corresponding standard POSIX system call ftruncate64.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The ftruncate64, MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_fstat64, MIO_fcntl,
MIO_ffinfo, and MIO_fsync subroutines.

MIO_lio_listio64 Subroutine

Purpose
Initiate a list of asynchronous I/O requests with a single call.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_lio_listio64 (Command, List, Nent, Eventp)
int Command;
struct liocb64 *List;
int Nent;
struct event *Eventp;

824 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
This subroutine is an entry point of the MIO library for the Legacy AIO lio_listio64 Subroutine. Use this
subroutine to instrument your application with MIO library. You can replace the Legacy AIO lio_listio64
kernel I/O subroutine with this equivalent MIO subroutine. See the Modular I/O in Performance
management for the MIO library implementation.

The lio_listio64 subroutine allows the calling process to initiate the Nent parameter asynchronous I/O
requests. These requests are specified in the liocb structures pointed to by the elements of the List array.
The call may block or return immediately depending on the Command parameter. If the Command
parameter requests that I/O completion be asynchronously notified, a SIGIO signal is delivered when all of
the I/O operations are completed.

Parameters
The parameters are those of the corresponding standard POSIX system call lio_listio64.

Return Values
The return values are those of the corresponding standard POSIX system call lio_listio64.

Error Codes
The error codes are those of the corresponding standard POSIX system call lio_listio64.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The lio_listio64, MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_ftruncate64, MIO_fstat64,
MIO_fcntl, MIO_ffinfo, and MIO_fsyncsubroutines.

MIO_lseek64 Subroutine

Purpose
Move the read-write file pointer through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int64 MIO_lseek64 (FileDescriptor, Offset, Whence)
int FileDescriptor;
int64 Offset;
int Whence;

Base Operating System (BOS) Runtime Services (A-P) 825

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application with
the MIO library. You can replace the fseek64 kernel I/O subroutine with this equivalent MIO subroutine.
See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to set the read-write file pointer for the open file specified by the FileDescriptor
parameter through the Modular I/O (MIO) library. The FileDescriptor parameter results from the
MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call lseek64.

Return Values
The return values are those of the corresponding standard POSIX system call lseek64.

Error Codes
The error codes are those of the corresponding standard POSIX system call lseek64.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The lseek64, MIO_open64, MIO_close, MIO_write, MIO_ftruncate64, MIO_fstat64, MIO_fcntl,
MIO_ffinfo, and MIO_fsync subroutines.

MIO_open64 Subroutine

Purpose
Opens a file for reading or writing through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>
int MIO_open64 (Path, OFlag, Mode, Extra)
char *Path;
int OFlag;int Mode;
struct mio_extra *Extra;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application with
the MIO library. You can replace the open64 kernel I/O subroutine with this equivalent MIO subroutine.
See the Modular I/O in Performance management for the MIO library implementation.

Use this subroutine to open a file through the Modular I/O (MIO) library. This library creates the context for
this open file, according to the configuration set in MIO environment variables, or in the Extra parameter.

826 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

To analyze your application I/O and tune the I/O, use the MIO subroutines in the place of the standard I/O
subroutines.

The MIO subroutines are:

v MIO_close

v MIO_lseek64

v MIO_read

v MIO_write

v MIO_ftruncate64

v MIO_fstat64

v MIO_fcntl

v MIO_ffinfo

v MIO_fsync

The standard I/O subroutines are:

v close

v lseek64

v read

v write

v ftruncate64

v fstat64

v fcntl

v ffinfo

v fsync

Parameters

Extra Specifies some extra arguments for the MIO library. The simplest implementation is for any
application to pass a zero pointer as the fourth argument. The fourth argument is a pointer to the
mio_extra structure, you can usually pass a zero pointer, but you can also pass an mio_extra
pointer (use this technique only if you are very familiar with how to code this argument).

The mio_extra structure is defined in the following way:

struct mio_extra {
int cookie ;
/* Default value: MIO_EXTRA_COOKIE/

int taskid ;
/* for later */

int64 bufsiz ;
/* if > 1 : force the prefetch for write pffw */

char *modules ;
/* explicit module name,
if any modules returns from MIO_FILES environment variable match */

char *logical_name ;
/* logical file name to open
if file name don't match with MIO_FILES regexp */

int flags ;
/* if MIO_EXTRA_SKIP_MIO_FILES_FLAG :
don't use MIO_FILES env variable, but use extra->modules */

} ;

Base Operating System (BOS) Runtime Services (A-P) 827

Mode Specifies the modes. For more information, see the Mode flag in the open64 subroutine.
Oflag Specifies the type of access, the special open processing, the type of update, and the initial state

of the open file. For more information, see the open64 subroutine.
Path Specifies the file to be opened.

Note: For applications that would not use the environment variable interface to apply the MIO modules to
a file, the mio_extra hook provides an easy way to do that.

Environment variables
MIO is controlled by the following environment variables, which define the MIO features and are processed
by the MIO_open64 subroutine:

The MIO_STATS variable is used to indicate a file that will be used as a repository for diagnostic
messages and for output requested from the MIO modules. It is interpreted as a file name with two special
cases. If the file is either thestderr or stdout output, the output will be directed towards the appropriate file
stream. If the first character of the MIO_STATS variable is a plus sign (+), the file name to be used is the
string following the plus sign (+), and the file is opened for appending. Without the preceding plus sign (+),
the file is overwritten.

The MIO_FILES variable is the key to determine which modules are to be invoked for a given file when
the MIO_open64 subroutine is called. The format for the MIO_FILES variable is the following:
first_file_name_list [module list] second_file_name_list [module list] ...

When the MIO_open64 subroutine is called, MIO checks for the existence of the MIO_FILES variable and
parses it as follows:

The MIO_FILES variable is parsed left to right. All characters up to the next occurrence of the bracket ([)
are taken as a file name list. A file name list is a colon-separated list of file name templates. A file name
template is used to match the name of the file opened by MIO and can use the following wildcard
characters:

* Matches zero or more characters of a directory or file name.

? Matches one character of a directory or file name.

** Matches all remaining characters of a full path name.

If the file name templates does not contain a forward slash (/) , then all of the path directory information in
the file name passed to the MIO_open64 subroutine is ignored and matching is applied only to the file
name of the file being opened.

If the name of the file being opened is matched by one of the file name templates in the file name list then
the module list to be invoked is taken as the string between brackets ([]). If the name of the file match two
or more file name templates, the first match is taken into account. If the name of the file being opened
does not match any of the file name templates in any of the file name lists then the file is opened with a
default invocation of the AIX module.

If a match has occurred, the modules to be invoked are taken from the associated module list in the
MIO_FILES variable. The modules are invoked left to right, with the left-most being closest to the user
program and the right-most being closest to the operating system. If the module list does not start with the
MIO module, a default invocation of the MIO module is added as a prefix. If the AIX module is not
specified, a default invocation of the AIX module is appended.

The following is an example of the MIO_FILES variable:
setenv MIO_FILES " *.dat [trace/stats]"

828 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Assume the MIO_FILES variable is set as follows:
MIO_FILES= *.dat:*.scr [trace] *.f01:*.f02:*.f03 [trace | pf | trace]

If the test.dat file is opened by the MIO_open64 subroutine, the test.dat file name matches *.dat and the
following modules are invoked:
mio | trace | aix

If the test.f02 file is opened by the MIO_open64 subroutine, the test.f02 file name matches the second
file name templates in the second file name list and the following modules are invoked:
mio | trace | pf | trace | aix

Each module has its own hardcoded default options for a default invocation. You can override the default
options by specifying them in the associated MIO_FILES module list. The following example turns on the
stats option for the trace module and requests that the output be directed to the my.stats file:
MIO_FILES= *.dat : *.scr [trace/stats=my.stats]

The options for a module are delimited with a forward slash (/). Some options require an associated string
value and others might require an integer value. For those requiring a string value, if the string includes a
forward slash (/), enclose the string in braces ({ }).

For those options requiring an integer value, append the integer value with a k, m, g, or t to represent kilo,
mega, giga, or tera. You might also input integer values in base 10, 8, or 16. If you add a 0x prefix to the
integer value, the integer is interpreted as base 16. If you add a 0 prefix to the integer value, the integer is
interpreted as base 8. If you add neither a 0x prefix nor a 0 prefix to the integer value, the integer is
interpreted as base 10.

The MIO_DEFAULTS variable is intended as a way to keep the MIO_FILES variable more readable. If the
user is specifying several modules for multiple file name list and module list pairs, then the MIO_FILES
variable might become quite long. To repeatedly override the hardcoded defaults in the same manner, you
can specify new defaults for a module by specifying such defaults in the MIO_DEFAULTS variable. The
MIO_DEFAULTS variable is a comma separated list of modules with their new defaults.

The following is an example of the MIO_DEFAULTS variable:
setenv MIO_DEFAULTS " trace/kbytes "

Assume that MIO_DEFAULTS variable is set as follows:
MIO_DEFAULTS = trace/events=prob.events , aix/debug

Any default invocation of the trace module will have binary event tracing enabled and directed towards the
prob.events file and any default invocation of the AIX module will have debug enabled.

The MIO_DEBUG variable is intended as an aid in debugging the use of MIO. MIO searches the
MIO_DEFAULTS variable for keywords and provides debugging output for the option. The available
keywords are the following:

ALL Turns on all of the MIO_DEBUG variable keywords.

ENV Outputs environment variable matching requests.

OPEN Outputs open requests made to the MIO_open64 subroutine.

MODULES
Outputs modules invoked for each call to the MIO_open64 subroutine.

TIMESTAMP
Places a timestamp preceding each entry into a stats file.

Base Operating System (BOS) Runtime Services (A-P) 829

DEF Outputs the definition table of each module. When the file opens, the outputs of all of the MIO
library’s definitions are processed for all the MIO library modules.

Return Values
The return values are those of the corresponding standard POSIX system call open64.

Error Codes
The error codes are those of the corresponding standard POSIX system call open64.

Standard Output
There is no MIO library output for the MIO_open64 subroutine.

Note: MIO library output statistics are written in the MIO_close subroutine. This output filename is
configurable with the MIO_STATS environment variable.

In the example.stats MIO output file, the module trace is set and reported, and the open requests are
output. All of the values are in kilobytes.

Examples
The following example.c file issues 100 writes of 16 KB, seeks to the beginning of the file, issues 100
reads of 16 KB, and then seeks backward through the file reading 16 KB records. At the end the file is
truncated to 0 bytes in length.

The filename argument to the following example is the file to be created, written to and read forwards and
backwards:
--
#define _LARGE_FILES
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

#include "libmio.h"

/* Define open64, lseek64 and ftruncate64, not
* open, lseek, and ftruncate that are used in the code. This is
* because libmio.h defines _LARGE_FILES which forces <fcntl.h> to
* redefine open, lseek, and ftruncate as open64, lseek64, and
* ftruncate64
*/

#define open64(a,b,c) MIO_open64(a,b,c,0)
#define close MIO_close
#define lseek64 MIO_lseek64
#define write MIO_write
#define read MIO_read
#define ftruncate64 MIO_ftruncate64

#define RECSIZE 16384
#define NREC 100

main(int argc, char **argv)
{
int i, fd, status ;
char *name ;
char *buffer ;
int64 ret64 ;

if(argc < 2){
fprintf(stderr,"Usage : example file_name\n");

830 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

exit(-1);
}
name = argv[1] ;

buffer = (char *)malloc(RECSIZE);
memset(buffer, 0, RECSIZE) ;

fd = open(name, O_RDWR|O_TRUNC|O_CREAT, 0640) ;
if(fd < 0){

fprintf(stderr,"Unable to open file %s errno=%d\n",name,errno);
exit(-1);

}

/* write the file */
for(i=0;i<NREC;i++){

status = write(fd, buffer, RECSIZE) ;
}

/* read the file forwards */
ret64 = lseek(fd, 0, SEEK_SET) ;
for(i=0;i<NREC;i++){

status = read(fd, buffer, RECSIZE) ;
}

/* read the file backwards */
for(i=0;i<NREC;i++){

ret64 = lseek(fd, (NREC-i-1)*RECSIZE, SEEK_SET) ;
status = read(fd, buffer, RECSIZE) ;

}

/* truncate the file back to 0 bytes*/
status = ftruncate(fd, 0) ;

free(buffer);

/* close the file */
status = close(fd);

}

--

Both a script that sets the environment variables, compiles and calls the application and the example.c
example are delivered and installed with the libmio file, as follows:
cc -o example example.c -lmio

./example file.dat

The following environment variables are set to configure MIO:

setenv MIO_STATS example.stats
setenv MIO_FILES ″ *.dat [trace/stats] ″
setenv MIO_DEFAULTS ″ trace/kbytes ″
setenv MIO_DEBUG OPEN

See the /usr/samples/libmio/README file and sample files for details.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

Base Operating System (BOS) Runtime Services (A-P) 831

The open, MIO_close, MIO_lseek64, MIO_read, MIO_write, MIO_ftruncate64, MIO_fstat64, MIO_fcntl,
MIO_ffinfo, and MIO_fsync subroutines.

MIO_open Subroutine

Purpose
Opens a file for reading or writing through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>
int MIO_open (Path, OFlag, Mode, Extra)
char *Path;
int OFlag;
int Mode;
struct mio_extra *Extra;

Description
The MIO_open subroutine is a redirection to the MIO_open64 subroutine and is an entry point of the MIO
library. To use the MIO library, the files have to be opened with the O_LARGEFILE flag. For more details
on the O_LARGEFILE flag, see the fcntl.h File.

Use the MIO_open subroutine to instrument your application with the MIO library. You can replace the
open kernel I/O subroutine with this equivalent MIO subroutine. See the Modular I/O in Performance
management for the MIO library implementation.

Use this subroutine to open a file through the Modular I/O (MIO) library. This library creates the context for
this open file, according to the configuration set in the MIO environment variables, or in the Extra
parameter.

To analyze your application I/O and tune the I/O, use the MIO subroutines in the place of the standard I/O
subroutines.

The MIO subroutines are:

v MIO_close

v MIO_lseek64

v MIO_read

v MIO_write

v MIO_ftruncate64

v MIO_fstat64

v MIO_fcntl

v MIO_ffinfo

v MIO_fsync

The standard I/O subroutines are:

v close

v lseek64

v read

v write

832 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v ftruncate64

v fstat64

v fcntl

v ffinfo

v fsync

Parameters

Extra Specifies additional arguments for the MIO library. The simplest implementation is to pass a zero
pointer as the fourth argument. The fourth argument is a pointer to the mio_extra structure, you
can usually pass a zero pointer, but you can also pass an mio_extra pointer (use this technique
only if you are very familiar with how to code this argument).

The mio_extra structure is defined as follows:

struct mio_extra {
int cookie ;
/* Default value: MIO_EXTRA_COOKIE/

int taskid ;
/* for later */

int64 bufsiz ;
/* if > 1 : force the prefetch for write pffw */

char *modules ;
/* explicit module name,
if any modules returns from MIO_FILES environment variable match */

char *logical_name ;
/* logical file name to open
if file name don't match with MIO_FILES regexp */

int flags ;
/* if MIO_EXTRA_SKIP_MIO_FILES_FLAG :
don't use MIO_FILES env variable, but use extra->modules */

} ;

Mode Specifies the modes. For more information, see the Mode flag in the open64 subroutine.
Oflag Specifies the type of access, the special open processing, the type of update, and the initial state

of the open file. For more information, see the open64 subroutine.
Path Specifies the file to be opened.

Note: For applications that would not use the environment variable interface to apply MIO modules to a
file, the mio_extra hook provides an easy way to do that.

Environment variables
MIO is controlled through the following four environment variables. These environment variables, which
define the MIO features, are processed by the MIO_open64 subroutine.

The MIO_STATS variable is used to indicate a file that will be used as a repository for diagnostic
messages and for output requested from the MIO modules. It is interpreted as a file name with two special
cases. If the file is either thestderr or stdout output, the output will be directed towards the appropriate file
stream. If the first character of the MIO_STATS variable is a plus sign (+), the file name to be used is the
string following the plus sign (+), and the file is opened for appending. Without the preceding plus sign (+),
the file is overwritten.

The MIO_FILES variable is the key to determine which modules are to be invoked for a given file when
the MIO_open64 subroutine is called. The format for the MIO_FILES variable is the following:

Base Operating System (BOS) Runtime Services (A-P) 833

first_file_name_list [module list] second_file_name_list [module list]

When the MIO_open64 subroutine is called, MIO checks for the existence of the MIO_FILES variable and
parses it as follows:

The MIO_FILES variable is parsed left to right. All characters up to the next occurrence of the bracket ([)
are taken as a file name list. A file name list is a colon-separated list of file name templates. A file name
template is used to match the name of the file opened by MIO and can use the following wildcard
characters:

* Matches zero or more characters of a directory or file name.

? Matches one character of a directory or file name.

** Matches all remaining characters of a full path name.

If the file name template does not contain a forward slash (/) , then all of the path directory information in
the file name passed to the MIO_open64 subroutine is ignored and matching is applied only to the file
name of the file being opened.

If the name of the file being opened is matched by one of the file name templates in the file name list then
the module list to be invoked is taken as the string between brackets ([]). If the name of the file match two
or more file name templates, the first match is taken into account. If the name of the file being opened
does not match any of the file name templates in any of the file name lists then the file is opened with a
default invocation of the AIX module.

If a match has occurred, the modules to be invoked are taken from the associated module list in the
MIO_FILES variable. The modules are invoked left to right, with the left-most being closest to the user
program and the right-most being closest to the operating system. If the module list does not start with the
MIO module, a default invocation of the MIO module is added as a prefix. If theAIX module is not
specified, a default invocation of theAIX module is appended.

The following is an example of the MIO_FILES variable:
setenv MIO_FILES " *.dat [trace/stats]"

Assume the MIO_FILES variable is set as follows:
MIO_FILES= *.dat:*.scr [trace] *.f01:*.f02:*.f03 [trace | pf | trace]

If the test.dat file is opened by the MIO_open64 subroutine, the test.dat file name matches *.dat and the
following modules are invoked:
mio | trace | aix

If the test.f02 file is opened by the MIO_open64 subroutine, the test.f02 file name matches the second
file name templates in the second file name list and the following modules are invoked:
mio | trace | pf | trace | aix

Each module has its own hardcoded default options for a default invocation. You can override the default
options by specifying them in the associated MIO_FILES module list. The following example turns on the
stats option for the trace module and requests that the output be directed to the my.stats file:
MIO_FILES= *.dat : *.scr [trace/stats=my.stats]

The options for a module are delimited with a forward slash (/). Some options require an associated string
value and others might require an integer value. For those requiring a string value, if the string includes a
forward slash (/), enclose the string in braces ({ }).

For those options requiring an integer value, append the integer value with a k, m, g, or t to represent kilo,
mega, giga, or tera. You might also input integer values in base 10, 8, or 16. If you add a 0x prefix to the

834 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

integer value, the integer is interpreted as base 16. If you add a 0 prefix to the integer value, the integer is
interpreted as base 8. If you add neither a 0x prefix nor a 0 prefix to the integer value, the integer is
interpreted as base 10.

The MIO_DEFAULTS variable is intended as a way to keep the MIO_FILES variable more readable. If the
user is specifying several modules for multiple file name list and module list pairs, then the MIO_FILES
variable might become quite long. To repeatedly override the hardcoded defaults in the same manner, you
can specify new defaults for a module by specifying such defaults in the MIO_DEFAULTS variable. The
MIO_DEFAULTS variable is a comma separated list of modules with their new defaults.

The following is an example of the MIO_DEFAULTS variable:
setenv MIO_DEFAULTS " trace/kbytes "

Assume that MIO_DEFAULTS variable is set as follows:
MIO_DEFAULTS = trace/events=prob.events , aix/debug

Any default invocation of the trace module will have binary event tracing enabled and directed towards the
prob.events file and any default invocation of the AIX module will have debug enabled.

The MIO_DEBUG variable is intended as an aid in debugging the use of MIO. MIO searches the
MIO_DEFAULTS variable for keywords and provides debugging output for the option. The available
keywords are the following:

ALL Turns on all of the MIO_DEBUG variable keywords.

ENV Outputs environment variable matching requests.

OPEN Outputs open requests made to the MIO_open64 subroutine.

MODULES
Outputs modules invoked for each call to the MIO_open64 subroutine.

TIMESTAMP
Places a timestamp preceding each entry into a stats file.

DEF Outputs the definition table of each module. When the file opens, the outputs of all of the MIO
library’s definitions are processed for all the MIO library modules.

Return values
The return values are those of the corresponding standard POSIX system call open64.

Error codes
The error codes are those of the corresponding standard POSIX system call open64.

Standard output
There is no MIO library output for the MIO_open64 subroutine.

Note: MIO library output statistics are written in the MIO_close subroutine. This output filename is
configurable with the MIO_STATS environment variable.

In the example.stats. MIO output file, the module trace is set and reported, and the open requests are
output. All the values are in kilobytes.

Examples
The following example.c file issues 100 writes of 16 KB, seeks to the beginning of the file, issues 100
reads of 16 KB, and then seeks backward through the file reading 16 KB records. At the end the file is
truncated to 0 bytes in length.

Base Operating System (BOS) Runtime Services (A-P) 835

The filename argument to the following example is the file to be created, written to and read forwards and
backwards:
--
#define _LARGE_FILES
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

#include "libmio.h"

/* Define open64, lseek64 and ftruncate64, not
* open, lseek, and ftruncate that are used in the code. This is
* because libmio.h defines _LARGE_FILES which forces <fcntl.h> to
* redefine open, lseek, and ftruncate as open64, lseek64, and
* ftruncate64
*/

#define open64(a,b,c) MIO_open64(a,b,c,0)
#define close MIO_close
#define lseek64 MIO_lseek64
#define write MIO_write
#define read MIO_read
#define ftruncate64 MIO_ftruncate64

#define RECSIZE 16384
#define NREC 100

main(int argc, char **argv)
{
int i, fd, status ;
char *name ;
char *buffer ;
int64 ret64 ;

if(argc < 2){
fprintf(stderr,"Usage : example file_name\n");
exit(-1);

}
name = argv[1] ;

buffer = (char *)malloc(RECSIZE);
memset(buffer, 0, RECSIZE) ;

fd = open(name, O_RDWR|O_TRUNC|O_CREAT, 0640) ;
if(fd < 0){

fprintf(stderr,"Unable to open file %s errno=%d\n",name,errno);
exit(-1);

}

/* write the file */
for(i=0;i<NREC;i++){

status = write(fd, buffer, RECSIZE) ;
}

/* read the file forwards */
ret64 = lseek(fd, 0, SEEK_SET) ;
for(i=0;i<NREC;i++){

status = read(fd, buffer, RECSIZE) ;
}

/* read the file backwards */
for(i=0;i<NREC;i++){

ret64 = lseek(fd, (NREC-i-1)*RECSIZE, SEEK_SET) ;
status = read(fd, buffer, RECSIZE) ;

}

/* truncate the file back to 0 bytes*/

836 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

status = ftruncate(fd, 0) ;

free(buffer);

/* close the file */
status = close(fd);

}

--

Both a script that sets the environment variables, compiles and calls the application and the example.c
example are delivered and installed with the libmio, as follows:
cc -o example example.c -lmio

./example file.dat

The following environment variables are set to configure MIO:

setenv MIO_STATS example.stats
setenv MIO_FILES ″ *.dat [trace/stats] ″
setenv MIO_DEFAULTS ″ trace/kbytes ″
setenv MIO_DEBUG OPEN

See the /usr/samples/libmio/README and sample files for details.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The open, MIO_close, MIO_lseek64, MIO_read, MIO_write, MIO_ftruncate64, MIO_fstat64, MIO_fcntl,
MIO_ffinfo, MIO_fsync subroutines.

MIO_read Subroutine

Purpose
Read from a file through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_read(FileDescriptor,
Buffer, NBytes)
int FileDescriptor;
void * Buffer;
int NBytes;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application with
the MIO library. You can replace the read kernel I/O subroutine with this equivalent MIO subroutine. See
theModular I/O in Performance management for the MIO library implementation.

Base Operating System (BOS) Runtime Services (A-P) 837

Use this subroutine to read to the number of bytes of data specified by the NBytes parameter from the file
associated with the FileDescriptor parameter into the buffer, through the Modular I/O (MIO) library. The
Buffer parameter points to the buffer. The FileDescriptor parameter results from the MIO_open64
subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call read.

Return Values
The return values are those of the corresponding standard POSIX system call read.

Error Codes
The error codes are those of the corresponding standard POSIX system call read.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The read, MIO_open64, MIO_close, MIO_lseek64, MIO_write, MIO_ftruncate64, MIO_fstat64,
MIO_fcntl, MIO_ffinfo, and MIO_fsync subroutines.

MIO_write Subroutine

Purpose
Write to a file through the MIO library.

Library
Modular I/O library (libmio.a)

Syntax
#include <libmio.h>

int MIO_write(FileDescriptor,
Buffer, NBytes)
int FileDescriptor;
void * Buffer;
int NBytes;

Description
This subroutine is an entry point of the MIO library. Use this subroutine to instrument your application with
the MIO library. You can replace the write kernel I/O subroutine with this equivalent MIO subroutine. See
theModular I/O in Performance management for the MIO library implementation.

Use this subroutine to write the number of bytes of data specified by the NBytes parameter from the buffer
to the file associated with the FileDescriptor parameter through the Modular I/O (MIO) library. The Buffer
parameter points to the buffer. The FileDescriptor parameter results from the MIO_open64 subroutine.

Parameters
The parameters are those of the corresponding standard POSIX system call write.

838 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
The return values are those of the corresponding standard POSIX system call write.

Error Codes
The error codes are those of the corresponding standard POSIX system call write.

Location
/usr/lib/libmio.a

Related Information
The Modular I/O in Performance management.

The write, MIO_open64, MIO_close, MIO_lseek64, MIO_ftruncate64, MIO_fstat64, MIO_fcntl,
MIO_ffinfo, and MIO_fsync subroutines.

mkdir Subroutine

Purpose
Creates a directory.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

int mkdir (Path, Mode)
const char *Path;
mode_t Mode;

Description
The mkdir subroutine creates a new directory.

The new directory has the following:

v The owner ID is set to the process-effective user ID.

v If the parent directory has the SetFileGroupID (S_ISGID) attribute set, the new directory inherits the
group ID of the parent directory. Otherwise, the group ID of the new directory is set to the effective
group ID of the calling process.

v Permission and attribute bits are set according to the value of the Mode parameter, with the following
modifications:

– All bits set in the process-file mode-creation mask are cleared.

– The SetFileUserID and Sticky (S_ISVTX) attributes are cleared.

v If the Path variable names a symbolic link, the link is followed. The new directory is created where the
variable pointed.

Base Operating System (BOS) Runtime Services (A-P) 839

Parameters

Path Specifies the name of the new directory. If Network File System (NFS) is installed on your
system, this path can cross into another node. In this case, the new directory is created at that
node.

To execute the mkdir subroutine, a process must have search permission to get to the parent
directory of the Path parameter as well as write permission in the parent directory itself.

Mode Specifies the mask for the read, write, and execute flags for owner, group, and others. The
Mode parameter specifies directory permissions and attributes. This parameter is constructed
by logically ORing values described in the sys/mode.h file.

Return Values
Upon successful completion, the mkdir subroutine returns a value of 0. Otherwise, a value of -1 is
returned, and the errno global variable is set to indicate the error.

Error Codes
The mkdir subroutine is unsuccessful and the directory is not created if one or more of the following are
true:

EACCES Creating the requested directory requires writing in a directory with a
mode that denies write permission.

EEXIST The named file already exists.
EROFS The named file resides on a read-only file system.
ENOSPC The file system does not contain enough space to hold the contents of

the new directory or to extend the parent directory of the new directory.
EMLINK The link count of the parent directory exceeds the maximum

(LINK_MAX) number. (LINK_MAX) is defined in limits.h file.
ENAMETOOLONG The Path parameter or a path component is too long and cannot be

truncated.
ENOENT A component of the path prefix does not exist or the Path parameter

points to an empty string.
ENOTDIR A component of the path prefix is not a directory.
EDQUOT The directory in which the entry for the new directory is being placed

cannot be extended, or an i-node or disk blocks could not be allocated
for the new directory because the user’s or group’s quota of disk blocks
or i-nodes on the file system containing the directory is exhausted.

The mkdir subroutine can be unsuccessful for other reasons. See ″Appendix A. Base Operating System
Error Codes for Services That Require Path-Name Resolution″ for a list of additional errors.

If NFS is installed on the system, the mkdir subroutine is also unsuccessful if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The chmod (“chmod or fchmod Subroutine” on page 149) subroutine, mknod (“mknod or mkfifo
Subroutine” on page 841) subroutine, rmdir subroutine, umask subroutine.

The chmod command, mkdir command, mknod command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

840 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

mknod or mkfifo Subroutine

Purpose
Creates an ordinary file, first-in-first-out (FIFO), or special file.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

int mknod (const char * Path, mode_t Mode, dev_t Device)
char *Path;
int Mode;
dev_t Device;

int mkfifo (const char *Path, mode_t Mode)
const char *Path;
int Mode;

Description
The mknod subroutine creates a new regular file, special file, or FIFO file. Using the mknod subroutine to
create file types (other than FIFO or special files) requires root user authority.

For the mknod subroutine to complete successfully, a process must have both search and write
permission in the parent directory of the Path parameter.

The mkfifo subroutine is an interface to the mknod subroutine, where the new file to be created is a FIFO
or special file. No special system privileges are required.

The new file has the following characteristics:

v File type is specified by the Mode parameter.

v Owner ID is set to the effective user ID of the process.

v Group ID of the file is set to the group ID of the parent directory if the SetGroupID attribute (S_ISGID)
of the parent directory is set. Otherwise, the group ID of the file is set to the effective group ID of the
calling process.

v Permission and attribute bits are set according to the value of the Mode parameter. All bits set in the
file-mode creation mask of the process are cleared.

Upon successful completion, the mkfifo subroutine marks for update the st_atime, st_ctime, and
st_mtime fields of the file. It also marks for update the st_ctime and st_mtime fields of the directory that
contains the new entry.

If the new file is a character special file having the S_IMPX attribute (multiplexed character special file),
when the file is used, additional path-name components can appear after the path name as if it were a
directory. The additional part of the path name is available to the device driver of the file for interpretation.
This feature provides a multiplexed interface to the device driver.

Parameters

Path Names the new file. If Network File System (NFS) is installed on your system, this path can cross into
another node.

Base Operating System (BOS) Runtime Services (A-P) 841

Mode Specifies the file type, attributes, and access permissions. This parameter is constructed by logically
ORing values described in the sys/mode.h file.

Device Specifies the ID of the device, which corresponds to the st_rdev member of the structure returned by the
statx subroutine. This parameter is configuration-dependent and used only if the Mode parameter
specifies a block or character special file. If the file you specify is a remote file, the value of the Device
parameter must be meaningful on the node where the file resides.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The mknod subroutine fails and the new file is not created if one or more of the following are true:

EEXIST The named file exists.
EDQUOT The directory in which the entry for the new file is being placed cannot be extended, or an

i-node could not be allocated for the file because the user’s or group’s quota of disk blocks
or i-nodes on the file system is exhausted.

EISDIR The Mode parameter specifies a directory. Use the mkdir subroutine instead.
ENOSPC The directory that would contain the new file cannot be extended, or the file system is out of

file-allocation resources.
EPERM The Mode parameter specifies a file type other than S_IFIFO, and the calling process does

not have root user authority.
EROFS The directory in which the file is to be created is located on a read-only file system.

The mknod and mkfifo subroutine can be unsuccessful for other reasons. See ″Appendix. A Base
Operating System Error Codes for Services That Require Path-Name Resolution″ (Appendix A, “Base
Operating System Error Codes for Services That Require Path-Name Resolution,” on page 1355) for a list
of additional errors.

If NFS is installed on the system, the mknod subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The chmod (“chmod or fchmod Subroutine” on page 149) subroutine, mkdir (“mkdir Subroutine” on page
839) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page
939) subroutine, statx subroutine, umask subroutine.

The chmod command, mkdir command, mknod command.

The mode.h file, types.h file.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

mktemp or mkstemp Subroutine

Purpose
Constructs a unique file name.

842 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Libraries
Standard C Library (libc.a)

Berkeley Compatibility Library (libbsd.a)

Syntax
#include <stdlib.h>

char *mktemp (Template)
char *Template;

int mkstemp (Template)
char *Template;

Description
The mktemp subroutine replaces the contents of the string pointed to by the Template parameter with a
unique file name.

Note: The mktemp subroutine creates a filename and checks to see if the file exist. It that file does not
exist, the name is returned. If the user calls mktemp twice without creating a file using the name
returned by the first call to mktemp, then the second mktemp call may return the same name as
the first mktemp call since the name does not exist.

To avoid this, either create the file after calling mktemp or use the mkstemp subroutine. The mkstemp
subroutine creates the file for you.

To get the BSD version of this subroutine, compile with Berkeley Compatibility Library (libbsd.a).

The mkstemp subroutine performs the same substitution to the template name and also opens the file for
reading and writing.

In BSD systems, the mkstemp subroutine was intended to avoid a race condition between generating a
temporary name and creating the file. Because the name generation in the operating system is more
random, this race condition is less likely. BSD returns a file name of / (slash).

Former implementations created a unique name by replacing X’s with the process ID and a unique letter.

Parameters

Template Points to a string to be replaced with a unique file name. The string in the Template parameter is a
file name with up to six trailing X’s. Since the system randomly generates a six-character string to
replace the X’s, it is recommended that six trailing X’s be used.

Return Values
Upon successful completion, the mktemp subroutine returns the address of the string pointed to by the
Template parameter.

If the string pointed to by the Template parameter contains no X’s, and if it is an existing file name, the
Template parameter is set to a null character, and a null pointer is returned; if the string does not match
any existing file name, the exact string is returned.

Upon successful completion, the mkstemp subroutine returns an open file descriptor. If the mkstemp
subroutine fails, it returns a value of -1.

Base Operating System (BOS) Runtime Services (A-P) 843

Related Information
The getpid (“getpid, getpgrp, or getppid Subroutine” on page 409) subroutine, tmpfile subroutine,
tmpnam or tempnam subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

mlock and munlock Subroutine

Purpose
Locks or unlocks a range of process address space.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int mlock (addr, len)
const void *addr;
size_t len;

int munlock (addr, len)
const void *addr;
size_t len;

Description
The mlock subroutine causes those whole pages containing any part of the address space of the process
starting at address addr and continuing for len bytes to be memory-resident until unlocked or until the
process exits or executes another process image. If the starting address addr is not a multiple of
PAGESIZE, it is rounded down to the lowest page boundary. The len is rounded up to a multiple of
PAGESIZE.

The munlock subroutine unlocks those whole pages containing any part of the address space of the
process starting at address addr and continuing for len bytes, regardless of how many times mlock has
been called by the process for any of the pages in the specified range.

If any of the pages in the range specified in a call to the munlock subroutine are also mapped into the
address spaces of other processes, any locks established on those pages by another process are
unaffected by the call of this process to the munlock subroutine. If any of the pages in the range specified
by a call to the munlock subroutine are also mapped into other portions of the address space of the
calling process outside the range specified, any locks established on those pages through other mappings
are also unaffected by this call.

Upon successful return from mlock, pages in the specified range are locked and memory-resident. Upon
successful return from munlock, pages in the specified range are unlocked with respect to the address
space of the process.

The calling process must have the root user authority to use this subroutine.

Parameters

addr Specifies the address space of the process to be locked or unlocked.
len Specifies the length in bytes of the address space.

844 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, the mlock and munlock subroutines return zero. Otherwise, no change is
made to any locks in the address space of the process, the surbroutines return -1 and set errno to
indicate the error.

Error Codes
The mlock and munlock subroutines fail if:

ENOMEM Some or all of the address range specified by the addr and len parameters does not correspond to
valid mapped pages in the address space of the process.

EINVAL The process has already some plocked memory or the len parameter is negative.
EPERM The calling process does not have the appropriate privilege to perform the requested operation.

The mlock subroutine might fail if:

ENOMEM Locking the pages mapped by the specified range would
exceed the limit on the amount of memory the process
may lock.

Related Information
“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238, “exit, atexit,
unatexit, _exit, or _Exit Subroutine” on page 245, “fork, f_fork, or vfork Subroutine” on page 293, “mlockall
and munlockall Subroutine,” and “munmap Subroutine” on page 897.

mlockall and munlockall Subroutine

Purpose
Locks or unlocks the address space of a process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int mlockall (flags)
int flags;

int munlockall (void);

Description
The mlockall subroutine causes all of the pages mapped by the address space of a process to be
memory-resident until unlocked or until the process exits or executes another process image. The flags
parameter determines whether the pages to be locked are those currently mapped by the address space
of the process, those that are mapped in the future, or both. The flags parameter is constructed from the
bitwise-inclusive OR of one or more of the following symbolic constants, defined in the sys/mman.h
header file:

MCL_CURRENT
Lock all of the pages currently mapped into the address space of the process.

Base Operating System (BOS) Runtime Services (A-P) 845

MCL_FUTURE
Lock all of the pages that become mapped into the address space of the process in the future,
when those mappings are established.

When MCL_FUTURE is specified, the future mapping functions might fail if the system is not able to lock
this amount of memory because of lack of resources, for example.

The munlockall subroutine unlocks all currently mapped pages of the address space of the process. Any
pages that become mapped into the address space of the process after a call to the munlockall
subroutine are not locked, unless there is an intervening call to the mlockall subroutine specifying
MCL_FUTURE or a subsequent call to the mlockall subroutine specifying MCL_CURRENT. If pages
mapped into the address space of the process are also mapped into the address spaces of other
processes and are locked by those processes, the locks established by the other processes are unaffected
by a call to the munlockall subroutine.

Regarding libraries that are pinned, a distinction has been made internally between a user referencing
memory to perform a task related to the application and the system referencing memory on behalf of the
application. The former is pinned, and the latter is not. The user-addressable loader data that remains
unlocked includes:

v loader entries

v user loader entries

v page-descriptor segment

v usla heap segment

v usla text segment

v all the global segments related to the 64-bit shared library loadlist (shlib heap segment, shlib le
segment, shlib text and data heap segments).

This limit affects implementation only, and it does not cause the API to fail.

Upon successful return from a mlockall subroutine that specifies MCL_CURRENT, all currently mapped
pages of the process’ address space are memory-resident and locked. Upon return from the munlockall
subroutine, all currently mapped pages of the process’ address space are unlocked with respect to the
process’ address space.

The calling process must have the root user authority to use this subroutine.

Parameters

flags Determines whether the pages to be locked are those currently mapped by the address space of the
process, those that are mapped in the future, or both.

Return Values
Upon successful completion, the mlockall subroutine returns 0. Otherwise, no additional memory is
locked, and the subroutine returns -1 and sets errno to indicate the error.

Upon successful completion, the munlockall subroutine returns 0. Otherwise, no additional memory is
unlocked, and the subroutine returns -1 and sets errno to indicate the error.

Error Codes
The mlockall subroutine fails if:

EINVAL The flags parameter is 0, or includes unimplemented flags
or the process has already some plocked memory.

846 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ENOMEM Locking all of the pages currently mapped into the
address space of the process would exceed the limit on
the amount of memory that the process may lock.

EPERM The calling process does not have the appropriate
authority to perform the requested operation.

The munlockall subroutine fails if:

EINVAL The process has already some plocked memory
EPERM The calling process does not have the appropriate privilege to perform the requested

operation

Related Information
“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238, “exit, atexit,
unatexit, _exit, or _Exit Subroutine” on page 245, “fork, f_fork, or vfork Subroutine” on page 293, “mlock
and munlock Subroutine” on page 844, and “munmap Subroutine” on page 897.

mmap or mmap64 Subroutine

Purpose
Maps a file-system object into virtual memory.

Library
Standard C library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mman.h>

void *mmap (addr, len, prot, flags, fildes, off)
void * addr;
size_t len;
int prot, flags, fildes;
off_t off;

void *mmap64 (addr, len, prot, flags, fildes, off)
void * addr;
size_t len;
int prot, flags, fildes;
off64_t off;

Description
Attention: A file-system object should not be simultaneously mapped using both the mmap and shmat
subroutines. Unexpected results may occur when references are made beyond the end of the object.

The mmap subroutine creates a new mapped file or anonymous memory region by establishing a
mapping between a process-address space and a file-system object. Care needs to be taken when using
the mmap subroutine if the program attempts to map itself. If the page containing executing instructions is
currently referenced as data through an mmap mapping, the program will hang. Use the -H4096 binder
option, and that will put the executable text on page boundaries. Then reset the file that contains the
executable material, and view via an mmap mapping.

Base Operating System (BOS) Runtime Services (A-P) 847

A region created by the mmap subroutine cannot be used as the buffer for read or write operations that
involve a device. Similarly, an mmap region cannot be used as the buffer for operations that require either
a pin or xmattach operation on the buffer.

Modifications to a file-system object are seen consistently, whether accessed from a mapped file region or
from the read or write subroutine.

Child processes inherit all mapped regions from the parent process when the fork subroutine is called.
The child process also inherits the same sharing and protection attributes for these mapped regions. A
successful call to any exec subroutine will unmap all mapped regions created with the mmap subroutine.

The mmap64 subroutine is identical to the mmap subroutine except that the starting offset for the file
mapping is specified as a 64-bit value. This permits file mappings which start beyond OFF_MAX.

In the large file enabled programming environment, mmap is redefined to be mmap64.

If the application has requested SPEC1170 compliant behavior then the st_atime field of the mapped file
is marked for update upon successful completion of the mmap call.

If the application has requested SPEC1170 compliant behavior then the st_ctime and st_mtime fields of a
file that is mapped with MAP_SHARED and PROT_WRITE are marked for update at the next call to
msync subroutine or munmap subroutine if the file has been modified.

Parameters

addr Specifies the starting address of the memory region to be mapped. When the MAP_FIXED flag is
specified, this address must be a multiple of the page size returned by the sysconf subroutine using
the _SC_PAGE_SIZE value for the Name parameter. A region is never placed at address zero, or at an
address where it would overlap an existing region.

len Specifies the length, in bytes, of the memory region to be mapped. The system performs mapping
operations over whole pages only. If the len parameter is not a multiple of the page size, the system will
include in any mapping operation the address range between the end of the region and the end of the
page containing the end of the region.

848 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

prot Specifies the access permissions for the mapped region. The sys/mman.h file defines the following
access options:

PROT_READ
Region can be read.

PROT_WRITE
Region can be written.

PROT_EXEC
Region can be executed.

PROT_NONE
Region cannot be accessed.

The prot parameter can be the PROT_NONE flag, or any combination of the PROT_READ flag,
PROT_WRITE flag, and PROT_EXEC flag logically ORed together. If the PROT_NONE flag is not
specified, access permissions may be granted to the region in addition to those explicitly requested.
However, write access will not be granted unless the PROT_WRITE flag is specified.
Note: The operating system generates a SIGSEGV signal if a program attempts an access that
exceeds the access permission given to a memory region. For example, if the PROT_WRITE flag is not
specified and a program attempts a write access, a SIGSEGV signal results.

If the region is a mapped file that was mapped with the MAP_SHARED flag, the mmap subroutine
grants read or execute access permission only if the file descriptor used to map the file was opened for
reading. It grants write access permission only if the file descriptor was opened for writing.

If the region is a mapped file that was mapped with the MAP_PRIVATE flag, the mmap subroutine
grants read, write, or execute access permission only if the file descriptor used to map the file was
opened for reading. If the region is an anonymous memory region, the mmap subroutine grants all
requested access permissions.

fildes Specifies the file descriptor of the file-system object or of the shared memory object to be mapped. If
the MAP_ANONYMOUS flag is set, the fildes parameter must be -1. After the successful completion of
the mmap subroutine, the file or the shared memory object specified by the fildes parameter can be
closed without affecting the mapped region or the contents of the mapped file. Each mapped region
creates a file reference, similar to an open file descriptor, which prevents the file data from being
deallocated.
Note: The mmap subroutine supports the mapping of shared memory object and regular files only. An
mmap call that specifies a file descriptor for a special file fails, returning the ENODEV error code. An
example of a file descriptor for a special file is one that might be used for mapping either I/O or device
memory.

off Specifies the file byte offset at which the mapping starts. This offset must be a multiple of the page size
returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

Base Operating System (BOS) Runtime Services (A-P) 849

flags Specifies attributes of the mapped region. Values for the flags parameter are constructed by a
bitwise-inclusive ORing of values from the following list of symbolic names defined in the sys/mman.h
file:

MAP_FILE
Specifies the creation of a new mapped file region by mapping the file associated with the
fildes file descriptor. The mapped region can extend beyond the end of the file, both at the time
when the mmap subroutine is called and while the mapping persists. This situation could occur
if a file with no contents was created just before the call to the mmap subroutine, or if a file
was later truncated. However, references to whole pages following the end of the file result in
the delivery of a SIGBUS signal. Only one of the MAP_FILE and MAP_ANONYMOUS flags
must be specified with the mmap subroutine.

MAP_ANONYMOUS
Specifies the creation of a new, anonymous memory region that is initialized to all zeros. This
memory region can be shared only with the descendants of the current process. When using
this flag, the fildes parameter must be -1. Only one of the MAP_FILE and MAP_ANONYMOUS
flags must be specified with the mmap subroutine.

MAP_ VARIABLE
Specifies that the system select an address for the new memory region if the new memory
region cannot be mapped at the address specified by the addr parameter, or if the addr
parameter is null. Only one of the MAP_VARIABLE and MAP_FIXED flags must be specified
with the mmap subroutine.

MAP_FIXED
Specifies that the mapped region be placed exactly at the address specified by the addr
parameter. If the application has requested SPEC1170 complaint behavior and the mmap
request is successful, the mapping replaces any previous mappings for the process’ pages in
the specified range. If the application has not requested SPEC1170 compliant behavior and a
previous mapping exists in the range then the request fails. Only one of the MAP_VARIABLE
and MAP_FIXED flags must be specified with the mmap subroutine.

MAP_SHARED
When the MAP_SHARED flag is set, modifications to the mapped memory region will be
visible to other processes that have mapped the same region using this flag. If the region is a
mapped file region, modifications to the region will be written to the file.

You can specify only one of the MAP_SHARED or MAP_PRIVATE flags with the mmap
subroutine. MAP_PRIVATE is the default setting when neither flag is specified unless you
request SPEC1170 compliant behavior. In this case, you must choose either MAP_SHARED or
MAP_PRIVATE.

MAP_PRIVATE
When the MAP_PRIVATE flag is specified, modifications to the mapped region by the calling
process are not visible to other processes that have mapped the same region. If the region is a
mapped file region, modifications to the region are not written to the file.

If this flag is specified, the initial write reference to an object page creates a private copy of
that page and redirects the mapping to the copy. Until then, modifications to the page by
processes that have mapped the same region with the MAP_SHARED flag are visible.

You can specify only one of the MAP_SHARED or MAP_PRIVATE flags with the mmap
subroutine. MAP_PRIVATE is the default setting when neither flag is specified unless you
request SPEC1170 compliant behavior. In this case, you must choose either MAP_SHARED or
MAP_PRIVATE.

Return Values
If successful, the mmap subroutine returns the address at which the mapping was placed. Otherwise, it
returns -1 and sets the errno global variable to indicate the error.

850 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
Under the following conditions, the mmap subroutine fails and sets the errno global variable to:

EACCES The file referred to by the fildes parameter is not open for read access, or the file is not open for
write access and the PROT_WRITE flag was specified for a MAP_SHARED mapping operation.
Or, the file to be mapped has enforced locking enabled and the file is currently locked.

EAGAIN The fildes parameter refers to a device that has already been mapped.
EBADF The fildes parameter is not a valid file descriptor, or the MAP_ANONYMOUS flag was set and the

fildes parameter is not -1.
EFBIG The mapping requested extends beyond the maximum file size associated with fildes.
EINVAL The flags or prot parameter is invalid, or the addr parameter or off parameter is not a multiple of

the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name
parameter.

EINVAL The application has requested SPEC1170 compliant behavior and the value of flags is invalid
(neither MAP_PRIVATE nor MAP_SHARED is set).

EMFILE The application has requested SPEC1170 compliant behavior and the number of mapped regions
would excedd and implementation-dependent limit (per process or per system).

ENODEV The fildes parameter refers to an object that cannot be mapped, such as a terminal.
ENOMEM There is not enough address space to map len bytes, or the application has not requested Single

UNIX Specification, Version 2 compliant behavior and the MAP_FIXED flag was set and part of the
address-space range (addr, addr+len) is already allocated.

ENXIO The addresses specified by the range (off, off+len) are invalid for the fildes parameter.
EOVERFLOW The mapping requested extends beyond the offset maximum for the file description associated with

fildes.

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, munmap (“munmap
Subroutine” on page 897) subroutine, read subroutine, shm_open subroutine, shm_unlink subroutine,
shmat subroutine, sysconf subroutine, write subroutine.

The pin kernel service, xmattach kernel service.

List of Memory Manipulation Services, List of Memory Mapping Services, Understanding Memory Mapping
in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

mntctl Subroutine

Purpose
Returns information about the mount status of the system.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mntctl.h>
#include <sys/vmount.h>

int mntctl (Command, Size, Buffer)
int Command;
int Size;
char *Buffer;

Base Operating System (BOS) Runtime Services (A-P) 851

Description
The mntctl subroutine is used to query the status of virtual file systems (also known as mounted file
systems).

Each virtual file system (VFS) is described by a vmount structure. This structure is supplied when the
VFS is created by the vmount subroutine. The vmount structure is defined in the sys/vmount.h file.

Parameters

Command Specifies the operation to be performed. Valid commands are defined in the sys/vmount.h file. At
present, the only command is:

MCTL_QUERY
Query mount information.

Buffer Points to a data area that will contain an array of vmount structures. This data area holds the
information returned by the query command. Since the vmount structure is variable-length, it is
necessary to reference the vmt_length field of each structure to determine where in the Buffer area the
next structure begins.

Size Specifies the length, in bytes, of the buffer pointed to by the Buffer parameter.

Return Values
If the mntctl subroutine is successful, the number of vmount structures copied into the Buffer parameter
is returned. If the Size parameter indicates the supplied buffer is too small to hold the vmount structures
for all the current VFSs, the mntctl subroutine sets the first word of the Buffer parameter to the required
size (in bytes) and returns the value 0. If the mntctl subroutine otherwise fails, a value of -1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The mntctl subroutine fails and the requested operation is not performed if one or both of the following
are true:

EINVAL The Command parameter is not MCTL_QUERY, or the Size parameter is not a positive value.
EFAULT The Buffer parameter points to a location outside of the allocated address space of the process.

Related Information
The uvmount or umount subroutine, vmount or mount subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

modf, modff, modfl, modfd32, modfd64, and modfd128 Subroutines

Purpose
Decomposes a floating-point number.

Syntax
#include <math.h>

float modff (x, iptr)
float x;
float *iptr;

double modf (x, iptr)

852 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

double x, *iptr;

long double modfl (x, iptr)
long double x, *iptr;

_Decimal32 modfd32 (x, iptr)
_Decimal32 x, *iptr;

_Decimal64 modfd64 (x, iptr)
_Decimal64 x, *iptr;

_Decimal128 modf128 (x, iptr)
_Decimal128 x, *iptr;

Description
The modff, modf, modfl, modfd32, modfd64, and modfd128 subroutines divide the x parameter into
integral and fractional parts, each of which has the same sign as the arguments. These subroutines store
the integral part as a floating-point value in the object pointed to by the iptr parameter.

Parameters

x Specifies the value to be computed.
iptr Points to the object where the integral part is stored.

Return Values
Upon successful completion, the modff, modf, modfl, modfd32, modfd64, and modfd128 subroutines
return the signed fractional part of x.

If x is NaN, a NaN is returned, and *iptr is set to a NaN.

If x is ±Inf, ±0 is returned, and *iptr is set to ±Inf.

Related Information
“class, _class, finite, isnan, or unordered Subroutines” on page 168 and “ldexp, ldexpf, or ldexpl
Subroutine” on page 701.

math.h in AIX 5L Version 5.3 Files Reference.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

128-Bit long Double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

moncontrol Subroutine

Purpose
Starts and stops execution profiling after initialization by the monitor subroutine.

Library
Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 853

Syntax
#include <mon.h>

int moncontrol (Mode)
int Mode;

Description
The moncontrol subroutine starts and stops profiling after profiling has been initialized by the monitor
subroutine. It may be used with either -p or -pg profiling. When moncontrol stops profiling, no output data
file is produced. When profiling has been started by the monitor subroutine and the exit subroutine is
called, or when the monitor subroutine is called with a value of 0, then profiling is stopped, and an output
file is produced, regardless of the state of profiling as set by the moncontrol subroutine.

The moncontrol subroutine examines global and parameter data in the following order:

1. When the _mondata.prof_type global variable is neither -1 (-p profiling defined) nor +1 (-pg profiling
defined), no action is performed, 0 is returned, and the function is considered complete.

The global variable is set to -1 in the mcrt0.o file and to +1 in the gcrt0.o file and defaults to 0 when
the crt0.o file is used.

2. When the Mode parameter is 0, profiling is stopped. For any other value, profiling is started.

The following global variables are used in a call to the profil (“profil Subroutine” on page 1186)
subroutine:

_mondata.ProfBuf Buffer address
_mondata.ProfBufSiz Buffer size/multirange flag
_mondata.ProfLoPC PC offset for hist buffer - I/O limit
_mondata.ProfScale PC scale/compute scale flag.

These variables are initialized by the monitor subroutine each time it is called to start profiling.

Parameters

Mode Specifies whether to start (resume) or stop profiling.

Return Values
The moncontrol subroutine returns the previous state of profiling. When the previous state was
STOPPED, a 0 is returned. When the previous state was STARTED, a 1 is returned.

Error Codes
When the moncontrol subroutine detects an error from the call to the profil subroutine, a -1 is returned.

Related Information
The monitor (“monitor Subroutine” on page 855) subroutine, monstartup (“monstartup Subroutine” on
page 860) subroutine, profil (“profil Subroutine” on page 1186) subroutine.

List of Memory Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

854 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

monitor Subroutine

Purpose
Starts and stops execution profiling using data areas defined in the function parameters.

Library
Standard C Library (libc.a)

Syntax

#include <mon.h>

int monitor (LowProgramCounter, HighProgramCounter, Buffer, BufferSize, NFunction)

OR

int monitor (NotZeroA, DoNotCareA, Buffer,-1, NFunction)

OR

int monitor((caddr_t)0)

caddr_t LowProgramCounter, HighProgramCounter;
HISTCOUNTER *Buffer;
int BufferSize, NFunction;
caddr_t NotZeroA, DoNotCareA;

Description
The monitor subroutine initializes the buffer area and starts profiling, or else stops profiling and writes out
the accumulated profiling data. Profiling, when started, causes periodic sampling and recording of the
program location within the program address ranges specified. Profiling also accumulates function call
count data compiled with the -p or -pg option.

Executable programs created with the cc -p or cc -pg command automatically include calls to the monitor
subroutine (through the monstartup and exit subroutines) to profile the complete user program, including
system libraries. In this case, you do not need to call the monitor subroutine.

The monitor subroutine is called by the monstartup subroutine to begin profiling and by the exit
subroutine to end profiling. The monitor subroutine requires a global data variable to define which kind of
profiling, -p or -pg, is in effect. The monitor subroutine initializes four global variables that are used as
parameters to the profil subroutine by the moncontrol subroutine:

v The monitor subroutine calls the moncontrol subroutine to start the profiling data gathering.

v The moncontrol subroutine calls the profil subroutine to start the system timer-driven program address
sampling.

v The prof command processes the data file produced by -p profiling.

v The gprof command processes the data file produced by -pg profiling.

The monitor subroutine examines the global data and parameter data in this order:

1. When the _mondata.prof_type global variable is neither -1 (-p profiling defined) nor +1 (-pg profiling
defined), an error is returned, and the function is considered complete.

The global variable is set to -1 in the mcrt0.o file and to +1 in the gcrt0.o file, and defaults to 0 when
the crt0.o file is used.

Base Operating System (BOS) Runtime Services (A-P) 855

2. When the first parameter to the monitor subroutine is 0, profiling is stopped and the data file is written
out.

If -p profiling was in effect, then the file is named mon.out. If -pg profiling was in effect, the file is
named gmon.out. The function is complete.

3. When the first parameter to the monitor subroutine is not , the monitor parameters and the profiling
global variable, _mondata.prof_type, are examined to determine how to start profiling.

4. When the BufferSize parameter is not -1, a single program address range is defined for profiling, and
the first monitor definition in the syntax is used to define the single program range.

5. When the BufferSize parameter is -1, multiple program address ranges are defined for profiling, and
the second monitor definition in the syntax is used to define the multiple ranges. In this case, the
ProfileBuffer value is the address of an array of prof structures. The size of the prof array is denoted
by a zero value for theHighProgramCounter (p_high) field of the last element of the array. Each
element in the array, except the last, defines a single programming address range to be profiled.
Programming ranges must be in ascending order of the program addresses with ascending order of
the prof array index. Program ranges may not overlap.

The buffer space defined by the p_buff and p_bufsize fields of all of the prof entries must define a
single contiguous buffer area. Space for the function-count data is included in the first range buffer. Its
size is defined by the NFunction parameter. The p_scale entry in the prof structure is ignored. The
prof structure is defined in themon.h file. It contains the following fields:
caddr_t p_low; /* low sampling address */
caddr_t p_high; /* high sampling address */
HISTCOUNTER *p_buff; /* address of sampling buffer */
int p_bufsize; /* buffer size- monitor/HISTCOUNTERs,\

profil/bytes */
uint p_scale; /* scale factor */

Parameters

LowProgramCounter
(prof name: p_low)

Defines the lowest execution-time program address in the
range to be profiled. The value of the LowProgramCounter
parameter cannot be 0 when using themonitor subroutine
to begin profiling.

HighProgramCounter
(prof name: p_high)

Defines the next address after the highest-execution time
program address in the range to be profiled.

The program address parameters may be defined by
function names or address expressions. If defined by a
function name, then a function name expression must be
used to dereference the function pointer to get the
address of the first instruction in the function. This is
required because the function reference in this context
produces the address of the function descriptor. The first
field of the descriptor is the address of the function code.
See the examples for typical expressions to use.

Buffer (prof name: p_buff) Defines the beginning address of an array of BufferSize
HISTCOUNTERs to be used for data collection. This buffer
includes the space for the program address-sampling
counters and the function-count data areas. In the case of
a multiple range specification, the space for the
function-count data area is included at the beginning of
the first range in the BufferSize specification.

856 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

BufferSize
(prof name: p_bufsize)

Defines the size of the buffer in number of HISTCOUNTERs.
Each counter is of type HISTCOUNTER (defined as short in
the mon.h file). When the buffer includes space for the
function-count data area (single range specification and
first range of a multi-range specification) the NFunction
parameter defines the space to be used for the function
count data, and the remainder is used for
program-address sampling counters for the range defined.
The scale for the profil call is calculated from the number
of counters available for program address-sample
counting and the address range defined by the
LowProgramCounter and HighProgramCounter
parameters. See themon.h file.

NFunction Defines the size of the space to be used for the
function-count data area. The space is included as part of
the first (or only) range buffer.

When -p profiling is defined, the NFunction parameter
defines the maximum number of functions to be counted.
The space required for each function is defined to be:

sizeof(struct poutcnt)

The poutcnt structure is defined in the mon.h file. The
total function-count space required is:

NFunction * sizeof(struct poutcnt)

When -pg profiling is defined, the NFunction parameter
defines the size of the space (in bytes) available for the
function-count data structures, as follows:

range = HighProgramCounter - LowProgramCounter;
tonum = TO_NUM_ELEMENTS(range);
if (tonum < MINARCS) tonum = MINARCS;
if (tonum > TO_MAX-1) tonum = TO_MAX-1;
tosize = tonum * sizeof(struct tostruct);
fromsize = FROM_STG_SIZE(range);
rangesize = tosize + fromsize + sizeof(struct
gfctl);

This is computed and summed for all defined ranges. In
this expression, the functions and variables in capital
letters as well as the structures are defined in the mon.h
file.

NotZeroA Specifies a value of parameter 1, which is any value
except 0. Ignored when it is not zero.

DoNotCareA Specifies a value of parameter 2, of any value, which is
ignored.

Return Values
The monitor subroutine returns 0 upon successful completion.

Error Codes
If an error is found, the monitor subroutine sends an error message to stderr and returns -1.

Examples
1. This example shows how to profile the main load module of a program with -p profiling:

Base Operating System (BOS) Runtime Services (A-P) 857

#include <sys/types.h>
#include <mon.h>
main()
{
extern caddr_t etext; /*system end of main module text symbol*/
extern int start(); /*first function in main program*/
extern struct monglobal _mondata; /*profiling global variables*/
struct desc { /*function descriptor fields*/

caddr_t begin; /*initial code address*/
caddr_t toc; /*table of contents address*/
caddr_t env; /*environment pointer*/

} ; /*function descriptor structure*/
struct desc *fd; /*pointer to function descriptor*/
int rc; /*monitor return code*/
int range; /*program address range for profiling*/
int numfunc; /*number of functions*/
HISTCOUNTER *buffer; /*buffer address*/
int numtics; /*number of program address sample counters*/
int BufferSize; /*total buffer size in numbers of HISTCOUNTERs*/
fd = (struct desc*)start; /*init descriptor pointer to start\
function*/
numfunc = 300; /*arbitrary number for example*/
range = etext - fd->begin; /*compute program address range*/
numtics =NUM_HIST_COUNTERS(range); /*one counter for each 4 byte\
inst*/
BufferSize = numtics + (numfunc*sizeof (struct poutcnt) \
HIST_COUNTER_SIZE); /*allocate buffer space*/
buffer = (HISTCOUNTER *) malloc (BufferSize * HIST_COUNTER_SIZE);
if (buffer == NULL) /*didn't get space, do error recovery\
here*/

return(-1);
_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p profiling*/
rc = monitor(fd->begin, (caddr_t)etext, buffer, BufferSize, \
numfunc);
/*start*/
if (rc != 0) /*profiling did not start, do error recovery\
here*/

return(-1);
/*other code for analysis*/
rc = monitor((caddr_t)0); /*stop profiling and write data file\
mon.out*/
if (rc != 0) /*did not stop correctly, do error recovery here*/

return (-1);
}

2. This example profiles the main program and the libc.a shared library with -p profiling. The range of
addresses for the shared libc.a is assumed to be:
low = d0300000
high = d0312244

These two values can be determined from the loadquery subroutine at execution time, or by using a
debugger to view the loaded programs’ execution addresses and the loader map.
#include <sys/types.h>
#include <mon.h>
main()
{
extern caddr_t etext; /*system end of text symbol*/
extern int start(); /*first function in main program*/
extern struct monglobal _mondata; /*profiling global variables*/
struct prof pb[3]; /*prof array of 3 to define 2 ranges*/
int rc; /*monitor return code*/
int range; /*program address range for profiling*/
int numfunc; /*number of functions to count (max)*/
int numtics; /*number of sample counters*/
int num4fcnt; /*number of HISTCOUNTERs used for fun cnt space*/
int BufferSize1; /*first range BufferSize*/
int BufferSize2; /*second range BufferSize*/

858 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

caddr_t liblo=0xd0300000; /*lib low address (example only)*/
caddr_t libhi=0xd0312244; /*lib high address (example only)*/
numfunc = 400; /*arbitrary number for example*/
/*compute first range buffer size*/
range = etext - *(uint *) start; /*init range*/
numtics = NUM_HIST_COUNTERS(range);
/*one counter for each 4 byte inst*/
num4fcnt = numfunc*sizeof(struct poutcnt)/HIST_COUNTER_SIZE;
BufferSize1 = numtics + num4fcnt;
/*compute second range buffer size*/
range = libhi-liblo;
BufferSize2 = range / 12; /*counter for every 12 inst bytes for\
a change*/
/*allocate buffer space - note: must be single contiguous\
buffer*/
pb[0].p_buff = (HISTCOUNTER *)malloc((BufferSize1 +BufferSize2)\
*HIST_COUNTER_SIZE);
if (pb[0].p_buff == NULL) /*didn't get space - do error\
recovery here* ;/

return(-1);
/*set up the first range values*/
pb[0].p_low = *(uint*)start; /*start of main module*/
pb[0].p_high = (caddr_t)etext; /*end of main module*/
pb[0].p_BufferSize = BufferSize1; /*prog addr cnt space + \
func cnt space*/
/*set up last element marker*/
pb[2].p_high = (caddr_t)0;
_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p\
profiling*/
rc = monitor((caddr_t)1, (caddr_t)1, pb, -1, numfunc); \
/*start*/
if (rc != 0) /*profiling did not start - do error recovery\
here*/

return (-1);
/*other code for analysis ...*/
rc = monitor((caddr_t)0); /*stop profiling and write data \
file mon.out*/
if (rc != 0) /*did not stop correctly - do error recovery\
here*/

return (-1);

3. This example shows how to profile contiguously loaded functions beginning at zit up to but not
including zot with -pg profiling:
#include <sys/types.h>
#include <mon.h>
main()
{
extern zit(); /*first function to profile*/
extern zot(); /*upper bound function*/
extern struct monglobal _mondata; /*profiling global variables*/
int rc; /*monstartup return code*/
_mondata.prof_type = _PROF_TYPE_IS_PG; /*define -pg profiling*/
/*Note cast used to obtain function code addresses*/
rc = monstartup(*(uint *)zit,*(uint *)zot); /*start*/
if (rc != 0) /*profiling did not start, do error recovery\
here*/

return(-1);
/*other code for analysis ...*/
exit(0); /*stop profiling and write data file gmon.out*/
}

Files

mon.out Data file for -p profiling.
gmon.out Data file for -pg profiling.

Base Operating System (BOS) Runtime Services (A-P) 859

/usr/include/mon.h Defines the _mondata.prof_type global variable in the monglobal data structure,
the prof structure, and the functions referred to in the previous examples.

Related Information
The moncontrol (“moncontrol Subroutine” on page 853) subroutine, monstartup (“monstartup
Subroutine”) subroutine, profil (“profil Subroutine” on page 1186) subroutine.

The gprof command, prof command.

The _end,_etext, or _edata (“_end, _etext, or _edata Identifier” on page 225) Identifier.

List of Memory Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

monstartup Subroutine

Purpose
Starts and stops execution profiling using default-sized data areas.

Library
Standard C Library (libc.a)

Syntax
#include <mon.h>

int monstartup (LowProgramCounter, HighProgramCounter)

OR

int monstartup((caddr_t)-1), (caddr_t) FragBuffer)

OR

int monstartup((caddr_t)-1, (caddr_t)0)

caddr_t LowProgramCounter;
caddr_t HighProgramCounter;

Description
The monstartup subroutine allocates data areas of default size and starts profiling. Profiling causes
periodic sampling and recording of the program location within the program address ranges specified, and
accumulation of function-call count data for functions that have been compiled with the -p or -pg option.

Executable programs created with the cc -p or cc -pg command automatically include a call to the
monstartup subroutine to profile the complete user program, including system libraries. In this case, you
do not need to call the monstartup subroutine.

The monstartup subroutine is called by the mcrt0.o (-p) file or the gcrt0.o (-pg) file to begin profiling.
The monstartup subroutine requires a global data variable to define whether -p or -pg profiling is to be in
effect. The monstartup subroutine calls the monitor subroutine to initialize the data areas and start
profiling.

860 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The prof command is used to process the data file produced by -p profiling. The gprof command is used
to process the data file produced by -pg profiling.

The monstartup subroutine examines the global and parameter data in the following order:

1. When the _mondata.prof_type global variable is neither -1 (-p profiling defined) nor +1 (-pg profiling
defined), an error is returned and the function is considered complete.

The global variable is set to -1 in the mcrt0.o file and to +1 in the gcrt0.o file, and defaults to 0 when
crt0.o is used.

2. When the LowProgramCounter value is not -1:

v A single program address range is defined for profiling

AND

v The first monstartup definition in the syntax is used to define the program range.

3. When the LowProgramCounter value is -1 and the HighProgramCounter value is not 0:

v Multiple program address ranges are defined for profiling

AND

v The second monstartup definition in the syntax is used to define multiple ranges. The
HighProgramCounter parameter, in this case, is the address of a frag structure array. The frag
array size is denoted by a zero value for the HighProgramCounter (p_high) field of the last element
of the array. Each array element except the last defines one programming address range to be
profiled. Programming ranges must be in ascending order of the program addresses with ascending
order of the prof array index. Program ranges may not overlap.

4. When the LowProgramCounter value is -1 and the HighProgramCounter value is 0:

v The whole program is defined for profiling

AND

v The third monstartup definition in the syntax is used. The program ranges are determined by
monstartup and may be single range or multirange.

Parameters

LowProgramCounter (frag name: p_low) Defines the lowest execution-time program address in the
range to be profiled.

HighProgramCounter(frag name: p_high) Defines the next address after the highest execution-time
program address in the range to be profiled.

The program address parameters may be defined by
function names or address expressions. If defined by a
function name, then a function name expression must be
used to dereference the function pointer to get the
address of the first instruction in the function. This is
required because the function reference in this context
produces the address of the function descriptor. The first
field of the descriptor is the address of the function code.
See the examples for typical expressions to use.

FragBuffer Specifies the address of a frag structure array.

Examples
1. This example shows how to profile the main load module of a program with -p profiling:

#include <sys/types.h>
#include <mon.h>
main()
{
extern caddr_t etext; /*system end of text

Base Operating System (BOS) Runtime Services (A-P) 861

symbol*/
extern int start(); /*first function in main\

program*/
extern struct monglobal _mondata; /*profiling global variables*/
struct desc { /*function
descriptor fields*/

caddr_t begin; /*initial code
address*/

caddr_t toc; /*table of contents
address*/

caddr_t env; /*environment
pointer*/
}
; /*function
descriptor structure*/
struct desc *fd; /*pointer to function\

descriptor*/
int rc; /*monstartup
return code*/
fd = (struct desc *)start; /*init descriptor pointer to\

start
function*/
_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p profiling*/
rc = monstartup(fd->begin, (caddr_t) &etext); /*start*/
if (rc != 0) /*profiling did
not start - do\

error
recovery here*/ return(-1);

/*other code
for analysis ...*/
return(0); /*stop profiling and
write data\

file
mon.out*/
}

2. This example shows how to profile the complete program with -p profiling:
#include <sys/types.h>
#include <mon.h>
main()
{
extern struct monglobal _mondata; /*profiling global\

variables*/
int rc; /*monstartup
return code*/
_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p profiling*/
rc = monstartup((caddr_t)-1, (caddr_t)0); /*start*/
if (rc != 0) /*profiling did
not start -\

do error recovery here*/
return (-1);

/*other code
for analysis ...*/
return(0); /*stop profiling and
write data\

file
mon.out*/
}

3. This example shows how to profile contiguously loaded functions beginning at zit up to but not
including zot with -pg profiling:
#include <sys/types.h>
#include <mon.h>
main()
{
extern zit(); /*first function

862 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

to profile*/
extern zot(); /*upper bound
function*/
extern struct monglobal _mondata; /*profiling global variables*/
int rc; /*monstartup
return code*/
_mondata.prof_type = _PROF_TYPE_IS_PG; /*define -pg profiling*/
/*Note cast used to obtain function code addresses*/
rc = monstartup(*(uint *)zit,*(uint *)zot); /*start*/
if (rc != 0) /*profiling did
not start - do\

error
recovery here*/

return(-1);
/*other code

for analysis ...*/
exit(0); /*stop profiling and write data file gmon.out*/
}

Return Values
The monstartup subroutine returns 0 upon successful completion.

Error Codes
If an error is found, the monstartup subroutine outputs an error message to stderr and returns -1.

Files

mon.out Data file for -p profiling.
gmon.out Data file for -pg profiling.
mon.h Defines the _mondata.prof_type variable in the monglobal data structure, the prof structure, and

the functions referred to in the examples.

Related Information
The moncontrol (“moncontrol Subroutine” on page 853)subroutine, monitor (“monitor Subroutine” on
page 855) subroutine, profil (“profil Subroutine” on page 1186) subroutine.

The gprof command, prof command.

The _end, _etext, or _edata (“_end, _etext, or _edata Identifier” on page 225) Identifier.

List of Memory Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

mprotect Subroutine

Purpose
Modifies access protections for memory mapping or shared memory.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mman.h>

Base Operating System (BOS) Runtime Services (A-P) 863

int mprotect (addr, len, prot)
void *addr;
size_t len;
int prot;

Description
The mprotect subroutine modifies the access protection of a mapped file or shared memory region or
anonymous memory region created by the mmap subroutine. Processes running in an environment where
the MPROTECT_SHM=ON environmental variable is defined can also use the mprotect subroutine to
modify the access protection of a shared memory region created by the shmget, ra_shmget, or
ra_shmgetv subroutine and attached by the shmat subroutine.

The user who protects shared memory with the mprotect subroutine must be also be either the user who
created the shared memory descriptor, the user who owns the shared memory descriptor, or the root user.

The mprotect subroutine can only be used on shared memory regions backed with 4 KB or 64 KB pages;
shared memory regions backed by 16 MB and 16 GB pages are not supported by the mprotect
subroutine. The page size used to back a shared memory region can be obtained using the vmgetinfo
subroutine and specifying VM_PAGE_INFO for the command parameter.

The mprotect subroutine cannot be used for shared memory that has been pre-translated. This includes
shared memory regions created with the SHM_PIN flag specified to the shmget subroutine as well as
shared memory regions that have been pinned using the shmctl subroutine with the SHM_LOCK flag
specified.

Parameters
addr Specifies the address of the region to be modified. Must be a multiple of the page size backing the

memory region.

len Specifies the length, in bytes, of the region to be modified. For shared memory regions backed
with 4 KB pages, the len parameter will be rounded off to the next multiple of the page size.
Otherwise, the len parameter must be a multiple of the page size backing the memory region.

prot Specifies the new access permissions for the mapped region. Legitimate values for the prot
parameter are the same as those permitted for the mmap (“mmap or mmap64 Subroutine” on
page 847) subroutine, as follows:

PROT_READ
Region can be read.

PROT_WRITE
Region can be written.

PROT_EXEC
Region can be executed.

PROT_NONE
Region cannot be accessed. PROT_NONE is not a valid prot parameter for shared
memory attached with the shmat subroutine.

Return Values
When successful, the mprotect subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

864 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: The return value for the mprotect subroutine is 0 if it fails because the region given was not
created by mmap unless XPG 1170 behavior is requested by setting the XPG_SUS_ENV
environment variable to ON.

Error Codes
If the mprotect subroutine is unsuccessful, the errno global variable might be set to one of the following
values:

Attention: If the mprotect subroutine is unsuccessful because of a condition other than that specified by
the EINVAL error code, the access protection for some pages in the (addr, addr + len) range might have
been changed.

EACCES The prot parameter specifies a protection that conflicts with the access permission set for the
underlying file.

EPERM The user is not the creator or owner of the shared memory region and is not the root user.
ENOTSUP The prot parameter specified is not valid for the region specified.
EINVAL The addr or len parameter is not a multiple of the page size backing the memory region.
ENOMEM The application has requested Single UNIX Specification, Version 2 compliant behavior, but

addresses in the range are not valid for the address space of the process, or the addresses specify
one or more pages that are not attached to the user’s address space by a previous mmap or
shmat subroutine call.

ENOTSUP The shared memory region specified is backed by 64 KB pages, but the addr or len parameter is
not 64 KB aligned, or PROT_NONE protection was specified for a shared memory region, or a
pre-translated shared memory region was specified, or a shared memory region backed by 16 MB
or 16 GB pages was specified.

Related Information
The vmgetinfo subroutine, shmget subroutine, shmctl subroutine.

mq_close Subroutine

Purpose
Closes a message queue.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_close (mqdes)
mqd_t mqdes;

Description
The mq_close subroutine removes the association between the message queue descriptor, mqdes, and
its message queue. The results of using this message queue descriptor after successful return from the
mq_close subroutine, and until the return of this message queue descriptor from a subsequent mq_open
call, are undefined.

If the process has successfully attached a notification request to the message queue through the mqdes
parameter, this attachment is removed, and the message queue is available for another process to attach
for notification.

Base Operating System (BOS) Runtime Services (A-P) 865

Parameters

mqdes Specifies the message queue descriptor.

Return Values
Upon successful completion, the mq_close subroutine returns a zero. Otherwise, the subroutine returns a
-1 and sets errno to indicate the error.

Error Codes
The mq_close subroutine fails if:

EBADF The mqdes parameter is not a valid message queue descriptor.
ENOMEM Insufficient memory for the required operation.
ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information
“mq_open Subroutine” on page 868 and “mq_unlink Subroutine” on page 878.

mq_getattr Subroutine

Purpose
Gets message queue attributes.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_getattr (mqdes, mqstat)
mqd_t mqdes;
struct mq_attr *mqstat;

Description
The mq_getattr subroutine obtains status information and attributes of the message queue and the open
message queue description associated with the message queue descriptor.

The results are returned in the mq_attr structure referenced by the mqstat parameter.

Upon return, the following members have the values associated with the open message queue description
as set when the message queue was opened and as modified by subsequent calls to the mq_setattr
subroutine:

v mq_flags

The following attributes of the message queue are returned as set at message queue creation:

v mq_maxmsg

v mq_msgsize

Upon return, the following member within the mq_attr structure referenced by the mqstat parameter is set
to the current state of the message queue:

866 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

mq_curmsgs The number of messages currently on the queue.

Parameters

mqdes Specifies a message queue descriptor.
mqstat Points to the mq_attr structure.

Return Values
Upon successful completion, the mq_getattr subroutine returns zero. Otherwise, the subroutine returns -1
and sets errno to indicate the error.

Error Codes
The mq_getattr subroutine fails if:

EBADF The mqdes parameter is not a valid message queue descriptor.
EFAULT Invalid user address.
EINVAL The mqstat parameter value is not valid.
ENOMEM Insufficient memory for the required operation.
ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information
“mq_open Subroutine” on page 868 and “mq_setattr Subroutine” on page 873.

mq_notify Subroutine

Purpose
Notifies a process that a message is available.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_notify (mqdes, notification)
mqd_t mqdes;
const struct sigevent *notification;

Description
If the notification parameter is not NULL, the mq_notify subroutine registers the calling process to be
notified of message arrival at an empty message queue associated with the specified message queue
descriptor, mqdes. The notification specified by the notification parameter is sent to the process when the
message queue transitions from empty to non-empty. At any time only one process may be registered for
notification by a message queue. If the calling process or any other process has already registered for
notification of message arrival at the specified message queue, subsequent attempts to register for that
message queue fails.

If notification is NULL and the process is currently registered for notification by the specified message
queue, the existing registration is removed.

Base Operating System (BOS) Runtime Services (A-P) 867

When the notification is sent to the registered process, its registration is removed. The message queue is
then available for registration.

If a process has registered for notification of message arrival at a message queue and a thread is blocked
in the mq_receive subroutine waiting to receive a message, the arriving message satisfies the appropriate
mq_receive. The resulting behavior is as if the message queue remains empty, and no notification is sent.

Parameters

mqdes Specifies a message queue descriptor.
notification Points to the sigevent structure.

Return Values
Upon successful completion, the mq_notify subroutine returns a zero. Otherwise, it returns a value of -1
and sets errno to indicate the error.

Error Codes
The mq_notify subroutine fails if:

EBADF The mqdes parameter is not a valid message queue descriptor.
EBUSY A process is already registered for notification by the message queue.
EFAULT Invalid used address.
ENOMEM Insufficient memory for the required operation.
ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.
EINVAL The current process is not registered for notification for the specified message queue and registration

removal was requested.

Related Information
“mq_open Subroutine.”

mq_open Subroutine

Purpose
Opens a message queue.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

mqd_t mq_open (name, oflag [mode, attr])
const char *name;
int oflag;
mode_t mode;
mq_attr *attr;

Description
The mq_open subroutine establishes a connection between a process and a message queue with a
message queue descriptor. It creates an open message queue description that refers to the message

868 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

queue, and a message queue descriptor that refers to that open message queue description. The
message queue descriptor is used by other subroutines to refer to that message queue.

The name parameter points to a string naming a message queue, and has no representation in the file
system. The name parameter conforms to the construction rules for a pathname. It may or may not begin
with a slash character, but contains at least one character. Processes calling the mq_open subroutine with
the same value of name refer to the same message queue object, as long as that name has not been
removed. If the name parameter is not the name of an existing message queue and creation is not
requested, the mq_open subroutine will fail and return an error.

The oflag parameter requests the desired receive and send access to the message queue. The requested
access permission to receive messages or send messages is granted if the calling process would be
granted read or write access, respectively, to an equivalently protected file.

The value of the oflag parameter is the bitwise-inclusive OR of values from the following list. Applications
specify exactly one of the first three values (access modes) below in the value of the oflag parameter:

O_RDONLY
Open the message queue for receiving messages. The process can use the returned message
queue descriptor with the mq_receive subroutine, but not the mq_send subroutine. A message
queue may be open multiple times in the same or different processes for receiving messages.

O_WRONLY
Open the queue for sending messages. The process can use the returned message queue
descriptor with the mq_send subroutine but not the mq_receive subroutine. A message queue
may be open multiple times in the same or different processes for sending messages.

O_RDWR
Open the queue for both receiving and sending messages. The process can use any of the
functions allowed for the O_RDONLY and O_WRONLY flags. A message queue may be open
multiple times in the same or different processes for sending messages.

Any combination of the remaining flags may be specified in the value of the oflag parameter:

O_CREAT
Create a message queue. It requires two additional arguments: mode, which is of mode_t type,
and attr, which is a pointer to an mq_attr structure. If the pathname name has already been used
to create a message queue that still exists, this flag has no effect, except as noted under the
O_EXCL flag. Otherwise, a message queue is created without any messages in it. The user ID of
the message queue is set to the effective user ID of the process, and the group ID of the message
queue is set to the effective group ID of the process. The file permission bits are set to the value
of mode. When bits in the mode parameter other than file permission bits are set, they have no
effect. If attr is NULL, the message queue is created with default message queue attributes.
Default values are 128 for mq_maxmsg and 1024 for mq_msgsize. If attr is non-NULL, the
message queue mq_maxmsg and mq_msgsize attributes are set to the values of the
corresponding members in the mq_attr structure referred to by attr.

O_EXCL
If the O_EXCL and O_CREAT flags are set, the mq_open subroutine fails if the message queue
name exists. The check for the existence of the message queue and the creation of the message
queue if it does not exist is atomic with respect to other threads executing mq_open naming the
same name with the O_EXCL and O_CREAT flags set. If the O_EXCL flag is set and the
O_CREAT flag is not set, the O_EXCL flag is ignored.

O_NONBLOCK
Determines whether the mq_send or mq_receive subroutine waits for resources or messages
that are not currently available, or fails with errno set to EAGAIN; see “mq_send Subroutine” on
page 872 and “mq_receive Subroutine” on page 870 for details.

Base Operating System (BOS) Runtime Services (A-P) 869

The mq_open subroutine does not add or remove messages from the queue.

Parameters

name Points to a string naming a message queue.
oflag Requests the desired receive and send access to the message queue.
mode Specifies the value of the file permission bits. Used with O_CREAT to create a message queue.
attr Points to an mq_attr structure. Used with O_CREAT to create a message queue.

Return Values
Upon successful completion, the mq_open subroutine returns a message queue descriptor. Otherwise, it
returns (mqd_t)-1 and sets errno to indicate the error.

Error Codes
The mq_open subroutine fails if:

EACCES The message queue exists and the permissions specified by the oflag parameter are
denied.

EEXIST The O_CREAT and O_EXCL flags are set and the named message queue already exists.
EFAULT Invalid used address.
EINVAL The mq_open subroutine is not supported for the given name.
EINVAL The O_CREAT flag was specified in the oflag parameter, the value of attr is not NULL, and

either mq_maxmsg or mq_msgsize was less than or equal to zero.
EINVAL The oflag parameter value is not valid.
EMFILE Too many message queue descriptors are currently in use by this process.
ENAMETOOLONG The length of the name parameter exceeds PATH_MAX or a pathname component is longer

than NAME_MAX.
ENFILE Too many message queues are currently open in the system.
ENOENT The O_CREAT flag is not set and the named message queue does not exist.
ENOMEM Insufficient memory for the required operation.
ENOSPC There is insufficient space for the creation of the new message queue.
ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information
“mq_close Subroutine” on page 865, “mq_getattr Subroutine” on page 866, “mq_receive Subroutine,”
“mq_send Subroutine” on page 872, “mq_setattr Subroutine” on page 873, “mq_unlink Subroutine” on
page 878, “msgctl Subroutine” on page 883, “msgget Subroutine” on page 885, “msgrcv Subroutine” on
page 886, and “msgsnd Subroutine” on page 889.

mq_receive Subroutine

Purpose
Receives a message from a message queue.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

ssize_t mq_receive (mqdes, msg_ptr, msg_len, msg_prio)

870 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

mqd_t mqdes;
char *msg_ptr;
size_t msg_len;
unsigned *msg_prio;

Description
The mq_receive subroutine receives the oldest of the highest priority messages from the message queue
specified by the mqdes parameter. If the size of the buffer in bytes, specified by the msg_len parameter, is
less than the mq_msgsize attribute of the message queue, the subroutine fails and returns an error.
Otherwise, the selected message is removed from the queue and copied to the buffer pointed to by the
msg_ptr parameter.

If the msg_prio parameter is not NULL, the priority of the selected message is stored in the location
referenced by msg_prio.

If the specified message queue is empty and the O_NONBLOCK flag is not set in the message queue
description associated with the mqdes parameter, the mq_receive subroutine blocks until a message is
enqueued on the message queue or until mq_receive is interrupted by a signal. If more than one thread is
waiting to receive a message when a message arrives at an empty queue and the Priority Scheduling
option is supported, the thread of highest priority that has been waiting the longest is selected to receive
the message. If the specified message queue is empty and the O_NONBLOCK flag is set in the message
queue description associated with the mqdes parameter, no message is removed from the queue, and the
mq_receive subroutine returns an error.

Parameters

mqdes Specifies the message queue descriptor.
msg_ptr Points to the buffer where the message is copied.
msg_len Specifies the length of the message, in bytes.
msg_prio Stores the priority of the selected message.

Return Values
Upon successful completion, the mq_receive subroutine returns the length of the selected message in
bytes and the message is removed from the queue. Otherwise, no message is removed from the queue,
and the subroutine returns -1 and sets errno to indicate the error.

Error Codes
The mq_receive subroutine fails if:

EAGAIN The O_NONBLOCK flag was set in the message description associated with the mqdes
parameter, and the specified message queue is empty.

EBADF The mqdes parameter is not a valid message queue descriptor open for reading.
EFAULT Invalid used address.
EIDRM The specified message queue was removed during the required operation.
EINTR The mq_receive subroutine was interrupted by a signal.
EINVAL The msg_ptr parameter is null.
EMSGSIZE The specified message buffer size, msg_len, is less than the message size attribute of the

message queue.
ENOMEM Insufficient memory for the required operation.
ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information
“mq_open Subroutine” on page 868 and “mq_send Subroutine” on page 872.

Base Operating System (BOS) Runtime Services (A-P) 871

mq_send Subroutine

Purpose
Sends a message to a message queue.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_send (mqdes, msg_ptr, msg_len, msg_prio)
mqd_t mqdes;
const char *msg_ptr;
size_t msg_len;
unsigned *msg_prio;

Description
The mq_send subroutine adds the message pointed to by the msg_ptr parameter to the message queue
specified by the mqdes parameter. The msg_len parameter specifies the length of the message, in bytes,
pointed to by msg_ptr. The value of msg_len is less than or equal to the mq_msgsize attribute of the
message queue, or the mq_send subroutine will fail.

If the specified message queue is not full, the mq_send subroutine behaves as if the message is inserted
into the message queue at the position indicated by the msg_prio parameter. A message with a larger
numeric value of msg_prio will be inserted before messages with lower values of msg_prio. A message will
be inserted after other messages in the queue with equal msg_prio. The value of msg_prio will be less
than MQ_PRIO_MAX.

If the specified message queue is full and O_NONBLOCK is not set in the message queue description
associated with mqdes, the mq_send subroutine will block until space becomes available to enqueue the
message, or until mq_send is interrupted by a signal. If more than one thread is waiting to send when
space becomes available in the message queue and the Priority Scheduling option is supported, the
thread of the highest priority that has been waiting the longest is unblocked to send its message.
Otherwise, it is unspecified which waiting thread is unblocked. If the specified message queue is full and
O_NONBLOCK is set in the message queue description associated with mqdes, the message is not
queued and the mq_send subroutine returns an error.

Parameters

mqdes Specifies the message queue descriptor.
msg_ptr Points to the message to be added.
msg_len Specifies the length of the message, in bytes.
msg_prio Specifies the position of the message in the message queue.

Return Values
Upon successful completion, the mq_send subroutine returns a zero. Otherwise, no message is
enqueued, the subroutine returns -1, and errno is set to indicate the error.

872 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The mq_send subroutine fails if:

EAGAIN The O_NONBLOCK flag is set in the message queue description associated with the mqdes
parameter, and the specified message queue is full (maximum number of messages in the
queue or maximum number of bytes in the queue is reached).

EBADF The mqdes parameter is not a valid message queue descriptor open for writing.
EFAULT Invalid used address.
EIDRM The specified message queue was removed during the required operation.
EINTR A signal interrupted the call to the mq_send subroutine.
EINVAL The value of the msg_prio parameter was outside the valid range.
EINVAL The msg_ptr parameter is null.
EMSGSIZE The specified message length, msg_len, exceeds the message size attribute of the message

queue.
ENOMEM Insufficient memory for the required operation.
ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information
“mq_open Subroutine” on page 868 and “mq_receive Subroutine” on page 870.

mq_setattr Subroutine

Purpose
Sets message queue attributes.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_setattr (mqdes, mqstat, omqstat)
mqd_t mqdes;
const struct mq_attr *mqstat;
struct mq_attr *omqstat;

Description
The mq_setattr subroutine sets attributes associated with the open message queue description
referenced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr structure
are set to the specified values upon successful completion of the mq_setattr subroutine.

The value of the mq_flags member is either zero or O_NONBLOCK.

The values of the mq_maxmsg, mq_msgsize, and mq_curmsgs members of the mq_attr structure are
ignored by the mq_setattr subroutine.

If the omqstat parameter is non-NULL, the mq_setattr subroutine stores, in the location referenced by
omqstat, the previous message queue attributes and the current queue status. These values are the same
as would be returned by a call to the mq_getattr subroutine at that point.

Base Operating System (BOS) Runtime Services (A-P) 873

Parameters

mqdes Specifies the message queue descriptor.
mqstat Specifies the status of the message queue.
omqstat Specifies the status of the previous message queue.

Return Values
Upon successful completion, the mq_setattr subroutine returns a zero and the attributes of the message
queue are changed as specified.

Otherwise, the message queue attributes are unchanged, and the subroutine returns a -1 and sets errno
to indicate the error.

Error Codes
The mq_setattr subroutine fails if:

EBADF The mqdes parameter is not a valid message queue descriptor.
EFAULT Invalid user address.
EINVAL The mqstat parameter value is not valid.
ENOMEM Insufficient memory for the required operation.
ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information
“mq_open Subroutine” on page 868 and “mq_getattr Subroutine” on page 866.

mq_receive, mq_timedreceive Subroutine

Purpose
Receives a message from a message queue (REALTIME).

Syntax
#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr,
size_t msg_len, unsigned *msg_prio,

#include <mqueue.h>
#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abs_timeout);

Description
The mq_receive() function receives the oldest of the highest priority messages from the message queue
specified by mqdes. If the size of the buffer, in bytes, specified by the msg_len argument is less than the
mq_msgsize attribute of the message queue, the function fails and returns an error. Otherwise, the
selected message is removed from the queue and copied to the buffer pointed to by the msg_ptr
argument.

If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined.

874 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If the msg_prio argument is not NULL, the priority of the selected message is stored in the location
referenced by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message queue description
associated with mqdes, mq_receive() blocks until a message is enqueued on the message queue or until
mq_receive() is interrupted by a signal. If more than one thread is waiting to receive a message when a
message arrives at an empty queue and the Priority Scheduling option is supported, then the thread of
highest priority that has been waiting the longest is selected to receive the message. Otherwise, it is
unspecified which waiting thread receives the message. If the specified message queue is empty and
O_NONBLOCK is set in the message queue description associated with mqdes, no message is removed
from the queue, and mq_receive() returns an error.

The mq_timedreceive() function receives the oldest of the highest priority messages from the message
queue specified by mqdes as described for the mq_receive() function. However, if O_NONBLOCK was
not specified when the message queue was opened by the mq_open() function, and no message exists
on the queue to satisfy the receive, the wait for such a message is terminated when the specified timeout
expires. If O_NONBLOCK is set, this function matches mq_receive().

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock
on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout), or
when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec
argument is defined in the <time.h> header.

The operation never fails with a timeout if a message can be removed from the message queue
immediately. The validity of the abs_timeout parameter does not need to be checked if a message can be
removed from the message queue immediately.

Return Values
Upon successful completion, the mq_receive() and mq_timedreceive() functions return the length of the
selected message in bytes and the message is removed from the queue. Otherwise, no message shall be
removed from the queue, the functions return a value of -1, and errno is set to indicate the error.

Error Codes
The mq_receive() and mq_timedreceive() functions fail if:

[EAGAIN] O_NONBLOCK was set in the message description associated with mqdes, and the
specified message queue is empty.

[EBADF] The mqdes argument is not a valid message queue descriptor open for reading.
[EFAULT] abs_timeout references invalid memory.
[EIDRM] Specified message queue was removed during required operation.
[EINTR] The mq_receive() or mq_timedreceive() operation was interrupted by a signal.
[EINVAL] The process or thread would have blocked, and the abs_timeout parameter specified

a nanoseconds field value less than 0 or greater than or equal to 1000 million.
[EINVAL] msg_ptr value was null.
[EMSGSIZE] The specified message buffer size, msg_len, is less than the message size attribute of

the message queue.
[ENOTSUP] Function is not supported with checkpoint-restart’ed processes.
[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened, but no

message arrived on the queue before the specified timeout expired.

Base Operating System (BOS) Runtime Services (A-P) 875

The mq_receive() and mq_timedreceive() functions might fail if:

[EBADMSG] The implementation has detected a data corruption problem with the message.

Related Information
“mq_send, mq_timedsend Subroutine,” “msgctl Subroutine” on page 883, “msgget Subroutine” on page
885, “msgrcv Subroutine” on page 886, “msgsnd Subroutine” on page 889, “posix_trace_getnext_event,
posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on page 1173,
“pthread_mutex_timedlock Subroutine” on page 1282, “pthread_rwlock_timedrdlock Subroutine” on page
1297, “pthread_rwlock_timedwrlock Subroutine” on page 1299.

The sem_timedwait and time subroutines in AIX 5L Version 5.3 Technical Reference: Base Operating
System and Extensions Volume 2.

The mqueue.h and time.h file.

mq_send, mq_timedsend Subroutine

Purpose
Sends a message to a message queue (REALTIME).

Syntax
#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned *msg_prio,

#include <mqueue.h>
#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned msg_prio,
const struct timespec *abs_timeout);

Description
The mq_send() function adds the message pointed to by the argument msg_ptr to the message queue
specified by mqdes. The msg_len argument specifies the length of the message, in bytes, pointed to by
msg_ptr. The value of msg_len is less than or equal to the mq_msgsize attribute of the message queue,
or mq_send() fails.

If the specified message queue is not full, mq_send() behaves as if the message is inserted into the
message queue at the position indicated by the msg_prio argument. A message with a larger numeric
value of msg_prio is inserted before messages with lower values of msg_prio. A message is inserted after
other messages in the queue, if any, with equal msg_prio values. The value of msg_prio is less than
{MQ_PRIO_MAX}.

If the specified message queue is full and O_NONBLOCK is not set in the message queue description
associated with mqdes, mq_send() blocks until space becomes available to enqueue the message, or
until mq_send() is interrupted by a signal. If more than one thread is waiting to send when space
becomes available in the message queue and the Priority Scheduling option is supported, then the
thread of the highest priority that has been waiting the longest is unblocked to send its message.
Otherwise, it is unspecified which waiting thread is unblocked. If the specified message queue is full and
O_NONBLOCK is set in the message queue description associated with mqdes, the message is not
queued and mq_send() returns an error.

876 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The mq_timedsend() function adds a message to the message queue specified by mqdes in the manner
defined for the mq_send() function. However, if the specified message queue is full and O_NONBLOCK is
not set in the message queue description associated with mqdes, the wait for sufficient room in the queue
is terminated when the specified timeout expires. If O_NONBLOCK is set in the message queue
description, this function matches mq_send().

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock
on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or
when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

The operation never fails with a timeout if there is sufficient room in the queue to add the message
immediately. The validity of the abs_timeout parameter does not need to be checked when there is
sufficient room in the queue.

Application Usage
The value of the symbol {MQ_PRIO_MAX} limits the number of priority levels supported by the application.
Message priorities range from 0 to {MQ_PRIO_MAX}-1.

Return Values
Upon successful completion, the mq_send() and mq_timedsend() functions return a value of 0.
Otherwise, no message is enqueued, the functions return -1, and errno is set to indicate the error.

Error Codes
The mq_send() and mq_timedsend() functions fail if:

[EAGAIN] The O_NONBLOCK flag is set in the message queue description associated with
mqdes, and the specified message queue is full.

[EBADF] The mqdes argument is not a valid message queue descriptor open for writing.
[EFAULT] abs_timeout references invalid memory.
[EIDRM] Specified message queue was removed during required operation.
[EINTR] A signal interrupted the call to mq_send() or mq_timedsend().
[EINVAL] The value of msg_prio was outside the valid range.
[EINVAL] msg_ptr value was null.
[EINVAL] The process or thread would have blocked, and the abs_timeout parameter specified

a nanoseconds field value less than 0 or greater than or equal to 1000 million.
[EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute of the

message queue.
[ENOTSUP] Function is not supported with checkpoint-restart’ed processes.
[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened, but the

timeout expired before the message could be added to the queue.

The mq_send() and mq_timedsend() functions might fail if:

[EBADMSG] The implementation has detected a data corruption problem with the message.

Related Information
“mq_receive, mq_timedreceive Subroutine” on page 874, “msgctl Subroutine” on page 883, “msgget
Subroutine” on page 885, “msgrcv Subroutine” on page 886, “msgsnd Subroutine” on page 889,
“posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on
page 1173

Base Operating System (BOS) Runtime Services (A-P) 877

page 1173, “pthread_mutex_timedlock Subroutine” on page 1282, “pthread_rwlock_timedrdlock
Subroutine” on page 1297, “pthread_rwlock_timedwrlock Subroutine” on page 1299.

The sem_timedwait and time subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating
System and Extensions Volume 2.

The mqueue.h and time.h file.

mq_unlink Subroutine

Purpose
Removes a message queue.

Library
Standard C Library (libc.a)

Syntax
#include <mqueue.h>

int mq_unlink (name)
const char *name;

Description
The mq_unlink subroutine removes the message queue named by the pathname name. After a
successful call to the mq_unlink subroutine with the name parameter, a call to the mq_open subroutine
with the name parameter and the O_CREAT flag will create a new message queue. If one or more
processes have the message queue open when the mq_unlink subroutine is called, destruction of the
message queue is postponed until all references to the message queue have been closed.

After a successful completion of the mq_unlink subroutine, calls to the mq_open subroutine to recreate a
message queue with the same name will succeed. The mq_unlink subroutine never blocks even if all
references to the message queue have not been closed.

Parameters

name Specifies the message queue to be removed.

Return Values
Upon successful completion, the mq_unlink subroutine returns a zero. Otherwise, the named message
queue is unchanged, and the mq_unlink subroutine returns a -1 and sets errno to indicate the error.

Error Codes
The mq_unlink subroutine fails if:

EACCES Permission is denied to unlink the named message queue.
EFAULT Invalid used address.
EINVAL The name parameter value is not valid
ENAMETOOLONG The length of the name parameter exceeds PATH_MAX or a pathname component is

longer than NAME_MAX.
ENOENT The named message queue does not exist.
ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

878 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
“mq_open Subroutine” on page 868 and “mq_close Subroutine” on page 865.

msem_init Subroutine

Purpose
Initializes a semaphore in a mapped file or shared memory region.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

msemaphore *msem_init (Sem, InitialValue)
msemaphore *Sem;
int InitialValue;

Description
The msem_init subroutine allocates a new binary semaphore and initializes the state of the new
semaphore.

If the value of the InitialValue parameter is MSEM_LOCKED, the new semaphore is initialized in the
locked state. If the value of the InitialValue parameter is MSEM_UNLOCKED, the new semaphore is
initialized in the unlocked state.

The msemaphore structure is located within a mapped file or shared memory region created by a
successful call to the mmap subroutine and having both read and write access.

Whether a semaphore is created in a mapped file or in an anonymous shared memory region, any
reference by a process that has mapped the same file or shared region, using an msemaphore structure
pointer that resolved to the same file or start of region offset, is taken as a reference to the same
semaphore.

Any previous semaphore state stored in the msemaphore structure is ignored and overwritten.

Parameters

Sem Points to an msemaphore structure in which the state of the semaphore is stored.
Initial Value Determines whether the semaphore is locked or unlocked at allocation.

Return Values
When successful, the msem_init subroutine returns a pointer to the initialized msemaphore structure.
Otherwise, it returns a null value and sets the errno global variable to indicate the error.

Error Codes
If the msem_init subroutine is unsuccessful, the errno global variable is set to one of the following values:

EINVAL Indicates the InitialValue parameter is not valid.
ENOMEM Indicates a new semaphore could not be created.

Base Operating System (BOS) Runtime Services (A-P) 879

Related Information
The mmap (“mmap or mmap64 Subroutine” on page 847) subroutine, msem_lock (“msem_lock
Subroutine”) subroutine, msem_remove (“msem_remove Subroutine” on page 881) subroutine,
msem_unlock (“msem_unlock Subroutine” on page 882) subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

msem_lock Subroutine

Purpose
Locks a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int msem_lock (Sem, Condition)
msemaphore *Sem;
int Condition;

Description
The msem_lock subroutine attempts to lock a binary semaphore.

If the semaphore is not currently locked, it is locked and the msem_lock subroutine completes
successfully.

If the semaphore is currently locked, and the value of the Condition parameter is MSEM_IF_NOWAIT, the
msem_lock subroutine returns with an error. If the semaphore is currently locked, and the value of the
Condition parameter is 0, the msem_lock subroutine does not return until either the calling process is able
to successfully lock the semaphore or an error condition occurs.

All calls to the msem_lock and msem_unlock subroutines by multiple processes sharing a common
msemaphore structure behave as if the call were serialized.

If the msemaphore structure contains any value not resulting from a call to the msem_init subroutine,
followed by a (possibly empty) sequence of calls to the msem_lock and msem_unlock subroutines, the
results are undefined. The address of an msemaphore structure is significant. If the msemaphore
structure contains any value copied from an msemaphore structure at a different address, the result is
undefined.

Parameters

Sem Points to an msemaphore structure that specifies the semaphore to be locked.
Condition Determines whether the msem_lock subroutine waits for a currently locked semaphore to unlock.

Return Values
When successful, the msem_lock subroutine returns a value of 0. Otherwise, it returns a value of -1 and
sets the errno global variable to indicate the error.

880 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
If the msem_lock subroutine is unsuccessful, the errno global variable is set to one of the following
values:

EAGAIN Indicates a value of MSEM_IF_NOWAIT is specified for the Condition parameter and the semaphore is
already locked.

EINVAL Indicates the Sem parameter points to an msemaphore structure specifying a semaphore that has been
removed, or the Condition parameter is invalid.

EINTR Indicates the msem_lock subroutine was interrupted by a signal that was caught.

Related Information
The msem_init (“msem_init Subroutine” on page 879) subroutine, msem_remove (“msem_remove
Subroutine”) subroutine, msem_unlock (“msem_unlock Subroutine” on page 882) subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

msem_remove Subroutine

Purpose
Removes a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int msem_remove (Sem)
msemaphore *Sem;

Description
The msem_remove subroutine removes a binary semaphore. Any subsequent use of the msemaphore
structure before it is again initialized by calling the msem_init subroutine will have undefined results.

The msem_remove subroutine also causes any process waiting in the msem_lock subroutine on the
removed semaphore to return with an error.

If the msemaphore structure contains any value not resulting from a call to the msem_init subroutine,
followed by a (possibly empty) sequence of calls to the msem_lock and msem_unlock subroutines, the
result is undefined. The address of an msemaphore structure is significant. If the msemaphore structure
contains any value copied from an msemaphore structure at a different address, the result is undefined.

Parameters

Sem Points to an msemaphore structure that specifies the semaphore to be removed.

Return Values
When successful, the msem_remove subroutine returns a value of 0. Otherwise, it returns a -1 and sets
the errno global variable to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 881

Error Codes
If the msem_remove subroutine is unsuccessful, the errno global variable is set to the following value:

EINVAL Indicates the Sem parameter points to an msemaphore structure that specifies a semaphore that has
been removed.

Related Information
The msem_init (“msem_init Subroutine” on page 879) subroutine, msem_lock (“msem_lock Subroutine”
on page 880) subroutine, msem_unlock (“msem_unlock Subroutine”) subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

msem_unlock Subroutine

Purpose
Unlocks a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int msem_unlock (Sem, Condition)
msemaphore *Sem;
int Condition;

Description
The msem_unlock subroutine attempts to unlock a binary semaphore.

If the semaphore is currently locked, it is unlocked and the msem_unlock subroutine completes
successfully.

If the Condition parameter is 0, the semaphore is unlocked, regardless of whether or not any other
processes are currently attempting to lock it. If the Condition parameter is set to the MSEM_IF_WAITERS
value, and another process is waiting to lock the semaphore or it cannot be reliably determined whether
some process is waiting to lock the semaphore, the semaphore is unlocked by the calling process. If the
Condition parameter is set to the MSEM_IF_WAITERS value and no process is waiting to lock the
semaphore, the semaphore will not be unlocked and an error will be returned.

Parameters

Sem Points to an msemaphore structure that specifies the semaphore to be unlocked.
Condition Determines whether the msem_unlock subroutine unlocks the semaphore if no other processes

are waiting to lock it.

Return Values
When successful, the msem_unlock subroutine returns a value of 0. Otherwise, it returns a value of -1
and sets the errno global variable to indicate the error.

882 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
If the msem_unlock subroutine is unsuccessful, the errno global variable is set to one of the following
values:

EAGAIN Indicates a Condition value of MSEM_IF_WAITERS was specified and there were no waiters.
EINVAL Indicates the Sem parameter points to an msemaphore structure specifying a semaphore that has been

removed, or the Condition parameter is not valid.

Related Information
The msem_init (“msem_init Subroutine” on page 879) subroutine, msem_lock (“msem_lock Subroutine”
on page 880) subroutine, msem_remove (“msem_remove Subroutine” on page 881) subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

msgctl Subroutine

Purpose
Provides message control operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/msg.h>

int msgctl (MessageQueueID,Command,Buffer)
int MessageQueueID, Command;
struct msqid_ds * Buffer;

Description
The msgctl subroutine provides a variety of message control operations as specified by the Command
parameter and stored in the structure pointed to by the Buffer parameter. The msqid_ds structure is
defined in the sys/msg.h file.

The following limits apply to the message queue:

v Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4 Megabytes for release
AIX 4.1.5 and later releases.

v Maximum number of messages per queue is 524288.

v Maximum number of message queue IDs is 4096 for releases before AIX 4.3.2 and 131072 for AIX
4.3.2 and following.

v Maximum number of bytes in a queue is 4 65,535 for releases prior to AIX 4.1.5 and is 4 Megabytes for
release 4.1.5 and later releases.

Parameters

MessageQueueID Specifies the message queue identifier.

Base Operating System (BOS) Runtime Services (A-P) 883

Command The following values for the Command parameter are available:

IPC_STAT
Stores the current value of the above fields of the data structure associated with
the MessageQueueID parameter into the msqid_ds structure pointed to by the
Buffer parameter.

The current process must have read permission in order to perform this
operation.

IPC_SET
Sets the value of the following fields of the data structure associated with the
MessageQueueID parameter to the corresponding values found in the structure
pointed to by the Buffer parameter:

msg_perm.uid
msg_perm.gid
msg_perm.mode/*Only the low-order
nine bits*/
msg_qbytes

The effective user ID of the current process must have root user authority or
must equal the value of the msg_perm.uid or msg_perm.cuid field in the data
structure associated with the MessageQueueID parameter in order to perform
this operation. To raise the value of the msg_qbytes field, the effective user ID of
the current process must have root user authority.

IPC_RMID
Removes the message queue identifier specified by the MessageQueueID
parameter from the system and destroys the message queue and data structure
associated with it. The effective user ID of the current process must have root
user authority or be equal to the value of the msg_perm.uid or msg_perm.cuid
field in the data structure associated with the MessageQueueID parameter to
perform this operation.

Buffer Points to a msqid_ds structure.

Return Values
Upon successful completion, the msgctl subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The msgctl subroutine is unsuccessful if any of the following conditions is true:

EINVAL The Command or MessageQueueID parameter is not valid.
EACCES The Command parameter is equal to the IPC_STAT value, and the calling process was denied read

permission.
EPERM The Command parameter is equal to the IPC_RMID value and the effective user ID of the calling process

does not have root user authority. Or, the Command parameter is equal to the IPC_SET value, and the
effective user ID of the calling process is not equal to the value of the msg_perm.uid field or the
msg_perm.cuid field in the data structure associated with the MessageQueueID parameter.

EPERM The Command parameter is equal to the IPC_SET value, an attempt was made to increase the value of
the msg_qbytes field, and the effective user ID of the calling process does not have root user authority.

EFAULT The Buffer parameter points outside of the process address space.

Related Information
The msgget (“msgget Subroutine” on page 885) subroutine, msgrcv (“msgrcv Subroutine” on page 886)
subroutine, msgsnd (“msgsnd Subroutine” on page 889) subroutine, msgxrcv (“msgxrcv Subroutine” on
page 891) subroutine.

884 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

msgget Subroutine

Purpose
Gets a message queue identifier.

Library
Standard C Library (libc.a)

Syntax
#include <sys/msg.h>

int msgget (Key, MessageFlag)
key_t Key;
int MessageFlag;

Description
The msgget subroutine returns the message queue identifier associated with the specified Key parameter.

A message queue identifier, associated message queue, and data structure are created for the value of
the Key parameter if one of the following conditions is true:

v The Key parameter is equal to the IPC_PRIVATE value.

v The Key parameter does not already have a message queue identifier associated with it, and the
IPC_CREAT value is set.

Upon creation, the data structure associated with the new message queue identifier is initialized as
follows:

v The msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid fields are set equal to the effective
user ID and effective group ID, respectively, of the calling process.

v The low-order 9 bits of the msg_perm.mode field are set equal to the low-order 9 bits of the MessageFlag
parameter.

v The msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime fields are set equal to 0.

v The msg_ctime field is set equal to the current time.

v The msg_qbytes field is set equal to the system limit.

The msgget subroutine performs the following actions:

v The msgget subroutine either finds or creates (depending on the value of the MessageFlag parameter)
a queue with the Key parameter.

v The msgget subroutine returns the ID of the queue header to its caller.

Limits on message size and number of messages in the queue can be found in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

Parameters

Key Specifies either the value IPC_PRIVATE or an Interprocess Communication (IPC) key
constructed by the ftok (“ftok Subroutine” on page 325) subroutine (or by a similar algorithm).

Base Operating System (BOS) Runtime Services (A-P) 885

MessageFlag Constructed by logically ORing one or more of the following values:

IPC_CREAT
Creates the data structure if it does not already exist.

IPC_EXCL
Causes the msgget subroutine to fail if the IPC_CREAT value is also set and the data
structure already exists.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the group associated with the data structure to read it.

S_IWGRP
Permits the group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

Values that begin with S_I are defined in the sys/mode.h file and are a subset of the access
permissions that apply to files.

Return Values
Upon successful completion, the msgget subroutine returns a message queue identifier. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The msgget subroutine is unsuccessful if any of the following conditions is true:

EACCES A message queue identifier exists for the Key parameter, but operation permission as specified by the
low-order 9 bits of the MessageFlag parameter is not granted.

ENOENT A message queue identifier does not exist for the Key parameter and the IPC_CREAT value is not set.
ENOSPC A message queue identifier is to be created, but the system-imposed limit on the maximum number of

allowed message queue identifiers system-wide would be exceeded.
EEXIST A message queue identifier exists for the Key parameter, and both IPC_CREAT and IPC_EXCL values

are set.

Related Information
The ftok (“ftok Subroutine” on page 325) subroutine, msgctl (“msgctl Subroutine” on page 883)
subroutine, msgrcv (“msgrcv Subroutine”) subroutine, msgsnd (“msgsnd Subroutine” on page 889)
subroutine, msgxrcv (“msgxrcv Subroutine” on page 891) subroutine.

The mode.h file.

msgrcv Subroutine

Purpose
Reads a message from a queue.

886 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Standard C Library (libc.a)

Syntax
#include <sys/msg.h>

int msgrcv (MessageQueueID, MessagePointer,MessageSize,MessageType, MessageFlag)
int MessageQueueID, MessageFlag;
void * MessagePointer;
size_t MessageSize;
long int MessageType;

Description
The msgrcv subroutine reads a message from the queue specified by the MessageQueueID parameter
and stores it into the structure pointed to by the MessagePointer parameter. The current process must
have read permission in order to perform this operation.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case
of 64-bit application calling 32-bit kernel interface.

Limits on message size and number of messages in the queue can be found in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

Note: For a 64-bit process, the mtype field is 64 bits long. However, for compatibility with 32-bit
processes, the mtype field must be a 32-bit signed value that is sign-extended to 64 bits. The most
significant 32 bits are not put on the message queue. For a 64-bit process, the mtype field is again
sign-extended to 64 bits.

Parameters

MessageQueueID Specifies the message queue identifier.
MessagePointer Points to a msgbuf structure containing the message. The msgbuf structure is defined in the

sys/msg.h file and contains the following fields:

mtyp_t mtype; /* Message type */
char mtext[1]; /* Beginning of message text */

The mtype field contains the type of the received message as specified by the sending process.
The mtext field is the text of the message.

MessageSize Specifies the size of the mtext field in bytes. The received message is truncated to the size
specified by the MessageSize parameter if it is longer than the size specified by the
MessageSize parameter and if the MSG_NOERROR value is set in the MessageFlag
parameter. The truncated part of the message is lost and no indication of the truncation is given
to the calling process.

MessageType Specifies the type of message requested as follows:

v If equal to the value of 0, the first message on the queue is received.

v If greater than 0, the first message of the type specified by the MessageType parameter is
received.

v If less than 0, the first message of the lowest type that is less than or equal to the absolute
value of the MessageType parameter is received.

Base Operating System (BOS) Runtime Services (A-P) 887

MessageFlag Specifies either a value of 0 or is constructed by logically ORing one or more of the following
values:

MSG_NOERROR
Truncates the message if it is longer than the MessageSize parameter.

IPC_NOWAIT
Specifies the action to take if a message of the desired type is not on the queue:

v If the IPC_NOWAIT value is set, the calling process returns a value of -1 and sets
the errno global variable to the ENOMSG error code.

v If the IPC_NOWAIT value is not set, the calling process suspends execution until
one of the following occurs:

– A message of the desired type is placed on the queue.

– The message queue identifier specified by the MessageQueueID parameter is
removed from the system. When this occurs, the errno global variable is set to
the EIDRM error code, and a value of -1 is returned.

– The calling process receives a signal that is to be caught. In this case, a
message is not received and the calling process resumes in the manner
described in the sigaction subroutine.

Return Values
Upon successful completion, the msgrcv subroutine returns a value equal to the number of bytes actually
stored into the mtext field and the following actions are taken with respect to fields of the data structure
associated with the MessageQueueID parameter:

v The msg_qnum field is decremented by 1.

v The msg_lrpid field is set equal to the process ID of the calling process.

v The msg_rtime field is set equal to the current time.

If the msgrcv subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The msgrcv subroutine is unsuccessful if any of the following conditions is true:

EINVAL The MessageQueueID parameter is not a valid message queue identifier.
EACCES The calling process is denied permission for the specified operation.
E2BIG The mtext field is greater than the MessageSize parameter, and the MSG_NOERROR value is not set.
ENOMSG The queue does not contain a message of the desired type and the IPC_NOWAIT value is set.
EFAULT The MessagePointer parameter points outside of the allocated address space of the process.
EINTR The msgrcv subroutine is interrupted by a signal.
EIDRM The message queue identifier specified by the MessageQueueID parameter has been removed from

the system.

Related Information
The msgctl (“msgctl Subroutine” on page 883) subroutine, msgget (“msgget Subroutine” on page 885)
subroutine, msgsnd (“msgsnd Subroutine” on page 889) subroutine, msgxrcv (“msgxrcv Subroutine” on
page 891) subroutine, sigaction subroutine.

888 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

msgsnd Subroutine

Purpose
Sends a message.

Library
Standard C Library (libc.a)

Syntax
#include <sys/msg.h>

int msgsnd (MessageQueueID, MessagePointer,MessageSize, MessageFlag)
int MessageQueueID, MessageFlag;
const void * MessagePointer;
size_t MessageSize;

Description
The msgsnd subroutine sends a message to the queue specified by the MessageQueueID parameter.
The current process must have write permission to perform this operation. The MessagePointer parameter
points to an msgbuf structure containing the message. The sys/msg.h file defines the msgbuf structure.
The structure contains the following fields:
mtyp_t mtype; /* Message type */
char mtext[1]; /* Beginning of message text */

The mtype field specifies a positive integer used by the receiving process for message selection. The
mtext field can be any text of the length in bytes specified by the MessageSize parameter. The
MessageSize parameter can range from 0 to the maximum limit imposed by the system.

The following example shows a typical user-defined msgbuf structure that includes sufficient space for the
largest message:
struct my_msgbuf
mtyp_t mtype;
char mtext[MSGSIZ]; /* MSGSIZ is the size of the largest message */

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case
of 64-bit application calling 32-bit kernel interface.

The following system limits apply to the message queue:

v Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4 Megabytes for AIX 4.1.5
and later releases.

v Maximum number of messages per queue is 524288.

v Maximum number of message queue IDs is 4096 for releases before AIX 4.3.2 and 131072 for AIX
4.3.2 and following.

v Maximum number of bytes in a queue is 4 65,535 bytes for releases prior to AIX 4.1.5 is 4 Megabytes
for AIX 4.1.5 and later releases.

Note: For a 64-bit process, the mtype field is 64 bits long. However, for compatibility with 32-bit
processes, the mtype field must be a 32-bit signed value that is sign-extended to 64 bits. The most
significant 32 bits are not put on the message queue. For a 64-bit process, the mtype field is again
sign-extended to 64 bits.

Base Operating System (BOS) Runtime Services (A-P) 889

The MessageFlag parameter specifies the action to be taken if the message cannot be sent for one of the
following reasons:

v The number of bytes already on the queue is equal to the number of bytes defined by themsg_qbytes
structure.

v The total number of messages on the queue is equal to a system-imposed limit.

These actions are as follows:

v If the MessageFlag parameter is set to the IPC_NOWAIT value, the message is not sent, and the
msgsnd subroutine returns a value of -1 and sets the errno global variable to the EAGAIN error code.

v If the MessageFlag parameter is set to 0, the calling process suspends execution until one of the
following occurs:

– The condition responsible for the suspension no longer exists, in which case the message is sent.

– The MessageQueueID parameter is removed from the system. (For information on how to remove
the MessageQueueID parameter, see the msgctl (“msgctl Subroutine” on page 883) subroutine.)
When this occurs, the errno global variable is set equal to the EIDRM error code, and a value of -1
is returned.

– The calling process receives a signal that is to be caught. In this case the message is not sent and
the calling process resumes execution in the manner prescribed in the sigaction subroutine.

Parameters

MessageQueueID Specifies the queue to which the message is sent.
MessagePointer Points to a msgbuf structure containing the message.
MessageSize Specifies the length, in bytes, of the message text.
MessageFlag Specifies the action to be taken if the message cannot be sent.

Return Values
Upon successful completion, a value of 0 is returned and the following actions are taken with respect to
the data structure associated with the MessageQueueID parameter:

v The msg_qnum field is incremented by 1.

v The msg_lspid field is set equal to the process ID of the calling process.

v The msg_stime field is set equal to the current time.

If the msgsnd subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The msgsnd subroutine is unsuccessful and no message is sent if one or more of the following conditions
is true:

EACCES The calling process is denied permission for the specified operation.
EAGAIN The message cannot be sent for one of the reasons stated previously, and the MessageFlag parameter

is set to the IPC_NOWAIT value or the system has temporarily ran out of memory resource.
EFAULT The MessagePointer parameter points outside of the address space of the process.
EIDRM The message queue identifier specified by the MessageQueueID parameter has been removed from the

system.
EINTR The msgsnd subroutine received a signal.
EINVAL The MessageQueueID parameter is not a valid message queue identifier.
EINVAL The mtype field is less than 1.
EINVAL The MessageSize parameter is less than 0 or greater than the system-imposed limit.
EINVAL The upper 32-bits of the 64-bit mtype field for a 64-bit process is not 0.
ENOMEM The message could not be sent because not enough storage space was available.

890 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The msgctl (“msgctl Subroutine” on page 883) subroutine, msgget (“msgget Subroutine” on page 885)
subroutine, msgrcv (“msgrcv Subroutine” on page 886) subroutine, msgxrcv (“msgxrcv Subroutine”)
subroutine, sigaction subroutine.

msgxrcv Subroutine

Purpose
Receives an extended message.

Library
Standard C Library (libc.a)

Syntax
For releases prior to AIX 4.3:
#include <sys/msg.h>

int msgxrcv (MessageQueueID, MessagePointer, MessageSize, MessageType, MessageFlag)
int MessageQueueID, MessageFlag, MessageSize;
struct msgxbuf * MessagePointer;
long MessageType;

For AIX 4.3 and later releases:

#include <sys/msg.h>

int msgxrcv (MessageQueueID, MessagePointer, MessageSize, MessageType, MessageFlag)
int MessageQueueID, MessageFlag;
size_t MessageSize;
struct msgxbuf * MessagePointer;
long MessageType;

Description

The msgxrcv subroutine reads a message from the queue specified by the MessageQueueID parameter
and stores it into the extended message receive buffer pointed to by the MessagePointer parameter. The
current process must have read permission in order to perform this operation. The msgxbuf structure is
defined in the sys/msg.h file.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case
of 64-bit application calling 32-bit kernel interface.

The following limits apply to the message queue:

v Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4 Megabytes for AIX 4.1.5
and later releases.

v Maximum number of messages per queue is 8192.

v Maximum number of message queue IDs is 4096 for releases before AIX 4.3.2 and 131072 for AIX
4.3.2 and following.

v Maximum number of bytes in a queue is 4 65,535 for releases prior to AIX 4.1.5 and is 4 Megabytes for
AIX 4.1.5 later releases.

Base Operating System (BOS) Runtime Services (A-P) 891

Note: For a 64-bit process, the mtype field is 64 bits long. However, for compatibility with 32-bit
processes, the mtype field must be a 32-bit signed value that is sign-extended to 64 bits. The most
significant 32 bits are not put on the message queue. For a 64-bit process, the mtype field is again
sign-extended to 64 bits.

Parameters

MessageQueueID Specifies the message queue identifier.
MessagePointer Specifies a pointer to an extended message receive buffer where a message is stored.
MessageSize Specifies the size of the mtext field in bytes. The receive message is truncated to the

size specified by the MessageSize parameter if it is larger than the MessageSize
parameter and the MSG_NOERROR value is true. The truncated part of the message is
lost and no indication of the truncation is given to the calling process. If the message is
longer than the number of bytes specified by the MessageSize parameter and the
MSG_NOERROR value is not set, the msgxrcv subroutine is unsuccessful and sets the
errno global variable to the E2BIG error code.

MessageType Specifies the type of message requested as follows:

v If the MessageType parameter is equal to 0, the first message on the queue is
received.

v If the MessageType parameter is greater than 0, the first message of the type specified
by the MessageType parameter is received.

v If the MessageType parameter is less than 0, the first message of the lowest type that
is less than or equal to the absolute value of the MessageType parameter is received.

MessageFlag Specifies a value of 0 or a value constructed by logically ORing one or more of the
following values:

MSG_NOERROR
Truncates the message if it is longer than the number of bytes specified by the
MessageSize parameter.

IPC_NOWAIT
Specifies the action to take if a message of the desired type is not on the queue:

v If the IPC_NOWAIT value is set, the calling process returns a value of -1 and
sets the errno global variable to the ENOMSG error code.

v If the IPC_NOWAIT value is not set, the calling process suspends execution
until one of the following occurs:

– A message of the desired type is placed on the queue.

– The message queue identifier specified by the MessageQueueID
parameter is removed from the system. When this occurs, the errno global
variable is set to the EIDRM error code, and a value of -1 is returned.

– The calling process receives a signal that is to be caught. In this case, a
message is not received and the calling process resumes in the manner
prescribed in the sigaction subroutine.

Return Values
Upon successful completion, the msgxrcv subroutine returns a value equal to the number of bytes
actually stored into the mtext field, and the following actions are taken with respect to the data structure
associated with the MessageQueueID parameter:

v The msg_qnum field is decremented by 1.

v The msg_lrpid field is set equal to the process ID of the calling process.

v The msg_rtime field is set equal to the current time.

If the msgxrcv subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error.

892 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The msgxrcv subroutine is unsuccessful if any of the following conditions is true:

EINVAL The MessageQueueID parameter is not a valid message queue identifier.
EACCES The calling process is denied permission for the specified operation.
EINVAL The MessageSize parameter is less than 0.
E2BIG The mtext field is greater than the MessageSize parameter, and the MSG_NOERROR value is not set.
ENOMSG The queue does not contain a message of the desired type and the IPC_NOWAIT value is set.
EFAULT The MessagePointer parameter points outside of the process address space.
EINTR The msgxrcv subroutine was interrupted by a signal.
EIDRM The message queue identifier specified by the MessageQueueID parameter is removed from the system.

Related Information
The msgctl (“msgctl Subroutine” on page 883) subroutine, msgget (“msgget Subroutine” on page 885)
subroutine, msgrcv (“msgrcv Subroutine” on page 886) subroutine, msgsnd (“msgsnd Subroutine” on
page 889) subroutine, sigaction subroutine.

msleep Subroutine

Purpose
Puts a process to sleep when a semaphore is busy.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int msleep (Sem)
msemaphore * Sem;

Description
The msleep subroutine puts a calling process to sleep when a semaphore is busy. The semaphore should
be located in a shared memory region. Use the mmap subroutine to create the shared memory section.

All of the values in the msemaphore structure must result from a msem_init subroutine call. This call may
or may not be followed by a sequence of calls to the msem_lock subroutine or the msem_unlock
subroutine. If the msemaphore structure value originates in another manner, the results of the msleep
subroutine are undefined.

The address of the msemaphore structure is significant. You should be careful not to modify the
structure’s address. If the structure contains values copied from a msemaphore structure at another
address, the results of the msleep subroutine are undefined.

Parameters

Sem Points to the msemaphore structure that specifies the semaphore.

Base Operating System (BOS) Runtime Services (A-P) 893

Error Codes
If the msleep subroutine is unsuccessful, the errno global variable is set to one of the following values:

EFAULT Indicates that the Sem parameter points to an invalid address or the address does not contain a valid
msemaphore structure.

EINTR Indicates that the process calling the msleep subroutine was interrupted by a signal while sleeping.

Related Information
The mmap (“mmap or mmap64 Subroutine” on page 847) subroutine, msem_init (“msem_init Subroutine”
on page 879) subroutine, msem_lock (“msem_lock Subroutine” on page 880) subroutine, msem_unlock
(“msem_unlock Subroutine” on page 882) subroutine, mwakeup (“mwakeup Subroutine” on page 898)
subroutine.

Understanding Memory Mapping in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

msync Subroutine

Purpose
Synchronize memory with physical storage.

Library
Standard C Library (libc.a).

Syntax
#include <sys/types.h>
#include <sys/mman.h>

int msync (addr, len, flags)
void *addr;
size_t len;
int flags;

Description
The msync subroutine controls the caching operations of a mapped file or shared memory region. Use the
msync subroutine to transfer modified pages in the region to the underlying file storage device.

If the application has requested Single UNIX Specification, Version 2 compliant behavior then the st_ctime
and st_mtime fields of the mapped file are marked for update upon successful completion of the msync
subroutine call if the file has been modified.

Parameters

addr Specifies the address of the region to be synchronized. Must be a multiple of the page size returned by the
sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the region to be synchronized. If the len parameter is not a multiple of the
page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter,
the length of the region is rounded up to the next multiple of the page size.

894 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

flags Specifies one or more of the following symbolic constants that determine the way caching operations are
performed:

MS_SYNC
Specifies synchronous cache flush. The msync subroutine does not return until the system
completes all I/O operations.

This flag is invalid when the MAP_PRIVATE flag is used with the mmap subroutine.
MAP_PRIVATE is the default privacy setting. When the MS_SYNC and MAP_PRIVATE flags both
are used, the msync subroutine returns an errno value of EINVAL.

MS_ASYNC
Specifies an asynchronous cache flush. The msync subroutine returns after the system schedules
all I/O operations.

This flag is invalid when the MAP_PRIVATE flag is used with the mmap subroutine.
MAP_PRIVATE is the default privacy setting. When the MS_SYNC and MAP_PRIVATE flags both
are used, the msync subroutine returns an errno value of EINVAL.

MS_INVALIDATE
Specifies that the msync subroutine invalidates all cached copies of the pages. New copies of the
pages must then be obtained from the file system the next time they are referenced.

Return Values
When successful, the msync subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

Error Codes
If the msync subroutine is unsuccessful, the errno global variable is set to one of the following values:

EBUSY One or more pages in the range passed to the msync subroutine is pinned.
EIO An I/O error occurred while reading from or writing to the file system.
ENOMEM The range specified by (addr, addr + len) is invalid for a process’ address space, or the range

specifies one or more unmapped pages.
EINVAL The addr argument is not a multiple of the page size as returned by the sysconf subroutine using

the _SC_PAGE_SIZE value for the Name parameter, or the flags parameter is invalid. The address
of the region is within the process’ inheritable address space.

mt__trce Subroutine

Purpose
Dumps traceback information into a lightweight core file.

Library
PTools Library (libptools_ptr.a)

Syntax
void mt__trce (int FileDescriptor, int Signal, struct sigcontext *Context, int Node);

Description
The mt__trce subroutine dumps traceback information of the calling thread and all other threads allocated
in the process space into the file specified by the FileDescriptor parameter. The format of the output from
this subroutine complies with the Parallel Tools Consortium Lightweight CoreFile Format. Threads, except
the calling thread, will be suspended after the calling thread enters this subroutine and while the traceback
information is being obtained. Threads execution resumes when this subroutine returns.

Base Operating System (BOS) Runtime Services (A-P) 895

When using the mt__trce subroutine in a signal handler, it is recommended that the application be started
with the environment variable AIXTHREAD_SCOPE set to S (As in export AIXTHREAD_SCOPE=S). If this
variable is not set, the application may hang.

Parameters

Context Points to the sigcontext structure containing the context of the thread when the signal
happens. The context is used to generate the traceback information for the calling thread. This
is used only if the Signal parameter is nonzero. If the mt__trce subroutine is called with the
Signal parameter set to zero, the Context parameter is ignored and the traceback information
is generated based on the current context of the calling thread. Refer to the sigaction
subroutine for further description about signal handlers and how the sigcontext structure is
passed to a signal handler.

File Descriptor The file descriptor of the lightweight core file. It specifies the target file into which the
traceback information is written.

Node Specifies the number of the tasks or nodes where this subroutine is executing and is used only
for a parallel application consisting of multiple tasks. The Node parameter will be used in
section headers of the traceback information to identify the task or node from which the
information is generated.

Signal The number of the signal that causes the signal handler to be executed. This is used only if
the mt__trce subroutine is called from a signal handler. A Fault-Info section defined by the
Parallel Tools Consortium Lightweight Core File Format will be written into the output
lightweight core file based on this signal number. If the mt__trce subroutine is not called from
a signal handler, the Signal parameter must be set to 0 and a Fault-Info section will not be
generated.

Notes:

1. To obtain source line information in the traceback, the programs must have been compiled with the -g
option to include the necessary line number information in the executable files. Otherwise, address
offset from the beginning of the function is provided.

2. Line number information is not provided for shared objects even if they were compiled with the -g
option.

3. Function names are not provided if a program or a library is compiled with optimization. To obtain
function name information in the traceback and still have the object code optimized, compiler option
-qtbtable=full must be specified.

4. In rare cases, the traceback of a thread may seem to skip one level of procedure calls. This is
because the traceback is obtained at the moment the thread entered a procedure and has not yet
allocated a stack frame.

Return Values
Upon successful completion, the mt__trce subroutine returns a value of 0. Otherwise, an error number is
returned to indicate the error.

Error Codes
If an error occurs, the subroutine returns -1 and the errno global variable is set to indicate the error, as
follows:

EBADF The FileDescriptor parameter does not specify a valid file descriptor open for writing.
ENOSPC No free space is left in the file system containing the file.
EDQUOT New disk blocks cannot be allocated for the file because the user or group quota of blocks has

been exhausted on the file system.
EINVAL The value of the Signal parameter is invalid or the Context parameter points to an invalid

context.
ENOMEM Insufficient memory exists to perform the operation.

896 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Examples
1. The following example calls the mt__trce subroutine to generate traceback information in a signal

handler.
void
my_handler(int signal,

int code,
struct sigcontext *sigcontext_data)

{
int lcf_fd;
....
lcf_fd = open(file_name, O_WRONLY|O_CREAT|O_APPEND, 0666);
....
rc = mt__trce(lcf_fd, signal, sigcontext_data, 0);
....
close(lcf_fd);
....

}

2. The following is an example of the lightweight core file generated by the mt__trce subroutine. Notice
the thread ID in the information is the unique sequence number of a thread for the life time of the
process containing the thread.
+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.0
+++LCB 1.0 Thu Jun 30 16:02:35 1999 Generated by AIX
#
+++ID Node 0 Process 21084 Thread 1
***FAULT "SIGABRT - Abort"
+++STACK
func2 : 123 # in file
func1 : 272 # in file
main : 49 # in file
---STACK
---ID Node 0 Process 21084 Thread 1
#
+++ID Node 0 Process 21084 Thread 2
+++STACK
nsleep : 0x0000001c
sleep : 0x00000030
f_mt_exec : 21 # in file
_pthread_body : 0x00000114
---STACK
---ID Node 0 Process 21084 Thread 2
#
+++ID Node 0 Process 21084 Thread 3
+++STACK
nsleep : 0x0000001c
sleep : 0x00000030
f_mt_exec : 21 # in file
_pthread_body : 0x00000114
---STACK
---ID Node 0 Process 21084 Thread 3
---LCB

Related Information
The install_lwcf_handler and sigaction subroutines.

munmap Subroutine

Purpose
Unmaps pages of memory.

Base Operating System (BOS) Runtime Services (A-P) 897

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mman.h>

int munmap (addr, len)
void *addr;
size_t len;

Description
The munmap subroutine unmaps a mapped file or shared memory region or anonymous memory region.
The munmap subroutine unmaps regions created from calls to the mmap subroutine only.

If an address lies in a region that is unmapped by the munmap subroutine and that region is not
subsequently mapped again, any reference to that address will result in the delivery of a SIGSEGV signal
to the process.

Parameters

addr Specifies the address of the region to be unmapped. Must be a multiple of the page size returned by the
sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the region to be unmapped. If the len parameter is not a multiple of the
page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter,
the length of the region is rounded up to the next multiple of the page size.

Return Values
When successful, the munmap subroutine returns 0. Otherwise, it returns -1 and sets the errno global
variable to indicate the error.

Error Codes
If the munmap subroutine is unsuccessful, the errno global variable is set to the following value:

EINVAL The addr parameter is not a multiple of the page size as returned by the sysconf subroutine using the
_SC_PAGE_SIZE value for the Name parameter.

EINVAL The application has requested Single UNIX Specification, Version 2 compliant behavior and the len
arguement is 0.

mwakeup Subroutine

Purpose
Wakes up a process that is waiting on a semaphore.

Library
Standard C Library (libc.a)

898 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <sys/mman.h>
int mwakeup (Sem)
msemaphore * Sem;

Description
The mwakeup subroutine wakes up a process that is sleeping and waiting for an idle semaphore. The
semaphore should be located in a shared memory region. Use the mmap subroutine to create the shared
memory section.

All of the values in the msemaphore structure must result from a msem_init subroutine call. This call may
or may not be followed by a sequence of calls to the msem_lock subroutine or the msem_unlock
subroutine. If the msemaphore structure value originates in another manner, the results of the mwakeup
subroutine are undefined.

The address of the msemaphore structure is significant. You should be careful not to modify the
structure’s address. If the structure contains values copied from a msemaphore structure at another
address, the results of the mwakeup subroutine are undefined.

Parameters

Sem Points to the msemaphore structure that specifies the semaphore.

Return Values
When successful, the mwakeup subroutine returns a value of 0. Otherwise, this routine returns a value of
-1 and sets the errno global variable to EFAULT.

Error Codes
A value of EFAULT indicates that the Sem parameter points to an invalid address or that the address does
not contain a valid msemaphore structure.

Related Information
The mmap (“mmap or mmap64 Subroutine” on page 847) subroutine, msem_init (“msem_init Subroutine”
on page 879) subroutine, msem_lock (“msem_lock Subroutine” on page 880) subroutine, msem_unlock
(“msem_unlock Subroutine” on page 882) subroutine, and the msleep (“msleep Subroutine” on page 893)
subroutine.

Understanding Memory Mapping in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

nan, nanf, nanl, nand32, nand64, and nand128 Subroutines

Purpose
Return a quiet NaN.

Syntax
#include <math.h>

double nan (tagp)
const char *tagp;

float nanf (tagp)

Base Operating System (BOS) Runtime Services (A-P) 899

const char *tagp;

long double nanl (tagp)
const char *tagp;

_Decimal32 nand32(tagp)
const char *tagp;

_Decimal64 nand64(tagp)
const char *tagp;

_Decimal128 nand128(tagp)
const char *tagp;

Description
The function call nan(″n-char-sequence″) is equivalent to:
strtod("NAN(n-char-sequence)", (char **) NULL);

The function call nan(″ ″) is equivalent to:
strtod("NAN()", (char **) NULL)

If tagp does not point to an n-char sequence or an empty string, the function call is equivalent to:
strtod("NAN", (char **) NULL)

Function calls to the nanf, nanl, nand32, nand64, and nand128 subroutines are equivalent to the
corresponding function calls to the strtof, strtold, strtod32, strtod64, and strtod128 subroutines.

Parameters

tagp Indicates the content of the quiet NaN.

Return Values
The nan, nanf, nanl, nand32, nand64, and nand128 subroutines return a quiet NaN with content
indicated through tagp.

Related Information
The “atof atoff Subroutine” on page 97.

math.h in AIX 5L Version 5.3 Files Reference.

nanosleep Subroutine

Purpose
Causes the current thread to be suspended from execution.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

int nanosleep (rqtp, rmtp)
const struct timespec *rqtp;
struct timespec *rmtp;

900 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The nanosleep subroutine causes the current thread to be suspended from execution until either the time
interval specified by the rqtp parameter has elapsed or a signal is delivered to the calling thread and its
action is to invoke a signal-catching function or to terminate the process. The suspension time may be
longer than requested because the argument value is rounded up to an integer multiple of the sleep
resolution. This can also occur because of the scheduling of other activity by the system. Unless it is
interrupted by a signal, the suspension time will not be less than the time specified by the rqtp parameter,
as measured by the system clock CLOCK_REALTIME.

The use of the nanosleep subroutine has no effect on the action or blockage of any signal.

Parameters

rqtp Specifies the time interval that the thread is suspended.
rmtp Points to the timespec structure.

Return Values
If the nanosleep subroutine returns because the requested time has elapsed, its return value is zero.

If the nanosleep subroutine returns because it has been interrupted by a signal, it returns -1 and sets
errno to indicate the interruption. If the rmtp parameter is non-NULL, the timespec structure is updated to
contain the amount of time remaining in the interval (the requested time minus the time actually slept). If
the rmtp parameter is NULL, the remaining time is not returned.

If the nanosleep subroutine fails, it returns -1 and sets errno to indicate the error.

Error Codes
The nanosleep subroutine fails if:

EINTR The nanosleep subroutine was interrupted by a signal.
EINVAL The rqtp parameter specified a nanosecond value less than zero or greater than or equal to 1000

million.

Related Information
The sleep subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions
Volume 2.

nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and
nearbyintd128 Subroutines

Purpose
Round numbers to an integer value in floating-point format.

Syntax
#include <math.h>

double nearbyint (x)
double x;

float nearbyintf (x)
float x;

Base Operating System (BOS) Runtime Services (A-P) 901

long double nearbyintl (x)
long double x;

_Decimal32 nearbyintd32(x)
_Decimal32 x;

_Decimal64 nearbyintd64(x)
_Decimal64 x;

_Decimal128 nearbyintd128(x)
_Decimal128 x;

Description
The nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and nearbyintd128 subroutines
round the x parameter to an integer value in floating-point format, using the current rounding direction and
without raising the inexact floating-point exception.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value to be computed.

Return Values
Upon successful completion, the nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and
nearbyintd128 subroutines return the rounded integer value.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and the nearbyint, nearbyintf, nearbyintl,
nearbyintd32, nearbyintd64, and nearbyintd128 subroutines return the value of the macro ±HUGE_VAL,
±HUGE_VALF, ±HUGE_VALL, ±HUGE_VAL_D32, ±HUGE_VAL_D64, ±HUGE_VAL_D128 (with the
same sign as x), respectively.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in AIX 5L Version 5.3 Files Reference.

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, or nexttowardl
Subroutine

Purpose
Computes the next representable floating-point number.

902 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <math.h>

float nextafterf (x, y)
float x;
float y;

long double nextafterl (x, y)
long double x;
long double y;

double nextafter (x, y)
double x, y;

double nexttoward (x, y)
double x;
long double y;

float nexttowardf (x, y)
float x;
long double y;

long double nexttowardl (x, y)
long double x;
long double y;

Description
The nextafterf, nextafterl, and nextafter subroutines compute the next representable floating-point value
following x in the direction of y. Thus, if y is less than x, the nextafter subroutine returns the largest
representable floating-point number less than x.

The nextafter, nextafterf, and nextafterl subroutines return y if x equals y.

The nexttoward, nexttowardf, and nexttowardl subroutines are equivalent to the corresponding
nextafter subroutine, except that the second parameter has type long double and the subroutines return
y converted to the type of the subroutine if x equals y.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the starting value. The next representable floating-point number is found from x in the
direction specified by y.

y Specifies the direction.

Return Values
Upon successful completion, the nextafterf, nextafterl, nextafter, nexttoward, nexttowardf, and
nexttowardl subroutines return the next representable floating-point value following x in the direction of y.

If x==y, y (of the type x) is returned.

If x is finite and the correct function value would overflow, a range error occurs and ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) is returned as appropriate for the return type
of the function.

Base Operating System (BOS) Runtime Services (A-P) 903

If x or y is NaN, a NaN is returned.

If x!=y and the correct subroutine value is subnormal, zero, or underflows, a range error occurs, and either
the correct function value (if representable) or 0.0 is returned.

Error Codes
For the nextafter subroutine, if the x parameter is finite and the correct function value would overflow,
HUGE_VAL is returned and errno is set to ERANGE.

Related Information
“feclearexcept Subroutine” on page 267 and “fetestexcept Subroutine” on page 275.

math.h in AIX 5L Version 5.3 Files Reference.

nextafterd32, nextafterd64, nextafterd128, nexttowardd32,
nexttowardd64, and nexttowardd128 Subroutines

Purpose
Compute the next representable decimal floating-point number.

Syntax
#include <math.h>
_Decimal32 nextafterd32 (x, y)
_Decimal32 x;
_Decimal32 y;

_Decimal64 nextafterd64 (x, y)
_Decimal64 x;
_Decimal64 y;

_Decimal128 nextafterd128 (x, y)
_Decimal128 x;
_Decimal128 y;

_Decimal32 nexttowardd32 (x, y)
_Decimal32 x;
_Decimal128 y;

_Decimal64 nexttowardd64 (x, y)
_Decimal64 x;
_Decimal128 y;

_Decimal128 nexttowardd128 (x, y)
_Decimal128 x;
_Decimal128 y;

Description
The nextafterd32, nextafterd64, and nextafterd128 subroutines compute the next representable decimal
floating-point value following the x value in the direction of the y value. Thus, if the y value is less than the
x value, the nextafter subroutine returns the largest representable decimal floating-point number that is
less than x.

If the value of x equals y, the nextafterd32, nextafterd64, and nextafterd128 subroutines return the value
of y .

904 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The nexttowardd32, nexttowardd64, and nexttowardd128 subroutines are equivalent to the
corresponding nextafter subroutines, except that the second parameter has the _Decimal128 type, and
the subroutines return the value of the y parameter that is converted to the type of the subroutine if the
value of x equals that of y.

To check error situations, an application should set the errno global variable to zero and call the
feclearexcept subroutine (FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is
nonzero or the fetestexcept subroutine (FE_INVALID| FE_DIVBYZERO| FE_OVERFLOW|
FE_UNDERFLOW) is nonzero, an error has occurred.

Parameters

x Specifies the starting values. The next representable decimal floating-point number is found
from the x parameter in the direction specified by the y parameter.

y Specifies the direction.

Return Values
Upon successful completion, the nextafterd32, nextafterd64, nextafterd128, nexttowardd32,
nexttowardd64, and nexttowardd128 subroutines return the next representable decimal floating-point
value following the value of the x parameter in the direction specified by the y parameter.

If x == y, y (of the type x) is returned.

If x is finite and thus the correct function value overflows, a range error occurs, ±HUGE_VAL_D32,
±HUGE_VAL_D64, and ±HUGE_VAL_D128 (with the same sign as x) is returned respectively as
appropriate for the returned type of the function.

If x or y is NaN, a NaN is returned.

If x != y and the correct subroutine value is subnormal, zero, or underflow, a range error occurs and either
the correct function value (if representable) or a value of 0.0 is returned.

Errors
If the value of the x parameter is finite and thus the correct function value overflows, a range error occurs
and the ±HUGE_VAL_D32, ±HUGE_VAL_D64, and ±HUGE_VAL_D128 (with the same sign as the x
parameter) is returned respectively according to the returned type of the function.

If the value of the x parameter is not equal to that of the y parameter, and the correct subroutine value is
subnormal, zero, or underflow, a range error occurs and either the correct function value (if representable)
or a value of 0.0 is returned.

Related Information
The “feclearexcept Subroutine” on page 267 and the “fetestexcept Subroutine” on page 275.

newpass Subroutine

Purpose
Generates a new password for a user.

Library
Security Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 905

Syntax
#include <usersec.h>
#include <userpw.h>

char *newpass(Password)
struct userpw *Password;

Description

Note: This subroutine has been depreciated and its use is not recommended. The “chpass Subroutine” on
page 155 should be used in its place.

The newpass subroutine generates a new password for the user specified by the Password parameter.
This subroutine displays a dialogue to enter and confirm the user’s new password.

Passwords can contain almost any legal value for a character but cannot contain (National Language
Support (NLS) code points. Passwords cannot have more than the value specified by MAX_PASS.

If a password is successfully generated, a pointer to a buffer containing the new password is returned and
the last update time is reset.

Note: The newpass subroutine is not safe in a multithreaded environment. To use newpass in a
threaded application, the application must keep the integrity of each thread.

Parameters

Password Specifies a user password structure. This structure is defined in the userpw.h file and contains the
following members:

upw_name
A pointer to a character buffer containing the user name.

upw_passwd
A pointer to a character buffer containing the current password.

upw_lastupdate
The time the password was last changed, in seconds since the epoch.

upw_flags
A bit mask containing 0 or more of the following values:

PW_ADMIN
This bit indicates that password information for this user may only be changed by
the root user.

PW_ADMCHG
This bit indicates that the password is being changed by root and the password will
have to be changed upon the next successful running of the login or su
commands to this account.

Security

Policy: Authentication To change a password, the invoker must be properly authenticated.

906 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: Programs that invoke the newpass subroutine should be written to conform to the authentication
rules enforced by newpass. The PW_ADMCHG flag should always be explicitly cleared unless the
invoker of the command is an administrator.

Return Values
If a new password is successfully generated, a pointer to the new encrypted password is returned. If an
error occurs, a null pointer is returned and the errno global variable is set to indicate the error.

Error Codes
The newpass subroutine fails if one or more of the following are true:

EINVAL The structure passed to the newpass subroutine is invalid.
ESAD Security authentication is denied for the invoker.
EPERM The user is unable to change the password of a user with the PW_ADMCHG bit set, and the real user ID

of the process is not the root user.
ENOENT The user is not properly defined in the database.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The “chpass Subroutine” on page 155, getpass (“getpass Subroutine” on page 404) subroutine,
getuserpw (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page 470) subroutine.

The pwdadm command.

newpassx Subroutine

Purpose
Generates a new password for a user (without a name length limit).

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
#include <userpw.h>

char *newpassx (Password)
struct userpwx *Password;

Description

Note: The newpassx subroutine has been obsoleted by the more current chpassx subroutine. Use the
chpassx subroutine instead.

The newpassx subroutine generates a new password for the user specified by the Password parameter.
The new password is then checked to ensure that it meets the password rules on the system unless the
user is exempted from these restrictions. Users must have root user authority to invoke this subroutine.
The password rules are defined in the /etc/security/user file or the administrative domain for the user and
are described in both the user file and the passwd command.

Base Operating System (BOS) Runtime Services (A-P) 907

Passwords can contain almost any legal value for a character but cannot contain National Language
Support (NLS) code points. Passwords cannot have more characters than the value specified by
PASS_MAX.

The newpassx subroutine authenticates the user prior to returning the new password. If the
PW_ADMCHG flag is set in the upw_flags member of the Password parameter, the supplied password is
checked against the calling user’s password. This is done to authenticate the user corresponding to the
real user ID of the process instead of the user specified by the upw_name member of the Password
parameter structure.

If a password is successfully generated, a pointer to a buffer containing the new password is returned and
the last update time is set to the current system time. The password value in the /etc/security/passwd file
or user’s administrative domain is not modified.

Note: The newpassx subroutine is not safe in a multithreaded environment. To use newpassx in a
threaded application, the application must keep the integrity of each thread.

Parameters

Password Specifies a user password structure.

The fields in a userpwx structure are defined in the userpw.h file, and they include the following
members:

upw_name Specifies the user’s name.
upw_passwd Specifies the user’s encrypted password.
upw_lastupdate Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, 1 January

1970), when the password was last updated.
upw_flags Specifies attributes of the password. This member is a bit mask of one or more of

the following values, defined in the userpw.h file:

PW_NOCHECK
Specifies that new passwords need not meet password restrictions in
effect for the system.

PW_ADMCHG
Specifies that the password was last set by an administrator and must
be changed at the next successful use of the login or su command.

PW_ADMIN
Specifies that password information for this user can only be changed by
the root user.

upw_authdb Specifies the administrative domain containing the authentication data.

Security

Policy: Authentication To change a password, the invoker must be properly authenticated.

Note: Programs that invoke the newpassx subroutine should be written to conform to the authentication
rules enforced by newpassx. The PW_ADMCHG flag should always be explicitly cleared unless
the invoker of the command is an administrator.

Return Values
If a new password is successfully generated, a pointer to the new encrypted password is returned. If an
error occurs, a null pointer is returned and the errno global variable is set to indicate the error.

908 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The newpassx subroutine fails if one or more of the following is true:

EINVAL The structure passed to the newpassx subroutine is invalid.
ENOENT The user is not properly defined in the database.
EPERM The user is unable to change the password of a user with the PW_ADMCHG bit set,

and the real user ID of the process is not the root user.
ESAD Security authentication is denied for the invoker.

Related Information
The “getpass Subroutine” on page 404, “getuserpwx Subroutine” on page 472.

The login Command, passwd Command, pwdadm Command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

nftw or nftw64 Subroutine

Purpose
Walks a file tree.

Library
Standard C Library (libc.a)

Syntax
#include <ftw.h>

int nftw (Path, Function, Depth, Flags)
const char *Path;
int *(*Function) ();
int Depth;
int Flags;

int nftw64(Path,Function,Depth)
const char *Path;
int *(*Function) ();
int Depth;
int Flags;

Description
The nftw and nftw64 subroutines recursively descend the directory hierarchy rooted in the Path
parameter. The nftw and nftw64 subroutines have a similar effect to ftw and ftw64 except that they take an
additional argument flags, which is a bitwise inclusive-OR of zero or more of the following flags:

FTW_CHDIR If set, the current working directory will change to each directory as files are reported. If clear, the
current working directory will not change.

FTW_DEPTH If set, all files in a directory will be reported before the directory itself. If clear, the directory will be
reported before any files.

FTW_MOUNT If set, symbolic links will not be followed. If clear the links will be followed.
FTW_PHYS If set, symbolic links will not be followed. If clear the links will be followed, and will not report the

same file more than once.

Base Operating System (BOS) Runtime Services (A-P) 909

For each file in the hierarchy, the nftw and nftw64 subroutines call the function specified by the Function
parameter. The nftw subroutine passes a pointer to a null-terminated character string containing the name
of the file, a pointer to a stat structure containing information about the file, an integer and a pointer to an
FTW structure. The nftw64 subroutine passes a pointer to a null-terminated character string containing the
name of the file, a pointer to a stat64 structure containing information about the file, an integer and a
pointer to an FTW structure.

The nftw subroutine uses the stat system call which will fail on files of size larger than 2 Gigabytes. The
nftw64 subroutine must be used if there is a possibility of files of size larger than 2 Gigabytes.

The integer passed to the Function parameter identifies the file type with one of the following values:

FTW_F Regular file
FTW_D Directory
FTW_DNR Directory that cannot be read
FTW_DP The Object is a directory and subdirectories have been visited. (This condition will only occur if

FTW_DEPTH is included in flags).
FTW_SL Symbolic Link
FTW_SLN Symbolic Link that does not name an existin file. (This condition will only occur if the FTW_PHYS flag

is not included in flags).
FTW_NS File for which the stat structure could not be executed successfully

If the integer is FTW_DNR, the files and subdirectories contained in that directory are not processed.

If the integer is FTW_NS, the stat structure contents are meaningless. An example of a file that causes
FTW_NS to be passed to the Function parameter is a file in a directory for which you have read
permission but not execute (search) permission.

The FTW structure pointer passed to the Function parameter contains base which is the offset of the
object’s filename in the pathname passed as the first argument to Function. The value of level indicates
depth relative to the root of the walk.

The nftw and nftw64 subroutines use one file descriptor for each level in the tree. The Depth parameter
specifies the maximum number of file descriptors to be used. In general, the nftw and nftw64 run faster of
the value of the Depth parameter is at least as large as the number of levels in the tree. However, the
value of the Depth parameter must not be greater than the number of file descriptors currently available for
use. If the value of the Depth parameter is 0 or a negative number, the effect is the same as if it were 1.

Because the nftw and nftw64 subroutines are recursive, it is possible for it to terminate with a memory
fault due to stack overflow when applied to very deep file structures.

The nftw and nftw64 subroutines use the malloc subroutine to allocate dynamic storage during its
operation. If the nftw subroutine is terminated prior to its completion, such as by the longjmp subroutine
being executed by the function specified by the Function parameter or by an interrupt routine, the nftw
subroutine cannot free that storage. The storage remains allocated. A safe way to handle interrupts is to
store the fact that an interrupt has occurred, and arrange to have the function specified by the Function
parameter return a nonzero value the next time it is called.

Parameters

Path Specifies the directory hierarchy to be searched.
Function User supplied function that is called for each file encountered.
Depth Specifies the maximum number of file descriptors to be used. Depth cannot be greater than

OPEN_MAX which is described in the sys/limits.h header file.

910 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
If the tree is exhausted, the nftw and nftw64 subroutine returns a value of 0. If the subroutine pointed to
by fn returns a nonzero value, nftw and nftw64 stops its tree traversal and returns whatever value was
returned by the subroutine pointed to by fn. If the nftw and nftw64 subroutine detects an error, it returns a
-1 and sets the errno global variable to indicate the error.

Error Codes
If the nftw or nftw64 subroutines detect an error, a value of -1 is returned and the errno global variable is
set to indicate the error.

The nftw and nftw64 subroutine are unsuccessful if:

EACCES Search permission is denied for any component of the Path parameter or read permission is
denied for Path.

ENAMETOOLONG The length of the path exceeds PATH_MAX while _POSIX_NO_TRUNC is in effect.
ENOENT The Path parameter points to the name of a file that does not exist or points to an empty

string.
ENOTDIR A component of the Path parameter is not a directory.

The nftw subroutine is unsuccessful if:

EOVERFLOW A file in Path is of a size larger than 2 Gigabytes.

Related Information
The stat or malloc (“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or
posix_memalign Subroutine” on page 782) subroutine.

The ftw (“ftw or ftw64 Subroutine” on page 326) subroutine.

nl_langinfo Subroutine

Purpose
Returns information on the language or cultural area in a program’s locale.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types.h>
#include <langinfo.h>

char *nl_langinfo (Item)
nl_item Item;

Description
The nl_langinfo subroutine returns a pointer to a string containing information relevant to the particular
language or cultural area defined in the program’s locale and corresponding to the Item parameter. The
active language or cultural area is determined by the default value of the environment variables or by the
most recent call to the setlocale subroutine. If the setlocale subroutine has not been called in the
program, then the default C locale values will be returned from nl_langinfo.

Base Operating System (BOS) Runtime Services (A-P) 911

Values for the Item parameter are defined in the langinfo.h file.

The following table summarizes the categories for which nl_langinfo() returns information, the values the
Item parameter can take, and descriptions of the returned strings. In the table, radix character refers to the
character that separates whole and fractional numeric or monetary quantities. For example, a period (.) is
used as the radix character in the U.S., and a comma (,) is used as the radix character in France.

Category Value of item Returned Result

LC_MONETARY CRNCYSTR Currency symbol and its position.

LC_NUMERIC RADIXCHAR Radix character.

LC_NUMERIC THOUSEP Separator for the thousands.

LC_MESSAGES YESSTR Affirmative response for yes/no
queries.

LC_MESSAGES NOSTR Negative response for yes/no queries.

LC_TIME D_T_FMT String for formatting date and time.

LC_TIME D_FMT String for formatting date.

LC_TIME T_FMT String for formatting time.

LC_TIME AM_STR Antemeridian affix.

LC_TIME PM_STR Postmeridian affix.

LC_TIME DAY_1 through DAY_7 Name of the first day of the week to
the seventh day of the week.

LC_TIME ABDAY_1 through ABDAY-7 Abbreviated name of the first day of
the week to the seventh day of the
week.

LC_TIME MON_1 through MON_12 Name of the first month of the year to
the twelfth month of the year.

LC_TIME ABMON_1 through ABMON_12 Abbreviated name of the first month
of the year to the twelfth month.

LC_CTYPE CODESET Code set currently in use in the
program.

Note: The information returned by the nl_langinfo subroutine is located in a static buffer. The contents of
this buffer are overwritten in subsequent calls to the nl_langinfo subroutine. Therefore, you should
save the returned information.

Parameter

Item Information needed from locale.

Return Values
In a locale where language information data is not defined, the nl_langinfo subroutine returns a pointer to
the corresponding string in the C locale. In all locales, the nl_langinfo subroutine returns a pointer to an
empty string if the Item parameter contains an invalid setting.

The nl_langinfo subroutine returns a pointer to a static area. Subsequent calls to the nl_langinfo
subroutine overwrite the results of a previous call.

912 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The localeconv (“localeconv Subroutine” on page 738) subroutine, rpmatch subroutine, setlocale
subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview and Setting the Locale in AIX 5L Version 5.3 National Language
Support Guide and Reference.

nlist, nlist64 Subroutine

Purpose
Gets entries from a name list.

Library
Standard C Library (libc.a)

Berkeley Compatibility Library [libbsd.a] for the nlist subroutine, 32-bit programs, and POWER-based
platforms

Syntax
#include <nlist.h>

int nlist (FileName, NL)
const char *FileName;
struct nlist *NL;

int nlist64 (FileName, NL64)
const char *FileName;
struct nlist64 *NL64;

Description
The nlist and nlist64 subroutines examine the name list in the object file named by the FileName
parameter. The subroutine selectively reads a list of values and stores them into an array of nlist or
nlist64 structures pointed to by the NL or NL64 parameter, respectively.

The name list specified by the NL or NL64 parameter consists of an array of nlist or nlist64 structures
containing symbol names and other information. The list is terminated with an element that has a null
pointer or a pointer to a null string in the n_name structure member. Each symbol name is looked up in
the name list of the file. If the name is found, the value of the symbol is stored in the structure, and the
other fields are filled in. If the program was not compiled with the -g flag, the n_type field may be 0.

If multiple instances of a symbol are found, the information about the last instance is stored. If a symbol is
not found, all structure fields except the n_name field are set to 0. Only global symbols will be found.

The nlist and nlist64 subroutines run in both 32-bit and 64-bit programs that read the name list of both
32-bit and 64-bit object files, with one exception: in 32-bit programs, nlist will return -1 if the specified file
is a 64-bit object file.

The nlist and nlist64 subroutines are used to read the name list from XCOFF object files.

Base Operating System (BOS) Runtime Services (A-P) 913

The nlist64 subroutine can be used to examine the system name list kept in the kernel, by specifying
/unix as the FileName parameter. The knlist subroutine can also be used to look up symbols in the
current kernel namespace.

Note: The nlist.h header file has a #define field for n_name. If a source file includes both nlist.h and
netdb.h, there will be a conflict with the use of n_name. If netdb.h is included after nlist.h,
n_name will be undefined. To correct this problem, _n._n_name should be used instead. If netdb.h
is included before nlist.h, and you need to refer to the n_name field of struct netent, you should
undefine n_name by entering:
#undef n_name

The nlist subroutine in libbsd.a is supported only in 32-bit mode.

Parameters

FileName Specifies the name of the file containing a name list.
NL Points to the array of nlist structures.
NL64 Points to the array of nlist64 structures.

Return Values
Upon successful completion, a 0 is returned, even if some symbols could not be found. In the libbsd.a
version of nlist, the number of symbols not found in the object file’s name list is returned. If the file cannot
be found or if it is not a valid name list, a value of -1 is returned.

Compatibility Interfaces
To obtain the BSD-compatible version of the subroutine 32-bit applications, compile with the libbsd.a
library by using the -lbsd flag.

Related Information
The knlist subroutine.

The a.out file in XCOFF format.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

ns_addr Subroutine

Purpose
Address conversion routines.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <netns/ns.h>

struct ns_addr(char *cp)

914 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The ns_addr subroutine interprets character strings representing addresses, returning binary information
suitable for use in system calls.

The ns_addr subroutine separates an address into one to three fields using a single delimiter and
examines each field for byte separators (colon or period). The delimiters are:

. period
: colon
pound sign.

If byte separators are found, each subfield separated is taken to be a small hexadecimal number, and the
entirety is taken as a network-byte-ordered quantity to be zero extended in the high-networked-order
bytes. Next, the field is inspected for hyphens, which would indicate the field is a number in decimal
notation with hyphens separating the millenia. The field is assumed to be a number, interpreted as
hexadecimal, if a leading 0x (as in C), a trailing H, (as in Mesa), or any super-octal digits are present. The
field is interpreted as octal if a leading 0 is present and there are no super-octal digits. Otherwise, the field
is converted as a decimal number.

Parameter

cp Returns a pointer to the address of a ns_addr structure.

ns_ntoa Subroutine

Purpose
Address conversion routines.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <netns/ns.h>

char *ns_ntoa (
struct ns_addr ns)

Description
The ns_ntoa subroutine takes addresses and returns ASCII strings representing the address in a notation
in common use in the Xerox Development Environment:
<network number> <host number> <port number>

Trailing zero fields are suppressed, and each number is printed in hexadecimal, in a format suitable for
input to the ns_addr subroutine. Any fields lacking super-decimal digits will have a trailing H appended.

Note: The string returned by ns_ntoa resides in static memory.

Parameter

ns Returns a pointer to a string.

Base Operating System (BOS) Runtime Services (A-P) 915

odm_add_obj Subroutine

Purpose
Adds a new object into an object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_add_obj (ClassSymbol, DataStructure)
CLASS_SYMBOL ClassSymbol;
struct ClassName *DataStructure;

Description
The odm_add_obj subroutine takes as input the class symbol that identifies both the object class to add
and a pointer to the data structure containing the object to be added.

The odm_add_obj subroutine opens and closes the object class around the subroutine if the object class
was not previously opened. If the object class was previously opened, the subroutine leaves the object
class open when it returns.

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class
subroutine. If the odm_open_class subroutine has not been called, then this
identifier is the ClassName_CLASS structure that was created by the
odmcreate command.

DataStructure Specifies a pointer to an instance of the C language structure corresponding to
the object class referenced by the ClassSymbol parameter. The structure is
declared in the .h file created by the odmcreate command and has the same
name as the object class.

Return Values
Upon successful completion, an identifier for the object that was added is returned. If the odm_add_obj
subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_add_obj subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_PARAMS

v ODMI_READ_ONLY

v ODMI_TOOMANYCLASSES

916 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_create_class (“odm_create_class Subroutine” on page 919) subroutine, odm_open_class
(“odm_open_class or odm_open_class_rdonly Subroutine” on page 930) subroutine, odm_rm_obj
(“odm_rm_obj Subroutine” on page 933) subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_change_obj Subroutine

Purpose
Changes an object in the object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_change_obj (ClassSymbol, DataStructure)
CLASS_SYMBOL ClassSymbol;
struct ClassName *DataStructure;

Description
The odm_change_obj subroutine takes as input the class symbol that identifies both the object class to
change and a pointer to the data structure containing the object to be changed. The application program
must first retrieve the object with an odm_get_obj subroutine call, change the data values in the returned
structure, and then pass that structure to the odm_change_obj subroutine.

The odm_change_obj subroutine opens and closes the object class around the change if the object class
was not previously opened. If the object class was previously opened, then the subroutine leaves the
object class open when it returns.

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine. If the
odm_open_class subroutine has not been called, then this identifier is the
ClassName_CLASS structure that is created by the odmcreate command.

DataStructure Specifies a pointer to an instance of the C language structure corresponding to the object
class referenced by the ClassSymbol parameter. The structure is declared in the .h file
created by the odmcreate command and has the same name as the object class.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_change_obj subroutine fails, a value of
-1 is returned and the odmerrno variable is set to an error code.

Base Operating System (BOS) Runtime Services (A-P) 917

Error Codes
Failure of the odm_change_obj subroutine sets the odmerrno variable to one of the following error
codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_NO_OBJECT

v ODMI_OPEN_ERR

v ODMI_PARAMS

v ODMI_READ_ONLY

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_get_obj (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 925) subroutine.

The odmchange command, odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_close_class Subroutine

Purpose
Closes an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_close_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_close_class subroutine closes the specified object class.

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine. If the
odm_open_class subroutine has not been called, then this identifier is the
ClassName_CLASS structure that was created by the odmcreate command.

918 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, a value of 0 is returned. If the odm_close_class subroutine is unsuccessful,
a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_close_class subroutine sets the odmerrno variable to one of the following error
codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_open_class (“odm_open_class or odm_open_class_rdonly Subroutine” on page 930)
subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_create_class Subroutine

Purpose
Creates an object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_create_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_create_class subroutine creates an object class. However, the .c and .h files generated by the
odmcreate command are required to be part of the application.

Parameters

ClassSymbol Specifies a class symbol of the form ClassName_CLASS, which is declared in the .h file
created by the odmcreate command.

Base Operating System (BOS) Runtime Services (A-P) 919

Return Values
Upon successful completion, a value of 0 is returned. If the odm_create_class subroutine is unsuccessful,
a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_create_class subroutine sets the odmerrno variable to one of the following error
codes:

v ODMI_CLASS_EXISTS

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_mount_class (“odm_mount_class Subroutine” on page 929) subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_err_msg Subroutine

Purpose
Returns an error message string.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_err_msg (ODMErrno, MessageString)
long ODMErrno;
char **MessageString;

Description
The odm_err_msg subroutine takes as input an ODMErrno parameter and an address in which to put the
string pointer of the message string that corresponds to the input ODM error number. If no corresponding
message is found for the input error number, a null string is returned and the subroutine is unsuccessful.

Parameters

ODMErrno Specifies the error code for which the message string is retrieved.

920 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

MessageString Specifies the address of a string pointer that will point to the returned error message string.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_err_msg subroutine is unsuccessful, a
value of -1 is returned, and the MessageString value returned is a null string.

Examples
The following example shows the use of the odm_err_msg subroutine:
#include <odmi.h>
char *error_message;

...
/*--*/
/*ODMErrno was returned from a previous ODM subroutine call.*/
/*--*/
returnstatus = odm_err_msg (odmerrno, &error_message);
if (returnstatus < 0)

printf ("Retrieval of error message failed\n");
else

printf (error_message);

Related Information
Appendix B, “ODM Error Codes,” on page 1357 in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 1 describes error codes.

See Appendix B, Appendix B, “ODM Error Codes,” on page 1357 for explanations of the ODM error codes.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_free_list Subroutine

Purpose
Frees memory previously allocated for an odm_get_list subroutine.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_free_list (ReturnData, DataInfo)
struct ClassName *ReturnData;
struct listinfo *DataInfo;

Description
The odm_free_list subroutine recursively frees up a tree of memory object lists that were allocated for an
odm_get_list subroutine.

Parameters

ReturnData Points to the array of ClassName structures returned from the odm_get_list subroutine.

Base Operating System (BOS) Runtime Services (A-P) 921

DataInfo Points to the listinfo structure that was returned from the odm_get_list subroutine. The listinfo
structure has the following form:

struct listinfo {
char ClassName[16]; /* class name for query */
char criteria[256]; /* query criteria */
int num; /* number of matches found */
int valid; /* for ODM use */
CLASS_SYMBOL class; /* symbol for queried class */
};

Return Values
Upon successful completion, a value of 0 is returned. If the odm_free_list subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_free_list subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_MAGICNO_ERR

v ODMI_PARAMS

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_get_list (“odm_get_list Subroutine” on page 923) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_get_by_id Subroutine

Purpose
Retrieves an object from an ODM object class by its ID.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

struct ClassName *odm_get_by_id(ClassSymbol, ObjectID, ReturnData)
CLASS_SYMBOL ClassSymbol;
int ObjectID;
struct ClassName *ReturnData;

Description
The odm_get_by_id subroutine retrieves an object from an object class. The object to be retrieved is
specified by passing its ObjectID parameter from its corresponding ClassName structure.

Parameters

ClassSymbol Specifies a class symbol identifier of the form ClassName_CLASS, which is declared in the .h
file created by the odmcreate command.

922 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ObjectID Specifies an identifier retrieved from the corresponding ClassName structure of the object
class.

ReturnData Specifies a pointer to an instance of the C language structure corresponding to the object class
referenced by the ClassSymbol parameter. The structure is declared in the .h file created by
the odmcreate command and has the same name as the object class.

Return Values
Upon successful completion, a pointer to the ClassName structure containing the object is returned. If the
odm_get_by_id subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to
an error code.

Error Codes
Failure of the odm_get_by_id subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_NO_OBJECT

v ODMI_OPEN_ERR

v ODMI_PARAMS

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_get_obj (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 925),
odm_get_first (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 925), or
odm_get_next (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 925) subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_get_list Subroutine

Purpose
Retrieves all objects in an object class that match the specified criteria.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

Base Operating System (BOS) Runtime Services (A-P) 923

struct ClassName *odm_get_list (ClassSymbol, Criteria, ListInfo, MaxReturn, LinkDepth)
struct ClassName_CLASS ClassSymbol;
char * Criteria;
struct listinfo * ListInfo;
int MaxReturn, LinkDepth;

Description
The odm_get_list subroutine takes an object class and criteria as input, and returns a list of objects that
satisfy the input criteria. The subroutine opens and closes the object class around the subroutine if the
object class was not previously opened. If the object class was previously opened, the subroutine leaves
the object class open when it returns.

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine. If the
odm_open_class subroutine has not been called, then this is the ClassName_CLASS
structure created by the odmcreate command.

Criteria Specifies a string that contains the qualifying criteria for selecting the objects to remove.
ListInfo Specifies a structure containing information about the retrieval of the objects. The listinfo

structure has the following form:

struct listinfo {
char ClassName[16]; /* class name used for query */
char criteria[256]; /* query criteria */
int num; /* number of matches found */
int valid; /* for ODM use */
CLASS_SYMBOL class; /* symbol for queried class */
};

MaxReturn Specifies the expected number of objects to be returned. This is used to control the increments
in which storage for structures is allocated, to reduce the realloc subroutine copy overhead.

LinkDepth Specifies the number of levels to recurse for objects with ODM_LINK descriptors. A setting of 1
indicates only the top level is retrieved; 2 indicates ODM_LINKs will be followed from the
top/first level only: 3 indicates ODM_LINKs will be followed at the first and second level, and so
on.

Return Values
Upon successful completion, a pointer to an array of C language structures containing the objects is
returned. This structure matches that described in the .h file that is returned from the odmcreate
command. If no match is found, null is returned. If the odm_get_list subroutine fails, a value of -1 is
returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_get_list subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_BAD_CRIT

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INTERNAL_ERR

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_LINK_NOT_FOUND

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_OPEN_ERR

924 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v ODMI_PARAMS

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_get_by_id (“odm_get_by_id Subroutine” on page 922) subroutine, odm_get_obj (“odm_get_obj,
odm_get_first, or odm_get_next Subroutine”) subroutine, odm_open_class (“odm_open_class or
odm_open_class_rdonly Subroutine” on page 930) subroutine, or odm_free_list (“odm_free_list
Subroutine” on page 921) subroutine.

The odmcreate command, odmget command.

For information on qualifying criteria, see ″Understanding ODM Object Searches″ in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_get_obj, odm_get_first, or odm_get_next Subroutine

Purpose
Retrieves objects, one object at a time, from an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

struct ClassName *odm_get_obj (ClassSymbol, Criteria, ReturnData, FIRST_NEXT)

struct ClassName *odm_get_first (ClassSymbol, Criteria, ReturnData)

struct ClassName *odm_get_next (ClassSymbol, ReturnData)

CLASS_SYMBOL ClassSymbol;
char *Criteria;
struct ClassName *ReturnData;
int FIRST_NEXT;

Description
The odm_get_obj, odm_get_first, and odm_get_next subroutines retrieve objects from ODM object
classes and return the objects into C language structures defined by the .h file produced by the
odmcreate command.

The odm_get_obj, odm_get_first, and odm_get_next subroutines open and close the specified object
class if the object class was not previously opened. If the object class was previously opened, the
subroutines leave the object class open upon return.

Base Operating System (BOS) Runtime Services (A-P) 925

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine. If the
odm_open_class subroutine has not been called, then this identifier is the
ClassName_CLASS structure that was created by the odmcreate command.

Criteria Specifies the string that contains the qualifying criteria for retrieval of the objects.
ReturnData Specifies the pointer to the data structure in the .h file created by the odmcreate command.

The name of the structure in the .h file is ClassName. If the ReturnData parameter is null
(ReturnData == null), space is allocated for the parameter and the calling application is
responsible for freeing this space at a later time.

If variable length character strings (vchar) are returned, they are referenced by pointers in the
ReturnData structure. Calling applications must free each vchar between each call to the
odm_get subroutines; otherwise storage will be lost.

FIRST_NEXT Specifies whether to get the first object that matches the criteria or the next object. Valid values
are:

ODM_FIRST
Retrieve the first object that matches the search criteria.

ODM_NEXT
Retrieve the next object that matches the search criteria. The Criteria parameter is
ignored if the FIRST_NEXT parameter is set to ODM_NEXT.

Return Values
Upon successful completion, a pointer to the retrieved object is returned. If no match is found, null is
returned. If an odm_get_obj, odm_get_first, or odm_get_next subroutine is unsuccessful, a value of -1
is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_get_obj, odm_get_first or odm_get_next subroutine sets the odmerrno variable to
one of the following error codes:

v ODMI_BAD_CRIT

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INTERNAL_ERR

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_get_list (“odm_get_list Subroutine” on page 923) subroutine, odm_open_class
(“odm_open_class or odm_open_class_rdonly Subroutine” on page 930) subroutine, odm_rm_by_id
(“odm_rm_by_id Subroutine” on page 931) subroutine, odm_rm_obj (“odm_rm_obj Subroutine” on page
933) subroutine.

The odmcreate command, odmget command.

926 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

For more information about qualifying criteria, see ″Understanding ODM Object Searches″ in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_initialize Subroutine

Purpose
Prepares ODM for use by an application.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_initialize()

Description
The odm_initialize subroutine starts ODM for use with an application program.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_initialize subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_initialize subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_INVALID_PATH

v ODMI_MALLOC_ERR

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_terminate (“odm_terminate Subroutine” on page 937) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_lock Subroutine

Purpose
Puts an exclusive lock on the requested path name.

Library
Object Data Manager Library (libodm.a)

Base Operating System (BOS) Runtime Services (A-P) 927

Syntax
#include <odmi.h>

int odm_lock (LockPath, TimeOut)
char *LockPath;
int TimeOut;

Description
The odm_lock subroutine is used by an application to prevent other applications or methods from
accessing an object class or group of object classes. A lock on a directory path name does not prevent
another application from acquiring a lock on a subdirectory or object class within that directory.

Note: Coordination of locking is the responsibility of the application accessing the object classes.

The odm_lock subroutine returns a lock identifier that is used to call the odm_unlock subroutine.

Parameters

LockPath Specifies a string containing the path name in the file system in which to locate object classes or the
path name to an object class to lock.

TimeOut Specifies the amount of time, in seconds, to wait if another application or method holds a lock on the
requested object class or classes. The possible values for the TimeOut parameter are:

TimeOut = ODM_NOWAIT
The odm_lock subroutine is unsuccessful if the lock cannot be granted immediately.

TimeOut = Integer
The odm_lock subroutine waits the specified amount of seconds to retry an unsuccessful
lock request.

TimeOut = ODM_WAIT
The odm_lock subroutine waits until the locked path name is freed from its current lock and
then locks it.

Return Values
Upon successful completion, a lock identifier is returned. If the odm_lock subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_lock subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_BAD_LOCK

v ODMI_BAD_TIMEOUT

v ODMI_BAD_TOKEN

v ODMI_LOCK_BLOCKED

v ODMI_LOCK_ENV

v ODMI_MALLOC_ERR

v ODMI_UNLOCK

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_unlock (“odm_unlock Subroutine” on page 938) subroutine.

928 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_mount_class Subroutine

Purpose
Retrieves the class symbol structure for the specified object class name.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

CLASS_SYMBOL odm_mount_class (ClassName)
char *ClassName;

Description
The odm_mount_class subroutine retrieves the class symbol structure for a specified object class. The
subroutine can be called by applications (for example, the ODM commands) that have no previous
knowledge of the structure of an object class before trying to access that class. The odm_mount_class
subroutine determines the class description from the object class header information and creates a
CLASS_SYMBOL object class that is returned to the caller.

The object class is not opened by the odm_mount_class subroutine. Calling the subroutine subsequent
times for an object class that is already open or mounted returns the same CLASS_SYMBOL object class.

Mounting a class that links to another object class recursively mounts to the linked class. However, if the
recursive mount is unsuccessful, the original odm_mount_class subroutine does not fail; the
CLASS_SYMBOL object class is set up with a null link.

Parameters

ClassName Specifies the name of an object class from which to retrieve the class description.

Return Values
Upon successful completion, a CLASS_SYMBOL is returned. If the odm_mount_class subroutine is
unsuccessful, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_mount_class subroutine sets the odmerrno variable to one of the following error
codes:

v ODMI_BAD_CLASSNAME

v ODMI_BAD_CLXNNAME

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_CLXNMAGICNO_ERR

v ODMI_INVALID_CLASS

v ODMI_INVALID_CLXN

Base Operating System (BOS) Runtime Services (A-P) 929

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_OPEN_ERR

v ODMI_PARAMS

v ODMI_TOOMANYCLASSES

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_create_class (“odm_create_class Subroutine” on page 919) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_open_class or odm_open_class_rdonly Subroutine

Purpose
Opens an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

CLASS_SYMBOL odm_open_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

CLASS_SYMBOL odm_open_class_rdonly (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_open_class subroutine can be called to open an object class. Most subroutines implicitly open
a class if the class is not already open. However, an application may find it useful to perform an explicit
open if, for example, several operations must be done on one object class before closing the class. The
odm_open_class_rdonly subroutine opens an odm database in read-only mode.

Parameter

ClassSymbol Specifies a class symbol of the form ClassName_CLASS that is declared in the .h file created
by the odmcreate command.

Return Values
Upon successful completion, a ClassSymbol parameter for the object class is returned. If the
odm_open_class or odm_open_class_rdonly subroutine is unsuccessful, a value of -1 is returned and
the odmerrno variable is set to an error code.

930 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
Failure of the odm_open_class or odm_open_class_rdonly subroutine sets the odmerrno variable to
one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_close_class (“odm_close_class Subroutine” on page 918) subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_rm_by_id Subroutine

Purpose
Removes objects specified by their IDs from an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_rm_by_id(ClassSymbol, ObjectID)
CLASS_SYMBOL ClassSymbol;
int ObjectID;

Description
The odm_rm_by_id subroutine is called to delete an object from an object class. The object to be deleted
is specified by passing its object ID from its corresponding ClassName structure.

Parameters

ClassSymbol Identifies a class symbol returned from an odm_open_class subroutine. If the
odm_open_class subroutine has not been called, this is the ClassName_CLASS structure that
was created by the odmcreate command.

ObjectID Identifies the object. This information is retrieved from the corresponding ClassName structure
of the object class.

Base Operating System (BOS) Runtime Services (A-P) 931

Return Values
Upon successful completion, a value of 0 is returned. If the odm_rm_by_id subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_by_id subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_FORK

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_NO_OBJECT

v ODMI_OPEN_ERR

v ODMI_OPEN_PIPE

v ODMI_PARAMS

v ODMI_READ_ONLY

v ODMI_READ_PIPE

v ODMI_TOOMANYCLASSES

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_get_obj (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 925) subroutine,
odm_open_class (“odm_open_class or odm_open_class_rdonly Subroutine” on page 930) subroutine.

The odmdelete command.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_rm_class Subroutine

Purpose
Removes an object class from the file system.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_rm_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

932 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The odm_rm_class subroutine removes an object class from the file system. All objects in the specified
class are deleted.

Parameter

ClassSymbol Identifies a class symbol returned from the odm_open_class subroutine. If the
odm_open_class subroutine has not been called, this is the ClassName_CLASS structure
created by the odmcreate command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_rm_class subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_class subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

v ODMI_UNLINKCLASS_ERR

v ODMI_UNLINKCLXN_ERR

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_open_class (“odm_open_class or odm_open_class_rdonly Subroutine” on page 930)
subroutine.

The odmcreate command, odmdrop command.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_rm_obj Subroutine

Purpose
Removes objects from an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

Base Operating System (BOS) Runtime Services (A-P) 933

int odm_rm_obj (ClassSymbol, Criteria)
CLASS_SYMBOL ClassSymbol;
char *Criteria;

Description
The odm_rm_obj subroutine deletes objects from an object class.

Parameters

ClassSymbol Identifies a class symbol returned from an odm_open_class subroutine. If the
odm_open_class subroutine has not been called, this is the ClassName_CLASS structure that
was created by the odmcreate command.

Criteria Contains as a string the qualifying criteria for selecting the objects to remove.

Return Values
Upon successful completion, the number of objects deleted is returned. If the odm_rm_obj subroutine is
unsuccessful, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_obj subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_BAD_CRIT

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_FORK

v ODMI_INTERNAL_ERR

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_OPEN_ERR

v ODMI_OPEN_PIPE

v ODMI_PARAMS

v ODMI_READ_ONLY

v ODMI_READ_PIPE

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_add_obj (“odm_add_obj Subroutine” on page 916) subroutine, odm_open_class
(“odm_open_class or odm_open_class_rdonly Subroutine” on page 930) subroutine.

The odmcreate command, odmdelete command.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

For information on qualifying criteria, see ″Understanding ODM Object Searches″ in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

934 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

odm_run_method Subroutine

Purpose
Runs a specified method.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_run_method(MethodName, MethodParameters, NewStdOut, NewStdError)
char * MethodName, * MethodParameters;
char ** NewStdOut, ** NewStdError;

Description
The odm_run_method subroutine takes as input the name of the method to run, any parameters for the
method, and addresses of locations for the odm_run_method subroutine to store pointers to the stdout
(standard output) and stderr (standard error output) buffers. The application uses the pointers to access
the stdout and stderr information generated by the method.

Parameters

MethodName Indicates the method to execute. The method can already be known by the
applications, or can be retrieved as part of an odm_get_obj subroutine call.

MethodParameters Specifies a list of parameters for the specified method.
NewStdOut Specifies the address of a pointer to the memory where the standard output of the

method is stored. If the NewStdOut parameter points to a null value (*NewStdOut ==
NULL), standard output is not captured.

NewStdError Specifies the address of a pointer to the memory where the standard error output of
the method will be stored. If the NewStdError parameter points to a null value
(*NewStdError == NULL), standard error output is not captured.

Return Values
If successful, the odm_run_method subroutine returns the exit status and out_ptr and err_ptr should
contain the relevant information. If unsuccessful, the odm_run_method subroutine will return -1 and set
the odmerrno variable to an error code.

Note: AIX methods usually return the exit code defined in the cf.h file if the methods exit on error.

Error Codes
Failure of the odm_run_method subroutine sets the odmerrno variable to one of the following error
codes:

v ODMI_FORK

v ODMI_MALLOC_ERR

v ODMI_OPEN_PIPE

v ODMI_PARAMS

v ODMI_READ_PIPE

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Base Operating System (BOS) Runtime Services (A-P) 935

Related Information
The odm_get_obj (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 925) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_set_path Subroutine

Purpose
Sets the default path for locating object classes.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

char *odm_set_path (NewPath)
char *NewPath;

Description
The odm_set_path subroutine is used to set the default path for locating object classes. The subroutine
allocates memory, sets the default path, and returns the pointer to memory. Once the operation is
complete, the calling application should free the pointer using the free (“malloc, free, realloc, calloc,
mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine” on page 782) subroutine.

Parameters

NewPath Contains, as a string, the path name in the file system in which to locate object classes.

Return Values
Upon successful completion, a string pointing to the previous default path is returned. If the
odm_set_path subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to
an error code.

Error Codes
Failure of the odm_set_path subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_INVALID_PATH

v ODMI_MALLOC_ERR

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The free (“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign
Subroutine” on page 782) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

936 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

odm_set_perms Subroutine

Purpose
Sets the default permissions for an ODM object class at creation time.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_set_perms (NewPermissions)
int NewPermissions;

Description
The odm_set_perms subroutine defines the default permissions to assign to object classes at creation.

Parameters

NewPermissions Specifies the new default permissions parameter as an integer.

Return Values
Upon successful completion, the current default permissions are returned. If the odm_set_perms
subroutine is unsuccessful, a value of -1 is returned.

Related Information
See Appendix B, “ODM Error Codes,” on page 1357 for explanations of the ODM error codes.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_terminate Subroutine

Purpose
Terminates an ODM session.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_terminate ()

Description
The odm_terminate subroutine performs the cleanup necessary to terminate an ODM session. After
running an odm_terminate subroutine, an application must issue an odm_initialize subroutine to resume
ODM operations.

Base Operating System (BOS) Runtime Services (A-P) 937

Return Values
Upon successful completion, a value of 0 is returned. If the odm_terminate subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_terminate subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_LOCK_ID

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

v ODMI_UNLOCK

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_initialize (“odm_initialize Subroutine” on page 927) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

odm_unlock Subroutine

Purpose
Releases a lock put on a path name.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_unlock (LockID)
int LockID;

Description
The odm_unlock subroutine releases a previously granted lock on a path name. This path name can be a
directory containing subdirectories and object classes.

Parameters

LockID Identifies the lock returned from the odm_lock subroutine.

938 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion a value of 0 is returned. If the odm_unlock subroutine is unsuccessful, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_unlock subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_LOCK_ID

v ODMI_UNLOCK

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information
The odm_lock (“odm_lock Subroutine” on page 927) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

open, openx, open64, creat, or creat64 Subroutine

Purpose
Opens a file for reading or writing.

Syntax
#include <fcntl.h>

int open (Path, OFlag [, Mode])
const char *Path;
int OFlag;
mode_t Mode;

int openx (Path, OFlag, Mode, Extension)
const char *Path;
int OFlag;
mode_t Mode;
int Extension;

int creat (Path, Mode)
const char *Path;
mode_t Mode;

Note: The open64 and creat64 subroutines apply to AIX 4.2 and later releases.
int open64 (Path, OFlag [, Mode])
const char *Path;
int OFlag;
mode_t Mode;

int creat64 (Path, Mode)
const char *Path;
mode_t Mode;

Description

Note: The open64 and creat64 subroutines apply to AIX 4.2 and later releases.

Base Operating System (BOS) Runtime Services (A-P) 939

The open, openx, and creat subroutines establish a connection between the file named by the Path
parameter and a file descriptor. The opened file descriptor is used by subsequent I/O subroutines, such as
read and write, to access that file.

The openx subroutine is the same as the open subroutine, with the addition of an Extension parameter,
which is provided for device driver use. The creat subroutine is equivalent to the open subroutine with the
O_WRONLY, O_CREAT, and O_TRUNC flags set.

The returned file descriptor is the lowest file descriptor not previously open for that process. No process
can have more than OPEN_MAX file descriptors open simultaneously.

The file offset, marking the current position within the file, is set to the beginning of the file. The new file
descriptor is set to remain open across exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect
Subroutine” on page 238) subroutines.

The open64 and creat64 subroutines are equivalent to the open and creat subroutines except that the
O_LARGEFILE flag is set in the open file description associated with the returned file descriptor. This flag
allows files larger than OFF_MAX to be accessed. If the caller attempts to open a file larger than
OFF_MAX and O_LARGEFILE is not set, the open will fail and errno will be set to EOVERFLOW.

In the large file enabled programming environment, open is redefined to be open64 and creat is redefined
to be creat64.

Parameters

Path Specifies the file to be opened.

940 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Mode Specifies the read, write, and execute permissions of the file to be created (requested by the
O_CREAT flag). If the file already exists, this parameter is ignored. The Mode parameter is
constructed by logically ORing one or more of the following values, which are defined in the
sys/mode.h file:

S_ISUID
Enables the setuid attribute for an executable file. A process executing this program
acquires the access rights of the owner of the file.

S_ISGID
Enables the setgid attribute for an executable file. A process executing this program
acquires the access rights of the group of the file. Also, enables the group-inheritance
attribute for a directory. Files created in this directory have a group equal to the group of
the directory.

The following attributes apply only to files that are directly executable. They have no meaning when
applied to executable text files such as shell scripts and awk scripts.

S_ISVTX
Enables the link/unlink attribute for a directory. Files cannot be linked to in this directory.
Files can only be unlinked if the requesting process has write permission for the directory
and is either the owner of the file or the directory.

S_ISVTX
Enables the save text attribute for an executable file. The program is not unmapped after
usage.

S_ENFMT
Enables enforcement-mode record locking for a regular file. File locks requested with the
lockf subroutine are enforced.

S_IRUSR
Permits the file’s owner to read it.

S_IWUSR
Permits the file’s owner to write to it.

S_IXUSR
Permits the file’s owner to execute it (or to search the directory).

S_IRGRP
Permits the file’s group to read it.

S_IWGRP
Permits the file’s group to write to it.

S_IXGRP
Permits the file’s group to execute it (or to search the directory).

S_IROTH
Permits others to read the file.

S_IWOTH
Permits others to write to the file.

S_IXOTH
Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod subroutine but not with the
chmod subroutine.

Extension Provides communication with character device drivers that require additional information or return
additional status. Each driver interprets the Extension parameter in a device-dependent way, either
as a value or as a pointer to a communication area. Drivers must apply reasonable defaults when
the Extension parameter value is 0.

OFlag Specifies the type of access, special open processing, the type of update, and the initial state of
the open file. The parameter value is constructed by logically ORing special open processing flags.
These flags are defined in the fcntl.h file and are described in the following flags.

Base Operating System (BOS) Runtime Services (A-P) 941

Flags That Specify Access Type
The following OFlag parameter flag values specify type of access:

O_RDONLY The file is opened for reading only.
O_WRONLY The file is opened for writing only.
O_RDWR The file is opened for both reading and writing.

Note: One of the file access values must be specified. Do not use O_RDONLY, O_WRONLY, or
O_RDWR together. If none is set, none is used, and the results are unpredictable.

Flags That Specify Special Open Processing
The following OFlag parameter flag values specify special open processing:

O_CREAT If the file exists, this flag has no effect, except as noted under the O_EXCL flag. If the file does not
exist, a regular file is created with the following characteristics:

v The owner ID of the file is set to the effective user ID of the process.

v The group ID of the file is set to the group ID of the parent directory if the parent directory has the
SetGroupID attribute (S_ISGID bit) set. Otherwise, the group ID of the file is set to the effective
group ID of the calling process.

v The file permission and attribute bits are set to the value of the Mode parameter, modified as
follows:

– All bits set in the process file mode creation mask are cleared. (The file creation mask is
described in the umask subroutine.)

– The S_ISVTX attribute bit is cleared.
O_EXCL If the O_EXCL and O_CREAT flags are set, the open is unsuccessful if the file exists.

Note: The O_EXCL flag is not fully supported for Network File Systems (NFS). The NFS protocol
does not guarantee the designed function of the O_EXCL flag.

O_NSHARE Assures that no process has this file open and precludes subsequent opens. If the file is on a
physical file system and is already open, this open is unsuccessful and returns immediately unless
the OFlag parameter also specifies the O_DELAY flag. This flag is effective only with physical file
systems.
Note: This flag is not supported by NFS.

O_RSHARE Assures that no process has this file open for writing and precludes subsequent opens for writing.
The calling process can request write access. If the file is on a physical file system and is open for
writing or open with the O_NSHARE flag, this open fails and returns immediately unless the OFlag
parameter also specifies the O_DELAY flag.
Note: This flag is not supported by NFS.

O_DEFER The file is opened for deferred update. Changes to the file are not reflected on permanent storage
until an fsync (“fsync or fsync_range Subroutine” on page 324) subroutine operation is performed. If
no fsync subroutine operation is performed, the changes are discarded when the file is closed.
Note: This flag is not supported by NFS or JFS2, and the flag will be quietly ignored.
Note: This flag causes modified pages to be backed by paging space. Before using this flag make
sure there is sufficient paging space.

O_NOCTTY This flag specifies that the controlling terminal should not be assigned during this open.
O_TRUNC If the file does not exist, this flag has no effect. If the file exists, is a regular file, and is successfully

opened with the O_RDWR flag or the O_WRONLY flag, all of the following apply:

v The length of the file is truncated to 0.

v The owner and group of the file are unchanged.

v The SetUserID attribute of the file mode is cleared.

v The SetUserID attribute of the file is cleared.
O_DIRECT This flag specifies that direct i/o will be used for this file while it is opened.

942 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

O_CIO This flag specifies that concurrent i/o (CIO) will be used for the file while it is opened. Because
implementing concurrent readers and writers utilizes the direct I/O path (with more specific
requirements to improve performance for running database on file system), this flag will override the
O_DIRECT flag if the two options are specified at the same time. Currently, only JFS2 and namefs,
which includes a selected subset of JFS2 files/directories, support CIO. The length of data to be
read/written and the file offset must be page-aligned to be transferred as direct i/o with concurrent
readers and writers.

The O_CIO flag is exclusive. If the file is opened in any other way (for example, using the O_DIO
flag or opening the file normally), the open will fail. If the file is opened using the O_CIO and another
process attempts to open the file another way, the open will fail. The O_CIO flag also prevents the
mmap subroutine and the shmat subroutine access to the file. The mmap subroutine and the shmat
subroutine return EINVAL if they are used on a file that was opened using the O_CIO flag.

O_SNAPSHOT The file being opened contains a JFS2 snapshot. Subsequent read calls using this file descriptor will
read the cooked snapshot rather than the raw snapshot blocks. A snapshot can only have one active
open file descriptor for it.

The open subroutine is unsuccessful if any of the following conditions are true:

v The file supports enforced record locks and another process has locked a portion of the file.

v The file is on a physical file system and is already open with the O_RSHARE flag or the O_NSHARE
flag.

v The file does not allow write access.

v The file is already opened for deferred update.

Flag That Specifies Type of Update
A program can request some control on when updates should be made permanent for a regular file
opened for write access. The following OFlag parameter values specify the type of update performed:

O_SYNC: If set, updates to regular files and writes to block devices are synchronous updates. File update is
performed by the following subroutines:

v fclear

v ftruncate

v open with O_TRUNC

v write

On return from a subroutine that performs a synchronous update (any of the preceding subroutines,
when the O_SYNC flag is set), the program is assured that all data for the file has been written to
permanent storage, even if the file is also open for deferred update.

Note: The O_DSYNC flag applies to AIX 4.2.1 and later releases.

O_DSYNC: If set, the file data as well as all file system meta-data
required to retrieve the file data are written to their
permanent storage locations. File attributes such as
access or modification times are not required to retrieve
file data, and as such, they are not guaranteed to be
written to their permanent storage locations before the
preceding subroutines return. (Subroutines listed in the
O_SYNC description.)

O_SYNC | O_DSYNC: If both flags are set, the file’s data and all of the file’s
meta-data (including access time) are written to their
permanent storage locations.

Base Operating System (BOS) Runtime Services (A-P) 943

Note: The O_RSYNC flag applies to AIX 4.3 and later releases.

O_RSYNC: This flag is used in combination with O_SYNC or D_SYNC, and it extends
their write operation behaviors to read operations. For example, when
O_SYNC and R_SYNC are both set, a read operation will not return until the
file’s data and all of the file’s meta-data (including access time) are written to
their permanent storage locations.

Flags That Define the Open File Initial State
The following OFlag parameter flag values define the initial state of the open file:

O_APPEND The file pointer is set to the end of the file prior to each write operation.
O_DELAY Specifies that if the open subroutine could not succeed due to an inability to grant the access on

a physical file system required by the O_RSHARE flag or the O_NSHARE flag, the process
blocks instead of returning the ETXTBSY error code.

O_NDELAY Opens with no delay.
O_NONBLOCK Specifies that the open subroutine should not block.

The O_NDELAY flag and the O_NONBLOCK flag are identical except for the value returned by the read
and write subroutines. These flags mean the process does not block on the state of an object, but does
block on input or output to a regular file or block device.

The O_DELAY flag is relevant only when used with the O_NSHARE or O_RSHARE flags. It is unrelated
to the O_NDELAY and O_NONBLOCK flags.

General Notes on OFlag Parameter Flags
The effect of the O_CREAT flag is immediate, even if the file is opened with the O_DEFER flag.

When opening a file on a physical file system with the O_NSHARE flag or the O_RSHARE flag, if the file
is already open with conflicting access the following can occur:

v If the O_DELAY flag is clear (the default), the open subroutine is unsuccessful.

v If the O_DELAY flag is set, the open subroutine blocks until there is no conflicting open. There is no
deadlock detection for processes using the O_DELAY flag.

When opening a file on a physical file system that has already been opened with the O_NSHARE flag, the
following can occur:

v If the O_DELAY flag is clear (the default), the open is unsuccessful immediately.

v If the O_DELAY flag is set, the open blocks until there is no conflicting open.

When opening a file with the O_RDWR, O_WRONLY, or O_TRUNC flag, and the file is already open with
the O_RSHARE flag:

v If the O_DELAY flag is clear (the default), the open is unsuccessful immediately.

v If the O_DELAY flag is set, the open blocks until there is no conflicting open.

When opening a first-in-first-out (FIFO) with the O_RDONLY flag, the following can occur:

v If the O_NDELAY and O_NONBLOCK flags are clear, the open blocks until a process opens the file for
writing. If the file is already open for writing (even by the calling process), the open subroutine returns
without delay.

v If the O_NDELAY flag or the O_NONBLOCK flag is set, the open succeeds immediately even if no
process has the FIFO open for writing.

When opening a FIFO with the O_WRONLY flag, the following can occur:

944 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v If the O_NDELAY and O_NONBLOCK flags are clear (the default), the open blocks until a process
opens the file for reading. If the file is already open for writing (even by the calling process), the open
subroutine returns without delay.

v If the O_NDELAY flag or the O_NONBLOCK flag is set, the open subroutine returns an error if no
process currently has the file open for reading.

When opening a block special or character special file that supports nonblocking opens, such as a
terminal device, the following can occur:

v If the O_NDELAY and O_NONBLOCK flags are clear (the default), the open blocks until the device is
ready or available.

v If the O_NDELAY flag or the O_NONBLOCK flag is set, the open subroutine returns without waiting for
the device to be ready or available. Subsequent behavior of the device is device-specific.

Any additional information on the effect, if any, of the O_NDELAY, O_RSHARE, O_NSHARE, and
O_DELAY flags on a specific device is documented in the description of the special file related to the
device type.

If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR-ed with either
O_RDONLY, O_WRONLY or O_RDWR. Other flag values are not applicable to STREAMS devices and
have no effect on them. The value O_NONBLOCK affects the operation of STREAMS drivers and certain
functions applied to file descriptors associated with STREAMS files. For STREAMS drivers, the
implementation of O_NONBLOCK is device-specific.

If path names the master side of a pseudo-terminal device, then it is unspecified whether open locks the
slave side so that it cannot be opened. Portable applications must call unlockpt before opening the slave
side.

The largest value that can be represented correctly in an object of type off_t will be established as the
offset maximum in the open file description.

Return Values
Upon successful completion, the file descriptor, a nonnegative integer, is returned. Otherwise, a value of -1
is returned, no files are created or modified, and the errno global variable is set to indicate the error.

Error Codes
The open, openx, and creat subroutines are unsuccessful and the named file is not opened if one or
more of the following are true:

EACCES One of the following is true:

v The file exists and the type of access specified by the OFlag parameter is denied.

v Search permission is denied on a component of the path prefix specified by the Path
parameter. Access could be denied due to a secure mount.

v The file does not exist and write permission is denied for the parent directory of the file to
be created.

v The O_TRUNC flag is specified and write permission is denied.
EAGAIN The O_TRUNC flag is set and the named file contains a record lock owned by another

process.
EDQUOT The directory in which the entry for the new link is being placed cannot be extended, or an

i-node could not be allocated for the file, because the user or group quota of disk blocks or
i-nodes in the file system containing the directory has been exhausted.

EEXIST The O_CREAT and O_EXCL flags are set and the named file exists.

Base Operating System (BOS) Runtime Services (A-P) 945

EFBIG An attempt was made to write a file that exceeds the process’ file limit or the maximum file
size. If the user has set the environment variable XPG_SUS_ENV=ON prior to execution of
the process, then the SIGXFSZ signal is posted to the process when exceeding the process’
file size limit.

EINTR A signal was caught during the open subroutine.
EIO The path parameter names a STREAMS file and a hangup or error occurred.
EISDIR Named file is a directory and write access is required (the O_WRONLY or O_RDWR flag is

set in the OFlag parameter).
EMFILE The system limit for open file descriptors per process has already been reached

(OPEN_MAX).
ENAMETOOLONG The length of the Path parameter exceeds the system limit (PATH_MAX); or a path-name

component is longer than NAME_MAX and _POSIX_NO_TRUNC is in effect.
ENFILE The system file table is full.
ENOENT The O_CREAT flag is not set and the named file does not exist; or the O_CREAT flag is not

set and either the path prefix does not exist or the Path parameter points to an empty string.
ENOMEM The Path parameter names a STREAMS file and the system is unable to allocate resources.
ENOSPC The directory or file system that would contain the new file cannot be extended.
ENOSR The Path argument names a STREAMS-based file and the system is unable to allocate a

STREAM.
ENOTDIR A component of the path prefix specified by the Path component is not a directory.
ENXIO One of the following is true:

v Named file is a character special or block special file, and the device associated with this
special file does not exist.

v Named file is a multiplexed special file and either the channel number is outside of the
valid range or no more channels are available.

v The O_DELAY flag or the O_NONBLOCK flag is set, the named file is a FIFO, the
O_WRONLY flag is set, and no process has the file open for reading.

EOVERFLOW A file greater than one terabyte was opened on the 32-bit kernel in JFS2. The exact max size
is specified in MAX_FILESIZE and may be obtained using the pathconf system call. Any file
larger than that cannot be opened on the 32-bit kernel, but can be created and opened on
the 64-bit kernel.

EROFS Named file resides on a read-only file system and write access is required (either the
O_WRONLY, O_RDWR, O_CREAT (if the file does not exist), or O_TRUNC flag is set in the
OFlag parameter).

ETXTBSY File is on a physical file system and is already open in a manner (with the O_RSHARE or
O_NSHARE flag) that precludes this open; or the O_NSHARE or O_RSHARE flag was
requested with the O_NDELAY flag set, and there is a conflicting open on a physical file
system.

Note: The EOVERFLOW error code applies to AIX 4.2 and later releases.

EOVERFLOW A call was made to open and creat and the file already existed and its size was larger than
OFF_MAX and the O_LARGEFILE flag was not set.

The open, openx, and creat subroutines are unsuccessful if one of the following are true:

EFAULT The Path parameter points outside of the allocated address space of the process.
EINVAL The value of the OFlag parameter is not valid.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ETXTBSY The file specified by the Path parameter is a pure procedure (shared text) file that is currently

executing, and the O_WRONLY or O_RDWR flag is set in the OFlag parameter.

946 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The chmod (“chmod or fchmod Subroutine” on page 149) subroutine, close (“close Subroutine” on page
176) subroutine, exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page
238) subroutine, fcntl, dup, or dup2 (“fcntl, dup, or dup2 Subroutine” on page 257) subroutine, fsync
(“fsync or fsync_range Subroutine” on page 324) subroutine, ioctl (“ioctl, ioctlx, ioctl32, or ioctl32x
Subroutine” on page 563) subroutine, lockfx (“lockfx, lockf, flock, or lockf64 Subroutine” on page 742)
subroutine, lseek (“lseek, llseek or lseek64 Subroutine” on page 770) subroutine, read subroutine, stat
subroutine, umask subroutine, write subroutine.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64,
readdir64, telldir64, seekdir64, rewinddir64, or closedir64 Subroutine

Purpose
Performs operations on directories.

Library
Standard C Library (libc.a)

Syntax
#include <dirent.h>

DIR *opendir (DirectoryName)
const char *DirectoryName;

struct dirent *readdir (DirectoryPointer)
DIR *DirectoryPointer;

long int telldir(DirectoryPointer)
DIR *DirectoryPointer;

void seekdir(DirectoryPointer,Location)
DIR *DirectoryPointer;
long Location;

void rewinddir (DirectoryPointer)
DIR *DirectoryPointer;

int closedir (DirectoryPointer)
DIR *DirectoryPointer;

DIR *opendir64 (DirectoryName)
const char *DirectoryName;

struct dirent64 *readdir64 (DirectoryPointer)
DIR64 *DirectoryPointer;

offset_t telldir64(DirectoryPointer)
DIR64 *DirectoryPointer;

void seekdir64(DirectoryPointer,Location)
DIR64 *DirectoryPointer;
offset_t Location;

void rewinddir64 (DirectoryPointer)
DIR64 *DirectoryPointer;

int closedir64 (DirectoryPointer)
DIR64 *DirectoryPointer;

Base Operating System (BOS) Runtime Services (A-P) 947

Description
Attention: Do not use the readdir subroutine in a multithreaded environment. See the multithread
alternative in the readdir_r subroutine article.

The opendir subroutine opens the directory designated by the DirectoryName parameter and associates a
directory stream with it.

Note: An open directory must always be closed with the closedir subroutine to ensure that the next
attempt to open that directory is successful.

The opendir subroutine also returns a pointer to identify the directory stream in subsequent operations.
The null pointer is returned when the directory named by the DirectoryName parameter cannot be
accessed or when not enough memory is available to hold the entire stream. A successful call to any of
the exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
functions closes any directory streams opened in the calling process.

The readdir subroutine returns a pointer to the next directory entry. The readdir subroutine returns entries
for . (dot) and .. (dot dot), if present, but never returns an invalid entry (with d_ino set to 0). When it
reaches the end of the directory, or when it detects an invalid seekdir operation, the readdir subroutine
returns the null value. The returned pointer designates data that may be overwritten by another call to the
readdir subroutine on the same directory stream. A call to the readdir subroutine on a different directory
stream does not overwrite this data. The readdir subroutine marks the st_atime field of the directory for
update each time the directory is actually read.

The telldir subroutine returns the current location associated with the specified directory stream.

The seekdir subroutine sets the position of the next readdir subroutine operation on the directory stream.
An attempt to seek an invalid location causes the readdir subroutine to return the null value the next time
it is called. The position should be that returned by a previous telldir subroutine call.

The rewinddir subroutine resets the position of the specified directory stream to the beginning of the
directory.

The closedir subroutine closes a directory stream and frees the structure associated with the
DirectoryPointer parameter. If the closedir subroutine is called for a directory that is already closed, the
behavior is undefined. To prevent this, always initialize the DirectoryPointer parameter to null after closure.

If you use the fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine to create a new process
from an existing one, either the parent or the child (but not both) may continue processing the directory
stream using the readdir, rewinddir, or seekdir subroutine.

The opendir64 subroutine is similar to the opendir subroutine except that it returns a pointer to an object
of type DIR64.

Note: An open directory by opendir64 subroutine must always be closed with the closedir64 subroutine
to ensure that the next attempt to open that directory is successful. In addition, it must be operated
using the 64-bit interfaces (readdir64, telldir64, seekdir64, rewinddir64, and closedir64) to obtain
the correct directory information.

The readdir64 subroutine is similar to the readdir subroutine except that it returns a pointer to an object
of type struct dirent64.

The telldir64 subroutine is similar to the telldir subroutine except that it returns the current directory
location in an offset_t format.

948 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The seekdir64 subroutine is similar to the seekdir subroutine except that the Location parameter is set in
the format of offset_t.

The rewinddir64 subroutine resets the position of the specified directory stream (obtained by the
opendir64 subroutine) to the beginning of the directory.

Parameters

DirectoryName Names the directory.
DirectoryPointer Points to the DIR or DIR64 structure of an open directory.
Location Specifies the offset of an entry relative to the start of the directory.

Return Values
On successful completion, the opendir subroutine returns a pointer to an object of type DIR, and the
opendir64 subroutine returns a pointer to an object of type DIR64. Otherwise, a null value is returned and
the errno global variable is set to indicate the error.

On successful completion, the readdir subroutine returns a pointer to an object of type struct dirent, and
the readdir64 subroutine returns a pointer to an object of type struct dirent64. Otherwise, a null value is
returned and the errno global variable is set to indicate the error. When the end of the directory is
encountered, a null value is returned and the errno global variable is not changed by this function call.

On successful completion, the telldir or telldir64 subroutine returns the current location associated with
the specified directory stream. Otherwise, a null value is returned.

On successful completion, the closedir or closedir64 subroutine returns a value of 0. Otherwise, a value
of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
If the opendir subroutine is unsuccessful, it returns a null value and sets the errno global variable to one
of the following values:

EACCES Indicates that search permission is denied for any component of the DirectoryName
parameter, or read permission is denied for the DirectoryName parameter.

ENAMETOOLONG Indicates that the length of the DirectoryName parameter argument exceeds the PATH_MAX
value, or a path-name component is longer than the NAME_MAX value while the
POSIX_NO_TRUNC value is in effect.

ENOENT Indicates that the named directory does not exist.
ENOTDIR Indicates that a component of the DirectoryName parameter is not a directory.
EMFILE Indicates that too many file descriptors are currently open for the process.
ENFILE Indicates that too many file descriptors are currently open in the system.

If the readdir or readdir64 subroutine is unsuccessful, it returns a null value and sets the errno global
variable to the following value:

EBADF Indicates that the DirectoryPointer parameter argument does not refer to an open directory stream.

If the closedir or closedir64 subroutine is unsuccessful, it returns a value of -1 and sets the errno global
variable to the following value:

EBADF Indicates that the DirectoryPointer parameter argument does not refer to an open directory stream.

Base Operating System (BOS) Runtime Services (A-P) 949

Examples
To search a directory for the entry name:
len = strlen(name);
DirectoryPointer = opendir(".");
for (dp = readdir(DirectoryPointer); dp != NULL; dp =
readdir(DirectoryPointer))

if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
closedir(DirectoryPointer);
DirectoryPointer=NULL //To prevent multiple closure
return FOUND;

}
closedir(DirectoryPointer);

DirectoryPointer=NULL //To prevent multiple closure

Related Information
The close (“close Subroutine” on page 176) subroutine, exec (“exec: execl, execle, execlp, execv, execve,
execvp, or exect Subroutine” on page 238) subroutines, fork (“fork, f_fork, or vfork Subroutine” on page
293) subroutine, lseek (“lseek, llseek or lseek64 Subroutine” on page 770) subroutine, openx, open, or
creat (“open, openx, open64, creat, or creat64 Subroutine” on page 939) subroutine, read, readv, readx,
or readvx subroutine, scandir or alphasort subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

pam_acct_mgmt Subroutine

Purpose
Validates the user’s account.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_acct_mgmt (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_acct_mgmt subroutine performs various checks on the user’s account to determine if it is valid.
These checks can include account and password expiration, and access restrictions. This subroutine is
generally used subsequent to a successful pam_authenticate() call in order to verify whether the
authenticated user should be granted access.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

950 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Flags The Flags argument can be a logically OR’d combination of the following:

v PAM_SILENT

– No messages should be displayed

v PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Return Values
Upon successful completion, pam_acct_mgmt returns PAM_SUCCESS. If the routine fails, a different
error will be returned, depending on the actual error.

Error Codes

PAM_ACCT_EXPIRED The user’s account has expired.
PAM_NEW_AUTHTOK_REQD The user’s password needs changed. This is usually due to

password aging or because it was last set by an
administrator. At this stage most user’s can still change their
passwords; applications should call pam_chauthtok() and
have the user promptly change their password.

PAM_AUTHTOK_EXPIRED The user’s password has expired. Unlike
PAM_NEW_AUTHTOK_REQD, the password cannot be
changed by the user.

PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_authenticate Subroutine,” “pam_open_session Subroutine” on page 961, “pam_setcred Subroutine”
on page 965, “pam_sm_acct_mgmt Subroutine” on page 967, “pam_start Subroutine” on page 974

pam_authenticate Subroutine

Purpose
Attempts to authenticate a user through PAM.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_authenticate (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Base Operating System (BOS) Runtime Services (A-P) 951

Description
The pam_authenticate subroutine authenticates a user through PAM. The authentication method used is
determined by the authentication modules configured in the /etc/pam.conf stack. Most authentication
requires a password or other user input but is dependent on the modules in use.

Before attempting authentication through pam_authenticate, ensure that all of the applicable PAM
information has been set through the initial call to pam_start() and subsequent calls to pam_set_item(). If
any necessary information is not set, PAM modules can prompt the user for information through the
routine defined in PAM_CONV. If required information is not provided and PAM_CONV is not set, the
authentication fails.

On failure, it is the responsibility of the calling application to maintain a count of authentication attempts
and to reinvoke the subroutine if the count has not exceeded a defined limit. Some authentication modules
maintain an internal count and return PAM_MAXTRIES if the limit is reached. After the stack of
authentication modules has finished with either success or failure, PAM_AUTHTOK is cleared in the
handle.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Flags The Flags argument can be a logically OR’d combination of the following:

v PAM_SILENT

– No messages should be displayed

v PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Return Values
Upon successful completion, pam_authenticate returns PAM_SUCCESS. If the routine fails, a different
error will be returned, depending on the actual error.

Error Codes

PAM_AUTH_ERR An error occurred in authentication, usually because of an
invalid authentication token.

PAM_CRED_INSUFFICIENT The user has insufficient credentials to access the authentication
data.

PAM_AUTHINFO_UNAVAIL The authentication information cannot be retrieved.
PAM_USER_UNKNOWN The user is not known.
PAM_MAXTRIES The maximum number of authentication retries has been

reached.
PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

952 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
“pam_acct_mgmt Subroutine” on page 950, “pam_get_user Subroutine” on page 958, “pam_open_session
Subroutine” on page 961, “pam_set_item Subroutine” on page 964, “pam_setcred Subroutine” on page
965, “pam_sm_authenticate Subroutine” on page 968, “pam_start Subroutine” on page 974

pam_chauthtok Subroutine

Purpose
Changes the user’s authentication token (typically passwords).

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_chauthtok (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_chauthtok subroutine changes a user’s authentication token through the PAM framework. Prior
to changing the password, the subroutine performs preliminary tests to ensure that necessary hosts and
information, depending on the password service, are there. If any of these tests fail, PAM_TRY_AGAIN is
returned. To request information from the user, pam_chauthtok can use the conversation function that is
defined in the PAM handle, PAMHandle. After the subroutine is finished, the values of PAM_AUTHTOK
and PAM_OLDAUTHTOK are cleared in the handle for added security.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Flags The Flags argument can be a logically OR’d combination of the following:

v PAM_SILENT

– No messages should be displayed

v PAM_CHANGE_EXPIRED_AUTHTOK

– Only expired passwords should be changed. If this flag is not included, all users using
the related password service are forced to update their passwords. This is typically
used by a login application after determining password expiration. It should not
generally be used by applications dedicated to changing passwords.

Return Values
Upon successful completion, pam_chauthtok returns PAM_SUCCESS and the authentication token of the
user, as defined for a given password service, is changed. If the routine fails, a different error is returned,
depending on the actual error.

Error Codes

PAM_AUTHTOK_ERR A failure occurred while updating the authentication
token.

Base Operating System (BOS) Runtime Services (A-P) 953

PAM_TRY_AGAIN Preliminary checks for changing the password have
failed. Try again later.

PAM_AUTHTOK_RECOVERY_ERR An error occurred while trying to recover the
authentication information.

PAM_AUTHTOK_LOCK_BUSY Cannot get the authentication token lock. Try again
later.

PAM_AUTHTOK_DISABLE_AGING Authentication token aging checks are disabled and
were not performed.

PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not

be loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_acct_mgmt Subroutine” on page 950, “pam_authenticate Subroutine” on page 951,
“pam_open_session Subroutine” on page 961, “pam_setcred Subroutine” on page 965,
“pam_sm_chauthtok Subroutine” on page 969, “pam_start Subroutine” on page 974

pam_close_session Subroutine

Purpose
Ends a currently open PAM user session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_close_session (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_close_session subroutine ends a PAM user session started by pam_open_session().

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Flags The following flag may be set:

v PAM_SILENT

– No messages should be displayed

954 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, pam_close_session returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

Error Codes

PAM_SESSION_ERR An error occurred while creating/removing an entry for the new
session.

PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_open_session Subroutine” on page 961, “pam_sm_close_session Subroutine” on page 971,
“pam_start Subroutine” on page 974

pam_end Subroutine

Purpose
Ends an existing PAM authentication session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_end (PAMHandle, Status)
pam_handle_t *PAMHandle;
int Status;

Description
The pam_end subroutine finishes and cleans up the authentication session represented by the PAM
handle PAMHandle. Status denotes the current state of the PAMHandle and is passed through to a
cleanup() function so that the memory used during that session can be properly unallocated. The
cleanup() function can be set in the PAMHandle by PAM modules through the pam_set_data() routine.
Upon completion of the subroutine, the PAM handle and associated memory is no longer valid.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Status The state of the last PAM call. Some modules need to be cleaned according to error codes.

Base Operating System (BOS) Runtime Services (A-P) 955

Return Values
Upon successful completion, pam_end returns PAM_SUCCESS. If the routine fails, a different error is
returned, depending on the actual error.

Error Codes

PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.

Related Information
“pam_start Subroutine” on page 974

pam_get_data Subroutine

Purpose
Retrieves information for a specific PAM module for this PAM session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_get_data (PAMHandle, ModuleDataName, Data)
pam_handle_t *PAMHandle;
const char *ModuleDataName;
void **Data;

Description
The pam_get_data subroutine is used to retrieve module-specific data from the PAM handle. This
subroutine is used by modules and should not be called by applications. If the ModuleDataName identifier
exists, the reference for its data is returned in Data. If the identifier does not exist, a NULL reference is
returned in Data. The caller should not modify or free the memory returned in Data. Instead, a cleanup
function should be specified through a call to pam_set_data(). The cleanup function will be called when
pam_end() is invoked in order to free any memory allocated.

Parameters

PAMHandle (in) The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

ModuleDataName A unique identifier for Data.
Data Returned reference to the data denoted by ModuleDataName.

Return Values
Upon successful completion, pam_get_data returns PAM_SUCCESS. If ModuleDataName exists and
pam_get_data completes successfully, Data will be a valid reference. Otherwise, Data will be NULL. If the
routine fails, either PAM_SYSTEM_ERR, PAM_BUF_ERR, or PAM_NO_MODULE_DATA is returned,
depending on the actual error.

956 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes

PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_NO_MODULE_DATA No module-specific data was found.

Related Information
“pam_get_item Subroutine,” “pam_getenv Subroutine” on page 959, “pam_getenvlist Subroutine” on page
960, “pam_set_data Subroutine” on page 963

pam_get_item Subroutine

Purpose
Retrieves an item or information for this PAM session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_get_item (PAMHandle, ItemType, Item)
pam_handle_t *PAMHandle;
int ItemType;
void **Item;

Description
The pam_get_item subroutine returns the item requested by the ItemType. Any items returned by
pam_get_item should not be modified or freed. They can be later used by PAM and will be cleaned-up by
pam_end(). If a requested ItemType is not found, a NULL reference will be returned in Item.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Base Operating System (BOS) Runtime Services (A-P) 957

ItemType The type of item that is being requested. The following values are valid item types:

v PAM_SERVICE

– The service name requesting this PAM session.

v PAM_USER

– The user name of the user being authenticated.

v PAM_AUTHTOK

– The user’s current authentication token (password).

v PAM_OLDAUTHOK

– The user’s old authentication token (old password).

v PAM_TTY

– The terminal name.

v PAM_RHOST

– The name of the remote host.

v PAM_RUSER

– The name of the remote user.

v PAM_CONV

– The pam_conv structure for conversing with the user.

v PAM_USER_PROMPT

– The default prompt for the user (used by pam_get_user()).

For security, PAM_AUTHTOK and PAM_OLDAUTHTOK are only available to PAM
modules.

Item The return value, holding a reference to a pointer of the requested ItemType.

Return Values
Upon successful completion, pam_get_item returns PAM_SUCCESS. Also, the address of a reference to
the requested object is returned in Item. If the requested item was not found, a NULL reference is
returned. If the routine fails, either PAM_SYSTEM_ERR or PAM_BUF_ERR is returned and Item is set to
a NULL pointer.

Error Codes

PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_SYMBOL_ERR Symbol not found.

Related Information
“pam_get_data Subroutine” on page 956, “pam_getenv Subroutine” on page 959, “pam_get_user
Subroutine,” “pam_getenvlist Subroutine” on page 960, “pam_set_item Subroutine” on page 964

pam_get_user Subroutine

Purpose
Gets the user’s name from the PAM handle or through prompting for input.

Library
PAM Library (libpam.a)

958 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <security/pam_appl.h>

int pam_get_user (
pam_handle_t *pamh,
char **user,
const char *prompt);

Description
The pam_get_user subroutine returns the user name currently stored in the PAM handle, pamh. If the
user name has not already been set through pam_start() or pam_set_item(), the subroutine displays the
string specified by prompt, to prompt for the user name through the conversation function. If prompt is
NULL, the value of PAM_USER_PROMPT set through a call to pam_set_item() is used. If both prompt
and PAM_USER_PROMPT are NULL, PAM defaults to use the following string:
Please enter user name:

After the user name has been retrieved, it is set in the PAM handle and is also returned to the caller in the
user argument. The caller should not change or free user, as cleanup will be handled by pam_end().

Parameters

pamh The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

user The user name retrieved from the PAM handle or provided by the user.
prompt The prompt to be displayed if a user name is required and has not been already set.

Return Values
Upon successful completion, pam_get_user returns PAM_SUCCESS. Also, a reference to the user name
is returned in user. If the routine fails, either PAM_SYSTEM_ERR, PAM_BUF_ERR, or PAM_CONV_ERR
is returned, depending on what the actual error was, and a NULL reference in user is returned.

Error Codes

PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error or failure.

Related Information
“pam_end Subroutine” on page 955, “pam_get_item Subroutine” on page 957, and “pam_set_item
Subroutine” on page 964

pam_getenv Subroutine

Purpose
Returns the value of a defined PAM environment variable.

Library
PAM Library (libpam.a)

Base Operating System (BOS) Runtime Services (A-P) 959

Syntax
#include <security/pam_appl.h>

char *pam_getenv (PAMHandle, VarName)
pam_handle_t *PAMHandle;
char *VarName;

Description
The pam_getenv subroutine retrieves the value of the PAM environment variable VarName stored in the
PAM handle PAMHandle. Environment variables can be defined through the pam_putenv() call. If
VarName is defined, its value is returned in memory allocated by the library; it is the caller’s responsibility
to free this memory. Otherwise, a NULL pointer is returned.

Parameters

PAMHandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

VarName The name of the PAM environment variable to get the value for.

Return Values
Upon successful completion, pam_getenv returns the value of the VarName PAM environment variable. If
the routine fails or VarName is not defined, NULL is returned.

Related Information
“pam_getenvlist Subroutine,” “pam_putenv Subroutine” on page 962

pam_getenvlist Subroutine

Purpose
Returns a list of all of the defined PAM environment variables and their values.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

char **pam_getenvlist (PAMHandle)
pam_handle_t *PAMHandle;

Description
The pam_getenvlist subroutine returns a pointer to a list of the currently defined environment variables in
the PAM handle, PAMHandle. Environment variables can be set through calls to the pam_putenv()
subroutine. The library returns the environment in an allocated array in which the last entry of the array is
NULL. The caller is responsible for freeing the memory of the returned list.

Parameters

PAMHandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

960 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, pam_getenvlist returns a pointer to a list of strings, one for each currently
defined PAM environment variable. Each string is of the form VARIABLE=VALUE, where VARIABLE is the
name of the variable and VALUE is its value. This list is terminated with a NULL entry. If the routine fails or
there are no PAM environment variables defined, a NULL reference is returned. The caller is responsible
for freeing the memory of the returned value.

Related Information
“pam_getenv Subroutine” on page 959, “pam_putenv Subroutine” on page 962

pam_open_session Subroutine

Purpose
Opens a new PAM user session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_open_session (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_open_session subroutine opens a new user session for an authenticated PAM user. A call to
pam_authenticate() is typically made prior to invoking this subroutine. Applications that open a user
session should subsequently close the session with pam_close_session() when the session has ended.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Flags The flags are used to set pam_acct_mgmt options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed

Return Values
Upon successful completion, pam_open_session returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

Error Codes

PAM_SESSION_ERR An error occurred while creating/removing an entry for the new
session.

PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.

Base Operating System (BOS) Runtime Services (A-P) 961

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_authenticate Subroutine” on page 951, “pam_close_session Subroutine” on page 954,
“pam_sm_open_session Subroutine” on page 972, “pam_start Subroutine” on page 974

pam_putenv Subroutine

Purpose
Defines a PAM environment variable.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_putenv (PAMHandle, NameValue)
pam_handle_t *PAMHandle;
const char *NameValue;

Description
The pam_putenv subroutine sets and deletes environment variables in the PAM handle, PAMHandle.
Applications can retrieve the defined variables by calling pam_getenv() or pam_getenvlist() and add
them to the user’s session. If a variable with the same name is already defined, the old value is replaced
by the new value.

Parameters

PAMHandle The PAM authentication handle, obtained from a previous call to pam_start().
NameValue A string of the form name=value to be stored in the environment section of the PAM

handle. The following behavior is exhibited with regards to the format of the passed-in
string:

NAME=VALUE
Creates or overwrites the value for the variable in the environment.

NAME=
Sets the variable to the empty string.

NAME Deletes the variable from the environment, if it is currently defined.

Return Values
Upon successful completion, pam_putenv returns PAM_SUCCESS. If the routine fails, either
PAM_SYSTEM_ERR or PAM_BUF_ERR is returned, depending on the actual error.

962 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

Related Information
“pam_getenv Subroutine” on page 959, “pam_getenvlist Subroutine” on page 960, “pam_start Subroutine”
on page 974

pam_set_data Subroutine

Purpose
Sets information for a specific PAM module for the active PAM session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_set_data (PAMHandle, ModuleDataName, Data, *(cleanup)(pam_handle_t *pamh, void *data,
int pam_end_status))

pam_handle_t *PAMHandle;
const char *ModuleDataName;
void *Data;
void *(cleanup)(pam_handle_t *pamh, void *data, int pam_end_status);

Description
The pam_set_data subroutine allows for the setting and updating of module-specific data within the PAM
handle, PAMHandle. The ModuleDataName argument serves to uniquely identify the data, Data. Stored
information can be retrieved by specifying ModuleDataName and passing it, along with the appropriate
PAM handle, to pam_get_data(). The cleanup argument is a pointer to a function that is called to free
allocated memory used by the Data when pam_end() is invoked. If data is already associated with
ModuleDataName, PAM does a cleanup of the old data, overwrites it with Data, and replaces the old
cleanup function. If the information being set is of a known PAM item type, use the pam_putenv
subroutine instead.

Parameters

PAMHandle The PAM handle representing the current user
authentication session. This handle is obtained by a call to
pam_start().

ModuleDataName A unique identifier for Data.
Data A reference to the data denoted by ModuleDataName.
cleanup A function pointer that is called by pam_end() to clean up

all allocated memory used by Data.

Return Values
Upon successful completion, pam_set_data_ returns PAM_SUCCESS. If the routine fails, either
PAM_SYSTEM_ERR or PAM_BUF_ERR is returned, depending on the actual error.

Base Operating System (BOS) Runtime Services (A-P) 963

Error Codes

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

Related Information
“pam_end Subroutine” on page 955, “pam_get_data Subroutine” on page 956, “pam_get_item Subroutine”
on page 957, “pam_set_item Subroutine”

pam_set_item Subroutine

Purpose
Sets the value of an item for this PAM session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

int pam_set_item (PAMHandle, ItemType, Item)
pam_handle_t *PAMHandle;
int ItemType;
void **Item;

Description
The pam_set_item subroutine allows for the setting and updating of a set of known PAM items. The item
value is stored within the PAM handle, PAMHandle. If a previous value exists for the item type, ItemType,
then the old value is overwritten with the new value, Item.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

964 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ItemType The type of item that is being requested. The following values are valid item types:

v PAM_SERVICE

– The service name requesting this PAM session.

v PAM_USER

– The user name of the user being authenticated.

v PAM_AUTHTOK

– The user’s current authentication token. Interpreted as the new authentication token
by password modules.

v PAM_OLDAUTHOK

– The user’s old authentication token. Interpreted as the current authentication token by
password modules.

v PAM_TTY

– The terminal name.

v PAM_RHOST

– The name of the remote host.

v PAM_RUSER

– The name of the remote user.

v PAM_CONV

– The pam_conv structure for conversing with the user.

v PAM_USER_PROMPT

– The default prompt for the user (used by pam_get_user()).

For security, PAM_AUTHTOK and PAM_OLDAUTHTOK are only available to PAM
modules.

Item The value that the ItemType is set to.

Return Values
Upon successful completion, pam_set_item returns PAM_SUCCESS. If the routine fails, either
PAM_SYSTEM_ERR or PAM_BUF_ERR is returned, depending on what the actual error was.

Error Codes

PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_SYMBOL_ERR Symbol not found.

Related Information
“pam_get_item Subroutine” on page 957, “pam_get_user Subroutine” on page 958

pam_setcred Subroutine

Purpose
Establishes, changes, or removes user credentials for authentication.

Library
PAM Library (libpam.a)

Base Operating System (BOS) Runtime Services (A-P) 965

Syntax
#include <security/pam_appl.h>

int pam_setcred (PAMHandle, Flags)
pam_handle_t *PAMHandle;
int Flags;

Description
The pam_setcred subroutine allows for the credentials of the PAM user for the current PAM session to be
modified. Functions such as establishing, deleting, renewing, and refreshing credentials are defined.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Flags The flags are used to set pam_setcred options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed.

v PAM_ESTABLISH_CRED*

– Sets the user’s credentials. This is the default.

v PAM_DELETE_CRED*

– Removes the user credentials.

v PAM_REINITIALIZE_CRED*

– Renews the user credentials.

v PAM_REFRESH_CRED*

– Refresh the user credentials, extending their lifetime.

*Mutually exclusive but may be logically OR’d with PAM_SILENT. If one of them is not set,
PAM_ESTABLISH_CRED is assumed.

Return Values
Upon successful completion, pam_setcred returns PAM_SUCCESS. If the routine fails, a different error is
returned, depending on the actual error.

Error Codes

PAM_CRED_UNAVAIL The user credentials cannot be found.
PAM_CRED_EXPIRED The user’s credentials have expired.
PAM_CRED_ERR A failure occurred while setting user credentials.
PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

966 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
“pam_acct_mgmt Subroutine” on page 950, “pam_authenticate Subroutine” on page 951,
“pam_open_session Subroutine” on page 961, “pam_sm_setcred Subroutine” on page 973, “pam_start
Subroutine” on page 974

pam_sm_acct_mgmt Subroutine

Purpose
PAM module implementation for pam_acct_mgmt().

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_acct_mgmt (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

Description
The pam_sm_acct_mgmt subroutine is invoked by the PAM library in response to a call to
pam_acct_mgmt. The pam_sm_acct_mgmt subroutine performs the account and password validation for
a user and is associated with the ″account″ service in the PAM configuration file. It is up to the module
writers to implement their own service-dependent version of pam_sm_acct_mgmt, if the module requires
this feature. Actual checks performed are at the discretion of the module writer but typically include checks
such as password expiration and login time validation.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Flags The Flags argument can be a logically OR’d combination of the following:

v PAM_SILENT

– No messages should be displayed.

v PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.
Argc The number of module options specified in the PAM configuration file.
Argv The module options specified in the PAM configuration file. These options are

module-dependent. Any modules receiving invalid options should ignore them.

Return Values
Upon successful completion, pam_sm_acct_mgmt returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

Error Codes

PAM_ACCT_EXPIRED The user’s account has expired.

Base Operating System (BOS) Runtime Services (A-P) 967

PAM_NEW_AUTHTOKEN_REQD The user’s password needs to be changed. This is usually
due to password aging or because it was last set by the
system administrator. At this stage, most users can still
change their passwords. Applications should call
pam_chauthtok() and have the users change their
password.

PAM_AUTHTOK_EXPIRED The user’s password has expired. Unlike
PAM_NEW_AUTHTOKEN_REQD, the password cannot
be changed by the user.

PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_acct_mgmt Subroutine” on page 950, “pam_authenticate Subroutine” on page 951, “pam_start
Subroutine” on page 974

pam_sm_authenticate Subroutine

Purpose
PAM module-specific implementation of pam_authenticate().

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_authenticate (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

Description
When an application invokes pam_authenticate(), the PAM Framework calls pam_sm_authenticate for
each module in the authentication module stack. This allows all the PAM module authors to implement
their own authenticate routine. pam_authenticate and pam_sm_authenticate provide an authentication
service to verify that the user is allowed access.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

968 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Flags The flags are used to set pam_acct_mgmt options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed.

v PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.
Argc The number of module options defined.
Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

Return Values
Upon successful completion, pam_sm_authenticate returns PAM_SUCCESS. If the routine fails, a
different error is returned, depending on the actual error.

Error Codes

PAM_AUTH_ERR An error occurred in authentication, usually because of an
invalid authentication token.

PAM_CRED_INSUFFICIENT The user has insufficient credentials to access the
authentication data.

PAM_AUTHINFO_UNAVAIL The authentication information cannot be retrieved.
PAM_USER_UNKNOWN The user is not known.
PAM_MAXTRIES The maximum number of authentication retries has been

reached.
PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_authenticate Subroutine” on page 951

pam_sm_chauthtok Subroutine

Purpose
PAM module-specific implementation of pam_chauthtok().

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_chauthtok (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;

Base Operating System (BOS) Runtime Services (A-P) 969

int Flags;
int Argc;
const char **Argv;

Description
When an application invokes pam_chauthtok(), the PAM Framework calls pam_sm_chauthtok for each
module in the password module stack. The pam_sm_chauthtok module interface is intended to change
the user’s password or authentication token. Before any password is changed, pam_sm_chauthtok
performs preliminary tests to ensure necessary hosts and information, depending on the password service,
are there. If PAM_PRELIM_CHECK is specified, only these preliminary checks are done. If successful, the
authentication token is ready to be changed. If the PAM_UPDATE_AUTHTOK flag is passed in,
pam_sm_chauthtok should take the next step and change the user’s authentication token. If the
PAM_CHANGE_EXPIRED_AUTHTOK flag is set, the module should check the authentication token for
aging and expiration. If the user’s authentication token is aged or expired, the module should store that
information by passing it to pam_set_data(). Otherwise, the module should exit and return PAM_IGNORE.
Required information is obtained through the PAM handle or by prompting the user by way of
PAM_CONV.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Flags The flags are used to set pam_acct_mgmt options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed.

v PAM_CHANGE_EXPIRED_AUTHTOK

– Only expired passwords should be changed. If this flag is not included, all users using
the related password service are forced to update their passwords.

v PAM_PRELIM_CHECK*

– Only perform preliminary checks to see if the password can be changed, but do not
change it.

v PAM_UPDATE_AUTHTOK*

– Perform all necessary checks, and if possible, change the user’s password/
authentication token.

* PAM_PRELIM_CHECK and PAM_UPDATE_AUTHTOK are mutually exclusive.
Argc The number of module options defined.
Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

Return Values
Upon successful completion, pam_sm_chauthtok returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

Error Codes

PAM_AUTHTOK_ERR A failure occurred while updating the authentication
token.

PAM_TRY_AGAIN Preliminary checks for changing the password have
failed. Try again later.

PAM_AUTHTOK_RECOVERY_ERR An error occurred while trying to recover the
authentication information.

970 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

PAM_AUTHTOK_LOCK_BUSY Cannot get the authentication token lock. Try again
later

PAM_AUTHTOK_DISABLE_AGING Authentication token aging checks are disabled and
were not performed.

PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_chauthtok Subroutine” on page 953

pam_sm_close_session Subroutine

Purpose
PAM module-specific implementation to close a session previously opened by pam_sm_open_session().

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_close_session (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

Description
When an application invokes pam_close_session(), the PAM Framework calls pam_sm_close_session
for each module in the session module stack. The pam_sm_close_session module interface is intended
to clean up and terminate any user session started by pam_sm_open_session().

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Flags The flags are used to set pam_acct_mgmt options. The recognized flag is:

v PAM_SILENT

– No messages should be displayed.
Argc The number of module options defined.
Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

Base Operating System (BOS) Runtime Services (A-P) 971

Return Values
Upon successful completion, pam_sm_close_session returns PAM_SUCCESS. If the routine fails, a
different error is returned, depending on the actual error.

Error Codes

PAM_SESSION_ERR An error occurred while creating or removing an entry
for the new session.

PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_close_session Subroutine” on page 954, “pam_sm_open_session Subroutine”

pam_sm_open_session Subroutine

Purpose
PAM module-specific implementation of pam_open_session.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_open_session (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

Description
When an application invokes pam_open_session(), the PAM Framework calls pam_sm_open_session
for each module in the session module stack. The pam_sm_open_session module interface starts a new
user session for an authenticated PAM user. All session-specific information and memory used by opening
a session should be cleaned up by pam_sm_close_session().

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

972 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Flags The flags are used to set pam_acct_mgmt options. The recognized flag is:

v PAM_SILENT

– No messages should be displayed.
Argc The number of module options defined.
Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

Return Values
Upon successful completion, pam_sm_open_session returns PAM_SUCCESS. If the routine fails, a
different error is returned, depending on the actual error.

Error Codes

PAM_SESSION_ERR An error occurred while creating or removing an entry
for the new session.

PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_open_session Subroutine” on page 961, “pam_sm_close_session Subroutine” on page 971

pam_sm_setcred Subroutine

Purpose
PAM module-specific implementation of pam_setcred.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_setcred (PAMHandle, Flags, Argc, Argv)
pam_handle_t *PAMHandle;
int Flags;
int Argc;
const char **Argv;

Description
When an application invokes pam_setcred(), the PAM Framework calls pam_sm_setcred for each
module in the authentication module stack. The pam_sm_setcred module interface allows for the setting
of module-specific credentials in the PAM handle. The user’s credentials should be set based upon the
user’s authentication state. This information can usually be retrieved with a call to pam_get_data().

Base Operating System (BOS) Runtime Services (A-P) 973

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

Flags The flags are used to set pam_setcred options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed.

v PAM_ESTABLISH_CRED*

– Sets the user’s credentials. This is the default.

v PAM_DELETE_CRED*

– Removes the user credentials.

v PAM_REINITIALIZE_CRED*

– Renews the user credentials.

v PAM_REFRESH_CRED*

– Refreshes the user credentials, extending their lifetime.

*Mutually exclusive. If one of them is not set, PAM_ESTABLISH_CRED is assumed.
Argc The number of module options defined.
Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

Return Values
Upon successful completion, pam_sm_setcred returns PAM_SUCCESS. If the routine fails, a different
error is returned, depending on the actual error.

Error Codes

PAM_CRED_UNAVAIL The user credentials cannot be found.
PAM_CRED_EXPIRED The user’s credentials have expired.
PAM_CRED_ERR A failure occurred while setting user credentials.
PAM_USER_UNKNOWN The user is not known.
PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.
PAM_SYMBOL_ERR A necessary item is not available to a PAM module.
PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.
PAM_CONV_ERR A conversation error occurred.
PAM_PERM_DENIED Access permission was denied to the user.

Related Information
“pam_setcred Subroutine” on page 965

pam_start Subroutine

Purpose
Initiates a new PAM user authentication session.

Library
PAM Library (libpam.a)

974 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <security/pam_appl.h>

int pam_start (Service, User, Conversation, PAMHandle)
const char *Service;
const char *User;
const struct pam_conv *Conversation;
pam_handle_t **PAMHandle;

Description
The pam_start subroutine begins a new PAM session for authentication within one of the four realms of
the PAM environment [authentication, account, session, password]. This routine is called only at the start
of the session, not at the start of each module comprising the session. The PAM handle, PAMHandle,
returned by this subroutine is subsequently used by other PAM routines. The handle must be cleaned up
at the end of use, which can easily be done by passing it as an argument to pam_end.

Parameters

Service The name of the service initiating this PAM session.
User The user who is being authenticated.

Base Operating System (BOS) Runtime Services (A-P) 975

Conversation The PAM conversation struct enabling communication with the user. This structure,
pam_conv, consists of a pointer to a conversation function, as well as a pointer to
application data.

struct pam_conv {
int (**conv)();
void (**appdata_ptr);

}

The argument conv is defined as:

int conv(int num_msg, const struct pam_message **msg,
const struct pam_response **resp, void *appdata);

The conversation function, conv, allows PAM to send messages to, and get input from, a
user. The arguments to the function have the following definition and behavior:

num_msg
The number of lines of messages to be displayed (all messages are returned in
one-line fragments, each no longer than PAM_MAX_MSG_SIZE characters and
with no more lines than PAM_MAX_NUM_MSG)

msg Contains the message text and its style.

struct pam_message {
int style; /* Message style */
char *msg; /* The message */

}

The message style, can be one of:

PAM_PROMPT_ECHO_OFF
Prompts users with message and does not echo their responses; it is
typically for use with requesting passwords and other sensitive
information.

PAM_PROMPT_ECHO_ON
Prompts users with message and echoes their responses back to them.

PAM_ERROR_MSG
Displays message as an error message.

PAM_TEXT_INFO
Displays general information, such as authentication failures.

resp Holds the user’s response and a response code.

struct pam_response {
char **resp; /* Reference to the response */
int resp_retcode; /* Not used, should be 0 */

}

appdata, appdata_ptr
Pointers to the application data that can be passed by the calling application to the
PAM modules. Use these to allow PAM to send data back to the application.

PAMHandle The PAM handle representing the current user authentication session is returned upon
successful completion.

Return Values
Upon successful completion, pam_start returns PAM_SUCCESS, and a reference to the pointer of a valid
PAM handle is returned through PAMHandle. If the routine fails, a value different from PAM_SUCCESS is
returned, and the PAMHandle reference is NULL.

976 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes

PAM_SERVICE_ERR An error occurred in a PAM module.
PAM_SYSTEM_ERR A system error occurred.
PAM_BUF_ERR A memory error occurred.

Related Information
“pam_end Subroutine” on page 955, “pam_set_data Subroutine” on page 963, “pam_set_item Subroutine”
on page 964

pam_strerror Subroutine

Purpose
Translates a PAM error code to a string message.

Library
PAM Library (libpam.a)

Syntax
#include <security/pam_appl.h>

const char *pam_strerror (PAMHandle, ErrorCode)
pam_handle_t *PAMHandle;
int ErrorCode;

Description
The pam_strerror subroutine uses the error number returned by the PAM routines and returns the PAM
error message that is associated with that error number. If the error number is not known to pam_strerror,
or there is no translation error message, then NULL is returned. The caller should not free or modify the
returned string.

Parameters

PAMhandle The PAM handle representing the current user authentication session. This handle is
obtained by a call to pam_start().

ErrorCode The PAM error code for which the PAM error message is to be retrieved.

Return Values
Upon successful completion, pam_strerror returns the PAM error message corresponding to the PAM
error code, ErrorCode. A NULL pointer is returned if the routine fails, the error code is not known, or no
error message exists for that error code.

passwdexpired Subroutine

Purpose
Checks the user’s password to determine if it has expired.

Base Operating System (BOS) Runtime Services (A-P) 977

Syntax
passwdexpired (UserName, Message)
char *UserName;
char **Message;

Description
The passwdexpired subroutine checks a user’s password to determine if it has expired. The subroutine
checks the registry variable in the /etc/security/user file to ascertain where the user is administered. If
the registry variable is not defined, the passwdexpired subroutine checks the local, NIS, and DCE
databases for the user definition and expiration time.

The passwdexpired subroutine may pass back informational messages, such as how many days remain
until password expiration.

Parameters

UserName Specifies the user’s name whose password is to be checked.
Message Points to a pointer that the passwdexpired subroutine allocates memory for and fills in. This string is

suitable for printing and issues messages, such as in how many days the password will expire.

Return Values
Upon successful completion, the passwdexpired subroutine returns a value of 0. If this subroutine fails, it
returns one of the following values:

1 Indicates that the password is expired, and the user must change it.
2 Indicates that the password is expired, and only a system administrator may change it.
-1 Indicates that an internal error has occurred, such as a memory allocation (malloc) failure or database

corruption.

Error Codes
The passwdexpired subroutine fails if one or more of the following values is true:

ENOENT Indicates that the user could not be found.
EACCES Indicates that the user did not have permission to check password expiration.
ENOMEM Indicates that memory allocation (malloc) failed.
EINVAL Indicates that the parameters are not valid.

Related Information
The authenticate (“authenticate Subroutine” on page 114) subroutine.

The login command.

passwdexpiredx Subroutine

Purpose
Checks the user’s password to determine if it has expired, in multiple methods.

978 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
passwdexpiredx (UserName, Message, State)
char *UserName;
char **Message;
char **State;

Description
The passwdexpiredx subroutine checks a user’s password to determine if it has expired. The subroutine
uses the user’s SYSTEM attribute to ascertain which administrative domains are used for password
authentication.

The passwdexpiredx subroutine can pass back informational messages, such as how many days remain
until password expiration.

The State parameter can contain information about the results of the authentication process. The State
parameter from an earlier call to the authenticatex subroutine can be used to control how password
expiration checking is performed. Authentication mechanisms that were not used to authenticate a user are
not examined for expired passwords. The State parameter must be initialized to reference a null pointer if
the State parameter from an earlier call to the authenticatex subroutine is not used.

Parameters

UserName Specifies the user’s name whose password is to be checked.
Message Points to a pointer that the passwdexpiredx subroutine allocates memory for and fills in.

This string is suitable for printing, and it issues messages, such as an alert that indicates
how many days are left before the password expires.

State Points to a pointer that the passwdexpiredx subroutine allocates memory for and fills in.
The State parameter can also be the result of an earlier call to the authenticatex subroutine.
The State parameter contains information about the results of the password expiration
examination process for each term in the user’s SYSTEM attribute. The calling application is
responsible for freeing this memory when it is no longer needed for a subsequent call to the
chpassx subroutine.

Return Values
Upon successful completion, the passwdexpiredx subroutine returns a value of 0. If this subroutine fails,
it returns one of the following values:

-1 Indicates that an internal error has occurred, such as a memory allocation (malloc) failure or database
corruption.

1 Indicates that one or more passwords are expired, and the user must change it. None of the expired
passwords require system administrator intervention to be changed.

2 Indicates that one or more passwords are expired, at least one of which must be changed by the user
and at least one of which requires system administrator intervention to be changed.

3 Indicates that all expired passwords require system administrator intervention to be changed.

Error Codes
The passwdexpiredx subroutine fails if one or more of the following values is true:

EACCES The user did not have permission to access the password attributes required to check
password expiration.

EINVAL The parameters are not valid.
ENOENT The user could not be found.
ENOMEM Memory allocation (malloc) failed.

Base Operating System (BOS) Runtime Services (A-P) 979

Related Information
The “authenticatex Subroutine” on page 116.

The login Command.

passwdpolicy Subroutine

Purpose
Supports password strength policies on a per-user or per-named-policy basis.

Syntax
#include <pwdpolicy.h>
int passwdpolicy (const char *name, int type, const char *old_password,

const char *new_password, time64_t last_update);

Description
The passwdpolicy subroutine supports application use of password strength policies on a per-user or
per-named-policy basis. The policies that are supported include password dictionaries, history list length,
history list expiration, maximum lifetime of a password, minimum period of time between permitted
password changes, maximum period after which an expired password can be changed, maximum number
of repeated characters in a password, minimum number of alphabetic characters in a password, minimum
number of nonalphabetic characters in a password, minimum length of a password, and a list of loadable
modules that can be used to determine additional password strength rules.

The type parameter allows an application to select where the policy values are located. Privileged process
can use either PWP_USERNAME or PWP_SYSTEMPOLICY. Unprivileged processes are limited to using
PWP_LOCALPOLICY.

The following named attributes are used for each test:

dictionlist A SEC_LIST value that gives a list of dictionaries to be checked. If new_password is
found in any of the named dictionaries, this test fails. If this test fails, the return
value contains the PWP_IN_DICTIONARY bit.

histsize A SEC_INT value giving the permissible size of the named user’s password history.
The named user’s password history is obtained by calling getuserattr with the
S_HISTLIST attribute. If this attribute does not exist, password history checks are
disabled. A value of 0 disables password history tests. If this test fails, the return
value contains the PWP_REUSED_PW bit.

histexpire A SEC_INT value that gives the number of weeks that must elapse before a
password in the named user’s password history list can be reused. If this test fails
the return value contains the PWP_REUSED_TOO_SOON bit.

maxage A SEC_INT value that gives the number of weeks a password can be considered
valid. A password that has not been modified more recently than maxage weeks is
considered to have expired and is subject to the maxexpired test. A value less than
or equal to 0 disables this test. This attribute is used to determine if maxexpired
must be tested, and it does not generate a return value.

minage A SEC_INT value that gives the number of weeks before a password can be
changed. A password that has been modified more recently than minage weeks fails
this test. A value less than or equal to 0 disables this test. If this test fails, the return
value contains the PWP_TOO_SOON bit.

maxexpired A SEC_INT value that gives the number of weeks after which an expired password
cannot be changed. A value of 0 indicates that an expired password cannot be
changed. A value of -1 indicates that an expired password can be changed after any
length of time. If this test fails, the return value contains the PWP_EXPIRED bit.

980 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

maxrepeats A SEC_INT value that gives the maximum number of times any single character can
appear in the new password. A value less than or equal to 0 disables this test. If this
test fails, the return value contains the PWP_TOO_MANY_REPEATS bit.

mindiff A SEC_INT value that gives the maximum number of characters in the new
password that must not be present in the old password. A value less than or equal
to 0 disables this test. If this test fails, the return value contains the
PWP_TOO_MANY_SAME bit.

minalpha A SEC_INT value that gives the minimum number of alphabetic characters that must
be present in the password. A value less than or equal to 0 disables this test. If this
test fails, the return value contains the PWP_TOO_FEW_ALPHA bit.

minother A SEC_INT value that gives the minimum number of nonalphabetic characters that
must be present in the password. A value less than or equal to 0 disables this test. If
this test fails, the return value contains the bit PWP_TOO_FEW_OTHER bit.

minlen A SEC_INT value that gives the minimum required length of a password. There is no
maximum value for this attribute. A value less than or equal to 0 disables this test. If
this test fails, the return value contains the PWP_TOO_SHORT bit.

pwdchecks A SEC_LIST value that gives a list of named loadable modules that must be
executed to validate the password. If this test fails, the return value contains the
PWP_FAILED_OTHER bit.

Parameters

name The name of either a specific user or named policy. User names have policy information
determined by invoking the getuserattr subroutine. Policy names have policy information
determined by invoking the getconfattr subroutine.

type One of three values:

PWP_USERNAME
Policy values for PWP_USERNAME are stored in /etc/security/user. Password
tests PWP_REUSED_PW and PWP_REUSED_TOO_SOON are only enabled
for this value.

PWP_SYSTEMPOLICY
Policy values for PWP_SYSTEMPOLICY are stored in /etc/security/
passwd_policy.

PWP_LOCALPOLICY
Policy values for PWP_LOCALPOLICY are stored in /usr/lib/security/
passwd_policy.

old_password The current value of the password. This function does not verify that old_password is the
correct current password. Invoking passwdpolicy with a NULL pointer for this parameter
disables PWP_TOO_MANY_SAME tests.

new_password The value of the new password. Invoking passwdpolicy with a NULL pointer for this
parameter disables all tests except password age tests.

last_update The time the password was last changed, as a time64_t value, expressed in seconds
since the UNIX® epoch. A 0 value for this parameter disables password age tests
regardless of the value of any other parameter.

Return Values
The return value is a bit-mapped representation of the tests that failed. A return value of 0 indicates that all
password rules passed. A value of -1 indicates that some other error, other than a failed password test,
has occurred. The errno variable indicates the cause of that error. Applications must compare a non-zero
return value against -1 before checking any specific bits in the return value.

Files
The /usr/include/pwdpolicy.h header file.

Base Operating System (BOS) Runtime Services (A-P) 981

Related Information
“passwdexpired Subroutine” on page 977, “passwdstrength Subroutine”

passwdstrength Subroutine

Purpose
Performs basic password age and construction tests.

Syntax
#include <pwdpolicy.h>
int passwdstrength (const char *old_password, const char *new_password,

time64_t last_update, passwd_policy_t *policy, int checks);

Description
The passwdstrength subroutine performs basic password age and construction tests. Password history,
reuse, and dictionary tests are not performed. The values contained in the policy parameter are used to
validate the value of new_password.

The following fields are used by the passwdstrength subroutine.

pwp_version Specifies the version of the passwd_policy_t structure. The current structure
version number is PWP_VERSION_1.

pwp_minage The number of seconds, as a time32_t, between the time a password is modified
and the time the password can again be modified. This field is referenced if
PWP_TOO_SOON is set in checks.

pwp_maxage The number of seconds, as a time32_t, after which a password that has been
modified is considered to be expired. This field is referenced if PWP_EXPIRED is
set in checks.

pwp_maxexpired The number of seconds, as a time32_t, since a password has expired after which it
can no longer be modified. A value of 0 indicates that an expired password cannot
be changed. A value of -1 indicates that an expired password can be changed after
any length of time. This field is referenced if PWP_EXPIRED is set in checks.

pwp_minalpha The minimum number of characters in the password that must be alphabetic
characters, as determined by invoking the isalpha() macro. A value less than or
equal to 0 disables this test. This field is referenced if PWP_TOO_FEW_ALPHA is
set in checks.

pwp_minother The minimum number of characters in the password that cannot be alphabetic
characters, as determined by invoking the isalpha() macro. A value less than or
equal to 0 disables this test. This field is referenced if PWP_TOO_FEW_OTHER is
set in checks.

pwp_minlen The minimum total number of characters in the password. A value less than or equal
to 0 disables this test. This field is referenced if PWP_TOO_SHORT is set in checks.

pwp_maxrepeats The maximum number of times an individual character can appear in the password.
A value less than or equal to 0 disables this test. This field is referenced if
PWP_TOO_MANY_REPEATS is set in checks.

pwp_mindiff The minimum number of characters that must be changed between the old
password and the new password. A value less than or equal to 0 disables this test. If
this test fails, the return value contains the bit PWP_TOO_MANY_SAME. This field
is referenced if PWP_TOO_MANY_SAME is set in checks.

Parameters

old_password The value of the current password. This parameter must be non-NULL if
PWP_TOO_MANY_SAME is set in checks or the results are undefined.

982 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

new_password The value of the new password. This parameter must be non-NULL if any of
PWP_TOO_SHORT, PWP_TOO_FEW_ALPHA, PWP_TOO_FEW_OTHER,
PWP_TOO_MANY_SAME, or PWP_TOO_MANY_REPEATS are set in checks or the
results are undefined.

last_update The time the password was last changed, as a time64_t value, expressed in seconds
since the UNIX epoch. A 0 value for this parameter indicates that the password has
never been set. This might cause PWP_EXPIRED to be set in the return value if it is set
in checks.

policy A pointer to a passwd_policy_t containing the values for the password policy attributes.
checks A bitmask value that indicates the set of password tests to be performed. The return

value contains only those bits that are defined in checks.

Return Values
The return value is a bit-mapped representation of the tests that failed. A return value of 0 indicates that all
password rules requested in the checks parameter passed. A value of -1 indicates that some other error,
other than a password test, has occurred. The errno variable indicates the cause of that error. Applications
must compare a non-zero return value against -1 before checking any specific bits in the return value.

Files
The /usr/include/pwdpolicy.h header file.

Related Information
“passwdexpired Subroutine” on page 977, “passwdpolicy Subroutine” on page 980

pathconf or fpathconf Subroutine

Purpose
Retrieves file-implementation characteristics.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

long pathconf (Path, Name)
const char *Path;
int Name;

long fpathconf(FileDescriptor, Name)
int FileDescriptor, Name;

Description
The pathconf subroutine allows an application to determine the characteristics of operations supported by
the file system contained by the file named by the Path parameter. Read, write, or execute permission of
the named file is not required, but all directories in the path leading to the file must be searchable.

The fpathconf subroutine allows an application to retrieve the same information for an open file.

Base Operating System (BOS) Runtime Services (A-P) 983

Parameters

Path Specifies the path name.
FileDescriptor Specifies an open file descriptor.
Name Specifies the configuration attribute to be queried. If this attribute is not applicable to the file

specified by the Path or FileDescriptor parameter, the pathconf subroutine returns an error.
Symbolic values for the Name parameter are defined in the unistd.h file:

_PC_LINK_MAX
Specifies the maximum number of links to the file.

_PC_MAX_CANON
Specifies the maximum number of bytes in a canonical input line. This value is applicable
only to terminal devices.

_PC_MAX_INPUT
Specifies the maximum number of bytes allowed in an input queue. This value is
applicable only to terminal devices.

_PC_NAME_MAX
Specifies the maximum number of bytes in a file name, not including a terminating null
character. This number can range from 14 through 255. This value is applicable only to a
directory file.

_PC_PATH_MAX
Specifies the maximum number of bytes in a path name, including a terminating null
character.

_PC_PIPE_BUF
Specifies the maximum number of bytes guaranteed to be written atomically. This value is
applicable only to a first-in-first-out (FIFO).

_PC_CHOWN_RESTRICTED
Returns 0 if the use of the chown subroutine is restricted to a process with appropriate
privileges, and if the chown subroutine is restricted to changing the group ID of a file only
to the effective group ID of the process or to one of its supplementary group IDs.

If XPG_SUS_ENV is set to ON, the _PC_CHOWN_RESTRICTED returns a value greater
than zero.

_PC_NO_TRUNC
Returns 0 if long component names are truncated. This value is applicable only to a
directory file.

If XPG_SUS_ENV is set to ON, the_PC_NO_TRUNC returns a value greater than zero.

_PC_VDISABLE
This is always 0. No disabling character is defined. This value is applicable only to a
terminal device.

_PC_AIX_DISK_PARTITION
Determines the physical partition size of the disk.
Note: The _PC_AIX_DISK_PARTITION variable is available only to the root user.

_PC_AIX_DISK_SIZE
Determines the disk size in megabytes.
Note: The _PC_AIX_DISK_SIZE variable is available only to the root user.

Note: The _PC_FILESIZEBITS and PC_SYNC_IO flags apply to AIX 4.3 and later releases.

_PC_FILESIZEBITS
Returns the minimum number of bits required to hold the file system’s maximum file size
as a signed integer. The smallest value returned is 32.

_PC_SYNC_IO
Returns -1 if the file system does not support the Synchronized Input and Output
option. Any value other than -1 is returned if the file system supports the option.

984 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Notes:

1. If the Name parameter has a value of _PC_LINK_MAX, and if the Path or FileDescriptor parameter
refers to a directory, the value returned applies to the directory itself.

2. If the Name parameter has a value of _PC_NAME_MAX or _PC_NO_TRUNC, and if the Path or
FileDescriptor parameter refers to a directory, the value returned applies to filenames within the
directory.

3. If the Name parameter has a value if _PC_PATH_MAX, and if the Path or FileDescriptor parameter
refers to a directory that is the working directory, the value returned is the maximum length of a relative
pathname.

4. If the Name parameter has a value of _PC_PIPE_BUF, and if the Path parameter refers to a FIFO
special file or the FileDescriptor parameter refers to a pipe or a FIFO special file, the value returned
applies to the referenced object. If the Path or FileDescriptor parameter refers to a directory, the value
returned applies to any FIFO special file that exists or can be created within the directory.

5. If the Name parameter has a value of _PC_CHOWN_RESTRICTED, and if the Path or FileDescriptor
parameter refers to a directory, the value returned applies to any files, other than directories, that exist
or can be created within the directory.

Return Values
If the pathconf or fpathconf subroutine is successful, the specified parameter is returned. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error. If the variable
corresponding to the Name parameter has no limit for the Path parameter or the FileDescriptor parameter,
both the pathconf and fpathconf subroutines return a value of -1 without changing the errno global
variable.

Error Codes
The pathconf or fpathconf subroutine fails if the following error occurs:

EINVAL The name parameter specifies an unknown or inapplicable characteristic.

The pathconf subroutine can also fail if any of the following errors occur:

EACCES Search permission is denied for a component of the path prefix.
EINVAL The implementation does not support an association of the Name parameter with the

specified file.
ENAMETOOLONG The length of the Path parameter string exceeds the PATH_MAX value.
ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result whose length

exceeds PATH_MAX.
ENOENT The named file does not exist or the Path parameter points to an empty string.
ENOTDIR A component of the path prefix is not a directory.
ELOOP Too many symbolic links were encountered in resolving path.

The fpathconf subroutine can fail if either of the following errors occur:

EBADF The File Descriptor parameter is not valid.
EINVAL The implementation does not support an association of the Name parameter with the specified file.

Related Information
The “chown, fchown, lchown, chownx, or fchownx Subroutine” on page 152, “confstr Subroutine” on page
182, sysconf subroutine.

Base Operating System (BOS) Runtime Services (A-P) 985

Files, Directories, and File Systems for Programmers, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

pause Subroutine

Purpose
Suspends a process until a signal is received.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int pause (void)

Description
The pause subroutine suspends the calling process until it receives a signal. The signal must not be one
that is ignored by the calling process. The pause subroutine does not affect the action taken upon the
receipt of a signal.

Return Values
If the signal received causes the calling process to end, the pause subroutine does not return.

If the signal is caught by the calling process and control is returned from the signal-catching function, the
calling process resumes execution from the point of suspension. The pause subroutine returns a value of
-1 and sets the errno global variable to EINTR.

Related Information
The incinterval, alarm, or settimer (“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm,
getitimer, or setitimer Subroutine” on page 389)subroutine, kill or killpg (“kill or killpg Subroutine” on page
582) subroutine, sigaction, sigvec, or signal subroutine, wait, waitpid, or wait3 subroutine.

pcap_close Subroutine

Purpose
Closes the open files related to the packet capture descriptor and frees the memory used by the packet
capture descriptor.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

void pcap_close(pcap_t * p);

Description
The pcap_close subroutine closes the files associated with the packet capture descriptor and deallocates
resources. If the pcap_open_offline subroutine was previously called, the pcap_close subroutine closes

986 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

the savefile, a previously saved packet capture data file. Or the pcap_close subroutine closes the packet
capture device if the pcap_open_live subroutine was previously called.

Parameters

p Points to a packet capture descriptor as returned by the
pcap_open_live or the pcap_open_offline subroutine.

Related Information
The pcap_open_live (“pcap_open_live Subroutine” on page 999) subroutine, pcap_open_offline
(“pcap_open_offline Subroutine” on page 1001) subroutine.

pcap_compile Subroutine

Purpose
Compiles a filter expression into a filter program.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_compile(pcap_t * p, struct bpf_ program *fp, char * str,
int optimize, bpf_u_int32 netmask);

Description
The pcap_compile subroutine is used to compile the string str into a filter program. This filter program will
then be used to filter, or select, the desired packets.

Parameters

netmask Specifies the netmask of the network device. The netmask
can be obtained from the pcap_lookupnet subroutine.

optimize Controls whether optimization on the resulting code is
performed.

p Points to a packet capture descriptor returned from the
pcap_open_offline or the pcap_open_live subroutine.

program Points to a bpf_program struct which will be filled in by
the pcap_compile subroutine if the subroutine is
successful.

str Contains the filter expression.

Return Values
Upon successful completion, the pcap_compile subroutine returns 0, and the program parameter will hold
the filter program. If pcap_compile subroutine is unsuccessful, -1 is returned.

Related Information
The pcap_geterr (“pcap_geterr Subroutine” on page 993) subroutine, pcap_lookupnet (“pcap_lookupnet
Subroutine” on page 995) subroutine, pcap_open_live (“pcap_open_live Subroutine” on page 999)

Base Operating System (BOS) Runtime Services (A-P) 987

subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 1001) subroutine, pcap_perror
(“pcap_perror Subroutine” on page 1002) subroutine, pcap_setfilter (“pcap_setfilter Subroutine” on page
1003) subroutine.

pcap_datalink Subroutine

Purpose
Obtains the link layer type (data link type) for the packet capture device.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_datalink(pcap_t * p);

Description
The pcap_datalink subroutine returns the link layer type of the packet capture device, for example,
IFT_ETHER. This is useful in determining the size of the datalink header at the beginning of each packet
that is read.

Parameters

p Points to the packet capture descriptor as returned by the pcap_open_live or the
pcap_open_offline subroutine.

Return Values
The pcap_datalink subroutine returns the values of standard libpcap link layer type from the <net/bpf.h>
header file.

Note: Only call this subroutine after successful calls to either the pcap_open_live or the
pcap_open_offline subroutine. Never call the pcap_datalink subroutine after a call to pcap_close
as unpredictable results will occur.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_open_live (“pcap_open_live
Subroutine” on page 999) subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 1001)
subroutine.

pcap_dispatch Subroutine

Purpose
Collects and processes packets.

Library
pcap Library (libpcap.a)

988 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <pcap.h>

int pcap_dispatch(pcap_t * p, int cnt, pcap_handler callback,
u_char * user);

Description
The pcap_dispatch subroutine reads and processes packets. This subroutine can be called to read and
process packets that are stored in a previously saved packet capture data file, known as the savefile. The
subroutine can also read and process packets that are being captured live.

Notice that the third parameter, callback, is of the type pcap_handler. This is a pointer to a user-provided
subroutine with three parameters. Define this user-provided subroutine as follows:

void user_routine(u_char *user, struct pcap_pkthdr *phdr, u_char *pdata)

The parameter, user, is the user parameter that is passed into the pcap_dispatch subroutine. The
parameter, phdr, is a pointer to the pcap_pkthdr structure which precedes each packet in the savefile.
The parameter, pdata, points to the packet data. This allows users to define their own handling of packet
capture data.

Parameters

callback Points to a user-provided routine that will be called for each packet read. The user is
responsible for providing a valid pointer, and that unpredictable results can occur if an
invalid pointer is supplied.
Note: The pcap_dump subroutine can also be specified as the callback parameter. If
this is done, the pcap_dump_open subroutine should be called first. The pointer to the
pcap_dumper_t struct returned from the pcap_dump_open subroutine should be used
as the user parameter to the pcap_dispatch subroutine. The following program
fragment illustrates this use:

pcap_dumper_t *pd
pcap_t * p;
int rc = 0;

pd = pcap_dump_open(p, "/tmp/savefile");

rc = pcap_dispatch(p, 0 , pcap_dump, (u_char *) pd);
cnt Specifies the maximum number of packets to process before returning. A cnt of -1

processes all the packets received in one buffer. A cnt of 0 processes all packets until
an error occurs, EOF is reached, or the read times out (when doing live reads and a
non-zero read timeout is specified).

p Points to a packet capture descriptor returned from the pcap_open_offline or the
pcap_open_live subroutine. This will be used to store packet data that is read in.

user Specifies the first argument to pass into the callback routine.

Return Values
Upon successful completion, the pcap_dispatch subroutine returns the number of packets read. If EOF is
reached in a savefile, zero is returned. If the pcap_dispatch subroutine is unsuccessful, -1 is returned. In
this case, the pcap_geterr or pcap_perror subroutine can be used to get the error text.

Related Information
The pcap_dump (“pcap_dump Subroutine” on page 990) subroutine, pcap_dump_close
(“pcap_dump_close Subroutine” on page 990) subroutine, pcap_dump_open (“pcap_dump_open
Subroutine” on page 991) subroutine, pcap_geterr (“pcap_geterr Subroutine” on page 993) subroutine,

Base Operating System (BOS) Runtime Services (A-P) 989

pcap_open_live (“pcap_open_live Subroutine” on page 999) subroutine, pcap_open_offline
(“pcap_open_offline Subroutine” on page 1001) subroutine, pcap_perror (“pcap_perror Subroutine” on
page 1002) subroutine.

pcap_dump Subroutine

Purpose
Writes packet capture data to a binary file.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

void pcap_dump(u_char * user, struct pcap_pkthdr * h, u_char * sp);

Description
The pcap_dump subroutine writes the packet capture data to a binary file. The packet header data,
contained in h, will be written to the the file pointed to by the user file pointer, followed by the packet data
from sp. Up to h->caplen bytes of sp will be written.

The file that user points to (where the pcap_dump subroutine writes to) must be open. To open the file
and retrieve its pointer, use the pcap_dump_open subroutine.

The calling arguments for the pcap_dump subroutine are suitable for use with pcap_dispatch subroutine
and the pcap_loop subroutine. To retrieve this data, the pcap_open_offline subroutine can be invoked
with the name of the file that user points to as its first parameter.

Parameters

h Contains the packet header data that will be written to the
packet capture date file, known as the savefile. This data
will be written ahead of the rest of the packet data.

sp Points to the packet data that is to be written to the
savefile.

user Specifies the savefile file pointer which is returned from
the pcap_dump_open subroutine. It should be cast to a
u_char * when passed in.

Related Information
The pcap_dispatch (“pcap_dispatch Subroutine” on page 988) subroutine, pcap_dump_close
(“pcap_dump_close Subroutine”) subroutine, pcap_dump_open (“pcap_dump_open Subroutine” on page
991) subroutine, pcap_loop (“pcap_loop Subroutine” on page 996) subroutine, pcap_open_live
(“pcap_open_live Subroutine” on page 999) subroutine, pcap_open_offline (“pcap_open_offline
Subroutine” on page 1001) subroutine.

pcap_dump_close Subroutine

Purpose
Closes a packet capture data file, know as a savefile.

990 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

void pcap_dump_close(pcap_dumper_t * p);

Description
The pcap_dump_close subroutine closes a packet capture data file, known as the savefile, that was
opened using the pcap_dump_open subroutine.

Parameters

p Points to a pcap_dumper_t, which is synonymous with a
FILE *, the file pointer of a savefile.

Related Information
The pcap_dump_open (“pcap_dump_open Subroutine”) subroutine.

pcap_dump_open Subroutine

Purpose
Opens or creates a file for writing packet capture data.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

pcap_dumper_t *pcap_dump_open(pcap_t * p, char * fname);

Description
The pcap_dump_open subroutine opens or creates the packet capture data file, known as the savefile.
This action is specified through the fname parameter. The subroutine then writes the required packet
capture file header to the file. The pcap_dump subroutine can then be called to write the packet capture
data associated with the packet capture descriptor, p, into this file. The pcap_dump_open subroutine
must be called before calling the pcap_dump subroutine.

Parameters

fname Specifies the name of the file to open. A ″-″ indicates that
standard output should be used instead of a file.

p Specifies a packet capture descriptor returned by the
pcap_open_offline or the pcap_open_live subroutine.

Base Operating System (BOS) Runtime Services (A-P) 991

Return Values
Upon successful completion, the pcap_dump_open subroutine returns a pointer to a the file that was
opened or created. This pointer is a pointer to a pcap_dumper_t, which is synonymous with FILE *. See
the pcap_dump (“pcap_dump Subroutine” on page 990), pcap_dispatch (“pcap_dispatch Subroutine” on
page 988), or the pcap_loop (“pcap_loop Subroutine” on page 996) subroutine for an example of how to
use pcap_dumper_t. If the pcap_dump_open subroutine is unsuccessful, Null is returned. Use the
pcap_geterr subroutine to obtain the specific error text.

Related Information
The pcap_dispatch (“pcap_dispatch Subroutine” on page 988) subroutine, pcap_dump (“pcap_dump
Subroutine” on page 990) subroutine, pcap_dump_close (“pcap_dump_close Subroutine” on page 990)
subroutine, pcap_geterr (“pcap_geterr Subroutine” on page 993) subroutine, pcap_loop (“pcap_loop
Subroutine” on page 996) subroutine, pcap_open_live (“pcap_open_live Subroutine” on page 999)
subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 1001) subroutine.

pcap_file Subroutine

Purpose
Obtains the file pointer to the savefile, a previously saved packed capture data file.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

FILE *pcap_file(pcap_t * p);

Description
The pcap_file subroutine returns the file pointer to the savefile. If there is no open savefile, 0 is returned.
This subroutine should be called after a successful call to the pcap_open_offline subroutine and before
any calls to the pcap_close subroutine.

Parameters

p Points to a packet capture descriptor as returned by the
pcap_open_offline subroutine.

Return Values
The pcap_file subroutine returns the file pointer to the savefile.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_open_offline
(“pcap_open_offline Subroutine” on page 1001) subroutine.

pcap_fileno Subroutine

Purpose
Obtains the descriptor for the packet capture device.

992 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_fileno(pcap_t * p);

Description
The pcap_fileno subroutine returns the descriptor for the packet capture device. This subroutine should
be called only after a successful call to the pcap_open_live subroutine and before any calls to the
pcap_close subroutine.

Parameters

p Points to a packet capture descriptor as returned by the
pcap_open_live subroutine.

Return Values
The pcap_fileno subroutine returns the descriptor for the packet capture device.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_open_live (“pcap_open_live
Subroutine” on page 999) subroutine.

pcap_geterr Subroutine

Purpose
Obtains the most recent pcap error message.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

char *pcap_geterr(pcap_t * p);

Description
The pcap_geterr subroutine returns the error text pertaining to the last pcap library error. This subroutine
is useful in obtaining error text from those subroutines that do not return an error string. Since the pointer
returned points to a memory space that will be reused by the pcap library subroutines, it is important to
copy this message into a new buffer if the error text needs to be saved.

Parameters

p Points to a packet capture descriptor as returned by the
pcap_open_live or the pcap_open_offline subroutine.

Base Operating System (BOS) Runtime Services (A-P) 993

Return Values
The pcap_geterr subroutine returns a pointer to the most recent error message from a pcap library
subroutine. If there were no previous error messages, a string with 0 as the first byte is returned.

Related Information
The pcap_open_live (“pcap_open_live Subroutine” on page 999) subroutine, pcap_open_offline
(“pcap_open_offline Subroutine” on page 1001) subroutine, pcap_perror (“pcap_perror Subroutine” on
page 1002) subroutine, pcap_strerror (“pcap_strerror Subroutine” on page 1005) subroutine.

pcap_is_swapped Subroutine

Purpose
Reports if the byte order of the previously saved packet capture data file, known as the savefile was
swapped.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_is_swapped(pcap_t * p);

Description
The pcap_is_swapped subroutine returns 1 (True) if the current savefile uses a different byte order than
the current system. This subroutine should be called after a successful call to the pcap_open_offline
subroutine and before any calls to the pcap_close subroutine.

Parameters

p Points to a packet capture descriptor as returned from the
pcap_open_offline subroutine.

Return Values

1 If the byte order of the savefile is different from that of the
current system.

0 If the byte order of the savefile is the same as that of the
current system.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_open_offline
(“pcap_open_offline Subroutine” on page 1001) subroutine.

pcap_lookupdev Subroutine

Purpose
Obtains the name of a network device on the system.

994 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

char *pcap_lookupdev(char * errbuf);

Description
The pcap_lookupdev subroutine gets a network device suitable for use with the pcap_open_live and the
pcap_lookupnet subroutines. If no interface can be found, or none are configured to be up, Null is
returned. In the case of multiple network devices attached to the system, the pcap_lookupdev subroutine
returns the first one it finds to be up, other than the loopback interface. (Loopback is always ignored.)

Parameters

errbuf Returns error text and is only set when the
pcap_lookupdev subroutine fails.

Return Values
Upon successful completion, the pcap_lookupdev subroutine returns a pointer to the name of a network
device attached to the system. If pcap_lookupdev subroutine is unsuccessful, Null is returned, and text
indicating the specific error is written to errbuf.

Related Information
The pcap_geterr (“pcap_geterr Subroutine” on page 993) subroutine, pcap_lookupnet (“pcap_lookupnet
Subroutine”) subroutine, pcap_open_live (“pcap_open_live Subroutine” on page 999) subroutine,
pcap_perror (“pcap_perror Subroutine” on page 1002) subroutine.

pcap_lookupnet Subroutine

Purpose
Returns the network address and subnet mask for a network device.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_lookupnet(char * device, bpf_u_int32 * netp, bpf_u_int32 * maskp,
char * errbuf);

Description
Use the pcap_lookupnet subroutine to determine the network address and subnet mask for the network
device, device.

Base Operating System (BOS) Runtime Services (A-P) 995

Parameters

device Specifies the name of the network device to use for the
network lookup, for example, en0.

errbuf Returns error text and is only set when the
pcap_lookupnet subroutine fails.

maskp Holds the subnet mask associated with device.
netp Holds the network address for the device.

Return Values
Upon successful completion, the pcap_lookupnet subroutine returns 0. If the pcap_lookupnet subroutine
is unsuccessful, -1 is returned, and errbuf is filled in with an appropriate error message.

Related Information
The pcap_compile (“pcap_compile Subroutine” on page 987) subroutine, pcap_geterr (“pcap_geterr
Subroutine” on page 993) subroutine, pcap_lookupdev (“pcap_lookupdev Subroutine” on page 994)
subroutine, pcap_perror (“pcap_perror Subroutine” on page 1002) subroutine.

pcap_loop Subroutine

Purpose
Collects and processes packets.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_loop(pcap_t * p, int cnt, pcap_handler callback,
u_char * user);

Description
The pcap_loop subroutine reads and processes packets. This subroutine can be called to read and
process packets that are stored in a previously saved packet capture data file, known as the savefile. The
subroutine can also read and process packets that are being captured live.

This subroutine is similar to pcap_dispatch subroutine except it continues to read packets until cnt
packets have been processed, EOF is reached (in the case of offline reading), or an error occurs. It does
not return when live read timeouts occur. That is, specifying a non-zero read timeout to the
pcap_open_live subroutine and then calling the pcap_loop subroutine allows the reception and
processing of any packets that arrive when the timeout occurs.

Notice that the third parameter, callback, is of the type pcap_handler. This is a pointer to a user-provided
subroutine with three parameters. Define this user-provided subroutine as follows:
void user_routine(u_char *user, struct pcap_pkthdr *phrd, u_char *pdata)

The parameter, user, will be the user parameter that was passed into the pcap_dispatch subroutine. The
parameter, phdr, is a pointer to the pcap_pkthdr structure, which precedes each packet in the savefile.
The parameter, pdata, points to the packet data. This allows users to define their own handling of their
filtered packets.

996 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

callback Points to a user-provided routine that will be called for each packet read. The user is
responsible for providing a valid pointer, and that unpredictable results can occur if an
invalid pointer is supplied.
Note: The pcap_dump subroutine can also be specified as the callback parameter. If
this is done, call the pcap_dump_open subroutine first. Then use the pointer to the
pcap_dumper_t struct returned from the pcap_dump_open subroutine as the user
parameter to the pcap_dispatch subroutine. The following program fragment illustrates
this use:

pcap_dumper_t *pd
pcap_t * p;
int rc = 0;

pd = pcap_dump_open(p, "/tmp/savefile");

rc = pcap_dispatch(p, 0 , pcap_dump, (u_char *) pd);
cnt Specifies the maximum number of packets to process before returning. A negative

value causes the pcap_loop subroutine to loop forever, or until EOF is reached or an
error occurs. A cnt of 0 processes all packets until an error occurs or EOF is reached.

p Points to a packet capture descriptor returned from the pcap_open_offline or the
pcap_open_live subroutine. This will be used to store packet data that is read in.

user Specifies the first argument to pass into the callback routine.

Return Values
Upon successful completion, the pcap_loop subroutine returns 0. 0 is also returned if EOF has been
reached in a savefile. If the pcap_loop subroutine is unsuccessful, -1 is returned. In this case, the
pcap_geterr subroutine or the pcap_perror subroutine can be used to get the error text.

Related Information
The pcap_dispatch (“pcap_dispatch Subroutine” on page 988) subroutine, pcap_dump (“pcap_dump
Subroutine” on page 990) subroutine, pcap_dump_close (“pcap_dump_close Subroutine” on page 990)
subroutine, pcap_dump_open (“pcap_dump_open Subroutine” on page 991) subroutine, pcap_geterr
(“pcap_geterr Subroutine” on page 993) subroutine, pcap_open_live (“pcap_open_live Subroutine” on
page 999) subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 1001) subroutine,
pcap_perror (“pcap_perror Subroutine” on page 1002) subroutine.

pcap_major_version Subroutine

Purpose
Obtains the major version number of the packet capture format used to write the savefile, a previously
saved packet capture data file.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_major_version(pcap_t * p);

Base Operating System (BOS) Runtime Services (A-P) 997

Description
The pcap_major_version subroutine returns the major version number of the packet capture format used
to write the savefile. If there is no open savefile, 0 is returned.

Note: This subroutine should be called only after a successful call to pcap_open_offline subroutine and
before any calls to the pcap_close subroutine.

Parameters

p Points to a packet capture descriptor as returned from
pcap_open_offline subroutine.

Return Values
The major version number of the packet capture format used to write the savefile.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_open_offline
(“pcap_open_offline Subroutine” on page 1001) subroutine.

pcap_minor_version Subroutine

Purpose
Obtains the minor version number of the packet capture format used to write the savefile.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_minor_version(pcap_t * p);

Description
The pcap_minor_version subroutine returns the minor version number of the packet capture format used
to write the savefile. This subroutine should only be called after a successful call to the
pcap_open_offline subroutine and before any calls to the pcap_close subroutine.

Parameters

p Points to a packet capture descriptor as returned from the
pcap_open_offline subroutine.

Return Values
The minor version number of the packet capture format used to write the savefile.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_open_offline
(“pcap_open_offline Subroutine” on page 1001) subroutine.

998 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pcap_next Subroutine

Purpose
Obtains the next packet from the packet capture device.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

u_char *pcap_next(pcap_t * p, struct pcap_pkthdr * h);

Description
The pcap_next subroutine returns a u_char pointer to the next packet from the packet capture device.
The packet capture device can be a network device or a savefile that contains packet capture data. The
data has the same format as used by tcpdump.

Parameters

h Points to the packet header of the packet that is returned.
This is filled in upon return by this routine.

p Points to the packet capture descriptor to use as returned
by the pcap_open_live or the pcap_open_offline
subroutine.

Return Values
Upon successful completion, the pcap_next subroutine returns a pointer to a buffer containing the next
packet and fills in the h, which points to the packet header of the returned packet. If the pcap_next
subroutine is unsuccessful, Null is returned.

Related Information
The pcap_dispatch (“pcap_dispatch Subroutine” on page 988) subroutine, pcap_dump (“pcap_dump
Subroutine” on page 990) subroutine, pcap_dump_close (“pcap_dump_close Subroutine” on page 990)
subroutine, pcap_dump_open (“pcap_dump_open Subroutine” on page 991) subroutine, pcap_loop
(“pcap_loop Subroutine” on page 996) subroutine, pcap_open_live (“pcap_open_live Subroutine”)
subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 1001) subroutine.

The tcpdump command.

pcap_open_live Subroutine

Purpose
Opens a network device for packet capture.

Library
pcap Library (libpcap.a)

Base Operating System (BOS) Runtime Services (A-P) 999

Syntax
#include <pcap.h>

pcap_t *pcap_open_live(const char * device, const int snaplen,
const int promisc, const int to_ms, char * ebuf);

Description
The pcap_open_live subroutine opens the specified network device for packet capture. The term ″live″ is
to indicate that a network device is being opened, as opposed to a file that contains packet capture data.
This subroutine must be called before any packet capturing can occur. All other routines dealing with
packet capture require the packet capture descriptor that is created and initialized with this routine. See
the pcap_open_offline (“pcap_open_offline Subroutine” on page 1001) subroutine for more details on
opening a previously saved file that contains packet capture data.

Parameters

device Specifies a string that contains the name of the network device to open for packet
capture, for example, en0.

ebuf Returns error text and is only set when the pcap_open_live subroutine fails.
promisc Specifies that the device is to be put into promiscuous mode. A value of 1 (True) turns

promiscuous mode on. If this parameter is 0 (False), the device will remain unchanged.
In this case, if it has already been set to promiscuous mode (for some other reason), it
will remain in this mode.

snaplen Specifies the maximum number of bytes to capture per packet.
to_ms Specifies the read timeout in milliseconds.

Return Values
Upon successful completion, the pcap_open_live subroutine will return a pointer to the packet capture
descriptor that was created. If the pcap_open_live subroutine is unsuccessful, Null is returned, and text
indicating the specific error is written into the ebuf buffer.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_compile (“pcap_compile
Subroutine” on page 987) subroutine, pcap_datalink (“pcap_datalink Subroutine” on page 988)
subroutine, pcap_dispatch (“pcap_dispatch Subroutine” on page 988) subroutine, pcap_dump
(“pcap_dump Subroutine” on page 990) subroutine, pcap_dump_open (“pcap_dump_open Subroutine” on
page 991) subroutine, pcap_geterr (“pcap_geterr Subroutine” on page 993) subroutine, pcap_loop
(“pcap_loop Subroutine” on page 996) subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on
page 1001) subroutine, pcap_perror (“pcap_perror Subroutine” on page 1002) subroutine, pcap_setfilter
(“pcap_setfilter Subroutine” on page 1003) subroutine, pcap_snapshot (“pcap_setfilter Subroutine” on
page 1003) subroutine, pcap_stats (“pcap_stats Subroutine” on page 1004) subroutine.

pcap_open_live_sb Subroutine

Purpose
Opens a network device for packet capture, allowing you to specify the buffer length of a Berkeley Packet
Filter (BPF).

Library
pcap Library (libpcap.a)

1000 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <pcap.h>
pcap_t * pcap_open_live_sb(const char *device, int snaplen,
int promisc, int to_ms, char *ebuf, int buflen)

Description
The pcap_open_live_sb subroutine opens the specified network device for packet capture. This
subroutine allows you to specify the buffer size for the BPF to use in capturing the packets. You must run
this subroutine before any packet capturing can occur. All other subroutines dealing with packet capture
require the packet capture descriptor that is created and initialized with this subroutine.

To opening a previously saved file that contains packet capture data, use the pcap_open_offline
subroutine.

Parameters

buf_len Specifies the buffer size that the BPF is to use. If the system cannot provide
memory of this size, the system will choose a smaller size.

device Specifies a string that contains the name of the network device to open for packet
capture, for example, en0.

ebuf Returns error text and is only set when the pcap_open_live subroutine fails.
promisc Specifies that the device is to be put into the promiscuous mode. A value of 1

(True) turns the promiscuous mode on. If this parameter is zero (False), the
device remains unchanged. In this case, if it has already been set to the
promiscuous mode (for some other reason), it remains in this mode.

snaplen Specifies the maximum number of bytes to capture per packet.
to_ms Specifies the read timeout in milliseconds.

Return Values
If successful, the pcap_open_live_sb subroutine returns a pointer to the packet capture descriptor that is
created. If the pcap_open_live_sb subroutine is unsuccessful, NULL is returned, and the text indicating
the specific error is written into the ebuf buffer.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_dispatch (“pcap_dispatch
Subroutine” on page 988) subroutine, pcap_file (“pcap_file Subroutine” on page 992) subroutine,
pcap_fileno (“pcap_fileno Subroutine” on page 992) subroutine, pcap_geterr (“pcap_geterr Subroutine”
on page 993) subroutine, pcap_is_swapped (“pcap_is_swapped Subroutine” on page 994) subroutine,
pcap_loop (“pcap_loop Subroutine” on page 996) subroutine, pcap_major_version (“pcap_major_version
Subroutine” on page 997) subroutine, pcap_minor_version (“pcap_minor_version Subroutine” on page
998) subroutine, pcap_next (“pcap_next Subroutine” on page 999) subroutine, pcap_open_live
(“pcap_open_live Subroutine” on page 999) subroutine, and pcap_open_offline (“pcap_open_offline
Subroutine”) subroutine.

pcap_open_offline Subroutine

Purpose
Opens a previously saved file containing packet capture data.

Library
pcap Library (libpcap.a)

Base Operating System (BOS) Runtime Services (A-P) 1001

Syntax
#include <pcap.h>

pcap_t *pcap_open_offline(char * fname, char * ebuf);

Description
The pcap_open_offline subroutine opens a previously saved packet capture data file, known as the
savefile. This subroutine creates and initializes a packet capture (pcap) descriptor and opens the specified
savefile containing the packet capture data for reading.

This subroutine should be called before any other related routines that require a packet capture descriptor
for offline packet processing. See the pcap_open_live (“pcap_open_live Subroutine” on page 999)
subroutine for more details on live packet capture.

Note: The format of the savefile is expected to be the same as the format used by the tcpdump
command.

Parameters

ebuf Returns error text and is only set when the
pcap_open_offline subroutine fails.

fname Specifies the name of the file to open. A hyphen (-)
passed as the fname parameter indicates that stdin should
be used as the file to open.

Return Values
Upon successful completion, the pcap_open_offline subroutine will return a pointer to the newly created
packet capture descriptor. If the pcap_open_offline subroutine is unsuccessful, Null is returned, and text
indicating the specific error is written into the ebuf buffer.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_dispatch (“pcap_dispatch
Subroutine” on page 988) subroutine, pcap_file (“pcap_file Subroutine” on page 992) subroutine,
pcap_fileno (“pcap_fileno Subroutine” on page 992) subroutine, pcap_geterr (“pcap_geterr Subroutine”
on page 993) subroutine, pcap_is_swapped (“pcap_is_swapped Subroutine” on page 994) subroutine,
pcap_loop (“pcap_loop Subroutine” on page 996) subroutine, pcap_major_version (“pcap_major_version
Subroutine” on page 997) subroutine, pcap_minor_version (“pcap_minor_version Subroutine” on page
998) subroutine, pcap_next (“pcap_next Subroutine” on page 999) subroutine, pcap_open_live
(“pcap_open_live Subroutine” on page 999) subroutine.

The tcpdump command.

pcap_perror Subroutine

Purpose
Prints the passed-in prefix, followed by the most recent error text.

Library
pcap Library (libpcap.a)

1002 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <pcap.h>

void pcap_perror(pcap_t * p, char * prefix);

Description
The pcap_perror subroutine prints the text of the last pcap library error to stderr, prefixed by prefix. If
there were no previous errors, only prefix is printed.

Parameters

p Points to a packet capture descriptor as returned by the
pcap_open_live subroutine or the pcap_open_offline
subroutine.

prefix Specifies the string that is to be printed before the stored
error message.

Related Information
The pcap_geterr (“pcap_geterr Subroutine” on page 993) subroutine, pcap_open_live (“pcap_open_live
Subroutine” on page 999) subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 1001)
subroutine, pcap_strerror (“pcap_strerror Subroutine” on page 1005) subroutine.

pcap_setfilter Subroutine

Purpose
Loads a filter program into a packet capture device.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_setfilter(pcap_t * p, struct bpf_program * fp);

Description
The pcap_setfilter subroutine is used to load a filter program into the packet capture device. This causes
the capture of the packets defined by the filter to begin.

Parameters

fp Points to a filter program as returned from the
pcap_compile subroutine.

p Points to a packet capture descriptor returned from the
pcap_open_offline or the pcap_open_live subroutine.

Return Values
Upon successful completion, the pcap_setfilter subroutine returns 0. If the pcap_setfilter subroutine is
unsuccessful, -1 is returned. In this case, the pcap_geterr subroutine can be used to get the error text,
and the pcap_perror subroutine can be used to display the text.

Base Operating System (BOS) Runtime Services (A-P) 1003

Related Information
The pcap_compile (“pcap_compile Subroutine” on page 987) subroutine, pcap_geterr (“pcap_geterr
Subroutine” on page 993) subroutine, pcap_open_live (“pcap_open_live Subroutine” on page 999)
subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 1001) subroutine, pcap_perror
(“pcap_perror Subroutine” on page 1002) subroutine.

pcap_snapshot Subroutine

Purpose
Obtains the number of bytes that will be saved for each packet captured.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

int pcap_snapshot(pcap_t * p);

Description
The pcap_snapshot subroutine returns the snapshot length, which is the number of bytes to save for
each packet captured.

Note: This subroutine should only be called after successful calls to either the pcap_open_live
subroutine or pcap_open_offline subroutine. It should not be called after a call to the pcap_close
subroutine.

Parameters

p Points to the packet capture descriptor as returned by the
pcap_open_live or the pcap_open_offline subroutine.

Return Values
The pcap_snapshot subroutine returns the snapshot length.

Related Information
The pcap_close (“pcap_close Subroutine” on page 986) subroutine, pcap_open_live (“pcap_open_live
Subroutine” on page 999) subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 1001)
subroutine.

pcap_stats Subroutine

Purpose
Obtains packet capture statistics.

Library
pcap Library (libpcap.a)

1004 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax

#include <pcap.h>

int pcap_stats (pcap_t *p, struct pcap_stat *ps);

Description
The pcap_stats subroutine fills in a pcap_stat struct. The values represent packet statistics from the start
of the run to the time of the call. Statistics for both packets that are received by the filter and packets that
are dropped are stored inside a pcap_stat struct. This subroutine is for use when a packet capture device
is opened using the pcap_open_live subroutine.

Parameters

p Points to a packet capture descriptor as returned by the
pcap_open_live subroutine.

ps Points to the pcap_stat struct that will be filled in with the
packet capture statistics.

Return Values
On successful completion, the pcap_stats subroutine fills in ps and returns 0. If the pcap_stats
subroutine is unsuccessful, -1 is returned. In this case, the error text can be obtained with the
pcap_perror subroutine or the pcap_geterr subroutine.

Related Information
The pcap_geterr (“pcap_geterr Subroutine” on page 993) subroutine, pcap_open_live (“pcap_open_live
Subroutine” on page 999) subroutine, pcap_perror (“pcap_perror Subroutine” on page 1002) subroutine.

pcap_strerror Subroutine

Purpose
Obtains the error message indexed by error.

Library
pcap Library (libpcap.a)

Syntax
#include <pcap.h>

char *pcap_strerror(int error);

Description
Lookup the error message indexed by error. The possible values of error correspond to the values of the
errno global variable. This function is equivalent to the strerror subroutine.

Parameters

error Specifies the key to use in obtaining the corresponding
error message. The error message is taken from the
system’s sys_errlist.

Base Operating System (BOS) Runtime Services (A-P) 1005

Return Values
The pcap_strerror subroutine returns the appropriate error message from the system error list.

Related Information
The pcap_geterr (“pcap_geterr Subroutine” on page 993) subroutine, pcap_perror (“pcap_perror
Subroutine” on page 1002) subroutine, strerror subroutine.

pclose Subroutine

Purpose
Closes a pipe to a process.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
int pclose (Stream)
FILE *Stream;

Description
The pclose subroutine closes a pipe between the calling program and a shell command to be executed.
Use the pclose subroutine to close any stream you opened with the popen subroutine. The pclose
subroutine waits for the associated process to end, and then returns the exit status of the command.

Attention: If the original processes and the popen process are reading or writing a common file, neither
the popen subroutine nor the pclose subroutine should use buffered I/O. If they do, the results are
unpredictable.

Avoid problems with an output filter by flushing the buffer with the fflush subroutine.

Parameter

Stream Specifies the FILE pointer of an opened pipe.

Return Values
The pclose subroutine returns a value of -1 if the Stream parameter is not associated with a popen
command or if the status of the child process could not be obtained. Otherwise, the value of the
termination status of the command language interpreter is returned; this will be 127 if the command
language interpreter cannot be executed.

Error Codes
If the application has:

v Called the wait subroutine,

v Called the waitpid subroutine with a process ID less than or equal to zero or equal to the process ID of
the command line interpreter,

v Masked the SIGCHILD signal, or

v Called any other function that could perform one of the steps above, and

1006 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

one of these calls caused the termination status to be unavailable to the pclose subroutine, a value of -1
is returned and the errno global variable is set to ECHILD.

Related Information
The fclose or fflush (“fclose or fflush Subroutine” on page 256) subroutine, fopen, freopen, or fdopen
(“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290) subroutine, pipe (“pipe
Subroutine” on page 1035) subroutine, popen (“popen Subroutine” on page 1154) subroutine, wait,
waitpid, or wait3 subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

perfstat_cpu Subroutine

Purpose
Retrieves individual logical processor usage statistics.

Library
perfstat library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_cpu (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_cpu_t * userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_cpu subroutine retrieves one or more individual processor usage statistics. The same
function can be used to retrieve the number of available sets of logical processor statistics.

To get one or more sets of processor usage metrics, set the name parameter to the name of the first
processor for which statistics are desired, and set the desired_number parameter. To start from the first
processor, set the name parameter to ″″. The userbuff parameter must always point to a memory area big
enough to contain the desired number of perfstat_cpu_t structures that will be copied by this function.
Upon return, the name parameter will be set to either the name of the next processor, or to ″″ after all
structures have been copied.

To retrieve the number of available sets of processor usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of
available sets.

This number represents the number of logical processors for which statistics are available. In a dynamic
LPAR environment, this number is the highest logical index of an online processor since the last reboot.
See the Perfstat API article in Performance Tools and APIs Technical Reference for more information on
the perfstat_cpu subroutine and DLPAR.

In AIX 5.3 and later, SPLPAR environments virtualize physical processors. To help accurately measure the
resource use in a virtualized environment, the POWER5 family of processors implements a register PURR
(Processor Utilization Resource Register) for each core. The PURR is a 64-bit counter with the same units
as the timebase register and tracks the real physical processor resource used on a per-thread or

Base Operating System (BOS) Runtime Services (A-P) 1007

per-partition level. The PURR registers are not compatible with previous global counters (user, system, idle
and wait fields) returned by the perfstat_cpu and the perfstat_cpu_total subroutines. All data consumers
requiring processor utilization must be modified to support PURR-based computations as shown in the
example for perfstat_partition_total() interface under Perfstat API programming.

Parameters

name Contains either ″″, FIRST_CPU, or a name identifying the first logical processor for which
statistics are desired. Logical processor names are:

cpu0, cpu1,...

To provide binary compatibility with previous versions of the library, names like proc0, proc1, ...
will still be accepted. These names will be treated as if their corresponding cpuN name was used,
but the names returned in the structures will always be names starting with cpu.

userbuff Points to the memory area that is to be filled with one or more perfstat_cpu_t structures.
sizeof_struct Specifies the size of the perfstat_cpu_t structure: sizeof(perfstat_cpu_t).
desired_number Specifies the number of perfstat_cpu_t structures to copy to userbuff.

Return Values
Unless the perfstat_cpu subroutine is used to retrieve the number of available structures, the number of
structures filled is returned upon successful completion. If unsuccessful, a value of -1 is returned and the
errno global variable is set.

Error Codes
The perfstat_cpu subroutine is unsuccessful if the following is true:

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
The “perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu_total Subroutine,” “perfstat_disk
Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on page 1012, “perfstat_diskpath Subroutine”
on page 1013, “perfstat_disk_total Subroutine” on page 1015, “perfstat_memory_total Subroutine” on page
1019, “perfstat_netinterface Subroutine” on page 1022, “perfstat_netinterface_total Subroutine” on page
1023, “perfstat_pagingspace Subroutine” on page 1024, “perfstat_partial_reset Subroutine” on page 1026,
“perfstat_protocol Subroutine” on page 1029, and “perfstat_reset Subroutine” on page 1030.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_cpu_total Subroutine

Purpose
Retrieves global processor usage statistics.

Library
Perfstat library (libperfstat.a)

1008 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <libperfstat.h>

int perfstat_cpu_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_cpu_total_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_cpu_total subroutine returns global processor usage statistics in a perfstat_cpu_total_t
structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the
userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

The perfstat_cpu_total subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

In AIX 5.3 and later, SPLPAR environments virtualize physical processors. To help accurately measure the
resource used in a virtualized environment, the POWER5 family of processors implements a register
PURR (Processor Utilization Resource Register) for each core. The PURR is a 64-bit counter with the
same units as the timebase register and tracks the real physical processor resource used on a per-thread
or per-partition level. The PURR registers are not compatible with previous global counters (user, system,
idle and wait fields) returned by the perfstat_cpu and the perfstat_cpu_total subroutines. All data
consumers requiring processor use must be modified to support PURR-based computations as shown in
the example for the perfstat_partition_total interface under Perfstat API programming.

Parameters

name Must set to NULL.
userbuff Points to the memory area that is to be filled with the perfstat_cpu_total_t structure.
sizeof_struct Specifies the size of the perfstat_cpu_total_t structure: sizeof(perfstat_cpu_total_t).
desired_number Must set to 1.

Return Values
Upon successful completion, the number of structures filled is returned. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes
The perfstat_cpu_total subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid.
EFAULT Insufficient memory.
ENOMEM The string default length is too short.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1009

Related Information
“perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu Subroutine” on page 1007, “perfstat_disk
Subroutine,” “perfstat_diskadapter Subroutine” on page 1012, “perfstat_diskpath Subroutine” on page
1013, “perfstat_disk_total Subroutine” on page 1015, “perfstat_memory_total Subroutine” on page 1019,
“perfstat_netinterface Subroutine” on page 1022, “perfstat_netinterface_total Subroutine” on page 1023,
“perfstat_pagingspace Subroutine” on page 1024, “perfstat_partial_reset Subroutine” on page 1026, and
“perfstat_protocol Subroutine” on page 1029.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_disk Subroutine

Purpose
Retrieves individual disk usage statistics.

Library
Perfstat library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_disk (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_disk_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_disk subroutine retrieves one or more individual disk usage statistics. The same function can
also be used to retrieve the number of available sets of disk statistics.

To get one or more sets of disk usage metrics, set the name parameter to the name of the first disk for
which statistics are desired, and set the desired_number parameter. To start from the first disk, specify ″″
or FIRST_DISK as the name. The userbuff parameter must always point to a memory area big enough to
contain the desired number of perfstat_disk_t structures that will be copied by this function. Upon return,
the name parameter will be set to either the name of the next disk, or to ″″ after all structures have been
copied.

To retrieve the number of available sets of disk usage metrics, set the name and userbuff parameters to
NULL, and the desired_number parameter to 0. The returned value will be the number of available sets.

The perfstat_disk subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

To improve system performance, the collection of disk input and output statistics is disabled by default in
current releases of AIX.

To enable the collection of this data, run:
chdev -l sys0 -a iostat=true

To display the current setting, run:

1010 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

lsattr -E -l sys0 -a iostat

Another way to enable the collection of the disk input and output statistics is to use the sys_parm API and
the SYSP_V_IOSTRUN flag:

To get the current status of the flag, run the following:
struct vario var;
sys_parm(SYSP_GET,SYSP_V_IOSTRUN, &var);

To set the flag, run the following:
struct vario var;
var.v.v_iostrun.value=1; /* 1 to set & 0 to unset */
sys_parm(SYSP_SET,SYSP_V_IOSTRUN, &var);

Parameters

name Contains either ″″, FIRST_DISK, or a name identifying the first disk for which statistics are
desired. For example:

hdisk0, hdisk1, ...
userbuff Points to the memory area to be filled with one or more perfstat_disk_t structures.
sizeof_struct Specifies the size of the perfstat_disk_t structure: sizeof(perfstat_disk_t)
desired_number Specifies the number of perfstat_disk_t structures to copy to userbuff.

Return Values
Unless the function is used to retrieve the number of available structures, the number of structures filled is
returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno global
variable is set.

Error Codes
The perfstat_disk subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid.
EFAULT Insufficient memory.
ENOMEM The string default length is too short.
ENOMSG Cannot access the dictionary.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total
Subroutine” on page 1008, “perfstat_diskadapter Subroutine” on page 1012, “perfstat_diskpath Subroutine”
on page 1013, “perfstat_disk_total Subroutine” on page 1015, “perfstat_memory_total Subroutine” on page
1019, “perfstat_netinterface Subroutine” on page 1022, “perfstat_netinterface_total Subroutine” on page
1023, “perfstat_pagingspace Subroutine” on page 1024, “perfstat_partial_reset Subroutine” on page 1026,
“perfstat_protocol Subroutine” on page 1029, and “perfstat_reset Subroutine” on page 1030.

Perfstat API in Performance Tools and APIs Technical Reference.

Base Operating System (BOS) Runtime Services (A-P) 1011

perfstat_diskadapter Subroutine

Purpose
Retrieves individual disk adapter usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_diskadapter (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_diskadapter_t *userbuff;

size_t sizeof_struct;
int desired_number;

Description
The perfstat_diskadapter subroutine retrieves one or more individual disk adapter usage statistics. The
same function can be used to retrieve the number of available sets of adapter statistics.

To get one or more sets of disk adapter usage metrics, set the name parameter to the name of the first
disk adapter for which statistics are desired, and set the desired_number parameter. To start from the first
disk adapter, set the name parameter to ″″ or FIRST_DISKADAPTER. The userbuff parameter must point
to a memory area big enough to contain the desired number of perfstat_diskadapter_t structures which
will be copied by this function. Upon return, the name parameter will be set to either the name of the next
disk adapter, or to ″″ if all structures have been copied.

To retrieve the number of available sets of disk adapter usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of
available sets.

The perfstat_diskadapter subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

To improve system performance, the collection of disk input/output statistics is disabled by default in
current releases of AIX.

To enable the collection of this data, use:
chdev -l sys0 -a iostat=true

To display the current setting, use:
lsattr -E -l sys0 -a iostat

Another way to enable the collection of the disk input/output statistics is to use the sys_parm API and the
SYSP_V_IOSTRUN flag:

To get the current status of the flag:
struct vario var;
sys_parm(SYSP_GET,SYSP_V_IOSTRUN, &var);

To set the flag:

1012 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

struct vario var;
var.v.v_iostrun.value=1; /* 1 to set & 0 to unset */
sys_parm(SYSP_SET,SYSP_V_IOSTRUN, &var);

Parameters

name Contains either ″″, FIRST_DISKADAPTER, or a name identifying the first disk adapter for
which statistics are desired. For example:

scsi0, scsi1, ...
userbuff Points to the memory area to be filled with one or more perfstat_diskadapter_t

structures.
sizeof_struct Specifies the size of the perfstat_diskadapter_t structure:

sizeof(perfstat_diskadapter_t)
desired_number Specifies the number of perfstat_diskadapter_t structures to copy to userbuff.

Return Values
Unless the function is used to retrieve the number of available structures, the number of structures filled is
returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno global
variable is set.

Error Codes
The perfstat_diskadapter subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid.
EFAULT Insufficient memory.
ENOMEM The string default length is too short.
ENOMSG Cannot access the dictionary.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total
Subroutine” on page 1008, “perfstat_disk Subroutine” on page 1010, “perfstat_diskpath Subroutine,”
“perfstat_disk_total Subroutine” on page 1015, “perfstat_memory_total Subroutine” on page 1019,
“perfstat_netinterface Subroutine” on page 1022, “perfstat_netinterface_total Subroutine” on page 1023,
“perfstat_pagingspace Subroutine” on page 1024, “perfstat_partial_reset Subroutine” on page 1026,
“perfstat_protocol Subroutine” on page 1029, and “perfstat_reset Subroutine” on page 1030.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_diskpath Subroutine

Purpose
Retrieves individual disk path usage statistics.

Library
Perfstat library (libperfstat.a)

Base Operating System (BOS) Runtime Services (A-P) 1013

Syntax
#include <libperfstat.h>

int perfstat_diskpath (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_diskpath_t *userbuff
size_t sizeof_struct;
int desired_number;

Description
The perfstat_diskpath subroutine retrieves one or more individual disk path usage statistics. The same
function can also be used to retrieve the number of available sets of disk path statistics.

To get one or more sets of disk path usage metrics, set the name parameter to the name of the first disk
path for which statistics are desired, and set the desired_number parameter. To start from the first disk
path, specify ″″ or FIRST_DISKPATH as the name parameter. To start from the first path of a specific disk,
set the name parameter to the diskname. The userbuff parameter must always point to a memory area big
enough to contain the desired number of perfstat_diskpath_t structures that will be copied by this
function. Upon return, the name parameter will be set to either the name of the next disk path, or to ″″
after all structures have been copied.

To retrieve the number of available sets of disk path usage metrics, set the name and userbuff parameters
to NULL, and the desired_number parameter to 0. The number of available sets is returned.

The perfstat_diskpath subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

To improve system performance, the collection of disk input and output statistics is disabled by default in
current releases of AIX.

To enable the collection of this data, run:
chdev -l sys0 -a iostat=true

To display the current setting, run:
lsattr -E -l sys0 -a iostat

Another way to enable the collection of the disk input and output statistics is to use the sys_parm API and
the SYSP_V_IOSTRUN flag:

To get the current status of the flag, run the following:
struct vario var;
sys_parm(SYSP_GET,SYSP_V_IOSTRUN, &var);

To set the flag, run the following:
struct vario var;
var.v.v_iostrun.value=1; /* 1 to set & 0 to unset */
sys_parm(SYSP_SET,SYSP_V_IOSTRUN, &var);

Parameters

name Contains either ″″, FIRST_DISKPATH, a name identifying the first disk path for which statistics
are desired, or a name identifying a disk for which path statistics are desired. For example:

hdisk0_Path2, hdisk1_Path0, ... or hdisk5 (equivalent to hdisk5_Pathfirstpath)
userbuff Points to the memory area to be filled with one or more perfstat_diskpath_t structures.

1014 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

sizeof_struct Specifies the size of the perfstat_diskpath_t structure: sizeof(perfstat_diskpath_t)
desired_number Specifies the number of perfstat_diskpath_t structures to copy to userbuff.

Return Values
Unless the function is used to retrieve the number of available structures, the number of structures filled is
returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno global
variable is set.

Error Codes
The perfstat_diskpath subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid.
EFAULT Insufficient memory.
ENOMEM The string default length is too short.
ENOMSG Cannot access the dictionary.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total
Subroutine” on page 1008, “perfstat_disk Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on
page 1012, “perfstat_diskpath Subroutine” on page 1013, “perfstat_disk_total Subroutine,”
“perfstat_memory_total Subroutine” on page 1019, “perfstat_netinterface Subroutine” on page 1022,
“perfstat_netinterface_total Subroutine” on page 1023, “perfstat_pagingspace Subroutine” on page 1024,
“perfstat_partial_reset Subroutine” on page 1026, “perfstat_protocol Subroutine” on page 1029, and
“perfstat_reset Subroutine” on page 1030.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_disk_total Subroutine

Purpose
Retrieves global disk usage statistics.

Library
Perfstat library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_disk_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_disk_total_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_disk_total subroutine returns global disk usage statistics in a perfstat_disk_total_t
structure.

Base Operating System (BOS) Runtime Services (A-P) 1015

To get statistics that are global to the whole system, the name parameter must be set to NULL, the
userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

The perfstat_disk_total subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

To improve system performance, the collection of disk input and output statistics is disabled by default in
current releases of AIX.

To enable the collection of this data, run:
chdev -l sys0 -a iostat=true

To display the current setting, run:
lsattr -E -l sys0 -a iostat

Another way to enable the collection of the disk input and output statistics is to use the sys_parm API and
the SYSP_V_IOSTRUN flag:

To get the current status of the flag, run the following:
struct vario var;
sys_parm(SYSP_GET,SYSP_V_IOSTRUN, &var);

To set the flag, run the following:
struct vario var;
var.v.v_iostrun.value=1; /* 1 to set & 0 to unset */
sys_parm(SYSP_SET,SYSP_V_IOSTRUN, &var);

Parameters

name Must set to NULL.
userbuff Points to the memory area that is to be filled with one or more perfstat_disk_total_t

structures.
sizeof_struct Specifies the size of the perfstat_disk_total_t structure: sizeof(perfstat_disk_total_t)
desired_number Must set to 1.

Return Values
Upon successful completion, the number of structures that could be filled is returned. This is always 1. If
unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_disk_total subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid.
EFAULT Insufficient memory.
ENOMEM The string default length is too short.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

1016 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
“perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total
Subroutine” on page 1008, “perfstat_disk Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on
page 1012, “perfstat_diskpath Subroutine” on page 1013, “perfstat_memory_total Subroutine” on page
1019, “perfstat_netinterface Subroutine” on page 1022, “perfstat_netinterface_total Subroutine” on page
1023, “perfstat_pagingspace Subroutine” on page 1024, “perfstat_partial_reset Subroutine” on page 1026,
“perfstat_protocol Subroutine” on page 1029, and “perfstat_reset Subroutine” on page 1030.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_logicalvolume Subroutine

Purpose
Retrieves logical volume related metrics

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_logicalvolume (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_logicalvolume_t * userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_logicalvolume subroutine retrieves one or more logical volume statistics. It can also be
used to retrieve the number of available logical volume.

To get one or more sets of logical volume metrics, set the name parameter to the name of the first logical
volume for which the statistics are to be collected, and set the desired_number parameter. To start from
the first logical volume, specify the quotation marks (“”) or FIRST_LOGICALVOLUME as the name. The
userbuff parameter must always point to the memory area that is big enough to contain the number of
perfstat_logicalvolume_t structures that this subroutine is to copy. Upon return, the name parameter is
set to either the name of the next logical volume, or to “” after all of the structures are copied.

To retrieve the number of available sets of logical volume metrics, set the name parameter and the
userbuff parameter to the value of null, and the desired_number parameter to the value of zero. The
returned value is the number of available logical volumes.

Note: The perfstat_config must be called to enable the logical volume statistics collection. The
perfstat_logicalvolume subroutine is not supported inside workload partitions.

Parameters

name Contains the quotation marks (“”), FIRST_LOGICALVOLUME, or the name indicating the
logical volume for which the statistics is to be retrieved

userbuff Points to the memory that is to be filled with the perfstat_logicalvolume_t structure
sizeof_struct Specifies the size of the perfstat_logicalvolume_t structure
desired_number Specifies the number of different logical volume statistics to be collected

Base Operating System (BOS) Runtime Services (A-P) 1017

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

Error Codes
The perfstat_logicalvolume subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid
EFAULT The memory is not sufficient

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
The “perfstat_volumegroup Subroutine” on page 1033.

Perfstat API in AIX 5L Version 5.3 Performance Tools Guide and Reference.

perfstat_memory_page Subroutine

Purpose
Retrieves use statistics for multiple page size

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_memory_page (psize, userbuff, sizeof_userbuff, desired_number)
perfstat_psize_t *psize;
perfstat_memory_total_wpar_t *userbuff;
size_t sizeof_userbuff;
int desired_number;

Description
The perfstat_memory_page subroutine returns the statistics corresponding to the different page sizes.

To get the number of supported page sizes, the psize parameter and the userbuff parameter must be
specified as NULL, and the value of the desired_number parameter must be set to zero.

To get the statistics for the supported page sizes, specify the page size in the psize parameter. The
desired_number parameter specifies the number of different page size statistics to be collected. The
userbuff parameter must be allocated.

Parameters

psize Specifies the page size for which the statistics are to be collected.
userbuff Points to the memory area that is to be filled with the perfstat_memory_page_t structure.
sizeof_userbuff Specifies the size of the perfstat_memory_page_t structure.

1018 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

desired_number Specifies the number of different page size statistics to be collected.

Return Values
Upon successful completion, the number of structures filled is returned. The returned value is one.

If unsuccessful, a value of -1 is returned, and the errno global variable is set.

Error Codes
The perfstat_memory_page subroutine is unsuccessful if the following is true:

EINVAL One of the parameters is not valid

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
The “perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu_total Subroutine” on page 1008,
“perfstat_disk Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on page 1012,
“perfstat_diskpath Subroutine” on page 1013, “perfstat_disk_total Subroutine” on page 1015,
“perfstat_memory_total Subroutine,” “perfstat_netinterface Subroutine” on page 1022,
“perfstat_netinterface_total Subroutine” on page 1023, “perfstat_pagingspace Subroutine” on page 1024,
“perfstat_partial_reset Subroutine” on page 1026, “perfstat_protocol Subroutine” on page 1029, and
“perfstat_reset Subroutine” on page 1030.

Perfstat API in AIX 5L Version 5.3 Performance Tools Guide and Reference.

perfstat_memory_total Subroutine

Purpose
Retrieves global memory usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_memory_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_memory_total_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_memory_total subroutine returns global memory usage statistics in a
perfstat_memory_total_t structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the
userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

Base Operating System (BOS) Runtime Services (A-P) 1019

Parameters

name Must be set to NULL.
userbuff Points to the memory area that is to be filled with the perfstat_memory_total_t structure.
sizeof_struct Specifies the size of the perfstat_memory_total_t structure:

sizeof(perfstat_memory_total_t).
desired_number Must be set to 1.

Return Values
Upon successful completion, the number of structures filled is returned. This will always be 1. If
unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_memory_total subroutine is unsuccessful if the following is true:

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_netbuffer Subroutine,” “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total Subroutine” on
page 1008, “perfstat_disk Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on page 1012,
“perfstat_diskpath Subroutine” on page 1013, “perfstat_disk_total Subroutine” on page 1015,
“perfstat_netinterface Subroutine” on page 1022, “perfstat_netinterface_total Subroutine” on page 1023,
“perfstat_pagingspace Subroutine” on page 1024, “perfstat_partial_reset Subroutine” on page 1026, and
“perfstat_protocol Subroutine” on page 1029.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_netbuffer Subroutine

Purpose
Retrieves network buffer allocation usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_netbuffer (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_netbuffer_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_netbuffer subroutine retrieves statistics about network buffer allocations for each possible
buffer size. Returned counts are the sum of allocation statistics for all processors (kernel statistics are kept
per size per processor) corresponding to a buffer size.

1020 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

To get one or more sets of network buffer allocation usage metrics, set the name parameter to the network
buffer size for which statistics are desired, and set the desired_number parameter. To start from the first
network buffer size, specify ″″ or FIRST_NETBUFFER in the name parameter. The userbuff parameter
must point to a memory area big enough to contain the desired number of perfstat_netbuffer_t structures
which will be copied by this function.

Upon return, the name parameter will be set to either the ASCII size of the next buffer type, or to ″″ if all
structures have been copied. Only the statistics for network buffer sizes that have been used are returned.
Consequently, there can be holes in the returned array of statistics, and the structure corresponding to
allocations of size 4096 may directly follow the structure for size 256 (in case 512, 1024 and 2048 have
not been used yet). The structure corresponding to a buffer size not used yet is returned (with all fields set
to 0) when it is directly asked for by name.

To retrieve the number of available sets of network buffer usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of
available sets.

Parameters

name Contains either ″″, FIRST_NETBUFFER, or the size of the network buffer in ASCII. It is a
power of 2. For example:

32, 64, 128, ..., 16384
userbuff Points to the memory area to be filled with one or more perfstat_netbuffer_t structures.
sizeof_struct Specifies the size of the perfstat_netbuffer_t structure: sizeof(perfstat_netbuffer_t)
desired_number Specifies the number of perfstat_netbuffer_t structures to copy to userbuff.

Return Values
Upon successful completion, the number of structures which could be filled is returned. If unsuccessful, a
value of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_netbuffer subroutine is unsuccessful if the following is true:

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total Subroutine” on page 1008,
“perfstat_memory_total Subroutine” on page 1019, “perfstat_disk Subroutine” on page 1010,
“perfstat_diskpath Subroutine” on page 1013, “perfstat_disk_total Subroutine” on page 1015,
“perfstat_netinterface_total Subroutine” on page 1023, “perfstat_diskadapter Subroutine” on page 1012,
“perfstat_partial_reset Subroutine” on page 1026, “perfstat_protocol Subroutine” on page 1029, and
“perfstat_pagingspace Subroutine” on page 1024.

Perfstat API in Performance Tools and APIs Technical Reference.

Base Operating System (BOS) Runtime Services (A-P) 1021

perfstat_netinterface Subroutine

Purpose
Retrieves individual network interface usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_netinterface (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_netinterface_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_netinterface subroutine retrieves one or more individual network interface usage statistics.
The same function can also be used to retrieve the number of available sets of network interface statistics.

To get one or more sets of network interface usage metrics, set the name parameter to the name of the
first network interface for which statistics are desired, and set the desired_number parameter. To start from
the first network interface, set the name parameter to ″″ or FIRST_NETINTERFACE. The userbuff
parameter must always point to a memory area big enough to contain the desired number of
perfstat_netinterface_t structures that will be copied by this function. Upon return, the name parameter
will be set to either the name of the next network interface, or to ″″ after all structures have been copied.

To retrieve the number of available sets of network interface usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of
available sets.

The perfstat_netinterface subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

name Contains either ″″, FIRST_NETINTERFACE, or a name identifying the first network interface for
which statistics are desired. For example;

en0, tr10, ...
userbuff Points to the memory area that is to be filled with one or more perfstat_netinterface_t

structures.
sizeof_struct Specifies the size of the perfstat_netinterface_t structure: sizeof(perfstat_netinterface_t)
desired_number Specifies the number of perfstat_netinterface_t structures to copy to userbuff.

Return Values
Upon successful completion unless the function is used to retrieve the number of available structures, the
number of structures filled is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set.

1022 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The perfstat_netinterface subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid.
EFAULT Insufficient memory.
ENOMEM The string default length is too short.
ENOMSG Cannot access the dictionary.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total
Subroutine” on page 1008, “perfstat_disk Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on
page 1012, “perfstat_diskpath Subroutine” on page 1013, “perfstat_disk_total Subroutine” on page 1015,
“perfstat_memory_total Subroutine” on page 1019, “perfstat_netinterface_total Subroutine,”
“perfstat_pagingspace Subroutine” on page 1024, “perfstat_partial_reset Subroutine” on page 1026,
“perfstat_protocol Subroutine” on page 1029, and “perfstat_reset Subroutine” on page 1030.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_netinterface_total Subroutine

Purpose
Retrieves global network interface usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_netinterface_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_netinterface_total_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_netinterface_total subroutine returns global network interface usage statistics in a
perfstat_netinterface_total_t structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the
userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

The perfstat_netinterface_total subroutine retrieves information from the ODM database. This information
is automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Base Operating System (BOS) Runtime Services (A-P) 1023

Parameters

name Must be set to NULL.
userbuff Points to the memory area that is to be filled with the perfstat_netinterface_total_t structure.
sizeof_struct Specifies the size of the perfstat_netinterface_total_t structure:

sizeof(perfstat_netinterface_total_t).
desired_number Must be set to 1.

Return Values
Upon successful completion, the number of structures filled is returned. This will always be 1. If
unsuccessful, a value of -1 is returned and the errno variable is set.

Error Codes
The perfstat_netinterface_total subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid.
EFAULT Insufficient memory.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total
Subroutine” on page 1008, “perfstat_disk Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on
page 1012, “perfstat_diskpath Subroutine” on page 1013, “perfstat_disk_total Subroutine” on page 1015,
“perfstat_memory_total Subroutine” on page 1019, “perfstat_netinterface Subroutine” on page 1022,
“perfstat_pagingspace Subroutine,” “perfstat_partial_reset Subroutine” on page 1026, “perfstat_protocol
Subroutine” on page 1029, and “perfstat_reset Subroutine” on page 1030.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_pagingspace Subroutine

Purpose
Retrieves individual paging space usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_pagingspace (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_pagingspace_t *userbuff;
size_t sizeof_struct;
int desired_number;

1024 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
This function retrieves one or more individual pagingspace usage statistics. The same functions can also
be used to retrieve the number of available sets of paging space statistics.

To get one or more sets of paging space usage metrics, set the name parameter to the name of the first
paging space for which statistics are desired, and set the desired_number parameter. To start from the first
paging space, set the name parameter to ″″ or FIRST_PAGINGSPACE. In either case, userbuff must point
to a memory area big enough to contain the desired number of perfstat_pagingspace_t structures which
will be copied by this function. Upon return, the name parameter will be set to either the name of the next
paging space, or to ″″ if all structures have been copied.

To retrieve the number of available sets of paging space usage metrics, set the name and userbuff
parameters to NULL, and the desired_number parameter to 0. The number of available sets will be
returned.

The perfstat_pagingspace subroutine retrieves information from the ODM database. This information is
automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset
subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

name Contains either ″″, FIRST_PAGINGSPACE, or a name identifying the first paging space for
which statistics are desired. For example:

paging00, hd6, ...
userbuff Points to the memory area to be filled with one or more perfstat_pagingspace_t structures.
sizeof_struct Specifies the size of the perfstat_pagingspace_t structure:

sizeof(perfstat_pagingspace_t)
desired_number Specifies the number of perfstat_pagingspace_t structures to copy to userbuff.

Return Values
Unless the perfstat_pagingspacesubroutine is used to retrieve the number of available structures, the
number of structures which could be filled is returned upon successful completion. If unsuccessful, a value
of -1 is returned and the errno global variable is set.

Error Codes
The perfstat_pagingspace subroutine is unsuccessful if one of the following are true:

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total
Subroutine” on page 1008, “perfstat_disk Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on
page 1012, “perfstat_diskpath Subroutine” on page 1013, “perfstat_disk_total Subroutine” on page 1015,
“perfstat_memory_total Subroutine” on page 1019, “perfstat_netinterface Subroutine” on page 1022,
“perfstat_netinterface_total Subroutine” on page 1023, “perfstat_partial_reset Subroutine” on page 1026,
“perfstat_protocol Subroutine” on page 1029, and “perfstat_reset Subroutine” on page 1030.

Perfstat API in Performance Tools and APIs Technical Reference.

Base Operating System (BOS) Runtime Services (A-P) 1025

perfstat_partial_reset Subroutine

Purpose
Empties part of the libperfstat configuration information cache or resets system minimum and maximum
counters for disks.

Library
perfstat library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_partial_reset (name, resetmask)
char * name;
u_longlong_t resetmask;

Description
The perfstat_cpu_total, perfstat_disk, perfstat_diskadapter, perfstat_netinterface, and
perfstat_pagingspace subroutines return configuration information that is retrieved from the ODM
database and automatically cached by the library. Other metrics provided by the LVM library and the
swapqry subroutine are also cached for performance purpose.

The perfstat_partial_reset subroutine flushes some of this information cache and should be called
whenever an identified part of the machine configuration has changed.

The perfstat_partial_reset subroutine can be used to reset a particular component (such as hdisk0 or
en1) when the name parameter is not NULL and the resetmask parameter contains only one bit. It can
also be used to remove a whole category (such as disks or disk paths) from the cached information.

When the name parameter is NULL, the resetmask parameter can contain a combination of bits, such as
FLUSH_DISK|RESET_DISK_MINMAX|FLUSH_CPUTOTAL. For more information on the perfstat_partial_reset
subroutine, see Perfstat API Programming.

Several bit masks are available for the resetmask parameter. The behavior of the function is as follows:

resetmask value Action when name is NULL
Action when name is not NULL and a
single resetmask is set

FLUSH_CPUTOTAL Flush speed and description in the
perfstat_cputotal_t structure

An error is returned, and errno is set to
EINVAL.

FLUSH_DISK Flush description, adapter, size, free, and
vgname in every perfstat_disk_t
structure. Flush the list of disk adapters.
Flush size, free, and description in every
perfstat_diskadapter_t structure.

Flush description, adapter, size, free, and
vgname in the specified perfstat_disk_t
structure. Flush adapter in every
perfstat_diskpath_t that matches the
disk name followed by _Path. Flush size,
free, and description of each
perfstat_diskadapter_t that is linked to a
path leading to this disk or to the disk
itself.

RESET_DISK_ALL Reset system resident all fields in every
perfstat_disk_t structure.

An error is returned, and errno is set to
EINVAL.

RESET_DISK_MINMAX Reset system resident min_rserv,
max_rserv, min_wserv, max_wserv,
wq_min_time and wq_max_time in every
perfstat_disk_t structure.

An error is returned, and errno is set to
ENOTSUP.

1026 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

resetmask value Action when name is NULL
Action when name is not NULL and a
single resetmask is set

FLUSH_DISKADAPTER Flush the list of disk adapters. Flush size,
free, and description in every
perfstat_diskadapter_t structure. Flush
adapter in every perfstat_diskpath_t
structure. Flush description and adapter in
every perfstat_disk_t structure.

Flush the list of disk adapters. Flush size,
free, and description in the specified
perfstat_diskadapter_t structure.

FLUSH_DISKPATH Flush adapter in every
perfstat_diskpath_t structure.

Flush adapter in the specified
perfstat_diskpath_t structure.

FLUSH_PAGINGSPACE Flush the list of paging spaces. Flush
automatic, type, lpsize, mbsize,
hostname, filename, and vgname in every
perfstat_pagingspace_t structure.

Flush the list of paging spaces. Flush
automatic, type, lpsize, mbsize,
hostname, filename, and vgname in the
specified perfstat_pagingspace_t
structure.

FLUSH_NETINTERFACE Flush description in every
perfstat_netinterface_t structure.

Flush description in the specified
perfstat_netinterface_t structure.

Parameters

name Contains a name identifying the component that metrics should be reset from the libperfstat
cache. If this parameter is NULL, matches every component.

resetmask The category of the component if the name parameter is not NULL. The available values are
listed in the preceding table. In case the name parameter is NULL, the resetmask parameter
can be a combination of bits.

Return Values
The perfstat_partial_reset subroutine returns a value of 0 upon successful completion. If unsuccessful, a
value of -1 is returned, and the errno global variable is set to the appropriate code.

Error Codes

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
The “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total Subroutine” on page 1008, “perfstat_disk
Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on page 1012, “perfstat_diskpath Subroutine”
on page 1013, “perfstat_disk_total Subroutine” on page 1015, “perfstat_memory_total Subroutine” on page
1019, “perfstat_netbuffer Subroutine” on page 1020, “perfstat_netinterface Subroutine” on page 1022,
“perfstat_netinterface_total Subroutine” on page 1023, “perfstat_pagingspace Subroutine” on page 1024,
“perfstat_partition_total Subroutine” on page 1028, “perfstat_protocol Subroutine” on page 1029, and
“perfstat_reset Subroutine” on page 1030.

Perfstat API Programming.

Base Operating System (BOS) Runtime Services (A-P) 1027

perfstat_partition_total Subroutine

Purpose
Retrieves global Micro-Partitioning usage statistics.

Library
perfstat library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_partition_total(name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_partition_total_t *userbuff;
size_t sizeof_struct;
int desired_number;
u_longlong_t reserved_pages;
u_longlong_t reserved_pagesize.

Description
The perfstat_partition_total subroutine returns global Micro-Partitioning usage statistics in a
perfstat_partition_total_t structure. To retrieve statistics that are global to the whole system, the name
parameter must be set to NULL, the userbuff parameter must be allocated, and the desired_number
parameter must be set to 1.

Parameters

name Must be set to NULL.
userbuff Points to the memory area to be filled with the perfstat_partition_total_t structures.
sizeof_struct Specifies the size of the perfstat_partition_total_t structure:

sizeof(perfstat_partition_total_t).
desired_number Must be set to 1.
reserved_pagesize Specifies the size of the pages for reserved memory. Not for use with DR operations.
reserved_pages Specifies the number of pages of type reserved_pagesize. This information can be

retrieved by calling vmgetinfo. Not for use with DR operations.

Return Values
Upon successful completion, the number of structures filled is returned. If unsuccessful, a value of -1 is
returned and the errno global variable is set.

Error Codes

EINVAL One of the parameters is not valid.
EFAULT Insufficient memory.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total Subroutine” on page 1008, “perfstat_disk
Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on page 1012, “perfstat_disk_total
Subroutine” on page 1015, “perfstat_memory_total Subroutine” on page 1019, “perfstat_netbuffer

1028 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Subroutine” on page 1020, “perfstat_netinterface Subroutine” on page 1022, “perfstat_netinterface_total
Subroutine” on page 1023, “perfstat_pagingspace Subroutine” on page 1024, “perfstat_protocol
Subroutine,” and “perfstat_reset Subroutine” on page 1030.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_protocol Subroutine

Purpose
Retrieves protocol usage statistics.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

int perfstat_protocol (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t *name;
perfstat_protocol_t *userbuff;
size_t sizeof_struct;
int desired_number;

Description
The perfstat_protocol subroutine retrieves protocol usage statistics such as ICMP, ICMPv6, IP, IPv6,
TCP, UDP, RPC, NFS, NFSv2, NFSv3. To get one or more sets of protocol usage metrics, set the name
parameter to the name of the first protocol for which statistics are desired, and set the desired_number
parameter.

To start from the first protocol, set the name parameter to ″″ or FIRST_PROTOCOL. The userbuff
parameter must point to a memory area big enough to contain the desired number of perfstat_protocol_t
structures which will be copied by this function. Upon return, the name parameter will be set to either the
name of the next protocol, or to ″″ if all structures have been copied.

To retrieve the number of available sets of protocol usage metrics, set the name and userbuff parameters
to NULL, and the desired_number parameter to 0. The returned value will be the number of available sets.

Parameters

name Contains either ″ip″, ″ipv6″, ″icmp″, ″icmpv6″, ″tcp″, ″udp″, ″rpc″, ″nfs″, ″nfsv2″, ″nfsv3″, ″″, or
FIRST_PROTOCOL.

userbuff Points to the memory area to be filled with one or more perfstat_protocol_t structures.
sizeof_struct Specifies the size of the perfstat_protocol_t structure: sizeof(perfstat_protocol_t)
desired_number Specifies the number of perfstat_protocol_t structures to copy to userbuff.

Return Values
Upon successful completion, the number of structures which could be filled is returned. If unsuccessful, a
value of -1 is returned and the errno global variable is set.

Base Operating System (BOS) Runtime Services (A-P) 1029

Error Codes
The perfstat_protocol subroutine is unsuccessful if the following is true:

EINVAL One of the parameters is not valid.

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
“perfstat_netbuffer Subroutine” on page 1020, “perfstat_cpu Subroutine” on page 1007, “perfstat_cpu_total
Subroutine” on page 1008, “perfstat_disk Subroutine” on page 1010, “perfstat_diskadapter Subroutine” on
page 1012, “perfstat_diskpath Subroutine” on page 1013, “perfstat_disk_total Subroutine” on page 1015,
“perfstat_memory_total Subroutine” on page 1019, “perfstat_netinterface Subroutine” on page 1022,
“perfstat_netinterface_total Subroutine” on page 1023, “perfstat_pagingspace Subroutine” on page 1024,
and “perfstat_partial_reset Subroutine” on page 1026.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_reset Subroutine

Purpose
Empties libperfstat configuration information cache.

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>

void perfstat_reset (void)

Description
The perfstat_cpu_total, perfstat_disk, perfstat_diskadapter, perfstat_netinterface, and
perfstat_pagingspace subroutines return configuration information retrieved from the ODM database and
automatically cached by the library.

The perfstat_reset subroutine flushes this information cache and should be called whenever the machine
configuration has changed.

Files
The libperfstat.h defines standard macros, data types and subroutines.

Related Information
“perfstat_cpu_total Subroutine” on page 1008, “perfstat_disk Subroutine” on page 1010,
“perfstat_diskadapter Subroutine” on page 1012, “perfstat_diskpath Subroutine” on page 1013,
“perfstat_netinterface Subroutine” on page 1022, “perfstat_pagingspace Subroutine” on page 1024, and
“perfstat_partial_reset Subroutine” on page 1026.

Perfstat API in Performance Tools and APIs Technical Reference.

1030 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

perfstat_tape Subroutine

Purpose
Retrieves individual tape use statistics

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>
int perfstat_tape (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_tape_t * userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_tape subroutine retrieves one or more tape use statistics. It can also be used to retrieve the
number of available sets of tape.

To get one or more sets of tape use metrics, specify the first tape for which statistics are to be collected in
the name parameter, and set the desired_number parameter. To start from the first tape, specify the
quotation marks (“”) or FIRST_TAPE as the name. The userbuff parameter must always point to the
memory area big enough to contain the desired number of perfstat_tape_t structures that this subroutine
is to copy. Upon return, the name parameter is set to either the name of the next tape, or to “” after all of
the structures are copied.

To retrieve the number of available sets of tape use metrics, set the name parameter and the userbuff
parameter to the value of null, and set the desired_number parameter to the value of zero. The returned
value is the number of available sets.

Parameters

name Contains the quotation marks (“”), FIRST_TAPE, or the name indicating the first tape for
which the statistics are to be collected

userbuff Points to the memory that is to be filled with the perfstat_tape_t structure
sizeof_struct Specifies the size of the perfstat_tape_t structure
desired_number Specifies the number of different tape statistics to be collected

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

Error Codes
The perfstat_tape subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid
EFAULT The memory is not sufficient
ENOMEM The default length of the string is too short
ENOMSG Cannot access dictionary

Base Operating System (BOS) Runtime Services (A-P) 1031

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
The “perfstat_tape_total Subroutine.”

Perfstat API in AIX 5L Version 5.3 Performance Tools Guide and Reference.

perfstat_tape_total Subroutine

Purpose
Retrieves global tape use statistics

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>
int perfstat_tape_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_tape_total_t * userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_tape_total subroutine global tape use statistics in the perfstat_tape_total_t structure.

To get the statistics of tape use that are global to the whole system, the name parameter must be set to
the value of null, the userbuff parameter must be allocated, and the value of the desired_number
parameter must be set to the value of one.

This subroutine is not supported inside a WPAR.

Parameters

name Contains the quotation marks (“”), FIRST_TAPE, or the name indicating the first tape for
which the statistics are to be collected

userbuff Points to the memory that is to be filled with the perfstat_tape_t structure
sizeof_struct Specifies the size of the perfstat_tape_t structure
desired_number Specifies the number of different tape statistics to be collected

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

Error Codes
The perfstat_tape subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid
EFAULT The memory is not sufficient

1032 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ENOMEM The default length of the string is too short

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
The “perfstat_tape Subroutine” on page 1031.

Perfstat API in AIX 5L Version 5.3 Performance Tools Guide and Reference.

perfstat_volumegroup Subroutine

Purpose
Retrieves volume group related metrics

Library
Perfstat Library (libperfstat.a)

Syntax
#include <libperfstat.h>
int perfstat_volumegroup (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_volumegroup_t * userbuff;
int sizeof_userbuff;
int desired_number;

Description
The perfstat_volumegroup subroutine retrieves one or more volume group statistics. It can also be used
to retrieve the number of available volume group.

To get one or more sets of volume group metrics, set the name parameter to the name of the first volume
group for which the statistics are to be collected, and set the desired_number parameter. To start from the
first volume group, specify the quotation marks (“”) or FIRST_LOGICALVOLUME as the name. The
userbuff parameter must always point to the memory area that is big enough to contain the number of
perfstat_volumegroup_t structures that this subroutine is to copy. Upon return, the name parameter is
set to either the name of the next volume group, or to “” after all of the structures are copied.

To retrieve the number of available sets of volume group metrics, set the name parameter and the userbuff
parameter to the value of null, and the desired_number parameter to the value of zero. The returned value
is the number of available volume groups.

Note: The perfstat_config must be called to enable the volume group statistics collection. The
perfstat_volumegroup subroutine is not supported inside workload partitions.

Parameters

name Contains the quotation marks (“”), FIRST_VOLUMEGROUP, or the name indicating the
volume group for which the statistics is to be retrieved

userbuff Points to the memory that is to be filled with the perfstat_volumegroup_t structure
sizeof_struct Specifies the size of the perfstat_volumegroup_t structure
desired_number Specifies the number of different volume group statistics to be collected

Base Operating System (BOS) Runtime Services (A-P) 1033

Return Values
Upon successful completion, the number of structures filled is returned.

If unsuccessful, a value of -1 is returned.

Error Codes
The perfstat_volumegroup subroutine is unsuccessful if one of the following is true:

EINVAL One of the parameters is not valid
EFAULT The memory is not sufficient

Files
The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information
The “perfstat_logicalvolume Subroutine” on page 1017.

Perfstat API in AIX 5L Version 5.3 Performance Tools Guide and Reference.

perror Subroutine

Purpose
Writes a message explaining a subroutine error.

Library
Standard C Library (libc.a)

Syntax
#include <errno.h>
#include <stdio.h>

void perror (String)
const char *String;

extern int errno;
extern char *sys_errlist[];
extern int sys_nerr;

Description
The perror subroutine writes a message on the standard error output that describes the last error
encountered by a system call or library subroutine. The error message includes the String parameter string
followed by a : (colon), a space character, the message, and a new-line character. The String parameter
string should include the name of the program that caused the error. The error number is taken from the
errno global variable, which is set when an error occurs but is not cleared when a successful call to the
perror subroutine is made.

To simplify various message formats, an array of message strings is provided in the sys_errlist structure
or use the errno global variable as an index into the sys_errlist structure to get the message string
without the new-line character. The largest message number provided in the table is sys_nerr. Be sure to
check the sys_nerr structure because new error codes can be added to the system before they are added
to the table.

1034 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The perror subroutine retrieves an error message based on the language of the current locale.

After successfully completing, and before a call to the exit or abort subroutine or the completion of the
fflush or fclose subroutine on the standard error stream, the perror subroutine marks for update the
st_ctime and st_mtime fields of the file associated with the standard error stream.

Parameter

String Specifies a parameter string that contains the name of the program that caused the error. The ensuing
printed message contains this string, a : (colon), and an explanation of the error.

Related Information
The abort subroutine, exit subroutine, fflush or fclose subroutine, printf, fprintf, sprintf, wsprintf,
vprintf, vfprintf, vsprintf, or vwsprintf subroutine, strerror subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pipe Subroutine

Purpose
Creates an interprocess channel.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int pipe (FileDescriptor)
int FileDescriptor[2];

Description
The pipe subroutine creates an interprocess channel called a pipe and returns two file descriptors,
FileDescriptor[0] and FileDescriptor[1]. FileDescriptor[0] is opened for reading and FileDescriptor[1] is
opened for writing.

A read operation on the FileDescriptor[0] parameter accesses the data written to the FileDescriptor[1]
parameter on a first-in, first-out (FIFO) basis.

Write requests of PIPE_BUF bytes or fewer will not be interleaved (mixed) with data from other processes
doing writes on the same pipe. PIPE_BUF is a system variable described in the pathconf (“pathconf or
fpathconf Subroutine” on page 983) subroutine. Writes of greater than PIPE_BUF bytes may have data
interleaved, on arbitrary boundaries, with other writes.

If O_NONBLOCK or O_NDELAY are set, writes requests of PIPE_BUF bytes or fewer will either succeed
completely or fail and return -1 with the errno global variable set to EAGAIN. A write request for more
than PIPE_BUF bytes will either transfer what it can and return the number of bytes actually written, or
transfer no data and return -1 with the errno global variable set to EAGAIN.

Base Operating System (BOS) Runtime Services (A-P) 1035

Parameters

FileDescriptor Specifies the address of an array of two integers into which the new file descriptors are
placed.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to identify the error.

Error Codes
The pipe subroutine is unsuccessful if one or more the following are true:

EFAULT The FileDescriptor parameter points to a location outside of the allocated address space of the process.
EMFILE The number of open of file descriptors exceeds the OPEN_MAX value.
ENFILE The system file table is full, or the device containing pipes has no free i-nodes.

Related Information
The read subroutine, select subroutine, write subroutine.

The ksh command, sh command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

plock Subroutine

Purpose
Locks the process, text, or data in memory.

Library
Standard C Library (libc.a)

Syntax
#include <sys/lock.h>

int plock (Operation)
int Operation;

Description
The plock subroutine allows the calling process to lock or unlock its text region (text lock), its data region
(data lock), or both its text and data regions (process lock) into memory. The plock subroutine does not
lock the shared text segment or any shared data segments. Locked segments are pinned in memory and
are immune to all routine paging. Memory locked by a parent process is not inherited by the children after
a fork subroutine call. Likewise, locked memory is unlocked if a process executes one of the exec
subroutines. The calling process must have the root user authority to use this subroutine.

A real-time process can use this subroutine to ensure that its code, data, and stack are always resident in
memory.

1036 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: Before calling the plock subroutine, the user application must lower the maximum stack limit value
using the ulimit subroutine.

Parameters

Operation Specifies one of the following:

PROCLOCK
Locks text and data into memory (process lock).

TXTLOCK
Locks text into memory (text lock).

DATLOCK
Locks data into memory (data lock).

UNLOCK
Removes locks.

Return Values
Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The plock subroutine is unsuccessful if one or more of the following is true:

EPERM The effective user ID of the calling process does not have the root user authority.
EINVAL The Operation parameter has a value other than PROCLOCK, TXTLOCK, DATLOCK, or UNLOCK.
EINVAL The Operation parameter is equal to PROCLOCK, and a process lock, text lock, or data lock already

exists on the calling process.
EINVAL The Operation parameter is equal to TXTLOCK, and a text lock or process lock already exists on the

calling process.
EINVAL The Operation parameter is equal to DATLOCK, and a data lock or process lock already exists on the

calling process.
EINVAL The Operation parameter is equal to UNLOCK, and no type of lock exists on the calling process.

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutines, _exit, exit, or atexit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page
245)subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, ulimit subroutine.

pm_cycles Subroutine

Purpose
Measures processor speed in cycles per second.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

double pm_cycles (void)

Base Operating System (BOS) Runtime Services (A-P) 1037

Description
The pm_cycles subroutine uses the Performance Monitor cycle counter and the processor real-time clock
to measure the actual processor clock speed. The speed is returned in cycles per second.

Return Values

0 An error occurred.
Processor speed in cycles per second No errors occurred.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_delete_program Subroutine

Purpose
Deletes previously established systemwide Performance Monitor settings.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program ()

Description
The pm_delete_program subroutine deletes previously established systemwide Performance Monitor
settings.

Return Values

0 No errors occurred.
Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1038 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
pm_init (“pm_init Subroutine” on page 1093), pm_error (“pm_error Subroutine” on page 1045),
pm_set_program (“pm_set_program Subroutine” on page 1105), pm_get_program (“pm_get_program
Subroutine” on page 1071), pm_get_data (“pm_get_data, pm_get_tdata, pm_get_Tdata,
pm_get_data_cpu, pm_get_tdata_cpu, pm_get_Tdata_cpu, pm_get_data_lcpu, pm_get_tdata_lcpu and
pm_get_Tdata_lcpu Subroutine” on page 1046), pm_start (“pm_start and pm_tstart Subroutine” on page
1131), pm_stop (“pm_stop and pm_tstop Subroutine ” on page 1140), pm_reset_data (“pm_reset_data
Subroutine” on page 1097) subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_delete_program_group Subroutine

Purpose
Deletes previously established Performance Monitor settings for the counting group to which a target
thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_group (pid, tid)
pid_t pid;
tid_t tid;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_delete_program_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A
call to this subroutine is equivalent to a call to the pm_delete_program_pgroup subroutine with a ptid
parameter equal to 0.

The pm_delete_program_group subroutine deletes previously established Performance Monitor settings
for a target kernel thread. The thread must be stopped and must be part of a debuggee process under the
control of the calling process. The settings for the group to which the target thread belongs and from all
the other threads in the same group are also deleted.

Parameters

pid Process identifier of target thread. The target process
must be a debuggee under the control of the calling
process.

tid Thread identifier of a target thread.

Return Values

0 No errors occurred.
Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Base Operating System (BOS) Runtime Services (A-P) 1039

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_init (“pm_init Subroutine” on page 1093) subroutine, pm_error (“pm_error Subroutine” on page
1045) subroutine, pm_set_program_group (“pm_set_program_group Subroutine” on page 1106)
subroutine, pm_get_program_group (“pm_get_program_group Subroutine” on page 1072) subroutine,
pm_get_data_group (“pm_get_data_group, pm_get_tdata_group and pm_get_Tdata_group Subroutine” on
page 1049) subroutine, pm_start_group (“pm_start_group and pm_tstart_group Subroutine” on page 1132)
subroutine, pm_stop_group (“pm_stop_group and pm_tstop_group Subroutine ” on page 1141) subroutine,
pm_reset_data_group (“pm_reset_data_group Subroutine” on page 1098) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_delete_program_mygroup Subroutine

Purpose
Deletes previously established Performance Monitor settings for the counting group to which the calling
thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_mygroup ()

Description
The pm_delete_program_mygroup subroutine deletes previously established Performance Monitor
settings for the calling kernel thread, the counting group to which it belongs, and for all the threads that
are members of the same group.

Return Values

0 No errors occurred.
Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1040 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
pm_init (“pm_init Subroutine” on page 1093), pm_error (“pm_error Subroutine” on page 1045),
pm_set_program_mygroup (“pm_set_program_mygroup Subroutine” on page 1112),
pm_get_program_mygroup (“pm_get_program_mygroup Subroutine” on page 1077),
pm_get_data_mygroup (“pm_get_data_mygroup, pm_get_tdata_mygroup or pm_get_Tdata_mygroup
Subroutine” on page 1054), pm_start_mygroup (“pm_start_mygroup and pm_tstart_mygroup Subroutine”
on page 1133), pm_stop_mygroup (“pm_stop_mygroup and pm_tstop_mygroup Subroutine ” on page
1142), pm_reset_data_mygroup (“pm_reset_data_mygroup Subroutine” on page 1099) subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_delete_program_mythread Subroutine

Purpose
Deletes the previously established Performance Monitor settings for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_mythread ()

Description
The pm_delete_program_mythread subroutine deletes the previously established Performance Monitor
settings for the calling kernel thread.

Return Values

0 No errors occurred.
Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
pm_init (“pm_init Subroutine” on page 1093), pm_error (“pm_error Subroutine” on page 1045),
pm_set_program_mythread (“pm_set_program_mythread Subroutine” on page 1116),
pm_get_program_mythread (“pm_get_program_mythread Subroutine” on page 1080),
pm_get_data_mythread (“pm_get_data_mythread, pm_get_tdata_mythread or pm_get_Tdata_mythread
Subroutine” on page 1057), pm_start_mythread (“pm_start_mythread and pm_tstart_mythread Subroutine”
on page 1135

Base Operating System (BOS) Runtime Services (A-P) 1041

on page 1135), pm_stop_mythread (“pm_stop_mythread and pm_tstop_mythread Subroutine ” on page
1143), pm_reset_data_mythread (“pm_reset_data_mythread Subroutine” on page 1100) subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_delete_program_pgroup Subroutine

Purpose
Deletes previously established Performance Monitor settings for the counting group to which a target
pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_pgroup (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

Description
The pm_delete_program_pgroup subroutine deletes previously established Performance Monitor settings
for a target pthread. The pthread must be stopped and must be part of a debuggee process under the
control of the calling process. The settings for the group to which the target pthread belongs and from all
the other pthreads in the same group are also deleted.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

pid Process ID of target thread. The target process must be a debuggee under
the control of the calling process.

tid Thread ID of target pthread. To ignore this parameter, set it to 0.
ptid Pthread ID of the target pthread. To ignore this parameter, set it to 0.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the“pm_error Subroutine” on page 1045.

1042 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pgroup Subroutine” on page 1042, “pm_error Subroutine” on page 1045
“pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine” on page 1060,
“pm_set_program_pgroup Subroutine” on page 1119, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pgroup Subroutine” on page 1101, “pm_start_pgroup and pm_tstart_pgroup Subroutine”
on page 1136, and the “pm_stop_pgroup and pm_tstop_pgroup Subroutine ” on page 1144.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_delete_program_pthread Subroutine

Purpose
Deletes the previously established Performance Monitor settings for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_pthread (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

Description
The pm_delete_program_pthread subroutine deletes the previously established Performance Monitor
settings for a target pthread. The pthread must be stopped and must be part of a debuggee process under
the control of the calling process.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

pid Process ID of target pthread. Target process must be a debuggee under the
control of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set it to 0.
ptid Pthread ID of the target pthread. To ignore this parameter, set it to 0.

Return Values

0 No errors occurred.
Positive error code Refer to the“pm_error Subroutine” on page 1045 to decode the error code.

Base Operating System (BOS) Runtime Services (A-P) 1043

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine” on page 1063,
“pm_get_program_pthread Subroutine” on page 1087, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pthread Subroutine” on page 1103, “pm_set_program_pthread Subroutine” on page 1123,
“pm_start_pthread and pm_tstart_pthread Subroutine” on page 1137, “pm_stop_pthread and
pm_tstop_pthread Subroutine ” on page 1146.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_delete_program_thread Subroutine

Purpose
Deletes the previously established Performance Monitor settings for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_delete_program_thread (pid, tid)
pid_t pid;
tid_t tid;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_delete_program_pthread subroutine, which supports both the 1:1 and the M:N threading models. A
call to this subroutine is equivalent to a call to the pm_delete_program_pthread subroutine with a ptid
parameter equal to 0.

The pm_delete_program_thread subroutine deletes the previously established Performance Monitor
settings for a target kernel thread. The thread must be stopped and must be part of a debuggee process
under the control of the calling process.

Parameters

pid Process identifier of target thread. Target process must be
a debuggee under the control of the calling process.

tid Thread identifier of the target thread.

1044 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values

0 No errors occurred.
Positive error code Refer to the pm_error (“pm_error Subroutine”) subroutine to decode the error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine”) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
pm_init (“pm_init Subroutine” on page 1093), pm_error (“pm_error Subroutine”), pm_set_program_thread
(“pm_set_program_thread Subroutine” on page 1127), pm_get_program_thread (“pm_get_program_thread
Subroutine” on page 1090), pm_get_data_thread (“pm_get_data_thread, pm_get_tdata_thread or
pm_get_Tdata_thread Subroutine” on page 1067), pm_start_thread (“pm_start_thread and
pm_tstart_thread Subroutine” on page 1139), pm_stop_thread (“pm_stop_thread and pm_tstop_thread
Subroutine” on page 1147), pm_reset_data_thread (“pm_reset_data_thread Subroutine” on page 1104)
subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_error Subroutine

Purpose
Decodes Performance Monitor APIs error codes.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

void pm_error (*Where, errorcode)
char *Where;
int errorcode;

Description
The pm_error subroutine writes a message on the standard error output that describes the parameter
errorcode encountered by a Performance Monitor API library subroutine. The error message includes the
Where parameter string followed by a : (colon), a space character, the message, and a new-line character.
The Where parameter string includes the name of the program that caused the error.

Parameters

*Where Specifies where the error was encountered.
errorcode Specifies the error code as returned by one of the Performance Monitor APIs library

subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1045

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_init subroutine, pm_set_program subroutine, pm_get_program subroutine,
pm_delete_program subroutine, pm_get_data subroutine, pm_start subroutine, pm_stop subroutine,
pm_reset_data subroutine.

The pm_set_program_mythread subroutine, pm_get_program_mythread subroutine,
pm_delete_program_mythread subroutine, pm_get_data_mythread subroutine, pm_start_mythread
subroutine, pm_stop_mythread subroutine, pm_reset_data_mythread subroutine.

The pm_set_program_mygroup subroutine, pm_get_program_mygroup subroutine,
pm_delete_program_mygroup subroutine, pm_get_data_mygroup subroutine, pm_start_mygroup
subroutine, pm_stop_mygroup subroutine, pm_reset_data_mygroup subroutine.

The pm_set_program_thread subroutine, pm_get_program_thread subroutine,
pm_delete_program_thread subroutine, pm_get_data_thread subroutine, pm_start_thread subroutine,
pm_stop_thread subroutine, pm_reset_data_thread subroutine.

The pm_set_program_group subroutine, pm_get_program_group subroutine,
pm_delete_program_group subroutine, pm_get_data_group subroutine, pm_start_group subroutine,
pm_stop_group subroutine, pm_reset_data_group subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data, pm_get_tdata, pm_get_Tdata, pm_get_data_cpu,
pm_get_tdata_cpu, pm_get_Tdata_cpu, pm_get_data_lcpu,
pm_get_tdata_lcpu and pm_get_Tdata_lcpu Subroutine

Purpose
Returns systemwide Performance Monitor data.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data (*pmdata)
pm_data_t *pmdata;

int pm_get_tdata (pmdata, * time)
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata (pmdata, * times)
pm_data_t *pmdata;
pm_accu_time_t *times;

int pm_get_data_cpu (cpuid, *pmdata)
int cpuid;

1046 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pm_data_t *pmdata;

int pm_get_tdata_cpu (cpuid, *pmdata, *time)
int cpuid;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_cpu (cpuid, *pmdata, *times)
int cpuid;
pm_data_t *pmdata;
pm_accu_time_t *times
int pm_get_data_lcpu (lcpuid, *pmdata)
int lcpuid;
pm_data_t *pmdata;

int pm_get_tdata_lcpu (lcpuid, *pmdata, *time)
int lcpuid;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_lcpu (lcpuid, *pmdata, *times)
int lcpuid;
pm_data_t *pmdata;
pm_accu_time_t *times

Description
The pm_get_data subroutine retrieves the current systemwide Performance Monitor data.

The pm_get_tdata subroutine retrieves the current systemwide Performance Monitor data, and a
timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata subroutine retrieves the current systemwide Performance Monitor data, and the
accumulated time (timebase, PURR time and SPURR time) the events were counted.

The pm_get_data_cpu, pm_get_tdata_cpu, and pm_get_Tdata_cpu subroutines retrieve the current
Performance Monitor data for a specified processor. The given processor ID represents a contiguous
number ranging from 0 to _system_configuration.ncpus. These subroutines can only be used when no
Dynamic Reconfiguration operations are made on the machine, because when processors are added or
removed, the processor numbering is modified and the specified processor number can designate different
processors from one call to another. These subroutines are maintained for compatibility with previous
versions.

The pm_get_data_cpu subroutine retrieves the current Performance Monitor data for the specified
processor.

The pm_get_tdata_cpu subroutine retrieves the current Performance Monitor data for the specified
processor, and a timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata_cpu subroutine retrieves the current Performance Monitor data for the specified
processor, and the accumulated time (timebase, PURR time and SPURR time) the events were counted.

The pm_get_data_lcpu, pm_get_tdata_lcpu, and pm_get_Tdata_lcpu subroutines retrieve the current
Performance Monitor data for a specified logical processor. The given processor ID represents a value
ranging from 0 to _system_configuration.max_ncpus. This value always represents the same processor,
even after Dynamic Reconfiguration operations have occurred. These subroutines might return an error if
the specified logical processor number has never run during the counting interval.

The pm_get_data_lcpu subroutine retrieves the current Performance Monitor data for the specified logical
processor.

Base Operating System (BOS) Runtime Services (A-P) 1047

The pm_get_tdata_lcpu subroutine retrieves the current Performance Monitor data for the specified
logical processor, and a timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata_lcpu subroutine retrieves the current Performance Monitor data for the specified
logical processor, and the accumulated time (timebase, PURR time and SPURR time) the events were
counted.

The Performance Monitor data is always a set (one per hardware counter on the machines used) of 64-bit
values.

Parameters

*pmdata Pointer to a structure that contains the returned systemwide Performance
Monitor data.

*time Pointer to a structure containing the timebase value the last time the
hardware Performance Monitoring counters were read. This can be converted
to time using the time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time (timebase, PURR time
and SPURR time) the events were counted. Each time counter can be
converted to time using the time_base_to_time subroutine.

cpuid Contiguous processor numbers ranging from 0 to
_system_configuration.ncpus. This value does not always designate the
same processor, even after Dynamic Reconfiguration operations have
occurred.

lcpuid Logical processor identifier. Each identifier stays linked to a particular
processor between reboots, even after Dynamic Reconfiguration operations.
This value must be in the range from 0 to _system_configuartion.max_ncpus.

Return Values

0 Operation completed successfully.
Positive error code Refer to the pm_error Subroutine to decode the error code.

Error Codes
Refer to the pm_error Subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program
Subroutine” on page 1105, “pm_get_program Subroutine” on page 1071, “pm_delete_program Subroutine”
on page 1038, “pm_start and pm_tstart Subroutine” on page 1131, “pm_stop and pm_tstop Subroutine ”
on page 1140, “pm_reset_data Subroutine” on page 1097.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

1048 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pm_get_data_group, pm_get_tdata_group and pm_get_Tdata_group
Subroutine

Purpose
Returns Performance Monitor data for the counting group to which a target thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_group (pid, tid, *pmdata)
pid_t pid;
tid_t tid;
pm_data_t *pmdata;

int pm_get_tdata_group (pid, tid, *pmdata, *time)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;
timebasestruct_t *time;

int pm_get_Tdata_group (pid, tid, *pmdata, *times)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;
pm_accu_time_t *times;

Description
These subroutines support only the 1:1 threading model. They have been superseded by the
pm_get_data_pgroup and pm_get_tdata_pgroup subroutines, which support both the 1:1 and the M:N
threading models. Calls to these subroutines are equivalent to calls to the pm_get_data_pgroup and
pm_get_tdata_pgroup subroutines with a ptid parameter equal to 0.

The pm_get_data_group subroutine retrieves the current Performance Monitor data for the counting
group to which a target kernel thread belongs. The thread must be stopped and must be part of a
debuggee process under the control of the calling process.

The pm_get_tdata_group subroutine retrieves the current Performance Monitor data for the counting
group to which a target thread belongs, and a timestamp indicating the last time the hardware counters
were read.

The pm_get_Tdata_group subroutine retrieves the current Performance Monitor data for the counting
group to which a target thread belongs, and the accumulated time (timebase, PURR time and SPURR
time) the events were counted.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values. The information returned also includes the characteristics of the group, such as the number of its
members, if it is a process level group, and if its counters are consistent with the sum of the counters for
all of the threads in the group.

Base Operating System (BOS) Runtime Services (A-P) 1049

Parameters

pid Process identifier of a target thread. The target process
must be an argument of a debug process.

tid Thread identifier of a target thread.
*pmdata Pointer to a structure to return the Performance Monitor

data for the group to which the target thread belongs.
*time Pointer to a structure containing the timebase value the

last time the hardware Performance Monitoring counters
were read. This can be converted to time using the
time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time
(timebase, PURR time and SPURR time) the events were
counted. Each time counter can be converted to time
using the time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_group
Subroutine” on page 1106, “pm_get_program_group Subroutine” on page 1072, “pm_get_data_group,
pm_get_tdata_group and pm_get_Tdata_group Subroutine” on page 1049, “pm_start_group and
pm_tstart_group Subroutine” on page 1132, “pm_stop_group and pm_tstop_group Subroutine ” on page
1141, “pm_reset_data_group Subroutine” on page 1098.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_group_mx and pm_get_tdata_group_mx Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for the counting group to which a target
thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

1050 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <pmapi.h>

int pm_get_data_group_mx (pid, tid, *pmdata)
pid_t pid;
tid_t tid;
pm_data_mx_t *pmdata;

int pm_get_tdata_group_mx (pid, tid, *pmdata, *time)
pm_data_mx_t *pmdata;
pid_t pid;
tid_t tid;
timebasestruct_t *time;

Description
These subroutines support only the 1:1 threading model. They have been superseded by the
pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx subroutines, which support both the 1:1 and
the M:N threading models. Calls to these subroutines are equivalent to calls to the
pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx subroutines with a ptid parameter equal to 0.

The pm_get_data_group_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the counting group to which a target kernel thread belongs. The thread must be
stopped and must be part of a debuggee process under the control of the calling process.

The pm_get_tdata_group_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the counting group to which a target thread belongs, and a timestamp indicating the
last time the hardware counters were read.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine
used) of 64-bit values. The information returned also includes the characteristics of the group, such as the
number of its members, whether it is a process level group, and whether its counters are consistent with
the sum of the counters for all of the threads in the group.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

pid Process identifier of a target thread. The target process must be an
argument of a debug process.

tid Thread identifier of a target thread.
*pmdata Pointer to a structure to return the Performance Monitor data (array of

accumulated counters, accumulated time and accumulated PURR and
SPURR time for each event set counted) for the group to which the target
thread belongs.

*time Pointer to a structure containing the timebase value the last time the
hardware Performance Monitoring counters were read. This can be
converted to time using the time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Base Operating System (BOS) Runtime Services (A-P) 1051

Error Codes
Refer to the“pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_set_program_group_mx and pm_set_program_group_mm Subroutines” on page 1108,
“pm_get_program_group_mx and pm_get_program_group_mm Subroutines” on page
1073,“pm_start_group and pm_tstart_group Subroutine” on page 1132, “pm_stop_group and
pm_tstop_group Subroutine ” on page 1141, and “pm_reset_data_group Subroutine” on page 1098.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_mx, pm_get_tdata_mx, pm_get_data_cpu_mx,
pm_get_tdata_cpu_mx, pm_get_data_lcpu_mx and
pm_get_tdata_lcpu_mx Subroutine

Purpose
Returns systemwide Performance Monitor data in counter multiplexing mode.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_mx (*pmdata)
pm_data_mx_t *pmdata;

int pm_get_tdata_mx (pmdata, * time)
pm_data_mx_t *pmdata;
timebasestruct_t *time;

int pm_get_data_cpu_mx (cpuid, *pmdata)
int cpuid;
pm_data_mx_t *pmdata;

int pm_get_tdata_cpu_mx (cpuid, *pmdata, *time)
int cpuid;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

int pm_get_data_lcpu_mx (lcpuid, *pmdata)
int lcpuid;
pm_data_mx_t *pmdata;

1052 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int pm_get_tdata_lcpu_mx (lcpuid, *pmdata, *time)
int lcpuid;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
The pm_get_data_mx subroutine retrieves the current systemwide Performance Monitor data in counter
multiplexing mode.

The pm_get_tdata_mx subroutine retrieves the current systemwide Performance Monitor data in counter
multiplexing mode, and a timestamp indicating the last time the hardware counters were read.

The pm_get_data_cpu_mx and the pm_get_tdata_cpu_mx subroutines retrieve the current Performance
Monitor data for a specified processor. The given processor ID represents a contiguous number ranging
from 0 to _system_configuration.ncpus. These subroutines can only be used when no Dynamic
Reconfiguration operations are made on the machine, because when processors are added or removed,
the processor numbering is modified and the specified processor number can designate different
processors from one call to another. These subroutines are maintained for compatibility with previous
versions.

The pm_get_data_cpu_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the specified processor.

The pm_get_tdata_cpu_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the specified processor, and a timestamp indicating the last time the hardware
counters were read.

The pm_get_data_lcpu_mx and the pm_get_tdata_lcpu_mx subroutines retrieve the current
Performance Monitor data for a specified logical processor. The given processor ID represents a value
ranging from 0 to _system_configuration.max_ncpus. This value always represents the same processor,
even after Dynamic Reconfiguration operations have occurred. These subroutines might return an error if
the specified logical processor number has never run during the counting interval.

The pm_get_data_lcpu_mx subroutine retrieves the current Performance Monitor data for the specified
logical processor in counter multiplexing mode.

The pm_get_tdata_lcpu_mx subroutine retrieves the current Performance Monitor data for the specified
logical processor in counter multiplexing mode, and a timestamp indicating the last time the hardware
counters were read.

The Performance Monitor data is always an array of a set (one per hardware counter on the machines
used) of 64-bit values.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

*pmdata Pointer to a structure that contains the returned systemwide Performance
Monitor data. (array of accumulated counters, accumulated time and
accumulated PURR and SPURR time for each event set counted)

*time Pointer to a structure containing the timebase value the last time the
hardware Performance Monitoring counters were read. This can be converted
to time using the time_base_to_time subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1053

cpuid Contiguous processor numbers going from 0 to
_system_configuration.ncpus. This value does not always designate the
same processor, even after Dynamic Reconfiguration operations have
occurred.

lcpuid Logical processor identifier. Each identifier stays linked to a particular
processor between reboots, even after Dynamic Reconfiguration operations.
This value must be in the range from 0 to _system_configuartion.max_ncpus.

Return Values

0 Operation completed successfully.
Positive error code Refer to the pm_error Subroutine to decode the error code.

Error Codes
Refer to the pm_error Subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_mx and
pm_set_program_mm Subroutines” on page 1110, “pm_get_program_mx and pm_get_program_mm
Subroutines” on page 1076, “pm_delete_program Subroutine” on page 1038, “pm_start and pm_tstart
Subroutine” on page 1131, “pm_stop and pm_tstop Subroutine ” on page 1140, and the“pm_reset_data
Subroutine” on page 1097.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_mygroup, pm_get_tdata_mygroup or
pm_get_Tdata_mygroup Subroutine

Purpose
Returns Performance Monitor data for the counting group to which the calling thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_mygroup (*pmdata)
pm_data_t *pmdata;

int pm_get_tdata_mygroup (*pmdata, *time)
pm_data_t *pmdata;
timebasestruct_t *time;

1054 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int pm_get_Tdata_mygroup (pmdata, * times)
pm_data_t *pmdata;
pm_accu_time_t *times;

Description
The pm_get_data_mygroup subroutine retrieves the current Performance Monitor data for the group to
which the calling kernel thread belongs.

The pm_get_tdata_mygroup subroutine retrieves the current Performance Monitor data for the group to
which the calling thread belongs, and a timestamp indicating the last time the hardware counters were
read.

The pm_get_Tdata_mygroup subroutine retrieves the current Performance Monitor data for the group to
which the calling thread belongs, and the accumulated time (timebase, PURR time and SPURR time) the
events were counted.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values. The information returned also includes the characteristics of the group, such as the number of its
members, if it is a process level group, and if its counters are consistent with the sum of the counters for
all of the threads in the group.

Parameters

*pmdata Pointer to a structure to return the Performance Monitor data for the group
to which the calling thread belongs.

*time Pointer to a structure containing the timebase value the last time the
hardware Performance Monitoring counters were read. This can be
converted to time using the time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time (timebase, PURR
time and SPURR time) the events were counted. Each time counter can be
converted to time using the time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_mygroup
Subroutine” on page 1112, “pm_get_program_mygroup Subroutine” on page 1077,
“pm_get_data_mygroup, pm_get_tdata_mygroup or pm_get_Tdata_mygroup Subroutine” on page 1054,
“pm_start_mygroup and pm_tstart_mygroup Subroutine” on page 1133, “pm_stop_mygroup and
pm_tstop_mygroup Subroutine ” on page 1142, “pm_reset_data_mygroup Subroutine” on page 1099.

Base Operating System (BOS) Runtime Services (A-P) 1055

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_mygroup_mx or pm_get_tdata_mygroup_mx Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for the counting group to which the calling
thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_mygroup_mx (*pmdata)
pm_data_mx_t *pmdata;

int pm_get_tdata_mygroup_mx (*pmdata, *time)
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
The pm_get_data_mygroup_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the group to which the calling kernel thread belongs.

The pm_get_tdata_mygroup_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the group to which the calling thread belongs, and a timestamp indicating the last
time the hardware counters were read.

The Performance Monitor data is always an array of set (one per hardware counter on the machine used)
of 64-bit values. The information returned also includes the characteristics of the group, such as the
number of its members, if it is a process level group, and if its counters are consistent with the sum of the
counters for all of the threads in the group.

The user application must free the array allocated to store accumulated counts and times (accu_set field
of pmdata).

Parameters

*pmdata Pointer to a structure to return the Performance Monitor
data (array of accumulated counters, accumulated time
and accumulated PURR and SPURR time for each event
set counted) for the group to which the calling thread
belongs.

*time Pointer to a structure containing the timebase value the
last time the hardware Performance Monitoring counters
were read. This can be converted to time using the
time_base_to_time subroutine.

1056 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_set_program_mygroup_mx and pm_set_program_mygroup_mm Subroutines” on page 1113,
“pm_get_program_mygroup_mx and pm_get_program_mygroup_mm Subroutines” on page 1079,
“pm_start_mygroup and pm_tstart_mygroup Subroutine” on page 1133, “pm_stop_mygroup and
pm_tstop_mygroup Subroutine ” on page 1142, “pm_reset_data_mygroup Subroutine” on page 1099.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_mythread, pm_get_tdata_mythread or
pm_get_Tdata_mythread Subroutine

Purpose
Returns Performance Monitor data for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_mythread (*pmdata)
pm_data_t *pmdata;

int pm_get_tdata_mythread (*pmdata, *time)
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_mythread (pmdata, * times)
pm_data_t *pmdata;
pm_accu_time_t *times;

Description
The pm_get_data_mythread subroutine retrieves the current Performance Monitor data for the calling
kernel thread.

Base Operating System (BOS) Runtime Services (A-P) 1057

The pm_get_tdata_mythread subroutine retrieves the current Performance Monitor data for the calling
kernel thread, and a timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata_mythread subroutine retrieves the current Performance Monitor data for the calling
kernel thread, and the accumulated time (timebase, PURR time and SPURR time) the events were
counted.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values.

Parameters

*pmdata Pointer to a structure to contain the returned Performance Monitor data for the
calling kernel thread.

*time Pointer to a structure containing the timebase value the last time the hardware
Performance Monitoring counters were read. This can be converted to time using
the time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time (timebase, PURR time
and SPURR time) the events were counted. Each time counter can be converted
to time using the time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_mythread
Subroutine” on page 1116, “pm_get_program_mythread Subroutine” on page 1080,
“pm_get_data_mythread, pm_get_tdata_mythread or pm_get_Tdata_mythread Subroutine” on page 1057),
“pm_start_mythread and pm_tstart_mythread Subroutine” on page 1135, “pm_stop_mythread and
pm_tstop_mythread Subroutine ” on page 1143, “pm_reset_data_mythread Subroutine” on page 1100.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_mythread_mx or pm_get_tdata_mythread_mx Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for the calling thread.

1058 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_mythread_mx (*pmdata)
pm_data_mx_t *pmdata;

int pm_get_tdata_mythread_mx (*pmdata, *time)
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
The pm_get_data_mythread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the calling kernel thread.

The pm_get_tdata_mythread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the calling kernel thread, and a timestamp indicating the last time the hardware
counters were read.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine
used) of 64-bit values.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

*pmdata Pointer to a structure to contain the returned Performance
Monitor data (array of accumulated counters, accumulated
time and accumulated PURR and SPURR time for each
event set counted) for the calling kernel thread.

*time Pointer to a structure containing the timebase value the
last time the hardware Performance Monitoring counters
were read. This can be converted to time using the
time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1059

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_set_program_mythread_mx and pm_set_program_mythread_mm Subroutines” on page 1117,
“pm_get_program_mythread_mx and pm_get_program_mythread_mm Subroutines” on page 1081,
“pm_start_mythread and pm_tstart_mythread Subroutine” on page 1135, “pm_stop_mythread and
pm_tstop_mythread Subroutine ” on page 1143, “pm_reset_data_mythread Subroutine” on page 1100.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_pgroup, pm_get_tdata_pgroup and
pm_get_Tdata_pgroup Subroutine

Purpose
Returns Performance Monitor data for the counting group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_pgroup (pid, tid, ptid, *pmdata)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_t *pmdata;

int pm_get_tdata_pgroup (pid, tid, *pmdata, *time)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time;

int pm_get_Tdata_pgroup (pid, tid, *pmdata, * times)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_accu_time_t *times;

Description
The pm_get_data_pgroup subroutine retrieves the current Performance Monitor data for the counting
group to which a target pthread belongs. The pthread must be stopped and must be part of a debuggee
process under the control of the calling process.

The pm_get_tdata_pgroup subroutine retrieves the current Performance Monitor data for the counting
group to which a target pthread belongs, and a timestamp indicating the last time the hardware counters
were read.

1060 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The pm_get_Tdata_pgroup subroutine retrieves the current Performance Monitor data for the counting
group to which a target pthread belongs, and the accumulated time (timebase, PURR time and SPURR
time) the events were counted.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values. The information returned also includes the characteristics of the group, such as the number of its
members, if it is a process level group, and if its counters are consistent with the sum of the counters for
all of the pthreads in the group.

Parameters

pid Process identifier of a target thread. The target process
must be an argument of a debug process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*pmdata Pointer to a structure to return the Performance Monitor
data for the group to which the target pthread belongs.

*time Pointer to a structure containing the timebase value the
last time the hardware Performance Monitoring counters
were read. This can be converted to time using the
time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time
(timebase, PURR time and SPURR time) the events were
counted. Each time counter can be converted to time
using the time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine” on page 1060,
“pm_get_program_pgroup Subroutine” on page 1083, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pgroup Subroutine” on page 1101, “pm_set_program_pgroup Subroutine” on page 1119,
“pm_start_pgroup and pm_tstart_pgroup Subroutine” on page 1136, “pm_stop_pgroup and
pm_tstop_pgroup Subroutine ” on page 1144.

Base Operating System (BOS) Runtime Services (A-P) 1061

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for the counting group to which a target
pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_pgroup_mx (pid, tid, ptid, *pmdata)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_mx_t *pmdata;

int pm_get_tdata_pgroup_mx (pid, tid, *pmdata, *time)
pm_data_mx_t *pmdata;
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time;

Description
The pm_get_data_pgroup_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the counting group to which a target pthread belongs. The pthread must be stopped
and must be part of a debuggee process under the control of the calling process.

The pm_get_tdata_pgroup_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for the counting group to which a target pthread belongs, and a timestamp indicating
the last time the hardware counters were read.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine
used) of 64-bit values. The information returned also includes the characteristics of the group, such as the
number of its members, whether it is a process level group, and whether its counters are consistent with
the sum of the counters for all of the pthreads in the group.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

1062 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

pid Process identifier of a target thread. The target process
must be an argument of a debug process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*pmdata Pointer to a structure to return the Performance Monitor
data (array of accumulated counters, accumulated time
and accumulated PURR and SPURR time for each event
set counted) for the group to which the target pthread
belongs.

*time Pointer to a structure containing the timebase value the
last time the hardware Performance Monitoring counters
were read. This can be converted to time using the
time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_program_pgroup_mx and pm_get_program_pgroup_mm Subroutines” on page 1085,
“pm_initialize Subroutine” on page 1095, “pm_reset_data_pgroup Subroutine” on page 1101,
“pm_set_program_pgroup_mx and pm_set_program_pgroup_mm Subroutines” on page 1121,
“pm_start_pgroup and pm_tstart_pgroup Subroutine” on page 1136, “pm_stop_pgroup and
pm_tstop_pgroup Subroutine ” on page 1144.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_pthread, pm_get_tdata_pthread or
pm_get_Tdata_pthread Subroutine

Purpose
Returns Performance Monitor data for a target pthread.

Base Operating System (BOS) Runtime Services (A-P) 1063

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_pthread (pid, tid, ptid, *pmdata)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_t *pmdata;

int pm_get_tdata_pthread (pid, tid, ptid, *pmdata, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_pthread (pid, tid, ptid,*pmdata, * times)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_t *pmdata;
pm_accu_time_t *times;

Description
The pm_get_data_pthread subroutine retrieves the current Performance Monitor data for a target
pthread. The pthread must be stopped and must be part of a debuggee process under the control of a
calling process.

The pm_get_tdata_pthread subroutine retrieves the current Performance Monitor data for a target
pthread, and a timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata_pthread subroutine retrieves the current Performance Monitor data for a target
pthread, and the accumulated time (timebase, PURR time and SPURR time) the events were counted.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*pmdata Pointer to a structure to return the Performance Monitor
data for the target pthread.

1064 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

*time Pointer to a structure containing the timebase value the
last time the hardware Performance Monitoring counters
were read. This can be converted to time using the
time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time
(timebase, PURR time and SPURR time) the events were
counted. Each time counter can be converted to time
using the time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine” on page 1063,
“pm_get_program_pthread Subroutine” on page 1087, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pthread Subroutine” on page 1103, “pm_set_program_pthread Subroutine” on page 1123,
“pm_start_pthread and pm_tstart_pthread Subroutine” on page 1137, “pm_stop_pthread and
pm_tstop_pthread Subroutine ” on page 1146.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_pthread_mx or pm_get_tdata_pthread_mx Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_pthread_mx (pid, tid, ptid, *pmdata)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_mx_t *pmdata;

Base Operating System (BOS) Runtime Services (A-P) 1065

int pm_get_tdata_pthread_mx (pid, tid, ptid, *pmdata, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
The pm_get_data_pthread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for a target pthread. The pthread must be stopped and must be part of a debuggee
process under the control of a calling process.

The pm_get_tdata_pthread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for a target pthread, and a timestamp indicating the last time the hardware counters
were read.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine
used) of 64-bit values.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*pmdata Pointer to a structure to return the Performance Monitor
data (array of accumulated counters, accumulated time
and accumulated PURR and SPURR time for each event
set counted) for the target pthread.

*time Pointer to a structure containing the timebase value the
last time the hardware Performance Monitoring counters
were read. This can be converted to time using the
time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

1066 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_program_pthread_mx and pm_get_program_pthread_mm Subroutines” on page 1088,
“pm_initialize Subroutine” on page 1095, “pm_reset_data_pthread Subroutine” on page 1103,
“pm_set_program_pthread_mx and pm_set_program_pthread_mm Subroutines” on page 1125,
“pm_start_pthread and pm_tstart_pthread Subroutine” on page 1137, “pm_stop_pthread and
pm_tstop_pthread Subroutine ” on page 1146.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_data_thread, pm_get_tdata_thread or pm_get_Tdata_thread
Subroutine

Purpose
Returns Performance Monitor data for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_thread (pid, tid, *pmdata)
pid_t pid;
tid_t tid;
pm_data_t *pmdata;

int pm_get_tdata_thread (pid, tid, *pmdata, *time)
pid_t pid;
tid_t tid;
pm_data_t *pmdata;
timebasestruct_t *time;

int pm_get_Tdata_thread (pid, tid, *pmdata, * times)
pm_data_t *pmdata;
pid_t pid;
tid_t tid;
pm_data_t *pmdata;
pm_accu_time_t *times;

Description
These subroutines support only the 1:1 threading model. They have been superseded by the
pm_get_data_pthread and pm_get_tdata_pthread subroutines, which support both the 1:1 and the M:N
threading models. Calls to these subroutines are equivalent to calls to the pm_get_data_pthread and
pm_get_tdata_pthread subroutines with a ptid parameter equal to 0.

Base Operating System (BOS) Runtime Services (A-P) 1067

The pm_get_data_thread subroutine retrieves the current Performance Monitor data for a target kernel
thread. The thread must be stopped and must be part of a debuggee process under the control of a calling
process.

The pm_get_tdata_thread subroutine retrieves the current Performance Monitor data for a target thread,
and a timestamp indicating the last time the hardware counters were read.

The pm_get_Tdata_thread subroutine retrieves the current Performance Monitor data for a target thread,
and the accumulated time (timebase, PURR time and SPURR time) the events were counted.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit
values.

Parameters

pid Process identifier of a target thread. The target process
must be a debuggee of the caller process.

tid Thread identifier of a target thread.
*pmdata Pointer to a structure to return the Performance Monitor

data for the target kernel thread.
*time Pointer to a structure containing the timebase value the

last time the hardware Performance Monitoring counters
were read. This can be converted to time using the
time_base_to_time subroutine.

*times Pointer to a structure containing the accumulated time
(timebase, PURR time and SPURR time) the events were
counted. Each time counter can be converted to time
using the time_base_to_time subroutine.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_thread
Subroutine” on page 1127, “pm_get_program_thread Subroutine” on page 1090, “pm_get_data_thread,
pm_get_tdata_thread or pm_get_Tdata_thread Subroutine” on page 1067, “pm_start_thread and
pm_tstart_thread Subroutine” on page 1139, “pm_stop_thread and pm_tstop_thread Subroutine” on page
1147, “pm_reset_data_thread Subroutine” on page 1104.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

1068 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pm_get_data_thread_mx or pm_get_tdata_thread_mx Subroutine

Purpose
Returns Performance Monitor data in counter multiplexing mode for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_data_thread_mx (pid, tid, *pmdata)
pid_t pid;
tid_t tid;
pm_data_mx_t *pmdata;

int pm_get_tdata_thread_mx (pid, tid, *pmdata, *time)
pid_t pid;
tid_t tid;
pm_data_mx_t *pmdata;
timebasestruct_t *time;

Description
These subroutines support only the 1:1 threading model. They have been superseded by the
pm_get_data_pthread_mx and pm_get_tdata_pthread_mx subroutines, which support both the 1:1 and
the M:N threading models. Calls to these subroutines are equivalent to calls to the
pm_get_data_pthread_mx and pm_get_tdata_pthread_mx subroutines with a ptid parameter equal to 0.

The pm_get_data_thread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for a target kernel thread. The thread must be stopped and must be part of a debuggee
process under the control of a calling process.

The pm_get_tdata_thread_mx subroutine retrieves the current Performance Monitor data in counter
multiplexing mode for a target thread, and a timestamp indicating the last time the hardware counters were
read.

The Performance Monitor data is always an array of a set (one per hardware counter on the machine
used) of 64-bit values.

The user application must free the array allocated to store accumulated counts and times (the accu_set
field of the pmdata parameter).

Parameters

pid Process identifier of a target thread. The target process
must be a debuggee of the caller process.

tid Thread identifier of a target thread.
*pmdata Pointer to a structure to return the Performance Monitor

data (array of accumulated counters, accumulated time
and accumulated PURR and SPURR time for each event
set counted) for the target kernel thread.

*time Pointer to a structure containing the timebase value the
last time the hardware Performance Monitoring counters
were read. This can be converted to time using the
time_base_to_time subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1069

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_set_program_thread_mx and pm_set_program_thread_mm Subroutines” on page 1129,
“pm_get_program_thread_mx and pm_get_program_thread_mm Subroutines” on page 1091,
“pm_start_thread and pm_tstart_thread Subroutine” on page 1139, “pm_stop_thread and pm_tstop_thread
Subroutine” on page 1147, “pm_reset_data_thread Subroutine” on page 1104.

The read_real_time or time_base_to_time subroutine in in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_proctype Subroutine

Purpose
Returns the current process type.

Library
Performance Monitor APIs (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_proctype ()

Description
The pm_get_proctype subroutine returns the current processor type. This value is the same as the one
returned in the proctype parameter by the pm_initialize subroutine.

Return Values

Positive value Current processor type.
-1 Unsupported processor type.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1070 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The “pm_initialize Subroutine” on page 1095.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program Subroutine

Purpose
Retrieves systemwide Performance Monitor settings.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program (*prog)
pm_prog_t *prog;

Description
The pm_get_program subroutine retrieves the current systemwide Performance Monitor settings. This
includes mode information and the events being counted, which are in a list of event identifiers. The
identifiers come from the lists returned by the pm_init subroutine.

The counting mode includes user mode, the kernel mode, the current counting state, and the process tree
mode. If the process tree mode is on, the counting applies only to the calling process and its decendants.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

If the events are represented by a group ID, then the is_group bit is set in the mode, and the first element
of the events array contains the group ID. The other elements of the events array are not meaningful.

Parameters

prog Returns which Performance Monitor events and modes
are set. Supported modes are:

PM_USER
Counting processes running in user mode

PM_KERNEL
Counting processes running in kernel mode

PM_COUNT
Counting is on

PM_PROCTREE
Counting applies only to the calling process and
its descendants

Base Operating System (BOS) Runtime Services (A-P) 1071

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program
Subroutine” on page 1105, “pm_delete_program Subroutine” on page 1038, “pm_get_data, pm_get_tdata,
pm_get_Tdata, pm_get_data_cpu, pm_get_tdata_cpu, pm_get_Tdata_cpu, pm_get_data_lcpu,
pm_get_tdata_lcpu and pm_get_Tdata_lcpu Subroutine” on page 1046, “pm_start and pm_tstart
Subroutine” on page 1131, “pm_stop and pm_tstop Subroutine ” on page 1140, “pm_reset_data
Subroutine” on page 1097.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_group Subroutine

Purpose
Retrieves the Performance Monitor settings for the counting group to which a target thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_group (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_t *prog;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_get_program_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A call
to this subroutine is equivalent to a call to the pm_get_program_pgroup subroutine with a ptid parameter
equal to 0.

The pm_get_program_group subroutine retrieves the Performance Monitor settings for the counting
group to which a target kernel thread belongs. The thread must be stopped and must be part of a
debuggee process under the control of the calling process. This includes mode information and the events
being counted, which are in a list of event identifiers. The identifiers come from the lists returned by the
pm_init subroutine.

1072 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The counting mode includes the user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

Parameters

pid Process identifier of target thread. The target process
must be an argument of a debug process.

tid Thread identifier of the target thread.
*prog Returns which Performance Monitor events and modes

are set. Supported modes are:

PM_USER
Counting process running in user mode

PM_KERNEL
Counting process running kernel mode

PM_COUNT
Counting is on

PM_PROCESS
Process level counting group

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_group
Subroutine” on page 1106, “pm_delete_program_group Subroutine” on page 1039, “pm_get_data_group,
pm_get_tdata_group and pm_get_Tdata_group Subroutine” on page 1049, “pm_start_group and
pm_tstart_group Subroutine” on page 1132, “pm_stop_group and pm_tstop_group Subroutine ” on page
1141, “pm_reset_data_group Subroutine” on page 1098.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_group_mx and pm_get_program_group_mm
Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for the counting
group to which a target thread belongs.

Base Operating System (BOS) Runtime Services (A-P) 1073

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_group_mx (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_mx_t *prog;

int pm_get_program_group_mm (pid, tid, *prog_mm)
pid_t pid;
tid_t tid;
pm_prog_mm_t *prog_mm;

Description
These subroutines support only the 1:1 threading model. They have been superseded respectively by the
pm_get_program_pgroup_mx subroutine and the pm_get_program_pgroup_mm subroutine, which
support both the 1:1 and the M:N threading models. A call to the pm_get_program_group_mx subroutine
or the pm_get_program_group_mm subroutine is respectively equivalent to a call to the
pm_get_program_pgroup_mx subroutine or the pm_get_program_pgroup_mm subroutine with a ptid
parameter equal to 0.

The pm_get_program_group_mx subroutine and the pm_get_program_group_mm subroutine retrieve
the Performance Monitor settings for the counting group to which a target kernel thread belongs. The
thread must be stopped and must be part of a debuggee process under the control of the calling process.
This includes mode information and the events being counted, which are in an array of lists of event
identifiers. The identifiers come from the lists returned by the pm_initialize subroutine.

When counting in multiplexing mode (pm_get_program_group_mx), the mode is global to all of the
events lists. When counting in multi-mode (pm_get_program_group_mm), a mode is associated with
each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

pid Process identifier of the target thread. The target process must be an argument of a
debug process.

tid Thread identifier of the target thread.

1074 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

*prog Returns which Performance Monitor events and modes are set. It supports the
following modes:

PM_USER
Counting process running in User Mode.

PM_KERNEL
Counting process running in Kernel Mode.

PM_COUNT
Counting is On.

PM_PROCESS
Process level counting group.

*prog_mm Returns which Performance Monitor events and associated modes are set. It supports
the following modes:

PM_USER
Counting processes running in User Mode.

PM_KERNEL
Counting processes running in Kernel Mode.

PM_COUNT
Counting is on.

PM_PROCTREE
Counting that applies only to the calling process and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all modes set.

Return Values

0 No errors occurred.
Positive error code See the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_set_program_group_mx and pm_set_program_group_mm Subroutines” on page 1108,
“pm_delete_program_group Subroutine” on page 1039, “pm_get_data_group_mx and
pm_get_tdata_group_mx Subroutine” on page 1050, “pm_start_group and pm_tstart_group Subroutine” on
page 1132, “pm_stop_group and pm_tstop_group Subroutine ” on page 1141, and “pm_reset_data_group
Subroutine” on page 1098.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

Base Operating System (BOS) Runtime Services (A-P) 1075

pm_get_program_mx and pm_get_program_mm Subroutines

Purpose
Retrieves system wide Performance Monitor settings in counter multiplexing mode and in multi-mode.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_mx (*prog)
pm_prog_mx_t *prog;

int pm_get_program_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_mx and pm_get_program_mm subroutines retrieve the current system wide
Performance Monitor settings. This includes mode information and the events being counted, which are in
an array of list of event identifiers. The identifiers come from the lists returned by the pm_initialize
subroutine. When you use the pm_get_program_mm subroutine for multi-mode counting, a mode is
associated to each event list.

The counting mode includes the user mode, the kernel mode, the current counting state, and the process
tree mode. If the process tree mode is set, the counting applies only to the calling process and its
descendants.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

If the events are represented by a group ID, then the is_group bit is set in the mode, and the first element
of each events array contains the group ID. The other elements of the events array are not used.

The user application must free the array allocated to store the event lists (events_set field in prog).

Parameters

prog Returns which Performance Monitor events and modes
are set. It supports the following modes:

PM_USER
Counting processes running in the user mode.

PM_KERNEL
Counting processes running in the kernel mode.

PM_COUNT
Counting is on.

PM_PROCTREE
Counting applies only to the calling process and
its descendants.

1076 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

prog_mm Returns which Performance Monitor events and
associated modes are set. It supports the following
modes:

PM_USER
Counting processes running in the user mode.

PM_KERNEL
Counting processes running in the kernel mode.

PM_COUNT
Counting is On.

PM_PROCTREE
Counting applies only to the calling process and
its descendants.

The PM_PROCTREE mode and the PM_COUNT mode
are common to all mode set.

Return Values

0 No errors occurred.
Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_mx and
pm_set_program_mm Subroutines” on page 1110, “pm_delete_program Subroutine” on page 1038,
“pm_get_data_mx, pm_get_tdata_mx, pm_get_data_cpu_mx, pm_get_tdata_cpu_mx,
pm_get_data_lcpu_mx and pm_get_tdata_lcpu_mx Subroutine” on page 1052, “pm_start and pm_tstart
Subroutine” on page 1131, “pm_stop and pm_tstop Subroutine ” on page 1140, “pm_reset_data
Subroutine” on page 1097.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_mygroup Subroutine

Purpose
Retrieves the Performance Monitor settings for the counting group to which the calling thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Base Operating System (BOS) Runtime Services (A-P) 1077

Syntax
#include <pmapi.h>

int pm_get_program_mygroup (*prog)
pm_prog_t *prog;

Description
The pm_get_program_mygroup subroutine retrieves the Performance Monitor settings for the counting
group to which the calling kernel thread belongs. This includes mode information and the events being
counted, which are in a list of event identifiers. The identifiers come from the lists returned by the pm_init
subroutine.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

Parameters

*prog Returns which Performance Monitor events and modes
are set. Supported modes are:

PM_USER
Counting processes running in user mode

PM_KERNEL
Counting processes running in kernel mode

PM_COUNT
Counting is on

PM_PROCESS
Process level counting group

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_mygroup
Subroutine” on page 1112, “pm_delete_program_mygroup Subroutine” on page 1040,
“pm_get_data_mygroup, pm_get_tdata_mygroup or pm_get_Tdata_mygroup Subroutine” on page 1054,
“pm_start_mygroup and pm_tstart_mygroup Subroutine” on page 1133, “pm_stop_mygroup and
pm_tstop_mygroup Subroutine ” on page 1142, “pm_reset_data_mygroup Subroutine” on page 1099.

1078 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_mygroup_mx and pm_get_program_mygroup_mm
Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for the counting
group to which the calling thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_mygroup_mx (*prog)
pm_prog_mx_t *prog;

int pm_get_program_mygroup_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_mygroup_mx and the pm_get_program_mygroup_mm subroutines retrieve the
Performance Monitor settings for the counting group to which the calling kernel thread belongs. This
includes mode information and the events being counted, which are in an array of lists of event identifiers.
The identifiers come from the lists returned by the pm_initialize subroutine.

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in
multi-mode, a mode is associated to each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

*prog Returns which Performance Monitor events and modes are set. It supports the following
modes:

PM_USER
Counting processes running in User Mode.

PM_KERNEL
Counting processes running in Kernel Mode.

PM_COUNT
Counting is on.

PM_PROCESS
Process level counting group.

Base Operating System (BOS) Runtime Services (A-P) 1079

*prog_mm Returns which Performance Monitor events and associated modes are set. It supports the
following modes:

PM_USER
Counting processes running in User Mode.

PM_KERNEL
Counting processes running in Kernel Mode.

PM_COUNT
Counting is On.

PM_PROCTREE
Counting applies only to the calling processes and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all modes set.

Return Values

0 No errors occurred.
Positive error code See the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_set_program_mygroup_mx and pm_set_program_mygroup_mm Subroutines” on page 1113,
“pm_delete_program_mygroup Subroutine” on page 1040, “pm_get_data_mygroup_mx or
pm_get_tdata_mygroup_mx Subroutine” on page 1056, “pm_start_mygroup and pm_tstart_mygroup
Subroutine” on page 1133, “pm_stop_mygroup and pm_tstop_mygroup Subroutine ” on page 1142, and
“pm_reset_data_mygroup Subroutine” on page 1099.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_mythread Subroutine

Purpose
Retrieves the Performance Monitor settings for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_mythread (*prog)
pm_prog_t *prog;

1080 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The pm_get_program_mythread subroutine retrieves the Performance Monitor settings for the calling
kernel thread. This includes mode information and the events being counted, which are in a list of event
identifiers. The identifiers come from the lists returned by the pm_init subroutine.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

Parameters

*prog Returns which Performance Monitor events and modes
are set. Supported modes are:

PM_USER
Counting processes running in user mode

PM_KERNEL
Counting processes running in kernel mode

PM_COUNT
Counting is on

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_mythread
Subroutine” on page 1116, “pm_delete_program_mythread Subroutine” on page 1041,
“pm_get_data_mythread, pm_get_tdata_mythread or pm_get_Tdata_mythread Subroutine” on page 1057,
“pm_start_mythread and pm_tstart_mythread Subroutine” on page 1135, “pm_stop_mythread and
pm_tstop_mythread Subroutine ” on page 1143, “pm_reset_data_mythread Subroutine” on page 1100.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_mythread_mx and pm_get_program_mythread_mm
Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for the calling
thread.

Base Operating System (BOS) Runtime Services (A-P) 1081

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_mythread_mx (*prog)
pm_prog_mx_t *prog;

int pm_get_program_mythread_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_mythread_mx and the pm_get_program_mythread_mm subroutines retrieve the
Performance Monitor settings for the calling kernel thread. This includes mode information and the events
being counted, which are in an array of lists of event identifiers. The event identifiers come from the lists
returned by the pm_initialize subroutine.

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in
multi-mode, a mode is associated with each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

*prog Returns which Performance Monitor events and modes are set. It supports the
following modes:

PM_USER
Counting processes running in User Mode.

PM_KERNEL
Counting processes running in Kernel Mode.

PM_COUNT
Counting is On.

*prog_mm Returns which Performance Monitor events and associated modes are set. It supports
the following modes:

PM_USER
Counting processes running in User Mode.

PM_KERNEL
Counting processes running in Kernel Mode.

PM_COUNT
Counting is On.

PM_PROCTREE
Counting that applies only to the calling processes and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all modes
set.

1082 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values

0 No errors occurred.
Positive error code See the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_set_program_mythread_mx and pm_set_program_mythread_mm Subroutines” on page 1117,
“pm_delete_program_mythread Subroutine” on page 1041, “pm_get_data_mythread_mx or
pm_get_tdata_mythread_mx Subroutine” on page 1058, “pm_start_mythread and pm_tstart_mythread
Subroutine” on page 1135, “pm_stop_mythread and pm_tstop_mythread Subroutine ” on page 1143, and
“pm_reset_data_mythread Subroutine” on page 1100.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_pgroup Subroutine

Purpose
Retrieves Performance Monitor settings for the counting group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_pgroup (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_t *prog;

Description
The pm_get_program_pgroup subroutine retrieves the Performance Monitor settings for the counting
group to which a target pthread belongs. The pthread must be stopped and must be part of a debuggee
process, under the control of the calling process. This includes mode information and the events being
counted, which are in a list of event identifiers. The identifiers come from the lists returned by the
pm_inititialize subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1083

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both theptid and tid parameters are specified, they
must be referring to a single pthread with the ptid parameter specified and currently running on a kernel
thread with specified tid parameter.

The counting mode includes the user mode and kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value is also returned.

Parameters

pid Process ID of target pthread. The target process must be
an argument of a debug process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*prog Returns which Performance Monitor events and modes
are set. The following modes are supported:

PM_USER
Counts process running in user mode

PM_KERNEL
Counts process running kernel mode

PM_COUNT
Counting is on

PM_PROCESS
Process-level counting group

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pgroup Subroutine” on page 1042, “pm_error Subroutine” on page 1045,
“pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine” on page 1060,
“pm_set_program_pgroup Subroutine” on page 1119, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pgroup Subroutine” on page 1101, “pm_start_pgroup and pm_tstart_pgroup Subroutine”
on page 1136, “pm_stop_pgroup and pm_tstop_pgroup Subroutine ” on page 1144.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

1084 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pm_get_program_pgroup_mx and pm_get_program_pgroup_mm
Subroutines

Purpose
Retrieves Performance Monitor settings in counter multiplexing mode and multi-mode for the counting
group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_pgroup_mx (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mx_t *prog;

int pm_get_program_pgroup_mm (pid, tid, ptid, prog_mm)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_pgroup_mx and the pm_get_program_pgroup_mm subroutine retrieve the
Performance Monitor settings for the counting group to which a target pthread belongs. The pthread must
be stopped and must be part of a debuggee process, which is under the control of the calling process.
This includes mode information and the events being counted, which are in an array of lists of event
identifiers. The event identifiers come from the lists returned by the pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with the tid parameter specified.

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in the
multi-mode, a mode is associated with each event list.

The counting mode includes the user mode and kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

pid Process ID of target pthread. The target process must be an argument of a debug
process.

tid Thread ID of target pthread. To ignore this parameter, set it to 0.
ptid Pthread ID of the target pthread. To ignore this parameter, set it to 0.

Base Operating System (BOS) Runtime Services (A-P) 1085

*prog Returns which Performance Monitor events and modes are set. It supports the following
modes:

PM_USER
Counts process running in User Mode.

PM_KERNEL
Counts process running Kernel Mode.

PM_COUNT
Counting is On.

PM_PROCESS
Process-level counting group.

*prog_mm Returns which Performance Monitor events and associated modes are set. It supports
the following modes:

PM_USER
Counting processes running in User Mode.

PM_KERNEL
Counting processes running in Kernel Mode.

PM_COUNT
Counting is On.

PM_PROCTREE
Counting applies only to the calling processes and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all modes set.

Return Values

0 No errors occurred.
Positive error code See the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pgroup Subroutine” on page 1042, “pm_error Subroutine” on page 1045,
“pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx Subroutine” on page 1062,
“pm_set_program_pgroup_mx and pm_set_program_pgroup_mm Subroutines” on page 1121,
“pm_initialize Subroutine” on page 1095, “pm_reset_data_pgroup Subroutine” on page 1101,
“pm_start_pgroup and pm_tstart_pgroup Subroutine” on page 1136, and “pm_stop_pgroup and
pm_tstop_pgroup Subroutine ” on page 1144.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

1086 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pm_get_program_pthread Subroutine

Purpose
Retrieves the Performance Monitor settings for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_pthread (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_t *prog;

Description
The pm_get_program_pthread subroutine retrieves the Performance Monitor settings for a target
pthread. The pthread must be stopped and must be part of a debuggee process, under the control of the
calling process. This includes mode information and the events being counted, which are in a list of event
identifiers. The identifiers must be selected from the lists returned by the pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value is also returned.

Parameters

pid Process ID of target pthread. Target process must be an
argument of a debug process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*prog Returns which Performance Monitor events and modes
are set. The following modes are supported:

PM_USER
Counts processes running in User Mode

PM_KERNEL
Counts processes running in Kernel Mode

PM_COUNT
Counting is On

Base Operating System (BOS) Runtime Services (A-P) 1087

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine” on page 1063,
“pm_set_program_pthread Subroutine” on page 1123, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pthread Subroutine” on page 1103, “pm_start_pthread and pm_tstart_pthread Subroutine”
on page 1137, “pm_stop_pthread and pm_tstop_pthread Subroutine ” on page 1146.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_pthread_mx and pm_get_program_pthread_mm
Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for a target
pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_pthread_mx (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mx_t *prog;

int pm_get_program_pthread_mm (pid, tid, ptid, prog_mm)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mm_t *prog_mm;

Description
The pm_get_program_pthread_mx and the pm_set_program_pthread_mm subroutines retrieve the
Performance Monitor settings for a target pthread. The pthread must be stopped and must be part of a
debuggee process, that is under the control of the calling process. This includes mode information and the

1088 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

events being counted, which are in an array of lists of event identifiers. The event identifiers must be
selected from the lists returned by the pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in the
multi-mode, a mode is associated with each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

pid Process ID of target pthread. Target process must be an argument of a debug process.
tid Thread ID of target pthread. To ignore this parameter, set it to 0.
ptid Pthread ID of the target pthread. To ignore this parameter, set it to 0.
*prog Returns which Performance Monitor events and modes are set. It supports the following

modes:

PM_USER
Counts processes running in User Mode.

PM_KERNEL
Counts processes running in Kernel Mode.

PM_COUNT
Counting is On.

*prog_mm Returns which Performance Monitor events and associated modes are set. It supports the
following modes:

PM_USER
Counting processes running in User Mode.

PM_KERNEL
Counting processes running in Kernel Mode.

PM_COUNT
Counting is On.

PM_PROCTREE
Counting that applies only to the calling processes and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all modes set.

Return Values

0 No errors occurred.
Positive error code See the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
See the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1089

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pthread_mx or pm_get_tdata_pthread_mx Subroutine” on page 1065,
“pm_set_program_pthread_mx and pm_set_program_pthread_mm Subroutines” on page 1125,
“pm_initialize Subroutine” on page 1095, “pm_reset_data_pthread Subroutine” on page 1103,
“pm_start_pthread and pm_tstart_pthread Subroutine” on page 1137, and “pm_stop_pthread and
pm_tstop_pthread Subroutine ” on page 1146.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_thread Subroutine

Purpose
Retrieves the Performance Monitor settings for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_thread (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_t *prog;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_get_program_pthread subroutine, which supports both the 1:1 and the M:N threading models. A call
to this subroutine is equivalent to a call to the pm_get_program_pthread subroutine with a ptid parameter
equal to 0.

The pm_get_program_thread subroutine retrieves the Performance Monitor settings for a target kernel
thread. The thread must be stopped and must be part of a debuggee process under the control of the
calling process. This includes mode information and the events being counted, which are in a list of event
identifiers. The identifiers come from the lists returned by the pm_init subroutine.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

Parameters

pid Process identifier of the target thread. The target process
must be an argument of a debug process.

tid Thread identifier of the target thread.

1090 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

*prog Returns which Performance Monitor events and modes
are set. Supported modes are:

PM_USER
Counting processes running in User mode

PM_KERNEL
Counting processes running in Kernel mode

PM_COUNT
Counting is On

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_thread
Subroutine” on page 1127, “pm_delete_program_thread Subroutine” on page 1044, “pm_get_data_thread,
pm_get_tdata_thread or pm_get_Tdata_thread Subroutine” on page 1067, “pm_start_thread and
pm_tstart_thread Subroutine” on page 1139, “pm_stop_thread and pm_tstop_thread Subroutine” on page
1147, “pm_reset_data_thread Subroutine” on page 1104.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_get_program_thread_mx and pm_get_program_thread_mm
Subroutines

Purpose
Retrieves the Performance Monitor settings in counter multiplexing mode and multi-mode for a target
thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_get_program_thread_mx (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_mx_t *prog;

Base Operating System (BOS) Runtime Services (A-P) 1091

int pm_get_program_thread_mm (pid, tid, *prog_mm)
pid_t pid;
tid_t tid;
pm_prog_mm_t *prog_mm;

Description
These subroutines support only the 1:1 threading model. They have been superseded respectively by the
pm_get_program_pthread_mx and the pm_get_program_pthread_mm subroutines, which support both
the 1:1 and the M:N threading models. A call to the pm_get_program_thread_mx subroutine or to the
pm_get_program_thread_mm subroutine is respectively equivalent to a call to the
pm_get_program_pthread_mx subroutine or the pm_get_program_pthread_mm subroutine with a ptid
parameter equal to 0.

The pm_get_program_thread_mx subroutine and the pm_get_program_thread_mm subroutine retrieve
the Performance Monitor settings for a target kernel thread. The thread must be stopped and must be part
of a debuggee process under the control of the calling process. This includes mode information and the
events being counted, which are in an array of list of event identifiers. The event identifiers come from the
lists returned by the pm_initialize subroutine.

When counting in multiplexing mode, the mode is global to all of the events lists. When counting in
multi-mode, a mode is associated to each event list.

Counting mode includes the user mode, the kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value is also returned.

The user application must free the allocated array to store the event lists (the events_set field in the prog
parameter).

Parameters

pid Process identifier of the target thread. The target process must be an argument of a
debug process.

tid Thread identifier of the target thread.
*prog Returns which Performance Monitor events and modes are set. It supports the

following modes:

PM_USER
Counting processes running in User Mode.

PM_KERNEL
Counting processes running in Kernel Mode.

PM_COUNT
Counting is On.

1092 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

*prog_mm Returns which Performance Monitor events and associated modes are set. It
supports the following modes:

PM_USER
Counting processes running in User Mode.

PM_KERNEL
Counting processes running in Kernel Mode.

PM_COUNT
Counting is On.

PM_PROCTREE
Counting that applies only to the calling process and its descendants.

The PM_PROCTREE mode and the PM_COUNT mode are common to all modes
set.

Return Values

0 No errors occurred.
Positive error code See the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
See the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine,” “pm_error Subroutine” on page 1045, “pm_set_program_thread_mx and
pm_set_program_thread_mm Subroutines” on page 1129, “pm_delete_program_thread Subroutine” on
page 1044, “pm_get_data_thread_mx or pm_get_tdata_thread_mx Subroutine” on page 1069,
“pm_start_thread and pm_tstart_thread Subroutine” on page 1139, “pm_stop_thread and pm_tstop_thread
Subroutine” on page 1147, and “pm_reset_data_thread Subroutine” on page 1104.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_init Subroutine

Purpose
Initializes the Performance Monitor APIs.

Library
Performance Monitor APIs Library (libpmapi.a)

Base Operating System (BOS) Runtime Services (A-P) 1093

Syntax
#include <pmapi.h>

int pm_init (filter, *pminfo, *pm_groups_info)
int filter;
pm_info_t *pminfo;
pm_groups_info_t *pm_groups_info;

Description

Note: The pm_init subroutine cannot be used on processors newer than POWER4. With such
processors, the pm_initialize subroutine must be used.

The pm_init subroutine initializes the Performance Monitor API library. It returns, after taking into account
a filter on the status of the events, the number of counters available on this processor, and one table per
counter with the list of events available. For each event, an event identifier, a status, a flag indicating if the
event can be used with a threshold, two names, and a description are provided.

The event identifier is used with all the pm_set_program interfaces and is also returned by all of the
pm_get_program interfaces. Only event identifiers present in the table returned can be used. In other
words, the filter is effective for all API calls.

The status describes whether the event has been verified, is still unverified, or works with some caveat, as
explained in the description. This field is necessary because the filter can be any combination of the three
available status bits. The flag points to events that can be used with a threshold.

Only events categorized as verified have gone through full verification. Events categorized as caveat have
been verified only within the limitations documented in the event description. Events categorized as
unverified have undefined accuracy. Use caution with unverified events; the Performance Monitor software
is essentially providing a service to read hardware registers which may or may not have any meaningful
content. Users may experiment with unverified event counters and determine for themselves what, if any,
use they may have for specific tuning situations.

The short mnemonic name is provided for easy keyword-based search in the event table (see the sample
program /usr/samples/pmapi/sysapit2.c for code using mnemonic names). The complete name of the
event is also available and a full description for each event is returned.

The structure returned also has the threshold multiplier for this processor and the processor name

On some platforms, it is possible to specify event groups instead of individual events. Event groups are
predefined sets of events. Rather than specify each event individually, a single group ID is specified. On
some platforms, such as POWER4, use of the event groups is required, and attempts to specify individual
events return an error.

The interface to pm_init has been enhanced to return the list of supported event groups in an optional
third parameter. For binary compatibilty, the third parameter must be explicitly requested by OR-ing the
bitflag, PM_GET_GROUPS, into the filter parameter.

If the pm_groups_info parameter returned by pm_init is NULL, there are no supported event groups for
the platform. Otherwise an array of pm_groups_t structures are returned in the event_groups field. The
length of the array is given by the max_groups field.

The pm_groups_t structure contains a group identifier, two names and a description that are similar to
those of the individual events. In addition, there is an array of integers that specify the events contained in
the group.

1094 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

filter Specifies which event types to return.

PM_VERIFIED
Events which have been verified

PM_UNVERIFIED
Events which have not been verified

PM_CAVEAT
Events which are usable but with caveats as described in the long description

*pminfo Returned structure with processor name, threshold multiplier, and a filtered list of events
with their current status.

*pm_groups_info Returned structure with list of supported groups. This parameter is only meaningful if
PM_GET_GROUPS is OR-ed into the filter parameter.

Return Values

0 No errors occurred.
Positive error code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
See the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
“pm_initialize Subroutine.”

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_initialize Subroutine

Purpose
Initializes the Performance Monitor APIs and returns information about a processor.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_initialize (filter, *pminfo, *pmgroups, proctype)
int filter;
pm_info2_t *pminfo;
pm_groups_info_t *pmgroups;
int proctype;

Base Operating System (BOS) Runtime Services (A-P) 1095

Description
The pm_initialize subroutine initializes the Performance Monitor API library and retrieves information
about a type of processor (if the specified proctype is not PM_CURRENT). It takes into account a filter on
the events status, then it returns the number of counters available on this processor and one table per
counter containing the list of available events. For each event, it provides an event identifier, a status, two
names, and a description. The status contains a set of flags indicating: the event status, if the event can
be used with a threshold, if the event is a shared event, and if the event is a grouped-only event.

The event identifier is used with all pm_set_program interfaces and is also returned by all of the
pm_get_program interfaces. Only event identifiers present in the returned table can be used. In other
words, the filter is effective for all API calls.

The status describes whether the event has been verified, is still unverified, or works with some caveat, as
explained in the description. This field is necessary because the filter can be any combination of the three
available status bits. The flag points to events that can be used with a threshold.

Only events categorized as verified have been fully verified. Events categorized as caveat have been
verified only with the limitations documented in the event description. Events categorized as unverified
have an undefined accuracy. Use unverified events cautiously; the Performance Monitor software provides
essentially a service to read hardware registers, which might or might not have meaningful content. Users
might experiment for themselves with unverified event counters to determine if they can be used for
specific tuning situations.

The short mnemonic name is provided for an easy keyword-based search in the event table (see the
sample program /usr/samples/pmapi/cpi.c for code using mnemonic names). The complete name of the
event is also available, and a full description for each event is returned.

The returned structure also contains the threshold multipliers for this processor, the processor name, and
its characteristics. On some platforms, up to three threshold multipliers are available.

On some platforms, it is possible to specify event groups instead of individual events. Event groups are
predefined sets of events. Rather than specify each event individually, a single group ID is specified. On
some platforms, such as POWER4, using event groups is mandatory, and specifying individual events
returns an error.

The interface to pm_initialize returns the list of supported event groups in its third parameter. If the
pmgroups parameter returned by pm_initialize is NULL, there are no supported event groups for the
platform. Otherwise an array of pm_groups_t structures is returned in the event_groups field. The length
of the array is given by the max_groups field.

The pm_groups_t structure contains a group identifier, two names, and a description that are all similar to
those of the individual events. In addition, an array of integers specifies the events contained in the group.

If the proctype parameter is not set to PM_CURRENT, the Performance Monitor APIs library is not
initialized, and the subroutine only returns information about the specified processor and those events and
groups available in its parameters (pminfo and pmgroups) taking into account the filter. If the proctype
parameter is set to PM_CURRENT, in addition to returning the information described, the Performance
Monitor APIs library is initialized and ready to accept other calls.

1096 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

filter Specifies which event types to return.

PM_VERIFIED
Events that have been verified.

PM_UNVERIFIED
Events that have not been verified.

PM_CAVEAT
Events that are usable but with caveats, as explained in the long description.

pmgroups Returned structure containing the list of supported groups.
pminfo Returned structure containing the processor name, the threshold multiplier and a filtered list

of events with their current status.
proctype Initializes the Performance Monitor API and retrieves information about a specific processor

type:

PM_CURRENT
Retrieves information about the current processor and initializes the Performance
Monitor API library.

other Retrieves information about a specific processor.

Return Values

0 No errors occurred.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_initialize subroutine replaces pm_init subroutine. It is mandatory to initialize the Performance
Monitor API library for processors newer than POWER4.

“pm_error Subroutine” on page 1045.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_reset_data Subroutine

Purpose
Resets system wide Performance Monitor data.

Library
Performance Monitor APIs Library (libpmapi.a)

Base Operating System (BOS) Runtime Services (A-P) 1097

Syntax
#include <pmapi.h>

int pm_reset_data ()

Description
The pm_reset_data subroutine resets the current system wide Performance Monitor data. The data is a
set (one per hardware counter on the machine used) of 64-bit values. All values are reset to 0.

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
See the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_init (“pm_init Subroutine” on page 1093) subroutine, pm_error (“pm_error Subroutine” on page
1045) subroutine, pm_set_program (“pm_set_program Subroutine” on page 1105) subroutine,
pm_get_program (“pm_get_program Subroutine” on page 1071) subroutine, pm_delete program
(“pm_delete_program Subroutine” on page 1038) subroutine, pm_get_data (“pm_get_data, pm_get_tdata,
pm_get_Tdata, pm_get_data_cpu, pm_get_tdata_cpu, pm_get_Tdata_cpu, pm_get_data_lcpu,
pm_get_tdata_lcpu and pm_get_Tdata_lcpu Subroutine” on page 1046) subroutine, pm_start (“pm_start
and pm_tstart Subroutine” on page 1131) subroutine, pm_stop (“pm_stop and pm_tstop Subroutine ” on
page 1140) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_reset_data_group Subroutine

Purpose
Resets Performance Monitor data for a target thread and the counting group to which it belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_reset_data_group (pid, tid)
pid_t pid;
tid_t tid;

1098 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_reset_data_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A call to
this subroutine is equivalent to a call to the pm_reset_data_pgroup subroutine with a ptid parameter
equal to 0.

The pm_reset_data_group subroutine resets the current Performance Monitor data for a target kernel
thread and the counting group to which it belongs. The thread must be stopped and must be part of a
debugee process, under control of the calling process. The data is a set (one per hardware counter on the
machine used) of 64-bit values. All values are reset to 0. Because the data for all the other threads in the
group is not affected, the group is marked as inconsistent unless it has only one member.

Parameters

pid Process ID of target thread. Target process must be a
debuggee of the caller process.

tid Thread ID of target thread.

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_init (“pm_init Subroutine” on page 1093) subroutine, pm_error (“pm_error Subroutine” on page
1045) subroutine, pm_set_program_group (“pm_set_program_group Subroutine” on page 1106)
subroutine, pm_get_program_group (“pm_get_program_group Subroutine” on page 1072) subroutine,
pm_delete_program_group (“pm_delete_program_group Subroutine” on page 1039) subroutine,
pm_start_group (“pm_start_group and pm_tstart_group Subroutine” on page 1132) subroutine,
pm_stop_group (“pm_stop_group and pm_tstop_group Subroutine ” on page 1141) subroutine,
pm_get_data_group (“pm_get_data_group, pm_get_tdata_group and pm_get_Tdata_group Subroutine”
on page 1049) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_reset_data_mygroup Subroutine

Purpose
Resets Performance Monitor data for the calling thread and the counting group to which it belongs.

Base Operating System (BOS) Runtime Services (A-P) 1099

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_reset_data_mygroup()

Description
The pm_reset_data_mygroup subroutine resets the current Performance Monitor data for the calling
kernel thread and the counting group to which it belongs. The data is a set (one per hardware counter on
the machine used) of 64-bit values. All values are reset to 0. Because the data for all the other threads in
the group is not affected, the group is marked as inconsistent unless it has only one member.

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_init (“pm_init Subroutine” on page 1093) subroutine, pm_error (“pm_error Subroutine” on page
1045) subroutine, pm_set_program_mygroup (“pm_set_program_mygroup Subroutine” on page 1112)
subroutine, pm_get_program_mygroup (“pm_get_program_mygroup Subroutine” on page 1077)
subroutine, pm_delete_program_mygroup (“pm_delete_program_mygroup Subroutine” on page 1040)
subroutine, pm_start_mygroup (“pm_start_mygroup and pm_tstart_mygroup Subroutine” on page 1133)
subroutine, pm_stop_mygroup (“pm_stop_mygroup and pm_tstop_mygroup Subroutine ” on page 1142)
subroutine, pm_get_data_mygroup (“pm_get_data_mygroup, pm_get_tdata_mygroup or
pm_get_Tdata_mygroup Subroutine” on page 1054) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_reset_data_mythread Subroutine

Purpose
Resets Performance Monitor data for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

1100 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <pmapi.h>

int pm_reset_data_mythread()

Description
The pm_reset_data_mythread subroutine resets the current Performance Monitor data for the calling
kernel thread. The data is a set (one per hardware counter on the machine) of 64-bit values. All values are
reset to 0.

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_init (“pm_init Subroutine” on page 1093) subroutine, pm_error (“pm_error Subroutine” on page
1045) subroutine, pm_set_program_mythread (“pm_set_program_mythread Subroutine” on page 1116)
subroutine, pm_get_program_mythread (“pm_get_program_mythread Subroutine” on page 1080)
subroutine, pm_delete_program_mythread (“pm_delete_program_mythread Subroutine” on page 1041)
subroutine, pm_start_mythread (“pm_start_mythread and pm_tstart_mythread Subroutine” on page 1135)
subroutine, pm_stop_mythread (“pm_stop_mythread and pm_tstop_mythread Subroutine ” on page 1143)
subroutine, pm_get_data_mythread (“pm_get_data_mythread, pm_get_tdata_mythread or
pm_get_Tdata_mythread Subroutine” on page 1057) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_reset_data_pgroup Subroutine

Purpose
Resets Performance Monitor data for a target pthread and the counting group to which it belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_reset_data_pgroup (pid, tid, ptid)

Base Operating System (BOS) Runtime Services (A-P) 1101

pid_t pid;
tid_t tid;
ptid_t ptid;

Description
The pm_reset_data_pgroup subroutine resets the current Performance Monitor data for a target pthread
and the counting group to which it belongs. The pthread must be stopped and must be part of a debugee
process, under control of the calling process. The data is a set (one per hardware counter on the machine
used) of 64-bit values. All values are reset to 0. Because the data for all the other pthreads in the group is
not affected, the group is marked as inconsistent unless it has only one member.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pgroup Subroutine” on page 1042, “pm_error Subroutine” on page 1045,
“pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine” on page 1060,
“pm_get_program_pgroup Subroutine” on page 1083, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pgroup Subroutine” on page 1101, “pm_set_program_pgroup Subroutine” on page 1119,
“pm_start_pgroup and pm_tstart_pgroup Subroutine” on page 1136, “pm_stop_pgroup and
pm_tstop_pgroup Subroutine ” on page 1144.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

1102 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pm_reset_data_pthread Subroutine

Purpose
Resets Performance Monitor data for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_reset_data_pthread (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

Description
The pm_reset_data_pthread subroutine resets the current Performance Monitor data for a target pthread.
The pthread must be stopped and must be part of a debuggee process. The data is a set (one per
hardware counter on the machine used) of 64-bit values. All values are reset to 0.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine” on page 1063,

Base Operating System (BOS) Runtime Services (A-P) 1103

“pm_get_program_pthread Subroutine” on page 1087, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pthread Subroutine” on page 1103, “pm_set_program_pthread Subroutine” on page 1123,
“pm_start_pthread and pm_tstart_pthread Subroutine” on page 1137, “pm_stop_pthread and
pm_tstop_pthread Subroutine ” on page 1146.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_reset_data_thread Subroutine

Purpose
Resets Performance Monitor data for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_reset_data_thread (pid, tid)
pid_t pid;
tid_t tid;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_reset_data_pthread subroutine, which supports both the 1:1 and the M:N threading models. A call to
this subroutine is equivalent to a call to the pm_reset_data_pthread subroutine with a ptid parameter
equal to 0.

The pm_reset_data_thread subroutine resets the current Performance Monitor data for a target kernel
thread. The thread must be stopped and must be part of a debuggee process. The data is a set (one per
hardware counter on the machine used) of 64-bit values. All values are reset to 0.

Parameters

pid Process id of target thread. Target process must be a
debuggee of the caller process.

tid Thread id of target thread.

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Files

/usr/include/pmapi.h Defines standard macros, datatypes, and subroutines.

1104 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The pm_init (“pm_init Subroutine” on page 1093) subroutine, pm_error (“pm_error Subroutine” on page
1045) subroutine, pm_set_program_thread (“pm_set_program_thread Subroutine” on page 1127)
subroutine, pm_get_program_thread (“pm_get_program_thread Subroutine” on page 1090) subroutine,
pm_delete_program_thread (“pm_delete_program_thread Subroutine” on page 1044) subroutine,
pm_start_thread (“pm_start_thread and pm_tstart_thread Subroutine” on page 1139) subroutine,
pm_stop_thread (“pm_stop_thread and pm_tstop_thread Subroutine” on page 1147) subroutine,
pm_get_data_thread (“pm_get_data_thread, pm_get_tdata_thread or pm_get_Tdata_thread Subroutine”
on page 1067) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program Subroutine

Purpose
Sets system wide Performance Monitor programmation.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program (*prog)
pm_prog_t *prog;

Description
The pm_set_program subroutine sets system wide Performance Monitor programmation. The setting
includes the events to be counted, and a mode in which to count. The events to count are in a list of event
identifiers. The identifiers must be selected from the lists returned by the pm_init subroutine.

The counting mode includes User Mode and/or Kernel Mode, the Initial Counting State, and the Process
Tree Mode. The Process Tree Mode sets counting to On only for the calling process and its descendants.
The defaults are set to Off for User Mode and Kernel Mode. The initial default state is set to delay
counting until the pm_start subroutine is called, and to count the activity of all the processes running in
the system.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

On some platforms, event groups can be specified instead of individual events. This is done by setting the
bitfield is_group in the mode, and placing the group ID into the first element of the events array. (The
group ID was obtained by pm_init).

Base Operating System (BOS) Runtime Services (A-P) 1105

Parameters

*prog Specifies the events and modes to use in Performance
Monitor setup. The following modes are supported:

PM_USER
Counts processes running in User Mode (default
is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting)

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off)

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_get_program
Subroutine” on page 1071, “pm_delete_program Subroutine” on page 1038, “pm_get_data, pm_get_tdata,
pm_get_Tdata, pm_get_data_cpu, pm_get_tdata_cpu, pm_get_Tdata_cpu, pm_get_data_lcpu,
pm_get_tdata_lcpu and pm_get_Tdata_lcpu Subroutine” on page 1046, “pm_start and pm_tstart
Subroutine” on page 1131, “pm_stop and pm_tstop Subroutine ” on page 1140, “pm_reset_data
Subroutine” on page 1097.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_group Subroutine

Purpose
Sets Performance Monitor programmation for a target thread and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

1106 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <pmapi.h>

int pm_set_program_group (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_t *prog;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_set_program_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A call
to this subroutine is equivalent to a call to the pm_set_program_pgroup subroutine with a ptid parameter
equal to 0.

The pm_set_program_group subroutine sets the Performance Monitor programmation for a target kernel
thread. The thread must be stopped and must be part of a debuggee process, under the control of the
calling process. The setting includes the events to be counted and a mode in which to count. The events
to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_init subroutine.

This call also creates a counting group, which includes the target thread and any thread which it, or any of
its descendants, will create in the future. Optionally, the group can be defined as also containing all the
existing and future threads belonging to the target process.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the initial default state is set to delay counting until the
pm_start_group subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

pid Process ID of target thread. Target process must be a
debuggee of a calling process.

tid Thread ID of target thread.
*prog

PM_USER
Counts processes running in User Mode (default
is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting)

PM_PROCESS
Creates a process-level counting group

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Base Operating System (BOS) Runtime Services (A-P) 1107

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_get_program_group
Subroutine” on page 1072, “pm_delete_program_group Subroutine” on page 1039, “pm_get_data_group,
pm_get_tdata_group and pm_get_Tdata_group Subroutine” on page 1049, “pm_start_group and
pm_tstart_group Subroutine” on page 1132, “pm_stop_group and pm_tstop_group Subroutine ” on page
1141, “pm_reset_data_group Subroutine” on page 1098.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_group_mx and pm_set_program_group_mm
Subroutines

Purpose
Sets the Performance Monitor program in counter multiplexing mode and multi-mode for a target thread
and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_group_mx (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_mx_t *prog;

int pm_set_program_group_mm (pid, tid, *prog_mm)
pid_t pid;
tid_t tid;
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_group_mx and pm_set_program_group_mm subroutines support only the 1:1
threading model. They have been superseded respectively by the pm_set_program_pgroup_mx and
pm_set_program_pgroup_mm subroutines, which support both the 1:1 and the M:N threading models. A
call to the pm_set_program_pgroup_mx or pm_set_program_pgroup_mm subroutine is respectively
equivalent to a call to the pm_set_program_pgroup_mx or pm_set_program_pgroup_mm subroutine
with a ptid parameter equal to 0.

The pm_set_program_group_mx and pm_set_program_group_mm subroutines set the Performance
Monitor program respectively in counter multiplexing mode or in multi-mode for a target kernel thread. The
thread must be stopped and must be part of a debuggee process, which is under the control of the calling
process.

1108 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The pm_set_program_group_mx subroutine setting includes the list of the event arrays to be counted
and the mode in which to count. The mode is global to all of the event lists. The events to count are in an
array of lists of event identifiers.

The pm_set_program_group_mm subroutine setting includes the list of the event arrays to be counted,
and the associated mode in which to count each event array. A counting mode is defined for each event
array.

The event identifiers must be selected from the lists returned by the pm_initialize subroutine.

Both subroutines create a counting group, which includes the target thread and any thread which it, or any
of its descendants, will create in the future. The group can also be defined as containing all the existing
and future threads belonging to the target process.

The counting mode for the subroutines includes the User Mode, the Kernel Mode, or both of them, and the
Initial Counting State. The default is set to Off for the User Mode and the Kernel Mode. The initial default
state is set to delay counting until the pm_start_group subroutine is called.

When you use the pm_set_program_group_mm subroutine for multi-mode counting, the Process Tree
Mode and the Start Counting Mode are fixed by their values that are defined in the first programming set.

If the list includes an event that can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

pid Specifies the process ID of target thread. The target process must be a debuggee of a
calling process.

tid Specifies the thread ID of the target thread.
*prog Specifies the events and modes to use in the Performance Monitor setup. The prog

parameter supports the following modes:

PM_USER
Counts processes running in User Mode (default is set to Off).

PM_KERNEL
Counts processes running in Kernel Mode (default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not to start counting).

PM_PROCESS
Creates a process-level counting group.

* prog_mm Specifies the events and the modes to use in the Performance Monitor setup. The
prog_mm parameter supports the following modes:

PM_USER
Counts processes running in User Mode (default is set to Off).

PM_KERNEL
Counts processes running in Kernel Mode (default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not to start counting).

PM_PROCTREE
Sets counting to On only for the calling process and its descendents (default is
set to Off).

The PM_PROCTREE mode and the PM_COUNT mode defined in the first setting fix
value for the counting.

Base Operating System (BOS) Runtime Services (A-P) 1109

Return Values

0 Operation completed successfully.
Positive Error Code See the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the error

code.

Error Codes
See the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_get_program_group_mx and pm_get_program_group_mm Subroutines” on page 1073,
“pm_delete_program_group Subroutine” on page 1039, “pm_get_data_group_mx and
pm_get_tdata_group_mx Subroutine” on page 1050, “pm_start_group and pm_tstart_group Subroutine” on
page 1132, “pm_stop_group and pm_tstop_group Subroutine ” on page 1141, and “pm_reset_data_group
Subroutine” on page 1098.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_mx and pm_set_program_mm Subroutines

Purpose
Sets system wide Performance Monitor programmation in counter multiplexing mode and in multi-mode.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program_mx (*prog)
pm_prog_mx_t *prog;

int pm_set_program_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_mx and pm_set_program_mm subroutines set system wide Performance Monitor
programmation in counter multiplexing mode.

The pm_set_program_mx setting includes the list of the event arrays to be counted, and a mode in which
to count. The events to count are in an array of list of event identifiers. The mode is global to all the event
lists.

The pm_set_program_mm setting includes the list of the event arrays to be counted, and the associated
mode in which to count each event array. A counting mode is defined for each event array.

1110 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The identifiers must be selected from the lists returned by the pm_initialize subroutine.

The counting mode includes the User Mode and the Kernel Mode, or either of them; the Initial Counting
State; and the Process Tree Mode. The Process Tree Mode sets counting to On only for the calling
process and its descendants. The defaults are set to Off for the User Mode and the Kernel Mode. The
initial default state is set to delay counting until the pm_start subroutine is called, and to count the activity
of all the processes running in the system.

When you use the pm_set_program_mm subroutine for multi-mode counting, the Process Tree Mode and
the Start Counting Mode are fixed by their values that are defined in the first programming set.

If the list includes an event that can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

On some platforms, event groups can be specified instead of individual events. This is done by setting the
is_group bitfield in the mode, and placing the group ID into the first element of each events array. (The
group ID was obtained by pm_init subroutine.)

Parameters

*prog Specifies the events and modes to use in Performance
Monitor setup. It supports the following modes:

PM_USER
Counts processes that run in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes that run in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

*prog_mm Specifies the events and the associated modes to use in
the Performance Monitor setup. It supports the following
modes:

PM_USER
Counts processes that run in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes that run in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE and the PM_COUNT modes defined
in the first setting fix the value for the counting.

Base Operating System (BOS) Runtime Services (A-P) 1111

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_get_program_mx and
pm_get_program_mm Subroutines” on page 1076, “pm_get_program_mx and pm_get_program_mm
Subroutines” on page 1076, “pm_delete_program Subroutine” on page 1038, “pm_get_data_mx,
pm_get_tdata_mx, pm_get_data_cpu_mx, pm_get_tdata_cpu_mx, pm_get_data_lcpu_mx and
pm_get_tdata_lcpu_mx Subroutine” on page 1052, “pm_start and pm_tstart Subroutine” on page 1131,
“pm_stop and pm_tstop Subroutine ” on page 1140, “pm_reset_data Subroutine” on page 1097.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_mygroup Subroutine

Purpose
Sets Performance Monitor programmation for the calling thread and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_mygroup (*prog)
pm_prog_t *prog;

Description
The pm_set_program_mygroup subroutine sets the Performance Monitor programmation for the calling
kernel thread. The setting includes the events to be counted and a mode in which to count. The events to
count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_init subroutine.

This call also creates a counting group, which includes the calling thread and any thread which it, or any
of its descendants, will create in the future. Optionally, the group can be defined as also containing all the
existing and future threads belonging to the calling process.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the inital default state is set to delay counting until the
pm_start_mygroup subroutine is called.

1112 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

*prog Specifies the events and mode to use in Performance
Monitor setup. The following modes are supported:

PM_USER
Counts processes running in User Mode (default
is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting)

PM_PROCESS
Creates a process-level counting group

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_get_program_mygroup
Subroutine” on page 1077, “pm_delete_program_mygroup Subroutine” on page 1040,
“pm_get_data_mygroup, pm_get_tdata_mygroup or pm_get_Tdata_mygroup Subroutine” on page 1054,
“pm_start_mygroup and pm_tstart_mygroup Subroutine” on page 1133, “pm_stop_mygroup and
pm_tstop_mygroup Subroutine ” on page 1142, “pm_reset_data_mygroup Subroutine” on page 1099.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_mygroup_mx and pm_set_program_mygroup_mm
Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for the calling
thread and creates a counting group.

Base Operating System (BOS) Runtime Services (A-P) 1113

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_mygroup_mx (*prog)
pm_prog_mx_t *prog;

int pm_set_program_mygroup_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_mygroup_mx and pm_set_program_mygroup_mmsubroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or in multi-mode for the
calling kernel thread.

The pm_set_program_mygroup_mx subroutine setting includes the list of event arrays to be counted
and a mode in which to count. The mode is global to all of the event lists. The events to count are in an
array of list of event identifiers.

The pm_set_program_mygroup_mm subroutine setting includes the list of the event arrays to be
counted, and the mode in which to count each event array. A counting mode is defined for each event
array.

The identifiers must be selected from the lists returned by the pm_initialize subroutine.

Both subroutines create a counting group, which includes the calling thread and any thread which it, or
any of its descendants, will create in the future. Optionally, the group can be defined as also containing all
the existing and future threads belonging to the calling process.

The counting mode for both subroutines includes the User Mode or the Kernel Mode, or both of them; the
Initial Counting State. The defaults are set to Off for User Mode and Kernel Mode, and the initial default
state is set to delay counting until the pm_start_mygroup subroutine is called.

When you use the pm_set_program_mygroup_mm subroutine for multi-mode counting, the Process Tree
Mode and the Start Counting Mode are fixed by their values defined in the first programming set.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

1114 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

*prog Specifies the events and modes to use in Performance
Monitor setup. The prog parameter supports the following
modes:

PM_USER
Counts processes running in User Mode (default
is set to Off).

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting).

PM_PROCESS
Creates a process-level counting group.

*prog_mm Specifies the events and the associated modes to use in
the Performance Monitor setup. The prog_mm parameter
supports the following modes:

PM_USER
Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the counting.

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_get_program_mygroup_mx and pm_get_program_mygroup_mm Subroutines” on page 1079,
“pm_delete_program_mygroup Subroutine” on page 1040, “pm_get_data_mygroup_mx or

Base Operating System (BOS) Runtime Services (A-P) 1115

pm_get_tdata_mygroup_mx Subroutine” on page 1056, “pm_start_mygroup and pm_tstart_mygroup
Subroutine” on page 1133, “pm_stop_mygroup and pm_tstop_mygroup Subroutine ” on page 1142,
“pm_reset_data_mygroup Subroutine” on page 1099.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_mythread Subroutine

Purpose
Sets Performance Monitor programmation for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_mythread (*prog)
pm_prog_t *prog;

Description
The pm_set_program_mythread subroutine sets the Performance Monitor programmation for the calling
kernel thread. The setting includes the events to be counted, and a mode in which to count. The events to
count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_init subroutine.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the initial default state is set to delay counting until the
pm_start_mythread subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

*prog Specifies the event modes to use in Performance Monitor
setup. The following modes are supported:

PM_USER
Counts processes running in User Mode (default
is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting)

PM_PROCESS
Creates a process-level counting group

1116 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_get_program_mythread
Subroutine” on page 1080, “pm_delete_program_mythread Subroutine” on page 1041,
“pm_get_data_mythread, pm_get_tdata_mythread or pm_get_Tdata_mythread Subroutine” on page 1057,
“pm_start_mythread and pm_tstart_mythread Subroutine” on page 1135, “pm_stop_mythread and
pm_tstop_mythread Subroutine ” on page 1143, “pm_reset_data_mythread Subroutine” on page 1100.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_mythread_mx and pm_set_program_mythread_mm
Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for the calling
thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_mythread_mx (*prog)
pm_prog_mx_t *prog;

int pm_set_program_mythread_mm (*prog_mm)
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_mythread_mx and the pm_set_program_mythread_mm subroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or in multi-mode for the
calling kernel thread.

The pm_set_program_mythread_mx subroutine setting includes the list of the event arrays to be
counted, and a mode in which to count. The mode is global to all event lists. The events to count are in an
array of list of event identifiers.

Base Operating System (BOS) Runtime Services (A-P) 1117

The pm_set_program_mythread_mm setting includes the lists of the event arrays to be counted, and the
associated modes in which to count each event array. A counting mode is defined for each event array.

The event identifiers must be selected from the lists returned by the pm_initialize subroutine.

The counting mode for both subroutines includes the User Mode or the Kernel Mode, or both of them; and
the Initial Counting State. The defaults are set to Off for User Mode and Kernel Mode, and the initial
default state is set to delay counting until the pm_start_mythread subroutine is called.

When you use the pm_set_program_mythread_mm subroutine for multi-mode counting, the Process
Tree Mode and the Start Counting Mode are fixed by the their values defined in the first programming set.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

*prog Specifies the events and the modes to use in the
Performance Monitor setup. The prog parameter supports
the following modes:

PM_USER
Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting).

PM_PROCESS
Creates a process-level counting group.

*prog_mm Specifies the events and the modes to use in the
Performance Monitor setup. The prog_mm parameter
supports the following modes:

PM_USER
Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the counting.

Return Values

0 Operation completed successfully.

1118 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Positive Error Code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_get_program_mythread_mx and pm_get_program_mythread_mm Subroutines” on page 1081,
“pm_delete_program_mythread Subroutine” on page 1041, “pm_get_data_mythread_mx or
pm_get_tdata_mythread_mx Subroutine” on page 1058, “pm_start_mythread and pm_tstart_mythread
Subroutine” on page 1135, “pm_stop_mythread and pm_tstop_mythread Subroutine ” on page 1143,
“pm_reset_data_mythread Subroutine” on page 1100.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_pgroup Subroutine

Purpose
Sets Performance Monitor programmation for a target pthread and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_pgroup (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_t *prog;

Description
The pm_set_program_pgroup subroutine sets the Performance Monitor programmation for a target
pthread. The pthread must be stopped and must be part of a debuggee process, under the control of the
calling process. The setting includes the events to be counted and a mode in which to count. The events
to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_inititialize subroutine.

This call also creates a counting group, which includes the target pthread and any pthread that it, or any of
its descendants, will create in the future. Optionally, the group can be defined as also containing all the
existing and future pthreads belonging to the target process.

Base Operating System (BOS) Runtime Services (A-P) 1119

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the initial default state is set to delay counting until the
pm_start_pgroup subroutine is called.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value can also be specified.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*prog Specifies the event modes to use in Performance Monitor
setup. The following modes are supported:

PM_USER
Counts processes running in User Mode (default
is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting)

PM_PROCESS
Creates a process-level counting group

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pgroup Subroutine” on page 1042, “pm_error Subroutine” on page 1045,
“pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine” on page 1060,
“pm_get_program_pgroup Subroutine” on page 1083, “pm_initialize Subroutine” on page 1095,

1120 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

“pm_reset_data_pgroup Subroutine” on page 1101, “pm_start_pgroup and pm_tstart_pgroup Subroutine”
on page 1136, “pm_stop_pgroup and pm_tstop_pgroup Subroutine ” on page 1144.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_pgroup_mx and pm_set_program_pgroup_mm
Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for a target
pthread and creates a counting group.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_pgroup_mx (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mx_t *prog;

int pm_set_program_pgroup_mm (pid, tid, ptid, *prog_mm)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_pgroup_mx and the pm_set_program_pgroup_mm subroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or in multi-mode for a
target pthread. The pthread must be stopped and must be part of a debuggee process, under the control
of the calling process.

The pm_set_program_pgroup_mx setting includes the list of the event arrays to be counted and a mode
in which to count. The mode is global to all of the event lists. The events to count are in an array of list of
event identifiers.

The pm_set_program_pgroup_mm setting includes the lists of the event arrays to be counted and the
associated mode in which to count each event array. A counting mode is defined for each event array.

The event identifiers must be selected from the lists returned by the pm_inititialize subroutine.

Both subroutines create a counting group, which includes the target pthread and any pthread that it, or any
of its descendants, will create in the future. Optionally, the group can be defined as also containing all the
existing and future pthreads belonging to the target process.

Base Operating System (BOS) Runtime Services (A-P) 1121

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode for both subroutines includes the User Mode, or the Kernel Mode, or both of them; and
the Initial Counting State. The defaults are set to Off for the User Mode and the Kernel Mode, and the
initial default state is set to delay counting until the pm_start_pgroup subroutine is called.

When you use the pm_set_program_pgroup_mm subroutine for multi-mode counting, the Process Tree
Mode and the Start Counting Mode are fixed by their values defined in the first programming set.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value can also be specified.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*prog Specifies the events and the modes to use in the
Performance Monitor setup. The prog parameter supports
the following modes:

PM_USER
Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting).

PM_PROCESS
Creates a process-level counting group.

1122 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

*prog_mm Specifies the events and the modes to use in the
Performance Monitor setup. The prog_mm parameter
supports the following modes:

PM_USER
Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the counting.

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pgroup Subroutine” on page 1042, “pm_error Subroutine” on page 1045,
“pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx Subroutine” on page 1062,
“pm_get_program_pgroup_mx and pm_get_program_pgroup_mm Subroutines” on page 1085,
“pm_initialize Subroutine” on page 1095, “pm_reset_data_pgroup Subroutine” on page 1101,
“pm_start_pgroup and pm_tstart_pgroup Subroutine” on page 1136, “pm_stop_pgroup and
pm_tstop_pgroup Subroutine ” on page 1144.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_pthread Subroutine

Purpose
Sets Performance Monitor programmation for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Base Operating System (BOS) Runtime Services (A-P) 1123

Syntax
#include <pmapi.h>

int pm_set_program_pthread (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_t *prog;

Description
The pm_set_program_pthread subroutine sets the Performance Monitor programmation for a target
pthread. The pthread must be stopped and must be part of a debuggee process, under the control of the
calling process. The setting includes the events to be counted and a mode in which to count. The events
to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the Initial Default State is set to delay counting until
the pm_start_pthread subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value can also be specified.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*prog Specifies the event modes to use in Performance Monitor
setup. The following modes are supported:

PM_USER
Counts processes running in User Mode (default
is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting)

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

1124 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine” on page 1063,
“pm_get_program_pthread Subroutine” on page 1087, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pthread Subroutine” on page 1103, “pm_start_pthread and pm_tstart_pthread Subroutine”
on page 1137, “pm_stop_pthread and pm_tstop_pthread Subroutine ” on page 1146.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_pthread_mx and pm_set_program_pthread_mm
Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for a target
pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_pthread_mx (pid, tid, ptid, *prog)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mx_t *prog;

int pm_set_program_pthread_mm (pid, tid, ptid, *prog_mm)
pid_t pid;
tid_t tid;
ptid_t ptid;
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_pthread_mx and the pm_set_program_pthread_mm subroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or in multi-mode for a
target pthread. The pthread must be stopped and must be part of a debuggee process, under the control
of the calling process.

The pm_set_program_pthread_mx setting includes the list of the event arrays events to be counted and
a mode in which to count. The mode is global to all of the event lists. The events to count are in an array
of list of event identifiers.

Base Operating System (BOS) Runtime Services (A-P) 1125

The pm_set_program_pthread_mm subroutine setting includes the list of the event arrays to be counted,
and the associated mode in which to count each event array. A counting mode is defined for each event
array.

The event identifiers must be selected from the lists returned by the pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

The counting mode for both subroutines includes the User Mode or the Kernel Mode, or both; and the
Initial Counting State. The defaults are set to Off for the User Mode and the Kernel Mode, and the Initial
Default State is set to delay counting until the pm_start_pthread subroutine is called.

When you use the pm_set_program_pthread_mm subroutine for multi-mode counting, the Process Tree
Mode and the Start Counting Mode are fixed by their values defined in the first programming set.

If the list includes an event which can be used with a threshold (as indicated by the pm_initialize
subroutine), a threshold value can also be specified.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*prog Specifies the events and the modes to use in the
Performance Monitor setup. The prog parameter supports
the following modes:

PM_USER
Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting).

1126 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

*prog_mm Specifies the events and the associated modes to use in
the Performance Monitor setup. The prog_mm parameter
supports the following modes:

PM_USER
Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the counting.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pthread_mx or pm_get_tdata_pthread_mx Subroutine” on page 1065,
“pm_get_program_pthread_mx and pm_get_program_pthread_mm Subroutines” on page 1088,
“pm_initialize Subroutine” on page 1095, “pm_reset_data_pthread Subroutine” on page 1103,
“pm_start_pthread and pm_tstart_pthread Subroutine” on page 1137, “pm_stop_pthread and
pm_tstop_pthread Subroutine ” on page 1146.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_thread Subroutine

Purpose
Sets Performance Monitor programmation for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Base Operating System (BOS) Runtime Services (A-P) 1127

Syntax
#include <pmapi.h>

int pm_set_program_thread (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_t *prog;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the
pm_set_program_pthread subroutine, which supports both the 1:1 and the M:N threading models. A call
to this subroutine is equivalent to a call to the pm_set_program_pthread subroutine with a ptid parameter
equal to 0.

The pm_set_program_thread subroutine sets the Performance Monitor programmation for a target kernel
thread. The thread must be stopped and must be part of a debuggee process, under the control of the
calling process. The setting includes the events to be counted and a mode in which to count. The events
to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the
pm_init subroutine.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults
are set to Off for User Mode and Kernel Mode, and the Initial Default State is set to delay counting until
the pm_start_thread subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

pid Process ID of target thread. Target process must be a
debuggee of the caller process.

tid Thread ID of target thread.
*prog Specifies the event modes to use in Performance Monitor

setup. The following modes are supported:

PM_USER
Counts processes running in User Mode (default
is set to Off)

PM_KERNEL
Counts processes running in Kernel Mode
(default is set to Off)

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting)

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

1128 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_init (“pm_init Subroutine” on page 1093) subroutine, pm_error (“pm_error Subroutine” on page
1045) subroutine, pm_get_program_thread (“pm_get_program_thread Subroutine” on page 1090)
subroutine, pm_delete_program_thread (“pm_delete_program_thread Subroutine” on page 1044)
subroutine, pm_get_data_thread (“pm_get_data_thread, pm_get_tdata_thread or pm_get_Tdata_thread
Subroutine” on page 1067) subroutine, pm_start_thread (“pm_start_thread and pm_tstart_thread
Subroutine” on page 1139) subroutine, pm_stop_thread (“pm_stop_thread and pm_tstop_thread
Subroutine” on page 1147) subroutine, pm_reset_data_thread (“pm_reset_data_thread Subroutine” on
page 1104) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_set_program_thread_mx and pm_set_program_thread_mm
Subroutines

Purpose
Sets Performance Monitor programmation in counter multiplexing mode and multi-mode for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_set_program_thread_mx (pid, tid, *prog)
pid_t pid;
tid_t tid;
pm_prog_mx_t *prog;

int pm_set_program_thread_mm (pid, tid, *prog_mm)
pid_t pid;
tid_t tid;
pm_prog_mm_t *prog_mm;

Description
The pm_set_program_thread_mx and the pm_set_program_thread_mm subroutines support only the
1:1 threading model. They have been superseded respectively by the pm_set_program_pthread_mx and
the pm_set_program_pthread_mm subroutines, which support both the 1:1 and the M:N threading
models. A call to the pm_set_program_thread_mx subroutine or the pm_set_program_thread_mm
subroutine is respectively equivalent to a call to the pm_set_program_pthread_mx subroutine or the
pm_set_program_pthread_mm subroutine with a ptid parameter equal to 0.

The pm_set_program_thread_mx and the pm_set_program_thread_mm subroutines set the
Performance Monitor programmation respectively in counter multiplexing mode or multi-mode for a target
kernel thread. The thread must be stopped and must be part of a debuggee process, under the control of
the calling process.

Base Operating System (BOS) Runtime Services (A-P) 1129

The pm_set_program_thread_mx setting includes the list of the event arrays to be counted and a mode
in which to count. The mode is global to all of the event lists. The events to count are in an array of list of
event identifiers.

The pm_set_program_thread_mm setting includes the list of the event arrays to be counted, and the
associated mode in which to count each event array. A counting mode is defined for each event array.

The event identifiers must be selected from the lists returned by the pm_initialize subroutine.

The counting mode for both subroutines includes the User Mode, or the Kernel Mode, or both of them; and
the Initial Counting State. The defaults are set to Off for the User Mode and the Kernel Mode, and the
Initial Default State is set to delay counting until the pm_start_thread subroutine is called.

When you use the pm_set_program_thread_mm subroutine for the multi-mode counting, the Process
Tree Mode and the Start Counting Mode are fixed by their values in the first programming set.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a
threshold value can also be specified.

Parameters

pid Process ID of target thread. Target process must be a
debuggee of the caller process.

tid Thread ID of target thread.
*prog Specifies the events and the modes to use in the

Performance Monitor setup. The prog parameter supports
the following modes:

PM_USER
Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to Start Counting).

*prog_mm Specifies the events and the associated modes to use in
the Performance Monitor setup. The prog_mm parameter
supports the following modes:

PM_USER
Counts processes running in the User Mode
(default is set to Off).

PM_KERNEL
Counts processes running in the Kernel Mode
(default is set to Off).

PM_COUNT
Starts counting immediately (default is set to Not
to start counting).

PM_PROCTREE
Sets counting to On only for the calling process
and its descendants (default is set to Off).

The PM_PROCTREE mode and the PM_COUNT mode
defined in the first setting fix the value for the counting.

1130 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045,
“pm_get_program_thread_mx and pm_get_program_thread_mm Subroutines” on page 1091,
“pm_delete_program_thread Subroutine” on page 1044, “pm_get_data_thread_mx or
pm_get_tdata_thread_mx Subroutine” on page 1069, “pm_start_thread and pm_tstart_thread Subroutine”
on page 1139, “pm_stop_thread and pm_tstop_thread Subroutine” on page 1147, “pm_reset_data_thread
Subroutine” on page 1104.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_start and pm_tstart Subroutine

Purpose
Starts system wide Performance Monitor counting.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_start()

int pm_tstart(*time)
timebasestruct_t *time;

Description
The pm_start subroutine starts system wide Performance Monitor counting.

The pm_tstart subroutine starts system wide Performance Monitor counting, and returns a timestamp
indicating when the counting was started.

Parameters

*time Pointer to a structure containing the timebase value when the counting was started. This can be
converted to time using the time_base_to_time subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1131

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program
Subroutine” on page 1105, “pm_get_program Subroutine” on page 1071, “pm_delete_program Subroutine”
on page 1038, “pm_get_data, pm_get_tdata, pm_get_Tdata, pm_get_data_cpu, pm_get_tdata_cpu,
pm_get_Tdata_cpu, pm_get_data_lcpu, pm_get_tdata_lcpu and pm_get_Tdata_lcpu Subroutine” on page
1046, “pm_stop and pm_tstop Subroutine ” on page 1140, “pm_reset_data Subroutine” on page 1097.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_start_group and pm_tstart_group Subroutine

Purpose
Starts Performance Monitor counting for the counting group to which a target thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_start_group (pid, tid)
pid_t pid;
tid_t tid;

int pm_tstart_group (pid, tid, *time)
pid_t pid;
tid_t tid;
timebasestruct_t *time

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the pm_start_pgroup
subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is
equivalent to a call to the pm_start_pgroup subroutine with a ptid parameter equal to 0.

The pm_start_group subroutine starts the Performance Monitor counting for a target kernel thread and
the counting group to which it belongs. This counting is effective immediately for the target thread. For all
the other thread members of the counting group, the counting will start after their next redispatch, but only

1132 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

if their current counting state is already set to On. The counting state of a thread in a group is obtained by
ANDing the thread counting state with the group state. If their counting state is currently set to Off, no
counting starts until they call either the pm_start_mythread subroutine or the pm_start_mygroup
themselves, or until a debugger process calls the pm_start_thread subroutine or the pm_start_group
subroutine on their behalf.

The pm_tstart_group subroutine starts the Performance Monitor counting for a target kernel thread and
the counting group to which it belongs, and returns a timestamp indicating when the counting was started.

Parameters

pid Process ID of target thread. Target process must be a
debuggee of the caller process.

tid Thread ID of target thread.
*time Pointer to a structure containing the timebase value when

the counting was started. This can be converted to time
using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_group
Subroutine” on page 1106, “pm_get_program_group Subroutine” on page 1072,
“pm_delete_program_group Subroutine” on page 1039, “pm_get_data_group, pm_get_tdata_group and
pm_get_Tdata_group Subroutine” on page 1049, “pm_stop_group and pm_tstop_group Subroutine ” on
page 1141, “pm_reset_data_group Subroutine” on page 1098.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_start_mygroup and pm_tstart_mygroup Subroutine

Purpose
Starts Performance Monitor counting for the group to which the calling thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Base Operating System (BOS) Runtime Services (A-P) 1133

Syntax
#include <pmapi.h>

int_pm_start_mygroup()

int pm_tstart_mygroup (*time)
timebasestruct_t *time

Description
The pm_start_mygroup subroutine starts the Performance Monitor counting for the calling kernel thread
and the counting group to which it belongs. Counting is effective immediately for the calling thread. For all
the other threads members of the counting group, the counting starts after their next redispatch, but only if
their current counting state is already set to On. The counting state of a thread in a group is obtained by
ANDing the thread counting state with the group state. If their counting state is currently set to Off, no
counting starts until they call either the pm_start_mythread subroutine or the pm_start_mygroup
subroutine themselves, or until a debugger process calls the pm_start_thread subroutine or the
pm_start_group subroutine on their behalf.

The pm_tstart_mygroup subroutine starts the Performance Monitor counting for the calling kernel thread
and the counting group to which it belongs, and returns a timestamp indicating when the counting was
started.

Parameters

*time Pointer to a structure containing the timebase value when the counting was started. This can be
converted to time using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_mygroup
Subroutine” on page 1112, “pm_get_program_mygroup Subroutine” on page 1077,
“pm_delete_program_mygroup Subroutine” on page 1040, “pm_get_data_mygroup,
pm_get_tdata_mygroup or pm_get_Tdata_mygroup Subroutine” on page 1054, “pm_stop_mygroup and
pm_tstop_mygroup Subroutine ” on page 1142, “pm_reset_data_mygroup Subroutine” on page 1099.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

1134 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pm_start_mythread and pm_tstart_mythread Subroutine

Purpose
Starts Performance Monitor counting for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_start_mythread()

int pm_tstart_mythread(*time)
timebasestruct_t *time;

Description
The pm_start_mythread subroutine starts Performance Monitor counting for the calling kernel thread.
Counting is effective immediately unless the thread is in a group, and that group’s counting is not currently
set to On. The counting state of a thread in a group is obtained by ANDing the thread counting state with
the group state.

The pm_tstart_mythread subroutine starts Performance Monitor counting for the calling kernel thread,
and returns a timestamp indicating when the counting was started.

Parameters

*time Pointer to a structure containing the timebase value when the counting was started. This can be
converted to time using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_init (“pm_init Subroutine” on page 1093) subroutine, pm_error (“pm_error Subroutine” on page
1045) subroutine, pm_set_program_mythread (“pm_set_program_mythread Subroutine” on page 1116)
subroutine, pm_get_program_mythread (“pm_get_program_mythread Subroutine” on page 1080)
subroutine, pm_delete_program_mythread (“pm_delete_program_mythread Subroutine” on page 1041)
subroutine, pm_get_data_mythread (“pm_get_data_mythread, pm_get_tdata_mythread or
pm_get_Tdata_mythread Subroutine” on page 1057) subroutine, pm_stop_mythread (“pm_stop_mythread

Base Operating System (BOS) Runtime Services (A-P) 1135

and pm_tstop_mythread Subroutine ” on page 1143) subroutine, pm_reset_data_mythread
(“pm_reset_data_mythread Subroutine” on page 1100) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_start_pgroup and pm_tstart_pgroup Subroutine

Purpose
Starts Performance Monitor counting for the counting group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_start_pgroup (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

int pm_tstart_pgroup (pid, tid, ptid, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time

Description
The pm_start_pgroup subroutine starts the Performance Monitor counting for a target pthread and the
counting group to which it belongs. This counting is effective immediately for the target pthread. For all the
other thread members of the counting group, the counting will start after their next redispatch, but only if
their current counting state is already set to On. The counting state of a pthread in a group is obtained by
ANDing the pthread counting state with the group state. If their counting state is currently set to Off, no
counting starts until they call either the pm_start_mythread subroutine or the pm_start_mygroup
themselves, or until a debugger process calls the pm_start_pthread subroutine or the pm_start_pgroup
subroutine on their behalf.

The pm_tstart_pgroup subroutine starts the Performance Monitor counting for a target pthread and the
counting group to which it belongs, and returns a timestamp indicating when the counting was started.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

1136 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*time Pointer to a structure containing the timebase value when
the counting was started. This can be converted to time
using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pgroup Subroutine” on page 1042, “pm_error Subroutine” on page 1045,
“pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine” on page 1060,
“pm_get_program_pgroup Subroutine” on page 1083, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pgroup Subroutine” on page 1101, “pm_set_program_pgroup Subroutine” on page 1119,
“pm_stop_pgroup and pm_tstop_pgroup Subroutine ” on page 1144.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_start_pthread and pm_tstart_pthread Subroutine

Purpose
Starts Performance Monitor counting for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_start_pthread (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

int pm_start_pthread (pid, tid, ptid, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time

Base Operating System (BOS) Runtime Services (A-P) 1137

Description
The pm_start_pthread subroutine starts Performance Monitor counting for a target pthread. The pthread
must be stopped and must be part of a debuggee process, under the control of the calling process.
Counting is effective immediately unless the thread is in a group and the group counting is not currently
set to On. The counting state of a thread in a group is obtained by ANDing the thread counting state with
the group state.

The pm_tstart_pthread subroutine starts Performance Monitor counting for a target pthread, and returns
a timestamp indicating when the counting was started.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*time Pointer to a structure containing the timebase value when
the counting was started. This can be converted to time
using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine” on page 1063,
“pm_get_program_pthread Subroutine” on page 1087, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pthread Subroutine” on page 1103, “pm_set_program_pthread Subroutine” on page 1123,
“pm_stop_pthread and pm_tstop_pthread Subroutine ” on page 1146.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

1138 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pm_start_thread and pm_tstart_thread Subroutine

Purpose
Starts Performance Monitor counting for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_start_thread (pid, tid)
pid_t pid;
tid_t tid;

int pm_tstart_thread (pid, tid, *time)
pid_t pid;
tid_t tid;
timebasestruct_t *time

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the pm_start_pthread
subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is
equivalent to a call to the pm_start_pthread subroutine with a ptid parameter equal to 0.

The pm_start_thread subroutine starts Performance Monitor counting for a target kernel thread. The
thread must be stopped and must be part of a debuggee process, under the control of the calling process.
Counting is effective immediately unless the thread is in a group and the group counting is not currently
set to On. The counting state of a thread in a group is obtained by ANDing the thread counting state with
the group state.

The pm_tstart_thread subroutine starts Performance Monitor counting for a target kernel thread, and
returns a timestamp indicating when the counting was started.

Parameters

pid Process ID of target thread. Target process must be a
debuggee of the caller process.

tid Thread ID of target thread.
*time Pointer to a structure containing the timebase value when

the counting was started. This can be converted to time
using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine to decode the

error code.

Error Codes
Refer to the pm_error (“pm_error Subroutine” on page 1045) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1139

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The pm_init (“pm_init Subroutine” on page 1093) subroutine, pm_error (“pm_error Subroutine” on page
1045) subroutine, pm_set_program_thread (“pm_set_program_thread Subroutine” on page 1127)
subroutine, pm_get_program_thread (“pm_get_program_thread Subroutine” on page 1090) subroutine,
pm_delete_program_thread (“pm_delete_program_thread Subroutine” on page 1044) subroutine,
pm_get_data_thread (“pm_get_data_thread, pm_get_tdata_thread or pm_get_Tdata_thread Subroutine”
on page 1067) subroutine, pm_stop_thread (“pm_stop_thread and pm_tstop_thread Subroutine” on page
1147) subroutine, pm_reset_data_thread (“pm_reset_data_thread Subroutine” on page 1104) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_stop and pm_tstop Subroutine

Purpose
Stops system wide Performance Monitor counting.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop ()

int pm_tstop(*time)
timebasestruct_t *time;

Description
The pm_stop subroutine stops system wide Performance Monitoring counting.

The pm_tstop subroutine stops system wide Performance Monitoring counting, and returns a timestamp
indicating when the counting was stopped.

Parameters

*time Pointer to a structure containing the timebase value when the counting was stopped. This
can be converted to time using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

1140 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program
Subroutine” on page 1105, “pm_get_program Subroutine” on page 1071, “pm_delete_program Subroutine”
on page 1038, “pm_get_data, pm_get_tdata, pm_get_Tdata, pm_get_data_cpu, pm_get_tdata_cpu,
pm_get_Tdata_cpu, pm_get_data_lcpu, pm_get_tdata_lcpu and pm_get_Tdata_lcpu Subroutine” on page
1046, “pm_start and pm_tstart Subroutine” on page 1131, “pm_reset_data Subroutine” on page 1097.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_stop_group and pm_tstop_group Subroutine

Purpose
Stops Performance Monitor counting for the group to which a target thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_group (pid, tid)
pid_t pid;
tid_t tid;

int pm_tstop_group (pid, tid, *time)
pid_t pid;
tid_t tid;
timebasestruct_t *time;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the pm_stop_pgroup
subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is
equivalent to a call to the pm_stop_pgroup subroutine with a ptid parameter equal to 0.

The pm_stop_group subroutine stops Performance Monitor counting for a target kernel thread, the
counting group to which it belongs, and all the other thread members of the same group. Counting stops
immediately for all the threads in the counting group. The target thread must be stopped and must be part
of a debuggee process, under control of the calling process.

The pm_tstop_group subroutine stops Performance Monitor counting for a target kernel thread, the
counting group to which it belongs, and all the other thread members of the same group, and returns a
timestamp indicating when the counting was stopped.

Parameters

pid Process ID of target thread. Target process must be a
debuggee of the caller process.

Base Operating System (BOS) Runtime Services (A-P) 1141

tid Thread ID of target thread.
*time Pointer to a structure containing the timebase value when

the counting was stopped. This can be converted to time
using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_group
Subroutine” on page 1106, “pm_get_program_group Subroutine” on page 1072,
“pm_delete_program_group Subroutine” on page 1039, “pm_get_data_group, pm_get_tdata_group and
pm_get_Tdata_group Subroutine” on page 1049, “Syntax” on page 1132, “pm_reset_data_group
Subroutine” on page 1098.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_stop_mygroup and pm_tstop_mygroup Subroutine

Purpose
Stops Performance Monitor counting for the group to which the calling thread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_mygroup ()

int pm_tstop_mygroup(*time)
timebasestruct_t *time;

Description
The pm_stop_mygroup subroutine stops Performance Monitor counting for the group to which the calling
kernel thread belongs. This is effective immediately for all the threads in the counting group.

The pm_tstop_mygroup subroutine stops Performance Monitor counting for the group to which the calling
kernel thread belongs, and returns a timestamp indicating when the counting was stopped.

1142 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

*time Pointer to a structure containing the timebase value when the counting was stopped. This
can be converted to time using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_mygroup
Subroutine” on page 1112, “pm_get_program_mygroup Subroutine” on page 1077,
“pm_delete_program_mygroup Subroutine” on page 1040, “pm_get_data_mygroup,
pm_get_tdata_mygroup or pm_get_Tdata_mygroup Subroutine” on page 1054, “Description” on page
1134, “pm_reset_data_mygroup Subroutine” on page 1099.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_stop_mythread and pm_tstop_mythread Subroutine

Purpose
Stops Performance Monitor counting for the calling thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_mythread ()

int pm_tstop_mythread(*time)
timebasestruct_t *time;

Description
The pm_stop_mythread subroutine stops Performance Monitor counting for the calling kernel thread.

The pm_tstop_mythread subroutine stops Performance Monitor counting for the calling kernel thread,
and returns a timestamp indicating when the counting was stopped.

Base Operating System (BOS) Runtime Services (A-P) 1143

Parameters

*time Pointer to a structure containing the timebase value when the counting was stopped. This
can be converted to time using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_mythread
Subroutine” on page 1116, “pm_get_program_mythread Subroutine” on page 1080,
“pm_delete_program_mythread Subroutine” on page 1041, “pm_get_data_mythread,
pm_get_tdata_mythread or pm_get_Tdata_mythread Subroutine” on page 1057, “pm_start_mythread and
pm_tstart_mythread Subroutine” on page 1135, “pm_reset_data_mythread Subroutine” on page 1100.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_stop_pgroup and pm_tstop_pgroup Subroutine

Purpose
Stops Performance Monitor counting for the group to which a target pthread belongs.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_pgroup (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

int pm_tstop_pgroup (pid, tid, ptid, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time;

1144 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The pm_stop_pgroup subroutine stops Performance Monitor counting for a target pthread, the counting
group to which it belongs, and all the other pthread members of the same group. Counting stops
immediately for all the pthreads in the counting group. The target pthread must be stopped and must be
part of a debuggee process, under control of the calling process.

The pm_tstop_pgroup subroutine stops Performance Monitor counting for a target pthread, the counting
group to which it belongs, and all the other pthread members of the same group, and returns a timestamp
indicating when the counting was stopped.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

pid Process ID of target pthread. Target process must be a
debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set
it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,
set it to 0.

*time Pointer to a structure containing the timebase value when
the counting was stopped. This can be converted to time
using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pgroup Subroutine” on page 1042, “pm_error Subroutine” on page 1045,
“pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine” on page 1060,
“pm_get_program_pgroup Subroutine” on page 1083, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pgroup Subroutine” on page 1101, “pm_set_program_pgroup Subroutine” on page 1119,
“pm_start_pgroup and pm_tstart_pgroup Subroutine” on page 1136.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

Base Operating System (BOS) Runtime Services (A-P) 1145

pm_stop_pthread and pm_tstop_pthread Subroutine

Purpose
Stops Performance Monitor counting for a target pthread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_pthread (pid, tid, ptid)
pid_t pid;
tid_t tid;
ptid_t ptid;

int pm_tstop_pthread (pid, tid, ptid, *time)
pid_t pid;
tid_t tid;
ptid_t ptid;
timebasestruct_t *time;

Description
The pm_stop_pthread subroutine stops Performance Monitor counting for a target pthread. The pthread
must be stopped and must be part of a debuggee process, under the control of the calling process.

The pm_tstop_pthread subroutine stops Performance Monitor counting for a target pthread, and returns a
timestamp indicating when the counting was stopped.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in
m:n mode, only the ptid parameter must be specified. If both the ptid and tid parameters are specified,
they must be referring to a single pthread with the ptid parameter specified and currently running on a
kernel thread with specified tid parameter.

Parameters

pid Process ID of target pthread. Target process must be a debuggee of the caller
process.

tid Thread ID of target pthread. To ignore this parameter, set it to 0.
ptid Pthread ID of the target pthread. To ignore this parameter, set it to 0.
*time Pointer to a structure containing the timebase value when the counting was stopped.

This can be converted to time using the time_base_to_time subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

1146 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_delete_program_pthread Subroutine” on page 1043, “pm_error Subroutine” on page 1045,
“pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine” on page 1063,
“pm_get_program_pthread Subroutine” on page 1087, “pm_initialize Subroutine” on page 1095,
“pm_reset_data_pthread Subroutine” on page 1103, “pm_set_program_pthread Subroutine” on page 1123,
“pm_start_pthread and pm_tstart_pthread Subroutine” on page 1137.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

pm_stop_thread and pm_tstop_thread Subroutine

Purpose
Stops Performance Monitor counting for a target thread.

Library
Performance Monitor APIs Library (libpmapi.a)

Syntax
#include <pmapi.h>

int pm_stop_thread (pid, tid)
pid_t pid;
tid_t tid;

int pm_tstop_thread (pid, tid, *time)
pid_t pid;
tid_t tid;
timebasestruct_t *time;

Description
This subroutine supports only the 1:1 threading model. It has been superseded by the pm_stop_pthread
subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is
equivalent to a call to the pm_stop_pthread subroutine with a ptid parameter equal to 0.

The pm_stop_thread subroutine stops Performance Monitor counting for a target kernel thread. The
thread must be stopped and must be part of a debuggee process, under the control of the calling process.

The pm_tstop_thread subroutine stops Performance Monitor counting for a target kernel thread, and
returns a timestamp indicating when the counting was stopped.

Parameters

pid Process ID of target thread. Target process must be a debuggee of the caller
process.

tid Thread ID of target thread.

Base Operating System (BOS) Runtime Services (A-P) 1147

*time Pointer to a structure containing the timebase value when the counting was
stopped. This can be converted to time using the time_base_to_time
subroutine.

Return Values

0 Operation completed successfully.
Positive error code Refer to the “pm_error Subroutine” on page 1045 to decode the error code.

Error Codes
Refer to the “pm_error Subroutine” on page 1045.

Files

/usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information
The “pm_init Subroutine” on page 1093, “pm_error Subroutine” on page 1045, “pm_set_program_thread
Subroutine” on page 1127, “pm_get_program_thread Subroutine” on page 1090,
“pm_delete_program_thread Subroutine” on page 1044, “pm_get_data_thread, pm_get_tdata_thread or
pm_get_Tdata_thread Subroutine” on page 1067, “pm_start_thread and pm_tstart_thread Subroutine” on
page 1139, “pm_reset_data_thread Subroutine” on page 1104.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and
Reference.

poll Subroutine

Purpose
Checks the I/O status of multiple file descriptors and message queues.

Library
Standard C Library (libc.a)

Syntax
#include <sys/poll.h>
#include <sys/select.h>
#include <sys/types.h>

int poll(ListPointer, Nfdsmsgs, Timeout)
void *ListPointer;
unsigned long Nfdsmsgs;
long Timeout;

Description
The poll subroutine checks the specified file descriptors and message queues to see if they are ready for
reading (receiving) or writing (sending), or to see if they have an exceptional condition pending. Even
though there are OPEN_MAX number of file descriptors available, only FD_SETSIZE number of file
descriptors are accessible with this subroutine.

1148 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: The poll subroutine applies only to character devices, pipes, message queues, and sockets. Not all
character device drivers support it. See the descriptions of individual character devices for
information about whether and how specific device drivers support the poll and select subroutines.

For compatibility with previous releases of this operating system and with BSD systems, the select
subroutine is also supported.

In AIX 5.3 and later versions, if a program needs to use message queue support, the program source
code should be compiled with the -D_MSGQSUPPORT compilation flag.

Parameters

ListPointer Specifies a pointer to an array of pollfd structures, pollmsg structures, or to apollist structure.
Each structure specifies a file descriptor or message queue ID and the events of interest for
this file or message queue. The pollfd, pollmsg, and pollist structures are defined in the
/usr/include/sys/poll.h file. If a pollist structure is to be used, a structure similar to the
following should be defined in a user program. The pollfd structure must precede the pollmsg
structure.

struct pollist {
struct pollfd fds[3];
struct pollmsg msgs[2];
} list;

The structure can then be initialized as follows:

list.fds[0].fd = file_descriptorA;
list.fds[0].events = requested_events;
list.msgs[0].msgid = message_id;
list.msgs[0].events = requested_events;

The rest of the elements in thefdsandmsgsarrays can be initialized the same way. The poll
subroutine can then be called, as follows:

nfds = 3; /* number of pollfd structs */
nmsgs = 2; /* number of pollmsg structs */
timeout = 1000 /* number of milliseconds to timeout */
poll(&list, (nmsgs<<16)|(nfds), 1000);

The exact number of elements in the fds and msgs arrays must be used in the calculation of
the Nfdsmsgs parameter.

Nfdsmsgs Specifies the number of file descriptors and the exact number of message queues to check.
The low-order 16 bits give the number of elements in the array of pollfd structures, while the
high-order 16 bits give the exact number of elements in the array of pollmsg structures. If
either half of theNfdsmsgs parameter is equal to a value of 0, the corresponding array is
assumed not to be present.

Timeout Specifies the maximum length of time (in milliseconds) to wait for at least one of the specified
events to occur. If the Timeout parameter value is -1, the poll subroutine does not return until
at least one of the specified events has occurred. If the value of the Timeout parameter is 0,
the poll subroutine does not wait for an event to occur but returns immediately, even if none of
the specified events have occurred.

poll Subroutine STREAMS Extensions
In addition to the functions described above, the poll subroutine multiplexes input/output over a set of file
descriptors that reference open streams. The poll subroutine identifies those streams on which you can
send or receive messages, or on which certain events occurred.

You can receive messages using the read subroutine or the getmsg system call. You can send messages
using the write subroutine or the putmsg system call. Certain streamio operations, such as I_RECVFD
and I_SENDFD can also be used to send and receive messages. See the streamio operations.

Base Operating System (BOS) Runtime Services (A-P) 1149

The ListPointer parameter specifies the file descriptors to be examined and the events of interest for each
file descriptor. It points to an array having one element for each open file descriptor of interest. The
array’s elements are pollfd structures. In addition to the pollfd structure in the /usr/include/sys/poll.h file,
STREAMS supports the following members:

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

The fd field specifies an open file descriptor and the events and revents fields are bit-masks constructed
by ORing any combination of the following event flags:

POLLIN A nonpriority or file descriptor-passing message is present on the stream-head read
queue. This flag is set even if the message is of 0 length. In the revents field this flag is
mutually exclusive with the POLLPRI flag. See the I_RECVFD command.

POLLRDNORM A nonpriority message is present on the stream-head read queue.
POLLRDBAND A priority message (band > 0) is present on the stream-head read queue.
POLLPRI A high-priority message is present on the stream-head read queue. This flag is set even if

the message is of 0 length. In the revents field, this flag is mutually exclusive with the
POLLIN flag.

POLLOUT The first downstream write queue in the stream is not full. Normal priority messages can
be sent at any time. See the putmsg system call.

POLLWRNORM The same as POLLOUT.
POLLWRBAND A priority band greater than 0 exists downstream and priority messages can be sent at

anytime.
POLLMSG A message containing the SIGPOLL signal has reached the front of the stream-head read

queue.

Return Values
On successful completion, the poll subroutine returns a value that indicates the total number of file
descriptors and message queues that satisfy the selection criteria. The return value is similar to the
Nfdsmsgs parameter in that the low-order 16 bits give the number of file descriptors, and the high-order 16
bits give the number of message queue identifiers that had nonzero revents values. The NFDS and
NMSGS macros, found in the sys/select.h file, can be used to separate these two values from the return
value. The NFDS macro returns NFDS#, where the number returned indicates the number of files
reporting some event or error, and the NMSGS macro returns NMSGS#, where the number returned
indicates the number of message queues reporting some event or error.

A value of 0 indicates that the poll subroutine timed out and that none of the specified files or message
queues indicated the presence of an event (all revents fields were values of 0).

If unsuccessful, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The poll subroutine does not run successfully if one or more of the following are true:

EAGAIN Allocation of internal data structures was unsuccessful.
EINTR A signal was caught during the poll system call and the signal handler was installed with an indication

that subroutines are not to be restarted.
EINVAL The number of pollfd structures specified by the Nfdsmsgs parameter is greater than FD_SETSIZE. This

error is also returned if the number of pollmsg structures specified by the Nfdsmsgs parameter is greater
than the maximum number of allowable message queues.

EFAULT The ListPointer parameter in conjunction with the Nfdsmsgs parameter addresses a location outside of
the allocated address space of the process.

1150 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The read subroutine, select subroutine, write subroutine.

The getmsg system call, putmsg system call.

The streamio operations.

The STREAMS Overview and the Input and Output Handling Programmer’s Overview in AIX 5L Version
5.3 General Programming Concepts: Writing and Debugging Programs.

pollset_create, pollset_ctl, pollset_destroy, pollset_poll, and
pollset_query Subroutines

Purpose
Check I/O status of multiple file descriptors.

Library
Standard C Library (libc.a)

Syntax
#include <sys/poll.h>
#include <sys/pollset.h>
#include <sys/fcntl.h>

pollset_t ps = pollset_create(int maxfd)
int rc = pollset_destroy(pollset_t ps)
int rc = pollset_ctl(pollset_t ps, struct poll_ctl *pollctl_array,

int array_length)
int rc = pollset_query(pollset_t ps, struct pollfd *pollfd_query)
int nfound = pollset_poll(pollset_t ps,

struct pollfd *polldata_array,
int array_length, int timeout)

Description
The pollset application programming interface (API) efficiently poll a large file descriptor set. This interface
is best used when the file descriptor set is not frequently updated. The pollset subroutine can provide a
significant performance enhancement over traditional select and poll APIs. Improvements are most visible
when the number of events returned per poll operation is small in relation to the number of file descriptors
polled.

The pollset API uses system calls to accomplish polling. A file descriptor set (or pollset) is established with
a successful call to pollset_create. File descriptors and poll events are added, removed, or updated using
the pollset_ctl subroutine. The pollset_poll subroutine is called to perform the poll operation. A
pollset_query subroutine is called to query if a file descriptor is contained in the current poll set.

A pollset is established with a successful call to pollset_create. The pollset is initially empty following this
system call. Each call to pollset_create creates a new and independent pollset. This can be useful to
applications that monitor distinct sets of file descriptors. The maximum number of file descriptors that can
belong to the pollset is specified by maxfd. If maxfd has a value of -1, the maximum number of file
descriptors that can belong to the pollset is bound by OPEN_MAX as defined in <sys/limits.h> (the AIX
limit of open file descriptors per process). AIX imposes a system-wide limit of 245025 active pollsets at
one time. Upon failure, this system call returns -1 with errno set appropriately. Upon success, a pollset ID
of type pollset_t is returned:

typedef int pollset_t

Base Operating System (BOS) Runtime Services (A-P) 1151

The pollset ID must not be altered by the application. The pollset API verifies that the ID is not -1. In
addition, the process ID of the application must match the process ID stored at pollset creation time.

A pollset is destroyed with a successful call to pollset_destroy. Upon success, this system call returns 0.
Upon failure, the pollset_destroy subroutine returns -1 with errno set to the appropriate code. An errno
of EINVAL indicates an invalid pollset ID.

File descriptors must be added to the pollset with the pollset_ctl subroutine before they can be monitored.
An array of poll_ctl structures is passed to pollset_ctl through pollctl_array:

struct poll_ctl {
short cmd;
short events;
int fd;

}

Each poll_ctl structure contains an fd, events, and cmd field. The fd field defines the file descriptor to
operate on. The events field contains events of interest. When cmd is PS_ADD, the pollset_ctl call adds
a valid open file descriptor to the pollset. If a file descriptor is already in the pollset, PS_ADD causes
pollset_ctl to return an error. When cmd is PS_MOD and the file descriptor is already in the pollset, bits in
the events field are added (ORed) to the monitored events. If the file descriptor is not already in the
pollset, PS_MOD adds a valid open file descriptor to the pollset.

Although poll events can be added by specifying an existing file descriptor, the file descriptor must be
removed and then added again to remove an event. When cmd is PS_DELETE and the file descriptor is
already in the pollset, pollset_ctl removes the file descriptor from the pollset. If the file descriptor is not
already in the pollset, then PS_DELETE causes pollset_ctl to return an error.

The pollset_query interface can be used to determine information about a file descriptor with respect to
the pollset. If the file descriptor is in the pollset, pollset_query returns 1 and events is set to the currently
monitored events.

The pollset_poll subroutine determines which file descriptors in the pollset that have events pending. The
polldata_array parameter contains a buffer address where pollfd structures are returned for file descriptors
that have pending events. The number of events returned by a poll is limited by array_length. The timeout
parameter specifies the amount of time to wait if no events are pending. Setting timeout to 0 guarantees
that the pollset_poll subroutine returns immediately. Setting timeout to -1 specifies an infinite timeout.
Other nonzero positive values specify the time to wait in milliseconds.

When events are returned from a pollset_poll operation, each pollfd structure contains an fd member
with the file descriptor set, an events member with the requested events, and an revents member with the
events that have occurred.

A single pollset can be accessed by multiple threads in a multithreaded process. When multiple threads
are polling one pollset and an event occurs for a file descriptor, only one thread can be prompted to
receive the event. After a file descriptor is returned to a thread, new events will not be generated until the
next pollset_poll call. This behavior prevents all threads from being prompted on each event. Multiple
threads can perform pollset_poll operations at one time, but modifications to the pollset require exclusive
access. A thread that tries to modify the pollset is blocked until all threads currently in poll operations have
exited pollset_poll. In addition, a thread calling pollset_destroy is blocked until all threads have left the
other system calls (pollset_ctl, pollset_query, and pollset_poll).

A process can call fork after calling pollset_create. The child process will already have a pollset ID per
pollset, but pollset_destroy, pollset_ctl, pollset_query, and pollset_poll operations will fail with an
errno value of EACCES.

1152 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

After a file descriptor is added to a pollset, the file descriptor will not be removed until a pollset_ctl call
with the cmd of PS_DELETE is executed. The file descriptor remains in the pollset even if the file
descriptor is closed. A pollset_poll operation on a pollset containing a closed file descriptor returns a
POLLNVAL event for that file descriptor. If the file descriptor is later allocated to a new object, the new
object will be polled on future pollset_poll calls.

Parameters

array_length Specifies the length of the array parameters.
maxfd Specifies the maximum number of file descriptors that can belong to the pollset.
pollctl_array The pointer to an array of poll_ctl structures that describes the file descriptors (through

the pollfd structure) and the unique operation to perform on each file descriptor (add,
remove, or modify).

polldata_array Returns the requested events that have occurred on the pollset.
pollfd_query Points to a file descriptor that might or might not belong to the pollset. If it belongs to the

pollset, then the requested events field of this parameter is updated to reflect what is
currently being monitored for this file descriptor.

ps Specifies the pollset ID.
timeout Specifies the amount of time in milliseconds to wait for any monitored events to occur. A

value of -1 blocks until some monitored event occurs.

Return Values
Upon success, the pollset_destroy returns 0. Upon failure, the pollset_destroy subroutine returns -1 with
errno set to the appropriate code.

Upon success, the pollset_create subroutine returns a pollset ID of type pollset_t. Upon failure, this
system call returns -1 with errno set appropriately.

Upon success, pollset_ctl returns 0. Upon failure, pollset_ctl returns the 0-based problem element
number of the pollctl_array (for example, 2 is returned for element 3). If the first element is the problem
element, or some other error occurs prior to processing the array of elements, -1 is returned and errno is
set to the appropriate code. The calling application must acknowledge that elements in the array prior to
the problem element were successfully processed and should attempt to call pollset_ctl again with the
elements of pollctl_array beyond the problematic element.

If a file descriptor is not a member of the pollset, pollset_query returns 0. If the file descriptor is in the
pollset, pollset_query returns 1 and events is set to the currently monitored events. If an error occurs
after there is an attempt to determine if the file descriptor is a member of the pollset, then pollset_query
returns -1 with errno set to the appropriate return code.

The pollset_poll subroutine returns the number of file descriptors on which requested events occurred.
When no requested events occurred on any of the file descriptors, 0 is returned. A value of -1 is returned
when an error occurs and errno is set to the appropriate code.

Error Codes

EACCES Process does not have permission to access a pollset.
EAGAIN System resource temporarily not available.
EFAULT Address supplied was not valid.
EINTR A signal was received during the system call.
EINVAL Invalid parameter.
ENOMEM Insufficient system memory available.
ENOSPC Maximum number of pollsets in use.
EPERM Process does not have permission to create a pollset.

Base Operating System (BOS) Runtime Services (A-P) 1153

Related Information
The “poll Subroutine” on page 1148.

popen Subroutine

Purpose
Initiates a pipe to a process.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

FILE *popen (Command, Type)
const char *Command, *Type;

Description
The popen subroutine creates a pipe between the calling program and a shell command to be executed.

Note: The popen subroutine runs only sh shell commands. The results are unpredictable if the Command
parameter is not a valid sh shell command. If the terminal is in a trusted state, the tsh shell
commands are run.

If streams opened by previous calls to the popen subroutine remain open in the parent process, the
popen subroutine closes them in the child process.

The popen subroutine returns a pointer to a FILE structure for the stream.

Attention: If the original processes and the process started with the popen subroutine concurrently read
or write a common file, neither should use buffered I/O. If they do, the results are unpredictable.

Some problems with an output filter can be prevented by flushing the buffer with the fflush subroutine.

Parameters

Command Points to a null-terminated string containing a shell command line.
Type Points to a null-terminated string containing an I/O mode. If the Type parameter is the value r, you can

read from the standard output of the command by reading from the file Stream. If the Type parameter
is the value w, you can write to the standard input of the command by writing to the file Stream.

Because open files are shared, a type r command can be used as an input filter and a type w
command as an output filter.

Return Values
The popen subroutine returns a null pointer if files or processes cannot be created, or if the shell cannot
be accessed.

Error Codes
The popen subroutine may set the EINVAL variable if the Type parameter is not valid. The popen
subroutine may also set errno global variables as described by the fork or pipe subroutines.

1154 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The fclose or fflush (“fclose or fflush Subroutine” on page 256) subroutine, fopen, freopen, or fdopen
(“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290) subroutine, fork or vfork (“fork,
f_fork, or vfork Subroutine” on page 293) subroutine, pclose (“pclose Subroutine” on page 1006)
subroutine, pipe (“pipe Subroutine” on page 1035) subroutine, wait, waitpid, or wait3 subroutine.

Input and Output Handling.

File Systems and Directories in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

posix_fadvise Subroutine

Purpose
Provides advisory information to the system regarding future behavior of the application with respect to a
given file.

Syntax
#include <fcntl.h>
int posix_fadvise (int fd, off_t offset, size_t len, int advice);

Description
This function advises the system on the expected future behavior of the application with regards to a given
file. The system can take this advice into account when performing operations on file data specified by this
function. The advice is given over the range covered by the offset parameter and continuing for the
number of bytes specified by the len parameter. If the value of the len parameter is 0, then all data
following the offset parameter is covered.

The advice parameter must be one of the following:

v POSIX_FADV_NORMAL

v POSIX_FADV_SEQUENTIAL

v POSIX_FADV_RANDOM

v POSIX_FADV_WILLNEED

v POSIX_FADV_DONTNEED

v POSIX_FADV_NOREUSE

Parameters

fd File descriptor of the file to be advised
offset Represents the beginning of the address range
len Determines the length of the address range
advice Defines the advice to be given

Return Values
Upon successful completion, the posix_fadvise subroutine returns 0. Otherwise, one of the following error
codes will be returned.

Error Codes

EBADF The fd parameter is not a valid file descriptor

Base Operating System (BOS) Runtime Services (A-P) 1155

EINVAL The value of the advice parameter is invalid

ESPIPE The fd parameter is associated with a pipe of FIFO

Related Information
“posix_fallocate Subroutine,” “posix_madvise Subroutine” on page 1157, “posix_memalign” on page 788.

posix_fallocate Subroutine

Purpose
Reserve storage space for a given file descriptor.

Syntax
#include <fcntl.h>

int posix_fallocate (int fd, off_t offset, size_t len);

Description
This function reserves adequate space on the file system for the file data range beginning at the value
specified by the offset parameter and continuing for the number of bytes specified by the len parameter.
Upon successful return, subsequent writes to this file data range will not fail due to lack of free space on
the file system media. Space allocated by the posix_fallocate subroutine can be freed by a successful
call to the creat subroutine or open subroutine, or by the ftruncate subroutine, which truncates the file
size to a size smaller than the sum of the offset parameter and the len parameter.

Parameters

fd File descriptor of the file to reserve
offset Represents the beginning of the address range
len Determines the length of the address range

Return Values
Upon successful completion, the posix_fallocate subroutine returns 0. Otherwise, one of the following
error codes will be returned.

Error Codes

EBADF The fd parameter is not a valid file descriptor.

EBADF The fd parameter references a file that was opened
without write permission.

EFBIG The value of the offset parameter plus the len parameter
is greater than the maximum file size.

EINTR A signal was caught during execution.

EIO An I/O error occurred while reading from or writing to a
file system.

ENODEV The fd parameter does not refer to a regular file.

EINVAL The value of the advice parameter is invalid.

ENOSPC There is insufficient free space remaining on the file
system storage media.

ESPIPE The fd parameter is associated with a pipe of FIFO.

1156 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ENOTSUP The underlying file system is not supported.

Related Information
“posix_fadvise Subroutine” on page 1155, “posix_madvise Subroutine,” “posix_memalign” on page 788.

posix_madvise Subroutine

Purpose
Provides advisory information to the system regarding future behavior of the application with respect to a
given range of memory.

Syntax
#include <sys/mman.h>
int posix_madvise (void *addr, size_t len, int advice);

Description
This function advises the system on the expected future behavior of the application with regard to a given
range of memory. The system can take this advice into account when performing operations on the data in
memory specified by this function. The advice is given over the range covered by the offset parameter and
continuing for the number of bytes specified by the addr parameter and continuing for the number of bytes
specified by the len parameter.

The advice parameter must be one of the following:

v POSIX_MADV_NORMAL

v POSIX_MADV_SEQUENTIAL

v POSIX_MADV_RANDOM

v POSIX_MADV_WILLNEED

v POSIX_MADV_DONTNEED

Parameters

addr Defines the beginning of the range of memory to be advised
len Determines the length of the address range
advice Defines the advice to be given

Return Values
Upon successful completion, the posix_fadvise subroutine returns 0. Otherwise, one of the following error
codes will be returned.

Error Codes

EINVAL The value of the advice parameter is invalid

ENOMEM Addresses in the range specified by the addr parameter
and the len parameter are partially or completely outside
the range of the process’s address space.

Base Operating System (BOS) Runtime Services (A-P) 1157

Related Information
“posix_fallocate Subroutine” on page 1156, “posix_fadvise Subroutine” on page 1155, “posix_memalign” on
page 788.

posix_openpt Subroutine

Purpose
Opens a pseudo-terminal device.

Library
Standard C library (libc.a)

Syntax
#include <stdlib.h<
#include <fcntl.h>

int posix_openpt (oflag
)
int oflag;

Description
The posix_openpt subroutine establishes a connection between a master device for a pseudo terminal
and a file descriptor. The file descriptor is used by other I/O functions that refer to that pseudo terminal.

The file status flags and file access modes of the open file description are set according to the value of the
oflag parameter.

Parameters

oflag Values for the oflag parameter are constructed by a bitwise-inclusive OR of flags from
the following list, defined in the <fcntl.h> file:

O_RDWR
Open for reading and writing.

O_NOCTTY
If set, the posix_openpt subroutine does not cause the terminal device to
become the controlling terminal for the process.

The behavior of other values for the oflag parameter is unspecified.

Return Values
Upon successful completion, the posix_openpt subroutine opens a master pseudo-terminal device and
returns a non-negative integer representing the lowest numbered unused file descriptor. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The posix_openpt subroutine will fail if:

EMFILE OPEN_MAX file descriptors are currently open in the calling process.
ENFILE The maximum allowable number of files is currently open in the system.

1158 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The posix_openpt subroutine may fail if:

EINVAL The value of the oflag parameter is not valid.
EAGAIN Out of pseudo-terminal resources.
ENOSR Out of STREAMS resources.

Examples
The following example describes how to open a pseudo-terminal and return the name of the slave device
and file descriptor
#include <fcntl.h>
#include <stdio.h>

int masterfd, slavefd;
char *slavedevice;

masterfd = posix_openpt(O_RDWR|O_NOCTTY);

if (masterfd == -1
|| grantpt (masterfd) == -1

|| unlockpt (masterfd) == -1
|| (slavedevice = ptsname (masterfd)) == NULL)
return -1;

printf("slave device is: %s\n", slavedevice);

slavefd = open(slave, O_RDWR|O_NOCTTY);
if (slavefd < 0)

return -1;

Related Information
“grantpt Subroutine” on page 487, “open, openx, open64, creat, or creat64 Subroutine” on page 939,
“ptsname Subroutine” on page 1330.

unlockpt Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions
Volume 2.

<fcntl.h> file in AIX 5L Version 5.3 Files Reference.

posix_spawn or posix_spawnp Subroutine

Purpose
Spawns a process.

Syntax
int posix_spawn(pid_t *restrict pid, const char *restrict path,

const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char * const envp[restrict]);

Base Operating System (BOS) Runtime Services (A-P) 1159

Description
The posix_spawn and posix_spawnp subroutines create a new process (child process) from the
specified process image. The new process image is constructed from a regular executable file called the
new process image file.

When a C program is executed as the result of this call, the program is entered as a C-language function
call as follows:
int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments themselves.
In addition, the following variable:
extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings.

The argv parameter is an array of character pointers to null-terminated strings. The last member of this
array is a null pointer and is not counted in argc. These strings constitute the argument list available to the
new process image. The value in argv[0] should point to a file name that is associated with the process
image being started by the posix_spawn or posix_spawnp function.

The argument envp is an array of character pointers to null-terminated strings. These strings constitute the
environment for the new process image. The environment array is terminated by a null pointer.

The number of bytes available for the child process’ combined argument and environment lists is
{ARG_MAX}. The implementation specifies in the system documentation whether any list overhead, such
as length words, null terminators, pointers, or alignment bytes, is included in this total.

The path argument to posix_spawn is a path name that identifies the new process image file to execute.

The file parameter to posix_spawnp is used to construct a path name that identifies the new process
image file. If the file parameter contains a slash character (/), the file parameter is used as the path name
for the new process image file. Otherwise, the path prefix for this file is obtained by a search of the
directories passed as the environment variable PATH. If this environment variable is not defined, the
results of the search are implementation-defined.

If file_actions is a null pointer, file descriptors that are open in the calling process remain open in the child
process, except for those whose FD_CLOEXEC flag is set (see “fcntl, dup, or dup2 Subroutine” on page
257). For those file descriptors that remain open, all attributes of the corresponding open file descriptions,
including file locks, remain unchanged.

If file_actions is not a null pointer, the file descriptors open in the child process are those open in the
calling process as modified by the spawn file actions object pointed to by file_actions and the
FD_CLOEXEC flag of each remaining open file descriptor after the spawn file actions have been
processed. The effective order of processing the spawn file actions is as follows:

1. The set of open file descriptors for the child process is initially the same set as is open for the calling
process. All attributes of the corresponding open file descriptions, including file locks (see “fcntl, dup, or
dup2 Subroutine” on page 257), remain unchanged.

2. The signal mask, signal default actions, and the effective user and group IDs for the child process are
changed as specified in the attributes object referenced by attrp.

3. The file actions specified by the spawn file actions object are performed in the order in which they
were added to the spawn file actions object.

4. Any file descriptor that has its FD_CLOEXEC flag set is closed.

The posix_spawnattr_t spawn attributes object type is defined in the spawn.h header file. Its attributes
are defined as follows:

1160 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object referenced by
attrp, and the spawn-pgroup attribute of the same object is non-zero, the child’s process group is as
specified in the spawn-pgroup attribute of the object referenced by attrp.

v As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the
object referenced by attrp, and the spawn-pgroup attribute of the same object is set to 0, then the child
is in a new process group with a process group ID equal to its process ID.

v If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the object
referenced by attrp, the new child process inherits the parent’s process group.

v If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object
referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not set, the new process image initially
has the scheduling policy of the calling process with the scheduling parameters specified in the
spawn-schedparam attribute of the object referenced by attrp.

v If the POSIX_SPAWN_SETSCHEDULER flag is set in the spawn-flags attribute of the object
referenced by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag), the new
process image initially has the scheduling policy specified in the spawn-schedpolicy attribute of the
object referenced by attrp and the scheduling parameters specified in the spawn-schedparam attribute
of the same object.

v The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
governs the effective user ID of the child process. If this flag is not set, the child process inherits the
parent process’ effective user ID. If this flag is set, the child process’ effective user ID is reset to the
parent’s real user ID. In either case, if the set-user-ID mode bit of the new process image file is set, the
effective user ID of the child process becomes that file’s owner ID before the new process image begins
execution.

v The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp also
governs the effective group ID of the child process. If this flag is not set, the child process inherits the
parent process’ effective group ID. If this flag is set, the child process’ effective group ID is reset to the
parent’s real group ID. In either case, if the set-group-ID mode bit of the new process image file is set,
the effective group ID of the child process becomes that file’s group ID before the new process image
begins execution.

v If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object referenced
by attrp, the child process initially has the signal mask specified in the spawn-sigmask attribute of the
object referenced by attrp.

v If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced by
attrp, the signals specified in the spawn-sigdefault attribute of the same object is set to their default
actions in the child process. Signals set to the default action in the parent process are set to the default
action in the child process. Signals set to be caught by the calling process are set to the default action
in the child process.

v Except for SIGCHLD, signals set to be ignored by the calling process image are set to be ignored by
the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the
spawn-flags attribute of the object referenced by attrp and the signals being indicated in the
spawn-sigdefault attribute of the object referenced by attrp.

v If the SIGCHLD signal is set to be ignored by the calling process, it is unspecified whether the
SIGCHLD signal is set to be ignored or set to the default action in the child process. This is true unless
otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the spawn_flags attribute of
the object referenced by attrp and the SIGCHLD signal being indicated in the spawn_sigdefault
attribute of the object referenced by attrp.

v If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object referenced by attrp in
the preceding list or by the file descriptor manipulations specified in file_actions, are displayed in the new
process image as though fork had been called to create a child process and then a member of the exec
family of functions had been called by the child process to execute the new process image.

Base Operating System (BOS) Runtime Services (A-P) 1161

By default, fork handlers are not run in posix_spawn or posix_spawnp routines. To enable fork handlers,
set the POSIX_SPAWN_FORK_HANDLERS flag in the attribute.

Return Values
Upon successful completion, posix_spawn and posix_spawnp return the process ID of the child process
to the parent process, in the variable pointed to by a non-NULL pid argument, and return 0 as the function
return value. Otherwise, no child process is created, the value stored into the variable pointed to by a
non-NULL pid is unspecified, and an error number is returned as the function return value to indicate the
error. If the pid argument is a null pointer, the process ID of the child is not returned to the caller.

Error Codes
The posix_spawn and posix_spawnp subroutines will fail if the following is true:

EINVAL The value specified by file_actions or attrp is invalid.

The error codes for the posix_spawn and posix_spawnp subroutines are affected by the following
conditions:

v If this error occurs after the calling process successfully returns from the posix_spawn or
posix_spawnp function, the child process might exit with exit status 127.

v If posix_spawn or posix_spawnp fail for any of the reasons that would cause fork or one of the exec
family of functions to fail, an error value is returned as described by fork and exec, respectively (or, if
the error occurs after the calling process successfully returns, the child process exits with exit status
127).

v If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by attrp,
and posix_spawn or posix_spawnp fails while changing the child’s process group, an error value is
returned as described by setpgid (or, if the error occurs after the calling process successfully returns,
the child process shall exit with exit status 127).

v If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set in the
spawn-flags attribute of the object referenced by attrp, then if posix_spawn or posix_spawnp fails for
any of the reasons that would cause sched_setparam to fail, an error value is returned as described by
sched_setparam (or, if the error occurs after the calling process successfully returns, the child process
sexit with exit status 127).

v If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced by
attrp, and if posix_spawn or posix_spawnp fails for any of the reasons that would cause
sched_setscheduler to fail, an error value is returned as described by sched_setscheduler (or, if the
error occurs after the calling process successfully returns, the child process exits with exit status 127).

v If the file_actions argument is not NULL and specifies any close, dup2, or open actions to be
performed, and if posix_spawn or posix_spawnp fails for any of the reasons that would cause close,
dup2, or open to fail, an error value is returned as described by close, dup2, and open, respectively
(or, if the error occurs after the calling process successfully returns, the child process exits with exit
status 127). An open file action might, by itself, result in any of the errors described by close or dup2, in
addition to those described by open.

Related Information
The “getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer, or setitimer Subroutine”
on page 389, “chmod or fchmod Subroutine” on page 149, “close Subroutine” on page 176, “fcntl, dup, or
dup2 Subroutine” on page 257, “exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine”
on page 238, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245, “fork, f_fork, or vfork
Subroutine” on page 293, “kill or killpg Subroutine” on page 582, “open, openx, open64, creat, or creat64
Subroutine” on page 939, “posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen
Subroutine” on page 1163, “posix_spawn_file_actions_adddup2 Subroutine” on page 1164,
“posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine” on page 1165,

1162 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

“posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1166,
“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1171,
“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1167,
“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine” on page 1168,
“posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine” on page 1169,
“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine” on page 1170,
“posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine” on page 1172.

posix_spawn_file_actions_addclose or
posix_spawn_file_actions_addopen Subroutine

Purpose
Adds close or open action to the spawn file actions object.

Syntax
#include <spawn.h>

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *
file_actions, int fildes);

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *
restrict file_actions, int fildes,
const char *restrict path, int oflag, mode_t mode);

Description
The posix_spawn_file_actions_addclose and posix_spawn_file_actions_addopen subroutines close
or open action to a spawn file actions object.

A spawn file actions object is of type posix_spawn_file_actions_t (defined in the spawn.h header file)
and is used to specify a series of actions to be performed by a posix_spawn or posix_spawnp operation
in order to arrive at the set of open file descriptors for the child process given the set of open file
descriptors of the parent. Comparison or assignment operators for the type posix_spawn_file_actions_t
are not defined.

A spawn file actions object, when passed to posix_spawn or posix_spawnp, specifies how the set of
open file descriptors in the calling process is transformed into a set of potentially open file descriptors for
the spawned process. This transformation is as if the specified sequence of actions was performed exactly
once, in the context of the spawned process (prior to running the new process image), in the order in
which the actions were added to the object. Additionally, when the new process image is run, any file
descriptor (from this new set) that has its FD_CLOEXEC flag set is closed (see “posix_spawn or
posix_spawnp Subroutine” on page 1159).

The posix_spawn_file_actions_addclose function adds a close action to the object referenced by
file_actions that causes the file descriptor fildes to be closed (as if close(fildes) had been called) when a
new process is spawned using this file actions object.

The posix_spawn_file_actions_addopen function adds an open action to the object referenced by
file_actions that causes the file named by path to be opened, as if open(path, oflag, mode) had been
called, and the returned file descriptor, if not fildes, had been changed to fildes) when a new process is
spawned using this file actions object. If fildes was already an open file descriptor, it closes before the
new file is opened.

The string described by path is copied by the posix_spawn_file_actions_addopen function.

Base Operating System (BOS) Runtime Services (A-P) 1163

Return Values
Upon successful completion, the posix_spawn_file_actions_addclose and
posix_spawn_file_actions_addopen subroutines return 0; otherwise, an error number is returned to
indicate the error.

Error Codes
The posix_spawn_file_actions_addclose and posix_spawn_file_actions_addopen subroutines fail if
the following is true:

EBADF The value specified by fildes is negative, or greater than or equal to {OPEN_MAX}.

The posix_spawn_file_actions_addclose and posix_spawn_file_actions_addopen subroutines might
fail if the following are true:

EINVAL The value specified by file_actions is invalid.
ENOMEM Insufficient memory exists to add to the spawn file actions object.

It is not an error for the fildes argument passed to these functions to specify a file descriptor for which the
specified operation could not be performed at the time of the call. Any such error will be detected when the
associated file actions object is used later during a posix_spawn or posix_spawnp operation.

Related Information
The “close Subroutine” on page 176, “fcntl, dup, or dup2 Subroutine” on page 257, “open, openx, open64,
creat, or creat64 Subroutine” on page 939, “posix_spawn or posix_spawnp Subroutine” on page 1159,
“posix_spawn_file_actions_adddup2 Subroutine,” “posix_spawn_file_actions_destroy or
posix_spawn_file_actions_init Subroutine” on page 1165.

posix_spawn_file_actions_adddup2 Subroutine

Purpose
Adds dup2 action to the spawn file actions object.

Syntax
#include <spawn.h>

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *
file_actions, int fildes, int newfildes);

Description
The posix_spawn_file_actions_adddup2 subroutine adds a dup2 action to the object referenced by
file_actions that causes the file descriptor fildes to be duplicated as newfildes when a new process is
spawned using this file actions object. This functions as if dup2(fildes, newfildes) had been called.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose.

Return Values
Upon successful completion, the posix_spawn_file_actions_adddup2 subroutine returns 0; otherwise, an
error number is returned to indicate the error.

1164 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The posix_spawn_file_actions_adddup2 subroutine will fail if the following are true:

EBADF The value specified by fildes or newfildes is negative, or greater than or equal to {OPEN_MAX}.
ENOMEM Insufficient memory exists to add to the spawn file actions object.

The posix_spawn_file_actions_adddup2 subroutine might fail if the following is true:

EINVAL The value specified by file_actions is invalid.

It is not an error for the fildes argument passed to this subroutine to specify a file descriptor for which the
specified operation could not be performed at the time of the call. Any such error will be detected when the
associated file actions object is used later during a posix_spawn or posix_spawnp operation.

Related Information
The “fcntl, dup, or dup2 Subroutine” on page 257, “posix_spawn or posix_spawnp Subroutine” on page
1159, “posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen Subroutine” on page
1163, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine.”

posix_spawn_file_actions_destroy or posix_spawn_file_actions_init
Subroutine

Purpose
Destroys and initializes a spawn file actions object.

Syntax
#include <spawn.h>

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *
file_actions);

int posix_spawn_file_actions_init(posix_spawn_file_actions_t *
file_actions);

Description
The posix_spawn_file_actions_destroy subroutine destroys the object referenced by file_actions; the
object becomes, in effect, uninitialized. An implementation can cause posix_spawn_file_actions_destroy
to set the object referenced by file_actions to an invalid value. A destroyed spawn file actions object can
be reinitialized using posix_spawn_file_actions_init; the results of otherwise referencing the object after
it has been destroyed are undefined.

The posix_spawn_file_actions_init function initializes the object referenced by file_actions to contain no
file actions for posix_spawn or posix_spawnp to perform.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose. The effect of initializing
a previously initialized spawn file actions object is undefined.

Return Values
Upon successful completion, the posix_spawn_file_actions_destroy and
posix_spawn_file_actions_init subroutines return 0; otherwise, an error number is returned to indicate
the error.

Base Operating System (BOS) Runtime Services (A-P) 1165

Error Codes
The posix_spawn_file_actions_init subroutine will fail if the following is true:

ENOMEM Insufficient memory exists to initialize the spawn file actions object.

The posix_spawn_file_actions_destroy subroutine might fail if the following is true:

EINVAL The value specified by file_actions is invalid.

Related Information
The “posix_spawn or posix_spawnp Subroutine” on page 1159.

posix_spawnattr_destroy or posix_spawnattr_init Subroutine

Purpose
Destroys and initializes a spawn attributes object.

Syntax
#include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t *attr);
int posix_spawnattr_init(posix_spawnattr_t *attr);

Description
The posix_spawnattr_destroy subroutine destroys a spawn attributes object. A destroyed attr attributes
object can be reinitialized using posix_spawnattr_init; the results of otherwise referencing the object after
it has been destroyed are undefined. An implementation can cause posix_spawnattr_destroy to set the
object referenced by attr to an invalid value.

The posix_spawnattr_init subroutine initializes a spawn attributes object attr with the default value for all
of the individual attributes used by the implementation. Results are undefined if posix_spawnattr_init is
called specifying an attr attributes object that is already initialized.

A spawn attributes object is of type posix_spawnattr_t (defined in the spawn.h header file) and is used
to specify the inheritance of process attributes across a spawn operation. Comparison or assignment
operators for the type posix_spawnattr_t are not defined.

Each implementation documents the individual attributes it uses and their default values unless these
values are defined by IEEE Std 1003.1-2001. Attributes not defined by IEEE Std 1003.1-2001, their default
values, and the names of the associated functions to get and set those attribute values are
implementation-defined.

The resulting spawn attributes object (possibly modified by setting individual attribute values), is used to
modify the behavior of posix_spawn or posix_spawnp. After a spawn attributes object has been used to
spawn a process by a call to a posix_spawn or posix_spawnp, any function affecting the attributes
object (including destruction) will not affect any process that has been spawned in this way.

Return Values
Upon successful completion, the posix_spawnattr_destroy and posix_spawnattr_init subroutines return
0; otherwise, an error number is returned to indicate the error.

1166 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The posix_spawnattr_destroy subroutine might fail if the following is true:

EINVAL The value specified by attr is invalid.

Related Information
The “posix_spawn or posix_spawnp Subroutine” on page 1159, “posix_spawnattr_getsigdefault or
posix_spawnattr_setsigdefault Subroutine” on page 1171, “posix_spawnattr_getflags or
posix_spawnattr_setflags Subroutine,” “posix_spawnattr_getpgroup or posix_spawnattr_setpgroup
Subroutine” on page 1168, “posix_spawnattr_getschedparam or posix_spawnattr_setschedparam
Subroutine” on page 1169, “posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy
Subroutine” on page 1170, “posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine” on
page 1172.

posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine

Purpose
Gets and sets the spawn-flags attribute of a spawn attributes object.

Syntax
#include <spawn.h>

int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,
short *restrict flags);

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

Description
The posix_spawnattr_getflags subroutine obtains the value of the spawn-flags attribute from the
attributes object referenced by attr. The posix_spawnattr_setflags subroutine sets the spawn-flags
attribute in an initialized attributes object referenced by attr. The spawn-flags attribute is used to indicate
which process attributes are to be changed in the new process image when invoking posix_spawn or
posix_spawnp. It is the bitwise-inclusive OR of 0 or more of the following flags:

v POSIX_SPAWN_RESETIDS

v POSIX_SPAWN_SETPGROUP

v POSIX_SPAWN_SETSIGDEF

v POSIX_SPAWN_SETSIGMASK

v POSIX_SPAWN_SETSCHEDPARAM

v POSIX_SPAWN_SETSCHEDULER

These flags are defined in the spawn.h header file. The default value of this attribute is as if no flags were
set.

Return Values
Upon successful completion, the posix_spawnattr_getflags subroutine returns 0 and stores the value of
the spawn-flags attribute of attr into the object referenced by the flags parameter; otherwise, an error
number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setflags subroutine returns 0; otherwise, an error
number is returned to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1167

Error Codes
The posix_spawnattr_getflags and posix_spawnattr_setflags subroutines will fail if the following is true:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setflags subroutine might fail if the following is true:

EINVAL The value of the attribute being set is not valid.

Related Information
The “posix_spawn or posix_spawnp Subroutine” on page 1159, “posix_spawn_file_actions_addclose or
posix_spawn_file_actions_addopen Subroutine” on page 1163, “posix_spawn_file_actions_adddup2
Subroutine” on page 1164, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine”
on page 1165, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1166,
“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1171,
“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine,” “posix_spawnattr_getschedparam
or posix_spawnattr_setschedparam Subroutine” on page 1169, “posix_spawnattr_getschedpolicy or
posix_spawnattr_setschedpolicy Subroutine” on page 1170, “posix_spawnattr_getsigmask or
posix_spawnattr_setsigmask Subroutine” on page 1172

posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine

Purpose
Gets and sets the spawn-pgroup attribute of a spawn attributes object.

Syntax
#include <spawn.h>

int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

Description
The posix_spawnattr_getpgroup subroutine gets the value of the spawn-pgroup attribute from the
attributes object referenced by attr.

The posix_spawnattr_setpgroup subroutine sets the spawn-pgroup attribute in an initialized attributes
object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new process image in a
spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute). The default value
of this attribute is 0.

Return Values
Upon successful completion, the posix_spawnattr_getpgroup subroutine returns 0 and stores the value
of the spawn-pgroup attribute of attr into the object referenced by the pgroup parameter; otherwise, an
error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setpgroup subroutine returns 0; otherwise, an error
number is returned to indicate the error.

1168 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The posix_spawnattr_getpgroup and posix_spawnattr_setpgroup subroutines might fail if the following
is true:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setpgroup subroutine might fail if the following is true:

EINVAL The value of the attribute being set is not valid.

Related Information
The “posix_spawn or posix_spawnp Subroutine” on page 1159, “posix_spawn_file_actions_addclose or
posix_spawn_file_actions_addopen Subroutine” on page 1163, “posix_spawn_file_actions_adddup2
Subroutine” on page 1164, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine”
on page 1165, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1166,
“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1171,
“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1167,
“posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine,”
“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine” on page 1170,
“posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine” on page 1172

posix_spawnattr_getschedparam or posix_spawnattr_setschedparam
Subroutine

Purpose
Gets and sets the spawn-schedparam attribute of a spawn attributes object.

Syntax
#include <spawn.h>
#include <sched.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t *
restrict attr, struct sched_param *restrict schedparam);

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

Description
The posix_spawnattr_getschedparam subroutine gets the value of the spawn-schedparam attribute
from the attributes object referenced by attr.

The posix_spawnattr_setschedparam subroutine sets the spawn-schedparam attribute in an initialized
attributes object referenced by attr.

The spawn-schedparam attribute represents the scheduling parameters to be assigned to the new
process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or
POSIX_SPAWN_SETSCHEDPARAM is set in the spawn-flags attribute). The default value of this
attribute is unspecified.

Return Values
Upon successful completion, the posix_spawnattr_getschedparam subroutine returns 0 and stores the
value of the spawn-schedparam attribute of attr into the object referenced by the schedparam parameter;
otherwise, an error number is returned to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1169

Upon successful completion, the posix_spawnattr_setschedparam subroutine returns 0; otherwise, an
error number is returned to indicate the error.

Error Codes
The posix_spawnattr_getschedparam and posix_spawnattr_setschedparam subroutines might fail if
the following is true:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setschedparam subroutine might fail if the following is true:

EINVAL The value of the attribute being set is not valid.

Related Information
The “posix_spawn or posix_spawnp Subroutine” on page 1159, “posix_spawn_file_actions_addclose or
posix_spawn_file_actions_addopen Subroutine” on page 1163, “posix_spawn_file_actions_adddup2
Subroutine” on page 1164, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine”
on page 1165, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1166,
“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1171,
“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1167,
“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine” on page 1168,
“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine,”
“posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine” on page 1172

posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy
Subroutine

Purpose
Gets and sets the spawn-schedpolicy attribute of a spawn attributes object.

Syntax
#include <spawn.h>
#include <sched.h>

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *
restrict attr, int *restrict schedpolicy);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy);

Description
The posix_spawnattr_getschedpolicy subroutine gets the value of the spawn-schedpolicy attribute
from the attributes object referenced by attr.

The posix_spawnattr_setschedpolicy subroutine sets the spawn-schedpolicy attribute in an initialized
attributes object referenced by attr.

The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new process
image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute). The
default value of this attribute is unspecified.

1170 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, the posix_spawnattr_getschedpolicy subroutine returns 0 and stores the
value of the spawn-schedpolicy attribute of attr into the object referenced by the schedpolicy parameter;
otherwise, an error number is returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedpolicy returns 0; otherwise, an error number is
returned to indicate the error.

Error Codes
The following posix_spawnattr_getschedpolicy and posix_spawnattr_setschedpolicy subroutines
might fail if the following is true:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setschedpolicy subroutine might fail if the following is true:

EINVAL The value of the attribute being set is not valid.

Related Information
The “posix_spawn or posix_spawnp Subroutine” on page 1159, “posix_spawn_file_actions_addclose or
posix_spawn_file_actions_addopen Subroutine” on page 1163, “posix_spawn_file_actions_adddup2
Subroutine” on page 1164, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine”
on page 1165, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1166,
“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine,” “posix_spawnattr_getflags or
posix_spawnattr_setflags Subroutine” on page 1167, “posix_spawnattr_getpgroup or
posix_spawnattr_setpgroup Subroutine” on page 1168, “posix_spawnattr_getschedparam or
posix_spawnattr_setschedparam Subroutine” on page 1169, “posix_spawnattr_getsigmask or
posix_spawnattr_setsigmask Subroutine” on page 1172.

posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault
Subroutine

Purpose
Gets and sets the spawn-sigdefault attribute of a spawn attributes object.

Syntax
#include <signal.h>
#include <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t *
restrict attr, sigset_t *restrict sigdefault);

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

Description
The posix_spawnattr_getsigdefault subroutine gets the value of the spawn-sigdefault attribute from the
attributes object referenced by attr.

The posix_spawnattr_setsigdefault subroutine sets the spawn-pgroup attribute in an initialized
attributes object referenced by attr.

Base Operating System (BOS) Runtime Services (A-P) 1171

The spawn-sigdefault attribute represents the set of signals to be forced to default signal handling in the
new process image by a spawn operation (if POSIX_SPAWN_SETSIGDEF is set in the spawn-flags
attribute). The default value of this attribute is an empty signal set.

Return Values
Upon successful completion, the posix_spawnattr_getsigdefault subroutine returns 0 and stores the
value of the spawn-sigdefault attribute of attr into the object referenced by the sigdefault parameter;
otherwise, an error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setsigdefault subroutine returns 0; otherwise, an error
number is returned to indicate the error.

Error Codes
The posix_spawnattr_getsigdefault and posix_spawnattr_setsigdefault subroutines might fail if the
following is true:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setsigdefault subroutine might fail if the following is true:

EINVAL The value of the attribute being set is not valid.

Related Information
The “posix_spawn or posix_spawnp Subroutine” on page 1159, “posix_spawn_file_actions_addclose or
posix_spawn_file_actions_addopen Subroutine” on page 1163, “posix_spawn_file_actions_adddup2
Subroutine” on page 1164, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine”
on page 1165, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1166,
“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1167,
“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine” on page 1168,
“posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine” on page 1169,
“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine” on page 1170,
“posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine.”

posix_spawnattr_getsigmask or posix_spawnattr_setsigmask
Subroutine

Purpose
Gets and sets the spawn-sigmask attribute of a spawn attributes object.

Syntax
#include <signal.h>
#include <spawn.h>

int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigmask);

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

Description
The posix_spawnattr_getsigmask subroutine gets the value of the spawn-sigmask attribute from the
attributes object referenced by attr.

1172 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The posix_spawnattr_setsigmask subroutine sets the spawn-sigmask attribute in an initialized attributes
object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process image of a spawn
operation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags attribute). The default value of this
attribute is unspecified.

Return Values
Upon successful completion, the posix_spawnattr_getsigmask subroutine returns 0 and stores the value
of the spawn-sigmask attribute of attr into the object referenced by the sigmask parameter; otherwise, an
error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setsigmask subroutine returns 0; otherwise, an error
number is returned to indicate the error.

Error Codes
The posix_spawnattr_getsigmask and posix_spawnattr_setsigmask subroutines might fail if the
following is true:

EINVAL The value specified by attr is invalid.

The posix_spawnattr_setsigmask subroutine might fail if the following is true:

EINVAL The value of the attribute being set is not valid.

Related Information
The “posix_spawn or posix_spawnp Subroutine” on page 1159, “posix_spawn_file_actions_addclose or
posix_spawn_file_actions_addopen Subroutine” on page 1163, “posix_spawn_file_actions_adddup2
Subroutine” on page 1164, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine”
on page 1165, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1166,
“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1171,
“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1167,
“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine” on page 1168,
“posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine” on page 1169,
“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine” on page 1170.

posix_trace_getnext_event, posix_trace_timedgetnext_event,
posix_trace_trygetnext_event Subroutine

Purpose
Retrieves a trace event (TRACING).

Syntax
#include <sys/types.h>
#include <trace.h>

int posix_trace_getnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

int posix_trace_timedgetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,

Base Operating System (BOS) Runtime Services (A-P) 1173

void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable,
const struct timespec *restrict abs_timeout);

int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

Description
The posix_trace_getnext_event() function reports a recorded trace event either from an active trace
stream without log or a prerecorded trace stream identified by the trid argument. The
posix_trace_trygetnext_event() function reports a recorded trace event from an active trace stream
without log identified by the trid argument.

The trace event information associated with the recorded trace event is copied by the function into the
structure pointed to by the event argument, and the data associated with the trace event is copied into the
buffer pointed to by the data argument.

The posix_trace_getnext_event() function blocks if the trid argument identifies an active trace stream and
there is currently no trace event ready to be retrieved. When returning, if a recorded trace event was
reported, the variable pointed to by the unavailable argument is set to 0. Otherwise, the variable pointed to
by the unavailable argument is set to a value different from 0.

The posix_trace_timedgetnext_event() function attempts to get another trace event from an active trace
stream without log, as in the posix_trace_getnext_event() function. However, if no trace event is
available from the trace stream, the implied wait terminates when the timeout specified by the argument
abs_timeout expires, and the function returns the error [ETIMEDOUT].

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock
upon which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or
when the absolute time specified by abs_timeout has already passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function. The
resolution of the timeout matches the resolution of the clock on which it is based. The timespec data type
is defined in the <time.h> header.

The function never fails with a timeout if a trace event is immediately available from the trace stream. The
validity of the abs_timeout argument does not need to be checked if a trace event is immediately available
from the trace stream.

The behavior of this function for a prerecorded trace stream is unspecified.

The posix_trace_trygetnext_event() function does not block. This function returns an error if the trid
argument identifies a prerecorded trace stream. If a recorded trace event was reported, the variable
pointed to by the unavailable argument is set to 0. Otherwise, if no trace event was reported, the variable
pointed to by the unavailable argument is set to a value different from 0.

The num_bytes argument equals the size of the buffer pointed to by the data argument. The data_len
argument reports to the application the length, in bytes, of the data record just transferred. If num_bytes is
greater than or equal to the size of the data associated with the trace event pointed to by the event
argument, all the recorded data is transferred. In this case, the truncation-status member of the trace
event structure is either POSIX_TRACE_NOT_TRUNCATED (if the trace event data was recorded without
truncation while tracing) or POSIX_TRACE_TRUNCATED_RECORD (if the trace event data was truncated
when it was recorded). If the num_bytes argument is less than the length of recorded trace event data, the
data transferred is truncated to a length of num_bytes, the value stored in the variable pointed to by

1174 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

data_len equals num_bytes, and the truncation-status member of the event structure argument is set to
POSIX_TRACE_TRUNCATED_READ (see the posix_trace_event_info structure defined in <trace.h>).

The report of a trace event is sequential starting from the oldest recorded trace event. Trace events are
reported in the order in which they were generated, up to an implementation-defined time resolution that
causes the ordering of trace events occurring very close to each other to be unknown. After it is reported,
a trace event cannot be reported again from an active trace stream. After a trace event is reported from an
active trace stream without log, the trace stream makes the resources associated with that trace event
available to record future generated trace events.

Return Values
Upon successful completion, these functions return a value of 0. Otherwise, they return the corresponding
error number.

If successful, these functions store:

v The recorded trace event in the object pointed to by event

v The trace event information associated with the recorded trace event in the object pointed to by data

v The length of this trace event information in the object pointed to by data_len

v The value of 0 in the object pointed to by unavailable

Error Codes
These functions fail if:

EINVAL The trace stream identifier argument trid is invalid.

The posix_trace_getnext_event() and posix_trace_timedgetnext_event() functions fail if:

EINTR The operation was interrupted by a signal, and so the call had no effect.

The posix_trace_trygetnext_event() function fails if:

EINVAL The trace stream identifier argument trid does not correspond to an active trace
stream.

The posix_trace_timedgetnext_event() function fails if:

EINVAL There is no trace event immediately available from the trace stream, and the timeout
argument is invalid.

ETIMEDOUT No trace event was available from the trace stream before the specified timeout
expired.

Related Information
“mq_receive, mq_timedreceive Subroutine” on page 874, “mq_send, mq_timedsend Subroutine” on page
876, “pthread_mutex_timedlock Subroutine” on page 1282, “pthread_rwlock_timedrdlock Subroutine” on
page 1297, “pthread_rwlock_timedwrlock Subroutine” on page 1299.

The sem_timedwait subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

Base Operating System (BOS) Runtime Services (A-P) 1175

powf, powl, pow, powd32, powd64, and powd128 Subroutines

Purpose
Computes power.

Syntax
#include <math.h>

float powf (x, y)
float x;
float y;

long double powl (x, y)
long double x, y;

double pow (x, y)
double x, y;
_Decimal32 powd32 (x, y)
_Decimal32 x, y;

_Decimal64 powd64 (x, y)
_Decimal64 x, y;

_Decimal128 powd128 (x, y)
_Decimal128 x, y;

Description
The powf, powl, pow, powd32, powd64, and powd128 subroutines compute the value of x raised to the
power y, x y. If x is negative, the application ensures that y is an integer value.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

x Specifies the value of the base.
y Specifies the value of the exponent.

Return Values
Upon successful completion, the pow, powf, powl, powd32, powd64, and powd128 subroutines return
the value of x raised to the power y.

For finite values of x < 0, and finite non-integer values of y, a domain error occurs and a NaN is returned.

If the correct value would cause overflow, a range error occurs and the pow, powf, powl, powd32,
powd64, and powd128 subroutines return HUGE_VAL, HUGE_VALF, HUGE_VALL, HUGE_VAL_D32,
HUGE_VAL_D64, and HUGE_VAL_D128 respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is
returned.

If x or y is a NaN, a NaN is returned (unless specified elsewhere in this description).

1176 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

For any value of y (including NaN), if x is +1, 1.0 is returned.

For any value of x (including NaN), if y is ±0, 1.0 is returned.

For any odd integer value of y>0, if x is ±0, ±0 is returned.

For y > 0 and not an odd integer, if x is ±0, +0 is returned.

If x is -1, and y is ±Inf, 1.0 is returned.

For |x<1, if y is −Inf, +Inf is returned.

For |x>1, if y is −Inf, +0 is returned.

For |x<1, if y is +Inf, +0 is returned.

For |x>1, if y is +Inf, +Inf is returned.

For y an odd integer < 0, if x is -Inf, -0 is returned.

For y < 0 and not an odd integer, if x is -Inf, +0 is returned.

For y an odd integer > 0, if x is −Inf, −Inf is returned.

For y > 0 and not an odd integer, if x is -Inf, +Inf is returned.

For y <0, if x is +Inf, +0 is returned.

For y >0, if x is +Inf, +Inf is returned.

For y an odd integer < 0, if x is ±0, a pole error occurs and ±HUGE_VAL, ±HUGE_VALF, ±HUGE_VALL,
±HUGE_VAL_D32, ±HUGE_VAL_D64, and ±HUGE_VAL_D128 is returned for pow, powf, powl,
powd32, powd64, and powd128 respectively.

For y < 0 and not an odd integer, if x is ±0, a pole error occurs and HUGE_VAL, HUGE_VALF,
HUGE_VALL, HUGE_VAL_D32, HUGE_VAL_D64, and HUGE_VAL_D128 is returned for pow, powf,
powl, powd32, powd64, and powd128 respectively.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Error Codes
When using the libm.a library:

pow If the correct value overflows, the powsubroutine returns a HUGE_VAL value and sets errno to
ERANGE. If the x parameter is negative and the y parameter is not an integer, the pow subroutine
returns a NaNQ value and sets errno to EDOM. If x=0 and the y parameter is negative, the pow
subroutine returns a HUGE_VAL value but does not modify errno.

powl If the correct value overflows, the powlsubroutine returns a HUGE_VAL value and sets errno to
ERANGE. If the x parameter is negative and the y parameter is not an integer, the powl subroutine
returns a NaNQ value and sets errno to EDOM. If x=0 and the y parameter is negative, the powl
subroutine returns a HUGE_VAL value but does not modify errno.

Base Operating System (BOS) Runtime Services (A-P) 1177

When using libmsaa.a(-lmsaa):

pow If x=0 and the y parameter is not positive, or if the x parameter is negative and the y parameter is
not an integer, the pow subroutine returns 0 and sets errno to EDOM. In these cases a message
indicating DOMAIN error is output to standard error. When the correct value for the pow subroutine
would overflow or underflow, the pow subroutine returns:

+HUGE_VAL

OR

-HUGE_VAL

OR

0

When using either the libm.a library or the libsaa.a library:
powl If the correct value overflows, powl returns HUGE_VAL and errno to ERANGE. If x is negative and

y is not an integer, powl returns NaNQ and sets errno to EDOM. If x = zero and y is negative, powl
returns a HUGE_VAL value but does not modify errno.

Related Information
“exp, expf, expl, expd32, expd64, and expd128 Subroutines” on page 247, “feclearexcept Subroutine” on
page 267, “fetestexcept Subroutine” on page 275, and “class, _class, finite, isnan, or unordered
Subroutines” on page 168.

math.h in AIX 5L Version 5.3 Files Reference.

printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or
vwsprintf Subroutine

Purpose
Prints formatted output.

Library
Standard C Library (libc.a) or the Standard C Library with 128-Bit long doubles (libc128.a)

Syntax
#include <stdio.h>

int printf (Format, [Value, ...])
const char *Format;

int fprintf (Stream, Format, [Value, ...])
FILE *Stream;
const char *Format;

int sprintf (String, Format, [Value, ...])
char *String;
const char *Format;

int snprintf (String, Number, Format, [Value, . . .])
char *String;
int Number;
const char *Format;

1178 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

#include <stdarg.h>

int vprintf (Format, Value)
const char *Format;
va_list Value;

int vfprintf (Stream, Format, Value)
FILE *Stream;
const char *Format;
va_list Value;

int vsprintf (String, Format, Value)
char *String;
const char *Format;
va_list Value;

#include <wchar.h>

int vwsprintf (String, Format, Value)
wchar_t *String;
const char *Format;
va_list Value;

int wsprintf (String, Format, [Value, ...])
wchar_t *String;
const char *Format;

Description
The printf subroutine converts, formats, and writes the Value parameter values, under control of the
Format parameter, to the standard output stream. The printf subroutine provides conversion types to
handle code points and wchar_t wide character codes.

The fprintf subroutine converts, formats, and writes the Value parameter values, under control of the
Format parameter, to the output stream specified by the Stream parameter. This subroutine provides
conversion types to handle code points and wchar_t wide character codes.

The sprintf subroutine converts, formats, and stores the Value parameter values, under control of the
Format parameter, into consecutive bytes, starting at the address specified by the String parameter. The
sprintf subroutine places a null character (\0) at the end. You must ensure that enough storage space is
available to contain the formatted string. This subroutine provides conversion types to handle code points
and wchar_t wide character codes.

The snprintf subroutine converts, formats, and stores the Value parameter values, under control of the
Format parameter, into consecutive bytes, starting at the address specified by the String parameter. The
snprintf subroutine places a null character (\0) at the end. You must ensure that enough storage space is
available to contain the formatted string. This subroutine provides conversion types to handle code points
and wchar_t wide character codes. The snprintf subroutine is identical to the sprintf subroutine with the
addition of the Number parameter, which states the size of the buffer referred to by the String parameter.

The wsprintf subroutine converts, formats, and stores the Value parameter values, under control of the
Format parameter, into consecutive wchar_t characters starting at the address specified by the String
parameter. The wsprintf subroutine places a null character (\0) at the end. The calling process should
ensure that enough storage space is available to contain the formatted string. The field width unit is
specified as the number of wchar_t characters. The wsprintf subroutine is the same as the printf
subroutine, except that the String parameter for the wsprintf subroutine uses a string of wchar_t
wide-character codes.

All of the above subroutines work by calling the _doprnt subroutine, using variable-length argument
facilities of the varargs macros.

Base Operating System (BOS) Runtime Services (A-P) 1179

The vprintf, vfprintf, vsprintf, and vwsprintf subroutines format and write varargs macros parameter
lists. These subroutines are the same as the printf, fprintf, sprintf, snprintf, and wsprintf subroutines,
respectively, except that they are not called with a variable number of parameters. Instead, they are called
with a parameter-list pointer as defined by the varargs macros.

Parameters
Number

Specifies the number of bytes in a string to be copied or transformed.

Value Specifies 0 or more arguments that map directly to the objects in the Format parameter.

Stream
Specifies the output stream.

String Specifies the starting address.

Format
A character string that contains two types of objects:

v Plain characters, which are copied to the output stream.

v Conversion specifications, each of which causes 0 or more items to be retrieved from the Value
parameter list. In the case of the vprintf, vfprintf, vsprintf, and vwsprintf subroutines, each
conversion specification causes 0 or more items to be retrieved from the varargs macros
parameter lists.

If the Value parameter list does not contain enough items for the Format parameter, the results
are unpredictable. If more parameters remain after the entire Format parameter has been
processed, the subroutine ignores them.

Each conversion specification in the Format parameter has the following elements:

v A % (percent sign).

v 0 or more options, which modify the meaning of the conversion specification. The option
characters and their meanings are:

’ Formats the integer portions resulting from i, d, u, f, g and G decimal conversions with
thousands_sep grouping characters. For other conversions the behavior is undefined.
This option uses the nonmonetary grouping character.

- Left-justifies the result of the conversion within the field.

+ Begins the result of a signed conversion with a + (plus sign) or - (minus sign).

space character
Prefixes a space character to the result if the first character of a signed conversion is
not a sign. If both the space-character and + option characters appear, the
space-character option is ignored.

Converts the value to an alternate form. For c, d, s, and u conversions, the option has
no effect. For o conversion, it increases the precision to force the first digit of the result
to be a 0. For x and X conversions, a nonzero result has a 0x or 0X prefix. For e, E, f,
g, and G conversions, the result always contains a decimal point, even if no digits
follow it. For g and G conversions, trailing 0’s are not removed from the result.

0 Pads to the field width with leading 0’s (following any indication of sign or base) for d, i,
o, u, x, X, e, E, f, g, and G conversions; the field is not space-padded. If the 0 and -
options both appear, the 0 option is ignored. For d, i, o u, x, and X conversions, if a
precision is specified, the 0 option is also ignored. If the 0 and ’ options both appear,
grouping characters are inserted before the field is padded. For other conversions, the
results are unreliable.

B Specifies a no-op character.

N Specifies a no-op character.

1180 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

J Specifies a no-op character.

v An optional decimal digit string that specifies the minimum field width. If the converted value has
fewer characters than the field width, the field is padded on the left to the length specified by
the field width. If the - (left-justify) option is specified, the field is padded on the right.

v An optional precision. The precision is a . (dot) followed by a decimal digit string. If no precision
is specified, the default value is 0. The precision specifies the following limits:

– Minimum number of digits to appear for the d, i, o, u, x, or X conversions.

– Number of digits to appear after the decimal point for the e, E, and f conversions.

– Maximum number of significant digits for g and G conversions.

– Maximum number of bytes to be printed from a string in s and S conversions.

– Maximum number of bytes, converted from the wchar_t array, to be printed from the S
conversions. Only complete characters are printed.

v An optional l (lowercase L), ll (lowercase LL), h, or L specifier indicates one of the following:

– An optional h specifying that a subsequent d, i, u, o, x, or X conversion specifier applies to
a short int or unsigned short int Value parameter (the parameter will have been promoted
according to the integral promotions, and its value will be converted to a short int or
unsigned short int before printing).

– An optional h specifying that a subsequent n conversion specifier applies to a pointer to a
short int parameter.

– An optional l (lowercase L) specifying that a subsequent d, i, u, o, x, or X conversion
specifier applies to a long int or unsigned long int parameter .

– An optional l (lowercase L) specifying that a subsequent n conversion specifier applies to a
pointer to a long int parameter.

– An optional ll (lowercase LL) specifying that a subsequent d, i, u, o, x, or X conversion
specifier applies to a long long int or unsigned long long int parameter.

– An optional ll (lowercase LL) specifying that a subsequent n conversion specifier applies to a
pointer to a long long int parameter.

– An optional L specifying that a following e, E, f, g, or G conversion specifier applies to a
long double parameter. If linked with libc.a, long double is the same as double (64bits). If
linked with libc128.a and libc.a, long double is 128 bits.

v An optional H, D, or DD specifier indicates one of the following conversions:

– An optional H specifying that a following e, E, f, F, g, or G conversion specifier applies to a
_Decimal32 parameter.

– An optional D specifying that a following e, E, f, F, g, or G conversion specifier applies to a
_Decimal64 parameter.

– An optional DD specifying that a following e, E, f, F, g, or G conversion specifier applies to a
_Decimal128 parameter.

v An optional vl, lv, vh, hv or v specifier indicates one of the following vector data type
conversions:

– An optional v specifying that a following e, E, f, g, G, a, or A conversion specifier applies to
a vector float parameter. It consumes one argument and interprets the data as a series of
four 4-byte floating point components.

– An optional v specifying that a following c, d, i, u, o, x, or X conversion specifier applies to a
vector signed char, vector unsigned char, or vector bool char parameter. It consumes
one argument and interprets the data as a series of sixteen 1-byte components.

– An optional vl or lv specifying that a following d, i, u, o, x, or X conversion specifier applies
to a vector signed int, vector unsigned int, or vector bool parameter. It consumes one
argument and interprets the data as a series of four 4-byte integer components.

Base Operating System (BOS) Runtime Services (A-P) 1181

– An optional vh or hv specifying that a following d, i, u, o, x, or X conversion specifier applies
to a vector signed short or vector unsigned short parameter. It consumes one argument
and interprets the data as a series of eight 2-byte integer components.

– For any of the preceding specifiers, an optional separator character can be specified
immediately preceding the vector size specifier. If no separator is specified, the default
separator is a space unless the conversion is c, in which case the default separator is null.
The set of supported optional separators are , (comma), ; (semicolon), : (colon), and _
(underscore).

v The following characters indicate the type of conversion to be applied:

% Performs no conversion. Prints (%).

d or i Accepts a Value parameter specifying an integer and converts it to signed decimal
notation. The precision specifies the minimum number of digits to appear. If the value
being converted can be represented in fewer digits, it is expanded with leading 0’s. The
default precision is 1. The result of converting a value of 0 with a precision of 0 is a null
string. Specifying a field width with a 0 as a leading character causes the field-width
value to be padded with leading 0’s.

u Accepts a Value parameter specifying an unsigned integer and converts it to unsigned
decimal notation. The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is expanded with leading
0’s. The default precision is 1. The result of converting a value of 0 with a precision of 0
is a null string. Specifying a field width with a 0 as a leading character causes the
field-width value to be padded with leading 0’s.

o Accepts a Value parameter specifying an unsigned integer and converts it to unsigned
octal notation. The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is expanded with leading
0’s. The default precision is 1. The result of converting a value of 0 with a precision of 0
is a null string. Specifying a field-width with a 0 as a leading character causes the field
width value to be padded with leading 0’s. An octal value for field width is not implied.

x or X Accepts a Value parameter specifying an unsigned integer and converts it to unsigned
hexadecimal notation. The letters abcdef are used for the x conversion and the letters
ABCDEF are used for the X conversion. The precision specifies the minimum number
of digits to appear. If the value being converted can be represented in fewer digits, it is
expanded with leading 0’s. The default precision is 1. The result of converting a value of
0 with a precision of 0 is a null string. Specifying a field width with a 0 as a leading
character causes the field-width value to be padded with leading 0’s.

f Accepts a Value parameter specifying a double and converts it to decimal notation in
the format [-]ddd.ddd. The number of digits after the decimal point is equal to the
precision specification. If no precision is specified, six digits are output. If the precision
is 0, no decimal point appears.

e or E Accepts a Value parameter specifying a double and converts it to the exponential form
[-]d.ddde+/-dd. One digit exists before the decimal point, and the number of digits after
the decimal point is equal to the precision specification. The precision specification can
be in the range of 0-17 digits. If no precision is specified, six digits are output. If the
precision is 0, no decimal point appears. The E conversion character produces a
number with E instead of e before the exponent. The exponent always contains at least
two digits.

g or G
Accepts a Value parameter specifying a double and converts it in the style of the e, E,
or f conversion characters, with the precision specifying the number of significant digits.
Trailing 0’s are removed from the result. A decimal point appears only if it is followed by
a digit. The style used depends on the value converted. Style e (E, if G is the flag used)

1182 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

results only if the exponent resulting from the conversion is less than -4, or if it is
greater or equal to the precision. If an explicit precision is 0, it is taken as 1.

c Accepts and prints a Value parameter specifying an integer converted to an unsigned
char data type.

C Accepts and prints a Value parameter specifying a wchar_t wide character code. The
wchar_t wide character code specified by the Value parameter is converted to an array
of bytes representing a character and that character is written; the Value parameter is
written without conversion when using the wsprintf subroutine.

s Accepts a Value parameter as a string (character pointer), and characters from the
string are printed until a null character (\0) is encountered or the number of bytes
indicated by the precision is reached. If no precision is specified, all bytes up to the first
null character are printed. If the string pointer specified by the Value parameter has a
null value, the results are unreliable.

S Accepts a corresponding Value parameter as a pointer to a wchar_t string. Characters
from the string are printed (without conversion) until a null character (\0) is encountered
or the number of wide characters indicated by the precision is reached. If no precision
is specified, all characters up to the first null character are printed. If the string pointer
specified by the Value parameter has a value of null, the results are unreliable.

p Accepts a pointer to void. The value of the pointer is converted to a sequence of
printable characters, the same as an unsigned hexadecimal (x).

n Accepts a pointer to an integer into which is written the number of characters
(wide-character codes in the case of the wsprintf subroutine) written to the output
stream by this call. No argument is converted.

A field width or precision can be indicated by an * (asterisk) instead of a digit string. In this case, an
integer Value parameter supplies the field width or precision. The Value parameter converted for output is
not retrieved until the conversion letter is reached, so the parameters specifying field width or precision
must appear before the value (if any) to be converted.

If the result of a conversion is wider than the field width, the field is expanded to contain the converted
result and no truncation occurs. However, a small field width or precision can cause truncation on the right.

The printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf subroutine allows
the insertion of a language-dependent radix character in the output string. The radix character is defined
by language-specific data in the LC_NUMERIC category of the program’s locale. In the C locale, or in a
locale where the radix character is not defined, the radix character defaults to a . (dot).

After any of these subroutines runs successfully, and before the next successful completion of a call to the
fclose (“fclose or fflush Subroutine” on page 256) or fflush subroutine on the same stream or to the exit
(“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245) or abort (“abort Subroutine” on page 2)
subroutine, the st_ctime and st_mtime fields of the file are marked for update.

The e, E, f, g, and G conversion specifiers represent the special floating-point values as follows:

Quiet NaN +NaNQ or -NaNQ
Signaling NaN +NaNS or -NaNS
+/-INF +INF or -INF
+/-0 +0 or -0

The representation of the + (plus sign) depends on whether the + or space-character formatting option is
specified.

Base Operating System (BOS) Runtime Services (A-P) 1183

These subroutines can handle a format string that enables the system to process elements of the
parameter list in variable order. In such a case, the normal conversion character % (percent sign) is
replaced by %digit$, where digit is a decimal number in the range from 1 to the NL_ARGMAX value.
Conversion is then applied to the specified argument, rather than to the next unused argument. This
feature provides for the definition of format strings in an order appropriate to specific languages. When
variable ordering is used the * (asterisk) specification for field width in precision is replaced by %digit$. If
you use the variable-ordering feature, you must specify it for all conversions.

The following criteria apply:

v The format passed to the NLS extensions can contain either the format of the conversion or the explicit
or implicit argument number. However, these forms cannot be mixed within a single format string,
except for %% (double percent sign).

v The n value must have no leading zeros.

v If %n$ is used, %1$ to %n - 1$ inclusive must be used.

v The n in %n$ is in the range from 1 to the NL_ARGMAX value, inclusive. See the limits.h file for more
information about the NL_ARGMAX value.

v Numbered arguments in the argument list can be referenced as many times as required.

v The * (asterisk) specification for field width or precision is not permitted with the variable order %n$
format; instead, the *m$ format is used.

Return Values
Upon successful completion, the printf, fprintf, vprintf, and vfprintf subroutines return the number of
bytes transmitted (not including the null character [\0] in the case of the sprintf, and vsprintf subroutines).
If an error was encountered, a negative value is output.

Upon successful completion, the snprintf subroutine returns the number of bytes written to the String
parameter (excluding the terminating null byte). If output characters are discarded because the output
exceeded the Number parameter in length, then the snprintf subroutine returns the number of bytes that
would have been written to the String parameter if the Number parameter had been large enough
(excluding the terminating null byte).

Upon successful completion, the wsprintf and vwsprintf subroutines return the number of wide characters
transmitted (not including the wide character null character [\0]). If an error was encountered, a negative
value is output.

Error Codes
The printf, fprintf, sprintf, snprintf, or wsprintf subroutine is unsuccessful if the file specified by the
Stream parameter is unbuffered or the buffer needs to be flushed and one or more of the following are
true:

EAGAIN The O_NONBLOCK or O_NDELAY flag is set for the file descriptor underlying the file specified by the
Stream or String parameter and the process would be delayed in the write operation.

EBADF The file descriptor underlying the file specified by the Stream or String parameter is not a valid file
descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the file size limit of this process or the maximum file
size. For more information, refer to the ulimit subroutine.

EINTR The write operation terminated due to receipt of a signal, and either no data was transferred or a partial
transfer was not reported.

Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.
Refer to the signal subroutine regarding sa_restart.

1184 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

EIO The process is a member of a background process group attempting to perform a write to its controlling
terminal, the TOSTOP flag is set, the process is neither ignoring nor blocking the SIGTTOU signal, and
the process group of the process has no parent process.

ENOSPC No free space remains on the device that contains the file.
EPIPE An attempt was made to write to a pipe or first-in-first-out (FIFO) that is not open for reading by any

process. A SIGPIPE signal is sent to the process.

The printf, fprintf, sprintf, snprintf, or wsprintf subroutine may be unsuccessful if one or more of the
following are true:

EILSEQ An invalid character sequence was detected.
EINVAL The Format parameter received insufficient arguments.
ENOMEM Insufficient storage space is available.
ENXIO A request was made of a nonexistent device, or the request was outside the capabilities of the device.

Examples
The following example demonstrates how the vfprintf subroutine can be used to write an error routine:
#include <stdio.h>
#include <stdarg.h>
/* The error routine should be called with the

syntax: */
/* error(routine_name, Format

[, value, . . .]); */
/*VARARGS0*/
void error(char *fmt, . . .);
/* ** Note that the function name and

Format arguments cannot be **
separately declared because of the **
definition of varargs. */ {

va_list args;

va_start(args, fmt);
/*
** Display the name of the function

that called the error routine */
fprintf(stderr, "ERROR in %s: ",

va_arg(args, char *)); /*
** Display the remainder of the message
*/
fmt = va_arg(args, char *);
vfprintf(fmt, args);
va_end(args);
abort(); }

Related Information
The abort (“abort Subroutine” on page 2) subroutine, conv (“conv Subroutines” on page 184) subroutine,
ecvt, fcvt, or gcvt (“ecvt, fcvt, or gcvt Subroutine” on page 226) subroutine, exit (“exit, atexit, unatexit,
_exit, or _Exit Subroutine” on page 245) subroutine, fclose or fflush (“fclose or fflush Subroutine” on page
256) subroutine, putc, putchar, fputc, or putw (“putc, putchar, fputc, or putw Subroutine” on page 1331)
subroutine, putwc, putwchar, or fputwc (“putwc, putwchar, or fputwc Subroutine” on page 1349)
subroutine, scanf, fscanf, sscanf, or wsscanf subroutine, setlocale subroutine.

Input and Output Handling and 128-Bit Long Double Floating-Point Data Type in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 1185

profil Subroutine

Purpose
Starts and stops program address sampling for execution profiling.

Library
Standard C Library (libc.a)

Syntax
#include <mon.h>

void profil (ShortBuffer, BufferSize, Offset, Scale)
OR
void profil (ProfBuffer, -1, 0, 0)

unsigned short *ShortBuffer;
struct prof *ProfBuffer;
unsigned int Buffersize, Scale;
unsigned long Offset;

Description
The profil subroutine arranges to record a histogram of periodically sampled values of the calling process
program counter. If BufferSize is not -1:

v The parameters to the profil subroutine are interpreted as shown in the first syntax definition.

v After this call, the program counter (pc) of the process is examined each clock tick if the process is the
currently active process. The value of the Offset parameter is subtracted from the pc. The result is
multiplied by the value of the Scale parameter, shifted right 16 bits, and rounded up to the next
half-word aligned value. If the resulting number is less than the BufferSize value divided
by sizeof(short), the corresponding short inside the ShortBuffer parameter is incremented. If the result
of this increment would overflow an unsigned short, it remains USHRT_MAX.

v The least significant 16 bits of the Scale parameter are interpreted as an unsigned, fixed-point fraction
with a binary point at the left. The most significant 16 bits of the Scale parameter are ignored. For
example:

Octal Hex Meaning

0177777 0xFFFF Maps approximately each pair of bytes in the instruction space
to a unique short in the ShortBuffer parameter.

077777 0x7FFF Maps approximately every four bytes to a short in the
ShortBuffer parameter.

02 0x0002 Maps all instructions to the same location, producing a
noninterrupting core clock.

01 0x0001 Turns profiling off.

00 0x0000 Turns profiling off.

Note: Mapping each byte of the instruction space to an individualshort in the ShortBuffer parameter is
not possible.

v Profiling, using the first syntax definition, is rendered ineffective by giving a value of 0 for the BufferSize
parameter.

If the value of the BufferSize parameter is -1:

1186 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

v The parameters to the profil subroutine are interpreted as shown in the second syntax definition. In this
case, the Offset and Scale parameters are ignored, and the ProfBuffer parameter points to an array of
prof structures. The prof structure is defined in the mon.h file, and it contains the following members:
caddr_t p_low;
caddr_t p_high;
HISTCOUNTER *p_buff;
int p_bufsize;
uint p_scale;

If the p_scale member has the value of -1, a value for it is computed based on p_low, p_high, and
p_bufsize; otherwise p_scale is interpreted like the scale argument in the first synopsis. The p_high
members in successive structures must be in ascending sequence. The array of structures is ended with a
structure containing a p_high member set to 0; all other fields in this last structure are ignored.

The p_buff buffer pointers in the array of prof structures must point into a single contiguous buffer space.

v Profiling, using the second syntax definition, is turned off by giving a ProfBuffer argument such that the
p_high element of the first structure is equal to 0.

In every case:

v Profiling remains on in both the child process and the parent process after a fork subroutine.

v Profiling is turned off when an exec subroutine is run.

v A call to the profil subroutine is ineffective if profiling has been previously turned on using one syntax
definition, and an attempt is made to turn profiling off using the other syntax definition.

v A call to the profil subroutine is ineffective if the call is attempting to turn on profiling when profiling is
already turned on, or if the call is attempting to turn off profiling when profiling is already turned off.

Parameters

ShortBuffer Points to an area of memory in the user address space. Its length (in bytes) is given by the
BufferSize parameter.

BufferSize Specifies the length (in bytes) of the buffer.
Offset Specifies the delta of program counter start and buffer; for example, a 0 Offset implies that text

begins at 0. If the user wants to use the entry point of a routine for the Offset parameter, the
syntax of the parameter is as follows:

*(long *)RoutineName
Scale Specifies the mapping factor between the program counter and ShortBuffer.
ProfBuffer Points to an array of prof structures.

Return Values
The profil subroutine always returns a value of 0. Otherwise, the errno global variable is set to indicate
the error.

Error Codes
The profil subroutine is unsuccessful if one or both of the following are true:

EFAULT The address specified by the ShortBuffer or ProfBuffer parameters is not valid, or the address specified
by a p_buff field is not valid. EFAULT can also occur if there are not sufficient resources to pin the
profiling buffer in real storage.

EINVAL The p_high fields in the prof structure specified by the ProfBuffer parameter are not in ascending order.

Base Operating System (BOS) Runtime Services (A-P) 1187

Related Information
The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238)
subroutines, fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, moncontrol (“moncontrol
Subroutine” on page 853) subroutine, monitor (“monitor Subroutine” on page 855) subroutine,
monstartup (“monstartup Subroutine” on page 860) subroutine.

The prof command.

proj_execve Subroutine

Purpose
Executes an application with the specified project assignment.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

int proj_execve(char * path char *const arg[], char *const env[], projid_t projid, int force);

Description
The proj_execve system call assigns the requested project ID to the calling process and runs the given
program. This subroutine checks whether the caller is allowed to assign the requested project ID to the
application, using the available project assignment rules for the caller’s user ID, group ID, and application
name. If the requested project assignment is not allowed, an error code is returned. However, the user
with root authority or advanced accounting administrator capabilities can force the project assignment by
setting the force parameter to 1.

Parameters

path Path for the application or program to be run.
arg List of arguments for the new process.
env Environment for the new process.
projid Project ID to be assigned to the new process.
force Option to override the allowed project list for the application, user, or group.

Return Values

0 Upon success, does not return to the calling process.
-1 The subroutine failed.

Error Codes

EPERM Permission denied. A user without privileges attempted the
call.

Related Information
The “addproj Subroutine” on page 31, “chprojattr Subroutine” on page 159, “getproj Subroutine” on page
420, rmproj Subroutine.

1188 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Understanding the Advanced Accounting Subsystem.

projdballoc Subroutine

Purpose
Allocates a project database handle.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

projdballoc(void **handle)

Description
The projdballoc subroutine allocates a handle to operate on the project database. By default, this handle
is initialized to operate on the system project database; however, it can be reset with the projdbfinit
subroutine to reference another project database.

Parameters

handle Pointer to a void pointer

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL The passed pointer is NULL
ENOMEM No space left on memory

Related Information
The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 160, “getfirstprojdb Subroutine”
on page 370, “getnextprojdb Subroutine” on page 398, “getprojdb Subroutine” on page 421, “projdbfinit
Subroutine,” “projdbfree Subroutine” on page 1191, rmprojdb Subroutine.

projdbfinit Subroutine

Purpose
Sets the handle to use a local project database as specified in the dbfile pointer and opens the file with
the specified mode.

Base Operating System (BOS) Runtime Services (A-P) 1189

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

projdbfinit(void *handle, char *file, int mode)

Description
The projdbfinit subroutine sets the specified handle to use the specified project definition file. The file is
opened in the specified mode. Subsequently, the project database, as represented by the handle
parameter, will be referenced through file system primitives.

The project database must be initialized before calling this subroutine. The routines projdballoc and
projdbfinit are provided for this purpose. The specified file is opened in the specified mode. File system
calls are used to operate on these types of files. The struct projdb is filled as follows:
projdb.type = PROJ_LOCAL

projdb.fdes = value returned from open() call.

If the file parameter is NULL, then the system project database is opened.

Parameters

handle Pointer to handle
file Indicate the project definition file name
mode Indicates the mode in which the file is opened

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Passed handle or file is invalid

Related Information
The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 160, “getfirstprojdb Subroutine”
on page 370, “getnextprojdb Subroutine” on page 398, “getproj Subroutine” on page 420, “getprojdb
Subroutine” on page 421, “projdballoc Subroutine” on page 1189, “projdbfinit Subroutine” on page 1189,
“projdbfree Subroutine” on page 1191, rmprojdb Subroutine.

1190 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

projdbfree Subroutine

Purpose
Frees an allocated project database handle.

Library
The libaacct.a library.

Syntax
<sys/aacct.h>

projdbfree(void *handle)

Description
The projdbfree subroutine releases the memory allocated to a project database handle. The closure
operation is based on the type of project database. If a project database is local, then it is closed using
system primitives. The project database must be initialized before calling this subroutine. The routines
projdballoc and projdbfinit are provided for this purpose.

Parameters

handle Pointer to a void pointer

Security
Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Passed pointer is NULL

Related Information
The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 160, “getfirstprojdb Subroutine”
on page 370, “getnextprojdb Subroutine” on page 398, “getproj Subroutine” on page 420, “getprojdb
Subroutine” on page 421, “projdballoc Subroutine” on page 1189, “projdbfinit Subroutine” on page 1189,
rmprojdb Subroutine.

psdanger Subroutine

Purpose
Defines the amount of free paging space available.

Base Operating System (BOS) Runtime Services (A-P) 1191

Syntax
#include <signal.h>
#include <sys/vminfo.h>

blkcnt_t psdanger (Signal)
int Signal;

Description
The psdanger subroutine returns the difference between the current number of free paging-space blocks
and the paging-space thresholds of the system.

Parameters

Signal Defines the signal.

Return Values
If the value of the Signal parameter is 0, the return value is the total number of paging-space blocks
defined in the system.

If the value of the Signal parameter is -1, the return value is the number of free paging-space blocks
available in the system.

If the value of the Signal parameter is SIGDANGER, the return value is the difference between the current
number of free paging-space blocks and the paging-space warning threshold. If the number of free
paging-space blocks is less than the paging-space warning threshold, the return value is negative.

If the value of the Signal parameter is SIGKILL, the return value is the difference between the current
number of free paging-space blocks and the paging-space kill threshold. If the number of free
paging-space blocks is less than the paging-space kill threshold, the return value is negative.

Related Information
The swapoff subroutine, swapon subroutine, swapqry subroutine.

The chps command, lsps command, mkps command, rmps command, swapoff command, swapon
command.

Paging space in Operating system and device management.

Subroutines Overview and Understanding Paging Space Programming Requirements in AIX 5L Version
5.3 General Programming Concepts: Writing and Debugging Programs.

psignal Subroutine or sys_siglist Vector

Purpose
Prints system signal messages.

Library
Standard C Library (libc.a)

1192 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
psignal (Signal, String)
unsigned Signal;
char *String;

char *sys_siglist[];

Description
The psignal subroutine produces a short message on the standard error file describing the indicated
signal. First the String parameter is printed, then the name of the signal and a new-line character.

To simplify variant formatting of signal names, the sys_siglist vector of message strings is provided. The
signal number can be used as an index in this table to get the signal name without the new-line character.
The NSIG defined in the signal.h file is the number of messages provided for in the table. It should be
checked because new signals may be added to the system before they are added to the table.

Parameters

Signal Specifies a signal. The signal number should be among those found in the signal.h file.
String Specifies a string that is printed. Most usefully, the String parameter is the name of the program that

incurred the signal.

Related Information
The perror (“perror Subroutine” on page 1034) subroutine, sigvec subroutine.

pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_key, pthdb_mutex,
pthdb_mutexattr, pthdb_pthread, pthdb_pthread_key, pthdb_rwlock, or
pthdb_rwlockattr Subroutine

Purpose
Reports the pthread library objects.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread (pthdb_session_t session,
pthdb_pthread_t * pthreadp,
int cmd)

int pthdb_pthread_key(pthdb_session_t session,
pthread_key_t * keyp,
int cmd)

int pthdb_attr(pthdb_session_t session,
pthdb_attr_t * attrp,
int cmd)

int pthdb_cond (pthdb_session_t session,
pthdb_cond_t * condp,
int cmd)

int pthdb_condattr (pthdb_session_t session,

Base Operating System (BOS) Runtime Services (A-P) 1193

pthdb_condattr_t * condattrp,
int cmd)

int pthdb_key(pthdb_session_t session,
pthdb_pthread_t pthread,
pthread_key_t * keyp,
int cmd)

int pthdb_mutex (pthdb_session_t session,
pthdb_mutex_t * mutexp,
int cmd)

int pthdb_mutexattr (pthdb_session_t session,
pthdb_mutexattr_t * mutexattrp,
int cmd)

int pthdb_rwlock (pthdb_session_t session,
pthdb_rwlock_t * rwlockp,
int cmd)

int pthdb_rwlockattr (pthdb_session_t session,
pthdb_rwlockattr_t * rwlockattrp,
int cmd)

Description
The pthread library maintains internal lists of objects: pthreads, mutexes, mutex attributes, condition
variables, condition variable attributes, read/write locks, read/write lock attributes, attributes, pthread
specific keys, and active keys. The pthread debug library provides access to these lists one element at a
time via the functions listed above.

Each one of those functions acquire the next element in the list of objects. For example, the pthdb_attr
function gets the next attribute on the list of attributes.

A report of PTHDB_INVALID_OBJECT represents the empty list or the end of a list, where OBJECT is
equal to PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR,
KEY, or TID as appropriate.

Each list is reset to the top of the list when the pthdb_session_update function is called, or when the list
function reports a PTHDB_INVALID_* value. For example, when pthdb_attr reports an attribute of
PTHDB_INVALID_ATTR the list is reset to the beginning such that the next call reports the first attribute in
the list, if any.

When PTHDB_LIST_FIRST is passed for the cmd parameter, the first item in the list is retrieved.

Parameters

session Session handle.
attrp Attribute object.
cmd Reset to the beginning of the list.
condp Pointer to Condition variable object.
condattrp Pointer to Condition variable attribute object.
keyp Pointer to Key object.
mutexattrp Pointer to Mutex attribute object.
mutexp Pointer to Mutex object.
pthread pthread object.
pthreadp Pointer to pthread object.
rwlockp Pointer to Read/Write lock object.
rwlockattrp Pointer to Read/Write lock attribute object.

1194 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_SESSION Invalid session handle.
PTHDB_BAD_PTHREAD Invalid pthread handle.
PTHDB_BAD_CMD Invalid command.
PTHDB_BAD_POINTER Invalid buffer pointer.
PTHDB_INTERNAL Error in library.
PTHDB_MEMORY Not enough memory

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_attr_detachstate,pthdb_attr_addr,
pthdb_attr_guardsize,pthdb_attr_inheritsched,
pthdb_attr_schedparam,pthdb_attr_schedpolicy,
pthdb_attr_schedpriority,pthdb_attr_scope,
pthdb_attr_stackaddr,pthdb_attr_stacksize, or pthdb_attr_suspendstate
Subroutine

Purpose
Query the various fields of a pthread attribute and return the results in the specified buffer.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_attr_detachstate (pthdb_session_t session,
pthdb_attr_t attr,
pthdb_detachstate_t * detachstatep);

int pthdb_attr_addr (pthdb_session_t session,
pthdb_attr_t attr,
pthdb_addr_t * addrp);

int pthdb_attr_guardsize (pthdb_session_t session,
pthdb_attr_t attr,
pthdb_size_t * guardsizep);

int pthdb_attr_inheritsched (pthdb_session_t session,
pthdb_attr_t attr,
pthdb_inheritsched_t * inheritschedp);

int pthdb_attr_schedparam (pthdb_session_t session,
pthdb_attr_t attr,
struct sched_param * schedparamp);

int pthdb_attr_schedpolicy (pthdb_session_t session,
pthdb_attr_t attr,
pthdb_policy_t * schedpolicyp)

Base Operating System (BOS) Runtime Services (A-P) 1195

int pthdb_attr_schedpriority (pthdb_session_t session,
pthdb_attr_t attr,
int * schedpriorityp)

int pthdb_attr_scope (pthdb_session_t session,
pthdb_attr_t attr,
pthdb_scope_t * scopep)

int pthdb_attr_stackaddr (pthdb_session_t session,
pthdb_attr_t attr,
pthdb_size_t * stackaddrp);

int pthdb_attr_stacksize (pthdb_session_t session,
pthdb_attr_t attr,
pthdb_size_t * stacksizep);

int pthdb_attr_suspendstate (pthdb_session_t session,
pthdb_attr_t attr,
pthdb_suspendstate_t * suspendstatep)

Description
Each pthread is created using either the default pthread attribute or a user-specified pthread attribute.
These functions query the various fields of a pthread attribute and, if successful, return the result in the
buffer specified. In all cases, the values returned reflect the expected fields of a pthread created with the
attribute specified.

pthdb_attr_detachstate reports if the created pthread is detachable (PDS_DETACHED) or joinable
(PDS_JOINABLE). PDS_NOTSUP is reserved for unexpected results.

pthdb_attr_addr reports the address of the pthread_attr_t.

pthdb_attr_guardsize reports the guard size for the attribute.

pthdb_attr_inheritsched reports whether the created pthread will run with scheduling policy and
scheduling parameters from the created pthread (PIS_INHERIT), or from the attribute (PIS_EXPLICIT).
PIS_NOTSUP is reserved for unexpected results.

pthdb_attr_schedparam reports the scheduling parameters associated with the pthread attribute. See
pthdb_attr_inheritsched for additional information.

pthdb_attr_schedpolicy reports whether the scheduling policy associated with the pthread attribute is
other (SP_OTHER), first in first out (SP_FIFO), or round robin (SP_RR). SP_NOTSUP is reserved for
unexpected results.

pthdb_attr_schedpriority reports the scheduling priority associated with the pthread attribute. See
pthdb_attr_inheritsched for additional information.

pthdb_attr_scope reports whether the created pthread will have process scope (PS_PROCESS) or
system scope (PS_SYSTEM). PS_NOTSUP is reserved for unexpected results.

pthdb_attr_stackaddr reports the address of the stack.

pthdb_attr_stacksize reports the size of the stack.

pthdb_attr_suspendstate reports whether the created pthread will be suspended (PSS_SUSPENDED) or
not (PSS_UNSUSPENDED). PSS_NOTSUP is reserved for unexpected results.

Parameters

addr Attributes address.

1196 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

attr Attributes handle.
detachstatep Detach state buffer.
guardsizep Attribute guard size.
inheritschedp Inherit scheduling buffer.
schedparamp Scheduling parameters buffer.
schedpolicyp Scheduling policy buffer.
schedpriorityp Scheduling priority buffer.
scopep Contention scope buffer.
session Session handle.
stackaddrp Attributes stack address.
stacksizep Attributes stack size.
suspendstatep Suspend state buffer.

Return Values
If successful these functions return PTHDB_SUCCESS. Otherwise, and error code is returned.

Error Codes

PTHDB_BAD_SESSION Invalid session handle.
PTHDB_BAD_ATTR Invalid attribute handle.
PTHDB_BAD_POINTER Invalid buffer pointer.
PTHDB_CALLBACK Debugger call back error.
PTHDB_NOTSUP Not supported.
PTHDB_INTERNAL Internal library error.

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine

Purpose
Gets the condition variable attribute pshared value.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_condattr_pshared (pthdb_session_t session,
pthdb_condattr_t condattr,
pthdb_pshared_t * psharedp)

int pthdb_condattr_addr (pthdb_session_t session,
pthdb_condattr_t condattr,
pthdb_addr_t * addrp)

Base Operating System (BOS) Runtime Services (A-P) 1197

Description
The pthdb_condattr_pshared function is used to get the condition variable attribute process shared
value. The pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

The pthdb_condattr_addr function reports the address of the pthread_condattr_t.

Parameters

addrp Pointer to the address of the pthread_condattr_t.
condattr Condition variable attribute handle
psharedp Pointer to the pshared value.
session Session handle.

Return Values
If successful this function returns PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_CONDATTR Invalid condition variable attribute handle.
PTHDB_BAD_SESSION Invalid session handle.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INTERNAL Error in library.
PTHDB_POINTER Invalid pointer

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared
Subroutine

Purpose
Gets the condition variable’s mutex handle and pshared value.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_cond_addr (pthdb_session_t session,
pthdb_cond_t cond,
pthdb_addr_t * addrp)

int pthdb_cond_mutex (pthdb_session_t session,
pthdb_cond_t cond,
pthdb_mutex_t * mutexp)

1198 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int pthdb_cond_pshared (pthdb_session_t session,
pthdb_cond_t cond,
pthdb_pshared_t * psharedp)

Description
The pthdb_cond_addr function reports the address of the pthdb_cond_t.

The pthdb_cond_mutex function is used to get the mutex handle associated with the particular condition
variable, if the mutex does not exist then PTHDB_INVALID_MUTEX is returned from the mutex.

The pthdb_cond_pshared function is used to get the condition variable process shared value. The
pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

Parameters

addr Condition variable address
cond Condition variable handle
mutexp Pointer to mutex
psharedp Pointer to pshared value
session Session handle.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_COND Invalid cond handle.
PTHDB_BAD_SESSION Invalid session handle.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INVALID_MUTEX Invalid mutex.
PTHDB_INTERNAL Error in library.
PTHDB_POINTER Invalid pointer

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling,
pthdb_mutexattr_protocol, pthdb_mutexattr_pshared or
pthdb_mutexattr_type Subroutine

Purpose
Gets the mutex attribute pshared, priority ceiling, protocol, and type values.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

Base Operating System (BOS) Runtime Services (A-P) 1199

int pthdb_mutexattr_addr (pthdb_session_t session,
pthdb_mutexattr_t mutexattr,
pthdb_addr_t * addrp)

int pthdb_mutexattr_protocol (pthdb_session_t session,
pthdb_mutexattr_t mutexattr,
pthdb_protocol_t * protocolp)

int pthdb_mutexattr_pshared (pthdb_session_t session,
pthdb_mutexattr_t mutexattr,
pthdb_pshared_t * psharedp)

int pthdb_mutexattr_type (pthdb_session_t session,
pthdb_mutexattr_t mutexattr,
pthdb_mutex_type_t * typep)

Description
The pthdb_mutexattr_addr function reports the address of the pthread_mutexatt_t.

The pthdb_mutexattr_prioceiling function is used to get the mutex attribute priority ceiling value.

The pthdb_mutexattr_protocol function is used to get the mutex attribute protocol value. The protocol
value can be MP_INHERIT, MP_PROTECT, MP_NONE, or MP_NOTSUP.

The pthdb_mutexattr_pshared function is used to get the mutex attribute process shared value. The
pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

The pthdb_mutexattr_type is used to get the value of the mutex attribute type. The values for the mutex
type can be MK_NONRECURSIVE_NP, MK_RECURSIVE_NP, MK_FAST_NP, MK_ERRORCHECK,
MK_RECURSIVE, MK_NORMAL, or MK_NOTSUP.

Parameters

addr Mutex attribute address.
mutexattr Condition variable attribute handle
prioceiling Pointer to priority ceiling value.
protocolp Pointer to protocol value.
psharedp Pointer to pshared value.
session Session handle.
typep Pointer to type value.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_MUTEXATTR Invalid mutex attribute handle.
PTHDB_BAD_SESSION Invalid session handle.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INTERNAL Error in library.
PTHDB_NOSYS Not implemented
PTHDB_POINTER Invalid pointer

1200 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_mutex_addr, pthdb_mutex_lock_count, pthdb_mutex_owner,
pthdb_mutex_pshared, pthdb_mutex_prioceiling,
pthdb_mutex_protocol, pthdb_mutex_state or pthdb_mutex_type
Subroutine

Purpose
Gets the owner’s pthread, mutex’s pshared value, priority ceiling, protocol, lock state, and type.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_mutex_addr (pthdb_session_t session,
pthdb_mutex_t mutex,
pthdb_addr_t * addrp)

int pthdb_mutex_owner (pthdb_session_t session,
pthdb_mutex_t mutex,
pthdb_pthread_t * ownerp)

int pthdb_mutex_lock_count (pthdb_session_t session,
pthdb_mutex_t mutex,
int * countp);

int pthdb_mutex_pshared (pthdb_session_t session,
pthdb_mutex_t mutex,
pthdb_pshared_t * psharedp)

int pthdb_mutex_prioceiling (pthdb_session_t session,
pthdb_mutex_t mutex,
pthdb_pshared_t * prioceilingp)

int pthdb_mutex_protocol (pthdb_session_t session,
pthdb_mutex_t mutex,
pthdb_pshared_t * protocolp)

int pthdb_mutex_state (pthdb_session_t session,
pthdb_mutex_t mutex,
pthdb_mutex_state_t * statep)

int pthdb_mutex_type (pthdb_session_t session,
pthdb_mutex_t mutex,
pthdb_mutex_type_t * typep)

Base Operating System (BOS) Runtime Services (A-P) 1201

Description
pthdb_mutex_addr reports the address of the prhread_mutex_t.

pthdb_mutex_lock_count reports the lock count of the mutex.

pthdb_mutex_owner is used to get the pthread that owns the mutex.

The pthdb_mutex_pshared function is used to get the mutex process shared value. The pshared value
can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

pthdb_mutex_prioceiling function is used to get the mutex priority ceiling value.

pthdb_mutex_protocol function is used to get the mutex protocol value. The protocol value can be
MP_INHERIT, MP_PROTECT, MP_NONE, or MP_NOTSUP.

pthdb_mutex_state is used to get the value of the mutex lock state. The state can be MS_LOCKED,
MS_UNLOCKED or MS_NOTSUP.

pthdb_mutex_type is used to get the value of the mutex type. The values for the mutex type can be
MK_NONRECURSIVE_NP, MK_RECURSIVE_NP, MK_FAST_NP, MK_ERRORCHECK,
MK_RECURSIVE, MK_NORMAL, or MK_NOTSUP.

Parameters

addr Mutex address
countp Mutex lock count
mutex Mutex handle
ownerp Pointer to mutex owner
psharedp Pointer to pshared value
prioceilingp Pointer to priority ceiling value
protocolp Pointer to protocol value
session Session handle.
statep Pointer to mutex state
typep Pointer to mutex type

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_MUTEX Invalid mutex handle.
PTHDB_BAD_SESSION Invalid session handle.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INTERNAL Call failed.
PTHDB_NOSYS Not implemented
PTHDB_POINTER Invalid pointer

Related Information
The pthdebug.h file and the pthread.h file.

The pthread.h file.

1202 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pthdb_mutex_waiter, pthdb_cond_waiter, pthdb_rwlock_read_waiter or
pthdb_rwlock_write_waiter Subroutine

Purpose
Gets the next waiter in the list of an object’s waiters.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_mutex_waiter (pthdb_session_t session,
pthdb_mutex_t mutex,
pthdb_pthread_t * waiter,
int cmd);

int pthdb_cond_waiter (pthdb_session_t session,
pthdb_cond_t cond,
pthdb_pthread_t * waiter,
int cmd)

int *pthdb_rwlock_read_waiter (pthdb_session_t session,
pthdb_rwlock_t rwlock,
pthdb_pthread_t * waiter,
int cmd)

int *pthdb_rwlock_write_waiter (pthdb_session_t session,
pthdb_rwlock_t rwlock,
pthdb_pthread_t * waiter,
int cmd)

Description
The pthdb_mutex_waiter functions get the next waiter in the list of an object’s waiters.

Each list is reset to the top of the list when the pthdb_session_update function is called, or when the list
function reports a PTHDB_INVALID_* value. For example, when pthdb_attr reports an attribute of
PTHDB_INVALID_ATTR the list is reset to the beginning such that the next call reports the first attribute in
the list, if any.

A report of PTHDB_INVALID_OBJECT represents the empty list or the end of a list, where OBJECT is
one of these values: PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK,
RWLOCKATTR, KEY, or TID as appropriate.

When PTHDB_LIST_FIRST is passed for the cmd parameter, the first item in the list is retrieved.

Parameters

session Session handle.
mutex Mutex object.
cond Condition variable object.
cmd Reset to the beginning of the list.
rwlock Read/Write lock object.
waiter Pointer to waiter.

Base Operating System (BOS) Runtime Services (A-P) 1203

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_SESSION Invalid session handle.
PTHDB_BAD_CMD Invalid command.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INTERNAL Error in library.
PTHDB_MEMORY Not enough memory
PTHDB_POINTER Invalid pointer

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_pthread_arg Subroutine

Purpose
Reports the information associated with a pthread.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_arg (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_addr_t * argp)

int pthdb_pthread_addr (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_addr_t *addrp)

int pthdb_pthread_cancelpend (pthdb_session_t session,
pthdb_pthread_t pthread,
int * cancelpendp)

int pthdb_pthread_cancelstate (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_cancelstate_t * cancelstatep)

int pthdb_pthread_canceltype (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_canceltype_t * canceltypep)

int pthdb_pthread_detachstate (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_detachstate_t * detachstatep)

1204 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int pthdb_pthread_exit (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_addr_t * exitp)

int pthdb_pthread_func (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_addr_t * funcp)

int pthdb_pthread_ptid (pthdb_session_t session,
pthdb_pthread_t pthread,
pthread_t * ptidp)

int pthdb_pthread_schedparam (pthdb_session_t session,
pthdb_pthread_t pthread,
struct sched_param * schedparamp);

int pthdb_pthread_schedpolicy (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_schedpolicy_t * schedpolicyp)

int pthdb_pthread_schedpriority (pthdb_session_t session,
pthdb_pthread_t pthread,
int * schedpriorityp)

int pthdb_pthread_scope (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_scope_t * scopep)

int pthdb_pthread_state (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_state_t * statep)

int pthdb_pthread_suspendstate (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_suspendstate_t * suspendstatep)

int pthdb_ptid_pthread (pthdb_session_t session,
pthread_t ptid,
pthdb_pthread_t * pthreadp)

Description
pthdb_pthread_arg reports the initial argument passed to the pthread’s start function.

pthdb_pthread_addr reports the address of the pthread_t.

pthdb_pthread_cancelpend reports non-zero if cancellation is pending on the pthread; if not, it reports
zero.

pthdb_pthread_cancelstate reports whether cancellation is enabled (PCS_ENABLE) or disabled
(PCS_DISABLE). PCS_NOTSUP is reserved for unexpected results.

pthdb_pthread_canceltype reports whether cancellation is deferred (PCT_DEFERRED) or asynchronous
(PCT_ASYNCHRONOUS). PCT_NOTSUP is reserved for unexpected results.

Base Operating System (BOS) Runtime Services (A-P) 1205

pthdb_pthread_detachstate reports whether the pthread is detached (PDS_DETACHED) or joinable
(PDS_JOINABLE). PDS_NOTSUP is reserved for unexpected results.

pthdb_pthread_exit reports the exit status returned by the pthread via pthread_exit. This is only valid if
the pthread has exited (PST_TERM).

pthdb_pthread_func reports the address of the pthread’s start function.

pthdb_pthread_ptid reports the pthread identifier (pthread_t) associated with the pthread.

pthdb_pthread_schedparam reports the pthread’s scheduling parameters. This currently includes policy
and priority.

pthdb_pthread_schedpolicy reports whether the pthread’s scheduling policy is other (SP_OTHER), first
in first out (SP_FIFO), or round robin (SP_RR). SP_NOTSUP is reserved for unexpected results.

pthdb_pthread_schedpriority reports the pthread’s scheduling priority.

pthdb_pthread_scope reports whether the pthread has process scope (PS_PROCESS) or system scope
(PS_SYSTEM). PS_NOTSUP is reserved for unexpected results.

pthdb_pthread_state reports whether the pthread is being created (PST_IDLE), currently running
(PST_RUN), waiting on an event (PST_SLEEP), waiting on a cpu (PST_READY), or waiting on a join or
detach (PST_TERM). PST_NOTSUP is reserved for unexpected results.

pthdb_pthread_suspendstate reports whether the pthread is suspended (PSS_SUSPENDED) or not
(PSS_UNSUSPENDED). PSS_NOTSUP is reserved for unexpected results.

pthdb_ptid_pthread reports the pthread for the ptid.

Parameters

addr pthread address
argp Initial argument buffer.
cancelpendp Cancel pending buffer.
cancelstatep Cancel state buffer.
canceltypep Cancel type buffer.
detachstatep Detach state buffer.
exitp Exit value buffer.
funcp Start function buffer.
pthread pthread handle.
pthreadp Pointer to pthread handle.
ptid pthread identifier
ptidp pthread identifier buffer.
schedparamp Scheduling parameters buffer.
schedpolicyp Scheduling policy buffer.
schedpriorityp Scheduling priority buffer.
scopep Contention scope buffer.
session Session handle.
statep State buffer.
suspendstatep Suspend state buffer.

Return Values
If successful, these functions return PTHDB_SUCCESS, else an error code is returned.

1206 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes

PTHDB_BAD_SESSION Invalid session handle.
PTHDB_BAD_PTHREAD Invalid pthread handle.
PTHDB_BAD_POINTER Invalid buffer pointer.
PTHDB_BAD_PTID Invalid ptid.
PTHDB_CALLBACK Debugger call back error.
PTHDB_NOTSUP Not supported.
PTHDB_INTERNAL Error in library.

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_pthread_context or pthdb_pthread_setcontext Subroutine

Purpose
Provides access to the pthread context via the struct context64 structure.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_context (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_context_t * context)

int pthdb_pthread_setcontext (pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_context_t * context)

Description
The pthread debug library provides access to the pthread context via the struct context64 structure,
whether the process is 32-bit or 64-bit. The debugger should be able to convert from 32-bit to 64-bit and
from 64-bit for 32-bit processes. The extent to which this structure is filled in depends on the presence of
the PTHDB_FLAG_GPRS, PTHDB_FLAG_SPRSl and PTHDB_FLAG_FPRS session flags. It is
necessary to use the pthread debug library to access the context of a pthread without a kernel thread. The
pthread debug library can also be used to access the context of a pthread with a kernel thread, but this
results in a call back to the debugger, meaning that the debugger is capable of obtaining this information
by itself. The debugger determines if the kernel thread is running in user mode or kernel mode and then
fills in the struct context64 appropriately. The pthread debug library does not use this information itself and
is thus not sensitive to the correct implementation of the read_regs and write_regs call back functions.

pthdb_pthread_context reports the context of the pthread based on the settings of the session flags.
Uses the read_regs call back if the pthread has a kernel thread. If read_regs is not defined, then it
returns PTHDB_NOTSUP.

Base Operating System (BOS) Runtime Services (A-P) 1207

pthdb_pthread_setcontext sets the context of the pthread based on the settings of the session flags.
Uses the write_data call back if the pthread does not have a kernel thread. Use the write_regs call back
if the pthread has a kernel thread.

If the debugger does not define the read_regs and write_regs call backs and if the pthread does not
have a kernel thread, then the pthdb_pthread_context and pthdb_pthread_setcontext functions
succeed. But if a pthread does not have a kernel thread, then these functions fail and return
PTHDB_CONTEXT.

Parameters

session Session handle.
pthread pthread handle.
context Context buffer pointer.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_SESSION Invalid session handle.
PTHDB_BAD_PTHREAD Invalid pthread handle.
PTHDB_BAD_POINTER Invalid buffer pointer.
PTHDB_CALLBACK Callback function failed.
PTHDB_CONTEXT Could not determine pthread context.
PTHDB_MEMORY Not enough memory
PTHDB_NOTSUP pthdb_pthread_(set)context returns PTHDB_NOTSUP if

the read_regs, write_data or write_regs call backs are
set to NULL.

PTHDB_INTERNAL Error in library.

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_pthread_hold, pthdb_pthread_holdstate or
pthdb_pthread_unhold Subroutine

Purpose
Reports and changes the hold state of the specified pthread.

Library

pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_holdstate (pthdb_session_t session,
pthdb_pthread_t pthread,

1208 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pthdb_holdstate_t * holdstatep)
int pthdb_pthread_hold (pthdb_session_t session,

pthdb_pthread_t pthread)
int pthdb_pthread_unhold (pthdb_session_t session,

pthdb_pthread_t pthread)

Description
pthdb_pthread_holdstate reports if a pthread is held. The possible hold states are PHS_HELD,
PHS_NOTHELD, or PHS_NOTSUP.

pthdb_pthread_hold prevents the specified pthread from running.

pthdb_pthread_unhold unholds the specified pthread. The pthread held earlier can be unheld by calling
this function.

Notes:

1. You must always use the pthdb_pthread_hold and pthdb_pthread_unhold functions, regardless of
whether or not a pthread has a kernel thread.

2. These functions are only supposted when the PTHDB_FLAG_HOLD is set.

Parameters

session Session handle.
pthread pthread handle. The specified pthread should have an attached kernel thread

id.
holdstatep Pointer to the hold state

Return Values
If successful, pthdb_pthread_hold returns PTHDB_SUCCESS. Otherwise, it returns an error code.

Error Codes

PTHDB_BAD_PTHREAD Invalid pthread handle.
PTHDB_BAD_SESSION Invalid session handle.
PTHDB_HELD pthread is held.
PTHDB_INTERNAL Error in library.

Related Information
The pthdb_session_setflags subroutine.

The pthdebug.h file.

The pthread.h file.

pthdb_pthread_sigmask, pthdb_pthread_sigpend or
pthdb_pthread_sigwait Subroutine

Purpose
Returns the pthread signals pending, the signals blocked, the signals received, and awaited signals.

Base Operating System (BOS) Runtime Services (A-P) 1209

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_sigmask (pthdb_session_t session,
pthdb_pthread_t pthread,
sigset_t * sigsetp)

int pthdb_pthread_sigpend (pthdb_session_t session,
pthdb_pthread_t pthread,
sigset_t * sigsetp)

int pthdb_pthread_sigwait (pthdb_session_t session,
pthdb_pthread_t pthread,
sigset_t * sigsetp)

Description
pthdb_pthread_sigmask reports the signals that the pthread has blocked.

pthdb_pthread_sigpend reports the signals that the pthread has pending.

pthdb_pthread_sigwait reports the signals that the pthread is waiting on.

Parameters

session Session handle.
pthread Pthread handle
sigsetp Signal set buffer.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Code

PTHDB_BAD_SESSION Invalid session handle.
PTHDB_BAD_PTHREAD Invalid pthread handle.
PTHDB_BAD_POINTER Invalid buffer pointer.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INTERNAL Error in library.

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_pthread_specific Subroutine

Purpose
Reports the value associated with a pthreads specific data key.

1210 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

void *pthdb_pthread_specific(pthdb_session_t session,
pthdb_pthread_t pthread,
pthdb_key_t key,
pthdb_addr_t * specificp)

Description
Each process has active pthread specific data keys. Each active pthread specific data key is in use by one
or more pthreads. Each pthread can have its own value associated with each pthread specific data key.
The pthdb_pthread_specific function provide access to those values.

pthdb_pthread_specific reports the specific data value for the pthread and key combination.

Parameters

session The session handle.
pthread The pthread handle.
key The key.
specificp Specific data value buffer.a

Return Values
If successful, pthdb_pthread_specific returns PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_SESSION Invalid session handle.
PTHDB_BAD_PTHREAD Invalid pthread handle.
PTHDB_BAD_KEY Invalid key.
PTHDB_BAD_POINTER Invalid buffer pointer.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INTERNAL Error in library.

Related information
The pthdebug.h file.

The pthread.h file.

pthdb_pthread_tid or pthdb_tid_pthread Subroutine

Purpose
Gets the kernel thread associated with the pthread and the pthread associated with the kernel thread.

Library
pthread debug library (libpthdebug.a)

Base Operating System (BOS) Runtime Services (A-P) 1211

Syntax
#include <sys/pthdebug.h>

int pthdb_pthread_tid (pthdb_session_t session,
pthdb_pthread_t pthread,
tid_t * tidp)

int pthdb_tid_pthread (pthdb_session_t session,
tid_t tid,
pthdb_pthread_t * pthreadp)

Description
pthdb_pthread_tid gets the kernel thread id associated with the pthread.

pthdb_tid_pthread is used to get the pthread associated with the kernel thread.

Parameters

session Session handle.
pthread Pthread handle
pthreadp Pointer to pthread handle
tid Kernel thread id
tidp Pointer to kernel thread id

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_PTHREAD Invalid pthread handle.
PTHDB_BAD_SESSION Invalid session handle.
PTHDB_BAD_TID Invalid tid.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INTERNAL Error in library.
PTHDB_INVALID_TID Empty list or the end of a list.

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutine

Purpose
Gets the rwlock attribute pshared values.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

1212 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int pthdb_rwlockattr_addr (pthdb_session_t session,
pthdb_rwlockattr_t rwlockattr,
pthdb_addr_t * addrp)

int pthdb_rwlockattr_pshared (pthdb_session_t session,
pthdb_rwlockattr_t rwlockattr,
pthdb_pshared_t * psharedp)

Description
pthdb_rwlockattr_addr reports the address of the pthread_rwlockattr_t.

pthdb_rwlockattr_pshared is used to get the rwlock attribute process shared value. The pshared value
can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

Parameters

addr Read/Write lock attribute address.
psharedp Pointer to the pshared value.
rwlockattr Read/Write lock attribute handle
session Session handle.

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_RWLOCKATTR Invalid rwlock attribute handle.
PTHDB_BAD_SESSION Invalid session handle.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INTERNAL Error in library.
PTHDB_POINTER Invalid pointer

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_rwlock_addr, pthdb_rwlock_lock_count, pthdb_rwlock_owner,
pthdb_rwlock_pshared or pthdb_rwlock_state Subroutine

Purpose
Gets the owner, the pshared value, or the state of the read/write lock.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

Base Operating System (BOS) Runtime Services (A-P) 1213

int pthdb_rwlock_addr (pthdb_session_t session,
pthdb_rwlock_t rwlock,
pthdb_addr_t * addrp)

int pthdb_rwlock_lock_count (pthdb_session_t session,
pthdb_rwlock_t rwlock,
int * countp);

int pthdb_rwlock_owner (pthdb_session_t session,
pthdb_rwlock_t rwlock,
pthdb_pthread_t * ownerp
int cmd)

int pthdb_rwlock_pshared (pthdb_session_t session,
pthdb_rwlock_t rwlock,
pthdb_pshared_t * psharedp)

int pthdb_rwlock_state (pthdb_session_t session,
pthdb_rwlock_t rwlock,
pthdb_rwlock_state_t * statep)

Description
The pthdb_rwlock_addr function reports the address of the pthdb_rwlock_t.

The pthdb_rwlock_lock_count function reports the lock count for the rwlock.

The pthdb_rwlock_owner function is used to get the read/write lock owner’s pthread handle.

The pthdb_rwlock_pshared function is used to get the rwlock attribute process shared value. The
pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

The pthdb_rwlock_state is used to get the read/write locks state. The state can be RWLS_NOTSUP,
RWLS_WRITE, RWLS_FREE, and RWLS_READ.

Parameters

addrp Read write lock address.
countp Read write lock lock count.
cmd cmd can be PTHDB_LIST_FIRST to get the first owner in

the list of owners or PTHDB_LIST_NEXT to get the next
owner in the list of owners. The list is empty or ended by
*owner == PTHDB_INVALID_PTHREAD.

ownerp Pointer to pthread which owns the rwlock
psharedp Pointer to pshared value
rwlock Read write lock handle
session Session handle.
statep Pointer to state value

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

PTHDB_BAD_SESSION Invalid session handle.

1214 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

PTHDB_BAD_CMD Invalid command passed.
PTHDB_CALLBACK Debugger call back error.
PTHDB_INTERNAL Error in library.
PTHDB_POINTER Invalid pointer

Related Information
The pthdebug.h file.

The pthread.h file.

pthdb_session_committed Subroutines

Purpose
Facilitates examining and modifying multi-threaded application’s pthread library object data.

Library
pthread debug library (libpthdebug.a)

Syntax
#include <sys/pthdebug.h>

int pthdb_session_committed (pthdb_session_t session,
char ** name);

int pthdb_session_concurrency (pthdb_session_t session,
int * concurrencyp);

int pthdb_session_destroy (pthdb_session_t session)
int pthdb_session_flags (pthdb_session_t session,

unsigned long long * flagsp)
int pthdb_session_init (pthdb_user_t user,

pthdb_exec_mode_t exec_mode,
unsigned long long flags,
pthdb_callbacks_t * callbacks,
pthdb_session_t * sessionp)

int pthdb_session_pthreaded (pthdb_user_t user,
unsigned long long flags
pthdb_callbacks_t * callbacks,
char ** name)

int pthdb_session_continue_tid (pthdb_session_t session,
tid_t * tidp,
int cmd);

int pthdb_session_stop_tid (pthdb_session_t session,
tid_t tid);

int pthdb_session_commit_tid (pthdb_session_t session,
tid_t * tidp,
int cmd);

int pthdb_session_setflags (pthdb_session_t session,
unsigned long long flags)

int pthdb_session_update (pthdb_session_t session)

Description
To facilitate debugging multiple processes, the pthread debug library supports multiple sessions, one per
process. Functions are provided to initialize, destroy, and customize the behavior of these sessions. In

Base Operating System (BOS) Runtime Services (A-P) 1215

addition, functions are provided to query global fields of the pthread library. All functions in the library
require a session handle associated with an initialized session except pthdb_session_init, which
initializes sessions, and pthdb_session_pthreaded, which can be called before the session has been
initialized.

pthdb_session_committed reports the symbol name of a function called after the hold/unhold commit
operation has completed. This symbol name can be used to set a breakpoint to notify the debugger when
the hold/unhold commit has completed. The actual symbol name reported may change at any time. The
function name returned is implemented in assembly with the following code:

ori 0,0, 0 # no-op
blr # return to caller

This allows the debugger to overwrite the no-op with a trap instruction and leave it there by stepping over
it. This function is only supported when the PTHDB_FLAG_HOLD flag is set.

pthdb_session_concurrency reports the concurrency level of the pthread library. The concurrency level
is the M:N ratio, where N is always 1.

pthdb_session_destroy notifies the pthread debug library that the debugger or application is finished with
the session. This deallocates any memory associated with the session and allows the session handle to
be reused.

pthdb_session_setflags changes the flags for a session. With these flags, a debugger can customize the
session. Flags consist of the following values or-ed together:

PTHDB_FLAG_GPRS The general purpose registers should be included in any context read or write,
whether internal to the library or via call backs to the debugger.

PTHDB_FLAG_SPRS The special purpose registers should be included in any context read or write
whether internal to the library or via call backs to the debugger.

PTHDB_FLAG_FPRS The floating point registers should be included in any context read or write
whether internal to the library or via call backs to the debugger.

PTHDB_FLAG_REGS All registers should be included in any context read or write whether internal to
the library or via call backs to the debugger. This is equivalent to
PTHDB_FLAG_GPRS|PTHDB_FLAG_GPRS|PTHDB_FLAG_GPRS.

PTHDB_FLAG_HOLD The debugger will be using the pthread debug library hold/unhold facilities to
prevent the execution of pthreads. This flag cannot be used with
PTHDB_FLAG_SUSPEND. This flag should be used by debuggers, only.

PTHDB_FLAG_SUSPEND Applications will be using the pthread library suspend/continue facilities to
prevent the execution of pthreads. This flag cannot be used with
PTHDB_FLAG_HOLD. This flag is for introspective mode and should be used
by applications, only.
Note: PTHDB_FLAG_HOLD and PTHDB_FLAG_SUSPEND can only be
passed to the pthdb_session_init function. Neither PTHDB_FLAG_HOLD nor
PTHDB_FLAG_SUSPEND should be passed to pthdb_session_init when
debugging a core file.

The pthdb_session_flags function gets the current flags for the session.

The pthdb_session_init function tells the pthread debug library to initialize a session associated with the
unique given user handle. pthdb_session_init will assign a unique session handle and return it to the
debugger. If the application’s execution mode is 32 bit, then the debugger should initialize the exec_mode
to PEM_32BIT. If the application’s execution mode is 64 bit, then the debugger should initialize mode to
PEM_64BIT. The flags are documented above with the pthdb_session_setflags function. The callback
parameter is a list of call back functions. (Also see the pthdebug.h header file.) The pthdb_session_init
function calls the symbol_addrs function to get the starting addresses of the symbols and initializes these
symbols’ starting addresses within the pthread debug library.

1216 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pthdb_session_pthreaded reports the symbol name of a function called after the pthread library has
been initialized. This symbol name can be used to set a breakpoint to notify the debugger when to
initialize a pthread debug library session and begin using the pthread debug library to examine pthread
library state. The actual symbol name reported may change at any time. This function, is the only pthread
debug library function that can be called before the pthread library is initialized. The function name
returned is implemented in assembly with the following code:

ori 0,0,0 # no-op
blr # return to caller

This is conveniently allows the debugger to overwrite the no-op with a trap instruction and leave it there by
stepping over it.

The pthdb_session_continue_tid function allows the debugger to obtain the list of threads that must be
continued before it proceeds with single stepping a single pthread or continuing a group of pthreads. This
function reports one tid at a time. If the list is empty or the end of the list has been reached,
PTHDB_INVALID_TID is reported. The debugger will need to continue any pthreads with kernel threads
that it wants. The debugger is responsible for parking the stop thread and continuing the stop thread. The
cmd parameter can be either PTHDB_LIST_NEXT or PTHDB_LIST_FIRST; if PTHDB_LIST_FIRST is
passed, then the internal counter will be reset and the first tid in the list will be reported.

Note: This function is only supported when the PTHDB_FLAG_HOLD flag is set.

The pthdb_session_stop_tid function informs the pthread debug library, which informs the pthread library
the tid of the thread that stopped the debugger.

Note: This function is only supported when the PTHDB_FLAG_HOLD flag is set.

pthdb_session_commit_tid reports subsequent kernel thread identifiers which must be continued to
commit the hold and unhold changes. This function reports one tid at a time. If the list is empty or the end
of the list has been reached, PTHDB_INVALID_TID is reported. The cmd parameter can be either
PTHDB_LIST_NEXT or PTHDB_LIST_FIRST, if PTHDB_LIST_FIRST is passed then the internal counter
will be reset and first tid in the list will be reported.

Note: This function is only supported when the PTHDB_FLAG_HOLD flag is set.

pthdb_session_update tells the pthread debug library to update it’s internal information concerning the
state of the pthread library. This should be called each time the process stops before any other pthread
debug library functions to ensure their results are reliable.

Each list is reset to the top of the list when the pthdb_session_update function is called, or when the list
function reports a PTHDB_INVALID_* value. For example, when pthdb_attr reports an attribute of
PTHDB_INVALID_ATTR the list is reset to the beginning such that the next call reports the first attribute in
the list, if any.

A report of PTHDB_INVALID_OBJECT represents the empty list or the end of a list, where OBJECT is
one of these values: PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK,
RWLOCKATTR, KEY, or TID as appropriate.

Parameters

session Session handle.
user Debugger user handle.
sessionp Pointer to session handle.
name Symbol name buffer.
cmd Reset to the beginning of the list.
concurrencyp Library concurrency buffer.

Base Operating System (BOS) Runtime Services (A-P) 1217

flags Session flags.
flagsp Pointer to session flags.
exec_mode Debuggee execution mode:

PEM_32BIT for 32-bit processes or PEM_64BIT for 64-bit processes.
callbacks Call backs structure.
tid Kernel thread id.
tidp Kernel thread id buffer..

Return Values
If successful, these functions return PTHDB_SUCCESS. Otherwise, they return an error value.

Error Codes

PTHDB_BAD_SESSION Invalid session handle.
PTHDB_BAD_VERSION Invalid pthread debug library or pthread library version.
PTHDB_BAD_MODE Invalid execution mode.
PTHDB_BAD_FLAGS Invalid session flags.
PTHDB_BAD_CALLBACK Insufficient call back functions.
PTHDB_BAD_CMD Invalid command.
PTHDB_BAD_POINTER Invalid buffer pointer.
PTHDB_BAD_USER Invalid user handle.
PTHDB_CALLBACK Debugger call back error.
PTHDB_MEMORY Not enough memory.
PTHDB_NOSYS Function not implemented.
PTHDB_NOT_PTHREADED pthread library not initialized.
PTHDB_SYMBOL pthread library symbol not found.
PTHDB_INTERNAL Error in library.

Related Information
The pthdebug.h file.

The pthread.h file.

pthread_atfork Subroutine

Purpose
Registers fork handlers.

Library
Threads Library (libpthreads.a)

Syntax
#include <sys/types.h>
#include <unistd.h>

int pthread_atfork (prepare, parent, child)
void (*prepare)(void);
void (*parent)(void);
void (*child)(void);

1218 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The pthread_atfork subroutine registers fork cleanup handlers. The prepare handler is called before the
processing of the fork subroutine commences. The parent handler is called after the processing of the
fork subroutine completes in the parent process. The child handler is called after the processing of the
fork subroutine completes in the child process.

When the fork subroutine is called, only the calling thread is duplicated in the child process, but all
synchronization variables are duplicated. The pthread_atfork subroutine provides a way to prevent state
inconsistencies and resulting deadlocks. The expected usage is that the prepare handler acquires all
mutexes, and the two other handlers release them in the parent and child processes.

The prepare handlers are called in LIFO (Last In First Out) order; whereas the parent and child handlers
are called in FIFO (first-in first-out) order. Thereafter, the order of calls to the pthread_atfork subroutine is
significant.

Note: The pthread.h header file must be the first included file of each source file using the threads
library.

Parameters

prepare Points to the pre-fork cleanup handler. If no pre-fork handling is desired, the value of this pointer should
be set to NULL.

parent Points to the parent post-fork cleanup handler. If no parent post-fork handling is desired, the value of
this pointer should be set to NULL.

child Points to the child post-fork cleanup handler. If no child post-fork handling is desired, the value of this
pointer should be set to NULL.

Return Values
Upon successful completion, the pthread_atfork subroutine returns a value of zero. Otherwise, an error
number is returned to indicate the error.

Error Codes
The pthread_atfork subroutine will fail if:

ENOMEM Insufficient table space exists to record the fork handler addresses.

The pthread_atfork subroutine will not return an error code of EINTR.

Related Information
The fork (“fork, f_fork, or vfork Subroutine” on page 293) subroutine, atexit (“exit, atexit, unatexit, _exit, or
_Exit Subroutine” on page 245) subroutine.

The “posix_spawn or posix_spawnp Subroutine” on page 1159.

Process Duplication and Termination in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

pthread_attr_destroy Subroutine

Purpose
Deletes a thread attributes object.

Base Operating System (BOS) Runtime Services (A-P) 1219

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_destroy (attr)
pthread_attr_t *attr;

Description
The pthread_attr_destroy subroutine destroys the thread attributes object attr, reclaiming its storage
space. It has no effect on the threads previously created with that object.

Parameters

attr Specifies the thread attributes object to delete.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_destroy subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

This function will not return an error code of [EINTR].

Related Information
The pthread_attr_init (“pthread_attr_init Subroutine” on page 1227) subroutine, pthread_create
(“pthread_create Subroutine” on page 1253) subroutine, the pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines

Purpose
Gets or sets the thread guardsize attribute.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_getguardsize (attr, guardsize)
const pthread_attr_t *attr;
size_t *guardsize;

1220 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int pthread_attr_setguardsize (attr, guardsize)
pthread_attr_t *attr;
size_t guardsize;

Description
The guardsize attribute controls the size of the guard area for the created thread’s stack. The guardsize
attribute provides protection against overflow of the stack pointer. If a thread’s stack is created with guard
protection, the implementation allocates extra memory at the overflow end of the stack as a buffer against
stack overflow of the stack pointer. If an application overflows into this buffer an error results (possibly in a
SIGSEGV signal being delivered to the thread).

The guardsize attribute is provided to the application for two reasons:

v Overflow protection can potentially result in wasted system resources. An application that creates a
large number of threads, and which knows its threads will never overflow their stack, can save system
resources by turning off guard areas.

v When threads allocate large data structures on the stack, large guard areas may be needed to detect
stack overflow.

The pthread_attr_getguardsize function gets the guardsize attribute in the attr object. This attribute is
returned in the guardsize parameter.

The pthread_attr_setguardsize function sets the guardsize attribute in the attr object. The new value of
this attribute is obtained from the guardsize parameter. If guardsize is zero, a guard area will not be
provided for threads created with attr. If guardsize is greater than zero, a guard area of at least size
guardsize bytes is provided for each thread created with attr.

A conforming implementation is permitted to round up the value contained in guardsize to a multiple of the
configurable system variable PAGESIZE (see sys/mman.h). If an implementation rounds up the value of
guardsize to a multiple of PAGESIZE, a call to pthread_attr_getguardsize specifying attr will store in the
guardsize parameter the guard size specified by the previous pthread_attr_setguardsize function call.
The default value of the guardsize attribute is PAGESIZE bytes. The actual value of PAGESIZE is
implementation-dependent and may not be the same on all implementations.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own thread stacks),
the guardsize attribute is ignored and no protection will be provided by the implementation. It is the
responsibility of the application to manage stack overflow along with stack allocation and management in
this case.

Parameters

attr Specifies the thread attributes object.
guardsize Controls the size of the guard area for the created thread’s stack, and protects against

overflow of the stack pointer.

Return Values
If successful, the pthread_attr_getguardsize and pthread_attr_setguardsize functions return zero.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_attr_getguardsize and pthread_attr_setguardsize functions will fail if:

EINVAL The attribute attr is invalid.
EINVAL The guardsize parameter is invalid.

Base Operating System (BOS) Runtime Services (A-P) 1221

EINVAL The guardsize parameter contains an invalid value.

pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine

Purpose
Gets and sets the inheritsched attribute (REALTIME THREADS).

Syntax
#include <pthread.h>
#include <time.h>

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

Description
The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions, respectively, get and
set the inheritsched attribute in the attr argument.

When the attributes objects are used by pthread_create(), the inheritsched attribute determines how the
other scheduling attributes of the created thread are set.

PTHREAD_INHERIT_SCHED Specifies that the thread scheduling attributes is inherited from
the creating thread, and the scheduling attributes in this attr
argument are ignored.

PTHREAD_EXPLICIT_SCHED Specifies that the thread scheduling attributes are set to the
corresponding values from this attributes object.

The PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED symbols are defined in the
<pthread.h> header.

The following thread scheduling attributes defined by IEEE Std 1003.1-2001 are affected by the
inheritsched attribute: scheduling policy (schedpolicy), scheduling parameters (schedparam), and
scheduling contention scope (contentionscope).

Application Usage
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

Return Values
If successful, the pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions return 0;
otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_attr_setschedpolicy() function might fail if:

EINVAL The value of inheritsched is not valid.
ENOTSUP An attempt was made to set the attribute to an unsupported value.

These functions do not return an error code of EINTR.

1222 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
“pthread_attr_destroy Subroutine” on page 1219, “pthread_attr_getscope and pthread_attr_setscope
Subroutines” on page 1229, “pthread_attr_getschedparam Subroutine,” “pthread_attr_getschedpolicy,
pthread_attr_setschedpolicy Subroutine” on page 1224, “pthread_create Subroutine” on page 1253.

The pthread.h and sched.h files in AIX 5L Version 5.3 Files Reference.

pthread_attr_getschedparam Subroutine

Purpose
Returns the value of the schedparam attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_attr_getschedparam (attr, schedparam)
const pthread_attr_t *attr;
struct sched_param *schedparam;

Description
The pthread_attr_getschedparam subroutine returns the value of the schedparam attribute of the thread
attributes object attr. The schedparam attribute specifies the scheduling parameters of a thread created
with this attributes object. The sched_priority field of the sched_param structure contains the priority of
the thread. It is an integer value.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.
schedparam Points to where the schedparam attribute value will be stored.

Return Values
Upon successful completion, the value of the schedparam attribute is returned via the schedparam
parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_getschedparam subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

This function does not return EINTR.

Base Operating System (BOS) Runtime Services (A-P) 1223

Related Information
The pthread_attr_setschedparam (“pthread_attr_setschedparam Subroutine” on page 1232) subroutine,
pthread_attr_init (“pthread_attr_init Subroutine” on page 1227) subroutine, pthread_getschedparam
(“pthread_getschedparam Subroutine” on page 1265) subroutine, the pthread.h file.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_attr_getschedpolicy, pthread_attr_setschedpolicy Subroutine

Purpose
Gets and sets the schedpolicy attribute (REALTIME THREADS).

Syntax
#include <pthread.h>
#include <time.h>

int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,
int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

Description
The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions, respectively, get and
set the schedpolicy attribute in the attr argument.

The supported values of policy include SCHED_FIFO, SCHED_RR, and SCHED_OTHER, which are
defined in the <sched.h> header. When threads executing with the scheduling policy SCHED_FIFO,
SCHED_RR, or SCHED_SPORADIC are waiting on a mutex, they acquire the mutex in priority order when
the mutex is unlocked.

Application Usage
After these attributes have been set, a thread can be created with the specified attributes using
pthread_create(). Using these routines does not affect the current running thread.

Return Values
If successful, the pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions return 0;
otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_attr_setschedpolicy() function might fail if:

EINVAL The value of policy is not valid.
ENOTSUP An attempt was made to set the attribute to an unsupported value.

These functions do not return an error code of EINTR.

1224 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
“pthread_attr_destroy Subroutine” on page 1219, “pthread_attr_getscope and pthread_attr_setscope
Subroutines” on page 1229, “pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine” on
page 1222, “pthread_attr_getschedparam Subroutine” on page 1223, “pthread_create Subroutine” on page
1253.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

pthread_attr_getstackaddr Subroutine

Purpose
Returns the value of the stackaddr attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_getstackaddr (attr, stackaddr)
const pthread_attr_t *attr;
void **stackaddr;

Description
The pthread_attr_getstackaddr subroutine returns the value of the stackaddr attribute of the thread
attributes object attr. This attribute specifies the stack address of the thread created with this attributes
object.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.
stackaddr Points to where the stackaddr attribute value will be stored.

Return Values
Upon successful completion, the value of the stackaddr attribute is returned via the stackaddr parameter,
and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_getstackaddr subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

This function will not return EINTR.

Base Operating System (BOS) Runtime Services (A-P) 1225

Related Information
The pthread_attr_setstackaddr (“pthread_attr_setstackaddr Subroutine” on page 1233) subroutine,
pthread_attr_init (“pthread_attr_init Subroutine” on page 1227) subroutine, the pthread.h file.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_attr_getstacksize Subroutine

Purpose
Returns the value of the stacksize attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_getstacksize (attr, stacksize)
const pthread_attr_t *attr;
size_t *stacksize;

Description
The pthread_attr_getstacksize subroutine returns the value of the stacksize attribute of the thread
attributes object attr. This attribute specifies the minimum stacksize of a thread created with this attributes
object. The value is given in bytes. For 32-bit compiled applications, the default stacksize is 96 KB
(defined in the pthread.h file). For 64-bit compiled applications, the default stacksize is 192 KB (defined in
the pthread.h file).

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.
stacksize Points to where the stacksize attribute value will be stored.

Return Values
Upon successful completion, the value of the stacksize attribute is returned via the stacksize parameter,
and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_getstacksize subroutine is unsuccessful if the following is true:

EINVAL The attr or stacksize parameters are not valid.

This function will not return an error code of [EINTR].

1226 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The pthread_attr_setstacksize (“pthread_attr_setstacksize Subroutine” on page 1234) subroutine,
pthread_attr_init (“pthread_attr_init Subroutine”) subroutine, the pthread.h file.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_attr_init Subroutine

Purpose
Creates a thread attributes object and initializes it with default values.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_init (attr)
pthread_attr_t *attr;

Description
The pthread_attr_init subroutine creates a new thread attributes object attr. The new thread attributes
object is initialized with the following default values:

Always initialized

Attribute Default value

Detachstate PTHREAD_CREATE_JOINABLE

Contention-scope PTHREAD_SCOPE_PROCESS the default ensures compatibility with implementations that do
not support this POSIX option.

Inheritsched PTHREAD_INHERITSCHED

Schedparam A sched_param structure which sched_prio field is set to 1, the least favored priority.

Schedpolicy SCHED_OTHER

Stacksize PTHREAD_STACK_MIN

Guardsize PAGESIZE

The resulting attribute object (possibly modified by setting individual attribute values), when used by
pthread_create, defines the attributes of the thread created. A single attributes object can be used in
multiple simultaneous calls to pthread_create.

Parameters

attr Specifies the thread attributes object to be created.

Base Operating System (BOS) Runtime Services (A-P) 1227

Return Values
Upon successful completion, the new thread attributes object is filled with default values and returned via
the attr parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_init subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.
ENOMEM There is not sufficient memory to create the thread attribute object.

This function will not return an error code of [EINTR].

Related Information
The pthread_attr_setdetachstate (“pthread_attr_getdetachstate or pthread_attr_setdetachstate
Subroutines”) subroutine, pthread_attr_setstackaddr (“pthread_attr_setstackaddr Subroutine” on page
1233) subroutine, pthread_attr_setstacksize (“pthread_attr_setstacksize Subroutine” on page 1234)
subroutine, pthread_create (“pthread_create Subroutine” on page 1253) subroutine,
pthread_attr_destroy (“pthread_attr_destroy Subroutine” on page 1219) subroutine,
pthread_attr_setguardsize (“pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines” on
page 1220) subroutine.

The pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_attr_getdetachstate or pthread_attr_setdetachstate
Subroutines

Purpose
Sets and returns the value of the detachstate attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setdetachstate (attr, detachstate)
pthread_attr_t *attr;
int detachstate;

int pthread_attr_getdetachstate (attr, detachstate)
const pthread_attr_t *attr;
int *detachstate;

1228 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The detachstate attribute controls whether the thread is created in a detached state. If the thread is
created detached, then use of the ID of the newly created thread by the pthread_detach or pthread_join
function is an error.

The pthread_attr_setdetachstate and pthread_attr_getdetachstate, respectively, set and get the
detachstate attribute in the attr object.

The detachstate attribute can be set to either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. A value of PTHREAD_CREATE_DETACHED causes all threads created
with attr to be in the detached state, whereas using a value of PTHREAD_CREATE_JOINABLE causes all
threads created with attr to be in the joinable state. The default value of the detachstate attribute is
PTHREAD_CREATE_JOINABLE.

Parameters

attr Specifies the thread attributes object.
detachstate Points to where the detachstate attribute value will be stored.

Return Values
Upon successful completion, pthread_attr_setdetachstate and pthread_attr_getdetachstate return a
value of 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_getdetachstate function stores the value of the detachstate attribute in the detachstate
parameter if successful.

Error Codes
The pthread_attr_setdetachstate function will fail if:

EINVAL The value of detachstate was not valid.

The pthread_attr_getdetachstate and pthread_attr_setdetachstate functions will fail if:

EINVAL The attribute parameter is invalid.

These functions will not return an error code of EINTR.

Related Information
The “pthread_attr_setstackaddr Subroutine” on page 1233, “pthread_attr_setstacksize Subroutine” on page
1234, “pthread_create Subroutine” on page 1253, and “pthread_attr_init Subroutine” on page 1227.

The pthread.h file in AIX 5L Version 5.3 Files Reference

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_attr_getscope and pthread_attr_setscope Subroutines

Purpose
Gets and sets the scope attribute in the attr object.

Base Operating System (BOS) Runtime Services (A-P) 1229

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setscope (attr, contentionscope)
pthread_attr_t *attr;
int contentionscope;

int pthread_attr_getscope (attr, contentionscope)
const pthread_attr_t *attr;
int *contentionscope;

Description
The scope attribute controls whether a thread is created in system or process scope.

The pthread_attr_getscope and pthread_attr_setscope subroutines get and set the scope attribute in
the attr object.

The scope can be set to PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS. A value of
PTHREAD_SCOPE_SYSTEM causes all threads created with the attr parameter to be in system scope,
whereas a value of PTHREAD_SCOPE_PROCESS causes all threads created with the attr parameter to
be in process scope.

The default value of the contentionscope parameter is PTHREAD_SCOPE_PROCESS.

Parameters

attr Specifies the thread attributes object.
contentionscope Points to where the scope attribute value will be stored.

Return Values
Upon successful completion, the pthread_attr_getscope and pthread_attr_setscope subroutines return
a value of 0. Otherwise, an error number is returned to indicate the error.

Error Codes

EINVAL The value of the attribute being set/read is not valid.
ENOTSUP An attempt was made to set the attribute to an unsupported value.

Related Information
The “pthread_create Subroutine” on page 1253, and “pthread_attr_init Subroutine” on page 1227.

The pthread.h file in AIX 5L Version 5.3 Files Reference

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

1230 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pthread_attr_getukeyset_np or pthread_attr_setukeyset_np Subroutine

Purpose
Gets and sets the value of the active user-key-set attribute of a thread attributes object.

Library
Threads library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/ukeys.h>

int pthread_attr_getukeyset_np (attr, ukeyset)
const pthread_attr_t * attr;
ukeyset_t * ukeyset;

Description
The ukeyset parameter specifies the active user-key-set for a thread created with this attributes object. By
default, newly-created threads can only access (both read and write) memory pages that have been
assigned the default user-key UKEY_PUBLIC. User-key-sets are not inherited across the pthread_create
subroutine.

The pthread_attr_getukeyset_np subroutine gets the user-key-set attribute, while the
pthread_attr_setukeyset_np subroutine sets the user-key-set attribute in the thread attributes object
specified by the attr parameter.

Both the pthread_attr_getukeyset_np and the pthread_attr_setukeyset_np subroutines will fail unless
the ukey_enable subroutine has been previously successfully run by a thread in the process. Refer to the
Storage Protect Keys article for more details.

Parameters

attr Specifies the thread attributes object.
ukeyset Points to a location where the user-key-set attribute value is stored.

Return Values
The pthread_attr_getukeyset_np and pthread_attr_setukeyset_np subroutines return a value of 0 on
success. Otherwise, an error code is returned.

Errors Codes
The pthread_attr_getukeyset_np and pthread_attr_setukeyset_np subroutines are unsuccessful if the
following are true:

EINVAL The attribute object specified by the attr parameter is invalid or the address
pointed to by the ukeyset parameter is not aligned to hold a user-key-set.

ENOSYS Process is not a user-key-enabled process.

In addition, the pthread_attr_setukeyset_np subroutine is unsuccessful if the following is true:

EINVAL The user-key-set value specified by the ukeyset parameter is not valid.

Base Operating System (BOS) Runtime Services (A-P) 1231

These functions will not return an error code of EINTR.

Related Information
The ukey_enable subroutine.

The ukeyset_init subroutine.

The ukeyset_add_key, ukeyset_remove_key, ukeyset_add_set, ukeyset_remove_set subroutine.

The ukeyset_activate subroutine.

The ukeyset_ismember subroutine.

The pthread_attr_init subroutine.

The pthread_create subroutine.

The pthread_attr_destroy subroutine.

pthread_attr_setschedparam Subroutine

Purpose
Sets the value of the schedparam attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_attr_setschedparam (attr, schedparam)
pthread_attr_t *attr;
const struct sched_param *schedparam;

Description
The pthread_attr_setschedparam subroutine sets the value of the schedparam attribute of the thread
attributes object attr. The schedparam attribute specifies the scheduling parameters of a thread created
with this attributes object. The sched_priority field of the sched_param structure contains the priority of
the thread.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.
schedparam Points to where the scheduling parameters to set are stored. The sched_priority field must be in

the range from 1 to 127, where 1 is the least favored priority, and 127 the most favored.

1232 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_setschedparam subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.
ENOSYS The priority scheduling POSIX option is not implemented.
ENOTSUP The value of the schedparam attribute is not supported.

Related Information
The pthread_attr_getschedparam (“pthread_attr_getschedparam Subroutine” on page 1223) subroutine,
pthread_attr_init (“pthread_attr_init Subroutine” on page 1227) subroutine, pthread_create
(“pthread_create Subroutine” on page 1253) subroutine, the pthread.h file.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_attr_setstackaddr Subroutine

Purpose
Sets the value of the stackaddr attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setstackaddr (attr, stackaddr)
pthread_attr_t *attr;
void *stackaddr;

Description
The pthread_attr_setstackaddr subroutine sets the value of the stackaddr attribute of the thread
attributes object attr. This attribute specifies the stack address of a thread created with this attributes
object.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

A Provision has been made in libpthreadsto create guardpages for the user stack internally. This is used
for debugging purposes only. By default, it is turned off and can be invoked by exporting the following
environment variable:
AIXTHREAD_GUARDPAGES_FOR_USER_STACK=n (Where n is the decimal number of guard pages.)

Note: Even if it is exported, guard pages will only be constructed if both the stackaddr and stacksize
attributes have been set by the caller for the thread. Also, the guard pages and alignment pages

Base Operating System (BOS) Runtime Services (A-P) 1233

will be created out of the user’s stack (which will reduce the stack size). If the new stack size after
creating guard pages is less than the minimum stack size (PTHREAD_STACK_MIN), then the
guard pages will not be constructed.

Parameters

attr Specifies the thread attributes object.
stackaddr Specifies the stack address to set. It is a void pointer. The address that needs to be passed is not

the beginning of the malloc generated address but the beginning of the stack. For example:

stackaddr = malloc(stacksize);
pthread_attr_setstackaddr(&thread, stackaddr + stacksize);

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_setstackaddr subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.
ENOSYS The stack address POSIX option is not implemented.

Related Information
The “pthread_attr_getstackaddr Subroutine” on page 1225, “pthread_attr_init Subroutine” on page 1227,
pthread.h file.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_attr_setstacksize Subroutine

Purpose
Sets the value of the stacksize attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setstacksize (attr, stacksize)
pthread_attr_t *attr;
size_t stacksize;

Description
The pthread_attr_setstacksize subroutine sets the value of the stacksize attribute of the thread attributes
object attr. This attribute specifies the minimum stack size, in bytes, of a thread created with this attributes
object.

1234 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The allocated stack size is always a multiple of 8K bytes, greater or equal to the required minimum stack
size of 56K bytes (PTHREAD_STACK_MIN). The following formula is used to calculate the allocated stack
size: if the required stack size is lower than 56K bytes, the allocated stack size is 56K bytes; otherwise, if
the required stack size belongs to the range from (56 + (n - 1) * 16) K bytes to (56 + n * 16) K
bytes, the allocated stack size is (56 + n * 16) K bytes.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.
stacksize Specifies the minimum stack size, in bytes, to set. The default stack size is

PTHREAD_STACK_MIN. The minimum stack size should be greater or equal than this value.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_setstacksize subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid, or the value of the stacksize parameter exceeds a system imposed limit.
ENOSYS The stack size POSIX option is not implemented.

Related Information
The pthread_attr_getstacksize (“pthread_attr_getstacksize Subroutine” on page 1226) subroutine,
pthread_attr_init (“pthread_attr_init Subroutine” on page 1227) subroutine, pthread_create
(“pthread_create Subroutine” on page 1253) subroutine, the pthread.h file.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_attr_setsuspendstate_np and
pthread_attr_getsuspendstate_np Subroutine

Purpose
Controls whether a thread is created in a suspended state.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setsuspendstate_np (attr, suspendstate)
pthread_attr_t *attr;
int suspendstate;

Base Operating System (BOS) Runtime Services (A-P) 1235

int pthread_attr_getsuspendstate_np (attr, suspendstate)
pthread_attr_t *attr;
int *suspendstate;

Description
The suspendstate attribute controls whether the thread is created in a suspended state. If the thread is
created suspended, the thread start routine will not execute until pthread_continue_np is run on the
thread. The pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np routines,
respectively, set and get the suspendstate attribute in the attr object.

The suspendstate attribute can be set to either PTHREAD_CREATE_SUSPENDED_NP or
PTHREAD_CREATE_UNSUSPENDED_NP. A value of PTHREAD_CREATE_SUSPENDED_NP causes all
threads created with attr to be in the suspended state, whereas using a value of
PTHREAD_CREATE_UNSUSPENDED_NP causes all threads created with attr to be in the unsuspended
state. The default value of the suspendstate attribute is PTHREAD_CREATE_UNSUSPENDED_NP.

Parameters

attr Specifies the thread attributes object.
suspendstate Points to where the suspendstate attribute value will be stored.

Return Values
Upon successful completion, pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np
return a value of 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_getsuspendstate_np function stores the value of the suspendstate attribute in
suspendstate if successful.

Error Codes
The pthread_attr_setsuspendstate_np function will fail if:

EINVAL The value of suspendstate is not valid.

pthread_barrier_destroy or pthread_barrier_init Subroutine

Purpose
Destroys or initializes a barrier object.

Syntax
#include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr, unsigned count);

Description
The pthread_barrier_destroy subroutine destroys the barrier referenced by the barrier parameter and
releases any resources used by the barrier. The effect of subsequent use of the barrier is undefined until
the barrier is reinitialized by another call to the pthread_barrier_init subroutine. An implementation can

1236 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

use this subroutine to set the barrier parameter to an invalid value. The results are undefined if the
pthread_barrier_destroy subroutine is called when any thread is blocked on the barrier, or if this function
is called with an uninitialized barrier.

The pthread_barrier_init subroutine allocates any resources required to use the barrier referenced by the
barrier parameter and initializes the barrier with attributes referenced by the attr parameter. If the attr
parameter is NULL, the default barrier attributes are used; the effect is the same as passing the address
of a default barrier attributes object. The results are undefined if pthread_barrier_init subroutine is called
when any thread is blocked on the barrier (that is, has not returned from the pthread_barrier_wait call).
The results are undefined if a barrier is used without first being initialized. The results are undefined if the
pthread_barrier_init subroutine is called specifying an already initialized barrier.

The count argument specifies the number of threads that must call the pthread_barrier_wait subroutine
before any of them successfully return from the call. The value specified by the count parameter must be
greater than zero.

If the pthread_barrier_init subroutine fails, the barrier is not initialized and the contents of barrier are
undefined.

Only the object referenced by the barrier parameter can be used for performing synchronization. The result
of referring to copies of that object in calls to the pthread_barrier_destroy or pthread_barrier_wait
subroutine is undefined.

Return Values
Upon successful completion, these functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

Error Codes
The pthread_barrier_destroy subroutine can fail if:

EBUSY The implementation has detected an attempt to destroy a barrier while it is in use (for example,
while being used in a pthread_barrier_wait call) by another thread.

EINVAL The value specified by barrier is invalid.

The pthread_barrier_init() function will fail if:

EAGAIN The system lacks the necessary resources to initialize another barrier.
EINVAL The value specified by the count parameter is equal to zero.
ENOMEM Insufficient memory exists to initialize the barrier.

The pthread_barrier_init subroutine can fail if:

EBUSY The implementation has detected an attempt to reinitialize a barrier while it is in use (for
example, while being used in a pthread_barrier_wait call) by another thread.

EINVAL The value specified by the attr parameter is invalid.

Related Information
The “pthread_barrier_wait Subroutine” on page 1238, “pthread_barrierattr_destroy or
pthread_barrierattr_init Subroutine” on page 1239, “pthread_barrierattr_getpshared or
pthread_barrierattr_setpshared Subroutine” on page 1240.

The pthread.h file.

Base Operating System (BOS) Runtime Services (A-P) 1237

pthread_barrier_wait Subroutine

Purpose
Synchronizes threads at a barrier.

Syntax
#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

Description
The pthread_barrier_wait subroutine synchronizes participating threads at the barrier referenced by
barrier. The calling thread blocks until the required number of threads have called
pthread_barrier_waitspecifying the barrier.

When the required number of threads have called pthread_barrier_waitspecifying the barrier, the constant
PTHREAD_BARRIER_SERIAL_THREAD is returned to one unspecified thread and 0 is returned to the
remaining threads. At this point, the barrier resets to the state it had as a result of the most recent
pthread_barrier_init function that referenced it.

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in <pthread.h>, and its value is distinct
from any other value returned by pthread_barrier_wait.

The results are undefined if this function is called with an uninitialized barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler, the thread
resumes waiting at the barrier if the barrier wait has not completed (that is, if the required number of
threads have not arrived at the barrier during the execution of the signal handler); otherwise, the thread
continues as normal from the completed barrier wait. Until the thread in the signal handler returns from it,
other threads might proceed past the barrier after they have all reached it.

Note: In AIX 5.3, when the required number of threads has called pthread_barrier_wait, the
PTHREAD_BARRIER_SERIAL_THREAD constant is returned by the last pthread that called
pthread_barrier_wait. Furthermore, if a thread is in a signal handler while waiting and all the
required threads have reached the barrier, the other threads can proceed past the barrier.

A thread that has blocked on a barrier does not prevent any unblocked thread that is eligible to use the
same processing resources from eventually making forward progress in its execution. Eligibility for
processing resources is determined by the scheduling policy.

Parameters

barrier Points to the barrier where participating threads wait.

Return Values
Upon successful completion, pthread_barrier_wait returns PTHREAD_BARRIER_SERIAL_THREAD for
a single (arbitrary) thread synchronized at the barrier and 0 for the other threads. Otherwise, an error
number is returned to indicate the error.

1238 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The pthread_barrier_destroy subroutine can fail if:

EINVAL The value specified by barrier does not refer to an initialized barrier object.

This function does not return an error code of EINTR.

Related Information
The “pthread_barrier_destroy or pthread_barrier_init Subroutine” on page 1236,
“pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine,” “pthread_barrierattr_getpshared or
pthread_barrierattr_setpshared Subroutine” on page 1240.

The pthread.h file.

pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine

Purpose
Destroys or initializes the barrier attributes object.

Syntax
#include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);
int pthread_barrierattr_init(pthread_barrierattr_t *attr);

Description
The pthread_barrierattr_destroy subroutine destroys a barrier attributes object. A destroyed attr attributes
object can be reinitialized using the pthread_barrierattr_init subroutine; the results of otherwise
referencing the object after it has been destroyed are undefined. An implementation can cause the
pthread_barrierattr_destroy subroutine to set the object referenced by the attr parameter to an invalid
value.

The pthread_barrierattr_init subroutine initializes a barrier attributes object attr with the default value for
all of the attributes defined by the implementation.

Results are undefined if the pthread_barrierattr_init subroutine is called specifying an already initialized
attr attributes object.

After a barrier attributes object has been used to initialize one or more barriers, any function affecting the
attributes object (including destruction) do not affect any previously initialized barrier.

Return Values
If successful, the pthread_barrierattr_destroy and pthread_barrierattr_init subroutines return zero;
otherwise, an error number shall be returned to indicate the error.

Error Codes
The pthread_barrierattr_destroy subroutine can fail if:

EINVAL The value specified by the attr parameter is invalid.

Base Operating System (BOS) Runtime Services (A-P) 1239

The pthread_barrierattr_init subroutine will fail if:

ENOMEM Insufficient memory exists to initialize the barrier attributes object.

Related Information
The “pthread_barrier_destroy or pthread_barrier_init Subroutine” on page 1236, “pthread_barrier_wait
Subroutine” on page 1238, “pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutine.”

pthread_barrierattr_getpshared or pthread_barrierattr_setpshared
Subroutine

Purpose
Gets and sets the process-shared attribute of the barrier attributes object.

Syntax
#include <pthread.h>

int pthread_barrierattr_getpshared(const pthread_barrierattr_t *
restrict attr, int *restrict pshared);

int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,
int pshared);

Description
The pthread_barrierattr_getpshared subroutine obtains the value of the process-shared attribute from
the attributes object referenced by the attr parameter. The pthread_barrierattr_setpshared subroutine
sets the process-shared attribute in an initialized attributes object referenced by the attr parameter.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a barrier to be operated
upon by any thread that has access to the memory where the barrier is allocated. If the process-shared
attribute is PTHREAD_PROCESS_PRIVATE, the barrier is only operated upon by threads created within
the same process as the thread that initialized the barrier; if threads of different processes attempt to
operate on such a barrier, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE. Both constants PTHREAD_PROCESS_SHARED and
PTHREAD_PROCESS_PRIVATE are defined in the pthread.h file.

Additional attributes, their default values, and the names of the associated functions to get and set those
attribute values are implementation-defined.

Return Values
If successful, the pthread_barrierattr_getpshared subroutine will return zero and store the value of the
process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise, an error
number shall be returned to indicate the error.

If successful, the pthread_barrierattr_setpshared subroutine will return zero; otherwise, an error number
shall be returned to indicate the error.

Error Codes
These functions may fail if:

EINVAL The value specified by attr is invalid.

1240 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The pthread_barrierattr_setpshared subroutine will fail if:

EINVAL The new value specified for the process-shared attribute is not one of the legal values
PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

Related Information
The “pthread_barrier_destroy or pthread_barrier_init Subroutine” on page 1236, “pthread_barrier_wait
Subroutine” on page 1238, “pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine” on page
1239.

pthread_cancel Subroutine

Purpose
Requests the cancellation of a thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_cancel (thread)
pthread_t thread;

Description
The pthread_cancel subroutine requests the cancellation of the thread thread. The action depends on the
cancelability of the target thread:

v If its cancelability is disabled, the cancellation request is set pending.

v If its cancelability is deferred, the cancellation request is set pending till the thread reaches a
cancellation point.

v If its cancelability is asynchronous, the cancellation request is acted upon immediately; in some cases, it
may result in unexpected behavior.

The cancellation of a thread terminates it safely, using the same termination procedure as the
pthread_exit (“pthread_exit Subroutine” on page 1258) subroutine.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

thread Specifies the thread to be canceled.

Return Values
If successful, the pthread_cancel function returns zero. Otherwise, an error number is returned to indicate
the error.

Base Operating System (BOS) Runtime Services (A-P) 1241

Error Codes
The ptread_cancel function may fail if:

ESRCH No thread could be found corresponding to that specified by the given thread ID.

The pthread_cancel function will not return an error code of EINTR.

Related Information
The pthread_kill (“pthread_kill Subroutine” on page 1275) subroutine, pthread_exit (“pthread_exit
Subroutine” on page 1258) subroutine, pthread_join (“pthread_join or pthread_detach Subroutine” on
page 1272) subroutine, pthread_cond_wait (“pthread_cond_wait or pthread_cond_timedwait Subroutine”
on page 1246), and pthread_cond_timedwait (“pthread_cond_wait or pthread_cond_timedwait
Subroutine” on page 1246) subroutines.

The pthread.h file.

Terminating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_cleanup_pop or pthread_cleanup_push Subroutine

Purpose
Activates and deactivates thread cancellation handlers.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_cleanup_pop (execute)
int execute;

void pthread_cleanup_push (routine, arg)
void (*routine)(void *);
void *arg;

Description
The pthread_cleanup_push subroutine pushes the specified cancellation cleanup handler routine onto
the calling thread’s cancellation cleanup stack. The cancellation cleanup handler is popped from the
cancellation cleanup stack and invoked with the argument arg when: (a) the thread exits (that is, calls
pthread_exit, (b) the thread acts upon a cancellation request, or (c) the thread calls
pthread_cleanup_pop with a nonzero execute argument.

The pthread_cleanup_pop subroutine removes the subroutine at the top of the calling thread’s
cancellation cleanup stack and optionally invokes it (if execute is nonzero).

These subroutines may be implemented as macros and will appear as statements and in pairs within the
same lexical scope (that is, the pthread_cleanup_push macro may be thought to expand to a token list
whose first token is ’{’ with pthread_cleanup_pop expanding to a token list whose last token is the
corresponding ’}’).

1242 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The effect of calling longjmp or siglongjmp is undefined if there have been any calls to
pthread_cleanup_push or pthread_cleanup_pop made without the matching call since the jump buffer
was filled. The effect of calling longjmp or siglongjmp from inside a cancellation cleanup handler is also
undefined unless the jump buffer was also filled in the cancellation cleanup handler.

Parameters

execute Specifies if the popped subroutine will be executed.
routine Specifies the address of the cancellation subroutine.
arg Specifies the argument passed to the cancellation subroutine.

Related Information
The pthread_cancel (“pthread_cancel Subroutine” on page 1241), pthread_setcancelstate
(“pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel Subroutines” on page 1306)
subroutines, the pthread.h file.

Terminating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_cond_destroy or pthread_cond_init Subroutine

Purpose
Initialize and destroys condition variables.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_cond_init (cond, attr)
pthread_cond_t *cond;
const pthread_condattr_t *attr;

int pthread_cond_destroy (cond)
pthread_cond_t *cond;

pthread_cond_t cond = PTHREAD_COND_INTITIALIZER;

Description
The function pthread_cond_init initializes the condition variable referenced by cond with attributes
referenced by attr. If attr is NULL, the default condition variable attributes are used; the effect is the same
as passing the address of a default condition variable attributes object. Upon successful initialization, the
state of the condition variable becomes initialized.

Attempting to initialize an already initialized condition variable results in undefined behavior.

The function pthread_cond_destroy destroys the given condition variable specified by cond; the object
becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy to set the object
referenced by cond to an invalid value. A destroyed condition variable object can be re-initialized using
pthread_cond_init; the results of otherwise referencing the object after it has been destroyed are
undefined.

Base Operating System (BOS) Runtime Services (A-P) 1243

It is safe to destroy an initialized condition variable upon which no threads are currently blocked.
Attempting to destroy a condition variable upon which other threads are currently blocked results in
undefined behavior.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are statically allocated.
The effect is equivalent to dynamic initialization by a call to pthread_cond_init with parameter attr
specified as NULL, except that no error checks are performed.

Parameters

cond Pointer to the condition variable.
attr Specifies the attributes of the condition.

Return Values
If successful, the pthread_cond_init and pthread_cond_destroy functions return zero. Otherwise, an
error number is returned to indicate the error. The EBUSY and EINVAL error checks, if implemented, act
as if they were performed immediately at the beginning of processing for the function and caused an error
return prior to modifying the state of the condition variable specified by cond.

Error Codes
The pthread_cond_init function will fail if:

EAGAIN The system lacked the necessary resources (other than memory) to initialize another condition variable.
ENOMEM Insufficient memory exists to initialize the condition variable.

The pthread_cond_init function may fail if:

EINVAL The value specified by attr is invalid.

The pthread_cond_destroy function may fail if:

EBUSY The implementation has detected an attempt to destroy the object referenced by cond while it is
referenced (for example, while being used in a pthread_cond_wait or pthread_cond_timedwait by
another thread.

EINVAL The value specified by cond is invalid.

These functions will not return an error code of EINTR.

Related Information
The pthread_cond_signal or pthread_cond_broadcast (“pthread_cond_signal or
pthread_cond_broadcast Subroutine” on page 1245) subroutine and the pthread_cond_wait or
pthread_cond_timewait (“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1246)
subroutine.

The pthread.h file.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

1244 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

PTHREAD_COND_INITIALIZER Macro

Purpose
Initializes a static condition variable with default attributes.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Description
The PTHREAD_COND_INITIALIZER macro initializes the static condition variable cond, setting its
attributes to default values. This macro should only be used for static condition variables, since no error
checking is performed.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Related Information
The pthread_cond_init (“pthread_cond_destroy or pthread_cond_init Subroutine” on page 1243)
subroutine.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_cond_signal or pthread_cond_broadcast Subroutine

Purpose
Unblocks one or more threads blocked on a condition.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_cond_signal (condition)
pthread_cond_t *condition;

int pthread_cond_broadcast (condition)
pthread_cond_t *condition;

Description
These subroutines unblock one or more threads blocked on the condition specified by condition. The
pthread_cond_signal subroutine unblocks at least one blocked thread, while the
pthread_cond_broadcast subroutine unblocks all the blocked threads.

Base Operating System (BOS) Runtime Services (A-P) 1245

If more than one thread is blocked on a condition variable, the scheduling policy determines the order in
which threads are unblocked. When each thread unblocked as a result of a pthread_cond_signal or
pthread_cond_broadcast returns from its call to pthread_cond_wait or pthread_cond_timedwait, the
thread owns the mutex with which it called pthread_cond_waitor pthread_cond_timedwait. The
thread(s) that are unblocked contend for the mutex according to the scheduling policy (if applicable), and
as if each had called pthread_mutex_lock.

The pthread_cond_signal or pthread_cond_broadcast functions may be called by a thread whether or
not it currently owns the mutex that threads calling pthread_cond_wait or pthread_cond_timedwait have
associated with the condition variable during their waits; however, if predictable scheduling behavior is
required, then that mutex is locked by the thread calling pthread_cond_signal or
pthread_cond_broadcast.

If no thread is blocked on the condition, the subroutine succeeds, but the signalling of the condition is not
held. The next thread calling pthread_cond_wait will be blocked.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

condition Specifies the condition to signal.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Code
The pthread_cond_signal and pthread_cond_broadcast subroutines are unsuccessful if the following is
true:

EINVAL The condition parameter is not valid.

Related Information
The pthread_cond_wait or pthread_cond_timedwait (“pthread_cond_wait or pthread_cond_timedwait
Subroutine”) subroutine.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_cond_wait or pthread_cond_timedwait Subroutine

Purpose
Blocks the calling thread on a condition.

Library
Threads Library (libpthreads.a)

1246 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <pthread.h>

int pthread_cond_wait (cond, mutex)
pthread_cond_t *cond;
pthread_mutex_t *mutex;

int pthread_cond_timedwait (cond, mutex, timeout)
pthread_cond_t *cond;
pthread_mutex_t *mutex;
const struct timespec *timeout;

Description
The pthread_cond_wait and pthread_cond_timedwait functions are used to block on a condition
variable. They are called with mutex locked by the calling thread or undefined behavior will result.

These functions atomically release mutex and cause the calling thread to block on the condition variable
cond; atomically here means atomically with respect to access by another thread to the mutex and then
the condition variable. That is, if another thread is able to acquire the mutex after the about-to-block thread
has released it, then a subsequent call to pthread_cond_signal or pthread_cond_broadcast in that
thread behaves as if it were issued after the about-to-block thread has blocked.

Upon successful return, the mutex is locked and owned by the calling thread.

When using condition variables there is always a boolean predicate involving shared variables associated
with each condition wait that is true if the thread should proceed. Spurious wakeups from the
pthread_cond_wait or pthread_cond_timedwait functions may occur. Since the return from
pthread_cond_wait or pthread_cond_timedwait does not imply anything about the value of this
predicate, the predicate should be reevaluated upon such return.

The effect of using more than one mutex for concurrent pthread_cond_wait or pthread_cond_timedwait
operations on the same condition variable is undefined; that is, a condition variable becomes bound to a
unique mutex when a thread waits on the condition variable, and this (dynamic) binding ends when the
wait returns.

A condition wait (whether timed or not) is a cancellation point. When the cancelability enable state of a
thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a cancellation request
while in a condition wait is that the mutex is (in effect) reacquired before calling the first cancellation
cleanup handler. The effect is as if the thread were unblocked, allowed to execute up to the point of
returning from the call to pthread_cond_wait or pthread_cond_timedwait, but at that point notices the
cancellation request and instead of returning to the caller of pthread_cond_wait or
pthread_cond_timedwait, starts the thread cancellation activities, which includes calling cancellation
cleanup handlers.

A thread that has been unblocked because it has been canceled while blocked in a call to
pthread_cond_wait or pthread_cond_timedwait does not consume any condition signal that may be
directed concurrently at the condition variable if there are other threads blocked on the condition variable.

The pthread_cond_timedwait function is the same as pthread_cond_wait except that an error is
returned if the absolute time specified by timeout passes (that is, system time equals or exceeds timeout)
before the condition cond is signaled or broadcast, or if the absolute time specified by timeout has already
been passed at the time of the call. When such time-outs occur, pthread_cond_timedwait will
nonetheless release and reacquire the mutex referenced by mutex. The function
pthread_cond_timedwait is also a cancellation point. The absolute time specified by timeout can be

Base Operating System (BOS) Runtime Services (A-P) 1247

either based on the system realtime clock or the system monotonic clock. The reference clock for the
condition variable is set by calling pthread_condattr_setclock before its initialization with the
corresponding condition attributes object.

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal handler the
thread resumes waiting for the condition variable as if it was not interrupted, or it returns zero due to
spurious wakeup.

Parameters

cond Specifies the condition variable to wait on.
mutex Specifies the mutex used to protect the condition variable. The mutex must be locked when the

subroutine is called.
timeout Points to the absolute time structure specifying the blocked state timeout.

Return Values
Except in the case of ETIMEDOUT, all these error checks act as if they were performed immediately at the
beginning of processing for the function and cause an error return, in effect, prior to modifying the state of
the mutex specified by mutex or the condition variable specified by cond.

Upon successful completion, a value of zero is returned. Otherwise, an error number is returned to
indicate the error.

Error Codes
The pthread_cond_timedwait function will fail if:

ETIMEDOUT The time specified by timeout to pthread_cond_timedwait has passed.

The pthread_cond_wait and pthread_cond_timedwait functions may fail if:

EINVAL The value specified by cond, mutex, or timeout is invalid.
EINVAL Different mutexes were supplied for concurrent pthread_cond_wait or pthread_cond_timedwait

operations on the same condition variable.
EINVAL The mutex was not owned by the current thread at the time of the call.
EPERM The mutex was not owned by the current thread at the time of the call, XPG_SUS_ENV is set to ON, and

XPG_UNIX98 is not set.

These functions will not return an error code of EINTR.

Related Information
The pthread_cond_signal orpthread_cond_broadcast (“pthread_cond_signal or
pthread_cond_broadcast Subroutine” on page 1245) subroutine, “pthread_condattr_getclock,
pthread_condattr_setclock Subroutine” on page 1250, the pthread.h file.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_condattr_destroy or pthread_condattr_init Subroutine

Purpose
Initializes and destroys condition variable.

1248 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_condattr_destroy (attr)
pthread_condattr_t *attr;

int pthread_condattr_init (attr)
pthread_condattr_t *attr;

Description
The function pthread_condattr_init initializes a condition variable attributes object attr with the default
value for all of the attributes defined by the implementation. Attempting to initialize an already initialized
condition variable attributes object results in undefined behavior.

After a condition variable attributes object has been used to initialize one or more condition variables, any
function affecting the attributes object (including destruction) does not affect any previously initialized
condition variables.

The pthread_condattr_destroy function destroys a condition variable attributes object; the object
becomes, in effect, uninitialized. The pthread_condattr_destroy subroutine may set the object referenced
by attr to an invalid value. A destroyed condition variable attributes object can be re-initialized using
pthread_condattr_init; the results of otherwise referencing the object after it has been destroyed are
undefined.

Parameter

attr Specifies the condition attributes object to delete.

Return Values
If successful, the pthread_condattr_init and pthread_condattr_destroy functions return zero. Otherwise,
an error number is returned to indicate the error.

Error Code
The pthread_condattr_init function will fail if:

ENOMEM Insufficient memory exists to initialize the condition variable attributes object.

The pthread_condattr_destroy function may fail if:

EINVAL The value specified by attr is invalid.

These functions will not return an error code of EINTR.

Related Information
The pthread_cond_init (“pthread_cond_destroy or pthread_cond_init Subroutine” on page 1243)
subroutine, pthread_condattr_getpshared (“pthread_condattr_getpshared Subroutine” on page 1251)
subroutine, pthread_create (“pthread_create Subroutine” on page 1253) subroutine, pthread_mutex_init
(“pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1277) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1249

The pthread.h file.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_condattr_getclock, pthread_condattr_setclock Subroutine

Purpose
Gets and sets the clock selection condition variable attribute.

Syntax
int pthread_condattr_getclock(const pthread_condattr_t *restrict attr,

clockid_t *restrict clock_id);
int pthread_condattr_setclock(pthread_condattr_t *attr,

clockid_t clock_id);

Description
The pthread_condattr_getclock subroutine obtains the value of the clock attribute from the attributes
object referenced by the attr argument. The pthread_condattr_setclock subroutine sets the clock
attribute in an initialized attributes object referenced by the attr argument. If pthread_condattr_setclock is
called with a clock_id argument that refers to a CPU-time clock, the call will fail.

The clock attribute is the clock ID of the clock that shall be used to measure the timeout service of the
pthread_cond_timedwait subroutine. The default value of the clock attribute refers to the system clock.

Parameters

attr Specifies the condition attributes object.
clock_id For pthread_condattr_getclock(), points to where the clock attribute value will be stored.

For pthread_condattr_setclock(), specifies the clock to set. Valid values are:

CLOCK_REALTIME
The system realtime clock.

CLOCK_MONOTONIC
The system monotonic clock. The value of this clock represents the amount of time since
an unspecified point in the past. The value of this clock always grows: it cannot be set by
clock_settime() and cannot have backward clock jumps.

Return Values
If successful, the pthread_condattr_getclock subroutine returns 0 and stores the value of the clock
attribute of attr in the object referenced by the clock_id argument. Otherwise, an error code is returned to
indicate the error.

If successful, the pthread_condattr_setclock subroutine returns 0; otherwise, an error code is returned to
indicate the error.

Error Codes

EINVAL The value specified by attr is invalid.
EINVAL The pthread_condattr_setclock subroutine returns this error if the value specified by the clock_id

does not refer to a known clock, or is a CPU-time clock.
ENOTSUP The function is not supported with checkpoint-restart processes.

1250 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
“pthread_cond_destroy or pthread_cond_init Subroutine” on page 1243, “pthread_cond_wait or
pthread_cond_timedwait Subroutine” on page 1246, “pthread_condattr_getpshared Subroutine,”
“pthread_condattr_destroy or pthread_condattr_init Subroutine” on page 1248,
“pthread_condattr_setpshared Subroutine” on page 1252, “pthread_create Subroutine” on page 1253,
“pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1277.

The pthread.h file.

The Base Definitions volume of IEEE Std 1003.1-2001.

pthread_condattr_getpshared Subroutine

Purpose
Returns the value of the pshared attribute of a condition attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_condattr_getpshared (attr, pshared)
const pthread_condattr_t *attr;
int *pshared;

Description
The pthread_condattr_getpshared subroutine returns the value of the pshared attribute of the condition
attribute object attr. This attribute specifies the process sharing of the condition variable created with this
attributes object. It may have one of the following values:

PTHREAD_PROCESS_SHARED Specifies that the condition variable can be used by any thread that has
access to the memory where it is allocated, even if these threads
belong to different processes.

PTHREAD_PROCESS_PRIVATE Specifies that the condition variable shall only be used by threads within
the same process as the thread that created it. This is the default value.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

attr Specifies the condition attributes object.
pshared Points to where the pshared attribute value will be stored.

Return Values
Upon successful completion, the value of the pshared attribute is returned via the pshared parameter, and
0 is returned. Otherwise, an error code is returned.

Base Operating System (BOS) Runtime Services (A-P) 1251

Error Codes
The pthread_condattr_getpshared subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.
ENOSYS The process sharing POSIX option is not implemented.

Related Information
The pthread_condattr_setpshared (“pthread_condattr_setpshared Subroutine”) subroutine,
pthread_condattr_init (“pthread_condattr_destroy or pthread_condattr_init Subroutine” on page 1248)
subroutine.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_condattr_setpshared Subroutine

Purpose
Sets the value of the pshared attribute of a condition attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_condattr_setpshared (attr, pshared)
pthread_condattr_t *attr;
int pshared;

Description
The pthread_condattr_setpshared subroutine sets the value of the pshared attribute of the condition
attributes object attr. This attribute specifies the process sharing of the condition variable created with this
attributes object.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

attr Specifies the condition attributes object.
pshared Specifies the process sharing to set. It must have one of the following values:

PTHREAD_PROCESS_SHARED
Specifies that the condition variable can be used by any thread that has access to the
memory where it is allocated, even if these threads belong to different processes.

PTHREAD_PROCESS_PRIVATE
Specifies that the condition variable shall only be used by threads within the same process as
the thread that created it. This is the default value.

1252 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_condattr_setpshared subroutine is unsuccessful if the following is true:

EINVAL The attr or pshared parameters are not valid.

Related Information
The pthread_condattr_getpshared (“pthread_condattr_getpshared Subroutine” on page 1251) subroutine,
pthread_condattr_init or pthread_cond_init (“pthread_condattr_destroy or pthread_condattr_init
Subroutine” on page 1248) subroutine.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_create Subroutine

Purpose
Creates a new thread, initializes its attributes, and makes it runnable.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_create (thread, attr, start_routine (void *), arg)
pthread_t *thread;
const pthread_attr_t *attr;
void *(*start_routine) (void *);
void *arg;

Description
The pthread_create subroutine creates a new thread and initializes its attributes using the thread
attributes object specified by the attr parameter. The new thread inherits its creating thread’s signal mask;
but any pending signal of the creating thread will be cleared for the new thread.

The new thread is made runnable, and will start executing the start_routine routine, with the parameter
specified by the arg parameter. The arg parameter is a void pointer; it can reference any kind of data. It is
not recommended to cast this pointer into a scalar data type (int for example), because the casts may not
be portable.

After thread creation, the thread attributes object can be reused to create another thread, or deleted.

The thread terminates in the following cases:

v The thread returned from its starting routine (the main routine for the initial thread)

v The thread called the pthread_exit (“pthread_exit Subroutine” on page 1258) subroutine

Base Operating System (BOS) Runtime Services (A-P) 1253

v The thread was canceled

v The thread received a signal that terminated it

v The entire process is terminated due to a call to either the exec (“exec: execl, execle, execlp, execv,
execve, execvp, or exect Subroutine” on page 238) or exit (“exit, atexit, unatexit, _exit, or _Exit
Subroutine” on page 245) subroutines.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

When multiple threads are created in a process, the FULL_CORE flag is set for all signals. This means
that if a core file is produced, it will be much bigger than a single_threaded application. This is necessary
to debug multiple-threaded processes.

When a process uses the pthread_create function, and thus becomes multi-threaded, the FULL_CORE
flag is enabled for all signals. If a signal is received whose action is to terminate the process with a core
dump, a full dump (usually much larger than a regular dump) will be produced. This is necessary so that
multi-threaded programs can be debugged with the dbx command.

The following piece of pseudocode is an example of how to avoid getting a full core. Please note that in
this case, debug will not be possible. It may be easier to limit the size of the core with the ulimit
command.
struct sigaction siga;
siga.sa_handler = SIG_DFL;
siga.sa_flags = SA_RESTART;
SIGINITSET(siga.as_mask);
sigaction(<SIGNAL_NUMBER>, &siga, NULL);

The alternate stack is not inherited.

Parameters

thread Points to where the thread ID will be stored.
attr Specifies the thread attributes object to use in creating the thread. If the value is NULL, the

default attributes values will be used.
start_routine Points to the routine to be executed by the thread.
arg Points to the single argument to be passed to the start_routine routine.

Return Values
If successful, the pthread_create function returns zero. Otherwise, an error number is returned to indicate
the error.

Error Codes
The pthread_create function will fail if:

EAGAIN If WLM is running, the limit on the number of threads in the class may have been met.
EINVAL The value specified by attr is invalid.
EPERM The caller does not have appropriate permission to set the required scheduling parameters or

scheduling policy.

The pthread_create function will not return an error code of EINTR.

1254 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The core file format.

The dbx and ulimit commands.

The pthread_attr_init (“pthread_attr_init Subroutine” on page 1227) subroutine, pthread_attr_destroy
(“pthread_attr_destroy Subroutine” on page 1219) subroutine, pthread_exit (“pthread_exit Subroutine” on
page 1258) subroutine, pthread_cancel (“pthread_cancel Subroutine” on page 1241) subroutine,
pthread_kill (“pthread_kill Subroutine” on page 1275) subroutine, pthread_self (“pthread_self Subroutine”
on page 1305) subroutine, pthread_once (“pthread_once Subroutine” on page 1293) subroutine,
pthread_join (“pthread_join or pthread_detach Subroutine” on page 1272) subroutine, fork (“fork, f_fork,
or vfork Subroutine” on page 293) subroutine, and the pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_create_withcred_np Subroutine

Purpose
Creates a new thread with a new set of credentials, initializes its attributes, and makes it runnable.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/cred.h>

int pthread_create_withcred_np(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void),
void *arg, struct __pthrdscreds *credp)

Description
The pthread_create_withcred_np subroutine is equivalent to the pthread_create routine except that it
allows the new thread to be created and start running with the credentials specified by the credp
parameter. Only a process that has the credentials capability or is running with an effective user ID as the
root user is allowed to modify its credentials using this routine.

You can modify the following credentials:

v Effective, real and saved user IDs

v Effective, real and saved group IDs

v Supplementary group IDs

Note: The administrator can set the lowest user ID value to which a process with credentials capability is
allowed to switch its user IDs. A value of 0 can be specified for any of the preceding credentials to
indicate that the thread should inherit that specific credential from its caller. The administrator can
also set the lowest group ID to which a process with credentials capability is allowed to switch its
group IDs.

The __pc_flags flag field in the credp parameter provides options to inherit credentials from the parent
thread.

Base Operating System (BOS) Runtime Services (A-P) 1255

The newly created thread runs with per-thread credentials, and system calls such asgetuid or getgid
return the thread’s credentials. Similarly, when a file is opened or a message is received, the thread’s
credentials are used to determine whether the thread has privilege to execute the operation.

Parameters

thread Points to where the thread ID will be stored.
attr Specifies the thread attributes object to use in creating the thread. If the value is NULL,

the default attributes values are used.
start_routine Points to the routine to be executed by the thread.
arg Points to the single argument to be passed to the start_routine routine.
credp Points to a structure of type __pthrdscreds, which contains the credentials structure and

the inheritance flags. If set to NULL, the pthread_create_withcred_np subroutine is the
same as the pthread_create routine.
The __pc_cred field indicates the credentials to be assigned to the new pthread.
The __pc_flags field indicates which credentials, if any, are to be inherited from the parent
thread. This field is constructed by logically OR’ing one or more of the following values:

PTHRDSCREDS_INHERIT_UIDS
Inherit user IDs from the parent thread.

PTHRDSCREDS_INHERIT_GIDS
Inherit group IDs from the parent thread.

PTHRDSCREDS_INHERIT_GSETS
Inherit the group sets from the parent thread.

PTHRDSCREDS_INHERIT_CAPS
Inherit capabilities from the parent thread.

PTHRDSCREDS_INHERIT_PRIVS
Inherit privileges from the parent thread.

PTHRDSCREDS_INHERIT_ALL
Inherit all the credentials from the parent thread.

Security
Only a process that has the credentials capability or is running with an effective user ID (such as the root
user) is allowed to modify its credentials using this routine.

Return Values
If successful, the pthread_create_withcred_np subroutine returns 0. Otherwise, an error number is
returned to indicate the error.

Error Codes

EAGAIN If WLM is running, the limit on the number of threads in the class might have been met.
EFAULT The credp parameter points to a location outside of the allocated address space of the

process.
EINVAL The credentials specified in the credp parameter are not valid.
EPERM The caller does not have appropriate permission to set the credentials.

The pthread_create_withcred_np subroutine does not return an error code of EINTR.

Related Information
“pthread_create Subroutine” on page 1253

1256 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pthread_delay_np Subroutine

Purpose
Causes a thread to wait for a specified period.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_delay_np (interval)
struct timespec *interval;

Description
The pthread_delay_np subroutine causes the calling thread to delay execution for a specified period of
elapsed wall clock time. The period of time the thread waits is at least as long as the number of seconds
and nanoseconds specified in the interval parameter.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_delay_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

interval Points to the time structure specifying the wait period.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_delay_np subroutine is unsuccessful if the following is true:

EINVAL The interval parameter is not valid.

Related Information
The sleep, nsleep, or usleep subroutine.

pthread_equal Subroutine

Purpose
Compares two thread IDs.

Base Operating System (BOS) Runtime Services (A-P) 1257

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_equal (thread1, thread2)
pthread_t thread1;
pthread_t thread2;

Description
The pthread_equal subroutine compares the thread IDs thread1 and thread2. Since the thread IDs are
opaque objects, it should not be assumed that they can be compared using the equality operator (==).

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

thread1 Specifies the first ID to be compared.
thread2 Specifies the second ID to be compared.

Return Values
The pthread_equal function returns a nonzero value if thread1 and thread2 are equal; otherwise, zero is
returned.

If either thread1 or thread2 are not valid thread IDs, the behavior is undefined.

Related Information
The pthread_self (“pthread_self Subroutine” on page 1305) subroutine, the pthread_create
(“pthread_create Subroutine” on page 1253) subroutine, the pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_exit Subroutine

Purpose
Terminates the calling thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_exit (status)
void *status;

1258 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The pthread_exit subroutine terminates the calling thread safely, and stores a termination status for any
thread that may join the calling thread. The termination status is always a void pointer; it can reference
any kind of data. It is not recommended to cast this pointer into a scalar data type (int for example),
because the casts may not be portable. This subroutine never returns.

Unlike the exit subroutine, the pthread_exit subroutine does not close files. Thus any file opened and
used only by the calling thread must be closed before calling this subroutine. It is also important to note
that the pthread_exit subroutine frees any thread-specific data, including the thread’s stack. Any data
allocated on the stack becomes invalid, since the stack is freed and the corresponding memory may be
reused by another thread. Therefore, thread synchronization objects (mutexes and condition variables)
allocated on a thread’s stack must be destroyed before the thread calls the pthread_exit subroutine.

Returning from the initial routine of a thread implicitly calls the pthread_exit subroutine, using the return
value as parameter.

If the thread is not detached, its resources, including the thread ID, the termination status, the
thread-specific data, and its storage, are all maintained until the thread is detached or the process
terminates.

If another thread joins the calling thread, that thread wakes up immediately, and the calling thread is
automatically detached.

If the thread is detached, the cleanup routines are popped from their stack and executed. Then the
destructor routines from the thread-specific data are executed. Finally, the storage of the thread is
reclaimed and its ID is freed for reuse.

Terminating the initial thread by calling this subroutine does not terminate the process, it just terminates
the initial thread. However, if all the threads in the process are terminated, the process is terminated by
implicitly calling the exit subroutine with a return code of 0 if the last thread is detached, or 1 otherwise.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

status Points to an optional termination status, used by joining threads. If no termination status is desired, its
value should be NULL.

Return Values
The pthread_exit function cannot return to its caller.

Errors
No errors are defined.

The pthread_exit function will not return an error code of EINTR.

Related Information
The pthread_cleanup_push (“pthread_cleanup_pop or pthread_cleanup_push Subroutine” on page 1242)
subroutine, pthread_cleanup_pop (“pthread_cleanup_pop or pthread_cleanup_push Subroutine” on page
1242) subroutine, pthread_key_create (“pthread_key_create Subroutine” on page 1273) subroutine,
pthread_create (“pthread_create Subroutine” on page 1253) subroutine, pthread_join (“pthread_join or

Base Operating System (BOS) Runtime Services (A-P) 1259

pthread_detach Subroutine” on page 1272) subroutine, pthread_cancel (“pthread_cancel Subroutine” on
page 1241) subroutine, exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 245) subroutine, the
pthread.h file.

Terminating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_get_expiration_np Subroutine

Purpose
Obtains a value representing a desired expiration time.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_get_expiration_np (delta, abstime)
struct timespec *delta;
struct timespec *abstime;

Description
The pthread_get_expiration_np subroutine adds the interval delta to the current absolute system time
and returns a new absolute time. This new absolute time can be used as the expiration time in a call to
the pthread_cond_timedwait subroutine.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_get_expiration_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

delta Points to the time structure specifying the interval.
abstime Points to where the new absolute time will be stored.

Return Values
Upon successful completion, the new absolute time is returned via the abstime parameter, and 0 is
returned. Otherwise, an error code is returned.

Error Codes
The pthread_get_expiration_np subroutine is unsuccessful if the following is true:

EINVAL The delta or abstime parameters are not valid.

1260 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The pthread_cond_timedwait (“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page
1246) subroutine.

pthread_getconcurrency or pthread_setconcurrency Subroutine

Purpose
Gets or sets level of concurrency.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_getconcurrency (void);

int pthread_setconcurrency (new_level)
int new_level;

Description
The pthread_setconcurrency subroutine allows an application to inform the threads implementation of its
desired concurrency level, new_level. The actual level of concurrency provided by the implementation as a
result of this function call is unspecified.

If new_level is zero, it causes the implementation to maintain the concurrency level at its discretion as if
pthread_setconcurrency was never called.

The pthread_getconcurrency subroutine returns the value set by a previous call to the
pthread_setconcurrency subroutine. If the pthread_setconcurrency subroutine was not previously
called, this function returns zero to indicate that the implementation is maintaining the concurrency level.

When an application calls pthread_setconcurrency, it is informing the implementation of its desired
concurrency level. The implementation uses this as a hint, not a requirement.

Use of these subroutines changes the state of the underlying concurrency upon which the application
depends. Library developers are advised to not use the pthread_getconcurrency and
pthread_setconcurrency subroutines since their use may conflict with an applications use of these
functions.

Parameters

new_level Specifies the value of the concurrency level.

Return Value
If successful, the pthread_setconcurrency subroutine returns zero. Otherwise, an error number is
returned to indicate the error.

The pthread_getconcurrency subroutine always returns the concurrency level set by a previous call to
pthread_setconcurrency. If the pthread_setconcurrency subroutine has never been called,
pthread_getconcurrency returns zero.

Base Operating System (BOS) Runtime Services (A-P) 1261

Error Codes
The pthread_setconcurrency subroutine will fail if:

EINVAL The value specified by new_level is negative.
EAGAIN The value specific by new_level would cause a system resource to be exceeded.

Related Information
The pthread.h file.

pthread_getcpuclockid Subroutine

Purpose
Accesses a thread CPU-time clock.

Syntax
#include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread_id, clockid_t *clock_id);

Description
The pthread_getcpuclockid subroutine returns in the clock_id parameter the clock ID of the CPU-time
clock of the thread specified by thread_id, if the thread specified by thread_id exists.

Parameters

thread_id Specifies the ID of the pthread whose clock ID is requested.
clock_id Points to the clockid_t structure used to return the thread CPU-time clock ID of

thread_id.

Return Values
Upon successful completion, the pthread_getcpuclockid subroutine returns 0; otherwise, an error number
is returned to indicate the error.

Error Codes

ENOTSUP The subroutine is not supported with checkpoint-restart’ed processes.
ESRCH The value specified by thread_id does not refer to an existing thread.

Related Information
“clock_getcpuclockid Subroutine” on page 170, “clock_getres, clock_gettime, and clock_settime
Subroutine” on page 171, timer_create Subroutine, timer_gettime Subroutine

pthread_getrusage_np Subroutine

Purpose
Enable or disable pthread library resource collection, and retrieve resource information for any pthread in
the current process.

1262 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_getrusage_np (Ptid, RUsage, Mode)
pthread_t Ptid;
struct rusage *RUsage;
int Mode;

Description
The pthread_getrusage_np subroutine enables and disables resource collection in the pthread library and
collects resource information for any pthread in the current process. When compiled in 64-bit mode,
resource usage (rusage) counters are 64-bits for the calling thread. When compiled in 32-bit mode, rusage
counters are 32-bits for the calling pthread.

This functionality is enabled by default. The previous AIXTHREAD_ENRUSG used with
pthread_getrusage_np is no longer supported.

Parameters

Ptid Specifies the target thread. Must be within the current process.

Base Operating System (BOS) Runtime Services (A-P) 1263

RUsage Points to a buffer described in the /usr/include/sys/resource.h file. The fields are defined as
follows:

ru_utime
The total amount of time running in user mode.

ru_stime
The total amount of time spent in the system executing on behalf of the processes.

ru_maxrss
The maximum size, in kilobytes, of the used resident set size.

ru_ixrss
An integral value indicating the amount of memory used by the text segment that was also
shared among other processes. This value is expressed in units of kilobytes X
seconds-of-execution and is calculated by adding the number of shared memory pages in
use each time the internal system clock ticks, and then averaging over one-second
intervals.

ru_idrss
An integral value of the amount of unshared memory in the data segment of a process,
which is expressed in units of kilobytes X seconds-of-execution.

ru_minflt
The number of page faults serviced without any I/O activity. In this case, I/O activity is
avoided by reclaiming a page frame from the list of pages awaiting reallocation.

ru_majflt
The number of page faults serviced that required I/O activity.

ru_nswap
The number of times that a process was swapped out of main memory.

ru_inblock
The number of times that the file system performed input.

ru_oublock
The number of times that the file system performed output.
Note: The numbers that the ru_inblock and ru_oublock fields display account for real I/O
only; data supplied by the caching mechanism is charged only to the first process that reads
or writes the data.

ru_msgsnd
The number of IPC messages sent.

ru_msgrcv
The number of IPC messages received.

ru_nsignals
The number of signals delivered.

ru_nvcsw
The number of times a context switch resulted because a process voluntarily gave up the
processor before its time slice was completed. This usually occurs while the process waits
for a resource to become available.

ru_nivcsw
The number of times a context switch resulted because a higher priority process ran or
because the current process exceeded its time slice.

1264 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Mode Indicates which task the subroutine should perform. Acceptable values are as follows:

PTHRDSINFO_RUSAGE_START
Returns the current resource utilization, which will be the start measurement.

PTHRDSINFO_RUSAGE_STOP
Returns total current resource utilization since the last time a
PTHRDSINFO_RUSAGE_START was performed. If the task
PTHRDSINFO_RUSAGE_START was not performed, then the resource information
returned is the accumulated value since the start of the pthread.

PTHRDSINFO_RUSAGE_COLLECT
Collects resource information for the target thread. If the task
PTHRDSINFO_RUSAGE_START was not performed, then the resource information
returned is the accumulated value since the start of the pthread.

Return Values
Upon successful completion, the pthread_getrusage_np subroutine returns a value of 0. Otherwise, an
error number is returned to indicate the error.

Error Codes

The pthread_getrusage_np subroutine fails if:
EINVAL The address specified for RUsage is NULL, not valid, or a null value for Ptid was given.
ESRCH Either no thread could be found corresponding to the ID thread of the Ptid thread or the thread

corresponding to the Ptid thread ID was not in the current process.

Related Information
The pthreads.h subroutine.

pthread_getschedparam Subroutine

Purpose
Returns the current schedpolicy and schedparam attributes of a thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_getschedparam (thread, schedpolicy, schedparam)
pthread_t thread;
int *schedpolicy;
struct sched_param *schedparam;

Description
The pthread_getschedparam subroutine returns the current schedpolicy and schedparam attributes of the
thread thread. The schedpolicy attribute specifies the scheduling policy of a thread. It may have one of the
following values:

SCHED_FIFO Denotes first-in first-out scheduling.

Base Operating System (BOS) Runtime Services (A-P) 1265

SCHED_RR Denotes round-robin scheduling.
SCHED_OTHER Denotes the default operating system scheduling policy. It is the default value.

The schedparam attribute specifies the scheduling parameters of a thread created with this attributes
object. The sched_priority field of the sched_param structure contains the priority of the thread. It is an
integer value.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

The implementation of this subroutine is dependent on the priority scheduling POSIX option. The priority
scheduling POSIX option is implemented in the operating system.

Parameters

thread Specifies the target thread.
schedpolicy Points to where the schedpolicy attribute value will be stored.
schedparam Points to where the schedparam attribute value will be stored.

Return Values
Upon successful completion, the current value of the schedpolicy and schedparam attributes are returned
via the schedpolicy and schedparam parameters, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_getschedparam subroutine is unsuccessful if the following is true:

ESRCH The thread thread does not exist.

Related Information
The pthread_attr_getschedparam (“pthread_attr_getschedparam Subroutine” on page 1223) subroutine.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_getspecific or pthread_setspecific Subroutine

Purpose
Returns and sets the thread-specific data associated with the specified key.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void *pthread_getspecific (key)
pthread_key_t key;

1266 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int pthread_setspecific (key, value)
pthread_key_t key;
const void *value;

Description
The pthread_setspecific function associates a thread-specific value with a key obtained via a previous
call to pthread_key_create. Different threads may bind different values to the same key. These values are
typically pointers to blocks of dynamically allocated memory that have been reserved for use by the calling
thread.

The pthread_getspecific function returns the value currently bound to the specified key on behalf of the
calling thread.

The effect of calling pthread_setspecific or pthread_getspecific with a key value not obtained from
pthread_key_create or after key has been deleted with pthread_key_delete is undefined.

Both pthread_setspecific and pthread_getspecific may be called from a thread-specific data destructor
function. However, calling pthread_setspecific from a destructor may result in lost storage or infinite
loops.

Parameters

key Specifies the key to which the value is bound.
value Specifies the new thread-specific value.

Return Values
The function pthread_getspecific returns the thread-specific data value associated with the given key. If
no thread-specific data value is associated with key, then the value NULL is returned. If successful, the
pthread_setspecific function returns zero. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_setspecific function will fail if:

ENOMEM Insufficient memory exists to associate the value with the key.

The pthread_setspecific function may fail if:

EINVAL The key value is invalid.

No errors are returned from pthread_getspecific.

These functions will not return an error code of EINTR.

Related Information
The pthread_key_create (“pthread_key_create Subroutine” on page 1273) subroutine, the pthread.h file.

Thread-Specific Data in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Base Operating System (BOS) Runtime Services (A-P) 1267

pthread_getthrds_np Subroutine

Purpose
Retrieves register and stack information for threads.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_getthrds_np (thread, mode, buf, bufsize, regbuf, regbufsize)
pthread_t *ptid;
int mode;
struct __pthrdsinfo *buf;
int bufsize;
void *regbuf;
int *regbufsize;

Description
The pthread_getthrds_np subroutine retrieves information on the state of the thread thread and its
underlying kernel thread, including register and stack information.

Parameters

thread The pointer to the thread. On input it identifies the target thread of the operation, or 0 to operate
on the first entry in the list of threads. On output it identifies the next entry in the list of threads,
or 0 if the end of the list has been reached. pthread_getthrds_np can be used to traverse the
whole list of threads by starting with thread pointing to 0 and calling pthread_getthrds_np
repeatedly until it returns with thread pointing to 0.

1268 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

mode Specifies the type of query. These values can be bitwise or’ed together to specify more than one
type of query.

PTHRDSINFO_QUERY_GPRS
get general purpose registers

PTHRDSINFO_QUERY_SPRS
get special purpose registers

PTHRDSINFO_QUERY_FPRS
get floating point registers

PTHRDSINFO_QUERY_REGS
get all of the above registers

PTHRDSINFO_QUERY_TID
get the kernel thread id

PTHRDSINFO_QUERY_TLS
get the thread-local storage information.

This value can be or’ed with any value of the mode parameter. The thread-local storage
information is returned to the caller in a caller-provided buffer, regbuf. If the buffer is too
small for the data, the buffer is filled up to the end of the buffer and ERANGE is
returned. The caller also provides the size of the buffer, regbufsize, which on return is
changed to the size of the thread local storage information even if it does not fit into a
buffer.

The thread-local storage information is returned in form of an array of touplets: memory
address and TLS region (unique number assigned by the loader). The TLS region is also
included in the loader info structure returned by loadquery. If you need any additional
information such as TLS size, you can find it in that structure.

#typedef struct __pthrdstlsinfo{
void *pti_vaddr;
int pti_region;

} PTHRDS_TLS_INFO;

PTHRDSINFO_QUERY_EXTCTX
get the extended machine context

PTHRDSINFO_QUERY_ALL
get everything (except for the extended context, which must be explicitly requested)

Base Operating System (BOS) Runtime Services (A-P) 1269

buf Specifies the address of the struct __pthrdsinfo structure that will be filled in by
pthread_getthrds_np. On return, this structure holds the following data (depending on the type
of query requested):

__pi_ptid
The thread’s thread identifier

__pi_tid
The thread’s kernel thread id, or 0 if the thread does not have a kernel thread

__pi_state
The state of the thread, equal to one of the following:

PTHRDSINFO_STATE_RUN
The thread is running

PTHRDSINFO_STATE_READY
The thread is ready to run

PTHRDSINFO_STATE_IDLE
The thread is being initialized

PTHRDSINFO_STATE_SLEEP
The thread is sleeping

PTHRDSINFO_STATE_TERM
The thread is terminated

PTHRDSINFO_STATE_NOTSUP
Error condition

__pi_suspended
1 if the thread is suspended, 0 if it is not

__pi_returned
The return status of the thread

__pi_ustk
The thread’s user stack pointer

__pi_context
The thread’s context (register information)

If the PTHRDSINFO_QUERY_EXTCTX mode is requested, then the buf specifies the address of
a _pthrdsinfox structure, which, in addition to all of the preceding information, also contains the
following:

__pi_ec
The thread’s extended context (extended register state)

bufsize The size of the __pthrdsinfo or __pthrdsinfox structure in bytes.
regbuf The location of the buffer to hold the register save data and to pass the TLS information from the

kernel if the thread is in a system call.
regbufsize The pointer to the size of the regbuf buffer. On input, it identifies the maximum size of the buffer

in bytes. On output, it identifies the number of bytes of register save data and pass the TLS
information. If the thread is not in a system call, there is no register save data returned from the
kernel, and regbufsize is 0. If the size of the register save data is larger than the input value of
regbufsize, the number of bytes specified by the input value of regbufsize is copied to regbuf,
pthread_getthrds_np() returns ERANGE, and the output value of regbufsize specifies the
number of bytes required to hold all of the register save data.

Return Values
If successful, the pthread_getthrds_np function returns zero. Otherwise, an error number is returned to
indicate the error.

1270 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The pthread_getthrds_np function will fail if:

EINVAL Either thread or buf is NULL, or bufsize is not equal to the size of the __pthrdsinfo structure in the
library.

ESRCH No thread could be found corresponding to that specified by the thread ID thread.
ERANGE regbuf was not large enough to handle all of the register save data.
ENOMEM Insufficient memory exists to perform this operation.

Related Information
The pthread.h file.

pthread_getunique_np Subroutine

Purpose
Returns the sequence number of a thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_getunique_np (thread, sequence)
pthread_t *thread;
int *sequence;

Description
The pthread_getunique_np subroutine returns the sequence number of the thread thread. The sequence
number is a number, unique to each thread, associated with the thread at creation time.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_getunique_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

thread Specifies the thread.
sequence Points to where the sequence number will be stored.

Return Values
Upon successful completion, the sequence number is returned via the sequence parameter, and 0 is
returned. Otherwise, an error code is returned.

Base Operating System (BOS) Runtime Services (A-P) 1271

Error Codes
The pthread_getunique_np subroutine is unsuccessful if the following is true:

EINVAL The thread or sequence parameters are not valid.
ESRCH The thread thread does not exist.

Related Information
The pthread_self (“pthread_self Subroutine” on page 1305) subroutine.

pthread_join or pthread_detach Subroutine

Purpose
Blocks or detaches the calling thread until the specified thread terminates.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_join (thread, status)
pthread_t thread;
void **status;

int pthread_detach (thread)
pthread_t thread;

Description
The pthread_join subroutine blocks the calling thread until the thread thread terminates. The target
thread’s termination status is returned in the status parameter.

If the target thread is already terminated, but not yet detached, the subroutine returns immediately. It is
impossible to join a detached thread, even if it is not yet terminated. The target thread is automatically
detached after all joined threads have been woken up.

This subroutine does not itself cause a thread to be terminated. It acts like the pthread_cond_wait
subroutine to wait for a special condition.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

The pthread_detach subroutine is used to indicate to the implementation that storage for the thread
whose thread ID is in the location thread can be reclaimed when that thread terminates. This storage shall
be reclaimed on process exit, regardless of whether the thread has been detached or not, and may
include storage for thread return value. If thread has not yet terminated, pthread_detach shall not cause it
to terminate. Multiple pthread_detach calls on the same target thread causes an error.

Parameters

thread Specifies the target thread.
status Points to where the termination status of the target thread will be stored. If the value is NULL, the

termination status is not returned.

1272 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
If successful, the pthread_join function returns zero. Otherwise, an error number is returned to indicate
the error.

Error Codes
The pthread_join and pthread_detach functions will fail if:

EINVAL The implementation has detected that the value specified by thread does not refer to a joinable thread.
ESRCH No thread could be found corresponding to that specified by the given thread ID.

The pthread_join function will fail if:

EDEADLK The value of thread specifies the calling thread.

The pthread_join function will not return an error code of EINTR.

Related Information
The pthread_exit (“pthread_exit Subroutine” on page 1258) subroutine, pthread_create (“pthread_create
Subroutine” on page 1253) subroutine, wait subroutine, pthread_cond_wait or pthread_cond_timedwait
(“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1246) subroutines, the pthread.h
file.

Joining Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_key_create Subroutine

Purpose
Creates a thread-specific data key.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_key_create (key, destructor)
pthread_key_t * key;
void (* destructor) (void *);

Description
The pthread_key_create subroutine creates a thread-specific data key. The key is shared among all
threads within the process, but each thread has specific data associated with the key. The thread-specific
data is a void pointer, initially set to NULL.

The application is responsible for ensuring that this subroutine is called only once for each requested key.
This can be done, for example, by calling the subroutine before creating other threads, or by using the
one-time initialization facility.

Base Operating System (BOS) Runtime Services (A-P) 1273

Typically, thread-specific data are pointers to dynamically allocated storage. When freeing the storage, the
value should be set to NULL. It is not recommended to cast this pointer into scalar data type (int for
example), because the casts may not be portable, and because the value of NULL is implementation
dependent.

An optional destructor routine can be specified. It will be called for each thread when it is terminated and
detached, after the call to the cleanup routines, if the specific value is not NULL. Typically, the destructor
routine will release the storage thread-specific data. It will receive the thread-specific data as a parameter.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

key Points to where the key will be stored.
destructor Points to an optional destructor routine, used to cleanup data on thread termination. If no cleanup

is desired, this pointer should be NULL.

Return Values
If successful, the pthread_key_create function stores the newly created key value at *key and returns
zero. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_key_create function will fail if:

EAGAIN The system lacked the necessary resources to create another thread-specific data key, or the
system-imposed limit on the total number of keys per process PTHREAD_KEYS_MAX has been
exceeded.

ENOMEM Insufficient memory exists to create the key.

The pthread_key_create function will not return an error code of EINTR.

Related Information
The pthread_exit (“pthread_exit Subroutine” on page 1258) subroutine, pthread_key_delete
(“pthread_key_delete Subroutine”) subroutine, pthread_getspecific (“pthread_getspecific or
pthread_setspecific Subroutine” on page 1266) subroutne, pthread_once (“pthread_once Subroutine” on
page 1293) subroutine, pthread.h file.

Thread-Specific Data in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_key_delete Subroutine

Purpose
Deletes a thread-specific data key.

Library
Threads Library (libpthreads.a)

1274 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <pthread.h>

int pthread_key_delete (key)
pthread_key_t key;

Description
The pthread_key_delete subroutine deletes the thread-specific data key key, previously created with the
pthread_key_create subroutine. The application must ensure that no thread-specific data is associated
with the key. No destructor routine is called.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

key Specifies the key to delete.

Return Values
If successful, the pthread_key_delete function returns zero. Otherwise, an error number is returned to
indicate the error.

Error Codes
The pthread_key_delete function will fail if:

EINVAL The key value is invalid.

The pthread_key_delete function will not return an error code of EINTR.

Related Information
The pthread_key_create (“pthread_key_create Subroutine” on page 1273) subroutine, pthread.h file.

Thread-Specific Data in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_kill Subroutine

Purpose
Sends a signal to the specified thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <signal.h>

int pthread_kill (thread, signal)
pthread_t thread;
int signal;

Base Operating System (BOS) Runtime Services (A-P) 1275

Description
The pthread_kill subroutine sends the signal signal to the thread thread. It acts with threads like the kill
subroutine with single-threaded processes.

If the receiving thread has blocked delivery of the signal, the signal remains pending on the thread until
the thread unblocks delivery of the signal or the action associated with the signal is set to ignore the
signal.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

thread Specifies the target thread for the signal.
signal Specifies the signal to be delivered. If the signal value is 0, error checking is performed, but no signal is

delivered.

Return Values
Upon successful completion, the function returns a value of zero. Otherwise the function returns an error
number. If the pthread_kill function fails, no signal is sent.

Error Codes
The pthread_kill function will fail if:

ESRCH No thread could be found corresponding to that specified by the given thread ID.
EINVAL The value of the signal parameter is an invalid or unsupported signal number.

The pthread_kill function will not return an error code of EINTR.

Related Information
The kill (“kill or killpg Subroutine” on page 582) subroutine, pthread_cancel (“pthread_cancel Subroutine”
on page 1241) subroutine, pthread_create (“pthread_create Subroutine” on page 1253) subroutine,
sigaction subroutine, pthread_self (“pthread_self Subroutine” on page 1305) subroutine, raise
subroutine, pthread.h file.

Signal Management in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_lock_global_np Subroutine

Purpose
Locks the global mutex.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_lock_global_np ()

1276 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The pthread_lock_global_np subroutine locks the global mutex. If the global mutex is currently held by
another thread, the calling thread waits until the global mutex is unlocked. The subroutine returns with the
global mutex locked by the calling thread.

Use the global mutex when calling a library package that is not designed to run in a multithreaded
environment. (Unless the documentation for a library function specifically states that it is compatible with
multithreading, assume that it is not compatible; in other words, assume it is nonreentrant.)

The global mutex is one lock. Any code that calls any function that is not known to be reentrant uses the
same lock. This prevents dependencies among threads calling library functions and those functions calling
other functions, and so on.

The global mutex is a recursive mutex. A thread that has locked the global mutex can relock it without
deadlocking. The thread must then call the pthread_unlock_global_np subroutine as many times as it
called this routine to allow another thread to lock the global mutex.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_lock_global_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Related Information
The pthread_mutex_lock (“pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock
Subroutine” on page 1280) subroutine, pthread_unlock_global_np (“pthread_unlock_global_np
Subroutine” on page 1315) subroutine.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_mutex_init or pthread_mutex_destroy Subroutine

Purpose
Initializes or destroys a mutex.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutex_init (mutex, attr)
pthread_mutex_t *mutex;
const pthread_mutexattr_t *attr;

int pthread_mutex_destroy (mutex)
pthread_mutex_t *mutex;

Base Operating System (BOS) Runtime Services (A-P) 1277

Description
The pthread_mutex_init function initializes the mutex referenced by mutex with attributes specified by
attr. If attr is NULL, the default mutex attributes are used; the effect is the same as passing the address of
a default mutex attributes object. Upon successful initialization, the state of the mutex becomes initialized
and unlocked.

Attempting to initialize an already initialized mutex results in undefined behavior.

The pthread_mutex_destroy function destroys the mutex object referenced by mutex; the mutex object
becomes, in effect, uninitialized. An implementation may cause pthread_mutex_destroy to set the object
referenced by mutex to an invalid value. A destroyed mutex object can be re-initialized using
pthread_mutex_init; the results of otherwise referencing the object after it has been destroyed are
undefined.

It is safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked mutex results in
undefined behavior.

In cases where default mutex attributes are appropriate, the macro PTHREAD_MUTEX_INITIALIZER can
be used to initialize mutexes that are statically allocated. The effect is equivalent to dynamic initialization
by a call to pthread_mutex_init with parameter attr specified as NULL, except that no error checks are
performed.

Parameters

mutex Specifies the mutex to initialize or delete.
attr Specifies the mutex attributes object.

Return Values
If successful, the pthread_mutex_init and pthread_mutex_destroy functions return zero. Otherwise, an
error number is returned to indicate the error. The EBUSY and EINVAL error checks act as if they were
performed immediately at the beginning of processing for the function and cause an error return prior to
modifying the state of the mutex specified by mutex.

Error Codes
The pthread_mutex_init function will fail if:

ENOMEM Insufficient memory exists to initialize the mutex.
EINVAL The value specified by attr is invalid.
EPERM The caller does not have the privilege to perform the operation in a strictly standards conforming

environment where environment variable XPG_SUS_ENV=ON.

The pthread_mutex_destroy function may fail if:

EBUSY The implementation has detected an attempt to destroy the object referenced by mutex while it is locked
or referenced (for example, while being used in a pthread_cond_waitor pthread_cond_timedwait by
another thread.

EINVAL The value specified by mutex is invalid.

These functions will not return an error code of EINTR.

1278 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The pthread_mutex_lock, pthread_mutex_trylock (“pthread_mutex_lock, pthread_mutex_trylock, or
pthread_mutex_unlock Subroutine” on page 1280) subroutine, pthread_mutex_unlock
(“pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1280)
subroutine, pthread_mutexattr_setpshared (“pthread_mutexattr_getpshared or
pthread_mutexattr_setpshared Subroutine” on page 1289) subroutine.

The pthread.h file.

pthread_mutex_getprioceiling or pthread_mutex_setprioceiling
Subroutine

Purpose
Gets and sets the priority ceiling of a mutex.

Syntax
#include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex,
int *restrict prioceiling);

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

Description
The pthread_mutex_getprioceiling subroutine returns the current priority ceiling of the mutex.

The pthread_mutex_setprioceiling subroutine either locks the mutex if it is unlocked, or blocks until it
can successfully lock the mutex, then it changes the mutex’s priority ceiling and releases the mutex. When
the change is successful, the previous value of the priority ceiling shall be returned in old_ceiling. The
process of locking the mutex need not adhere to the priority protect protocol.

If the pthread_mutex_setprioceiling subroutine fails, the mutex priority ceiling is not changed.

Return Values
If successful, the pthread_mutex_getprioceiling and pthread_mutex_setprioceiling subroutines return
zero; otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutex_getprioceiling and pthread_mutex_setprioceilingsubroutines can fail if:

EINVAL The priority requested by the prioceiling parameter is out of range.
EINVAL The value specified by the mutex parameter does not refer to a currently existing mutex.
ENOSYS This function is not supported (draft 7).
ENOTSUP This function is not supported together with checkpoint/restart.
EPERM The caller does not have the privilege to perform the operation in a strictly standards conforming

environment where environment variable XPG_SUS_ENV=ON.

Related Information
The “pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1277, “pthread_mutex_lock,
pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1280, “pthread_mutex_timedlock
Subroutine” on page 1282.

Base Operating System (BOS) Runtime Services (A-P) 1279

The pthread.h file.

PTHREAD_MUTEX_INITIALIZER Macro

Purpose
Initializes a static mutex with default attributes.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Description
The PTHREAD_MUTEX_INITIALIZER macro initializes the static mutex mutex, setting its attributes to
default values. This macro should only be used for static mutexes, as no error checking is performed.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Related Information
The pthread_mutex_init (“pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1277)
subroutine.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock
Subroutine

Purpose
Locks and unlocks a mutex.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutex_lock (mutex)
pthread_mutex_t *mutex;

int pthread_mutex_trylock (mutex)
pthread_mutex_t *mutex;

int pthread_mutex_unlock (mutex)
pthread_mutex_t *mutex;

1280 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The mutex object referenced by the mutex parameter is locked by calling pthread_mutex_lock. If the
mutex is already locked, the calling thread blocks until the mutex becomes available. This operation
returns with the mutex object referenced by the mutex parameter in the locked state with the calling thread
as its owner.

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection is not provided. Attempting to
relock the mutex causes deadlock. If a thread attempts to unlock a mutex that it has not locked or a mutex
which is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking is provided. If a thread
attempts to relock a mutex that it has already locked, an error will be returned. If a thread attempts to
unlock a mutex that it has not locked or a mutex which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains the concept of a lock
count. When a thread successfully acquires a mutex for the first time, the lock count is set to one. Each
time the thread relocks this mutex, the lock count is incremented by one. Each time the thread unlocks the
mutex, the lock count is decremented by one. When the lock count reaches zero, the mutex becomes
available for other threads to acquire. If a thread attempts to unlock a mutex that it has not locked or a
mutex which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex results in
undefined behavior. Attempting to unlock the mutex if it was not locked by the calling thread results in
undefined behavior. Attempting to unlock the mutex if it is not locked results in undefined behavior.

The function pthread_mutex_trylock is identical to pthread_mutex_lock except that if the mutex object
referenced by the mutex parameter is currently locked (by any thread, including the current thread), the
call returns immediately.

The pthread_mutex_unlock function releases the mutex object referenced by mutex. The manner in
which a mutex is released is dependent upon the mutex’s type attribute. If there are threads blocked on
the mutex object referenced by the mutex parameter when pthread_mutex_unlock is called, resulting in
the mutex becoming available, the scheduling policy is used to determine which thread will acquire the
mutex. (In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex becomes available when the
count reaches zero and the calling thread no longer has any locks on this mutex).

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the thread
resumes waiting for the mutex as if it was not interrupted.

Parameter

mutex Specifies the mutex to lock.

Return Values
If successful, the pthread_mutex_lock and pthread_mutex_unlock functions return zero. Otherwise, an
error number is returned to indicate the error.

The function pthread_mutex_trylock returns zero if a lock on the mutex object referenced by the mutex
parameter is acquired. Otherwise, an error number is returned to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1281

Error Codes
The pthread_mutex_trylock function will fail if:

EBUSY The mutex could not be acquired because it was already locked.

The pthread_mutex_lock, pthread_mutex_trylock and pthread_mutex_unlock functions will fail if:

EINVAL The value specified by the mutex parameter does not refer to an initialized mutex object.

The pthread_mutex_lock function will fail if:

EDEADLK The current thread already owns the mutex and the mutex type is
PTHREAD_MUTEX_ERRORCHECK.

The pthread_mutex_unlock function will fail if:

EPERM The current thread does not own the mutex and the mutex type is not PTHREAD_MUTEX_NORMAL.

These functions will not return an error code of EINTR.

Related Information
The pthread_mutex_init or pthread_mutex_destroy (“pthread_mutex_init or pthread_mutex_destroy
Subroutine” on page 1277) subroutine, pthread.h file.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_mutex_timedlock Subroutine

Purpose
Locks a mutex (ADVANCED REALTIME).

Syntax
#include <pthread.h>
#include <time.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abs_timeout);

Description
The pthread_mutex_timedlock() function locks the mutex object referenced by mutex. If the mutex is
already locked, the calling thread blocks until the mutex becomes available, as in the
pthread_mutex_lock() function. If the mutex cannot be locked without waiting for another thread to unlock
the mutex, this wait terminates when the specified timeout expires.

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock
on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or
when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

1282 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec data
type is defined in the <time.h> header.

The function never fails with a timeout if the mutex can be locked immediately. The validity of the
abs_timeout parameter does not need to be checked if the mutex can be locked immediately.

As a consequence of the priority inheritance rules (for mutexes initialized with the PRIO_INHERIT
protocol), if a timed mutex wait is terminated because its timeout expires, the priority of the owner of the
mutex adjusts as necessary to reflect the fact that this thread is no longer among the threads waiting for
the mutex.

Application Usage
The pthread_mutex_timedlock() function is part of the Threads and Timeouts options and do not need
to be provided on all implementations.

Return Values
If successful, the pthread_mutex_timedlock() function returns 0; otherwise, an error number is returned
to indicate the error.

Error Codes
The pthread_mutex_timedlock() function fails if:

[EDEADLK] The current thread already owns the mutex.
[EINVAL] The mutex was created with the protocol attribute having the value

PTHREAD_PRIO_PROTECT, and the calling thread’s priority is higher than the
mutex’s current priority ceiling.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter specified
a nanoseconds field value less than 0 or greater than or equal to 1000 million.

[EINVAL] abs_timeout is a NULL pointer.
[EINVAL] The value specified by mutex does not refer to an initialized mutex object.
[ETIMEDOUT] The mutex could not be locked before the specified timeout expired.

This function does not return an error code of [EINTR].

Related Information
“mq_receive, mq_timedreceive Subroutine” on page 874, “posix_trace_getnext_event,
posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on page 1173,
“pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine,” “pthread_mutex_lock,
pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1280, “pthread_rwlock_timedrdlock
Subroutine” on page 1297.

The sem_timedwait subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine

Purpose
Initializes and destroys mutex attributes.

Base Operating System (BOS) Runtime Services (A-P) 1283

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_init (attr)
pthread_mutexattr_t *attr;

int pthread_mutexattr_destroy (attr)
pthread_mutexattr_t *attr;

Description
The function pthread_mutexattr_init initializes a mutex attributes object attr with the default value for all
of the attributes defined by the implementation.

The effect of initializing an already initialized mutex attributes object is undefined.

After a mutex attributes object has been used to initialize one or more mutexes, any function affecting the
attributes object (including destruction) does not affect any previously initialized mutexes.

The pthread_mutexattr_destroy function destroys a mutex attributes object; the object becomes, in
effect, uninitialized. An implementation may cause pthread_mutexattr_destroy to set the object
referenced by attr to an invalid value. A destroyed mutex attributes object can be re-initialized using
pthread_mutexattr_init; the results of otherwise referencing the object after it has been destroyed are
undefined.

Parameters

attr Specifies the mutex attributes object to initialize or delete.

Return Values
Upon successful completion, pthread_mutexattr_init and pthread_mutexattr_destroy return zero.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutexattr_init function will fail if:

ENOMEM Insufficient memory exists to initialize the mutex attributes object.

The pthread_mutexattr_destroy function will fail if:

EINVAL The value specified by attr is invalid.

These functions will not return EINTR.

Related Information
The pthread_create (“pthread_create Subroutine” on page 1253) subroutine, pthread_mutex_init or
pthread_mutex_destroy (“pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1277)
subroutine, pthread_cond_destroy or pthread_cond_init (“pthread_cond_destroy or pthread_cond_init
Subroutine” on page 1243) subroutine, pthread.h file.

1284 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_mutexattr_getkind_np Subroutine

Purpose
Returns the value of the kind attribute of a mutex attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_getkind_np (attr, kind)
pthread_mutexattr_t *attr;
int *kind;

Description
The pthread_mutexattr_getkind_np subroutine returns the value of the kind attribute of the mutex
attributes object attr. This attribute specifies the kind of the mutex created with this attributes object. It may
have one of the following values:

MUTEX_FAST_NP Denotes a fast mutex. A fast mutex can be locked only once. If the same
thread unlocks twice the same fast mutex, the thread will deadlock. Any
thread can unlock a fast mutex. A fast mutex is not compatible with the
priority inheritance protocol.

MUTEX_RECURSIVE_NP Denotes a recursive mutex. A recursive mutex can be locked more than
once by the same thread without causing that thread to deadlock. The
thread must then unlock the mutex as many times as it locked it. Only the
thread that locked a recursive mutex can unlock it. A recursive mutex must
not be used with condition variables.

MUTEX_NONRECURSIVE_NP Denotes the default non-recursive POSIX compliant mutex.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_mutexattr_getkind_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

attr Specifies the mutex attributes object.
kind Points to where the kind attribute value will be stored.

Base Operating System (BOS) Runtime Services (A-P) 1285

Return Values
Upon successful completion, the value of the kind attribute is returned via the kind parameter, and 0 is
returned. Otherwise, an error code is returned.

Error Codes
The pthread_mutexattr_getkind_np subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

Related Information
The pthread_mutexattr_setkind_np (“pthread_mutexattr_setkind_np Subroutine” on page 1291)
subroutine.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_mutexattr_getprioceiling or pthread_mutexattr_setprioceiling
Subroutine

Purpose
Gets and sets the prioceiling attribute of the mutex attributes object.

Syntax
#include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *
restrict attr, int *restrict prioceiling);

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

Description
The pthread_mutexattr_getprioceiling and pthread_mutexattr_setprioceiling subroutines, respectively,
get and set the priority ceiling attribute of a mutex attributes object pointed to by the attr parameter, which
was previously created by the pthread_mutexattr_init subroutine.

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of the prioceiling
parameter are within the maximum range of priorities defined by SCHED_FIFO.

The prioceiling parameter defines the priority ceiling of initialized mutexes, which is the minimum priority
level at which the critical section guarded by the mutex is executed. In order to avoid priority inversion, the
priority ceiling of the mutex is set to a priority higher than or equal to the highest priority of all the threads
that may lock that mutex. The values of the prioceiling parameter are within the maximum range of
priorities defined under the SCHED_FIFO scheduling policy.

Return Values
Upon successful completion, the pthread_mutexattr_getprioceiling and
pthread_mutexattr_setprioceiling subroutines return zero; otherwise, an error number shall be returned
to indicate the error.

1286 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The pthread_mutexattr_getprioceiling and pthread_mutexattr_setprioceiling subroutines can fail if:

EINVAL The value specified by the attr or prioceiling parameter is invalid.
ENOSYS This function is not supported (draft 7).
ENOTSUP This function is not supported together with checkpoint/restart.
EPERM The caller does not have the privilege to perform the operation in a strictly standards conforming

environment where environment variable XPG_SUS_ENV=ON.

Related Information
The “pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1277, “pthread_mutex_lock,
pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1280, “pthread_mutex_timedlock
Subroutine” on page 1282.

The pthread.h file.

pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol
Subroutine

Purpose
Gets and sets the protocol attribute of the mutex attributes object.

Syntax
#include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *
restrict attr, int *restrict protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

Description
The pthread_mutexattr_getprotocol subroutine and pthread_mutexattr_setprotocol subroutine get and
set the protocol parameter of a mutex attributes object pointed to by the attr parameter, which was
previously created by the pthread_mutexattr_init subroutine.

The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of the protocol
parameter can be one of the following, which are defined in the pthread.h header file:

v PTHREAD_PRIO_NONE

v PTHREAD_PRIO_INHERIT

v PTHREAD_PRIO_PROTECT

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority and
scheduling are not affected by its mutex ownership.

When a thread is blocking higher priority threads because of owning one or more mutexes with the
PTHREAD_PRIO_INHERIT protocol attribute, it executes at the higher of its priority or the priority of the
highest priority thread waiting on any of the mutexes owned by this thread and initialized with this protocol.

When a thread owns one or more mutexes initialized with the PTHREAD_PRIO_PROTECT protocol, it
executes at the higher of its priority or the highest of the priority ceilings of all the mutexes owned by this
thread and initialized with this attribute, regardless of whether other threads are blocked on any of these
mutexes. Privilege checking is necessary when the mutex priority ceiling is more favored than current

Base Operating System (BOS) Runtime Services (A-P) 1287

thread priority and the thread priority must be changed. The pthread_mutex_lock subroutine does not fail
because of inappropriate privileges. Locking succeeds in this case, but no boosting is performed.

While a thread is holding a mutex which has been initialized with the PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT protocol attributes, it is not subject to being moved to the tail of the
scheduling queue at its priority in the event that its original priority is changed, such as by a call to the
sched_setparam subroutine. Likewise, when a thread unlocks a mutex that has been initialized with the
PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attributes, it is not subject to being
moved to the tail of the scheduling queue at its priority in the event that its original priority is changed.

If a thread simultaneously owns several mutexes initialized with different protocols, it executes at the
highest of the priorities that it would have obtained by each of these protocols.

When a thread makes a call to the pthread_mutex_lock subroutine, the mutex was initialized with the
protocol attribute having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked because
the mutex is owned by another thread, that owner thread inherits the priority level of the calling thread as
long as it continues to own the mutex. The implementation updates its execution priority to the maximum
of its assigned priority and all its inherited priorities. Furthermore, if this owner thread itself becomes
blocked on another mutex, the same priority inheritance effect shall be propagated to this other owner
thread, in a recursive manner.

Behavior prior to AIX 5.3 is maintained under the non-POSIX protocol PTHREAD_PRIO_DEFAULT.

Return Values
Upon successful completion, the pthread_mutexattr_getprotocol subroutine and the
pthread_mutexattr_setprotocol subroutine return zero; otherwise, an error number shall be returned to
indicate the error.

Error Codes
The pthread_mutexattr_setprotocol subroutine fails if:

ENOTSUP The value specified by the protocol parameter is an unsupported value.

The pthread_mutexattr_getprotocol subroutine and pthread_mutexattr_setprotocol subroutine can fail
if:

EINVAL The value specified by the attr parameter or the protocol parameter is invalid.
ENOSYS This function is not supported (draft 7).
ENOTSUP This function is not supported together with checkpoint/restart.
EPERM The caller does not have the privilege to perform the operation in a strictly standards conforming

environment where environment variable XPG_SUS_ENV=ON.

Related Information
The “pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1277, “pthread_mutex_lock,
pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1280, “pthread_mutex_timedlock
Subroutine” on page 1282.

The pthread.h file.

1288 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pthread_mutexattr_getpshared or pthread_mutexattr_setpshared
Subroutine

Purpose
Sets and gets process-shared attribute.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_getpshared (attr, pshared)
const pthread_mutexattr_t *attr;
int *pshared;

int pthread_mutexattr_setpshared (attr, pshared)
pthread_mutexattr_t *attr;
int pshared;

Description
The pthread_mutexattr_getpshared subroutine obtains the value of the process-shared attribute from the
attributes object referenced by attr. The pthread_mutexattr_setpshared subroutine is used to set the
process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be operated
upon by any thread that has access to the memory where the mutex is allocated, even if the mutex is
allocated in memory that is shared by multiple processes. If the process-shared attribute is
PTHREAD_PROCESS_PRIVATE, the mutex will only be operated upon by threads created within the
same process as the thread that initialized the mutex; if threads of differing processes attempt to operate
on such a mutex, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

Parameters

attr Specifies the mutex attributes object.
pshared Points to where the pshared attribute value will be stored.

Return Values
Upon successful completion, the pthread_mutexattr_setpshared subroutine returns zero. Otherwise, an
error number is returned to indicate the error.

Upon successful completion, the pthread_mutexattr_getpshared subroutine returns zero and stores the
value of the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutexattr_getpshared and pthread_mutexattr_setpshared subroutines will fail if:

EINVAL The value specified by attr is invalid.

Base Operating System (BOS) Runtime Services (A-P) 1289

The pthread_mutexattr_setpshared function will fail if:

EINVAL The new value specified for the attribute is outside the range of legal values for that attribute.

These subroutines will not return an error code of EINTR.

Related Information
The pthread_mutexattr_init (“pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine” on page
1283) subroutine.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutine

Purpose
Gets or sets a mutex type.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_gettype (attr, type)
const pthread_mutexattr_t *attr;
int *type;

int pthread_mutexattr_settype (attr, type)
pthread_mutexattr_t *attr;
int type;

Description
The pthread_mutexattr_gettype and pthread_mutexattr_settype subroutines respectively get and set
the mutex type attribute. This attribute is set in the type parameter to these subroutines. The default value
of the type attribute is PTHREAD_MUTEX_DEFAULT. The type of mutex is contained in the type attribute
of the mutex attributes. Valid mutex types include:

PTHREAD_MUTEX_NORMAL This type of mutex does not detect deadlock. A thread
attempting to relock this mutex without first unlocking it will
deadlock. Attempting to unlock a mutex locked by a
different thread results in undefined behavior. Attempting
to unlock an unlocked mutex results in undefined
behavior.

PTHREAD_MUTEX_ERRORCHECK This type of mutex provides error checking. A thread
attempting to relock this mutex without first unlocking it will
return with an error. A thread attempting to unlock a mutex
which another thread has locked will return with an error.
A thread attempting to unlock an unlocked mutex will
return with an error.

1290 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

PTHREAD_MUTEX_RECURSIVE A thread attempting to relock this mutex without first
unlocking it will succeed in locking the mutex. The
relocking deadlock which can occur with mutexes of type
PTHREAD_MUTEX_NORMAL cannot occur with this type
of mutex. Multiple locks of this mutex require the same
number of unlocks to release the mutex before another
thread can acquire the mutex. A thread attempting to
unlock a mutex which another thread has locked will
return with an error. A thread attempting to unlock an
unlocked mutex will return with an error.

PTHREAD_MUTEX_DEFAULT Attempting to recursively lock a mutex of this type results
in undefined behavior. Attempting to unlock a mutex of
this type which was not locked by the calling thread
results in undefined behavior. Attempting to unlock a
mutex of this type which is not locked results in undefined
behavior. An implementation is allowed to map this mutex
to one of the other mutex types.

It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with condition
variables because the implicit unlock performed for a pthread_cond_wait or pthread_cond_timedwait
may not actually release the mutex (if it had been locked multiple times). If this happens, no other thread
can satisfy the condition of the predicate.

Parameters

attr Specifies the mutex object to get or set.
type Specifies the type to get or set.

Return Values
If successful, the pthread_mutexattr_settype subroutine returns zero. Otherwise, an error number is
returned to indicate the error. Upon successful completion, the pthread_mutexattr_gettype subroutine
returns zero and stores the value of the type attribute of attr into the object referenced by the type
parameter. Otherwise an error is returned to indicate the error.

Error Codes
The pthread_mutexattr_gettype and pthread_mutexattr_settype subroutines will fail if:

EINVAL The value of the type parameter is invalid.
EINVAL The value specified by the attr parameter is invalid.

Related Information
The pthread_cond_wait (“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1246) and
pthread_cond_timedwait (“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1246)
subroutines.

The pthread.h file.

pthread_mutexattr_setkind_np Subroutine

Purpose
Sets the value of the kind attribute of a mutex attributes object.

Base Operating System (BOS) Runtime Services (A-P) 1291

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_setkind_np (attr, kind)
pthread_mutexattr_t *attr;
int kind;

Description
The pthread_mutexattr_setkind_np subroutine sets the value of the kind attribute of the mutex attributes
object attr. This attribute specifies the kind of the mutex created with this attributes object.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_mutexattr_setkind_np subroutine is not portable.

This subroutine is provided only for compatibility with the DCE threads. It should not be used when writing
new applications.

Parameters

attr Specifies the mutex attributes object.
kind Specifies the kind to set. It must have one of the following values:

MUTEX_FAST_NP
Denotes a fast mutex. A fast mutex can be locked only once. If the same thread unlocks twice the
same fast mutex, the thread will deadlock. Any thread can unlock a fast mutex. A fast mutex is not
compatible with the priority inheritance protocol.

MUTEX_RECURSIVE_NP
Denotes a recursive mutex. A recursive mutex can be locked more than once by the same thread
without causing that thread to deadlock. The thread must then unlock the mutex as many times as it
locked it. Only the thread that locked a recursive mutex can unlock it. A recursive mutex must not be
used with condition variables.

MUTEX_NONRECURSIVE_NP
Denotes the default non-recursive POSIX compliant mutex.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_mutexattr_setkind_np subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.
ENOTSUP The value of the kind parameter is not supported.

Related Information
The pthread_mutexattr_getkind_np (“pthread_mutexattr_getkind_np Subroutine” on page 1285)
subroutine.

1292 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_once Subroutine

Purpose
Executes a routine exactly once in a process.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_once (once_control, init_routine)
pthread_once_t *once_control;
void (*init_routine)(void);

,

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Description
The pthread_once subroutine executes the routine init_routine exactly once in a process. The first call to
this subroutine by any thread in the process executes the given routine, without parameters. Any
subsequent call will have no effect.

The init_routine routine is typically an initialization routine. Multiple initializations can be handled by
multiple instances of pthread_once_t structures. This subroutine is useful when a unique initialization has
to be done by one thread among many. It reduces synchronization requirements.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Parameters

once_control Points to a synchronization control structure. This structure has to be initialized by the static
initializer macro PTHREAD_ONCE_INIT.

init_routine Points to the routine to be executed.

Return Values
Upon successful completion, pthread_once returns zero. Otherwise, an error number is returned to
indicate the error.

Error Codes
No errors are defined. The pthread_once function will not return an error code of EINTR.

Related Information
The pthread_create (“pthread_create Subroutine” on page 1253) subroutine, pthread.h file,
PTHREAD_ONCE_INIT (“PTHREAD_ONCE_INIT Macro” on page 1294) macro.

One Time Initializations in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Base Operating System (BOS) Runtime Services (A-P) 1293

PTHREAD_ONCE_INIT Macro

Purpose
Initializes a once synchronization control structure.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

static pthread_once_t once_block = PTHREAD_ONCE_INIT;

Description
The PTHREAD_ONCE_INIT macro initializes the static once synchronization control structure once_block,
used for one-time initializations with the pthread_once (“pthread_once Subroutine” on page 1293)
subroutine. The once synchronization control structure must be static to ensure the unicity of the
initialization.

Note: The pthread.h file header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Related Information
The pthread_once (“pthread_once Subroutine” on page 1293) subroutine.

One Time Initializations in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_rwlock_init or pthread_rwlock_destroy Subroutine

Purpose
Initializes or destroys a read-write lock object.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_init (rwlock, attr)
pthread_rwlock_t *rwlock;
const pthread_rwlockattr_t *attr;

int pthread_rwlock_destroy (rwlock)
pthread_rwlock_t *rwlock;
pthread_rwlock_t rwlock=PTHREAD_RWLOCK_INITIALIZER;

Description
The pthread_rwlock_init subroutine initializes the read-write lock referenced by rwlock with the attributes
referenced by attr. If attr is NULL, the default read-write lock attributes are used; the effect is the same as
passing the address of a default read-write lock attributes object. Once initialized, the lock can be used

1294 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

any number of times without being re-initialized. Upon successful initialization, the state of the read-write
lock becomes initialized and unlocked. Results are undefined if pthread_rwlock_init is called specifying
an already initialized read-write lock. Results are undefined if a read-write lock is used without first being
initialized.

If the pthread_rwlock_init function fails, rwlock is not initialized and the contents of rwlock are undefined.

The pthread_rwlock_destroy function destroys the read-write lock object referenced by rwlock and
releases any resources used by the lock. The effect of subsequent use of the lock is undefined until the
lock is re-initialized by another call to pthread_rwlock_init. An implementation may cause
pthread_rwlock_destroy to set the object referenced by rwlock to an invalid value. Results are undefined
if pthread_rwlock_destroy is called when any thread holds rwlock. Attempting to destroy an uninitialized
read-write lock results in undefined behavior. A destroyed read-write lock object can be re-initialized using
pthread_rwlock_init; the results of otherwise referencing the read-write lock object after it has been
destroyed are undefined.

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialize read-write locks that are statically allocated.
The effect is equivalent to dynamic initialization by a call to pthread_rwlock_init with the parameter attr
specified as NULL, except that no error checks are performed.

Parameters

rwlock Specifies the read-write lock to be initialized or destroyed.
attr Specifies the attributes of the read-write lock to be initialized.

Return Values
If successful, the pthread_rwlock_init and pthread_rwlock_destroy functions return zero. Otherwise, an
error number is returned to indicate the error. The EBUSY and EINVAL error checks, if implemented, will
act as if they were performed immediately at the beginning of processing for the function and caused an
error return prior to modifying the state of the read-write lock specified by rwlock.

Error Codes
The pthread_rwlock_init subroutine will fail if:

ENOMEM Insufficient memory exists to initialize the read-write lock.
EINVAL The value specified by attr is invalid.

The pthread_rwlock_destroy subroutine will fail if:

EBUSY The implementation has detected an attempt to destroy the object referenced by rwlock while it is locked.
EINVAL The value specified by attr is invalid.

Related Information
The pthread.h file.

The pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page
1296), pthread_rwlock_wrlock (“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on
page 1301), pthread_rwlockattr_init (“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines”
on page 1303) and pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1300)
subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1295

pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines

Purpose
Locks a read-write lock object for reading.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_rdlock (rwlock)
pthread_rwlock_t *rwlock;

int pthread_rwlock_tryrdlock (rwlock)
pthread_rwlock_t *rwlock;

Description
The pthread_rwlock_rdlock function applies a read lock to the read-write lock referenced by rwlock. The
calling thread acquires the read lock if a writer does not hold the lock and there are no writers blocked on
the lock. It is unspecified whether the calling thread acquires the lock when a writer does not hold the lock
and there are writers waiting for the lock. If a writer holds the lock, the calling thread will not acquire the
read lock. If the read lock is not acquired, the calling thread blocks (that is, it does not return from the
pthread_rwlock_rdlock call) until it can acquire the lock. Results are undefined if the calling thread holds
a write lock on rwlock at the time the call is made.

Implementations are allowed to favor writers over readers to avoid writer starvation.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock function n times). If so, the thread must perform matching unlocks (that is, it must
call the pthread_rwlock_unlock function n times).

The function pthread_rwlock_tryrdlock applies a read lock as in the pthread_rwlock_rdlock function
with the exception that the function fails if any thread holds a write lock on rwlock or there are writers
blocked on rwlock.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the signal
handler the thread resumes waiting for the read-write lock for reading as if it was not interrupted.

Parameters

rwlock Specifies the read-write lock to be locked for reading.

Return Values
If successful, the pthread_rwlock_rdlock function returns zero. Otherwise, an error number is returned to
indicate the error.

The function pthread_rwlock_tryrdlock returns zero if the lock for reading on the read-write lock object
referenced by rwlock is acquired. Otherwise an error number is returned to indicate the error.

1296 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The pthread_rwlock_tryrdlock function will fail if:

EBUSY The read-write lock could not be acquired for reading because a writer holds the lock or was blocked on it.

The pthread_rwlock_rdlock and pthread_rwlock_tryrdlock functions will fail if:

EINVAL The value specified by rwlock does not refer to an initialized read-write lock object.
EDEADLK The current thread already owns the read-write lock for writing.
EAGAIN The read lock could not be acquired because the maximum number of read locks for rwlock has been

exceeded.

Implementation Specifics
Realtime applications may encounter priority inversion when using read-write locks. The problem occurs
when a high priority thread ’locks’ a read-write lock that is about to be ’unlocked’ by a low priority thread,
but the low priority thread is preempted by a medium priority thread. This scenario leads to priority
inversion; a high priority thread is blocked by lower priority threads for an unlimited period of time. During
system design, realtime programmers must take into account the possibility of this kind of priority
inversion. They can deal with it in a number of ways, such as by having critical sections that are guarded
by read-write locks execute at a high priority, so that a thread cannot be preempted while executing in its
critical section.

Related Information
The pthread.h file.

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1294),
pthread_rwlock_wrlock (“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on page
1301), pthread_rwlockattr_init (“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines” on
page 1303), and pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1300)
subroutines.

pthread_rwlock_timedrdlock Subroutine

Purpose
Locks a read-write lock for reading.

Syntax
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abs_timeout);

Description
The pthread_rwlock_timedrdlock() function applies a read lock to the read-write lock referenced by
rwlock as in the pthread_rwlock_rdlock() function. However, if the lock cannot be acquired without
waiting for other threads to unlock the lock, this wait terminates when the specified timeout expires. The
timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock on
which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or when
the absolute time specified by abs_timeout has already been passed at the time of the call.

Base Operating System (BOS) Runtime Services (A-P) 1297

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec data
type is defined in the <time.h> header.

The function never fails with a timeout if the lock can be acquired immediately. The validity of the
abs_timeout parameter does not need to be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread that is blocked on a
read-write lock through a call to pthread_rwlock_timedrdlock(), the thread resumes waiting for the lock
(as if it were not interrupted) after the signal handler returns.

The calling thread can deadlock if it holds a write lock on rwlock at the time the call is made. The results
are undefined if this function is called with an uninitialized read-write lock.

Application Usage
The pthread_rwlock_timedrdlock() function is part of the Threads and Timeouts options and do not
need to be provided on all implementations.

Return Values
The pthread_rwlock_timedrdlock() function returns 0 if the lock for reading on the read-write lock object
referenced by rwlock is acquired. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_rwlock_timedrdlock() function fails if:

[ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() function might fail if:

[EAGAIN] The read lock could not be acquired because the maximum number of read locks for
lock would be exceeded.

[EDEADLK] The calling thread already holds a write lock on rwlock.
[EINVAL] The value specified by rwlock does not refer to an initialized read-write lock object, or

the abs_timeout nanosecond value is less than 0 or greater than or equal to 1000
million.

This function does not return an error code of [EINTR].

Related Information
“mq_receive, mq_timedreceive Subroutine” on page 874, “posix_trace_getnext_event,
posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on page 1173,
“pthread_mutex_timedlock Subroutine” on page 1282, “pthread_rwlock_init or pthread_rwlock_destroy
Subroutine” on page 1294, “pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page
1296, “pthread_rwlock_timedwrlock Subroutine” on page 1299, “pthread_rwlock_wrlock or
pthread_rwlock_trywrlock Subroutines” on page 1301, “pthread_rwlock_unlock Subroutine” on page 1300.

The sem_timedwait subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

1298 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pthread_rwlock_timedwrlock Subroutine

Purpose
Locks a read-write lock for writing.

Syntax
#include <pthread.h>
#include <time.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abs_timeout);

Description
The pthread_rwlock_timedwrlock() function applies a write lock to the read-write lock referenced by
rwlock as in the pthread_rwlock_wrlock() function. However, if the lock cannot be acquired without
waiting for other threads to unlock the lock, this wait terminates when the specified timeout expires. The
timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock on
which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or when
the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers
option is not supported, the timeout is based on the system clock as returned by the time() function.

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec data
type is defined in the <time.h> header.

The function never fails with a timeout if the lock can be acquired immediately. The validity of the
abs_timeout parameter does not need to be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread that is blocked on a
read-write lock through a call to pthread_rwlock_timedwrlock(), the thread resumes waiting for the lock
(as if it were not interrupted) after the signal handler returns.

The calling thread can deadlock if it holds the read-write lock at the time the call is made. The results are
undefined if this function is called with an uninitialized read-write lock.

Application Usage
The pthread_rwlock_timedwrlock() function is part of the Threads and Timeouts options and do not
need to be provided on all implementations.

Return Values
The pthread_rwlock_timedwrlock() function returns 0 if the lock for writing on the read-write lock object
referenced by rwlock is acquired. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_rwlock_timedrdlock() function fails if:

ETIMEDOUT The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() function might fail if:

EDEADLK The calling thread already holds the rwlock.

Base Operating System (BOS) Runtime Services (A-P) 1299

EINVAL The value specified by rwlock does not refer to an initialized read-write lock object, or
the abs_timeout nanosecond value is less than 0 or greater than or equal to 1000
million.

This function does not return an error code of EINTR.

Related Information
“mq_receive, mq_timedreceive Subroutine” on page 874, “posix_trace_getnext_event,
posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on page 1173,
“pthread_mutex_timedlock Subroutine” on page 1282, “pthread_rwlock_init or pthread_rwlock_destroy
Subroutine” on page 1294, “pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page
1296, “pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on page 1301,
“pthread_rwlock_unlock Subroutine.”

The sem_timedwait subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

pthread_rwlock_unlock Subroutine

Purpose
Unlocks a read-write lock object.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_unlock (rwlock)
pthread_rwlock_t *rwlock;

Description
The pthread_rwlock_unlock subroutine is called to release a lock held on the read-write lock object
referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by the calling thread.

If this subroutine is called to release a read lock from the read-write lock object and there are other read
locks currently held on this read-write lock object, the read-write lock object remains in the read locked
state. If this subroutine releases the calling thread’s last read lock on this read-write lock object, then the
calling thread is no longer one of the owners of the object. If this subroutine releases the last read lock for
this read-write lock object, the read-write lock object will be put in the unlocked state with no owners.

If this subroutine is called to release a write lock for this read-write lock object, the read-write lock object
will be put in the unlocked state with no owners.

If the call to the pthread_rwlock_unlock subroutine results in the read-write lock object becoming
unlocked and there are multiple threads waiting to acquire the read-write lock object for writing, the
scheduling policy is used to determine which thread acquires the read-write lock object for writing. If there
are multiple threads waiting to acquire the read-write lock object for reading, the scheduling policy is used
to determine the order in which the waiting threads acquire the read-write lock object for reading. If there

1300 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

are multiple threads blocked on rwlock for both read locks and write locks, it is unspecified whether the
readers acquire the lock first or whether a writer acquires the lock first.

Results are undefined if any of these subroutines are called with an uninitialized read-write lock.

Parameters

rwlock Specifies the read-write lock to be unlocked.

Return Values
If successful, the pthread_rwlock_unlock subroutine returns zero. Otherwise, an error number is returned
to indicate the error.

Error Codes
The pthread_rwlock_unlock subroutine may fail if:

EINVAL The value specified by rwlock does not refer to an initialized read-write lock object.
EPERM The current thread does not own the read-write lock.

Related Information
The pthread.h file.

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1294),
pthread_rwlock_wrlock (“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines”),
pthread_rwlockattr_init (“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines” on page
1303), pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page
1296) subroutines.

pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines

Purpose
Locks a read-write lock object for writing.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_wrlock (rwlock)
pthread_rwlock_t *rwlock;

int pthread_rwlock_trywrlock (rwlock)
pthread_rwlock_t *rwlock;

Description
The pthread_rwlock_wrlock subroutine applies a write lock to the read-write lock referenced by rwlock.
The calling thread acquires the write lock if no other thread (reader or writer) holds the read-write lock
rwlock. Otherwise, the thread blocks (that is, does not return from the pthread_rwlock_wrlock call) until it
can acquire the lock. Results are undefined if the calling thread holds the read-write lock (whether a read
or write lock) at the time the call is made.

Base Operating System (BOS) Runtime Services (A-P) 1301

Implementations are allowed to favor writers over readers to avoid writer starvation.

The pthread_rwlock_trywrlock subroutine applies a write lock like the pthread_rwlock_wrlock
subroutine, with the exception that the function fails if any thread currently holds rwlock (for reading or
writing).

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the signal
handler the thread resumes waiting for the read-write lock for writing as if it was not interrupted.

Realtime applications may encounter priority inversion when using read-write locks. The problem occurs
when a high priority thread ’locks’ a read-write lock that is about to be ’unlocked’ by a low priority thread,
but the low priority thread is preempted by a medium priority thread. This scenario leads to priority
inversion; a high priority thread is blocked by lower priority threads for an unlimited period of time. During
system design, realtime programmers must take into account the possibility of this kind of priority
inversion. They can deal with it in a number of ways, such as by having critical sections that are guarded
by read-write locks execute at a high priority, so that a thread cannot be preempted while executing in its
critical section.

Parameters

rwlock Specifies the read-write lock to be locked for writing.

Return Values
If successful, the pthread_rwlock_wrlock subroutine returns zero. Otherwise, an error number is returned
to indicate the error.

The pthread_rwlock_trywrlock subroutine returns zero if the lock for writing on the read-write lock object
referenced by rwlock is acquired. Otherwise an error number is returned to indicate the error.

Error Codes
The pthread_rwlock_trywrlock subroutine will fail if:

EBUSY The read-write lock could not be acquired for writing because it was already locked for reading or writing.

The pthread_rwlock_wrlock and pthread_rwlock_trywrlock subroutines may fail if:

EINVAL The value specified by rwlock does not refer to an initialized read-write lock object.
EDEADLK The current thread already owns the read-write lock for writing or reading.

Related Information
The pthread.h file.

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1294),
pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1300), pthread_rwlockattr_init
(“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines” on page 1303),
pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page 1296)
subroutines.

1302 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines

Purpose
Initializes and destroys read-write lock attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlockattr_init (attr)
pthread_rwlockattr_t *attr;

int pthread_rwlockattr_destroy (attr)
pthread_rwlockattr_t *attr;

Description
The pthread_rwlockattr_init subroutine initializes a read-write lock attributes object attr with the default
value for all of the attributes defined by the implementation. Results are undefined if
pthread_rwlockattr_init is called specifying an already initialized read-write lock attributes object.

After a read-write lock attributes object has been used to initialize one or more read-write locks, any
function affecting the attributes object (including destruction) does not affect any previously initialized
read-write locks.

The pthread_rwlockattr_destroy subroutine destroys a read-write lock attributes object. The effect of
subsequent use of the object is undefined until the object is re-initialized by another call to
pthread_rwlockattr_init. An implementation may cause pthread_rwlockattr_destroy to set the object
referenced by attr to an invalid value.

Parameters

attr Specifies a read-write lock attributes object to be initialized or destroyed.

Return Value
If successful, the pthread_rwlockattr_init and pthread_rwlockattr_destroy subroutines return zero.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_rwlockattr_init subroutine will fail if:

ENOMEM Insufficient memory exists to initialize the read-write lock attributes object.

The pthread_rwlockattr_destroy subroutine will fail if:

EINVAL The value specified by attr is invalid.

Related Information
The pthread.h file.

Base Operating System (BOS) Runtime Services (A-P) 1303

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1294),
pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1300), pthread_rwlock_wrlock
(“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on page 1301),
pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page 1296),
and pthread_rwlockattr_getpshared (“pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared
Subroutines”) subroutines.

pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared
Subroutines

Purpose
Gets and sets process-shared attribute of read-write lock attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlockattr_getpshared (attr, pshared)
const pthread_rwlockattr_t *attr;
int *pshared;

int pthread_rwlockattr_setpshared (attr, pshared)
pthread_rwlockattr_t *attr;
int pshared;

Description
The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a read-write lock to be
operated upon by any thread that has access to the memory where the read-write lock is allocated, even if
the read-write lock is allocated in memory that is shared by multiple processes. If the process-shared
attribute is PTHREAD_PROCESS_PRIVATE, the read-write lock will only be operated upon by threads
created within the same process as the thread that initialized the read-write lock; if threads of differing
processes attempt to operate on such a read-write lock, the behavior is undefined. The default value of the
process-shared attribute is PTHREAD_PROCESS_PRIVATE.

The pthread_rwlockattr_getpshared subroutine obtains the value of the process-shared attribute from
the initialized attributes object referenced by attr. The pthread_rwlockattr_setpshared subroutine is used
to set the process-shared attribute in an initialized attributes object referenced by attr.

Parameters

attr Specifies the initialized attributes object.
pshared Specifies the process-shared attribute of read-write lock attributes object to be gotten

and set.

Return Values
If successful, the pthread_rwlockattr_setpshared subroutine returns zero. Otherwise, an error number is
returned to indicate the error.

Upon successful completion, the pthread_rwlockattr_getpshared subroutine returns zero and stores the
value of the process-shared attribute of attr into the object referenced by the pshared parameter.
Otherwise an error number is returned to indicate the error.

1304 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Error Codes
The pthread_rwlockattr_getpshared and pthread_rwlockattr_setpshared subroutines will fail if:

EINVAL The value specified by attr is invalid.

The pthread_rwlockattr_setpshared subroutine will fail if:

EINVAL The new value specified for the attribute is outside the range of legal values for that attribute.

Related Information
The pthread.h file.

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1294),
pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1300), pthread_rwlock_wrlock
(“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on page 1301),
pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page 1296),
pthread_rwlockattr_init (“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines” on page
1303) subroutines.

pthread_self Subroutine

Purpose
Returns the calling thread’s ID.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

pthread_t pthread_self (void);

Description
The pthread_self subroutine returns the calling thread’s ID.

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

Return Values
The calling thread’s ID is returned.

Errors
No errors are defined.

The pthread_self function will not return an error code of EINTR.

Related Information
The pthread_create (“pthread_create Subroutine” on page 1253) subroutine, pthread_equal
(“pthread_equal Subroutine” on page 1257) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1305

The pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel
Subroutines

Purpose
Sets the calling thread’s cancelability state.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_setcancelstate (state, oldstate)
int state;
int *oldstate;

int pthread_setcanceltype (type, oldtype)
int type;
int *oldtype;

int pthread_testcancel (void)

Description
The pthread_setcancelstate subroutine atomically both sets the calling thread’s cancelability state to the
indicated state and returns the previous cancelability state at the location referenced by oldstate. Legal
values for state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype subroutine atomically both sets the calling thread’s cancelability type to the
indicated type and returns the previous cancelability type at the location referenced by oldtype. Legal
values for type are PTHREAD_CANCEL_DEFERRED and PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which main was first
invoked, are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel subroutine creates a cancellation point in the calling thread. The
pthread_testcancel subroutine has no effect if cancelability is disabled.

Parameters

state Specifies the new cancelability state to set. It must have one of the following values:

PTHREAD_CANCEL_DISABLE
Disables cancelability; the thread is not cancelable. Cancellation requests are held pending.

PTHREAD_CANCEL_ENABLE
Enables cancelability; the thread is cancelable, according to its cancelability type. This is the
default value.

oldstate Points to where the previous cancelability state value will be stored.
type Specifies the new cancelability type to set.
oldtype Points to where the previous cancelability type value will be stored.

1306 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
If successful, the pthread_setcancelstate and pthread_setcanceltype subroutines return zero.
Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_setcancelstate subroutine will fail if:

EINVAL The specified state is not PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype subroutine will fail if:

EINVAL The specified type is not PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS.

These subroutines will not return an error code of EINTR.

Related Information
The pthread_cancel (“pthread_cancel Subroutine” on page 1241) subroutine.

The pthread.h file.

Terminating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_setschedparam Subroutine

Purpose
Sets schedpolicy and schedparam attributes of a thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_setschedparam (thread, schedpolicy, schedparam)
pthread_t thread;
int schedpolicy;
const struct sched_param *schedparam;

Description
The pthread_setschedparam subroutine dynamically sets the schedpolicy and schedparam attributes of
the thread thread. The schedpolicy attribute specifies the scheduling policy of the thread. The schedparam
attribute specifies the scheduling parameters of a thread created with this attributes object. The
sched_priority field of the sched_param structure contains the priority of the thread. It is an integer
value.

If the target thread has system contention scope, the process must have root authority to set the
scheduling policy to either SCHED_FIFO or SCHED_RR.

Base Operating System (BOS) Runtime Services (A-P) 1307

Note: The pthread.h header file must be the first included file of each source file using the threads
library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler
used. In this case, the flag is automatically set.

This subroutine is part of the Base Operating System (BOS) Runtime. The implementation of this
subroutine is dependent on the priority scheduling POSIX option. The priority scheduling POSIX option is
implemented in the operating system.

Parameters

thread Specifies the target thread.
schedpolicy Points to the schedpolicy attribute to set. It must have one of the following values:

SCHED_FIFO
Denotes first-in first-out scheduling.

SCHED_RR
Denotes round-robin scheduling.

SCHED_OTHER
Denotes the default operating system scheduling policy. It is the default value. If
schedpolicy is SCHED_OTHER, then sched_priority must be in the range from 40 to
80, where 40 is the least favored priority and 80 is the most favored.

Note: Priority of threads with a process contention scope and a SCHED_OTHER policy is
controlled by the kernel; thus, setting the priority of such a thread has no effect. However,
priority of threads with a system contention scope and a SCHED_OTHER policy can be
modified. The modification directly affects the underlying kernel thread nice value.

schedparam Points to where the scheduling parameters to set are stored. The sched_priority field must be
in the range from 1 to 127, where 1 is the least favored priority, and 127 the most favored. If
schedpolicy is SCHED_OTHER, then sched_priority must be in the range from 40 to 80, where
40 is the least favored priority and 80 is the most favored.
Note: Prior to AIX 5.3, users are not permitted to change the priority of a thread when setting
its scheduling policy to SCHED_OTHER. In this case, the priority is managed directly by the
kernel, and the only legal value that can be passed to pthread_setschedparam is
DEFAULT_PRIO, which is defined in pthread.h as 1. All other passed values are ignored.

Beginning with AIX 5.3, users can change the priority of a thread when setting its scheduling
policy to SCHED_OTHER. The legal values that can be passed to pthread_setschedparam
range from 40 to 80. Only privileged users can set a priority higher than 60. A value ranging
from 1 to 39 provides the same priority as 40, and a value ranging from 81 to 127 provides the
same priority as 80.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_setschedparam subroutine is unsuccessful if the following is true:

EINVAL The thread or schedparam parameters are not valid.
ENOSYS The priority scheduling POSIX option is not implemented.
ENOTSUP The value of the schedpolicy or schedparam attributes are not supported.
EPERM The target thread has insufficient permission to perform the operation or is already engaged in a mutex

protocol.
ESRCH The thread thread does not exist.

1308 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The pthread_getschedparam (“pthread_getschedparam Subroutine” on page 1265) subroutine,
pthread_attr_setschedparam (“pthread_attr_setschedparam Subroutine” on page 1232) subroutine.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pthread_setschedprio Subroutine

Purpose
Dynamic thread scheduling parameters access (REALTIME THREADS).

Syntax
#include <pthread.h>

int pthread_setschedprio(pthread_t thread, int prio);

Description
The pthread_setschedprio() function sets the scheduling priority for the thread whose thread ID is given
by thread to the value given by prio. If a thread whose policy or priority has been modified by
pthread_setschedprio() is a running thread or is runnable, the effect on its position in the tread list
depends on the direction of the modification as follows:

v If the priority is raised, the thread becomes the tail of the thread list.

v If the priority is unchanged, the thread does not change position in the thread list.

v If the priority is lowered, the thread becomes the head of the thread list.

Valid priorities are within the range returned by the sched_get_priority_max() and
sched_get_priority_min().

If the pthread_setschedprio() function fails, the scheduling priority of the target thread remains
unchanged.

Rationale
The pthread_setschedprio() function provides a way for an application to temporarily raise its priority and
then lower it again, without having the undesired side-effect of yielding to other threads of the same
priority. This is necessary if the application is to implement its own strategies for bounding priority
inversion, such as priority inheritance or priority ceilings. This capability is especially important if the
implementation does not support the Thread Priority Protection or Thread Priority Inheritance options;
but even if those options are supported, this capability is needed if the application is to bound priority
inheritance for other resources, such as semaphores.

The standard developers considered that, while it might be preferable conceptually to solve this problem
by modifying the specification of pthread_setschedparam(), it was too late to make such a change,
because there might be implementations that would need to be changed. Therefore, this new function was
introduced.

Return Values
If successful, the pthread_setschedprio() function returns 0; otherwise, an error number is returned to
indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1309

Error Codes
The pthread_setschedprio() function might fail if:

EINVAL The value of prio is invalid for the scheduling policy of the specified thread.
ENOTSUP An attempt was made to set the priority to an unsupported value.
EPERM The caller does not have the appropriate permission to set the scheduling policy of the

specified thread.
EPERM The implementation does not allow the application to modify the priority to the value specified.
ESRCH The value specified by thread does not refer to an existing thread.

The pthread_setschedprio function does not return an error code of [EINTR].

Related Information
“pthread_getschedparam Subroutine” on page 1265, “pthread_setschedparam Subroutine” on page 1307.

The pthread.h file in AIX 5L Version 5.3 Files Reference.

pthread_sigmask Subroutine

Purpose
Examines and changes blocked signals.

Library
Threads Library (libpthreads.a)

Syntax
#include <signal.h>

int pthread_sigmask (how, set, oset)
int how;
const sigset_t *set;
sigset_t *oset;

Description
Refer to sigthreadmask in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2.

pthread_signal_to_cancel_np Subroutine

Purpose
Cancels the specified thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

1310 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

int pthread_signal_to_cancel_np (sigset, thread)
sigset_t *sigset;
pthread_t *thread;

Description
The pthread_signal_to_cancel_np subroutine cancels the target thread thread by creating a handler
thread. The handler thread calls the sigwait subroutine with the sigset parameter, and cancels the target
thread when the sigwait subroutine returns. Successive calls to this subroutine override the previous
ones.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_signal_to_cancel_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Parameters

sigset Specifies the set of signals to wait on.
thread Specifies the thread to cancel.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_signal_to_cancel_np subroutine is unsuccessful if the following is true:

EAGAIN The handler thread cannot be created.
EINVAL The sigset or thread parameters are not valid.

Related Information
The pthread_cancel (“pthread_cancel Subroutine” on page 1241) subroutine, sigwait subroutine.

pthread_spin_destroy or pthread_spin_init Subroutine

Purpose
Destroys or initializes a spin lock object.

Syntax
#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *lock);
int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

Description
The pthread_spin_destroy subroutine destroys the spin lock referenced by lock and releases any
resources used by the lock. The effect of subsequent use of the lock is undefined until the lock is

Base Operating System (BOS) Runtime Services (A-P) 1311

reinitialized by another call to the pthread_spin_init subroutine. The results are undefined if the
pthread_spin_destroy subroutine is called when a thread holds the lock, or if this function is called with
an uninitialized thread spin lock.

The pthread_spin_init subroutine allocates any resources required to use the spin lock referenced by
lock and initializes the lock to an unlocked state.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_SHARED, the implementation shall permit the spin lock to be operated upon by
any thread that has access to the memory where the spin lock is allocated, even if it is allocated in
memory that is shared by multiple processes.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is
PTHREAD_PROCESS_PRIVATE, or if the option is not supported, the spin lock shall only be operated
upon by threads created within the same process as the thread that initialized the spin lock. If threads of
differing processes attempt to operate on such a spin lock, the behavior is undefined.

The results are undefined if the pthread_spin_init subroutine is called specifying an already initialized
spin lock. The results are undefined if a spin lock is used without first being initialized.

If the pthread_spin_init subroutine function fails, the lock is not initialized and the contents of lock are
undefined.

Only the object referenced by lock may be used for performing synchronization.

The result of referring to copies of that object in calls to the pthread_spin_destroy subroutine,
pthread_spin_lock subroutine, pthread_spin_trylock subroutine, or the pthread_spin_unlock
subroutine is undefined.

Return Values
Upon successful completion, these functions shall return zero; otherwise, an error number shall be
returned to indicate the error.

Error Codes

EBUSY The implementation has detected an attempt to initialize or destroy a spin lock while it is in use
(for example, while being used in a pthread_spin_lock call) by another thread.

EINVAL The value specified by the lock parameter is invalid.

The pthread_spin_initsubroutine will fail if:

EAGAIN The system lacks the necessary resources to initialize another spin lock.
ENOMEM Insufficient memory exists to initialize the lock.

Related Information
The “pthread_spin_lock or pthread_spin_trylock Subroutine,” “pthread_spin_unlock Subroutine” on page
1313.

pthread_spin_lock or pthread_spin_trylock Subroutine

Purpose
Locks a spin lock object.

1312 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Syntax
#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);
int pthread_spin_trylock(pthread_spinlock_t *lock);

Description
The pthread_spin_lock subroutine locks the spin lock referenced by the lock parameter. The calling
thread shall acquire the lock if it is not held by another thread. Otherwise, the thread spins (that is, does
not return from the pthread_spin_lock call) until the lock becomes available. The results are undefined if
the calling thread holds the lock at the time the call is made. The pthread_spin_trylock subroutine locks
the spin lock referenced by the lock parameter if it is not held by any thread. Otherwise, the function fails.

The results are undefined if any of these subroutines is called with an uninitialized spin lock.

Return Values
Upon successful completion, these functions return zero; otherwise, an error number is returned to indicate
the error.

Error Codes

EINVAL The value specified by the lock parameter does not refer to an initialized spin lock object.

The pthread_spin_lock subroutine fails if:

EDEADLK The calling thread already holds the lock.

The pthread_spin_trylock subroutine fails if:

EBUSY A thread currently holds the lock.

Related Information
“pthread_spin_destroy or pthread_spin_init Subroutine” on page 1311, “pthread_spin_unlock Subroutine.”

pthread_spin_unlock Subroutine

Purpose
Unlocks a spin lock object.

Syntax
#include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t *lock);

Description
The pthread_spin_unlock subroutine releases the spin lock referenced by the lock parameter which was
locked using the pthread_spin_lock subroutine or the pthread_spin_trylock subroutine. The results are
undefined if the lock is not held by the calling thread. If there are threads spinning on the lock when the
pthread_spin_unlock subroutine is called, the lock becomes available and an unspecified spinning thread
shall acquire the lock.

Base Operating System (BOS) Runtime Services (A-P) 1313

The results are undefined if this subroutine is called with an uninitialized thread spin lock.

Return Values
Upon successful completion, the pthread_spin_unlock subroutine returns zero; otherwise, an error
number is returned to indicate the error.

Error Codes

EINVAL An invalid argument was specified.
EPERM The calling thread does not hold the lock.

Related Information
“pthread_spin_destroy or pthread_spin_init Subroutine” on page 1311, “pthread_spin_lock or
pthread_spin_trylock Subroutine” on page 1312.

pthread_suspend_np, pthread_unsuspend_np and
pthread_continue_np Subroutine

Purpose
Suspends and resume execution of the pthread specified by thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

pthread_t thread;
int pthread_suspend_np(thread)
int pthread_unsuspend_np (thread);
int pthread_continue_np(thread);

Description
The pthread_suspend_np subroutine immediately suspends the execution of the pthread specified by
thread. On successful return from pthread_suspend_np, the suspended pthread is no longer executing. If
pthread_suspend_np is called for a pthread that is already suspended, the pthread is unchanged and
pthread_suspend_np returns successful.

Deadlock can occur if pthread_suspend_np is used with the following pthread functions.

pthread_getrusage_np
pthread_cancel
pthread_detach
pthread_join
pthread_getunique_np
pthread_join_np
pthread_setschedparam
pthread_getschedparam
pthread_kill

To prevent deadlock, PTHREAD_SUSPENDIBLE=ON should be set.

1314 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

The pthread_unsuspend_np routine decrements the suspend count and once the count is zero, the
routine resumes the execution of a suspended pthread. If pthread_unsuspend_np is called for a pthread
that is not suspended, the pthread is unchanged and pthread_unsuspend_np returns successful.

The pthread_continue_np routine clears the suspend count and resumes the execution of a suspended
pthread. If pthread_continue_np is called for a pthread that is not suspended, the pthread is unchanged
and pthread_continue_np returns successful.

A suspended pthread will not be awakened by a signal. The signal stays pending until the execution of
pthread is resumed by pthread_continue_np.

Note: Using pthread_suspend_np should only be used by advanced users because improper use of this
subcommand can lead to application deadlock or the target thread may be suspended holding
application locks.

Parameters

thread Specifies the target thread.

Return Values
Zero is returned when successful. A nonzero value indicates an error.

Error Codes
If any of the following conditions occur, pthread_suspend_np, pthread_unsuspend_np and
pthread_continue_np fail and return the corresponding value:

ESRCH The target thread specified by thread attribute cannot be found in the current process.

pthread_unlock_global_np Subroutine

Purpose
Unlocks the global mutex.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_unlock_global_np ()

Description
The pthread_unlock_global_np subroutine unlocks the global mutex when each call to the
pthread_lock_global_np subroutine is matched by a call to this routine. For example, if a thread called
the pthread_lock_global_np three times, the global mutex is unlocked after the third call to the
pthread_unlock_global_np subroutine.

If no threads are waiting for the global mutex, it becomes unlocked with no current owner. If one or more
threads are waiting to lock the global mutex, exactly one thread returns from its call to the
pthread_lock_global_np subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1315

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this
case, the flag is automatically set.

2. The pthread_unlock_global_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should
not be used when writing new applications.

Related Information
The pthread_lock_global_np (“pthread_lock_global_np Subroutine” on page 1276) subroutine.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_yield Subroutine

Purpose
Forces the calling thread to relinquish use of its processor.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_yield ()

Description
The pthread_yield subroutine forces the calling thread to relinquish use of its processor, and to wait in the
run queue before it is scheduled again. If the run queue is empty when the pthread_yield subroutine is
called, the calling thread is immediately rescheduled.

If the thread has global contention scope (PTHREAD_SCOPE_SYSTEM), calling this subroutine acts like
calling the yield subroutine. Otherwise, another local contention scope thread is scheduled.

The pthread.h header file must be the first included file of each source file using the threads library.
Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In
this case, the flag is automatically set.

Related Information
The yield subroutine and the sched_yield subroutine.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

1316 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ptrace, ptracex, ptrace64 Subroutine

Purpose
Traces the execution of another process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/reg.h>
#include <sys/ptrace.h>
#include <sys/ldr.h>
int ptrace (Request, Identifier, Address, Data, Buffer)
int Request;
int Identifier;
int *Address;
int Data;
int *Buffer;

int ptracex (request, identifier, addr, data, buff)
int request;
int identifier;
long long addr;
int data;
int *buff;

int ptrace64 (request, identifier, addr, data, buff)
int request;
long long identifier;
long long addr;
int data;
int *buff;

Description
The ptrace subroutine allows a 32-bit process to trace the execution of another process. The ptrace
subroutine is used to implement breakpoint debugging.

A debugged process runs normally until it encounters a signal. Then it enters a stopped state and its
debugging process is notified with the wait subroutine.

Exception: If the process encounters the SIGTRAP signal, a signal handler for SIGTRAP exists, and
fast traps (“Fast Trap Instructions” on page 1318) have been enabled for the process, then the signal
handler is called and the debugger is not notified. This exception only applies to AIX 4.3.3 and later
releases.

While the process is in the stopped state, the debugger examines and modifies the memory image of the
process being debugged by using the ptrace subroutine. For multi-threaded processes, the getthrds
(“getthrds Subroutine” on page 445) subroutine identifies each kernel thread in the debugged process.
Also, the debugging process can cause the debugged process to terminate or continue, with the possibility
of ignoring the signal that caused it to stop.

As a security measure, the ptrace subroutine inhibits the set-user-ID facility on subsequent exec
subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1317

(This paragraph only applies to AIX 4.3.2 and later releases.) When a process running under ptrace
control calls load or unload, the debugger is notified and the W_SLWTED flag is set in the status returned
by wait. (A 32-bit process calling loadbind is stopped as well.) If the process being debugged has added
modules in the shared library to its address space, the modules are added to the process’s private copy of
the shared library segments. If shared library modules are removed from a process’s address space, the
modules are deleted from the process’s private copy of the library text segment by freeing the pages that
contain the module. No other changes to the segment are made, and existing breakpoints do not have to
be reinserted.

To allow a debugger to generate code more easily (in order to handle fast trap instructions, for example),
memory from the end of the main program up to the next segment boundary can be modified. That
memory is read-only to the process but can be modified by the debugger.

When a process being traced forks, the child process is initialized with the unmodified main program and
shared library segment, effectively removing breakpoints in these segments in the child process. If
multiprocess debugging is enabled, new copies of the main program and shared library segments are
made. Modifications to privately loaded modules, however, are not affected by a fork. These breakpoints
will remain in the child process, and if these breakpoints are run, a SIGTRAP signal is generated and
delivered to the process.

If a traced process initiates an exec subroutine, the process stops before executing the first instruction of
the new image and returns the SIGTRAP signal.

Note: The ptrace and ptracex subroutines are not supported in 64-bit mode.

Fast Trap Instructions
Sometimes, allowing the process being debugged to handle certain trap instructions is useful, instead of
causing the process to stop and notify the debugger. You can use this capability to patch running
programs or programs whose source codes are not available. For a process to use this capability, you
must enable fast traps, which requires you to make a ptrace call from a debugger on behalf of the
process.

To let a process handle fast traps, a debugger uses the ptrace (PT_SET, pid, 0, PTFLAG_FAST_TRAP,
0) subroutine call. Cancel this capability with the ptrace (PT_CLEAR, pid, 0, PTFLAG_FAST_TRAP, 0)
subroutine call. If a process is able to handle fast traps when the debugger detaches, the fast trap
capability remains in effect. Consequently, when another debugger attaches to that process, fast trap
processing is still enabled. When no debugger is attached to a process, SIGTRAP signals are handled in
the same manner, regardless of whether fast traps are enabled.

A fast trap instruction is an unconditional trap immediate instruction in the form twi 14,r13,0xNXXX. This
instruction has the binary form 0x0ddfNXXX, where N is a hex digit >=8 and XXX are any three hex digits.
By using different values of 0xNXXX, a debugger can generate different fast trap instructions, allowing a
signal handler to quickly determine how to handle the signal. (The fast trap instruction is defined by the
macro _PTRACE_FASTTRAP. The _PTRACE_FASTTRAP_MASK macro can be used to check whether
a trap is a fast trap.)

Usually, a fast trap instruction is treated like any other trap instruction. However, if a process has a signal
handler for SIGTRAP, the signal is not blocked, and the fast trap capability is enabled, then the signal
handler is called and the debugger is not notified.

A signal handler can logically AND the trap instruction with _PTRACE_FASTTRAP_NUM (0x7FFF) to
obtain an integer identifying which trap instruction was run.

Fast data watchpoint
In AIX 5.3 ML5 and later, ptrace supports the ability to enable fast watchpoint trap handling. This is similar
to fast trap instruction handling in that when it is enabled. Processes that have a signal handler for

1318 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

SIGTRAP will have the handler called when a watchpoint trap is encountered. In the SIGTRAP signal
handler, the traced process can detect a fast watchpoint trap by checking the SI_FAST_WATCH in the
_si_flags of the siginfo_t that is passed to the handler. The fast watchpoint handling employs trap-after
semantics, which means that the store to the watched location is completed before calling the trap handler,
so the instruction address pointer in the signal context that is passed to the handler will point to the
instruction following the instruction that caused the trap.

Thread-level tracing
In AIX 5.3 ML5 and later, ptrace supports setting breakpoints and watchpoints per-thread for system
scope (1:1) threads. With these, the tracing process (debugger) is only notified when the specific thread of
interest has encountered a trap. This provides an efficient means for debuggers to trace individual threads
of interest since it doesn’t have to filter “false hit” notifications. See the PTT_WATCH, PTT_SET_TRAP,
and PTT_CLEAR_TRAP request types below for the usage description.

The ptrace programming model remains unchanged with thread-level breakpoints and watchpoints in that
the attachment is still done at the process level, and the target process stops and notifies the tracing
process upon encountering a trap. The tracing process can detect that the traced process has stopped for
a thread-level trap by checking the TTHRDTRAP flag (in ti_flag2) of the stopping thread (the thread with
TTRCSIG set in ti_flag). These flags can be checked by calling getthrds64 on the target process.

Other behaviors that are specific to thread-level tracing:

Thread-level breakpoints

v Clear automatically when all threads for which the breakpoint is active have terminated.

v Not supported for multiprocess debugging (PT_MULTI) . They are cleared upon fork and exec.

Thread-level watchpoints

v Newly created threads inherit the process-level watch location.

v Not inherited across fork and exec.

For the 64-bit Process
Use ptracex where the debuggee is a 64-bit process and the operation requested uses the third (Address)
parameter to reference the debuggee’s address space or is sensitive to register size. Note that ptracex
and ptrace64 will also support 32-bit debugees.

If returning or passing an int doesn’t work for a 64-bit debuggee (for example, PT_READ_GPR), the buffer
parameter takes the address for the result. Thus, with the ptracex subroutine, PT_READ_GPR and
PT_WRITE_GPR take a pointer to an 8 byte area representing the register value.

In general, ptracex supports all the calls that ptrace does when they are modified for any that are
extended for 64-bit addresses (for example, GPRs, LR, CTR, IAR, and MSR). Anything whose size
increases for 64-bit processes must be allowed for in the obvious way (for example, PT_REGSET must be
an array of long longs for a 64-bit debuggee).

Parameters
Request

Determines the action to be taken by the ptrace subroutine and has one of the following values:

PT_ATTACH
This request allows a debugging process to attach a current process and place it into
trace mode for debugging. This request cannot be used if the target process is already
being traced. The Identifier parameter is interpreted as the process ID of the traced
process. The Address, Data, and Buffer parameters are ignored.

Base Operating System (BOS) Runtime Services (A-P) 1319

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to one the following codes:

ESRCH
Process ID is not valid; the traced process is a kernel process; the process is
currently being traced; or, the debugger or traced process already exists.

EPERM
Real or effective user ID of the debugger does not match that of the traced
process, or the debugger does not have root authority.

EINVAL
The debugger and the traced process are the same.

PT_CLEAR
This request clears an internal flag or capability. The Data parameter specifies which flags
to clear. The following flag can be cleared:

PTFLAG_FAST_TRAP
Disables the special handling of a fast trap instruction (“Fast Trap Instructions” on
page 1318). This allows all fast trap instructions causing an interrupt to generate a
SIGTRAP signal.

The Identifier parameter specifies the process ID of the traced process. The Address
parameter, Buffer parameter, and the unused bits in the Data parameter are reserved for
future use and should be set to 0.

PTFLAG_FAST_WATCH
Enables fast watchpoint trap handling. When a watchpoint trap occurs in a process that
has a signal handler for SIGTRAP, and the process has fast watchpoints enabled, the
signal handler will be called instead of notifying the tracing process.

PTT_CLEAR_TRAP
This request type clears thread-level breakpoints.

The Identifier parameter is a valid kernel thread ID in the target process (−1 for all). The
Address parameter is the address of the breakpoint. The Data parameter must be 0. The
Buffer parameter must be NULL.

If the request is unsuccessful, -1 is returned and the errno global variable is set to one of
the following:

ESRCH
The Identifier parameter does not refer to a valid kernel thread in the target
process, or no breakpoint was found for the target thread at the given Address.

EINVAL
The Data parameter was non-zero or Buffer was non-NULL.

PT_CONTINUE
This request allows the process to resume execution. If the Data parameter is 0, all
pending signals, including the one that caused the process to stop, are concealed before
the process resumes execution. If the Data parameter is a valid signal number, the
process resumes execution as if it had received that signal. If the Address parameter
equals 1, the execution continues from where it stopped. If the Address parameter is not
1, it is assumed to be the address at which the process should resume execution. Upon

1320 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

successful completion, the value of the Data parameter is returned to the debugging
process. The Identifier parameter is interpreted as the process ID of the traced process.
The Buffer parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

EIO The signal to be sent to the traced process is not a valid signal number.

Note: For the PT_CONTINUE request, use ptracex or prtrace64 with a 64-bit debuggee
because the resume address needs 64 bits.

PTT_CONTINUE
This request asks the scheduler to resume execution of the kernel thread specified by
Identifier. This kernel thread must be the one that caused the exception. The Data
parameter specifies how to handle signals:

v If the Data parameter is 0, the kernel thread which caused the exception will be
resumed as if the signal never occurred.

v If the Data parameter is a valid signal number, the kernel thread which caused the
exception will be resumed as if it had received that signal.

The Address parameter specifies where to resume execution:

v If the Address parameter is 1, execution resumes from the address where it stopped.

v If the Address parameter contains an address value other than 1, execution resumes
from that address.

The Buffer parameter should point to a PTTHREADS structure, which contains a list of kernel
thread identifiers to be started. This list should be NULL terminated if it is smaller than the
maximum allowed.

On successful completion, the value of the Data parameter is returned to the debugging
process. On unsuccessful completion, the value -1 is returned, and the errno global
variable is set as follows:

EINVAL
The Identifier parameter names the wrong kernel thread.

EIO The signal to be sent to the traced kernel thread is not a valid signal number.

ESRCH
The Buffer parameter names an invalid kernel thread. Each kernel thread in the
list must be stopped and belong to the same process as the kernel thread named
by the Identifier parameter.

Note: For the PTT_CONTINUE request, use ptracex or ptrace64 with a 64-bit debuggee
because the resume address needs 64 bits.

PT_DETACH
This request allows a debugged process, specified by the Identifier parameter, to exit trace
mode. The process then continues running, as if it had received the signal whose number
is contained in the Data parameter. The process is no longer traced and does not process
any further ptrace calls. The Address and Buffer parameters are ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

EIO Signal to be sent to the traced process is not a valid signal number.

Base Operating System (BOS) Runtime Services (A-P) 1321

PT_GET_UKEY
This request reads the user-key assigned to a specific effective address indicated by the
address parameter into the location pointed to the buffer parameter. The process ID of the
traced process must be passed in the identifier parameter. The data parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

ENOSYS
Process is not user-key aware.

PT_KILL
This request allows the process to terminate the same way it would with an exit
subroutine.

PT_LDINFO

This request retrieves a description of the object modules that were loaded by the
debugged process. The Identifier parameter is interpreted as the process ID of the traced
process. The Buffer parameter is ignored. The Address parameter specifies the location
where the loader information is copied. The Data parameter specifies the size of this area.
The loader information is retrieved as a linked list of ld_info structures. The first element
of the list corresponds to the main executable module. The ld_info structures are defined
in the /usr/include/sys/ldr.h file. The linked list is implemented so that the ldinfo_next
field of each element gives the offset of the next element from this element. The
ldinfo_next field of the last element has the value 0.

Each object module reported is opened on behalf of the debugger process. The file
descriptor for an object module is saved in the ldinfo_fd field of the corresponding
ld_info structure. The debugger process is responsible for managing the files opened by
the ptrace subroutine.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

ENOMEM
Either the area is not large enough to accommodate the loader information, or
there is not enough memory to allocate an equivalent buffer in the kernel.

Note: For the PT_LDINFO request, use ptracex or ptrace64 with a 64-bit debuggee
because the source address needs 64 bits.

PT_LDXINFO

This request is similar to the PT_LDINFO request. A linked list of ld_xinfo structures is
returned instead of a list of ld_info structures. The first element of the list corresponds to
the main executable module. The ld_xinfo structures are defined in the
/usr/include/sys/ldr.h file. The linked list is implemented so that the ldinfo_next field of
each element gives the offset of the next element from this element. The ldinfo_next field
of the last element has the value 0.

Each object module reported is opened on behalf of the debugger process. The file
descriptor for an object module is saved in the ldinfo_fd field of the corresponding
ld_xinfo structure. The debugger process is responsible for managing the files opened by
the ptrace subroutine.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

1322 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

ENOMEM
Either the area is not large enough to accommodate the loader information, or
there is not enough memory to allocate an equivalent buffer in the kernel.

Note: For the PT_LDXINFO request, use ptracex or ptrace64 with a 64-bit debuggee
because the source address needs 64 bits.

PT_MULTI
This request turns multiprocess debugging mode on and off, to allow debugging to
continue across fork and exec subroutines. A 0 value for the Data parameter turns
multiprocess debugging mode off, while all other values turn it on. When multiprocess
debugging mode is in effect, any fork subroutine allows both the traced process and its
newly created process to trap on the next instruction. If a traced process initiated an exec
subroutine, the process stops before executing the first instruction of the new image and
returns the SIGTRAP signal. The Identifier parameter is interpreted as the process ID of
the traced process. The Address and Buffer parameters are ignored.

Also, when multiprocess debugging mode is enabled, the following values are returned
from the wait subroutine:

W_SEWTED
Process stopped during execution of the exec subroutine.

W_SFWTED
Process stopped during execution of the fork subroutine.

PT_READ_BLOCK
This request reads a block of data from the debugged process address space. The
Address parameter points to the block of data in the process address space, and the Data
parameter gives its length in bytes. The value of the Data parameter must not be greater
than 1024. The Identifier parameter is interpreted as the process ID of the traced process.
The Buffer parameter points to the location in the debugging process address space
where the data is copied. Upon successful completion, the ptrace subroutine returns the
value of the Data parameter.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to one of the following codes:

EIO The Data parameter is less than 1 or greater than 1024.

EIO The Address parameter is not a valid pointer into the debugged process address
space.

EFAULT
The Buffer parameter does not point to a writable location in the debugging
process address space.

Note: For the PT_READ_BLOCK request, use ptracex or ptrace64 with a 64-bit
debuggee because the source address needs 64 bits.

PT_READ_FPR
This request stores the value of a floating-point register into the location pointed to by the
Address parameter. The Data parameter specifies the floating-point register, defined in the
sys/reg.h file for the machine type on which the process is run. The Identifier parameter is
interpreted as the process ID of the traced process. The Buffer parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

Base Operating System (BOS) Runtime Services (A-P) 1323

EIO The Data parameter is not a valid floating-point register. The Data parameter must
be in the range 256-287.

PTT_READ_FPRS
This request writes the contents of the 32 floating point registers to the area specified by
the Address parameter. This area must be at least 256 bytes long. The Identifier
parameter specifies the traced kernel thread. The Data and Buffer parameters are ignored.

PTT_READ_FPSCR_HI
This request writes the contents of the upper 32-bits of the FPSCR register to the area
specified by the Address parameter. This area must be at least 4 bytes long. The Identifier
parameter specifies the traced kernel thread. The Data and Buffer parameters are ignored.

PTT_WRITE_FPSCR_HI
This request updates the contents of the upper 32-bits of the FPSCR register with the
value specified in the area designated by the Address parameter. This area must be at
least 4 bytes long. The Identifier parameter specifies the traced kernel thread. The Data
and Buffer parameters are ignored.

PT_READ_GPR
This request returns the contents of one of the general-purpose or special-purpose
registers of the debugged process. The Address parameter specifies the register whose
value is returned. The value of the Address parameter is defined in the sys/reg.h file for
the machine type on which the process is run. The Identifier parameter is interpreted as
the process ID of the traced process. The Data and Buffer parameters are ignored. The
buffer points to long long target area.

Note: If ptracex or ptrace64 with a 64-bit debuggee is used for this request, the register
value is instead returned to the 8-byte area pointed to by the buffer pointer.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

EIO The Address is not a valid general-purpose or special-purpose register. The
Address parameter must be in the range 0-31 or 128-136.

PTT_READ_GPRS
This request writes the contents of the 32 general purpose registers to the area specified
by the Address parameter. This area must be at least 128 bytes long.

Note: If ptracex or ptrace64 are used with a 64-bit debuggee for the PTT_READ_GPRS
request, there must be at least a 256 byte target area. The Identifier parameter
specifies the traced kernel thread. The Data and Buffer parameters are ignored.

PT_READ_I or PT_READ_D
These requests return the word-aligned address in the debugged process address space
specified by the Address parameter. On all machines currently supported by AIX Version
4, the PT_READ_I and PT_READ_D instruction and data requests can be used with equal
results. The Identifier parameter is interpreted as the process ID of the traced process.
The Data parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

EIO The Address is not word-aligned, or the Address is not valid. User blocks, kernel
segments, and kernel extension segments are not considered as valid addresses.

1324 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Note: For the PT_READ_I or the PT_READ_D request, use ptracex or ptrace64 with a
64-bit debuggee because the source address needs 64 bits.

PTT_READ_SPRS
This request writes the contents of the special purpose registers to the area specified by
the Address parameter, which points to a ptsprs structure. The Identifier parameter
specifies the traced kernel thread. The Data and Buffer parameters are ignored.

Note: For the PTT_READ_SPRS request, use ptracex or ptrace64 with the 64-bit
debuggee because the new ptxsprs structure must be used.

PTT_READ_UKEYSET
This request reads the active user-key-set for the specified thread whose thread ID is
specified by the identifier parameter into the location pointed to the buffer parameter. The
address and data parameters are ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

ENOSYS
Process is not user-key aware.

PTT_READ_VEC
This request reads the vector register state of the specified thread. The data format is a
__vmx_context_t structure that contains the 32 vector registers, in addition to the VSCR
and VRSAVE registers.

PT_REATT
This request allows a new debugger, with the proper permissions, to trace a process that
was already traced by another debugger. The Identifier parameter is interpreted as the
process ID of the traced process. The Address, Data, and Buffer parameters are ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to one the following codes:

ESRCH
The Identifier is not valid; or the traced process is a kernel process.

EPERM
Real or effective user ID of the debugger does not match that of the traced
process, or the debugger does not have root authority.

EINVAL
The debugger and the traced process are the same.

PT_REGSET
This request writes the contents of all 32 general purpose registers to the area specified
by the Address parameter. This area must be at least 128 bytes for the 32-bit debuggee or
256 bytes for the 64-bit debuggee. The Identifier parameter is interpreted as the process
ID of the traced process. The Data and Buffer parameters are ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

EIO The Address parameter points to a location outside of the allocated address space
of the process.

Note: For the PT_REGSET request, use ptracex or ptrace64 with the 64-bit debuggee
because 64-bit registers requiring 256 bytes are returned.

Base Operating System (BOS) Runtime Services (A-P) 1325

PT_SET
This request sets an internal flag or capability. The Data parameter indicates which flags
are set. The following flag can be set:

PTFLAG_FAST_TRAP
Enables the special handling of a fast trap instruction (“Fast Trap Instructions” on
page 1318). When a fast trap instruction is run in a process that has a signal
handler for SIGTRAP, the signal handler will be called even if the process is being
traced.

The Identifier parameter specifies the process ID of the traced process. The Address
parameter, Buffer parameter, and the unused bits in the Data parameter are reserved for
future use and should be set to 0.

PTT_SET_TRAP
This request type sets thread-level breakpoints.

The Identifier parameter is a valid kernel ID in the target process. The Address parameter
is the address in the target process for the breakpoint. The Data parameter is the length of
data in Buffer, it must be 4. The Buffer parameter is a pointer to trap instruction to be
written.

The system call will not evaluate the contents of the buffer for this request, but by
convention, it should contain a single trap instruction.

If the request is unsuccessful, a value of -1 is returned and the errno global variable is set
to one of the following:

ENOMEM
Could not allocate kernel memory.

ESRCH
The Identifier parameter does not refer to a valid kernel thread in the target
process.

EIO The Address parameter does not point to a writable location in the address space
of the target process.

EINVAL
Data parameter was not 4, or the target thread already has a breakpoint set at
Address.

EFAULT
The Buffer parameter does not point to a readable location in the caller’s address
space.

PT_TRACE_ME
This request must be issued by the debugged process to be traced. Upon receipt of a
signal, this request sets the process trace flag, placing the process in a stopped state,
rather than the action specified by the sigaction subroutine. The Identifier, Address, Data,
and Buffer parameters are ignored. Do not issue this request if the parent process does
not expect to trace the debugged process.

As a security measure, the ptrace subroutine inhibits the set-user-ID facility on
subsequent exec subroutines, as shown in the following example:
if((childpid = fork()) == 0)
{ /* child process */
ptrace(PT_TRACE_ME,0,0,0,0);

1326 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

execlp()/* your favorite exec*/
}

else
{ /* parent */

/* wait for child to stop */
rc = wait(status)

Note: This is the only request that should be performed by the child. The parent should
perform all other requests when the child is in a stopped state.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

ESRCH
Process is debugged by a process that is not its parent.

PT_WATCH
This request allows to have a watchpoint on the memory region specified when the
debugged process changes the content at the specified memory region.

The Identifier parameter is interpreted as the process ID of the traced process. The Buffer
parameter is ignored. The Address parameter specifies beginning of the memory region to
be watched. To clear the watchpoint the Address parameter must be NULL. The Data
parameter specifies the size of the memory region.

Watchpoints are supported only on the hardware POWER630, POWER5 and POWER6.
Currently the size of the memory region, that is, the parameter Data must be 8 because
only 8 byte watchpoint is supported at the hardware level.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

EPERM
If the hardware does not support watchpoints or if specified Identifier is not valid
Process ID.

EIO If the specified Address is not double word aligned.

EINVAL
If the specified Data is not 8.

PTT_WATCH
This request sets and clears thread-level watchpoints.

The Identifier parameter is a valid kernel thread ID in the target process (-1 for all). The
Address parameter is the double-worded aligned address to watch. A value of 0 clears the
watchpoint. The Data parameter must be 0 (clear) or 8 (set). The Buffer parameter must
be NULL.

If the request is unsuccessful, a value of -1 is returned and the errno global variable is set
to one of the following:

ESRCH
The Identifier parameter does not refer to a valid kernel thread in the target
process.

EPERM
The hardware watchpoint facility is not supported on the platform.

EIO The requested Address is not a valid, double-worded aligned address in target
process address space, or the Address is non-zero and Data is not 8

Base Operating System (BOS) Runtime Services (A-P) 1327

PT_WRITE_BLOCK
This request writes a block of data into the debugged process address space. The
Address parameter points to the location in the process address space to be written into.
The Data parameter gives the length of the block in bytes, and must not be greater than
1024. The Identifier parameter is interpreted as the process ID of the traced process. The
Buffer parameter points to the location in the debugging process address space where the
data is copied. Upon successful completion, the value of the Data parameter is returned to
the debugging process.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to one of the following codes:

EIO The Data parameter is less than 1 or greater than 1024.

EIO The Address parameter is not a valid pointer into the debugged process address
space.

EFAULT
The Buffer parameter does not point to a readable location in the debugging
process address space.

Note: For the PT_WRITE_BLOCK request, use ptracex or ptrace64 with the 64-bit
debuggee because 64-bit registers requiring 256 bytes are returned.

PT_WRITE_FPR
This request sets the floating-point register specified by the Data parameter to the value
specified by the Address parameter. The Identifier parameter is interpreted as the process
ID of the traced process. The Buffer parameter is ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

EIO The Data parameter is not a valid floating-point register. The Data parameter must
be in the range 256-287.

PTT_WRITE_FPRS
This request updates the contents of the 32 floating point registers with the values
specified in the area designated by the Address parameter. This area must be at least 256
bytes long. The Identifier parameter specifies the traced kernel thread. The Data and
Buffer parameters are ignored.

PT_WRITE_GPR
This request stores the value of the Data parameter in one of the process general-purpose
or special-purpose registers. The Address parameter specifies the register to be modified.
Upon successful completion, the value of the Data parameter is returned to the debugging
process. The Identifier parameter is interpreted as the process ID of the traced process.
The Buffer parameter is ignored.

Note: If ptracex or ptrace64 are used with a 64-bit debuggee for the PT_WRITE_GPR
request, the new register value is NOT passed via the Data parameter, but is
instead passed via the 8-byte area pointed to by the buffer parameter.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

EIO The Address parameter is not a valid general-purpose or special-purpose register.
The Address parameter must be in the range 0-31 or 128-136.

1328 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

PTT_WRITE_GPRS
This request updates the contents of the 32 general purpose registers with the values
specified in the area designated by the Address parameter. This area must be at least 128
bytes long. The Identifier parameter specifies the traced kernel thread. The Data and
Buffer parameters are ignored.

Note: For the PTT_WRITE_GPRS request, use ptracex or ptrace64 with the 64-bit
debuggee because 64-bit registers requiring 256 bytes are returned. The buffer
points to long long source area.

PT_WRITE_I or PT_WRITE_D
These requests write the value of the Data parameter into the address space of the
debugged process at the word-aligned address specified by the Address parameter. On all
machines currently supported by AIX Version 4, instruction and data address spaces are
not separated. The PT_WRITE_I and PT_WRITE_D instruction and data requests can be
used with equal results. Upon successful completion, the value written into the address
space of the debugged process is returned to the debugging process. The Identifier
parameter is interpreted as the process ID of the traced process. The Buffer parameter is
ignored.

If this request is unsuccessful, a value of -1 is returned and the errno global variable is
set to the following code:

EIO The Address parameter points to a location in a pure procedure space and a copy
cannot be made; the Address is not word-aligned; or, the Address is not valid.
User blocks, kernel segments, and kernel extension segments are not considered
valid addresses.

Note: For the or PT_WRITE_I or PT_WRITE_D request, use ptracex or ptrace64 with a
64-bit debuggee because the target address needs 64 bits.

PTT_WRITE_SPRS
This request updates the special purpose registers with the values in the area specified by
the Address parameter, which points to a ptsprs structure. The Identifier parameter
specifies the traced kernel thread. The Data and Buffer parameters are ignored.

Identifier
Determined by the value of the Request parameter.

Address
Determined by the value of the Request parameter.

Data Determined by the value of the Request parameter.

Buffer Determined by the value of the Request parameter.

Note: For the PTT_READ_SPRS request, use ptracex or ptrace64 with the 64-bit
debuggee because the new ptxsprs structure must be used.

PTT_WRITE_VEC
This request writes the vector register state of the specified thread. The data format is a
__vmx_context_t structure that contains the 32 vector registers, in addition to the VSCR
and VRSAVE registers.

Base Operating System (BOS) Runtime Services (A-P) 1329

Error Codes
The ptrace subroutine is unsuccessful when one of the following is true:

EFAULT The Buffer parameter points to a location outside the debugging process address space.
EINVAL The debugger and the traced process are the same; or the Identifier parameter does not identify

the thread that caused the exception.
EIO The Request parameter is not one of the values listed, or the Request parameter is not valid for

the machine type on which the process is run.
ENOMEM Either the area is not large enough to accommodate the loader information, or there is not

enough memory to allocate an equivalent buffer in the kernel.
ENXIO The target thread has not referenced the VMX unit and is not currently a VMX thread.
EPERM The Identifier parameter corresponds to a kernel thread which is stopped in kernel mode and

whose computational state cannot be read or written.
ESRCH The Identifier parameter identifies a process or thread that does not exist, that has not run a

ptrace call with the PT_TRACE_ME request, or that is not stopped.

For ptrace: If the debuggee is a 64-bit process, the options that refer to GPRs or SPRs fail with errno =
EIO, and the options that specify addresses are limited to 32-bits.

For ptracex or ptrace64: If the debuggee is a 32-bit process, the options that refer to GPRs or SPRs fail
with errno = EIO, and the options that specify addresses in the debuggee’s address space that are larger
than 2**32 - 1 fail with errno set to EIO.

Also, the options PT_READ_U and PT_WRITE_U are not supported if the debuggee is a 64-bit program
(errno = ENOTSUP).

Related Information
The “exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 238, “getprocs
Subroutine” on page 417, “getthrds Subroutine” on page 445, and “load and loadAndInit Subroutines” on
page 730.

The sigaction subroutine, unload subroutine, and wait, waitpid, or wait3 subroutine in AIX 5L Version 5.3
Technical Reference: Base Operating System and Extensions Volume 2.

The dbx command in AIX 5L Version 5.3 Commands Reference, Volume 2.

The sys/ldr.h. file.

ptsname Subroutine

Purpose
Returns the name of a pseudo-terminal device.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *ptsname (FileDescriptor)
int FileDescriptor

1330 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Description
The ptsname subroutine gets the path name of the slave pseudo-terminal associated with the master
pseudo-terminal device defined by the FileDescriptor parameter.

Parameters

FileDescriptor Specifies the file descriptor of the master pseudo-terminal device

Return Values
The ptsname subroutine returns a pointer to a string containing the null-terminated path name of the
pseudo-terminal device associated with the file descriptor specified by the FileDescriptor parameter. A null
pointer is returned and the errno global variable is set to indicate the error if the file descriptor does not
describe a pseudo-terminal device in the /dev directory.

Files

/dev/* Terminal device special files.

Related Information
The ttyname subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

putc, putchar, fputc, or putw Subroutine

Purpose
Writes a character or a word to a stream.

Library
Standard I/O Package (libc.a)

Syntax
#include <stdio.h>

int putc (Character, Stream)
int Character;
FILE *Stream;

int putchar (Character)
int Character;

int fputc (Character, Stream)
int Character;
FILE *Stream;

int putw (Word, Stream)
int Word;
FILE *Stream;

Base Operating System (BOS) Runtime Services (A-P) 1331

Description
The putc and putchar macros write a character or word to a stream. The fputc and putw subroutines
serve similar purposes but are true subroutines.

The putc macro writes the character Character (converted to an unsigned char data type) to the output
specified by the Stream parameter. The character is written at the position at which the file pointer is
currently pointing, if defined.

The putchar macro is the same as the putc macro except that putchar writes to the standard output.

The fputc subroutine works the same as the putc macro, but fputc is a true subroutine rather than a
macro. It runs more slowly than putc, but takes less space per invocation.

Because putc is implemented as a macro, it incorrectly treats a Stream parameter with side effects, such
as putc(C, *f++). For such cases, use the fputc subroutine instead. Also, use fputc whenever you need to
pass a pointer to this subroutine as a parameter to another subroutine.

The putc and putchar macros have also been implemented as subroutines for ANSI compatibility. To
access the subroutines instead of the macros, insert #undef putc or #undef putchar at the beginning of
the source file.

The putw subroutine writes the word (int data type) specified by the Word parameter to the output
specified by the Stream parameter. The word is written at the position at which the file pointer, if defined,
is pointing. The size of a word is the size of an integer and varies from machine to machine. The putw
subroutine does not assume or cause special alignment of the data in the file.

After the fputcw, putwc, fputc, putc, fputs, puts, or putw subroutine runs successfully, and before the
next successful completion of a call either to the fflush or fclose subroutine on the same stream or to the
exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for update.

Because of possible differences in word length and byte ordering, files written using the putw subroutine
are machine-dependent, and may not be readable using the getw subroutine on a different processor.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line-buffered if
they refer to terminals. The standard error output stream, stderr, is unbuffered by default, but using the
freopen subroutine causes it to become buffered or line-buffered. Use the setbuf subroutine to change
the stream buffering strategy.

When an output stream is unbuffered, information is queued for writing on the destination file or terminal
as soon as it is written. When an output stream is buffered, many characters are saved and written as a
block. When an output stream is line-buffered, each line of output is queued for writing on the destination
terminal as soon as the line is completed (that is, as soon as a new-line character is written or terminal
input is requested).

Parameters

Stream Points to the file structure of an open file.
Character Specifies a character to be written.
Word Specifies a word to be written (not portable because word length and byte-ordering are

machine-dependent).

1332 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Return Values
Upon successful completion, these functions each return the value written. If these functions fail, they
return the constant EOF. They fail if the Stream parameter is not open for writing, or if the output file size
cannot be increased. Because the EOF value is a valid integer, you should use the ferror subroutine to
detect putw errors.

Error Codes
The fputc subroutine will fail if either the Stream is unbuffered or the Stream buffer needs to be flushed,
and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying Stream and the process would be
delayed in the write operation.

EBADF The file descriptor underlying Stream is not a valid file descriptor open for writing.
EFBIG An attempt was made to write a file that exceeds the file size of the process limit or the maximum file

size.
EFBIG The file is a regular file and an attempt was made to write at or beyond the offset maximum.
EINTR The write operation was terminated due to the receipt of a signal, and either no data was transferred or

the implementation does not report partial transfers for this file.
Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.
Refer to the signal Subroutine regarding sa_restart.

EIO A physical I/O error has occurred, or the process is a member of a background process group attempting
to perform a write subroutine to its controlling terminal, the TOSTOP flag is set, the process is neither
ignoring nor blocking the SIGTTOU signal and the process group of the process is orphaned. This error
may also be returned under implementation-dependent conditions.

ENOSPC There was no free space remaining on the device containing the file.
EPIPE An attempt is made to write to a pipe or first-in-first-out (FIFO) that is not open for reading by any

process. A SIGPIPE signal will also be sent to the process.

The fputc subroutine may fail if:

ENOMEM Insufficient storage space is available.
ENXIO A request was made of a nonexistent device, or the request was outside the capabilities of the device.

Related Information
The fclose or fflush (“fclose or fflush Subroutine” on page 256) subroutine, feof, ferror, clearerr, or
fileno (“feof, ferror, clearerr, or fileno Macro” on page 272) subroutine, fopen, freopen, or fdopen (“fopen,
fopen64, freopen, freopen64 or fdopen Subroutine” on page 290) subroutine, fread or fwrite (“fread or
fwrite Subroutine” on page 313) subroutine, getc, fgetc, getchar, or getw (“getc, getchar, fgetc, or getw
Subroutine” on page 350) subroutine, getwc, fgetwc, or getwchar (“getwc, fgetwc, or getwchar
Subroutine” on page 479) subroutine, printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, or wsprintf
(“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1178)
subroutine, putwc, fputwc, or putwchar (“putwc, putwchar, or fputwc Subroutine” on page 1349)
subroutine, puts or fputs (“puts or fputs Subroutine” on page 1341) subroutine, setbuf subroutine.

putconfattrs Subroutine

Purpose
Accesses system information in the system information database.

Library
Security Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 1333

Syntax
#include <usersec.h>
#include <userconf.h>

int putconfattrs (Table, Attributes, Count)
char * Table;
dbattr_t * Attributes;
int Count

Description
The putconfattrs subroutine writes one or more attributes into the system information database. If the
database is not already open, the subroutine does an implicit open for reading and writing. Data changed
by putconfattrs must be explicitly committed by calling the putconfattr subroutine with a Type parameter
specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls within the
process return the written data.

The Attributes array contains information about each attribute that is to be written. The dbattr_t data
structure contains the following fields:

attr_name
The name of the desired attribute.

attr_idx
Used internally by the putconfattrs subroutine.

attr_type
The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag
The results of the request to write the desired attribute.

attr_un
A union containing the values to be written. Its union members that follow correspond to the
definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char
Attributes of type SEC_CHAR and SEC_LIST store a pointer to the value to be written.

un_int Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be
written.

un_long
Attributes of type SEC_LONG contain the value of the attribute to be written.

un_llong
Attributes of type SEC_LLONG contain the value of the attribute to be written.

attr_domain
The authentication domain containing the attribute. The putconfattrs subroutine stores the name
of the authentication domain that was used to write this attribute if it is not initialized by the caller.
The putconfattrs subroutine is responsible for managing the memory referenced by this pointer.

Use the setuserdb and enduserdb subroutines to open and close the system information database.
Failure to explicitly open and close the system information database can result in loss of memory and
performance.

Parameters

Table The system information table containing the desired attributes. The list of valid system
information tables is defined in the userconf.h header file.

1334 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Attributes A pointer to an array of one or more elements of type dbattr_t. The list of system attributes
is defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security
Files accessed:

Mode File
rw /etc/security/.ids
rw /etc/security/audit/config
rw /etc/security/audit/events
rw /etc/security/audit/objects
rw /etc/security/login.cfg
rw /etc/security/portlog
rw /etc/security/roles
rw /usr/lib/security/methods.cfg
rw /usr/lib/security/mkuser.sys

Return Values
The putconfattrs subroutine, when successfully completed, returns a value of 0. Otherwise, a value of -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The putconfattrs subroutine fails if one or more of the following are true:

EACCES The system information database could not be accessed for writing.
EINVAL The Table parameter is the NULL pointer.
EINVAL The Attributes parameter does not point to valid data for the requested attribute.

Limited testing is possible and all errors might not be detected.
EINVAL The Count parameter is less than or equal to 0.
ENOENT The specified Table does not exist.

If the putconfattrs subroutine fails to write an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

EACCES The user does not have access to the attribute specified in the attr_name field.
EINVAL The attr_type field in the Attributes entry contains an invalid type.
EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.
ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

system table.

Related Information
The putuserattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 456) subroutine.

The setuserdb Subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 1335

putenv Subroutine

Purpose
Sets an environment variable.

Library
Standard C Library (libc.a)

Syntax
int putenv (String)
char *String;

Description
Attention: Unpredictable results can occur if a subroutine passes the putenv subroutine a pointer to an
automatic variable and then returns while the variable is still part of the environment.

The putenv subroutine sets the value of an environment variable by altering an existing variable or by
creating a new one. The String parameter points to a string of the form Name=Value, where Name is the
environment variable and Value is the new value for it.

The memory space pointed to by the String parameter becomes part of the environment, so that altering
the string effectively changes part of the environment. The space is no longer used after the value of the
environment variable is changed by calling the putenv subroutine again. Also, after the putenv subroutine
is called, environment variables are not necessarily in alphabetical order.

The putenv subroutine manipulates the environ external variable and can be used in conjunction with the
getenv subroutine. However, the EnvironmentPointer parameter, the third parameter to the main
subroutine, is not changed.

The putenv subroutine uses the malloc subroutine to enlarge the environment.

Parameters

String A pointer to the Name=Value string.

Return Values
Upon successful completion, a value of 0 is returned. If the malloc subroutine is unable to obtain sufficient
space to expand the environment, then the putenv subroutine returns a nonzero value.

Related Information
The exec: execl, execv, execle, execlp, execvp, or exect (“exec: execl, execle, execlp, execv, execve,
execvp, or exect Subroutine” on page 238) subroutine, getenv (“getenv Subroutine” on page 367)
subroutine, malloc (“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or
posix_memalign Subroutine” on page 782) subroutine.

putgrent Subroutine

Purpose
Updates group descriptions.

1336 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Library
Standard C Library (libc.a)

Syntax
int putgrent (grp, fp)
struct group *grp;
FILE *fp;

Description
The putgrent subroutine updates group descriptions. The grp parameter is a pointer to a group structure,
as created by the getgrent, getgrgid, and getgrnam subroutines.

The putgrent subroutine writes a line on the stream specified by the fp parameter. The stream matches
the format of /etc/group.

The gr_passwd field of the line written is always set to ! (exclamation point).

Parameters

grp Pointer to a group structure.
fp Specifies the stream to be written to.

Return Values
The putgrent subroutine returns a value of 0 upon successful completion. If putgrent fails, a nonzero
value is returned.

Files
/etc/group

/etc/security/group

Related Information
The “getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine” on page 374.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

putgroupattrs Subroutine

Purpose
Stores multiple group attributes in the group database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

Base Operating System (BOS) Runtime Services (A-P) 1337

int putgroupattrs (Group, Attributes, Count)
char * Group;
dbattr_t * Attributes;
int Count

Description
The putgroupattrs subroutine writes multiple group attributes into the group database. If the database is
not already open, this subroutine does an implicit open for reading and writing. Data changed by
putgroupattrs must be explicitly committed by calling the putgroupattr subroutine with a Type parameter
specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls within the
process return the written data.

The Attributes array contains information about each attribute that is to be written. Each element in the
Attributes array must be examined upon a successful call to putgroupattrs to determine if the Attributes
array entry was successfully put. The dbattr_t data structure contains the following fields:

attr_name
The name of the desired attribute.

attr_idx
Used internally by the putgroupattrs subroutine.

attr_type
The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag
The results of the request to write the desired attribute.

attr_un
A union containing the values to be written. Its union members that follow correspond to the
definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char
Attributes of type SEC_CHAR and SEC_LIST store a pointer to the value to be written.

un_int Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be
written.

un_long
Attributes of type SEC_LONG contain the value of the attribute to be written.

un_llong
Attributes of type SEC_LLONG contain the value of the attribute to be written.

attr_domain
The authentication domain containing the attribute. The putgroupattrs subroutine stores the name
of the authentication domain that was used to write this attribute if it is not initialized by the caller.
The putgroupattrs subroutine is responsible for managing the memory referenced by this pointer.
If attr_domain is specified for an attribute, the put request is sent only to that domain.
If attr_domain is not specified (that is, set to NULL), putgroupattrs attempts to put the attributes
to the first domain associated with the user. All put requests for the attributes with a NULL
attr_domain are sent to the same domain. In other words, values cannot be put into different
domains where attr_domain is unspecified; attr_domain is set to the name of the domain where
the value is put and returned to the invoker.
When attr_domain is not specified, the list of searchable domains can be restricted to a particular
domain by using the setauthdb function call.

Use the setuserdb and enduserdb subroutines to open and close the group database. Failure to explicitly
open and close the group database can result in loss of memory and performance.

1338 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Parameters

Group Specifies the name of the group for which the attributes are to be written.
Attributes A pointer to an array of one or more elements of type dbattr_t. The list of group attributes is

defined in the usersec.h header file.
Count The number of array elements in Attributes.

Security
Files accessed:

Mode File
rw /etc/group
rw /etc/security/group
rw /etc/security/smitacl.group

Return Values
The putgroupattrs subroutine returns a value of 0 if the Group exists, even in the case when no attributes
in the Attributes array were successfully updated. Otherwise, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The putgroupattrs subroutine fails if one or more of the following are true:

EACCES The system information database could not be accessed for writing.
EINVAL The Group parameter is the NULL pointer.
EINVAL The Attributes parameter does not point to valid data for the requested attribute.

Limited testing is possible and all errors might not be detected.
EINVAL The Count parameter is less than or equal to 0.
ENOENT The specified Group does not exist.

If the putgroupattrs subroutine fails to write an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

EACCES The user does not have access to the attribute specified in the attr_name field.
EINVAL The attr_type field in the Attributes entry contains an invalid type.
EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.
ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

group.

Examples
The following sample test program displays the output to a call to putgroupattrs. In this example, the
system has a user named foo and a group named bar.
#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <usersec.h>

char * CommaToNSL(char *);

#define NATTR 2 /* Number of attributes to be put. */
#define GROUPNAME "bar" /* Group name. */

Base Operating System (BOS) Runtime Services (A-P) 1339

#define DOMAIN "files" /* Domain where attributes are going to put. */

main(int argc, char *argv[]) {
int rc;
int i;
dbattr_t attributes[NATTR];

/* Open the group database */
setuserdb(S_WRITE);

/* Valid put */

attributes[0].attr_name = S_ADMIN;
attributes[0].attr_type = SEC_BOOL;

attributes[0].attr_domain = DOMAIN;
attributes[0].attr_char = strdup("false");

/* Valid put */

attributes[1].attr_name = S_USERS;
attributes[1].attr_type = SEC_LIST;
attributes[1].attr_domain = DOMAIN;
attributes[1].attr_char = CommaToNSL("foo");

rc = putgroupattrs(GROUPNAME, attributes, NATTR);

if (rc) {
printf("putgroupattrs failed \n");
goto clean_exit;
}

for (i = 0; i < NATTR; i++) {
if (attributes[i].attr_flag)
printf("Put failed for attribute %s. errno = %d \n",

attributes[i].attr_name, attributes[i].attr_flag);
else
printf("Put succeded for attribute %s \n",

attributes[i].attr_name);
}

clean_exit:
enduserdb();

if (attributes[0].attr_char)
free(attributes[0].attr_char);

if (attributes[1].attr_char)
free(attributes[1].attr_char);

exit(rc);
}

/*
* Returns a new NSL created from a comma separated list.
* The comma separated list is unmodified.
*
*/

char *
CommaToNSL(char *CommaList)
{

char *NSL = (char *) NULL;
char *s;

if (!CommaList)
return(NSL);

1340 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

if (!(NSL = (char *) malloc(strlen(CommaList) + 2)))
return(NSL);

strcpy(NSL, CommaList);

for (s = NSL; *s; s++)
if (*s == ',')

*s = '\0';

*(++s) = '\0';
}

The following output for the call is expected:
Put succeeded for attribute admin
Put succeeded for attribute users

Related Information
The setuserdb Subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

puts or fputs Subroutine

Purpose
Writes a string to a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>

int puts (String)
const char *String;

int fputs (String, Stream)
const char *String;
FILE *Stream;

Description
The puts subroutine writes the string pointed to by the String parameter to the standard output stream,
stdout, and appends a new-line character to the output.

The fputs subroutine writes the null-terminated string pointed to by the String parameter to the output
stream specified by the Stream parameter. The fputs subroutine does not append a new-line character.

Neither subroutine writes the terminating null character.

After the fputwc, putwc, fputc, fputs, puts, or putw subroutine runs successfully, and before the next
successful completion of a call either to the fflush or fclose subroutine on the same stream or a call to
the exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for update.

Base Operating System (BOS) Runtime Services (A-P) 1341

Parameters

String Points to a string to be written to output.
Stream Points to the FILE structure of an open file.

Return Values
Upon successful completion, the puts and fputs subroutines return the number of characters written.
Otherwise, both subroutines return EOF, set an error indicator for the stream and set the errno global
variable to indicate the error. This happens if the routines try to write to a file that has not been opened for
writing.

Error Codes
If the puts or fputs subroutine is unsuccessful because the output stream specified by the Stream
parameter is unbuffered or the buffer needs to be flushed, it returns one or more of the following error
codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor specified by the Stream parameter and
the process would be delayed in the write operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is not a valid file descriptor open for
writing.

EFBIG Indicates that an attempt was made to write to a file that exceeds the process’ file size limit or the
systemwide maximum file size.

EINTR Indicates that the write operation was terminated due to receipt of a signal and no data was transferred.
Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.
Refer to the signal subroutine regarding the SA_RESTART bit.

EIO Indicates that the process is a member of a background process group attempting to perform a write to
its controlling terminal, the TOSTOP flag is set, the process is neither ignoring or blocking the SIGTTOU
signal, and the process group of the process has no parent process.

ENOSPC Indicates that there was no free space remaining on the device containing the file specified by the
Stream parameter.

EPIPE Indicates that an attempt is made to write to a pipe or first-in-first-out (FIFO) that is not open for reading
by any process. A SIGPIPE signal will also be sent to the process.

ENOMEM Indicates that insufficient storage space is available.
ENXIO Indicates that a request was made of a nonexistent device, or the request was outside the capabilities of

the device.

Related Information
The fopen, freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290)
subroutine, fread, or fwrite (“fread or fwrite Subroutine” on page 313) subroutine, gets or fgets (“gets or
fgets Subroutine” on page 436) subroutine, getws or fgetws (“getws or fgetws Subroutine” on page 482)
subroutine, printf, fprintf, and sprintf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or
vwsprintf Subroutine” on page 1178) subroutine, putc, putchar, fputc, or putw (“putc, putchar, fputc, or
putw Subroutine” on page 1331)subroutine, putwc, putwchar, or fputwc (“putwc, putwchar, or fputwc
Subroutine” on page 1349) subroutine, putws or fputws (“putws or fputws Subroutine” on page 1351)
subroutine.

The feof, ferror, clearerr, or fileno (“feof, ferror, clearerr, or fileno Macro” on page 272) macros.

List of String Manipulation Services.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

1342 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

putuserattrs Subroutine

Purpose
Stores multiple user attributes in the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int putuserattrs (User, Attributes, Count)
char * User;
dbattr_t * Attributes;
int Count

Description
The putuserattrs subroutine writes multiple user attributes into the user database. If the database is not
already open, this subroutine does an implicit open for reading and writing. Data changed by putuserattrs
must be explicitly committed by calling the putuserattr subroutine with a Type parameter specifying the
SEC_COMMIT value. Until the data is committed, only get subroutine calls within the process return the
written data.

The Attributes array contains information about each attribute that is to be written. Each element in the
Attributes array must be examined upon a successful call to putuserattrs to determine if the Attributes
array entry was successfully put. Please see putuserattr man page for the supported attributes. The
dbattr_t data structure contains the following fields:

attr_name
The name of the desired attribute.

attr_idx
Used internally by the putuserattrs subroutine.

attr_type
The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag
The results of the request to write the desired attribute.

attr_un
A union containing the returned values. Its union members that follow correspond to the definitions
of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char
Attributes of type SEC_CHAR and SEC_LIST contain a pointer to the value to be written.

un_int Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be
written.

un_long
Attributes of type SEC_LONG contain the value of the attribute to be written.

un_llong
Attributes of type SEC_LLONG contain the value of the attribute to be written.

attr_domain
The authentication domain containing the attribute. The putuserattrs subroutine stores the name

Base Operating System (BOS) Runtime Services (A-P) 1343

of the authentication domain that was used to write this attribute if it is not initialized by the caller.
The putuserattrs subroutine is responsible for managing the memory referenced by this pointer.
If attr_domain is specified for an attribute, the put request is sent only to that domain.
If attr_domain is not specified (that is, set to NULL), putuserattrs attempts to put the attributes to
the first domain associated with the user. All put requests for the attributes with a NULL
attr_domain are sent to the same domain. In other words, values cannot be put into different
domains where attr_domain is unspecified; attr_domain is set to the name of the domain where
the value is put and returned to the invoker.
When attr_domain is not specified, the list of searchable domains can be restricted to a particular
domain by using the setauthdb function call.

Use the setuserdb and enduserdb subroutines to open and close the user database. Failure to explicitly
open and close the user database can result in loss of memory and performance.

Parameters

User Specifies the name of the user for which the attributes are to be written.
Attributes A pointer to an array of one or more elements of type dbattr_t. The list of user attributes is

defined in the usersec.h header file.
Count The number of array elements in Attributes.

Security
Files accessed:

Mode File
rw /etc/group
rw /etc/passwd
rw /etc/security/audit/config
rw /etc/security/environ
rw /etc/security/group
rw /etc/security/lastlog
rw /etc/security/limits
rw /etc/security/passwd
rw /etc/security/pwdhist.dir
rw /etc/security/pwdhist.pag
rw /etc/security/smitacl.user
rw /etc/security/user.roles

Return Values
The putuserattrs subroutine returns a value of 0 if the User exists, even in the case when no attributes in
the Attributes array were successfully updated. Otherwise, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The putuserattrs subroutine fails if one or more of the following is true:

EACCES The system information database could not be accessed for writing.
EINVAL The User parameter is the NULL pointer.
EINVAL The Attributes parameter does not point to valid data for the requested attribute.

Limited testing is possible and all errors might not be detected.
EINVAL The Attributes parameter does not point to valid data for the requested attribute.

Limited testing is possible and all errors might not be detected.
ENOENT The specified User parameter does not exist.

1344 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

If the putuserattrs subroutine fails to write an attribute, one or more of the following errors is returned in
the attr_flag field of the corresponding Attributes element:

EACCES The user does not have access to the attribute specified in the attr_name field.
EINVAL The attr_type field in the Attributes entry contains an invalid type.
EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.
ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

user.

Examples
The following sample test program displays the output to a call to putuserattrs. In this example, the
system has a user named foo.
#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <usersec.h>

char * CommaToNSL(char *);

#define NATTR 4 /* Number of attributes to be put */
#define USERNAME "foo" /* User name */
#define DOMAIN "files" /* domain where attributes are going to put. */

main(int argc, char *argv[]) {
int rc;
int i;
dbattr_t attributes[NATTR];

/* Open the user database */
setuserdb(S_WRITE);

/* Valid put */

attributes[0].attr_name = S_GECOS;
attributes[0].attr_type = SEC_CHAR;

attributes[0].attr_domain = DOMAIN;
attributes[0].attr_char = strdup("I am foo");

/* Invalid put */

attributes[1].attr_name = S_LOGINCHK;
attributes[1].attr_type = SEC_BOOL;

attributes[1].attr_domain = DOMAIN;
attributes[1].attr_char = strdup("allow");

/* Valid put */

attributes[2].attr_name = S_MAXAGE;
attributes[2].attr_type = SEC_INT;
attributes[2].attr_domain = DOMAIN;
attributes[2].attr_int = 10;

/* Valid put */

attributes[3].attr_name = S_GROUPS;
attributes[3].attr_type = SEC_LIST;
attributes[3].attr_domain = DOMAIN;
attributes[3].attr_char = CommaToNSL("staff,system");

rc = putuserattrs(USERNAME, attributes, NATTR);

Base Operating System (BOS) Runtime Services (A-P) 1345

if (rc) {
printf("putuserattrs failed \n");
goto clean_exit;
}

for (i = 0; i < NATTR; i++) {
if (attributes[i].attr_flag)
printf("Put failed for attribute %s. errno = %d \n",

attributes[i].attr_name, attributes[i].attr_flag);
else
printf("Put succeded for attribute %s \n",

attributes[i].attr_name);
}

clean_exit:
enduserdb();

if (attributes[0].attr_char)
free(attributes[0].attr_char);

if (attributes[1].attr_char)
free(attributes[1].attr_char);

if (attributes[3].attr_char)
free(attributes[3].attr_char);

exit(rc);
}

/*
* Returns a new NSL created from a comma separated list.
* The comma separated list is unmodified.
*
*/

char *
CommaToNSL(char *CommaList)
{

char *NSL = (char *) NULL;
char *s;

if (!CommaList)
return(NSL);

if (!(NSL = (char *) malloc(strlen(CommaList) + 2)))
return(NSL);

strcpy(NSL, CommaList);

for (s = NSL; *s; s++)
if (*s == ',')

*s = '\0';

*(++s) = '\0';
}

The following output for the call is expected:
Put succeeded for attribute gecos
Put failed for attribute login (errno = 22)
Put succeeded for attribute maxage
Put succeeded for attribute groups

Related Information
The setuserdb Subroutine.

1346 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

putuserpwx Subroutine

Purpose
Accesses the user authentication data.

Library
Security Library (libc.a)

Syntax
#include <userpw.h>

int putuserpwx (Password)
struct userpwx *Password;

Description
The putuserpwx subroutine modifies user authentication information. It can be used with those
administrative domains that support modifying the user’s encrypted password with the putuserattrs
subroutine. The chpassx subroutine must be used to modify authentication information for administrative
domains that do not support that functionality.

The putuserpwx subroutine updates or creates password authentication data for the user defined in the
Password parameter in the administrative domain that is specified. The password entry created by the
putuserpwx subroutine is used only if there is an ! (exclamation point) in the user’s password (S_PWD)
attribute. The user application can use the putuserattrs subroutine to add an ! to this field.

The putuserpwx subroutine opens the authentication database read-write if no other access has taken
place, but the program should call setpwdb (S_READ | S_WRITE) before calling the putuserpwx
subroutine and endpwdb when access to the authentication information is no longer required.

The administrative domain specified in the upw_authdb field is set by the getuserpwx subroutine. It must
be specified by the application program if the getuserpwx subroutine is not used to produce the Password
parameter.

Base Operating System (BOS) Runtime Services (A-P) 1347

Parameters

Password Specifies the password structure used to update the password information for this user. The
fields in a userpwx structure are defined in the userpw.h file and contains the following
members:

upw_name
Specifies the user’s name.

upw_passwd
Specifies the user’s encrypted password.

upw_lastupdate
Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, 1 January
1970), when the password was last updated.

upw_flags
Specifies attributes of the password. This member is a bit mask of one or more of
the following values, defined in the userpw.h file:

PW_NOCHECK
Specifies that new passwords need not meet password restrictions in effect
for the system.

PW_ADMCHG
Specifies that the password was last set by an administrator and must be
changed at the next successful use of the login or su command.

PW_ADMIN
Specifies that password information for this user can only be changed by
the root user.

upw_authdb
Specifies the administrative domain containing the authentication data.

Security
Files accessed:

Mode File
rw /etc/security/passwd

Return Values
If successful, the putuserpwx subroutine returns a value of 0. If the subroutine failed to update or create
the password information, the putuserpwx subroutine returns a nonzero value.

Error Codes
The getuserpwx subroutine fails if the following value is true:

ENOENT The user does not have an entry in the /etc/security/passwd file.

Subroutines invoked by the putuserpwx subroutine can also set errors.

Files

/etc/security/passwd Contains user passwords.

1348 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Related Information
The “getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 456, “putgroupattrs Subroutine” on
page 1337, “putuserattrs Subroutine” on page 1343, setpwdb Subroutinesetuserdb Subroutine.

putwc, putwchar, or fputwc Subroutine

Purpose
Writes a character or a word to a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>

wint_t putwc(Character, Stream)
wint_t Character;
FILE *Stream;

wint_t putwchar(Character)
wint_t Character;

wint_t fputwc(Character, Stream)
wint_t Character;
FILE Stream;

Description
The putwc subroutine writes the wide character specified by the Character parameter to the output stream
pointed to by the Stream parameter. The wide character is written as a multibyte character at the
associated file position indicator for the stream, if defined. The subroutine then advances the indicator. If
the file cannot support positioning requests, or if the stream was opened with append mode, the character
is appended to the output stream.

The putwchar subroutine works like the putwc subroutine, except that putwchar writes the specified wide
character to the standard output.

The fputwc subroutine works the same as the putwc subroutine.

Output streams, with the exception of stderr, are buffered by default if they refer to files, or line-buffered if
they refer to terminals. The standard error output stream, stderr, is unbuffered by default, but using the
freopen subroutine causes it to become buffered or line-buffered. Use the setbuf subroutine to change
the stream’s buffering strategy.

After the fputwc, putwc, fputc. putc, fputs, puts, or putw subroutine runs successfully, and before the
next successful completion of a call either to the fflush or fclose subroutine on the same stream or to the
exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for update.

Parameters

Character Specifies a wide character of type wint_t.
Stream Specifies a stream of output data.

Base Operating System (BOS) Runtime Services (A-P) 1349

Return Values
Upon successful completion, the putwc, putwchar, and fputwc subroutines return the wide character that
is written. Otherwise WEOF is returned, the error indicator for the stream is set, and the errno global
variable is set to indicate the error.

Error Codes
If the putwc, putwchar, or fputwc subroutine fails because the stream is not buffered or data in the buffer
needs to be written, it returns one or more of the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the Stream parameter,
delaying the process during the write operation.

EBADF Indicates that the file descriptor underlying the Stream parameter is not valid and cannot be updated
during the write operation.

EFBIG Indicates that the process attempted to write to a file that already equals or exceeds the file-size limit for
the process. The file is a regular file and an attempt was made to write at or beyond the offset maximum
associated with the corresponding stream.

EILSEQ Indicates that the wide-character code does not correspond to a valid character.
EINTR Indicates that the process has received a signal that terminates the read operation.
EIO Indicates that the process is in a background process group attempting to perform a write operation to its

controlling terminal. The TOSTOP flag is set, the process is not ignoring or blocking the SIGTTOU flag,
and the process group of the process is orphaned.

ENOMEM Insufficient storage space is available.
ENOSPC Indicates that no free space remains on the device containing the file.
ENXIO Indicates a request was made of a non-existent device, or the request was outside the capabilities of the

device.
EPIPE Indicates that the process has attempted to write to a pipe or first-in-first-out (FIFO) that is not open for

reading. The process will also receive a SIGPIPE signal.

Related Information
Other wide character I/O subroutines: fgetwc (“getwc, fgetwc, or getwchar Subroutine” on page 479)
subroutine, fgetws (“getws or fgetws Subroutine” on page 482) subroutine, fputws (“putws or fputws
Subroutine” on page 1351) subroutine, getwc (“getwc, fgetwc, or getwchar Subroutine” on page 479)
subroutine, getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 479) subroutine, getws (“getws or
fgetws Subroutine” on page 482) subroutine, putws (“putws or fputws Subroutine” on page 1351)
subroutine, ungetwc subroutine.

Related standard I/O subroutines: fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on
page 290) subroutine, fgets (“gets or fgets Subroutine” on page 436) subroutine, fopen (“fopen, fopen64,
freopen, freopen64 or fdopen Subroutine” on page 290) subroutine, fprintf (“printf, fprintf, sprintf, snprintf,
wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1178) subroutine, fputc (“putc, putchar,
fputc, or putw Subroutine” on page 1331) subroutine, fputs (“puts or fputs Subroutine” on page 1341)
subroutine, fread (“fread or fwrite Subroutine” on page 313) subroutine, freopen (“fopen, fopen64,
freopen, freopen64 or fdopen Subroutine” on page 290) subroutine, fwrite (“fread or fwrite Subroutine” on
page 313) subroutine, gets (“gets or fgets Subroutine” on page 436) subroutine, printf (“printf, fprintf,
sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1178) subroutine, putc
(“putc, putchar, fputc, or putw Subroutine” on page 1331) subroutine, putchar (“putc, putchar, fputc, or
putw Subroutine” on page 1331) subroutine, puts (“puts or fputs Subroutine” on page 1341) subroutine,
putw (“putc, putchar, fputc, or putw Subroutine” on page 1331) subroutine, sprintf (“printf, fprintf, sprintf,
snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1178) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overviewand Multibyte Code and Wide Character Code Conversion
Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

1350 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

putws or fputws Subroutine

Purpose
Writes a wide-character string to a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>

int putws (String)
const wchar_t *String;

int fputws (String, Stream)
const wchar_t *String;
FILE *Stream;

Description
The putws subroutine writes the const wchar_t string pointed to by the String parameter to the standard
output stream (stdout) as a multibyte character string and appends a new-line character to the output. In
all other respects, the putws subroutine functions like the puts subroutine.

The fputws subroutine writes the const wchar_t string pointed to by the String parameter to the output
stream as a multibyte character string. In all other respects, the fputws subroutine functions like the fputs
subroutine.

After the putws or fputws subroutine runs successfully, and before the next successful completion of a
call to the fflush or fclose subroutine on the same stream or a call to the exit or abort subroutine, the
st_ctime and st_mtime fields of the file are marked for update.

Parameters

String Points to a string to be written to output.
Stream Points to the FILE structure of an open file.

Return Values
Upon successful completion, the putws and fputws subroutines return a nonnegative number. Otherwise,
a value of -1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The putws or fputws subroutine is unsuccessful if the stream is not buffered or data in the buffer needs
to be written, and one of the following errors occur:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the Stream parameter, which delays the
process during the write operation.

EBADF The file descriptor underlying the Stream parameter is not valid and cannot be updated during the write
operation.

EFBIG The process attempted to write to a file that already equals or exceeds the file-size limit for the process.
EINTR The process has received a signal that terminates the read operation.

Base Operating System (BOS) Runtime Services (A-P) 1351

EIO The process is in a background process group attempting to perform a write operation to its controlling
terminal. The TOSTOP flag is set, the process is not ignoring or blocking the SIGTTOU flag, and the
process group of the process is orphaned.

ENOSPC No free space remains on the device containing the file.
EPIPE The process has attempted to write to a pipe or first-in-first-out (FIFO) that is not open for reading. The

process also receives a SIGPIPE signal.
EILSEQ The wc wide-character code does not correspond to a valid character.

Related Information
Other wide-character I/O subroutines: “getwc, fgetwc, or getwchar Subroutine” on page 479, “getws or
fgetws Subroutine” on page 482, “putwc, putwchar, or fputwc Subroutine” on page 1349, and ungetwc
subroutine.

Related standard I/O subroutines: “fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 290,
“gets or fgets Subroutine” on page 436,“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or
vwsprintf Subroutine” on page 1178, “putc, putchar, fputc, or putw Subroutine” on page 1331, “puts or fputs
Subroutine” on page 1341, “fread or fwrite Subroutine” on page 313.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

National Language Support Overview and Multibyte Code and Wide Character Code Conversion
Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

pwdrestrict_method Subroutine

Purpose
Defines loadable password restriction methods.

Library

Syntax
int pwdrestrict_method (UserName, NewPassword, OldPassword, Message)
char * UserName;
char * NewPassword;
char * OldPassword;
char ** Message;

Description
The pwdrestrict_method subroutine extends the capability of the password restrictions software and lets
an administrator enforce password restrictions that are not provided by the system software.

Whenever users change their passwords, the system software scans the pwdchecks attribute defined for
that user for site specific restrictions. Since this attribute field can contain load module file names, for
example, methods, it is possible for the administrator to write and install code that enforces site specific
password restrictions.

The system evaluates the pwdchecks attribute’s value field in a left to right order. For each method that
the system encounters, the system loads and invokes that method. The system uses the load subroutine
to load methods. It invokes the load subroutine with a Flags value of 1 and a LibraryPath value of /usr/lib.
Once the method is loaded, the system invokes the method.

1352 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

To create a loadable module, use the -e flag of the ld command. Note that the name pwdrestrict_method
given in the syntax is a generic name. The actual subroutine name can be anything (within the compiler’s
name space) except main. What is important is, that for whatever name you choose, you must inform the
ld command of the name so that the load subroutine uses that name as the entry point into the module. In
the following example, the C compiler compiles the pwdrestrict.c file and pass -e pwdrestrict_method to
the ld command to create the method called pwdrestrict:
cc -e pwdrestrict_method -o pwdrestrict pwdrestrict.c

The convention of all password restriction methods is to pass back messages to the invoking subroutine.
Do not print messages to stdout or stderr. This feature allows the password restrictions software to work
across network connections where stdout and stderr are not valid. Note that messages must be returned
in dynamically allocated memory to the invoking program. The invoking program will deallocate the
memory once it is done with the memory.

There are many caveats that go along with loadable subroutine modules:

1. The values for NewPassword and OldPassword are the actual clear text passwords typed in by the
user. If you copy these passwords into other parts of memory, clear those memory locations before
returning back to the invoking program. This helps to prevent clear text passwords from showing up in
core dumps. Also, do not copy these passwords into a file or anywhere else that another program can
access. Clear text passwords should never exist outside of the process space.

2. Do not modify the current settings of the process’ signal handlers.

3. Do not call any functions that will terminate the execution of the program (for example, the exit
subroutine, the exec subroutine). Always return to the invoking program.

4. The code must be thread-safe.

5. The actual load module must be kept in a write protected environment. The load module and directory
should be writable only by the root user.

One last note, all standard password restrictions are performed before any of the site specific methods are
invoked. Thus, methods are the last restrictions to be enforced by the system.

Parameters

UserName Specifies a ″local″ user name.
NewPassword Specifies the new password in clear text (not encrypted).This value may be a NULL pointer.

Clear text passwords are always in 7 bit ASCII.
OldPassword Specifies the current password in clear text (not encrypted).This value may be a NULL pointer.

Clear text passwords are always in 7 bit ASCII.
Message Specifies the address of a pointer to malloc’ed memory containing an NLS error message. The

method is expected to supply the malloc’ed memory and the message.

Return Values
The method is expected to return the following values. The return values are listed in order of precedence.

-1 Internal error. The method could not perform its password evaluation. The method must set the errno variable.
The method must supply an error message in Message unless it can’t allocate memory for the message. If it
cannot allocate memory, then it must return the NULL pointer in Message.

1 Failure. The password change did not meet the requirements of the restriction. The password restriction was
properly evaluated and the password change was not accepted. The method must supply an error message in
Message. The errno variable is ignored. Note that composition failures are cumulative, thus, even though a
failure condition is returned, trailing composition methods will be invoked.

0 Success. The password change met the requirements of the restriction. If necessary, the method may supply a
message in Message; otherwise, return the NULL pointer. The errno variable is ignored.

Base Operating System (BOS) Runtime Services (A-P) 1353

1354 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Appendix A. Base Operating System Error Codes for Services
That Require Path-Name Resolution

The following errors apply to any service that requires path name resolution:

EACCES Search permission is denied on a component of the path prefix.
EFAULT The Path parameter points outside of the allocated address space of the process.
EIO An I/O error occurred during the operation.
ELOOP Too many symbolic links were encountered in translating the Path parameter.
ENAMETOOLONG A component of a path name exceeded 255 characters and the process has the

DisallowTruncation attribute (see the ulimit subroutine) or an entire path name exceeded
1023 characters.

ENOENT A component of the path prefix does not exist.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ENOENT The path name is null.
ENOTDIR A component of the path prefix is not a directory.
ESTALE The root or current directory of the process is located in a virtual file system that is

unmounted.

Related Information
List of File and Directory Manipulation Services.

© Copyright IBM Corp. 1994, 2009 1355

1356 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Appendix B. ODM Error Codes

When an ODM subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to
one of the following values:

ODMI_BAD_CLASSNAME The specified object class name does not match the object class name in the
file. Check path name and permissions.

ODMI_BAD_CLXNNAME The specified collection name does not match the collection name in the file.
ODMI_BAD_CRIT The specified search criteria is incorrectly formed. Make sure the criteria

contains only valid descriptor names and the search values are correct. For
information on qualifying criteria, see ″Understanding ODM Object Searches″
in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

ODMI_BAD_LOCK Cannot set a lock on the file. Check path name and permissions.
ODMI_BAD_TIMEOUT The time-out value was not valid. It must be a positive integer.
ODMI_BAD_TOKEN Cannot create or open the lock file. Check path name and permissions.
ODMI_CLASS_DNE The specified object class does not exist. Check path name and permissions.
ODMI_CLASS_EXISTS The specified object class already exists. An object class must not exist when

it is created.
ODMI_CLASS_PERMS The object class cannot be opened because of the file permissions.
ODMI_CLXNMAGICNO_ERR The specified collection is not a valid object class collection.
ODMI_FORK Cannot fork the child process. Make sure the child process is executable and

try again.
ODMI_INTERNAL_ERR An internal consistency problem occurred. Make sure the object class is valid

or contact the person responsible for the system.
ODMI_INVALID_CLASS The specified file is not an object class.
ODMI_INVALID_CLXN Either the specified collection is not a valid object class collection or the

collection does not contain consistent data.
ODMI_INVALID_PATH The specified path does not exist on the file system. Make sure the path is

accessible.
ODMI_LINK_NOT_FOUND The object class that is accessed could not be opened. Make sure the linked

object class is accessible.
ODMI_LOCK_BLOCKED Cannot grant the lock. Another process already has the lock.
ODMI_LOCK_ENV Cannot retrieve or set the lock environment variable. Remove some

environment variables and try again.
ODMI_LOCK_ID The lock identifier does not refer to a valid lock. The lock identifier must be

the same as what was returned from the odm_lock (“odm_lock Subroutine”
on page 927) subroutine.

ODMI_MAGICNO_ERR The class symbol does not identify a valid object class.
ODMI_MALLOC_ERR Cannot allocate sufficient storage. Try again later or contact the person

responsible for the system.
ODMI_NO_OBJECT The specified object identifier did not refer to a valid object.
ODMI_OPEN_ERR Cannot open the object class. Check path name and permissions.
ODMI_OPEN_PIPE Cannot open a pipe to a child process. Make sure the child process is

executable and try again.
ODMI_PARAMS The parameters passed to the subroutine were not correct. Make sure there

are the correct number of parameters and that they are valid.
ODMI_READ_ONLY The specified object class is opened as read-only and cannot be modified.
ODMI_READ_PIPE Cannot read from the pipe of the child process. Make sure the child process

is executable and try again.
ODMI_TOOMANYCLASSES Too many object classes have been accessed. An application can only

access less than 1024 object classes.
ODMI_UNLINKCLASS_ERR Cannot remove the object class from the file system. Check path name and

permissions.
ODMI_UNLINKCLXN_ERR Cannot remove the object class collection from the file system. Check path

name and permissions.

© Copyright IBM Corp. 1994, 2009 1357

ODMI_UNLOCK Cannot unlock the lock file. Make sure the lock file exists.

Related Information
List of ODM Commands and Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

1358 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1994, 2009 1359

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

1360 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Index

Special characters
_atojis macro 578
_check_lock Subroutine 128
_clear_lock Subroutine 129
_edata identifier 225
_end identifier 225
_exit subroutine 245
_Exit subroutine 245
_extext identifier 225
_jistoa macro 578
_lazySetErrorHandler Subroutine 586
_tojlower macro 578
_tojupper macro 578
_tolower subroutine 184
_toupper subroutine 184
/etc/filesystems file

accessing entries 371
/etc/hosts file

closing 915
retrieving host entries 914

/etc/utmp file
accessing entries 476

Numerics
3-byte integers

converting 588

A
a64l subroutine 1
abort subroutine 2
abs subroutine 3
absinterval subroutine 389
absolute path names

copying 481
determining 481

absolute value subroutines
cabs 130
cabsf 130
cabsl 130
fabsf 251

absolute values
computing complex 530
imaxabs 537

access control attributes
setting 145

access control information
changing 8
retrieving 10
setting 12, 14, 17, 25

access control subroutines
acl_chg 8
acl_fchg 8
acl_fget 10
acl_fput 12
acl_fset 14

access control subroutines (continued)
acl_get 10
acl_put 12
acl_set 14
aclx_convert 16
aclx_fget 17
aclx_fput 25
aclx_get 17
aclx_gettypeinfo 20
aclx_gettypes 21
aclx_print 23
aclx_printStr 23
aclx_put 25
aclx_scan 27
aclx_scanStr 27
chacl 145
chmod 149
chown 152
chownx 152
fchacl 145
fchmod 149
fchown 152
fchownx 152
frevoke 316

access subroutine 4
accessx subroutine 4
accounting subroutines

addproj 31
addprojdb 32
chprojattr 159
chprojattrdb 160
getfirstprojdb 370
getnextprojdb 398
getproj 420
getprojdb 421
getprojs 422
proj_execve 1188
projdballoc 1189
projdbfinit 1189
projdbfree 1191

acct subroutine 7
acl_chg subroutine 8
acl_fchg subroutine 8
acl_fget subroutine 10
acl_fput subroutine 12
acl_fset subroutine 14
acl_get subroutine 10
acl_put subroutine 12
acl_set subroutine 14
aclx_convert subroutine 16
aclx_fget subroutine 17
aclx_fput subroutine 25
aclx_get subroutine 17
aclx_gettypeinfo subroutine 20
aclx_gettypes subroutine 21
aclx_print subroutine 23
aclx_printStr subroutine 23
aclx_put subroutine 25

© Copyright IBM Corp. 1994, 2009 1361

aclx_scan subroutine 27
aclx_scanStr subroutine 27
acos subroutine 29
acosd128 subroutine 29
acosd32 subroutine 29
acosd64 subroutine 29
acosf subroutine 29
acosh subroutine 30
acoshd128 subroutine 30
acoshd32 subroutine 30
acoshd64 subroutine 30
acoshf subroutine 30
acoshl subroutine 30
acosl subroutine 29
addproj subroutine 31
addprojdb subroutine 32
address identifiers 225
addssys subroutine 34
adjtime subroutine 35
advance subroutine 178
Advanced Accounting subroutines

agg_arm_stat subroutine 36
agg_lpar_stat subroutine 36
agg_proc_stat subroutine 36
buildproclist subroutine 126
buildtranlist subroutine 127
free_agg_list subroutine 36
freetranlist subroutine 127
getarmlist subroutine 416
getfilehdr subroutine 369
getlparlist subroutine 416
getproclist subroutine 416

agg_arm_stat subroutine 36
agg_lpar_stat subroutine 36
agg_proc_stat subroutine 36
aio_cancel subroutine 38
aio_error subroutine 42
aio_fsync subroutine 45
aio_nwait subroutine 47
aio_nwait_timeout subroutine 49
aio_read subroutine 50
aio_return subroutine 55
aio_suspend subroutine 58
aio_write subroutine 61
alarm subroutine 389
alloca subroutine 782
alloclmb Subroutine 68
Application Programming Interface

perfstat
cpu 1007
cpu_total 1008, 1019, 1023
disk_total 1010, 1015, 1022
diskpath 1013
logical volume 1017
memory 1018
netbuffer 1020
pagingspace 1024
protocol 1029
reset 1030
tape 1031, 1032
volume group 1033

arc sine subroutines
asinf 91

arc tangent subroutines
atan2f 93
atan2l 93
atanf 94
atanl 94

archive files
reading headers 698

ARM Subroutines
arm_end 69
arm_end Dual Call 71
arm_getid 73
arm_getid Dual Call 75
arm_init 77
arm_init Dual Call 79
arm_start 81
arm_start Dual Call 82
arm_stop 84
arm_stop Dual Call 86
arm_update 88
arm_update Dual Call 89

ASCII strings
converting to floating-point numbers 97
converting to Internet addresses 559

asctime subroutine 201
asctime_r subroutine 208
asctime64 subroutine 204
asctime64_r subroutine 206
asin subroutine 91
asind128 subroutine 91
asind32 subroutine 91
asind64 subroutine 91
asinf subroutine 91
asinh subroutine 90
asinhd128 subroutine 90
asinhd32 subroutine 90
asinhd64 subroutine 90
asinhf subroutine 90
asinhl subroutine 90
asinl subroutine 91
assert macro 92
asynchronous I/O

reading 50
writing 61

asynchronous I/O requests
canceling 38
listing 722
retrieving error status 42
retrieving return status 55
suspending 58
synchronizing asynchronous files 45

atan subroutine 94
atan2 subroutine 93
atan2d128 subroutine 93
atan2d32 subroutine 93
atan2d64 subroutine 93
atan2f subroutine 93
atan2l subroutine 93
atand128 subroutine 94
atand32 subroutine 94

1362 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

atand64 subroutine 94
atanf subroutine 94
atanh subroutine 95
atanhd128 subroutine 95
atanhd32 subroutine 95
atanhd64 subroutine 95
atanhf subroutine 95
atanhl subroutine 95
atanl subroutine 94
atexit subroutine 245
atof subroutine 97
atoff subroutine 97
atojis subroutine 578
atol subroutine 98
atoll subroutine 98
atomic access subroutines

compare_and_swap 177
fetch_and_add 273
fetch_and_and 274
fetch_and_or 274

audit bin files
compressing and uncompressing 109
establishing 101

audit records
generating 105
reading 112
writing 113

audit subroutine 99
audit trail files

appending records 105
auditbin subroutine 101
auditevents subroutine 103
auditing modes 106
auditing subroutines

audit 99
auditbin 101
auditevents 103
auditlog 105
auditobj 106
auditpack 109
auditproc 110
auditread 112
auditwrite 113

auditlog subroutine 105
auditobj subroutine 106
auditpack subroutine 109
auditproc subroutine 110
auditread, auditread_r subroutines 112
auditwrite subroutine 113
authenticate 114
authenticatex subroutine 116
authentication subroutines

ckuseracct 165
ckuserID 167
crypt 192
encrypt 192
getlogin 396
getpass 404
getuserpw 470
newpass 905
putuserpw 470

authentication subroutines (continued)
setkey 192

authorizations 469
authorizations, compare 794
auxiliary areas

creating 539
destroying 539
drawing 540
hiding 541
processing 553

B
base 10 logarithm functions

log10f 746
base 2 logarithm functions

log2 748
log2f 748
log2l 748

basename Subroutine 118
baud rates

getting and setting 143
bcmp subroutine 119
bcopy subroutine 119
beep levels

setting 542
BeginCriticalSection Subroutine 228
Bessel functions

computing 120
binary files

reading 313
binary searches 124
binding a process to a processor 121
bit string operations 119
box characters

shaping 693
brk subroutine 123
bsearch subroutine 124
btowc subroutine 125
buffered data

writing to streams 256
buildproclist subroutine 126
buildtranlist subroutine 127
byte string operations 119
bzero subroutine 119

C
cabs subroutine 130
cabsf subroutine 130
cabsl subroutine 130
cacos subroutine 130
cacosf subroutine 130
cacosh subroutines 131
cacoshf subroutine 131
cacoshl subroutine 131
cacosl subroutine 130
calloc subroutine 782
carg subroutine 132
cargf subroutine 132
cargl subroutine 132

Index 1363

casin subroutine 132
casinf subroutine 132
casinfh subroutine 133
casinh subroutines 133
casinl subroutine 132
casinlh subroutine 133
catan subroutine 133
catanf subroutine 133
catanh subroutine 134
catanhf subroutine 134
catanhl subroutine 134
catanl subroutine 133
catclose subroutine 135
catgets subroutine 136
catopen subroutine 137
cbrt subroutine 138
cbrtd128 subroutine 138
cbrtd32 subroutine 138
cbrtd64 subroutine 138
cbrtf subroutine 138
cbrtl subroutine 138
ccos, subroutine 139
ccosf subroutine 139
ccosh subroutine 140
ccoshf subroutine 140
ccoshl subroutine 140
ccosl subroutine 139
CCSIDs

converting 140
ccsidtocs subroutine 140
ceil subroutine 141
ceild128 subroutine 141
ceild32 subroutine 141
ceild64 subroutine 141
ceilf subroutine 141
ceiling value function

ceilf 141
ceill 141

ceill subroutine 141
cexp subroutine 142
cexpf subroutine 142
cexpl subroutine 142
cfgetospeed subroutine 143
chacl subroutine 145
character conversion

8-bit processing codes and 577
code set converters 533, 534
conv subroutines 184
Japanese 578
Kanji-specific 577
multibyte to wide 808, 809
translation operations 184

character manipulation subroutines
_atojis 578
_jistoa 578
_tojlower 578
_tojupper 578
_tolower 184
_toupper 184
atojis 578
conv 184

character manipulation subroutines (continued)
ctype 580
fgetc 350
fputc 1331
getc 350
getchar 350
getw 350
isalnum 209
isalpha 209
isascii 209
iscntrl 209
isdigit 209
isgraph 209
isjalnum 580
isjalpha 580
isjdigit 580
isjgraph 580
isjhira 580
isjis 580
isjkanji 580
isjkata 580
isjlbytekana 580
isjlower 580
isjparen 580
isjprint 580
isjpunct 580
isjspace 580
isjupper 580
isjxdigit 580
islower 209
isparent 580
isprint 209
ispunct 209
isspace 209
isupper 209
isxdigit 209
jistoa 578
kutentojis 578
NCesc 184
NCflatchr 184
NCtolower 184
NCtoNLchar 184
NCtoupper 184
NCunesc 184
putc 1331
putchar 1331
putw 1331
toascii 184
tojhira 578
tojkata 578
tojlower 578
tojupper 578
tolower 184
toujis 578
toupper 184

character shaping 686
character testing

isblank 566
characters

classifying 209, 580
returning from input streams 350

1364 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

characters (continued)
writing to streams 1331

charsetID
multibyte character 194

chdir subroutine 148
chmod subroutine 149
chown subroutine 152
chownx subroutine 152
chpass subroutine 155
chpassx subroutine 157
chprojattr subroutine 159
chprojattrdb subroutine 160
chroot subroutine 161
chssys subroutine 163
cimag subroutine 164
cimagf subroutine 164
cimagl subroutine 164
cjistosj subroutine 577
ckuseracct subroutine 165
ckuserID subroutine 167
class subroutine 168
clearerr macro 272
clock subroutine 170
clock subroutines

clock_getcpuclockid 170
pthread_condattr_getclock 1250
pthread_condattr_setclock 1250

clock_getcpuclockid subroutine 170
clock_getres subroutine 171
clock_gettime subroutine 171
clock_nanosleep subroutine 173
clock_settime subroutine 171
clog subroutine 175
clogf subroutine 175
clogl subroutine 175
close subroutine 176
closedir subroutine 947
closedir64 subroutine 947
code sets

closing converters 533
converting names 140
opening converters 534

coded character set IDs
converting 140

command-line flags
returning 399

Common Host Bus Adapter library
HBA_SetRNIDMgmtInfo 525

compare_and_swap subroutine
atomic access 177

compile subroutine 178
complementary error subroutines

erfcl 230
complex arc cosine subroutines

cacos 130
cacosf 130
cacosl 130

complex arc hyperbolic cosine subroutines
cacosh 131
cacoshf 131
cacoshl 131

complex arc hyperbolic sine subroutines
casin 133
casinf 133
casinl 133

complex arc hyperbolic tangent subroutines
catanh 134
catanhf 134
catanhl 134

complex arc sine subroutines
casin 132
casinf 132
casinl 132

complex argument subroutines
carg 132
cargf 132
cargl 132

complex conjugate subroutines
conj 183
conjf 183
conjl 183

complex cosine functions
ccos 139
ccosf 139
ccosl 139

complex exponential functions
cexp 142
cexpf 142
cexpl 142

complex hyperbolic cosine functions
ccosh 140
ccoshf 140
ccoshl 140

complex hyperbolic sine subroutines
csinh 195
csinhf 195
csinhl 195

complex hyperbolic tangent subroutines
ctanh 200
ctanhf 200
ctanhl 200

complex imaginary functions
cimag 164
cimagf 164
cimagl 164

complex natural logarithm functions
clog 175
clogf 175
clogl 175

complex power subroutines
cpow 190
cpowf 190
cpowl 190

complex projection subroutines
cproj 191
cprojf 191
cprojl 191

complex tangent functions
catan 133
catanf 133
catanl 133

Index 1365

Complex tangent subroutines
ctan 199
ctanf 199
ctanl 199

Computes the base 2 exponential.
exp2 249
exp2f 249
exp2l 249

confstr subroutine 182
conj subroutine 183
conjf subroutine 183
conjl subroutine 183
controlling terminal 200
conv subroutines 184
conversion

date and time representations 208
date and time to string representation

using asctime subroutine 208
using ctime subroutine 208
using gmtime subroutine 208
using localtime subroutine 208

converter subroutines
btowc 125
fwscanf 334
iconv_close 533
iconv_open 534
jcode 577
mbrlen 796
mbrtowc 797
mbsinit 801
mbsrtowcs 806
swscanf 334
wscanf 334

copysign subroutine 186
copysignd128 subroutine 186
copysignd32 subroutine 186
copysignd64 subroutine 186
copysignf subroutine 186
copysignl subroutine 186
core files

coredump subroutine 340
gencore subroutine 340

coredump subroutine 340
cos subroutine 188
cosf subroutine 188
cosh subroutine 189
coshd128 subroutine 189
coshd32 subroutine 189
coshd64 subroutine 189
coshf subroutine 189
coshl subroutine 189
cosine subroutines

acosd 29
acosf 29
acosl 29
cosf 188
cosl 188

cosl subroutine 188
cpow subroutine 190
cpowf subroutine 190
cpowl subroutine 190

cproj subroutine 191
cprojf subroutine 191
cprojl subroutine 191
creal subroutine 192
crealf subroutine 192
creall subroutine 192
creat subroutine 939
Critical Section Subroutines

BeginCriticalSection Subroutine 228
EnableCriticalSections Subroutine 228
EndCriticalSection Subroutine 228

crypt subroutine 192
csid subroutine 194
csin subroutine 195
csinf subroutine 195
csinh subroutine 195
csinhf subroutine 195
csinhl subroutine 195
csinl subroutine 195
csjtojis subroutine 577
csjtouj subroutine 577
csqrt subroutine 196
csqrtf subroutine 196
csqrtl subroutine 196
cstoccsid subroutine 140
ct_gen 196
ct_hookx 196
ct_trcon 198
ctan subroutine 199
ctanf subroutine 199
ctanh subroutine 200
ctanhf subroutine 200
ctanhl subroutine 200
ctanl subroutine 199
ctermid subroutine 200
ctime subroutine 201
ctime_r subroutine 208
ctime64 subroutine 204
ctime64_r subroutine 206
ctype subroutines 209
cube root functions

cbrtf 138
cbrtl 138

cujtojis subroutine 577
cujtosj subroutine 577
current process credentials

reading 405
current process environment

reading 407
current processes

getting user name 211
group ID

initializing 560
returning 385

path name of controlling terminal 200
user ID

returning 454
current working directory

getting path name 361
cursor positions

setting 556

1366 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

cuserid subroutine 211

D
data arrays

encrypting 192
data link type

pcap_datalink 988
data locks 1036
data sorting subroutines

bsearch 124
ftw 326
hcreate 529
hdestroy 529
hsearch 529
insque 561
lfind 768
lsearch 768
remque 561

data space segments
changing allocation 123

date
displaying and setting 447

date format conversions 201
defect 219851 1272
defect 220239 414
defssys subroutine 212
delssys subroutine 213
descriptor tables

getting size 365
difftime subroutine 201
difftime64 subroutine 204
directories

changing 148
changing root 161
creating 839
directory stream operations 947
generating path names 484
getting path name of current directory 361

directory subroutines
chdir 148
chroot 161
closedir 947
closedir64 947
getcwd 361
getwd 481
glob 484
globfree 487
link 721
mkdir 839
opendir 947
opendir64 947
readdir 947
readdir64 947
rewinddir 947
rewinddir64 947
seekdir 947
seekdir64 947
telldir 947
telldir64 947

dirname Subroutine 215

disclaim subroutine 216
div subroutine 3
dlclose subroutine 217
dlerror subroutine 218
dlopen Subroutine 219
dlsym Subroutine 221
double precission numbers

frexpf 318
drand48 subroutine 222
drem subroutine 224
dup subroutine 257
dup2 subroutine 257

E
ecvt subroutine 226
EnableCriticalSections Subroutine 228
encrypt subroutine 192
encryption

performing 192
EndCriticalSection Subroutine 228
endfsent subroutine 371
endfsent_r subroutine 437
endgrent subroutine 374
endhostent subroutine 915
endpwent subroutine 424
endrpcent subroutine 429
endttyent subroutine 452
endutent subroutine 476
endvfsent subroutine 478
environment variables

finding default PATH 182
finding values 367
setting 1336

erand48 subroutine 222
erf subroutine 228
erfc subroutine 230
erfcd128 subroutine 230
erfcd32 subroutine 230
erfcd64 subroutine 230
erfcf subroutine 230
erfd128 subroutine 228
erfd32 subroutine 228
erfd64 subroutine 228
erff subroutine 228
errlog subroutine 231
errlog_close subroutine 233
errlog_find Subroutines

errlog_find_first 233
errlog_find_next 233
errlog_find_sequence 233

errlog_find_first Subroutine 233
errlog_find_next Subroutine 233
errlog_find_sequence Subroutine 233
errlog_open Subroutine 235
errlog_set_direction Subroutine 236
errlog_write Subroutine 237
errlogging Subroutines

errlog_close 233
errlog_open 235
errlog_set_direction 236

Index 1367

errlogging Subroutines (continued)
errlog_write 237

error functions
computing 228
erff 228

error handling
math 793
returning information 736

error logs
closing 233
finding 233
opening 235
setting direction 236
writing 237
writing to 231

error messages
placing into program 92
writing 1034

errorlogging subroutines
errlog 231
perror 1034

euclidean distance functions
hypotf 530
hypotl 530

Euclidean distance functions
computing 530

exec subroutines 238
execl subroutine 238
execle subroutine 238
execlp subroutine 238
exect subroutine 238
execution profiling

after initialization 853
using default data areas 860
using defined data areas 855

execv subroutine 238
execve subroutine 238
execvp subroutine 238
exit subroutine 245
exp subroutine 247
exp2 subroutine 249
exp2d128 subroutine 249
exp2d32 subroutine 249
exp2d64 subroutine 249
exp2f subroutine 249
exp2l subroutine 249
expd128 subroutine 247
expd32 subroutine 247
expd64 subroutine 247
expf subroutine 247
expm1 subroutine 250
expm1d128 subroutine 250
expm1d32 subroutine 250
expm1d64 subroutine 250
expm1f subroutine 250
expm1l subroutine 250
exponential functions

computing 247
exponential subroutines

expf 247
expm1f, 250

exponential subroutines (continued)
expm1l 250

extended attribute subroutines
getea 366
listea 727

F
f_hpmgetcounters subroutine 526
f_hpmgettimeandcounters subroutine 526
f_hpminit subroutine 526
f_hpmstart subroutine 526
f_hpmstop subroutine 526
f_hpmterminate subroutine 526
f_hpmtstart subroutine 526
f_hpmtstop subroutine 526
fabs subroutine 251
fabsd128 subroutine 251
fabsd32 subroutine 251
fabsd64 subroutine 251
fabsf subroutine 251
fabsl subroutine 251
faccessx subroutine 4
fattach Subroutine 252
fchacl subroutine 145
fchdir Subroutine 253
fchmod subroutine 149
fchown subroutine 152
fchownx subroutine 152
fclear subroutine 254
fclose subroutine 256
fcntl subroutine 257
fcvt subroutine 226
fdetach Subroutine 263
fdim subroutine 264
fdimd128 subroutine 264
fdimd32 subroutine 264
fdimd64 subroutine 264
fdimf subroutine 264
fdiml subroutine 264
fdopen subroutine 290
fe_dec_getround 265
fe_dec_getround subroutine

fe_dec_setround 265
fe_dec_setround 265
feclearexcept subroutine 267
fegetenv subroutine 267
fegetexceptflag subroutine 268
fegetround subroutine 269
feholdexcept subroutine 269
feof macro 272
feraiseexcept subroutine 273
ferror macro 272
fesetenv subroutine 267
fesetexceptflag subroutine 268
fesetround subroutine 269
fetch_and_add subroutine

atomic access 273
fetch_and_and subroutine

atomic access 274

1368 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

fetch_and_or subroutine
atomic access 274

fetestexcept subroutine 275
feupdateenv subroutine 276
ffinfo subroutine 276
fflush subroutine 256
ffs subroutine 119
fgetc subroutine 350
fgetpos subroutine 320
fgets subroutine 436
fgetwc subroutine 479
fgetws subroutine 482
FIFO files

creating 841
file access permissions

changing 145, 149
file descriptors

checking I/O status 1148
closing associated files 176
controlling 257
establishing connections 939
performing control functions 563

file names
constructing unique 842

file ownership
changing 152

file permissions
changing 145, 149

file pointers
moving read-write 770

file subroutines
access 4
accessx 4
dup 257
dup2 257
endutent 476
faccessx 4
fclear 254
fcntl 257
ffinfo 276
finfo 276
flock 742
flockfile 278
fpathconf 983
fsync 324
fsync_range 324
ftrylockfile 278
funlockfile 278
getc_unlocked 352
getchar_unlocked 352
getenv 367
getutent 476
getutid 476
getutline 476
lockf 742
lockfx 742
lseek 770
mkfifo 841
mknod 841
mkstemp 842
mktemp 842

file subroutines (continued)
nlist 913
nlist64 913
pathconf 983
pclose 1006
pipe 1035
popen 1154
putc_unlocked 352
putchar_unlocked 352
putenv 1336
pututline 476
setutent 476
utmpname 476

file system subroutines
confstr 182
endfsent 371
endvfsent 478
fscntl 319
getfsent 371
getfsfile 371
getfsspec 371
getfstype 371
getvfsbyflag 478
getvfsbyname 478
getvfsbytype 478
getvfsent 478
mntctl 851
setfsent 371
setvfsent 478

file systems
controlling operations 319
retrieving information 371
returning mount status 851

file trees
searching recursively 326

file-implementation characteristics 983
fileno macro 272
files

binary 313
closing 176
creating 841
creating links 721
creating space at pointer 254
determining accessibility 4
establishing connections 939
generating path names 484
getting name list 913
locking and unlocking 742
opening 939
opening streams 290
reading 313
reading asynchronously 50
repositioning pointers 320
revoking access 316
systems

getting information about 437
writing asynchronously 61
writing binary 313

finfo subroutine 276
finite subroutine 168

Index 1369

finite testing
isfinite 568

first-in-first-out files 841
flags

returning 399
floating point multiply-add

fma 281
fmaf 281
fmal 281

floating point numbers
ldexpf 700, 701
ldexpl 700, 701
nextafterf 902
nextafterl 902
nexttoward 902
nexttowardf 902
nexttowardl 902

floating-point absolute value functions
computing 279

floating-point environment
feholdexcept 269
feupdateenv 276

floating-point environment variables
fegetenv, 267
fesetenv 267

floating-point exception
feraiseexcept 273
fetestexcept 275

floating-point exceptions 299, 304, 308
changing floating point status and control

register 306
feclearexcept 267
flags 297
querying process state 308
testing for occurrences 301, 303

floating-point number subroutines
fdim 264
fdimf 264
fdiml 264

floating-point numbers
converting to strings 226
determining classifications 168
fmax 283
fmaxf 283
fmaxl 283
fminf 284
fminl 284
fmodf 285
manipulating 852
modff 852
reading and setting rounding modes 305
rounding 279

floating-point rounding subroutines
nearbyint 901
nearbyintf 901
nearbyintl 901

floating-point status flags
fegetexceptflag 268
fesetexceptflag 268

floating-point subroutines 299, 304, 306, 308, 310
fp_sh_info 306

floating-point subroutines (continued)
fp_sh_trap_info 306

floating-point trap control 296
flock subroutine 742
flockfile subroutine 278
floor functions

floorf 279
floor subroutine 279
floorf subroutine 279
floorl subroutine 279
fma subroutine 281
fmad128 subroutine 281
fmaf subroutine 281
fmal subroutine 281
fmax subroutine 283
fmaxd128 subroutine 283
fmaxd32 subroutine 283
fmaxd64 subroutine 283
fmaxf subroutine 283
fmaxl subroutine 283
fmin subroutine 789
fmind128 subroutine 284
fmind32 subroutine 284
fmind64 subroutine 284
fminf subroutine 284
fminl subroutine 284
fmod subroutine 285
fmodd128 subroutine 285
fmodd32 subroutine 285
fmodd64 subroutine 285
fmodf subroutine 285
fmodl subroutine 285
fmout subroutine 789
fmtmsg Subroutine 286
fnmatch subroutine 288
fopen subroutine 290
fork subroutine 293
formatted output

printing 1178
fp_any_enable subroutine 296
fp_any_xcp subroutine 301
fp_clr_flag subroutine 297
fp_cpusync subroutine 299
fp_disable subroutine 296
fp_disable_all subroutine 296
fp_divbyzero subroutine 301
fp_enable subroutine 296
fp_enable_all subroutine 296
fp_flush_imprecise Subroutine 301
fp_inexact subroutine 301
fp_invalid_op subroutine 301
fp_iop_convert subroutine 303
fp_iop_infdinf subroutine 303
fp_iop_infmzr subroutine 303
fp_iop_infsinf subroutine 303
fp_iop_invcmp subroutine 303
fp_iop_snan subroutine 303
fp_iop_sqrt subroutine 303
fp_iop_vxsoft subroutine 303
fp_iop_zrdzr subroutine 303
fp_is_enabled subroutine 296

1370 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

fp_overflow subroutine 301
fp_raise_xcp subroutine 304
fp_read_flag subroutine 297
fp_read_rnd subroutine 305
fp_set_flag subroutine 297
fp_sh_info subroutine 306
fp_sh_set_stat subroutine 306
fp_sh_trap_info subroutine 306
fp_swap_flag subroutine 297
fp_swap_rnd subroutine 305
fp_trap subroutine 308
fp_trapstate subroutine 310
fp_underflow subroutine 301
fpathconf subroutine 983
fpclassify macro 312
fprintf subroutine 1178
fputc subroutine 1331
fputs subroutine 1341
fputwc subroutine 1349
fputws subroutine 1351
fread subroutine 313
free subroutine 782
free_agg_list subroutine 36
freelmb Subroutine 316
freetranlist subroutine 127
freopen subroutine 290
frevoke subroutine 316
frexp subroutine 318
frexpd128 subroutine 317
frexpd32

frexpd64 317
frexpd32 subroutine 317
frexpd64 subroutine 317
frexpf subroutine 318
frexpl subroutine 318
fscntl subroutine 319
fseek subroutine 320
fsetpos subroutine 320
fsync subroutine 324
fsync_range subroutine 324
ftell subroutine 320
ftime subroutine 447
ftok subroutine 325
ftrylockfile subroutine 278
ftw subroutine 326
funlockfile subroutine 278
fwide subroutine 329
fwprintf subroutine 329
fwrite subroutine 313
fwscanf subroutine 334

G
gai_strerror subroutine 338
gamma functions

computing natural logarithms 339
gamma subroutine 339
gcd subroutine 789
gcvt subroutine 226
gencore subroutine 340
genpagvalue Subroutine 342

get_malloc_log subroutine 343
get_malloc_log_live subroutine 344
get_speed subroutine 345
getargs Subroutine 346
getarmlist subroutine 416
getaudithostattr, IDtohost, hosttoID, nexthost or

putaudithostattr subroutine 347
getauthdb subroutine 349
getauthdb_r subroutine 349
getc subroutine 350
getc_unlocked subroutine 352
getchar subroutine 350
getchar_unlocked subroutine 352
getconfattr subroutine 353
getconfattrs subroutine 358
getcontext or setcontext Subroutine 360
getcwd subroutine 361
getdate Subroutine 362
getdtablesize subroutine 365
getea subroutine 366
getegid subroutine 373
getenv subroutine 367
geteuid subroutine 454
getevars Subroutine 368
getfilehdr subroutine 369
getfirstprojdb subroutine 370
getfsent subroutine 371
getfsent_r subroutine 437
getfsfile subroutine 371
getfsspec subroutine 371
getfsspec_r subroutine 437
getfstype subroutine 371
getfstype_r subroutine 437
getgid subroutine 373
getgidx subroutine 373
getgrent subroutine 374
getgrgid subroutine 374
getgrgid_r subroutine 375
getgrnam subroutine 374
getgrnam_r subroutine 376
getgroupattr subroutine 377
getgroupattrs subroutine 381
getgroups subroutine 385
getgrpaclattr Subroutine 386
gethostent subroutine 914
getinterval subroutine 389
getiopri 392
getitimer subroutine 389
getlogin subroutine 396
getlogin_r subroutine 397
getlparlist subroutine 416
getnextprojdb subroutine 398
getopt subroutine 399
getpagesize subroutine 402
getpaginfo subroutine 402
getpagvalue subroutine 403
getpagvalue64 subroutine 403
getpass subroutine 404
getpcred subroutine 405
getpeereid subroutine 407
getpenv subroutine 407

Index 1371

getpgid Subroutine 409
getpgrp subroutine 409
getpid subroutine 409
getportattr Subroutine 410
getppid subroutine 409
getpri subroutine 413
getpriority subroutine 414
getproclist subroutine 416
getproj subroutine 420
getprojdb subroutine 421
getprojs subroutine 422
getpw Subroutine 423
getpwent subroutine 424
getpwnam subroutine 424
getpwuid subroutine 424
getrlimit subroutine 426
getrlimit64 subroutine 426
getroleattr Subroutine 433
getrpcbyname subroutine 429
getrpcbynumber subroutine 429
getrpcent subroutine 429
getrusage subroutine 430
getrusage64 subroutine 430
gets subroutine 436
getsfile_r subroutine 437
getsid Subroutine 438
getssys subroutine 439
getsubopt Subroutine 440
getsubsvr subroutine 441
gettcbattr subroutine 442
gettimeofday subroutine 447
gettimer subroutine 448
gettimerid subroutine 451
getttyent subroutine 452
getttynam subroutine 452
getuid subroutine 454
getuidx subroutine 454
getuinfo subroutine 455
getuinfox Subroutine 455
getuserattr subroutine 456
getuserattrs subroutine 462
GetUserAuths Subroutine 469
getuserpw subroutine 470
getuserpwx subroutine 472
getusraclattr Subroutine 474
getutent subroutine 476
getutid subroutine 476
getutline subroutine 476
getvfsbyflag subroutine 478
getvfsbyname subroutine 478
getvfsbytype subroutine 478
getvfsent subroutine 478
getw subroutine 350
getwc subroutine 479
getwchar subroutine 479
getwd subroutine 481
getws subroutine 482
glob subroutine 484
globfree subroutine 487
gmtime subroutine 201
gmtime_r subroutine 208

gmtime64 subroutine 204
gmtime64_r subroutine 206
grantpt subroutine 487

H
hash tables

manipulating 529
HBA subroutines

HBA_GetEventBuffer 493
HBA_GetFC4Statistics 494
HBA_GetFCPStatistics 496
HBA_GetFcpTargetMappingV2 497
HBA_GetPersistentBindingV2 500
HBA_OpenAdapterByWWN 505
HBA_ScsiInquiryV2 507
HBA_ScsiReadCapacityV2 509
HBA_ScsiReportLunsV2 511
HBA_SendCTPassThruV2 513
HBA_SendRLS 517
HBA_SendRNIDV2 519
HBA_SendRPL 521
HBA_SendRPS 522

HBA_CloseAdapter Subroutine 488
HBA_FreeLibrary Subroutine 489
HBA_GetAdapterAttributes Subroutine 489
HBA_GetAdapterName Subroutine 492
HBA_GetDiscoveredPortAttributes Subroutine 489
HBA_GetEventBuffer subroutine 493
HBA_GetFC4Statistics subroutine 494
HBA_GetFCPStatistics subroutine 496
HBA_GetFcpTargetMapping Subroutine 498
HBA_GetFcpTargetMappingV2 subroutine 497
HBA_GetNumberOfAdapters Subroutine 499
HBA_GetPersistentBinding Subroutine 495
HBA_GetPersistentBindingV2 subroutine 500
HBA_GetPortAttributes Subroutine 489
HBA_GetPortAttributesByWWN Subroutine 489
HBA_GetPortStatistics Subroutine 501
HBA_GetRNIDMgmtInfo Subroutine 502
HBA_GetVersion Subroutine 503
HBA_LoadLibrary Subroutine 504
HBA_OpenAdapter Subroutine 505
HBA_OpenAdapterByWWN subroutine 505
HBA_RefreshInformation Subroutine 506
HBA_ScsiInquiryV2 subroutine 507
HBA_ScsiReadCapacityV2 subroutine 509
HBA_ScsiReportLunsV2 subroutine 511
HBA_SendCTPassThru Subroutine 512
HBA_SendCTPassThruV2 subroutine 513
HBA_SendReadCapacity Subroutine 514
HBA_SendReportLUNs Subroutine 515
HBA_SendRLS subroutine 517
HBA_SendRNID Subroutine 518
HBA_SendRNIDV2 subroutine 519
HBA_SendRPL subroutine 521
HBA_SendRPS subroutine 522
HBA_SendScsiInquiry Subroutine 523
HBA_SetRNIDMgmtInfo Subroutine 525
hcreate subroutine 529
hdestroy subroutine 529

1372 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Host Bus Adapter API
HBA_CloseAdapter 488
HBA_FreeLibrary 489
HBA_GetAdapterAttributes 489
HBA_GetAdapterName 492
HBA_GetDiscoveredPortAttributes 489
HBA_GetFcpPersistentBinding 495
HBA_GetFcpTargetMapping 498
HBA_GetNumberOfAdapters 499
HBA_GetPortAttributes 489
HBA_GetPortAttributesByWWN 489
HBA_GetPortStatistics 501
HBA_GetRNIDMgmtInfo 502
HBA_GetVersion 503
HBA_LoadLibrary 504
HBA_OpenAdapter 505
HBA_RefreshInformation 506
HBA_SendCTPassThru 512
HBA_SendReadCapacity 514
HBA_SendReportLUNs 515
HBA_SendRNID 518
HBA_SendScsiInquiry 523
HBA_SetRNIDMgmtInfo 525

hpmGetCounters subroutine 526
hpmGetTimeAndCounters subroutine 526
hpmInit subroutine 526
hpmStart subroutine 526
hpmStop subroutine 526
hpmTerminate subroutine 526
hpmTstart subroutine 526
hpmTstop subroutine 526
hsearch subroutine 529
hyperbolic cosine subroutines

coshf 189
coshl 189

hypot subroutine 530
hypotd128 subroutine 530
hypotd32 subroutine 530
hypotd64 subroutine 530
hypotf subroutine 530
hypotl subroutine 530

I
I/O asynchronous subroutines

aio_cancel 38
aio_error 42
aio_fsync 45
aio_nwait 47
aio_nwait_timeout 49
aio_read 50
aio_return 55
aio_suspend 58
aio_write 61
lio_listio 722
poll 1148

I/O low-level subroutines 176, 939
creat 939
open 939

I/O requests
canceling 38

I/O requests (continued)
listing 722
retrieving error status 42
retrieving return status 55
suspending 58

I/O stream macros
clearerr 272
feof 272
ferror 272
fileno 272

I/O stream subroutines
fclose 256
fdopen 290
fflush 256
fgetc 350
fgetpos 320
fgets 436
fgetwc 479
fgetws 482
fopen 290
fprintf 1178
fputc 1331
fputs 1341
fputwc 1349
fputws 1351
fread 313
freopen 290
fseek 320
fsetpos 320
ftell 320
fwide 329
fwprintf 329
fwrite 313
getc 350
getchar 350
gets 436
getw 350
getwc 479
getwchar 479
getws 482
printf 1178
putc 1331
putchar 1331
puts 1341
putw 1331
putwc 1349
putwchar 1349
putws 1351
rewind 320
sprintf 1178
swprintf 329
vfprintf 1178
vprintf 1178
vsprintf 1178
vwsprintf 1178
wprintf 329
wsprintf 1178

I/O terminal subroutines
cfsetispeed 143
ioctl 563
ioctl32 563

Index 1373

I/O terminal subroutines (continued)
ioctl32x 563
ioctlx 563

iconv_close subroutine 533
iconv_open subroutine 534
identification subroutines

endgrent 374
endpwent 424
getconfattr 353
getgrent 374
getgrgid 374
getgrnam 374
getgroupattr 377
getpwent 424
getpwnam 424
getpwuid 424
gettcbattr 442
getuinfo 455
getuserattr 353, 456
IDtogroup 377
IDtouser 456
nextgroup 377
nextuser 456
putconfattr 353
putgroupattr 377
putpwent 424
puttcbattr 442
putuserattr 456
setgrent 374
setpwent 424

idpthreadsa 192
IDtogroup subroutine 377
IDtouser subroutine 456
IEE Remainders

computing 224
ilogb subroutine 536
ilogbd128 subroutine 750
ilogbd32 subroutine 750
ilogbd64 subroutine 750
ilogbf subroutine 536
ilogbl subroutine 536
IMAIXMapping subroutine 538
IMAuxCreate callback subroutine 539
IMAuxDestroy callback subroutine 539
IMAuxDraw callback subroutine 540
IMAuxHide callback subroutine 541
imaxabs subroutine 537
imaxdiv subroutine 537
IMBeep callback subroutine 542
IMClose subroutine 542
IMCreate subroutine 543
IMDestroy subroutine 544
IMFilter subroutine 544
IMFreeKeymap subroutine 545
IMIndicatorDraw callback subroutine 546
IMIndicatorHide callback subroutine 546
IMInitialize subroutine 547
IMInitializeKeymap subroutine 548
IMIoctl subroutine 549
IMLookupString subroutine 551
IMProcess subroutine 552

IMProcessAuxiliary subroutine 553
IMQueryLanguage subroutine 554
IMSimpleMapping subroutine 555
IMTextCursor callback subroutine 556
IMTextDraw callback subroutine 557
IMTextHide callback subroutine 557
IMTextStart callback subroutine 558
imul_dbl subroutine 3
incinterval subroutine 389
inet_aton subroutine 559
infinity values

isinf 570
initgroups subroutine 560
initialize subroutine 560
input method

checking language support 554
closing 542
control and query operations 549
creating instance 543
destroying instance 544
initializing for particular language 547

input method keymap
initializing 545, 548
mapping key and state pair to string 538, 551, 555

input method subroutines
callback functions

IMAuxCreate 539
IMAuxDestroy 539
IMAuxDraw 540
IMAuxHide 541
IMBeep 542
IMIndicatorDraw 546
IMIndicatorHide 546
IMTextCursor 556
IMTextDraw 557
IMTextHide 557
IMTextStart 558

IMAIXMapping 538
IMClose 542
IMCreate 543
IMDestroy 544
IMFilter 544
IMFreeKeymap 545
IMinitialize 547
IMInitializeKeymap 548
IMIoctl 549
IMLookupString 551
IMProcess 552
IMProcessAuxiliary 553
IMQueryLanguage 554
IMSimpleMapping 555

input streams
reading character string from 482
reading single character from 479
returning characters or words 350

insque subroutine 561
install_lwcf_handler() subroutine 562
integers

computing absolute values 3
computing division 3
computing double-precision multiplication 3

1374 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

integers (continued)
performing arithmetic 789

Internet addresses
converting to ASCII strings 559

interoperability subroutines
ccsidtocs 140
cstoccsid 140

interprocess channels
creating 1035

interprocess communication keys 325
interval timers

allocating per process 451
manipulating expiration time 389
returning values 389

inverse hyperbolic cosine subroutines
acoshf 30
acoshl 30

inverse hyperbolic functions
computing 90

inverse hyperbolic sine subroutines
asinhf 90
asinhl 90

inverse hyperbolic tangent subroutines
atanhf 95
atanhl 95

invert subroutine 789
ioctl subroutine 563
ioctl32 subroutine 563
ioctl32x subroutine 563
ioctlx subroutine 563
is_wctype subroutine 576
isalnum subroutine 209
isalpha subroutine 209
isascii subroutine 209
isblank subroutine 566
iscntrl subroutine 209
isdigit subroutine 209
isendwin Subroutine 567
isfinite macro 568
isgraph subroutine 209
isgreater macro 568
isgreaterequal subroutine 569
isinf subroutine 570
isless macro 570
islessequal macro 571
islessgreater macro 572
islower subroutine 209
isnan subroutine 168
isnormal macro 572
isprint subroutine 209
ispunct subroutine 209
isspace subroutine 209
isunordered macro 573
isupper subroutine 209
iswalnum subroutine 574
iswalpha subroutine 574
iswblank subroutine 575
iswcntrl subroutine 574
iswctype subroutine 576
iswdigit subroutine 574
iswgraph subroutine 574

iswlower subroutine 574
iswprint subroutine 574
iswpunct subroutine 574
iswspace subroutine 574
iswupper subroutine 574
iswxdigit subroutine 574
isxdigit subroutine 209
itom subroutine 789
itrunc subroutine 279

J
j0 subroutine 120
j1 subroutine 120
Japanese conv subroutines 578
Japanese ctype subroutines 580
jcode subroutines 577
JFS

controlling operations 319
JIS character conversions 577
jistoa subroutine 578
jistosj subroutine 577
jistouj subroutine 577
jn subroutine 120
Journaled File System 257
jrand48 subroutine 222

K
Kanji character conversions 577
keyboard events

processing 544, 552
kill subroutine 582
killpg subroutine 582
kleenup subroutine 583
knlist subroutine 584
kpidstate subroutine 586
kutentojis subroutine 578

L
l3tol subroutine 588
l64a subroutine 1
l64a_r subroutine 589
labs subroutine 3
LAPI_Addr_get subroutine 590
LAPI_Addr_set subroutine 591
LAPI_Address subroutine 593
LAPI_Address_init subroutine 594
LAPI_Address_init64 596
LAPI_Amsend subroutine 598
LAPI_Amsendv subroutine 603
LAPI_Fence subroutine 611
LAPI_Get subroutine 612
LAPI_Getcntr subroutine 615
LAPI_Getv subroutine 616
LAPI_Gfence subroutine 620
LAPI_Init subroutine 621
LAPI_Msg_string subroutine 626
LAPI_Msgpoll subroutine 628
LAPI_Nopoll_wait subroutine 630

Index 1375

LAPI_Probe subroutine 631
LAPI_Purge_totask subroutine 632
LAPI_Put subroutine 634
LAPI_Putv subroutine 636
LAPI_Qenv subroutine 640
LAPI_Resume_totask subroutine 643
LAPI_Rmw subroutine 644
LAPI_Rmw64 subroutine 648
LAPI_Senv subroutine 652
LAPI_Setcntr subroutine 654
LAPI_Setcntr_wstatus subroutine 656
LAPI_Term subroutine 657
LAPI_Util subroutine 659
LAPI_Waitcntr subroutine 670
LAPI_Xfer structure types 673
LAPI_Xfer subroutine 672
lapi_xfer_type_t 673
layout values

querying 689
setting 691
transforming text 694

LayoutObject
creating 685
freeing 697

lcong48 subroutine 222
ldaclose subroutine 699
ldahread subroutine 698
ldaopen subroutine 709
ldclose subroutine 699
ldexp subroutine 701
ldexpd128 subroutine 700
ldexpd32 subroutine 700
ldexpd64 subroutine 700
ldexpf subroutine 701
ldexpl subroutine 701
ldfhread subroutine 703
ldgetname subroutine 704
ldiv subroutine 3
ldlinit subroutine 706
ldlitem subroutine 706
ldlnseek subroutine 707
ldlread subroutine 706
ldlseek subroutine 707
ldnrseek subroutine 711
ldnshread subroutine 712
ldnsseek subroutine 714
ldohseek subroutine 709
ldopen subroutine 709
ldrseek subroutine 711
ldshread subroutine 712
ldsseek subroutine 714
ldtbindex subroutine 715
ldtbread subroutine 716
ldtbseek subroutine 717
lfind subroutine 768
lgamma subroutine 718
lgammad128 subroutine 718
lgammad32 subroutine 718
lgammad64 subroutine 718
lgammaf subroutine 718
lgammal subroutine 718

libhpm subroutines
f_hpmgetcounters 526
f_hpmgettimeandcounters 526
f_hpminit 526
f_hpmstart 526
f_hpmstop 526
f_hpmterminate 526
f_hpmtstart 526
f_hpmtstop 526
hpmGetCounters 526
hpmGetTimeAndCounters 526
hpmInit 526
hpmStart 526
hpmStop 526
hpmTerminate 526
hpmTstart 526
hpmTstop 526

linear searches 768
lineout subroutine 719
link layer type

pcap_datalink 988
link subroutine 721
lio_listio subroutine 722
listea subroutine 727
llabs subroutine 3
lldiv subroutine 3
llrint subroutine 728
llrintd128 subroutine 728
llrintd32 subroutine 728
llrintd64 subroutine 728
llrintf subroutine 728
llrintl subroutine 728
llround subroutine 729
llroundd128 subroutine 729
llroundd32 subroutine 729
llroundd64 subroutine 729
llroundf subroutine 729
llroundl subroutine 729
load subroutine 730
loadAndInit 730
loadbind subroutine 734
loadquery subroutine 736
locale subroutines

localeconv 738
nl_langinfo 911

locale-dependent conventions 738
localeconv subroutine 738
locales

returning language information 911
localtime subroutine 201
localtime_r subroutine 208
localtime64 subroutine 204
localtime64_r subroutine 206
lockf subroutine 742
lockfx subroutine 742
log gamma functions

lgamma 718
lgammaf 718
lgammal 718

log subroutine 752
log10 subroutine 746

1376 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

log10d128 subroutine 746
log10d32 subroutine 746
log10d64 subroutine 746
log10f subroutine 746
log10l subroutine 746
log1p subroutine 747
log1pd128 subroutine 747
log1pd32 subroutine 747
log1pd64 subroutine 747
log1pf subroutine 747
log1pl subroutine 747
log2 subroutine 748
log2d128 subroutine 748
log2d32 subroutine 748
log2d64 subroutine 748
log2f subroutine 748
log2l subroutine 748
logarithmic functions

computing 247
logb subroutine 751
logbd128 subroutine 749
logbd32 subroutine 749
logbd64 subroutine 749
logbf subroutine 751
logbl subroutine 751
logd128 subroutine 752
logd32 subroutine 752
logd64 subroutine 752
logf subroutine 752
logical volumes

querying 771
login name

getting 396, 397
loginfailed Subroutine 754
loginrestrictions Subroutine 755
loginrestrictionsx subroutine 758
loginsuccess Subroutine 761
long integers

converting to strings 589
long integers, converting

to 3-byte integers 588
to base-64 ASCII strings 1

lpar_get_info subroutine 762
lpar_set_resources subroutine 765
lrand48 subroutine 222
lrint subroutine 766
lrintd128 subroutine 766
lrintd32 subroutine 766
lrintd64 subroutine 766
lrintf subroutine 766
lrintl subroutine 766
lround subroutine 767
lroundd128 subroutine 767
lroundd32 subroutine 767
lroundd64 subroutine 767
lroundf subroutine 767
lroundl subroutine 767
lsearch subroutine 768
lseek subroutine 770
ltol3 subroutine 588

LVM logical volume subroutines
lvm_querylv 771

LVM physical volume subroutines
lvm_querypv 775

LVM volume group subroutines
lvm_queryvg 778
lvm_queryvgs 781

lvm_querylv subroutine 771
lvm_querypv subroutine 775
lvm_queryvg subroutine 778
lvm_queryvgs subroutine 781

M
m_in subroutine 789
m_out subroutine 789
macros

assert 92
madd subroutine 789
madvise subroutine 791
makecontext Subroutine 792
mallinfo subroutine 782
mallinfo_heap subroutine 782
malloc subroutine 782
mallopt subroutine 782
mapped files

synchronizing 894
MatchAllAuths Subroutine 794
MatchAllAuthsList Subroutine 794
MatchAnyAuthsList Subroutine 794
math errors

handling 793
matherr subroutine 793
mblen subroutine 795
mbrlen subroutine 796
mbrtowc subroutine 797
mbsadvance subroutine 798
mbscat subroutine 799
mbschr subroutine 800
mbscmp subroutine 799
mbscpy subroutine 799
mbsinit subroutine 801
mbsinvalid subroutine 802
mbslen subroutine 802
mbsncat subroutine 803
mbsncmp subroutine 803
mbsncpy subroutine 803
mbspbrk subroutine 804
mbsrchr subroutine 805
mbsrtowcs subroutine 806
mbstomb subroutine 807
mbstowcs subroutine 808
mbswidth subroutine 809
mbtowc subroutine 809
mcmp subroutine 789
mdiv subroutine 789
memccpy subroutine 811
memchr subroutine 811
memcmp subroutine 811
memcpy subroutine 811
memmove subroutine 811

Index 1377

memory allocation 782
memory area operations 811
memory management

controlling execution profiling 853, 855, 860
defining addresses 225
defining available paging space 1191
disclaiming memory content 216
generating IPC keys 325
returning system page size 402

memory management subroutines
alloca 782
calloc 782
disclaim 216
free 782
ftok 325
gai_strerror 338
getpagesize 402
madvise 791
mallinfo 782
mallinfo_heap 782
malloc 782
mallopt 782
memccpy 811
memchr 811
memcmp 811
memcpy 811
memmove 811
memset 811
mincore 812
mmap 847
moncontrol 853
monitor 855
monstartup 860
mprotect 863
msem_init 879
msem_lock 880
msem_remove 881
msem_unlock 882
msleep 893
msync 894
munmap 897
mwakeup 898
psdanger 1191
realloc 782

memory mapping
advising system of paging behavior 791
determining page residency status 812
file-system objects 847
modifying access protections 863
putting a process to sleep 893
semaphores

initializing 879
locking 880
removing 881
unlocking 882

synchronizing mapped files 894
unmapping regions 897
waking a process 898

memory pages
determining residency 812

memory semaphores
initializing 879
locking 880
putting a process to sleep 893
removing 881
unlocking 882
waking a process 898

memory subroutines
alloclmb 68
freelmb 316

memset subroutine 811
message catalogs

closing 135
opening 137
retrieving messages 136

message control operations 883
message facility subroutines

catclose 135
catgets 136
catopen 137

message queue identifiers 885
message queue subroutines

mq_receive 874
mq_send 876
mq_timedreceive 874
mq_timedsend 876

message queues
checking I/O status 1148
reading messages from 886
receiving messages from 891
sending messages to 889

Micro-Partitioning
lpar_get_info 762

min subroutine 789
mincore subroutine 812
mkdir subroutine 839
mkfifo subroutine 841
mknod subroutine 841
mkstemp subroutine 842
mktemp subroutine 842
mktime subroutine 201
mktime64 subroutine 204
mlockall subroutine 844, 845
mmap subroutine 847
mntctl subroutine 851
modf subroutine 852
modff subroutine 852
modfl subroutine 852
modulo remainders

computing 279
moncontrol subroutine 853
monitor subroutine 855
monstartup subroutine 860
mout subroutine 789
move subroutine 789
mprotect subroutine 863
mq_close subroutine 865
mq_getattr subroutine 866
mq_notify subroutine 867
mq_open subroutine 868
mq_receive subroutine 870, 874

1378 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

mq_send subroutine 872, 876
mq_setattr subroutine 873
mq_timedreceive subroutine 874
mq_timedsend subroutine 876
mq_unlink subroutine 878
mrand48 subroutine 222
msem_init subroutine 879
msem_lock subroutine 880
msem_remove subroutine 881
msem_unlock subroutine 882
msgctl subroutine 883
msgget subroutine 885
msgrcv subroutine 886
msgsnd subroutine 889
msgxrcv subroutine 891
msleep subroutine 893
msqrt subroutine 789
msub subroutine 789
msync subroutine 894
mt__trce() subroutine 895
mult subroutine 789
multibyte character subroutines

csid 194
mblen 795
mbsadvance 798
mbscat 799
mbschr 800
mbscmp 799
mbscpy 799
mbsinvalid 802
mbslen 802
mbsncat 803
mbsncmp 803
mbsncpy 803
mbspbrk 804
mbsrchr 805
mbstomb 807
mbstowcs 808
mbswidth 809
mbtowc 809

multibyte characters
converting to wide 808, 809
determining display width of 809
determining length of 795
determining number of 802
extracting from string 807
locating character sequences 804
locating next character 798
locating single characters 800, 805
operations on null-terminated strings 799, 803
returning charsetID 194
validating 802

munlockall subroutine 844, 845
munmap subroutine 897
mwakeup subroutine 898

N
NaN

nan 899
nanf 899

NaN (continued)
nanl 899

nan subroutine 899
nand128 subroutine 899
nand32 subroutine 899
nand64 subroutine 899
nanf subroutine 899
nanl subroutine 899
nanosleep subroutine 900
natural logarithm functions

logf 752
logl 752

natural logarithms
log1pf 747
log1pl 747

NCesc subroutine 184
NCflatchr subroutine 184
NCtolower subroutine 184
NCtoNLchar subroutine 184
NCtoupper subroutine 184
NCunesc subroutine 184
nearbyint subroutine 901
nearbyintd128 subroutine 901
nearbyintd32 subroutine 901
nearbyintd64 subroutine 901
nearbyintf subroutine 901
nearbyintl subroutine 901
nearest subroutine 279
network host entries

retrieving 914
new-process image file 238
newpass subroutine 905
newpassx subroutine 907
nextafter subroutine 902
nextafterd128 Subroutine 904
nextafterd32 Subroutine 904
nextafterd64 Subroutine 904
nextafterf subroutine 902
nextafterl subroutine 902
nextgroup subroutine 377
nextgrpacl Subroutine 386
nextrole Subroutine 433
nexttoward subroutine 902
nexttowardd128 Subroutine 904
nexttowardd32 subroutine 904
nexttowardd64 Subroutine 904
nexttowardf subroutine 902
nexttowardl subroutine 902
nextuser subroutine 456
nextusracl Subroutine 474
nftw subroutine 909
nice subroutine 414
nl_langinfo subroutine 911
nlist subroutine 913
nlist64 subroutine 913
nrand48 subroutine 222
number manipulation function

copysignd128 186
copysignd32 186
copysignd64 186
copysignf 186

Index 1379

number manipulation function (continued)
copysignl 186

numbers
generating

pseudo-random 222
numerical manipulation subroutines 339

a64l 1
abs 3
acos 29
acosd128 29
acosd32 29
acosd64 29
acosf 29
acosh 30
acosl 29
asin 91
asind128 91
asind32 91
asind64 91
asinh 90
asinl 91
atan 94
atan2 93
atan2d128 93
atan2d32 93
atan2d64 93
atan2f 93
atan2l 93
atand128 94
atand32 94
atand64 94
atanf 94
atanh 95
atanhf 95
atanhl 95
atanl 94
atof 97
atoff 97
atol 98
atoll 98
cabs 530
cbrt 138
ceil 141
ceild128 141
ceild32 141
ceild64 141
ceilf 141
ceill 141
class 168
cos 188
div 3
drand48 222
drem 224
ecvt 226
erand48 222
erf 228
erfc 230
exp 247
expm1 250
fabs 251
fabsl 251

numerical manipulation subroutines (continued)
fcvt 226
finite 168
flood128 279
flood32 279
flood64 279
floor 279
floorl 279
fmin 789
fmod 285
fmodl 285
fp_any_enable 296
fp_any_xcp 301
fp_clr_flag 297
fp_disable 296
fp_disable_all 296
fp_divbyzero 301
fp_enable 296
fp_enable_all 296
fp_inexact 301
fp_invalid_op 301
fp_iop_convert 303
fp_iop_infdinf 303
fp_iop_infmzr 303
fp_iop_infsinf 303
fp_iop_invcmp 303
fp_iop_snan 303
fp_iop_sqrt 303
fp_iop_zrdzr 303
fp_is_enabled 296
fp_overflow 301
fp_read_flag 297
fp_read_rnd 305
fp_set_flag 297
fp_swap_flag 297
fp_swap_rnd 305
fp_underflow 301
frexp 318
frexpl 318
gamma 339
gcd 789
gcvt 226
hypot 530
ilogb 536
imul_dbl 3
invert 789
isnan 168
itom 789
itrunc 279
j0 120
j1 120
jn 120
jrand48 222
l3tol 588
l64a 1
labs 3
lcong48 222
ldexp 700, 701
ldexpl 700, 701
ldiv 3
llabs 3

1380 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

numerical manipulation subroutines (continued)
lldiv 3
log 752
log10 746
log1p 747
logb 749, 751
lrand48 222
ltol3 588
m_in 789
m_out 789
madd 789
matherr 793
mcmp 789
mdiv 789
min 789
modf 852
modfl 852
mout 789
move 789
mrand48 222
msqrt 789
msub 789
mult 789
nearest 279
nextafter 902
nrand48 222
omin 789
omout 789
pow 789, 1176
rpow 789
sdiv 789
seed48 222
srand48 222
trunc 279
uitrunc 279
umul_dbl 3
unordered 168
y0 120
y1 120
yn 120

O
Object Data Manager 927
object file access subroutines

ldaclose 699
ldahread 698
ldaopen 709
ldclose 699
ldfhread 703
ldgetname 704
ldlinit 706
ldlitem 706
ldlread 706
ldlseek 707
ldnlseek 707
ldnrseek 711
ldnshread 712
ldnsseek 714
ldohseek 709
ldopen 709

object file access subroutines (continued)
ldrseek 711
ldshread 712
ldsseek 714
ldtbindex 715
ldtbread 716
ldtbseek 717

object file subroutines
load 730
loadbind 734
loadquery 736

object files
closing 699
computing symbol table entries 715
controlling run-time resolution 734
listing 736
loading and binding 730
manipulating line number entries 706
providing access 709
reading archive headers 698
reading file headers 703
reading indexed section headers 712
reading symbol table entries 716
retrieving symbol names 704
seeking to indexed sections 714
seeking to line number entries 707
seeking to optional file header 709
seeking to relocation entries 711
seeking to symbol tables 717

objects
setting locale-dependent conventions 738

ODM
ending session 937
error message strings 920
freeing memory 921

ODM (Object Data Manager)
initializing 927
running specified method 935

ODM object classes
adding objects 916
changing objects 917
closing 918
creating 919
locking 927
opening 930
removing 932
removing objects 931, 933
retrieving class symbol structures 929
retrieving objects 922, 923, 925
setting default path location 936
setting default permissions 937
unlocking 938

ODM subroutines
odm_add_obj 916
odm_change_obj 917
odm_close_class 918
odm_create_class 919
odm_err_msg 920
odm_free_list 921
odm_get_by_id 922
odm_get_first 925

Index 1381

ODM subroutines (continued)
odm_get_list 923
odm_get_next 925
odm_get_obj 925
odm_initialize 927
odm_lock 927
odm_mount_class 929
odm_open_class 930
odm_open_class_rdonly 930
odm_rm_by_id 931
odm_rm_class 932
odm_rm_obj 933
odm_run_method 935
odm_set_path 936
odm_set_perms 937
odm_terminate 937
odm_unlock 938

odm_add_obj subroutine 916
odm_change_obj subroutine 917
odm_close_class subroutine 918
odm_create_class subroutine 919
odm_err_msg subroutine 920
odm_free_list subroutine 921
odm_get_by_id subroutine 922
odm_get_first subroutine 925
odm_get_list subroutine 923
odm_get_next subroutine 925
odm_get_obj subroutine 925
odm_initialize subroutine 927
odm_lock subroutine 927
odm_mount_class subroutine 929
odm_open_class subroutine 930
odm_open_class_rdonly subroutine 930
odm_rm_by_id subroutine 931
odm_rm_class subroutine 932
odm_rm_obj subroutine 933
odm_run_method subroutine 935
odm_set_path subroutine 936
odm_set_perms subroutine 937
odm_terminate subroutine 937
odm_unlock subroutine 938
omin subroutine 789
omout subroutine 789
open file descriptors

controlling 257
performing control functions 563

open subroutine
described 939

opendir subroutine 947
opendir64 subroutine 947
openx subroutine

described 939
output stream

writing character string to 1351
writing single character to 1349

P
packet capture device

link layer type
pcap_datalink 988

PAG Services
genpagvalue 342

paging memory
behavior 791
defining available space 1191

PAM subroutines
pam_acct_mgmt 950
pam_authenticate 951
pam_chauthtok 953
pam_close_session 954
pam_end 955
pam_get_data 956
pam_get_item 957
pam_get_user 958
pam_getenv 959
pam_getenvlist 960
pam_open_session 961
pam_putenv 962
pam_set_data 963
pam_set_item 964
pam_setcred 965
pam_sm_acct_mgmt 967
pam_sm_authenticate 968
pam_sm_chauthtok 969
pam_sm_close_session 971
pam_sm_open_session 972
pam_sm_setcred 973
pam_start 974
pam_strerror 977

pam_acct_mgmt subroutine 950
pam_authenticate subroutine 951
pam_chauthtok subroutine 953
pam_close_session subroutine 954
pam_end subroutine 955
pam_get_data subroutine 956
pam_get_item subroutine 957
pam_get_user subroutine 958
pam_getenv subroutine 959
pam_getenvlist subroutine 960
pam_open_session subroutine 961
pam_putenv subroutine 962
pam_set_data subroutine 963
pam_set_item subroutine 964
pam_setcred subroutine 965
pam_sm_acct_mgmt subroutine 967
pam_sm_authenticate subroutine 968
pam_sm_chauthtok subroutine 969
pam_sm_close_session subroutine 971
pam_sm_open_session subroutine 972
pam_sm_setcred subroutine 973
pam_start subroutine 974
pam_strerror subroutine 977
passwdexpired 977
passwdexpiredx subroutine 978
passwdpolicy subroutine 980
passwdstrength subroutine 982
password maintenance

password changing 155
password subroutines

passwdpolicy 980
passwdstrength 982

1382 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

passwords
generating new 905
reading 404

pathconf subroutine 983
pause subroutine 986
pcap_close 986
pcap_compile 987
pcap_datalink 988
pcap_dump 990
pcap_dump_close 990
pcap_dump_open 991
pcap_file 992
pcap_fileno 992
pcap_geterr 993
pcap_is_swapped 994
pcap_lookupdev 994
pcap_lookupnet 995
pcap_loop 996
pcap_major_version 997
pcap_next 998
pcap_open_live 999
pcap_open_live_sb

pcap_open_live 1000
pcap_open_live_sb Subroutine 1000
pcap_open_offline 1000
pcap_perror 1002
pcap_setfilter 1003
pcap_snapshot 1004
pcap_stats 1004
pcap_strerror 1005
pclose subroutine 1006
performance monitor subroutines

pm_delete_program_pgroup 1042
pm_delete_program_pthread 1043
pm_get_data_pgroup 1060
pm_get_data_pgroup_mx 1062
pm_get_data_pthread 1063
pm_get_data_pthread_mx 1065
pm_get_program_pgroup 1083
pm_get_program_pgroup_mx 1085
pm_get_program_pthread 1087
pm_get_program_pthread_mx 1088
pm_get_tdata_pgroup 1060
pm_get_Tdata_pgroup 1060
pm_get_tdata_pgroup_mx 1062
pm_get_tdata_pthread 1063
pm_get_Tdata_pthread 1063
pm_get_tdata_pthread_mx 1065
pm_initialize 1095
pm_reset_data_pgroup 1101
pm_reset_data_pthread 1103
pm_set_program_pgroup 1119
pm_set_program_pgroup_mx 1121
pm_set_program_pthread 1123
pm_set_program_pthread_mx 1125
pm_start_pgroup 1136
pm_start_pthread 1137
pm_stop_pgroup 1144
pm_tstart_pgroup subroutine 1136
pm_tstart_pthread subroutine 1137
pm_tstop_pgroup subroutine 1144

perfstat
perfstat_partition_total subroutine 1028

perfstat_cpu subroutine 1007
perfstat_cpu_total subroutine 1008
perfstat_disk subroutine 1010
perfstat_disk_total subroutine 1015
perfstat_diskadapter subroutine 1012
perfstat_diskpath subroutine 1013
perfstat_logicalvolume subroutine 1017
perfstat_memory_page subroutine 1018
perfstat_memory_total subroutine 1019
perfstat_netbuffer subroutine 1020
perfstat_netinterface subroutine 1022
perfstat_netinterface_total subroutine 1023
perfstat_pagingspace subroutine 1024
perfstat_partial_reset subroutine 1026
perfstat_partition_total subroutine 1028
perfstat_protocol subroutine 1029
perfstat_reset subroutine 1030
perfstat_tape subroutine 1031
perfstat_tape_total subroutine 1032
perfstat_volumegroup subroutine 1033
permanent storage

writing file changes to 324
perror subroutine 1034
pglob parameter

freeing memory 487
physical volumes

querying 775
pipe subroutine 1035
pipes

closing 1006
creating 1035, 1154

plock subroutine 1036
pm_delete_program_pgroup subroutine 1042
pm_delete_program_pthread subroutine 1043
pm_get_data_pgroup subroutine 1060
pm_get_data_pgroup_mx subroutine 1062
pm_get_data_pthread subroutine 1063
pm_get_data_pthread_mx subroutine 1065
pm_get_proctype 1070
pm_get_program_pgroup subroutine 1083
pm_get_program_pgroup_mx subroutine 1085
pm_get_program_pthread subroutine 1087
pm_get_program_pthread_mx subroutine 1088
pm_get_tdata_pgroup subroutine 1060
pm_get_Tdata_pgroup subroutine 1060
pm_get_tdata_pgroup_mx subroutine 1062
pm_get_tdata_pthread subroutine 1063
pm_get_Tdata_pthread subroutine 1063
pm_get_tdata_pthread_mx subroutine 1065
pm_initialize subroutine 1095
pm_reset_data_pgroup subroutine 1101
pm_reset_data_pthread subroutine 1103
pm_set_program_pgroup subroutine 1119
pm_set_program_pgroup_mm subroutine 1121
pm_set_program_pgroup_mx subroutine 1121
pm_set_program_pthread subroutine 1123
pm_set_program_pthread_mm subroutine 1125
pm_set_program_pthread_mx subroutine 1125
pm_start_pgroup subroutine 1136

Index 1383

pm_start_pthread subroutine 1137
pm_stop_pgroup subroutine 1144
pm_tstart_pgroup subroutine 1136
pm_tstart_pthread subroutine 1137
pm_tstop_pgroup subroutine 1144
poll subroutine 1148
pollset subroutines

pollset_create 1151
pollset_ctl 1151
pollset_destroy 1151
pollset_poll 1151
pollset_query 1151

pollset_create subroutine 1151
pollset_ctl subroutine 1151
pollset_destroy subroutine 1151
pollset_poll subroutine 1151
pollset_query subroutine 1151
popen subroutine 1154
POSIX Realtime subroutines

posix_fadvise 1155
posix_fallocate 1156
posix_madvise 1157

POSIX SPAWN subroutines
posix_spawn 1159
posix_spawn_file_actions_addclose 1163
posix_spawn_file_actions_adddup2 1164
posix_spawn_file_actions_addopen 1163
posix_spawn_file_actions_destroy 1165
posix_spawn_file_actions_init 1165
posix_spawnattr_destroy 1166
posix_spawnattr_getflags 1167
posix_spawnattr_getpgroup 1168
posix_spawnattr_getschedparam 1169
posix_spawnattr_getschedpolicy 1170
posix_spawnattr_getsigdefault 1171
posix_spawnattr_getsigmask 1172
posix_spawnattr_init 1166
posix_spawnattr_setflags 1167
posix_spawnattr_setpgroup 1168
posix_spawnattr_setschedparam 1169
posix_spawnattr_setschedpolicy 1170
posix_spawnattr_setsigdefault 1171
posix_spawnattr_setsigmask 1172
posix_spawnp 1159

posix_openpt Subroutine 1158
posix_spawn subroutine 1159
posix_spawn_file_actions_addclose subroutine 1163
posix_spawn_file_actions_adddup2 subroutine 1164
posix_spawn_file_actions_addopen subroutine 1163
posix_spawn_file_actions_destroy subroutine 1165
posix_spawn_file_actions_init subroutine 1165
posix_spawnattr_destroy subroutine 1166
posix_spawnattr_getflags subroutine 1167
posix_spawnattr_getpgroup subroutine 1168
posix_spawnattr_getschedparam subroutine 1169
posix_spawnattr_getschedpolicy subroutine 1170
posix_spawnattr_getsigdefault subroutine 1171
posix_spawnattr_getsigmask subroutine 1172
posix_spawnattr_init subroutine 1166
posix_spawnattr_setflags subroutine 1167
posix_spawnattr_setpgroup subroutine 1168

posix_spawnattr_setschedparam subroutine 1169
posix_spawnattr_setschedpolicy subroutine 1170
posix_spawnattr_setsigdefault subroutine 1171
posix_spawnattr_setsigmask subroutine 1172
posix_spawnp subroutine 1159
posix_trace_getnext_event subroutine 1173
posix_trace_timedgetnext_event subroutine 1173
posix_trace_trygetnext_event subroutine 1173
pow subroutine 789, 1176
powd128 subroutine 1176
powd32 subroutine 1176
powd64 subroutine 1176
power functions

computing 247
powf 1176

powf subroutine 1176
powl subroutine 1176
pre-editing space 558
print formatter subroutines

initialize 560
lineout 719

print lines
formatting 719

printer initialization 560
printf subroutine 1178
process accounting

displaying resource use 430
enabling and disabling 7
tracing process execution 1317

process credentials
reading 405

process environments
initializing run-time 583
reading 407

process group IDs
returning 373, 409
supplementary IDs

getting 385
initializing 560

process identification
alphanumeric user name 211
path name of controlling terminal 200

process IDs
returning 409

process initiation
creating child process 293
executing file 238

process locks 1036
process messages

getting message queue identifiers 885
providing control operations 883
reading from message queue 886
receiving from message queue 891
sending to message queue 889

process priorities
getting or setting 414
returning scheduled priorities 413

process program counters
histogram 1186

process resource allocation
changing data space segments 123

1384 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

process resource allocation (continued)
controlling system consumption 426
getting size of descriptor table 365
locking into memory 1036
starting address sampling 1186
stopping address sampling 1186

process resource use 430
process signals

alarm 389
printing system signal messages 1192
sending to processes 582

process subroutines (security and auditing)
getegid 373
geteuid 454
getgid 373
getgidx 373
getgroups 385
getpcred 405
getpenv 407
getuid 454
getuidx 454
initgroups 560
kleenup 583

process user IDs
returning 454

processes
closing pipes 1006
creating 293
getting process table entries 417
initializing run-time environment 583
initiating pipes 1154
suspending 986
terminating 2, 245, 582
tracing 1317

processes subroutines
_exit 245
abort 2
acct 7
atexit 245
brk 123
ctermid 200
cuserid 211
exec 238
exit 245
fork 293
getdtablesize 365
getpgrp 409
getpid 409
getppid 409
getpri 413
getpriority 414
getrlimit 426
getrlimit64 426
getrusage 430
getrusage64 430
kill 582
killpg 582
msgctl 883
msgget 885
msgrcv 886
msgsnd 889

processes subroutines (continued)
msgxrcv 891
nice 414
pause 986
plock 1036
profil 1186
psignal 1192
ptrace 1317
sbrk 123
setpriority 414
setrlimit 426
setrlimit64 426
times 430
unatexit 245
vfork 293
vlimit 426
vtimes 430

profil subroutine 1186
program assertion

verifying 92
proj_execve subroutine 1188
projdballoc subroutine 1189
projdbfinit subroutine 1189
projdbfree subroutine 1191
psdanger subroutine 1191
psignal subroutine 1192
pthdb_attr_

pthdb_attr_addr 1195
pthdb_attr_detachstate 1195
pthdb_attr_guardsize 1195
pthdb_attr_inheritsched 1195
pthdb_attr_schedparam 1195
pthdb_attr_schedpolicy 1195
pthdb_attr_schedpriority 1195
pthdb_attr_scope 1195
pthdb_attr_stackaddr 1195
pthdb_attr_stacksize 1195
pthdb_attr_suspendstate 1195

pthread subroutines
pthread_attr_getinheritsched subroutine 1222
pthread_attr_getschedpolicy subroutine 1224
pthread_attr_setinheritsched subroutine 1222
pthread_attr_setschedpolicy subroutine 1224
pthread_create_withcred_np 1255
pthread_mutex_timedlock 1282
pthread_rwlock_timedrdlock 1297
pthread_rwlock_timedwrlock 1299

pthread_atfork subroutine 1218
pthread_attr_destroy subroutine 1219
pthread_attr_getdetachstate subroutine 1228
pthread_attr_getguardsize subroutine 1220
pthread_attr_getinheritsched subroutine 1222
pthread_attr_getschedparam subroutine 1223
pthread_attr_getschedpolicy subroutine 1224
pthread_attr_getscope subroutine 1229
pthread_attr_getstackaddr subroutine 1225
pthread_attr_getstacksize subroutine 1226
pthread_attr_getukeyset_np 1231
pthread_attr_init subroutine 1227
pthread_attr_setdetachstate subroutine 1228
pthread_attr_setguardsize subroutine 1220

Index 1385

pthread_attr_setinheritsched subroutine 1222
pthread_attr_setschedparam subroutine 1232
pthread_attr_setschedpolicy subroutine 1224
pthread_attr_setscope subroutine 1229
pthread_attr_setstackaddr subroutine 1233
pthread_attr_setstacksize subroutine 1234
pthread_attr_setsupendstate_np and

pthread_attr_getsuspendstate_np subroutine 1235
pthread_attr_setukeyset_np 1231
pthread_cancel subroutine 1241
pthread_cleanup_pop subroutine 1242
pthread_cleanup_push subroutine 1242
pthread_cond_broadcast subroutine 1245
pthread_cond_destroy subroutine 1243
PTHREAD_COND_INITIALIZER macro 1245
pthread_cond_signal subroutine 1245
pthread_cond_timedwait subroutine 1246
pthread_cond_wait subroutine 1246
pthread_condattr_destroy subroutine 1248
pthread_condattr_getclock subroutine 1250
pthread_condattr_getpshared subroutine 1251
pthread_condattr_setclock subroutine 1250
pthread_condattr_setpshared subroutine 1252
pthread_create subroutine 1253
pthread_create_withcred_np subroutine 1255
pthread_delay_np subroutine 1257
pthread_equal subroutine 1257
pthread_exit subroutine 1258
pthread_get_expiration_np subroutine 1260
pthread_getconcurrency subroutine 1261
pthread_getcpuclockid subroutine 1262
pthread_getrusage_np subroutine 1262
pthread_getschedparam subroutine 1265
pthread_getspecific subroutine 1266
pthread_getunique_np subroutine 1271
pthread_join subroutine 1272
pthread_key_create subroutine 1273
pthread_key_delete subroutine 1274
pthread_kill subroutine 1275
pthread_lock_global_np subroutine 1276
pthread_mutex_destroy subroutine 1277
pthread_mutex_init subroutine 1277
PTHREAD_MUTEX_INITIALIZER macro 1280
pthread_mutex_lock subroutine 1280
pthread_mutex_timedlock subroutine 1282
pthread_mutex_trylock subroutine 1280
pthread_mutexattr_destroy subroutine 1283
pthread_mutexattr_getkind_np subroutine 1285
pthread_mutexattr_gettype subroutine 1290
pthread_mutexattr_init subroutine 1283
pthread_mutexattr_setkind_np subroutine 1291
pthread_mutexattr_settype subroutine 1290
pthread_once subroutine 1293
PTHREAD_ONCE_INIT macro 1294
pthread_rwlock_timedrdlock subroutine 1297
pthread_rwlock_timedwrlock subroutine 1299
pthread_self subroutine 1305
pthread_setcancelstate subroutine 1306
pthread_setschedparam subroutine 1307
pthread_setschedprio subroutine 1309
pthread_setspecific subroutine 1266

pthread_signal_to_cancel_np subroutine 1310
pthread_spin_destroy subroutine 1311
pthread_spin_init subroutine 1311
pthread_suspend_np, pthread_unsuspend_np and

pthread_continue_np subroutine 1314
pthread_unlock_global_np subroutine 1315
pthread_yield subroutine 1316
pthreads subroutines

posix_trace_getnext_event subroutine 1173
posix_trace_timedgetnext_event subroutine 1173
posix_trace_trygetnext_event subroutine 1173
pthread_setschedprio subroutine 1309

ptrace subroutine 1317
ptracex subroutine 1317
ptsname subroutine 1330
putc subroutine 1331
putc_unlocked subroutine 352
putchar subroutine 1331
putchar_unlocked subroutine 352
putconfattr subroutine 353
putconfattrs subroutine 1333
putenv subroutine 1336
putgrent subroutine 1336
putgroupattr subroutine 377
putgroupattrs subroutine 1337
putgrpaclattr Subroutine 386
putportattr Subroutine 410
putpwent subroutine 424
putroleattr Subroutine 433
puts subroutine 1341
puttcbattr subroutine 442
putuserattr subroutine 456
putuserattrs subroutine 1343
putuserpw subroutine 470
putuserpwhist subroutine 470
putuserpwx subroutine 1347
putusraclattr Subroutine 474
pututline subroutine 476
putw subroutine 1331
putwc subroutine 1349
putwchar subroutine 1349
putws subroutine 1351

Q
queues

inserting and removing elements 561
quotient and remainder

imaxdiv 537

R
radix-independent exponents

logbf 749, 751
logbl 749, 751

read operations
asynchronous 50
binary files 313

read-write file pointers
moving 770

readdir subroutine 947

1386 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

readdir64 subroutine 947
real floating types

fpclassify 312
real value subroutines

creal 192
crealf 192
creall 192

realloc subroutine 782
regular expressions

matching patterns 178
remque subroutine 561
resabs subroutine 389
reset_speed subroutine 345
resinc subroutine 389
resource information 1262
resources subroutines

pthread_getrusage_np 1262
restimer subroutine 448
rewind subroutine 320
rewinddir subroutine 947
rewinddir64 subroutine 947
rounding direction

fegetround 269
fesetround 269

rounding numbers
llrint 728
llrintf 728
llrintl 728
llround 729
llroundf 729
llroundl 729
lrint 766
lrintd128 766
lrintd32 766
lrintd64 766
lrintf 766
lrintl 766
lround 767
lroundf 767
lroundl 767

rpc file
handling 429

rpow subroutine 789
run-time environment

initializing 583

S
sbrk subroutine 123
sdiv subroutine 789
security library subroutines

authenticatex 116
chpassx 157
getconfattrs 358
getgroupattrs 381
getuserattrs 462
getuserpwx 472
loginrestrictionsx 758
newpassx 907
passwdexpiredx 978
putconfattrs 1333

security library subroutines (continued)
putgroupattrs 1337
putuserattrs 1343
putuserpwx 1347

security subroutines
getuinfox 455

seed48 subroutine 222
seekdir subroutine 947
seekdir64 subroutine 947
set_speed subroutine 345
setfsent subroutine 371
setfsent_r subroutine 437
setgrent subroutine 374
setitimer subroutine 389
setkey subroutine 192
setpriority subroutine 414
setpwent subroutine 424
setrlimit subroutine 426
setrlimit64 subroutine 426
setrpcent subroutine 429
setsockopt subroutine 532
settimeofday subroutine 447
settimer subroutine 448
setttyent subroutine 452
setutent subroutine 476
setvfsent subroutine 478
shell command-line flags 399
SIGALRM signal 390
SIGIOT signal 2
signal names

formatting 1192
sine functions

csin 195
csinf 195
csinl 195

single-byte to wide-character conversion 125
SJIS character conversions 577
sjtojis subroutine 577
sjtouj subroutine 577
snprintf subroutine 1178
socket options

setting 532
sockets kernel service subroutines

setsockopt 532
sockets network library subroutines

endhostent 915
gethostent 914
inet_aton 559

special files
creating 841

sprintf subroutine 1178
square root subroutines

csqrt 196
csqrtf 196
csqrtl 196

srand48 subroutine 222
SRC subroutines

addssys 34
chssys 163
delssys 213
getssys 439

Index 1387

SRC subsys record
adding 34

SRC subsys structure
initializing 212

Statistics subroutines
perfstat_cpu 1007
perfstat_cpu_total 1008
perfstat_disk 1010
perfstat_disk_total 1015
perfstat_diskadapter 1012
perfstat_diskpath 1013
perfstat_logicalvolume 1017
perfstat_memory_page 1018
perfstat_memory_total 1019
perfstat_netbuffer 1020
perfstat_netinterface 1022
perfstat_netinterface_total 1023
perfstat_pagingspace 1024
perfstat_protocol 1029
perfstat_reset 1030
perfstat_tape 1031
perfstat_tape_total 1032
perfstat_volumegroup 1033

status indicators
beeping 542
drawing 546
hiding 546

step subroutine 178
stime subroutine 448
streams

checking status 272
closing 256
flushing 256
opening 290
repositioning file pointers 320
writing to 256

string conversion
long integers to base-64 ASCII 1

string manipulation subroutines
advance 178
bcmp 119
bcopy 119
bzero 119
compile 178
ffs 119
fgets 436
fnmatch 288
fputs 1341
gets 436
puts 1341
step 178

strings
bit string operations 119
byte string operations 119
copying 119
drawing text strings 557
matching against pattern parameters 288
reading bytes into arrays 436
writing to standard output streams 1341
zeroing out 119

subroutine
pcap_close 986
pcap_compile 987
pcap_datalink 988
pcap_dump 990
pcap_dump_close 990
pcap_dump_open 991
pcap_file 992
pcap_fileno 992
pcap_geterr 993
pcap_is_swapped 994
pcap_lookupdev 994
pcap_lookupnet 995
pcap_loop 996
pcap_major_version 997
pcap_next 998
pcap_open_live 999
pcap_open_offline 1000
pcap_perror 1002
pcap_setfilter 1003
pcap_snapshot 1004
pcap_stats 1004
pcap_strerror 1005

subroutines
LAPI_Addr_get 590
LAPI_Addr_set 591
LAPI_Address 593
LAPI_Address_init 594
LAPI_Address_init64 596
LAPI_Amsend 598
LAPI_Amsendv 603
LAPI_Fence 611
LAPI_Get 612
LAPI_Getcntr 615
LAPI_Getv 616
LAPI_Gfence 620
LAPI_Init 621
LAPI_Msg_string 626
LAPI_Msgpoll 628
LAPI_Nopoll_wait 630
LAPI_Probe 631
LAPI_Purge_totask 632
LAPI_Put 634
LAPI_Putv 636
LAPI_Qenv 640
LAPI_Resume_totask 643
LAPI_Rmw 644
LAPI_Rmw64 648
LAPI_Senv 652
LAPI_Setcntr 654
LAPI_Setcntr_wstatus 656
LAPI_Term 657
LAPI_Util 659
LAPI_Waitcntr 670
LAPI_Xfer 672

Subroutines
perfstat_cpu 1007
perfstat_cpu_total 1008
perfstat_disk_total 1010, 1015
perfstat_diskpath 1013
perfstat_logicalvolume 1017

1388 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Subroutines (continued)
perfstat_memory_page 1018
perfstat_memory_total 1019
perfstat_netinterface_total 1022, 1023
perfstat_tape 1031
perfstat_tape_total 1032
perfstat_volumegroup 1033

subsystem objects
modifying 163
removing 213

subsystem records
reading 439, 441

supplementary process group IDs
getting 385
initializing 560

swapcontext Subroutine 792
swprintf subroutine 329
swscanf subroutine 334
symbol-handling subroutine

knlist 584
symbols

translating names to addresses 584
sys_siglist vector 1192
SYSP_V_IOSTRUN

sys_parm 1010, 1012, 1013
system auditing 99
system data objects

auditing modes 106
system event audits

getting or setting status 103
system resources

setting maximums 426
system signal messages 1192
system variables

determining values 182

T
telldir subroutine 947
telldir64 subroutine 947
terminal baud rate

get 345
set 345

text area
hiding 557

text locks 1036
text strings

drawing 557
Thread-safe C Library

subroutines
164_r 589

Thread-Safe C Library 375, 376, 437
subroutines

getfsent_r 437
getlogin_r 397
getsfile_r 437
setfsent_r 437

threads
getting thread table entries 445

Threads Library 1307

Threads Library (continued)
condition variables

creation and destruction 1243, 1245
creation attributes 1248, 1251, 1252
signalling a condition 1245
waiting for a condition 1246

DCE compatibility subroutines
pthread_delay_np 1257
pthread_get_expiration_np 1260
pthread_getunique_np 1271
pthread_lock_global_np 1276
pthread_mutexattr_getkind_np 1285
pthread_mutexattr_setkind_np 1291
pthread_signal_to_cancel_np 1310
pthread_unlock_global_np 1315

mutexes
creation and destruction 1280
creation attributes 1290
locking 1280
pthread_mutexattr_destroy 1283
pthread_mutexattr_init 1283

process creation
pthread_atfork subroutine 1218

pthread_attr_getguardsize subroutine 1220
pthread_attr_setguardsize subroutine 1220
pthread_getconcurrency subroutine 1261
pthread_mutex_destroy 1277
pthread_mutex_init 1277
scheduling

dynamic thread control 1265, 1316
thread creation attributes 1223, 1232

signal, sleep, and timer handling
pthread_kill subroutine 1275

thread-specific data
pthread_getspecific subroutine 1266
pthread_key_create subroutine 1273
pthread_key_delete subroutine 1274
pthread_setspecific subroutine 1266

threads
cancellation 1241, 1306
creation 1253
creation attributes 1219, 1225, 1226, 1227,

1228, 1229, 1233, 1234, 1235, 1314
ID handling 1257, 1305
initialization 1293, 1294
termination 1242, 1258, 1272

time
displaying and setting 447
reporting used CPU time 170
synchronizing system clocks 35

time format conversions 201
time manipulation subroutines

absinterval 389
adjtime 35
alarm 389
asctime 201
clock 170
clock_getres 171
clock_gettime 171
clock_settime 171
ctime 201

Index 1389

time manipulation subroutines (continued)
difftime 201
ftime 447
getinterval 389
getitimer 389
gettimeofday 447
gettimer 448
gettimerid 451
gmtime 201
incinterval 389
localtime 201
mktime 201
resabs 389
resinc 389
restimer 448
setitimer 389
settimeofday 447
settimer 448
stime 448
time 448
tzset 201
ualarm 389

time subroutine 448
time subroutines

asctime64 204
asctime64_r 206
ctime64 204
ctime64_r 206
difftime64 204
gmtime64 204
gmtime64_r 206
localtime64 204
localtime64_r 206
mktime64 204

timer
getting or setting values 448

timer subroutines
clock_getcpuclockid 170
clock_nanosleep 173
pthread_condattr_getclock 1250
pthread_condattr_setclock 1250
pthread_getcpuclockid 1262

times subroutine 430
toascii subroutine 184
tojhira subroutine 578
tojkata subroutine 578
tojlower subroutine 578
tojupper subroutine 578
tolower subroutine 184
toujis subroutine 578
toupper subroutine 184
trace

install_lwcf_handler subroutine 562
mt__trce subroutine 895

transforming text 694
trunc subroutine 279
trusted processes

initializing run-time environment 583
tty description file

querying 452

tty subroutines
endttyent 452
getttyent 452
getttynam 452
setttyent 452

tzset subroutine 201

U
ualarm subroutine 389
uitrunc subroutine 279
UJIS character conversions 577
ujtojis subroutine 577
ujtosj subroutine 577
umul_dbl subroutine 3
unatexit subroutine 245
unbiased exponents

ilogbf 536
ilogbl 536

unordered subroutine 168
user accounts

checking validity 165
user authentication data

accessing 470
user database

accessing group information 374, 377
accessing user information 353, 424, 456

user information
accessing 353, 424, 456
accessing group information 374, 377
searching buffer 455

user login name
getting 396

users
authenticating 167

utmpname subroutine 476

V
vectors

sys_siglist 1192
vfork subroutine 293
vfprintf subroutine 1178
VFS (Virtual File System)

getting file entries 478
returning mount status 851

virtual memory
mapping file-system objects 847

vlimit subroutine 426
volume groups

querying 778
querying all varied on-line 781

vprintf subroutine 1178
vsprintf subroutine 1178
vtimes subroutine 430
vwsprintf subroutine 1178

W
wide character subroutines

fgetwc 479

1390 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

wide character subroutines (continued)
fgetws 482
fputwc 1349
fputws 1351
getwc 479
getwchar 479
getws 482
is_wctype 576
iswalnum 574
iswalpha 574
iswcntrl 574
iswctype subroutine 576
iswdigit 574
iswgraph 574
iswlower 574
iswprint 574
iswpunct 574
iswspace 574
iswupper 574
iswxdigit 574
putwc 1349
putwchar 1349
putws 1351

wide characters
checking character class 574
converting

from multibyte 808, 809
determining properties 576
reading from input stream 479, 482
writing to output stream 1349, 1351

words
returning from input streams 350

workload partition
lpar_get_info

retrieves attribute 762
WPAR

lpar_get_info
retrieves attribute 762

wprintf subroutine 329
write operations

asynchronous 61
binary files 313

wscanf subroutine 334
wsprintf subroutine 1178

Y
y0 subroutine 120
y1 subroutine 120
yn subroutine 120

Index 1391

1392 AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions, Volume 1

Readers’ Comments — We’d Like to Hear from You

AIX 5L Version 5.3
Technical Reference: Base Operating System and Extensions, Volume 1

Publication No. SC23-4913-06

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM
business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the
personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via e-mail to: pserinfo@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
SC23-4913-06

SC23-4913-06

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department 04XA-905-6B013
11501 Burnet Road
Austin, TX 78758-3400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in U.S.A.

SC23-4913-06

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	32-Bit and 64-Bit Support for the Single UNIX Specification
	Related Publications

	Base Operating System (BOS) Runtime Services (A-P)
	a64l or l64a Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	abort Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	access, accessx, or faccessx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	acct Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	acl_chg or acl_fchg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	acl_get or acl_fget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	acl_put or acl_fput Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	acl_set or acl_fset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_convert Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_get or aclx_fget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_gettypeinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_gettypes Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_print or aclx_printStr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	aclx_put or aclx_fput Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_scan or aclx_scanStr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	acos, acosf, acosl, acosd32, acosd64, or acosd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	acosh, acoshf, acoshl, acoshd32, acoshd64, and acoshd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	addproj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	addprojdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	addssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Files
	Related Information

	adjtime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	aio_cancel or aio_cancel64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	aio_error or aio_error64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	aio_fsync Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information

	aio_nwait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	aio_nwait_timeout Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	aio_read or aio_read64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	aio_return or aio_return64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Examples
	Related Information

	aio_suspend or aio_suspend64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Envrionment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Envrionment
	Return Values
	Related Information

	aio_write or aio_write64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	alloc, dealloc, print, read_data, read_regs, symbol_addrs, write_data, and write_regs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	alloclmb Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information

	arm_end Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_end Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_getid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_getid Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files

	arm_init Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files

	arm_start Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_start Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_stop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_stop Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_update Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_update Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	asinh, asinhf, asinhl, asinhd32, asinhd64, and asinhd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	asinf, asinl, asin, asind32, asind64, and asind128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	assert Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	atan2f, atan2l, atan2, atan2d32, atan2d64, and atan2d128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	atan, atanf, atanl, atand32, atand64, and atand128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	atanh, atanhf, atanhl, atanhd32, atanhd64, and atanhd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	atof atoff Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	atol or atoll Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	audit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	auditbin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditevents Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Codes
	Error Codes
	Related Information

	auditlog Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditobj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditpack Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditproc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditread, auditread_r Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditwrite Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	authenticate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	authenticatex Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	basename Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	bcopy, bcmp, bzero or ffs Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	bessel: j0, j1, jn, y0, y1, or yn Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	bindprocessor Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	brk or sbrk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	bsearch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	btowc Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	buildproclist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	buildtranlist or freetranlist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	_check_lock Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	_clear_lock Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Related Information

	cabs, cabsf, or cabsl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	cacos, cacosf, or cacosl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	cacosh, cacoshf, or cacoshl Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	carg, cargf, or cargl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	casin, casinf, or casinl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	casinh, casinfh, or casinlh Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catan, catanf, or catanl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catanh, catanhf, or catanhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catclose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catgets Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catopen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cbrtf, cbrtl, cbrt, cbrtd32, cbrtd64, and cbrtd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ccos, ccosf, or ccosl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ccosh, ccoshf, or ccoshl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ccsidtocs or cstoccsid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ceil, ceilf, ceill, ceild32, ceild64, and ceild128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cexp, cexpf, or cexpl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	chacl or fchacl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	chdir Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	chmod or fchmod Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	chown, fchown, lchown, chownx, or fchownx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security

	chpass Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	chpassx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	chprojattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	chprojattrdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	chroot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	chssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Files
	Related Information

	cimag, cimagf, or cimagl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ckuseracct Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	ckuserID Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	class, _class, finite, isnan, or unordered Subroutines
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	clock Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	clock_getcpuclockid Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	clock_getres, clock_gettime, and clock_settime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	clock_nanosleep Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	clog, clogf, or clogl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	close Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	compare_and_swap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	compile, step, or advance Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	confstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Example
	Files
	Related Information

	conj, conjf, or conjl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	conv Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	copysign, copysignf, copysignl , copysignd32, copysignd64, and copysignd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	coredump Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	cosf, cosl, cos, cosd32, cosd64, and cosd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cosh, coshf, coshl, coshd32, coshd64, and coshd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cpow, cpowf, or cpowl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cproj, cprojf, or cprojl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	creal, crealf, or creall Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	crypt, encrypt, or setkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	csid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	csin, csinf, or csinl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	csinh, csinhf, or csinhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	csqrt, csqrtf, or csqrtl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	CT_HOOKx and CT_GEN macros
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	CT_TRCON macro
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	ctan, ctanf, or ctanl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ctanh, ctanhf, or ctanhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ctermid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or isascii Subrout
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Codes
	Related Information

	cuserid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Related Information

	defssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	delssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Security
	Files
	Related Information

	dirname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	disclaim and disclaim64 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	dlclose Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	dlerror Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Related Information

	dlopen Subroutine
	Purpose
	Syntax
	Description
	Flags
	Return Values
	Error Codes
	Related Information

	dlsym Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, or srand48 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	drem Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	_end, _etext, or _edata Identifier
	Purpose
	Syntax
	Description
	Related Information

	ecvt, fcvt, or gcvt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	EnableCriticalSections, BeginCriticalSection, and EndCriticalSection Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values

	erf, erff, erfl, erfd32, erfd64, and erfd128 Subroutines
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	erfc, erfcf, erfcl, erfcd32, erfcd64, and erfcd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	errlog Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	errlog_close Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Related Information

	errlog_find_first, errlog_find_next, and errlog_find_sequence Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	errlog_open Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	errlog_set_direction Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	errlog_write Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Related Information

	exit, atexit, unatexit, _exit, or _Exit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	exp, expf, expl, expd32, expd64, and expd128 Subroutines
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	exp2, exp2f, exp2l, exp2d32, exp2d64, and exp2d128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	expm1, expm1f, expm1l, expm1d32, expm1d64, and expm1d128 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fabsf, fabsl, fabs, fabsd32, fabsd64, and fabsd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fattach Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Errno Value
	Related Specifics

	fchdir Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	fclear or fclear64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fclose or fflush Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fcntl, dup, or dup2 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Compatibility Interfaces
	Return Values
	Error Codes
	Related Information

	fdetach Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Value
	Errno Value
	Related Information

	fdim, fdimf, fdiml, fdimd32, fdimd64, and fdimd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fe_dec_getround and fe_dec_setround Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	feclearexcept Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fegetenv or fesetenv Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fegetexceptflag or fesetexceptflag Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fegetround or fesetround Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	feholdexcept Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fence Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Values

	feof, ferror, clearerr, or fileno Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	feraiseexcept Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fetch_and_add Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fetch_and_and or fetch_and_or Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fetestexcept Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	feupdateenv Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	finfo or ffinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Commands
	Return Values
	Error Codes
	Related Information

	flockfile, ftrylockfile, funlockfile Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	floor, floorf, floorl, floord32, floord64, floord128, nearest, trunc, itrunc, and uitrunc Subroutines
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	fma, fmaf, fmal, and fmad128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fmax, fmaxf, fmaxl, fmaxd32, fmaxd64, and fmaxd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fminf, fminl, fmind32, fmind64, and fmind128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fmod, fmodf, fmodl, fmodd32, fmodd64, and fmodd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fmtmsg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Environment Variables
	Application Usage
	Return Values
	Examples
	Related Information

	fnmatch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	fopen, fopen64, freopen, freopen64 or fdopen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	POSIX
	SAA
	Related Information

	fork, f_fork, or vfork Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fp_cpusync Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fp_flush_imprecise Subroutine
	Purpose
	Library
	Syntax
	Description
	Example
	Related Information

	fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp, fp_iop_sqrt, fp_iop_convert, or fp_i
	Purpose
	Library
	Syntax
	Description
	Return Values

	fp_raise_xcp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fp_read_rnd or fp_swap_rnd Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	fp_trap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	fp_trapstate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fpclassify Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fread or fwrite Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	freehostent Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	freelmb Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information

	frevoke Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	frexpd32, frexpd64, and frexpd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	frexpf, frexpl, or frexp Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fscntl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fsync or fsync_range Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ftok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ftw or ftw64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fwide Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Errors
	Related Information

	fwprintf, wprintf, swprintf Subroutines
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Examples
	Related Information

	fwscanf, wscanf, swscanf Subroutines
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Examples
	Related Information

	gai_strerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	gamma Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Related Information

	gencore or coredump Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	genpagvalue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	get_malloc_log Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	get_malloc_log_live Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	get_speed, set_speed, or reset_speed Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getargs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getauthdb or getauthdb_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getc, getchar, fgetc, or getw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	getconfattr or putconfattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getconfattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getcontext or setcontext Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getcwd Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getdate Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Examples
	Related Information

	getdtablesize Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	getea Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getevars Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getfilehdr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getfirstprojdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getgid, getegid or gegidx Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Error Codes
	Related Information

	getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	File
	Related Information

	getgrgid_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	getgrnam_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getgroupattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	getgroups Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getgrset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	File
	Related Information

	getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer, or setitimer Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getiopri Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Errors
	Implementation Specifics
	Related Information

	getipnodebyaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getipnodebyname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getlogin Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	getlogin_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	File
	Related Information

	getnextprojdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getopt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	getpagesize Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	getpaginfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpagvalue or getpagvalue64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpass Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpcred Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpeereid Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	getpenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpgid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Code
	Related Information

	getpid, getpgrp, or getppid Subroutine
	Purpose
	Syntax
	Description
	Related Information

	getportattr or putportattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getpri Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpriority, setpriority, or nice Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getproclist, getlparlist, or getarmlist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getprocs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getproj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getprojdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getprojs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getpw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine
	Purpose
	Library
	Syntax
	Description
	The passwd Structure
	Parameters
	Security
	Return Values
	Files
	Related Information

	getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getrusage, getrusage64, times, or vtimes Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getroleattr, nextrole or putroleattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	gets or fgets Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or endfsent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getsid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	getsubopt Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	getsubsvr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	gettcbattr or puttcbattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getthrds Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Related Information

	gettimeofday, settimeofday, or ftime Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	gettimer, settimer, restimer, stime, or time Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	gettimerid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getttyent, getttynam, setttyent, or endttyent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getuid, geteuid, or getuidx Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Error Codes
	Related Information

	getuinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Related Information

	getuinfox Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	getuserattr, IDtouser, nextuser, or putuserattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getuserattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	GetUserAuths Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values

	getuserpw, putuserpw, or putuserpwhist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getuserpwx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getusraclattr, nextusracl or putusraclattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getutent, getutid, getutline, pututline, setutent, endutent, or utmpname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getwc, fgetwc, or getwchar Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getwd Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getws or fgetws Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	glob Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	globfree Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	grantpt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Related Information

	HBA_CloseAdapter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	HBA_FreeLibrary Subroutine
	Purpose
	Library
	Syntax
	Description
	Error Codes
	Related Information

	HBA_GetAdapterAttributes, HBA_GetPortAttributes, HBA_GetDiscoveredPortAttributes, HBA_GetPortAttributesByWWN Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetAdapterName Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetEventBuffer Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFC4Statistics Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFcpPersistentBinding Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFCPStatistics Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFcpTargetMappingV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFcpTargetMapping Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetNumberOfAdapters Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	HBA_GetPersistentBindingV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetPortStatistics Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	HBA_GetRNIDMgmtInfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetVersion Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	HBA_LoadLibrary Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	HBA_OpenAdapter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	HBA_OpenAdapterByWWN Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_RefreshInformation Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	HBA_ScsiInquiryV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_ScsiReadCapacityV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_ScsiReportLunsV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendCTPassThru Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendCTPassThruV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendReadCapacity Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendReportLUNs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRLS Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRNID Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRNIDV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRPL Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRPS Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendScsiInquiry Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SetRNIDMgmtInfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	hpmInit, f_hpminit, hpmStart, f_hpmstart, hpmStop, f_hpmstop, hpmTstart, f_hpmtstart, hpmTstop, f_hpmtstop, hpmGetTimeAndCoun
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information

	hsearch, hcreate, or hdestroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	hypot, hypotf, hypotl, hypotd32, hypotd64, and hypotd128 Subroutines
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	iconv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	iconv_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	iconv_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	ilogbf, ilogbl, or ilogb Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	imaxabs Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	imaxdiv Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMAIXMapping Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	IMAuxCreate Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMAuxDestroy Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMAuxDraw Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMAuxHide Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMBeep Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMClose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMCreate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMDestroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMFilter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMFreeKeymap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMIndicatorDraw Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMIndicatorHide Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMInitialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	IMInitializeKeymap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	IMIoctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMLookupString Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMProcess Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMProcessAuxiliary Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMQueryLanguage Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMSimpleMapping Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMTextCursor Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMTextDraw Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMTextHide Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMTextStart Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	inet_aton Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	initgroups Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	initialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	insque or remque Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	install_lwcf_handler Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	ioctl, ioctlx, ioctl32, or ioctl32x Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	File Input/Output (FIO) ioctl Command Values
	Return Values
	Related Information

	isblank Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isendwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	isfinite Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isgreater Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isgreaterequal Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isinf Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isless Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	islessequal Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	islessgreater Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isnormal Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isunordered Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, or iswxdigit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	iswblank Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	iswctype or is_wctype Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	jcode Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	Japanese conv Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	Japanese ctype Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	kill or killpg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kleenup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	knlist Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	kpidstate Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	_lazySetErrorHandler Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Related Information

	l3tol or ltol3 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	l64a_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	LAPI_Addr_get Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Addr_set Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Address Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	FORTRAN Examples
	Return Values
	Location
	Related Information

	LAPI_Address_init Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Address_init64 Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Amsend Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	C Examples
	Location
	Related Information

	LAPI_Amsendv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Fence Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	C Examples
	Location
	Related Information

	LAPI_Get Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Getcntr Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Getv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Gfence Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	Location
	Related Information

	LAPI_Init Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	C Examples
	Location
	Related Information

	LAPI_Msg_string Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Msgpoll Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Nopoll_wait Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	Restrictions
	Location
	Related Information

	LAPI_Probe Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	Location
	Related Information

	LAPI_Purge_totask Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	Return Values
	Location
	Related Information

	LAPI_Put Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Putv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Qenv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description

	LAPI_Resume_totask Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	Return Values
	Location
	Related Information

	LAPI_Rmw Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Rmw64 Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Senv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Setcntr Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Setcntr_wstatus Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	Return Values
	Location
	Related Information

	LAPI_Term Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Util Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description

	LAPI_Waitcntr Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Xfer Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description

	layout_object_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	layout_object_editshape or wcslayout_object_editshape Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	layout_object_getvalue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	layout_object_setvalue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	layout_object_shapeboxchars Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	layout_object_transform or wcslayout_object_transform Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	layout_object_free Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldahread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldclose or ldaclose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldexpd32, ldexpd64, and ldexpd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ldexp, ldexpf, or ldexpl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldfhread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	ldgetname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Examples
	Related Information

	ldlread, ldlinit, or ldlitem Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldlseek or ldnlseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldohseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldopen or ldaopen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Examples
	Related Information

	ldrseek or ldnrseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldshread or ldnshread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	ldsseek or ldnsseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldtbindex Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldtbread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldtbseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lgamma, lgammaf, lgammal, lgammad32, lgammad64, and lgammad128 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	lineout Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	link Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lio_listio or lio_listio64 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	listea Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	llrint, llrintf, llrintl, llrintd32, llrintd64, and llrintd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	llround, llroundf, llroundl, llroundd32, llroundd64, and llroundd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	load and loadAndInit Subroutines
	Purpose
	Syntax
	Description
	Searching for Dependent Modules
	Parameters
	Return Values
	Error Codes
	Related Information

	loadbind Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	loadquery Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	localeconv Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	lockfx, lockf, flock, or lockf64 Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	log10, log10f, log10l, log10d32, log10d64, and log10d128 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	log1p, log1pf, log1pl, log1pd32, log1pd64, and log1pd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	log2, log2f, log2l, log2d32, log2d64, and log2d128 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	logbd32, logbd64, and logbd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ilogbd32, ilogbd64, and ilogbd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	logbf, logbl, or logb Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	log, logf, logl, logd32, logd64, and logd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	loginfailed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	loginrestrictions Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	loginrestrictionsx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	loginsuccess Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	lpar_get_info Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Example
	Related Information

	lpar_set_resources Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes

	lrint, lrintf, lrintl, lrintd32, lrintd64, and lrintd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	lround, lroundf, lroundl, lroundd32, lroundd64, and lroundd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	lsearch or lfind Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	lseek, llseek or lseek64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	lvm_querylv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lvm_querypv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lvm_queryvg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lvm_queryvgs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine
	Purpose
	Libraries
	Malloc Subsystem APIs
	malloc
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	free
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	realloc
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	calloc
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	mallopt
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	mallinfo
	Syntax
	Description
	Return Values
	Error Codes
	mallinfo_heap
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	alloca
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	valloc
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	posix_memalign
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	madvise Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	makecontext or swapcontext Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	matherr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	MatchAllAuths, MatchAnyAuths, MatchAllAuthsList, or MatchAnyAuthsList Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	mblen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbrlen Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	mbrtowc Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	mbsadvance Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	mbscat, mbscmp, or mbscpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	mbschr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbsinit Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	mbsinvalid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbslen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbsncat, mbsncmp, or mbsncpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	mbspbrk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbsrchr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbsrtowcs Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	mbstomb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbstowcs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mbswidth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbtowc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	memccpy, memchr, memcmp, memcpy, memset or memmove Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mincore Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	MIO_aio_read64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_aio_suspend64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_aio_write64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Standard Output
	Location
	Related Information

	MIO_fcntl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_ffinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_fstat64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_fsync Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_ftruncate64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_lio_listio64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_lseek64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_open64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Environment variables
	Return Values
	Error Codes
	Standard Output
	Examples
	Location
	Related Information

	MIO_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Environment variables
	Return values
	Error codes
	Standard output
	Examples
	Location
	Related Information

	MIO_read Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	MIO_write Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Location
	Related Information

	mkdir Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mknod or mkfifo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mktemp or mkstemp Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mlock and munlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mlockall and munlockall Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mmap or mmap64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mntctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	modf, modff, modfl, modfd32, modfd64, and modfd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	moncontrol Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	monitor Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	monstartup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Files
	Related Information

	mprotect Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_getattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_notify Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_receive Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_send Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_setattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_receive, mq_timedreceive Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	mq_send, mq_timedsend Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	mq_unlink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msem_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msem_lock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msem_remove Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msem_unlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgrcv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgsnd Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgxrcv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msleep Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	msync Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	mt__trce Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	munmap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	mwakeup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	nan, nanf, nanl, nand32, nand64, and nand128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	nanosleep Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	nearbyint, nearbyintf, nearbyintl, nearbyintd32, nearbyintd64, and nearbyintd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, or nexttowardl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	nextafterd32, nextafterd64, nextafterd128, nexttowardd32, nexttowardd64, and nexttowardd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Errors
	Related Information

	newpass Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	newpassx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	nftw or nftw64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	nl_langinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Related Information

	nlist, nlist64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Compatibility Interfaces
	Related Information

	ns_addr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter

	ns_ntoa Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter

	odm_add_obj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_change_obj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_close_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_create_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_err_msg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	odm_free_list Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_get_by_id Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_get_list Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_get_obj, odm_get_first, or odm_get_next Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_initialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	odm_lock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_mount_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_open_class or odm_open_class_rdonly Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	odm_rm_by_id Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_rm_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	odm_rm_obj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_run_method Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_set_path Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_set_perms Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	odm_terminate Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	odm_unlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	open, openx, open64, creat, or creat64 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64, readdir64, telldir64, seekdir64, rewinddir64, or closedir
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	pam_acct_mgmt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_authenticate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_chauthtok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_close_session Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_end Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_get_data Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_get_item Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_get_user Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_getenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pam_getenvlist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pam_open_session Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_putenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_set_data Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_set_item Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_setcred Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_acct_mgmt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_authenticate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_chauthtok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_close_session Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_open_session Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_setcred Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_start Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_strerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	passwdexpired Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	passwdexpiredx Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	passwdpolicy Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	passwdstrength Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	pathconf or fpathconf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pause Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	pcap_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pcap_compile Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_datalink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_dispatch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_dump Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pcap_dump_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pcap_dump_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_file Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_fileno Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_geterr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_is_swapped Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_lookupdev Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_lookupnet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_loop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_major_version Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_minor_version Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_next Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_open_live Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_open_live_sb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_open_offline Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_perror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pcap_setfilter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_snapshot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_stats Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_strerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pclose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	perfstat_cpu Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_cpu_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_disk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_diskadapter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_diskpath Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_disk_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_logicalvolume Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_memory_page Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_memory_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_netbuffer Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_netinterface Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_netinterface_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_pagingspace Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_partial_reset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_partition_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_protocol Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_reset Subroutine
	Purpose
	Library
	Syntax
	Description
	Files
	Related Information

	perfstat_tape Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_tape_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_volumegroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Related Information

	pipe Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	plock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pm_cycles Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Files
	Related Information

	pm_delete_program Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_error Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	pm_get_data, pm_get_tdata, pm_get_Tdata, pm_get_data_cpu, pm_get_tdata_cpu, pm_get_Tdata_cpu, pm_get_data_lcpu, pm_get_tdata_
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_group, pm_get_tdata_group and pm_get_Tdata_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_group_mx and pm_get_tdata_group_mx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_mx, pm_get_tdata_mx, pm_get_data_cpu_mx, pm_get_tdata_cpu_mx, pm_get_data_lcpu_mx and pm_get_tdata_lcpu_mx Subrou
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_mygroup, pm_get_tdata_mygroup or pm_get_Tdata_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_mygroup_mx or pm_get_tdata_mygroup_mx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_mythread, pm_get_tdata_mythread or pm_get_Tdata_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_mythread_mx or pm_get_tdata_mythread_mx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_pgroup, pm_get_tdata_pgroup and pm_get_Tdata_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_pgroup_mx and pm_get_tdata_pgroup_mx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_pthread, pm_get_tdata_pthread or pm_get_Tdata_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_pthread_mx or pm_get_tdata_pthread_mx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_thread, pm_get_tdata_thread or pm_get_Tdata_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_thread_mx or pm_get_tdata_thread_mx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_proctype Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Files
	Related Information

	pm_get_program Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_group_mx and pm_get_program_group_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_mx and pm_get_program_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_mygroup_mx and pm_get_program_mygroup_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_mythread_mx and pm_get_program_mythread_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_pgroup_mx and pm_get_program_pgroup_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_pthread_mx and pm_get_program_pthread_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_thread_mx and pm_get_program_thread_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_initialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_group_mx and pm_set_program_group_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_mx and pm_set_program_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_mygroup_mx and pm_set_program_mygroup_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_mythread_mx and pm_set_program_mythread_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_pgroup_mx and pm_set_program_pgroup_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_pthread_mx and pm_set_program_pthread_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_thread_mx and pm_set_program_thread_mm Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start and pm_tstart Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_group and pm_tstart_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_mygroup and pm_tstart_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_mythread and pm_tstart_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_pgroup and pm_tstart_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_pthread and pm_tstart_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_thread and pm_tstart_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop and pm_tstop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_group and pm_tstop_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_mygroup and pm_tstop_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_mythread and pm_tstop_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_pgroup and pm_tstop_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_pthread and pm_tstop_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_thread and pm_tstop_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	poll Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	poll Subroutine STREAMS Extensions
	Return Values
	Error Codes
	Related Information

	pollset_create, pollset_ctl, pollset_destroy, pollset_poll, and pollset_query Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	popen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	posix_fadvise Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	posix_fallocate Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	posix_madvise Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	posix_openpt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	posix_spawn or posix_spawnp Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawn_file_actions_adddup2 Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_destroy or posix_spawnattr_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	powf, powl, pow, powd32, powd64, and powd128 Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	profil Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	proj_execve Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	projdballoc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	projdbfinit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	projdbfree Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	psdanger Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	psignal Subroutine or sys_siglist Vector
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_key, pthdb_mutex, pthdb_mutexattr, pthdb_pthread, pthdb_pthread_key, pthdb_rwlo
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_attr_detachstate,pthdb_attr_addr, pthdb_attr_guardsize,pthdb_attr_inheritsched, pthdb_attr_schedparam,pthdb_attr_schedp
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling, pthdb_mutexattr_protocol, pthdb_mutexattr_pshared or pthdb_mutexattr_type
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_mutex_addr, pthdb_mutex_lock_count, pthdb_mutex_owner, pthdb_mutex_pshared, pthdb_mutex_prioceiling, pthdb_mutex_protoc
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_mutex_waiter, pthdb_cond_waiter, pthdb_rwlock_read_waiter or pthdb_rwlock_write_waiter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_pthread_arg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pthdb_pthread_context or pthdb_pthread_setcontext Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_pthread_hold, pthdb_pthread_holdstate or pthdb_pthread_unhold Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_pthread_sigmask, pthdb_pthread_sigpend or pthdb_pthread_sigwait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Code
	Related Information

	pthdb_pthread_specific Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related information

	pthdb_pthread_tid or pthdb_tid_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_rwlock_addr, pthdb_rwlock_lock_count, pthdb_rwlock_owner, pthdb_rwlock_pshared or pthdb_rwlock_state Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_session_committed Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_atfork Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_destroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_attr_getschedparam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getschedpolicy, pthread_attr_setschedpolicy Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_attr_getstackaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getstacksize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getdetachstate or pthread_attr_setdetachstate Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getscope and pthread_attr_setscope Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getukeyset_np or pthread_attr_setukeyset_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Errors Codes
	Related Information

	pthread_attr_setschedparam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_setstackaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_setstacksize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	pthread_barrier_destroy or pthread_barrier_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_barrier_wait Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_cancel Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_cleanup_pop or pthread_cleanup_push Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pthread_cond_destroy or pthread_cond_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	PTHREAD_COND_INITIALIZER Macro
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_cond_signal or pthread_cond_broadcast Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Code
	Related Information

	pthread_cond_wait or pthread_cond_timedwait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_condattr_destroy or pthread_condattr_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Code
	Related Information

	pthread_condattr_getclock, pthread_condattr_setclock Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_condattr_getpshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_condattr_setpshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_create_withcred_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	pthread_delay_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_equal Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pthread_exit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Errors
	Related Information

	pthread_get_expiration_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getconcurrency or pthread_setconcurrency Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Related Information

	pthread_getcpuclockid Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getrusage_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getschedparam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getspecific or pthread_setspecific Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getthrds_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getunique_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_join or pthread_detach Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_key_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_key_delete Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_kill Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_lock_global_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_mutex_init or pthread_mutex_destroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutex_getprioceiling or pthread_mutex_setprioceiling Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	PTHREAD_MUTEX_INITIALIZER Macro
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	pthread_mutex_timedlock Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_getkind_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_getprioceiling or pthread_mutexattr_setprioceiling Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_getpshared or pthread_mutexattr_setpshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_setkind_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_once Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	PTHREAD_ONCE_INIT Macro
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_rwlock_init or pthread_rwlock_destroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	pthread_rwlock_timedrdlock Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_rwlock_timedwrlock Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_rwlock_unlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Related Information

	pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_self Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Errors
	Related Information

	pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_setschedparam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_setschedprio Subroutine
	Purpose
	Syntax
	Description
	Rationale
	Return Values
	Error Codes
	Related Information

	pthread_sigmask Subroutine
	Purpose
	Library
	Syntax
	Description

	pthread_signal_to_cancel_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_spin_destroy or pthread_spin_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_spin_lock or pthread_spin_trylock Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_spin_unlock Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_suspend_np, pthread_unsuspend_np and pthread_continue_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	pthread_unlock_global_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_yield Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	ptrace, ptracex, ptrace64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	ptsname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	putc, putchar, fputc, or putw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	putconfattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	putenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	putgrent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	putgroupattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Examples
	Related Information

	puts or fputs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	putuserattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Examples
	Related Information

	putuserpwx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	putwc, putwchar, or fputwc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	putws or fputws Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pwdrestrict_method Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	Appendix A. Base Operating System Error Codes for Services That Require Path-Name Resolution
	Related Information

	Appendix B. ODM Error Codes
	Related Information

	Appendix C. Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Readers’ Comments — We′d Like to Hear from You

