

ibm.com/redbooks

Running Linux
Applications on AIX

Luis Ferreira
Janethe Co

Jan-Rainer Lahmann
Gonzalo Quesada

AIX affinity with Linux

AIX Toolbox for Linux
Applications

Porting and source
compatibility

Front cover
Acrobat bookmark

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Running Linux Applications on AIX

June 2001

International Technical Support Organization

SG24-6033-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject
to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (June 2001)

This edition applies to AIX Toolbox for Linux Applications for use with AIX 4.3.3 and AIX 5L
operating systems.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 199.

Contents

Figures . vii

Tables . ix

Preface . xi
The team that wrote this redbook. .xi
Special notice . xiv
IBM Trademarks. xv
Comments welcome. xv

Chapter 1. Introduction . 1
1.1 AIX . 2

1.1.1 Current version and status . 2
1.2 Linux . 4

1.2.1 Brief history . 4
1.2.2 About Linux’s copyright . 5
1.2.3 The GNU Project and the Linux kernel . 5
1.2.4 Different flavors of Linux . 6

1.3 Linux at IBM . 7
1.3.1 Linux applications on AIX . 8
1.3.2 IBM’s UNIX-based operating system strategy 8

1.4 Future trends and directions . 10

Chapter 2. AIX Toolbox for Linux Applications . 13
2.1 Overview . 15
2.2 Additional information. 16
2.3 Design of the Toolbox . 17

2.3.1 Directory structure. 17
2.3.2 System variables. 20

2.4 Components . 21
2.4.1 Development utilities . 21
2.4.2 User environment utilities and applications. 21
2.4.3 Binaries and sources (rpm and srpm) . 22

2.5 Installation methods . 22
2.5.1 AIX installp . 24
2.5.2 RPM Package Manager . 30

Chapter 3. Toolbox installation . 37
3.1 System requirements . 38
© Copyright IBM Corp. 2001 iii

3.2 Installation procedure . 39
3.2.1 Installing the RPM Package Manager. 39
3.2.2 Preparing to install GNOME, KDE2 and other applications 40
3.2.3 FTP tools . 41
3.2.4 Installing the Toolbox base . 43
3.2.5 Using the RPM Package Manager . 44
3.2.6 Installing KDE2 . 50
3.2.7 Installing GNOME . 52

3.3 Useful URLs . 53

Chapter 4. Source compatibility: Linux-compatible APIs on AIX 55
4.1 Writing portable code . 56
4.2 Linux-compatible APIs and LSB functions on AIX 57
4.3 File macro supported values . 58

4.3.1 File access modes . 60
4.3.2 File descriptor flags for fcntl . 64
4.3.3 File modes. 65
4.3.4 Poll macro values . 65

4.4 Signal values . 66

Chapter 5. Package building and porting . 69
5.1 Compiler installation and requirements. 70
5.2 Rebuilding Toolbox packages. 71

5.2.1 Building packages with rpm . 71
5.2.2 Rebuilding a Toolbox RPM . 72

5.3 Compiling open source software. 80
5.4 Using libtool to handle shared libraries . 82
5.5 Examples . 84

5.5.1 Rebuilding and updating the wget package 84

Chapter 6. User and administration differences . 89
6.1 Desktop and graphical applications . 90

6.1.1 The XWindow System. 90
6.1.2 The KDE desktop . 96
6.1.3 The GNOME desktop . 102
6.1.4 Package managing using KDE or GNOME. 104
6.1.5 CDE desktop . 109

6.2 Available shells . 112
6.2.1 Overview of shell startup files . 123

6.3 Commands and syntax differences . 128
6.3.1 AIX and AIX Toolbox commands differences 130

6.4 Administration differences . 134
6.5 Boot process differences . 141

6.5.1 Linux boot process . 141
iv Running Linux Applications on AIX

6.5.2 AIX boot process. 143
6.6 System files differences . 147

6.6.1 File system definitions on AIX and Linux . 148

Appendix A. APIs . 153
Linux-compatible APIs and library functions . 154

Linux-compatible APIs . 154
Linux Standard Base APIs . 162

New APIs in AIX 5L 5.1 . 171

Appendix B. Differences in commands. 187

Appendix C. Other Open Source Software for AIX. 193
Overview . 194
Other sources. 194

Related publications . 195
IBM Redbooks . 195

Other resources . 195
Referenced Web and FTP sites . 195

How to get IBM Redbooks . 198
IBM Redbooks collections. 198

Special notices . 199

Index . 203
 Contents v

vi Running Linux Applications on AIX

Figures

1-1 IBM’s UNIX-based operating system strategy . 9
1-2 IBM’s UNIX-based operating system evolution 11
2-3 /opt/freeware/man tree. 19
2-4 /usr/opt/freeware/src tree . 20
2-7 SMIT installp panel (text-based) . 27
2-8 Main SMIT installation panel (GUI interface) . 28
2-9 SMIT dialog panel . 29
2-10 SMIT Command Output panel . 30
2-11 Sample of RPM package label convention . 31
2-12 Main GnomeRPM panel. 34
2-13 Main KPackage panel . 36
6-1 AIX Toolbox for Linux Applications graphical framework. 93
6-2 KDE desktop main panel . 97
6-3 KDE desktop and its main panel . 97
6-4 Adding an application to the starter menu . 98
6-5 Result from adding an application to the starter menu 99
6-6 KDE File Manager main window . 100
6-7 KOffice sample 1 . 101
6-8 KOffice sample 2 . 102
6-9 GNOME panel . 103
6-10 GNOME desktop . 104
6-11 KPackage GUI interface . 105
6-12 GnomeRPM (gnorpm) main window . 106
6-13 Display package information using gnorpm . 107
6-14 gnorpm web find feature . 108
6-15 gnome settings for rpmfind . 108
6-16 CDE front panel . 110
6-17 Main panel action tasks . 111
6-18 Subpanel example . 112
6-19 Main diag menu . 130
6-20 Linuxconf graphical interface . 135
6-21 YaST interface . 136
6-22 Main SMIT menu in text-based interface . 137
6-23 SMIT user account menu. 139
6-24 Linuxconf user account menu . 140
6-25 YaST user account menu . 141
© Copyright IBM Corp. 2001 vii

viii Running Linux Applications on AIX

Tables

2-1 installp option summary . 26
3-1 Disk space requirements for the components of the Toolbox 38
4-1 File descriptor and system table definition. 61
4-2 File access mode macro value comparison . 62
4-3 File open mode macros on Linux and AIX . 63
4-4 File open mode macros available only in Linux using _USE_GNU 63
4-5 Linux open mode using _USE_LARGEFILE64 64
4-6 Linux open modes using _USE_POSIX199309 or _USE_UNIX98 64
4-7 Poll macro values. 65
4-8 Signal values . 66
6-1 Desktops and window managers . 90
6-2 AIX standard shells feature comparison . 114
6-3 AIX Toolbox for Linux Applications shell feature comparison 123
6-4 Login execution sequence for ksh, csh, and sh 124
6-5 Login execution sequence for bash, tcsh, and zsh 124
6-6 Commands differences examples . 129
6-7 Function of -a flag in AIX and Linux . 132
6-8 Linux distribution and their administration tools 134
6-9 SMIT menu examples and their corresponding fast paths. 137
6-10 Basic SMIT tasks . 138
6-11 Differences in configuration files between AIX and Linux 147
A-1 Different groups of APIs. 155
A-2 Compatible APIs . 155
A-3 APIs not implemented . 159
A-4 Linux-compatible APIs introduced in AIX 5L 5.1 161
A-5 Linux-compatible APIs available on AIX but not 100% compatible . . . 161
A-6 Different groups of LSB APIs . 162
A-7 Compatible LSB APIs . 162
A-8 LSB APIs not available . 170
A-9 LSB APIs introduced in AIX 5L 5.1 . 170
A-10 LSB APIs available on AIX but not 100% compatible 170
© Copyright IBM Corp. 2001 ix

x Running Linux Applications on AIX

Preface

The strengths of the AIX operating system are well known among the UNIX®
software community. Its reliability and great degree of scaling makes AIX the
perfect choice for hosting mission-critical applications. It is a robust and flexible
operating system that meets all the requirements for the current demands of
e-business environments. At the same time, Linux® is emerging and generating
excitement among software developers that has not been seen in years.

With the adoption of Linux in early 2000, IBM became very interested in enabling
Linux applications to run on the AIX operating system. Thus, the AIX Toolbox for
Linux Applications was developed. The Toolbox provides the capability to easily
recompile and port Linux applications to AIX and provides tools to work on those
applications. Countless developers around the world are completely focused on
developing applications for Linux systems. Now you can easily port these
applications and run them directly on AIX while taking advantage of all the
features and benefits that the AIX operating system offers.

This redbook will show you what you need to run Linux applications on AIX. We
will help you comprehend and install the AIX Toolbox for Linux Applications,
understand the procedure to follow for porting open source software, and explain
the usage of Linux commands on AIX.

The team that wrote this redbook
This redbook was produced by the Blue Tuxedo Team, a team of specialists from
around the world working at the International Technical Support Organization,
Austin Center.

Luis Ferreira (also known as “Luix”) is a Software Engineer at IBM Corp -
International Technical Support Organization, Austin Center working with Linux
projects. He has 18 years of experience in UNIX-based operating systems, and
holds a MSc. Degree in System Engineering from Univerdade Federal do Rio de
Janeiro, Brazil. Before joining the ITSO, Luis worked at Tivoli Systems as a
Certified Tivoli Consultant, at IBM Brasil as a Certified I/T Specialist, and at
Cobra Computadores as a kernel developer and software designer.

Janethe Co is a System Services Representative at IBM Philippines. She holds
a Bachelor of Science Degree in Electronics and Communications Engineer from
© Copyright IBM Corp. 2001 xi

De La Salle University, Manila. Her areas of expertise include AIX, Linux,
Security and Firewall, Numa-Q, and Dynix/ptx.

Dr. Jan-Rainer Lahmann is an ^ Architect in Germany. He holds a Ph.D.
Degree in applied mathematics from University of Karlsruhe, Germany. He has
eight years of experience in managing RS/6000 and Linux clusters. After joining
IBM, he was trained in OS/390, especially in its UNIX System Services, and
Linux for S/390 (when it became available in early 2000). Currently, he is a
technical expert for Linux environments on both the pSeries and zSeries
systems.

Gonzalo Quesada is an AIX Systems Specialist in GBM Costa Rica, an IBM
Alliance Corporation. He has eleven years of experience in UNIX systems and
four years of experience with RS/6000 SP Systems. He has worked with GBM
for eight years supporting the IBM RS/6000 family of products. He is an IBM
Certified Specialist for AIX System Support RS/6000 and a IBM Certified
Specialist for Web Server for RS/6000. He also has done consulting work on
cross-platform environments involving relational database connectivity and
network management. He has written extensively on different ITSO projects,
such as DRDA/Datajoiner, AIX 4.2, and Using TME 10.
xii Running Linux Applications on AIX

The Blue Tuxedo Team is pictured here. They are, left to right, Jan, Janethe,
Luis, and Gonzalo.

Acknowledgements
The team would like to express special thanks to the following people for their
major contributions to this project:

IBM Austin
Mark Brown, Senior Technical Staff Member and Marc Stephenson, Senior
Software Engineer

Thanks to the following people for their contributions to this project:

International Technical Support Organization, Austin Center
Scott Vetter, Richard Cutler, Lupe Brown, Gwen Monroe, Daesung Chung, Wade
Wallace, Joanne Luedtke

International Technical Support Organization, Poughkeepsie Center
Fred Borchers
 Preface xiii

IBM Austin
Sharon Dobbs, Susan Pelzel, Ahmed Chibib, Dan McNichol, David Clissold,
Mike Harrell, Ray Hebert, Reza Arbab

IBM Germany
Andreas Ehrhardt and Eberhard Pasch

IBM England
Nigel Griffiths

IBM Brazil
Helcio Caruso, Vicente Melo, Andre Castro, Marcus Ferreira

IBM Japan
Shigeo Murohashi

Technical University of Clausthal, Germany
Stefan Schnitter

Also, thanks to Linus Torvalds for rescuing the dream.

Special notice
This publication is intended to help software engineers and developers to utilize
the AIX Toolbox for Linux Applications, establish a development environment for
porting open source software from different sources, and give porting tips.

The information in this publication is not intended as the specification of any
programming interfaces that are provided by IBM for AIX and AIX 5L and by any
Linux documentation. See the PUBLICATIONS section of the IBM Programming
Announcement for AIX 5L for more information about what publications are
considered to be product documentation.
xiv Running Linux Applications on AIX

IBM Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to address on Page ii

e (logo)
IBM®
AIX
AIX 5L
DB2
pSeries
RS/6000
PowerPC
S/390
OS/2
Tivoli

Redbooks
Redbooks Logo
SP2
Netfinity
xSeries
zSeries
WebSphere
POWER
ServeRAID
OS/390
TME
 Preface xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi Running Linux Applications on AIX

Chapter 1. Introduction

This chapter provides a brief history of IBM’s version of the UNIX operating
system (known as AIX), the status of its current version (AIX 5L), and its planned
direction. It also provides a brief introduction to another very popular UNIX-based
operating system called Linux, its different flavors, and why it plays a major role
in the IBM AIX roadmap.

In this chapter, the following topics are described:

� AIX, including a brief history of AIX

� The current version of AIX and its features and status

� A brief history of Linux

� Linux copyrights

� GNU and the Linux kernel

� Different flavors of Linux

� Linux in IBM and future directions

1

© Copyright IBM Corp. 2001 1

1.1 AIX
The IBM AIX operating system is a modern UNIX operating system for the
RS/6000 family that supports 32-bit and 64-bit applications. It provides a great
degree of scaling, including uniprocessors, symmetric multiprocessors, clusters,
and massively parallel systems, using a single consistent set of application and
binary interfaces. AIX is highly reliable and supports high availability storage
systems and various cluster configurations for near fault-tolerant operations.

AIX is designed for mission-critical, core business applications, providing an
integrated environment that is stable, highly scalable, and functionality rich. It
interoperates with many heterogeneous platforms and offers powerful
management solutions for the enterprise.

IBM took the basic UNIX operating system and incorporated enhancements
developed by other organizations and institutions, for example, BSD® UNIX
(Berkeley Software Distribution), included new features and POSIXTM IEEE
1003.1 standards conformance, and added many enhancements to produce the
Advanced Interactive eXecutive (AIX).

Today, AIX is the operating system that runs on IBM’s family of RISC
workstations and servers, known as IBM RS/6000 or IBM ^ pSeries
models.

1.1.1 Current version and status
Over the past five years, the vast growth of Internet users and the explosion of
e-business has produced a large demand on server computing requirements.
These trends are placing unprecedented demands on IT systems and creating
the need for more advanced technology and standardization. The new
e-business environments demand an OS capable of handling the mission-critical
functional requirements that allow businesses to focus on delivering a greater
value to customers.

As the next generation of AIX, AIX 5L fulfills the required needs of e-business
environments and provides even more capabilities, including enhanced support
for IBM POWER platforms, support for the Intel® Itanium™ architecture, and a
strong affinity with Linux.

IBM AIX 5L was designed with one simple goal in mind: to produce a single
UNIX-based product line with broad industry support and to establish AIX as the
leading open, industrial strength UNIX-based operating system.

AIX 5L is currently shipping and includes many new features, a description of
which can be found at:
2 Running Linux Applications on AIX

http://www.ibm.com/servers/aix/os/index.html

The benefits of these new features are:

� Binary compatibility

– Helps assure continuing application availability across AIX Version 4 when
moving to Version 5.

� System scalability

– Helps preserve application investments and enables a clean transition to
64-bit applications.

– Helps increase Web server performance by serving Web pages from the
AIX network file cache.

– Enables tuning of disk I/O and optimization of RAID storage.

� Network performance

– Provides performance enhancements to the communication subsystem,
such as higher throughput of the TCP/IP stack.

– Enables multiple routes to a destination for bandwidth aggregation or
high-availability configurations.

– Facilitates fast propagation of hardware address changes.

– Automatically provides network file system mounts, reducing the work of
system administration.

– Increases IP addressability, security, and integrity through redundant
routing, dynamic rerouting, on-demand tunneling, and gateway support.

� Security

– Enhanced password protection under IPv4.

– Enhances the IP Security function in AIX for Virtual Private Networking.

– Provides extensive base security capabilities, such as user/password
management, security auditing, resource limits, and network security.

� Systems and workload management

– Provides multiple AIX instances on a single POWER4 SMP system with
full isolation protection.

– Helps solve the problems of mixed workload management by providing
resource availability to critical applications.

� Base Operating System and RAS

– Improved random write performance on mirrored logical devices.

– Provides new tools that simplify LVM hot spot management.
 Chapter 1. Introduction 3

– Provides enhanced flexibility without rebooting, such as the ability to
deactivate active paging spaces.

– Allows an AIX system image (mksysb) to be placed onto recordable
CD-ROMs.

– Supports the /proc file system, which provides access to the state of each
process and thread in the system.

� Enhanced JavaTM support

– Improved performance, scalability, and stability.

– Enhances flexibility in developing and executing Java applications by
allowing concurrent support of multiple Java versions installed on a
system.

� Standards leadership

– Increases availability of applications, tools, and middleware from
developers supporting open standards.

– Improves scalability, performance, and the assurance of application
support threads.

1.2 Linux
The Linux operating system is a free UNIX-based operating system that supports
full multitasking, the XWindowsTM System, TCP/IP networking, and much more.

In the past few years, Linux has generated more excitement in the computer
industry than any other development. Linux can basically run on a large variety of
computer systems, turning them into powerful workstations that give you the
power of UNIX software at your fingertips.

1.2.1 Brief history
Linux is a freely distributed operating system based on the UNIX operating
system. It was originally developed by Linus Torvalds, who started work on Linux
in 1991 as a student at the University of Helsinki in Finland. Torvalds was
inspired by Andrew Tanenbaum’s Minix, a small UNIX-based operating system.

The initial release of Linux was distributed by means of the Internet, and
generated one of the largest software development phenomena of all time.
4 Running Linux Applications on AIX

The first official release of Linux, version 0.02, took place on October 5, 1991; at
this point, Torvalds was able to run bash (the GNU Bourne Again Shell) and gcc
(the GNU C compiler). Basically, Linux was intended as a hacker’s system. The
situation has now changed, and the operating system provides a solid graphical
environment, easy-to-install packages, and high-level applications.

Linux was initially developed for the Intel x86 architecture platform, but it is
important to know that Linux now supports many other hardware platforms, such
as PowerPC, S/390, SPARC®, and Alpha®.

1.2.2 About Linux’s copyright
The Linux kernel is written, distributed, and covered under the GNU General
Public License (GPL), which means that its source code can be freely distributed
and is available to the general public.

For information regarding GNU/Linux copyrights, the GNU Project, and the GNU
General Public License (GPL), please refer to the following URL and
Section 1.2.3, “The GNU Project and the Linux kernel” on page 5:

http://www.gnu.org/

1.2.3 The GNU Project and the Linux kernel
By the 1980s, operating systems were basically proprietary, which meant that
you had to use the operating system provided for that specific platform.

The initiative of the Free Software Foundation and the GNU Project motivated
and stimulated open development and worldwide user cooperation. The main
goal of the GNU Project was to develop a UNIX-compatible operating system
named GNU (GNU is Not Unix), capable of running on various hardware
architectures. Calling it GNU was a way of paying tribute to UNIX-like systems
while saying that GNU was something different. It was to be 100 percent free,
which meant that users would be free to redistribute the whole system, and free
to change and contribute to any part of it. It was decided to make it
UNIX-compatible because UNIX had already been proven in terms of design and
portability.

The GNU Project was founded by Richard Stallman, the founder of the Free
Software Foundation, author of the GNU General Public License, and the original
developer of some GNU software programs (for example, the gcc compiler and
the Emacs text editor).
 Chapter 1. Introduction 5

It took many years of hard work to write all the pieces of the GNU-based
operating system, hundreds of programmers worldwide, and many hackers who
used and worked very hard on the code. By 1990, most of the software pieces
had been written except for the most important one: the kernel. The kernel is the
core of the operating system. It is the piece of code that directly communicates
and controls the interface between the user programs and the hardware devices
(for example, disks, keyboard, mouse, and video). By that time, the free
UNIX-based kernel developed by Linus Torvalds was combined with the GNU
system, resulting in a complete operating system: the Linux-based GNU system.

Today, the combination of GNU tools and commands and the Linux kernel is
widely used around the world, and its popularity grows on a daily basis.

1.2.4 Different flavors of Linux
As a benefit of the source code for the Linux kernel being freely distributed,
different companies have developed their own “flavor” or distribution of Linux.
Each of these flavors has its own feature set, such as installation and
administration procedures, software packages, and configurations. Many of them
are configured for a specific type of computer systems.

Some of the most popular distributions are:

� Caldera® OpenLinux®

Developed by Caldera Systems, Inc.

� Corel® Linux

Developed by Corel Corporation

� DebianTM GNU/Linux

Developed by The Debian Project

� Linux Mandrake®

Developed by MandrakeSoft, Inc.

� Red Hat® Linux

Developed by Red Hat, Inc.

� SuSE® Linux

Developed by SuSE, Inc.

� TurboLinux®

Developed by TurboLinux, Inc.
6 Running Linux Applications on AIX

As early as 1995, IBM Research and recognized experts in the Linux community
ported Linux to the native PowerPC architecture platform and a Linux kernel
(Version 2.2) for the IBM RS/6000 was developed. The initial RS/6000 support,
following PowerPC Reference Platform (PReP) and Common Hardware
Reference Platform (CHRP) specifications, was provided by Yellow Dog LinuxTM
on the IBM produced machines, such as the 7043-150, 7025-F50, and
7046-B50.

Today, Linux/PPC kernel Version 2.4 is available and is known to work on
Power3 Uni and SMP machines. These include the models 170, 260, 270, and
^ pSeries p640.

For more information regarding Linux on PPC, please refer to:

http://linuxppc.org/

and

http://www.rs6000.ibm.com/linux/

1.3 Linux at IBM
IBM is focusing on Linux because of the increased mind share and market share
that Linux is getting, the rapid market changes, and the customer needs. Also,
Linux is a stable and reliable development and deployment platform for Internet
applications. Its low cost and broad platform support allow applications to be
developed on commodity hardware and deployed across a wide range of
systems.

Linux can be acquired at no cost as a download from the Internet, and the kernel
and most of the extensions are available as source code and can be improved by
anyone willing to contribute.

Linux is a very popular operating system for Web servers and dedicated
networking functions, such as Web infrastructure, file-and-print serving, firewalls,
directory serving, e-mail serving, and so on. Linux has also gained acceptance
as an embedded OS for new Internet and other application appliances.

It is a different story in the enterprise arena; that is why AIX is IBM's strategic
UNIX operating system for mission-critical, core business applications. The
industrial-strength features and functions of AIX have been well proven over the
years in a wide variety of server environments, from relatively small,
single-processor systems to IBM's massively parallel RS/6000 Scalable
POWERParallel (SP) servers. Features include 32-bit and 64-bit Application
Programming Interface (API) support, state-of-the-art preemptive kernels,
dynamic configuration and device attachments, a robust journaled file system,
 Chapter 1. Introduction 7

Logical Volume Manager (LVM) software, the simplified system administration
commands System Management Interface Tool (SMIT) and Web-based System
Manager (WebSM), industry standards compliance, high-availability cluster
multiprocessing (HACMP) software products, and more than 13,000 supported
customer applications.

1.3.1 Linux applications on AIX
There is a strong affinity between Linux and AIX for applications. AIX has a long
history of standards compliance and it is generally straightforward to rebuild
Linux applications for AIX.

To make AIX more compatible with Linux applications, we must use two
complementary methods: using the AIX Toolbox for Linux Applications, and
including additional Linux-compatible APIs and commands in AIX 5L.

The current differences in terms of APIs are discussed in Chapter 4, “Source
compatibility: Linux-compatible APIs on AIX” on page 55. This information should
be used as a guideline when developing or porting any Linux application that will
be used on AIX.

The AIX Toolbox for Linux Applications contains a collection of open source and
GNU software built for AIX Version 4.3.3 and AIX 5L on IBM RS/6000 and IBM

^ pSeries systems. These tools provide the basis for the development
environment of choice for many Linux application developers. All the tools are
packaged using the easy-to-install RPM format.

1.3.2 IBM’s UNIX-based operating system strategy
The IBM strategy for UNIX-based operating systems is built upon the great
momentum that AIX is having, the establishment of AIX 5L as an enterprise
class, industry leading, UNIX-based system with support for
POWER/Intel/NUMA architectures, and a solid affinity with Linux.

Linux is being positioned as the strategic, high volume UNIX-based operating
system. Enabling Linux across all IBM ^ platforms is also an important
part of our strategy. This allows porting applications to all of these platforms with
little to no changes required to the source code.

In Figure 1-1 on page 9, we show:

� How AIX (on the RS/6000) is gaining tremendous market momentum as the
industrial strength UNIX-based platform for mission-critical environments.

� The renewed ISV enthusiasm for AIX.
8 Running Linux Applications on AIX

� The Linux compatibility that will help drive AIX to be more open, as opposed
to being thought of as IBM’s proprietary UNIX-based operating system.

� The integration of AIX and Linux in customer environments.

Figure 1-1 presents how IBM is bringing these strengths not only to its POWER
architecture, but also to the Intel Itanium architecture, resulting in a single
environment that customers can use on both POWER and Intel architectures.
Also, It demonstrates IBM’s commitment to the UNIX philosophy and gives
reassurances that IBM is producing an open industry platform.

Figure 1-1 IBM’s UNIX-based operating system strategy

AIX is aAIX is a
strategic,strategic,

enterprise-classenterprise-class
UNIX-based OSUNIX-based OS

Applications,Applications,
Flexibility,Flexibility,

Choice,Choice,
Open,Open,
IBMIBM

OpenOpen
commoncommon

applicationapplication
environmentenvironment

Build a strongBuild a strong
Linux affinityLinux affinity

Working with the industryWorking with the industry
to quicken Linux evolutionto quicken Linux evolution

Today

Linux is aLinux is a
strategic,strategic,
volumevolume

UNIX-based OSUNIX-based OS

Future Today
Power - IntelPower - Intel ItaniumItaniumPowerPower

Source applications forSource applications for
IBM ServersIBM Servers
 Chapter 1. Introduction 9

1.4 Future trends and directions
The high level of activity on the UNIX-based systems and Linux fronts during the
past few years is allowing Linux to establish itself as a mainstream UNIX player. It
looks as though Linux is going to be transformed into an enterprise class
operating system.

We expect the best of both worlds, AIX and Linux, to be the foundation of IBM
AIX 5L: an operating system capable of working on IBM’s POWER and PowerPC
architectures and Intel Itanium architecture.

IBM plans to bring new features and consistent user functionality to AIX 5L, such
as:

� LPAR support (Logical Partitioning)

� Intel Itanium processor support

� Linux - AIX networking inter-operability

– NFS

– FTP

– DNS

– DHCP

– SMB

– PPP

– IPv6

– TCP (including extensions)

• RFC1323 (Allows the maximum TCP window size to expand to 4 GB
instead of 64 KB)

• Window policy (Dynamically determine the absolute upper bound on
the amount of real memory that can be used by the communication
subsystem)

– IPSec (IP Security Protocol)

– LDAP (Lightweight Directory Access Protocol)

� Enhanced AIX Toolbox for Linux Applications

– System Management capabilities

• User administration

• Print management

• System management tools
10 Running Linux Applications on AIX

– Bigger and more robust applications (enterprise-like)

Figure 1-2 lays out the road ahead regarding IBM’s perception of the
UNIX-based operating system evolution. The direction for the IBM UNIX-based
operation system evolution can be shown by the integration of the latest
technology trends in operating system architectures, such as AIX, Sequent
Dynix/PTX (NUMA (Non-Uniform Memory Access) architecture), and a solid
Linux affinity with the AIX 5L operating system.

By incorporating this technology-sharing philosophy into a common application
environment, new hardware trends, such as Internet appliances and embedded
Linux for PDA (Personal Digital Assistant, also known as handheld computing),
will gradually evolve and become mature.

Figure 1-2 IBM’s UNIX-based operating system evolution

AIX

ptx

Linux

S
Y
S
T
E
M

R
A
N
G
E

Today

Technology
Sharing

Common Application
Environment

5 years?

Peta flops

Internet appliance
 Chapter 1. Introduction 11

12 Running Linux Applications on AIX

Chapter 2. AIX Toolbox for Linux
Applications

With the adoption of Linux in early 2000, IBM became very interested in enabling
Linux applications to run on the AIX operating system. Thus, the AIX Toolbox for
Linux Applications was developed. The Toolbox provides the capability to easily
recompile and port Linux applications to AIX and provides tools to work on those
applications. This chapter provides information on and an in-depth discussion of
the Toolbox, its benefits, structure, and key components.

2

Important: For a complete description, list of packages, and detailed
documentation, please refer to the AIX Toolbox for Linux Application Web site.

For a general description see:

http://www.ibm.com/servers/aix/products/aixos/linux/

For a complete and updated list of all packages, licenses, and installation
instructions, see:

http://www.ibm.com/servers/aix/products/aixos/linux/altlic.html

The Toolbox is also available on CD. At the time of writing, it was not
separately orderable. The AIX Toolbox for Linux Applications CD is available
with AIX 5L.
© Copyright IBM Corp. 2001 13

The most common ways of installing applications on both the native Linux and
the classical AIX environments are discussed in this chapter. Both methods are
important and will be used for the Toolbox installation. Section 2.3, “Design of the
Toolbox” on page 17 will describe each installation method in greater detail.

This chapter is divided into the following sections:

� Overview

� Design of the Toolbox

� Structure of the Toolbox

� Components

� Installation methods
14 Running Linux Applications on AIX

2.1 Overview
AIX has a long history of standards compliance, such as X/Open, UNIX98, and
POSIX. Because of this history, there is a high degree of compatibility at the
Application Programming Interface (API) level between AIX and other flavors of
UNIX-based systems, such as Linux. AIX is a mission-critical operating system
developed for scalability and stability. By porting and running Linux applications
on AIX using the Toolbox, you will get the benefits of both worlds. The goal of the
AIX Toolbox for Linux Applications is to be able to recompile Open Source
Software (OSS), without modifications, into AIX systems. The recompiled Linux
applications are treated as native AIX applications and inherit the reliability and
availability of AIX.

Linux applications that are written using the standard Linux-compatible APIs can
be recompiled to run on the AIX operating system using the AIX Toolbox for
Linux Applications. The binaries are created using the appropriate tools and
compilers from the Toolbox. All the tools in the Toolbox are packaged using the
RPM Package Manager (the binary packages are called RPMs).

The main reasons for using the AIX Toolbox for Linux applications are:

� Building and packaging Linux applications for use on AIX

� Running GNOME and KDE desktops

� Running other popular software commonly found in Linux distributions

� Managing open source software using the popular RPM Package
Management system

� Developing new applications for AIX using GNU and Linux application
development tools

These are some of the benefits of AIX Toolbox for Linux Applications:

� Redeployment of Linux applications on AIX

� Reduction of deployment time of new systems

� Consolidation of emerging Linux applications on existing AIX systems to
reduce cost of ownership

� Ability to start e-business with small Linux/Intel servers, and scale up to high
performance IBM ^ pSeries and RS/6000 based systems

� Allows the companies to utilize familiar Linux application development tools

� Gives companies more flexibility in choosing applications that are best for
their needs
 Chapter 2. AIX Toolbox for Linux Applications 15

There is some Open Source Software that is currently available for AIX, but
many more applications, that have already been recompiled for use with AIX,
come with the Toolbox. In some cases, concurrent use of this software and the
Toolbox software will produce potential conflicts (caused by the use of executable
search paths and library paths). For more details on this subject, see
Appendix C, “Other Open Source Software for AIX” on page 193.

The AIX Toolbox for Linux Applications contains a wide variety of software,
including, but not limited to, the following:

� Application development: gcc, g++, gdb, rpm, cvs, automake, autoconf,
libtool, bison, flex, and gettext

� Desktop environments: GNOME and KDE

� GNU-based utilities: gawk, m4, indent, sed, tar, diffutils, fileutils, findutils,
textutils, grep, and sh-utils

� Programming languages: guile, python, tcl/tk, rep-gtk, and C and C++
compilers

� System utilities: emacs, vim, bzip2, gzip, git, ncftp, rsync, wget, lsof, less,
samba, zip, unzip, and zoo

� Graphics applications: ImageMagick, transfig, xfig, xpdf, ghostscript, gv, and
mpage

� Libraries: ncurses, readline, libtiff, libpng, libjpeg, slang, fnlib, db, gtk+, and
QtTM

� System shells: bash2, tcsh, and zsh

� Window managers: enlightenment and sawfish

2.2 Additional information
The AIX Toolbox for Linux Applications contains a collection of open source and
GNU software built for AIX Version 4.3.3 and AIX 5L for IBM ^ pSeries
systems and IBM RS/6000 systems. These tools provide the basis of the
development environment of choice for many Linux application developers.

For additional information, please refer to the official AIX Toolbox for Linux
Applications Web site at:

http://www-1.ibm.com/servers/aix/products/aixos/linux/

You can also refer to the AIX Toolbox ReadMe file at:

http://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/README.txt
16 Running Linux Applications on AIX

2.3 Design of the Toolbox
The Toolbox was designed to provide the best performance possible on both AIX
Version 4.3.3 as well as AIX 5L. All of the elements of the Toolbox were compiled
as native AIX applications, with little or no porting of the original source code.
This was done using existing tools, such as autoconf and automake, but the high
affinity that AIX already has with Linux in APIs helped.

AIX 5L 5.1 has been enhanced to include more Linux-compatible APIs that were
not included in AIX Version 4.3.3. This will add more interoperability between the
two operating systems, resulting in a higher degree of Linux application
compatibility.

The Toolbox also addresses the issue of continuous development being done on
the application, either through enhancements or through fixing of bugs, by
porting the GNU tool set along with other open source tools and utilities to AIX.
The GNU tools are one of the components of the Toolbox and are needed to
recompile Linux applications to run on AIX. These tools allow end users to work
on existing applications, as well as develop new applications with a sense of
familiarity.

2.3.1 Directory structure
It is recommended that you create a separate file system for the /opt/freeware
directory prior to Toolbox installation. The directory will store the software
packages you decide to install. The diagram in Figure 2-1 on page 18 and
Figure 2-2 on page 18 show the directory structures after the Toolbox installation.
In this example, a new file system for /opt/freeware has been created before
Toolbox installation.

Important: The GNU tools are governed by the GPL license agreement and
their source code is made available by IBM. Non-GNU tools may carry unique
licenses.

The licenses associated with the various packages are available for viewing
on the Toolbox CD-ROM and on the following Web site:

http://www.ibm.com/servers/aix/products/aixos/linux/altlic.html
 Chapter 2. AIX Toolbox for Linux Applications 17

Figure 2-1 /opt/freeware tree

Figure 2-2 /usr/opt/freeware tree

Note: On AIX Version 4.3.3 systems, under certain conditions, where /opt
would normally be a part of the root file system and no /opt/freeware file
system has been created, /opt/freeware will be created as a symbolic link to
/usr/opt/freeware in order to avoid filling the root file system.

/ (root directory)

opt

freew are

bin libsrcetc docinclude info m anlibexec sbin share

packages

B UILD SPE CSR PMS SOU RCES S RPM S

/ (root d irectory)

op t

freeware

b in libs rc

packages

B U ILD S P E C SR P M S S O U R CE S S R P M S

usr
18 Running Linux Applications on AIX

When the Toolbox is installed on an AIX system, new directories and files are
created and some library links are added. All the packages from the Toolbox will
be installed under the /opt/freeware directory. This strategy will prevent any
collisions between AIX files and RPMs, which may cause a system failure or
software malfunction. Also, RPMs can be easily controlled with these settings.

The following is a description of the /opt/freeware tree on Figure 2-1 on page 18:

� /opt/freeware/bin

Primary directory of essential binary commands that may be used by both the
administrator and users.

� /opt/freeware/etc

Contains symbolic links to /etc.

� /opt/freeware/info

GNU Information system’s primary directory.

� /opt/freeware/lib

Contains shared libraries used by the Toolbox applications. It also contains
object libraries, compiler program binaries, and other libraries.

� /opt/freeware/man

Manual pages. See Figure 2-3 for details.

Figure 2-3 /opt/freeware/man tree

� /opt/freeware/sbin

Contains utilities used for system administration.

� /opt/freeware/src

A link to /usr/opt/freeware/src directory. See Figure 2-4 on page 20.

� /opt/freeware/doc

Contains miscellaneous documentation.

� /opt/freeware/include

Contains include files for the Toolbox.

man

man1 User Programs

man3 Library Functions and subroutines

man5 File Formats

man8 System administration
 Chapter 2. AIX Toolbox for Linux Applications 19

� /opt/freeware/libexec

Contains support programs and libraries for a particular set of programs that
are not meant to be executed or linked directly by other applications.

� /opt/freeware/share

Contains architecture-independent files, such as timezone, terminfo
information, and so on.

The following is a description of the /opt/freeware tree on Figure 2-1 on page 18:

� /usr/opt/freeware/bin

Primary directory of essential binary commands that may be used by both the
administrator and users.

� /usr/opt/freeware/lib

Contains shared libraries used by the Toolbox applications. It also contains
object libraries, compiler program binaries, and other libraries.

� /usr/opt/freeware/src

Contains all source codes if the source packages (SRPMs) are installed. See
Figure 2-4 for details.

Figure 2-4 /usr/opt/freeware/src tree

2.3.2 System variables
The Linux binaries and libraries installed from the Toolbox will be placed in the
/opt/freeware/bin and /opt/freeware/lib directories with links being added to
/usr/bin, /usr/linux/bin, /usr/lib, and /usr/linux/lib. This structure is set up in a way
that avoids conflicts with AIX binaries and libraries. In effect, no modifications of
or user intervention for the Toolbox applications are needed after installing them
on AIX. In some cases, where the added Toolbox command has the same name
as an AIX command, then no links are provided in /usr/bin, but are provided in
/usr/linux/bin. To execute the Linux version of the command, you can either call it
with its complete relative path, or change the PATH variable to have /usr/linux/bin
in the beginning of the PATH. For example:

packages

BUILD Directory for building binary RPMs

RPMS Contains binary RPMs after they were built

SOURCES Contains source tar files and patches

SRPMS Contains all source RPMs after they were built

SPECS Contains all the spec files
20 Running Linux Applications on AIX

export PATH=/usr/linux/bin:$PATH

To access the man pages of the installed Toolbox applications, add
/opt/freeware/man to your MANPATH variable. A MANPATH variable tells the
current shell where to obtain information to the commands. To do this, use the
following command:

export MANPATH=$MANPATH:/opt/freeware/man

2.4 Components
Here we discuss the components of the Toolbox.

2.4.1 Development utilities
Most applications that are developed for AIX use the IBM Visual Age compiler,
while applications developed for Linux more often use the GNU compilers. The
Toolbox uses both compilers, depending on which one is best for a particular
application. Also, the spec files included in the source codes are made so it is
possible to build binary packages using either compiler.

2.4.2 User environment utilities and applications
As part of the AIX Toolbox for Linux applications, GNOME and KDE2 have been
ported by using the GNU tools, APIs, and header files that are part of the
Toolbox. (GNOME and KDE are two very popular desktop environments used in
Linux systems.) GNOME and KDE are sets of user-friendly applications and
desktop tools that are used in connection with a window manager for the
XWindow system. Both are similar in concept to CDETM, but are fully based on
Open Source Software. The complexity of these applications highlights the
capability of AIX to run large, sophisticated Linux applications using the Toolbox.
Applications that are not included in the Toolbox may be ported to AIX using the
Toolbox. A complete guide on porting Linux applications on AIX can be found in
Chapter 5, “Package building and porting” on page 69.

Important: Changing the PATH variable may cause conflicts with and
malfunctions in some AIX applications, specifically SMIT. It might be
necessary to change the PATH, depending on the tasks to be performed.
 Chapter 2. AIX Toolbox for Linux Applications 21

2.4.3 Binaries and sources (rpm and srpm)
A Source RPM (SRPM) does not contain compiled binaries, but instead contains
the sources that a binary package can been built from. The SRPM packages in
the Toolbox are marked by the file extensions src.rpm. This source package file is
an archive that contains the original compressed tar file(s) with source code,
patches, and spec file(s).

The binary package file contains all the files that make up the application, along
with additional information that is needed to install, upgrade, and erase it. A
binary RPM can be installed by using the rpm command without needing to do
any recompilations.

SRPMs are important if you want to rebuild an RPM package for whatever
reason. Rebuilding a SRPM file does not mean that the package has been or will
be installed on the particular system. To actually use the application, you have to
install the binary RPM package that was produced during the rebuilding the
SRPM. Rebuilding of packages from source is discussed in Section 5.2.2,
“Rebuilding a Toolbox RPM” on page 72.

2.5 Installation methods
The installation method for both Linux and AIX is very similar. Both can be done
through the command line or through a user interface (SMIT for AIX,
GnomeRPM for GNOME desktop, and KPackage for KDE desktop). GnomeRPM
and KPackage can only be used after the installation of their corresponding
desktop base and applications.

RPM Package Manager maintains a database of all installed packages and their
corresponding files. It also stores information on all the packages that are
installed or upgraded on the system. The database also reflects the configuration
of the system on which it resides; thus, it could easily check if the RPM database
has become corrupted or if the system configuration has changed.

On the other hand, AIX stores its installation information in the Object Data
Manager (ODM). The ODM is a database intended for storing system
information. Information is stored and maintained as objects with associated
characteristics. The ODM is also used to manage Vital Product Data (VPD) of
application programs for installation and update procedures.
22 Running Linux Applications on AIX

As previously mentioned, the tools and applications that come with the Toolbox
are all in RPM format except for the rpm.rte package. In order to install these
packages, the RPM Package Manager should be installed first. The RPM
Package Manager and a few requisite tools, such as gzip, bzip2, and some
patches, are available from the Toolbox installation repository in installp format.
This package should be installed using installp or SMIT.

While installp is installing rpm.rte, a program called /usr/sbin/updtvpkg is
executed. This will load the RPM database, which contains information on all
shared libraries and shells being used by AIX on the current system. This is an
important aspect for the RPM Package Manager, because it always relies on
shared libraries for all its requisite handling.

A simple installation process of the Toolbox is shown in Figure 2-5.

Figure 2-5 Toolbox and application installation process

In case you have decided to install some other AIX package after the installation
of the Toolbox, it will be wise to always update or refresh the RPM database
(refer to Figure 2-6 on page 24), especially if AIX libraries were added. You can
do this by running /usr/sbin/updtvpkg manually. When the RPM database is
refreshed, it will again gather information on the shared libraries installed in the
current system by installp. This will prevent installation errors for Linux
applications that need these shared libraries.

Check system
requirements

Install RPM
Package
Manager

Install
Toolbox base

Customize
environment

(optional)

Install
applications
in Toolbox

START
 Chapter 2. AIX Toolbox for Linux Applications 23

Figure 2-6 Refresh RPM database process

In a future version of AIX 5L:

� lslpp will be capable of listing RPM packages installed on the system.

� The gencopy command, which is a general version of bffcreate, will be able
to handle other install formats.

� The geninstall command, which is the general install wrapper, will be able
to handle installp, RPM, and few other formats.

The next section and Section 2.5.2, “RPM Package Manager” on page 30 will
help you with some basic concepts of installp and the RPM Package Manager.

2.5.1 AIX installp
The installp command installs and updates software in the AIX operating
system. Updates that have been applied to the system can either be committed
or rejected at a later time.

An AIX software product installation package is in AIX Backup File Format (.bff)
and contains the files of the software product to be installed, the required
installation control files, and the optional installation customization files. It
contains one or more separate installable, logically-grouped units called filesets.
Each fileset in a package must belong to the same product.

The fileset is the lowest installable base unit in AIX. For example,
bos.net.nfs.client.4.3.0.0 is part of the base OS network package. When a base
level fileset is installed on the system, it is automatically committed. A fileset
update or an update package contains modifications to an existing fileset and
has a different fix ID or maintenance level. For example, bos.net.nfs.client 4.3.0.2
and bos.net.nfs.client 4.3.3.28 are both fileset updates for bos.net.nfs.client
4.3.0.0.

To determine if a fileset is installed on the system, use the command:

Install AIX
package

START

Added
AIX

Libraries?

Update RPM
database

/usr/sbin/updtvpkg

Yes No
24 Running Linux Applications on AIX

lslpp -L <filesetname>

Using the installp command
The basic mode of operations for installp are:

� Apply

installp -a [-N] [-e LogFile] [-V Number] [-d Device] [-b] [
-B] [-D] [-I] [-p] [-Q] [-q] [-v] [-X] [-F | -g] [
-O { [r] [s] [u] }] [-t SaveDirectory] [-w] [-z BlockSize]
{ FilesetName [Level] ... | -f ListFile | all }

When a fileset update is applied to the system, the update is installed. The
current version of that software is saved in a special directory on the disk so
that the new version can be rejected later, if desired. Once a new version of a
software product has been applied to the system, that version becomes the
currently active version of the software.

� Commit

installp -c [-e LogFile] [-V Number] [-b] [-g] [-p] [-v]
[-X] [-O { [r] [s] [u] }] [-w] { FilesetName [Level] ...
| -f ListFile | all }

When updates are committed with the -c flag, the saved files from all previous
versions of the software product are removed from the system, thereby
saving disk space but making it impossible to return to a previous version of
the software product.

� Reject

installp -r [-e LogFile] [-V Number] [-b] [-g] [-p] [-v]
[-X] [-O { [r] [s] [u] }] [-w] { FilesetName [Level] ...
| -f ListFile }

When a software product update is rejected with the -r flag, the active version
of the software product is changed to the previously installed version. Files
saved for the rejected update and any updates that were applied after it are
removed from the system.

� Cleanup

installp -C [-b] [-e LogFile]

If an installation of any application is interrupted and leaves software in a
state of either applying or committing, it is necessary to perform cleanup
before any further installations will be allowed. An attempt to clean up all
products is performed when the -C flag is used.
 Chapter 2. AIX Toolbox for Linux Applications 25

� Deinstall

installp -u [-e LogFile] [-V Number] [-b] [-g] [-p] [-v]
[-X] [-O { [r] [s] [u] }] [-w] { FilesetName [Level] ...
| -f ListFile }

When a base level is removed, the files that are part of the software product
and all its updates are removed from the system. Mostly, a cleanup of system
configuration and other information pertaining to the product is also done, but
this is dependent on the product and may not always be complete.

Table 2-1 gives a summary of some installp flags.

Table 2-1 installp option summary

Using the Systems Management Interface Tool (SMIT)
Another feature of AIX that distinguishes it from other UNIX-based operating
systems is the quality of its administrative tool. This tool is available both as a
XWindows application and as a text based menu system. When invoked with the
smit command, the system will start the GUI version msmit if a $DISPLAY
variable is set (refer to Figure 2-8 on page 28); otherwise, it will invoke smitty, the
text based version (refer to Figure 2-7 on page 27).

Flag Description

-ac Applies and commits.

-g Includes requisites.

-N Overrides saving of existing files.

-q Quiet mode.

-w Does not place a wild card at the end of fileset name.

-X Attempts to expand file system type if needed.

-d Input device.

-l List of installable filesets.

-c Commits an applied fileset.

-C Cleans up after a failed installation.

-u Uninstalls.

-r Rejects an applied fileset.

-p Preview of installation.

-e Defines an installation log.

-F Forces overwrite of same and newer version.
26 Running Linux Applications on AIX

Figure 2-7 SMIT installp panel (text-based)

To get to the installation menu, simply type smit and choose the Software
Installation and Maintenance option. This is also possible using a fastpath, that
is, a shortcut method, to display a menu directly from the command line. There is
a fastpath for each task/operation, such as managing the devices, security and
users, applications, and more. The following shows the fastpath for installation of
software:

smit installp
 Chapter 2. AIX Toolbox for Linux Applications 27

Figure 2-8 Main SMIT installation panel (GUI interface)

The Software Installation and Maintenance menu provides information that you
can use for installing and updating software, and other tasks.

The graphical interface for SMIT displays a hierarchy of menus. This was
designed to simplify systems management tasks. There are several parts to the
SMIT Graphical User Interface:

� Menu panel: Lower panel of the primary SMIT panel. The allowable functions
will be displayed in the menu bar and a list of menu items appears in the
menu panel (refer to Figure 2-8).

� Path panel: Top panel of the primary SMIT panel. It shows menus that have
been traversed to get to the current menu (refer to Figure 2-8).

� Dialog panel: A pop-up menu panel that appears each time a task is selected
in the menu panel. This is where you supply details of the task selected (refer
to Figure 2-9 on page 29).
28 Running Linux Applications on AIX

Figure 2-9 SMIT dialog panel

� Command output panel: A display associated with the dialog panel when “Do”
is selected. The output generated by the command will be displayed on this
panel (refer to Figure 2-10 on page 30).
 Chapter 2. AIX Toolbox for Linux Applications 29

.

Figure 2-10 SMIT Command Output panel

2.5.2 RPM Package Manager
The RPM Package Manager is an open packaging system that can work on
Linux systems and other UNIX-based systems. It is easy to use and provides
many features for installing, uninstalling, upgrading, and deleting packages using
the command line or a Graphical User Interface (GUI). RPM Package Manager
makes the process of building a package and distributing the software easy by
taking the source code of the software and packaging it into source or binary
form.

With the RPM database feature, you can perform queries and verification of the
installed RPM packages in your system and determine what package a certain
file belongs to. You can search through the entire database for packages or just
certain files to get information about the system. Identification of these packages
is done using package labels. Each label contains information that uniquely
identifies the package. So, even if the package file is renamed, the new file
name will not confuse the RPM Package Manager, because the package label is
within the context of the file. A sample of the RPM package labelling convention
is shown in Figure 2-11 on page 31.
30 Running Linux Applications on AIX

Figure 2-11 Sample of RPM package label convention

The three components in each package label are:

� The software name

All RPM package labels start with the software name. This may be derived
from the application name or a description of the related programs grouped
together in one package.

� The software version

This is an identifier that states the version of the packaged software.

� The package release

This is the most specific part of the package label, which shows the number of
times the package has been rebuilt with the same software version. Rebuilds
are normally done due to bugs uncovered after packaging and use.

Using RPM in command line
RPM Package Manager has five basic modes of operation. This section contains
an overview of each mode. To get the full details and options, refer to the rpm
man page.

� Install

rpm {--install -i} [-v] [--hash -h] [--force] [--test] [--replacepkgs]
[--replacefiles] [--root<dir>] [--noscripts] [--allfiles]
[--ftpproxy<host>] [--ftpport<port>][--httpproxy<host>] [--httpport <port>]
[--noorder] [--relocateoldpath=newpath] [--excludepath <path>]
[--ignoresize] package-1.0-1.ppc.rpm ... packageN.rpm

RPM turns the installation process into a single command. rpm -i installs
software that has been packaged into an RPM package file. It does this by
going through several steps:

a. Performing dependency checks

b. Checking for conflicts

c. Performing tasks that are required before the install

d. Deciding what to do with the configuration files

e. Unpacking files from the package and putting them in their proper places

p a c k a g e -1 .0 -1
P a c k a g e re le a s e

S o f tw a re v e rs io n

S o f tw a re n a m e

p a c k a g e -1 .0 -1
 Chapter 2. AIX Toolbox for Linux Applications 31

f. Performing tasks that are required after the install

g. Keeping track of what has been done

� Uninstall

rpm {--erase -e} [--root <dir>] [--noscripts] [--allmatches]
[--notriggers] package1 ... packageN

The rpm -e command removes, or erases, one or more packages from the
system. RPM performs a series of steps whenever it erases a package:

a. It checks the RPM database to make sure that no other packages depend
on the package being erased.

b. It executes a pre-uninstall script.

c. It checks to see if any of the package's configuration files have been
modified. If so, it saves copies of them.

d. It reviews the RPM database to find every file listed as being part of the
package; if they do not belong to another package, it automatically deletes
them.

e. It executes a post-uninstall script.

f. It removes all traces of the package and the files belonging to it from the
RPM database.

� Upgrade

rpm {--upgrade -U} [-v] [--hash -h] [--percent] [--force] [--test]
[--oldpackage] [--root <dir>] [--noscripts] [--excludedocs] [--includedocs]
[--rcfile <file>] [--ignorearch] [--dbpath <dir>] [--prefix <dir>]
[--ftpproxy <host>] [--ftpport <port>] [--ignoreos] [--nodeps] [--allfiles]
[--justdb] [--noorder] [--relocate oldpath=newpath] [--badreloc]
[--excludepath <path>] [--ignoresize] package1.rpm ... packageN.rpm

The rpm -U command performs two distinct operations that are reduced to a
single command. First, it installs the desired package and automatically
uninstalls any older versions of the package. RPM also performs intelligent
upgrading of packages with configuration files. It will save the original
configuration file if it is not forward compatible with the new configuration file
in the package.
32 Running Linux Applications on AIX

� Query

rpm {--query -q} [-afpg] [-i] [-l] [-s] [-d] [-c] [-v] [-R] [--scripts]
[--root <dir>] [--ftpport] [--ftpproxy <host>] [--httpproxy <host>]
[--httpport <port>] [--ftpport <port>] [--triggers] [--dump] [--changelog]
{package1...packageN file1...fileN}

The rpm -q command consists of two distinct parts: package selection
(displays packages contained in the query) and information selection
(filters/displays information based on set parameters).

� Verify

rpm {--verify -V -y} [-afpg] [--root <dir>] [--nofiles] [--noscripts]
[--nomd5] package1.rpm...packageN.rpm

The rpm -V command verifies an installed package. It also checks for
package dependencies on other packages. A file can be verified and checked
for many different attributes, such as owner, group, size, and modification
time.

Using GnomeRPM
One of the most convenient package manipulation tools available is
GnomeRPM. This is a graphical tool that runs (typically) under the GNOME
Desktop. It is also referred to as GnoRPM. The beauty of this tool is that it allows
the end user to easily work with RPM technology through a user-friendly
graphical interface. GnomeRPM is "GNOME-compliant," which means that it
completely integrates into the GNOME desktop environment.

Operations are performed in GnomeRPM by finding and selecting packages, and
then choosing the type of operation to perform by using a push-button on the
toolbar (through a menu) or by right-clicking the mouse.

Using GnomeRPM to perform package operations provides all the functionality
as if using RPM from the shell prompt. However, the graphical interface often
makes these operations easier to perform and offers some additional
functionality, such as transparent access to packages over the Internet. To open
the GnomeRPM panel, click on the start button of the GNOME Desktop Toolbar
and select Programs -> System -> GnomeRPM.

The interface features a menu, a toolbar, a tree, and a display panel of currently
installed packages (refer to Figure 2-12 on page 34):

� Package panel: Located on the left side. It allows the user to browse and
select packages on the system.

Note: This tool will only be available subsequent to the installation of the
GNOME Desktop Applications package included in the Toolbox.
 Chapter 2. AIX Toolbox for Linux Applications 33

� Display panel: Located at the right of the package panel. It shows the
contents of the folders in the panel.

� Toolbar: Located above the display panel and package panel. It is a graphical
display of the package tools.

� Menu: Located above the toolbar. It contains text-based commands, as
preferences and other settings, as well as help information.

� Status bar: Located below the display panel and package panel. It shows the
total number of selected packages.

Figure 2-12 Main GnomeRPM panel

The normal way to handle GnoRPM is to display the available packages, select
the package(s) you want to operate on, and then select an option from the
toolbar or menu to perform an operation/task. For example, you can install,
upgrade or uninstall several packages with a few button clicks. Similarly, you can
query and verify more than one package at a time. See “GnoRPM” on page 105
for more details on this subject.
34 Running Linux Applications on AIX

Using KPackage
KPackage is another GUI Interface tool for the RPM Package Manager. It is
designed to integrate with the KDE desktop. KPackage can also be used for
Debian, BSD and Slackware® package managers. This tool (typically) runs
under the KDE Desktop Environment.

KPackage makes use of the KDE Drag and Drop protocol. This means that you
can easily drag and drop packages onto the KPackage panel to open them or
make a query. Another feature of the KPackage is the Find File dialog, where
you can drag and drop a file and search for the package the file belongs to.

To start KPackage, click on the Start button on the KDE Desktop Toolbar and
select Utilities ->Package Manager.

There are several parts to the KPackage interface (refer to Figure 2-13 on
page 36):

� Package tree: Located on the left side of the panel. It shows all the installed,
uninstalled, and updated packages with their package name, size, and
version.

� Information panel: Located to the right of the package tree. It displays the
status information on the package and all the files included on it. It also has
an Install and Uninstall button to easily install and uninstall a selected
package.

� Menu: Located above the package tree and information panel. It contains
other options, settings, and preferences that can be used to accomplish a
certain task, as well as provide help information.

� Toolbar: Located to the left of the package tree. It is a graphical display of the
package tools.

See Section 6.1.4, “Package managing using KDE or GNOME” on page 104 for
more information on this subject.

Note: This tool will only be available subsequent to the installation of the KDE
Desktop Applications package included in the Toolbox.
 Chapter 2. AIX Toolbox for Linux Applications 35

Figure 2-13 Main KPackage panel
36 Running Linux Applications on AIX

Chapter 3. Toolbox installation

This chapter describes the installation of the Toolbox in detail, to the point of
defining GNOME or KDE as the standard desktop environment. In the first
section, we summarize the prerequisites for the Toolbox for AIX 5L and AIX
Version 4.3.3. The next section describes the step-by-step installation of the
Toolbox for AIX 5L and AIX Version 4.3.3. Some hints and tips for
troubleshooting are given. The final section mentions some useful URLs.

The latest information and changes to the installation procedure, as well as
solutions to problems encountered during the installation, can be found at:

http://www.ibm.com/servers/aix/products/aixos/linux/

Please check this Web site should there be any questions or problems with the
installation. You can also download the latest versions of the Toolbox and all its
packages at this URL. You can also use ftp and connect to the host
ftp.software.ibm.com and go to the directory /aix/freeSoftware/aixtoolbox.

A listing of the packages by date can be found at:

http://www.ibm.com/servers/aix/products/aixos/linux/date.html

3

© Copyright IBM Corp. 2001 37

3.1 System requirements
The installation of the Toolbox requires AIX Version 4.3.3 or newer. You can use
either AIX 5L without additional PTFs or AIX Version 4.3.3 with the fixes from
APAR IY15017. You can download them from:

http://techsupport.services.ibm.com/rs6000/support

and then search for IY15017 in the APAR database. Follow the instructions for
downloading and installing the fixes. You should also check for the latest
available maintenance level at:

http://techsupport.services.ibm.com/support/rs6000.support/downloads

To separate the files belonging to the Toolbox from the base operating system
and other installed software, it is recommended that you create a new file system
(/opt/freeware) at this time. A rough guideline for disk space requirements in this
file system is given in Table 3-1. As new packages are continually added into the
Toolbox, the disk space requirement to install it all may grow.

Table 3-1 Disk space requirements for the components of the Toolbox

If you want to use the GNOME or KDE desktops, you need to make sure the
following AIX products are installed: X11.adt.lib, X11.apps.xdm, and
X11.samples.apps.clients. This can be checked with the lslpp command:

lslpp -L X11.adt.lib X11.apps.xdm X11.samples.apps.clients

ezinstall group Required disk space

Base Linux Affinity Support base 10 MB (in /usr)

Common Support
Programs for GNOME and
KDE

desktop.base 14 MB

GNOME Desktop Base gnome.base 75 MB

GNOME Desktop
Applications

gnome.apps 75 MB

KDE Desktop Base kde.base 160 MB

KDE Desktop Applications kde.opt 75 MB

Total 400 - 500 MB

GNUpro Toolkit (gcc
compiler and so on)

200 MB
38 Running Linux Applicatons on AIX

If one or more of them are not installed on your system, install them from the AIX
system installation media.

If you want to use the gcc compiler, as described in Chapter 5, “Package building
and porting” on page 69, you need to have some header files and other tools
installed. It is recommended that you install the complete bos.adt and X11.adt
filesets, although a subset might be enough in some cases.

We tested the procedures described below to install the Toolbox using the
version available in February 2001 on both AIX Version 4.3.3 and a prerelease of
AIX 5L 5.1. Only the basic operating system had previously been installed on
these systems (based on RS/6000 F50 hardware, 2-way, 512 MB RAM).

3.2 Installation procedure
This section describes the step-by-step installation of the Toolbox and gives
hints for troubleshooting.

3.2.1 Installing the RPM Package Manager
As described in Chapter 2, “AIX Toolbox for Linux Applications” on page 13, the
core of the Toolbox is the RPM Package Manager (RPM). It is needed to install
all the other available Toolbox software. Since RPM is not available before it has
been installed, we have to install RPM by traditional AIX means, which includes
installp, SMIT or WebSM.

The easiest way to install RPM is to change to the directory where the rpm.rte
image is located (for example, /cdrom/installp/ppc) and use the following
command:

installp -qacXgd rpm.rte rpm.rte

or install it using SMIT or WebSM. The rpm.rte image can be downloaded from:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/INSTALLP/ppc/

using binary download type and user ID ftp.

The installation will take some time, because it needs to gather information about
the shared libraries already installed on the system (see Section 2.5, “Installation
methods” on page 22 for more details).

It is not necessary to change the environment at this point. The newly installed
binaries have a link to /usr/bin (as long as there are no conflicts with the AIX
commands in /usr/bin; otherwise, there will be a link to /usr/linux/bin) and can be
found by the shell by using the standard PATH. Section 2.3.1, “Directory
 Chapter 3. Toolbox installation 39

structure” on page 17, describes in more detail where libraries and header files
are located. If you wish to access man pages of the Toolbox software, you should
add /opt/freeware/man to the environment variable MANPATH using the following
command:

export MANPATH=$MANPATH:/opt/freeware/man

After having installed RPM successfully, the other software of the Toolbox can be
installed using the RPM Package Manager. You can continue with downloading
prebuilt RPMs from the Toolbox Web site, such as the GNOME and KDE
desktops, application development tools, GNU tools or other tools, programs,
and libraries.

For compiling new software from sources, you would have to install the
appropriate application development tools (for example, gcc, g++, automake,
autoconf, bison, and libtool). This process is described in Chapter 5, “Package
building and porting” on page 69.

3.2.2 Preparing to install GNOME, KDE2 and other applications
To facilitate installation of the various programs included in the Toolbox, some of
them are classified into installation groups, such as:

� Base Linux Affinity Support
� Common Support Programs for GNOME and KDE
� GNOME Desktop Base
� GNOME Desktop Applications
� KDE Desktop Base
� KDE Desktop Applications

For more information on this subject, see:

http://www-1.ibm.com/servers/aix/products/aixos/linux/ezinstall.html

You can install all the packages pertaining to the group you want to install with
just one command. If you do not already have the install images, you might want
to create new directories to hold the installation files of each group instead of
storing all the RPMs in a single directory. Enter the following three command
lines, one after the other, pressing Enter after entering each of them; the system
will create the directories after you press Enter for third time:

for dir in base desktop.base gnome.base gnome.apps kde.base kde.opt;
do mkdir -p ezinstall/$dir || : ;
done

Now download the files belonging to the individual ezinstall groups into the just
created directories. The next section about FTP tools might be able to help you
with this task.
40 Running Linux Applicatons on AIX

3.2.3 FTP tools
To download the images, we recommend that you install the ncftp or wget
packages first. If you already have all the packages you plan to install, this step
can be omitted.

wget is a command line tool that retrieves and recursively downloads files from
the Web using the HTTP or FTP protocols (see http://www.wget.org/ for more
information).

ncftp is a really nice replacement for the common ftp command, because it has
a lot of usability enhancements (see http://www.ncftp.com/ncftp/ for more
information).

Two prerequisite packages have to be installed for wget and ncftp. Change to the
directory where all RPMs are located (for example, /cdrom/RPMS/ppc) and
install the bash and info packages using (specify the current version of these
packages, should you have newer ones) the command:

rpm -ivh bash2-2.04-3.aix4.3.ppc.rpm info-4.0-5.aix4.3.ppc.rpm

Both packages can also be found at the following FTP sites:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/bash/
ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/texinfo/

wget
If you decide to use wget and do not have the corresponding RPM package yet,
download it from:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/wget/

using the user ID ftp. By issuing the command:

rpm -ivh wget<version>.rpm

You can install it into the directory where the wget RPM file is located on your
system. wget is now installed and you can recursively download the other
packages needed.

For example, to download all RPMs out of the Toolbox Web site, you would issue
the following command:

wget -r ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS

Attention: In order to download all RPMs out of the Toolbox, 310 MB was
necessary. Make sure you have enough disk space and network bandwidth.
As more images are added in the Toolbox, this number is constantly growing.
 Chapter 3. Toolbox installation 41

In case you have to use a ftp proxy, you have to set the environment variable
ftp_proxy first by using the command:

export ftp_proxy=http://your.proxy:port/

ncftp
You can download the ncftp RPM from:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/ncftp/

By issuing the command:

rpm -ivh ncftp<version>.rpm

you can install it into the directory where the ncftp RPM file is located on your
system. You can start ncftp with the command:

ncftp ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/

You can use standard ftp commands like dir or get (with automatic reget, in
case the connection should end unexpectedly and you need to issue the get
command again). ncftp also offers enhancements like word completion (press
the Tab key once or twice and watch what happens) and retrieval of whole
directory trees with get -R. To get all the RPMs out of the Toolbox, you would
use the command:

ncftp> get -R RPMS

after the initial ncftp command. To accomplish this task more quickly, use the
command:

ncftpget -R ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS

Example 3-1 shows a sample ncftp session.

Example 3-1 ncftp session

ncftp ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/
NcFTP 3.0.1 (March 27, 2000) by Mike Gleason (ncftp@ncftp.com).

Copyright (c) 1992-2000 by Mike Gleason.
All rights reserved.

Connecting to 207.25.253.26...
service.boulder.ibm.com FTP server (Version wu-2.6.1(1) Thu Jul 27 12:46:14 MDT
2000) ready.
Logging in...
Please read the file README
 it was last modified on Fri Jul 28 10:27:42 2000 - 199 days ago
Guest login ok, access restrictions apply.
Logged in to ftp.software.ibm.com.
Current remote directory is /aix/freeSoftware/aixtoolbox.
42 Running Linux Applicatons on AIX

ncftp ...reeSoftware/aixtoolbox >
ncftp ...reeSoftware/aixtoolbox > dir
drwxrwsr-x 2 18125700 200 512 Dec 14 19:07 COMPILER
-rw-rw-r-- 1 18125700 200 14573 Feb 11 19:02 CONTENTS
drwxrwsr-x 3 18125700 200 512 Dec 12 19:02 INSTALLP
drwxrwsr-x 2 18125700 200 1536 Jan 29 12:02 LICENSES
-rw-rw-r-- 1 18125700 200 19946 Feb 8 07:02 README.txt
drwxrwsr-x 3 18125700 200 512 Dec 12 19:02 RPMS
drwxrwsr-x 128 18125700 200 2560 Feb 11 19:02 SRPMS
drwxrwsr-x 3 18125700 200 512 Jan 17 12:02 ezinstall
-rw-rw-r-- 1 18125700 200 9705 Feb 11 19:02 ls-lR.latest.gz
-rw-rw-r-- 1 18125700 200 59111 Feb 11 19:02 ls-lR.latest.txt
-rw-rw-r-- 1 18125700 200 59111 Feb 11 19:02 ls-lR.txt
-rw-rw-r-- 1 18125700 200 9455 Feb 11 19:02 ls-lR.txt.gz
ncftp ...reeSoftware/aixtoolbox > get RE*
README.txt: 19.48 kB 38.95 kB/s
ncftp ...reeSoftware/aixtoolbox > quit

3.2.4 Installing the Toolbox base
We can now install the base packages of the Toolbox. These are basic utilities,
such as info, gzip, bash, patch, tar, bzip2, unzip, gettext, zip, bash and so on.
They can be installed from the base ezinstall directory using the command:

rpm -ivh *

or from a directory containing all RPMs by using the command:

rpm -ivh info-* bzip2* gett* gzip* patch* popt* rpm* tar* unzi* zip* bash2*

To check what packages are installed on the system, use the following
command:

rpm -qa

If nothing went wrong, you can continue with the installation of the ezinstall
groups you would like to use (such as GNOME and KDE) or other packages.
Just in case something did not go smoothly, we will discuss the usage of the
RPM Package Manager and give some hints for troubleshooting during the
installation in the next section.

Note: Make sure you also install the info package, as this is a prerequisite for
most other RPMs. Do not specify any packages as parameters on the
command line that are already installed on the system (for example, bash and
info).
 Chapter 3. Toolbox installation 43

3.2.5 Using the RPM Package Manager
RPM is the RPM Package Manager. It allows users to take the source code for
new software and package it into source and binary form so that binaries can be
easily installed and tracked and the source can be easily rebuilt. It also maintains
a database of all packages and their files that can be used for:

� Verifying packages

� Querying for information about files and/or packages

After using the RPM to successfully install packages, we now want to look in
greater detail on how to use and troubleshoot this tool. The basic options for
RPM are:

� -i: install
� -e: erase
� -q: query
� -v: verbose
� -V: verify
� --help

See Section 2.5.2, “RPM Package Manager” on page 30 for more information on
this subject.

Information about RPM can be found at:

http://www.rpm.org/

The links in the documentation section there, especially the RPM-HOWTO (the
section of the RedHat reference manual on using RPM and the softcopy of
Maximum RPM by Ed Bailey, found at http://www.rpm.org/maximum-rpm.ps.gz
or http://www.rpmdp.org/rpmbook/) will answer every question about RPM and
its usage.

Let us look at some examples of RPM usage, what problems might arise, and
how to solve them.

Searching for files in a set of RPMs
If multiple packages are to be installed with only one call of RPM, and one of the
packages to be installed has an unresolved dependency, none of the packages
will be installed. RPM will give some error messages indicating missing files or
packages. In Example 3-2, only missing files are noted. In this case, it is harder
to find out where to get the files from than it is if the error message tells you the
names of missing packages, which might also occur.

Example 3-2 Installation of multiple RPM files

rpm -iv bzi* gett* gzip* patch* popt* rpm* tar* unzi* zip*
44 Running Linux Applicatons on AIX

error: failed dependencies:
 /sbin/install-info is needed by gzip-1.2.4a-3
 /sbin/install-info is needed by tar-1.13-2

To find the packages containing the missing files, we used the query option of
RPM (rpm -q). The query option has some additional sub-options (see
Section 2.5.2, “RPM Package Manager” on page 30 for more information):

� -a queries all currently installed packages.
� -f <file> will query the package owning <file>.
� -p <packagefile> queries the package <packagefile>.
� -i displays package information.
� -l displays the list of files that the package contains.
� -s displays the state of all the files in the package.
� -d displays a list of files marked as documentation.
� -c displays a list of files marked as configuration files.

To check the names of all packages installed in the system, use rpm -qa, as
shown in Example 3-3.

Example 3-3 Checking the names of installed packages

rpm -qa
SysProvides-5.1.0.0-1
bash2-2.04-3
bash2-doc-2.04-3

To find the package file that contains the missing file install-info from the
installation example above, you can use the search facility at:

http://rpmfind.net/

to deduce what package might contain the missing file install-info. You can also
issue the following command while in a directory that contains the RPMs you
want to be searched:

for f in *.rpm; do (rpm -qlp $f |grep install-info && echo $f) ; done

After finding the file, install the RPM that was missing and reissue the installation
command that failed in the first run.

Note: The name of the package SysProvides has been changed. The new
name of the package is AIX-rpm.
 Chapter 3. Toolbox installation 45

Running out of disk space
Let us assume an installation command failed because we were running out of
space in the file system. This can happen because unlike installp, RPM cannot
automatically increase the size of a file system during the install. The error
message might look like the one in Example 3-4.

Example 3-4 Installation attempt

rpm -ivh *
ORBit-0.5.1-2
control-center-1.2.0-2
gdbm-1.8.0-3
gdk-pixbuf-0.8.0-2
glib-1.2.8-3
gnome-core-1.2.1-2
gnome-libs-1.2.0-5
gtk+-1.2.8-2
imlib-1.9.8.1-4
libglade-0.13-2
librep-0.12.4-2
libxml-1.8.7-2
rep-gtk-0.13a-1
rep-gtk-gnome-0.13a-1
unpacking of archive failed on file
/opt/freeware/libexec/rep/rs6000-ibm-aix4.3.3.0/libgdk-pixbuf.so.0.0.0: cpio:
copy failed - There is not enough space in the file system.
rep-gtk-libglade-0.13a-1
unpacking of archive failed on file
/opt/freeware/libexec/rep/rs6000-ibm-aix4.3.3.0/libglade.so.0.0.0: cpio: copy
failed - There is not enough space in the file system.
sawfish-0.30.3-1
unpacking of archive failed on file /opt/freeware/bin/sawfish: cpio: copy
failed - There is not enough space in the file system.
sawfish-themer-0.30.3-1
unpacking of archive failed on file /opt/freeware/bin/sawfish-themer: cpio:
copy failed - There is not enough space in the file system.

If we enlarge the file system and try to issue the same command again, it fails,
because some of the RPMs to be installed are already installed. RPM does not
attempt to install any of the packages. Unfortunately, the error messages do not
explicitly say that the install failed, only which files are already installed. See the
Example 3-5 for more details.

Example 3-5 Reissuing installation

rpm -ivh *
package ORBit-0.5.1-2 is already installed
package control-center-1.2.0-2 is already installed
package gdbm-1.8.0-3 is already installed
46 Running Linux Applicatons on AIX

package gdk-pixbuf-0.8.0-2 is already installed
package glib-1.2.8-3 is already installed
package gnome-core-1.2.1-2 is already installed
package gnome-libs-1.2.0-5 is already installed
package gtk+-1.2.8-2 is already installed
package imlib-1.9.8.1-4 is already installed
package libglade-0.13-2 is already installed
package librep-0.12.4-2 is already installed
package libxml-1.8.7-2 is already installed
package rep-gtk-0.13a-1 is already installed

As there is no option of rpm that will allow you to easily get around this, you might
think about uninstalling the recently installed packages and then reinstalling the
complete set. But in order to deinstall packages, you have to distinguish between
a package label and the corresponding package file. Giving the names of the
package files as arguments to RPM in order to have RPM deinstall them does
not work. RPM needs the package labels and not the names of the package files.
Example 3-6 shows what happens if you use the names of package files
(compare with Example 3-5 on page 46).

Example 3-6 Using file names to deinstall packages

rpm -e *
error: package ORBit-0.5.1-2.aix4.3.ppc.rpm is not installed
error: package control-center-1.2.0-2.aix4.3.ppc.rpm is not installed
error: package gdbm-1.8.0-3.aix4.3.ppc.rpm is not installed
error: package gdk-pixbuf-0.8.0-2.aix4.3.ppc.rpm is not installed
error: package glib-1.2.8-3.aix4.3.ppc.rpm is not installed
error: package gnome-core-1.2.1-2.aix4.3.ppc.rpm is not installed
error: package gnome-libs-1.2.0-5.aix4.3.ppc.rpm is not installed
error: package gtk+-1.2.8-2.aix4.3.ppc.rpm is not installed
error: package imlib-1.9.8.1-4.aix4.3.ppc.rpm is not installed
error: package libglade-0.13-2.aix4.3.ppc.rpm is not installed
error: package librep-0.12.4-2.aix4.3.ppc.rpm is not installed
error: package libxml-1.8.7-2.aix4.3.ppc.rpm is not installed
error: package rep-gtk-0.13a-1.aix4.3.ppc.rpm is not installed
error: package rep-gtk-gnome-0.13a-1.aix4.3.ppc.rpm is not installed
error: package rep-gtk-libglade-0.13a-1.aix4.3.ppc.rpm is not installed
error: package sawfish-0.30.3-1.aix4.3.ppc.rpm is not installed
error: package sawfish-themer-0.30.3-1.aix4.3.ppc.rpm is not installed

To deinstall the packages, you can use the command rpm -e or (preferably)
execute the destroyRPMS script provided by the Toolbox Web site at:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/tools/destroyRPMS
 Chapter 3. Toolbox installation 47

The destroyRPMS script, shown in the Example 3-7, removes all RPMS installed
on the system and associated images. It also removes root configuration for
GNOME and KDE. You should exit KDE and GNOME before running the
destroyRPMS script.

Example 3-7 Removing all packages by using destroyRPMS script

destroyRPMS
This script removes all RPMS installed on the system,
removes the RPM database, and removes the rpm.rte install
image. It also removes root configuration for GNOME and KDE.
You should exit KDE and GNOME and run this from a root console.

Proceed to destroy all RPMs on the system? y/(n) y

Subsequently, you can redo the installation that failed because of disk space
shortage. You try to install the packages one by one (automated, of course) with
the command:

ls *.rpm | xargs -n 1 rpm -ivh

But because a package might depend on a package installed later in this cycle,
you have to repeat this command until all packages are reported to be already
installed. See Example 3-8 for more details.

Example 3-8 Reinstalling

ls
ghostscript-5.50-2.aix4.3.ppc.rpm
ghostscript-fonts-6.0-1.aix4.3.noarch.rpm
gnome-print-0.20-2.aix4.3.ppc.rpm
gnome-utils-1.2.0-2.aix4.3.ppc.rpm
gnumeric-0.54-2.aix4.3.ppc.rpm
rpm -ivh *
package gnome-utils-1.2.0-2 is already installed
ls *.rpm | xargs -n 1 rpm -ivh
error: failed dependencies:
 ghostscript-fonts is needed by ghostscript-5.50-2
ghostscript-fonts-6.0-1
gnome-print-0.20-2
package gnome-utils-1.2.0-2 is already installed
gnumeric-0.54-2
ls *.rpm | xargs -n 1 rpm -ivh
ghostscript-5.50-2
package ghostscript-fonts-6.0-1 is already installed
package gnome-print-0.20-2 is already installed
package gnome-utils-1.2.0-2 is already installed
package gnumeric-0.54-2 is already installed
48 Running Linux Applicatons on AIX

Corrupt package files
Another likely reason for an RPM install to fail is the presence of a corrupt
package file. Example 3-9 shows the initial (not very meaningful) error message
that results from having a corrupt package file, and how to get more information
about what caused the error by using rpm -ivv instead of rpm -iv. The important
lines are the two which show differing package sizes.

Example 3-9 Installation attempt

rpm -ivh kdebase*
error: kdebase-2.0.1-4.aix4.3.ppc.rpm cannot be installed
rpm -ivv kdebase*
D: counting packages to install
D: found 1 packages
D: looking for packages to download
D: retrieved 0 packages
D: New Header signature
D: Signature size: 68
D: Signature pad : 4
D: sigsize : 72
D: Header + Archive: 21639000
D: expected size : 28631180
error: kdebase-2.0.1-4.aix4.3.ppc.rpm cannot be installed
D: found 0 source and 0 binary packages

Getting individual files out of a package file
In the next example, we try to isolate a single file out of an RPM package file. We
do not want to install the whole package for this purpose, so we use the rpm2cpio
command. Let us try to get a file named sample.xinitrc out of one of the KDE
packages. First, we have to find the package that contains the file, as shown in
Example 3-10.

Example 3-10 Looking for a file inside an RPM package

for f in k*; do echo $f; rpm -qlp $f | grep xinitrc; done
kdeadmin-1.1.2-1.aix4.3.ppc.rpm
kdebase-1.1.2-34.aix4.3.ppc.rpm
/opt/freeware/kde/share/apps/kdm/sample.xinitrc
kdegames-1.1.2-3.aix4.3.ppc.rpm

We have to install the cpio package from the Toolbox because rpm2cpio and the
standard AIX cpio command are incompatible. This installation is shown in
Example 3-11 on page 50 together with the actual rpm2cpio commands to find
the exact file name and then extract the file. Subsequently, the sample.xinitrc can
be found in the subdirectory opt/freeware/kde/share/apps/kdm/.
 Chapter 3. Toolbox installation 49

Example 3-11 Installing cpio with rpm2cpio

rpm -ivh cpio-2.4.2-17.aix4.3.ppc.rpm
rpm2cpio kdebase-1.1.2-34.aix4.3.ppc.rpm | /usr/linux/bin/cpio -ivt | grep \
xinitrc
-rw-r--r-- 1 root system 1022 Nov 2 11:39
opt/freeware/kde/share/apps/kdm/sample.xinitrc
87759 blocks
rpm2cpio kdebase-1.1.2-34.aix4.3.ppc.rpm | /usr/linux/bin/cpio -ivd \
opt/freeware/kde/share/apps/kdm/sample.xinitrc

The last RPM option we want to look at is the verify option. The command:

rpm -Va

allows us to verify all the installed packages, while:

rpm -Vf <filename>

verifies the package containing the file <filename>.

3.2.6 Installing KDE2
In this section, we will describe how to install KDE2 and define it as the default
desktop environment, including using the kdm login manager instead of the
standard dtlogin. We will not discuss KDE1.

The necessary packages for installing KDE2 are located in three group
directories: desktop.base, kde.base and kde.opt (the last two are also
consolidated in kde.all). Make sure your system satisfies the requirements
mentioned in Section 3.1, “System requirements” on page 38. Disk space and
the X11 components are especially important. Make also sure you use the
appropriate directories for KDE2, not KDE1.

To install the desktop.base group (containing important libraries for both the KDE
and GNOME desktop), change to the corresponding ezinstall directory and issue
the following command:

Note: If you had KDE1 installed, you should delete it before attempting to
install KDE2. Remove all packages belonging to KDE1, including the Qt
library, and remove the .kde directory in your home directory.

Note: An earlier version of kdebase-2 did not include a sample.xinitrc file. This
had to be retrieved, as described in Section 3.2.5, “Using the RPM Package
Manager” on page 44.
50 Running Linux Applicatons on AIX

rpm -ivh *

The packages kde.base and kde.opt or kde.all have to be installed in the same
way. Only a few steps have to be completed before KDE can be used on a
RS/6000 running AIX 5L.

Copy the sample.xinitrc file as $HOME/.xinitrc to your home directory (to each
users’ home directory, to be precise). Make sure the KDEDIR variable in this file
points to the correct directory (probably KDEDIR=/opt/freeware/kde).

If you want to keep CDE’s dtlogin as the login manager and start KDE manually,
you have to choose the Command Line Login option at the dtlogin panel. After
having logged in, issue the command:

xinit -- -T

and KDE2 will start.

For more information about how to use KDE and its advantages, see
Section 6.1.2, “The KDE desktop” on page 96. For instructions on how to set up
a convenient user environment, see Section 6.2, “Available shells” on page 112.

Make KDE2 start at each system restart
If you complete this test successfully and want to have KDE2 automatically
started at each system restart and use kdm as your default login manager,
replace the standard /usr/lib/X11/xdm/Xsession file with the one that can be
found at:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/Xsession.k
de2

Save the old one before you install the new one with the commands:

mv /usr/lib/X11/xdm/Xsession /usr/lib/X11/xdm/Xsession.old
cp Xsession.kde2 /usr/lib/X11/xdm/Xsession
chmod 755 /usr/lib/X11/xdm/Xsession
echo "/opt/freeware/kde/bin/kdmdesktop" >> /usr/lib/X11/xdm/Xsetup_0

Replace the dtlogin entry dt:2:wait:/etc/rc.dt in /etc/inittab with the appropriate
entry kdm:2:once:/opt/freeware/kde/bin/kdm to have kdm automatically started
after system restart. (Do not try to comment this line; replace it after saving the
original file.). If you decide to install GNOME as well, this setup is sufficient to

Note: The package gdbm should be included in this group.

Note: The package kdelibs-sound should be included in kde.base and kde.all.
 Chapter 3. Toolbox installation 51

allow you to choose CDE, KDE, or GNOME from the kdm login menu as the
desktop of choice for each particular login session. Changes to the kdm login
menu can be made in the files /opt/freeware/kde/share/config/kdmrc and
$HOME/.xinitrc.

3.2.7 Installing GNOME
In this section, we will describe how to install GNOME and define it as the default
desktop using the xdm login manager or using kdm from the KDE2 package.

If you did not install KDE2, you first have to install the desktop.base ezinstall
group by using rpm -ivh * in the corresponding directory, as described in
Section 3.2.6, “Installing KDE2” on page 50. Remember to exclude the
gbm-1.8.0-3 package from gnome.base group before installation, if you had
already installed KDE or GNOME before.

Now you may install the gnome.base and gnome.apps groups.

Each user who wants to run GNOME needs to have a modified .xinitrc file in the
home directory (this assumes that you do not want to change the system wide
default /usr/lpp/X11/defaults/xinitrc). If a .xinitrc file already exists in $HOME,
save it. If it did not exist, copy the one from /usr/lpp/X11/defaults/xinitrc to
$HOME/.xinitrc (watch the ‘.’ in the second file name). Edit the file
$HOME/.xinitrc and replace the last three lines shown in Example 3-12 with the
single line

exec /usr/bin/gnome-session

Example 3-12 Lines to be edited in .xinitrc

xsetroot -solid grey60
aixterm =80x25+0-0 &

Attention: Editing /etc/inittab should be done carefully. If this file is corrupted,
the system might not reboot, and system recovery would have to be
performed. Therefore, instead of editing /etc/inittab using an editor, we
recommend that you use of the following commands:

cp /etc/inittab /etc/inittab.old
mkitab -i dt kdm:2:once:/opt/freeware/kde/bin/kdm
rmitab dt

Note: Please note that we did not check all possible combinations of installed
software and order of installation. You may change the order and choice of
software, but then the ezinstall groups might not contain all the required
packages.
52 Running Linux Applicatons on AIX

exec mwm -multiscreen -xrm "ShowFeedback: -quit"

If you want to start GNOME manually, proceed as you did for KDE2 (see
Section 3.2.6, “Installing KDE2” on page 50) by choosing the Command Line
Login from the dtlogin menu and type:

xinit -- -T

after you have logged in.

If you want to start GNOME automatically from the KDE kdm login manager, you
should not have to do anything, provided you installed kdm using the instructions
in Section 3.2.6, “Installing KDE2” on page 50.

For more information about how to use GNOME and its advantages, see
Section 6.1.3, “The GNOME desktop” on page 102. For instructions on how to
setup a convenient user environment, see Section 6.2, “Available shells” on
page 112.

If you tested GNOME successfully and want to use the third option, using the
(old) xdm login manager to login and start GNOME, you should first save the
existing /etc/inittab file and then call:

/usr/lib/X11/xdm/xdmconf

to change /etc/inittab, /etc/rc.tcpip, and /etc/tcpip.clean, in order to start xdm
instead of dtlogin. A man page for xdmconf is available and can be viewed using
the command:

nroff -man /usr/lib/X11/xdm/xdmconf.man | more

The xdmconf utility only works if the configuration files are close to the initial
configuration. It does not work if /etc/inittab has already been changed to start
kdm, as described in Section 3.2.6, “Installing KDE2” on page 50. Running
xdmconf with the -d option restores the previous configuration. Changes to
/etc/inittab require a reboot to take effect and should be done very carefully.

3.3 Useful URLs
In this last section of this chapter, we present some URLs that give additional
information about the Toolbox and associated software.

AIX Toolbox for Linux applications:

http://www-1.ibm.com/servers/aix/products/aixos/linux/
 Chapter 3. Toolbox installation 53

AIX Toolbox for Linux applications README file with latest information for
installation and configuration:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/README.txt

AIX Toolbox for Linux applications licensing information:

http://www.ibm.com/servers/aix/products/aixos/linux/altlic.html

AIX Toolbox for Linux applications download pages:

http://www-1.ibm.com/servers/aix/products/aixos/linux/download.html
http://www-1.ibm.com/servers/aix/products/aixos/linux/date.html
http://www-1.ibm.com/servers/aix/products/aixos/linux/ezinstall.html
http://www-1.ibm.com/servers/aix/products/aixos/linux/rpmgroups.html

AIX Toolbox for Linux applications FTP site:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/

RPM Package Manager homepage:

http://www.rpm.org/

RPM Documentation Project:

http://www.rpmdp.org/

The Official Red Hat Linux Reference Guide, Chapter 5 about RPM:

http://www.redhat.com/support/manuals/RHL-7-Manual/ref-guide/ch-rpm.html

RPM HOWTO:

http://www.rpm.org/RPM-HOWTO/index.html

Maximum RPM book, Ed Bailey, found at:

http://www.rpm.org/maximum-rpm.ps.gz

or

http://www.rpmdp.org/rpmbook/
54 Running Linux Applicatons on AIX

Chapter 4. Source compatibility:
Linux-compatible APIs on
AIX

This chapter describes the similarities and differences of Linux and AIX in terms
of APIs. It is intended to be an aid to application developers porting code from
Linux to AIX or writing code on Linux that is intended for deployment on AIX. The
chapter also gives general guidelines for writing portable code and what APIs
have been added or changed in AIX 5L to make it even more source compatible
with Linux.

This chapter provides the following:

� How to write portable code

� Linux-compatible APIs and LSB (Linux Standard Base) subroutines on AIX

� File macro supported values

� Signal values

4

© Copyright IBM Corp. 2001 55

4.1 Writing portable code
We begin this chapter with a section on application development, with a special
focus on writing portable code. The considerations mentioned here mainly apply
to situations where code is written for Linux (or will be written) and will be ported
to AIX, particularly using the AIX Toolbox for Linux Applications.

As we see in Chapter 5, “Package building and porting” on page 69, many
applications can be recompiled and RPM packages rebuilt without any (or minor)
changes to the source code. The following pages will give you some guidelines
on how to write such portable code in C or C++.

If there are no coding guidelines defined in your coding project, the GNU coding
standards (see http://www.gnu.org/prep/standards_toc.html and Section 5.4,
“Using libtool to handle shared libraries” on page 82 for details) would be a good
start to ensure a consistent debugging and build environment (compilers, make
files, library management, and so on), which is available on many different
platforms. GNU’s Autoconf (refer to http://www.gnu.org/software/autoconf/) is
a major building block in this framework to achieve portability to most
UNIX-based systems.

Since Linux applications will probably be written using the GNU compilers, and
the same compilers are available with the Toolbox on AIX, there will not be any
language-specific errors in the code. In general, this is also true for ANSI C
compatible code. But there might be errors because of missing and/or
incompatible APIs. Section 4.2, “Linux-compatible APIs and LSB functions on
AIX” on page 57 describes which APIs exist in Linux that are either not available
under AIX or incompatible with AIX. In “New APIs in AIX 5L 5.1” on page 171,
you will find a discussion of APIs that have recently been added to AIX 5L to
increase its compatibility with Linux.

As AIX is UNIX98 branded, all the interfaces defined in those standards are
available in AIX. If an application is developed according to those standards, no
missing APIs should occur. Linux, however, does not fully comply to these two
standards. For a detailed listing of the differences, see Section 4.2,
“Linux-compatible APIs and LSB functions on AIX” on page 57 and “New APIs in
AIX 5L 5.1” on page 171. The chances of hitting a missing API do decrease
significantly if the code was already ported to more than just one operating
system. On the other hand, the chances of hitting a missing API also increase if
you are programming “close” to the kernel, such as using specific threading
features, programming “close” to specific hardware and special device drivers, or
even using assembler code. Also, keep in mind that AIX uses eXtended
Common Object File Format (XCOFF) while Linux uses Executable and Linking
Format (ELF).
56 Running Linux Applications on AIX

When using C++, templates might cause incompatibilities because of differing
instantiations. This is especially the case when using different compilers on
different platforms. Using the GNU compilers on all platforms should avoid these
kind of problems.

Code intended to be portable should not depend on any specific byte ordering
(some designs, like Intel architecture, are little endian, while others, like POWER
architecture, are big endian) or alignment and size of scalar types (structure
sizes and alignment of long might differ on different architectures). National
language support (NLS) and specific characteristics in the networking layers
(serialization, blocking IP, and so on) are also areas to watch out for when
creating portable code.

If you are developing applications to be installed on several platforms, the
packaging and delivery vehicle is also important. Now that Linux and AIX offer
the same package management tool (RPM), this is the natural choice for this
combination of environments.

Of course, certain prerequisites, such as both libraries and other software (like
databases and middleware), have to be available for the target platform,
especially if it is proprietary software and the source code not available.

4.2 Linux-compatible APIs and LSB functions on AIX
Libraries for use by programs consist of header files that define types, macros,
declare variables, and function prototypes, and the actual library or archive that
contains the definitions of the variables and functions. We must keep this in mind
when porting or developing a new application for deployment on multiple
platforms because if the header files or libraries used are not present on the
destination platform, we can run into invalid header files, header files not found,
and missing or unresolved symbols situations.

As a generic recommendation (to avoid getting into these uncomfortable
situations), we must make sure that our program source files include the
appropriate header files, so that the compiler has declarations of these facilities
available and can correctly process references to them. Once our program has
been compiled, the linker resolves these references to the actual definitions
provided in the libraries.

As a matter of programming style, we must explicitly include all header files
required for the libraries facilities we are using, and avoid the use of library
header files that automatically include other library header files.
 Chapter 4. Source compatibility: Linux-compatible APIs on AIX 57

When building the RPM packages for the AIX Toolbox for Linux Applications,
some Linux system calls and library symbols could not be found in the equivalent
library on AIX. For example, the function frexp() exists in libm.a on Linux and in
libc.a on AIX; the function flock() exists in libm.a on Linux and is implemented on
AIX by using the fcntl() API.

One of the major goals during a porting project is to assure cross-distribution and
compatibility without impeding new enhancements and improvements to the
application. Application Programming Interfaces (APIs), shared libraries, and
header files are at the core of many application compatibility issues that are
raised during the porting phase. An issue that is simple to avoid and sometimes
is not taken into consideration is the lack of strict control over versions of
libraries.

Different situations can be presented to us, such as missing symbols, undefined
libraries, missing header files, or in a worst-case scenario, when the application
compiles and links successfully but its output results in unexpected errors when
the application runs, up to the point of crashing.

Imagine that we have an API on Linux with the same name and functionality as
an API on AIX, but with different structure parameters, such as size, order,
pointer references, macro usage, and different macro values. In this case, we
must consider not simply recompiling and linking, but carefully looking at the
code and, if necessary, re-writing the code or parts of it.

As a generic recommendation to avoid unexpected situations, we must validate
and test all ported applications through a validation process. This is because the
code might compile error free, while the resulting program might still produce
unexpected results.

Appendix A, “APIs” on page 153 provides a list of all Linux system calls and their
level of compatibility to AIX and shows analogous information for the Linux
Standard Base (LSB) calls. Appendix A, “APIs” on page 153 also shows, in
detail, the Linux-compatible APIs added into AIX 5L Version 5.1.

4.3 File macro supported values
Macros allow the developer to hide non-meaningful parameter values behind
descriptive macro names. They also provide greater application portability
because application source code does not have to be changed if parameter
values are defined differently on different systems. These values are masked by
invariable macro names.
58 Running Linux Applications on AIX

Example 4-1 provides a way of seeing the differences between buffered I/O
(using the fopen() API to create and open a file) and non-buffered I/O (using the
touch command to create the file and using the open() API with file access mode
O_WRONLY to open the file in write only mode). Once compiled and run, the
program produces three forms of output: stdout and two files, File1.out, and
File2.out.

Example 4-1 Buffered I/O and non-buffered I/O

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

main(int nargc, char *argv[])
{
 char *str;
 int nFid;
 FILE *fp;

 // Buffered Output to Standard Out

 printf("printf: Writing to stdout (File2.out)\n\n");

 fprintf(stdout, "fprintf: Writing to stdout (File2.out)\n\n");

 str = "fwrite: Writing to stdout (File2.out)\n\n";
 fwrite(str, 1, strlen(str), stdout);

 // Non-Buffered Output to Standard Out

 str = "write: Writing to stdout (File1.out)\n\n";
 write(1, str, strlen(str));

 // Buffered Output to a File (File2.out)
 // fopen function creates a new stream named File2.out and
 // opens it for (w) writing only, if the file already exists,
 // it is truncated to zero length, otherwise a new file is created.

 fp=fopen("File2.out", "w");
 if (fp != NULL)
 {
 fprintf(fp, "fprintf: Writing to file\n");

 str = "fwrite: Writing to file\n";
 fwrite(str, 1, strlen(str), fp);

 fclose(fp);
 }
 Chapter 4. Source compatibility: Linux-compatible APIs on AIX 59

 // Non-Buffered Output to a File (File1.out)
 // Create the file File1.out by using the operating system command
 // touch, once created is opened using the open function which
 // returns a file id (nFid) and the file access mode O_WRONLY
 // (write only). The close function uses the file id (nFid) to
 // close the open file.

 system("touch File1.out");

 nFid = open("File1.out", O_WRONLY);
 if (nFid >= 0)
 {
 str = "write: Writing to file\n";
 write(nFid, str, strlen(str));
 close(nFid);
 }
}

These macro values should be looked at carefully, because sometimes
applications could have been written with these values hardcoded into it; in such
cases, the application may be reviewed or changed when being ported to
another architecture.

4.3.1 File access modes
In an operating system, the control of file access is a fundamental service;
therefore, the operating system must ensure that users are provided appropriate
access for their use, that no two users simultaneously update the same record,
and that each task waits its turn.

The file access modes allow a file descriptor to be used for reading, writing, or
both. A file descriptor is an unsigned integer used by a process to identify an
open file. They are generally unique to each process, but they can be shared by
child processes created with a fork() subroutine or copied by the fcntl(), dup(),
and dup2() subroutines.

Tip: The C source code in Example 4-1 uses “//” to introduce a comment in
the line, as in C++ style. By default, gcc compiler accepts this style, but the
AIX xlc compiler does not. For that, it is necessary to provide the -q flag with
the cpluscmt option:

xlc -qcpluscmt <inputfile>
60 Running Linux Applications on AIX

File descriptors are indexes to the file descriptor table in the u_block area
maintained by the kernel for each process. The most common ways for
processes to obtain file descriptors are through open() or creat() operations or
through inheritance from a parent process. When a fork() operation occurs, the
descriptor table is copied for the child process, which allows the child process
equal access to the files used by the parent process.

System file and file descriptor tables
The system file and file descriptor data structures track each process’ access to
a file and ensure data integrity. Table 4-1 provides a definition of the activity and
contents of each of these structures.

Table 4-1 File descriptor and system table definition

Structure Activity and contents

File descriptor table Translates an index number (file descriptor) in the table to
an open file. File descriptor tables are created for each
process and are located in the u_block area set aside for
that process. Each of the entries in a file descriptor table
has two fields: the flags area and the file pointer. The
structure of the file descriptor table is:

struct ufd
{
 struct file *fp;
 int flags;
} u_ufd[OPEN_MAX]

The close-on-exec (FD_CLOEXEC bit) flag can be set in
the file descriptor table using the fcntl subroutine. The dup
subroutine copies one file descriptor entry into another
position in the same table. The fork subroutine creates an
identical copy of the entire file descriptor table for a child
process.
 Chapter 4. Source compatibility: Linux-compatible APIs on AIX 61

When developing an application or porting one, we must keep this structure in
mind, because the file access modes are defined differently in Linux and AIX in
some cases. Therefore, as a generic recommendation, the macros described in
Table 4-2 must be used by those APIs when file manipulation subroutines are
required, such as open(), fnctl(), lseek(), dup(), or dup2(), and hard coded values
have to be avoided.

Table 4-2 File access mode macro value comparison

System file table Contains entries for each open file. Two of the most
important pieces of information tracked in a file table entry
are the current offset referenced by all read or write
operations to the file and the open mode (O_RDONLY,
O_WRONLY, or O_RDWR) of the file.

The open file data structure contains the current I/O offset
for the file. The system treats each read/write operation as
an implied seek to the current offset. Thus, if x bytes are
read or written, the pointer advances x bytes. The lseek
subroutine can be used to reassign the current offset to a
specified location in files that are randomly accessible.
Stream-type files (such as pipes and sockets) do not use
the offset because the data in the file is not randomly
accessible.

Structure Activity and contents

Flag Linux AIX

O_ACCMODE 3 3

O_RDONLY 0 0

O_WRONLY 1 1

O_RDWR 2 2

O_CREAT 0x40 0x100

O_EXCL 0x80 0x400

O_NOCTTY 0x100 0x800

O_TRUNC 0x200 0x200

O_APPEND 0x400 0x8

O_NONBLOCK 0x800 0x4

O_NDELAY 0x800 0x8000
62 Running Linux Applications on AIX

Table 4-3 describes the open or access modes that are common to both Linux
and AIX.

Table 4-3 File open mode macros on Linux and AIX

Table 4-4 describes the open modes that are available only in Linux with
_USE_GNU defined.

Table 4-4 File open mode macros available only in Linux using _USE_GNU

O_SYNC 0x1000 0x10

O_FSYNC 0x1000 undefined

O_ASYNC 0x2000 undefined

Flag Linux AIX

Open mode Description

O_ACCMODE Mask for file access only.

O_RDONLY Opens for reading only.

O_WRONLY Opens for writing only.

O_RDWR Opens for both reading and writing.

O_CREAT Creates file, if it does not exist.

O_EXCL If both O_CREAT and O_EXCL are set, the open is
unsuccessful if the file exists. This is guaranteed to never
erase an existing file.

O_NOCTTY The file is never assigned to a tty.

O_TRUNC Truncates the file.

O_APPEND Sets append mode.

O_NONBLOCK No system calls will block on the file.

O_NDELAY As O_NONBLOCK.

O_SYNC Performs a synchronous write, blocked until physically
updated.

Open mode Description

O_DIRECTORY If the file is not in the directory, the open fails.

O_NOFOLLOW Does not follow a symbolic link in the directory.
 Chapter 4. Source compatibility: Linux-compatible APIs on AIX 63

Table 4-5 describes the open mode that is available in Linux with
_USE_LARGEFILE64 defined and in AIX with _LARGE_FILE_API defined.

Table 4-5 Linux open mode using _USE_LARGEFILE64

Table 4-6 describes the open modes that are available in Linux with either
__USE_POSIX199309 or __USE_UNIX98 defined and in AIX with
_XOPEN_SOURCE==500.

Table 4-6 Linux open modes using _USE_POSIX199309 or _USE_UNIX98

4.3.2 File descriptor flags for fcntl
fcntl is a UNIX libc (standard C library) subroutine that performs file control and
I/O control on file descriptors. For our purposes, the fcntl() structure is identical in
Linux and AIX.

The syntax is:

int fcntl(FileDescriptor, Command, Argument)

where:

FileDescriptor Specifies an open file descriptor obtained from a
successful call to the open, fcntl, or pipe subroutines. File
descriptors are small, positive integers used (instead of
file names) to identify files.

Command Specifies the operation performed by the fcntl subroutine.
The fcntl subroutine can duplicate open file descriptors,
set file-descriptor flags, set file descriptor locks, set
process IDs, and close open file descriptors.

Argument Specifies a variable whose value sets the function
specified by the Command parameter. When dealing with
file locks, the Argument parameter must be a pointer to
the flock structure.

Open mode Description

O_LARGEFILE Allows large files.

Open mode Description

O_DSYNC Synchronizes write option (file data only).

O_RSYNC Synchronizes file attributes on read.
64 Running Linux Applications on AIX

4.3.3 File modes
File permission names and values are identical on Linux and AIX.

4.3.4 Poll macro values
The poll API is a standard subroutine in the UNIX libc.a library, and its main
function is to check the I/O status of multiple file descriptors and message
queues to see if they are ready for reading (receiving) or writing (sending), or to
see if they have an exception condition pending.

The header file poll.h defines several structures used by the poll API. One of
these structures is the pollfd, which defines an array of file descriptors or file
pointers.

For our purposes, the pollfd structures are identical, but the poll macro values for
the event elements are different, as described in Table 4-7. These macro values
are of special interest to us if we are developing or porting applications, because
as mentioned before, if they are different, we must verify that they have not been
hardcoded into the application.

Table 4-7 Poll macro values

Note: The poll API applies only to character devices, pipes, message queues,
and sockets, but not all character device drivers support it. Please refer to the
descriptions of individual character devices for information about whether and
how specific device drivers support the poll and select subroutines.

Event Linux AIX

POLLIN 0x001 0x001

POLLOUT 0x004 0x002

POLLPRI 0x002 0x004

POLLWRNORM 0x100 0x002

POLLRDNORM 0x040 0x010

POLLRDBAND 0x080 0x020

POLLWRBAND 0x200 0x040

POLLMSG 0x400 0x080
 Chapter 4. Source compatibility: Linux-compatible APIs on AIX 65

4.4 Signal values
A signal is a software interrupt delivered to a process. The operating system
uses signals to report exceptional situations to an executing program. Some
signals report errors, such as references to invalid memory addresses, while
others report asynchronous events, such as disconnection of a phone line. For
example, if you anticipate an event that will cause signals, you can define a
handler function and tell the operating system to run it when that particular type
of signal arrives.

A signal can also report the occurrence of an exceptional event. The following
events are some events that can cause or raise a signal:

� A program error, such as dividing by zero or issuing an address outside the
valid range.

� A user request to interrupt or terminate the program. Most environments are
set up to let a user suspend the program by typing Ctrl-Z, or terminate it with
Ctrl-C. Whatever key sequence is used, the operating system sends the
proper signal to interrupt the process.

� The termination of a child process.

� Expiration of a timer or alarm.

� A call to kill or raise by the same process.

� A call to kill from another process. Signals are a limited but useful form of
interprocess communication.

� An attempt to perform an I/O operation that cannot be done. An example is
reading from a pipe that has no writer.

Some signal values are different between Linux and AIX, as shown in Table 4-8.
(No code was found in the Linux kernel to implement the SIGSTKFLT signal.)

Table 4-8 Signal values

Signal Linux AIX

SIGHUP 1 1

SIGINT 2 2

SIGQUIT 3 3

SIGILL 4 4

SIGTRAP 5 5

SIGABRT 6 6

SIGIOT 6 6
66 Running Linux Applications on AIX

SIGBUS 7 10

SIGFPE 8 8

SIGKILL 9 9

SIGUSR1 10 30

SIGSEGV 11 11

SIGUSR2 12 31

SIGIPE 13 13

SIGALRM 14 14

SIGTERM 15 15

SIGSTKFLT 16 undefined

SIGCLD 17 20

SIGCHLD 17 20

SIGCONT 18 19

SIGSTOP 19 17

SIGTSTP 20 18

SIGTTIN 21 21

SIGTTOU 22 22

SIGURG 23 16

SIGXCPU 24 24

SIGXFSZ 25 25

SIGVTALRM 26 34

SIGPROF 27 32

SIGWINCH 28 28

SIGPOLL 29 23

SIGIO 29 23

SIGPWR 30 29

SIGSYS 31 12

Signal Linux AIX
 Chapter 4. Source compatibility: Linux-compatible APIs on AIX 67

_NSIG 64 undefined

Signal Linux AIX
68 Running Linux Applications on AIX

Chapter 5. Package building and
porting

In this chapter, we describe the basic application development environment that
is available with the Toolbox. The first section discusses the requirements and
procedures that are necessary to install the GNUPro Toolkit, which contains the
gcc and g++ compilers, as well as other utilities and the gdb debugger. The
second section shows how to recompile Toolbox applications from source and
how to make changes to packages or produce your own packages (both RPMs
and SRPMs). The third section briefly describes how to compile and install open
source software that is not packaged in RPM format. Then there is a discussion
of shared libraries and the GNU utility to handle them, libtool. libtool is one of the
key components of the Toolbox and is used to simplify the building of
applications that use shared libraries. In the last section of this chapter, we give
some more examples of porting applications and building packages using the
Toolbox. This chapter is closely related to Chapter 4, “Source compatibility:
Linux-compatible APIs on AIX” on page 55 and Appendix C, “Other Open Source
Software for AIX” on page 193.

5

© Copyright IBM Corp. 2001 69

5.1 Compiler installation and requirements
The GNUPro development environment images are now available as RPM
installable packages. They contain the gcc compiler, gcc C++ compiler, gdb
debugger and associated utilities, such as ar, nm, and readelf.

We recommend that you install the complete filesets bos.adt and X11.adt prior to
installing the compiler suite, although a subset might be enough in some cases.
These filesets provide header files, libraries, and some other tools needed for the
development environment. A total of 20 MB of disk space in /usr will be needed
for both filesets.

The RPM packages can be found in the Toolbox Web site in the same directory
as the other RPMs:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/

For an installation of all images of the GNUPro Toolkit, we need 80 MB of disk
space. The installation is performed by using the rpm -ivh command as shown in
Example 5-1.

Example 5-1 Installing the GNUPro development package

rpm -ivh gcc-2.9.aix43.010216-1.aix5.1.ppc.rpm
rpm -ivh g++-2.9.aix43.010216-1.aix5.1.ppc.rpm
rpm -ivh binutils-2.9.aix43.010216-1.aix5.1.ppc.rpm
rpm -ivh gdb-2.9.aix43.010216-1.aix5.1.ppc.rpm

All four packages get installed under the /opt/freeware/GNUPro directory. Also,
links to the executables may be created in /usr/bin and /usr/linux/bin. The link in
/usr/bin is created if the executables do not conflict with the AIX gcc compiler.
Before executing the commands, make sure the /usr/linux/bin and /usr/bin
directories are set in the PATH variable.

Installation of the GNUPro sources
Optionally, you can also install the GNUPro sources. They can be found in the
Toolbox Web site in the same directory as the other sources:

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/SRPMS/

Note: The gcc package is a prerequisite of the g++ package.
70 Running Linux Applications on AIX

5.2 Rebuilding Toolbox packages
The first and easiest step to use the compiler kit might be to simply rebuild a
package that is already part of the Toolbox from its Source RPM (SRPM or
.src.rpm). Let us take a look at the rpm command that will do the job for us.

5.2.1 Building packages with rpm
In Chapter 3, “Toolbox installation” on page 37, we use the rpm command
provided by the rpm.rte package to install binary packages into the system. But
RPM can do more than that. It has additional options that allow you to install
source packages, or SPRMs, compile them, and produce new RPMs and
SRPMs. Detailed descriptions of the capabilities and usage of RPM can be found
in the references mentioned in Section 3.3, “Useful URLs” on page 53, especially
Maximum RPM by Ed Bailey, found at:

http://www.rpmdp.org/rpmbook/

An RPM’s build process is controlled by a file called spec, which is part of every
SRPM. This file has several sections for the various stages in the build process.
The most important stages are:

preamble Information about the package and its history; intended to
be read by human beings.

%prep To set up a clean build environment, expand archives,
and so on.

%build The actual build step for the software (make is typically
executed here).

%install Virtual installation of the software within the built
environment (make install will be placed here).

%files A list of all files belonging to the package.

Here is a short summary of the options used during the build process. The basic
syntax is:

rpm -b<stage> options file1.spec

where <stage> can be

p Executes only the %prep section of the spec file.

c Executes %prep, %build.

i Executes %prep, %build, and %install.

b Executes %prep, %build, and %install, and builds the
binary package.
 Chapter 5. Package building and porting 71

a Executes %prep, %build, and %install, and builds the
binary and source packages.

Additionally, the following options might be useful:

--short-circuit Forces build to start at a particular stage (-bc, -bi only).

--vv Displays debug information.

After this introduction to the way rpm -b works, we can turn to an example. This
example will include a deeper look at the contents of a typical spec file.

5.2.2 Rebuilding a Toolbox RPM
Using libjpeg as an example, we will demonstrate how to rebuild packages of the
Toolbox from source code (SRPMs, to be precise). We will analyze the important
sections in the respective spec files and produce our first .rpm and .src.rpm files.

First, install the libjpeg SRPM from the Toolbox by issuing the following
command from the SRPM directory (for example, /cdrom/SRPMS/libjpeg):

rpm -iv libjpeg-6b-2.src.rpm

This will install the sources, patches, and the spec file into the subdirectories of
/opt/freeware/src/packages, as shown in Example 5-2.

Example 5-2 /opt/freeware/src/packages directory

pwd
/opt/freeware/src/packages
ls SOURCES SPECS
SOURCES:
jpeg-6b-aixltconf.patch jpegsrc.v6b.tar.gz

SPECS:
libjpeg.spec

The fastest way to build the libjpeg RPM and SRPM files would be to issue the
command rpm -ba libjpeg.spec from the /opt/freeware/src/packages/SPECS
directory. But because we want to see the process step-by-step, we start by just
going through the %prep stage of the spec file, as shown in Example 5-3.

Example 5-3 Lines from the spec file

%prep
%setup -q -n jpeg-6b
%patch0 -p1 -b .aixlt
72 Running Linux Applications on AIX

The %prep section is pretty small because of the possible use of macros
(%setup and %patch) here. The macros are explained in detail at the beginning
of this section. For our purposes, you can look at the output in Example 5-4,
which shows the expansion of the macros. First, the sources are unpacked into
the BUILD subdirectory of /opt/freeware/src/packages/ and then a patch is
applied. We will explain this patch in greater detail in Section 5.4, “Using libtool to
handle shared libraries” on page 82.

Example 5-4 Expansion of the macros

rpm -bp libjpeg.spec
Executing(%prep): /bin/sh -e /var/opt/freeware/tmp/rpm-tmp.13945
+ umask 022
+ cd /opt/freeware/src/packages/BUILD
+ cd /opt/freeware/src/packages/BUILD
+ rm -rf jpeg-6b
+ tar -xf -
+ /bin/gzip -dc /opt/freeware/src/packages/SOURCES/jpegsrc.v6b.tar.gz
+ STATUS=0
+ [0 -ne 0]
+ cd jpeg-6b
+ /bin/id -u
+ [0 = 0]
+ /bin/chown -Rhf root .
+ /bin/id -u
+ [0 = 0]
+ /bin/chgrp -Rhf system .
+ /bin/chmod -Rf a+rX,g-w,o-w .
+ echo Patch #0 (jpeg-6b-aixltconf.patch):
Patch #0 (jpeg-6b-aixltconf.patch):
+ patch -p1 -b --suffix .aixlt -s
+ 0< /opt/freeware/src/packages/SOURCES/jpeg-6b-aixltconf.patch
+ exit 0

As no error was returned, we can now go one step further and let RPM also
execute the %build stage of the libjpeg.spec file, which is shown in Example 5-5.
The command, together with an edited and annotated summary of its output, is
shown in Example 5-6 on page 74. Comments are set in square brackets and
italics. For better readability of the output, some lines of the original output were
deleted. This is indicated by “...”.

Example 5-5 %build stage in the .spec file

%build
%configure \
 --enable-shared --enable-static --prefix=$RPM_BUILD_ROOT%{_prefix} \
 --exec_prefix=$RPM_BUILD_ROOT%{_prefix}
make
%ifnarch armv4l
 Chapter 5. Package building and porting 73

#FIX MEEE: we know this will fail on arm
LD_LIBRARY_PATH=$PWD make test
%endif

In this section, some changes were made to the spec file. Compare it to the one
that you will find, for example, in RedHat Linux for Intel Itanium architectures.
The values for --prefix and --exec-prefix were added here. %{_prefix} is a macro
that is defined in the macros file, which is part of the basic rpm command
package. It can be found in the directory /usr/opt/freeware/lib/rpm/ with other
configuration files for RPM, such as rpmrc. It is advisable to use macros from the
macros file in the spec file wherever possible. This will facilitate architecture
independent spec files and ease porting.

Example 5-6 Building stage

rpm -bc libjpeg.spec
Executing(%prep): /bin/sh -e /var/opt/freeware/tmp/rpm-tmp.3514

[...%prep section output is identical to Example 5-4 on page 73...]
+ exit 0
Executing(%build): /bin/sh -e /var/opt/freeware/tmp/rpm-tmp.5331
+ umask 022
+ cd /opt/freeware/src/packages/BUILD
+ cd jpeg-6b
+ CFLAGS=-O2 -fsigned-char
+ export CFLAGS
+ CXXFLAGS=-O2 -fsigned-char
+ export CXXFLAGS
+ FFLAGS=-O2 -fsigned-char
+ export FFLAGS

[configure is called with the mentioned additional options]
+ [-f configure.in]
+ ./configure ppc-ibm-aix4.3 --prefix=/opt/freeware --exec-prefix=/opt/freeware
--bindir=/opt/freeware/bin --sbindir=/opt/freeware/sbin
--sysconfdir=/opt/freeware/etc --datadir=/opt/freeware/share
--includedir=/opt/freeware/include --libdir=/opt/freeware/lib
--libexecdir=/opt/freeware/libexec --localstatedir=/opt/freeware/var
--sharedstatedir=/opt/freeware/com --mandir=/opt/freeware/man
--infodir=/opt/freeware/info --enable-shared --enable-static
--prefix=/var/tmp/libjpeg-root/opt/freeware
--exec_prefix=/var/tmp/libjpeg-root/opt/freeware
checking for gcc... gcc
checking whether the C compiler (gcc -O2 -fsigned-char) works... yes

[...the usual configure tests are being done here...]
checking libjpeg version number... 62
creating ./config.status
creating Makefile
creating jconfig.h
74 Running Linux Applications on AIX

[now make is called; libtool is used as an interface to call the gcc
compiler;]
+ make
./libtool --mode=compile gcc -O2 -fsigned-char -I. -c ./jcapimin.c
gcc -O2 -fsigned-char -I. -c -DPIC ./jcapimin.c
ln -s jcapimin.o jcapimin.lo
./libtool --mode=compile gcc -O2 -fsigned-char -I. -c ./jcapistd.c
gcc -O2 -fsigned-char -I. -c -DPIC ./jcapistd.c
ln -s jcapistd.o jcapistd.lo

[...skipping some lines of compiler calls...]
[libtool is used to link the first library, libjpeg.so.62.0.0]

./libtool --mode=link gcc -o libjpeg.la jcapimin.lo jcapistd.lo jctrans.lo
jcparam.lo jdatadst.lo jcinit.lo jcmaster.lo jcmarker.lo jcmainct.lo
jcprepct.lo jccoefct.lo jccolor.lo jcsample.lo jchuff.lo jcphuff.lo jcdctmgr.lo
jfdctfst.lo jfdctflt.lo jfdctint.lo jdapimin.lo jdapistd.lo jdtrans.lo
jdatasrc.lo jdmaster.lo jdinput.lo jdmarker.lo jdhuff.lo jdphuff.lo jdmainct.lo
jdcoefct.lo jdpostct.lo jddctmgr.lo jidctfst.lo jidctflt.lo jidctint.lo
jidctred.lo jdsample.lo jdcolor.lo jquant1.lo jquant2.lo jdmerge.lo jcomapi.lo
jutils.lo jerror.lo jmemmgr.lo jmemnobs.lo \
 -rpath /var/tmp/libjpeg-root/opt/freeware/lib -version-info 62
mkdir .libs
gcc -shared jcapimin.o jcapistd.o jctrans.o jcparam.o jdatadst.o jcinit.o
jcmaster.o jcmarker.o jcmainct.o jcprepct.o jccoefct.o jccolor.o jcsample.o
jchuff.o jcphuff.o jcdctmgr.o jfdctfst.o jfdctflt.o jfdctint.o jdapimin.o
jdapistd.o jdtrans.o jdatasrc.o jdmaster.o jdinput.o jdmarker.o jdhuff.o
jdphuff.o jdmainct.o jdcoefct.o jdpostct.o jddctmgr.o jidctfst.o jidctflt.o
jidctint.o jidctred.o jdsample.o jdcolor.o jquant1.o jquant2.o jdmerge.o
jcomapi.o jutils.o jerror.o jmemmgr.o jmemnobs.o -lc -Wl,-bnoentry -o
.libs/libjpeg.so.62.0.0

[...skipping more compiler and linker calls...]
[make test to check for correctness of the previous step]

+ make test
+ LD_LIBRARY_PATH=/opt/freeware/src/packages/BUILD/jpeg-6b
rm -f testout*
./djpeg -dct int -ppm -outfile testout.ppm ./testorig.jpg
./djpeg -dct int -bmp -colors 256 -outfile testout.bmp ./testorig.jpg
./cjpeg -dct int -outfile testout.jpg ./testimg.ppm
./djpeg -dct int -ppm -outfile testoutp.ppm ./testprog.jpg
./cjpeg -dct int -progressive -opt -outfile testoutp.jpg ./testimg.ppm
./jpegtran -outfile testoutt.jpg ./testprog.jpg
cmp ./testimg.ppm testout.ppm
cmp ./testimg.bmp testout.bmp
cmp ./testimg.jpg testout.jpg
cmp ./testimg.ppm testoutp.ppm
cmp ./testimgp.jpg testoutp.jpg
cmp ./testorig.jpg testoutt.jpg
+ exit 0
 Chapter 5. Package building and porting 75

In the next example, we execute the %install section of the spec file (see
Example 5-7). The (edited and annotated) output, beyond what was previously
shown, can be found in Example 5-8 on page 77. The variable
RPM_BUILD_ROOT is set by the instruction Buildroot: /var/tmp/libjpeg-root in
the preamble of the spec file. The name of the files (with patches) to be applied
are specified there as well (with the instruction Patch0: jpeg-6b-aixltconf.patch in
this case).

After the creation of the directories, the just compiled files belonging to libjpeg
are installed under the RPM_BUILD_ROOT directory by using a make install
command. Finally, some links are created in order to make the binaries available
in standard locations, as described in Section 2.3.1, “Directory structure” on
page 17. The section of the spec file for the creation of these links is not the
present standard Linux/Intel spec file for libjpeg.

Example 5-7 %install section of the .spec file

%install
rm -rf $RPM_BUILD_ROOT
%ifos linux
mkdir -p $RPM_BUILD_ROOT/usr/{lib,include,bin,man/man1}
%else
for i in lib include bin man/man1
do
mkdir -p $RPM_BUILD_ROOT%{_prefix}/$i
done
%endif
make prefix=$RPM_BUILD_ROOT%{_prefix} install
/usr/bin/strip $RPM_BUILD_ROOT%{_prefix}/bin/* || :

(cd $RPM_BUILD_ROOT
 cd %{_prefix}/lib
 for lib in lib*.so.%{LIBVER}
 do
 shortform=`echo $lib | sed "s/\.%{LIBVER}$//"`
 [! -f $shortform] && ln -sf $lib $shortform
 done
 cd -

 for dir in bin lib include
 do
 mkdir -p usr/$dir
 cd usr/$dir

Note: Because the software will be temporarily installed in
RPM_BUILD_ROOT, which is located in the /var file system, /var should have
enough free space. We recommend 150 MB, if larger packages are to be built.
76 Running Linux Applications on AIX

 ln -sf ../..%{_prefix}/$dir/* .
 cd -
 done
)

Example 5-8 Installing stage

rpm -bi libjpeg.spec
[...skipping %prep and %build section output...]

Executing(%install): /bin/sh -e /var/opt/freeware/tmp/rpm-tmp.17073
+ umask 022
+ cd /opt/freeware/src/packages/BUILD
+ cd jpeg-6b
+ rm -rf /var/tmp/libjpeg-root
+ mkdir -p /var/tmp/libjpeg-root/opt/freeware/lib
+ mkdir -p /var/tmp/libjpeg-root/opt/freeware/include
+ mkdir -p /var/tmp/libjpeg-root/opt/freeware/bin
+ mkdir -p /var/tmp/libjpeg-root/opt/freeware/man/man1
+ make prefix=/var/tmp/libjpeg-root/opt/freeware install
/usr/bin/installbsd -c -m 644 jconfig.h
/var/tmp/libjpeg-root/opt/freeware/include/jconfig.h

[...installing more header files...]
./libtool --mode=install /usr/bin/installbsd -c libjpeg.la
/var/tmp/libjpeg-root/opt/freeware/lib/libjpeg.la
/usr/bin/installbsd -c .libs/libjpeg.so.62.0.0
/var/tmp/libjpeg-root/opt/freeware/lib/libjpeg.so.62.0.0
rm -f /var/tmp/libjpeg-root/opt/freeware/lib/libjpeg.so.62
/var/tmp/libjpeg-root/opt/freeware/lib/libjpeg.a
(cd /var/tmp/libjpeg-root/opt/freeware/lib && ln -s libjpeg.so.62.0.0
libjpeg.so.62)
(cd /var/tmp/libjpeg-root/opt/freeware/lib && ln -s libjpeg.so.62.0.0
libjpeg.a)
/usr/bin/installbsd -c libjpeg.la
/var/tmp/libjpeg-root/opt/freeware/lib/libjpeg.la
--
Libraries have been installed in:
 /var/tmp/libjpeg-root/opt/freeware/lib

To link against installed libraries in a given directory, LIBDIR,
you must use the `-LLIBDIR' flag during linking.

 You will also need to do one of the following:
- add LIBDIR to the `LIBPATH' environment variable during execution
- use the `-Wl,-bnolibpath -Wl,-blibpath:LIBDIR:/usr/local/lib:/usr/lib:/lib'
linker flag

See any operating system documentation about shared libraries for
more information, such as the ld(1) and ld.so(8) manual pages.
--
 Chapter 5. Package building and porting 77

./libtool --mode=install /usr/bin/installbsd -c cjpeg
/var/tmp/libjpeg-root/opt/freeware/bin/cjpeg
/usr/bin/installbsd -c .libs/cjpeg /var/tmp/libjpeg-root/opt/freeware/bin/cjpeg

[...installing more files and manpages...]
+ /usr/bin/strip /var/tmp/libjpeg-root/opt/freeware/bin/cjpeg
/var/tmp/libjpeg-root/opt/freeware/bin/djpeg
/var/tmp/libjpeg-root/opt/freeware/bin/jpegtran
/var/tmp/libjpeg-root/opt/freeware/bin/rdjpgcom
/var/tmp/libjpeg-root/opt/freeware/bin/wrjpgcom

[...adding link ln -sf libjpeg.so.62.0.0 libjpeg.so...]
[adding links to standard locations for binaries, libraries and headers]

+ cd -
/var/tmp/libjpeg-root
+ mkdir -p usr/bin
+ cd usr/bin
+ ln -sf ../../opt/freeware/bin/cjpeg ../../opt/freeware/bin/djpeg
../../opt/freeware/bin/jpegtran ../../opt/freeware/bin/rdjpgcom
../../opt/freeware/bin/wrjpgcom .
+ cd -
/var/tmp/libjpeg-root
+ mkdir -p usr/lib
+ cd usr/lib
+ ln -sf ../../opt/freeware/lib/libjpeg.a ../../opt/freeware/lib/libjpeg.la
../../opt/freeware/lib/libjpeg.so.62 ../../opt/freeware/lib/libjpeg.so.62.0.0 .
+ cd -
/var/tmp/libjpeg-root
+ mkdir -p usr/include
+ cd usr/include
+ ln -sf ../../opt/freeware/include/jconfig.h
../../opt/freeware/include/jerror.h ../../opt/freeware/include/jmorecfg.h
../../opt/freeware/include/jpeglib.h .
+ cd -
/var/tmp/libjpeg-root
+ exit 0
Processing files: libjpeg-6b-2

[processing the %doc section, but an error occurs!]
Executing(%doc): /bin/sh -e /var/opt/freeware/tmp/rpm-tmp.2052
+ umask 022
+ cd /opt/freeware/src/packages/BUILD
+ cd jpeg-6b
+ DOCDIR=/var/tmp/libjpeg-root/opt/freeware/doc/libjpeg-6b
+ export DOCDIR
+ rm -rf /var/tmp/libjpeg-root/opt/freeware/doc/libjpeg-6b
+ /usr/linux/bin/mkdir -p /var/tmp/libjpeg-root/opt/freeware/doc/libjpeg-6b
/var/opt/freeware/tmp/rpm-tmp.2052[25]: /usr/linux/bin/mkdir: not found.
Bad exit status from /var/opt/freeware/tmp/rpm-tmp.2052 (%doc)
File not found: /var/tmp/libjpeg-root/opt/freeware/doc/libjpeg-6b

[...skipping the rest of the output...]
78 Running Linux Applications on AIX

During processing of the %doc section, an error occurred. It was caused by the
missing binary /usr/linux/bin/mkdir. In this case, you need to install the package
fileutils, because the AIX provided mkdir binary was not found (and uses a
slightly different syntax).

After installing the fileutils package, the rpm -bi command returns no error. This
means we can now create a RPM file which could be installed on other machines
and a new SRPM file for source distribution. As we did not make any changes to
the source in this example, this would not make much sense. However, it would
be possible to make changes to the source code in the
/opt/freeware/src/packages/BUILD directory or to the spec file after the initial
install of the .src.rpm file. For example, the source for the application could be
replaced by a newer version. In this case, we would get a changed RPM and
SRPM file. See Section 5.5, “Examples” on page 84.

While changing the source code, it might be handy to use the --short-circuit
option of rpm -b. This allows the build process to start at a specified stage in the
spec file (%build or %install) instead of always starting at the very beginning.

We will not show the output of rpm -bb, which would run through the whole spec
file again and produce a binary RPM file.

Tip: We recommend that you install the following packages for a basic build
environment to avoid the related problems just mentioned:

autoconf, automake, bison, fileutils, findutils, flex, gawk, gettext, grep, libtool,
m4, make, and texinfo.

This list is not complete and does not avoid all “requisite missing” errors. See
the sections about development utilities on the “listing by functional group”
page of the AIX Toolbox Web site:

http://www-1.ibm.com/servers/aix/products/aixos/linux/rpmgroups.html

for a more complete listing of available tools.

Sometimes errors caused by the absence of open source versions of already
installed AIX binaries are hard to find because no meaningful error message is
generated, or the build process continues for some time after the
incompatibility occurred.

We recommend installing all packages from the Toolbox and naming them
with appropriate descriptions, such as “The GNU version of...” in case of
problems that occur during package (re)builds.
 Chapter 5. Package building and porting 79

Example 5-9 shows the final creation of both binary and source RPMs with rpm
-ba.These RPMs can then be found in the directories
/opt/freeware/src/packages/RPMS and /opt/freeware/src/packages/SRPMS.

Example 5-9 Binary and source RPMs creation

rpm -ba libjpeg.spec
[...skipping output already seen in the previous examples...]

Finding Provides: (using /opt/freeware/lib/rpm/find-provides)...
Finding Requires: (using /opt/freeware/lib/rpm/find-requires)...
Requires: libjpeg
Wrote: /opt/freeware/src/packages/SRPMS/libjpeg-6b-2.src.rpm
Wrote: /opt/freeware/src/packages/RPMS/ppc/libjpeg-6b-2.aix4.3.ppc.rpm
Wrote: /opt/freeware/src/packages/RPMS/ppc/libjpeg-devel-6b-2.aix4.3.ppc.rpm
Executing(%clean): /bin/sh -e /var/opt/freeware/tmp/rpm-tmp.2847
+ umask 022
+ cd /opt/freeware/src/packages/BUILD
+ cd jpeg-6b
+ rm -rf /var/tmp/libjpeg-root
+ exit 0

5.3 Compiling open source software
In this section, we describe how to compile and install open source software
without using the RPM utility. Basically, by using the utilities provided by the
Toolbox, this can be done “as usual” for those packages. For example, we take
the fvwm2 window manager, which is used (among others) in Section 6.1,
“Desktop and graphical applications” on page 90.

Download the sources from:

http://fvwm.org/

or

http://xwinman.org/

and unpack them while in the directory, for example, /opt/freeware/src/, using the
command:

cd /opt/freeware/src; tar -xzvf fvwm-2.2.4.tar.gz
80 Running Linux Applications on AIX

Change to the newly created fvwm-2.2.4 directory and follow the instructions in
the INSTALL and README files. During the final make install, the software will
be installed in subdirectories (like bin, lib, or man) of the directory given as the
--prefix option to configure. Remember to set the environment to be able to
execute the binaries and find the executables later on. Example 5-10 briefly
shows the compilation and installation process.

Example 5-10 Compilation and installation process

./configure --prefix=/opt/freeware
[...skipping some output...]

Configuration:

 FVWM Version: 2.2.4

 Build extra modules? no
 Have ReadLine support? no
 Have RPlay support? no
 Have XPM support? no: Xpm library or header not found!

make 2>&1 | tee make.log

[...skipping some output...]
make install 2>&1 | tee makeinstall.log

[...skipping some output...]

If you want to do a step-by-step installation of software, but do not have the
sources as a tar or compressed tar file but instead as a SRPM package from any
Linux distribution, you can extract the sources by one of the following two
methods:

� Execute only the %prep section of the SRPM by using rpm -bp and retrieve
the sources from /opt/freeware/src/packages/SOURCES.

� Extract the source archives out of the SRPM by using rpm2cpio, as described
in Section 3.2.5, “Using the RPM Package Manager” on page 44.

The above described installation procedures are generic for applications
developed according to the GNU coding standards, as described at:

http://www.gnu.org/prep/standards_toc.html

In general, developing applications according to these standards will ensure
easy portability to various UNIX-based platforms, including Linux. We will learn a
bit more about this subject in the following section.

Please see Appendix C, “Other Open Source Software for AIX” on page 193 for a
more detailed discussion of other open source software packages, and
comments on interoperability with the Toolbox.
 Chapter 5. Package building and porting 81

5.4 Using libtool to handle shared libraries
The libtool command is a GNU software package which helps develop and
maintain shared libraries. It simplifies the use of shared libraries by hiding the
complexity. The tool is fully integrated with the GNU autoconf and automake
utilities.

For a detail information about libtool, please refer to the following Web site:

http://www.gnu.org/software/libtool/

GNU libtool encapsulates the platform-specific dependencies and the user
interface in a single script. The libtool interface helps to hide the idiosyncrasies
from the programmers. Many of the open source applications we are looking at
make use of libtool.

See the following Web site for more information:

http://www.gnu.org/prep/standards_toc.html

Overview of libtool usage
This section will focus on the basic design and use of libtool. For a more detailed
description, see the libtool documentation:

http://www.gnu.org/software/libtool/

In order to use libtool, the following files are needed in the source tree of the
software to be compiled:

config.guess Attempts to guess a canonical system name (such as
powerpc-ibm-aix4.3.3.0)

config.sub Validation script for a canonical system name

Attention: At the time of writing, the Toolbox contained a patched version of
libtool 1.3.5. IBM developers worked with the maintainers of libtool to get
these patches inserted into the mainstream code of libtool. This helps ensure
an environment for shared libraries on AIX, which is as close as possible to
the rest of the UNIX software community. In mid-April 2001, all images were
rebuilt with this new libtool version, which is able to produce shared libraries
for all versions of AIX that the Toolbox is running on (this applies to both the
POWER and Intel Itanium architectures). Therefore, all early users of the
Toolbox (prior to mid-April 2001) will unfortunately need to update their older
versions via reinstall, so that the packages maintain compatibility with any new
packages that they may build or install from this day forward. It is a short term
inconvenience to the early users, but will provide long-term stability and
compatibility.
82 Running Linux Applications on AIX

ltconfig Generates a libtool script for a given system

ltmain.sh A generic script implementing basic libtool functionality

These files should not be included in the source tree of the application. Instead,
the libtoolize program should be used, which is part of the libtool package itself.
In this case (during a software build), the libtool package has to be installed on
the system prior to running libtoolize. After copying the needed files with
libtoolize to the source tree, the actual libtool script can be generated with the
ltconfig command.

In the libjpeg example, a ltconfig script is included in the source tree. This
embedded ltconfig script does not contain the patches needed for libtool under
AIX, so a patch has to be applied to the ltconfig file (see Example 5-3 on page 72
and Example 5-4 on page 73). Because it is quite common for programs to
embed their own versions of ltconfig and ltmain.sh, this patch has to be applied
to many packages you might want to install. Fortunately, this patch is quite
generic and can be used unchanged (most of the time) for other source code
packages. Be aware that this patch might have to be replaced by a newer
version, as soon as the final changes to libtool have been made by the libtool
maintainers.

Based on information it generates or gathers, ltconfig generates the system
specific libtool script. This process is somewhat similar to running ./configure to
generate a make file.

The resulting libtool script can then be used as an interface to generate
appropriate compiler, linker, debugger, and installer calls. Here are some
examples of how libtool transforms generic calls into system specific syntax for
handling shared libraries (the first line shown is the call of libtool; the following
lines show the resulting commands which libtool executes in turn):

� Compiler calls

libtool gcc -g -O -c foo.c
gcc -g -O -c -fPIC -DPIC foo.c
mv -f foo.o foo.lo
gcc -g -O -c foo.c >/dev/null 2>&1

� Linker call for libraries

libtool gcc -g -O -o libhello.la foo.lo hello.lo \
-rpath /usr/local/lib -lm mkdir .libs
ld -Bshareable -o .libs/libhello.so.0.0 foo.lo hello.lo -lm
ar cru .libs/libhello.a foo.o hello.o
ranlib .libs/libhello.a
creating libhello.la
 Chapter 5. Package building and porting 83

� Linker call for executables

libtool gcc -g -O -o test test.o /usr/local/lib/libhello.la
gcc -g -O -o .libs/test test.o -Wl,--rpath -Wl,/usr/local/lib
/usr/local/lib/libhello.a -lm
creating test

Note that even library dependencies on libm are resolved automatically.

� Debugging executables

libtool gdb hell

In some cases, the debugger has to be called by libtool and not directly.

� Installing libraries

libtool install -c libhello.la /usr/local/lib/libhello.la
install -c .libs/libhello.so.0.0 /usr/local/lib/libhello.so.0.0
install -c libhello.la /usr/local/lib/libhello.la
install -c .libs/libhello.a /usr/local/lib/libhello.a
ranlib /usr/local/lib/libhello.a

Additionally, there is a --finish mode that might have to be called after this
step.

For a more detailed explanation and more examples, see the libtool manual at:

http://www.gnu.org/software/libtool/manual.html

5.5 Examples
In this section, we want to discuss the changes necessary to a spec file in
general and especially when updating Toolbox packages to a newer release
level. As an example, we use wget (see Section 3.2.3, “FTP tools” on page 41 for
more details on wget).

5.5.1 Rebuilding and updating the wget package
As described earlier, we first install the wget SRPM from the Toolbox with the
command:

rpm -iv /cdrom/SRPMS/wget/wget-1.5.3-1.src.rpm

Now change to the directory /opt/freeware/src/packages/SPECS and rebuild the
original wget package with the command:

rpm -ba wget.spec

This should generate the following RPMs:

� wget-1.5.3-1.src.rpm in /opt/freeware/src/packages/SRPMS/
84 Running Linux Applications on AIX

� wget-1.5.3-1.aix4.3.ppc.rpm in /opt/freeware/src/packages/RPMS/ppc/

Let us now take a closer look at the spec file included in this SRPM and compare
it to the spec file included in RedHat Linux 6.2. Example 5-11 shows the
annotated output of a diff command. A “<“ in the first column indicates lines
included in the Toolbox spec file, while a “>” indicates lines from the spec file
included in the RedHat Linux 6.2 distribution.

Example 5-11 Output of the diff command

diff wget.spec wget.specRH
5c5 [the release number of the spec file is changed to 1 in the Toolbox]
< Release: 1

> Release: 6
8a9,10 [RedHat applies two patches, while plain sources are used in the
Toolbox]
> Patch0: wget-1.5.0-man.patch
> Patch1: wget-1.5.3-symlink.patch
26a29,30
> %patch0 -p1 -b .man
> %patch1 -p1 -b .symlink
29c33 [configure is called with the correct prefix for the Toolbox]
< ./configure --prefix=%{_prefix} --sysconfdir=/etc

> #./configure --prefix=/usr --sysconfdir=/etc
30a35
> %configure --sysconfdir=/etc
35,37c40,42 [the correct prefix also has to be added for the following
commands; the AIX provided strip command is used by specifying the complete
path]
< make install prefix=$RPM_BUILD_ROOT%{_prefix} sysconfdir=$RPM_BUILD_ROOT/etc
< gzip $RPM_BUILD_ROOT%{_prefix}/info/*
< /usr/bin/strip $RPM_BUILD_ROOT%{_prefix}/bin/* || :

> make install prefix=$RPM_BUILD_ROOT/usr sysconfdir=$RPM_BUILD_ROOT/etc
> gzip $RPM_BUILD_ROOT/usr/info/*
> strip $RPM_BUILD_ROOT/usr/bin/* || :
39,45d43 [a link to the wget binary is placed in /usr/bin]
< (cd $RPM_BUILD_ROOT
< mkdir -p usr/bin
< cd usr/bin
< ln -sf ../..%{_prefix}/bin/* .
< cd -
<)
<
47c45 [some hard coded paths have to be adapted to include the correct
prefix]
< /sbin/install-info %{_prefix}/info/wget.info.gz %{_prefix}/info/dir

 Chapter 5. Package building and porting 85

> /sbin/install-info /usr/info/wget.info.gz /usr/info/dir
51c49
< /sbin/install-info --delete %{_prefix}/info/wget.info.gz
%{_prefix}/info/dir

> /sbin/install-info --delete /usr/info/wget.info.gz /usr/info/dir
61c59 [and finally the file list is changed slightly]
< %{_prefix}/bin/wget

> /usr/man/man1/wget.*
63,64c61,62
< %{_prefix}/info/*
< %{_prefix}/share/locale/*/LC_MESSAGES/*

> /usr/info/*
> /usr/share/locale/*/LC_MESSAGES/*

We see two categories of changes in this example:

First, some hardcoded paths have to be changed to include the correct prefix
/opt/freeware. This is done by using the %{_prefix} macro, which is defined in the
/usr/opt/freeware/lib/rpm/macros file. Thus, the new spec file is, in a certain
sense, more general than the other one, and could be used on other systems.

The other change is to place links to binaries (and to libraries as well, in certain
cases) in the standard locations (/usr/bin, /usr/linux/bin or /usr/lib, /usr/linux/lib).

Now, we want to update the source code of wget to a newer level. Instead of the
Version 1.5.3 that is currently provided by the Toolbox, we want to use Version
1.6, which that is available from the GNU FTP servers, for example:

ftp://prep.ai.mit.edu/pub/gnu/wget/

It is a simple process to get this new version. Just download the new software
archive wget-1.6.tar.gz to /opt/freeware/src/packages/SOURCES and change
the line:

%define version 1.5.3

in the wget.spec file to:

%define version 1.6

and rebuild by issuing the command:

rpm -ba wget.spec

This should generate the following RPMs:
86 Running Linux Applications on AIX

� wget-1.6-1.src.rpm in /opt/freeware/src/packages/SRPMS/

� wget-1.6-1.aix4.3.ppc.rpm in /opt/freeware/src/packages/RPMS/ppc/

The new version can now be installed with one of these commands:

rpm -iv /opt/freeware/src/packages/RPMS/ppc/wget-1.6-1.aix4.3.ppc.rpm
rpm -Uv /opt/freeware/src/packages/RPMS/ppc/wget-1.6-1.aix4.3.ppc.rpm
rpm -Fv /opt/freeware/src/packages/RPMS/ppc/wget-1.6-1.aix4.3.ppc.rpm

Using the option -iv for rpm will not work if a former version of wget is already
installed on the system.
 Chapter 5. Package building and porting 87

88 Running Linux Applications on AIX

Chapter 6. User and administration
differences

In this chapter, we provide a general overview of the user and administration
environment and its differences between Linux and AIX, such as:

� Desktop and graphical applications

� Available shells, their features, and startup files

� User commands differences

� Administration commands differences

� Boot process differences

� System files differences

6

© Copyright IBM Corp. 2001 89

6.1 Desktop and graphical applications
Here we provide an overview of the XWindow System, the AIX Toolbox for Linux
Applications graphical framework, and the different graphical desktop options
available when installing the AIX Toolbox for Linux Applications, such as KDE
and GNOME.

Also, as described in Section 3.2.6, “Installing KDE2” on page 50 and in
Section 3.2.7, “Installing GNOME” on page 52, we can set KDE2 or GNOME as
the default graphical desktop on AIX instead of CDE, which is the default
graphical desktop on AIX, which will also be discussed in this chapter.

6.1.1 The XWindow System
The XWindow System (sometimes referred to as “X” or “XWindows”) is an open,
cross-platform, client/server system for managing a graphical user interface in a
distributed network. It is the standard graphics interface for UNIX-based
operating systems. When using X, the user can have multiple terminal windows
in the panel at once, and each window can contain a different login session.

One of the great advantages of using the XWindows System is that its
functionality is achieved through the cooperation of different components, rather
than everything being packed into one single large collective.

We will focus on the specifics of the KDE and GNOME desktops environments
provided by the AIX Toolbox for Linux Applications, their functionality, and how
they interact with the AIX graphical environment, which is based on Motif 2.1 (a
window manager) and X11R6 (X server, libraries, and clients).

Window managers
A very important part of the XWindows System, regardless if the desktop being
used is KDE, GNOME, or CDE (the AIX default desktop), is the window
manager. The window manager provides us with the look and feel of the X
interface. This program is in charge of the placement of windows and the user
interface, and is used for resizing, iconifying, moving, and changing the
appearance of the window frames. Table 6-1 describes the window managers
used by the different available desktops.

Table 6-1 Desktops and window managers

Desktop Window manager

KDE / KDE2 Kwm, Kwin, Enlightenment

GNOME sawfish, Enlightenment
90 Running Linux Applications on AIX

Let us now look at the various window managers:

� Kwm/Kwin

kwm/kwin is the window manager of choice for the KDE desktop and is part of
the kdebase package. It offers:

– Complete integration with KDE.

– Complete keyboard control and configuration.

– The ability to be reconfigured at runtime without restarting.

– A session management and working session management proxy for
legacy applications. This proxy is able to restore applications to their
previous state, including window properties (such as maximized,
preferences, iconified, and so on) and the virtual desktop that the GUI was
running.

� Enlightenment

Also known as E, this is a window manager for X. Its design goal is to be as
configurable as possible in look and feel. Enlightenment is also provided as
an alternative window manager in the AIX Toolboox for Linux Applications.
We can enable Enlightenment, once installed, by changing a line on the
startkde script, located in /opt/freeware/kde/bin. This script is shown in
Example 6-1.

Example 6-1 How to change /opt/freeware/kde/bin/startkde

Look for the following line:

ksmserver --restore

and replace it with

ksmserver --restore --windowmanager enlightenment

Some of the features the Enlightenment window manager offers are:

– Fully configurable window borders

– A graphical pager that takes miniature snapshots of your panel

– Theme support

– Translucent moving windows

– Virtual desktops

CDE dtwm

Desktop Window manager
 Chapter 6. User and administration differences 91

– KDE hint support

– GNOME hint support

– Tooltips

� Sawfish

Previously know as sawmill, this program is a highly configurable window
manager for X11. It uses an Emacs Lisp-like scripting language. The user
interface policy is controlled through the Lisp language.

User-configuration is possible either by writing Lisp code in a personal
.sawfishrc file, or through the integrated customization system.

� dtwm

The dtwm window manager is based upon the Open Software Foundation
(OSF/Motif) window manager (mwm). It facilitates the control of elements of
windows, such as placement, size, and icon display. The dtwm is an integral
part of the CDE desktop; it communicates and facilitates access to other
components in the environment, such as the Session and Style Manager. In
addition to this functionality, dtwm provides work space management
capabilities. work spaces allow us to group together related windows, and
each work space is independent of the other work spaces.

AIX Toolbox graphical framework
The AIX Toolbox for Linux Applications provides us with a wide range of tools
that were ported from Linux, such as graphical desktops environments (KDE and
GNOME), GNU-based utilities (gawk, sed, and tar), system shells (bash, tcsh,
and zsh), window managers (enlightenment and sawfish) and administrative
tools (kadmin), which, in future releases of the Toolbox, will be more robust and
will support the intrinsics of AIX, such as VPD (Vital Product Data) and ODM
(Object Data Management).

The graphical desktops available in the AIX Toolbox for Linux Applications are
composed of different elements that provide a specific graphical development
framework, depending upon the desktop you decide to use.

Figure 6-1 on page 93 show us the interaction of the graphical library layers
being used in regards to each of the desktops, along with the interaction of the
libraries and the application layer. For our specific case, this application layer is
the desktops provided in AIX and in the AIX Toolbox for Linux Applications.
92 Running Linux Applications on AIX

Figure 6-1 AIX Toolbox for Linux Applications graphical framework

Desktop development libraries
These libraries provide the developer a software development framework that
enables cross-platform developing and porting between heterogeneous
graphical environments. By using these libraries, developers can create a single
code base for different platforms.

In order to develop a graphical client application, a platform needs to provide the
appropriate libraries that allow the application to communicate with an X server
locally or across a network:

� XLib

Provides the necessary functions that can be called by an application to
perform task such as:

– Create, move, scale, stack, and delete windows.

– Draw lines, rectangles, arcs, and polygons.

– Employ fonts, color maps, graphic images, and cursors.

In theory, the XLib is the only library required to run an X application, and it
provides the common base to create an X client application. It sounds easy, but
many lines of code are required to produce a simple application by using XLib
alone. This is why a set of high level pre-programmed functions known as the X
toolkit, or Xt, is provided on most X client platforms. For example, one single Xt
function could translate into several XLib calls. Xt functions are also called
intrinsics.

GLib

GDK

GTK

Gnome
Libs

GNOME

XLib

Qt
Xt

Motif

KDE CDE
Application Layer

Library Layer
 Chapter 6. User and administration differences 93

� Qt

Qt is a cross-platform C++ application framework developed by Trolltech AS.
It is implemented as a class library and provides an API for applications
developers. This means that an application written with Qt on one platform
can run on another platform by recompiling and linking it with the Qt library for
that specific platform. Qt is widely used on Linux and is the basis of the KDE
desktop environment. It offers a wide range of functions that focus on GUIs
(Graphical User Interface) and basically replace the Motif and Xt toolkit.

For more information regarding Qt, please refer to:

http://www.trolltech.com.

� GLib

GLib is a library for the C language which contains portability and utility
functions. The functionality provided by GLib can be divided into four main
categories: portability, convenience functions, generic data structures, and
the GLib main loop.

– Portability

GLib provides portable equivalents for a number of functions that are
available in some, but not all, C libraries. For example, the functions
functionsg_strcasecmp() and g_memmove() are portable equivalents for
strcasecmp() and memmove(). On platforms where the standard
functionality exists, the GLib functions will just wrap these functions.

– Convenience functions

GLib also provides a number of unique functions to make using C more
convenient. For example, it provides functions to break strings into words,
to do computations with dates, and to log warning messages and error
messages in a flexible fashion.

– Generic data structures

Glib provides unique generic data structures, such as linked lists, hash
tables, balanced trees, and variable-length arrays, and it allows
programmers to take advantage of sophisticated data structures and
improve the efficiency of their programs without having to reimplement the
data structures from scratch. For example, the GHashTable type allows a
programmer to create a hash table for arbitrary objects by simply providing
two functions: a function to compute hash values for the objects in the
table, and a function to compare two values.
94 Running Linux Applications on AIX

– GLib main loop

This is a generic and extensible implementation of an event loop.
Standard event sources that GLib provides include timers, IO callbacks,
and idle functions, but it is also possible to add completely new types of
event sources into the GLib main loop.

GDK uses this functionality to add an event source for X events. By not
tying the main loop directly into the Toolkit, as is frequently done, GLib
allows both graphical and non-graphical event-driven programs.

� GDK

The GDK library provides a layer of abstraction that lays between GTK+
widgets and applications and the underlying window system. Instead of
making calls directly to the XWindow System, applications call GDK when
they need to draw to the panel or handle events.

� GTK

GTK is a container based toolkit, which means that most widgets (elements of
a graphical interface that display or provide information, such as icons,
buttons, selection boxes, windows, and so on) serve as containers that hold
other widgets. An example of this situation is a button, which is a container
that will most likely contain a label widget.

The GTK and GLib libraries provide the foundation for the user interface of
GNOME. The GTK user interface toolkit was originally developed as part of
the GIMP (GNU Image Manipulation Program) project, and has become
widely used because of its attractive appearance, flexible and convenient
programming interface, and unrestrictive licensing under the GNU LGPL.

� GNOME libraries

The GNOME libraries are divided into three basic parts:

– libgnome

A utility library very similar to the GLib, which provides services such as
configuration loading and saving, application launching, mime-type
identification, and metadata storage.

– libgnomeui

The user interface part; contains application framework (GnomeApp), the
canvas (GnomeCanvas), and other useful, specialized widgets.

– libgnorba

Used when integrating GNOME/GTK applications with CORBA (Common
Object Request Broker Architecture). It provides the GNOME name server
for CORBA and integration of ORBit (a CORBA 2.2-compliant Object
Requester Broker) and GNOME/GTK.
 Chapter 6. User and administration differences 95

For more information regarding GDK, GTK+ and GNOME please refer to:

http://www.gtk.org/

and

http://www.gnome.org/

6.1.2 The KDE desktop
KDE is an open source graphical desktop environment for the UNIX operating
system and is built on top of the X11 environment. It contains a compound
application development framework, which means it provides a large collection of
graphical user interface (GUI) applications and an office application suite called
Koffice.

The KDE distribution includes modules such as:

� KDE-Libs

Various run-time libraries, such as kdecore, kdeui, and khtwm

� KDE-Core

KPanel, Kfm, Kcontrol, Konqueror, Kdisplay, Kwm, Organizer, and KDEHelp

� KDE-Graphics

Kpaint, Kdvi, KGhostview, and Kfax

� KDE-Utilities

Kedit, Kcal, and Knotes

� KDE-Games

Kasteroids, Konquest, Tron, Smiletris, and SnakeRace

� KDE-Network

� KDE-Admin

KPackage, KUser, and KDE System Guard (Task Manager and a
Performance Monitor)

� KDE-Network

kmail, Windows Shares (SMB client), Korn (KDE mail checker), and KNode
(news reader)

The KDE desktop consists of three main areas:

� A main panel at the bottom of the panel is used to start applications and
switch between desktops. A large K icon (on the left side of the panel)
displays a menu of applications to start when clicked, as shown in Figure 6-2
on page 97.
96 Running Linux Applications on AIX

� A taskbar at the bottom-center of the panel, used to switch between and
manage currently running applications. Click on an application on the taskbar
to switch to the application, as shown in Figure 6-2.

� The desktop itself, on which frequently used files and folders may be placed.
KDE provides multiple desktops, each of which has its own or shared
windows. Click on the numbered buttons on the panel to switch between
desktops, as shown in Figure 6-3.

Figure 6-2 KDE desktop main panel

Figure 6-3 KDE desktop and its main panel

Task bar
‘K’ icon

Applications menu

Multiple desktops

Task bar
 Chapter 6. User and administration differences 97

KDE applications
As shown in Figure 6-3 on page 97, we use the large letter K to launch the
application menu. KDE provides a set of applications to customize the behavior,
functionality, look, and feel of the desktop.

For example, we can customize a frequently used application by adding it to the
application starter menu simply by selecting the menu Application
starter->Panel Menu->Add->Application->System->File Manager (Super
User Mode). Figure 6-4 shows the sequence in a graphical manner. Figure 6-5
on page 99 shows the result: the File Manager is finally added to the main panel
and can be quickly and directly accessed from here.

Figure 6-4 Adding an application to the starter menu
98 Running Linux Applications on AIX

Figure 6-5 Result from adding an application to the starter menu

We can now launch the application File Manager from the starter menu by
clicking the added button. The result is shown in Figure 6-6 on page 100.

Because we have used the application KDE File Manager throughout our
example, is important to notice one of the great features the KDE File Manager
application provides, which is the capability of accessing a URL (Uniform
Resource Locator) from the Internet directly, and, by drag and drop, copy the
remote file or complete directory to a local destination. This type of technology is
used throughout the KDE desktop and is called network transparency. It allows
KDE applications to drag and drop an icon from the Kfm/browser to an editor or
folder.

Added application
 Chapter 6. User and administration differences 99

Figure 6-6 KDE File Manager main window

KDE provides an suite of office applications (KOffice) which includes:

KWord A word processor program

KSpread A spreadsheet program

KPresenter A presentations program

KChart An application to draw charts and diagrams

KIllustrator A vector drawing application

KFormula An editor for mathematical formulas

KImage An image viewing application

Figure 6-7 on page 101 and Figure 6-8 on page 102 show sample snapshots
from some of the KOffice applications. These samples where taken using
Ksnapshot (a KDE utility used to capture images) and processed using KImage
(used to convert the snapshot to a compatible image format).

Contents of remote site

URL
100 Running Linux Applications on AIX

Figure 6-7 KOffice sample 1
 Chapter 6. User and administration differences 101

Figure 6-8 KOffice sample 2

6.1.3 The GNOME desktop
GNOME (GNU Network Object Model Environment) was conceived as the
answer to UNIX’s lack of user friendliness. It was originally designed by
programmers for programmers, and the primary GNOME interface was the
command line.

GNOME, an effort by the GNU Project to address these problems, is a graphical
user interface and a set of computer desktop applications. It is a free and
easy-to-use desktop environment for the user, as well as a powerful application
framework for the software developer. GNOME is highly configurable, enabling
you to set your desktop the way you want it to look and feel. It gives you such
flexibility that you can make the graphical interface look like Microsoft® Windows
or Mac® OS.

The user interface part of GNOME is built on top of the X foundation and consists
of the following groups of applications:

� GNOME desktop system

A set of tools that provides a powerful desktop interface to users, plus various
utility applications for day-to-day work.
102 Running Linux Applications on AIX

� GNOME application framework libraries

A set of libraries that ensures that GNOME applications look and behave
properly.

� GNOME productivity applications

Various productivity applications that are part of the GNOME Project and are
distributed as part of the GNOME system.

GNOME desktop
The GNOME desktop provide us with the functionality of any modern operating
system desktop. We can drag files, programs, and directory folders to the
desktop; we can also drag those items back into GNOME-compliant applications,
allowing you to quickly access any items you select.

One of the rich functionalities of the GNOME desktop is that it can work with
basically any window manager, but the desktop’s core functionality and best
usage comes through when using a GNOME-compliant window manager, such
as Enlightenment, fvwm2, IceWM, or WindowMaker.

GNOME includes a panel (for starting applications and displaying status) (see
Figure 6-9 for more details), a desktop (where data and applications can be
placed), a set of standard desktop tools and applications (see Figure 6-10 on
page 104 for more details), and a set of conventions that make it easy for
applications to cooperate and be consistent with each other.

The GNOME footprint, shown in Figure 6-9, allows you to launch all of GNOME’s
wonderful features, such as applications, configuration tools, command line
prompt, and logout and lock screen commands.

Figure 6-9 GNOME panel

GNOME footprint
 Chapter 6. User and administration differences 103

Figure 6-10 GNOME desktop

6.1.4 Package managing using KDE or GNOME
The AIX Toolbox for Linux Applications includes two very common GUIs for the
RPM Package Manager: KPackage and GnoRPM.

KPackage
KPackage is a GUI interface for the RPM, Debian, Slackware, and BSD package
managers, and is part of KDE. As a result, it is fully integrated with the KDE file
manager. The KPackage GUI interface can be seen in Figure 6-11 on page 105.

KPackage makes use of the KDE drag and drop protocol. This means that you
can drag and drop packages onto KPackage to open them. Dropping a file onto
the Find File dialog will find the package that contains the file.

When KPackage is started, it displays two panels with the package tree on the
left. This tree shows installed packages and, optionally, new and updated
packages as well.

The tabs on the left panel are used to display installed packages, updated
packages, available packages, or all packages.
104 Running Linux Applications on AIX

The package tree shows the package name, package size, the version, and (in
the case of an available package which would update an installed package) the
version of the already installed package.

The right panel has tabs for displaying two different types of information about
selected packages: the properties tab, which displays information on the
selected package, and the file list tab, which shows the files in the package and,
for installed packages, shows the state of the files.

Figure 6-11 KPackage GUI interface

GnoRPM
GnomeRPM (or gnorpm) is a graphical user interface for the RPM Package
Manager that allows us to locate, through rpmfind (a program that will find RPM
files for you), and download packages with all their dependencies and install
them on our system.
 Chapter 6. User and administration differences 105

Figure 6-12 GnomeRPM (gnorpm) main window

Figure 6-12 displays the main package window. It has a tree of the different
package groups on the left and a list of packages in the selected group on the
right. The package list on the right can be configured to display as icons or as a
list. From this window, you can manipulate the packages that are currently
installed in the system.

After selecting some packages, you can uninstall, query, or verify them. Any of
these operations can be performed either from the menu items or from the
toolbar buttons.

We can bring up windows for other parts of gnorpm from the main window, such
as:

Install window Used to install new packages on the system.

Find window Used to search and query package information for files
installed on the machine, as shown in Figure 6-13 on
page 107.

Web find window Allows you to find and download a package with its
dependencies off the Internet, as shown in Figure 6-14 on
page 108.
106 Running Linux Applications on AIX

Preferences window Allows you to change the settings for the gnorpm utility,
as shown in Figure 6-15 on page 108.

Figure 6-13 Display package information using gnorpm
 Chapter 6. User and administration differences 107

Figure 6-14 gnorpm web find feature

Figure 6-15 gnome settings for rpmfind

URL used
by gnorpm
to obtain
packages
from the
internet.
108 Running Linux Applications on AIX

6.1.5 CDE desktop
AIX Version 4 introduced the Common Desktop Environment (CDE). The
Common Desktop Environment is an integrated graphical user interface for open
systems desktop computing, combining X Window System, OSF/Motif®, and
new Common Desktop Environment technologies. CDE is designed to work
across a large range of client/server platforms, support small workgroups to large
enterprises, and support simple text and data, as well as advanced collaborative
multimedia applications.

CDE allows system administrators to gain a higher degree of control over the
desktop computing environment that has often been lost in the move from
centralized to client-server or distributed computing. CDE gives end users
access to the power and flexibility of today's networked desktop systems.

Many of the familiar AIX tools, such as the System Management Interface Tool
(SMIT), Visual Systems Management (VSM), and InfoExplorer can be launched
directly from the desktop. Other products, including third-party applications, can
be installed into the desktop's application manager folder, where they will appear
as icons.

The look and feel of the CDE desktop is composed of a series of components
called panels.

The front panel is a special desktop window that contains a set of controls for
doing common tasks. The front panel moves with you as you switch work
spaces. Figure 6-16 on page 110 shows the front panel of the desktop; along the
top of the front panel is a row of arrow buttons, which open the subpanels.
 Chapter 6. User and administration differences 109

Figure 6-16 CDE front panel

The front panel is divided in two key elements:

� Main Panel

The main panel is the horizontal window at the bottom of the display. It
contains a number of frequently used controls, including the work space
switch, which contains buttons for changing to other work spaces.

In Figure 6-17 on page 111, we provide a brief description of the main panel
action tasks.
110 Running Linux Applications on AIX

Figure 6-17 Main panel action tasks

� Subpanels

If a control in the Main Panel has an arrow button on top of it, then that control
has a subpanel. Below these arrows are icons that allow us to execute
different desktop administrative tasks. A subpanel example is provide in
Figure 6-18 on page 112.

Clock: Displays the current time.

Calendar: Provides facilities for the user to manage appointments.

File Manager: Provides facilities to graphically navigate file systems.

Text Editor: Provides a simple, easy-to-use editor.

Mailer: Enables the user to send, receive, and manage e-mail.

Work space Switch: Enables the user to switch work spaces.

Print Manager: Allows the user to view and manage print jobs.

Help Manager: Provides a help guide for the desktop.

Trash Can: Allows the user to place files without deleting them.

Style Manager: Allows the user to customize the desktop.

Applications Manager: Enables the user to manage applications.
 Chapter 6. User and administration differences 111

Figure 6-18 Subpanel example

6.2 Available shells
A shell is a UNIX term for the interactive UNIX user interface within the operating
system. The shell is the layer of programming that understands and executes the
commands a user enters. It is basically a command interpreter.

AIX, by default, provides the following shells:

� bsh

The Bourne shell is an interactive command interpreter and command
programming language. It can be run as a login shell or as a subshell under
the login shell. Only the login command can call the Bourne shell as a login
shell. It does this by using a special form of the bsh command name: -bsh.

� csh

The C shell is an interactive command interpreter and a command
programming language. It uses a syntax that is similar to the C programming
language. The csh command starts the C shell.
112 Running Linux Applications on AIX

� ksh

The Korn shell is an interactive command interpreter and command
programming language. It conforms to the Portable Operating System
Interface for Computer Environments (POSIX), an international standard for
operating systems. The Korn shell (also known as the POSIX shell) offers
many of the same features as the Bourne and C shells, such as I/O
redirection capabilities, variable substitution, and file name substitution. It
also includes several additional command and programming language
features:

– Arithmetic evaluation

Performs integer arithmetic using the built-in UNIX let command (used to
assign values to data variables and to perform arithmetic operations or
other calculations on data in columns or constants), using any base from 2
to 36.

– Command history

The Korn shell stores a file that records all of the commands you enter.

– Coprocess facility editing

Enables you to run programs in the background and exchange information
with these background processes.

� psh

The POSIX shell, similar to ksh.

� Rsh

The restricted shell is used to set up login names and execution environments
whose capabilities must be more controlled than those of the regular Bourne
shell.

The Rsh or bsh -r command opens the restricted shell. The behavior of these
commands is identical to those of the bsh command, except that the following
actions are not allowed:

– Changing the directory (with the cd command)

– Setting the value of PATH or SHELL variables

– Specifying path or command names containing a / (slash)

– Redirecting output

� sh

This is the default shell, /usr/bin/sh (or /bin/sh), and is linked to ksh in AIX.
 Chapter 6. User and administration differences 113

� tsh

The tsh (trusted shell) command is a command interpreter that provides
greater security than the Korn shell (the standard login shell). Generally, a
user calls the tsh shell by using the secure attention key (SAK) sequence,
which is Ctrl-X followed by Ctrl-R, after a login. The tsh shell also can be
invoked by defining it as the login shell in the /etc/passwd file.

The trusted shell differs from the Korn shell in the following ways:

– The function and alias definitions are not supported. Alias definitions are
only supported in the /etc/tsh_profile file.

– The IFS and PATH environment variables cannot be redefined.

– Only trusted programs can be run from the tsh shell.

– The history mechanism is not supported.

– The only profile used is the /etc/tsh_profile file.

– The trusted shell has the following built-in commands:

• logout exits the login session and terminates all processes.

• shell re-initializes the user's login session. The effect is the same as
logging in to the system.

• su resets the effective ID to the user's identity on the system and
executes another trusted shell.

Table 6-2 provides a comparison of standard AIX shell environments.

Table 6-2 AIX standard shells feature comparison

Feature bsh csh ksh

Compatible with
bsh

n/a no yes

Job control yes yes yes

Command history no yes yes

Command line
editing

no yes yes

Aliases no yes yes

noclobber
(protecting files
from editing)

no yes yes

ignoreeof (ignore
control-D)

no yes yes
114 Running Linux Applications on AIX

The AIX Toolbox for Linux Applications introduces new shells on AIX. These new
shell environments are frequently used and are very common to the Linux
community.

These shell environments are:

� bash

The bash shell is an sh-compatible command language interpreter that
executes commands read from the standard input or from a file. bash also
incorporates useful features from the Korn and C shells (ksh and csh).

The name is an acronym for the `Bourne-Again SHell', a pun on Steve
Bourne, the author of the direct ancestor of the current UNIX shell /bin/sh,
which appeared in the Seventh Edition Bell Labs Research version of UNIX.

The bash shell is intended to be an implementation that conforms to the IEEE
POSIX Shell and Tools specification (IEEE Working Group 1003.2). It offers
functional improvements over sh for both interactive and programming use.
bash is quite portable, and currently runs on nearly every version of UNIX and
a few other operating systems. Some independent ports exist for MS-DOS®,
OS/2, Windows®, and Windows NT®.

The bash shell provides:

– Bourne shell style:

• Looping constructs

• Conditional constructs

– C-shell style features:

• Job control

• History expansion

• Protected redirection

• C shell variables

• Tilde expansion

– Korn shell style features:

• Korn shell constructs

• Korn shell builtins

• Korn variables

• Alias builtins

Logout file no yes no

Feature bsh csh ksh
 Chapter 6. User and administration differences 115

– Some unique bash builtin commands are:

• bind: Binds a key sequence to a readline function, or to a macro.

Syntax:

bind [-m keymap] [-lvd] [-q name]
bind [-m keymap] -f filename
bind [-m keymap] keyseq:function-name

• builtin: Runs a shell builtin. This is useful when you wish to rename a
shell builtin to be a function, but need the functionality of the builtin
within the function itself.

Syntax:

builtin [shell-builtin [args]]

• command: Runs <command> with <arg> ignoring shell functions. If you
have a shell function called ls, and you wish to call the command ls,
you can say command ls.

Syntax:

command [-pVv] command [args ...]

• declare: Declares variables and/or gives them attributes.

Syntax:

declare [-frxi] [name[=value]]

• enable: Enables and disables builtin shell commands.

Syntax:

enable [-n] [-a] [name ...]

• help: Displays helpful information about builtin commands.

Syntax:

help [pattern]

An example of this help command is shown in Example 6-2 on
page 117.
116 Running Linux Applications on AIX

Example 6-2 bash help command usage

bash2-2.04$ help alias
alias: alias [-p] [name[=value] ...]
 `alias' with no arguments or with the -p option prints the list
 of aliases in the form alias NAME=VALUE on standard output.
 Otherwise, an alias is defined for each NAME whose VALUE is given.
 A trailing space in VALUE causes the next word to be checked for
 alias substitution when the alias is expanded. Alias returns
 true unless a NAME is given for which no alias has been defined.
bash2-2.04$

• local: For each argument, creates a local variable called <name>, and
gives it a <value>. local can only be used within a function; it makes the
variable <name> have a visible scope restricted to that function and its
children.

Syntax:

local name[=value]

• type: For each <name>, indicate how it would be interpreted if used as
a command name.

Syntax:

type [-all] [-type | -path] [name ...]

For a complete reference of the bash shell, please refer to:

http://www.gnu.org/manual/bash-2.02/html_node/bashref_toc.html

or

http://howto.tucows.com/man/man1/bash.1.html.

� tcsh

tcsh is an enhanced but completely compatible version of the Berkeley UNIX
C shell (csh). It is a command language interpreter usable both as an
interactive login shell and a shell script command processor. It includes a
command line editor, programmable word completion, spelling correction, a
history mechanism, a job control, and a C-like syntax.

Key features of the tcsh shell:

– Spelling correction

The shell can correct the spelling of file names, commands and variable
names, as well as completing and listing them.
 Chapter 6. User and administration differences 117

Individual words can have their spellings corrected with the spell-word
editor command (usually bound to Ctrl-s and Ctrl-S) and the entire input
buffer can be corrected with spell-line (usually bound to Ctrl-$). To learn
how your keys are set up, run the command bindkey -b (please look at
Example 6-3 for more information). The correct shell variable can be set to
cmd to correct the command name or to all to correct the entire line each
time return is typed, and autocorrect can be set to correct the word to be
completed before each completion attempt. Example 6-4 on page 119
shows how to set the spelling function and the output result.

Example 6-3 Summarize output from command bindkey -b

Standard key bindings
"^[B" -> backward-word
"^[C" -> capitalize-word
"^[D" -> delete-word
"^[F" -> forward-word
"^[H" -> run-help
"^[L" -> downcase-word
"^[N" -> history-search-forward
"^[P" -> history-search-backward
"^[R" -> toggle-literal-history
"^[S" -> spell-word
"^[U" -> upcase-word
"^[W" -> copy-region-as-kill
"^[_" -> insert-last-word
"^[b" -> backward-word
"^[c" -> capitalize-word
"^[d" -> delete-word
"^[f" -> forward-word
"^[h" -> run-help
"^[l" -> downcase-word
"^[n" -> history-search-forward
"^[p" -> history-search-backward
"^[r" -> toggle-literal-history
"^[s" -> spell-word
"^[u" -> upcase-word
"^[w" -> copy-region-as-kill
"^[^?" -> backward-delete-word
"^X^X" -> exchange-point-and-mark
"^X*" -> expand-glob
"^X$" -> expand-variables
"^XG" -> list-glob
"^Xg" -> list-glob
"^Xn" -> normalize-path
"^XN" -> normalize-path
"^X?" -> normalize-command
"^X^I" -> complete-word-raw
"^X^D" -> list-choices-raw
118 Running Linux Applications on AIX

Arrow key bindings
down -> down-history
up -> up-history
left -> backward-char
right -> forward-char

Example 6-4 Use of tcsh spelling correction capability

> set correct=cmd
> lz -lt /etc/a*

CORRECT>ls -lt /etc/a* (y|n|e|a)? yes

-rw-r--r-- 1 root system 20480 Feb 21 14:51 /etc/aliases.db
-rw-r--r-- 1 root system 0 Feb 02 12:59 /etc/aliases.dir
-rw-r--r-- 1 root system 1024 Feb 02 12:59 /etc/aliases.pag
-rw-r--r-- 1 root system 1329 Feb 02 12:58 /etc/aliases

– Completion and listing

The shell is often able to complete words when given a unique
abbreviation. Type part of a word (for example ls /usr/lost) and hit the Tab
key to run the complete-word editor command. The shell completes the
file name /usr/lost to /usr/lost+found/, replacing the incomplete word with
the complete word in the input buffer. (Note the terminal /; completion
adds a / to the end of completed directories and a space to the end of
other completed words to speed typing and provide a visual indicator of
successful completion. The addsuffix shell variable can be unset to
prevent this.) If no match is found (perhaps /usr/lost+found does not exist),
the terminal bell rings. If the word is already complete (perhaps there is a
/usr/lost on your system, or perhaps you were thinking too far ahead and
typed the whole thing) a / or space is added to the end if it is not already
there.

Completion works anywhere in the line, not just at the end; completed text
pushes the rest of the line to the right. Completion in the middle of a word
often results in leftover characters to the right of the cursor, which need to
be deleted.

This command line completion is shown in Example 6-5.

Example 6-5 Use of tab and CTRL-D complete a command line

> ls -lt /usr/l (Type CTRL-D instead of ENTER key to finish sentence).
lbin/ libexec@ local/ lpd@
lib/ linux/ lost+found/ lpp/
> ls -lt /usr/l

> ls -lt MYDIR/SUBDIR/ (Type /MYDIR/SU+TAB key, the sentence will be finished).
 Chapter 6. User and administration differences 119

total 1
-rw-r--r-- 1 test02 staff 83 Feb 26 16:06 test.c
>

– Command line editing

Command-line input can be edited using key sequences much like those
used in GNU Emacs or vi. The editor is active only when the edit shell
variable is set, which it is by default in interactive shells. The bindkey
builtin can display and change key bindings. Emacs-style key bindings are
used by default (unless the shell was compiled otherwise; see the version
shell variable), but bindkey can change the key bindings to vi-style
bindings all at once. Refer to Example 6-9 on page 125 for additional
information on how to personalize your environment.

For a complete reference of the tcsh shell, please refer to:

http://howto.tucows.com/man/man1/tcsh.1.html.

� zsh

The zsh is a UNIX command interpreter (shell) usable as an interactive login
shell and as a shell script command processor. Of the standard shells, zsh
most closely resembles ksh, but includes many enhancements. Zsh has
command line editing, builtin spelling correction, programmable command
completion, shell functions, and a history mechanism.

Some of the key features of the zsh shell are:

– Command line editing:

• Programmable completion, which incorporates the ability to use the
power of zsh globbing

• Multi-line commands editable as a single buffer

• Variable editing

• Command buffer stack

• Inline expansion of variables and history commands

– Globbing, which is a very powerful feature (see Example 6-6 on page 121,
Example 6-7 on page 122, and Example 6-8 on page 122). It includes:
120 Running Linux Applications on AIX

• Recursive globbing

• File attribute qualifiers

• Full alternation and negation of patterns

– Handling of multiple redirections (simpler than tee)

– Path expansion

– Spelling correction

Example 6-6 Using zsh with globbing

luix-2% ls /tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm (Standard way)
Makefile colormaps.c functions.c menus.o read.c
Makefile.in colormaps.o functions.o misc.c read.o
add_window.c colors.c fvwm.c misc.h resize.c
add_window.o colors.o fvwm.h misc.o resize.o
alpha_header.h complex.c fvwm.man module.c screen.h
bindings.c complex.o fvwm.o module.h style.c
bindings.o decorations.c fvwm95 module.o style.o
borders.c decorations.o fvwm95.man move.c sun_headers.h
borders.o events.c icons.c move.o virtual.c
builtins.c events.o icons.o parse.h virtual.o
builtins.o focus.c menus.c placement.c windows.c
buttons.h focus.o menus.h placement.o windows.o
luix-2%

luix-2% setopt extendedglob (Enabling globbing)
luix-2% ls -c /tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/^*.o (Negates all .o files)
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/Makefile
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/Makefile.in
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/add_window.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/alpha_header.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/bindings.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/borders.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/builtins.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/buttons.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/colormaps.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/colors.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/complex.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/decorations.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/events.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/focus.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/functions.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/fvwm.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/fvwm.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/fvwm.man
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/fvwm95
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/fvwm95.man
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/icons.c
 Chapter 6. User and administration differences 121

/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/menus.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/menus.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/misc.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/misc.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/module.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/module.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/move.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/parse.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/placement.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/read.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/resize.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/screen.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/style.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/sun_headers.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/virtual.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/windows.c
luix-2%

Example 6-7 Using zsh with grouping

luix-2% ls -c /tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/(style|module).*
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/module.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/module.h
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/module.o
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/style.c
/tmp/FVWM98/fvwm98-2.0.43b.orig/fvwm/style.o
luix-2%

Example 6-8 Using zsh to find setuid files

luix-2% ls -l /bin/s*(s)
-r-sr-xr-x 1 root system 8810 Jul 20 1999 /bin/script
-r-sr-xr-x 1 root system 6358 Jun 16 2000 /bin/setclock
-r-sr-xr-x 1 root security 32048 Aug 31 10:09 /bin/setgroups
-r-sr-xr-x 1 root security 19108 Aug 05 1999 /bin/setsenv
-r-sr-xr-x 1 root security 5190 Aug 05 1999 /bin/shell
-r-sr-xr-x 1 root security 17974 Aug 05 1999 /bin/su
-r-sr-x--- 1 root security 79120 Aug 29 2000 /bin/sysck
luix-2%
122 Running Linux Applications on AIX

For a complete reference for the zsh shell, please refer to:

http://sunsite.dk/zsh

or

http://www.zsh.org

Table 6-3 provides a comparison of the new AIX shell environments.

Table 6-3 AIX Toolbox for Linux Applications shell feature comparison

6.2.1 Overview of shell startup files
When we login, the shell defines the user environment after reading the shell
startup files. During the login process, the general characteristics of the user
environment are defined by the values given to the environment variables; this
environment is kept until the user logs off the system.

Login execution sequence
Regardless of what shell we are running, the /etc/environment and
/etc/security/environ files are always read. Table 6-4 on page 124 and Table 6-5
on page 124 display the order in which the login execution sequence takes place.

The /etc/environment file sets up the user environment, such as the minimal
search path, time zone, and language. This file is not a shell script type file and
the only data format that it accepts is Name=<value>. We must understand that
this file is read by all processes started by the init process and that it affects all
login shells.

The /etc/security/environ file is an ASCII file that contains stanzas with the
environment attributes for each individual user. Each stanza is identified by a
user name and accepts the format Attribute=<value>.

Feature bash tcsh zsh

Command history yes yes yes

Command alias yes yes yes

Shell scripts yes yes yes

Filename
completion

yes yes yes

Command line
editing

yes yes yes

Job control yes yes yes
 Chapter 6. User and administration differences 123

The user stanza in the /etc/security/environ file can have the following attributes:

� usrenv

Defines environment variables (separated by commas) to be placed in the
user environment at login time.

� sysenv

Defines environment variables to be placed in the user protected state
environment at login time. These variables are protected from access by
unprivileged programs.

Table 6-4 Login execution sequence for ksh, csh, and sh

Table 6-5 Login execution sequence for bash, tcsh, and zsh

Korn shell C shell Bourne shell

/etc/environment /etc/environment /etc/environment

/etc/security/environ /etc/security/environ /etc/security/environ

/etc/profile /etc/csh.cshrc /etc/profile

$HOME/.profile /etc/csh.login $HOME/.profile

$HOME/.kshrc $HOME/.cshrc

$HOME/.login

Bash shell Tcsh shell Z shell

/etc/environment /etc/environment /etc/environment

/etc/security/environ /etc/security/environ /etc/security/environ

/etc/profile /etc/csh.cshrc /etc/zshenv

$HOME/.bash_profile /etc/csh.login $HOME/.zshenv

$HOME/.bash_login $HOME/.tcshrc /etc/zprofile

$HOME/.profile ($HOME/.cshrc) $HOME/.zprofile

($HOME/.bashrc) $HOME/.history /etc/zshrc

$HOME/.login $HOME/.zshrc

$HOME/.cshdirs /etc/zlogin

$HOME/zlogin
124 Running Linux Applications on AIX

Command line editing in ksh
For Linux users that prefer the usage of the cursor keys for editing the command
line (emacs-style), Example 6-9 and Example 6-10 show a .profile and a .kshrc
that accomplish the same behavior on AIX and in our Toolbox environment.

Example 6-9 .profile and emacs style key binding

Add the following lines to your .profile in your home directory:

if [-f $HOME/.kshrc -a -r $HOME/.kshrc]; then
 ENV=$HOME/.kshrc # set ENV if there is an rc file
 export ENV
 . $ENV
fi

alias -x __A=`echo "\020"` # up arrow = ^p = back a command
alias -x __B=`echo "\016"` # down arrow = ^n = down a command
alias -x __C=`echo "\006"` # right arrow = ^ = forward a character
alias -x __D=`echo "\002"` # left arrow = ^b = back a character
alias -x __H=`echo "\001"` # home = ^a = start of line

set -o emacs # emacs in-line editing mode

Example 6-10 .kshrc

Add the following lines to your .kshrc file in your home directory:

alias -x __A=`echo "\020"` # up arrow = ^p = back a command
alias -x __B=`echo "\016"` # down arrow = ^n = down a command
alias -x __C=`echo "\006"` # right arrow = ^ = forward a character
alias -x __D=`echo "\002"` # left arrow = ^b = back a character
alias -x __H=`echo "\001"` # home = ^a = start of line

set -o emacs # emacs in-line editing mode

Sample shell startup files
Example 6-11 on page 126 and Example 6-12 on page 126 show some
examples for the tcsh and zsh shell startup files, such as .tcshrc and .zshrc.

Note: If the shell is not a login shell, some of the mentioned startup files will
not be read.

Note: If using bash, tcsh, or zsh, you do not need to customize your cursor
keys environment, because the shell does it by default.
 Chapter 6. User and administration differences 125

Example 6-11 .tcshrc

setenv PATH
/usr/linux/bin:/opt/freeware/bin:/usr/local/bin:/usr/bin:/etc:/usr/sbin:/usr/uc
b:${HOME}/bin:/usr/bin/X11:/sbin:/opt/freeware/kde/bin:/opt/freeware/
enlightenment/bin:/opt/freeware/lib/xscreensaver:.

setenv GCC_EXEC_PREFIX
/opt/cygnus/aix43-000718/H-powerpc-ibm-aix4.3.3.0/lib/gcc-lib/
setenv PATH ${PATH}/opt/cygnus/aix43-000718/H-powerpc-ibm-aix4.3.3.0/bin

setenv MOZILLA_HOME /opt/netscape
setenv MANPATH /opt/freeware/man:/opt/cygnus/aix43-000718/man

list of other places to look
set manpath = (/usr/local/man /usr/local/X11R6/man /usr/local/X/man \
 /usr/local/gnu/man /usr/local/lang/man /usr/lang/man)

only include if it exists
foreach mandir (${manpath})
 if (-d ${mandir}) then
 setenv MANPATH ${MANPATH}:${mandir}
 endif
end

Example 6-12 .zshrc

#
Generic .zshrc used in our AIX Toolbox for Linux Applications
Environment

Use hard limits, except for a smaller stack and no core dumps
unlimit
limit stack 8192
limit core 0
limit -s

umask 022

Set up aliases

alias mv='nocorrect mv' # no spelling correction on mv
alias cp='nocorrect cp' # no spelling correction on cp
alias mkdir='nocorrect mkdir' # no spelling correction on mkdir
alias j=jobs
alias pu=pushd
alias po=popd
alias d='dirs -v'
alias h=history
alias grep=egrep
126 Running Linux Applications on AIX

alias ll='ls -l'
alias la='ls -a'

List only directories and symbolic
links that point to directories
alias lsd='ls -ld *(-/DN)'

List only file beginning with "."
alias lsa='ls -ld .*'

Shell functions
setenv() { export $1=$2 } # csh compatibility

Autoload all shell functions from all directories
in $fpath that have the executable bit on
(the executable bit is not necessary, but gives
you an easy way to stop the autoloading of a
particular shell function).
for dirname in $fpath
do
 autoload $dirname/*(.x:t)
done

Global aliases -- These do not have to be
at the beginning of the command line.
alias -g M='|more'
alias -g H='|head'
alias -g T='|tail'

manpath=(/usr/man /opt/freeware/man:/opt/cygnus/aix43-000718/man)
export MANPATH

Filename suffixes to ignore during completion
fignore=(.o .c~ .old .pro)

Set prompts
PROMPT='%m%# ' # default prompt
RPROMPT=' %~' # prompt for right side of screen

Some MAIL environment variables
export MAIL=/var/spool/mail/$USERNAME

MAILCHECK=300
HISTSIZE=200
DIRSTACKSIZE=20

Set/unset shell options
setopt notify globdots correct pushdtohome cdablevars autolist
setopt correctall autocd recexact longlistjobs
 Chapter 6. User and administration differences 127

setopt autoresume histignoredups pushdsilent noclobber
setopt autopushd pushdminus extendedglob rcquotes mailwarning
unsetopt bgnice autoparamslash

Setup some basic programmable completions. To see more examples
of these, check Misc/compctl-examples in the zsh distribution.
compctl -g '*(-/)' cd pushd
compctl -g '*(/)' rmdir dircmp
compctl -j -P % -x 's[-] p[1]' -k signals -- kill
compctl -j -P % fg bg wait jobs disown
compctl -A shift
compctl -caF type whence which
compctl -F unfunction
compctl -a unalias
compctl -v unset typeset declare vared readonly export integer
compctl -e dicompctl -d enable

Some nice key bindings
#bindkey '^X^Z' universal-argument ' ' magic-space
#bindkey '^X^A' vi-find-prev-char-skip
#bindkey '^Z' accept-and-hold
#bindkey -s '\M-/' \\\\
#bindkey -s '\M-=' \|

bindkey -v # vi key bindings

bindkey -e # emacs key bindings
bindkey ' ' magic-space # also do history expansion on spacesable

6.3 Commands and syntax differences
In this section, we want to point out some similarities and differences in the
commands and their usage on AIX compared to a native Linux environment.
Appendix B, “Differences in commands” on page 187 lists the commands that
differ in syntax. Detailed descriptions of their syntax are included in the AIX
Toolbox for Linux Applications CD and the Web site:

http://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/docs/
128 Running Linux Applications on AIX

In some cases, the differences are bigger than just a changed syntax, and Linux
commands have to be replaced by completely other AIX commands. Table 6-6
gives examples of some Linux commands and their AIX equivalent.

Table 6-6 Commands differences examples

In general, commands that come from other sources than AIX should not be
used for system administration. This is because administration commands
manipulate system files, and Linux has different relative paths for some system
files and different parameters compared to AIX. Hence, it is important to be
aware of these differences before doing system administration tasks. To avoid
further conflicts, it is recommended to use AIX commands for these type of tasks.
See Section 6.6, “System files differences” on page 147 for more details.

Also, AIX has some commands that are unique to it and are substantial for AIX
system administrations, such as the System Activity Report (sar) and running
diagnostics (diag). The sar command collects, reports and saves system activity
information. This is significantly useful for auditing and accounting purposes on
your system. The diag command is another helpful tool in the AIX system. This
tool performs hardware problem determination and gives a summary and
recommendations about the cause of the problem based upon the error reports.
The diag command has a menu driven interface (refer to Figure 6-19 on
page 130) inspired by the SMIT utility. Here, you can do diagnostic routines,
service aids, and resource selection without the hassle of command lines.

Linux command AIX command Description

dmesg errpt Displays the system
control messages and
errors from the kernel
buffer.

free lsps -a Displays characteristics of
swap or paging space.

useradd mkuser Creates a new user
account.

pvdisplay lspv Displays the physical
volumes.

vgscan lsvg Displays the volume
groups.
 Chapter 6. User and administration differences 129

Figure 6-19 Main diag menu

These are just some of the essential commands from the AIX operating system
that function as service aids that enable you to more easily administer your
system.

6.3.1 AIX and AIX Toolbox commands differences
The AIX Toolbox contains many Linux commands, and most of the commands
come from GNU packages. These commands can be categorized into two types:

� New commands added to the system

Commands that do not have any conflicts with AIX commands are placed in
/opt/freeware/bin with links to /usr/bin. Example 6-13 shows examples for this
case.

Example 6-13 Non-conflicting commands

/usr/bin > ls -l
lrwxrwxrwx 1 root system 30 Feb 8 10:14 aclocal ->
../../opt/freeware/bin/aclocal
lrwxrwxrwx 1 root system 31 Feb 8 10:12 autoconf ->
../../opt/freeware/bin/autoconf
lrwxrwxrwx 1 root system 33 Feb 8 10:12 autoheader ->
../../opt/freeware/bin/autoheader
130 Running Linux Applications on AIX

� Same commands on Linux and AIX, but with different syntax

Toolbox commands that already exist in AIX are also placed in
/opt/freeware/bin but linked to /usr/linux/bin to avoid conflicts. To use these
commands rather than the AIX versions, you can execute them with their
complete relative path. Example 6-14 shows some commands that are placed
in /usr/linux/bin with their corresponding links.

Example 6-14 Conflicting commands

/usr/linux/bin > ls -l
total 4
lrwxrwxrwx 1 root system 30 Feb 8 10:14 awk ->
../../../opt/freeware/bin/gawk
lrwxrwxrwx 1 root system 32 Feb 8 11:20 captoinfo ->
../../opt/freeware/bin/captoinfo
lrwxrwxrwx 1 root system 31 Feb 8 10:46 chgrp ->
../../../opt/freeware/bin/chgrp

These Linux commands are very similar to the corresponding AIX commands
except for some differences in syntax and attributes. To give some examples,
here are some commonly-used commands and their differences:

– who

This command identifies the users that are currently logged in.

• AIX syntax

who [-a| -b -d -i -l -m -p -q -r -s -t -u -w -A -H -T] [File]

• Linux syntax

who [option] ... [File | Arg1 | Arg2]

The -l option is present in both implementations, but has different
behaviors. On AIX, -l will list any login process, while on Linux it will try to
resolve all host names via DNS.

– uname

Displays information about the current operating system.

• AIX syntax

uname [-a | -x | -SName] | [-l] [-m] [-M] [-n] [-p] [-r
] [-s] [-TName] [-u] [-v]
 Chapter 6. User and administration differences 131

• Linux syntax

uname [OPTION]...

This command is featured in both (same flags) but produces different
behaviors, as shown in Table 6-7.

Table 6-7 Function of -a flag in AIX and Linux

For a more detailed explanation of the syntax differences, you may want to
compare the online manual pages for AIX and Linux. The man pages can give
you extensive online help for any command on your system. To view the man
pages for the Linux commands, you can change the MANPATH variable to have
/opt/freeware/man first. You can also view the quick reference manual through
the command line. For AIX commands, use the -h option (refer to Example 6-15).

Example 6-15 tar -h option

/ > tar -h
Usage: tar -{c|r|t|u|x} [-BdFhilmopsvw]
 [-Number] [-fFile]
 [-bBlocks] [-S [Feet] [Feet @Density] [Blocksb]]

For Linux commands, use the --help option (refer to Example 6-16).

Example 6-16 tar usage in Linux

/ > /usr/linux/bin/tar --help
GNU `tar' saves many files together into a single tape or disk archive, and
can restore individual files from the archive.

Usage: /usr/linux/bin/tar [OPTION]... [FILE]...

If a long option shows an argument as mandatory, then it is mandatory
for the equivalent short option also. Similarly for optional arguments.

Main operation mode:
 -t, --list list the contents of an archive
 -x, --extract, --get extract files from an archive
 -c, --create create a new archive
 -d, --diff, --compare find differences between archive and file system
 -r, --append append files to the end of an archive

Flag In AIX In Linux

-a Displays all information as specified
with the -m, -n, -r, -s, and -v flags
Cannot be used with the -x or
-SName flag. If the -x flag is
specified with the -a flag, the -x flag
overrides it

-a, --all
Prints all information
132 Running Linux Applications on AIX

 -u, --update only append files newer than copy in archive
 -A, --catenate append tar files to an archive
 --concatenate same as -A
 --delete delete from the archive (not on mag tapes!)

To get the current list of all AIX commands that have a different syntax than on
Linux, see Appendix B, “Differences in commands” on page 187. A detailed
documentation of the commands differences is also included with the AIX
Toolbox for Linux Applications CD and Web site; you may refer to them for an
updated list.

Changing the command defaults
Although AIX commands are quite easy to comprehend, some Linux
administrators and users might prefer using the Linux binaries for the sake of
familiarity. Here are some options that you can use to make a Linux command
the default command. Note that the following options can cause errors in some
AIX utilities, such as the System Management Interface Tool (to know more
about SMIT, refer to Section 6.4, “Administration differences” on page 134).

� For individual commands, you can add a command alias containing the
command and its full path to the shell startup files /etc/profile or
$HOME/.profile (if you are using the Korn shell). In Example 6-17, an alias for
the ls command has been added to user janethe’s profile to execute the
Linux version for that command.

Example 6-17 Adding an alias for the ls command

/home/janethe > vi .profile
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:$HOME/bin:/usr/bin/X11:/sbin:.
export PATH

if [-s "$MAIL"] # This is at Shell startup. In normal
then echo "$MAILMSG" # operation, the Shell checks
fi # periodically.

alias ls=/usr/linux/bin/ls
~

For the changes to take effect immediately without re-logging, execute the
command:

. $HOME/.profile

� To execute the Linux version of all commands by default instead of the original
AIX version, change the PATH variable and set /usr/linux/bin first. See
Example 6-18 on page 134 for details.
 Chapter 6. User and administration differences 133

Example 6-18 Changing the PATH variable

/usr/bin > export PATH=/usr/linux/bin:$PATH

To make the changes permanent, edit the /etc/profile file and set the PATH to
what is shown in Example 6-18.

6.4 Administration differences
UNIX-based operating systems use different kinds of tools for system
administration. Each operating system contains several tools that combine many
administrative tasks. These tools have a user-friendly interface, either a text
mode and/or a graphical user interface. Each of these system administration
utilities may have different schemes, features, and interfaces, but all of them are
used for the same purpose and functionality: to administer the running system.

All these tools do not prevent you from using UNIX commands, such as passwd
and adduser directly or from editing the system configuration files manually. But
since the distribution-supplied tools check dependencies with other affected
system files, they make administrative work substantially easier and safer.
Table 6-8 presents a summary of some well-known administration tools.

Table 6-8 Linux distribution and their administration tools

RedHat Linux developed Linuxconf as its administration utility. Linuxconf is a
user interface utility that allows you to do configuration tasks; it is also an
activator. It has text, web, and graphical interfaces that can be used, depending
on the current environment. Linuxconf is based mostly on configuration files and
can run different system administration tasks, such as configuring TCP/IP,
defining file systems, activate daemons, and more. An example of the Linuxconf
graphical interface can be seen in Figure 6-20 on page 135.

Distribution Administration tool

RedHat Linux Linuxconf

SuSE Linux YaST (text mode), YaST2 (GUI)

AIX SMIT
134 Running Linux Applications on AIX

Figure 6-20 Linuxconf graphical interface

SuSE Linux, however, has designed and integrated “Yet another Setup Tool” or
YaST (YaST2 for the GUI interface) as its system and device configuration tool.
Besides system administration, it can also run tasks such as hard-disk
partioning, Linux operating system updates, and package management. Refer to
Figure 6-21 on page 136 for more details.
 Chapter 6. User and administration differences 135

Figure 6-21 YaST interface

The counterpart for both Linuxconf and YaST in the AIX operating system is the
System Management Interface Tool or SMIT. SMIT is an interactive and
extensible screen-oriented command interface. It prompts users for the
information needed to construct command strings and presents appropriate
predefined selections or run time defaults (when available). This helps users
from many different backgrounds to avoid extra work or errors, such as
remembering complex command syntax, parameter values, system command
spelling, or custom shell path names. SMIT does everything from configuring
interfaces to partitioning disks, to setting up Internet services and backing up
your system.

The SMIT facility runs in one of two interfaces: text based or graphical interface.
The first panel displayed, after you enter the smit command, is the main menu,
which is shown in Figure 6-22 on page 137. In the SMIT interface, main menu
selections lead to submenus, which narrows down the scope of choices. To skip
the main menu and directly access a submenu or dialog, you can use the smit
command with a fast path parameter.

Important: While it might be possible to recompile and run other Linux system
administration utilities, at this time only SMIT should be used for system
administration. Using other utilities will create conflicts because of different
system files. To know more about the system files differences, refer to
Section 6.6, “System files differences” on page 147.
136 Running Linux Applications on AIX

Figure 6-22 Main SMIT menu in text-based interface

Fast path is a unique feature of the SMIT utility. It is a shortcut method to access
a certain menu directly. At any menu in SMIT, you can show the fast path
parameter by pressing F8 or by choosing Show->Fast Path (if you are using the
graphical interface).

To access a fast path, use the following syntax:

smit <fast path name>

The IBM Certification Guide: AIX 4.3 System Administration, SG24-5129
provides a quick reference to and more information on all the SMIT fast path
commands. Table 6-9 lists the SMIT Security and Users menu and its submenus,
followed by their associated fast path.

Table 6-9 SMIT menu examples and their corresponding fast paths

Menu Name Fast Path name

Security and Users security

Users users

Add a User mkuser

Change a User’s Password passwd

Change/Show Characteristics of a User chuser

Lock/Unlock a User’s Account lockuser
 Chapter 6. User and administration differences 137

Linux administrators may quickly find that there are differences in configuring and
administering the current AIX operating system compared to a Linux system
because of syntax and utility differences. Since Linux and AIX systems use
different system files, it is highly recommended that AIX commands and utilities
should be used for system administration (this will be further explained in
Section 6.6.1, “File system definitions on AIX and Linux” on page 148). The
system administrator should understand the concepts behind the tasks
performed in the AIX operating system, as well as understand the tools provided
for system management.

Table 6-10 lists a summary of some basic SMIT tasks.

Table 6-10 Basic SMIT tasks

Each dialog in SMIT builds and executes a version of a standard command.
Also, each task has a Help option that gives detailed information about the menu
or the dialog. Let us take the example of user administration.

One of the basic tasks of a system administrator is to administer user accounts.
For example, to add a user, you can select Main Menu -> Security and Users
-> Users -> Add a User in SMIT or you can enter the following command:

smit mkuser

Reset User’s Failed Login Account failed_login

Remove a User rmuser

Groups groups

Passwords passwords

Login Controls login

Roles roles

Menu Name Fast Path name

Task smitty (text-based) smit (GUI interface)

Enter SMIT Type the command smitty Type the command smit

Exit SMIT F10 F10 or Exit SMIT option
from the Exit menu

Show Command F6 F6 or Click Command
option from Show menu

Show Fastpath F8 F8 or Click FastPath option
from Show menu
138 Running Linux Applications on AIX

The mkuser is an example of a fast path parameter. It takes you directly to the
menu Add a User without going through the other submenus. But either way will
allow you to go to the panel for adding a user, as you can see in Figure 6-23. The
SMIT User Account Menu is almost the same as Linuxconf (shown in Figure 6-24
on page 140) and YaST (shown in Figure 6-25 on page 141). After adding all the
needed parameters and value, press Enter to execute the task. A dialog panel
will show the results.

Figure 6-23 SMIT user account menu
 Chapter 6. User and administration differences 139

Figure 6-24 Linuxconf user account menu
140 Running Linux Applications on AIX

Figure 6-25 YaST user account menu

6.5 Boot process differences
In this section, we will describe the differences in the boot process of a Linux
operating system compared to AIX. The purpose is to explain the corresponding
AIX procedure to Linux system administrators. In general, during the boot
process, the system tests hardware, loads and runs the operating system, and
configures devices. We will start our description after the kernel is already loaded
in the memory, so we will not look into any details of boot records on hard drives
or the way the kernel gets loaded.

For completeness sake, we first describe the boot process on a native Linux
system; this will make it easier to understand the way it works on AIX.

6.5.1 Linux boot process
On a typical Intel-based system, the following processes occur in this order:

1. The BIOS is run.

2. The hardware configuration is checked.
 Chapter 6. User and administration differences 141

3. A boot loader (like LILO, the LInux LOader) is executed.

4. The Linux kernel is booted.

5. The kernel takes over control.

The kernel searches for the init executable in several locations (/sbin is a very
common location) and executes it. init becomes the first process on the system
and is the “father” or “grandfather” of all subsequent processes. init then runs the
/etc/rc.d/rc.sysinit script, which does the basic system initialization, such as
setting up an initial environment, starting swapping, checking file systems, and
so on. /etc/rc.d/rc.sysinit reads several other files for information, for example,
/etc/sysconfig/network or /etc/sysconfig/clock. Then init processes the /etc/inittab
file, which describes which services are to be started in each runlevel and starts
the default runlevel. /etc/rc.d/rc and /sbin/update are executed whenever a
runlevel starts. The rc script starts all necessary background processes and
executes certain scripts in the directory associated with the runlevel,
/etc/rc.d/rc<x>.d, where <x> is a number from 1 to 6. All start scripts in that
directory, whose names start with an S, are executed.

If the runlevel of a running system is changed with the init <x> command, all kill
scripts, whose name starts with a K, in /etc/rc.d/rc<y>.d with <y> as the previous
runlevel, are executed before the start scripts of the new runlevel are executed.

After this, /etc/inittab forks a getty process for each virtual console. The default
runlevel is set with an entry like id:3:initdefault: in /etc/inittab. Individual additions
to be executed at boot time can be placed in /etc/rc.d/rc.local, which will be
executed after the other initializations are completed.

The scripts in /etc/rc.d/rc<x>.d are links to /etc/rc.d/init.d. All start scripts in
/etc/rc.d/rc<x>.d are called by rc with the parameter start, all stop scripts with the
parameter stop. This allows for both the start and the stop script in
/etc/rc.d/rc<x>.d for a certain service, for example, httpd, to be linked to the same
script (in /etc/rc.d/init.d, /etc/rc.d/init.d/httpd in the example). You can also call
the scripts directly from the command line by using:

/etc/rc.d/init.d/httpd start

The meaning of the seven runlevels is:

� 0: Halt
� 1: Single-user mode
� 2: Multi-user mode, without networking
� 3: Full multi-user mode
� 4: Not used
� 5: Full multi-user mode with an X-based login panel
� 6: Reboot
142 Running Linux Applications on AIX

6.5.2 AIX boot process
The AIX boot process is documented in the AIX System Management Guide:
Operating Systems and Devices, found at:

http://9.53.35.177/techlib/manuals/adoclib/aixbman/baseadmn/undersys.htm

It is divided into three phases:

� Read Only Storage (ROS) Kernel Init phase
� Base Device Configuration phase
� System Boot phase

Phase One, the kernel initialization phase, ends with the start of the init process.

Then, in Phase Two, the base device configuration begins, as shown in
Figure 6-26 on page 144. The init process starts the rc.boot script. Phase One of
the rc.boot script performs the base device configuration, and it includes the
following steps:

1. The boot script calls the restbase program to build the customized Object
Database Manager (ODM) database in the RAM file system from the
compressed customized data.

2. The boot script starts the configuration manager, which accesses Phase One
configuration rules to configure the base devices.

3. The configuration manager starts the sys, bus, disk, SCSI, and the Logical
Volume Manager (LVM) and rootvg volume group (RVG) configuration
methods.

4. The configuration methods load the device drivers, create special files, and
update the customized data in the ODM database.
 Chapter 6. User and administration differences 143

Figure 6-26 AIX boot process - Phase One
144 Running Linux Applications on AIX

Phase Three of the boot process is the system boot phase. As shown in
Figure 6-27 on page 146, the following steps are executed:

1. The init process starts Phase Two execution of the rc.boot script. Phase Two
of rc.boot includes the following steps:

a. Call the ipl_varyon program to vary on the rootvg volume group (RVG).

b. Mount the hard disk file systems onto the RAM file system.

c. Run swapon to start paging.

d. Copy the customized data from the ODM database in the RAM file system
to the ODM database in the hard disk file system.

e. Unmount temporary mounts of hard disk file systems and then perform
permanent mounts of root, /usr, and /var.

f. Exit the rc.boot script.

2. After Phase Two of rc.boot, the boot process switches from the RAM file
system to the hard disk root file system. The init process executes the
processes defined by records in the /etc/inittab file. One of the instructions in
the /etc/inittab file executes Phase Three of the rc.boot script, which includes
the following steps:

a. Mount the /tmp hard disk file system.

b. Start the configuration manager (Phase Two) to configure all remaining
devices.

c. Use the savebase command to save the customized data to the boot
logical volume.

d. Exit the rc.boot script.
 Chapter 6. User and administration differences 145

Figure 6-27 AIX boot process - Phase Two
146 Running Linux Applications on AIX

On AIX, the /etc/inittab file should generally not be edited manually. This is
because errors made during editing might result in a system that does not boot
anymore; system recovery would have to be performed. Instead, there are some
commands, such as chitab, mkitab, and rmitab, that modify the /etc/inittab file.
Also, certain operations in SMIT can result in an (intended) change of /etc/inittab.

The syntax of entries in /etc/inittab is Identifier:RunLevel:Action:Command. The
following conventions hold for RunLevel:

0-1 Reserved for the future use by the operating system.

2 Contains all of the terminal processes and daemons that
are run in the multiuser environment. In the multiuser
environment, the /etc/inittab file is set up so that the init
command creates a process for each terminal on the
system. The console device driver is also set to run at all
run levels, so the system can be operated with only the
console active.

3-9 Can be defined according to the user's preferences.

The runlevel of a running AIX system can be changed using the init or telinit
command. In general, runlevels are rarely used on AIX. This might change in the
future, as AIX 5L also provides /etc/rc.d/rc<x>.d directories, which hold start or
kill scripts that are processed just as they are on Linux systems.

6.6 System files differences
This section shows that in spite of the fact that AIX and Linux are both
UNIX-based operating systems, there are some differences in the way they
structure systems resources and configuration files. Table 6-11 points out some
of these configuration files and their differences.

Table 6-11 Differences in configuration files between AIX and Linux

In order to show some these differences in greater detail, we will use the file
system definition file as an example in the next section.

Description AIX Linux

File system definitions /etc/filesystems /etc/fstab

Encrypted passwords /etc/security/passwd /etc/shadow

Default su log /var/adm/sulog /var/log/messages
 Chapter 6. User and administration differences 147

6.6.1 File system definitions on AIX and Linux
This section explains how definitions for file systems on AIX compare to
definitions on a typical Linux system.

Linux file system definitions
On Linux systems, the /etc/fstab file contains descriptive information about the
various file systems. It is recommended that this file not be edited manually, but
be edited using administration tools like YaST or linuxconf. Each file system is
described on a separate line; fields on each line are separated by tabs or spaces.
The order of records in fstab is important because fsck, mount, and umount
sequentially iterate through fstab.

The syntax of the entries in /etc/fstab is:

fs_spec fs_file fs_vfstype fs_mntops fs_freq fs_passno

where

� fs_spec describes the block special device or remote file system to be
mounted (like /dev/cdrom, /dev/sdb7, or my.host.net:/directory).

� fs_file describes the mount point for the file system (like /, /usr, or /var).

� fs_vfstype describes the type of the file system (like ext2, msdos, or nfs; see
/proc/filesystems on a Linux system for a list of file system types supported by
the installed kernel).

� fs_mntops describes the mount options for the file system (like noauto or
user; see also the mount command).

� fs_freq is used for the dump command.

� fs_passno is used by the command fsck to determine the order in which file
system checks are done at reboot time.

Example 6-19 on page 149 shows a sample /etc/fstab file.
148 Running Linux Applications on AIX

Example 6-19 Sample /etc/fstab file

/dev/hda1 /boot ext2 defaults 1 2
/dev/hda2 swap swap defaults 0 2
/dev/hda3 / ext2 defaults 1 1
/dev/hda4 /local ext2 defaults 1 2
proc /proc proc defaults 0 0
usbdevfs /proc/bus/usb usbdevfs defaults 0 0
devpts /dev/pts devpts defaults 0 0
/dev/cdrom /cdrom auto ro,noauto,user,exec 0 0
/dev/fd0 /floppy auto noauto,user 0 0

AIX file system definitions
All information about the file systems is centralized in the /etc/filesystems file on
AIX. This file should not be edited manually, but only with the appropriate
administration commands and tools, such as mkfs or SMIT. The /etc/filesystems
file is organized into stanza names, which are file system names and contents
that are attribute-value pairs specifying characteristics of the file system. The file
systems file serves two purposes:

� It documents the layout characteristics of the file systems.

� It frees the person who sets up the file system from having to enter and
remember items such as the device where the file system resides, because
this information is defined in the file.

Each stanza names the directory where the file system is normally mounted. The
file system attributes specify all the parameters of the file system. The attributes
currently used are:

account Used by the dodisk command to determine the file systems that are
processed by the accounting system. This value can be either True
or False.

boot Used by the mkfs command to initialize the boot block of a new file
system. This specifies the name of the load module to be placed into
the first block of the file system.

check Used by the fsck command to determine the default file systems to
be checked. The True value enables checking while the False value
disables checking. If a number, rather than the True value, is
specified, the file system is checked in the specified pass of
checking. Multiple pass checking, described in the fsck command,
permits file systems on different drives to be checked in parallel.

dev Identifies, for local mounts, either the block special file where the file
system resides or the file or directory to be mounted. System
management utilities use this attribute to map file system names to
 Chapter 6. User and administration differences 149

the corresponding device names. For remote mounts, it identifies the
file or directory to be mounted.

mount Used by the mount command to determine whether this file system
should be mounted by default. The possible values of the mount
attribute are:

automatic Automatically mounts a file system when the system is
started. For example, in the sample file, the root file
system line is the mount=automatic attribute. This
means that the root file system mounts automatically
when the system is started. The True value is not
used, so mount all does not try to mount it, and
umount all does not try to unmount it. The False value
is also not used, because certain utilities, such as the
ncheck command, normally avoid file systems with a
value of mount=False.

False This file system is not mounted by default.

readonly This file system is mounted as read-only.

True This file system is mounted by the mount all
command. It is unmounted by the umount all
command. The mount all command is issued during
system initialization to automatically mount all such file
systems.

nodename Used by the mount command to determine which node
contains the remote file system. If this attribute is not
present, the mount is a local mount. The value of the
nodename attribute should be a valid node nickname.
This value can be overridden with the mount -n
command.

size Used by the mkfs command for reference and to build the file system.
The value is the number of 512-byte blocks in the file system.

type Used to group related mounts. When the mount -t String command
is issued, all of the currently unmounted file systems with a type
attribute equal to the String parameter are mounted.

vfs Specifies the type of mount. For example, vfs=nfs specifies the
virtual file system being mounted is an NFS file system. All types of
virtual file systems are described in the /etc/vfs file.

vol Used by the mkfs command when initializing the label on a new file
system. The value is a volume or pack label using a maximum of six
characters.
150 Running Linux Applications on AIX

log The LVName must be the full path name of the file system logging
logical volume name to which log data is written as this file system is
modified. This is only valid for journaled file systems.

Example 6-20 shows a sample /etc/filesystems file.

Example 6-20 Sample /etc/filesystems file

* File system information
*
default:
 vol = "AIX"
 mount = false
 check = false
/:
 dev = /dev/hd4
 vol = "root"
 mount = automatic
 check = true
 log = /dev/hd8
/home:
 dev = /dev/hd1
 vol = "u"
 mount = true
 check = true
 log = /dev/hd8
/home/joe/1:
 dev = /home/joe/1
 nodename = vance
 vfs = nfs
/usr:
 dev = /dev/hd2
 vol = "usr"
 mount = true
 check = true
 log = /dev/hd8
/tmp:
 dev = /dev/hd3
 vol = "tmp"
 mount = true
 check = true
 log = /dev/hd8
 Chapter 6. User and administration differences 151

152 Running Linux Applications on AIX

Appendix A. APIs

This appendix provides us with a list of Linux C runtime APIs, Linux Standard
Base (LSB) library functions, and changes available in AIX 5L 5.1 that were
placed into libc.a to provide additional Linux functionality and compatibility.

A

© Copyright IBM Corp. 2001 153

Linux-compatible APIs and library functions
Listed below are Linux-compatible APIs and LSB library functions as a reference
for programmers, especially when porting Linux applications to AIX. For more
details and up-to-date information, see the documentation for the AIX Toolbox for
Linux Applications at:

http://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/docs/

This section is based on:

� AIX Version 4.3.3 (unless otherwise stated)
� Linux kernel Version 2.2.14
� GNU libc Version 2.1.4
� Open Group Single UNIX Specification Version 2 (SUSv2)
� Linux Standard Base specification 0.2pre

A good source of information regarding the Linux Standard Base (LSB) can be
found at:

http://www.linuxbase.org/

Linux-compatible APIs
The number of UNIX-based operating systems has grown over the years, and
the system calls and their parameters are not unique. One of the goals in writing
UNIX programs is to make them as portable as possible across all UNIX-based
operating systems. Obviously, this situation is not possible. However, most of the
original UNIX system calls have not changed, so if you try to use these calls, you
should be all right.

The list of APIs described here was obtained from the system call table
(syscalls.h) in the i386 port of Linux, and includes APIs and library functions that
do not exist on all Linux ports, and some of them are not listed in the Linux
Standard Base (LSB). We are providing them in this document as a quick
reference. Table A-1 on page 155 describes the different groups of APIs
regarding compatibility and implementation.

For Linux system calls information, please refer to the following Web sites:

http://howto.tucows.com/LDP/LDP/lpg/node1.html
http://howto.tucows.com/man/man3/index.html.

Regarding AIX system calls, please refer to Kernel Extensions and Device
Support Programming Concepts, found at:
154 Running Linux Applications on AIX

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/kernextc/toc.htm.

Table A-1 Different groups of APIs

Table A-2 Compatible APIs

Group of APIs Listed in

Linux-compatible APIs compatible with
AIX

Table A-2

Linux-compatible APIs not available on
AIX

Table A-3 on page 159

Linux-compatible APIs introduced in AIX
5L 5.1

Table A-4 on page 161

Linux-compatible APIs available on AIX
but not 100% compatible

Table A-5 on page 161

API Description

access Checks user's permissions for a file.

acct Switches process accounting on or off.

alarm Sets an alarm clock for delivery of a
signal.

brk, sbrk Changes data segment size.

chdir Changes working directory.

chmod, fchmod Changes permissions of a file.

chown, fchown, lchown Changes ownership of a file.

chroot Changes root directory.

close Closes a file descriptor.

create Creates a file or device.

dup, dup2 Duplicates a file descriptor.

execve Executes program.

exit Causes normal program termination.

fchdir Changes the working directory.

fcntl Manipulates file descriptor.

fdatasync Synchronizes a file's in-core data with
that on disk.
 Appendix A. APIs 155

flock Applies or removes an advisory lock on
an open file.

fork Creates a child process.

fstat, stat, lstat Gets file status.

fstatfs, statfs Gets file system statistics.

fsync Synchronizes a file complete in-core
state with that on disk.

ftruncate, truncate Truncates a file to a specified length.

getcwd, get_current_dir_name, getwd Gets current working directory.

getegid Gets group identity.

geteuid Gets user identity.

getgid Gets group identity.

getgroups, setgroups Gets/sets list of supplementary group
IDs.

getitimer, setitimer Gets or sets the value of an interval timer.

getpgid, setpgid, setpgrp, getpgrp Sets/gets process group.

getpid, getppid Gets process identification.

getpriority, setpriority Gets/sets program scheduling priority.

getrlimit, getrusage, setrlimit Gets/sets resource limits and usage.

getsid Gets session ID.

gettimeofday, settimeofday Gets/sets time.

getuid Gets user identity.

init_module Initializes a loadable module entry.

kill Sends signal to a process.

link Makes a new name for a file.

lseek Repositions read/write file offset.

mkdir Creates a directory.

mknod Creates a directory or special or ordinary
file.

API Description
156 Running Linux Applications on AIX

mmap, munmap Maps or unmaps files or devices into
memory.

mprotect Controls allowable accesses to a region
of memory.

msync Synchronizes a file with a memory map.

nice Changes process priority.

open Opens a file or device.

pause Waits for signal.

pipe Creates pipe.

poll Waits for some event on a file descriptor.

pread, pwrite Reads from or writes to a file descriptor at
a given offset.

read Reads from a file descriptor.

readdir Reads entry from directory handle.

readlink Reads the value of a symbolic link.

rename Changes the name or location of a file.

rmdir Deletes a directory.

sched_setparam, sched_getparam Sets and gets scheduling parameters.

sched_yield Yields the processor.

select Synchronous I/O multiplexing.

setdomainname, getdomainname Gets/sets the domain name.

setgid Sets group identity.

setregid, setegid Sets real and/or effective group ID.

setreuid, seteuid Sets real and/or effective user ID.

setsid Creates a session and sets the process
group ID.

setuid Sets user identity.

API Description
 Appendix A. APIs 157

sgetmask Signal handling function. Not supported.
Superseded by sigprocmask(). No man
pages available.

sigaction, sigprocmask, sigpending,
sigsuspend

POSIX signal handling function.

sigaltstack Defines and examines the state of an
alternate stack for signal handlers.

signal ANSI C signal handling function.

ssetmask Signal handling function. Not supported.
Superseded by sigprocmask(). No man
pages available.

stime Sets time.

swapon, swapoff Starts/stops swapping to file/device.

symlink Makes a new name for a file.

time Gets time in seconds.

times Gets process times.

umask Sets file creation mask.

umount umount a file system.

uname Gets name and information about current
kernel.

unlink Deletes a name and possibly the file it
refers to.

ustat Gets file system statistics.

utime, utimes Changes access and/or modification
times of an inode.

vfork Creates a child process and block parent.

waitpid Waits for process termination.

write Writes to a file descriptor.

writev readv, writev - read or write data into
multiple buffers.

API Description
158 Running Linux Applications on AIX

Table A-3 APIs not implemented

API Description

adjtimex Tunes kernel clock.

bdflush Starts, flushes, or tunes buffer-dirty-flush
daemon.

capget, capset Sets/gets process capabilities.

clone Creates a child process.

create_module Creates a loadable module entry.

delete_module Deletes a loadable module entry.

get_kernel_syms Retrieves exported kernel and module
symbols.

getresgid, setresgid Sets or gets real, effective, and saved
group ID.

getresuid, setresuid Sets real, effective and saved user or
group ID.

idle Makes process 0 idle.

ioperm Sets port input/output permissions.

iopl Changes I/O privilege level.

ipc System V IPC system calls.

llseek Repositions read/write file offset.

mlock Disables paging for some parts of
memory.

mlockall Disables paging for calling process.

modify_ldt Gets or sets ldt.

mremap Remaps a virtual memory address.

munlock Reenables paging for some parts of
memory.

munlockall Reenables paging for calling process.

nfsservctl Syscall interface to kernel nfs daemon.

personality Sets the process execution domain.

prctl Operations on a process.
 Appendix A. APIs 159

query_module Queries the kernel for various bits
pertaining to modules.

sched_get_priority_max,
sched_get_priority_min

Gets static priority.

sched_setscheduler,
sched_getscheduler

Sets and gets scheduling.

sched_rr_get_interval Gets the SCHED_RR interval for the
named process.

sendfile Transfers data between file descriptors.

setfsgid Sets group identity used for file system
checks.

setfsuid Sets user identity used for file system
checks.

sigreturn Returns from signal handler and cleanup
stack frame.

socketcall Socket system calls.

sysctl Reads/writes system parameters.

sysinfo Returns information on overall system
statistics.

uselib Selects shared library.

vhangup Virtually hangup the current tty.

vm86old, vm86 Enter virtual 8086 mode.

API Description
160 Running Linux Applications on AIX

Table A-4 Linux-compatible APIs introduced in AIX 5L 5.1

Table A-5 Linux-compatible APIs available on AIX but not 100% compatible

API Description

nanosleep Pauses execution for a specified time.

ptrace Processes trace.

quotactl Manipulates disk quotas.

reboot Reboots or enables/disables Ctrl-Alt-Del.

sysfs Gets file system type information.

wait3, wait4 Wait for process termination, BSD style.

API Description

ioctl Control device.

mount Mounts file systems.

readv Reads data into multiple buffers.

sync Commits buffer cache to disk.

syslog Writes messages to the system logger.
 Appendix A. APIs 161

Linux Standard Base APIs
One of goals of the Linux Standard Base is to develop and promote standards
that will increase compatibility among Linux distributions and enable software
applications to run on any compliant Linux system. The next tables contain the
rest of the library functions from the Linux Standard Base (LSB) not mentioned in
the previous tables. Table A-6 describes the different groups of APIs regarding
compatibility and implementation.

Table A-6 Different groups of LSB APIs

Table A-7 Compatible LSB APIs

Group of APIs Listed at Table:

LSB APIs compatible with AIX Table A-7

LSB APIs not available on AIX Table A-8 on page 170

LSB APIs introduced in AIX 5L 5.1 Table A-9 on page 170

LSB APIs available on AIX but not 100%
compatible

Table A-10 on page 170

API Description

abort Causes abnormal program termination.

abs Computes the absolute value of an
integer.

accept Accepts a connection on a socket.

asctime Transforms binary date and time to
ASCII.

atexit Registers a function to be called at
normal program termination.

atof Converts a string to a double.

atoi Converts a string to an integer.

atol Converts a string to a long integer.

bcmp Compares byte strings.

bcopy Copies byte strings.

bind Binds a name to a socket.

bsearch Binary search of a sorted array.

bzero Writes zeros to a byte string.
162 Running Linux Applications on AIX

calloc Allocates and frees dynamic memory.

catopen, catclose, catgets Message catalog operations.

cfgetispeed Gets terminal input speed.

cfgetospeed Gets terminal output speed.

cfsetispeed Sets terminal input speed.

cfsetospeed Sets terminal output speed.

clearerr, feof, ferror, fileno Checks and resets stream status.

clock Determine processor time.

closedir Closes a directory.

connect Initiates a connection on a socket.

ctermid Gets the controlling terminal name.

ctime Transforms binary date and time to
ASCII.

difftime Calculates time difference.

div Computes the quotient and remainder of
integer division.

drand48 Generates uniformly distributed
pseudo-random numbers.

ecvt Converts a floating-point number to a
string.

endgrent, setgrent, getgrent Gets group file entry.

endpwent, getpwent, setpwent, getpwuid Gets password file entry.

erand48 Generates uniformly distributed
pseudo-random numbers.

execl Executes a file.

execle Executes a file.

execlp Executes a file.

execv Executes a file.

execvp Executes a file.

API Description
 Appendix A. APIs 163

fclose Closes a stream.

fcvt Converts a floating-point number to a
string.

fopen, fdopen, freopen Streams open functions.

fflush Flushes a stream.

ffs Finds first bit set in a word.

fgetc, fgets, getc, getchar, gets, ungetc Input of characters and strings.

fgetpos, fseek, fsetpos, ftell, rewind Repositions a stream.

fprintf, printf, sprintf, snprintf, vprintf,
vprintf, vsnprintf

Formatted output conversion.

fputc, fputs, putc, pitcher, puts Output of characters and strings.

fread, fwrite Binary stream input/output.

free Frees dynamic memory.

fscanf, scanf, sscanf Inputs format conversion.

getdents Gets directory entries.

getenv Gets an environment variable.

gethostid, sethostid Gets or sets the unique identifier of the
current host.

gethostname Gets host name.

getmsg Gets the next message off a stream.

getpeername Gets name of connected peer.

getsockname Gets socket name.

getsockopt, setsockopt Gets and sets options on sockets.

getw, putw Input and output of words (ints).

gmtime Transforms binary date and time to
ASCII.

index, rindex Locates character in string.

initstate Random number generator.

API Description
164 Running Linux Applications on AIX

isalnum, isalpha, isascii, isblank, iscntrl,
isdigit, isgraph

Character classification routines.

islower, isprint, ispunct, isspace, isupper,
isxdigit

Character classification routines.

iswalnum Tests for alphanumeric wide character.

iswalpha Tests for alphanumeric wide character.

jrand48 Generates uniformly distributed
pseudo-random numbers.

killpg Sends signal to a process group.

labs Computes the absolute value of a long
integer.

ldiv Computes the quotient and remainder of
long integer division.

listen Listens for connections on a socket.

localtime Transforms binary date and time to
ASCII.

lrand48 Generates uniformly distributed
pseudo-random numbers.

malloc Allocates dynamic memory.

memccpy, memchr, memcmp, memcpy,
memset

Memory operations.

mkfifo Makes a FIFO special file (a named
pipe).

mkstemp Creates a unique temporary file.

mktemp Makes a unique temporary file name.

mktime Transforms binary date and time to
ASCII.

mrand48 Generates pseudo-random number.

msgctl, msgget, msgsnd, msgrcv Message operations.

nrand48 Generates uniformly distributed
pseudo-random numbers.

opendir Opens a directory.

API Description
 Appendix A. APIs 165

pathconf Retrieves file implementation
characteristics.

pause Suspends a process until a signal is
received.

putenv Sets an environment variable.

putmsg Sends a message on a stream.

qsort Sorts a table of data in place.

raise Sends a signal to the current process.

rand Generates pseudo-random number.

random Generates pseudo-random number more
efficiently.

re_comp Regular expression handler.

re_compile_fastmap Service function for the Linux
implementation of re_comp and re_exec.

re_compile_pattern Service function for the Linux
implementation of re_comp and re_exec.

re_exec Regular expression handler.

re_match Returns number of characters that
matched string.

re_search Searches string for pattern.

re_search_2 Searches string for pattern.

re_set_registers Undocumented library call.

re_set_syntax Sets the current default syntax.

realloc Memory allocator.

recv, recvfrom, recvmsg Receives a message from a socket.

regcomp Compiles a regular expression into an
executable string.

regerror Returns string that describes ErrCode
parameter.

regexec POSIX regex function.

API Description
166 Running Linux Applications on AIX

regfree Frees memory allocated by regcomp().

remove Deletes a name and possibly the file it
refers to.

res_init Searches for default domain name and
Internet address.

rewinddir Resets directory stream.

rexec Command execution on remote host.

sbrk Changes data segment size.

seed48 Generates uniformly distributed
pseudo-random number sequences.

seekdir Sets the position of the next readdir() call
in the directory stream.

semctl, semget semop Semaphore operations.

send, sendto, sendmsg Sends a message from a socket.

setbuf, setvbuf Streams buffering operations.

setegid Sets real and/or effective group ID.

seteuid Sets real and/or effective group ID.

sethostname Sets host name.

setlocale Sets the current locale.

setstate Generates pseudo-random numbers
more efficiently.

shmat, shmctl, shmdt, shmget Shared memory operations.

shutdown Shuts down part of a full-duplex
connection.

sigaction, sigprocmask, sigpending,
sigsuspend

POSIX signal set operations.

sigaddset, sigemptyset, sigfillset,
sigdelset, sigismember

POSIX signal set operations.

sigalstack Defines and examines the state of an
alternate stack for signal handlers.

sigsetmask, sigmask Manipulates the signal mask.

API Description
 Appendix A. APIs 167

sigset, sighold, sigrelse, sigignore Enhanced signal management.

siginterrupt Allows signals to interrupt system calls.

siglongjmp Non-local jump to a saved stack context.

sigstack Sets and gets signal stack context.

sigvec BSD software signal facilities.

sigwait Handling of signals in threads.

sleep Puts process to sleep.

socket Creates an endpoint for communication.

socketpair Creates a pair of connected sockets.

srand Generates pseudo-random numbers.

srand48 Generates uniformly distributed
pseudo-random number sequences.

srandom Generates pseudo-random numbers
more efficiently.

statvfs Returns information about a file system.

strcmp, strncmp, strcoll Compares strings.

strcat, strncat, strxfrm, strcpy, strncpy,
strdup

Copies and appends strings.

strlen, strchr, strrchr, strpbrk, strspn,
strcspn, strstr, strtok

Determines the size, location, and
existence of strings.

strerror Returns string describing error code.

strfmon Formats monetary strings.

strftime Formats date and time.

strpbrk Searches a string for any of a set of
characters.

strptime Converts a string representation of time
to a time tm structure.

strtod Converts string to double.

strtof Converts string to float.

API Description
168 Running Linux Applications on AIX

strtol Converts string to long.

strtold, strtoll Converts string to long double or long
long.

strtoul Converts string to unsigned long.

swab Swaps adjacent bytes.

tcdrain Waits for output to complete.

tcflow Performs flow control functions.

tcflush Discards data from the specified queue.

tcgetattr Gets terminal state.

tcgetpgrp Gets foreground process group ID.

tcgetsid Gets foreground session ID

tcsendbreak Sends a break on an asynchronous serial
line.

tcsetattr Sets terminal state.

tcsetpgrp Sets foreground process group ID.

telldir Returns current location in directory
stream.

tempnam Creates a name for a temporary file.

timezone Global.

tolower Converts letter to lower case.

toupper Converts letter to upper case.

tzname Global

tzset Converts the formats of date and time
representations.

ulimit Sets and gets user limits.

wait Wait for child process to stop or
terminate.

wait3 Wait for child, BSD style.

waitid Wait for child matching idtype and ID.

API Description
 Appendix A. APIs 169

Table A-8 LSB APIs not available

Table A-9 LSB APIs introduced in AIX 5L 5.1

Table A-10 LSB APIs available on AIX but not 100% compatible

unknown Handles attempts to use non-existent
commands.

API Description

sigqueue POSIX signal handle function.

sigtimedwait Waits for queue signals.

sigwaitinfo Waits for queue signals.

strfry Randomizes a string.

API Description

cfsetspeed Sets terminal input and output speed.

Initgroups Initializes the supplementary group
access list.

iswblank Tests for alphanumeric wide character.

sigblock Manipulates the signal mask.

siggetmask Manipulates the signal mask.

strerror_r Returns string describing error code.

strnlen Determines the length of a fixed-size
string.

strsep Extracts token from string.

strsignal Returns string describing signal.

strtok_r Determines the size, location, and
existence of strings.

sysconf Determines current value of system limit
or option.

API Description

insque, remque Inserts/removes an item from a queue.

strcasecmp Compares strings.

API Description
170 Running Linux Applications on AIX

New APIs in AIX 5L 5.1
In this section, we introduce the new APIs that will be available on AIX 5L 5.1.
These new APIs continue to make AIX more Linux compatible and increase the
level of functionality, providing the developer more flexibility when programming
or porting an application for deployment on AIX, or when writing code on AIX to
be deployed on Linux-based system.

strncasecmp Compares strings.

API Description
 Appendix A. APIs 171

Name cfsetspeed: Terminal input and output speed

Linux synopsis #include <termios.h>

int cfsetspeed(struct termios *termios_p, speed_t
speed);

AIX synopsis None
172 Running Linux Applications on AIX

Name initgroups: Initializes the supplementary group access list.

Linux synopsis #include <grp.h>

#include <sys/types.h>

int initgroups(const char *user, gid_t group);

AIX synopsis int initgroups (char *User, int BaseGID);

Details The gid_t may cause compiler warnings or errors.

Comment The prototype int initgroups (const char *User, gid_tgroup)
will be added to grp.h, and the initgroups function will be
redefined to change the first arg to a const. The
documentation page for initgroups will be brought up to
date. This will not break compatibility in AIX, because
either a char * or const char * can be an actual parameter
in a const char * formal parameter.
 Appendix A. APIs 173

Name iswalnum: Tests for alphanumeric wide character.

Linux synopsis #include <wctype.h>

int iswalnum(wint_t wc);

int iswalpha(wint_t wc);

int iswcntrl(wint_t wc);

int iswdigit(wint_t wc);

int iswgraph(wint_t wc);

int iswlower(wint_t wc);

int iswprint(wint_t wc);

int iswpunct(wint_t wc);

int iswspace(wint_t wc);

int iswupper(wint_t wc);

int iswxdigit(wint_t wc);

int iswblank(wint_t wc);

AIX synopsis #include <wchar.h>

int iswalnum (wint_t WC);

int iswalpha (wint_t WC);

int iswcntrl (wint_t WC);

int iswdigit (wint_t WC);

int iswgraph (wint_t WC);

int iswlower (wint_t WC);

int iswprint (wint_t WC);

int iswpunct (wint_t WC);

int iswspace (wint_t WC);

int iswupper (wint_t WC);

int iswxdigit (wint_t WC);

Details AIX does not define iswblank().
174 Running Linux Applications on AIX

Name nanosleep: Pauses execution for a specified time.

Linux synopsis #include <time.h>

int nanosleep(const struct timespec *req, struct
timespec *rem);

AIX synopsis None

Comment Granularity is allowed to be as large as HZ.
 Appendix A. APIs 175

Name ptrace: Process trace.

Linux synopsis #include <sys/ptrace.h>

long int ptrace(enum ptrace_request request, pid_t
pid, void *addr, void *data);

AIX synopsis #include <sys/reg.h>
#include <sys/ptrace.h>
#include <sys/ldr.h>
int ptrace(int Request, int Identifier, int
*Address, int Data, int *Buffer);
#define _LINUX_SOURCE_COMPAT
#include <sys/ptrace.h>
long int ptrace(enum ptrace_request request,
pid_t pid, void *addr, void *data);

Details Functions are not compatible.

Comment In AIX 5L, if sys/ptrace.h is compiled with
_LINUX_SOURCE_COMPAT, the application will see
Linux semantics. The Linux ptrace wrapper will call the
underlying AIX ptrace function. Linux request values will
be defined, but will return ENOTSUP for functions not
supported by AIX ptrace.

Errno When called in AIX, this function can return these errnos,
which are not documented in Linux:

ENOTSUP: The request is not supported.

EINVAL: The debugger and the traced process are the
same, or the Identifier parameter does not identify the
thread that caused the exception.
176 Running Linux Applications on AIX

Name quotactl: Manipulates disk quotas.

Linux synopsis #include <sys/types.h>
#include <sys/quota.h>
int quotactl(int cmd, const char *special,
int id, caddr_t addr);

AIX synopsis #include <jfs/quota.h>
int quotactl (char *Path, int Cmd, int ID, char
*Addr);

Details Functions are not compatible. The header is in a different
location. The arguments are in a different order. The
Q_SETQLIM subcommand is not defined in AIX. In AIX,
quotactl() is a system call.

Errno When called in AIX, this function can return these errnos,
which are not documented in Linux:

ELOOP: Too many symbolic links were encountered in
translating a path name.

ENAMETOOLONG: A component of either path name
exceeded 255 characters, or the entire length of either
path name exceeded 1023 characters.

ENOENT: A file name does not exist.

ENOTDIR: A component of a path prefix is not a directory.

EOPNOTSUPP: The file system does not support quotas.

EROFS: In Q_QUOTAON, the quota file resides on a
read-only file system.

EUSERS: The in-core quota table cannot be expanded.
 Appendix A. APIs 177

Name reboot: Reboots or enables/disables Ctrl-Alt-Del.

Linux synopsis #include <unistd.h>
#include <sys/reboot.h>
int reboot (int flag);

AIX synopsis #include <sys/reboot.h>
void reboot (int HowTo, void *Argument)
#define _LINUX_SOURCE_COMPAT
#include <sys/reboot.h>
int reboot (int flag);

Details Functions are not compatible. In AIX, reboot is a system
call. According to the Linux man page, reboot is Linux
specific, and should not be used in programs intended to
be portable.

Comment Add the Linux reboot command definitions to
sys/reboot.h. Flag values will be mapped as follows
(Linux -> AIX):

LINUX_REBOOT_CMD_RESTART -> RB_SOFTIPL

LINUX_REBOOT_CMD_HALT -> RB_HALT_POWERED

LINUX_REBOOT_CMD_POWER_OFF -> RB_HALT

LINUX_REBOOT_CMD_RESTART2 -> RB_POWIPL

LINUX_REBOOT_CMD_CAD_ON -> return(ENOSYS)

LINUX_REBOOT_CMD_CAD_OFF -> return(0)

AIX will not implement CAD (Ctrl-Alt-Del) for Linux
compatibility.

Errno When called in AIX, this function can return these errnos,
which are not documented in Linux:

ENOSYS: Function not supported
(LINUX_REBOOT_CMD_CAD_ON only).
178 Running Linux Applications on AIX

Name sigblock, siggetmask, sigsetmask, sigmask: Manipulates
the signal mask.

Linux synopsis #include <signal.h>
int sigblock(int mask);
int siggetmask(void);
int sigsetmask(int mask);
int sigmask(int signum);

AIX synopsis #include <signal.h>
int sigblock(int mask);
int sigsetmask(int mask);
int sigmask(int signum);

Details The siggetmask() function does not exist in AIX. The
sigmask() function is not listed in LSB. There is no AIX
man page for sigmask(). These functions should not be
used by applications anyway because of the usage of ints
instead of sigset_ts.

A man page entry for sigmask() needs to be created.

The siggetmask function will be available on AIX 5L 5.1.
 Appendix A. APIs 179

Name strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok,
and strtok_r: Determines the size, location, and existence
of strings.

Linux synopsis #include <string.h>
size_t strlen(const char *s);
char *strchr(const char *s, int c);
char *strrchr(const char *s, int c);
char *strpbrk(const char *s, const char *accept);
size_t strspn(const char *s, const char *accept);
size_t strcspn(const char *s, const char *reject);
char *strstr(const char *haystack, const char
*needle);
char *strtok(char *s, const char *delim);
#if defined __USE_POSIX || defined __USE_MISC
char *strtok_r (char *restrict s, const char
*restrict delim, char **restrict save_ptr);
#endif

AIX synopsis #include <string.h>
size_t strlen(const char *String);
char *strchr(const char *String, int Character);
char *strrchr(const char *String, int Character);
char *strpbrk(const char *String1, const char
*String2);
size_t strspn(const char *String1, const char
*String2);
size_t strcspn(const char *String1, const char
*String2);
char *strstr(const char *String1, const char
*String2);
char *strtok(char *String1, const char *String2);
char *strtok_r(char *String1, const char *String2,
char **SavePtr);

Details Functions are source compatible. AIX has no
documentation for strtok_r(), but it is exported from libc
and prototyped in string.h.

Errno When called in AIX, this function can return these errnos,
which are not documented in Linux:

EFAULT: A string parameter is an invalid address.
180 Running Linux Applications on AIX

Name strerror and strerror_r: Returns a string describing error
code.

Linux synopsis #include <string.h>
char *strerror(int errnum);
#ifdef __USE_MISC
char *strerror_r(int errnum, char *buf, size_t
buflen);
#endif

AIX synopsis #include <string.h>
char *strerror(int ErrorNumber);
#include <pthread.h>
#include <string.h>
int strerror_r(int ErrorNumber, char *Buffer, int
BuffLen);

Details The strerror() functions are source compatible. The
prototype for strerror_r() is different.

Comment In AIX 5L 5.1, a compatible version of this function will be
added to libc. The prototype will be visible without any
special definitions. The prototype, when compiled with
-D_LINUX_SOURCE_COMPAT, will be:

#include <string.h>
char * strerror_r(int ErrorNumber, char *Buffer,
size_t BuffLen);
 Appendix A. APIs 181

Name strnlen: Determines the length of a fixed-size string.

Linux synopsis #include <string.h>
size_t strnlen (const char *s, size_t maxlen);

AIX synopsis None
182 Running Linux Applications on AIX

Name strsep: Extracts token from string.

Linux synopsis #include <string.h>
char *strsep(char **stringp, const char *delim);

AIX synopsis char *strsep(char **stringp, const char *delim);
 Appendix A. APIs 183

Name strsignal: Returns a string describing a signal.

Linux synopsis #define _GNU_SOURCE
#include <string.h>
char *strsignal(int sig);
extern const char * const sys_siglist[];

AIX synopsis None
184 Running Linux Applications on AIX

Name sysconf: Determines the current value of system limit or
option.

Linux synopsis #include <unistd.h>
int sysconf(int name);

AIX synopsis #include <unistd.h>
long sysconf(int name);

Details We need to identify all of the valid values for the _SC
defines for this call.

Comment AIX needs to identify _SC_PHYS_PAGES and
_SC_AVPHYS_PAGES. All others defined on Linux are
defined on AIX. These new flags will be available on AIX
5L 5.1.
 Appendix A. APIs 185

Name wait3 and wait4: Waits for process termination, BSD style

Linux synopsis #define _USE_BSD
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/wait.h>
pid_t wait3(int *status, int options, struct rusage
*rusage);
pid_t wait4(pid_t pid, int *status, int options,
struct rusage *rusage);

AIX synopsis #include <sys/types.h>
#include <sys/resource.h>
#include <sys/wait.h>
pid_t wait3(int *StatusLocation, int Options,
struct rusage *ResourceUsage);

Details AIX 4 does not implement wait4().

Comment The wait4 call is available in AIX 5L 5.1.

Errno When called in AIX, this function can return these errnos,
which are not documented in Linux:

EINTR: This subroutine was terminated by receipt of a
signal.

EFAULT: The StatusLocation or ResourceUsage
parameter points to a location outside of the address
space of the process.
186 Running Linux Applications on AIX

Appendix B. Differences in commands

This appendix provides us with a quick reference of the differences between
Linux and AIX commands.

The AIX Toolbox for Linux Application CD contains a complete and updated
listing of all the commands in terms of syntax differences and attributes. Also,
these commands are documented at the following Web site:

http://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/docs

Table B-1 provides a listing of commands in AIX and Linux that have syntax and
attribute differences. Not all of these commands are included in the AIX Toolbox
applications. The Linux commands that are included in your system would
depend on the Open Source Software you installed.

Table B-1 Commands with syntax differences

B

Command Description

ac Prints connect-time records.

apropos Locates commands by keyword lookup.

at Runs commands at a later time.

atq Displays the queue of jobs waiting to be run.

atrm Removes jobs spooled by the at command.
© Copyright IBM Corp. 2001 187

awk Finds lines in files matching patterns and then performs specified
actions on them.

banner Writes ASCII character strings in large letters to standard output.

batch Runs jobs when the system load level permits it.

bc Provides an interpreter for arbitrary-precision arithmetic language.

bsh Invokes the Bourne shell.

cal Displays a calendar.

cat Concatenates or displays files.

chroot Changes the root directory of a command.

cksum Displays the checksum and byte count of a file.

cmp Compares two files.

compress Compresses data.

cp Copies files.

cpio Copies files into and out of archive storage and directories.

crontab Submits, edits, lists, or removes cron jobs.

csplit Splits files by context.

ctags Makes a file of tags to help locate objects in source files.

cut Writes out selected bytes, characters, or fields from each line of a file.

date Displays or sets the date or time.

dd Converts and copies a file.

diff Compares text files.

diff3 Compares three files.

du Summarizes disk usage.

echo Writes character strings to standard output.

ed Edits text by line.

egrep, fgrep,
and grep

Searches a file for a pattern.

Command Description
188 Running Linux Applications on AIX

env Displays the current environment or sets the environment for the
execution of a command.

expand Writes to a standard output with tabs changed to spaces.

file Determines file type.

find Finds files with a matching expression.

fortune Displays a random fortune from a database of fortunes.

getopt Parses command line flags and parameters.

gprof Displays call graph profile data.

halt Stops the processor.

head Displays the first few lines or bytes of a files or files.

help Provides information for new users.

indent Reformats a C language program.

init Initializes and controls processes.

install Installs a command.

ipcs Reports interprocess communication facility status.

jobs Displays the status of jobs in a current session.

join Joins the data fields of two files.

kill Sends a signal to running processes.

killall Cancels all processes except the calling process.

ksh Invokes the Korn shell.

last Displays information about previous logins.

lastcomm Displays information about the last commands executed.

lex Generates a C language program that matches patterns for a simple
lexical analysis of an input stream.

ln Links files.

logger Make entries in the system log.

look Finds lines in a sorted file.

ls Displays the contents of a directory.

Command Description
 Appendix B. Differences in commands 189

make Maintains up-to-date versions of programs.

man Displays manual entries online.

mkfifo Makes a first-in-first-out (FIFO) special file.

mknod Creates a special file.

more Displays continuous text, one screen at a time, on a display screen.

mt Gives subcommands to a streaming tape device.

mv Moves files.

nice Runs a command at a lower or higher priority.

nohup Runs the command without hangups.

patch Applies changes to files.

patchchk Checks pathnames.

pr Writes a file to a standard output.

printf Writes formatted output.

ps Shows the current status of the processes.

rdist Maintains identical copies of files on multiple hosts.

reboot Restarts the system.

red Edits text by line.

remove Delete files from /var/adm/acct sub-directories.

restore Copies previously backed-up file systems or files. Created by the
backup command from a local device.

rm Removes (unlinks) files or directories.

rmt Allows remote access to magnetic tape devices.

rsh Executes the specified command at the remote host or logs into the
remote host.

sa Summarizes accounting records.

sdiff Compares two files and displays the differences in a side-by-side
format.

sed Provides a stream editor.

Command Description
190 Running Linux Applications on AIX

sh Invokes the default shell.

shutdown Ends system operation.

sleep Suspends execution for an interval.

sort Sort files, merges files that are already sorted, and checks files to
determine if they have been sorted.

split Splits a file into pieces.

strings Finds the printable strings in an object or binary file.

sum Displays the checksum and block count of a file.

tail Writes a file to standard output, beginning at a specified point.

tar Manipulates archives.

tee Display the output of a program and copies it into a file.

telinit Initializes and controls processes.

test Evaluates conditional expressions.

time Prints the time for when the command was executed.

touch Updates the access and modification times of a file.

tty Writes the full path name of your terminal to standard output.

type Writes a description of the command type.

ulimit Sets or reports user resource limits.

uname Displays the name of the current operating system.

uncompress Restores compressed files.

uniq Deletes repeated lines in a file.

units Converts units in one measure to equivalent units in another measure.

users Displays a compact list of the users currently on the system.

vedit Edits files on a full screen display.

vi Edits files on a full screen display.

vmstat Reports virtual memory statistics.

whatis Describes what function a command performs.

Command Description
 Appendix B. Differences in commands 191

which Locates a program file, including aliases and paths.

who Identifies the users currently logged in.

whoami Displays your login name.

xargs Constructs parameter lists and runs a command.

yace Generates a LALR(1) parsing program from input, which consists of a
context-free grammar specification.

yes Outputs an affirmative response repetitively.

zcat Expands a compressed file to a standard output.

Command Description
192 Running Linux Applications on AIX

Appendix C. Other Open Source Software
for AIX

This appendix provides information on other sources for Open Source Software.

C

© Copyright IBM Corp. 2001 193

Overview
Open source software is generally software whose source is available to all
without restrictions on use. The Linux kernel, and the GNU software packages,
are the most well-known examples of open source software. This software is
commonly distributed with the source code and the executable program included
in one package. It also includes the license and agreement that will allow
modifications, enhancements, and redistribution of the software under the same
license terms. For more information about licenses, see Section 1.2.2, “About
Linux’s copyright” on page 5.

This alternative method of software development and distribution gives people,
who are interested in the program, a possibility to contribute to the program by
reporting errors and bugs or fixing problems on their own. Since different people
have diverse techniques on tracing problems, the product is continuously
enhanced, becoming much more robust and reliable.

Other sources
As discussed in Chapter 2, “AIX Toolbox for Linux Applications” on page 13, the
AIX Toolbox contains many kinds of software that is commonly used in Linux
systems. Because of the deeper integration with the basic AIX operating system,
the AIX Toolbox should be used as the main source for Open Source Software.

However, there are Web sites that provide Open Source Software for AIX. Most
of this software is distributed in .bff or .tar format. .bff format has the installation
image file on an installation media that is used by installp (or SMIT) (see
Section 2.5.1, “AIX installp” on page 24 for more details).

Two examples of open source software Web sites where you can download a
wide ranges of software in addition to the AIX Toolbox are:

� Bull®

http://www-frec.bull.fr/docs/download.htm
http://www-frec.bull.fr/cgi-bin/list_dir.cgi/download/aix432/

� UCLA - University of California, Los Angeles

http://aixpdslib.seas.ucla.edu/aixpdslib.html
194 Running Linux Applications on AIX

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 198.

� IBM Certification Study Guide AIX 4.3 System Administration, SG24-5129

Other resources
These publications are also relevant as further information sources:

� Edward C. Bailey, Maximum RPM, July 1997, Red Hat Press, ISBN
0-67231-105-4. Also found at: www.rpm.org/maximum-rpm.ps.gz or
www.rpmdp.org/rpmbook

� AIX System Management Guide: Operating Systems and Devices, found at:
http://9.53.35.177/techlib/manuals/adoclib/aixbman/baseadmn/
undersys.htm

� Kernel Extensions and Device Support Programming Concepts, found at:
www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/kernextc/
toc.htm

Referenced Web and FTP sites
These Web sites are also relevant as further information sources:

� http://www.ibm.com/servers/aix/products/aixos/linux/ - AIX Toolbox for
Linux Applications Web site

� http://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/docs/ - AIX
Toolbox for Linux Applications documentation Web site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/README.txt -
AIX Toolbox for Linux applications README file with latest information for
installation and configuration Web site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/ - AIX Toolbox
for Linux applications FTP site
© Copyright IBM Corp. 2001 195

� http://www.ibm.com/servers/aix/products/aixos/linux/altlic.html - AIX
Toolbox for Linux applications licensing information Web site

� http://linuxppc.org/ - Linux on PowerPC Web site

� http://www.rs6000.ibm.com/linux/ - Linux on PowerPC Web site

� http://www.gnome.org/ - GNOME Organization Web site

� http://www.gnu.org/ - GNU Project Web site

� http://www.trolltech.com/ - TrollTech Web site

� http://www.rpm.org/ - Red Hat Package Manager Web site

� http://sunsite.dk/zsh/ - Z Shell Web site

� http://howto.tucows.com/man/man1/tcsh.1.html - tcsh manual reference
Web site

� http://www-1.ibm.com/servers/aix/os/index.html - IBM Operating System
Web site

� http://www-1.ibm.com/servers/aix/products/aixos/linux/date.html - AIX
Toolbox Downloads Web site

� http://techsupport.services.ibm.com/rs6000/support - IBM RS/6000
Support Web site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/INSTALLP/ppc -
/aix/freeSoftware/aixtoolbox/INSTALLP/ppc FTP site

� http://www-1.ibm.com/servers/aix/products/aixos/linux/ezinstall.html
- AIX Toolbox - Easy Install Web site

� www.wget.org - wget Web site

� www.ncftp.com/ncftp/ - ncFTP Web site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/bash
- /aix/freeSoftware/aixtoolbox/RPMS/ppc/bash FTP site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/
texinfo - /aix/freeSoftware/aixtoolbox/RPMS/ppc/texinfo FTP site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/wget
- /aix/freeSoftware/aixtoolbox/RPMS/ppc/wget FTP site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/ncftp
- /aix/freeSoftware/aixtoolbox/RPMS/ppc/ncftp FTP site

� http://rpmfind.net - RPMfind Web site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/tools/
destroyRPMS - destroyRPMS script Web site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/ezinstall/ppc/
Xsession.kde2 - Xsession.kde2 script Web site
196 Running Linux Applications on AIX196 Running Linux Applications on AIX

� http://www-1.ibm.com/servers/aix/products/aixos/linux/rpmgroups.html
- RPM Group classification Web site

� www.redhat.com/support/manuals/RHL-7-Manual/ref-guide/ch-rpm.html -
Package Management with RPM Web site

� www.rpm.org/RPM-HOWTO/index.html - RPM HOWTO Web site

� www.rpm.org/maximum-rpm.ps.gz - Maximum RPM by Ed Bailey download
site

� www.rpmdp.org/rpmbook - Maximum RPM by Ed Bailey Web site

� www.gnu.org/prep/standards_toc.html - GNU Coding Standards Web site

� www.gnu.org/software/autoconf - GNU autoconf Web site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/ -
/aix/freeSoftware/aixtoolbox/RPMS/ppc FTP site

� ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/SRPMS/ -
/aix/freeSoftware/aixtoolbox/SRPMS FTP site

� http://fvwm.org - FVWM Web site

� http://xwinman.org - Xwinman Web site

� www.gnu.org/software/libtool - GNU libtool Web site

� www.gnu.org/software/libtool/manual - GNU libtool TOC Web site

� ftp://prep.ai.mit.edu/pub/gnu/wget - GNU wget FTP site

� www.gtk.org - GIMP Toolkit Web site

� www.gnu.org/manual/bash-2.02/html_node/bashref_toc.html - GNU BASH
Reference Manual Web site

� http://howto.tucows.com/man/man1/bash.1.html - Tucows Linux man page
for bash.1 Web site

� www.zsh.org - zsh Web site

� www.linuxbase.org - Linux Standard Base Web site

� http://howto.tucows.com/LDP/LDP/lpg/node1.html - Tucows Linux Linux
Programmer’s Guide Web site

� http://howto.tucows.com/man/man3/index.html - Tucows Linux man page
for man3 Web site

� http://www-frec.bull.fr/docs/download.htm - Bull's Large Freeware and
Shareware Archive for AIX 4 Web site

� http://www-frec.bull.fr/cgi-bin/list_dir.cgi/download/aix432/ - Bull’s
downloadable resources for AIX 4.3.2 Web site
 Related publications 197

� http://aixpdslib.seas.ucla.edu/aixpdslib.html - Public Domain Software
Library for AIX

How to get IBM Redbooks
Search for additional Redbooks or redpieces, view, download, or order hardcopy
from the Redbooks Web Site

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web Site for information about all the CD-ROMs offered, updates and
formats.
198 Running Linux Applications on AIX198 Running Linux Applications on AIX

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA. Such information may be
available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

All statements regarding IBM's future direction and intent are subject to change
or withdrawal without notice, and represent goals and objectives only. Contact
your local IBM office or IBM authorized reseller for the full text of a specific
Statement of General Direction.
© Copyright IBM Corp. 2001 199

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In Denmark,
Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Linux is a registered trademark of Linus Torvalds.

GNU Project, GNU, GPL and all GNU-base trademarks and logos are
trademarks or registered trademarks of the Free Software Foundation.

POSIX is a trademark of the IEEE (Institute of Electrical and Electronics
Engineers, Inc.).

BSD is a registered trademark of Berkeley Software Design, Inc.

OSF/Motif is a registered trademark of the Open Software Foundation.

Red Hat and RPM are trademarks of Red Hat Software.

SuSE is a registered trademark of SuSE Linux AG.
200 Running Linux Applications on AIX

Caldera, OpenLinux and all OpenLinux-base trademarks and logos are
trademarks or registered trademarks of Caldera.

Corel Linux and all Corel Linux-base trademarks and logos are trademarks or
registered trademarks of Corel.

Mandrake and Linux Mandrake are registered trademarks of MandrakeSoft SA
and MandrakeSoft Inc.

TurboLinux and all TurboLinux-base trademarks and logos are trademarks or
registered trademarks of TurboLinux.

Debian is a trademark of Software in the Public Interest, Inc.

Yellow Dog Linux is trademark of Terra Soft Solutions.

Slackware is a registered trademark of Slackware Linux, Inc.

Bull is a registered trademark of Bull S. A.

Apple, Macintosh and Mac OS are trademarks of Apple Computer, Inc.

XWindows is a trademark of MIT.

Trolltech and Qt are trademarks of Trolltech AS.

KDE, K Desktop Environment, KChart, KFormula, KIllustrator, KOffice,
KPresenter, Krayon, KSpread and KWord are trademarks of KDE e.V.

CDE, Java, SOLARIS, and Ultra are trademarks of Sun Microsystems, Inc..

SPARC trademarks refers to SPARC and related marks owned by SPARC
International, Inc. and licensed to Sun for use on products based upon a
particular architecture.

Alpha is a trademark of Compaq Computer Corporation.

Intel, IA-32, IA-64, Itanium, and all Intel-base trademarks and logos are
trademarks or registered trademarks of Intel Corporation.

Other company, product, and service names may be trademarks or service
marks of others.
 Special notices 201

202 Running Linux Applications on AIX

Index

Symbols
/opt/freeware 18
/usr/opt/freeware 18

A
affinity between Linux and AIX

(See AIX Toolbox for Linux Applications)
AIX 1, 2

affinity between Linux and AIX 8
boot process 143
installation method 22
installp command 24
Linux Applications on AIX 8
new features 3
ODM 22
strategy 8
trends and directions 10
useful URLs 53
version 2
XCOFF 56

AIX 5L 8, 10
AIX Toolbox for Linux Applications 13

benefits 15
content 16
design 17
documentation 13, 16
main reasons for using it 15
Open Source Software 16
Overview 15
RPM 15
useful URLs 53

APIs
compatibility 55
fcntl 64
LSB (Linux Standard Base) 57, 153
on AIX 55
poll 65
similarities and differences 55

B
build environment 79
© Copyright IBM Corp. 2001
C
Caldera 6
CDE 21
commands and tools

adduser 134
administration tools 134
basic utilities 43
cpio 49
diag 129
differences 89
dodisk 149
fsck 149
ftp 41
GnomeRPM 33
GNU 17
installp 23, 24, 25
KPackage 35
libtool

(see libtool)
Linuxconf 134
lslpp 38
ltconfig 83
make 76
mkfs 149
mount 150
ncftp 41
passwd 134
RPM

(see RPM)
rpm2cpio 49
sar 129
shell

(see shell)
SMIT 8, 26, 134
touch 59
umount 150
VSM 109
wget 41
YaST 134

configuration files
/etc/filesystems 149

Corel 6
 203

D
Debian 6
deinstall package 47
directory structure 17

/opt/freeware 18
/usr/opt/freeware 18

E
ELF 56

F
file access modes 60
Free Software Foundation 5

G
GNOME 21

installation 40, 52
starting 53

GnomeRPM 33
GNU 5

General Public License (GPL) 5
GNU coding standards 81
GNU Project 5
useful URL 5

I
installation

getting individual files out of a package file 49
GNOME 40, 52
KDE2 40, 50
process 23
RPM 23, 39
system requirements 38
Toolbox 23, 37, 39
Toolbox base 43
useful URLs 37, 53

installation methods 22
command line 22
GnomeRPM 22
installp 23
KPackage 22
SMIT 22

K
KDE2 21

installation 40, 50

starting 51
KPackage 35

L
libtool 83

building applications 69
usage 83

LILO (LInux LOader) 142
Linux 1, 4

affinity between Linux and AIX 8
at IBM 7
flavors and distributions 6
Linux Applications on AIX 8

Linuxconf 134
LSB (Linux Standard Base) 57, 153

M
macro values 58
Mandrake 6

O
Open Source Software (OSS) 15

P
package building 69
package rebuilding 72
portable code 56
porting 69

R
Red Hat 6
Redbooks Web Site 198

Contact us xv
RPM 15, 22, 30, 69

command line 31
database 24
GnomeRPM 33
installation 39
KPackage 35
package label convention 31
spec file 71, 72
using 44

RS/6000 2

S
scripts
204 Running Linux Applications on AIX

/etc/rc.d/rc.sysinit 142
destroyRPMS 48
ltconfig 83
rc 142
rc.boot 143
startkde 91

shell 112
bash 115
bsh 112
csh 112
ksh 113
psh 113
Rsh 113
sh 113
startup files 123, 133
tcsh 117
tsh 114
zsh 120

SMIT 134
source compatibility 55
SRPM 22, 69
standards

POSIX 15
UNIX98 15
X/Open 15

SuSE 6
system variables 20

MANPATH 21
PATH 20, 70

T
Toolbox

(See AIX Toolbox for Linux Applications)
troubleshooting

corrupt package files 49
running out of disk space 46

TurboLinux 6

U
UNIX98 56

V
Visual Age 21

X
XCOFF 56

Y
YaST 134
Yellow Dog Linux 7
 Index 205

206 Running Linux Applications on AIX

Running Linux Applications on AIX

®

SG24-6033-00 ISBN 0738422045

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Running Linux
Applications on AIX

AIX affinity with
Linux

AIX Toolbox for
Linux
Applications

Porting and
source
compatibility

The strengths of the AIX operating system are well known
among the UNIX software community. Its reliability and great
degree of scaling makes AIX the perfect choice for hosting
mission-critical applications. It is a robust and flexible
operating system that meets all the requirements for the
current demands of e-business environments. At the same
time, Linux is emerging and generating excitement among
software developers that has not been seen in years.

This redbook presents the AIX Toolbox for Linux Applications.
The toolbox contains a collection of open source and GNU
software built for AIX 4.3.3 and AIX 5L 5.1 for IBM ^
pSeries systems and IBM RS/6000. It provides the basics for
the development environment of choice for many Linux
application developers. All the tools are packaged using the
easy-to-install RPM format. There is a strong affinity between
Linux and AIX for applications. AIX has a long history of
standards compliance and it is generally straightforward to
rebuild Linux applications for AIX. Now you can easily port
these applications and run them directly on AIX while taking
advantage of all the features and benefits that the AIX
operating system offers.

Back cover
Acrobat bookmark

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Special notice
	IBM Trademarks
	Comments welcome

	Chapter 1. Introduction
	1.1 AIX
	1.1.1 Current version and status

	1.2 Linux
	1.2.1 Brief history
	1.2.2 About Linux’s copyright
	1.2.3 The GNU Project and the Linux kernel
	1.2.4 Different flavors of Linux

	1.3 Linux at IBM
	1.3.1 Linux applications on AIX
	1.3.2 IBM’s UNIX-based operating system strategy

	1.4 Future trends and directions

	Chapter 2. AIX Toolbox for Linux Applications
	2.1 Overview
	2.2 Additional information
	2.3 Design of the Toolbox
	2.3.1 Directory structure
	2.3.2 System variables

	2.4 Components
	2.4.1 Development utilities
	2.4.2 User environment utilities and applications
	2.4.3 Binaries and sources (rpm and srpm)

	2.5 Installation methods
	2.5.1 AIX installp
	2.5.2 RPM Package Manager

	Chapter 3. Toolbox installation
	3.1 System requirements
	3.2 Installation procedure
	3.2.1 Installing the RPM Package Manager
	3.2.2 Preparing to install GNOME, KDE2 and other applications
	3.2.3 FTP tools
	3.2.4 Installing the Toolbox base
	3.2.5 Using the RPM Package Manager
	3.2.6 Installing KDE2
	3.2.7 Installing GNOME

	3.3 Useful URLs

	Chapter 4. Source compatibility: Linux-compatible APIs on AIX
	4.1 Writing portable code
	4.2 Linux-compatible APIs and LSB functions on AIX
	4.3 File macro supported values
	4.3.1 File access modes
	4.3.2 File descriptor flags for fcntl
	4.3.3 File modes
	4.3.4 Poll macro values

	4.4 Signal values

	Chapter 5. Package building and porting
	5.1 Compiler installation and requirements
	5.2 Rebuilding Toolbox packages
	5.2.1 Building packages with rpm
	5.2.2 Rebuilding a Toolbox RPM

	5.3 Compiling open source software
	5.4 Using libtool to handle shared libraries
	5.5 Examples
	5.5.1 Rebuilding and updating the wget package

	Chapter 6. User and administration differences
	6.1 Desktop and graphical applications
	6.1.1 The XWindow System
	6.1.2 The KDE desktop
	6.1.3 The GNOME desktop
	6.1.4 Package managing using KDE or GNOME
	6.1.5 CDE desktop

	6.2 Available shells
	6.2.1 Overview of shell startup files

	6.3 Commands and syntax differences
	6.3.1 AIX and AIX Toolbox commands differences

	6.4 Administration differences
	6.5 Boot process differences
	6.5.1 Linux boot process
	6.5.2 AIX boot process

	6.6 System files differences
	6.6.1 File system definitions on AIX and Linux

	Appendix A. APIs
	Linux-compatible APIs and library functions
	Linux-compatible APIs
	Linux Standard Base APIs

	New APIs in AIX 5L 5.1

	Appendix B. Differences in commands
	Appendix C. Other Open Source Software for AIX
	Overview
	Other sources

	Related publications
	IBM Redbooks
	Other resources
	Referenced Web and FTP sites

	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Index
	Back cover

