IBM AIX Version 6.1
Differences Guide

AIX - The industrial strength UNIX
operating system

“ AIX Version 6.1 enhancements
explained

“ An expert’s guide to the
new release

Roman Aleksic
Ismael "Numi" Castillo
Rosa Fernandez

Armin Raéll

Nobuhiko Watanabe

Redhooks

ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM AIX Version 6.1 Differences Guide
March 2008

SG24-7559-00

Note: Before using this information and the product it supports, read the information in
“Notices” on page xvii.

First Edition (March 2008)

This edition applies to AIX Version 6.1, program number 5765-G62.

© Copyright International Business Machines Corporation 2007, 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Figures Xi
Tables Xiii
Notices e XVii
Trademarks e XViii
Preface Xix
The team that wrote thisbook Xix
Become a publishedauthor XXi
Comments WElCOME.ot e XXi
Chapter 1. Application development and systemdebug. 1
1.1 Transportindependent RPClibrary............ 2
1.2 AlX tracing facilitiesreview 3
1.3 POSIXthreadstracing. e 5
1.3.1 POSIXtracing overview 6
1.3.2 Trace eventdefinition 8
1.3.3 Trace stream definition 13
1.3.4 AlIX implementation overview 20
1.4 ProbeVUue 21
1.4.1 ProbeVue terminology. i 23
1.4.2 Vue programming language 24
1.4.3 The probevuecommand. i .. 25
1.4.4 The probevctrlcommand 25
1.4.5 VUE: an OVeIVIEW. e e 25
1.4.6 ProbeVue dynamic tracingexample 31
Chapter 2. File systemsandstorage. 35
2.1 Disabling JFS210gging« o oo 36
2.2 JFS2internalsnapshot 36
2.2.1 Managing internal snapshots 37
222 Errorhandling 39
2.2.3 Considerations 39
2.3 Encrypted File System 40
2.3.1 Encrypliono 41
2.3.2 Keystoremodes 41
2.3.3 File access permissions 42
2.34 Installation. e 42

© Copyright IBM Corp. 2007, 2008. All rights reserved. iii

2.3.5 Enable and create EFSfilesystems......................... 44

2.3.6 File encryption and de-encryption. 45
2.3.7 Encryptioninheritance. 48
2.3.8 Considerationst 49
2.4 iSCSI target mode software solution. 50
2.4.1 iSCSI software target considerations 50
242 SMITinterface. e 51
Chapter 3. Workload Partitions overview and resource management. . . 53
B OVEIVIEW . o o e e 54
3.2 WPAR based system virtualization 55
3.3 Managementtools. 56
3.3.1 Packagingo 56
3.4 System trace support 57
341 OVEIVIEW . . . oot 57
3.4.2 WPAR tracing capabilities. 58
3.4.3 Trace WPAR filtering from the global environment.............. 58
3.4.4 Trace report filtering from the Global environment 60
3.4.5 Tracing from withina WPAR. 63
3.5 File system metrics support. 64
3.6 Network metrics supporto 65
3.7 Performance tools updates for WPAR support 65
3.7.1 Updates forthe curtcommand 66
3.7.2 Updates for the filemoncommand 68
3.7.3 Updates forthe iostatcommand. 71
3.7.4 Updates for the netpmoncommand 74
3.7.5 Updates for the pprofcommand 78
3.7.6 Updates for the procmon plug-in. 80
3.7.7 Updates for the proctreecommand. 81
3.7.8 Updates forthe svmoncommand........................... 83
3.7.9 Updates forthetopascommand. 84
3.7.10 Updates for the tprof command. 87
3.7.11 Updates forthe vmstatcommand 89
3.8 Standard command updates for WPAR support. 92
3.9 Network file system supportfor WPARs 97
3.9.1 OVEIVIEW . . .o e 97
3.9.2 NFSuserinterface i 98
3.9.3 AutoFSuserinterface 99
3.9.4 CacheFSuserinterface 99
3.9.5 Continuous availability enhancementsforNFS 100

iv IBM AlIX Version 6.1 Differences Guide

Chapter 4. Continuous availability. 103

4.1 Storage protection Keys.t 104
4.2 Component trace and RTEC adoption 105
4.2.1 VMM component trace and RTEC adoption 110

4.2.2 AIX storage device driver component trace and RTEC support . .. 114
4.2.3 Virtual SCSI device driver component trace and RTEC adoption. . 115

4.2.4 MPIO and RAS component framework integration. 116
4.2.5 InfiniBand device driver component trace and RTEC support 118
4.2.6 LAN device driver component trace and RTEC support......... 120
4.2.7 Error level checking for TCP kernel and kernel extension 124
4.2.8 IPsec component trace exploitation 126
4.2.9 PCI device driver component trace adoption 127
4.2.10 Virtual bus device driver component trace adoption........... 128
4.2.11 Component trace for USB systemdriver. 129
4.2.12 Componenttrace forUSBaudio.......................... 130
4.2.13 Component trace for 2D graphics device drivers 131
4.2.14 System loader runtime errorchecking 132
4.2.15 NFS and CacheFS runtime error checking. 133
4.2.16 Runtime error checking for watchdog timer 135
4.2.17 System memory allocator adoption of run-time error checking. . . 136
4.3 Dumpfacilities. 149
4.3.1 Thedumpctricommand 151
4.3.2 Componentdumpfacility. 152
4.3.3 Livedump facility. 157
4.3.4 Systemdumpfacility. 164
4.4 Performingalive dumpot e 172
4.5 Kernel error reCOVEIY. . . . oottt e e e 174
4.5.1 Recovery concepts it e 174
4.5.2 Kernel error recovery management 176
4.6 Concurrentupdate. i 179
4.6.1 Concurrentupdatemethod 179
4.6.2 The emgr command concurrent update operations 181
4.7 Coredump enhancementscouuuiinniiiiiinnnnnnn 183
4.8 Trace hook range expansion.ttt 185
4.9 LVM configurationandtracelogs 187
4.9.1 LVMconfigurationlogt 187
4.9.2 LVM detailed trace configurationlog. 189
49.3 Thegsclvmddaemonlogc. i . 192

Contents v

4.10 Group Services Concurrent LVM enhancements 194

4.11 Paging space verification i, 197
Chapter 5. Systemmanagement 201
5.1 Web-based System Manager enhancements..................... 202
5.1.1 The mknfsproxy and rmnfsproxy interfaces 202
5.1.2 Modified Web-based System Managermenus................ 207
5.2 AIX Printspoolerredesign. 208
5.2.1 Spoolercommandchanges 209
5.3 Increase default size of argumentarea.......................... 209
5.4 Limitthreads perprocesst 212
5.4.1 Background. 212
5.4.2 Implemented mechanisms 212
5.4.3 Implemented functions i 213
5.4.4 Implementedchanges. i 213
5.4.5 How to configure these limits 214
5.5 Threading pthread default 1:1......... 217
5.6 RFC 2790 SNMP host resource groupsvueeieeneennnn. 218
5.6.1 The Running Software informationgroup 219
5.6.2 The Running Software Performance information group 220
5.7 IBM Systems Director Console for AIX 220
5.7.1 Packaging and requirements 221
5.7.2 The layout of the IBM Systems Director Console 223
5.7.3 My Startup Pages (customization) 226
5.7.4 Health Summary plug-in i 226
575 OSmanagement. 226
5.7.6 Managing Workload Partitions 236
B.7.7 Settings 236
B.7.8 AIX SeCurity. e 237
5.7.9 Configuration and management 240
5.8 VMM dynamic variable page size 240
5.8.1 Variable page sizeconcept. i 241
5.8.2 Page size promotion 242
5.8.3 Thevmo commandtunables. 243
5.8.4 The svmon command enhancements. 244
Chapter 6. Performance management. 247
6.1 Unique tunable documentation 248
6.2 Restrictedtunables 249
6.2.1 New warning message for restricted tunables 250
6.2.2 New error log entry for restricted tunables 252
6.2.3 AIXV6tunableslists. i 253

Vi IBM AlIX Version 6.1 Differences Guide

6.3 AIX V6 out-of-the-box performance. 262

6.3.1 Virtual Memory Manager default tunables 263
6.3.2 AIX V6 enables I/O pacingby default 264
6.3.3 AIX V6 new AlIO dynamictunables. 265
6.3.4 NFSdefaulttunables. 270
6.4 Hardware performance monitors. 271
6.4.1 Performance Monitor (PM) 272
6.4.2 Hardware Performance Monitor (HPM). 273
6.4.3 AIXV6.1 PMand HPM enhancements. 274
Chapter 7. Networking i 279
7.1 Internet Group Management Protocol Version 3. 280
7.2 Network Data Administration Facility enhancements 283
7.2.1 Integration of NDAF to the base AIX V6.1 distribution 283
7.22 NDAFcommandst 284
7.2.3 NDAF SMIT fastpaths 284
7.2.4 NDAF logs online information 284
7.2.5 NDAF data transfermethods 285
7.2.6 NDAFcasestudy 285
7.3 Enabling SSL supportfor FTP. i i 286
7.4 NFS proxy serving enhancements 287
7.4.1 NFS server proxy prerequisites., 288
7.4.2 Comprehensive RPCSEC_GSS Kerberos support. 289
7.4.3 NFSv3 exports for back-end NFSv4 exports. 291
7.4.4 NFSv4 global namespace., 291
7.4.5 Cachefsimprovements i i 293
7.5 Network cachingdaemon 293
7.5.1 Thenetcd architecture 293
7.5.2 netcd AlXintegration. 295
7.5.3 netcd configuration 296
7.5.4 Managingnetcd. 298
7.6 IPv6 RFC complianCesottt 301
7.6.1 RFC 4007 - IPv6 Scoped Address Architecture 301
7.6.2 RFC 4443 - Internet Control Message Protocol (ICMPVE) 301
Chapter 8. Security, authentication, and authorization.............. 303
8.1 The /admin/tmp systemdirectory 304
8.2 AIX Security Expert enhancements., 306
8.2.1 Centralized policy distribution through LDAP 306
8.2.2 User-defined policies. i 307
8.2.3 More stringent check for weak root passwords. 307
8.2.4 Enabling Stack Execution Disable (SED) 310

8.2.5 File permission Manager (fpm) for managing SUID programs 310

Contents vii

viii

8.2.6 SecurebyDefault 312

8.2.7 SOX-COBITassistant.o .. 313
8.2.8 Performance enhancements for the graphical interface 315
8.3 Enhanced Role Based AccessControl 315
8.3.1 Authorizations 317
8.3.2 Privileges. 322
8.3.83 RoOles. 324
8.3.4 Summary of differences L. 326
8.4 Web-based GUIfor RBAC 326
8.4.1 Tasksandroles. 328
8.5 LDAP supportenablement 330
8.6 RBAC and Workload Partition environments 332
8.7 Enhanced and existingmode switch. 334
8.8 Trusted AlX . . . e 335
8.8.1 Introduction 336
8.8.2 Considerations 338
8.8.3 Identification and authentication 339
8.8.4 Discretionary accesscontrol. 340
8.8.5 Role Based Access Controlelements. 342
8.8.6 Trusted AIX packages. 347
8.8.7 Trusted AIX commands. 348
8.9 The Trusted Execution environment 349
8.9.1 Trusted Signature Database 350
8.9.2 Trusted Execution. 351
8.9.3 Trusted Execution Path and Trusted Library Path 354
8.10 Password length and encryption algorithms 354
8.10.1 Existing crypt()« oot 355
8.10.2 Password hashing algorithms 355
8.10.3 Loadable Password Algorithm 355
8.10.4 Support greater than eight character passwords 356
8.10.5 LPA configurationfile L. 356
8.10.6 System password algorithm 357
8.10.7 Support more valid characters in passwords 358
8.10.8 Setup system password algorithm 358
8.10.9 Changes to supportlongpasswords. 359
Chapter 9. Installation, backup, andrecovery 363
9.1 AIX graphicalinstaller 364
9.2 Network Install Manager NFSv4 support. 367
9.2.1 NFSv4 NIMintegration 368
9.2.2 NFSv4 security overview. 370
9.2.3 RPCSEC_GSS Kerberos sample scripts 371
9.24 Considerations e 375

IBM AIX Version 6.1 Differences Guide

Chapter 10. National language support 377

10.1 Azerbaijanilocale support. 378
10.1.1 Packaging andinstallation 379
10.1.2 Locale definitions, keyboard definition, and input methods. 381

10.2 Euro symbol support 385

10.3 Maltese locale support 388
10.3.1 Packagingandinstallation 389
10.3.2 Locale definitions, keyboard definition, and input methods. 391

10.4 Urdu India and Urdu Pakistan locale support 394
10.4.1 Packaging andinstallation 395
10.4.2 Locale definitions, keyboard definition, and input methods. 398

10.5 Welsh locale support. i 400
10.5.1 Packaging andinstallation 402
10.5.2 Locale definitions, keyboard definition, and input methods. 404

10.6 Olson time zone support oot e e 407

10.7 Unicode 5.0 SUPPOIT . . . oottt e 411

10.8 International Components for Unicode 411

Chapter 11. Hardware and graphics support 413

11.1 Hardware support e 414

11.2 Universal Font Scaling Technology Version 5. 414

11.3 X Window System Version 11 Release 7.1. 415
11.3.1 X11R5, X11R6.1, and X11R7.1 compatibility issues 415
11.3.2 AIX V6.1 X Clientenhancements 416
11.3.3 X11R5, X11R6, and X11R7.1 coexistence. 417

11.4 32 TB physical memory support i, 417

11.5 Withdrawal of the 32-bitkernel 418

Appendix A. Transport-independentRPC. 419

Appendix B. Sample scriptfortunables.......................... 429

Abbreviationsandacronyms oo 433

Related publications 439

IBM Redbooks e 439

Otherpublications e e 440

HowtogetRedbooks. 440

Help from IBM e 441

Index 443

Contents ix

X IBM AIX Version 6.1 Differences Guide

1-1 POSIX trace system overview: online analysis. 7
1-2 POSIX trace system overview: offline analysis. 7
1-3 StructureofaVuescript 26
3-1 Multiple WPAR execution environments. 55
3-2 SMIT trestart fast path menuoptions 59
3-8 SMIT panel for smitty trcrpt panel fast pathoption 62
3-4 Performance Workbench - Processestabview 81
3-5 The topas command output in a WPAR environment. 87
4-1 Component RAS Framework overview.coo.... 105
4-2 Two dump frameworks, a unified user-interface: dumpctrl 151
4-3 Problem Determination SMIT panel 152
4-4 SMIT Panel to request change/show the dump component attributes . . 156
4-5 SMIT Panel to change/display Dump attribute for a component. 157
4-6 SMIT Live dump panel: smitty ldmp 158
4-7 The freespc parameteranderrorlog i . 161
4-8 SMIT panel to change live dump attributes. 162
4-9 Overview of all dump capabilities 168
4-10 SMIT panel: type of systemdump. 169
4-11 SMIT panel: traditional or firmware-assisted dump. 169
4-12 SMIT panel: Change the Full MemoryMode 170
4-13 SMIT panel: Types of memorydumpmode 171
4-14 SMIT panel: Startingalivedump 173
4-15 Kernel reCoVery ProCESS . . oottt e e et 175
4-16 Concurrent in memory update high level overview 180
4-17 Core dump UID/GID dependenciesccciiuune.... 184
5-1 Proxy SErvermenuS v ittt ittt et e 203
5-2 Create Proxy Serverdialog., 205
5-3 Remove Proxy Serverdialog, 206
5-4 Example of Show Restricted Parameters........................ 207
5-5 IBM Systems Director Console for AIX Welcome page 222
5-6 Consoletoolbar. 223
5-7 Navigation area. e 224
5-8 Page bar. e 224
5-9 Portlets e 225
5-10 Distributed Command Execution Managermenu 231
5-11 Target Specificationtab L. 233
5-12 Optiontab e 234
5-13 System Management Interface Toolsmenu 235

© Copyright IBM Corp. 2007, 2008. All rights reserved. Xi

5-14 Mixed page size memory segmentused by VPSS 242

6-1 SMIT panel for AIX Version 6.1 restricted tunables 250
7-1 NFS proxy serving enhancementscoiiiuiean. .. 288
8-1 Management environmenttasks. 308
8-2 Root Password Integrity Check interface 309
8-3 Enable SED Feature Interface 310
8-4 File Permissions Manager Interface on AIX Security Expert 311
8-5 Sox-Cobit Rulesinterface i 314
8-6 Enhanced RBAC Framework on AIXV6.1........ 317
8-7 Authorizationsconcept 317
8-8 Authorization hierarchy 320
8-9 Conceptofprivileges.t e 322
8-10 Conceptofroles i e 324
8-11 IBM Systems Director Console for AIX and RBAC modules. 327
8-12 Web-Base GUI Componentwith RBAC 328
8-13 RBAC and Workload Partition framework. 333
8-14 Kernel Authorization Tables mapping for Workload Partitions 334
8-15 Systemiintegritycheck 352
8-16 Runtimeintegritycheck. L 353
9-1 AIX graphical installer welcome and installation language window 365
9-2 AIX graphical installer installation type selection window 366
9-3 AIX graphical installer summary and AIX language selection window . . 367
10-1 The flag of the Republic of Azerbaijan 378
10-2 Azerbaijaniletters 378
10-3 Set Primary Language Environment installationmenu. 380
10-4 The flag of the European Union 385
10-5 The flag of the Republicof Malta 388
10-6 Maltese letters. 388
10-7 Set Primary Language Environment installationmenu. 390
10-8 Republic of India and Islamic Republic of Pakistan flags 394
10-9 Some examples of Urdu characters 395
10-10 SMIT menu to add Urdu national language support for India 397
10-11 The Welshflag s 400
10-12 Welsh alphabet 401
10-13 Set Primary Language Environment installation menu. 403
10-14 SMIT menu to select country or region for Olson time zone. 409
10-15 SMIT menu to select the time zone for a given country or region. . . . 410

Xii IBM AIX Version 6.1 Differences Guide

Tables

1-1 User trace event routines used by the instrumentedcode 8
1-2 Predefined usertraceevent i 9
1-3 Systemtrace eventsnames i . 10
1-4 Trace event sets routines used by instrumentedcode 11
1-5 Predefined systemtraceeventsets 11
1-6 Filter management routinesontracestream 12
1-7 Management trace events routines used by controller and analyzer 13
1-8 Retrieval trace events routines used by the analyzer process 13
1-9 Default values for trace stream attributes 17
1-10 Setting trace stream attribute routines used by the controller process . . 17
1-11 Retrieval trace stream attribute routines used by the controller and
ANAlYZEr . e 18
1-12 Trace stream attributes and state routines 19
1-13 Trace stream control routines used by the trace controller process 19
1-14 Trace stream control routines used by the trace analyzer process. 20
2-1 Comparison of external and internal snapshots 37
2-2 New EFScommands i 43
2-3 Commands modifiedforEFS 43
3-1 WPAR managementoptions. 56
3-2 New trace command WPAR filteringoptions 58
3-3 New trace fields for WPAR smitty trcstartpanel 60
3-4 New trcrpt command WPAR filtering options 61
3-5 New trace report filtering fields for WPAR in the smitty trcrpt panel 63
3-6 Option changes forcurtcommand 67
3-7 Option changes for filemoncommand 68
3-8 Option changes foriostatcommand 71
3-9 Option changes for netpmoncommand 75
3-10 Option changes forpprofcommand 78
3-11 Option changes for proctree command. 82
3-12 Option changes forsymoncommand 83
3-13 Option changes fortopascommand............................ 85
3-14 Option changes for tprofcommand. 88
3-15 Option changes for vmstatcommand 90
3-16 Command updates for WPAR support 93
4-1 AlX storage device driver base componentnames. 114
4-2 System loader RAScomponents 133
4-3 Dump detail level and component dump data size limit 159
4-4 Livedump heapsizelimits 160

© Copyright IBM Corp. 2007, 2008. All rights reserved. Xiii

Xiv

4-5 Live dump attributesand defaults., 163

4-6 Live dump attributes and persistence 163
4-7 System dump attributes and defaults L. 166
4-8 System dump attributes and persistence, 167
4-9 Kernel error recovery errorlogentries 176
4-10 The raso tunables for kernel errorrecovery 177
4-11 New interim fix states displayed with the emgrcommand 182
4-12 gsclvmderrorlabels 195
4-13 Maximum paging Space Size 198
5-1 Create Proxy Serverdialog. 204
5-2 Remove Proxy Serverdialog i 205
5-3 List of resource names and task namesandmenus 208
5-4 AIX Thread environmentvaluables. 217
5-5 OS managementtasks i 227
5-6 Distributed Command Execution Manager HelloWorld example 230
5-7 Target Specificationinput 232
5-8 AlIX and POWER page size supportt 240
5-9 vmo vmm_mpsize_supporttunable 244
6-1 Default tunable values for the vmocommand. 264
6-2 minpout/maxpout values within AlX releases 265
6-3 Values range for each AIO subsystemtunables. 270
7-1 NFS protocol support for NFS proxy serving 291
7-2 Newnetcdfiles e 295
7-3 Caching settings in /etc/netcd.conf........ 297
7-4 netcddaemon settings 298
7-5 netcd logginglevels. 300
8-1 File lists for enhanced RBAC facility 316
8-2 Authorizations in AIX5L V5.3 318
8-3 Top Level authorizationon AIXV6.1......... 319
8-4 Maps for authorization from AIX 5L V5.3t0 AIX V61 320
8-5 List of roles provided by default on AIX5LV5.3................... 325
8-6 List of roles provided by default on AIXV6.1 325
8-7 Differences summary between AIX 5L V5.3 and AIXV6.1........... 326
8-8 Task, console role, and authorizationmap 328
8-9 Trusted AlX authorizations 343
8-10 Relations between authorizationsandroles 345
8-11 Filesets installed in a Trusted AlX environment. 347
8-12 Algorithms and their characteristics 358
8-13 Summary of changestouserpw.h. 360
8-14 Maximum size in the current configuration of the system........... 361
8-15 Password policy attributes 362
9-1 NewNIMNFS attributes 368
9-2 AUTH_SYS and RPCSEG_GSS Kerberos differences 371

IBM AIX Version 6.1 Differences Guide

10-1 New and enhanced AIX V6.1 locales in support of the euro currency . 386
10-2 New and modified AIX keyboards for euro symbol support 387
A-1 TI-RPCclientand serverinterfaces 420

Tables xv

XVi IBM AlIX Version 6.1 Differences Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

© Copyright IBM Corp. 2007, 2008. All rights reserved. Xxvii

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™ GPFS™ POWER6™
AIX® HACMP™ PTX®
alphaWorks® IBM® Redbooks®
Blue Gene® Language Environment® Redbooks (logo) @ ®
DPI® 0S/2® S/390®
DS4000™ Parallel Sysplex® System p™
Enterprise Storage Server® PowerPC® System x™
Everyplace® POWER™ System Storage™
General Parallel File System™ POWER3™ Tivoli®
Geographically Dispersed POWER4™ WebSphere®

Parallel Sysplex™ POWERS5™ Workload Partitions Manager™
GDPS® POWER5+™ z/OS®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

InfiniBand, and the InfiniBand design marks are trademarks and/or service marks of the InfiniBand Trade
Association.

CacheFS, Java, ONC+, Solaris, Ultra, and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Internet Explorer, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Xviii IBM AIX Version 6.1 Differences Guide

Preface

This IBM® Redbooks® publication focuses on the differences introduced in IBM
AIX® Version 6.1 when compared to AIX 5L™ Version 5.3. It is intended to help
system administrators, developers, and users understand these enhancements
and evaluate potential benefits in their own environments.

AIX Version 6.1 introduces many new features, including workload partitions,
advanced security, continuous availability, and managing and monitoring
enhancements. There are many other new features available with

AlX Version 6.1, and you can explore them all in this publication.

For clients who are not familiar with the enhancements of AIX through
Version 5.3, a companion publication, AlIX 5L Differences Guide Version 5.3
Edition, SG24-7463 is available, along with an addendum, AIX 5L Differences
Guide Version 5.3 Addendum, SG24-7414, which includes between release
enhancements that are available through applying service updates.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Austin Center.

Roman Aleksic is a System Engineer working for Ziircher Kantonalbank, a
major bank in Switzerland. He has seven years of experience with IBM System p
and AIX in the fields of application integration, performance management,
TCP/IP networking, logical partitioning, and advanced shell scripting. He also
implements and supports large HACMP™ and NIM environments.

Ismael "Numi" Castillo is an IBM Senior IT Specialist and Technical Consultant
for the IBM ISV Business Strategy and Enablement organization. He has three
years of experience in AIX performance tuning and benchmarks. He has 19
years of professional experience in IT with a background in software
development, consulting, system performance measurement and tuning,
benchmarking, problem determination, and sizing. He is also the team leader for
the IBM ISV BSE technical collateral team. Numi completed studies for a
Bachelor Degree in Computer Science at the Catholic University of Santo
Domingo in Dominican Republic. He also holds several advanced levels industry
certifications.

© Copyright IBM Corp. 2007, 2008. All rights reserved. Xix

XX

Rosa Fernandez is a Certified Advanced AIX Expert, and an IBM IT Certified
professional who joined IBM France in 1990. She holds a Masters degree in
Computer Science from Tours University (1985) and is an AlX pre-sales leader
since 1996. She is recognized for the management of customer satisfaction, AIX
performance delivery, UNIX® software migration, and is incremental in creating
and supporting the AIX French User Group. She co-authored the AlX 64-bit
Performance in Focus, SG24-5103 publication.

Armin RoOll works as a System p™ IT specialist in Germany. He has twelve
years of experience in System p and AlX pre-sales technical support and, as a
team leader, he fosters the AlX skills community. He holds a degree in
experimental physics from the University of Hamburg, Germany. He co-authored
the AlIX Version 4.3.3, the AIX 5L Version 5.0, and the AIX 5L Version 5.3
Differences Guide IBM Redbooks.

Nobuhiko Watanabe is an advisory IT specialist and team leader of the System
p and AlX division of IBM Japan Systems Engineering that provides the ATS
function in Japan. He has 16 years of experience in the AlX and Linux® fields.
He holds a Bachelor degree in Library and Information Science from

Kieo University. His areas of expertise also include Solaris™ and HP-UX.

The project that produced this publication was managed by:
Scott Vetter, PMP

Thanks to the following people for their contributions to this project:

Janet Adkins, Vishal C Aslot, Dwip N Banerjee, Paul Bostrom, David Bradford,
Carl Burnett, David Clissold, Julie Craft, Matthew Cronk, Jim Cunningham,
Prakash Desai, Saurabh Desai, Robert Feng, Frank Feuerbacher,

Matthew Fleming, Arnold Flores, Kevin Fought, Eric P Fried, Mark Grubbs,

Jan Harris, John Harvey, Debra Hayley, David A. Hepkin, Duen-wen Hsiao,
Praveen Kalamegham, Jay Kruemcke, Ashley D. Lai, Su Liu, Yantian Lu,
Michael Lyons, Brian McCorkle, Marshall McMullen, Dan McNichol,

Camilla McWilliams, Bruce Mealey, Dirk Michel, James Moody, Grover Neuman,
Dac Nguyen, Frank L Nichols, Frank O'Connell, Matthew Ochs, Michael Panico,
Jim Partridge, Steve Peckham, Jose G Rivera, Mark Rogers, Lance Russell,
Robert Seibold, Jim Shaffer, Nishant B Shah, Ravi A. Shankar,

Saurabh Sharma, David Sheffield, Luc Smolders, Donald Stence,

Marc Stephenson, Pedro V Torres, Marvin Toungate, Murali Vaddagiri,

Venkat Venkatsubra, Xinya Wang, Suresh Warrier, Ken Whitmarsh,

Jonathan A Wildstrom

IBM Austin TX

Arun P Anbalagan, Tejas N Bhise, Abhidnya P Chirmule,
Madhusudanan Kandasamy, Neeraj Kumar Kashyap, Manoj Kumar,

IBM AIX Version 6.1 Differences Guide

Mallesh Lepakshaiah, Pruthvi Panyam Nataraj, G Shantala
IBM India

David Larson
IBM Rochester MN

Francoise Boudier, Bernard Cahen, Damien Faure, Matthieu Isoard, Jez Wain
Bull, France

Bruno Blanchard, Thierry Fauck, Philippe Hermes, Emmanuel Tetreau
IBM France

Bernhard Buehler
IBM Germany

Liviu Rosca
IBM Romania

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:
» Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

Preface xxi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

» Send your comments in an e-mail to:
redbooks@us.ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

XXii IBM AIX Version 6.1 Differences Guide

http://www.redbooks.ibm.com/contacts.html

Application development
and system debug

This chapter contains the major AIX Version 6.1 enhancements that are part of
the application development and system debug category, including:

» 1.1, “Transport independent RPC library” on page 2
» 1.2, “AlX tracing facilities review” on page 3

» 1.3, “POSIX threads tracing” on page 5

» 1.4, “ProbeVue” on page 21

© Copyright IBM Corp. 2007, 2008. All rights reserved.

1.1 Transport independent RPC library

2

The Open Network Computing Plus (ONC+™) distributed computing
environment consists of a family of technologies, services, and tools, including
the transport-independent remote procedure call (TI-RPC) API library that
provides a distributed application development environment by isolating
applications from any specific transport feature. The TI-RPC implementation
supports threaded applications and utilizes streams as an interface to the
network layer.

Previous AIX releases internally use a comprehensive subset of the TI-RPC API
to provide base operating system features, namely the Network File System
(NFS) services. In that context, but not limited to it, the AlX operating system also
facilitates the RPCSEC_GSS security version of the General Security Services
(GSS) API to enable advanced security services. For example, the
RPCSEC_GSS routines are used by the AIX Network Data Administration
Facility (NDAF).

AIX V6.1 now formally supports the AIX base operating system related subset of
the TI-RPC routines as ported from the ONC+ 2.2 source distribution. The code
is exported by the network services library (libnsl.a), which is installed by default
on any AIX V6.1 system through the bos.net.tcp.client fileset. Additionally, the
RPCSEC-GSS security services interface routines are now formally supported
and documented in the AIX V6.1 product documentation.

TI-RPC APIs are classified into different levels. These levels provide different
degrees of control balanced with different amounts of interface code to
implement, in order of increasing control and complexity. The top level
classification defines two distinct routine classes:

» Simplified interface routines
» Standard interface routines

The simplified interface routines specify the type of transport to use. Applications
using this level do not have to explicitly create handles.

The standard interface routines give a programmer much greater control over
communication parameters such as the transport being used, how long to wait
before responding to errors and retransmitting requests, and so on.

IBM AIX Version 6.1 Differences Guide

The standard interface routines are further classified as follows:

Top-level routines

These APIs allow the application to specify the
type of transport.

Intermediate-level routines These APIs are similar to the top-level APls, but

Expert-level routines

the user applications select the transport specific
information using network selection APlIs.

These APIs allow the application to select which
transport to use. These APls are similar to the
intermediate-level APIs with an additional control
that is provided by using the name-to-address
translation APls.

Bottom-level routines The bottom level contains routines used for full

Other routines

control of transport options.

These APlIs allow the various applications to work
in coordination with the simplified, top-level,
intermediate-level, and expert-level APIs.

The AIX V6.1 TI-RPC interface routines listed by classification level are
documented in the “Transport Independent Remote Procedure Call” section of
Chapter 8, “Remote Procedure Calls”, in AIX Version 6.1 Communication
Programming Concepts, SC23-5258.

1.2 AIX tracing facilities review

AlIX Version 6 has several tracing facilities available:

AIX system trace

This is the main trace facility on AIX. It supports tracing of
both applications and the kernel.

The AIX system trace facility is designed for tracing inside
the kernel and kernel extensions. However, it also
supports user-defined tracing in application code. It is
based on compiled-in static trace hooks and is only
enabled when needed. By default, all trace hooks are
enabled when tracing is turned on. However, there are
options to enable only a set of trace hooks or to disable
some specific trace hooks. Both user and kernel tracing
share the same system buffers. So, the application-level
trace data is copied to the system buffer.

Chapter 1. Application development and system debug 3

4

Light weight memory trace

Truss

Light weight memory trace (LMT) traces only key AIX
kernel events and is not available in user mode. LMT is
also based on compiled-in static trace hooks. It is enabled
by default, but it uses a light weight mechanism to record
trace data, so the performance impacts are minimal. The
trace data is sent to per-CPU buffers and stays in memory
until overwritten. There are commands to extract the
traced data, and it is displayed using the same tools as
AIX system trace. Alternatively, it can also be displayed
with the kdb command or extracted from a system dump.

Truss is a tracing mechanism that allows tracing of all
system calls and optionally all library calls executed by a
specific process. So, traced events are limited to system
subroutines calls. Trace output consists of the parameters
passed into and the values returned from each system
(and library) call. This is directly sent to the standard error
of that process. There is no mechanism to save the trace
data and there are no system-wide buffers.

Component trace facility

POSIX trace

Component trace (CT) is a new tracing facility that
became available in AlIX starting with AIX V5.3 TLO6. The
component tracing facility can be used as an additional
filter on AlIX system trace. It can also be used to provide
exclusive in-memory tracing, directed to use either
system-wide LMT buffers, or component-specific buffers
to save the trace data. Its primary purpose, similar to LMT,
is for collecting First Failure Data Capture data for
debugging purposes.

AlX Version 6 implements the POSIX trace system that
support tracing of user applications. The POSIX tracing
facilities allow a process to select a set of trace event
types to activate a trace stream of the selected trace
events as they occur in the flow of execution and to
retrieve the recorded trace events. Similar to system
trace, POSIX trace is also dependent upon
precompiled-in trace hooks in the application being
instrumented.

IBM AIX Version 6.1 Differences Guide

1.3 POSIX threads tracing

The Portable Operating System Interface (POSIX) is a registered trademark of
the Institute of Electrical and Electronics Engineers (IEEE). POSIX is
simultaneously an IEEE standard, an ISO/IEC Standard, and an Open Group
Technical standard.

All standards are subject to revision. For the most accurate information about this
standard, visit the following Web site:
http://www.opengroup.org/onlinepubs/009695399/mindex.html

POSIX defines a standard operating system interface and environment and it is
also referenced as IEEE Std 1003.1-2001 that has been approved by the Open

Group under the name of "Single UNIX" Specification (version 3)". POSIX is
drawn from the base documents:

» The IEEE Std 1003.1-1996 (POSIX-1), incorporating IEEE standards
1003.1-1990, 1003.1b-1993, 1003.1¢c-1995, and 1003.1i-1995

» The following amendments to the POSIX.1-1990 standard:
IEEE P1003.1, a draft standard (additional system services)
IEEE Std 10031d.1999 (additional Real-time extensions)
IEEE Std 10031g.2000 (Protocol Independent Interface (PIl))
IEEE Std 10031j.2000 (advanced Real-time Extensions)
IEEE Std 10031q.2000 (Tracing)

» The IEEE Std 1003.2-1992 (POSIX-2), incorporating IEEE standards
1003.2a-1992

» The following amendment to the POSIX-2:1993 standard:
— |EEE P1003.2b draft standard (additional utilities)
— |EEE Std 1003.2d.1994 (batch environment)

» The Open Group Technical Standard, February 1997, the Base Specification
(XBD5, XCU5 and XSH5 sections)

» The Open Group Technical Standard, January 2000, Networking Services
(section XNS5.2)

» The ISO/IEC 9899:1999, Programming Languages - C

AlX Version 6 implements the Tracing Option Group, which is an optional
function, defined within IEEE Std 1003.1-2001.

T UNIXis a registered trademark of The Open Group.

Chapter 1. Application development and system debug 5

http://www.opengroup.org/onlinepubs/009695399/mindex.html

1.3.1 POSIX tracing overview

6

This section provides an overview of the POSIX tracing facilities as implemented
within AIX in the newly POSIX trace library (libposixtrace.a).

The main purposes of tracing are:

» Application debugging during the development stage if the source code is
pre-instrumented

» Fault analysis to discover a problem afterwards based on flight recorded data
» A performance measurement tool to check code efficiency

The POSIX trace model is based on two main data types:

Trace event The execution flow of the traced process generates
information relative to the program step or action being
executed. This program step or action is named a trace
point, and the traced information a trace event. The
recorded trace event is contained in the
posix_trace_event_info structure, defined in the
i/usr/include/trace.h include file.

Trace stream The collection of traced information must be kept, in order
to be analyzed, in a place named a trace stream that is
created for this traced process. It is not mandatory that
the traced process creates its associated trace stream. A
trace stream identifier is returned by the trace stream
creation routines and is valid only for the process that
made the creation subroutine call. The trace stream
identifier (trid) is a trace_id_t type defined in the
/usr/include/sys/types.h include file. When an offline
analysis is required, a trace log can be associated with
the trace stream.

The POSIX tracing operation relies on three logically different entities:

Traced process The process for which trace events are recorded is named
the traced process. It is the instrumented code.

Controller process The controller process controls the recording of the trace
events into the trace stream. Thus, the controller is in
charge to initialize and create the stream, start and stop
the tracing, manage the mapping between trace streams
and traced processes, and to shut the trace stream down.

Analyzer process The analyzer process retrieves the traced events either at
runtime from the trace stream, or at the end of execution

IBM AIX Version 6.1 Differences Guide

as an analysis from a trace pre-recorded stream whose
content has been obtained reloading the trace stream log.

Figure 1-1 shows the POSIX trace system overview for online analysis.

POSIX trace online analysis

Traced stream (trid)

/——- posix_fraca_swent_infa structure

Posix recorded event 1{

Traced process

Posix recorded event 2

getevent()
Analyzer process

Creste stream -»

trid Shutdowwn

stream

Trace_id_f structufe Controller process

Figure 1-1 POSIX trace system overview: online analysis

Figure 1-2 shows the POSIX trace system overview for offline analysis.

POSIX trace offline analysis

Traced stream (trid)

¥

Posiz recorded evens 1

Trace stream log

flush()

Traced process

Posix recorded ewent 1

Fosiz tecorded svent £
Posix recorded event 2

Pre-recorded
Traced stream

getevent()

Create stream ->

i Shutdown

stream

Controller process

Analyzer process

Figure 1-2 POSIX trace system overview: offline analysis

Chapter 1. Application development and system debug 7

1.3.2 Trace event definition

8

Each event is identified by a trace name and a trace event identifier (an internal
reference), defined as the trace_event_id_t type in the /usr/include/sys/types.h
header file. It has also an associated name returned by the subroutine
posix_trace_eventid_get_name().

The event name length in number of characters must be less than
TRACE_EVENT_NAME_MAX (defined in the /usr/include/sys/types.h header
file).

Trace events belong to two classes, namely:
User trace events Defined and generated by the traced process.
System trace events Defined and generated by the operating system.

User trace events

Each traced process has to define the mapping of the trace event names to trace
event identifiers, achieved by calling the posix_trace_eventid_open() subroutine.
This subroutine returns a unique trace event identifier to be used on the trace
stream. Therefore, the mapping between user event types and user event names
are private to the instrumented code and they last only during execution time.

The instrumented code uses this user trace identifier to set a traced point calling
the posix_trace_event() subroutine. The execution of a traced point generates a
trace event if the trace stream is created, started, and if this traced event
identifier is not ignored by filtering (see “Trace stream filtering” on page 11).

Table 1-1 lists the subroutines to define a user trace event and to implement a
trace point by an instrumented code.

Table 1-1 User trace event routines used by the instrumented code

Purpose Subroutine name

Trace subroutine for instrumenting posix_trace_eventid_open()
application code

Trace subroutines for implementing a posix_trace_event()

trace point

A predefined user trace event exists if the limit of per-process user trace event
names (TRACE_USER_EVENT_MAX constant) has been reached. Then this
user trace event is returned, indicating that the instrumented application is
registering more events than allowed.

IBM AIX Version 6.1 Differences Guide

Note: By default, the instrumented code can define a number of user trace
events up to the value of _POSIX_TRACE_USER_EVENT_MAX, constant
defined in the file /usr/include/sys/limits.h.

If the limit of the per-process user trace event defined in
TRACE_USER_EVENT_MAX (/usr/include/sys/limits.h) has been reached,
the POSIX_TRACE_UNNAMED_USEREVENT (/usr/include/trace.h) trace
event identifier is returned, indicating that no more event mapping is available
for the instrumented application.

Table 1-2 provides the predefined user trace event, defined in the
/usr/include/trace.h include file.

Table 1-2 Predefined user trace event

Event ID-Constant Event name

POSIX_TRACE_UNNAMED_USEREVENT posix_trace_unnamed_userevent

The following program abstract demonstrates two user trace events names
(EV001: snow call and EV002: white call) mapped with two trace event type
identifiers to trace snow and white subroutine calls. Trace points use the user
trace event data to differentiate the different calls done to the same subroutine:

#include /usr/include/sys/types.h
#include /usr/include/trace.h
{
int ret;
trace_event_id_t eventidl, eventid2;
char * data_ptr;
size_t data_len;
. lines omitted for clarity
/* Definition of user trace events */
ret=posix_trace_eventid_open("EV001: snow call",&eventidl);
ret=posix_trace_eventid_open("EV002: white call",&eventid2);
. lines omitted for clarity
/* Trace point EV001l: snow call */
data_ptr=“waking up”;
data_len=strlen(data_ptr);
ret=posix_trace_event(eventidl,data_ptr,data_len);
ret=snow(1);
. lines omitted for clarity
/* Trace point EV002: white call*/
data_ptr=“laundry white”;
data_len=strlen(data_ptr);

Chapter 1. Application development and system debug

ret=posix_trace_event(eventid2,data_ptr,data_len);
ret=white(3);
. lines omitted for clarity
/* Trace point EV001l: snow call */
data_ptr=“sleeping well”;
data_len=strlen(data_ptr);
ret=posix_trace_event(eventidl,data_ptr,data_len);
ret=snow(0);
. lines omitted for clarity
return 0;

}

System trace events
The system trace events include a small set of events to correctly interpret the
trace event information present in the stream.

Table 1-3 provides the names of defined system trace events.

Table 1-3 System trace events names

Event ID-Constant Event name
POSIX_TRACE_ERROR posix_trace_error
POSIX_TRACE_START posix_trace_start
POSIX_TRACE_STOP posix_trace_stop
POSIX_TRACE_FILTER posix_trace_filter
POSIX_TRACE_OVERFLOW posix_trace_overflow
POSIX_RESUME posix_trace_resume
POSIX_TRACE_FLUSH_START posix_trace_flush_start
POSIX_TRACE_FLUSH_STOP posix_trace_flush_stop

Note: All system trace events identifiers are defined in the /usr/include/trace.h
include file.

Trace event sets

The events can be gathered in a set. A set allows you to define which events may
be ignored during tracing.

The event set is a trace_event_set_t object. This object must be initialized either
by the posix_trace_eventset_empty() or posix_trace_eventset_fill() subroutine.

10 IBM AIX Version 6.1 Differences Guide

This event set, as an object, can be only manipulated by specific routines, as

described in Table 1-4.

Table 1-4 Trace event sets routines used by instrumented code

Purpose

Subroutine name

Add a trace event type in a trace event
type set.

posix_trace_eventset_add()

Delete a trace event type from a trace
event type set.

posix_trace_eventset_del()

Empty a trace event type set.

posix_trace_eventset_empty()

Fill in a trace event type set.

posix_trace_eventset_fill()

Test if the trace event type is included in
the trace event type set.

posix_trace_eventset_ismember()

There are predefined sets of system trace events, as described in Table 1-5.

Table 1-5 Predefined system trace event sets

Event Set ID

Description

POSIX_TRACE_WOPID_EVENTS

It includes all process independent trace
event types.

POSIX_TRACE_SYSTEM_EVENTS

It includes all system trace events, but no
AIX kernel events can be traced. It is
limited to the available POSIX system
trace events.

POSIX_TRACE_ALL_EVENTS

It includes all trace events: user and
system.

Trace stream filtering

Traced events may be filtered. Filtering a trace event means to filter out (ignore)
this selected trace event. Each traced stream is created without filtering any

event type: all events are traced.

Note: By default, no trace events are filtered.

Filtering non-relevant information maintains the performance of the tracing
subsystem. It prevents the tracing subsystem from processing a large number of
events while the trace collection is generated or while the trace is analyzed.

Chapter 1. Application development and system debug 11

12

The filtered events are gathered in a set of events (see “Trace event sets” on
page 10). The set of events to be filtered out is attached to a stream: it has to be
defined after the creation of the stream, but the stream may be either started or
not.

With the posix_trace_set_filter() subroutine, the filtering set can be changed
accordingly to the following values of the how parameter:

POSIX_TRACE_SET_EVENTSET
The set of trace event types to be filtered is the trace
event type set that the sef parameter points to.

POSIX_TRACE_ADD_EVENTSET
The set of trace event types to be filtered is the union of
the current set and the trace event type set that the set
parameter points to.

POSIX_TRACE_SUB_EVENTSET
The set of trace event types to be filtered is the current
trace event type set less each element of the specified
set.

The system trace event POSIX_TRACE_FILTER indicates that the trace event
filter set has changed while the trace stream was running. The trace event filter is
managed by the controller process.

Table 1-6 lists the subroutines used to manage the filter set on the trace stream.

Table 1-6 Filter management routines on trace stream

Purpose Subroutine name
Retrieves the filter of an initialized trace posix_trace_get_filter()
stream.

Sets the filter of an initialized trace stream. | posix_trace_set _filter()

Managing trace events

The results of the tracing operations are monitored and analyzed by the
controller process and the analyzer process.

IBM AIX Version 6.1 Differences Guide

Table 1-7 lists the subroutines to manage trace events from a trace stream used
by the trace controller and analyzer process.

Table 1-7 Management trace events routines used by controller and analyzer

Purpose

Subroutine name

Compares two trace event type
identifiers.

posix_trace_eventid_equal()

Retrieves the trace event name from a
trace event type identifier.

posix_trace_eventid_get_name()

lterates over the list of trace event type.

posix_trace_eventtypelist_getnext_id()

Rewinds the list of event types.

posix_trace_eventtypelist_rewind()

Table 1-8 lists the subroutines to retrieve trace events from a trace stream used

by the trace analyzer process.

Table 1-8 Retrieval trace events routines used by the analyzer process

Purpose

Subroutine name

Retrieves a trace event and block until
available.

posix_trace_getnext_event()

Retrieves a trace event and block until the
timeout expires.

posix_trace_timedgetnext_event()

Retrieves a trace event and returns if not
available.

posix_trace_trygetnext_event()

1.3.3 Trace stream definition

A trace stream is the location where trace events are recorded. The following are
the types of streams and objects, as noted by the POSIX standard:

The active stream

The active stream is an initialized and created trace

stream that is still not shutdown. The trace stream can still
store trace events. As a trace stream can be located only
in memory, if an analysis must be done after process
execution, a log file has to be defined at the creation time
of the trace stream.

Chapter 1. Application development and system debug

13

14

The Log file The log file is a persistent location where the in-memory
trace stream is written by a flush operation initiated by the
controller process. No stored events can be retrieved
directly from a log file. A log file is available for analysis
only after the corresponding trace stream has been shut
down.

Without a Log file Without a log file, a trace stream allows only online
analysis.

The pre-recorded stream
As stored events in a log file cannot be directly retrieved,
they have to be re-loaded in a trace stream. This trace
stream is named pre-recorded stream. Then the analyzer
process doing the analysis can retrieve the traced events
from this pre-recorded stream.

The Event recording The events are recorded in the stream as soon as the
stream is started. The stream may be associated with a
log file if any offline analysis is needed. The association of
the stream with the log file is made at the stream creation.
The log file is a persistent location where the in-memory
trace is flushed by the controller process.

The Event analysis When the stream is not associated to a log file, the stream
allows only online analysis. The log file is ready for an
analysis as soon as the stream associated with a log file
has been shut down. That means that no stored events
can be retrieved for the analysis during the event
recording. The stored events are re-loaded from the log
file into a trace stream. Events are then retrieved as
during online analysis.

Traced events have to be retrieved one by one from the traced stream (active or
pre-recorded) with the oldest event being retrieved first. With AlX, trace stream is
an in-memory area where trace events are recorded.

Note: Trace analysis can be done concurrently while tracing the instrumented
code or it can be done offline. Log files are not directly eligible for trace
analysis: they must be reloaded into a stream.

Whatever it is, a trace stream or a trace log, an action policy has to be defined
when the trace stream or the trace log will be full of traced events. These full
policies are named respectively trace stream policy (see “Trace stream policy” on
page 15) and trace Log policy (see “Trace log policy” on page 15).

IBM AIX Version 6.1 Differences Guide

A trace stream or trace log capacity to record events depends on numerous
criteria as the size of stream/Log, the size of the recorded events, and the
number of the recorded events named inheritance: either only the process
events or the process and its child processes events are recorded. All these
criteria, jointly with the full policies, are gathered into the attributes definition of a
traced stream (see “Trace stream attributes” on page 16).

Selecting the types of events to be recorded also determines how fast the traced
stream/log will be full (see “Trace stream filtering” on page 11).

Trace stream policy

The stream policy is one of the trace stream attributes. The stream attributes are
described in “Trace stream attributes” on page 16.

The stream policy, also named stream full policy, defines the policy followed
when the trace stream is full and has the following values:

POSIX_TRACE_LOOP
This policy permits automatic overwrite of the oldest
events until the trace is stopped by the subroutines
posix_trace_stop() or posix_trace_shutdown().

POSIX_TRACE_UNTIL_FULL
This policy requires the system to stop tracing when the
trace stream is full. If the stream that is full is emptied by a
call to posix_trace_flush() or partially emptied by calls to
posix_trace_getnext_event(), the trace activity is
resumed.

POSIX_TRACE_FLUSH
This policy is an extension of the previous policy
POSIX_TRACE_UNTIL_FULL for trace stream
associated to a log file. There is an automatic flush
operation when the stream is full.

Trace log policy

The log policy is one of the trace stream attributes. The stream attributes are
described in “Trace stream attributes” on page 16.

The log policy, also named log full policy, defines the policy followed when the
trace log is full and has the following values:

POSIX_TRACE_LOOP
The trace log loops until the trace stream is stopped by
the subroutines posix_trace_stop() or
posix_trace_shutdown(). This policy permits automatic
overwriting of the oldest events.

Chapter 1. Application development and system debug 15

16

POSIX_TRACE_UNTIL_FULL

The trace stream is flushed to the trace log until the trace
log is full. The last recorded trace event is the
POSIX_TRACE_STOP trace event (see “System trace
events” on page 10). The event collection stops when the
trace stream or the trace log file becomes full.

POSIX_TRACE_APPEND

The trace stream is flushed to the trace log without log
size limitation.

Trace stream attributes
A trace stream has the following trace stream attributes:

Version of the trace system

The generation-version attribute identifies the origin and
version of the trace system. It is generated automatically
by the trace system.

Name of the trace stream

Creation time

Clock resolution

Stream_minsize

Stream_fullpolicy

Max_datasize

Inheritance

Log_maxsize

A character string to identify the trace stream, defined by
the trace controller.

The time of creation of the trace stream. It is generated
automatically by the trace system.

The clock resolution of the clock used to generate time
stamps. It is generated automatically by the trace system.

The minimal size in bytes of the trace stream strictly
reserved for the trace events. The maximum size has
been set to a segment size.

The policy followed when the trace stream is full; it could
be either to loop at the beginning of the stream or to stop
tracing or to flush to a log file when it is full.

The maximum record size in bytes for a trace event.
Traced data exceeding that limit will be recorded up to that
limit.

It specifies whether a newly created trace stream inherits
tracing in its parent's process trace stream or not. It
specifies either if the parent is being traced or if its child is
concurrently traced using the same stream
(POSIX_TRACE_INHERITED) or not
(POSIX_CLOSE_FOR_CHILD).

The maximum size in bytes of a trace log associated with
an active stream.

IBM AIX Version 6.1 Differences Guide

Log_fullpolicy It defines the policy of a trace log associated with an

active trace stream; it could be either loop, tracing until the
log is full, or tracing until the maximum size defined for a
file system is reached.

Before the trace stream is created, the trace stream attributes, contained in the

trace_attr_t object must be initialized by the posix_trace_attr_init() subroutine.

This posix_trace_attr_init() subroutine initializes the trace stream attributes with
the default values described in Table 1-9.

Table 1-9 Default values for trace stream attributes

Attribute field Default value

stream_minsize 8192 bytes. This is the smallest AIX trace buffer size.

stream_fullpolicy POSIX_TRACE_LOORP for a stream without a log
POSIX_TRACE_FLUSH for a stream with a log

max_datasize 16 bytes

inheritance POSIX_TRACE_CLOSE_FOR_CHILD

log_maxsize 1 MB

log_fullpolicy POSIX_TRACE_LOOP

version 0.1

clock resolution Clock resolution used to generate time stamps

The value of each attribute is set by calling posix_trace_attr_set...() subroutines
that explicitly set the value of these attributes (see Table 1-10).

The value of each attribute is retrieved from this trace_attr_t object using the

posix_trace_attr_get...() subroutines (see Table 1-11 on page 18).

Table 1-10 lists the subroutines used to set up and manage the trace stream

attributes object by the controller process.

Table 1-10 Setting trace stream attribute routines used by the controller process

Purpose

Subroutine name

Initializes a trace stream attributes
object.

posix_trace_attr_init()

Destroys a trace stream attribute object.

posix_trace_attr_destroy()

Sets the trace name.

posix_trace_attr_setname()

Chapter 1. Application development and system debug

17

Purpose Subroutine name

Sets the inheritance policy of a trace posix_trace_attr_setinherited()
stream.
Sets the stream full policy. posix_trace_attr_setstreamfullpolicy()

Sets the maximum user trace event data | posix_trace_attr_setmaxdatasize()
size.

Sets the trace stream size. posix_trace_attr_setstreamsize()

Sets the size of the log of a trace stream. | posix_trace_attr_setlogsize()

Sets the log full policy of a trace stream. | posix_trace_attr_setlogfullpolicy()

Table 1-11 lists the subroutines used to retrieve the trace stream attributes used
by the trace controller and analyzer process.

Table 1-11 Retrieval trace stream attribute routines used by the controller and analyzer

Purpose Subroutine name
Retrieves the timestamping clock posix_trace_attr_getclockres()
resolution.

Retrieves the creation time of a trace posix_trace_attr_getcreatetime()

stream.

Retrieves the version of a trace posix_trace_attr_getgenversion()
stream.

Retrieves the inheritance policy of a posix_trace_attr_getinherited()

trace stream.

Retrieves the log full policy of trace posix_trace_attr_getlogfullpolicy()
stream.

Retrieves the size of the log of a trace | posix_trace_attr_getlogsize()
stream.

Retrieves the maximum user trace posix_trace_attr_getmaxdatasize()
event data size.

Retrieves the maximum size of a posix_trace_attr_getmaxsystemeventsize()
system trace event.

Retrieves the maximum size of an posix_trace_attr_getmaxusereventsize()
user event for a given length.

Retrieves the trace stream name. posix_trace_attr_getname()

18 IBM AIX Version 6.1 Differences Guide

Purpose Subroutine name

Retrieves the stream full policy. posix_trace_attr_getstreamfullpolicy()

Retrieves the trace stream size. posix_trace_attr_getstreamsize()

Trace stream management

The trace stream is created for the traced process with the posix_trace_create()
or posix_trace_create_withlog() subroutine by the controller process, depending
on whether a log is associated with the active stream or with posix_trace_open()
by the analyzer process.

These trace stream creation subroutines use the process identifier (pid_t type) of
the traced process as an argument: a zero indicates the traced process is the
caller itself.

A trace stream identifier is returned by the trace stream creation routines and is
valid only for the process that made these calls. The trace stream identifier is
defined as the trace_id_t type in the /usr/include/sys/types.h include file.

Table 1-12 lists the subroutines to retrieve the attribute and state of the trace
stream used by the trace controller and analyzer process.

Table 1-12 Trace stream attributes and state routines

Purpose Subroutine name
Retrieves trace attributes. posix_trace_get_attr()
Retrieves trace status. posix_trace_get_status()

Table 1-13 lists the subroutines to control the frace stream used by the trace
controller process.

Table 1-13 Trace stream control routines used by the trace controller process

Purpose Subroutine name
Creates an active trace stream. posix_trace_create()
Creates an active trace stream and posix_trace_create_withlog()

associates it with a trace log.

Initiates a flush of the trace stream. posix_trace_flush()
Shuts down a trace stream. posix_trace_shutdown()
Clears the trace stream and trace log. posix_trace_clear()

Chapter 1. Application development and system debug 19

Purpose Subroutine name

Starts a trace. posix_trace_start()

Stops a trace. posix_trace_stop()

Table 1-14 lists the subroutines to control the frace stream used by the trace
analyzer process.

Table 1-14 Trace stream control routines used by the trace analyzer process

Purpose Subroutine name
Opens a trace log. posix_trace_open()
Re-initializes a trace log for reading. posix_trace_rewind()
Closes a trace log. posix_trace_close()

1.3.4 AIX implementation overview

With AIX Version 6, the process that manages streams and events is a daemon
named posixtrace. It is the only process the operating system has to implement.

As posixtrace creates a a trace stream for all processes and records all events,
posixtrace belongs to the root user. The posixtrace daemon is run as root
(owner: root group:bin mode -r-sr-xr-x).

The posixtrace daemon is started by the first library load through the associated
library initialization routine mechanism. This mechanism is implemented through
the binitfini binder option. Thus, the libposixtrace.a library has been linked with
the option -binitfini:posix_trace_libinit.

This posix_trace_libinit routine binds a dedicated socket to the file named
/var/adm/ras/.pxt_sock and listens for one connection coming from the
instrumented code linked with the libposixtrace library.

Another file named /var/adm/ras/.start_lock is used as a lock file in order to
prevent several starts of the posixtrace daemon.

When the main daemon thread checks that there is no thread left, it closes the
socket, unlocks, and unlinks /var/adm/ras/.pxt_sock, then exits.

20 IBM AIX Version 6.1 Differences Guide

1.4 ProbeVue

The first dynamic tracing facility, named ProbeVue, is introduced with AIX with
Version 6.

A tracing facility is dynamic because it is able to gather execution data from
applications without any modification of their binaries or their source code.
Dynamic refers to this capability to insert trace points at runtime without the need
to prepare the source code in advance. Inserting specific tracing calls and
defining specific tracing events into the source code, which require you to
re-compile the software and generate new executable, is referred as a static
tracing facility.

The name ProbeVue is given by historical reference to the first dynamic tracing
facility introduced by IBM within the OS/2® operating system in 1994 (using the
0S/2 dtrace command). This dynamic tracing facility was ported to Linux and
expanded under the DProbes name. There is no other similarity between these
two dynamic tracing tools: they remain two different and distinct tracing
frameworks that come from a similar background.

Interestingly, there are no standards in the area of dynamic tracing. POSIX has
defined a tracing standard for static tracing software only, as described in 1.3.1,
“POSIX tracing overview” on page 6.

Dynamic tracing benefits and considerations

Software debugging is often considered a dedicated task running on
development systems or test systems trying to mimic real customer production
systems.

However, this general state is currently evolving due to the recent advances in
hardware capabilities and software engineering creating complex environments:

» The processing and memory capabilities of high-end servers with associated
storage technologies have lead to huge systems being put into production.

» Dedicated solutions developed by system integrators based on ERP software,
for example, implement numerous middleware and several application layers
and lead also to complex software solutions.

» Most software is now multi-threaded and running on many processors. Thus,
two executions can behave differently depending on the order of thread
execution: multi-threaded applications are generally non deterministic.
Erroneous behaviors are more difficult to reproduce and debug for such
software.

Chapter 1. Application development and system debug 21

22

Thus, to determine the root cause of a trouble in today’s IT infrastructure, it has
become a prohibitive high expense and a significant burden if troubleshooting is
not achieved on the real production system.

With the ProbeVue dynamic tracing facility, a production system can be
investigated: ProbeVue captures the execution data without installing dedicated
instrumented versions of applications or the kernel, which require interrupting the
service for the application relaunch or server reboot.

Additionally, ProbeVue helps find the root cause of troubles happening only on
long running jobs where unexpected accumulated data, queues overflows, and
others defects of the application or kernel are revealed only after many days or
months of execution.

As ProbeVue is able to investigate any kind of applications as long as a Probe
Manager is available (see “Probe manager” on page 28), it is a privileged tracing
tool to analyze a complex trouble as a cascading failure between multiple
sub-systems: with only one unique tracing tool, ProbeVue allows an unified
instrumentation of a production system.

Of note, ProbeVue has the following considerations:

» To trace an executable without modifying it requires you to encapsulate the
binary code with a control execution layer. This control layer will start and
interrupt the binary execution to allow the context tracing. Due to the dynamic
tracing aspect, it can only be an interpreted layer. Interpreter languages are
known to be slower than compiled language: the dynamic interpreted tracing
points are potentially slower than the static compiled ones.

» If system administrators and system integrators are expected to use a tool to
investigate the software execution, the tool must give them the necessary
knowledge of the application architecture to do an efficient investigation of the
critical components that are in trouble. On the other hand, developers know
where to set effective tracing points on the strategic data manipulated by the
application on the earlier development stage, so this is more effective.

For these reasons, ProbeVue is a complimentary tracing tool to the static tracing
methods, adding a new innovative tracing capability to running production
systems.

ProbeVue dynamic tracing benefits
As a dynamic tracing facility, ProbeVue has the following main benefits:

» Trace hooks do not have to be pre-compiled. ProbeVue works on unmodified
kernel or user applications.

IBM AIX Version 6.1 Differences Guide

» The trace points or probes have no effect (do not exist) until they are
dynamically enabled.

» Actions (specified by the instrumentation code) to be executed at a probe
point or the probe actions are provided dynamically at the time the probe is

enabled.

» Trace data captured as part of the probe actions are available for viewing
immediately and can be displayed as terminal output or saved to a file for later

viewing.

ProbeVue can be used for performance analysis as well as for debugging
problems. It is designed to be safe to run on production systems and provides
protection against errors in the instrumentation code.

The section defines some of the terminology used. The subsequent sections
introduce Vue, the programming language used by ProbeVue and the probevue
command, which is used to start a tracing session.

1.4.1 ProbeVue terminology

ProbeVue introduces a terminology for the concepts used in dynamic tracing.
The following is the description of the terms used with ProbeVue:

Probe

A software mechanism that interrupts normal system
action to investigate and obtain information about current
context and system state. This is also commonly referred
to as tracing.

Tracing actions or probe actions

A probe point

Refers to the actions performed by the probe. Typically,
they include the capturing of information by dumping the
current values of global and context-specific information
to a trace buffer. The obtained information, thus captured
in the trace buffer, is called trace data. The system usually
provides facilities to consume the trace, that is, read the
data out of the trace buffer and make it available to the
users of the system.

Identifies the points during normal system activity that are
capable of being probed. With dynamic tracing, probe
points do not have any probes installed in them unless
they are being probed.

Enabling a probe is the operation of adding a probe to a
probe point.

Chapter 1. Application development and system debug 23

Disabling a probe is the operation of removing a probe
from a probe point.

Triggering or firing of a probe refers to the condition
where a probe is entered and the tracing actions are
performed.

ProbeVue supports two kinds of probe points:

Probe location This is a location in user or kernel code where some
tracing action like the capture of trace data is to be
performed. Enabled probes at a probe location fire when
any thread executing code reaches that location.

Probe event This is an abstract event at whose occurrence some
tracing action is to be performed. Probe events do not
easily map to a specific code location. Enabled probes
that indicate a probe event fire when the abstract event
occurs.

ProbeVue also distinguishes probe points by their type:

Probe type Identifies a set of probe points that share some common
characteristics, for example, probes that, when enabled,
fire at the entry and exit of system calls, or probes that
when enabled fire when system statistics are updated.

Distinguishing probes by probe types induces a structure to a wide variety of
probe points. So, ProbeVue requires a probe manager to be associated with
each probe type:

Probe manager The software code that defines and provides a set of
probe points of the same probe type, for example, “the
system calls” probe manager.

1.4.2 Vue programming language

24

The Vue programming language is used to provide your tracing specifications to
ProbeVue. The Vue programming language is often abbreviated to the Vue
language or just to Vue.

A Vue script or Vue program is a program written in Vue. You can use a Vue script
to:
» Identify the probe points where a probe is to be dynamically enabled.

» Identify the conditions, if any, which must be satisfied for the actions to be
executed when a probe fires.

IBM AIX Version 6.1 Differences Guide

» Identify the actions to be executed, including what trace data to capture.
» Associate the same set of actions for multiple probe points.

In short, a Vue script tells ProbeVue where to trace, when to trace, and what to
trace.

We recommend that Vue scripts have a file suffix of .e to distinguish them from
other file types, although this is not a requirement.

1.4.3 The probevue command

The probevue command is used to start a dynamic tracing session or a ProbeVue
session. The probevue command takes a Vue script as input, reading from a file
or from the command line and activates a ProbeVue session. Any trace data that
is captured by the ProbeVue session can be printed to the terminal or saved to a
user-specified file as per options passed in the command line.

The ProbeVue session stays active until a Ctrl-C is typed on the terminal or an
exit action is executed from within the Vue script.

Each invocation of the probevue command activates a separate dynamic tracing
session. Multiple tracing sessions may be active at one time, but each session
presents only the trace data that is captured in that session.

Running the probevue command is considered a privileged operation and
privileges are required for non-root users who wish to initiate a dynamic tracing
session.

1.4.4 The probevctrl command

The probevctrl command changes and displays the ProbeVue dynamic tracing
parameters, the per-processor trace buffer size, the consumed pinned memory,
the user owning the session, the identifier of the process that started the session,
and the information about whether the session has kernel probes for the
ProbeVue sessions.

1.4.5 Vue: an overview

Vue is both a programming and a script language. It is not an extension of C or a
simple mix of C and awk. It has been specifically designed as a dedicated
dynamic tracing language. Vue supports a subset of C and scripting syntax that
is most beneficial for dynamic tracing purposes.

Chapter 1. Application development and system debug 25

26

This section describes the structure of a Vue script.

Structure of a Vue script
A Vue script consists of one or more clauses. The clauses in a Vue script can be
specified in any order. Figure 1-3 is a typical layout of a Vue script.

@@BECIN
{

EEENEL 1 « Optional BEGIN clause
<statement n=

}

<probe point specification=, ..., <probe point specification=
when (<predicate=)
One or more

[EStaterment 1=, *

+—— Probe actions probe clause
[<statement n=;
}
EEEND
{
=statement 1>, — Optional END clause

, <statement n=;

Figure 1-3 Structure of a Vue script

The following are two Vue scripts examples:

1. The following canonical Hello World program prints "Hello World" into the
trace buffer and exits:

#1/usr/bin/probevue

/* Hello World in probevue */
/* Program name: hello.e */

GEBEGIN

{
printf("Hello World\n");
exit();

1

2. The following Hello World program prints "Hello World" when Ctrl-C is typed
on the keyboard:

#1/usr/bin/probevue

/* Hello World 2 in probevue */
/* Program name: hello2.e */

IBM AIX Version 6.1 Differences Guide

GEEND
{

}

Each clause of a Vue script consists of the following three elements:

printf("Hello World\n");

» Probe point specification

The probe point specification identifies the probe points to be dynamically
enabled.

» Action Block

The action block is used to identify the set of probe actions to be performed
when the probe fires.

» An optional predicate

The predicate, if present, identifies a condition that is to be checked at the
time the probe is triggered. The predicate must evaluate to TRUE for the
probe actions of the clause to be executed.

Probe point specification

A probe point specification identifies the code location whose execution or the
event whose occurrence should trigger the probe actions. Multiple probe points
can be associated with the same set of probe actions and the predicate, if any, by
providing a comma-separated list of probe specifications at the top of the Vue
clause.

The format for a probe specification is probe-type specific. The probe
specification is a tuple (a type of programming structure) of ordered list of fields
separated by colons. It has the following general format:

AlX Version 6.1 supports the following probe types:
» User Function Entry probes (or uft probes)

For example, a uft probe at the entry into any function called foo() (in the main
executable or any of the loaded modules including libraries) in process with
ID = 34568:

@Ruft:34568:*:foo:entry
» System Call Entry/Exit probes (or syscall probes)
For example, a syscall probe at the exit of a read system call:

@@syscall:*:read:exit

Chapter 1. Application development and system debug 27

» Probes that fire at specific time intervals (or interval probes)

For example, an interval probe that fires every 500 milliseconds (wall clock
time):

@@interval:*:clock:500

Action blocks

The action block identifies the set of actions to be performed when a thread hits
the probe point. Supported actions are not restricted to the basic capturing and
formatting of trace data but, the full power of Vue can be employed.

An action block in Vue is similar to a procedure in procedural languages. It
consists of a sequence of statements that are executed in order. The flow of
execution is essentially sequential. The only exceptions are that conditional
execution is possible using the if-else statement and control may be returned
from within the action block using the return statement.

Unlike procedures in procedural languages, an action block in Vue does not have
an output or return value. Neither does it have inherent support for a set of input
parameters. On the other hand, the context data at the point where a probe is
entered can be accessed within the action block to parameterize the actions to
be performed.

Predicates

Predicates should be used when execution of clauses at probe points must be
performed conditionally.

The predicate section is identified by the presence of the when keyword
immediately after the probe specification section. The predicate itself consists of
regular C-style conditional expressions with the enclosing parentheses.
A predicate has the following format:

when (<condition>)
For example, this is a predicate indicating that probe points should be executed
for process ID = 1678:
when (_ pid == 1678)

Probe manager

The probe manager is an essential component of dynamic tracing. Probe
managers are the providers of the probe points that can be instrumented by
ProbeVue.

28 IBM AIX Version 6.1 Differences Guide

Probe managers generally support a set of probe points that belong to some
common domain and share some common feature or attribute that distinguishes
them from other probe points. Probe points are useful at points where control
flow changes significantly, at points of state change, or other similar points of
significant interest. Probe managers are careful to select probe points only in
locations that are safe to instrument.

ProbeVue currently supports the following three probe managers:
» System call (syscall) probe manager

The syscall probe manager supports probes at the entry and exit of
well-defined and documented base AlX system calls. The syscall probe
manager accepts a 4-tuple probe specification in one of the following formats
where the <system_call name> field is to be substituted by the actual system
call name:

* syscall:*:<system call_name>:entry
* syscall:*:<system call_name>:exit

These indicate that a probe is to be placed at the entry and exit of system
calls. Assigning the "*" to the second field indicates that the probe will be fired
for all processes. Additionally, a process ID can be specified as the second
field of the probe specification to support probing of specific processes:

* syscall:<process ID>:<system call name>:entry
* syscall:<process ID>:<system call name>:entry

» User function probe manager

The user function tracing (uft) probe manager supports probing user space
functions that are visible in the XCOFF symbol table of a process. These
entry points, usable as probe points, are currently restricted to those written in
C language text file. The uft probe manager currently accepts a 5-tuple probe
specification only in the following format:

uft:<processID>:*:<function_name>:entry

Note that the uft probe manager requires the process ID for the process to be
traced and the complete function name of the function at whose entry point
the probe is to be placed. Further, the uft probe manager currently requires
that the third field be set to ™" to indicate that the function name is to be
searched in any of the modules loaded into the process address space,
including the main executable and shared modules.

Chapter 1. Application development and system debug 29

30

» Interval probe manager

The interval probe manager supports probe points that fire at a user-defined
time interval. The probe points are not located in kernel or application code,
but instead are based on wall clock time interval based probe events. The
interval probe manager accepts a 4-tuple probe specification in the following
format:

@@interval:*:clock:<# milliseconds>

The second field is *, indicating that the probe can be fired in any process.
Currently, the interval probe manager does not filter probe events by process
IDs. For the third field, the only value supported currently is the clock keyword
that identifies the probe specification as being for a wall clock probe. The
fourth or last field, that is, the <# milliseconds> field, identifies the number of
milliseconds between firings of the probe. Currently, the interval probe
manager requires that the value for this field be exactly divisible by 100 and
consist only of digits 0-9. Thus, probe events that are apart by 100 ms,

200 ms, 300 ms, and so on, are allowed.

Vue functions

Unlike programs written in the C or FORTRAN programming languages or in a
native language, scripts written in Vue do not have access to the routines
provided by the AIX system libraries or any user libraries. However, Vue supports
its own special library of functions useful for dynamic tracing programs. Functions
include:

» Tracing-specific functions:

get_function Returns the name of the function that encloses the
current probe.

time stamp Returns the current time stamp.

diff_time Finds the difference between two time stamps.

» Trace capture functions

printf Formats and prints values of variables and
expressions.

trace Prints data without formatting.

stktrace Prints and formats the stack trace.

» List functions
list Instantiate a list variable.
append Append a new item to a list.

IBM AIX Version 6.1 Differences Guide

sum, max, min, avg, count
Aggregation functions that can be applied on a list
variable.

» C-library functions
atoi, strstr Standard string functions.
» Functions to support tentative tracing

start_tentative, end_tentative
Indicators for start and end of tentative tracing.

commit_tentative, discard_tentative
Commit or discard data in tentative buffer.

» Miscellaneous functions

exit Terminates the E-program.

get_userstring Read string from user memory.
The Vue string functions can be applied only on variables of string type and not
on a pointer variable. Standard string functions like strcpy(), strcat(), and so on,

are not necessary in Vue, because they are supported through the language
syntax itself.

1.4.6 ProbeVue dynamic tracing example

This is a basic ProbeVue example to show how ProbeVue works and how to use
ProbeVue on a running executable without restarting or recompiling it.

The following steps must be performed:

1. The C program shown in Example 1-1, named pvue, is going to be traced
dynamically.

Example 1-1 Basic C program to be dynamically traced: pvue.c

#include <fcntl.h>
main()

{

int x, rc;
int buff[100];

for (x=0; x<5; x++){
sleep(3);
printf("x=%d\n",x);

}

sleep (3);

Chapter 1. Application development and system debug 31

32

fd=open("./pvue.c",0_RDWR,0);
x =read(fd,buff,100);
printf("[%s]\n",buff);

}

. Compile and execute the program in the background. For example:

cc -qb4 -0 pvue pvue.c
./pvue &
[1] 262272

. In order to trace dynamically the number of calls executed by the pvue

process to the subroutines printf(), sleep(), entry of read(), exit of read(), we
use the probevue script shown in Example 1-2, named pvue.e, which uses
the process ID as an entry parameter (‘$1’).

Example 1-2 Sample Vue script, named pvue.e

#!/usr/bin/probevue

OGEBEGIN
{
printf("Tracing starts now\n");
}
EGuft:$1:*:printf:entry
{
int count;
count = count +1;
printf("printf called %d times\n",count);
}
EGuft:$1:*:sleep:entry
{
int countl;
countl = countl +1;
printf("sleep called %d times\n",countl);
}

@@syscall:*:read:exit
when (__pid == $1)
{

}

@@syscall:*:read:entry
when (__pid == $1)

printf("read entered\n");

{

}
GEEND

{

printf("read exited\n");

IBM AIX Version 6.1 Differences Guide

printf("Tracing ends now\n");

}

4. We use the Vue script named pvue.e, with the process ID to be traced as the
parameter, by executing the probevue command:

probevue ./pvue.e

262272

Example 1-3 shows the tracing output.

Example 1-3 Start Vue script providing pid

./pvue.e 262272
Tracing starts now
printf called 1 times
sleep called 1 times
printf called 2 times
sleep called 2 times
printf called 3 times
sleep called 3 times
printf called 4 times
sleep called 4 times
printf called 5 times
sleep called 5 times
read exited

read entered

printf called 6 times
~CTracing ends now

#

Chapter 1. Application development and system debug

33

34 IBM AIX Version 6.1 Differences Guide

File systems and storage

This chapter contains the major AIX Version 6.1 enhancements that are part of
the file system and connected storage, including:

» 2.1, “Disabling JFS2 logging” on page 36
» 2.2, “JFS2 internal snapshot” on page 36
» 2.3, “Encrypted File System” on page 40

» 2.4, “iSCSI target mode software solution” on page 50

© Copyright IBM Corp. 2007, 2008. All rights reserved. 35

2.1 Disabling JFS2 logging

AIX V6.1 allows you to mount a JFS2 file system with logging turned off.
Disabling JFS2 logging can increase I/O performance. The following examples
are typical situations where disabled logging may be helpful:

» While restoring a backup
» For a compiler scratch space
» During a non-migration installation

Improved performance is also found in situations where a series of 1/0O operations
modify JFS2 metadata. Note that non-representative tests in a lab environment
showed up to a ten percent performance improvement for a series of operations
that only changed JFS2 metadata.

Be sure to balance the benefit of a performance advantage with the possible data
exposures of a disabled file system log.

Important: If a system abnormally stops during a JFS2 metadata operation
with logging disabled, the fsck command might not be able to recover the file
system into a consistent state. In such cases, the file system has to be
recreated, and all the data will be lost.

You can disable JFS2 logging with the mount command. There is no SMIT or
Web-based System Manager panel, since this feature is used only in rare cases.
You cannot disable the logging while creating a file system. Every file system has
to be created with a valid JFS2 log device or an inline log.

Use the following flag with the mount command to mount a JFS2 file system with
logging disabled:

mount -0 Tog=NULL /aix61diff

In order to make the mount setting persistent, modify the log attribute of the
corresponding /etc/filesystems stanza to log=NULL.

2.2 JFS2 internal snapshot

With AIX 5L V5.2, the JFS2 snapshot was introduced. Snapshots had to be
created into separate logical volumes. AlIX V6.1 offers the ability to create
snapshots within the source file system.

36 IBM AIX Version 6.1 Differences Guide

Therefore, starting with AIX V6.1, there are two types of snapshots:

» External snapshot

» Internal snapshot

Table 2-1 provides an overview of the differences between the two types of

shapshots.

Table 2-1 Comparison of external and internal snapshots

Category External snapshot Internal snapshot
Location Separate logical volume Within the same logical
volume
Access Must be mounted /fsmountpoint/.snapshot/s
separately napshotname
Maximum generations 15 64
AIX compatibility >= AIX 5L V5.2 >= AIX V6.1

Both the internal and the external snapshots keep track of the changes to the
snapped file system by saving the modified or deleted file blocks. Snapshots
provide point-in-time (PIT) images of the source file system. Often, snapshots
are used to be able to create a consistent PIT backup while the workload on the
shapped file system continues.

The internal snapshot introduces the following enhancements:

» No super user permissions are necessary to access data from a snapshot,
since no initial mount operation is required.

» No additional file system or logical volume needs to be maintained and
monitored.

» Snapshots are easily NFS exported, since they are in held in the same file
system.

2.2.1 Managing internal snapshots

A JFS2 file system must be created with the new -a isnapshot=yes option.
Internal snapshots require the use of the extended attributes v2 and therefore the
crfs command will automatically create a v2 file system.

Existing file systems created without the isnapshot option cannot be used for
internal snapshots. They have to be recreated or have to use external snapshots.

Chapter 2. File systems and storage 37

There are no new commands introduced with internal snapshots. Use the
snapshot, rollback, and backsnap commands to perform operations. Use the
new -n snapshotname option to specify internal snapshots. There are
corresponding SMIT and Web-based System Manager panels available.

To create an internal snapshot:

snapshot -o snapfrom=/aix61diff -n snap01
Snapshot for file system /aix6ldiff created on snap0l

To list all snapshots for a file system:

snapshot -q /aix6ldiff

Snapshots for /aix6ldiff

Current Name Time

* snap01 Tue Sep 25 11:17:51 CDT 2007

To list the structure on the file system:

1s -1 /aix61diff/.snapshot/snap0l
total 227328

-rW-r--r-- 1 root system 10485760 Sep 25 11:33 filel
-rw-r--r-- 1 scott staff 1048576 Sep 25 11:33 file2
-rw-r--r-- 1 jenny staff 104857600 Sep 25 11:33 file3
drwxr-xr-x 2 root system 256 Sep 24 17:57 lost+found

The previous output shows:
» All snapshots are accessible in the /fsmountpoint/.snapshot/ directory.

» The data in the snapshot directories are displayed with their original file
permission and ownership. The files are read only; no modifications are
allowed.

Note: The .snapshot directory in the root path of every snapped file system is
not visible to the 1s and find command. If the .snapshot directory is explicitly
specified as an argument, they are able to display the content.

To delete an internal snapshot:
snapshot -d -n snap0l /aix6ldiff

38 IBM AIX Version 6.1 Differences Guide

2.2.2 Error handling

There are two known conditions where a snapshot is unable to preserve the file
system data:

» The file system runs out of space (for internal snapshots) or the logical
volume is full (for external snapshots).

» Write operations to the snapshot are failing, for example, due to a disk failure.
In both cases, all snapshots are aborted and marked as INVALID. In order to
recover from this state, the snapshots have to be deleted and a new one can be

created. ltis, therefore, important that you monitor the usage of the file system or
logical volume:

» You can use the snapshot -q command and monitor the Free field for logical
volumes of external snapshots that are not mounted.

» Forinternal snapshots, use the df command to monitor the free space in the
file system.

If an error occurs while reading data from a snapshot, an error message is
returned to the running command. The snapshot is still valid and continues to
track changes to the snapped file system.

2.2.3 Considerations

The following applies for internal snapshots:

» A snapped file system can be mounted read only on previous AIX 5L
versions. The snapshot itself cannot be accessed. The file system must be in
a clean state; run the fsck command to ensure that this is true.

» A file system created with the ability for internal snapshots can still have
external snapshots.

» Once a file system has been enabled to use internal snapshots, this cannot
be undone.

» If the fsck command has to modify the file system, any internal snapshots for
the file system will be deleted by fsck.

» Snapped file systems cannot be shrunk.

» The defragfs command cannot be run on a file system with internal
shapshots.

» Existing snapshot Web-based System Manager and SMIT panels are
updated to support internal snapshots.

Chapter 2. File systems and storage 39

The following items apply to both internal and external snapshots:

»

»

A file system can use exclusively one type of snapshot at the same time.

Typically, a snapshot will need two to six percent of the space needed for the
snapped file system. For a highly active file system, 15 percent is estimated.

External snapshots are persistent across a system reboot.

During the creation of a snapshots, only read access to the snapped file
system is allowed.

There is reduced performance for write operations to a snapped file system.
Read operations are not affected.

Snapshots are not replacement for backups. A snapshot depends always on
the snapped file system, while backups have no dependencies on the source.

Neither the mksysb nor alt_disk_install commands will preserve snapshots.

A file system with snapshots cannot be managed by DMAPI. A file system
being managed by DMAPI cannot create a snapshot.

2.3 Encrypted File System

40

AIX V6.1 introduces the ability to encrypt files on a per file basis without the need
of third-party tools. EFS should be used in environments where sensitive data
requires additional protection.

AIX EFS has the following advantages over other encrypted file systems:

| 2

Increased file level encryption granularity:

Data is encrypted on a user/group level, compared to other implementations,
where all users use the same keys. This is a useful protection on a per file
system/disk level, but does not protect the data from being read by others in
the same file system/disk.

Seamless integration into traditional user administration commands and
therefore transparent to users and administrators.

Provides a unique mode that can protect against a compromised or malicious
root user.

Additional information and extensive examples can be found in Chapter 2,
“Encrypted File System”, in AIX 6 Advanced Security Features: Introduction and
Configuration, SG24-7430:

http://www.redbooks.ibm.com/abstracts/sg247430.htm1?0pen

IBM AIX Version 6.1 Differences Guide

http://www.redbooks.ibm.com/abstracts/sg247430.html?Open

2.3.1 Encryption

You can encrypt files on a per-file basis. Data is encrypted before it is written
back to disk and decrypted after it is read from disk. Data held in memory is not
encrypted, but the EFS access control is still in place. AIX uses a combination of
symmetric and asymmetric encryption algorithms to protect the data.

A unique AES symmetric key is used to encrypt and decrypt every file. This
symmetric key is encrypted with an RSA public key of the user and group and
then added to the extended attributes of the file.

EFS uses an RSA private/public keypair to protect each symmetric key. These
keys are stored in containers named keystores. The user keystores are password
protected. The initial password of a user keystore is the user login password.
Group keystores and admin keystores are not protected with a password; instead
they have access key protection. Access keys are stored inside all user keystores
that belong to this group.

The users keystore is loaded into the AIX kernel upon user login (associated with
the login shell) or by invoking the new efskeymgr command and providing an
argument to specify to which process the keys should be associated. All child
processes of the associated process will have access to the keys.

2.3.2 Keystore modes

User keystores have two modes of operation, as discussed in the following
sections.

Root admin mode
In root admin mode, the root user can:

» Get access to the user keystore

» Get access to the group keystore

» Reset the user keystore password

» Reset the group access key

Root admin mode is the default mode of operation. A consequence of root being

able to get access to the user keystore is that root can get access to all
encrypted files.

Root guard mode

All the privileges granted to root in the root admin mode are not valid in this
mode.

Chapter 2. File systems and storage 41

This mode of operation offers protection against a malicious root user. It means
that if the system is hacked and the hacker somehow manages to obtain root
privilege, the hacker cannot have access to user or group keystores and
therefore cannot have access to user encrypted files.

Important: If a user loses their keystore password, root cannot reset it. It
means that no one can get access to that keystore anymore and the encrypted
files owned by this user can no longer be decrypted.

2.3.3 File access permissions

It is important to understand that the traditional AlX file permissions do not
overlap with the EFS mechanisms. EFS introduces another level of file access
checking. The following steps are used when an encrypted file is being
accessed:

1. The traditional file permissions are checked first.

2. Only if the check is passed will AIX continue to verify that only a user that has
a private key that matches one of the public keys can gain access to the
encrypted data.

If the traditional file permissions allow the user to read the file, but the user has
no proper private key in his keystore, access is denied.

Note: Even the root user will not have access to all files as long as other users
do not grant access to encrypted files with the following command:

efsmgr -a ./filename -u root

If the keystores are operated in root admin mode, the root user can load the
private keys of other users to get access to all files.

2.3.4 Installation

42

This section discusses the prerequisites and commands used for the installation
of EFS.

Prerequisites
In order to use EFS, you must meet the following prerequisites:

» The Crypto Library (CLiC) package clic.rte from the AIX V6.1 expansion pack
must be installed.

» Role Based Access Control (RBAC) must be enabled.

IBM AIX Version 6.1 Differences Guide

» A JFS2 file system with the efs=yes option must be enabled.

» A JFS2 file system with the ea=v2 option must be enabled.

If necessary, use the chfs command to change the efs and ea options on
previously created file systems. If you specify the efs option with the crfs or chfs
command, it will automatically create or change the file system to use v2

extended attributes.

Commands

There are new commands introduced with EFS. All are part of the
bos.rte.security package, which is installed by default in AIX. These commands

are shown in Table 2-2.

Table 2-2 New EFS commands

Command

Description

/usr/sbin/efsenable

Prepares the system to use EFS. It creates the EFS
administration keystore, the user keystore of the current
user (root or an user with the RBAC role
aix.security.efs), and the security group keystore in the
/var/efs directory. This command needs to be executed
only once on every AlX installation in order to use EFS.

/usr/sbin/efskeymgr

Dedicated to all key management operations needed by
EFS.

/usr/sbin/efsmgr

Manages the file encryption and de-encryption.

Traditional commands have been modified to support EFS, as shown in

Table 2-3.

Table 2-3 Commands modified for EFS

Commands Enhancement

cp, mv Moves/copies files from EFS <-> EFS and EFS <->
non-EFS file systems.

1s, find Enabled to handle encrypted files.

backup, restore, tar, pax,
cpio

Supports raw modes for EFS encrypted files. Files can
be accessed in the encrypted form without the need for
the private keys.

mkdir

Handles EFS inheritance.

mkuser, chuser, mkgroup,
chgroup, rmuser, rmgroup

Enabled to modify the keystores and EFS user
attributes.

Chapter 2. File systems and storage 43

Commands Enhancement

chown, chgrp, chmod Enabled to modify the EFS extended attributes.

passwd Updates the key store password if it is the same as the
login password.

For the new command options, refer to the man pages or the AIX product
documentation.

2.3.5 Enable and create EFS file systems

44

This section describes the necessary steps to activate EFS. Example 2-1 shows
the following tasks:

1.
2.
3.
4.

Enable EFS.

Create an EFS file system.

Shows the directory structure for the keystores.
Mount the file system.

All commands have to be run from the root user or a user with the appropriate
RBAC roles assigned.

Example 2-1 Enabling EFS and creating an EFS file system

#

efsenable -a

Enter password to protect your initial keystore:
Enter the same password again:

#

crfs -v jfs2 -g rootvg -m /efs -A yes -a size=256M -a efs=yes

File system created successfully.
261932 kilobytes total disk space.
New File System size is 524288

#

find /var/efs

/var/efs

/var/efs/users
/var/efs/users/.Tock
/var/efs/users/root
/var/efs/users/root/.lock
/var/efs/users/root/keystore
/var/efs/groups
/var/efs/groups/.lock
/var/efs/groups/security
/var/efs/groups/security/.Tock

IBM AIX Version 6.1 Differences Guide

/var/efs/groups/security/keystore

/var/efs/efs_admin
/var/efs/efs_admin/.lock

/var/efs/efs_admin/keystore

/var/efs/efsenabled

mount /efs

2.3.6 File encryption and de-encryption

This section provides you an example of encrypting and decrypting files.
Example 2-2 shows the following:

1. Display the loaded keys associated with the current login shell.

Create three test files.
Encrypt file2.
The 1s -U command now

I

indicates that the file is encrypted.

permissions would allow him to read.

7. Use the 1s, istat, and fsdb commands to verify that the file is stored
encrypted in the file system.

8. Decrypt file2.

Example 2-2 Encryption and de-

encryption of files

Use the efsmgr -1 command to verify which keys are need to access the file.
Verify that user guest cannot read the file content that even the traditional file

efskeymgr -V
List of keys loaded in the
Key #0:

e34acd99:b1f22cdc:85f638e0:
Key #1:

current process:

Kind ..ooiiiiinninin... User key

Id (uid / gid) 0

TYPE teieiiieineennnrnnnns Private key
Algorithm RSA 1024
Validity ...oovevnennn.n.. Key is valid
Fingerprint