<|lI!

AIX Version 6.1

Operating system and device management

SC23-6605-02

<|lI!

AIX Version 6.1

Operating system and device management

SC23-6605-02

Note
FBefore using this information and the product it supports, read the information in|“Notices” on page 529|

Third Edition (October 2009)

This edition applies to AIX Version 6.1 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6B013, 11501 Burnet Road, Austin, Texas 78758-3400.
To send comments electronically, use this commercial Internet address: pserinfo@us.ibm.com. Any information that
you supply may be used without incurring any obligation to you.

Note to U.S. Government Users Restricted Rights - - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

© Copyright International Business Machines Corporation 2006, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document .
Highlighting

Case-sensitivity in AIX
ISO 9000.

Operating system and device
management.
Operating system management .

Available system management interfaces .

Software Vital Product Data
Operating system updates .
System startup.

System backup

Shutting down the system
System environment

AIX Runtime Expert
Commands and processes
Managing system hang
Process management
System accounting . .
System Resource Controller.
Operating system files
Operating system shells .
Operating system security .
User environment .

© Copyright IBM Corp. 2006, 2009

< < < <

. 124
. 128
. 146
. 232
. 245

BSD systems reference
Input and output redirection .
AIX kernel recovery .

Device management .

Logical Volume Manager

Logical volume storage . .
Paging space and virtual memory
File systems .

Workload manager

Installing an IDE device .

Device nodes

Device location codes.

Setting up iSCSI

PCI hot plug management .
Multiple Path I/0.

Tape drives .

Login names, system IDS and passwords .

Common Desktop Environment .
Printers, print jobs, and queues
Loopback device

Notices .
Trademarks .

Index .

. 258
. 278
. 284
. 285
. 285
. 320
. 350
. 360
. 414
. 457
. 461
. 463
. 467
. 468
. 473
. 491
. 503
. 510
. 515
. 527

. 529
. 530

. 531

iii

iV AIX Version 6.1: Operating system and device management

About this document

This book provides users and system administrators with complete information that can affect your
selection of options when performing such tasks as backing up and restoring the system, managing
physical and logical storage, sizing appropriate paging space, and so on. It provides complete information
about how to perform such tasks as managing logical volumes, storage, and resources. System users can
learn how to perform such tasks as running commands, handling processes, handling files and
directories, and basic printing. Other topics useful to users and system administrators include creating
and re-sizing paging space, managing virtual memory, backing up and restoring the system, managing
hardware and pseudo devices, using the System Resource Controller (SRC), securing files, using storage
media, customizing environment files, and writing shell scripts. This book is also available on the
documentation CD that is shipped with the operating system.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects such as buttons, labels, and icons that the user
selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Identifies examples of specific data values, examples of text similar to what you might see displayed,
examples of portions of program code similar to what you might write as a programmer, messages from
the system, or information you should actually type.

Monospace

Case-sensitivity in AIX

Everything in the AIX® operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the 1s command to list files. If you type LS, the
system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2006, 2009 \%

vi AIX Version 6.1: Operating system and device management

Operating system and device management

System administrators and users can learn how to perform such tasks as running commands, handling
processes, handling files and directories, backing up and restoring the system, managing physical and
logical storage, and basic printing.

Other topics useful to users and system administrators include creating and re-sizing paging space,
managing virtual memory, backing up and restoring the system, managing hardware and pseudo devices,
using the System Resource Controller (SRC), securing files, using storage media, customizing
environment files, and writing shell scripts. This topic is also available on the documentation CD that is
shipped with the operating system.

To view or download the PDF version of this topic, select [Operating system and device management

Downloading Adobe Reader: You need Adobe® Reader installed on your system to view or print this
PDE. You can download a free copy from the Adobe Web site (www.adobe.com/products/acrobat/
readstep.html).

Operating system management

You can use commands to manage system starup and backup, shutting down the system, system shells
and environments, system resources, and other different parts of AIX.

Operating system management is the task of an individual who is usually referred to, in UNIX®
literature, as the system administrator. Unfortunately, only a few system administrator activities are
straightforward enough to be correctly called administration. This and related guides are intended to help
system administrators with their numerous duties.

This operating system provides its own particular version of system-management support in order to
promote ease of use and to improve security and integrity.

Available system management interfaces

In addition to conventional command line system administration, this operating system provides the
SMIT and Web-based System Manager interfaces.

The following are the SMIT and Web-based System Manager interfaces:

* System Management Interface Tool (SMIT), a menu-based user interface that constructs commands
from the options you choose and executes them.

With SMIT, you can:

— Install, update, and maintain software

— Configure devices

— Configure disk storage units into volume groups and logical volumes
— Make and extend file systems and paging space

- Manage users and groups

— Configure networks and communication applications
— Print

— Perform problem determination

— Schedule jobs

— Manage system resources and workload

© Copyright IBM Corp. 2006, 2009 1

— Manage system environments
- Manage cluster system data

* Web-based System Manager, an object-oriented graphical user interface that supports the same system
management tasks as SMIT, but eases system management tasks by:

— Reducing user errors through error checking and dialog design

— Offering step-by-step procedures for new or complex tasks

— Offering advanced options for more experienced administrators

— Making it easier to visualize complex data or relationships among system objects

— Monitoring system activity and alerting the administrator when predefined events occur
— Providing context-sensitive helps, overviews, tips, and links to online documentation

Web-based System Manager can be configured to run in a variety of operating modes. The operating
environments in which it can be started are standalone application, client-server, applet, and remote
client.

Software Vital Product Data

Certain information about software products and their installable options is maintained in the Software
Vital Product Data (SWVPD) database.

The SWVPD consists of a set of commands and Object Data Manager (ODM) object classes for the
maintenance of software product information. The SWVPD commands are provided for the user to query
(Islpp) and verify (Ippchk) installed software products. The ODM object classes define the scope and
format of the software product information that is maintained.

The installp command uses the ODM to maintain the following information in the SWVPD database:
* Name of the installed software product
* Version of the software product

* Release level of the software product, which indicates changes to the external programming interface of
the software product

* Modification level of the software product, which indicates changes that do not affect the external
programming interface of the software product

* Fix level of the software product, which indicates small updates that are to be built into a regular
modification level at a later time

* Fix identification field

* Names, checksums, and sizes of the files that make up the software product or option

¢ Installation state of the software product: applying, applied, committing, committed, rejecting, or
broken.

Operating system updates

The operating system package is divided into filesets, where each fileset contains a group of logically
related customer deliverable files. Each fileset can be individually installed and updated.

Revisions to filesets are tracked using the version, release, maintenance, and fix (VRMF) levels. By
convention, each time an AIX fileset update is applied, the fix level is adjusted. Each time an AIX
maintenance package or technology level is applied, the modification level is adjusted, and the fix level is
reset to zero. The initial installation of an AIX version, for example, AIX 5.2, is called a base installation.
The operating system provides updates to its features and functionality, which might be packaged as a
maintenance package, a technology level, a program temporary fix (PTF), or a service pack (a group of
PTFs).

Maintenance Packages and Technology Levels
Maintenance packages and technology levels provide new functionality that is intended to

2 AIX Version 6.1: Operating system and device management

upgrade the release. The maintenance part of the VRMF is updated in a maintenance package.
For example, the first maintenance package for AIX 5.2 would be 5.2.1.0; the second would be
5.2.2.0, and so forth. To list the maintenance package, use the oslevel -r command.

To determine the maintenance package or technology level installed on a particular system, type:
oslevel

To determine which filesets need updating for the system to reach a specific maintenance package
or technology level (in this example, 4.3.3.0), use the following command:

oslevel -1 4.3.3.0

To determine if a recommended maintenance package or technology level is installed (in this
example, 5100-02), use the following command:

oslevel -r 5100-02

To determine which filesets need updating for the system to reach the 5100-02 maintenance
package or technology level, use the following command:

oslevel -rl 5100-02

To determine the maintenance package or technology level of a particular fileset (in this example,
bos.mp), use the following command:

1sTpp -L bos.mp

PTFs Between releases, you might receive PTFs to correct or prevent a particular problem. A particular
installation might need some, all, or even none of the available PTFs.

Recommended Maintenance Packages
A recommended maintenance package is a set of PTFs between technology levels that have been
extensively tested together and are recommended for preventive maintenance.

Interim Fixes
An interim fix is similar to a PTF, but it is usually offered when a PTF is not available. Interim
fixes are also released when the PTF would upgrade a system to the next maintenance level and
users might want their systems to remain at the current level.

To determine the version and release level, maintenance package, technology level, and service pack
level, as well as which filesets need to be updated to reach a particular level, see the and the
commands in AIX Version 6.1 Commands Reference.

System startup

When the base operating system starts, the system initiates a complex set of tasks. Under normal
conditions, these tasks are performed automatically.

There are some situations when you want to instruct the system to reboot; for example, to cause the
system to recognize newly installed software, to reset peripheral devices, to perform routine maintenance
tasks like checking file systems, or to recover from a system hang or crash. For information on these
procedures, see:

Related tasks

[“Recreating a corrupted boot image” on page 32|
The following procedure describes how to identify a corrupted boot image and re-create it.

Administering system startup

There are multiple scenarios that you might encounter when you want to boot or reboot your system. To
shut down or reboot your system you can use either the shutdown or reboot command. You should use
the shutdown command when multiple users are logged onto the system.

Rebooting a running system:

Operating system and device management 3

Because processes might be running that should be terminated more gracefully than a reboot permits,
shutdown is the preferred method for all systems.

There are two methods for shutting down and rebooting your system, [shutdown| and [rebootf Always use
the shutdown method when multiple users are logged onto the system.

Rebooting a Running System Tasks

Web-based System Manager wsm, then select System

-OR-

Task SMIT Fast Path Command or File
Rebooting a Multiuser System smit shutdown shutdown -r
Rebooting a Single-User System smit shutdown shutdown -r or reboot

Rebooting a unresponsive system remotely:

The remote reboot facility allows the system to be rebooted through a native (integrated) system port.
The POWERS5 " integrated system ports are similar to serial ports except that system ports are available
only for specifically supported functions.

The system is rebooted when the reboot_string is received at the port. This facility is useful when the
system does not otherwise respond but is capable of servicing system port interrupts. Remote reboot can
be enabled on only one native system port at a time. Users are expected to provide their own external
security for the port. This facility runs at the highest device interrupt class and a failure of the UART
(Universal Asynchronous Receive/Transmit) to clear the transmit buffer quickly may have the effect of
causing other devices to lose data if their buffers overflow during this time. It is suggested that this
facility only be used to reboot a machine that is otherwise hung and cannot be remotely logged into. File
systems will not be synchronized, and a potential for some loss of data which has not been flushed exists.
It is strongly suggested that when remote reboot is enabled that the port not be used for any other
purpose, especially file transfer, to prevent an inadvertent reboot.

Two native system port attributes control the operation of remote reboot.
reboot_enable

Indicates whether this port is enabled to reboot the machine on receipt of the remote reboot_string, and
if so, whether to take a system dump prior to rebooting.

no - Indicates remote reboot is disabled
reboot - Indicates remote reboot is enabled
dump - Indicates remote reboot is enabled, and prior to rebooting a system dump

will be taken on the primary dump device
reboot_string

Specifies the remote reboot_string that the serial port will scan for when the remote reboot feature is
enabled. When the remote reboot feature is enabled and the reboot_string is received on the port, a >
character is transmitted and the system is ready to reboot. If a 1 character is received, the system is
rebooted; any character other than 1 aborts the reboot process. The reboot_string has a maximum length
of 16 characters and must not contain a space, colon, equal sign, null, new line, or Ctrl-\ character.

Remote reboot can be enabled through SMIT or the command line. For SMIT the path System
Environments -> Manage Remote Reboot Facility may be used for a configured TTY. Alternatively,
when configuring a new TTY, remote reboot may be enabled from the Add a TTY or Change/Show
Characteristics of a TTY menus. These menus are accessed through the path Devices -> TTY.

4 AIX Version 6.1: Operating system and device management

From the command line, the mkdev or chdev commands are used to enable remote reboot. For example,
the following command enables remote reboot (with the dump option) and sets the reboot string to
ReBoOtMe on tty1.

chdev -1 ttyl -a remreboot=dump -a reboot string=ReBoOtMe

This example enables remote reboot on tty0 with the current reboot_string in the database only (will take
effect on the next reboot).

chdev -P -1 tty0 -a remreboot=reboot

If the tty is being used as a normal port, then you will have to use the pdisable command before
enabling remote reboot. You may use penable to reenable the port afterwards.

Related information

[Function differences between system ports and serial ports|

Booting from hard disk for maintenance:
You can boot a machine in maintenance mode from a hard disk.
Prerequisites

A bootable removable media (tape or CD-ROM) must not be in the drive. Also, refer to the hardware
documentation for the specific instructions to enable maintenance mode boot on your particular model.

Procedure

To boot a machine in maintenance mode from a hard disk:
1. To reboot, either turn the machine off and then power it back on, or press the reset button.

2. Press the key sequence for rebooting in maintenance mode that is specified in your hardware
documentation.

3. The machine will boot to a point where it has a console device configured. If there is a system dump
that needs to be retrieved, the system dump menu will be displayed on the console.

Note:

a. If the console fails to configure when there is a dump to be retrieved, the system will hang. The
system must be booted from a removable medium to retrieve the dump.
b. Beginning in AIX 5.3, the system will automatically dump to the specified dump device when the

reset button is pressed. To change the primary or secondary dump device designation in a running
system, see the command in the AIX Version 6.1 Commands Reference, Volume 5.

4. If there is no system dump, or if it has been copied, the diagnostic operating instructions will be
displayed. Press Enter to continue to the Function Selection menu.

5. From the Function Selection menu, you can select diagnostic or single-user mode:

Single-User Mode: To perform maintenance in a single-user environment, choose this option (option
5). The system continues to boot and enters single-user mode. Maintenance that requires the system to
be in a standalone mode can be performed in this mode, and the bosboot command can be run, if
required.

Related information

[Starting a System Dump|

Booting a system that has crashed:

In some instances, you might have to boot a system that has stopped (crashed) without being properly
shut down.

Operating system and device management 5

The prerequisites for this procedure are:
* Your system crashed and was not properly shut down due to unusual conditions.

* Your system is turned off.

This procedure covers the basics of how to boot if your system was unable to recover from a crash.
Perform the following steps:

1. Ensure that all hardware and peripheral devices are correctly connected.

2. Turn on all of the peripheral devices.

3. Watch the screen for information about automatic hardware diagnostics.
a. If any hardware diagnostics tests are unsuccessful, refer to the hardware documentation.
b. If all hardware diagnostics tests are successful, turn the system unit on.

Resetting an unknown root password:

The following procedure describes how to recover access to root privileges when the system’s root
password is unavailable or unknown.

The following procedure requires some system downtime. If possible, schedule your downtime when it
least impacts your workload to protect yourself from a possible loss of data or functionality.

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain might vary significantly
depending on your version and level of AIX.

1. Insert the product media for the same version and level as the current installation into the
appropriate drive.

A

Power on the machine.

w

When the screen of icons appears, or when you hear a double beep, press the F1 key repeatedly
until the System Management Services menu appears.

Select Multiboot.

Select Install From.

Select the device that holds the product media and then select Install.

Select the AIX version icon.

Define your current system as the system console by pressing the F1 key and then press Enter.
Select the number of your preferred language and press Enter.

Choose Start Maintenance Mode for System Recovery by typing 3 and press Enter.

oo 0N o Ok

—_ -

Select Access a Root Volume Group. A message displays explaining that you will not be able to
return to the Installation menus without rebooting if you change the root volume group at this point.

Type 0 and press Enter.
Type the number of the appropriate volume group from the list and press Enter.
Select Access this Volume Group and start a shell by typing 1 and press Enter.

— et ek
o &~ LN

At the # (number sign) prompt, type the passwd command at the command line prompt to reset the
root password. For example:

passwd

Changing password for "root"
root's New password:

Enter the new password again:

16. To write everything from the buffer to the hard disk and reboot the system, type the following:
sync;sync;sync;reboot

When the login screen appears, the password you set in step should now permit access to root
privileges.

6 AIX Version 6.1: Operating system and device management

Related information

fpasswd command|

freboot command]|

[Problem Solving and Troubleshooting]

Booting systems with planar graphics:

If the machine has been installed with the planar graphics susbsystem only, and later an additional
graphics adapter is added to the system, the following occurs:

1. A new graphics adapter is added to the system, and its associated device driver software is installed.
2. The system is rebooted, and one of the following occurs:

a. If the system console is defined to be /dev/1ft0 (Iscons displays this information), the user is
asked to select which display is the system console at reboot time. If the user selects a graphics
adapter (non-TTY device), it also becomes the new default display. If the user selects a TTY device
instead of an LFT device, no system login appears. Reboot again, and the TTY login screen is
displayed. It is assumed that if the user adds an additional graphics adapter into the system and
the system console is an LFT device, the user will not select the TTY device as the system console.

b. If the system console is defined to be a TTY, then at reboot time the newly added display adapter
becomes the default display.

Note: Since the TTY is the system console, it remains the system console.

3. If the system console is /def/1ft0, then after reboot, DPMS is disabled in order to show the system
console selection text on the screen for an indefinite period of time. To re-enable DPMS, reboot the
system again.

Deploying level script execution:
Run level scripts allow users to start and stop selected applications while changing the run level.

Put run level scripts in the subdirectory of /etc/rc.d that is specific to the run level:
* /etc/rc.d/rc2.
« /etc/rc.d/rc3.
» /etc/rc.d/rc4.
* /etc/rc.d/rc5.
e /etc/rc.d/rcé.
* /etc/rc.d/rc7.
e /etc/rc.d/rc8.
e /etc/rc.d/rc9.

o o o o o o o o

The /etc/rc.d/rc will run the scripts it finds in the specified directory when the run level changes - first
running the stop application scripts then running the start application scripts.

Note: Scripts beginning with K are stop scripts, while scripts beginning with S are start scripts.
Modifying the /etc/inittab file:
Four commands are available to modify the records in the etc/inittab file.

Adding records - command

To add a record to the /etc/inittab file, type the following at a command prompt:
mkitab Identifier:Run Level:Action:Command

Operating system and device management 7

http://www.redbooks.ibm.com/redbooks/SG245496/css/SG245496_1.html

For example, to add a record for tty2, type the following at a command prompt:
mkitab tty002:2:respawn:/usr/sbin/getty /dev/tty2

In the above example:

tty002 Identifies the object whose run level you are defining.

2 Specifies the run level at which this process runs.

respawn Specifies the action that the init command should take for this process.
/usr/sbin/getty /dev/tty2 Specifies the shell command to be executed.

Changing records - command

To change a record to the /etc/inittab file, type the following at a command prompt:
chitab Identifier:Run Level:Action:Command

For example, to change a record for tty2 so that this process runs at run levels 2 and 3, type:
chitab tty002:23:respawn:/usr/sbin/getty /dev/tty2

In the above example:

tty002 Identifies the object whose run level you are defining.

23 Specifies the run levels at which this process runs.

respawn Specifies the action that the init command should take for this process.
/usr/sbhin/getty /dev/tty2 Specifies the shell command to be executed.

Listing records - command

To list all records in the /etc/inittab file, type the following at a command prompt:
Isitab -a

To list a specific record in the /etc/inittab file, type:
Isitab Identifier

For example, to list the record for tty2, type: 1sitab tty2.

Removing records - command

To remove a record from the /etc/inittab file, type the following at a command prompt:
rmitab Identifier

For example, to remove the record for tty2, type: rmitab tty2.

Related concepts

[“System run level” on page 13|
The system run level specifies the system state and defines which processes are started.

Reactivation of an inactive system:

Your system can become inactive because of a hardware problem, a software problem, or a combination
of both.

This procedure guides you through steps to correct the problem and restart your system. If your system
is still inactive after completing the procedure, refer to the problem-determination information in your
hardware documentation.

8 AIX Version 6.1: Operating system and device management

Use the following procedures to reactivate an inactive system:

Hardware check:

There are several procedures you can use to check your hardware.

Check your hardware by:

Checking the power:

If the Power-On light on your system is active, go to Checking the operator panel display, below.

If the Power-On light on your system is not active, check that the power is on and the system is plugged
in.

Checking the operator panel display:
If your system has an operator panel display, check it for any messages.
If the operator panel display on your system is blank, go to Activating your display or terminal, below.

If the operator panel display on your system is not blank, go to the service guide for your unit to find
information concerning digits in the Operator Panel Display.

Activating your display or terminal:

Check several parts of your display or terminal, as follows:

* Make sure the display cable is securely attached to the display and to the system unit.
* Make sure the keyboard cable is securely attached.

* Make sure the mouse cable is securely attached.

* Make sure the display is turned on and that its Power-On light is lit.

* Adjust the brightness control on the display.

* Make sure the terminal’s communication settings are correct.

If your system is now active, your hardware checks have corrected the problem.
Related tasks
[‘Restarting the system” on page 11|

In addition to checking the hardware and checking the processes, you can restart you system to reactivate
an inactive system.

[“Checking the processes”]
A stopped or stalled process might make your system inactive.

Checking the processes:
A stopped or stalled process might make your system inactive.

Check your system processes by:

1. Restarting line scrolling

Using the Ctrl+D key sequence

Using the Ctrl+C key sequence

Logging in from a remote terminal or host

ok 0N

Ending stalled processes remotely

Operating system and device management 9

Restarting line scrolling:

Restart line scrolling halted by the Ctrl-S key sequence by doing the following:
1. Activate the window or shell with the problem process.

2. Press the Ctrl-Q key sequence to restart scrolling. The Ctrl-S key sequence stops line scrolling, and the
Ctrl-Q key sequence restarts line scrolling.

If your scroll check did not correct the problem with your inactive system, go to the next section, Using
the Ctrl-D key sequence.

Using the Ctrl-D key sequence:
1. Activate the window or shell with the problem process.

2. Press the Ctrl-D key sequence. The Ctrl-D key sequence sends an end of file (EOF) signal to the
process. The Ctrl-D key sequence may close the window or shell and log you out.

If the Ctrl-D key sequence did not correct the problem with your inactive system, go to the next section,
Using the Ctrl-C key sequence.

Using the Ctrl-C key sequence:

End a stopped process by doing the following;:
1. Activate the window or shell with the problem process.

2. Press the Ctrl-C key sequence. The Ctrl-C key sequence stops the current search or filter.

If the Ctrl-C key sequence did not correct the problem with your inactive system, go to the next section,
Logging in from a remote terminal or host:.

Logging in from a remote terminal or host:

Log in remotely in either of two ways:
* Log in to the system from another terminal if more than one terminal is attached to your system.

* Log in from another host on the network (if your system is connected to a network) by typing the
command as follows:

tn YourSystemName
The system asks for your regular login name and password when you use the tn command.

If you were able to log in to the system from a remote terminal or host, go to the next section, Ending
stalled processes remotely.

If you were not able to log in to the system from a remote terminal or host you need to restart the
system.

You can also start a system dump to determine why your system became inactive.
Ending stalled processes remotely:

End a stalled process from a remote terminal by doing the following:
1. List active processes by typing the following @ command:
ps -ef

The -e and -f flags identify all active and inactive processes.
2. Identify the process ID of the stalled process.

10 AIX Version 6.1: Operating system and device management

For help in identifying processes, use the command with a search string. For example, to end the
xlock process, type the following to find the process ID:

ps -ef | grep xlock

The grep command allows you to search on the output from the ps command to identify the process
ID of a specific process.

3. End the process by typing the following command:

Note: You must have root user authority to use the kill command on processes you did not initiate.
ki1l -9 ProcessID

If you cannot identify the problem process, the most recently activated process might be the cause of
your inactive system. End the most recent process if you think that is the problem.

If your process checks have not corrected the problem with your inactive system you need to restart the
system.

Related concepts

[“Hardware check” on page 9|

There are several procedures you can use to check your hardware.
Related tasks

[“Restarting the system’]

In addition to checking the hardware and checking the processes, you can restart you system to reactivate
an inactive system.

Related information

[System Dump Facility|

Restarting the system:

In addition to checking the hardware and checking the processes, you can restart you system to reactivate
an inactive system.

If the procedures for [‘Hardware check” on page 9 and [Checking the processes” on page 9|fail to correct
the problem that makes your system inactive, you need to restart your system.

Note: Before restarting your system, complete a system dump.
1. Check the state of the boot device.

Your system boots with either a removable medium, an external device, a small computer system
interface (SCSI) device, an integrated device electronics (IDE) device, or a local area network (LAN).
Decide which method applies to your system, and use the following instructions to check the boot
device:

For a removable medium, such as tape, make sure the medium is inserted correctly.

For IDE devices, verify that the IDE device ID settings are unique per adapter. If only one device is
attached to the adapter, the IDE device ID must be set to the master device.

For an externally attached device, such as a tape drive, make sure:

— The power to the device is turned on.

— The device cables are correctly attached to the device and to the system unit.
— The ready indicator is on (if the device has one).

For external SCSI devices, verify that the SCSI address settings are unique.

For a LAN, verify that the network is up and operable.

If the boot device is working correctly, continue to the next step.

2. Load your operating system by doing the following:

Operating system and device management 11

Turn off your system’s power.
Wait one minute.

Turn on your system’s power.

oo op

Wait for the system to boot.

If the operating system failed to load, boot the hard disk from maintenance mode or hardware
diagnostics.

If you are still unable to restart the system, use an SRN to report the problem with your inactive system
to your service representative.

Related concepts

[“Hardware check” on page 9|
There are several procedures you can use to check your hardware.

Related tasks

[“Checking the processes” on page 9|
A stopped or stalled process might make your system inactive.

Related information
ISystem Dump Facility]

Creating boot images

To install the base operating system or to access a system that will not boot from the system hard drive,
you need a boot image. This procedure describes how to create boot images. The boot image varies for
each type of device.

When the system is first installed, the bosboot command creates a boot image from a RAM (random
access memory) disk file system image and the operating system kernel. The boot image is transferred to
a particular media such as the hard disk. When the machine is rebooted, the boot image is loaded from
the media into memory. For more information about the bosboot command, see

The associated RAM disk file system contains device configuration routines for the following devices:
* Disk

* Tape

* CD-ROM

* Network Token-Ring, Ethernet, or FDDI device

* You must have root user authority to use the command.

The /tmp file system must have at least 20 MB of free space.

* The physical disk must contain the boot logical volume. To determine which disk device to specify,
type the following at a command prompt:

1svg -1 rootvg

The 1svg -1 command lists the logical volumes on the root volume group (rootvg). From this list you
can find the name of the boot logical volume.

Then type the following at a command prompt:
1svg -M rootvg

The 1svg -M command lists the physical disks that contain the various logical volumes.

Creating a boot image on a boot logical volume:

12 AIX Version 6.1: Operating system and device management

If the base operating system is being installed (either a new installation or an update), the bosboot
command is called to place the boot image on the boot logical volume. The boot logical volume is a
physically contiguous area on the disk created through the Logical Volume Manager (LVM) during
installation.

For a list of prerequisites for this procedure, see [“Creating boot images” on page 12.|

The bosboot command does the following:

1. Checks the file system to see if there is enough room to create the boot image.

2. Creates a RAM file system using the command and a prototype file.

3. Calls thecommand, which merges the kernel and the RAM file system into a boot image.
4. Writes the boot image to the boot logical volume.

To create a boot image on the default boot logical volume on the fixed disk, type the following at a
command prompt:

bosbhoot -a

OR:
bosboot -ad /dev/ipldevice

Note: Do not reboot the machine if the bosboot command fails while creating a boot image. Resolve the
problem and run the bosboot command to successful completion.

You must reboot the system for the new boot image to be available for use.
Creating boot images for network devices:

You can create boot images for an Ethernet boot or Token-Ring boot.

For a list of prerequisites for this procedure, see [“Creating boot images” on page 12|

To create a boot image for an Ethernet boot, type the following at a command prompt:
bosboot -ad /dev/ent

For a Token-Ring boot:
bosboot -ad /dev/tok

System run level
The system run level specifies the system state and defines which processes are started.

For example, when the system run level is 3, all processes defined to operate at that run level are started.
Near the end of the system boot phase of the boot process, the run level is read from the initdefault entry
of the /etc/inittab file. The system operates at that run level until it receives a signal to change it. The
system run level can be changed with the command. The file contains a record for each
process that defines run levels for that process. When the system boots, the init command reads the
/etc/inittab file to determine which processes to start.

The following are the currently-defined run levels:

Operating system and device management 13

0-9 When the @ command changes to run levels 0-9, it kills all processes at the current run levels then restarts any
processes associated with the new run levels.

0-1 Reserved for the future use of the operating system.

2 Default run level.

3-9 Can be defined according to the user’s preferences.

ab,c When the init command requests a change to run levels a, b, or ¢, it does not kill processes at the current run

levels; it simply starts any processes assigned with the new run levels.
Q,q Tells the init command to reexamine the /etc/inittab file.

Related tasks

[“Modifying the /etc/inittab file” on page 7]
Four commands are available to modify the records in the etc/inittab file.

Identifying the system run level:

Before performing maintenance on the operating system or changing the system run level, you might
need to examine the various run levels.

This procedure describes how to identify the run level at which the system is operating and how to
display a history of previous run levels. The command determines the system run level.

Identification of the current run level

At the command line, type cat /etc/.init.state. The system displays one digit; that is the current run
level. See the command or the|/etc/inittab|file for more information about run levels.

Displaying a history of previous run levels:
You can display a history of previous run levels using the fwtmp command.

Note: The bosext2.acct.obj code must be installed on your system to use this command.
1. Log in as root user.
2. Type the following at a command prompt:

/usr/1ib/acct/fwtmp </var/adm/wtmp |grep run-level

The system displays information similar to the following:

run-Tevel 2 0 1 0062 0123 697081013 Sun Feb 2 19:36:53 CST 1992
run-level 0 1 0062 0123 697092441 Sun Feb 2 22:47:21 CST 1992
run-Tevel 0 1 0062 0123 698180044 Sat Feb 15 12:54:04 CST 1992
run-Tevel 0 1 0062 0123 698959131 Sun Feb 16 10:52:11 CST 1992
run-Tevel 0 1 0062 0123 698967773 Mon Feb 24 15:42:53 CST 1992

N BN

Configuring run levels on multiuser systems:

You can change run levels on multiuser systems.

1. Check the /etc/inittab file to confirm that the run level to which you are changing supports the
processes that you are running. The getty process is particularly important, since it controls the
terminal line access for the system console and other logins. Ensure that the getty process is enabled
at all run levels.

2. Use the wall command to inform all users that you intend to change the run level and request that
users log off. For more information about the wall command, see m

3. Use the smit telinit fast path to access the Set System Run Level menu.
4. Type the new run level in the System RUN LEVEL field.

5. Press Enter to implement all of the settings in this procedure. The system responds by telling you
which processes are terminating or starting as a result of the change in run level and by displaying
the message:

14 AIX Version 6.1: Operating system and device management

INIT: New run Tlevel: n
where # is the new run-level number.
Configuring run levels on single-user systems:

You can change run levels on single-user systems.

1. Check the /etc/inittab file to confirm that the run level to which you are changing supports the
processes that you are running. The getty process is particularly important, since it controls the
terminal line access for the system console and other logins. Ensure that the getty process is enabled
at all run levels. For more information about the inittab file, see

2. Use the smit telinit fast path to access the Set System Run Level menu. For more information about
the telinit command, see

3. Type the new system run level in the System RUN LEVEL field.
4. Press Enter to implement all of the settings in this procedure.

The system responds by telling you which processes are terminating or starting as a result of the
change in run level and by displaying the message:

INIT: New run level: n

where 1 is the new run-level number.

Boot process
There are three types of system boots and two resources that are required in order to boot the operating
system.

During the boot process, the system tests the hardware, loads and runs the operating system, and
configures devices. To boot the operating system, the following resources are required:

* A boot image that can be loaded after the machine is turned on or reset.
* Access to the root (/) and /usr file systems.

There are three types of system boots:

Hard Disk Boot A machine is started for normal operations.

Diskless Network Boot A diskless or dataless workstation is started remotely over a network. A machine is
started for normal operations. One or more remote file servers provide the files and
programs that diskless or dataless workstations need to boot.

Maintenance Boot A machine is started from a hard disk, network, tape, or CD-ROM in maintenance
mode. A system administrator can perform tasks such as installing new or updated
software and running diagnostic checks.

During a hard disk boot, the boot image is found on a local disk created when the operating system was
installed. During the boot process, the system configures all devices found in the machine and initializes

other basic software required for the system to operate (such as the Logical Volume Manager). At the end
of this process, the file systems are mounted and ready for use.

The same general requirements apply to diskless network clients. They also require a boot image and

access to the operating system file tree. Diskless network clients have no local file systems and get all
their information by way of remote access.

Operating system and device management 15

Related concepts

[“Processing the system boot”]
Most users perform a hard disk boot when starting the system for general operations. The system finds
all information necessary to the boot process on its disk drive.

[“Maintenance boot process” on page 17

Occasions might arise when a boot is needed to perform special tasks such as installing new or updated
software, performing diagnostic checks, or for maintenance. In this case, the system starts from a bootable
medium such as a CD-ROM, tape drive, network, or disk drive.

[“RAM file system” on page 18|
The RAM file system, part of the boot image, is totally memory-resident and contains all programs that
allow the boot process to continue. The files in the RAM file system are specific to the type of boot.

Processing the system boot:

Most users perform a hard disk boot when starting the system for general operations. The system finds
all information necessary to the boot process on its disk drive.

When the system is started by turning on the power switch (a cold boot) or restarted with the reboot or
shutdown commands (a warm boot), a number of events must occur before the system is ready for use.
These events can be divided into the following phases:

Related concepts

[“Boot process” on page 15|
There are three types of system boots and two resources that are required in order to boot the operating
system.

ROS kernel init phase:
The ROS kernel resides in firmware.

Its initialization phase involves the following steps:

1. The firmware checks to see if there are any problems with the system board. Control is passed to
ROS, which performs a power-on self-test (POST).

2. The ROS initial program load (IPL) checks the user boot list, a list of available boot devices. This boot
list can be altered to suit your requirements using the command. If the user boot list in
non-volatile random access memory (NVRAM) is not valid or if a valid boot device is not found, the
default boot list is then checked. In either case, the first valid boot device found in the boot list is
used for system startup. If a valid user boot list exists in NVRAM, the devices in the list are checked
in order. If no user boot list exists, all adapters and devices on the bus are checked. In either case,
devices are checked in a continuous loop until a valid boot device is found for system startup.

Note: The system maintains a default boot list that is stored in NVRAM for normal mode boot. A
separate service mode boot list is also stored in NVRAM, and you should refer to the specific
hardware instructions for your model to learn how to access the service mode boot list.

3. When a valid boot device is found, the first record or program sector number (PSN) is checked. If it is
a valid boot record, it is read into memory and is added to the IPL control block in memory. Included
in the key boot record data are the starting location of the boot image on the boot device, the length
of the boot image, and instructions on where to load the boot image in memory.

4. The boot image is read sequentially from the boot device into memory starting at the location
specified in NVRAM. The disk boot image consists of the kernel, a RAM file system, and base
customized device information.

5. Control is passed to the kernel, which begins system initialization.
6. The kernel runs init, which runs phase 1 of the rc.boot script.

16 AIX Version 6.1: Operating system and device management

When the kernel initialization phase is completed, base device configuration begins.
Base device configuration phase:

The init process starts the rc.boot script. Phase 1 of the rc.boot script performs the base device
configuration.

Phase 1 of the rc.boot script includes the following steps:

1. The boot script calls the restbase program to build the customized Object Data Manager (ODM)
database in the RAM file system from the compressed customized data.

2. The boot script starts the configuration manager, which accesses phase 1 ODM configuration rules to
configure the base devices.

3. The configuration manager starts the sys, bus, disk, SCSI, and the Logical Volume Manager (LVM)
and rootvg volume group configuration methods.

4. The configuration methods load the device drivers, create special files, and update the customized
data in the ODM database.

Booting the system:

Use these steps to complete the system boot phase.

1. The init process starts phase 2 running of the rc.boot script. Phase 2 of rc.boot includes the
following steps:

a. Call the ipl_varyon program to vary on the rootvg volume group.
b. Mount the hard disk file systems onto their normal mount points.
¢. Run the swapon program to start paging.
d

. Copy the customized data from the ODM database in the RAM file system to the ODM database
in the hard disk file system.

e. Exit the rc.boot script.

2. After phase 2 of rc.boot, the boot process switches from the RAM file system to the hard disk root
file system.

3. Then the init process runs the processes defined by records in the / etc file. One of the
instructions in the /etc/inittab file runs phase 3 of the rc.boot script, which includes the following
steps:

a. Mount the /tmp hard disk file system.

b. Start the configuration manager phase 2 to configure all remaining devices.

c. Use the savebase command to save the customized data to the boot logical volume.
d. Exit the rc.boot script.

At the end of this process, the system is up and ready for use.

Maintenance boot process:

Occasions might arise when a boot is needed to perform special tasks such as installing new or updated
software, performing diagnostic checks, or for maintenance. In this case, the system starts from a bootable

medium such as a CD-ROM, tape drive, network, or disk drive.

The maintenance boot sequence of events is similar to the sequence of a normal boot.
1. The firmware checks to see if there are any problems with the system board.
2. Control is passed to ROS, which performs a power-on self-test.

Operating system and device management 17

3. ROS checks the user boot list. You can use the command to alter the user boot list to suit
your requirements. If the user boot list in NVRAM is not valid or if no valid boot device is found, the
default boot list is checked. In either case, the first valid boot device found in the boot list is used for
system startup.

Note: For a normal boot, the system maintains a default boot list located in ROS, and a user boot list
stored in NVRAM. Separate default and user boot lists are also maintained for booting in
maintenance mode.

4. When a valid boot device is found, the first record or program sector number (PSN) is checked. If it is
a valid boot record, it is read into memory and is added to the initial program load (IPL) control
block in memory. Included in the key boot record data are the starting location of the boot image on
the boot device, the length of the boot image, and the offset to the entry point to start running when
the boot image is in memory.

5. The boot image is read sequentially from the boot device into memory, starting at the location
specified in NVRAM.

6. Control is passed to the kernel, which begins running programs in the RAM file system.

7. The ODM database contents determine which devices are present, and the command
dynamically configures all devices found, including all disks which are to contain the root file system.

8. If a CD-ROM, tape, or the network is used to boot the system, the rootvg volume group (or rootvg) is
not varied on, because the rootvg might not exist (as is the case when installing the operating system
on a new system). Network configuration can occur at this time. No paging occurs when a
maintenance boot is performed.

At the end of this process, the system is ready for installation, maintenance, or diagnostics.

Note: If the system is booted from the hard disk, the rootvg is varied on, the hard disk root file system
and the hard disk user file system are mounted in the RAM file system, a menu is displayed that allows
you to enter various diagnostics modes or single-user mode. Selecting single-user mode allows the user
to continue the boot process and enter single-user mode, where the init run level is set to "S”. The system
is then ready for maintenance, software updates, or running the command.

Related concepts

[“Boot process” on page 15|
There are three types of system boots and two resources that are required in order to boot the operating
system.

RAM file system:

The RAM file system, part of the boot image, is totally memory-resident and contains all programs that
allow the boot process to continue. The files in the RAM file system are specific to the type of boot.

A maintenance boot RAM file system might not have the logical volume routines, because the rootvg
might not need to be varied on. During a hard disk boot, however, it is desirable that the rootvg be
varied on and paging activated as soon as possible. Although there are differences in these two boot
scenarios, the structure of the RAM file system does not vary to a great extent.

The init command on the RAM file system used during boot is actually the simple shell (ssh) program.
The ssh program controls the boot process by calling the script. The first step for rc.boot is to
determine from what device the machine was booted. The boot device determines which devices are to
be configured on the RAM file system. If the machine is booted over the network, the network devices
need to be configured so that the client file systems can be remotely mounted. In the case of a tape or
CD-ROM boot, the console is configured to display the BOS installation menus. After the rc.boot script
identifies the boot device, then the appropriate configuration routines are called from the RAM file
system. The rc.boot script itself is called twice by the ssh program to match the two configuration

18 AIX Version 6.1: Operating system and device management

phases during boot. A third call to rc.boot occurs during a disk or a network boot when the real init
command is called. The inittab file contains an rc.boot stanza that does the final configuration of the
machine.

The RAM file system for each boot device is also unique because of the various types of devices to be
configured. A prototype file is associated with each type of boot device. The prototype file is a template
of files making up the RAM file system. The bosboot command uses the |mkfs| command to create the
RAM file system using the various prototype files. See the |Izosboo!| command for more details.

Related concepts

[“Boot process” on page 15|
There are three types of system boots and two resources that are required in order to boot the operating
system.

Troubleshooting system startup

Use these troubleshooting methods to tackle some of the basic problems that may occur when your
system is starting up. If the troubleshooting information does not address your problem, contact your
service representative.

Systems that will not boot:

If a system will not boot from the hard disk, you may still be able to gain access to the system in order to
ascertain and correct the problem.

If you have a system that will not boot from the hard disk, see the procedure on how to access a system
that will not boot in [Troubleshooting your installation|in the Installation and migration.

This procedure enables you to get a system prompt so that you can attempt to recover data from the
system or perform corrective action enabling the system to boot from the hard disk.

Note:

 This procedure is intended only for experienced system managers who have knowledge of how to boot
or recover data from a system that is unable to boot from the hard disk. Most users should not attempt
this procedure, but should contact their service representative.

 This procedure is not intended for system managers who have just completed a new installation,
because in this case the system does not contain data that needs to be recovered. If you are unable to
boot from the hard disk after completing a new installation, contact your service representative.

Related reference

[“Boot problem diagnostics”|
A variety of factors can cause a system to be unable to boot.

Boot problem diagnostics:
A variety of factors can cause a system to be unable to boot.

Some of these factors are:

¢ Hardware problems

* Defective boot tapes or CD-ROMs

* Improperly configured network boot servers
¢ Damaged file systems

* Errors in scripts such as /sbin/rc.boot

If the boot process halts with reference code 2702 and displays the message "INSUFFICIENT ENTITLED
MEMORY" use the HMC to increase the amount of entitled memory available for that partition.

Operating system and device management 19

Related concepts

[“Systems that will not boot” on page 19|
If a system will not boot from the hard disk, you may still be able to gain access to the system in order to
ascertain and correct the problem.

System backup

Once your system is in use, your next consideration should be to back up the file systems, directories,
and files. If you back up your file systems, you can restore files or file systems in the event of a hard disk
crash. There are different methods for backing up information.

Backing up file systems, directories, and files represents a significant investment of time and effort. At the
same time, all computer files are potentially easy to change or erase, either intentionally or by accident.

Attention: When a hard disk crashes, the information contained on that disk is destroyed. The only way
to recover the destroyed data is to retrieve the information from your backup copy.

If you use a careful and methodical approach to backing up your file systems, you should always be able
to restore recent versions of files or file systems with little difficulty.

Several methods exist for backing up information. One of the most frequently used methods is called
backup by name, file name archive, or regqular backup. This is a copy of a file system, directory, or file that is
kept for file transfer or in case the original data is unintentionally changed or destroyed. This method of
backup is done when the i flag is specified and is used to make a backup copy of individual files and
directories. It is a method commonly used by individual users to back up their accounts.

Another frequently used method is called backup by i-node, file system archive, or archive backup. This
method of backup is done when the i flag is not specified. This is used for future reference, historical
purposes, or for recovery if the original data is damaged or lost. It is used to make a backup copy of an
entire file system and is the method commonly used by system administrators to back up large groups of
files, such as all of the user accounts in /home. A file system backup allows incremental backups to be
performed easily. An incremental backup backs up all files that have been modified since a specified
previous backup.

The compress and pack commands enable you to compress files for storage, and the uncompress and
unpack commands unpack the files once they have been restored. The process of packing and unpacking
files takes time, but once packed, the data uses less space on the backup medium. For more information
about these commands, see [compress| [pack] [uncompress| and junpack|

Several commands create backups and archives. Because of this, data that has been backed up needs to
be labeled as to which command was used to initiate the backup, and how the backup was made (by
name or by file system).

backup Backs up files by name or by file system. For more information, see

mksysb Creates an installable image of the rootvg. For more information, see

cpio Copies files into and out of archive storage. For more information, see [cpio

dd Converts and copies a file. Commonly used to convert and copy data to and from systems running other

operating systems, for example, mainframes. dd does not group multiple files into one archive; it is used to
manipulate and move data. For more information, see

tar Creates or manipulates tar format archives. For more information, see
rdump Backs up files by file system onto a remote machine’s device. For more information, see [rdump
pax (POSIX-conformant archive utility) Reads and writes tar and cpio archives. For more information, see

20 AIX Version 6.1: Operating system and device management

Related concepts

[“Backup for BSD 4.3 system managers” on page 265|
BSD 4.3 system managers can back up data.

Related tasks
[“Backing up user files or file systems” on page 25|

Two procedures can be used to back up files and file systems: the SMIT fast paths smit backfile or smit
backfilesys, and the backup command.

Backup concepts
Before you start backing up your data, you need to understand the types of data, policies, and media that
you can use.

Backup policies:

No single backup policy can meet the needs of all users. A policy that works well for a system with one
user, for example, could be inadequate for a system that serves one hundred users. Likewise, a policy
developed for a system on which many files are changed daily would be inefficient for a system on
which data changes infrequently.

Whatever the appropriate backup strategy for your site, it is very important that one exist and that
backups be done frequently and regularly. It is difficult to recover from data loss if a good backup
strategy has not been implemented.

Only you can determine the best backup policy for your system, but the following general guidelines
might be helpful:

* Make sure you can recover from major losses.

Can your system continue to run after any single fixed disk failure? Can you recover your system if all
the fixed disks should fail? Could you recover your system if you lost your backup diskettes or tape to
fire or theft? If data were lost, how difficult would it be to re-create it? Think through possible, even
unlikely, major losses, and design a backup policy that enables you to recover your system after any of
them.

e Check your backups periodically.

Backup media and their hardware can be unreliable. A large library of backup tapes or diskettes is
useless if data cannot be read back onto a fixed disk. To make certain that your backups are usable,
display the table of contents from the backup tape periodically (using restore -T or tar -t for archive
tapes). If you use diskettes for your backups and have more than one diskette drive, read diskettes
from a drive other than the one on which they were created. You might want the security of repeating
each level 0 backup with a second set of media. If you use a streaming tape device for backups, you
can use the tapechk command to perform rudimentary consistency checks on the tape. For more
information about these commands, see [restore -T} [tar -t, and [tapechk]

* Keep old backups.

Develop a regular cycle for reusing your backup media; however, do not reuse all of your backup
media. Sometimes it is months before you or some other user of your system notices that an important
file is damaged or missing. Save old backups for such possibilities. For example, you could have the
following three cycles of backup tapes or diskettes:

— Once per week, recycle all daily diskettes except the Friday diskette.

— Once per month, recycle all Friday diskettes except for the one from the last Friday of the month.
This makes the last four Friday backups always available.

— Once per quarter, recycle all monthly diskettes except for the last one. Keep the last monthly
diskette from each quarter indefinitely, preferably in a different building.

* Check file systems before backing up.
A backup made from a damaged file system might be useless. Before making your backups, it is good
policy to check the integrity of the file system with the fsck command. For more information, see@.

Operating system and device management 21

* Ensure files are not in use during a backup.

Do not use the system when you make your backups. If the system is in use, files can change while
they are being backed up, and the backup copy will not be accurate.

* Back up your system before major changes are made to the system.

It is always good policy to back up your entire system before any hardware testing or repair work is
performed or before you install any new devices, programs, or other system features.

* Other factors.
When planning and implementing a backup strategy, consider the following factors:

— How often does the data change? The operating system data does not change very often, so you do
not need to back it up frequently. User data, on the other hand, usually changes frequently, so you
should back it up frequently.

— How many users are on the system? The number of users affects the amount of storage media and
frequency required for backups.

— How difficult would it be to re-create the data? It is important to consider that some data cannot be
re-created if there is no backup available.

Having a backup strategy in place to preserve your data is very important. Evaluating the needs of your
site will help you to determine the backup policy that is best for you. Perform user information backups
frequently and regularly. Recovering from data loss is very difficult if a good backup strategy has not
been implemented.

Note: For the backup of named pipes (FIFO special files) the pipes can be either closed or open.
However, the restoration fails when the backup is done on open named pipes. When restoring a FIFO
special file, its i-node is all that is required to recreate it because it contains all its characteristic
information. The content of the named pipe is not relevant for restoration. Therefore, the file size during
backup is zero (all the FIFOs closed) before the backup is made.

Attention: System backup and restoration procedures require that the system be restored on the same
type of platform from which the backup was made. In particular, the CPU and I/O planar boards must
be of the same type.

Backup media:

Several different types of backup media are available. The different types of backup media available to
your specific system configuration depend upon both your software and hardware.

Several types of backup media are available. The types of backup media available to your specific system
configuration depend upon your software and hardware. The types most frequently used are tapes
(8-mm tape and 9-track tape), diskettes (5.25-inch diskette and 3.5-inch diskette), remote archives, and
alternate local hard disks. Unless you specify a different device using the command, the
backup command automatically writes its output to /dev/rfd0, which is the diskette drive.

Attention: Running the backup command results in the loss of all material previously stored on the
selected backup medium.

Diskettes

Diskettes are the standard backup medium. Unless you specify a different device using the
backup -f command, the backup command automatically writes its output to the /dev/rfd0
device, which is the diskette drive. To back up data to the default tape device, type /dev/rmt0
and press Enter.

Be careful when you handle diskettes. Because each piece of information occupies such a small
area on the diskette, small scratches, dust, food, or tobacco particles can make the information
unusable. Be sure to remember the following:

22 AIX Version 6.1: Operating system and device management

* Do not touch the recording surfaces.

* Keep diskettes away from magnets and magnetic field sources, such as telephones, dictation
equipment, and electronic calculators.

* Keep diskettes away from extreme heat and cold. The recommended temperature range is 10
degrees Celsius to 60 degrees Celsius (50 degrees Fahrenheit to 140 degrees Fahrenheit).

* Proper care helps prevent loss of information.
* Make backup copies of your diskettes regularly.

Attention: Diskette drives and diskettes must be the correct type to store data successfully. If
you use the wrong diskette in your 3.5-inch diskette drive, the data on the diskette could be
destroyed.

The diskette drive uses the following 3.5-inch diskettes:

* 1 MB capacity (stores approximately 720 KB of data)

* 2 MB capacity (stores approximately 1.44 MB of data)

Tapes

Because of their high capacity and durability, tapes are often chosen for storing large files or
many files, such as archive copies of file systems. They are also used for transferring many files
from one system to another. Tapes are not widely used for storing frequently accessed files
because other media provide much faster access times.

Tape files are created using commands such as backup, cpio, and tar, which open a tape drive,
write to it, and close it.

Backup strategy:

There are two methods of backing up large amounts of data.
¢ Complete system backup
* Incremental backup

To understand these two types of backups and which one is right for a site or system, it is important to
have an understanding of file system structure and data placement. After you have decided on a strategy
for data placement, you can develop a backup strategy for that data.

Related tasks
[‘Implementing scheduled backups” on page 42|

This procedure describes how to develop and use a script to perform a weekly full backup and daily
incremental backups of user files.

System data versus user data:

Data is defined as programs or text and for this discussion is broken down into two classes:

* System data, which makes up the operating system and its extensions. This data is always to be kept
in the system file systems, namely / (root), /usr, /tmp, /var, and so on.

* User data is typically local data that individuals need to complete their specific tasks. This data is to be
kept in the /home file system or in file systems that are created specifically for user data.

User programs and text are not to be placed in file systems designed to contain system data. For
example, a system manager might create a new file system and mount it over/Tocal. An exception is

/tmp, which is used for temporary storage of system and user data.

Backups:

Operating system and device management 23

In general, backups of user and system data are kept in case data is accidentally removed or in case of a
disk failure. It is easier to manage backups when user data is kept separate from system data.

The following are reasons for keeping system data separate from user data:

* User data tends to change much more often than operating system data. Backup images are much
smaller if the system data is not backed up into the same image as the user data. The number of users
affects the storage media and frequency required for backup.

e It is quicker and easier to restore user data when it is kept separate. Restoring the operating system
along with the user data requires extra time and effort. The reason is that the method used to recover
the operating system data involves booting the system from removable media (tape or CD-ROM) and
installing the system backup.

To back up the system data, unmount all user file systems, including /home with the command.
If these file systems are in use, you cannot unmount them. Schedule the backups at low usage times so
they can be unmounted; if the user data file systems remain mounted, they are backed up along with the
operating system data. Use the mount command to ensure that only the operating system file systems are
mounted.

The only mounted file systems are /, /usr, /var, and /tmp, and the output of the command should
be similar to the following:

node mounted mounted over vfs date options
/dev/hd4 / jfs Jun 11 10:36 rw,log=/dev/hd8
/dev/hd2 /usr jfs Jun 11 10:36 rw,log=/dev/hd8
/dev/hd9var /var jfs Jun 11 10:36 rw,log=/dev/hd8

/dev/hd /tmp jfs Jun 11 10:36 rw,log=/dev/hd8

After you are certain that all user file systems are unmounted, you are now ready to backup the
operating system data.

When you finish backing up the operating system, mount the user file system using the smit mount
command. Next, you can back up files, file systems, or other volume groups, depending on your needs.
Procedures on these backups are covered later in the chapter.

Related concepts

[’System image and user-defined volume groups backup” on page 39

The rootvg is stored on a hard disk, or group of disks, and contains start up files, the BOS, configuration
information, and any optional software products. A user-defined volume group (also called nonrootvg volume
group) typically contains data files and application software.

System replication (cloning):

Cloning allows you to save configuration data along with user or system data. For example, you might
want to replicate a system or volume group; this is sometimes called cloning.

You can then install this image onto another system and can use it just like the first system. The
command is used to clone the rootvg volume group, which contains the operating system, while the
command is used to clone a volume group. Procedures for backing up both your system and user
volume groups are discussed later in the chapter.

Command summary for backup files and storage media:

Commands are available for backing up files and storing data.

24 AIX Version 6.1: Operating system and device management

backu%! Backs up files and file systems

compress| Compresses and expands data

cpid Copies files into and out of archive storage and directories

fdforma Formats diskettes

flco Copies to and from diskettes

forma Formats diskettes

fsc Checks file system consistency and interactively repairs the file system

,@ Compresses files

Copies previously backed-up file systems or files, which were created by the backup command from a local
device

tapechk Checks consistency of the streaming tape device

tar| Manipulates archives

tco Copies a magnetic tape

@ Compresses and expands data

unpack| Expands files

Administering system backups
There are multiple ways to backup your system and restore a system backup.

Backing up user files or file systems:

Two procedures can be used to back up files and file systems: the SMIT fast paths smit backfile or smit
backfilesys, and the backup command.

If you are backing up by i-node file systems that may be in use, unmount them first to prevent
inconsistencies.

Attention: If you attempt to back up a mounted file system, a warning message is displayed. The
backup command continues, but inconsistencies in the file system may occur. This warning does not
apply to the root (/) file system.

* To prevent errors, make sure the backup device has been cleaned recently.

To back up user files and file systems, you can use the Web-based System Manager, the SMIT fast paths
smit backfile or smit backfilesys.

You can use the SMIT interface for backing up single and small file systems by name, such as /home on
your local system. Note that SMIT cannot make archives in any other format than that provided by the
backup command. Also, not every flag of the backup command is available through SMIT. SMIT might
hang if multiple tapes or disks are needed during the backup. For more information, see the |backu£
command description in AIX Version 6.1 Commands Reference, Volume 1.

Use the backup command when you want to back up large and multiple file systems. You can specify a
level number to control how much data is backed up (full, 0; incremental, 1-9). Using the backup
command is the only way you can specify the level number on backups.

The backup command creates copies in one of the two following backup formats:
* Specific files backed up by name using the -i flag.

* Entire file systems backed up by i-node using the -Level and FileSystem parameters. The file system is
defragmented when it is restored from backup.

Attention: Backing up by i-node does not work correctly for files that have a user ID (UID) or a group

ID (GID) greater than 65535. These files are backed up with UID or GID truncated and will, therefore,
have the wrong UID or GID attributes when restored. For these cases, you must back up by name.

Operating system and device management 25

Backing Up User Files or File Systems Tasks
Task SMIT Fast Path Command or File
Back Up User Files smit backfile

—_

. Log in to your user account.

2. Backup: find . -print | backup -ivf
/dev/rmt0

Back Up User File Systems smit backfilesys 1. Unmount files systems that you plan to back

up. For example: umount a1l or umount /home
/filesysl

2. Verify the file systems. For example: fsck
/home /filesysl

3. Back up by i-node. For example: backup -5
-uf/dev/rmt® /home/1ibr

4. Restore the files using the following
command: restore -t

Note: If this command generates an error message, you must repeat the entire backup.

Related concepts

[“System backup” on page 20|

Once your system is in use, your next consideration should be to back up the file systems, directories,
and files. If you back up your file systems, you can restore files or file systems in the event of a hard disk
crash. There are different methods for backing up information.

Restoring backed-up files:

After the data has been correctly backed up, there are several different methods of restoring the data
based upon the type of backup command you used.

You need to know how your backup or archive was created to restore it correctly. Each backup procedure
gives information about restoring data. For example, if you use the backup command, you can specify a
backup either by file system or by name. That backup must be restored the way it was done, by file
system or by name. For information about the backup command, see .

Several commands restore backed up data, such as:

restore Copies files created by the backup command. For more information about using this command, see the section
below.

rrestore Copies file systems backed up on a remote machine to the local machine. For more information, see

cpio Copies files into and out of archive storage. For more information, see [cpid .

tar Creates or manipulates tar archives. For more information, see [tad

pax (POSIX-conformant archive utility) Reads and writes tar and cpio archives. For more information, see

The following sections discuss the restore and smit commands.

Note:

* Files must be restored using the same method by which they were backed up. For example, if a file
system was backed up by name, it must be restored by name.

* When more than one diskette is required, the restore command reads the diskette that is mounted,
prompts you for a new one, and waits for your response. After inserting the new diskette, press the
Enter key to continue restoring files.

Restoring files using the restore command

Use the restore command to read files written by the backup command and restore them on your
local system.

26 AIX Version 6.1: Operating system and device management

See the following examples:

To list the names of files previously backed up, type the following:
restore -T

Information is read from the /dev/rfd0 default backup device. If individual files are backed up,
only the file names are displayed. If an entire file system is backed up, the i-node number is
also shown.

To restore files to the main file system, type the following:
restore -x -v

The -x flag extracts all the files from the backup media and restores them to their proper places
in the file system. The -v flag displays a progress report as each file is restored. If a file system
backup is being restored, the files are named with their i-node numbers. Otherwise, only the
names are displayed.

To copy the /home/mike/manual/chapl file, type the following:
restore -xv /home/mike/manual/chapl

This command extracts the /home/mike/manual/chapl file from the backup medium and
restores it. The /home/mike/manual/chapl file must be a name that the restore -T command can
display.

To copy all the files in a directory named manual, type the following:

restore -xdv manual

This command restores the manual directory and the files in it. If the directory does not exist, a
directory named manual is created in the current directory to hold the files being restored.

See the command in the AIX Version 6.1 Commands Reference, Volume 4 for the complete
syntax.

Restoring files using the smit command

Use the smit command to run the restore command, which reads files written by the backup
command and restores them on your local system.

1.

4,
5.

At the prompt, type the following:
smit restore

Make your entry in the Target DIRECTORY field. This is the directory where you want the
restored files to reside.

Proceed to the BACKUP device or FILE field and enter the output device name, as in the
following example for a raw magnetic tape device:

/dev/rmt0
If the device is not available, a message similar to the following is displayed:
Cannot open /dev/rmtX, no such file or directory.

This message indicates that the system cannot reach the device driver because there is no file
for rmtX in the /dev directory. Only items in the available state are in the /dev directory.

For the NUMBER of blocks to read in a single input field, the default is recommended.

Press Enter to restore the specified file system or directory.

Creating a remote archive:

Use this procedure to archive files to a remote tape device.

Operating system and device management 27

Running AIX systems cannot mount a remote tape device as if it were local to the system; however, data
can be sent to a remote machine tape device using the command. The following procedure writes to a
single tape only. Multiple-tape archives require specialized application software.

In the following procedure, assume the following:

blocksize
Represents the target tape device blocksize.

remotehost
Is the name of the target system (the system that has the tape drive).

sourcehost
Is the name of the source system (the system being archived).

/dev/rmt0
Is the name of the remote tape device

pathname
Represents the full pathname of a required directory or file.

When using the following instructions, assume that both the local and remote user is root.

1. Ensure you have access to the remote machine. The source machine must have access to the system
with the tape drive. (The target system can be accessed using any of the defined users on that system,
but the user name must have root authority to do many of the following steps.)

2. Using your favorite editor, create a file in the / (root) directory of the target system called .rhosts
that allows the source system access to the target system. You need to add the authorized host name
and user ID to this file. To determine the name of the source machine for the file, you can use
the following command:

host SourcelPaddress

For the purposes of this example, assume you add the following line to the .rhosts file:
sourcehost.mynet.com root
3. Save the file and then change its permissions using the following command:
chmod 600 .rhosts
4. Use the rsh command to test your access from the source machine. For example:
rsh remotehost

If everything is set up correctly, you should be granted shell access to the remote machine. You
should not see a login prompt asking for a user name. Type exit to log out of this test shell.

5. Decide on the appropriate tape device blocksize. The following are the recommended values:

9-track or 0.25-in. media blocksize: 512
8-mm or 4-mm media blocksize: 1024

If you are unsure and want to check the current block size of the tape device, use the command.
For example:

tctl -f /dev/rmt0® status
If you want to change the tape blocksize, use the command. For example:
chdev -1 rmtO -a block size=1024
6. Create your archive using one of the following methods:
Backup by Name
To remotely create a backup archive by name, use the following command:

find pathname -print | backup -ivqf- | rsh remotehost \
"dd of=/dev/rmtO bs=blocksize conv=sync"

28 AIX Version 6.1: Operating system and device management

Backup by inode
To remotely create a backup archive by inode, first unmount your file system then use the
command. For example:

umount /myfs
backup -0 -uf- /myfs | rsh remotehost \
"dd of=/dev/rmtO bs=blocksize conv=sync"
Create and Copy an Archive to Remote Tape
To create and copy an archive to the remote tape device, use the following command:
find pathname -print | cpio -ovcB | rsh remotehost \
"dd ibs=5120 obs=blocksize of=/dev/rmt0"

Create a tar Archive
To remotely create a @ archive, use the following command:
tar -cvdf- pathname | rsh remotehost \
"dd of=/dev/rmt0O bs=blocksize conv=sync"
Create a Remote Dump
To remotely create a remote dump of the /myfs file system, use the following command:
rdump -u -0 -f remotehost:/dev/rmt0 /myfs

The -u flag tells the system to update the current backup level records in the [/etc/dumpdates|
file. The -0 is the setting of the Level flag. Backup level 0 specifies that all the files in the /myfs
directory are to be backed up. For more information, see the command description in
AIX Version 6.1 Commands Reference, Volume 4.

7. Restore your remote archive using one of the following methods:

Restore a Backup by Name
To restore a remote backup archive by name, use the following command:
rsh remotehost "dd if=/dev/rmt® bs=blocksize" | restore \
-xvqdf- pathname
Restore a Backup by inode
To restore a remote backup archive by inode, use the following command:
rsh remotehost "dd if=/dev/rmt0 bs=blocksize" | restore \
-xvqf- pathname

Restore a Remote cpio Archive
To restore a remote archive created with the cpio command, use the following command:
rsh remotehost "dd if=/dev/rmt® ibs=blocksize obs=5120" | \
cpio -icvdumB
Restore a tar Archive
To restore a remote tar archive, use the following command:
rsh remotehost "dd if=/dev/rmt0 bs=blocksize" | tar -xvpf- pathname

Restore a Remote Dump
To restore a remote dump of the /myfs file system, use the following command:

cd /myfs

rrestore -rvf remotehost:/dev/rmt0
Restoring user files from a backup image:
If you need to restore a backup image destroyed by accident, your most difficult problem is determining
which of the backup tapes contains this file. The restore -T command can be used to list the contents of

an archive. It is a good idea to restore the file in the /tmp directory so that you do not accidentally
overwrite the user’s other files.

Make sure the device is connected and available. To check availability, type:

Operating system and device management 29

[isded -C | pg

If the backup strategy included incremental backups, then it is helpful to find out from the user when the
file was most recently modified. This helps to determine which incremental backup contains the file. If
this information cannot be obtained or is found to be incorrect, then start searching the incremental
backups in reverse order (7, 6, 5, ...). For incremental file system backups, the -i flag (interactive mode) of
the command is very useful in both locating and restoring the lost file. (Interactive mode is also
useful for restoring an individual user’s account from a backup of the /home file system.)

The procedures in the following table describe how to implement a level 0 (full) restoration of a directory
or file system.

Restoring from Backup Image Tasks
Task SMIT Fast Path Command or File
Restore Individual User Files smit restfile See command.
Restoring a User File System smit restfilesys 1. mkfs /dev/hd1l
2. mount /dev/hd1 /filesys
3. cd /filesys
4. Im' -r
Restoring a User Volume Group smit restvg See -q command.

Related tasks

[“Fixing a damaged file system” on page 380|
File systems can get corrupted when the i-node or superblock information for the directory structure of
the file system gets corrupted.

Restoring access to an unlinked or deleted system library:
When the existing libc.a library is not available, most operating system commands are not recognized.

The most likely causes for this type of problem are the following:

¢ The [link in /usr/1ib|no longer exists.
* The ffile in /usr/ccs/1iblhas been deleted.

The following procedure describes how to restore access to the libc.a library. This procedure requires
system downtime. If possible, schedule your downtime when it least impacts your workload to protect
yourself from a possible loss of data or functionality.

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain might vary significantly
depending on your version and level of AIX.

Related information

mount command]

unmount command|

reboot command|

Problem Solving and Troubleshooting in AIX|

Restoring a deleted symbolic link:

Use the following procedure to restore a symbolic link from the /usr/1ib/1ibc.a library to the
/usr/ccs/1ib/1ibc.a path.

30 AIX Version 6.1: Operating system and device management

http://www.redbooks.ibm.com/redbooks/SG245496.html

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain might vary significantly
depending on your version and level of AIX.

1.

With root authority, set the LIBPATH environment variable to point to the /usr/ccs/1ib directory by
typing the following commands:

LIBPATH=/usr/ccs/1ib:/usr/1ib
export LIBPATH

At this point, you should be able to execute system commands.
To restore the links from the /usr/1ib/1ibc.a library and the /1ib directory to the /usr/1ib directory,
type the following commands:

In -s /usr/ccs/1ib/1ibc.a /usr/1ib/1ibc.a
In -s /usr/1ib /1ib

At this point, commands should run as before. If you still do not have access to a shell, skip the rest
of this procedure and continue with the next section, [“Restoring a deleted system library file.”|

Type the following command to unset the LIBPATH environment variable.
unset LIBPATH

Restoring a deleted system library file:

This procedure to restore a deleted system library file requires system downtime. The system is booted
and then the library is restored from a recent mksysb tape.

1.
2.

10.
11.

12.
13.
14.
15.

16.

Before your reboot, ensure the PROMPT field in the bosinst.data file is set to yes.

Insert a recent mksysb tape into the tape drive. The mksysb must contain the same OS and
maintenance package or technology level as the installed system. If you restore a Tibc.a library from
a mksysb that conflicts with the level on the installed system, you will not be able to issue
commands.

Reboot the machine.

When the screen of icons appears, or when you hear a double beep, press the F1 key repeatedly
until the System Management Services menu is displayed.

Select Multiboot.
Select Install From.

Select the tape device that holds the mksysb and then select Install. It can take several minutes
before the next prompt appears.

Define your current system as the system console by pressing the F1 key and press Enter.
Select the number of your preferred language and press Enter.
Select Start Maintenance Mode for System Recovery by typing 3 and press Enter.

Select Access a Root Volume Group. A message displays explaining that you will not be able to
return to the Installation menus without rebooting if you change the root volume group at this point.

Type 0 and press Enter.

Type the number of the appropriate volume group from the list and press Enter.
Select Access this Volume Group by typing 2 and press Enter.

Mount the / (root) and /usr file systems by typing the following commands:

mount /dev/hd4 /mnt
mount /dev/hd2 /mnt/usr
cd /mnt

To restore the symbolic link for the Tibc.a library, if needed, type the following command:
Tn -s /usr/ccs/1ib/Tibc.a /mnt/usr/1ib/1ibc.a

After the command runs, do one of the following:

Operating system and device management 31

17.

18.

19.

20.

21.

22.

e If the command is successful, skip to step 20.
* If a message displays that the link already exists, continue with step 17.

Set the block size of the tape drive by issuing the following commands, where X is the number of
the appropriate tape drive.

tctl -f /dev/rmtX rewind

tctl -f /dev/rmtX.1 fsf 1

restbyname -xvqf /dev/rmtX.1 ./tapeblksz
cat tapeblksz

If the value from the cat tapeblksz command is not equal to 512, type the following commands,
replacing Y with the value from the cat tapeblksz command:

In -sf /mnt/usr/1ib/methods /etc/methods
/etc/methods/chgdevn -1 rmtX -a block size=Y

You should receive a message that rmtX has been changed.

Ensure the tape is at the correct location for restoring the library by typing the following commands
(where X is the number of the appropriate tape drive):

tctl -f /dev/rmtX rewind
tctl -f /dev/rmtX.1 fsf 3

Restore the missing library using one of the following commands (where X is the number of the
appropriate tape drive):
* To restore the 1ibc.a library only, type the following command:
restbyname -xvqf /dev/rmtX.1 ./usr/ccs/Tib/Tibc.a
* To restore the /usr/ccs/1ib directory, type the following command:
restbyname -xvqf /dev/rmtX.1 ./usr/ccs/1ib
* To restore the /usr/ccs/bin directory, type the following command:
restbyname -xvqf /dev/rmtX.1 ./usr/ccs/bin
Flush the data to disk by typing the following commands:

cd /mnt/usr/sbin
./sync;./sync;./sync

Unmount the /usr and / (root) file systems by typing the following commands:

cd /
umount /dev/hd2
umount /dev/hd4

If either umount command fails, cycle power on this machine and begin this procedure again.
Reboot the system by typing the following command:
reboot

After the system is rebooted, operating system commands should be available.

Recreating a corrupted boot image:

The following procedure describes how to identify a corrupted boot image and re-create it.

If your machine is currently running and you know the boot image has been corrupted or deleted,
recreate the boot image by running the bosboot command with root authority.

Attention: Never reboot the system when you suspect the boot image is corrupted.

The following procedure assumes your system is not rebooting correctly because of a corrupted boot
image. If possible, protect your system from a possible loss of data or functionality by scheduling your
downtime when it least impacts your workload.

32

AIX Version 6.1: Operating system and device management

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain might vary significantly
depending on your version and level of AIX.

Insert the product media into the appropriate drive.

Power on the machine following the instructions provided with your system.
From the System Management Services menu, select Multiboot.

From the next screen, select Install From.

Select the device that holds the product media and then select Install.

Select the AIX version icon.

N o~ =

Follow the online instructions until you can select which mode you use for installation. At that
point, select Start Maintenance Mode for System Recovery.

©

Select Access a Root Volume Group.

©

Follow the online instructions until you can select Access this Volume Group and start a shell.
10. Use the command to re-create the boot image. For example:
bosboot -a -d /dev/hdisko

If the command fails and you receive the following message:
0301-165 bosboot: WARNING! boshoot failed - do not attempt to boot device.

Try to resolve the problem using one of the following options, and then run the bosboot command
again until you have successfully created a boot image:

* Delete the default boot logical volume (hd5) and then create a new hd5.
Or

* Run diagnostics on the hard disk. Repair or replace, as necessary.

If the bosboot command continues to fail, contact your customer support representative.

Attention: If the bosboot command fails while creating a boot image, do not reboot your machine.
11. When the bosboot command is successful, use the command to reboot your system.
Related concepts

[“System startup” on page 3|
When the base operating system starts, the system initiates a complex set of tasks. Under normal
conditions, these tasks are performed automatically.

Related information

bosboot command|

Problem Solving and Troubleshooting in ATX]

Making an online backup of a JFS:

Making an online backup of a mounted journaled file system (JFS) or enhanced journaled file system
(JFS2) creates a static image of the logical volume that contains the file system.

To make an online backup of a mounted JFS, the logical volume that the file system resides on and the
logical volume that its log resides on must be mirrored.

Note: Because the file writes are asynchronous, the split-off copy might not contain all data that was
written immediately before the split. Any modifications that begin after the split begins might not be
present in the backup copy. Therefore, it is recommended that file system activity be minimal while the
split is taking place.

Operating system and device management 33

http://www.redbooks.ibm.com/redbooks/SG245496.html

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain might vary significantly
depending on your version and level of AIX.

To split off a mirrored copy of the /home/xyz file system to a new mount point named /jfsstaticcopy,
type the following:

chfs -a splitcopy=/jfsstaticcopy /home/xyz

You can control which mirrored copy is used as the backup by using the copy attribute. The second
mirrored copy is the default if a copy is not specified by the user. For example:

chfs -a splitcopy=/jfsstaticcopy -a copy=1 /home/xyz

At this point, a read-only copy of the file system is available in /jfsstaticcopy. Any changes made to the
original file system after the copy is split off are not reflected in the backup copy.

To reintegrate the JFS split image as a mirrored copy at the /testcopy mount point, use the following
command:

rmfs /testcopy

The command removes the file system copy from its split-off state and allows it to be reintegrated
as a mirrored copy.

Making and backing up a snapshot of a JFS2:

Beginning with AIX 5.2, you can make a snapshot of a mounted JFS2 that establishes a consistent
block-level image of the file system at a point in time.

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain might vary significantly
depending on your version and level of AIX.

The snapshot image remains stable even as the file system that was used to create the snapshot, called
the snappedFS, continues to change. The snapshot retains the same security permissions as the snappedFS
had when the snapshot was made.

In the following scenario, you create a snapshot and back up the snapshot to removable media without
unmounting or quiescing the file system, all with one command: backsnap. You can also use the
snapshot for other purposes, such as accessing the files or directories as they existed when the snapshot
was taken. You can do the various snapshot procedures using Web-based System Manager, SMIT, or the
[backsnap| and [snapshot| commands.

To create a snapshot of the /home/abc/test file system and back it up (by name) to the tape device
/dev/rmt0, use the following command:

backsnap -m /tmp/snapshot -s size=16M -i f/dev/rmt® /home/abc/test

This command creates a logical volume of 16 megabytes for the snapshot of the JFS2 file system
(/home/abc/test). The snapshot is mounted on /tmp/snapshot and then a backup by name of the
snapshot is made to the tape device. After the backup completes, the snapshot remains mounted. Use the
-R flag with the backsnap command if you want the snapshot removed when the backup completes.

For more information

The [packsnap) [chfs| [rmfs, and [snapshof commands

+ |AIX Logical Volume Manager from A to Z: Introduction and Concepts, an IBM® Redbook

+ [AIX Logical Volume Manager from A to Z: Troubleshooting and Commands} an IBM Redbook

34 AIX Version 6.1: Operating system and device management

http://www.redbooks.ibm.com/redbooks/SG245432/css/SG245432_1.html
http://www.redbooks.ibm.com/redbooks/SG245433/css/SG245433_1.html

Making and backing up an external snapshot of a JFS2:

You can make a snapshot of a mounted JFS2 that establishes a consistent block-level image of the file
system at a point in time.

The snapshot image remains stable even as the file system that was used to create the snapshot, called
the snappedFS, continues to change. The snapshot retains the same security permissions as the snappedFS
had when the snapshot was made.

In the following scenario, you use the backsnap command to create an external snapshot and back up the
snapshot to removable media without unmounting or quiescing the file system. You can also use the
snapshot for other purposes, such as accessing the files or directories as they existed when the snapshot
was taken. You can do the various snapshot procedures using Web-based System Manager, SMIT, or the
[backsnap| and snapshot|commands.

To create an external snapshot of the /home/abc/test file system and back it up, by name, to the
/dev/rmt0 tape device, run the following command:

backsnap -m /tmp/snapshot -s size=16M -if/dev/rmt0 /home/abc/test

The previous command creates a logical volume of 16 MB for the snapshot of the /home/abc/test JFS2
file system. The snapshot is mounted on the /tmp/snapshot directory and then a backup of the snapshot,
by name, is made to the tape device. After the backup is complete, the snapshot is unmounted but
remains available. Use the -R flag with the backsnap command if you want the snapshot removed when
the backup is completed.

Related concepts

[“File systems” on page 360
A file system is a hierarchical structure (file tree) of files and directories.

Related information

[Logical Volume Manager from A to Z: Introduction and Concepts|

[Logical Volume Manager from A to Z: Troubleshooting and Commands|

Making and backing up an internal snapshot of a JFS2:

You can make a snapshot of a mounted JFS2 that establishes a consistent block-level image of the file
system at a point in time.

The snapshot image remains stable even as the file system that was used to create the snapshot, called
the snappedFS, continues to change. The snapshot retains the same security permissions as the snappedFS
had when the snapshot was made.

In the following scenario, you use the backsnap command to create an internal snapshot and back up the
snapshot to removable media without unmounting or quiescing the file system. You can also use the
snapshot for other purposes, such as accessing the files or directories as they existed when the snapshot
was taken. You can do the various snapshot procedures using Web-based System Manager, SMIT, or the
[backsnap| and napshot|commands.

To create an internal snapshot of the /home/abc/test file system and back it up, by name, to the
/dev/rmt0 tape device , run the following command:

backsnap -n mysnapshot -if/dev/rmt0 /home/abc/test

The previous command creates an internal snapshot, named mysnapshot, of the /home/abc/test file
system. The snapshot is accessed from the /home/abc/test/.snapshot/mysnapshot directory and then a
backup is made to the tape device. Use the -R flag with the backsnap command if you want the snapshot
removed after the backup is completed.

Operating system and device management 35

http://www.redbooks.ibm.com/redbooks/SG245432/css/SG245432_1.html
http://www.redbooks.ibm.com/redbooks/SG245433/css/SG245433_1.html

Related concepts

[“File systems” on page 360)
A file system is a hierarchical structure (file tree) of files and directories.

Related information

Logical Volume Manager from A to Z: Introduction and Concepts|

Logical Volume Manager from A to Z: Troubleshooting and Commands|

Compressing files (compress and pack commands):
Use the compress command and the pack command to compress files for storage.
Use the uncompress command and the unpack command to expand the restored files.

The process of compressing and expanding files takes time; however, after the files are packed, the data
uses less space on the backup medium.

To compress a file system, use one of the following methods:

* Use the -p flag with the command.

+ Use the [compress|or [pack| commands.

Advantages for compressing files include:
¢ Saving money and time by compressing files before sending them over a network.
* Saving storage and archiving system resources:

— Compress file systems before making backups to preserve tape space.

— Compress log files created by shell scripts that run at night; it is easy to have the script compress
the file before it exits.

— Compress files that are not currently being accessed. For example, the files belonging to a user who
is away for extended leave can be compressed and placed into a tar archive on disk or to a tape and
later be restored.

Note:

¢ The compress command might run out of working space in the file system while compressing. The
command creates the compressed files before it deletes any of the uncompressed files, so it needs a
space about 50% larger than the total size of the files.

* A file might fail to compress because it is already compressed. If the compress command cannot
reduce file sizes, the command fails.

See the command for details about the return values but, in general, the problems encountered
when compressing files can be summarized as follows:

* The command might run out of working space in the file system while compressing. Because the
compress command creates the compressed files before it deletes any of the uncompressed files, it
needs extra space-from 50% to 100% of the size of any given file.

* A file might fail to compress because it is already compressed. If the compress command cannot
reduce the file size, it fails.

Compressing files using the compress command:
Use the compress command to reduce the size of files using adaptive Lempel-Zev coding.

Each original file specified by the File parameter is replaced by a compressed file with a .Z appended to
its name. The compressed file retains the same ownership, modes, and access and modification times of

36 AIX Version 6.1: Operating system and device management

http://www.redbooks.ibm.com/redbooks/SG245432/css/SG245432_1.html
http://www.redbooks.ibm.com/redbooks/SG245433/css/SG245433_1.html

the original file. If no files are specified, the standard input is compressed to the standard output. If
compression does not reduce the size of a file, a message is written to standard error and the original file
is not replaced.

Use the uncompress command to restore compressed files to their original form.

The amount of compression depends on the size of the input, the number of bits per code specified by
the Bits variable, and the distribution of common substrings. Typically, source code or English text is
reduced by 50 to 60 percent. The compression of the compress command is generally more compact and
takes less time to compute than the compression achieved by the pack command, which uses adaptive
Huffman coding.

For example, to compress the foo file and write the percentage compression to standard error, type the
following:

compress -v foo
See the command in the AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.
Compressing files using the pack command:

Use the pack command to store the file or files specified by the File parameter in a compressed form
using Huffman coding.

The input file is replaced by a packed file with a name derived from the original file name (File.z), with
the same access modes, access and modification dates, and owner as the original file. The input file name
can contain no more than 253 bytes to allow space for the added .z suffix. If the pack command is
successful, the original file is removed.

Use the unpack command to restore packed files to their original form.

If the pack command cannot create a smaller file, it stops processing and reports that it is unable to save
space. (A failure to save space generally happens with small files or files with uniform character
distribution.) The amount of space saved depends on the size of the input file and the character
frequency distribution. Because a decoding tree forms the first part of each .z file, you do not save space
with files smaller than three blocks. Typically, text files are reduced 25 to 40 percent.

The exit value of the pack command is the number of files that it could not pack. Packing is not done
under any of the following conditions:

* The file is already packed.

* The input file name has more than 253 bytes.
¢ The file has links.

* The file is a directory.

¢ The file cannot be opened.

* No storage blocks are saved by packing.

* A file named File.z already exists.

¢ The .z file cannot be created.

* An 1/O error occurred during processing.

For example, to compress the files chapl and chap2, type the following;:
pack chapl chap2

This compresses chapl and chap2 and replaces them with files named chapl.z and chap2.z. The pack
command displays the percent decrease in size for each file.

Operating system and device management 37

See the command in the AIX Version 6.1 Commands Reference, Volume 4 for the complete syntax.
Expanding compressed files (uncompress and unpack commands):

Use the uncompress and unpack commands to expand compressed files.
Expanding files using the uncompress command

Use the uncompress command to restore original files that were compressed by the compress
command. Each compressed file specified by the File variable is removed and replaced by an
expanded copy. The expanded file has the same name as the compressed version but without the
.Z extension. The expanded file retains the same ownership, modes, and access and modification
times as the original file. If no files are specified, standard input is expanded to standard output.

Although similar to the uncompress command, the zcat command always writes the expanded
output to standard output.

For example, to uncompress the foo file, type the following:

uncompress foo

See the command in AIX Version 6.1 Commands Reference, Volume 5 for the complete
syntax.

Expanding files using the unpack command

Use the unpack command to expand files created by the pack command. For each file specified,
the unpack command searches for a file called File.z. If this file is a packed file, the unpack
command replaces it with its expanded version. The unpack command renames the new file by
removing the .z suffix from File. The new file has the same access modes, access and
modification dates, and owner as the original packed file.

The unpack command operates only on files ending in .z. As a result, when you specify a file
name that does not end in .z, the unpack command adds the suffix and searches the directory
for a file name with that suffix.

The exit value is the number of files that the unpack command was unable to unpack. A file
cannot be unpacked if any of the following situations exists:

* The file name (exclusive of .z) has more than 253 bytes.

* The file cannot be opened.

* The file is not a packed file.

* A file with the unpacked file name already exists.

* The unpacked file cannot be created.

Note: The unpack command writes a warning to standard error if the file it is unpacking has
links. The new unpacked file has a different i-node (index node) number than the packed file
from which it was created. However, any other files linked to the original i-node number of the
packed file still exist and are still packed.

For example, to unpack the packed files chapl.z and chap2.z, type the following:

unpack chapl.z chap2

This expands the packed files chapl.z and chap2.z, and replaces them with files named chapl
and chap?2.

Note: You can provide the unpack command with file names with or without the .z suffix.

See the command in AIX Version 6.1 Commands Reference, Volume 5 for the complete
syntax.

38 AIX Version 6.1: Operating system and device management

System image and user-defined volume groups backup

The rootvg is stored on a hard disk, or group of disks, and contains start up files, the BOS, configuration
information, and any optional software products. A user-defined volume group (also called nonrootvg volume
group) typically contains data files and application software.

You can backup an image of the system and volume groups using Web-based System Manager, SMIT, or
command procedures. A backup image serves two purposes. One is to restore a corrupted system using

the system backup image. The other is to transfer installed and configured software from one system to

others.

The Web-based System Manager and SMIT procedures use the command to create a backup
image that can be stored either on tape or in a file. If you choose tape, the backup program writes a boot
image to the tape, which makes it suitable for installing.

Note:
 Startup tapes cannot be made on or used to start a PowerPC-based personal computer.

* If you choose the SMIT method for backup, you must first install the sysbr fileset in the bos.sysmgt
software package.

Related concepts

[“Backups” on page 23|
In general, backups of user and system data are kept in case data is accidentally removed or in case of a
disk failure. It is easier to manage backups when user data is kept separate from system data.

Related information

[nstalling optional software products and service updates

Backing up the system image and user-defined volume groups:
You can make backups of the system image and the user-defined volume groups.

Before backing up the rootvg volume group:
* All hardware must already be installed, including external devices, such as tape and CD-ROM drives.

* This backup procedure requires the sysbr fileset, which is in the BOS System Management Tools and
Applications software package. Type the following command to determine whether the sysbr fileset is
installed on your system:

1slpp -1 bos.sysmgt.sysbr
If your system has the sysbr fileset installed, continue the backup procedures.

If the @ command does not list the sysbr fileset, install it before continuing with the backup
procedure.

installp -aggXd device bos.sysmgt.sysbr
where device is the location of the software; for example, /dev/rmt0 for a tape drive.

Before backing up a user-defined volume group:
* Before being saved, a volume group must be varied on and the file systems must be mounted.

Attention: Executing the savevg command results in the loss of all material previously stored on the
selected output medium.

* Make sure the backup device has been cleaned recently to prevent errors.

The following procedures describe how to make an installable image of your system.

Operating system and device management 39

Backing Up Your System Tasks

Task

SMIT Fast Path

Command or File

Backing up the rootvg volume group

. Log in as root.

. Mount file systems for

backup.'smit mountfs

. Unmount any local directories that

are mounted over another local
directory. smit umountfs

. Make at least 8.8MB of free disk

space available in the /tmp
directory.

1. Log in as root.
2. Mount file systems for backup.' See

command.

3. Unmount any local directories that are
mounted over another local directory. See

command.
4. Make at least 8.8MB of free disk space
available in the /tmp directory.”

5. Back up. See command.

5. Back up: smit mksysb 6. Write-protect the backup media.

6. Write-protect the backup media. 7. Record any backed-up root and user

7. Record any backed-up root and passwords.

user passwords.

Verify a Backup Tape® smit Ismksysb

Backirlg up a user-defined volume smit savevg 1. Modify the file system size before backing
group up, if necessary.’ mkvgdata VGName then
edit /tmp/vgdata/VGName/VGName.data
2. Save the volume group. See the
command.
Note:

1. The command does not back up file systems mounted across an NFS network.

2. The mksysb command requires this working space for the duration of the backup. Use the@
command, which reports in units of 512-byte blocks, to determine the free space in the /tmp directory.
Use the command to change the size of the file system, if necessary.

3. This procedure lists the contents of a mksysb backup tape. The contents list verifies most of the
information on the tape but does not verify that the tape can be booted for installations. The only way
to verify that the boot image on a mksysb tape functions correctly is by booting from the tape.

4. If you want to exclude files in a user-defined volume group from the backup image, create a file
named /etc/exclude.volume_group_name, where volume_group_name is the name of the volume group
that you want to back up. Then edit /etc/exclude.volume_group_name and enter the patterns of file
names that you do not want included in your backup image. The patterns in this file are input to the
pattern matching conventions of the command to determine which files are excluded from the
backup.

5. If you choose to modify the VGName.data file to alter the size of a file system, you must not specify
the -i flag or the -m flag with the savevg command, because the VGName.data file is overwritten.

Related information

[nstalling optional software products and service updates

[[nstalling system backups|

Pre-backup configuration:
Configure the source system before creating a backup image of it. If, however, you plan to use a backup
image for installing other, differently configured target systems, create the image before configuring the

source system.

The source system is the system from which you created the backup copy. The target system is the system
on which you are installing the backup copy.

The installation program automatically installs only the device support required for the hardware
configuration of the installed machine. Therefore, if you are using a system backup to install other

40 AIX Version 6.1: Operating system and device management

machines, you might need to install additional devices on the source system before making the backup
image and using it to install one or more target systems.

Use Web-based System Manager or the SMIT fast path, smit devinst, to install additional device support
on the source system.

e If there is sufficient disk space on the source and target systems, install all device support.

* If there is limited disk space on the source and target systems, selectively install device support.

A backup transfers the following configurations from the source system to the target system:
* Paging space information

* Logical volume information

* rootvg information

* Placement of logical partitions (if you have selected the map option).

Related information

[Installing optional software and service updates|

[Customizing your installation|

File system mounts and unmounts:

Before performing a backup, you must mount all file systems you want to back up and unmount all file
systems you do not want to back up.

The [Backup Methodd procedure backs up only mounted file systems in the rootvg. You must, therefore,
mount all file systems you want to back up before starting. Similarly, you must unmount file systems you
do not want backed up.

This backup procedure backs up files twice if a local directory is mounted over another local directory in
the same file system. For example, if you mount /tmp over /usr/tmp, the files in the /tmp directory are
backed up twice. This duplication might exceed the number of files a file system can hold, which can
cause a future installation of the backup image to fail.

Security considerations for backups:

If you install the backup image on other systems, you might not, for security reasons, want passwords
and network addresses copied to the target systems.

Also, copying network addresses to a target system creates duplicate addresses that can disrupt network
communications.

Backup image restoration:

When installing the backup image, the system checks whether the target system has enough disk space to
create all the logical volumes stored on the backup. If there is enough space, the entire backup is
recovered. Otherwise, the installation halts and the system prompts you to choose more destination hard
disks.

File systems created on the target system are the same size as they were on the source system, unless the
SHRINK variable was set to yes in the image.data file before the backup image was made. An exception
is the /tmp directory, which can be increased to allocate enough space for the command. For
information about setting variables, see the file.

When the system finishes installing the backup image, the installation program reconfigures the ODM on
the target system. If the target system does not have exactly the same hardware configuration as the

source system, the program might modify device attributes in the following target system files:

Operating system and device management 41

+ All files in /etc/objrepos beginning with Cu
* All files in the /dev directory.
Related information

[[nstalling system backups|

Implementing scheduled backups:

This procedure describes how to develop and use a script to perform a weekly full backup and daily
incremental backups of user files.

e The amount of data scheduled for backup cannot exceed one tape when using this script.
* Make sure the tape is loaded in the backup device before the cron command runs the script.

* Make sure the device is connected and available, especially when using scripts that run at night. Use
the Isdev -C | pg command to check availability.

* Make sure the backup device has been cleaned recently to prevent errors.

 If you are backing up file systems that might be in use, unmount them first to prevent file system
corruption.

¢ Check the file system before making the backup. Use the procedure [“File system verification” on page|
or run the command.

The script included in this procedure is intended only as a model and needs to be carefully tailored to
the needs of the specific site.

Related concepts

[“Backup strategy” on page 23|
There are two methods of backing up large amounts of data.

Backing up file systems using the cron command:

This procedure describes how to write a crontab script that you can pass to the cron command for
execution.

The script backs up two user file systems, /home/plan and /home/run, on Monday through Saturday
nights. Both file systems are backed up on one tape, and each morning a new tape is inserted for the next
night. The Monday night backups are full archives (level 0). The backups on Tuesday through Saturday
are incremental backups.

1. The first step in making the crontab script is to issue the e command. This opens an empty
file where you can make the entries that are submitted to the cron script for execution each night (the
default editor is vi). Type:
crontab -e

2. The following example shows the six crontab fields. Field 1 is for the minute, field 2 is for the hour
on a 24-hour clock, field 3 is for the day of the month, and field 4 is for the month of the year. Fields
3 and 4 contain an * (asterisk) to show that the script runs every month on the day specified in the
day/wk field. Field 5 is for the day of the week, and can also be specified with a range of days, for
example, 1-6. Field 6 is for the shell command being run.

min hr day/mo mo/yr day/wk shell command

0 2 * * 1 backup -0 -uf /dev/rmt0.1 /home/plan

The command line shown assumes that personnel at the site are available to respond to prompts
when appropriate. The -0 (zero) flag for the command stands for level zero, or full backup.
The -u flag updates the backup record in the /etc/dumpdates file and the f flag specifies the device
name, a raw magnetic tape device 0.1 as in the example above.

3. Type a line similar to that in step 2 for each file system backed up on a specific day. The following
example shows a full script that performs six days of backups on two file systems:

42 AIX Version 6.1: Operating system and device management

0 2 * » 1 backup -0 -uf/dev/rmt0.1 /home/plan
0 3 * * 1 backup -0 -uf/dev/rmt0.1 /home/run
0 2 * * 2 backup -1 -uf/dev/rmt0.1 /home/plan
0 3 * * 2 backup -1 -uf/dev/rmt0.1 /home/run
0 2 * * 3 backup -2 -uf/dev/rmt0.1 /home/plan
0 3 * * 3 backup -2 -uf/dev/rmt0.1 /home/run
0 2 * * 4 backup -3 -uf/dev/rmt0.1 /home/plan
0 3 * * 4 backup -3 -uf/dev/rmt0.1 /home/run
0 2 * » 5 backup -4 -uf/dev/rmt0.1 /home/plan
0 3 * * 5 backup -4 -uf/dev/rmt0.1 /home/run
0 2 *x x 6 backup -5 -uf/dev/rmt0.1 /home/plan
0 3 * * 6 backup -5 -uf/dev/rmt0.1 /home/run

4. Save the file you created and exit the editor. The operating system passes the crontab file to the cron
script.

Related information
frmt Special File]

Backup of files on a DMAPI-managed JFS2 file system:

Beginning with AIX 5L Version 5.3 with the 5300-03 Recommended Maintenance package, there are
options in the tar and backbyinode commands that allow you to back up the extended attributes (EAs).

With the backbyinode command on a DMAPI file system, only the data resident in the file system at the
time the command is issued is backed up. The backbyinode command examines the current state of
metadata to do its work. This can be advantageous with DMAPI, because it backs up the state of the
managed file system. However, any offline data will not be backed up.

To back up all of the data in a DMAPI file system, use a command that reads entire files, such as the tar
command. This can cause a DMAPI-enabled application to restore data for every file accessed by the tar
command, moving data back and forth between secondary and tertiary storage, so there can be
performance implications.

Formatting diskettes (format or fdformat command):

You can format diskettes in the diskette drive specified by the Device parameter (the /dev/rfd0 device by
default) with the format and fdformat commands.

Attention: Formatting a diskette destroys any existing data on that diskette.

The format command determines the device type, which is one of the following:

* 5.25-inch low-density diskette (360 KB) containing 40x2 tracks, each with 9 sectors

* 5.25-inch high-capacity diskette (1.2 MB) containing 80x2 tracks, each with 15 sectors
* 3.5-inch low-density diskette (720 KB) containing 80x2 tracks, each with 9 sectors

* 3.5-inch high-capacity diskette (2.88 MB) containing 80x2 tracks, each with 36 sectors

The sector size is 512 bytes for all diskette types.

Use the format command to format a diskette for high density unless the Device parameter specifies a
different density.

Use the fdformat command to format a diskette for low density unless the -h flag is specified. The Device
parameter specifies the device containing the diskette to be formatted (such as the /dev/rfd0 device for

drive 0).

Before formatting a diskette, the format and fdformat commands prompt for verification. This allows you
to end the operation cleanly if necessary.

Operating system and device management 43

See the following examples:

* To format a diskette in the /dev/rfd0 device, type the following:
format -d /dev/rfdo

* To format a diskette without checking for bad tracks, type the following:
format -f

» To format a 360 KB diskette in a 5.25-inch, 1.2 MB diskette drive in the /dev/rfdl device, type the
following:

format -1 -d /dev/rfdl
* To force high-density formatting of a diskette when using the fdformat command, type the following:
fdformat -h

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Checking the integrity of a file system (fsck command):
Use the fsck command to check and interactively repair inconsistent file systems.

It is important to run this command on every file system as part of system initialization. You must be
able to read the device file on which the file system resides (for example, the /dev/hd0 device). Normally,
the file system is consistent, and the fsck command merely reports on the number of files, used blocks,
and free blocks in the file system. If the file system is inconsistent, the fsck command displays
information about the inconsistencies found and prompts you for permission to repair them. The fsck
command is conservative in its repair efforts and tries to avoid actions that might result in the loss of
valid data. In certain cases, however, the fsck command recommends the destruction of a damaged file.

Attention: Always run the fsck command on file systems after a system malfunction. Corrective actions
can result in some loss of data. The default action for each consistency correction is to wait for the
operator to type yes or no. If you do not have write permission for an affected file, the fsck command
will default to a no response.

See the following examples:
* To check all the default file systems, type the following:
fsck

This form of the fsck command asks you for permission before making any changes to a file system.
* To fix minor problems automatically with the default file systems, type the following:

fsck -p
» To check the /dev/hdl file system , type the following;:

fsck /dev/hdl

This checks the unmounted file system located on the /dev/hdl device.
Note: The fsck command does not make corrections to a mounted file system.
See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Copying to or from diskettes (flcopy command):

Use the flcopy command to copy a diskette (opened as /dev/rfdo0) to a file named floppy created in the
current directory.

The message Change floppy, hit return when done displays as needed. The flcopy command then
copies the floppy file to the diskette.

44 AIX Version 6.1: Operating system and device management

See the following examples:

* To copy /dev/rfdl to the floppy file in the current directory, type the following:
flcopy -f /dev/rfdl -r

* To copy the first 100 tracks of the diskette, type the following;:
flcopy -f /dev/rfdl -t 100

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Copying files to tape or disk (cpio -0 command):

Use the cpio -o command to read file path names from standard input and copy these files to standard
output, along with path names and status information.

Path names cannot exceed 128 characters. Avoid giving the cpio command path names made up of many
uniquely linked files because it might not have enough memory to keep track of the path names and
would lose linking information.

See the following examples:
* To copy files in the current directory whose names end with .c onto diskette, type the following;:
1s *.c | cpio -ov >/dev/rfd0

The -v flag displays the names of each file.
* To copy the current directory and all subdirectories onto diskette, type the following:
find . -print | cpio -ov >/dev/rfdo

This saves the directory tree that starts with the current directory (.) and includes all of its
subdirectories and files.

* To use a shorter command string, type the following:
find . -cpio /dev/rfd0 -print

The -print entry displays the name of each file as it is copied.
See the command in the AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.
Copying files from tape or disk (cpio -i command):

Use the cpio -i command to read from standard input an archive file created by the cpio -o command
and copy from it the files with names that match the Pattern parameter.

These files are copied into the current directory tree. You can list more than one Pattern parameter by
using the file name notation described in the command. The default for the Pattern parameter is an
asterisk (*), which selects all files in the current directory. In an expression such as [a-z], the hyphen (-)
means through, according to the current collating sequence.

Note: The patterns "+.c" and "*.0" must be enclosed in quotation marks to prevent the shell from
treating the asterisk () as a pattern-matching character. This is a special case in which the cpio command
itself decodes the pattern-matching characters.

See the following examples:
* To list the files that have been saved onto a diskette with the cpio command, type the following:
cpio -itv </dev/rfdo

This displays the table of contents of the data previously saved onto the /dev/rfdo file in the cpio
command format. The listing is similar to the long directory listing produced by the Is -1 command.

Operating system and device management 45

 To list only the file path names, use only the -it flags.

* To copy the files previously saved with the cpio command from a diskette, type the following:
cpio -idmv </dev/rfd0
This copies the files previously saved onto the /dev/rfdo file by the cpio command back into the file
system (specify the -i flag). The -d flag allows the cpio command to create the appropriate directories if

a directory tree is saved. The -m flag maintains the last modification time in effect when the files are
saved. The -v flag causes the cpio command to display the name of each file as it is copied.

* To copy selected files from diskette, type the following:
cpio -i "x.c" "x.0" </dev/rfd0

This copies the files that end with .c or .o from diskette.
See the command in the AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.
Copying to or from tapes (tcopy command):
Use the tcopy command to copy magnetic tapes.

For example, to copy from one streaming tape to a 9-track tape, type the following:
tcopy /dev/rmt0 /dev/rmt8

See the command in the AIX Version 6.1 Commands Reference, Volume 5 for the complete syntax.
Checking the integrity of a tape (tapechk command):

Use the tapechk command to perform rudimentary consistency checking on an attached streaming tape
device.

Some hardware malfunctions of a streaming tape drive can be detected by simply reading a tape. The
tapechk command provides a way to perform tape reads at the file level.

For example, to check the first three files on a streaming tape device, type the following:
tapechk 3

See the command in the AIX Version 6.1 Commands Reference, Volume 3 for the complete syntax.
Archiving files (tar command):

The archive backup method is used for a copy of one or more files, or an entire database that is saved for
future reference, historical purposes, or for recovery if the original data is damaged or lost.

Usually, an archive is used when that specific data is removed from the system.

Use the tar command to write files to or retrieve files from an archive storage. The tar command looks
for archives on the default device (usually tape), unless you specify another device.

When writing to an archive, the tar command uses a temporary file (the /tmp/tar* file) and maintains in
memory a table of files with several links. You receive an error message if the tar command cannot create
the temporary file or if there is not enough memory available to hold the link tables.

See the following examples:
* To write the filel and file2 files to a new archive on the default tape drive, type the following;:
tar -c filel file2

46 AIX Version 6.1: Operating system and device management

» To extract all files in the /tmp directory from the archive file on the /dev/rmt2 tape device and use the
time of extraction as the modification time, type the following:

tar -xm -f/dev/rmt2 /tmp

* To display the names of the files in the out.tar disk archive file from the current directory, type the
following:

tar -vtf out.tar

See the [taf command in the AIX Version 6.1 Commands Reference, Volume 5 for more information and the
complete syntax.

File backup
Use either the backup command or the smit command to create copies of your files on backup media,
such as a magnetic tape or diskette.

Attention: If you attempt to back up a mounted file system, a message displays. The backup command
continues, but inconsistencies in the file system can occur. This situation does not apply to the root (/) file
system.

The copies you created with the backup command or the smit command are in one of the following
backup formats:

* Specific files backed up by name, using the -i flag.
* Entire file system backed up by i-node number, using the -Level and FileSystem parameters.

Note:

— The possibility of data corruption always exists when a file is modified during system backup.
Therefore, make sure that system activity is at a minimum during the system backup procedure.

— If a backup is made to 8-mm tape with the device block size set to 0 (zero), it is not possible to
directly restore data from the tape. If you have done backups with the 0 setting, you can restore
data from them by using special procedures described under the restore command.

Attention: Be sure the flags you specify match the backup media.
Backing up files using the backup command:
Use the backup command to create copies of your files on backup media.

For example, to back up selected files in your $HOME directory by name, type the following:
find $HOME -print | backup -i -v

The -i flag prompts the system to read from standard input the names of files to be backed up. The find
command generates a list of files in the user’s directory. This list is piped to the backup command as
standard input. The -v flag displays a progress report as each file is copied. The files are backed up on
the default backup device for the local system.

See the following examples:
* To back up the root file system, type the following:
backup -0 -u /

The 0 level and the / tell the system to back up the / (root) file system. The file system is backed up to
the /dev/rfd0 file. The -u flag tells the system to update the current backup level record in the
/etc/dumpdates file.

* To back up all files in the / (root) file system that were modified since the last 0 level backup, type the
following:

backup -1 -u /

Operating system and device management 47

See the command in AIX Version 6.1 Commands Reference, Volume 4 for the complete syntax.
Backing up files using the smit command:

Use the smit command to run the backup command, which creates copies of your files on backup media.
1. At the prompt, type the following;:
smit backup

2. Type the path name of the directory on which the file system is normally mounted in the
DIRECTORY full pathname field:

/home/bi11l

3. In the BACKUP device or FILE fields, enter the output device name, as in the following example for
a raw magnetic tape device:

/dev/rmt0O

4. Use the Tab key to toggle the optional REPORT each phase of the backup field if you want error
messages printed to the screen.

5. In a system management environment, use the default for the MAX number of blocks to write on
backup medium field because this field does not apply to tape backups.

6. Press Enter to back up the named directory or file system.

7. Run the restore -t command. If this command generates an error message, you must repeat the entire
backup.

Shutting down the system

The shutdown command is the safest and most thorough way to halt the operating system.

You might want to shut down your system:

* After installing new software or changing the configuration for existing software
* When a hardware problem exists

* When the system is irrevocably hung

* When system performance is degraded

* When the file system is possibly corrupt.

When you designate the appropriate flags, this command notifies users that the system is about to go
down, kills all existing processes, unmounts file systems, and halts the system. See for more

information.

Review the following information for details on specific shutdown situations:

Shutting down the system without rebooting
There are two ways of shutting down the system with no reboot.

You can use two methods to shut down the system without rebooting: the SMIT fastpath, or the

command.

Prerequisites
You must have root user authority to shut down the system.

To shut down the system using SMIT:

1. Log in as root.

2. At the command prompt, type:
smit shutdown

48 AIX Version 6.1: Operating system and device management

To shut down the system using the shutdown command:
1. Log in as root.
2. At the command prompt, type:

shutdown

Shutting down the system to single-user mode
In some cases, you might need to shut down the system and enter single-user mode to perform software
maintenance and diagnostics.

1. Type cd / to change to the root directory. You must be in the root directory to shut down the system
to single-user mode to ensure that file systems are unmounted cleanly.

2. Type shutdown -m. The system shuts down to single-user mode.

A system prompt displays and you can perform maintenance activities.

Shutting down the system in an emergency
Use the shutdown command to stop the system quickly without notifying other users.

You can use the command to shut down the system under emergency conditions.

Type shutdown -F. The -F flag instructs the shutdown command to bypass sending messages to other
users and shut down the system as quickly as possible.

System environment

The system environment is primarily the set of variables that define or control certain aspects of process
execution.

They are set or reset each time a shell is started. From the system-management point of view, it is
important to ensure the user is set up with the correct values at log in. Most of these variables are set
during system initialization. Their definitions are read from the /etc/profile file or set by default.

Profiles
The shell uses two types of profile files when you log in to the operating system.

The shell evaluates the commands contained in the files and then runs the commands to set up your
system environment. The files have similar functions except that the /etc/profile file controls profile
variables for all users on a system whereas the .profile file allows you to customize your own
environment.

The following profile and system environment information is provided:
e /etc/profile file
* .profile file

+ [Bystem environment variable setup)

* [Changing the Message of the Dayj

* [‘Time data manipulation services” on page 50.|

[etc/profile file
The first file that the operating system uses at login time is the /etc/profile file. This file
controls system-wide default variables such as:
* Export variables
 File creation mask (umask)
* Terminal types
* Mail messages to indicate when new mail has arrived.

Operating system and device management 49

The system administrator configures the file for all users on the system. Only the system
administrator can change this file.

.profile File

The second file that the operating system uses at login time is the .profile file. The .profile file
is present in your home ($HOME) directory and enables you to customize your individual working
environment. The .profile file also overrides commands and variables set in the /etc/profile
file. Because the .profile file is hidden, use the El -a command to list it. Use the .profile file to
control the following defaults:

* Shells to open

* Prompt appearance

¢ Environment variables (for example, search path variables)

* Keyboard sound

The following example shows a typical .profile file:

PATH=/usr/bin:/etc:/home/binl:/usr/1pp/tps4.0/user:/home/gsc/bin::
epath=/home/gsc/e3:

export PATH epath

csh

This example has defined two paths (PATH and epath), exported them, and opened a C shell
(csh).

You can also use the .profile file (or if it is not present, the .profile file) to determine login
shell variables. You can also customize other shell environments. For example, use the .chsrc and
.kshrc files to tailor a C shell and a Korn shell, respectively, when each type shell is started.

Time data manipulation services
The time functions access and reformat the current system date and time.

You do not need to specify any special flag to the compiler to use the time functions. Include the header
file for these functions in the program. To include a header file, use the following statement:

#include <time.h>

The time services are the following:

aditimel Corrects the time to allow synchronization of the system clock.

ctime, localtime, gmtime, mktime, difftime, asctime, tzseﬂ Converts date and time to string representation.
Eletinterval, incinterval, absinterval, resinc, resabs alarm) Manipulates the expiration time of interval timers.

alarm, getitimer, setitime

Gets or sets the current value for the specified systemwide timer.
[gettimerid] Allocates a per-process interval timer.

rettimeofday, settimeofday, ftime| Gets and sets date and time.

nsleep, usleep, slee Suspends a current process from running.

reltimerid] Releases a previously allocated interval timer.

Filesets and hardware needed for 64-bit mode
The kernel runs in 64-bit mode, allowing fast access to large amounts of data and efficient handling of
64-bit data types.

The base operating system 64-bit runtime fileset is bos.64bit. Installing bos.64bit also installs the
/etc/methods/cfg64 file. The /etc/methods/cfg64 file provides the option of enabling or disabling the
64-bit environment via SMIT, which updates the /etc/inittab file with the load64bit line. (Simply adding
the load64bit line does not enable the 64-bit environment).

Beginning with AIX 6.1, the 32-bit kernel has been deprecated. Installing the AIX 6.1 base operating
system enables the 64-bit mode.

50 AIX Version 6.1: Operating system and device management

Note: Hardware must be 64-bit capable to run AIX 6.1. The following RS/6000® models use 604e
processors and are not 64-bit capable:

* 7025 F50 Series
* 7026 H50 Series
* 9076 H50 Series
* 7043 150 Series
e 7046 B50 Series

To verify the capability of your processor, run the following command:
/usr/sbin/prtconf -c

The prtconf command returns either 32 or 64, depending on the capability of your processor. If your
system does not have the prtconf command, you can use the bootinfo command with the -y flag.

The syscalls64 extension must be loaded in order to run a 64-bit executable file. This is done from the
Toad64bit entry in the inittab file. You must load the syscalls64 extension even when running a 64-bit
kernel on 64-bit hardware.

To enable AIX 64-bit application mode, use the Enable 64-bit Application Environment menu that is
accessed from the smitty load64bit fast path command.

Hardware required for 64-bit mode
You must have 64-bit hardware to run 64-bit applications.

To determine whether your system has 32-bit or 64-bit hardware architecture:

1. Log in as a root user.

2. At the command line, enter bootinfo -y.

This produces the output of either 32 or 64, depending on whether the hardware architecture is 32-bit or

64-bit. In addition, if you enter Tsattr -E1 proc0 at any version of AIX, the type of processor for your
server displays.

Commands to change from 64-bit to 32-bit
To change the kernel back to 32-bit from 64-bit, enter the following commands.

Tn -sf /usr/Tib/boot/unix_mp /unix

Tn -sf /usr/1ib/boot/unix_mp /usr/1ib/boot/unix
1slv -m hdb

bosboot -ad /dev/ipldevice

shutdown -Fr

32-bit and 64-bit performance comparisons
In most cases, running 32-bit applications on 64-bit hardware is not a problem, because 64-bit hardware
can run both 64-bit and 32-bit software. However, 32-bit hardware cannot run 64-bit software.

To find out if any performance issues exist for applications that are running on the system, refer to those
application’s user guides for their recommended running environment.

Changing the default browser
You can change the default browser.

Operating system and device management 51

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain might vary significantly
depending on your version and level of AIX.

This procedure changes the default browser that is used by applications that use the defaultbrowser
command to open a browser window. The default browser is the browser that is launched when users
use the infocenter command. This scenario describes how to use SMIT to change the default browser.
You can also use Web-based System Manager to change the default browser.

1. Change to root user.
2. On a command line, type:
smit change_documentation_services

3. In the DEFAULT_BROWSER field, type the command that launches your new web browser. Include
any flags that are required when a URL is included in the command.

anybrowser -u http://www.ibm.com

To open your anybrowser with the www.ibm.com web address open inside, you would type
anybrowser -u in the field. Many browsers (for example, the Mozilla Web browser) do not require a
flag. The browser change takes effect the next time that you log in to the computer.

Dynamic Processor Deallocation
AIX can detect and automatically stop using a faulty processor.

Starting with machine type 7044 model 270, the hardware of all systems with two or more processors is
able to detect correctable errors, which are gathered by the firmware. These errors are not fatal and, as
long as they remain rare occurrences, can be safely ignored. However, when a pattern of failures seems to
be developing on a specific processor, this pattern might indicate that this component is likely to exhibit a
fatal failure in the near future. This prediction is made by the firmware based on the failure rates and
threshold analysis.

On these systems, AIX implements continuous hardware surveillance and regularly polls the firmware for
hardware errors. When the number of processor errors hits a threshold and the firmware recognizes that
there is a distinct probability that this system component will fail, the firmware returns an error report. In
all cases, the error is logged in the system error log. In addition, on multiprocessor systems, depending
on the type of failure, AIX attempts to stop using the untrustworthy processor and deallocate it. This
feature is called Dynamic Processor Deallocation.

At this point, the processor is also flagged by the firmware for persistent deallocation for subsequent
reboots, until maintenance personnel replaces the processor.

Processor deallocation impacts to applications:

Processor deallocation is transparent for the vast majority of applications, including drivers and kernel
extensions. However, you can use the published interfaces to determine whether an application or kernel
extension is running on a multiprocessor machine, find out how many processors there are, and bind
threads to specific processors.

The bindprocessor interface for binding processes or threads to processors uses bind CPU numbers. The
bind CPU numbers are in the range [0..N-1] where N is the total number of CPUs. To avoid breaking
applications or kernel extensions that assume no "holes” in the CPU numbering, AIX always makes it
appear for applications as if it is the "last” (highest numbered) bind CPU to be deallocated. For instance,
on an 8-way SMP, the bind CPU numbers are [0..7]. If one processor is deallocated, the total number of
available CPUs becomes 7, and they are numbered [0..6]. Externally, it looks like CPU 7 has disappeared,
regardless of which physical processor failed.

52 AIX Version 6.1: Operating system and device management

Note: In the rest of this description, the term CPU is used for the logical entity and the term processor for
the physical entity.

Potentially, applications or kernel extensions that are binding processes or threads could be broken if AIX
silently terminated their bound threads or forcefully moved them to another CPU when one of the
processors needs to be deallocated. Dynamic Processor Deallocation provides programming interfaces so
that such applications and kernel extensions can be notified that a processor deallocation is about to
happen. When these applications and kernel extensions receive notification, they are responsible for
moving their bound threads and associated resources (such as timer request blocks) away from the last
bind CPU ID and for adapting themselves to the new CPU configuration.

After notification, if some threads remain bound to the last bind CPU ID, the deallocation is aborted, the
aborted deallocation is logged in the error log, and AIX continues using the ailing processor. When the
processor ultimately fails, it causes a total system failure. Therefore, it is important that applications or
kernel extensions receive notification of an impending processor deallocation and act on this notice.

Even in the rare cases that the deallocation cannot go through, Dynamic Processor Deallocation still gives
advanced warning to system administrators. By recording the error in the error log, it gives them a
chance to schedule a maintenance operation on the system to replace the ailing component before a
global system failure occurs.

Processor deallocation process:
AIX can stop a failing processor by deallocating it.

The typical flow of events for processor deallocation is as follows:
1. The firmware detects that a recoverable error threshold has been reached by one of the processors.

2. The firmware error report is logged in the system error log, and, when AIX is executing on a machine
that supports processor deallocation, AIX starts the deallocation process.

3. AIX notifies non-kernel processes and threads bound to the last bind CPU.
4. AIX waits up to ten minutes for all the bound threads to move away from the last bind CPU. If
threads remain bound, AIX aborts the deallocation.

5. If all processes or threads are unbound from the ailing processor, the previously registered High
Availability Event Handlers (HAEHs) are invoked. An HAEH might return an error that aborts the
deallocation.

6. Unless aborted, the deallocation process ultimately stops the failing processor.

If there is a failure at any point of the deallocation, the failure and its cause are logged. The system
administrator can look at the error log, take corrective action (when possible) and restart the deallocation.
For instance, if the deallocation was aborted because an application did not unbind its bound threads, the
system administrator can stop the application, restart the deallocation, and then restart the application.

Enabling Dynamic Processor Deallocation:

If your machine supports Dynamic Processor Deallocation, you can use SMIT or system commands to
turn the feature on or off.

Beginning with AIX 5.2, Dynamic Processor Deallocation is enabled by default during installation,
provided the machine has the correct hardware and firmware to support it. In previous versions of AIX,
the feature is disabled by default, and if you try to enable it, a message alerts you when your machine
cannot support this feature.

Operating system and device management 53

SMIT fastpath procedure

1. With root authority, type smit system at the system prompt, then press Enter.

2. In the Systems Environment window, select Change / Show Characteristics of Operating System.
3. Use the SMIT dialogs to complete the task.

To obtain additional information for completing the task, you can select the F1 Help key in the SMIT
dialogs.

Commands procedure

With root authority, you can use the following commands to work with the Dynamic Processor
Deallocation:

* Use the chdev command to change the characteristics of the device specified. For information about
using this command, see in the AIX Version 6.1 Commands Reference, Volume 1.

e If the processor deallocation fails for any reason, you can use the ha_star command to restart it after it
has been fixed. For information about using this command, see in the AIX Version 6.1
Commands Reference, Volume 2.

e Use the errpt command to generate a report of logged errors. For information about using this
command, see in the AIX Version 6.1 Commands Reference, Volume 2.

Methods of turning processor deallocation on and off:

Dynamic Processor Deallocation can be enabled or disabled by changing the value of the cpuguard
attribute of the ODM object sys0.

The possible values for the attribute are enable and disabTe.

Beginning with AIX 5.2, the default is enabled (the attribute cpuguard has a value of enable). System
administrators who want to disable this feature must use either the Web-based System Manager system
menus, the SMIT System Environments menu, or the command. (In previous AIX versions, the
default was disabled.)

Note: If processor deallocation is turned off (disabled), the errors are still logged. The error log will
contain an error such as CPU_FAILURE_PREDICTED, indicating that AIX was notified of a problem with a
CPU.

Restarting an aborted processor deallocation:

Sometimes the processor deallocation fails because an application did not move its bound threads away
from the last logical CPU.

Once this problem has been fixed, either by unbinding (when it is safe to do so) or by stopping the
application, the system administrator can restart the processor deallocation process using the

command.

The syntax for this command is:
ha_star -C

where -C is for a CPU predictive failure event.
Processor state considerations:

There are several things you should consider about processor states.

54 AIX Version 6.1: Operating system and device management

Physical processors are represented in the ODM database by objects named procn where 7 is a decimal
number that represents the physical processor number. Like any other device represented in the ODM
database, processor objects have a state, such as Defined/Available, and attributes.

The state of a proc object is always Available as long as the corresponding processor is present, regardless
of whether it is usable. The state attribute of a proc object indicates if the processor is used and, if not,
the reason. This attribute can have three values:

enable The processor is used.
disable The processor has been dynamically deallocated.
faulty The processor was declared defective by the firmware at startup time.

If an ailing processor is successfully deallocated, its state goes from enable to disable. Independently of
AIX, this processor is also flagged in the firmware as defective. Upon reboot, the deallocated processor
will not be available and will have its state set to faulty. The ODM proc object, however, is still marked
Available. You must physically remove the defective CPU from the system board or remove the CPU
board (if possible) for the proc object to change to Defined.

In the following example, processor proc4 is working correctly and is being used by the operating
system, as shown in the following output:

1sattr -EH -1 proc4d
attribute value description user_settable

state enable Processor state False
type PowerPC RS64-III1 Processor type False
#

When processor proc4 gets a predictive failure, it gets deallocated by the operating system, as shown in
the following:

1sattr -EH -1 proc4d
attribute value description user_settable

state disable Processor state False
type PowerPC_RS64-III1 Processor type False
#

At the next system restart, processor proc4 is reported by firmware as defective, as shown in the
following:

lsattr -EH -1 proc4
attribute value description user_settable

state faulty Processor state False

type PowerPC_RS64-III Processor type False
#

But the status of processor proc4 remains Available, as shown in the following:

1sdev -CH -1 proc4d
name status Tlocation description

proc4d Available 00-04 Processor
#

Deallocation error log entries:
Three different error log messages are associated with CPU deallocation.

The following are examples.

Operating system and device management 55

errpt short format - summary
The following is an example of entries displayed by the command (without options):

errpt

IDENTIFIER

804E987A
8470267F
1B963892
#

TIMESTAMP

1008161399
1008161299
1008160299

T C RESOURCE_NAME
I 0 proc4
T S proc4
P H procd

DESCRIPTION

CPU DEALLOCATED

CPU DEALLOCATION ABORTED
CPU FAILURE PREDICTED

¢ If processor deallocation is enabled, a CPU FAILURE PREDICTED message is always followed by
either a CPU DEALLOCATED message or a CPU DEALLOCATION ABORTED message.

* If processor deallocation is not enabled, only the CPU FAILURE PREDICTED message is logged.
Enabling processor deallocation any time after one or more CPU FAILURE PREDICTED messages
have been logged initiates the deallocation process and results in a success or failure error log
entry, as described above, for each processor reported failing.

errpt long format - detailed description
The following is the form of output obtained with errpt -a:

e CPU_FAIL_PREDICTED
Error description: Predictive Processor Failure

This error indicates that the hardware detected that a processor has a high probability to fail in
a near future. It is always logged whether or not processor deallocation is enabled.

DETAIL DATA: Physical processor number, location
Example error log entry - long form
LABEL:

IDENTIFIER:
Date/Time:

Machine Id:

Node

Id:

Class:

Type:

Resource Class:

CPU_FAIL_PREDICTED
1655419A

Thu Sep 30 13:42:11
Sequence Number: 53

auntbea

PEND
Resource Name:

Resource Type:
Location:

00002FOE4CO0

proc25
processor

proc_rspc

00-25

Description
CPU FAILURE PREDICTED

Probable Causes

CPU FAILURE

Failure Causes
CPU FAILURE

Recommended Actions

ENSURE CPU GARD MODE IS ENABLED
RUN SYSTEM DIAGNOSTICS.

Detail Data
PROBLEM DATA

0144
0000
0000
2E31
0002
0000
0000
0000

1000
0000
0000
2D50
0000
0000
0000
0000

0000
0000
0000
312D
0000
0000
0000
0000

003A
0000
0000
4332
0000
0000
0000
0000

8E00
0000
0000
0000
0000
0000
0000
0000

9100 1842 1100 1999 0930 4019
0000 0000 0000 4942 4DOO 5531
0000 0000 0000 0000 0000 0000
0000 0000 0000 0OO0 0000 0000

56 AIX Version 6.1: Operating system and device management

200 (0xC8)

CPU_DEALLOC_SUCCESS

Error Description: A processor has been successfully deallocated after detection of a predictive
processor failure. This message is logged when processor deallocation is enabled, and when the
CPU has been successfully deallocated.

DETAIL DATA: Logical CPU number of deallocated processor.
Example: error log entry - long form:

LABEL: CPU_DEALLOC_SUCCESS
IDENTIFIER: 804E987A

Date/Time: Thu Sep 30 13:44:13
Sequence Number: 63

Machine Id: 00002FOQE4C00

Node Id: auntbea

Class: O

Type: INFO

Resource Name: proc24

Description
CPU DEALLOCATED

Recommended Actions
MAINTENANCE IS REQUIRED BECAUSE OF CPU FAILURE

Detail Data
LOGICAL DEALLOCATED CPU NUMBER

0

In this example, proc24 was successfully deallocated and was logical CPU 0 when the failure
occurred.

CPU_DEALLOC_FAIL

Error Description: A processor deallocation, due to a predictive processor failure, was not
successful. This message is logged when CPU deallocation is enabled, and when the CPU has
not been successfully deallocated.

DETAIL DATA: Reason code, logical CPU number, additional information depending of the type of
failure.

The reason code is a numeric hexadecimal value. The possible reason codes are:

One or more processes/threads remain bound to the last logical CPU. In this case, the detailed data give the
PIDs of the offending processes.

A registered driver or kernel extension returned an error when notified. In this case, the detailed data field
contains the name of the offending driver or kernel extension (ASCII encoded).

Deallocating a processor causes the machine to have less than two available CPUs. This operating system
does not deallocate more than N-2 processors on an N-way machine to avoid confusing applications or kernel
extensions using the total number of available processors to determine whether they are running on a Uni
Processor (UP) system where it is safe to skip the use of multiprocessor locks, or a Symmetric Multi Processor
(SMP).

Processor deallocation is disabled (the ODM attribute cpuguard has a value of disable). You normally do not
see this error unless you start manually.

Examples: error log entries - long format
Example 1:

LABEL: CPU_DEALLOC_ABORTED
IDENTIFIER: 8470267F
Date/Time: Thu Sep 30 13:41:10
Sequence Number: 50

Machine Id: 00002FOQE4C00

Node Id: auntbea

Class: S

Operating system and device management 57

Type: TEMP
Resource Name: proc26

Description
CPU DEALLOCATION ABORTED

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
MAINTENANCE IS REQUIRED BECAUSE OF CPU FAILURE
SEE USER DOCUMENTATION FOR CPU GARD

Detail Data

DEALLOCATION ABORTED CAUSE
0000 0003

DEALLOCATION ABORTED DATA
6676 6861 6568 3200

In this example, the deallocation for proc26 failed. The reason code 3 means that a kernel
extension returned an error to the kernel notification routine. The DEALLOCATION ABORTED DATA
above spells fvhaeh2, which is the name the extension used when registering with the kernel.

Example 2:

LABEL: CPU_DEALLOC_ABORTED
IDENTIFIER: 8470267F
Date/Time: Thu Sep 30 14:00:22
Sequence Number: 71

Machine Id: 00002FOE4CO0

Node Id: auntbea

Class: S

Type: TEMP

Resource Name: procl9

Description
CPU DEALLOCATION ABORTED

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
MAINTENANCE IS REQUIRED BECAUSE OF CPU FAILURE;
SEE USER DOCUMENTATION FOR CPU GARD

Detail Data

DEALLOCATION ABORTED CAUSE
0000 0002

DEALLOCATION ABORTED DATA
0000 0000 0000 4F4A

In this example, the deallocation for proc19 failed. The reason code 2 indicates thread(s) were
bound to the last logical processor and did not unbind after receiving the SIGCPUFAIL signal.
The DEALLOCATION ABORTED DATA shows that these threads belonged to process 0x4F4A.

Options of the EI command (-o THREAD, -o BND) allow you to list all threads or processes
along with the number of the CPU they are bound to, when applicable.

Example 3:

58 AIX Version 6.1: Operating system and device management

LABEL: CPU_DEALLOC_ABORTED
IDENTIFIER: 8470267F

Date/Time: Thu Sep 30 14:37:34
Sequence Number: 106

Machine Id: 00002FOE4CO0

Node Id: auntbea

Class: S

Type: TEMP

Resource Name: proc2

Description
CPU DEALLOCATION ABORTED

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
MAINTENANCE IS REQUIRED BECAUSE OF CPU FAILURE
SEE USER DOCUMENTATION FOR CPU GARD

Detail Data

DEALLOCATION ABORTED CAUSE
0000 0004

DEALLOCATION ABORTED DATA
0000 0000 0000 0000

In this example, the deallocation of proc2 failed because there were two or fewer active
processors at the time of failure (reason code 4).

System environment variable setup
The system environment is primarily the set of variables that define or control certain aspects of process
execution.

They are set or reset each time a shell is started. From the system-management point of view, it is
important to ensure the user is set up with the correct values at login. Most of these variables are set
during system initialization. Their definitions are read from the /etc/profile file or set by default.

Testing the system battery:

If your system is losing track of time, the cause might be a depleted or disconnected battery.

1. To determine the status of your system battery, type the following command:
diag -B -c

2. When the Diagnostics main menu appears, select the Problem Determination option. If the battery is
disconnected or depleted, a problem menu will be displayed with a service request number (SRN).
Record the SRN on Item 4 of the Problem Summary Form and report the problem to your hardware
service organization.

If your system battery is operational, your system time might have been reset incorrectly because either
the |date| or |setclock| command was run incorrectly or unsuccessfully.

Related concepts

[“Setting up the system clock”]|
The system clock records the time of system events, allows you to schedule system events (such as
running hardware diagnostics at 3:00 a.m.), and tells when you first created or last saved files.

Setting up the system clock:

Operating system and device management 59

The system clock records the time of system events, allows you to schedule system events (such as
running hardware diagnostics at 3:00 a.m.), and tells when you first created or last saved files.

Use the date command to set your system clock. Use the setclock command to set the time and date by
contacting a time server.

Related tasks

|”Testing the system battery” on page 59|
If your system is losing track of time, the cause might be a depleted or disconnected battery.

date command:
The date command displays or sets the date and time.

Enter the following command to determine what your system recognizes as the current date and time:
/usr/bin/date

Attention: Do not change the date when the system is running with more than one user.

The following formats can be used when setting the date with the Date parameter:
* mmddHHMM][YYyy] (default)
* mmddHHMM][yy]

The variables to the Date parameter are defined as follows:

mim Specifies the number of the month.

dd Specifies the number of the day in the month.

HH Specifies the hour in the day (using a 24-hour clock).
MM Specifies the minute number.

YY Specifies the first two digits of a four-digit year.

yy Specifies the last two numbers of the year.

With root authority, you can use the date command to set the current date and time. For example:
date 021714252002

Sets the date to Feb. 17, 2002, and time to 14:25. For more information about the command, see its
description in AIX Version 6.1 Commands Reference, Volume 2.

setclock command:

The setclock command displays or sets the time and date by requesting the current time from a time
server on a network.

To display your system’s date and time, enter:
/usr/sbin/setclock

The setclock command takes the first response from the time server, converts the calendar clock reading
found there, and shows the local date and time. If no time server responds, or if the network is not
operational, the setclock command displays a message to that effect and leaves the date and time settings
unchanged.

Note: Any host running the daemon can act as a time server.

With root authority, you can use the setclock command to send an Internet TIME service request to a
time server host and sets the local date and time accordingly. For example:

60 AIX Version 6.1: Operating system and device management

setclock TimeHost

Where TimeHost is the host name or IP address of the time server.

Related information

lsetclock command|

Olson time zone support and setup:
Beginning with AIX 6.1, support for time zone values consistent with the Olson database are provided.

The POSIX time zone specification supported in previous AIX releases, does not adequately handle
changes to time zone rules such as daylight saving time. The Olson database maintains a historical record
of time zone rules, so that if the rules change in a specific location, AIX interprets dates and time
correctly both in the present and in the past.

Time zone definitions conforming to the POSIX specification are still supported and recognized by AIX.
AIX checks the TZ environment variable to determine if the environment variable matches an Olson time
zone value. If the TZ environment variable does not match an Olson time zone value, AIX then follows
the POSIX specification rules.

To set the time zone using Olson defined values, use the following SMIT path: System Environments -
Change / Show Date, Time and Time Zone.

Message of the day setup:
The message of the day is displayed every time a user logs in to the system.

It is a convenient way to communicate information to all users, such as installed software version
numbers or current system news. To change the message of the day, use your favorite editor to edit the
/etc/motd file.

AIX Runtime Expert

AIX Runtime Expert provides a simplified set of actions that can be used against a single consolidation
for collecting, applying, and verifying the runtime environment for one or more AIX instances.

There are tools provided by AIX components, such as Reliability Availability Serviceability (RAS),
Security, or Kernel, which allow you to change settings within each component layer in order to tune the
operating system to a particular need or requirement. AIX Runtime Expert enables system-wide
configuration by using an extendable framework to handle the many different configuration methods that
currently exist in AIX.

AIX Runtime Expert executes multiple-component configuration commands as a single action using a
configuration profile. You can use this profile to apply identical system settings across multiple systems.
AIX Runtime Expert provides a simplified alternative for managing the runtime configuration of one or
more systems, but it does not prevent the use of other methods to change system settings.

AIX Runtime Expert concepts
You must have basic knowledge of AIX Runtime Expert before you start using it.

AIX Runtime Expert base capabilities support configuration profile management and application for a
single AIX system. To enable multiple system scalable consumption for a single profile, an LDAP based
profile description can be discovered and consumed by AIX systems as they start or as the system is
directed by administrative operations at the target AIX endpoints. Remote management for AIX Runtime

Operating system and device management 61

Expert can only be done with the Network Install Manager (NIM) component. Using existing NIM
functions, you can run AIX Runtime Expert remotely on several stand-alone NIM clients from a NIM
master machine.

AIX Runtime Expert profiles:

AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.

A profile describes one or more runtime configuration controls and their settings for the targeted
functional area. A profile can represent a full set of controls or a subset of controls and their values.
Configuration profiles are standard XML files. Using AIX Runtime Expert you can manage profiles and
apply them on the defined system.

A profile can contain configuration parameters and tuning parameters without any values, like sample
profiles. The purpose of a profile without any parameters is to extract the current systems values from
the specified profile. Profiles containing at least one parameter without any values have the following
limitations:

* Using the artexset command fails with an error.

* Using the artexdiff command returns a warning message for each parameter that has no value.

The value of a parameter in a profile can contain the following:
* No value

* A blob value, which is a base64 encoded binary data as an in-line text file. The blob value is used to
replace existing files, like /etc/motd or /etc/hosts.

* A non-blob value, which is a value assigned to system configuration parameters, like an integer or
string.

In the /etc/security/artex/samples directory you can view existing sample profiles. The sample profiles
only contain parameter names that are supported by the default settings installed with AIX Runtime
Expert. The parameters in the sample profiles do not have any values. Sample profiles are read only files.
Use the sample profiles as a template to create new configuration profiles. You cannot apply existing
samples to a running system.

The following examples are some of the base configuration commands that can be controlled through
configuration profiles:

* Network configuration
- no
— mktcpip

* Kernel configuration
- ioo
— schedo

* RAS configuration
- alog

* Security configuration
— setsecattr

Example
The following example displays a configuration profile for different catalogs and sub-catalogs with

assigned values for different parameters. You could edit this profile with any XML editor or use the vi
command and change the existing values for the defined parameters.

62 AIX Version 6.1: Operating system and device management

<?xml version="1.0" encoding="UTF-8" ?>

<Profile origin="get" version="1.0" date="2009-04-25T15:33:37Z2">
<Catalog id="vmoParam">

<Parameter name="kernel_heap_psize" value="0" applyType="nextboot" reboot="true" />
<Parameter name="maxfree" value="1088" />

</Catalog>

<Catalog id="noParam">

<SubCat id="tcp_network">

<Parameter name="tcp_recvspace" value="16384" />

<Parameter name="tcp_sendspace" value="16384" />

</SubCat>

<SubCat id="general_network">

<Parameter name="use_sndbufpool" value="1" applyType="nextboot" reboot="true" />
</SubCat>

</Catalog>

<Catalog id="1vmoParam">

<Parameter name="max_vg_pbuf_count" value="0">

<Target class="vg" instance="rootvg" />

</Parameter>

<Parameter name="pv_pbuf_count" value="512">

<Target class="vg" instance="rootvg" />

</Parameter>

</Catalog>

Related tasks

[“Modifying AIX Runtime Expert profiles” on page 65|
AIX Runtime Expert profiles are XML files and can be modified with any XML editor or any text editor.

[“Creating AIX Runtime Expert profiles” on page 64|

Use existing samples in the /etc/security/artex/samples directory to create a new profile with the
artextget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.

[“Getting AIX Runtime Expert profile values” on page 67
Use the artexget command to find information about a profile.

[“Applying AIX Runtime Expert profiles” on page 67
To set a system with the configuration and tunable parameters from a profile, apply a profile using the
artexset command.

AIX Runtime Expert catalogs:

Catalogs are the mechanism that defines and specifies configuration controls that can be operated on by
AIX Runtime Expert.

Catalogs are provided for the controls that are currently supported by the AIX Runtime Expert. Catalogs
are definition files that map configuration profile values to parameters that run commands and
configuration actions.

AIX Runtime Expert provides you with existing read-only catalogs, located in the /etc/security/artex/
catalogs directory, that identify values that can be modified. Do not modify these catalogs.

Each catalog contains parameters for one component. However, some catalogs can contain parameters
from more than one closely related components. The names of the catalogs describe the components that
are contained in the catalog. The <description> XML element in each catalog provides a description of
the catalog.

AIX Runtime Expert and LDAP:
AIX Runtime Expert can retrieve profiles from the LDAP server.

The AIX Runtime Expert profiles must be stored as ibm-artexProfile objects and have the following
mandatory attributes:

Operating system and device management 63

* Ibm-artexProfileName. The AIX Runtime Expert profile name.

* Ibm-artexProfileXMLData. The XML content of the AIX Runtime Expert profile that is stored as an
octetString.

The AIX Runtime Expert schema must be installed on the LDAP server before storing any AIX Runtime
Expert profiles. Setting up an LDAP server for AIX Runtime Expert is similar to setting up an LDAP
server for user authentication. For more information about setting up LDAP, see [Setting up an ITDS|
|security information serverl

Setting up an LDAP client for AIX Runtime Expert is like setting up an LDAP client for user
authentication. For more information, view the [Setting up an LDAP client| document. To set up an LDAP
client, use the mksecldap -c command to properly configure the secldapcIntd daemon. AIX Runtime
Expert relies on the secldapcIntd daemon to access the LDAP server. By default, AIX Runtime Expert
looks for profile entries under the DN: ou=artex,cn=AIXDATA. You can customize this DN by updating the
artexbasedn key in the /etc/security/1dap/1dap.cfg secldapclntd configuration file.

Uploading an AIX Runtime Expert profile

To upload an AIX Runtime Expert profile, you can either create an LDIF file and use the ldapadd
command or use an LDAP administration tool such as Tivoli Directory Server Web Administration Tool.

The following is an example of a profile saved in LDIF format:

dn: ibm-artexProfileName=sample.xml,ou=artex,cn=AIXDATA
objectClass: ibm-artexProfile

objectClass: top

ibm-artexProfileName: sample.xml
ibm-artexProfileXMLData: file:///tmp/sample.xml

The following is an example of uploading a profile using the ldapadd command and a sample LDIF file
named sample.ldif:

ldapadd -h <ldaphost> -D cn=admin -w <password> -f sample.ldif

Related tasks

[“Creating AIX Runtime Expert profiles”|

Use existing samples in the /etc/security/artex/samples directory to create a new profile with the

artextget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.

Related information

[Tivoli Directory Server|

Administering AIX Runtime Expert
AIX Runtime Expert uses a few simple commands to create profiles, modify profiles, combine profiles,
and apply profiles.

Creating AIX Runtime Expert profiles:

Use existing samples in the /etc/security/artex/samples directory to create a new profile with the
artextget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.

To create a profile with all of the parameters supported by AIX Runtime Expert, complete the following
steps:

1. Configure and tune your system to have the desired settings for a new profile.
2. Go to the samples directory: /etc/security/artex/samples

3. Run the following command to create a new profile named custom_al1l.xml:

64 AIX Version 6.1: Operating system and device management

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDS.doc/welcome.htm

artexget -p all.xml > /directory_for_new_profile/custom all.xml

Note: The custom_all.xml profile can be used to configure other systems that have a similar current
system configuration.

To create a profile for a specific component, such as network options, complete the following steps:
1. Configure and tune your system to have the desired settings for a new profile.
2. Go to the samples directory: /etc/security/artex/samples.

3. Create a new profile named custom_no.xml from the existing sample profile, noProfile.xml, by
running the following command:

artexget -p noProfile.xml > /directory_for_new_profile/custom_no.xml

The newly created profiles can be customized by changing or removing the values of the parameters
using an XML editor or any text editor.

The custom profiles can be uploaded to LDAP server to use from multiple AIX systems. To upload the
profiles to LDAP server, use the tools provided by LDAP.

Related concepts

[“AIX Runtime Expert and LDAP” on page 63
AIX Runtime Expert can retrieve profiles from the LDAP server.

[“AIX Runtime Expert profiles” on page 62|

AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.

Related tasks

[“Getting AIX Runtime Expert profile values” on page 67
Use the artexget command to find information about a profile.

[“Applying AIX Runtime Expert profiles” on page 67
To set a system with the configuration and tunable parameters from a profile, apply a profile using the
artexset command.

Related information

lartexget command]

Modifying AIX Runtime Expert profiles:
AIX Runtime Expert profiles are XML files and can be modified with any XML editor or any text editor.

User-created profiles using artexget command can be customized by changing the values of the
parameters or by removing some of the parameters that are not required to modify or monitor the
profile.

To modify AIX Runtime Expertprofiles, complete the following steps:

1. From the directory where custom_all.xml is located, run the following commands to save a copy of
the profile:

cp custom_all.xml custom_all_backup.xml
2. From the directory where custom_al1l.xml is located, run the following command to edit the profile:
vi custom_all.xml

Note: You can use any XML editor or text editor.

3. Modify the values of the parameters or remove the parameters that are not required to change or
monitor the profile.

4. Run the following command to verify that the profile changes have been saved correctly by
comparing them against the current system settings:

Operating system and device management 65

artexdiff -c -r custom_all.xml custom_all_backup.xml

The artexdiff command displays the parameters that were modified by the editor. The <FirstValue>
displays the value of the profile, and the <SecondValue> displays the value of the current system.

Related concepts

[“AIX Runtime Expert profiles” on page 62

AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.

Related tasks

[“Getting AIX Runtime Expert profile values” on page 67|
Use the artexget command to find information about a profile.

[“Applying AIX Runtime Expert profiles” on page 67]
To set a system with the configuration and tunable parameters from a profile, apply a profile using the
artexset command.

Related information

lartexdiff command|

Combining AIX Runtime Expert profiles:

A profile can represent a full set of controls or any subset of controls. Another useful way to modify
profiles is to combine profiles that represent a subset of controls using the artxmerge command.

You can use the artexmerge command to combine one or more profiles into a single profile.

To combine profiles complete, the following steps:
1. From the directory where the profiles are stored run the following command:
artexmerge profile_namel.xml profile_name2.xml > new_profile_name.xml
2. Run the following command to view the profile and verify that it is a valid profile:
artexget new_profile_name.xml

Note: If the profiles you are combining have duplicate parameters, the process of combining the
profiles will fail. Alternatively, if you use the -f flag, then the parameter values from the latest profile
are used.

Related information

lartexmerge command|

Finding AIX Runtime Expert profiles:
Use the artexlist command to find profiles in a given path and from an LDAP server.

To find profiles, complete the following steps:

1. If the profile is on the local system, run the following command:
artexlist

2. If the profile is located on an LDAP server, run the following command:
artexlist -1

By default, the command lists the profiles in the /etc/security/artex/samples directory. To override the

default path an environment variable, set the ARTEX_PROFILE_PATH to one or more semicolon
delimited paths, or a path that can be passed as an argument.

66 AIX Version 6.1: Operating system and device management

Related information

lartexlist command|

Getting AIX Runtime Expert profile values:
Use the artexget command to find information about a profile.

Using a profile, you can display the values from the profile or from the system in different formats (XML,
CSV, or text) with different filters, such as parameters that need a reboot to take effect and parameters
that need some services to be stopped and restarted.

Getting values from the system is useful in the following situations:

To take a snapshot of a system
When a system is configured correctly, you can save the configuration of the system by taking a
snapshot. You can use this snapshot at a later date, if any of the parameters are changed and you
do not remember which parameters were changed. The snapshot profile can be used to bring the
system back to the desired configuration.

To clone the configuration of a system for use on other systems
After a system is configured and tuned in an environment, you can extract the system settings
into an AIX Runtime Expert profile and apply the profile on other systems.

To debug a problem
When a problem is found on a production system, you can use a profile to set up the same
system settings on a test system and than debug the problems on the test system.

To get information about a profile, complete the following steps:
1. Go to the directory where the profile you want to get information about is located.
2. To get information about the profile run the following command:

artexget name_of_profile.xml

Related concepts

[“AIX Runtime Expert profiles” on page 62|
AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.

Related tasks

[“Creating AIX Runtime Expert profiles” on page 64|

Use existing samples in the /etc/security/artex/samples directory to create a new profile with the
artextget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.

[“Modifying AIX Runtime Expert profiles” on page 65|
AIX Runtime Expert profiles are XML files and can be modified with any XML editor or any text editor.

Related information

|artexget commandl

Applying AIX Runtime Expert profiles:

To set a system with the configuration and tunable parameters from a profile, apply a profile using the
artexset command.

To apply a user-created profile, complete the following steps:

1. Go to the directory where the profile you want to apply is stored.

2. To apply the profile to the system, run the following command:
artexset -c name_of_profile.xml

Operating system and device management 67

3. Optional: If you want to apply a profile every time the system restarts to maintain a consistent
configuration, run the following command:

artexset -b name_of profile.xml

Related concepts

[“AIX Runtime Expert profiles” on page 62
AIX Runtime Expert profiles are used to set values on a running system, extract values for a running
system, and compare values against a running system or against another profile.

Related tasks

[“Creating AIX Runtime Expert profiles” on page 64|

Use existing samples in the /etc/security/artex/samples directory to create a new profile with the
artextget command. The sample profiles are a template for you to create a profile that you can modify
and save into a custom file.

[“Modifying ATX Runtime Expert profiles” on page 65|
AIX Runtime Expert profiles are XML files and can be modified with any XML editor or any text editor.

Related information

lartexset command]

Rollback AIX Runtime Expert profiles:

Use the artexset —u command to reset the configuration settings to the previous configuration setting of a
system.You can apply the system settings that were being used before the profile was applied.

You cannot use the rollback command if you have not changed the system settings during your current
session.

Rollback is not considered a re-imaging of an operating system. When you use rollback you are not
deleting or creating resources, you are not deleting or creating resources but instead reverting the runtime
configuration values to the system’s previous settings. With the rollback command you cannot rollback to
settings from a particular time or date. You can only rollback to the systems previous settings before you
made a change.

Rollback can be used in the following cases:

* Testing configuration changes to a system. If the new configuration works poorly, you can quickly
revert to a previously trusted configuration.

* Debugging a system. If a system starts running poorly, a rollback could confirm if configuration
changes have played a part in a newly detected problem.

* Implementing a new profile in order to satisfy some special exception situation. For example, a
specified action only occurs once a month on the system, and after it has been applied to your system
you want to restore the system to its previous configuration.

To rollback to the previous system settings, complete the following steps:
1. To rollback a profile, run the following command:
artexset -u

2. To verify that the rollback completed correctly, run the following command to compare system
settings:
artexdiff -f txt -r -profile_name.xml

Note: The profile_name.xml is the name of the latest applied profile to the system.
The differences between the system and the profile are displayed.

68 AIX Version 6.1: Operating system and device management

Related information

lartexget command|

lartexlist command|

Comparing AIX Runtime Expert profiles:
Use the artexdiff command to compare two profiles or a profile values with system values.

To compare the profiles for two different systems complete the following steps:
1. Run the following command from system 1:

artexget -p all.xml > all_systeml.xml
2. Run the following command from system 2:

artexget -p all.xml > all_system2.xml

To verify any configuration parameters are changed on a system after a period of time, for example, if
you go on vacation and want to verify any changes while you were gone, run the following commands:.

* After you return from vacation, run the following command:
$ artexget -p all.xml > all_before vacation.xml

* To view any configuration changes that occurred during your vacation, run the following command:
$ artexdiff -c -p all_before_vacation.xml

Related information

lartexget command]

lartexlist command|

Commands and processes

A command is a request to perform an operation or run a program. A process is a program or command
that is actually running on the computer.

You use commands to tell the operating system what task you want it to perform. When commands are
entered, they are deciphered by a command interpreter (also known as a shell), and that task is processed.

The operating system can run many different processes at the same time.

The operating system allows you to manipulate the input and output (I/O) of data to and from your
system by using specific I/O commands and symbols. You can control input by specifying the location
from which to gather data. For example, you can specify to read input entered on the keyboard (standard
input) or to read input from a file. You can control output by specifying where to display or store data.
For example, you can specify to write output data to the screen (standard output) or to write it to a file.

Commands

Some commands can be entered simply by typing one word. It is also possible to combine commands so
that the output from one command becomes the input for another command.

Combining commands so that the output from one command becomes the input for another command is
known as piping.

Flags further define the actions of commands. A flag is a modifier used with the command name on the
command line, usually preceded by a dash.

Commands can also be grouped together and stored in a file. These files are known as shell procedures or

shell scripts. Instead of executing the commands individually, you execute the file that contains the
commands.

Operating system and device management 69

To enter a command, type the command name at the prompt, and press Enter.
$ CommandName

Related concepts

[“Shell features” on page 149
There are advantages to using the shell as an interface to the system.

Related tasks

[“Creating and running a shell script” on page 152|

A shell script is a file that contains one or more commands. Shell scripts provide an easy way to carry out
tedious commands, large or complicated sequences of commands, and routine tasks. When you enter the
name of a shell script file, the system executes the command sequence contained by the file.

Command syntax and command names:

Although some commands can be entered by simply typing one word, other commands use flags and
parameters. Each command has a syntax that designates both the required and optional flags and
parameters.

The general format for a command is as follows:
CommandName flag(s) parameter(s)

The following are some general rules about commands:
* Spaces between commands, flags, and parameters are significant.

¢ Two commands can be entered on the same line by separating the commands with a semicolon (;). For
example:

$ CommandOne ; CommandTwo

The shell runs the commands sequentially.

* Commands are case-sensitive. The shell distinguishes between uppercase and lowercase letters. To the
shell, print is not the same as PRINT or Print.

* A very long command can be entered on more than one line by using the backslash (\) character. A
backslash signifies line continuation to the shell. The following example is one command that spans
two lines:

$ 1s Mail info temp \

(press Enter)

> diary

(the > prompt appears)

The > character is your secondary prompt ($ is the nonroot user’s default primary prompt), indicating

that the current line is the continuation of the previous line. Note that csh (the C shell) gives no
secondary prompt, and the break must be at a word boundary, and its primary prompt is %.
The first word of every command is the command name. Some commands have only a command name.

Command flags:

A number of flags might follow the command name. Flags modify the operation of a command and are
sometimes called options.

A flag is set off by spaces or tabs and usually starts with a dash (-). Exceptions are ps, tar, and ar, which
do not require a dash in front of some of the flags. For example, in the following command:

1s -a -F

Is is the command name, and -a -F are the flags.

70 AIX Version 6.1: Operating system and device management

When a command uses flags, they come directly after the command name. Single-character flags in a
command can be combined with one dash. For example, the previous command can also be written as
follows:

1s -aF

There are some circumstances when a parameter actually begins with a dash (-). In this case, use the
delimiter dash dash (-) before the parameter. The — tells the command that whatever follows is not a flag
but a parameter.

For example, if you want to create a directory named -tmp and you type the following command:
mkdir -tmp

The system displays an error message similar to the following:

mkdir: Not a recognized flag: t
Usage: mkdir [-p] [-m mode] Directory ...

The correct way of typing the command is as follows:
mkdir -- -tmp

Your new directory, -tmp, is now created.
Command parameters:

After the command name, there might be a number of flags, followed by parameters. Parameters are
sometimes called arguments or operands. Parameters specify information that the command needs in order
to run.

If you do not specify a parameter, the command might assume a default value. For example, in the
following command:

1s -a temp

Is is the command name, -a is the flag, and temp is the parameter. This command displays all (-a) the files
in the directory temp.

In the following example:
Is -a

the default value is the current directory because no parameter is given.

In the following example:
1s temp mail

no flags are given, and temp and mail are parameters. In this case, temp and mail are two different
directory names. The 1Is command displays all but the hidden files in each of these directories.

Whenever a parameter or option-argument is, or contains, a numeric value, the number is interpreted as
a decimal integer, unless otherwise specified. Numerals in the range 0 to INT_MAX, as defined in the
/usr/include/sys/1imits.h file, are syntactically recognized as numeric values.

If a command you want to use accepts negative numbers as parameters or option-arguments, you can use
numerals in the range INT_MIN to INT_MAX, both as defined in the /usr/include/sys/1imits.h file. This
does not necessarily mean that all numbers within that range are semantically correct. Some commands
have a built-in specification permitting a smaller range of numbers, for example, some of the print
commands. If an error is generated, the error message lets you know the value is out of the supported
range, not that the command is syntactically incorrect.

Operating system and device management 71

Usage statements:

Usage statements are a way to represent command syntax and consist of symbols such as brackets ([]),
braces ({ }), and vertical bars (I).

The following is a sample of a usage statement for the unget command:
unget [-rSID [[-s][-n] File ...

The following conventions are used in the command usage statements:

* Items that must be entered literally on the command line are in bold. These items include the
command name, flags, and literal characters.

* Items representing variables that must be replaced by a name are in italics. These items include
parameters that follow flags and parameters that the command reads, such as Files and Directories.

e Parameters enclosed in brackets are optional.
* Parameters enclosed in braces are required.
* Parameters not enclosed in either brackets or braces are required.

¢ A vertical bar signifies that you choose only one parameter. For example, [a | b] indicates that you
can choose a, b, or nothing. Similarly, { a | b } indicates that you must choose either a or b.

* Ellipses (...) signify the parameter can be repeated on the command line.
e The dash (-) represents standard input.

Shutdown command:

If you have root user authority, you can use the shutdown command to stop the system. If you are not
authorized to use the shutdown command, simply log out of the operating system and leave it running.

Attention: Do not turn off the system without first shutting down. Turning off the system ends all
processes running on the system. If other users are working on the system, or if jobs are running in the
background, data might be lost. Perform proper shutdown procedures before you stop the system.

At the prompt, type the following:
shutdown

When the shutdown command completes and the operating system stops running, you receive the
following message:

....Shutdown completed....

See the command for the complete syntax.

Locating another command or program (whereis command):

The whereis command locates the source, binary, and manuals sections for specified files. The command
attempts to find the desired program from a list of standard locations.

See the following examples:

* To find files in the current directory that have no documentation, type the following;:
whereis -m -u *

* To find all of the files that contain the name Mail, type the following:
whereis Mail

The system displays information similar to the following:
Mail: /usr/bin/Mail /usr/1ib/Mail.rc

72 AIX Version 6.1: Operating system and device management

See the command in the AIX Version 6.1 Commands Reference, Volume 6 for the complete syntax.
Displaying information about a command (man command):
The man command displays information on commands, subroutines, and files.

The general format for the man command is as follows:
man CommandName

To obtain information about the pg command, type the following:
man pg

The system displays information similar to the following:
pg Command

Purpose
Formats files to the display.
Syntax

pg [- Number] [-c] [-e] [-f1 [-n] [-pString]
[-s 1 [+LineNumber | +/Pattern/] [File ...]

Description

The pg command reads a file name from the File parameter and
writes the file to standard output one screen at a time. If you
specify a - (dash) as the File parameter, or run the pg command
without options, the pg command reads standard input. Each
screen is followed by a prompt. If you press the Enter key,

another page is displayed. Subcommands used with the pg command
let you review or search in the file.

See the command in the AIX Version 6.1 Commands Reference, Volume 3 for the complete syntax.
Displaying the function of a command (whatis command):

The whatis command looks up a given command, system call, library function, or special file name, as
specified by the Command parameter, from a database you create using the catman -w command.

For information about the catman -w command, see The whatis command displays the
header line from the manual section. You can then issue the man command to obtain additional
information. For more information about the man command, see

The whatis command is equivalent to using the man -f command.

To find out what the 1s command does, type the following:
whatis 1s

The system displays information similar to the following:
1s(1) -Displays the contents of a directory.

See the command in the AIX Version 6.1 Commands Reference, Volume 6 for the complete syntax.
Listing previously entered commands (history command):

Use the history command to list commands that you have previously entered.

Operating system and device management 73

The history command is a Korn shell built-in command that lists the last 16 commands entered. The
Korn shell saves commands that you entered to a command history file, usually named
$HOME/ .sh_history. Using this command saves time when you need to repeat a previous command.

By default, the Korn shell saves the text of the last 128 commands for nonroot users and 512 commands
for the root user. The history file size (specified by the HISTSIZE environment variable) is not limited,
although a very large history file size can cause the Korn shell to start slowly.

Note: The Bourne shell does not support command history.

To list the previous commands you entered, at the prompt, type the following:
history

The history command entered by itself lists the previous 16 commands entered. The system displays
information similar to the following:

928 s

929 mail

930 printenv MAILMSG
931 whereis Mail

932 whatis 1s

933 c¢d /usr/include/sys

934 s

935 man pg

936 «cd

937 1s | pg

938 Tscons

939 tty

940 1s =.txt

941 printenv MAILMSG
942 pwd

943 history

The listing first displays the position of the command in the $HOME/.sh_history file followed by the
command.

To list the previous five commands, at the prompt, type the following:
history -5

A listing similar to the following is displayed:

939 tty

940 Ts .txt

941 printenv MAILMSG
942 pwd

943 history
944 history -5

The history command followed by a number lists all the previous commands entered, starting at that
number.

To list the commands since 938, at the prompt, type the following:
history 938

A listing similar to the following is displayed:

938 1scons
939 tty
940 1s *.txt

941 printenv MAILMSG

74 AIX Version 6.1: Operating system and device management

942 pwd

943 history

944 history -5
945 history 938

Related concepts

|”Operating system shells” on page 146|
Your interface to the operating system is called a shell.

[“Command history substitution” on page 194|
Use the fc built-in command to list or edit portions of the history file. To select a portion of the file to
edit or list, specify the number or the first character or characters of the command.

Repeating commands using the r alias:
Use the r Korn shell alias to repeat previous commands.

Type r, and press Enter, and you can specify the number or the first character or characters of the
command.

If you want to list the displays currently available on the system, type 1sdisp at the prompt. The system
returns the information on the screen. If you want the same information returned to you again, at the
prompt, type the following:

r
The system runs the most recently entered command again. In this example, the Isdisp command runs.

To repeat the Is *.txt command, at the prompt, type the following:
rls

The r Korn shell alias locates the most recent command that begins with the character or characters
specified.

String substitution using the r alias:
You can use the r Korn shell alias to modify a command before it is run.

In this case, a substitution parameter of the form Old=new can be used to modify the command before it
is run.

The following examples show how to use the r alias:

* If command line 940 is Is *.txt, and you want to run Is *.exe, at the prompt, type the following:
r txt=exe 940
This runs command 940, substituting exe for txt.

¢ If the command on line 940 is the most recent command that starts with a lowercase letter /, you can
also type the following;:

r txt=exe 1
Note: Only the first occurrence of the Old string is replaced by the New string. Entering the r Korn shell
alias without a specific command number or character performs the substitution on the immediately
previous command entered.

Editing the command history:

Use the fc Korn shell built-in command to list or edit portions of the command history file.

Operating system and device management 75

To select a portion of the file to edit or list, specify the number or the first character or characters of the
command. You can specify a single command or range of commands.

If you do not specify an editor program as an argument to the fc Korn shell built-in command, the editor
specified by the FCEDIT variable is used. If the FCEDIT variable is not defined, the /usr/bin/ed editor is
used. The edited command or commands are printed and run when you exit the editor. Use the printenv
command to display the value of the FCEDIT variable.

The following are examples of how to edit the command history:
* If you want to run the command:
cd /usr/tmp

which is very similar to command line 933, at the prompt, type the following:
fc 933

At this point, your default editor appears with the command line 933. Change include/sys to tmp, and
when you exit your editor, the edited command is run.

* You can also specify the editor you want to use in the fc command. For example, if you want to edit a
command using the /usr/bin/vi editor, at the prompt, type the following:

fc -e vi 933

At this point, the vi editor appears with the command line 933.

* You can also specify a range of commands to edit. For example, if you want to edit the commands 930
through 940, at the prompt, type the following:

fc 930 940

At this point, your default editor appears with the command lines 930 through 940. When you exit the
editor, all the commands that appear in your editor are run sequentially.

Creating a command alias (alias shell command):

An alias lets you create a shortcut name for a command, file name, or any shell text. By using aliases, you
save a lot of time when doing tasks you do frequently. You can create a command alias.

Use the Korn shell built-in command to define a word as an alias for some command. You can use
aliases to redefine built-in commands but not to redefine reserved words.

The first character of an alias name can be any printable character except the metacharacters. Any
remaining characters must be the same as for a valid file name.

The format for creating an alias is as follows:
alias Name=String

in which the Name parameter specifies the name of the alias, and the String parameter specifies a string
of characters. If String contains blank spaces, enclose it in quotation marks.

The following are examples how to create an alias:

* To create an alias for the command rm -i (prompts you before deleting files), at the prompt, type the
following:

alias rm="/usr/bin/rm -i"

In this example, whenever you enter the command rm, the actual command performed is /usr/bin/rm
-i.

76 AIX Version 6.1: Operating system and device management

* To create an alias named dir for the command 1s -alF | pg (which displays detailed information of all
the files in the current directory, including the invisible files; marks executable files with an * and
directories with a /; and scrolls per screen), at the prompt, type the following:

alias dir="/usr/bin/1s -alF | pg"

In this example, whenever you enter the command dir, the actual command performed is /usr/bin/1s
-alF | pg.

* To display all the aliases you have, at the prompt, type the following:
alias

The system displays information similar to the following;:

rm="/usr/bin/rm -i"
dir="/usr/bin/1s -alF | pg"

Related concepts

[“Command aliasing in the Korn shell or POSIX shell” on page 195|
The Korn shell, or POSIX shell, allows you to create aliases to customize commands.

International character support in text formatting:

You can use text formatting commands to work with text composed of the international extended
character set used for European languages.

The international extended character set provides the characters and symbols used in many European
languages, as well as an ASCII subset composed of English-language characters, digits, and punctuation.

All characters in the European extended character set have ASCII forms. These forms can be used to
represent the extended characters in input, or the characters can be entered directly with a device such as
a keyboard that supports the European extended characters.

The following text-formatting commands support all international languages that use single-byte
characters. These commands are located in /usr/bin. (The commands identified with an asterisk (¥)
support text processing for multibyte languages.

addbib* hyphen pic* pstext
checkmm ibm3812 ps4014 referx
checknr= ibm3816 ps630 roffbib=
colx 1bm5587G* psbanne soelimx
colert ibm5585H-T* psdit sortbib=
deroff= indxbib* psplot thl=
enscript Tookbib* psrev troffx
eqn* makedev* psroff vgrind
grap* neqn* psrv Xpreviewx
hp1j nroffx

Text-formatting commands and macro packages not in the preceding list have not been enabled to
process international characters.

Related concepts

[“Multibyte character support in text formatting” on page 78
Certain text formatting commands can be used to process text for multibyte languages.

Text formatting with extended single-byte characters:

If your input device supports characters from the European-language extended character set, you can
enter them directly.

Otherwise, use the following ASCII escape sequence form to represent these characters:

Operating system and device management 77

The form \[N], where N is the 2- or 4-digit hexadecimal code for the character.
Note: The NCesc form \<xx> is no longer supported.

Text containing extended characters is output according to the formatting conventions of the language in
use. Characters that are not defined for the interface to a specific output device produce no output or
error indication.

Although the names of the requests, macro packages, and commands are based on English, most of them
can accept input (such as file names and parameters) containing characters in the European extended
character set.

For the nroff and troff commands and their preprocessors, the command input must be ASCII, or an
unrecoverable syntax error will result. International characters, either single-byte or multibyte, can be
entered when enclosed within quotation marks and within other text to be formatted. For example, using
macros from the pic command:

define foobar % SomeText %

After the define directive, the first name, foobar, must be ASCIL. However, the replacement text,
SomeText, can contain non-ASCII characters.

Multibyte character support in text formatting:
Certain text formatting commands can be used to process text for multibyte languages.

These commands are identified with an asterisk (*) in the list under International character support in
text formatting. Text formatting commands not in the list have not been enabled to process international
characters.

If supported by your input device, multibyte characters can be entered directly. Otherwise, you can enter
any multibyte character in the ASCII form \[N], where N is the 2-, 4-, 6-, 7-, or 8-digit hexadecimal
encoding for the character.

Although the names of the requests, macros, and commands are based on English, most of them can
accept input (such as file names and parameters) containing any type of multibyte character.

If you are already familiar with using text-formatting commands with single-byte text, the following list
summarizes characteristics that are noteworthy or unique to the multibyte locales:

* Text is not hyphenated.

* Special format types are required for multibyte numerical output. Japanese format types are available.
* Text is output in horizontal lines, filled from left to right.

* Character spacing is constant, so characters automatically align in columns.

* Characters that are not defined for the interface to a specific output device produce no output or error
indication.

Related concepts

[“International character support in text formatting” on page 77|
You can use text formatting commands to work with text composed of the international extended
character set used for European languages.

Displaying a Calendar:

You can write a calendar to standard output by using the cal command.

78 AIX Version 6.1: Operating system and device management

The Month parameter names the month for which you want the calendar. It can be a number from 1
through 12 for January through December, respectively. If no Month is specified, the cal command
defaults to the current month.

The Year parameter names the year for which you want the calendar. Because the cal command can
display a calendar for any year from 1 through 9999, type the full year rather than just the last two digits.
If no Year is specified, the cal command defaults to the present year.

The following are examples of how to use the cal command:

1. To display a calendar for February 2002 at your workstation, type:
cal 2 2002

2. Press Enter.

3. To print a calendar for the year 2002, type:
cal 2002 | gprt

4. Press Enter.

See the [cal| command in AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.
Displaying reminder messages:

You can display a reminder message by reading a file named calendar. This file is created in your home
directory with the calendar command. The command writes to standard output any line in the file that
contains today’s or tomorrow’s date.

You can read a file named calendar, which you create in your home directory with the calendar
command. The command writes to standard output any line in the file that contains today’s or
tomorrow’s date.

The calendar command recognizes date formats such as Dec. 7 or 12/7. It also recognizes the special
character asterisk (*) when it is followed by a slash (/). It interprets */7, for example, as signifying the
seventh day of every month.

On Fridays, the calendar command writes all lines containing the dates for Friday, Saturday, Sunday, and
Monday. The command does not, however, recognize holidays. On holidays the command functions as
usual and gives only the next day’s schedule.

Using a typical calendar file

A typical calendar file might look similar to the following:

*/25 - Prepare monthly report

Aug. 12 - Fly to Denver

aug 23 - board meeting

Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment

sat aug/25 - beach trip

August 27 - Meet with Simmons

August 28 - Meet with Wilson

To run the calendar command, type:
calendar

If today is Friday, August 24, the calendar command displays the following:

Operating system and device management 79

*/25 - Prepare monthly report

Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment

sat aug/25 - beach trip

August 27 - Meet with Simmons

Using a calendar file that contains an include statement

A calendar file that contains an include statement might look like the following;:

#include </tmp/out>

1/21 -Annual review

1/21 -Weekly project meeting

1/22 *Meet with Harrison in Dallas*
Doctor's appointment - 1/23

1/23 -Vinh's wedding

To run the calendar command, type:
calendar

If today is Wednesday, January 21, the calendar command displays the following:

Jan.21 Goodbye party for David

Jan.22 Stockholder meeting in New York
1/21 -Annual review

1/21 -Weekly project meeting

1/22 *Meet with Harrison in Dallas*

The results of the calendar command indicate the /tmp/out file contained the following lines:

Jan.21 Goodbye party for David
Jan.22 Stockholder meeting in New York

See the command in AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.
Factoring a Number:

You can factor numbers with the factor command.

When called without specifying a value for the Number parameter, the factor command waits for you to
enter a positive number less than 1E14 (100,000,000,000,000). It then writes the prime factors of that
number to standard output. It displays each factor in order and the proper number of times if the same

factor is used more than once. To exit, enter 0 (zero) or any non-numeric character.

When called with an argument, the factor command determines the prime factors of the Number
parameter, writes the results to standard output, and exits.

The following is an example of how to calculate factors:
1. To calculate the prime factors of the number 123, type
factor 123
2. Press Enter. The following displays:
123 3 41

See the command in AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Locating a command by keyword:
You can display the man page sections that contain any of the given Keywords in their title by using the

apropos command.

80 AIX Version 6.1: Operating system and device management

The apropos command considers each word separately is not case-sensitive. Words that are part of other
words are also displayed. For example, when looking for the word compile, the apropos command also
finds all instances of the word compiler.

Note: The database containing the keywords is /usr/share/man/whatis, which must first be generated
with the catman -w command.

The apropos command is equivalent to using the man command with the -k option.

For example, to find the manual sections that contain the word password in their titles, type:
apropos password

Press Enter.

See the command in the AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.

Processes
A program or command that is actually running on the computer is referred to as a process.

Processes exist in parent-child hierarchies. A process started by a program or command is a parent process;
a child process is the product of the parent process. A parent process can have several child processes, but
a child process can have only one parent.

The system assigns a process identification number (PID number) to each process when it starts. If you
start the same program several times, it will have a different PID number each time.

When a process is started on a system, the process uses a part of the available system resources. When
more than one process is running, a scheduler that is built into the operating system gives each process a
share of the computer’s time, based on established priorities. These priorities can be changed by using the
nice or renice commands.

Note: To change a process priority to a higher one, you must have root user authority. All users can
lower priorities on a process they start by using the nice command or on a process they have already
started, by using the renice command.

The following list describes the types of processes:
Foreground and background processes

Processes that require a user to start them or to interact with them are called foreground processes.
Processes that are run independently of a user are referred to as background processes. Programs
and commands run as foreground processes by default. To run a process in the background, place
an ampersand (&) at the end of the command name that you use to start the process.

Daemon processes

Daemons are processes that run unattended. They are constantly in the background and are
available at all times. Daemons are usually started when the system starts, and they run until the
system stops. A daemon process typically performs system services and is available at all times to
more than one task or user. Daemon processes are started by the root user or root shell and can
be stopped only by the root user. For example, the process provides access to system
resources such as printers. Another common daemon is the sendmail daemon.

Zombie processes

A zombie process is a dead process that is no longer executing but is still recognized in the process
table (in other words, it has a PID number). It has no other system space allocated to it. Zombie

Operating system and device management 81

processes have been killed or have exited and continue to exist in the process table until the
parent process dies or the system is shut down and restarted. Zombie processes display as
<defunct> when listed by the @ command.

Process startup:

You start a foreground process from a display station by either entering a program name or command
name at the system prompt.

After a foreground process has started, the process interacts with you at your display station until it is
complete. No other interaction (for example, entering another command) can take place at the display
station until the process is finished or you halt it.

A single user can run more than one process at a time, up to a default maximum of 40 processes per user.
Starting a process in the foreground
To start a process in the foreground, enter the name of the command with the appropriate

parameters and flags:
$ CommandName

Starting a process in the background
To run a process in the background, type the name of the command with the appropriate
parameters and flags, followed by an ampersand (&):
$ CommandName &

When a process is running in the background, you can perform additional tasks by entering other
commands at your display station.

Generally, background processes are most useful for commands that take a long time to run.
However, because they increase the total amount of work the processor is doing, background
processes can slow down the rest of the system.

Most processes direct their output to standard output, even when they run in the background.
Unless redirected, standard output goes to the display device. Because the output from a
background process can interfere with your other work on the system, it is usually good practice
to redirect the output of a background process to a file or a printer. You can then look at the
output whenever you are ready.

Note: Under certain circumstances, a process might generate its output in a different sequence
when run in the background than when run in the foreground. Programmers might want to use

the subroutine to ensure that output occurs in the correct order regardless of whether the
process runs in foreground or background.

While a background process is running, you can check its status with the ps command.
Command to check the process status (ps command):

Any time the system is running, processes are also running. You can use the ps command to find out
which processes are running and display information about those processes.

The ps command has several flags that enable you to specify which processes to list and what
information to display about each process.

To show all processes running on your system, at the prompt, type the following:
ps -ef

The system displays information similar to the following;:

82 AIX Version 6.1: Operating system and device management

USER PID PPID STIME TTY TIME CMD

mary 16260 2413
mary 16469 1
mary 19402 16260 2

07:57:35 pts/1
07:57:12 1ft/1
09:37:21 pts/1

:00 /bin/ksh
:00 ksh /usr/1pp/X11/bin/xinit

C
0
0
0
mary 2413 16998 2 07:57:30
0
1
0
0 :00 ps -ef

root 1 0 Jun 28 - 3:23 /etc/init
root 1588 6963 Jun 28 - 0:02 /usr/etc/biod 6
root 2280 1 Jun 28 - 1:39 /etc/syncd 60
- 0:05 aixterm
mary 11632 16998 07:57:31 1ft/1 0:01 xbiff
0
0
0

The columns in the previous output are defined as follows:

USER User login name

PID Process ID

PPID Parent process ID

C CPU utilization of process

STIME Start time of process

TTY Controlling workstation for the process
TIME Total execution time for the process
CMD Command

In the previous example, the process ID for the ps -ef command is 19402. Its parent process ID is 16260,
the /bin/ksh command.

If the listing is very long, the top portion scrolls off the screen. To display the listing one page (screen) at
a time, pipe the ps command to the pg command. At the prompt, type the following:

ps -ef | pg

To display status information of all processes running on your system, at the prompt, type the following:
ps gv

This form of the command lists a number of statistics for each active process. Output from this command
looks similar to the following:

PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

0 - A 0:44 7 8 8 XX 0 0 0.0 0.0 swapper

1 - A 1:29 518 244 140 XX 21 24 0.1 1.0 /etc/init
771 - A 1:22 0 16 16 XX 0 0 0.0 0.0 kproc
1028 - A 0:00 10 16 8 XX 0 0 0.0 0.0 kproc
1503 - A 0:33 127 16 8 XX 0 0 0.0 0.0 kproc
1679 - A 1:03 282 192 12 32768 130 0 0.7 0.0 pcidossvr
2089 - A 0:22 918 72 28 XX 1 4 0.0 0.0 /etc/sync
2784 - A 0:00 9 16 8 XX 0 0 0.0 0.0 kproc
2816 - A 5:59 6436 2664 616 8 852 156 0.4 4.0 /usr/lpp/
3115 - A 0:27 955 264 128 XX 39 36 0.0 1.0 /usr/1ib/
3451 - A 0:00 0 16 8 XX 0 0 0.0 0.0 kproc
3812 - A 0:00 21 128 12 32768 34 0 0.0 0.0 usr/1ib/1pd/
3970 - A 0:00 0 16 8 XX 0 0 0.0 0.0 kproc
4267 - A 0:01 169 132 72 32768 16 16 0.0 0.0 /etc/sysl
4514 1ft/0 A 0:00 60 200 72 XX 39 60 0.0 0.0 /etc/gett
4776 pts/3 A 0:02 250 108 280 8 303 268 0.0 2.0 -ksh
5050 - A 0:09 1200 424 132 32768 243 56 0.0 1.0 /usr/sbin
5322 - A 0:27 1299 156 192 XX 24 24 0.0 1.0 /etc/cron
5590 - A 0:00 2 100 12 32768 11 0 0.0 0.0 /etc/writ
5749 - A 0:00 0 208 12 XX 13 0 0.0 0.0 /usr/lpp/
6111 -T 0:00 66 108 12 32768 47 0 0.0 0.0 /usr/lpp/

See the @command in the AIX Version 6.1 Commands Reference, Volume 4 for the complete syntax.

Setting the initial priority of a process (nice command):

Operating system and device management 83

You can set the initial priority of a process to a value lower than the base scheduling priority.

To set the initial priority of a process to a value lower than the base scheduling priority, use the
command to start the process.

Note: To run a process at a higher priority than the base scheduling priority, you must have root user
authority.

To set the initial priority of a process, type the following:
nice -n Number CommandString

where Number is in the range of 0 to 39, with 39 being the lowest priority. The nice value is the decimal
value of the system-scheduling priority of a process. The higher the number, the lower the priority. If you
use zero, the process will run at its base scheduling priority. CommandString is the command and flags
and parameters you want to run.

See the command in the AIX Version 6.1 Commands Reference, Volume 4 for the complete syntax.
You can also use the smit nice command to perform this task.

Changing the priority of a running process (renice command):

You can change the scheduling priority of a running process to a value lower or higher than the base
scheduling priority by using the renice command from the command line. This command changes the

nice value of a process.

Note: To run a process at a higher priority or to change the priority for a process that you did not start,
you must have root user authority.

To change the priority of a running process, type the following:
renice Priority -p ProcessID

where Priority is a number in the range of -20 to 20. The higher the number, the lower the priority. If you
use zero, the process will run at its base scheduling priority. ProcessID is the PID for which you want to
change the priority.

You can also use the smit renice command to perform this task.
Foreground process cancellation:

If you start a foreground process and then decide that you do not want it to finish, you can cancel it by
pressing INTERRUPT. This is usually Ctrl-C or Ctrl-Backspace.

Note: INTERRUPT (Ctrl-C) does not cancel background processes. To cancel a background process, you
must use the kill command.

Most simple commands run so quickly that they finish before you have time to cancel them. The
examples in this section, therefore, use a command that takes more than a few seconds to run:

find / -type f. This command displays the path names for all files on your system. You do not need to
study the find command in order to complete this section; it is used here simply to demonstrate how to
work with processes.

In the following example, the find command starts a process. After the process runs for a few seconds,
you can cancel it by pressing the INTERRUPT key:

84 AIX Version 6.1: Operating system and device management

$ find / -type f

/usr/sbin/acct/Tastlogin
/usr/sbin/acct/prctmp
/usr/sbin/acct/prdaily
/usr/sbin/acct/runacct
/usr/shin/acct/sdisk
/usr/sbin/acct/shutacct INTERRUPT (Ctrl1-C)
$

The system returns the prompt to the screen. Now you can enter another command.
Related tasks
[“List of control key assignments for your terminal (stty command)” on page 248

To display your terminal settings, use the stty command. Note especially which keys your terminal uses
for control keys.

Keyboard command to stop a foreground process:

It is possible for a process to be stopped but not have its process ID (PID) removed from the process
table. You can stop a foreground process by pressing Ctrl-Z from the keyboard.

Note: Ctrl-Z works in the Korn shell (ksh) and C shell (csh), but not in the Bourne shell (bsh).
Restarting a stopped process:
This procedure describes how to restart a process that has been stopped with a Ctrl-Z.

Note: Ctrl-Z works in the Korn shell (ksh) and C shell (csh), but not in the Bourne shell (bsh). To restart
a stopped process, you must either be the user who started the process or have root user authority.

1. To show all the processes running or stopped but not those killed on your system, type the following;:
ps -ef

You might want to pipe this command through a grep command to restrict the list to those processes
most likely to be the one you want to restart. For example, if you want to restart a vi session, you
could type the following:

ps -ef | grep vi

This command would display only those lines from the ps command output that contained the word
vi. The output would look something like this:

uIiD PID PPID C STIME TTY TIME COMMAND
root 1234 13682 0 00:59:53 - 0:01 vi test
root 14277 13682 1 01:00:34 - 0:00 grep vi

2. In the ps command output, find the process you want to restart and note its PID number. In the
example, the PID is 1234.

3. To send the CONTINUE signal to the stopped process, type the following:
ki1l -19 1234

Substitute the PID of your process for the 1234. The -19 indicates the CONTINUE signal. This
command restarts the process in the background. If the process can run in the background, you are
finished with the procedure. If the process must run in the foreground (as a vi session would), you
must proceed with the next step.

4. To bring the process in to the foreground, type the following:
fg 1234

Once again, substitute the PID of your process for the 1234. Your process should now be running in
the foreground. (You are now in your vi edit session).

Operating system and device management 85

Scheduling a process for later operation:
You can set up a process as a batch process to run in the background at a scheduled time.

The at and smit commands let you enter the names of commands to be run at a later time and allow you
to specify when the commands should be run.

Note: The /var/adm/cron/at.allow and /var/adm/cron/at.deny files control whether you can use the at
command. A person with root user authority can create, edit, or delete these files. Entries in these files are
user login names with one name to a line. The following is an example of an at.allow file:

root
nick
dee
sarah

If the at.alTow file exists, only users whose login names are listed in it can use the at command. A
system administrator can explicitly stop a user from using the at command by listing the user’s login
name, in the at.deny file. If only the at.deny file exists, any user whose name does not appear in the file
can use the at command.

You cannot use the at command if any one of the following is true:

* The at.allow file and the at.deny file do not exist (allows root user only).
e The at.allow file exists but the user’s login name is not listed in it.

* The at.deny file exists and the user’s login name is listed in it.

If the at.allow file does not exist and the at.deny file does not exist or is empty, only someone with root
user authority can submit a job with the at command.

The at command syntax allows you to specify a date string, a time and day string, or an increment string
for when you want the process to run. It also allows you to specify which shell or queue to use. The
following examples show some typical uses of the command.

For example, if your login name is joyce and you have a script named WorkReport that you want to run
at midnight, do the following;:

1. Type the time you want the program to start running:
at midnight

2. Type the names of the programs to run, pressing Enter after each name. After typing the last name,
press the end-of-file character (Ctrl-D) to signal the end of the list.

WorkReport”D

After you press Ctrl-D, the system displays information similar to the following:
job joyce.741502800.a at Fri Jul 6 00:00:00 CDT 2002.

The program WorkReport is given the job number joyce.741502800.a and will run at midnight, July 6.
3. To list the programs you have sent to be run later, type the following:
at -1

The system displays information similar to the following;:
Jjoyce.741502800.a Fri Jul 6 00:00:00 CDT 2002

See the @ command for the complete syntax.

86 AIX Version 6.1: Operating system and device management

Related tasks

[“Listing all scheduled processes (at or atq command)’]
Use the -1 flag with the at command or with the atq command to list all scheduled processes.

["Removing a process from the schedule”]
You can remove a scheduled process with the at command using the -r flag.

Listing all scheduled processes (at or atq command):
Use the -1 flag with the at command or with the atq command to list all scheduled processes.

Both commands give the same output; however, the atq command can order the processes in the same
amount of time that the at command is issued and displays only the number of processes in the queue.

You can list all scheduled processes in the following ways:
¢ With the at command from the command line
* With the atq command

at command

To list the scheduled processes, type the following:
at -1
This command lists all the scheduled processes in your queue. If you are a root user, this

command lists all the scheduled processes for all users. For complete details of the syntax, see the
@ command.

atq command

See the following examples on how to use the atq command:

* To list all scheduled processes in the queue, type the following:
atq

 If you are a root user, you can list the scheduled processes in a particular user’s queue by
typing:
atq UserName

* To list the number of scheduled processes in the queue, type the following;:
atq -n

Related tasks

[Scheduling a process for later operation” on page 86|
You can set up a process as a batch process to run in the background at a scheduled time.

["Removing a process from the schedule”]
You can remove a scheduled process with the at command using the -r flag.

Removing a process from the schedule:
You can remove a scheduled process with the at command using the -r flag.

See the following example on how to use the at or atq command:

1. To remove a scheduled process, you must know its process number. You can obtain the process
number by using the at -1 command or the atq command.

2. When you know the number of the process you want to remove, type the following:
at -r ProcessNumber

You can also use the smit rmat command to perform this task.

Operating system and device management 87

Related tasks

[“Listing all scheduled processes (at or atqg command)” on page 87
Use the -1 flag with the at command or with the atq command to list all scheduled processes.

[’Scheduling a process for later operation” on page 86
You can set up a process as a batch process to run in the background at a scheduled time.

Removing a background process (kill command):

If INTERRUPT does not halt your foreground process or if you decide, after starting a background
process, that you do not want the process to finish, you can cancel the process with the kill command.

Before you can cancel a process using the kill command, you must know its PID number. The general
format for the kill command is as follows:

ki1l ProcessID

Note:

* To remove a process, you must have root user authority or be the user who started the process. The
default signal to a process from the kill command is -15 (SIGTERM).

* To remove a zombie process, you must remove its parent process.

1. Use the ps command to determine the process ID of the process you want to remove. You might want
to pipe this command through a grep command to list only the process you want. For example, if you
want the process ID of a vi session, you could type the following:

ps -1 | grep vi

2. In the following example, you issue the find command to run in the background. You then decide to
cancel the process. Issue the ps command to list the PID numbers.
§ find / -type f > dir.paths &
[1] 21593
$ ps
PID TTY TIME COMMAND
1627 pts3 0:00 ps
5461 pts3 0:00 ksh
17565 pts3 0:00 -ksh
21593 pts3 0:00 find / -type f
$ kill 21593
$ ps
PID TTY TIME COMMAND
1627 pts3 0:00 ps
5461 pts3 0:00 ksh
17565 pts3 0:00 -ksh
[1] + Terminated 21593 find / -type f > dir.paths &
The command kill 21593 ends the background find process, and the second ps command returns no
status information about PID 21593. The system does not display the termination message until you
enter your next command, unless that command is cd.

The kill command lets you cancel background processes. You might want to do this if you realize that
you have mistakenly put a process in the background or that a process is taking too long to run.

See the command in the AIX Version 6.1 Commands Reference, Volume 3 for the complete syntax.

The kill command can also used in smit by typing:
smit kill

Command summary for commands and processes
The following are commands for commands and processes.

88 AIX Version 6.1: Operating system and device management

Table 1. Command summary for commands

alias Shell command that prints a list of aliases to standard output
histo Shell command that displays the history event list
an Displays information about commands, subroutines, and files online
wsm] Performs system management from a web browser
whati Describes the function a command performs
% Locates the source, binary, or manual for installed programs

Table 2. Command summary for processes

E Runs commands at a later time, lists all scheduled processes, or removes a process from the schedule
atq] Displays the queue of jobs waiting to be run

Sends a signal to running processes

nice) Runs a command at a lower or higher priority

%? Shows current status of processes

renice Alters priority of running processes

Managing system hang

System hang management allows users to run mission-critical applications continuously while improving
application availability. System hang detection alerts the system administrator of possible problems and
then allows the administrator to log in as root or to reboot the system to resolve the problem.

shconf command

The command is invoked when System Hang Detection is enabled. The shconf command
configures which events are surveyed and what actions are to be taken if such events occur. You can
specify any of the following actions, the priority level to check, the time out while no process or thread
executes at a lower or equal priority, the terminal device for the warning action, and the getty command
action:

* Log an error in errlog file

 Display a warning message on the system console (alphanumeric console) or on a specified TTY

* Reboot the system

* Give a special getty to allow the user to log in as root and launch commands

¢ Launch a command

For the Launch a command and Give a special getty options, system hang detection launches the special
getty command or the specified command at the highest priority. The special getty command prints a
warning message that it is a recovering getty running at priority 0. The following table captures the
various actions and the associated default parameters for priority hang detection. Only one action is
enabled for each type of detection.

Option Enablement Priority Timeout (seconds)
Log an error in errlog file disabled 60 120
Display a warning message disabled 60 120
Give a recovering getty enabled 60 120
Launch a command disabled 60 120
Reboot the system disabled 39 300

Note: When Launch a recovering getty on a console is enabled, the shconf command adds the -u flag to
the getty command in the inittab that is associated with the console login.

For lost IO detection, you can set the time out value and enable the following actions:

Operating system and device management 89

Option Enablement

Display a warning message disabled

Reboot the system disabled

Lost IO events are recorded in the Web-based System Manager error log file.
shdaemon daemon

The shdaemon daemon is a process that is launched by init and runs at priority 0 (zero). It is in charge
of handling system hang detection by retrieving configuration information, initiating working structures,
and starting detection times set by the user.

Related concepts

[“Priority hang detection”]
AIX can detect system hang conditions and try to recover from such situations, based on user-defined
actions.

[“Lost 1/O hang detection” on page 91|
AIX can detect system hang conditions and try to recover from such situations, based on user-defined
actions.

Configuring system hang detection
You can manage the system hang detection configuration from the SMIT management tool.

SMIT menu options allow you to enable or disable the detection mechanism, display the current state of
the feature, and change or show the current configuration. The fast paths for system hang detection
menus are:

smit shd
Manage System Hang Detection

smit shstatus
System Hang Detection Status

smit shpriocfg
Change/Show Characteristics of Priority Problem Detection

smit shreset
Restore Default Priority Problem Configuration

smit shliocfg
Change/Show Characteristics of Lost /O Detection

smit shlioreset
Restore Default Lost I/O Detection Configuration

You can also manage system hang detection using the command.

Priority hang detection
AIX can detect system hang conditions and try to recover from such situations, based on user-defined
actions.

All processes (also known as threads) run at a priority. This priority is numerically inverted in the range
0-126. Zero is highest priority and 126 is the lowest priority. The default priority for all threads is 60. The
priority of a process can be lowered by any user with the command. Anyone with root authority can
also raise a process’s priority.

The kernel scheduler always picks the highest priority runnable thread to put on a CPU. It is therefore
possible for a sufficient number of high priority threads to completely tie up the machine such that low

90 AIX Version 6.1: Operating system and device management

priority threads can never run. If the running threads are at a priority higher than the default of 60, this
can lock out all normal shells and logins to the point where the system appears hung.

The System Hang Detection feature provides a mechanism to detect this situation and allow the system
administrator a means to recover. This feature is implemented as a daemon (shdaemon) that runs at the
highest process priority. This daemon queries the kernel for the lowest priority thread run over a
specified interval. If the priority is above a configured threshold, the daemon can take one of several
actions. Each of these actions can be independently enabled, and each can be configured to trigger at any
priority and over any time interval. The actions and their defaults are:

Action Default Default Default Default
Enabled Priority Timeout Device

1) Log an error no 60 2
2) Console message no 60 2 /dev/console
3) High priority yes 60 2 /dev/tty0
login shell
4) Run a command at no 60 2
high priority
5) Crash and reboot no 39 5

Related concepts

[“Managing system hang” on page 89|

System hang management allows users to run mission-critical applications continuously while improving
application availability. System hang detection alerts the system administrator of possible problems and
then allows the administrator to log in as root or to reboot the system to resolve the problem.

Lost I/O hang detection
AIX can detect system hang conditions and try to recover from such situations, based on user-defined
actions.

Because of 1/0 errors, the I/O path can become blocked and further I/O on that path is affected. In these
circumstances it is essential that the operating system alert the user and execute user defined actions. As
part of the Lost I/O detection and notification, the shdaemon, with the help of the Logical Volume
Manager, monitors the I/O buffers over a period of time and checks whether any 1/0 is pending for too
long a period of time. If the wait time exceeds the threshold wait time defined by the shconf file, a lost
I/0 is detected and further actions are taken. The information about the lost I/O is documented in the
error log. Also based on the settings in the shconf file, the system might be rebooted to recover from the
lost I/O situation.

For lost I/O detection, you can set the time out value and also enable the following actions:

Action Default Enabled Default Device
Console message no /dev/console
Crash and reboot no -

For more information on system hang detection, see [“Managing system hang” on page 89.|

Related concepts

[“Managing system hang” on page 89|

System hang management allows users to run mission-critical applications continuously while improving
application availability. System hang detection alerts the system administrator of possible problems and
then allows the administrator to log in as root or to reboot the system to resolve the problem.

Process management

The process is the entity that the operating system uses to control the use of system resources. Threads
can control processor-time consumption, but most system management tools still require you to refer to
the process in which a thread is running, rather than to the thread itself.

Operating system and device management 91

Tools are available to:
* Observe the creation, cancellation, identity, and resource consumption of processes
— The @ command is used to report process IDs, users, CPU-time consumption, and other attributes.

— The ‘whol -u command reports the shell process ID of logged-on users.

- The :svmonl command is used to report process real-memory consumption. (See Performance Toolbox
Version 2 and 3 for AIX: Guide and Reference for information on the svmon command.)

— The acct command mechanism writes records at process termination summarizing the process’s
resource use.

* Control the priority level at which a process contends for the CPU.
— The command causes a command to be run with a specified process priority.
- The command changes the priority of a given process.

* Terminate processes that are out of control.
- The command sends a termination signal to one or more processes.

Related concepts

[“System accounting” on page 98|
The system accounting utility allows you to collect and report on individual and group use of various
system resources.

Process monitoring
You, as the system administrator, can manage processes.

The ps command is the primary tool for observing the processes in the system. Most of the flags of the
ps command fall into one of two categories:

* Flags that specify which types of processes to include in the output
* Flags that specify which attributes of those processes are to be displayed

The most widely useful variants of ps for system-management purposes are:

ps -ef Lists all nonkernel processes, with the userid, process ID, recent CPU usage, total CPU usage, and the
command that started the process (including its parameters).

ps -fu UserID Lists all of the processes owned by UserID, with the process ID, recent CPU usage, total CPU usage,
and the command that started the process (including its parameters).

To identify the current heaviest users of CPU time, you could enter:
ps -ef | egrep -v "STIME|$LOGNAME" | sort +3 -r | head -n 15

This command lists, in descending order, the 15 most CPU-intensive processes other than those owned by
you.

For more specialized uses, the following two tables are intended to simplify the task of choosing ps flags
by summarizing the effects of the flags.

Process-Specifying Flags
-A -a -d -e -G-g -k P -t -U -u a g t X

All processes | Y - - - - - - - - - Y - R

Not processes |- Y - - - - - - - - - - -
group leaders
and not
associated
with a
terminal

Not process - - Y - - - - - - - - - -
group leaders

92 AIX Version 6.1: Operating system and device management

Process-Specifying Flags

-A

=-a

-e

Not kernel
processes

Members of
specified-
process
groups

Kernel
processes

Those
specified in
process
number list

Those
associated
with tty(s) in
the list

Y (n
ttys)

Ya |-
tty)

Specified user
processes

Processes with
terminals

Not associated
with a tty

Column-Selecting Flags

Defaultl

Default2

PID

Y

TTY

TIME

CMD

Y
Y
Y

<|=<l=]=]e®
< =<=]=]=
<|=l=]=]e
<|=l=]|=]=

USER

<|=[=|=]=

<[=<=<=<]=]<
<[=]=]=

UID

PPID

C

<[=]

< | ==

STIME

< | ==

F

S/STAT

PIR

NI/NICE

ADDR

<[=T=<]=]=

<=

SIZE

<

SZ

WCHAN

RSS

< | =
<
=<

SSIZ

<

%CPU

%MEM

PGIN

LIM

TSIZ

< =<l=|=]=

Operating system and device management

93

Column-Selecting Flags

Defaultl -f -1 -u Default2 e 1 s u v

TRS - - - - - - Y

Environment (following the command) - - Y - - - -

If ps is given with no flags or with a process-specifying flag that begins with a minus sign, the columns
displayed are those shown for Defaultl. If the command is given with a process-specifying flag that does
not begin with minus, Default2 columns are displayed. The -u or -U flag is both a process-specifying and
column-selecting flag.

The following are brief descriptions of the contents of the columns:

PID Process ID

TTY Terminal or pseudo-terminal associated with the process

TIME Cumulative CPU time consumed, in minutes and seconds

CMD Command the process is running

USER Login name of the user to whom the process belongs

UID Numeric user ID of the user to whom the process belongs

PPID ID of the parent process of this process

C Recently used CPU time

STIME Time the process started, if less than 24 hours. Otherwise the date the process is started

F Eight-character hexadecimal value describing the flags associated with the process (see the detailed
description of the ps command)

S/STAT Status of the process (see the detailed description of the ps command)

PRI Current priority value of the process

NI/NICE Nice value for the process

ADDR Segment number of the process stack

SIZE (v flag) The virtual size of the data section of the process (in kilobytes)

SZ (-1 and 1 flags) The size in kilobytes of the core image of the process.

WCHAN Event on which the process is waiting

RSS Sum of the numbers of working-segment and code-segment pages in memory times 4

SSI1Z Size of the kernel stack

%CPU Percentage of time since the process started that it was using the CPU

%MEM Nominally, the percentage of real memory being used by the process, this measure does not correlate with
any other memory statistics

PGIN Number of page ins caused by page faults. Since all I/O is classified as page faults, this is basically a
measure of I/O volume

LIM Always xx

TSIZ Size of the text section of the executable file

TRS Number of code-segment pages times 4

Environment Value of all the environment variables for the process

Process priority alteration
Basically, if you have identified a process that is using too much CPU time, you can reduce its effective
priority by increasing its nice value with the renice command.

For example:
renice +5 ProcID

The nice value of the ProcID’s would increase process from the normal 20 of a foreground process to 25.
You must have root authority to reset the process ProcID’s nice value to 20. Type:

renice -5 ProclID

Process termination
Normally, you use the kill command to end a process.

94 AIX Version 6.1: Operating system and device management

The command sends a signal to the designated process. Depending on the type of signal and the
nature of the program that is running in the process, the process might end or might keep running. The
signals you send are:

SIGTERM (signal 15) is a request to the program to terminate. If the program has a signal handler for SIGTERM that does
not actually terminate the application, this kill may have no effect. This is the default signal sent by kill.

SIGKILL (signal 9) is a directive to kill the process immediately. This signal cannot be caught or ignored.

It is typically better to issue SIGTERM rather than SIGKILL. If the program has a handler for SIGTERM,
it can clean up and terminate in an orderly fashion. Type:

ki1l -term ProcessID

(The -term could be omitted.) If the process does not respond to the SIGTERM, type:
kill -kill ProcessID

You might notice occasional defunct processes, also called zombies, in your process table. These processes
are no longer executing, have no system space allocated, but still retain their PID number. You can
recognize a zombie process in the process table because it displays <defunct> in the CMD column. For
example:

Uib PID PPID C STIME TTY TIME CMD

Jul 10

lee 22392 20682 0 - 0:05 xclock
lee 22536 21188 O Jul 10 pts/0 0:00 /bin/ksh
lee 22918 24334 0 Jul 10 pts/1 0:00 /bin/ksh
lee 23526 22536 22 0:00 <defunct>
lee 24334 20682 0 Jul 10 ? 0:00 aixterm
lee 24700 1 0 Jul 16 ?7 0:00 aixterm
root 25394 26792 2 Jul 16 pts/2 0:00 ksh

lee 26070 24700 O Jul 16 pts/3 0:00 /bin/ksh
lee 26792 20082 O Jul 10 pts/2 0:00 /bin/ksh
root 27024 25394 2 17:10:44 pts/2 0:00 ps -ef

Zombie processes continue to exist in the process table until the parent process dies or the system is shut
down and restarted. In the example shown above, the parent process (PPID) is the ksh command. When
the Korn shell is exited, the defunct process is removed from the process table.

Sometimes a number of these defunct processes collect in your process table because an application has
forked several child processes and has not exited. If this becomes a problem, the simplest solution is to
modify the application so its sigaction subroutine ignores the SIGCHLD signal.

Related information

lsigaction command|

Binding or unbinding a process
You can bind a process to a processor or unbind a previously bound process.

You must have root user authority to bind or unbind a process you do not own.

On multiprocessor systems, you can bind a process to a processor or unbind a previously bound process
from:

* Web-based System Manager
s SMIT

¢ command line

Operating system and device management 95

Note: While binding a process to a processor might lead to improved performance for the bound
process (by decreasing hardware-cache misses), overuse of this facility could cause individual
processors to become overloaded while other processors are underused. The resulting bottlenecks could
reduce overall throughput and performance. During normal operations, it is better to let the operating
system assign processes to processors automatically, distributing system load across all processors. Bind
only those processes that you know can benefit from being run on a single processor.

Binding or Unbinding a Process Tasks

Task SMIT Fast Path Command or File
Binding a Process smit bindproc -q
Unbinding a Process smit ubindproc -u

Fixes for stalled or unwanted processes:

Stalled or unwanted processes can cause problems with your terminal. Some problems produce messages
on your screen that give information about possible causes.

To perform the following procedures, you must have either a second terminal, a modem, or a network
login. If you do not have any of these, fix the terminal problem by rebooting your machine.

Choose the appropriate procedure for fixing your terminal problem:
Freeing a terminal taken over by processes:
You can stop stalled or unwanted process.

Identify and stop stalled or unwanted processes by doing the following;:
1. Determine the active processes running on the screen by typing the following@ command:
ps -ef | pg

The ps command shows the process status. The -e flag writes information about all processes (except
kernel processes), and the f flag generates a full listing of processes including what the command
name and parameters were when the process was created. The |pg command limits output to a single
page at a time, so information does not quickly scroll off the screen.

Suspicious processes include system or user processes that use up excessive amounts of a system
resource such as CPU or disk space. System processes such as sendmail, routed, and Ipd frequently
become runaways. Use the ps -u command to check CPU usage.

2. Determine who is running processes on this machine by using the command:
who

The who command displays information about all users currently on this system, such as login name,
workstation name, date, and time of login.

3. Determine if you need to stop, suspend, or change the priority of a user process.

Note: You must have root authority to stop processes other than your own. If you terminate or
change the priority of a user process, contact the process owner and explain what you have done.

* Stop the process using the command. For example:
ki1l 1883

The kill command sends a signal to a running process. To stop a process, specify the process ID
(PID), which is 1883 in this example. Use the ps command to determine the PID number of
commands.

* Suspend the process and run it in the background by using the ampersand (&). For example:
/u/binl/progl &

96 AIX Version 6.1: Operating system and device management

The & signals that you want this process to run in the background. In a background process, the
shell does not wait for the command to complete before returning the shell prompt. When a process
requires more than a few seconds to complete, run the command in background by typing an & at
the end of the command line. Jobs running in the background appear in the normal ps command.

¢ Change the priority of the processes that have taken over by using the following command:
renice 20 1883
The renice command alters the scheduling priority of one or more running processes. The higher
the number, the lower the priority with 20 being the lowest priority.

In the previous example, renice reschedules process number 1883 to the lowest priority. It will run
when there is a small amount of unused processor time available.

Responding to screen messages:

Use this procedure to respond to and recover from screen messages.
1. Make sure the DISPLAY environment variable is set correctly. Use either of the following methods to
check the DISPLAY environment:
¢ Use the command to display the environment variables.
setsenv
The setsenv command displays the protected state environment when you logged in.
Determine if the DISPLAY variable has been set. In the following example, the DISPLAY variable
does not appear, which indicates that the DISPLAY variable is not set to a specific value.

SYSENVIRON:
NAME=casey
TTY=/dev/pts/5
LOGNAME=casey
LOGIN=casey

OR

* Change the value of the DISPLAY variable. For example, to set it to the machine named bastet
and terminal 0, enter:

DISPLAY=bastet:0
export DISPLAY

If not specifically set, the DISPLAY environment variable defaults to unix:0 (the console). The
value of the variable is in the format name:number where name is the host name of a particular
machine, and number is the X server number on the named system.

2. Reset the terminal to its defaults using the following command:
stty sane

The stty sane command restores the “sanity” of the terminal drivers. The command outputs an
appropriate terminal resetting code from the /etc/termcap file (or /usr/share/1ib/terminfo if
available).

3. If the Return key does not work correctly, reset it by typing:
~J stty sane ™J
The 7] represents the Ctrl-] key sequence.

Running multiple queues using environment variables RT_MPC and RT_GRQ:

The use of multiple queues increases the processor affinity of threads, but there is a special situation
where you might want to counteract this effect.

When there is only one run queue, a thread that has been awakened (the waking thread) by another
running thread (the waker thread) would normally be able to use the CPU immediately on which the

Operating system and device management 97

waker thread was running. With multiple run queues, the waking thread may be on the run queue of
another CPU which cannot notice the waking thread until the next scheduling decision. This may result
in up to a 10 ms delay.

This is similar to scenarios in earlier releases of this operating system which might have occurred using
the bindprocessor option. If all CPUs are constantly busy, and there are a number of interdependent
threads waking up, there are two options available.

* The first option, which uses one run queue, is to set the environment variable RT_GRQ=0ON which
forces unbound selected threads to be dispatched off the global run queue.

* Alternatively, users can choose the real time kernel option (type the command bosdebug -R on and
then bosboot) and the RT_MPC=ON environment variable for selected processes. It is essential to
maintain a performance log of your systems to closely monitor the impact of any tuning you attempt.

System accounting

The system accounting utility allows you to collect and report on individual and group use of various
system resources.

Note: A new advanced accounting subsystem is available beginning with AIX 5.3.

This accounting information can be used to bill users for the system resources they utilize, and to
monitor selected aspects of the system operation. To assist with billing, the accounting system provides
the resource-usage totals defined by members of the adm group, and, if the chargefee command is
included, factors in the billing fee.

The accounting system also provides data to assess the adequacy of current resource assignments, set
resource limits and quotas, forecast future needs, and order supplies for printers and other devices.

The following information should help you understand how to implement the accounting utility in your
system.

Related concepts

[“Process management” on page 91|

The process is the entity that the operating system uses to control the use of system resources. Threads
can control processor-time consumption, but most system management tools still require you to refer to
the process in which a thread is running, rather than to the thread itself.

[“Workload manager” on page 414|

Workload Manager (WLM) is designed to provide the system administrator with increased control over
how the scheduler virtual memory manager (VMM) and the disk I/O subsystem allocate resources to
processes.

[“Per class accounting” on page 421
The AIX accounting system utility lets you collect and report the use of various system resources by user,
group, or WLM class.

Related tasks

[“Resolving overflows in the /var file system” on page 384
Check the following when the /var file system has become full.

Related information
|AIX Version 6.1 Advanced Accounting Subsystem|

Accounting data reports
After the various types of accounting data are collected, the records are processed and converted into
reports.

Accounting commands automatically convert records into scientific notation when numbers become large.
A number is represented in scientific notation in the following format:

98 AIX Version 6.1: Operating system and device management

Basee+Exp
Basee-Exp

which is the number equal to the Base number multiplied by 10 to the +Exp or -Exp power. For example,
the scientific notation 1.345e+9 is equal to 1.345x10°%, or 1,345,000,000. And the scientific notation 1.345e-9
is equal to 1.345x107 or, 0.000000001345.

Related concepts

[“Process accounting data” on page 117
The Accounting system collects data on resource usage for each process as it runs.

Daily accounting reports:
To generate a daily report, use the runacct command.

This command summarizes data into an ASCII file named /var/adm/acct/sum(x)/rprtMMDD. MMDD
specifies the month and day the report is run. The report covers the following:

* Daily report

* Daily Usage report

¢ Daily Command Summary

* Monthly Total Command Summary
* Last Login

Daily report:

Daily accounting reports contain data on connect-time, processes, disk usage, printer usage, and fees to
charge.

The acctmerg command merges raw accounting data on connect-time, processes, disk usage, printer
usage, and fees to charge into daily reports. Called by the runacct command as part of its daily operation,
the acctmerg command produces the following:

/var/adm/acct/nite(x)/dacct
An intermediate report that is produced when one of the input files is full.

/var/adm/acct/sum(x)/tacct
A cumulative total report in format. This file is used by the command to produce
the ASCII monthly summary.

The acctmerg command can convert records between ASCII and binary formats and merge records from
different sources into a single record for each user. For more information about the acctmerg command,

see |acctmerg]|

The first line of the Daily report begins with the start and finish times for the data collected in the report,
a list of system-level events including any existing shutdowns, reboots, and run-level changes. The total
duration is also listed indicating the total number of minutes included within the accounting period
(usually 1440 minutes, if the report is run every 24 hours). The report contains the following information:

Operating system and device management 99

LINE Console, tty, or pty In use

MINUTES Total number of minutes the line was in use

PERCENT Percentage of time in the accounting period that the line was in use
SESS Number of new login sessions started

ON Same as # SESS

OFF Number of logouts plus interrupts made on the line

Daily Usage accounting report:

The Daily Usage report is a summarized report of system usage per user ID during the accounting
period.

Some fields are divided into prime and non-prime time, as defined by the accounting administrator in
the /usr/1ib/acct/holidays directory. The report contains the following information:

UID User ID

LOGIN NAME User name

CPU (PRIME/NPRIME) Total CPU time for all of the user’s processes in minutes

KCORE (PRIME/NPRIME) Total memory used by running processes, in kilobyte-minutes

CONNECT (PRIME/NPRIME) Total connect time (how long the user was logged in) in minutes

DISK BLOCKS Average total amount of disk space used by the user on all filesystems for which
accounting is enabled

FEES Total fees entered with chargefee command

OF PROCS Total number of processes belonging to this user

OF SESS Number of distinct login sessions for this user

DISK SAMPLES Number of times disk samples were run during the accounting period. If no DISK

BLOCKS are owned, the value will be zero

Daily Command Summary accounting report:

The Daily Command Summary report shows each command executed during the accounting period, with
one line per each unique command name.

The table is sorted by TOTAL KCOREMIN (described below), with the first line including the total
information for all commands. The data listed for each command is cumulative for all executions of the
command during the accounting period. The columns in this table include the following information:

COMMAND NAME Command that was executed

NUMBER CMDS Number of times the command executed

TOTAL KCOREMIN Total memory used by running the command, in kilobyte-minutes

TOTAL CPU-MIN Total CPU time used by the command in minutes

TOTAL REAL-MIN Total real time elapsed for the command in minutes

MEAN SIZE-K Mean size of memory used by the command per CPU minute

MEAN CPU-MIN Mean numbr of CPU minutes per execution of the command

HOG FACTOR Measurement of how much the command hogs the CPU while it is active. It is the ratio of TOTAL
CPU-MIN over TOTAL REAL-MIN

CHARS TRNSFD Number of characters transferred by the command with system reads and writes

BLOCKS READ Number of physical block reads and writes performed by the command

Monthly Total Command Summary accounting report:

The Monthly Total Command Summary, created by the monacct command, provides information about
all commands executed since the previous monthly report.

The fields and information mean the same as those in the Daily Command Summary.

Last login:

100 AIX Version 6.1: Operating system and device management

The Last Login report displays two fields for each user ID. The first field is YY-MM-DD and indicates the
most recent login for the specified user. The second field is the name of the user account.

A date field of 00-00-00 indicates that the user ID has never logged in.
Accounting report summary:
You can generate a report that summarizes raw accounting data.

To summarize raw accounting data, use the sa command. This command reads the raw accounting data,
usually collected in the /var/adm/pacct file, and the current usage summary data in the
/var/adm/savacct file, if summary data exists. It combines this information into a new usage summary
report and purges the raw data file to make room for further data collection.

Prerequisites

The sa command requires an input file of raw accounting data such as the pacct file (process accounting
file). To collect raw accounting data, you must have an accounting system set up and running.

Procedure

The purpose of the sa command is to summarize process accounting information and to display or store
that information. The simplest use of the command displays a list of statistics about every process that
has run during the life of the pacct file being read. To produce such a list, type:

/usr/sbin/sa

To summarize the accounting information and merge it into the summary file, type:
/usr/sbin/sa -s

The Eal command offers many additional flags that specify how the accounting information is processed
and displayed. See the sa command description for more information.

Related tasks

[“Setting up an accounting system” on page 109
You can set up an accounting system.

Monthly report:
You can generate a Monthly accounting report.

Called by the cron daemon, the monacct command produces the following:

/var/adm/acct/fiscal A periodic summary report produced from the /var/adm/acct/sum/tacct report by the
monacct command. The monacct command can be configured to run monthly or at the
end of a fiscal period.

Connect-time reports:
Accounting records include login, logout, system-shutdown, and lastlogin records.

The runacct command calls two commands, acctconl and acctcon2, to process the login, logout, and

system-shutdown records that collect in the /var/adm/wtmp file. The acctcon1 command converts these

records into session records and writes them to the /var/adm/acct/nite(x)/Tineuse file. The acctcon2

command then converts the session records into a total accounting record, /var/adm/Togacct, that the

acctmerg command adds to daily reports. For information about these commands, see [runacct} jacctcon1}
ﬁ

and

Operating system and device management 101

If you run the acctcon1 command from the command line, you must include the -1 flag to produce the
line-use report, /var/adm/acct/nite(x)/1ineuse. To produce an overall session report for the accounting
period, /var/adm/acct/nite(x)/reboots, use the acctconl command with the -o flag.

The lastlogin command produces a report that gives the last date on which each user logged in. For
information about the lastlogin command, see

Related concepts

[“Connect-time accounting data” on page 117]
Connect-time data is collected by the init command and the login command.

[“Disk-usage accounting data” on page 118]

Much accounting information is collected as the resources are consumed. The dodisk command, run as
specified by the cron daemon, periodically writes disk-usage records for each user to the
/var/adm/acct/nite(x)/dacct file.

Disk-usage accounting report:

The disk-usage records collected in the /var/adm/acct/nite(x)/dacct file are merged into the daily
accounting reports by the acctmerg command.

For information about the acctmerg command, see [acctmerg
Printer-Usage accounting report:

The ASCII record in the /var/adm/qacct file can be converted to a total accounting record to be added to
the daily report by the acctmerg command.

For information about the acctmerg command, see
Related concepts

[“Printer-usage accounting data” on page 118|
The collection of printer-usage data is a cooperative effort between the enq command and the queuing
daemon.

Fee accounting report:

If you used the chargefee command to charge users for services such as file restores, consulting, or
materials, an ASCII total accounting record is written in the /var/adm/fee file. This file is added to the
daily reports by the acctmerg command.

For information about the chargefee and acctmerg commands, see [chargefee| and jacctmerg]

Related concepts

[“Fee accounting data” on page 119
You can produce an ASCII total accounting record in the /var/adm/fee file.

Fiscal accounting reports:

The Fiscal Accounting Reports generally collected monthly by using the monacct command.

The report is stored in /var/adm/acct/fiscal(x)/fiscrptMM where MM is the month that the monacct
command was executed. This report includes information similar to the daily reports summarized for the
entire month.

Accounting system activity reports:

You can generate a report that shows Accounting system activity.

102 AIX Version 6.1: Operating system and device management

To generate a report on system activity, use the command. This command reads the information in
a total accounting file (tacct file format) and produces formatted output. Total accounting files include
the daily reports on connect time, process time, disk usage, and printer usage.

Prerequisites

The prtacct command requires an input file in the tacct file format. This implies that you have an
accounting system set up and running or that you have run the accounting system in the past.

Procedure

Generate a report on system activity by entering:
prtacct -f Specification -v Heading File

Specification is a comma-separated list of field numbers or ranges used by the command. The
optional -v flag produces verbose output where floating-point numbers are displayed in higher precision
notation. Heading is the title you want to appear on the report and is optional. File is the full path name
of the total accounting file to use for input. You can specify more than one file.

Related tasks

[“Setting up an accounting system” on page 109
You can set up an accounting system.

Greater than eight character username support:

In order to maintain backwards compatibility with all scripts, long username support is not enabled by
default within accounting. Instead, all user IDs are truncated to the first eight characters.

In order to enable long username support, most commands have been given the additional -X flag, which
allows them to accept and output greater than eight-character user IDs (in both ASCII and binary
formats). In addition, when long username support is enabled, commands and scripts will process files in
the /var/adm/acct/sumx, /var/adm/acct/nitex, and /var/adm/acct/fiscalx directories, instead of using
/var/adm/acct/sum, /var/adm/acct/nite, and /var/adm/acct/fiscal.

Accounting commands
The accounting commands function several different ways.

Some commands:

* Collect data or produce reports for a specific type of accounting: connect-time, process, disk usage,
printer usage, or command usage.

* Call other commands. For example, the runacct command, which is usually run automatically by the
cron daemon, calls many of the commands that collect and process accounting data and prepare
reports. To obtain automatic accounting, you must first configure the cron daemon to run the runacct
command. See the crontab command for more information about how to configure the cron daemon to
submit commands at regularly scheduled intervals. For information about these commands, see
frunacct] cron daemon| and [crontab}

* Perform maintenance functions and ensure the integrity of active data files.

¢ Enable members of the adm group to perform occasional tasks, such as displaying specific records, by
entering a command at the keyboard.

* Enable a user to display specific information. There is only one user command, the acctcom command,
which displays process accounting summaries.

Commands that run automatically:

Several commands automatically collect accounting data.

Operating system and device management 103

Several commands usually run by the cron daemon automatically collect accounting data. These
commands are:

runacct
Handles the main daily accounting procedure. Normally initiated by the cron daemon during
non-prime hours, the runacct command calls several other accounting commands to process the
active data files and produce command and resource usage summaries, sorted by user name. It
also calls the acctmerg command to produce daily summary report files, and the ckpacct
command to maintain the integrity of the active data files.

ckpacct
Handles pacct file size. It is advantageous to have several smaller pacct files if you must restart
the runacct procedure after a failure in processing these records. The ckpacct command checks
the size of the /var/adm/pacct active data file, and if the file is larger than 500 blocks, the
command invokes the turnacct switch command to turn off process accounting temporarily. The
data is transferred to a new pacct file, /var/adm/pacct x. (x is an integer that increases each time
a new pacct file is created.) If the number of free disk blocks falls below 500, the ckpacct
command calls the turnacct off command to turn off process accounting.

dodisk
Calls the acctdisk command and either the diskusg command or the acctdusg command to write
disk-usage records to the /var/adm/acct/nite/dacct file. This data is later merged into the daily
reports.

dodisk
Calls the acctdisk command and either the diskusg command or the acctdusg command to write
disk-usage records to the /var/adm/acct/nite/dacct file. This data is later merged into the daily
reports.

monacct
Produces a periodic summary from daily reports.

sal Collects and stores binary data in the /var/adm/sa/sa dd file, where dd is the day of the month.
sa2 Writes a daily report in the/var/adm/sa/sadd file, where dd is the day of the month. The

command removes reports from the /var/adm/sa/sadd file that have been there longer than one
week.

Other commands are run automatically by procedures other than the cron daemon:

startup
When added to the /etc/rc file, the startup command initiates startup procedures for the
accounting system.

shutacct
Records the time accounting was turned off by calling the acctwtmp command to write a line to
/var/adm/wtmp file. It then calls the turnacct off command to turn off process accounting.

Keyboard commands:

A member of the adm group can enter the following commands from the keyboard.

ac Prints connect-time records. This command is provided for compatibility with Berkeley Software
Distribution (BSD) systems.

acctcom
Displays process accounting summaries. This command is also available to users.

acctconl
Displays connect-time summaries. Either the -1 flag or the -o flag must be used.

accton Turns process accounting on and off.

104 AIX Version 6.1: Operating system and device management

chargefee
Charges the user a predetermined fee for units of work performed. The charges are added to the
daily report by the acctmerg command.

fwtmp
Converts files between binary and ASCII formats.

last Displays information about previous logins. This command is provided for compatibility with
BSD systems.

lastcomm
Displays information about the last commands that were executed. This command is provided for
compatibility with BSD systems.

lastlogin
Displays the time each user last logged in.

pac Prepares printer/plotter accounting records. This command is provided for compatibility with
BSD systems.

prctmp
Displays a session record.

prtacct
Displays total accounting files.

sa Summarizes raw accounting information to help manage large volumes of accounting
information. This command is provided for compatibility with BSD systems.

sadc Reports on various local system actions, such as buffer usage, disk and tape I/O activity, TTY
device activity counters, and file access counters.

sar Writes to standard output the contents of selected cumulative activity counters in the operating
system. The sar command reports only on local activities.

time Prints real time, user time, and system time required to run a command.

timex Reports in seconds the elapsed time, user time, and run time.

Related concepts

[“System data collection and reporting” on page 116|
You can set up the system to automatically collect data and generate reports.

Accounting files

The two main accounting directories are the /usr/shin/acct directory, where all the C language
programs and shell procedures needed to run the accounting system are stored, and the /var/adm
directory, which contains the data, report and summary files.

The accounting data files belong to members of the adm group, and all active data files (such as wtmp and
pacct) reside in the adm home directory /var/adm.

Accounting data files:

The following files are in the /var/adm directory.

Operating system and device management 105

/var/adm/diskdiag Diagnostic output during the running of disk accounting programs

/var/adm/dtmp Output from the acctdusg command

/var/adm/fee Output from the chargefee command, in ASCII tacct records

/var/adm/pacct Active process accounting file

/var/adm/wtmp Active process accounting file

/var/adm/Spacct .mmdd Process accounting files for mmdd during the execution of the runacct
command.

Accounting report and summary files:
Some subdirectories are needed before you enable the Accounting system.

Report and summary files reside in a /var/adm/acct subdirectory. You must create the following
subdirectories before the Accounting system is enabled.

/var/adm/acct/nite(x)
Contains files that the runacct command reuses daily

/var/adm/acct/sum(x)
Contains the cumulative summary files that the runacct command updates daily

/var/adm/acct/fiscal(x)
Contains the monthly summary files that the monacct command creates.
Related tasks

[“Setting up an accounting system” on page 109
You can set up an accounting system.

Starting the runacct command for accounting:
You can start the runacct command.

Prerequisites
1. You must have the accounting system installed.

2. You must have root user or adm group authority.

Notes:

1. If you call the command with no parameters, the command assumes that this is the first
time that the command has been run today. Therefore, you need to include the mmdd parameter
when you restart the runacct program, so that the month and day are correct. If you do not
specify a state, the runacct program reads the /var/adm/acct/nite(x)/statefile file to
determine the entry point for processing. To override the /var/adm/acct/nite(x)/statefile file,
specify the desired state on the command line.

2. When you perform the following task, you might need to use the full path name
/usr/sbin/acct/runacct rather than the simple command name, runacct.

Procedure
To start the runacct command, type the following:
nohup runacct 2> \

/var/adm/acct/nite/accterr &

This entry causes the command to ignore all INTR and QUIT signals while it performs background
processing. It redirects all standard error output to the /var/adm/acct/nite/accterr file.

Restarting the runacct command for Accounting:

106 AIX Version 6.1: Operating system and device management

If the runacct command is unsuccessful, you can restart it.

The prerequisites for this procedure are:

* You must have the accounting system installed.

* You must have root user or adm group authority.

Note: The most common reason why the command can fail are because:
* The system goes down.

* The /usr file system runs out of space.

* The /var/adm/wtmp file has records with inconsistent date stamps.

If the runacct command is unsuccessful, do the following:

1.
2.

Check the /var/adm/acct/nite(x)/active mmdd file for error messages.

If both the active file and lock files exist in acct/nite, check the accter‘rl file, where error messages
are redirected when the m daemon calls the runacct command.

Perform any actions needed to eliminate errors.
Restart the runacct command.
To restart the runacct command for a specific date, type the following;:

nohup runacct 0601 2>> \
/var/adm/acct/nite/accterr &

This restarts the runacct program for June 1 (0601). The runacct program reads the
/var/adm/acct/nite/statefile file to find out with which state to begin. All standard error output is
appended to the /var/adm/acct/nite/accterr file.

To restart the runacct program at a specified state, for example, the MERGE state, type the following:

nohup runacct 0601 MERGE 2>> \
/var/adm/acct/nite/accterr &

runacct command files:

The runacct command produces report and summary files.

The following report and summary files, produced by the runacct command, are of particular interest:

/var/adm/acct/nite(x)/1ineuse Contains usage statistics for each terminal line on the system. This report is especially

useful for detecting bad lines. If the ratio between the number of logouts and logins
exceeds about 3 to 1, there is a good possibility that a line is failing.

/var/adm/acct/nite(x)/daytacct Contains the total accounting file for the previous day.

/var/adm/acct/sum(x)/tacct Contains the accumulation of each day’s nite/daytacct file and can be used for billing
purposes. The monacct command restarts the file each month or fiscal period.

/var/adm/acct/sum(x)/cms Contains the accumulation of each day’s command summaries. The monacct command
reads this binary version of the file and purges it. The ASCII version is nite/cms.

/var/adm/acct/sum(x)/daycms Contains the daily command summary. An ASCII version is stored in nite/daycms.

/var/adm/acct/sum(x)/1oginlog Contains a record of the last time each user ID was used.

/var/adm/acct/sum(x)/rprt mmdd This file contains a copy of the daily report saved by the runacct command.

Files in the /var/adm/acct/nite(x) directory:

The following files are in the /var/adm/acct/nite(x) directory.

Operating system and device management 107

active

cms
ctacct.mmdd
ctmp

daycms
daytacct
dacct
accterr
lastdate
Tockl
Tineuse

Tog

Togmmdd
reboots
statefile
tmpwtmp
wtmperror
wtmperrmmdd
wtmp.mmdd

Used by the runacct command to record progress and print warning and error
messages. The file active. mmdd is a copy of the active file made by the runacct
program after it detects an error.

ASCII total command summary used by the [prdaily] command.

Connect total accounting records.

Connect session records.

ASCII daily command summary used by the prdaily command.

Total accounting records for one day.

Disk total accounting records, created by the dodisk command.

Diagnostic output produced during the execution of the runacct command.

Last day the runacct executed, in date +%m%d format.

Used to control serial use of the runacct command.

tty line usage report used by the prdaily command.

Diagnostic output from the acctconl command.

Same as log after the runacct command detects an error.

Contains beginning and ending dates from wtmp, and a listing of system restarts.
Used to record the current state during execution of the runacct command.

wtmp file corrected by the wtmpfix command.

Contains wtmpfix error messages.

Same as wtmperror after the runacct command detects an error.

Contains previous day’s wtmp file. Removed during the cleanup of runacct command.

Files in the /var/adm/acct/sum(x) directory:

The following files are in the /var/adm/acct/sum(x) directory.

cms
cmsprev
daycms
lastlogin
pacct.mmdd

rprtmmdd
tacct
tacctprev
tacctmmdd

Total command summary file for the current fiscal period, in binary format.
Command summary file without the latest update.

Command summary file for the previous day, in binary format.

File created by the lastlogin command.

Concatenated version of all pacct files for mmdd. This file is removed after system startup by the remove
command. For information about the remove command, see

Saved output of the prdaily command.

Cumulative total accounting file for the current fiscal period.
Same as tacct without the latest update.

Total accounting file for mmadd.

Files in the /var/adm/acct/fiscal(x) directory:

The following files are in the /var/adm/acct/fiscal(x) directory.

cms?
fiscrpt?
tacct?

Total command summary file for the fiscal period, specified by ?, in binary format
A report similar to that of the prdaily command for fiscal period, specified by ?, in binary format
Total accounting file for fiscal period, specified by ?, in binary format.

Accounting file formats:

The following table summarizes the accounting file output and formats.

108 AIX Version 6.1: Operating system and device management

wtmp Produces the active process accounting file. The format of the wtmp file is defined in the utmp.h file. For
information about the utmp.h file, see

ctmp Produces connect session records. The format is described in the ctmp.h file.

pacct= Produces active process accounting records. The format of the output is defined in the /usr/include/sys/
acct.h file.

Spacctx* Produces process accounting files for mmdd during the running of the runacct command. The format of these
files is defined in the sys/acct.h file.

daytacct Produces total accounting records for one day. The format of the file is defined in the tacct file format.

sum/tacct Produces binary file that accumulates each day’s command summaries. The format of this file is defined in the
/usr/include/sys/acct.h header file.

ptacct Produces concatenated versions of pacct files. The format of these files are defined in the tacct file.

ctacct Produces connect total accounting records. The output of this file is defined in the tacct file.

cms Produces total accounting command summary used by the prdaily command, in binary format. The ASCII
version is nite/cms.

daycms Daily command summary used by the prdaily command, in binary format. The ASCII version is nite/daycms.

Administering system accounting
There are multiple tasks you can complete for system accounting. These tasks include setting up an
accounting system, showing CPU usage, and displaying accounting processes.

Setting up an accounting system:
You can set up an accounting system.
You must have root authority to complete this procedure.

The information below is an overview of the steps you must take to set up an accounting system. Refer
to the commands and files noted in these steps for more specific information.

1. Use the command to ensure that each file has the correct access permission: read (r) and
write (w) permission for the file owner and group and read (r) permission for others by typing:

/usr/sbin/acct/nulladm wtmp pacct

This provides access to the pacct and wtmp files.

2. Update the /etc/acct/holidays file to include the hours you designate as prime time and to reflect
your holiday schedule for the year.

Note: Comment lines can appear anywhere in the file as long as the first character in the line is an
asterisk (*).

a. To define prime time, fill in the fields on the first data line (the first line that is not a comment),
using a 24-hour clock. This line consists of three 4-digit fields, in the following order:

1) Current year

2) Beginning of prime time (hhmm)

3) End of prime time (hhmm)

Leading blanks are ignored. You can enter midnight as either 0000 or 2400.

For example, to specify the year 2000, with prime time beginning at 8:00 a.m. and ending at 5:00
p-m., enter:

2000 0800 1700

b. To define the company holidays for the yea, fill in the next data line. Each line contains four fields,
in the following order:

1) Day of the year

2) Month
3) Day of the month
4) Description of holiday

Operating system and device management 109

The day-of-the-year field contains the number of the day on which the holiday falls and must be a
number from 1 through 365 (366 on leap year). For example, February 1st is day 32. The other
three fields are for information only and are treated as comments.

A two-line example follows:

1 Jan 1 New Year's Day
332 Nov 28 Thanksgiving Day
3. Turn on process accounting by adding the following line to the /etc/rc file or by deleting the
comment symbol (#) in front of the line if it exists:

/usr/bin/su - adm -c /usr/shin/acct/startup

The startup procedure records the time that accounting was turned on and cleans up the previous
day’s accounting files.

4. Identify each file system you want included in disk accounting by adding the following line to the
stanza for the file system in the /etc/filesystems file:

account = true

5. Specify the data file to use for printer data by adding the following line to the queue stanza in the
/etc/qconfig file:

acctfile = /var/adm/qacct

6. As the adm user, create a /var/adm/acct/nite, a /var/adm/acct/fiscal, a and /var/adm/acct/sum
directory to collect daily and fiscal period records:

su - adm
cd /var/adm/acct
mkdir nite fiscal sum
exit
For long usernames, use the following commands instead:
su - adm
cd /var/adm/acct
mkdir nitex fiscalx sumx
exit
7. Set daily accounting procedures to run automatically by editing the /var/spool/cron/crontabs/adm
file to include the [dodisk} |ckpacct} and frunacct commands. For example:
0 2 * *» 4 /usr/shin/acct/dodisk
5 % x x» * [usr/shin/acct/ckpacct

0 4 = 1-6 /usr/sbin/acct/runacct
2>/var/adm/acct/nite/accterr

For long usernames, add the following lines instead:

0 2 *» = 4 [usr/shin/acct/dodisk -X

5 % % = * Jusr/sbin/acct/ckpacct

0 4 » = 1-6 /usr/sbin/acct/runacct -X
2>/var/adm/acct/nitex/accterr

The first line starts disk accounting at 2:00 a.m. (0 2) each Thursday (4). The second line starts a check
of the integrity of the active data files at 5 minutes past each hour (5 *) every day (*). The third line
runs most accounting procedures and processes active data files at 4:00 a.m. (0 4) every Monday
through Saturday (1-6). If these times do not fit the hours your system operates, adjust your entries.

Note: You must have root user authority to edit the /var/spool/cron/crontabs/adm file.

8. Set the monthly accounting summary to run automatically by including the command in the
/var/spool/cron/crontabs/adm file. For example, type:

1551 % * /usr/sbin/acct/monacct
For long usernames, add the following line instead:
15 5 1 = = /usr/sbin/acct/monacct -X

Be sure to schedule this procedure early enough to finish the report. This example starts the
procedure at 5:15 a.m. on the first day of each month.

110 AIX Version 6.1: Operating system and device management

9. To submit the edited file, type:
crontab /var/spool/cron/crontabs/adm
Related concepts

[“Command for cleaning up file systems automatically” on page 310|
Use the skulker command to clean up file systems by removing unwanted files.

[“System data collection and reporting” on page 116|
You can set up the system to automatically collect data and generate reports.

|”Accounting system activity reports” on page 102|
You can generate a report that shows Accounting system activity.

[“Accounting report summary” on page 101
You can generate a report that summarizes raw accounting data.

Related tasks
[“Restricting users from certain directories” on page 31()

You can release disk space and possibly keep it free by restricting access to directories and monitoring
disk usage.

[“Fixing a user-defined file system overflow” on page 379
Use this procedure to fix an overflowing user-defined file system.

[“Displaying the process time of active Accounting processes” on page 112
You can display the process time for active processes.

[“Displaying the process time of finished Accounting processes” on page 113
You can display the process time of finished processes.

[“Showing the CPU usage for each accounting process” on page 113|
You can display formatted reports about the CPU usage by user with the acctprcl command.

[“Showing the CPU accounting usage for each user” on page 113
You can display a formatted report about the CPU usage by user with a combination of the acctprcl and
prtacct commands.

[“Displaying printer or plotter usage accounting records” on page 115
You can display printer or plotter usage accounting records with the pac command.

Related reference

[“Accounting report and summary files” on page 106]
Some subdirectories are needed before you enable the Accounting system.

Displaying Accounting system activity:
You can display formatted information about system activity with the sar command.
To display system activity statistics, the command must be running.

Note: The typical method of running the sadc command is to place an entry for the command in the
root crontab file. The sal command is a shell-procedure variant of the sadc command designed to work
with the cron daemon.

To display basic system-activity information, type:
sar 2 6

where the first number is the number of seconds between sampling intervals and the second number is
the number of intervals to display. The output of this command looks something like this:
arthurd 2 3 000166021000 05/28/92
14:03:40 %usr %Sys swio %idle
14:03:42 4 9 0 88
14:03:43 1 10 0 89

Operating system and device management 111

14:03:44 1 11 0 88
14:03:45 1 11 0 88
14:03:46 3 9 0 88
14:03:47 2 10 0 88
Average 2 10 0 88

The command also offers a number of flags for displaying an extensive array of system statistics. To
see all available statistics, use the -A flag. For a list of the available statistics and the flags for displaying
them, see the sar command.

Note: To have a daily system activity report written to /var/adm/sa/sadd, include an entry in the root
crontab file for the command. The sa2 command is a shell procedure variant for the sar command
designed to work with the daemon.

Showing Accounting system activity while running a command:

You can display formatted information about system activity while a particular command is running.

The -0 and -p flags of the timex command require that system accounting be turned on.

You can use the [time| and [timex] commands to display formatted information about system activity while
a particular command is running.

To display the elapsed time, user time, and system execution time for a particular command, type:

time CommandName

OR

timex CommandName

To display the total system activity (all the data items reported by the command) during the
execution of a particular command, type:

timex -s CommandName

The timex command has two additional flags. The -o flag reports the total number of blocks read or
written by the command and all of its children. The -p flag lists all of the process accounting records for
a command and all of its children.

Displaying the process time of active Accounting processes:

You can display the process time for active processes.

The acctcom command reads input in the total accounting record form (acct file format). This implies
that you have process accounting turned on or that you have run process accounting in the past.

The ps command offers a number of flags to tailor the information displayed.

To produce a full list of all active processes except kernel processes, type:
ps -ef

You can also display a list of all processes associated with terminals. To do this, type:
ps -al

Both of these usages display a number of columns for each process, including the current CPU time for
the process in minutes and seconds.

112 AIX Version 6.1: Operating system and device management

Related tasks

[“Setting up an accounting system” on page 109
You can set up an accounting system.

Displaying the process time of finished Accounting processes:
You can display the process time of finished processes.

The acctcom command reads input in the total accounting record form (acct file format). This implies
that you have process accounting turned on or that you have run process accounting in the past.

The process accounting functions are turned on with the command, which is typically started at
system initialization with a call in the /etc/rc file. When the process accounting functions are running, a
record is written to /var/adm/pacct (a total accounting record file) for every finished process that includes
the start and stop time for the process. You can display the process time information from a pacct file
with the acctcom command. This command has a number of flags that allow flexibility in specifying
which processes to display.

For example, to see all processes that ran for a minimum number of CPU seconds or longer, use the -O
flag, type:

acctcom -0 2

This displays records for every process that ran for at least 2 seconds. If you do not specify an input file,
the acctcom command reads input from the /var/adm/pacct directory.

Related tasks

[“Setting up an accounting system” on page 109
You can set up an accounting system.

Showing the CPU usage for each accounting process:
You can display formatted reports about the CPU usage by user with the acctprcl command.

The command requires input in the total accounting record form (acct file format). This implies
that you have process accounting turned on or that you have run process accounting in the past.

To produce a formatted report of CPU usage by process, type:
acctprcl </var/adm/pacct
Related tasks

[“Setting up an accounting system” on page 109
You can set up an accounting system.

Showing the CPU accounting usage for each user:

You can display a formatted report about the CPU usage by user with a combination of the acctprcl and
prtacct commands.

Thel|./../../com.ibm.aix.cmmds/doc/aixcmds1/acctprcl.htm| command requires input in the total
accounting record form (acct file format). This implies that you have process accounting turned on or
that you have run process accounting in the past.

To show the CPU usage for each user, perform the following steps:
1. Produce an output file of CPU usage by process by typing:
acctprcl </var/adm/pacct >out.file

Operating system and device management 113

The /var/adm/pacct file is the default output for process accounting records. You might want to
specify an archive pacct file instead.

2. Produce a binary total accounting record file from the output of the previous step by typing:
acctprc2 <out.file >/var/adm/acct/nite/daytacct

Note: The daytacct file is merged with other total accounting records by the acctmerg command to
produce the daily summary record, /var/adm/acct/sum(x)/tacct.

3. Use thel./../../com.ibm.aix.cmds/doc/aixcmds4 / prtacct.htm| command to display a formatted report
of CPU usage summarized by the user by typing:

prtacct </var/adm/acct/nite/daytacct
Related tasks

[“Setting up an accounting system” on page 109
You can set up an accounting system.

Displaying connect time usage for accounting:

You can display the connect time of all users, of individual users, and by individual login with the ac
command.

The ac command extracts login information from the /var/adm/wtmp file, so this file must exist. If the file
has not been created, the following error message is returned:

No /var/adm/wtmp

If the file becomes too full, additional wtmp files are created; you can display connect-time information
from these files by specifying them with the -w flag. For more information about the ac command, see

To display the total connect time for all users, type:

/usr/sbin/acct/ac

This command displays a single decimal number that is the sum total connect time, in minutes, for all
users who have logged in during the life of the current wtmp file.

To display the total connect time for one or more particular users, type:
/usr/sbin/acct/ac Userl User? ...

This command displays a single decimal number that is the sum total connect time, in minutes, for the
user or users you specified for any logins during the life of the current wtmp file.

To display the connect time by individual user plus the total connect time, type:
/usr/sbin/acct/ac -p Userl User2 ...

This command displays as a decimal number for each user specified equal to the total connect time, in
minutes, for that user during the life of the current wtmp file. It also displays a decimal number that is the
sum total connect time for all the users specified. If no user is specified in the command, the list includes
all users who have logged in during the life of the wtmp file.

Displaying disk space utilization for accounting:

You can display disk space utilization information with the acctmerg command.

To display disk space utilization information, the command requires input from a dacct file
(disk accounting). The collection of disk-usage accounting records is performed by the command.

To display disk space utilization information, type:

114 AIX Version 6.1: Operating system and device management

acctmerg -al -2,13 -h </var/adm/acct/nite(x)/dacct

This command displays disk accounting records, which include the number of 1 KB blocks utilized by
each user.

Note: The acctmerg command always reads from standard input and can read up to nine additional files.
If you are not piping input to the command, you must redirect input from one file; the rest of the files
can be specified without redirection.

Displaying printer or plotter usage accounting records:

You can display printer or plotter usage accounting records with the pac command.

 To collect printer usage information, you must have an accounting system set up and running. See
[‘Setting up an accounting system” on page 109 for guidelines.

* The printer or plotter for which you want accounting records must have an acctfile= clause in the
printer stanza of the /etc/qconfig file. The file specified in the acctfile= clause must grant read and
write permissions to the root user or printq group.

¢ If the -s flag of the command is specified, the command rewrites the summary file name by
appending _sum to the path name specified by the acctfile= clause in the /etc/qconfig file. This file
must exist and grant read and write permissions to the root user or printq group.

To display printer usage information for all users of a particular printer, type:
/usr/sbin/pac -PPrinter

If you do not specify a printer, the default printer is named by the PRINTER environment variable. If the
PRINTER variable is not defined, the default is 1p0.

To display printer usage information for particular users of a particular printer, type:
/usr/sbin/pac -PPrinter Userl User2 ...

The command offers other flags for controlling what information gets displayed.
Related tasks

[“Setting up an accounting system” on page 109
You can set up an accounting system.

Updating the holidays file:

The Holidays file is out of date after the last holiday listed has passed or the year has changed. You can
update the Holidays file.

The acctcon1 command (started from the runacct command) sends mail to the root and adm accounts
when the /usr/1ib/acct/holidays file gets out of date.

Update the out-of-date Holidays file by editing the /var/adm/acct/holidays file to differentiate between
prime and nonprime time.

Prime time is assumed to be the period when your system is most active, such as workdays. Saturdays
and Sundays are always nonprime times for the accounting system, as are any holidays that you list.

The holidays file contains three types of entries: comments, the year and prime-time period, and a list of
holidays as in the following example:

* Prime/Non-Prime Time Table for Accounting System
*

* Curr Prime Non-Prime
* Year Start Start

Operating system and device management 115

1992 0830 1700

*

* Day of Calendar Company

* Year Date Holiday

*

* 1 Jan 1 New Year's Day

* 20 Jan 20 Martin Luther King Day
* 46 Feb 15 President's Day

* 143 May 28 Memorial Day

* 186 Jul 3 4th of July

* 248 Sep 7 Labor Day

* 329 Nov 24 Thanksgiving

* 330 Nov 25 Friday after

* 359 Dec 24 Christmas Eve

* 360 Dec 25 Christmas Day

* 361 Dec 26 Day after Christmas

The first noncomment line must specify the current year (as four digits) and the beginning and end of
prime time, also as four digits each. The concept of prime and nonprime time only affects the way that
the accounting programs process the accounting records.

If the list of holidays is too long, the acctconl command generates an error, and you will need to shorten
your list. You are safe with 20 or fewer holidays. If you want to add more holidays, just edit the holidays
file each month.

Collecting accounting data
Once you have setup system accounting you will want to start collecting and processing the different
type of accounting data.

System data collection and reporting:
You can set up the system to automatically collect data and generate reports.

For data to be collected automatically, a member of the adm group must have been setup as an
accounting system. The accounting system setup enables the cron daemon to run the commands that
generate data on:

¢ The amount of time each user spends logged in to the system
* Usage of the processing unit, memory, and 1/O resources

* The amount of disk space occupied by each user’s files

* Usage of printers and plotters

¢ The number of times a specific command is given.

The system writes a record of each session and process after they are completed. These records are
converted into total accounting (tacct) records arranged by user and merged into a daily report.
Periodically, the daily reports are combined to produce totals for the defined fiscal period. Methods for
collecting and reporting the data and the various accounting commands and files are discussed in the
following sections.

Although most of the accounting data is collected and processed automatically, a member of the adm
group can enter certain commands from the keyboard to obtain specific information.

116 AIX Version 6.1: Operating system and device management

Related tasks

[“Setting up an accounting system” on page 109
You can set up an accounting system.

Related reference

[“Keyboard commands” on page 104|
A member of the adm group can enter the following commands from the keyboard.

Connect-time accounting data:
Connect-time data is collected by the init command and the login command.

When you log in, the login program writes a record in the /etc/utmp file. This record includes your user
name, the date and time of the login, and the login port. Commands, such as who, use this file to find
out which users are logged into the various display stations. If the /var/adm/wtmp connect-time
accounting file exists, the login command adds a copy of this login record to it. For information about
the init and login commands, see and

When your login program ends (normally when you log out), the init command records the end of the
session by writing another record in the /var/adm/wtmp file. Logout records differ from login records in
that they have a blank user name. Both the login and logout records have the form described in the
utmp.h file. For information about the utmp.h file, see

The acctwtmp command also writes special entries in the /var/adm/wtmp file concerning system
shutdowns and startups.

Related concepts

[“Connect-time reports” on page 101/
Accounting records include login, logout, system-shutdown, and lastlogin records.

Process accounting data:
The Accounting system collects data on resource usage for each process as it runs.

This data includes:

¢ The user and group numbers under which the process runs

¢ The first eight characters of the name of the command

* A 64-bit numeric key representing the Workload Manager class that the process belongs to
¢ The elapsed time and processor time used by the process

* Memory use

¢ The number of characters transferred

¢ The number of disk blocks read or written on behalf of the process

The accton command records these data in a specified file, usually the /var/adm/pacct file. For more
information about the accton command, see

Related commands are the startup command, the shutacct command, the dodisk command, the ckpacct
command, and the turnacct command. For information about these commands, see [startup) [shutacct,
ldodisld, [ckpacct], and [turnacct]

Related concepts

[“Accounting data reports” on page 99|
After the various types of accounting data are collected, the records are processed and converted into
reports.

Process accounting reports:

Operating system and device management 117

Two commands process the billing-related data that was collected in the /var/adm/pacct or other
specified file.

The acctprcl command translates the user ID into a user name and writes ASCII records containing the
chargeable items (prime and non-prime CPU time, mean memory size, and 1/0O data). The acctprc2
command transforms these records into total accounting records that are added to daily reports by the
acctmerg command. For more information about the acctmerg command, see

Process accounting data also provides information that you can use to monitor system resource usage.
The acctems command summarizes resource use by command name. This provides information on how
many times each command was run, how much processor time and memory was used, and how
intensely the resources were used (also known as the hog factor). The acctems command produces
long-term statistics on system utilization, providing information on total system usage and the frequency
with which commands are used. For more information about the acctcms command, see

The acctcom command handles the same data as the acctems command, but provides detailed
information about each process. You can display all process accounting records or select records of
particular interest. Selection criteria include the load imposed by the process, the time period when the
process ended, the name of the command, the user or group that invoked the process, the name of the
WLM class the proces belonged to, and the port at which the process ran. Unlike other accounting
commands, acctcom can be run by all users. For more information about the acctcom command, see

Disk-usage accounting data:

Much accounting information is collected as the resources are consumed. The dodisk command, run as
specified by the cron daemon, periodically writes disk-usage records for each user to the
/var/adm/acct/nite(x)/dacct file.

To accomplish this, the dodisk command calls other commands. Depending upon the thoroughness of the
accounting search, the diskusg command or the acctdusg command can be used to collect data. The
acctdisk command is used to write a total accounting record. The total accounting record, in turn, is used
by the acctmerg command to prepare the daily accounting report.

The dodisk command charges a user for the links to files found in the user’s login directory and evenly
divides the charge for each file between the links. This distributes the cost of using a file over all who use
it and removes the charges from users when they relinquish access to a file. For more information about
the dodisk command and cron daemon, see [dodisk|and |cron}

Related concepts

[“Connect-time reports” on page 101
Accounting records include login, logout, system-shutdown, and lastlogin records.

Printer-usage accounting data:

The collection of printer-usage data is a cooperative effort between the enq command and the queuing
daemon.

The enq command enqueues the user name, job number, and the name of the file to be printed. After the
file is printed, the qdaemon command writes an ASCII record to a file, usually the /var/adm/qacct file,
containing the user name, user number, and the number of pages printed. You can sort these records and
convert them to total accounting records. For more information about these commands, see and
-_qdaemon

118 AIX Version 6.1: Operating system and device management

Related concepts

[“Printer-Usage accounting report” on page 102
The ASCII record in the /var/adm/qacct file can be converted to a total accounting record to be added to
the daily report by the acctmerg command.

Fee accounting data:
You can produce an ASCII total accounting record in the /var/adm/fee file.

You can enter the chargefee command to produce an ASCII total accounting record in the /var/adm/fee
file. This file will be added to daily reports by the acctmerg command.

For information about the chargefee and acctmerg commands, see chargefee| and facctmerg}

Related concepts

[“Fee accounting report” on page 102

If you used the chargefee command to charge users for services such as file restores, consulting, or
materials, an ASCII total accounting record is written in the /var/adm/fee file. This file is added to the
daily reports by the acctmerg command.

Troubleshooting system accounting

Use these troubleshooting methods to tackle some of the basic problems that may occur when using
system accounting. If the troubleshooting information does not address your problem, contact your
service representative.

Fixing tacct errors:

If you are using the accounting system to charge users for system resources, the integrity of the
/var/adm/acct/sum/tacct file is quite important. Occasionally, mysterious tacct records appear that
contain negative numbers, duplicate user numbers, or a user number of 65,535. You can fix these
problems.

You must have root user or adm group authority.

To patch a tacct file, perform the following steps:

1. Move to the /var/adm/acct/sum directory by typing:
cd /var/adm/acct/sum

2. Use the command to check the total accounting file, tacctprev, by typing:
prtacct tacctprev

The prtacct command formats and displays the tacctprev file so that you can check connect time,
process time, disk usage, and printer usage.

3. If the tacctprev file looks correct, change the latest .mmdd file from a binary file to an ASCII
file. In the following example, the acctmerg command converts the tacct.mmdd file to an ASCII file
named tacct.new:

acctmerg -v < tacct.mmdd > tacct.new

Note: The command with the -a flag also produces ASCII output. The -v flag produces
more precise notation for floating-point numbers.
The acctmerg command is used to merge the intermediate accounting record reports into a
cumulative total report (tacct). This cumulative total is the source from which the command
produces the ASCII monthly summary report. Since the monacct command procedure removes all the
tacct.mmdd files, you recreate the tacct file by merging these files.

4. Edit the tacct.new file to remove the bad records and write duplicate user number records to another
file by typing:

Operating system and device management 119

acctmerg -i < tacct.new > tacct.mmdd
5. Create the tacct file again by typing:
acctmerg tacctprev < tacct.mmdd > tacct

Fixing wtmp errors:

The /var/adm/wtmp, or "who temp” file, might cause problems in the day-to-day operation of the
accounting system. You can fix wtmp errors.

You must have root user or adm group authority to perform this procedure.

When the date is changed and the system is in multiuser mode, date change records are written to the
/var/adm/wtmp file. When a date change is encountered, the wtmpfix command adjusts the time stamps

in the wtmp records. Some combinations of date changes and sistem restarts may slip past the

command and cause the command to fail and the [runacct{ command to send mail to the root
and adm accounts listing incorrect dates.

To fix wtmp errors, perform the following procedure:
1. Move to the /var/adm/acct/nite directory by typing:
cd /var/adm/acct/nite
2. Convert the binary wtmp file to an ASCII file that you can edit by typing:

fwtmp < wtmp.mmdd > wtmp.new

The command converts wtmp from binary to ASCIIL

3. Edit the ASCII wtmp.new file to delete damaged records or all records from the beginning of the file up

to the needed date change by typing:
vi wtmp.new

4. Convert the ASCII wtmp.new file back to binary format by typing:
fwtmp -ic < wtmp.new > wtmp.mmdd

5. If the wtmp file is beyond repair, use the nulladm command to create an empty wtmp file. This prevents

any charges in the connect time.

nulladm wtmp

The command creates the file specified with read and write permissions for the file owner
and group, and read permissions for other users. It ensures that the file owner and group are adm.

Related tasks

[“Fixing Accounting errors” on page 121
You can correct date and time-stamp inconsistencies.

Fixing incorrect Accounting file permissions:
To use the Accounting system, file ownership and permissions must be correct.
You must have root user or adm group authority to perform this procedure.

The adm administrative account owns the accounting command and scripts, except for
/var/adm/acct/accton which is owned by root.

To fix incorrect Accounting file permissions, perform the following procedure:
1. To check file permissions using the 1s command, type:

120 AIX Version 6.1: Operating system and device management

1s -1 /var/adm/acct

-rws--x--- 1 adm adm 14628 Mar 19 08:11 /var/adm/acct/fiscal
-rws--x--- 1 adm adm 14628 Mar 19 08:11 /var/adm/acct/nite
-rws--x--- 1 adm adm 14628 Mar 19 08:11 /var/adm/acct/sum

Adjust file permissions with the chown command, if necessary. The permissions are 755 (all
permissions for owner and read and execute permissions for all others). Also, the directory itself
should be write-protected from others. For example:

a. Move to the /var/adm/acct directory by typing:
cd /var/adm/acct

b. Change the ownership for the sum, nite, and fiscal directories to adm group authority by typing:
chown adm sum/* nite/* fiscal/x

To prevent tampering by users trying to avoid charges, deny write permission for others on these
files. Change the accton command group owner to adm, and permissions to 710, that is, no
permissions for others. Processes owned by adm can execute the accton command, but ordinary
users cannot.
The /var/adm/wtmp file must also be owned by adm. If /var/adm/wtmp is owned by root, you will see
the following message during startup:

/var/adm/acct/startup: /var/adm/wtmp: Permission denied

To correct the ownership of /var/adm/wtmp, change ownership to the adm group by typing the
following command:

chown adm /var/adm/wtmp

Fixing Accounting errors:

You can correct date and time-stamp inconsistencies.

You must have root user or adm group authority to perform this procedure.

Processing the /var/adm/wtmp file might produce some warnings mailed to root. The wtmp file contains
information collected by /etc/init and /bin/Togin and is used by accounting scripts primarily for
calculating connect time (the length of time a user is logged in). Unfortunately, date changes confuse the
program that processes the wtmp file. As a result, the runacct command sends mail to root and adm
complaining of any errors after a date change since the last time accounting was run.

1.

Determine if you received any errors. The acctconl command outputs error messages that are mailed
to adm and root by the runacct command. For example, if the acctcon1 command stumbles after a
date change and fails to collect connect times, adm might get mail like the following mail message:
Mon Jan 6 11:58:40 CST 1992

acctconl: bad times: old: Tue Jan 7 00:57:14 1992

new: Mon Jan 6 11:57:59 1992

acctconl: bad times: old: Tue Jan 7 00:57:14 1992

new: Mon Jan 6 11:57:59 1992

acctconl: bad times: old: Tue Jan 7 00:57:14 1992

new: Mon Jan 6 11:57:59 1992

Adjust the wtmp file by typing:

/usr/sbin/acct/wtmpfix wtmp

The wtmpfix command examines the wtmp file for date and time-stamp inconsistencies and corrects
problems that could make acctconl fail. However, some date changes slip by wtmpfix.

Run accounting right before shutdown or immediately after startup. Using the runacct command at
these times minimizes the number of entries with bad times. The runacct command continues to send
mail to the root and adm accounts, until you edit the runacct script, find the WTMPFIX section, and
comment out the line where the file log gets mailed to the root and adm accounts.

Operating system and device management 121

Related tasks

[“Fixing wtmp errors” on page 120|

The /var/adm/wtmp, or "who temp” file, might cause problems in the day-to-day operation of the
accounting system. You can fix wtmp errors.

Accounting errors encountered when running the runacct command:
You might encounter errors when running the runacct command.
Note: You must have root user or adm group authority to run the runacct command.

The runacct command processes files that are often very large. The procedure involves several passes
through certain files and consumes considerable system resources while it is taking place. Since the
runacct command consumes considerable resources, it is normally run early in the morning when it can
take over the machine and not disturb anyone.

The runacct command is a script divided into different stages. The stages allow you to restart the
command where it stopped, without having to rerun the entire script.

When the runacct encounters problems, it sends error messages to different destinations depending on
where the error occurred. Usually it sends a date and a message to the console directing you to look in
the activeMMDD file (such as active0621 for June 21st) which is in the /usr/adm/acct/nite directory.
When the runacct command aborts, it moves the entire active file to activeMMDD and appends a
message describing the problem.

Review the following error message tables for errors that you might encounter when running the runacct
command.

Note:

* The abbreviation MMDD stands for the month and day, such as 0102 for January 2. For example, a
fatal error during the CONNECT1 process on January 2 creates the file active0102 containing the error
message.

¢ The abbreviation "SE message” stands for the standard error message such as:
wxxxkkkkk ACCT ERRORS : see activeQl0Z sk

Preliminary State and Error Messages from the runnacct Command

State Command Fatal? Error Message Destinations

pre runacct yes * 2 CRONS or ACCT console, mail, active
PROBLEMS +* ERROR:
Tocks found, run
aborted

pre runacct yes runacct: Insufficient |console, mail, active
space in /usr (nnn
blks); Terminating
procedure

pre runacct yes SE message; ERROR: console, mail,
acctg already run for |activeMMDD
'date': check lastdate

pre runacct no * SYSTEM ACCOUNTING console
STARTED =
pre runacct no restarting acctg for console active, console

'date' at STATE

pre runacct no restarting acctg for active
'date' at state
(argument $2) previous
state was STATE

122 AIX Version 6.1: Operating system and device management

Preliminary State and Error Messages from the runnacct Command

State Command Fatal? Error Message Destinations
pre runacct yes SE message; Error: console, mail,
runacct called with activeMMDD
invalid arguments
States and Error Messages from the runacct Command
State Command Fatal? Error Message Destinations
SETUP runacct no 1s -1 fee pacct* active
/var/adm/wtmp
SETUP runacct yes SE message; ERROR: console, mail, activeMMDD
turnacct switch
returned rc=error
SETUP runacct yes SE message; ERROR: activeMMDD
SpacctMMDD already
exists file setups
probably already run
SETUP runacct yes SE message; ERROR: console, mail, activeMMDD
wtmpMMDD already
exists: run setup
manually
WTMPFIX wtmpfix no SE message; ERROR: activeMMDD,
wtmpfix errors see wtmperrorMMDD
xtmperrorMMDD
WTMPFIX wtmpfix no wtmp processing active
complete
CONNECT1 acctconl no SE message; (errors console, mail, activeMMDD
from acctconl log)
CONNECT2 acctcon2 no connect acctg complete |active
PROCESS runacct no WARNING: accounting active
already run for
pacctN
PROCESS acctprcl acctpre2 no process acctg complete |active
for SpacctNMMDD
PROCESS runacct no all process actg active
complete for date
MERGE acctmerg no tacct merge to create |active
dayacct complete
FEES acctmerg no merged fees OR no fees |active
DISK acctmerg no merged disk records OR |active
no disk records
MERGEACCT acctmerg no WARNING: recreating active
sum/tacct
MERGEACCT acctmerg no updated sum/tacct active
CMS runacct no WARNING: recreating active
sum/cms
CMS acctcms no command summaries active
complete
CLEANUP runacct no system accounting active
completed at 'date'
CLEANUP runacct no *SYSTEM ACCOUNTING console
COMPLETED*
<wrong> runacct yes SE message; ERROR: console, mail, activeMMDD

invalid state, check
STATE

Operating system and device management

123

Note: The label <wrong> in the previous table does not represent a state, but rather a state other than the
correct state that was written in the state file /usr/adm/acct/nite/statefile.

Summary of Message Destinations

Destination Description

console The /dev/console device

mail Message mailed to root and adm accounts

active The /usr/adm/acct/nite/active file

activeMMDD The /usr/adm/acct/nite/activeMMDD file
wtmperrMMDD The /usr/adm/acct/nite/wtmperrorMMDD file
STATE Current state in /usr/adm/acct/nite/statefile file
fd2log Any other error messages

System Resource Controller

The System Resource Controller (SRC) provides a set of commands and subroutines to make it easier for
the system manager and programmer to create and control subsystems.

A subsystem is any program or process or set of programs or processes that is usually capable of
operating independently or with a controlling system. A subsystem is designed as a unit to provide a
designated function.

The SRC was designed to minimize the need for operator intervention. It provides a mechanism to
control subsystem processes using a common command line and the C interface. This mechanism
includes the following:

 Consistent user interface for start, stop, and status inquiries

* Logging of the abnormal termination of subsystems

* Notification program called at the abnormal system termination of related processes
* Tracing of a subsystem, a group of subsystems, or a subserver

* Support for control of operations on a remote system

* Refreshing of a subsystem (such as after a configuration data change).

The SRC is useful if you want a common way to start, stop, and collect status information on processes.

Related concepts

[“Introduction to AIX for BSD system managers” on page 258|
The following are tips to help Berkeley Software Distribution (BSD) system managers get started
managing AIX.

Subsystem components
The following are the properties and components of a subsystem.

A subsystem can have one or more of the following properties:

* Is known to the system by name

* Requires a more complex execution environment than a subroutine or nonprivileged program

* Includes application programs and libraries as well as subsystem code

* Controls resources that can be started and stopped by name

* Requires notification if a related process is unsuccessful to perform cleanup or to recover resources
* Requires more operational control than a simple daemon process

* Needs to be controlled by a remote operator

* Implements subservers to manage specific resources

124 AIX Version 6.1: Operating system and device management

* Does not put itself in the background.

A few subsystem examples are ypserv, ntsd, qdaemon, inetd, syslogd, and sendmail.
Note: See each specific subsystem for details of its SRC capabilities.

Use the -a command to list active and inactive subsystems on your system.

The following defines subsystem groups and subservers:
Subsystem Group

A subsystem group is a group of any specified subsystems. Grouping subsystems together allows
the control of several subsystems at one time. A few subsystem group examples are TCP/IP, SNA
Services, Network Information System (NIS), and Network File Systems (NFS).

Subserver

A subserver is a program or process that belongs to a subsystem. A subsystem can have multiple
subservers and is responsible for starting, stopping, and providing status of subservers.
Subservers can be defined only for a subsystem with a communication type of IPC message
queues and sockets. Subsystems using signal communications do not support subservers.

Subservers are started when their parent subsystems are started. If you try to start a subserver
and its parent subsystem is not active, the startsrc command starts the subsystem as well.

SRC hierarchy

The System Resource Controller hierarchy begins with the operating system followed by a subsystem
group (such as tcpip), which contains a subsystem (such as the inetd daemon), which in turn can own
several subservers (such as the ftp daemon and the finger command).

SRC administration commands
You can administer SRC from the command line.

The SRC administration commands are:

|srcmstr daemon Starts the System Resource Controller

startsrc| command Starts a subsystem, subsystem group, or subserver

stopsrc|command Stops a subsystem, subsystem group, or subserver

refresh| command Refreshes a subsystem

traceson| command Turns on tracing of a subsystem, a group of subsystems, or a subserver
tracesofé command Turns off tracing of a subsystem, a group of subsystems, or a subserver
command Gets status on a subsystem.

Starting the System Resource Controller
The System Resource Controller (SRC) is started during system initialization with a record for the
/usr/sbin/srcmstr daemon in the /etc/inittab file.

The following are the prerequisites for starting the SRC:
* Reading and writing the /etc/inittab file requires root user authority.

* The command requires root user authority.
* The daemon record must exist in the /etc/inittab file.

The default /etc/inittab file already contains such a record, so this procedure might be unnecessary. You

can also start the SRC from the command line, a profile, or a shell script, but there are several reasons for

starting it during initialization:

* Starting the SRC from the /etc/inittab file allows the init command to restart the SRC if it stops for
any reason.

Operating system and device management 125

* The SRC is designed to simplify and reduce the amount of operator intervention required to control
subsystems. Starting the SRC from any source other than the /etc/inittab file is counterproductive to
that goal.

¢ The default /etc/inittab file contains a record for starting the print scheduling subsystem (qdaemon)
with the startsrc command. Typical installations have other subsystems started with startsrc commands
in the /etc/inittab file as well. Because thecommand requires the SRC be running, removing
the sremstr daemon from the /etc/inittab file causes these startsrc commands to fail.

Note: This procedure is necessary only if the /etc/inittab file does not already contain a record for the
sremstr daemon.

1. Make a record for the srcmstr daemon in the /etc/inittab file using the mkitab command. For
example, to make a record identical to the one that appears in the default /etc/inittab file, type:

mkitab -i fbcheck srcmstr:2:respawn:/usr/shin/srcmstr

The -i fbcheck flag ensures that the record is inserted before all subsystems records.
2. Tell the init command to reprocess the /etc/inittab file by typing:

telinit q

When init revisits the /etc/inittab file, it processes the newly entered record for the srcmstr daemon
and starts the SRC.

Related concepts

[“Subsystem control” on page 128

The traceson command can be used to turn on, and the traceoff command can be used to turn off,
tracing of a System Resource Controller (SRC) resource such as a subsystem, a group of subsystems, or a
subserver.

Related tasks
[“Refreshing a subsystem or subsystem group” on page 127]

Use the refresh command to tell a System Resource Controller (SRC) resource such as a subsystem or a
group of subsystems to refresh itself.

Starting or stopping a subsystem, subsystem group, or subserver

Use the startsrc command to start a System Resource Controller (SRC) resource such as a subsystem, a
group of subsystems, or a subserver. Use the stopsrc command to stop an SRC resource such as a
subsystem, a group of subsystems, or a subserver.

The following are the prerequisites for starting or stopping a subsystem, subsystem group, or subserver:

* To start or stop an SRC resource, the SRC must be running. The SRC is normally started during system
initialization. The default /etc/inittab file, which determines what processes are started during
initialization, contains a record for the srcmstr daemon (the SRC). To see if the SRC is running, type ps
-A and look for a process named srcmstr.

* The user or process starting an SRC resource must have root user authority. The process that initializes
the system (init command) has root user authority.

¢ The user or process stopping an SRC resource must have root user authority.

The command can be used:

* From the /etc/inittab file so the resource is started during system initialization
* From the command line
+ With SMIT.

When you start a subsystem group, all of its subsystems are also started. When you start a subsystem, all

of its subservers are also started. When you start a subserver, its parent subsystem is also started if it is
not already running.

126 AIX Version 6.1: Operating system and device management

When you stop a subsystem, all its subservers are also stopped. However, when you stop a subserver, the
state of its parent subsystem is not changed.

Both the startsrc and 'stoﬁsra commands contain flags that allow requests to be made on local or remote
hosts. See the |srcmstrl command for the configuration requirements to support remote SRC requests.

Starting/Stopping a Subsystem Tasks

Task SMIT Fast Path Command or File

Start a Subsystem smit startssys /bin/startsrc -s SubsystemName OR edit
/etc/inittab

Stop a Subsystem smit stopssys /bi nubsystemName

Displaying status of a subsystem or subsystems
Use the 1Issrc command to display the status of a System Resource Controller (SRC) resource such as a
subsystem, a group of subsystems, or a subserver.

All subsystems can return a short status report that includes which group the subsystem belongs to,
whether the subsystem is active, and what its process ID (PID) is. If a subsystem does not use the signals
communication method, it can be programmed to return a long status report containing additional status

information.

The Issrc command provides flags and parameters for specifying the subsystem by name or PID, for
listing all subsystems, for requesting a short or long status report, and for requesting the status of SRC

resources either locally or on remote hosts.

See the sremstr command for the configuration requirements to support remote SRC requests.

Displaying the Status of Subsystems Tasks

Task SMIT Fast Path Command or File

Display the status of a subsystem (long format) smit gssys @ -1 -s SubsystemName
Display the status of all subsystems smit lsssys @ -a

Display the status of all subsystems on a particular host -hHostName -a

Refreshing a subsystem or subsystem group
Use the refresh command to tell a System Resource Controller (SRC) resource such as a subsystem or a

group of subsystems to refresh itself.

The following are the prerequisites for refreshing a subsystem or subsystem group:

e The SRC must be running.

* The resource you want to refresh must not use the signals communications method.

* The resource you want to refresh must be programmed to respond to the refresh request.

The refresh command provides flags and parameters for specifying the subsystem by name or PID. You

can also use it to request a subsystem or group of subsystems be refreshed, either locally or on remote
hosts. See the sremstr command for the configuration requirements to support remote SRC requests.

Operating system and device management 127

Refreshing a Subsystem or Subsystem Group

Task SMIT Fast Path Command or File
Refresh a Subsystem smit refresh [refresh|-s Subsystem

Related tasks

[“Starting the System Resource Controller” on page 125

The System Resource Controller (SRC) is started during system initialization with a record for the
/usr/sbin/srcmstr daemon in the /etc/inittab file.

Subsystem control

The traceson command can be used to turn on, and the traceoff command can be used to turn off,
tracing of a System Resource Controller (SRC) resource such as a subsystem, a group of subsystems, or a
subserver.

Use the command to turn on tracing of a System Resource Controller (SRC) resource such as a
subsystem, a group of subsystems, or a subserver.

Use the command to turn off tracing of a System Resource Controller (SRC) resource such as a
subsystem, a group of subsystems, or a subserver.

The traceson and traceoff commands can be used to remotely turn on or turn off tracing on a specific
host. See the sremstr command for the configuration requirements for supporting remote SRC requests.

Prerequisites

* To turn the tracing of an SRC resource either on or off , the SRC must be running.

¢ The resource you want to trace must not use the signals communications method.

* The resource you want to trace must be programmed to respond to the trace request.

Turning On/Off Subsystem, Subsystem Group, or Subserver Tasks

Task SMIT Fast Path Command or File

Turn on Subsystem Tracing (short format) | smit tracessyson [traceson| -s Subsystem
Turn on Subsystem Tracing (long format) | smit tracessyson -1 -s Subsystem
Turn off Subsystem Tracing smit tracessysoff -s Subsystem

Related tasks

[“Starting the System Resource Controller” on page 125|
The System Resource Controller (SRC) is started during system initialization with a record for the
/usr/sbin/srcmstr daemon in the /etc/inittab file.

Operating system files

Files are used for all input and output (I/O) of information in the operating system, to standardize access
to both software and hardware.

Input occurs when the contents of a file is modified or written to. Output occurs when the contents of one
file is read or transferred to another file. For example, to create a printed copy of a file, the system reads
the information from the text file and writes that information to the file representing the printer.

Types of files
The types of files recognized by the system are either regular, directory, or special. However, the

operating system uses many variations of these basic types.

The following basic types of files exist:

128 AIX Version 6.1: Operating system and device management

regular Stores data (text, binary, and executable)
directory Contains information used to access other files
special Defines a FIFO (first-in, first-out) pipe file or a physical device

All file types recognized by the system fall into one of these categories. However, the operating system
uses many variations of these basic types.

Regular files

Regular files are the most common files and are used to contain data. Regular files are in the
form of text files or binary files:

Text files

Text files are regular files that contain information stored in ASCII format text and are
readable by the user. You can display and print these files. The lines of a text file must
not contain NUL characters, and none can exceed {LINE_MAX} bytes in length, including the
newline character.

The term text file does not prevent the inclusion of control or other nonprintable
characters (other than NUL). Therefore, standard utilities that list text files as inputs or
outputs are either able to process the special characters or they explicitly describe their
limitations within their individual sections.

Binary files

Binary files are regular files that contain information readable by the computer. Binary
files might be executable files that instruct the system to accomplish a job. Commands
and programs are stored in executable, binary files. Special compiling programs translate
ASCII text into binary code.

Text and binary files differ only in that text files have lines of less than {LINE_MAX} bytes,
with no NUL characters, each terminated by a newline character.

Directory files

Directory files contain information that the system needs to access all types of files, but directory
files do not contain the actual file data. As a result, directories occupy less space than a regular
file and give the file system structure flexibility and depth. Each directory entry represents either
a file or a subdirectory. Each entry contains the name of the file and the file’s index node
reference number (i-node number). The i-node number points to the unique index node assigned to
the file. The i-node number describes the location of the data associated with the file. Directories
are created and controlled by a separate set of commands.

Special files

Special files define devices for the system or are temporary files created by processes. The basic
types of special files are FIFO (first-in, first-out), block, and character. FIFO files are also called
pipes. Pipes are created by one process to temporarily allow communication with another process.
These files cease to exist when the first process finishes. Block and character files define devices.

Every file has a set of permissions (called access modes) that determine who can read, modify, or
execute the file.

Related concepts

[“File and directory access modes” on page 233|

Every file has an owner. For new files, the user who creates the file is the owner of that file. The owner
assigns an access mode to the file. Access modes grant other system users permission to read, modify, or
execute the file. Only the file’s owner or users with root authority can change the access mode of a file.

File naming conventions:

Operating system and device management 129

The name of each file must be unique within the directory where it is stored. This ensures that the file
also has a unique path name in the file system.

File naming guidelines are:
* A file name can be up to 255 characters long and can contain letters, numbers, and underscores.

* The operating system is case-sensitive, which means it distinguishes between uppercase and lowercase
letters in file names. Therefore, FILEA, Filea, and filea are three distinct file names, even if they reside
in the same directory.

* File names should be as descriptive and meaningful as possible.
* Directories follow the same naming conventions as files.

¢ Certain characters have special meaning to the operating system. Avoid using these characters when
you are naming files. These characters include the following:

JN" U x s -2 [()™ {)&t >4#0&| space tab newline

* A file name is hidden from a normal directory listing if it begins with a dot (.). When the 1s command
is entered with the -a flag, the hidden files are listed along with regular files and directories.

File path names:

The path name for each file and directory in the file system consists of the names of every directory that
precedes it in the tree structure.

Because all paths in a file system originate from the /(root) directory, each file in the file system has a
unique relationship to the root directory, known as the absolute path name. Absolute path names begin
with the slash (/) symbol. For example, the absolute path name of file h could be /B/C/h. Notice that two
files named h can exist in the system. Because the absolute paths to the two files are different, /B/h and
/B/C/h, each file named h has a unique name within the system. Every component of a path name is a
directory except the final component. The final component of a path name can be a file name.

Note: Path names cannot exceed 1023 characters in length.

Pattern matching with wildcards and metacharacters:

Wildcard characters provide a convenient way to specify multiple file names or directory names.

The wildcard characters are asterisk (*) and question mark (?). The metacharacters are open and close
square brackets ([]), hyphen (-), and exclamation mark (!).

Pattern matching using the * wildcard character:
Use the asterisk (*) to match any sequence or string of characters.
The (*) indicates any characters, including no characters.

See the following examples:
* If you have the following files in your directory:
Itest 2test afilel afile2 bfilel file filel filel0 file2 file3

and you want to refer to only the files that begin with file, use:
filex

The files selected would be: file, filel, filel0, file2, and file3.
* To refer to only the files that contain the word file, use:
*filex

130 AIX Version 6.1: Operating system and device management

The files selected would be: afilel, afile2, bfilel, file, filel, filel0, file2, and file3.
Pattern matching using the ? wildcard character:
Use the ? to match any one character.

The ? indicates any single character. See the following examples:
* To refer to only the files that start with file and end with a single character, use:
file?

The files selected would be: filel, file2, file3.

 To refer to only the files that start with file and end with any two characters, use:
file??

The file selected would be: filel®.
Pattern matching using [] shell metacharacters:

Metacharacters offer another type of wildcard notation by enclosing the desired characters within []. It
is like using the ?, but it allows you to choose specific characters to be matched.

The [] also allow you to specify a range of values using the hyphen (-). To specify all the letters in the
alphabet, use [[:alpha:]]. To specify all the lowercase letters in the alphabet, use [[:Tower:]].

See the following examples:
* To refer to only the files that end in 1 or 2, use:
*file[12]

The files selected would be: afilel, afile2, filel, and file2.
* To refer to only the files that start with any number, use:
[0123456789]* or [0-9]=*

The files selected would be: 1test and 2test.
* To refer to only the files that do not begin with an a, use:

[fa]*
The files selected would be: 1test, 2test, bfilel, file, filel, filel0, file2, and file3.
Pattern matching versus regular expressions:

Regular expressions allow you to select specific strings from a set of character strings. The use of regular
expressions is generally associated with text processing.

Regular expressions can represent a wide variety of possible strings. While many regular expressions can
be interpreted differently depending on the current locale, internationalization features provide for

contextual invariance across locales.

See the examples in the following comparison:

Pattern Matching Regular Expression
* LK

? .

[!a] [a]

[abc] [abc]

Operating system and device management 131

[[:alpha:]] [[:alpha:]]
See the command in the AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.

Administering files
There are many ways to work with the files on your system. Usually you create a text file with a text
editor.

The common editors in the UNIX environment are vi and ed. Because several text editors are available,
you can choose an editor you feel comfortable with.

You can also create files by using input and output redirection. You can send the output of a command to
a new file or append it to an existing file.

After creating and modifying files, you might have to copy or move files from one directory to another,
rename files to distinguish different versions of a file, or give different names to the same file. You might
also need to create directories when working on different projects.

Also, you might need to delete certain files. Your directory can quickly get cluttered with files that
contain old or useless information. To release storage space on your system, ensure that you delete files
that are no longer needed.

Related concepts

[“Input and output redirection” on page 278|
The AIX operating system allows you to manipulate the input and output (I/O) of data to and from your
system by using specific I/O commands and symbols.

Deleting files (rm command):
Use the rm command to remove files you no longer need.

The rm command removes the entries for a specified file, group of files, or certain select files from a list
within a directory. User confirmation, read permission, and write permission are not required before a file
is removed when you use the rm command. However, you must have write permission for the directory
containing the file.

The following are examples of how to use the rm command:
* To delete the file named myfile, type the following:
rm myfile
* To delete all the files in the mydir directory, one by one, type the following:

rm =i mydir/*

After each file name displays, type y and press Enter to delete the file. Or to keep the file, just press
Enter.

See the rm| command in the AIX Version 6.1 Commands Reference, Volume 4 for the complete syntax.
Moving and renaming files (mv command):

Use the mv command to move files and directories from one directory to another or to rename a file or
directory. If you move a file or directory to a new directory without specifying a new name, it retains its
original name.

Attention: The mv command can overwrite many existing files unless you specify the -i flag. The -i flag
prompts you to confirm before it overwrites a file. The -f flag does not prompt you. If both the -f and -i

flags are specified in combination, the last flag specified takes precedence.

132 AIX Version 6.1: Operating system and device management

Moving files with mv command

The following are examples of how to use the mv command:
* To move a file to another directory and give it a new name, type the following;:
mv intro manual/chapl

This moves the intro file to the manual/chapl directory. The name intro is removed from the
current directory, and the same file appears as chapl in the manual directory.

* To move a file to another directory, keeping the same name, type the following:
mv chap3 manual

This moves chap3 to manual/chap3.
Renaming files with mv command
Use the mv command to change the name of a file without moving it to another directory.

To rename a file, type the following:
mv appendix apndx.a

This renames the appendix file to apndx.a. If a file named apndx.a already exists, its old contents
are replaced with those of the appendix file.

See the @ command in the AIX Version 6.1 Commands Reference, Volume 3 for the complete
syntax.

Copying files (cp command):

Use the cp command to create a copy of the contents of the file or directory specified by the SourceFile or
SourceDirectory parameters into the file or directory specified by the TargetFile or TargetDirectory
parameters.

If the file specified as the TargetFile exists, the copy writes over the original contents of the file without
warning. If you are copying more than one SourceFile, the target must be a directory.

If a file with the same name exists at the new destination, the copied file overwrites the file at the new
destination. Therefore, it is a good practice to assign a new name for the copy of the file to ensure that a
file of the same name does not exist in the destination directory.

To place a copy of the SourceFile into a directory, specify a path to an existing directory for the
TargetDirectory parameter. Files maintain their respective names when copied to a directory unless you
specify a new file name at the end of the path. The ¢cp command also copies entire directories into other
directories if you specify the -r or -R flags.

You can also copy special-device files using the -R flag. Specifying -R causes the special files to be
re-created under the new path name. Specifying the -r flag causes the cp command to attempt to copy the
special files to regular files.

The following are examples of how to use the cp command:
* To make a copy of a file in the current directory, type the following:
cp prog.c prog.bak

This copies prog.c to prog.bak. If the prog.bak file does not already exist, then the ¢p command
creates it. If it does exist, then the cp command replaces it with a copy of the prog.c file.

* To copy a file in your current directory into another directory, type the following;:
cp jones /home/nick/clients

Operating system and device management 133

This copies the jones file to /home/nick/clients/jones.
To copy all the files in a directory to a new directory, type the following:
cp /home/janet/clients/* /home/nick/customers

This copies only the files in the clients directory to the customers directory.
To copy a specific set of files to another directory, type the following:
cp jones lewis smith /home/nick/clients

This copies the jones, Tewis, and smith files in your current working directory to the
/home/nick/clients directory.

To use pattern-matching characters to copy files, type the following;:
cp programs/*.c .

This copies the files in the programs directory that end with .c to the current directory, indicated by the
single dot (.). You must type a space between the ¢ and the final dot.

See the command in the AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.

Finding files (find command):

Use the find command to recursively search the directory tree for each specified Path, seeking files that
match a Boolean expression written using the terms given in the following text.

The output from the find command depends on the terms specified by the Expression parameter.

The following are examples of how to use the find command:

To list all files in the file system with the name .profile, type the following:

find / -name .profile

This searches the entire file system and writes the complete path names of all files named .profile.
The slash (/) tells the find command to search the /(root) directory and all of its subdirectories.

To save time, limit the search by specifying the directories where you think the files might be.
To list files having a specific permission code of 0600 in the current directory tree, type the following:
find . -perm 0600

This lists the names of the files that have only owner-read and owner-write permission. The dot (.) tells
the find command to search the current directory and its subdirectories. For an explanation of
permission codes, see the chmod command.

To search several directories for files with certain permission codes, type the following:

find manual clients proposals -perm -0600

This lists the names of the files that have owner-read and owner-write permission and possibly other
permissions. The manual, clients, and proposals directories and their subdirectories are searched. In
the previous example, -perm 0600 selects only files with permission codes that match 0600 exactly. In
this example, -perm -0600 selects files with permission codes that allow the accesses indicated by 0600
and other accesses above the 0600 level. This also matches the permission codes 0622 and 2744.

To list all files in the current directory that have been changed during the current 24-hour period, type
the following:

find . -ctime 1

To search for regular files with multiple links, type the following:

find . -type f -links +1

134 AIX Version 6.1: Operating system and device management

This lists the names of the ordinary files (-type f) that have more than one link (-Tinks +1).

Note: Every directory has at least two links: the entry in its parent directory and its own .(dot) entry.
For more information on multiple file links, see the [In|command.

* To search for all files that are exactly 414 bytes in length, type the following:
find . -size 4l4c

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Displaying the file type (file command):

Use the file command to read the files specified by the File or -fFileList parameter, perform a series of
tests on each one, and attempt to classify the files by type. The command then writes the file types to
standard output.

If a file appears to be ASCII, the file command examines the first 512 bytes and determines its language.
If a file does not appear to be ASCII, the file command further attempts to determine whether it is a
binary data file or a text file that contains extended characters.

If the File parameter specifies an executable or object module file and the version number is greater than
0, the file command displays the version stamp.

The file command uses the /etc/magic file to identify files that have a magic number; that is, any file
containing a numeric or string constant that indicates the type.

The following are examples of how to use the file command:
* To display the type of information the file named myfile contains, type the following:
file myfile

This displays the file type of myfile (such as directory, data, ASCII text, C program source, or archive).

* To display the type of each file named in the filenames.1st file, which contains a list of file names,
type the following:

file -f filenames.lst

This displays the type of each file named in the filenames.lst file. Each file name must display on a
separate line.

 To create the filenames.1st file that contains all the file names in the current directory, type the
following:

Ts > filenames.1st

Edit the filenames.Tst file as desired.
See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Commands for displaying file contents (pg, more, page, and cat commands):

The pg, more, and page commands allow you to view the contents of a file and control the speed at
which your files are displayed.

You can also use the cat command to display the contents of one or more files on your screen. Combining
the cat command with the pg command allows you to read the contents of a file one full screen at a time.

You can also display the contents of files by using input and output redirection.

Operating system and device management 135

Related concepts

[“Input and output redirection” on page 278|
The AIX operating system allows you to manipulate the input and output (I/O) of data to and from your
system by using specific I/O commands and symbols.

Using the pg command:

Use the pg command to read the files named in the File parameter and writes them to standard output
one screen at a time.

If you specify hyphen (-) as the File parameter or run the pg command without options, the pg
command reads standard input. Each screen is followed by a prompt. If you press the Enter key, another
screen displays. Subcommands used with the pg command let you review content that has already

passed.

For example, to look at the contents of the file myfile one page at a time, type the following:
pg myfile

See the @ command in the AIX Version 6.1 Commands Reference, Volume 4 for the complete syntax.

Using the more or page commands:

Use the more or page command to display continuous text one screen at a time.

It pauses after each screen and prints the filename and percent completed (for example, myfile (7%)) at
the bottom of the screen. If you then press the Enter key, the more command displays an additional line.

If you press the Spacebar, the more command displays another screen of text.

Note: On some terminal models, the more command clears the screen, instead of scrolling, before
displaying the next screen of text.

For example, to view a file named myfile, type the following:
more myfile

Press the Spacebar to view the next screen.

See the command in theAIX Version 6.1 Commands Reference, Volume 3 for the complete syntax.
cat command:

Use the cat command to read each File parameter in sequence and writes it to standard output.

See the following examples:
* To display the contents of the file notes, type the following:
cat notes

If the file is more than 24 lines long, some of it scrolls off the screen. To list a file one page at a time,
use the pg command.

* To display the contents of the files notes, notes2, and notes3, type the following:
cat notes notesZ notes3

See the|cat| command in the AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.

Finding text strings within files (grep command):

136 AIX Version 6.1: Operating system and device management

Use the grep command to search the specified file for the pattern specified by the Pattern parameter and
writes each matching line to standard output.

The following are examples of how to use the grep command:

* To search in a file named pgm.s for a pattern that contains some of the pattern-matching characters *, »,
2, [1, NG \), \{, and \}, in this case, lines starting with any lowercase or uppercase letter, type the
following:

grep "~[a-zA-Z]" pgm.s

This displays all lines in the pgm.s file that begin with a letter.
* To display all lines in a file named sort.c that do not match a particular pattern, type the following:
grep -v bubble sort.c

This displays all lines that do not contain the word bubble in the sort.c file.
* To display lines in the output of the Is command that match the string staff, type the following;:
1s -1 | grep staff

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Sorting text files (sort command):

Use the sort command to alphabetize or sequence lines in the files specified by the File parameters and
write the result to standard output.

If the File parameter specifies more than one file, the sort command concatenates the files and
alphabetizes them as one file.

Note: The sort command is case-sensitive and orders uppercase letters before lowercase (this behavior is
dependent on the locale).

In the following examples, the contents of the file named names are:

marta
denise
joyce
endrica
melanie

and the contents of the file named states are:

texas
colorado
ohio

* To display the sorted contents of the file named names, type the following:
sort names

The system displays information similar to the following;:

denise
endrica
joyce
marta
melanie

* To display the sorted contents of the names and states files, type the following:
sort names states

The system displays information similar to the following;:

Operating system and device management 137

colorado
denise
endrica
joyce
marta
melanie
ohio
texas

* To replace the original contents of the file named names with its sorted contents, type the following;:
sort -o names names

This replaces the contents of the names file with the same data but in sorted order.
See the command in the AIX Version 6.1 Commands Reference, Volume 5 for the complete syntax.
Comparing files (diff command):
Use the diff command to compare text files. It can compare single files or the contents of directories.

When the diff command is run on regular files, and when it compares text files in different directories,
the diff command tells which lines must be changed in the files so that they match.

The following are examples of how to use the diff command:
¢ To compare two files, type the following;:
diff chapl.bak chapl

This displays the differences between the chapl.bak and chapl files.
* To compare two files while ignoring differences in the amount of white space, type the following:
diff -w prog.c.bak prog.c

If the two files differ only in the number of spaces and tabs between words, the diff -w command
considers the files to be the same.

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Counting words, lines, and bytes in files (wc command):

Use the we command to count the number of lines, words, and bytes in the files specified by the File
parameter.

If a file is not specified for the File parameter, standard input is used. The command writes the results to
standard output and keeps a total count for all named files. If flags are specified, the ordering of the flags
determines the ordering of the output. A word is defined as a string of characters delimited by spaces,
tabs, or newline characters.

When files are specified on the command line, their names are printed along with the counts.

See the following examples:
 To display the line, word, and byte counts of the file named chapl, type the following;:

wc chapl

This displays the number of lines, words, and bytes in the chapl file.
* To display only byte and word counts, type the following:
wc -cw chap*

138 AIX Version 6.1: Operating system and device management

This displays the number of bytes and words in each file where the name starts with chap, and
displays the totals.

See the [wc| command in the AIX Version 6.1 Commands Reference, Volume 6 for the complete syntax.
Displaying the first lines of files (head command):

Use the head command to write to standard output the first few lines of each of the specified files or of
the standard input.

If no flag is specified with the head command, the first 10 lines are displayed by default.

For example, to display the first five lines of the Test file, type the following:
head -5 Test

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Displaying the last lines of files (tail command):

Use the tail command to write the file specified by the File parameter to standard output beginning at a
specified point.

See the following examples:

* To display the last 10 lines of the notes file, type the following:
tail notes

* To specify the number of lines to start reading from the end of the notes file, type the following:
tail -20 notes

* To display the notes file one page at a time, beginning with the 200th byte, type the following:
tail -c +200 notes | pg

* To follow the growth of the file named accounts, type the following:
tail -f accounts

This displays the last 10 lines of the accounts file. The tail command continues to display lines as they
are added to the accounts file. The display continues until you press the (Ctrl-C) key sequence to stop
the display.

See the command in the AIX Version 6.1 Commands Reference, Volume 5 for the complete syntax.
Cutting sections of text files (cut command):

Use the cut command to write selected bytes, characters, or fields from each line of a file to standard
output.

See the following examples:
* To display several fields of each line of a file, type the following:
cut -f1,5 -d: /etc/passwd

This displays the login name and full user name fields of the system password file. These are the first
and fifth fields (-f1,5) separated by colons (-d:).

o If the /etc/passwd file looks like this:

su:*:0:0:User with special privileges:/:/usr/bin/sh
daemon:x:1:1::/etc:
bin:*:2:2::/usr/bin:

Operating system and device management 139

sys:*:3:3::/usr/src:

adm:*:4:4:System Administrator:/var/adm:/usr/bin/sh
pierre:*:200:200:Pierre Harper:/home/pierre:/usr/bin/sh
joan:x:202:200:Joan Brown:/home/joan:/usr/bin/sh

the cut command produces:

su:User with special privileges
daemon:

bin:

Sys:

adm:System Administrator
pierre:Pierre Harper

joan:Joan Brown

See the command in the AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.
Pasting sections of text files (paste command):
Use the paste command to merge the lines of up to 12 files into one file.

See the following examples:
* If you have a file named names that contains the following text:

rachel
jerry
mark
linda
scott

and another file named places that contains the following text:

New York
Austin
Chicago
Boca Raton
Seattle

and another file named dates that contains the following text:

February 5
March 13
June 21
July 16
November 4

To paste the text of the files names, places, and dates together, type the following:
paste names places dates > npd

This creates a file named npd that contains the data from the names file in one column, the places file
in another, and the dates file in a third. The npd file now contains the following:

rachel New York February 5
jerry Austin March 13
mark Chicago June 21
linda Boca Raton July 16
scott Seattle November 4

A tab character separates the name, place, and date on each line. These columns do not align, because
the tab stops are set at every eighth column.

* To separate the columns with a character other than a tab, type the following;:
paste -d"!@" names places dates > npd

140 AIX Version 6.1: Operating system and device management

This alternates ! and @ as the column separators. If the names, places, and dates files are the same as
in example 1, then the npd file contains the following;:

rachel!New York@February 5
jerrylAustin@March 13
mark!Chicago@June 21
linda!Boca Raton@July 16
scott!SeattTe@November 4

* To list the current directory in four columns, type the following:
s | paste - - - -

Each hyphen (-) tells the paste command to create a column containing data read from the standard
input. The first line is put in the first column, the second line in the second column, and so on.

See the command in the AIX Version 6.1 Commands Reference, Volume 4 for the complete syntax.
Numbering lines in text files (nl command):

Use the nl command to read the specified file (standard input by default), numbers the lines in the input,
and writes the numbered lines to standard output.

See the following examples:
¢ To number only the lines that are not blank, type the following:
nl chapl

This displays a numbered listing of chapl, numbering only the lines that are not blank in the body
sections.

¢ To number all lines, type the following:
nl -ba chapl

This numbers all the lines in the file named chapl, including blank lines.
See the command in the AIX Version 6.1 Commands Reference, Volume 4 for the complete syntax.
Removing columns in text files (colrm command):

Use the colrm command to remove specified columns from a file. Input is taken from standard input.
Output is sent to standard output.

If the command is called with one parameter, the columns of each line from the specified column to the
last column are removed. If the command is called with two parameters, the columns from the first
specified column to the second specified column are removed.

Note: Column numbering starts with column 1.

See the following examples:
* To remove columns from the text.fil file, type the following:
colrm 6 < text.fil

If text.fil contains:
123456789

then the colrm command displays:
12345

See the command in the AIX Version 6.1 Commands Reference, Volume 1 for the complete syntax.

Operating system and device management 141

File and directory links

Links are connections between a file name and an index node reference number (i-node number), the
internal representation of a file. Because directory entries contain file names paired with i-node numbers,
every directory entry is a link.

The i-node number actually identifies the file, not the file name. By using links, any i-node number or file
can be known by many different names. For example, i-node number 798 contains a memo regarding
June sales in the Omaha office. Presently, the directory entry for this memo is as follows:

i-node Number File Name
798 memo

Because this information relates to information stored in the sales and omaha directories, linking is used
to share the information where it is needed. Using the In command, links are created to these directories.
Now the file has three file names as follows:

i-node Number File Name

798 memo
798 sales/june
798 omaha/junesales

When you use the pg or cat command to view the contents of any of the three file names, the same
information is displayed. If you edit the contents of the i-node number from any of the three file names,
the contents of the data displayed by all of the file names will reflect any changes.

Types of links:
There are two types of links: hard and symbolic.

Links are created with the In command and are of the following types:

hard link Allows access to the data of a file from a new file name. Hard links ensure the existence of a file. When the
last hard link is removed, the i-node number and its data are deleted. Hard links can be created only between
files that are in the same file system.

symbolic link Allows access to data in other file systems from a new file name. The symbolic link is a special type of file
that contains a path name. When a process encounters a symbolic link, the process may search that path.
Symbolic links do not protect a file from deletion from the file system.

Note: The user who creates a file retains ownership of that file no matter how many links are created.
Only the owner of the file or the root user can set the access mode for that file. However, changes can be
made to the file from a linked file name with the proper access mode.

A file or directory exists as long as there is one hard link to the i-node number for that file. In the long
listing displayed by the Is -1 command, the number of hard links to each file and subdirectory is given.
All hard links are treated equally by the operating system, regardless of which link was created first.

Linking files (In command):

Linking files with the In command is a convenient way to work with the same data as if it were in more
than one place.

Links are created by giving alternate names to the original file. The use of links allows a large file, such

as a database or mailing list, to be shared by several users without making copies of that file. Not only
do links save disk space, but changes made to one file are automatically reflected in all the linked files.

142 AIX Version 6.1: Operating system and device management

The In command links the file designated in the SourceFile parameter to the file designated by the
TargetFile parameter or to the same file name in another directory specified by the TargetDirectory
parameter. By default, the In command creates hard links. To use the In command to create symbolic
links, add the -s flag.

Note: You cannot link files across file systems without using the -s flag.

If you are linking a file to a new name, you can list only one file. If you are linking to a directory, you
can list more than one file.

The TargetFile parameter is optional. If you do not designate a target file, the In command creates a file
in your current directory. The new file inherits the name of the file designated in the SourceFile
parameter.

See the following examples:
* To create a link to a file named chapl, type the following;:
In -f chapl intro

This links chapl to the new name, intro. When the -f flag is used, the file name intro is created if it
does not already exist. If intro does exist, the file is replaced by a link to chapl. Both the chapl and
intro file names refer to the same file.

* To link a file named index to the same name in another directory named manual, type the following:

In index manual

This links index to the new name, manual/index.
* To link several files to names in another directory, type the following:
Tn chap2 jim/chap3 /home/manual

This links chap? to the new name /home/manual/chap2 and jim/chap3 to /home/manual/chap3.
* To use the In command with pattern-matching characters, type the following:

Tn manual/+* .

Note: You must type a space between the asterisk and the period.
This links all files in the manual directory into the current directory, dot (.), giving them the same
names they have in the manual directory.

* To create a symbolic link, type the following:
Tn -s /tmp/toc toc

This creates the symbolic link, toc, in the current directory. The toc file points to the /tmp/toc file. If
the /tmp/toc file exists, the cat toc command lists its contents.

* To achieve identical results without designating the TargetFile parameter, type the following:
In -s /tmp/toc

See the command in the AIX Version 6.1 Commands Reference, Volume 3 for the complete syntax.
Command for removing linked files:

The rm command removes the link from the file name that you indicate.

When one of several hard-linked file names is deleted, the file is not completely deleted because it
remains under the other name. When the last link to an i-node number is removed, the data is removed

as well. The i-node number is then available for reuse by the system.

See the @ command in the AIX Version 6.1 Commands Reference, Volume 3 for the complete syntax.

Operating system and device management 143

DOS files
The AIX operating system allows you to work with DOS files on your system.

Copy to a diskette the DOS files you want to work with. Your system can read these files into a base
operating system directory in the correct format and back onto the diskette in DOS format.

Note: The wildcard characters * and ? (asterisk and question mark) do not work correctly with the
commands discussed in this section (although they do with the base operating system shell). If you do
not specify a file name extension, the file name is matched as if you had specified a blank extension.

Copying DOS files to base operating system files:
Use the dosread command to copy the specified DOS file to the specified base operating system file.

Note: DOS file-naming conventions are used with one exception. Because the backslash (\) character can
have special meaning to the base operating system, use a slash (/) character as the delimiter to specify
subdirectory names in a DOS path name.

See the following examples:

* To copy a text file named chapl.doc from a DOS diskette to the base operating file system, type the
following:

dosread -a chapl.doc chapl

This copies the DOS text file \CHAP1.DOC on the /dev/fd0 default device to the base operating system
file chapl in the current directory.

* To copy a binary file from a DOS diskette to the base operating file system, type the following:
dosread -D/dev/fd® /survey/test.dta /home/fran/testdata

This copies the \SURVEY\TEST.DTA DOS data file on /dev/fd0 to the base operating system file
/home/fran/testdata.

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Copying base operating system files to DOS files:
Use the doswrite command to copy the specified base operating system file to the specified DOS file.

Note: DOS file-naming conventions are used with one exception. Because the backslash (\) character can
have special meaning to the base operating system, use a slash (/) character as the delimiter to specify
subdirectory names in a DOS path name.

See the following examples:

* To copy a text file named chapl from the base operating file system to a DOS diskette, type the
following;:

doswrite -a chapl chapl.doc

This copies the base operating system file chapl in the current directory to the DOS text file \CHAP1.DOC
on /dev/fdo.

* To copy a binary file named /survey/test.dta from the base operating file system to a DOS diskette,
type the following:

doswrite -D/dev/fd0 /home/fran/testdata /survey/test.dta

This copies the base operating system data file /home/fran/testdata to the DOS file \SURVEY\TEST.DTA
on /dev/fdo.

144 AIX Version 6.1: Operating system and device management

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Deleting DOS files:
Use the dosdel command to delete the specified DOS file.

Note: DOS file-naming conventions are used with one exception. Because the backslash (\) character can
have special meaning to the base operating system, use a slash (/) character as the delimiter to specify
subdirectory names in a DOS path name.

The dosdel command converts lowercase characters in the file or directory name to uppercase before it
checks the disk. Because all file names are assumed to be full (not relative) path names, you need not add
the initial slash (/).

For example, to delete a DOS file named file.ext on the default device (/dev/fd0), type the following:
dosdel file.ext

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.
Displaying contents of a DOS directory:
Use the dosdir command to display information about the specified DOS files or directories.

Note: DOS file-naming conventions are used with one exception. Because the backslash (\) character can
have special meaning to the base operating system, use a slash (/) character as the delimiter to specify
subdirectory names in a DOS path name.

The dosdir command converts lowercase characters in the file or directory name to uppercase before it
checks the disk. Because all file names are assumed to be full (not relative) path names, you need not add
the initial / (slash).

For example, to read a directory of the DOS files on /dev/fd0, type the following:
dosdir

The command returns the names of the files and disk-space information, similar to the following.

PG3-25.TXT
PG4-25.TXT
PG5-25.TXT
PG6-25.TXT
Free space: 312320 bytes

See the command in the AIX Version 6.1 Commands Reference, Volume 2 for the complete syntax.

Command summary for files
The following are commands for files, file handling procedures, and DOS files. There is also a list of
commands for linking files and directories.

Operating system and device management 145

Table 3. Commands for files
* Wildcard, matches any characters
? Wildcard, matches any single character

[] Metacharacters, matches enclosed characters.

Table 4. Commands for file handling procedures

Concatenates or displays files
[cmp] Compares two files
colrm Extracts columns from a file
c Copies files
cu Writes out selected bytes, characters, or fields from each line of a file
E Compares text files
[fiid Determines the file type
Finds files with a matching expression

rep Searches a file for a pattern
head Displays the first few lines or bytes of a file or files
morej Displays continuous text one screen at a time on a display screen
m Moves files
g Numbers lines in a file

Formats files to the display

@ Removes (unlinks) files or directories

aste] Merges the lines of several files or subsequent lines in one file

Sorts files, merges files that are already sorted, and checks files to determine if they have been sorted
ail Writes a file to standard output, beginning at a specified point

El

Counts the number of lines, words, and bytes in a file

Table 5. Command for linking files and directories
Links files and directories

E

Table 6. Commands for DOS files

dosdei] Deletes DOS files

[dosdif Lists the directory for DOS files

dosread Copies DOS files to Base Operating System files
doswrite Copies Base Operating System files to DOS files

Operating system shells
Your interface to the operating system is called a shell.

The shell is the outermost layer of the operating system. Shells incorporate a programming language to
control processes and files, as well as to start and control other programs. The shell manages the
interaction between you and the operating system by prompting you for input, interpreting that input for
the operating system, and then handling any resulting output from the operating system.

Shells provide a way for you to communicate with the operating system. This communication is carried
out either interactively (input from the keyboard is acted upon immediately) or as a shell script. A shell
script is a sequence of shell and operating system commands that is stored in a file.

When you log in to the system, the system locates the name of a shell program to execute. After it is
executed, the shell displays a command prompt. This prompt is usually a $ (dollar sign). When you type
a command at the prompt and press the Enter key, the shell evaluates the command and attempts to
carry it out. Depending on your command instructions, the shell writes the command output to the
screen or redirects the output. It then returns the command prompt and waits for you to type another
command.

146 AIX Version 6.1: Operating system and device management

A command line is the line on which you type. It contains the shell prompt. The basic format for each line
is as follows:

$ Command Argument(s)

The shell considers the first word of a command line (up to the first blank space) as the command and all
subsequent words as arguments.

Note: When Tibc.a is moved or renamed, the Killed error message is displayed from the shell because
there is no 1ibc.a file available for the system to load and run the utilities. The command invokes
the recovery shell, which provides an ability to rename 1ibc.a if it is accidently moved.

Related tasks

[“Listing previously entered commands (history command)” on page 73|
Use the history command to list commands that you have previously entered.

Shell concepts
Before you start working with the different types of shells available for AIX you need to understand basic
terminology and features.

Available shells:

The following are the shells that are provided with AIX.

* Korn shell (started with the command)

* Bourne shell (started with the command)

* Restricted shell (a limited version of the Bourne shell, and started with the command)
* POSIX shell (also known as the Korn Shell, and started with the psh command)

* Default shell (started with the @ command)

e C shell (started with the command)

* Trusted shell (a limited version of the Korn shell, and started with the command)

* Remote shell (started with the command)

The login shell refers to the shell that is loaded when you log in to the computer system. Your login shell
is set in the [/etc/passwd|file. The Korn shell is the standard operating system login shell and is
backward-compatible with the Bourne Shell.

The default or standard shell refers to the shell linked to and started with the|/usr/bin/shj command. The

Bourne shell is set up as the default shell and is a subset of the Korn shell.

The /usr/bin/sh command resides as a copy of the Korn shell, which is|/usr/bin/ksh} Therefore, the
Korn shell can be substituted as the default shell. The POSIX shell, which is invoked by the /usr/bin/psh
command, resides as a link to the /usr/bin/sh command.

Related concepts

[“Bourne shell” on page 196
The Bourne shell is an interactive command interpreter and command programming language.

|“Korn shell or POSIX shell commands” on page 189|

The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

Shells terminology:

The terms and definitions in this table are helpful in understanding shells.

Operating system and device management 147

blank

A blank is one of the characters in the blank character class defined in the LC_CTYPE category. In
the POSIX shell, a blank is either a tab or space.

built-in command

A command that the shell executes without searching for it and creating a separate process.

command

A sequence of characters in the syntax of the shell language. The shell reads each command and
carries out the desired action either directly or by invoking separate utilities.

comment

Any word that begins with pound sign (#). The word and all characters that follow it, until the
next newline character, are ignored.

identifier

A sequence of letters, digits, or underscores from the portable character set, starting with a letter or
underscore. The first character of an identifier must not be a digit. Identifiers are used as names for
aliases, functions, and named parameters.

list

A sequence of one or more pipelines separated by one of the following symbols: semicolon (3),
ampersand (&), double ampersand (88), or double bar (||). The list is optionally ended by one of
the following symbols: semicolon (), ampersand (&), or bar ampersand (|&).

; Sequentially processes the preceding pipeline. The shell carries out each command in
turn and waits for the most recent command to complete.

& Asynchronously processes the preceding pipeline. The shell carries out each command in
turn, processing the pipeline in the background without waiting for it to complete.

& Asynchronously processes the preceding pipeline and establishes a two-way pipe to the
parent shell. The shell carries out each command in turn, processing the pipeline in the
background without waiting for it to complete. The parent shell can read from and write
to the standard input and output of the spawned command by using the read -p and
print -p commands. Only one such command can be active at any given time.

&& Processes the list that follows this symbol only if the preceding pipeline returns an exit
value of zero (0).

Il Processes the list that follows this symbol only if the preceding pipeline returns a
nonzero exit value.

The semicolon (;), ampersand (&), and bar ampersand (|&) have a lower priority than the double
ampersand (&%) and double bar (| |). The 3, & and |& symbols have equal priority among
themselves. The 8& and || symbols are equal in priority. One or more newline characters can be
used instead of a semicolon to delimit two commands in a list.

Note: The |& symbol is valid only in the Korn shell.

metacharacter

Each metacharacter has a special meaning to the shell and causes termination of a word unless it is
quoted. Metacharacters are: pipe (|), ampersand (&), semicolon (3), less-than sign (<), greater-than
sign (>), left parenthesis ((), right parenthesis ()), dollar sign ($), backquote (*), backslash (\), right
quote ('), double quotation marks ("), newline character, space character, and tab character. All
characters enclosed between single quotation marks are considered quoted and are interpreted
literally by the shell. The special meaning of metacharacters is retained if not quoted.
(Metacharacters are also known as parser metacharacters in the C shell.)

parameter assignment list

Includes one or more words of the form Identifier=Value in which spaces surrounding the equal sign
(=) must be balanced. That is, leading and trailing blanks, or no blanks, must be used.

Note: In the C shell, the parameter assignment list is of the form setldentifier=Value. The spaces
surrounding the equal sign (=) are required.

148 AIX Version 6.1: Operating system and device management

pipeline A sequence of one or more commands separated by pipe (|). Each command in the pipeline, except
possibly the last command, is run as a separate process. However, the standard output of each
command that is connected by a pipe becomes the standard input of the next command in the
sequence. If a list is enclosed with parentheses, it is carried out as a simple command that operates
in a separate subshell.

If the reserved word ! does not precede the pipeline, the exit status will be the exit status of the
last command specified in the pipeline. Otherwise, the exit status is the logical NOT of the exit status
of the last command. In other words, if the last command returns zero, the exit status will be 1. If
the last command returns greater than zero, the exit status will be zero.

The format for a pipeline is as follows:

[!] commandl [| command2 ...]

Note: Early versions of the Bourne shell used the caret (") to indicate a pipe.

shell variable A name or parameter to which a value is assigned. Assign a variable by typing the variable name,
an equal sign (=), and then the value. The variable name can be substituted for the assigned value
by preceding the variable name with a dollar sign ($). Variables are particularly useful for creating
a short notation for a long path name, such as $HOME for the home directory. A predefined variable
is one whose value is assigned by the shell. A user-defined variable is one whose value is assigned

by a user.
simple command A sequence of optional parameter assignment lists and redirections, in any sequence. They are
optionally followed by commands, words, and redirections. They are terminated by *, |, &, ||, &8,

|8, or a newline character. The command name is passed as parameter 0 (as defined by the exec
subroutine). The value of a simple command is its exit status of zero if it terminates normally or
nonzero if it terminates abnormally. The [sigaction, sigvec, or signal subrouting includes a list of

signal-exit status values.

subshell A shell that is running as a child of the login shell or the current shell.

wildcard character Also known as a pattern-matching character. The shell associates them with assigned values. The
basic wildcards are ?, *, [set], and [!set]. Wildcard characters are particularly useful when
performing file name substitution.

word A sequence of characters that does not contain any blanks. Words are separated by one or more
metacharacters.

Specifying a shell for a script file:

When you run an executable shell script in either the Korn (the POSIX Shell) or Bourne shell, the
commands in the script are carried out under the control of the current shell (the shell from which the
script is started) unless you specify a different shell. When you run an executable shell script in the C
shell, the commands in the script are carried out under the control of the Bourne shell (/usr/bin/bsh)
unless you specify a different shell.

You can run a shell script in a specific shell by including the shell within the shell script.
To run an executable shell script under a specific shell, type #!Path on the first line of the shell script,
and press Enter. The #! characters identify the file type. The Path variable specifies the path name of the

shell from which to run the shell script.

For example, to run the bsh script in the Bourne shell, type the following:

#1/usr/bin/bsh

When you precede a shell script file name with a shell command, the shell specified on the command
line overrides any shell specified within the script file itself. Therefore, typing ksh myfile and pressing
Enter runs the file named myfile under the control of the Korn shell, even if the first line of myfile is
#1/usr/bin/csh.

Shell features:

Operating system and device management 149

There are advantages to using the shell as an interface to the system.

The primary advantages of interfacing to the system through a shell are as follows:
* Wildcard substitution in file names (pattern-matching)

Carries out commands on a group of files by specifying a pattern to match, rather than specifying an
actual file name.

For more information, see:
— [“File name substitution in the Korn shell or POSIX shell” on page 168|
— |“File name substitution in the Bourne shell” on page 199

— [“File name substitution in the C shell” on page 214]

* Background processing

Sets up lengthy tasks to run in the background, freeing the terminal for concurrent interactive
processing.

For more information, see the bg command in the following:
— |“Job control in the Korn shell or POSIX shell” on page 182
— |“C shell built-in commands” on page 221|

Note: The Bourne shell does not support job control.
¢ Command aliasing

Gives an alias name to a command or phrase. When the shell encounters an alias on the command line
or in a shell script, it substitutes the text to which the alias refers.

For more information, see:
- |“Command aliasing in the Korn shell or POSIX shell” on page 195
- [“Alias substitution in the C shell” on page 212|

Note: The Bourne shell does not support command aliasing.
* Command history

Records the commands you enter in a history file. You can use this file to easily access, modify, and
reissue any listed command.

For more information, see the history command in the following;:
— ["Korn shell or POSIX shell command history” on page 194
— |“C shell built-in commands” on page 221|

— ["History substitution in the C shell” on page 228]

Note: The Bourne shell does not support command history.
* File name substitution
Automatically produces a list of file names on a command line using pattern-matching characters.
For more information, see:
— [“File name substitution in the Korn shell or POSIX shell” on page 168|
— [“File name substitution in the Bourne shell” on page 199|

— [“File name substitution in the C shell” on page 214]

e Input and output redirection

Redirects input away from the keyboard and redirects output to a file or device other than the
terminal. For example, input to a program can be provided from a file and redirected to the printer or
to another file.

For more information, see:

— [“Input and output redirection in the Korn shell or POSIX shell” on page 170)

— |“Input and output redirection in the Bourne shell” on page 199

150 AIX Version 6.1: Operating system and device management

— ["Input and output redirection in the C shell” on page 231

* Piping
Links any number of commands together to form a complex program. The standard output of one
program becomes the standard input of the next.

For more information, see the pipeline definition in [“Shells terminology” on page 147

* Shell variable substitution
Stores data in user-defined variables and predefined shell variables.
For more information, see:
— |“Parameter substitution in the Korn shell or POSIX shell” on page 167]
— |“Variable substitution in the Bourne shell” on page 207|

— |“Variable substitution in the C shell” on page 213

Related concepts

[“Commands” on page 69|
Some commands can be entered simply by typing one word. It is also possible to combine commands so
that the output from one command becomes the input for another command.

Character classes:
You can use character classes to match file names.

You can use character classes to match file names, as follows:

[[:charclass:]]

This format instructs the system to match any single character belonging to the specified class. The
defined classes correspond to ctype subroutines, as follows:

Character Class Definition

alnum Alphanumeric characters

alpha Uppercase and lowercase letters
blank Space or horizontal tab

cntrl Control characters

digit Digits

graph Graphic characters

lower Lowercase letters

print Printable characters

punct Punctuation characters

space Space, horizontal tab, carriage return, newline, vertical tab, or form-feed character
upper Uppercase characters

xdigit Hexadecimal digits

Restricted shell:

The restricted shell is used to set up login names and execution environments whose capabilities are
more controlled than those of the regular Bourne shell.

The [Rsh|or @ -r command opens the restricted shell. The behavior of these commands is identical to
those of the bsh command, except that the following actions are not allowed:

¢ Changing the directory (with the cd command)

* Setting the value of PATH or SHELL variables

* Specifying path or command names containing a slash (/)
* Redirecting output

Operating system and device management 151

If the restricted shell determines that a command to be run is a shell procedure, it uses the Bourne shell
to run the command. In this way, it is possible to provide a user with shell procedures that access the full
power of the Bourne shell while imposing a limited menu of commands. This situation assumes that the
user does not have write and execute permissions in the same directory.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell runs the script file
identified by the File parameter, including any parameters specified. The script file specified must have
read permission. Any setuid and setgid settings for script files are ignored. The shell then reads the
commands. If either the -c or -s flag is used, do not specify a script file.

When started with the Rsh command, the shell enforces restrictions after interpreting the .profile and
/etc/environment files. Therefore, the writer of the .profile file has complete control over user actions
by performing setup actions and leaving the user in an appropriate directory (probably not the login
directory). An administrator can create a directory of commands in the /usr/rbin directory that the Rsh
command can use by changing the PATH variable to contain the directory. If it is started with the bsh -r
command, the shell applies restrictions when interpreting the .profile files.

When called with the name Rsh, the restricted shell reads the user’s .profile file ($HOME/.profile). It
acts as the regular Bourne shell while doing this, except that an interrupt causes an immediate exit
instead of a return to command level.

Creating and running a shell script:

A shell script is a file that contains one or more commands. Shell scripts provide an easy way to carry out
tedious commands, large or complicated sequences of commands, and routine tasks. When you enter the
name of a shell script file, the system executes the command sequence contained by the file.

You can create a shell script by using a text editor. Your script can contain both operating system
commands and shell built-in commands.

The following steps are general guidelines for writing shell scripts:

1. Using a text editor, create and save a file. You can include any combination of shell and operating
system commands in the shell script file. By convention, shell scripts that are not set up for use by
many users are stored in the $HOME/bin directory.

Note: The operating system does not support the [setuid| or [setgid|subroutines within a shell script.

2. Use the command to allow only the owner to run (or execute) the file. For example, if your
file is named scriptl, type the following:

chmod u=rwx scriptl

3. Type the script name on the command line to run the shell script. To run the scriptl shell script, type
the following:

scriptl

Note: You can run a shell script without making it executable if a shell command (ksh, bsh, or csh)
precedes the shell script file name on the command line. For example, to run a nonexecutable file
named scriptl under the control of the Korn shell, type the following:

ksh scriptl

152 AIX Version 6.1: Operating system and device management

Related concepts

[“Commands” on page 69|

Some commands can be entered simply by typing one word. It is also possible to combine commands so
that the output from one command becomes the input for another command.

Korn shell

The Korn shell (ksh command) is backwardly compatible with the Bourne shell (bsh command) and
contains most of the Bourne shell features as well as several of the best features of the C shell.

Variables set by the Korn shell or POSIX shell:

The following are variables that are set by the shell.

underscore (_)

Indicates initially the absolute path name of the shell or script being executed as passed in the
environment. Subsequently, it is assigned the last argument of the previous command. This
parameter is not set for commands that are asynchronous. This parameter is also used to hold the
name of the matching MAIL file when checking for mail.

ERRNO Specifies a value that is set by the most recently failed subroutine. This value is system-dependent
and is intended for debugging purposes.

LINENO Specifies the line number of the current line within the script or function being executed.

OLDPWD Indicates the previous working directory set by the cd command.

OPTARG Specifies the value of the last option argument processed by the getopts regular built-in command.

OPTIND Specifies index of the last option argument processed by the getopts regular built-in command.

PPID Identifies the process number of the parent of the shell.

PWD Indicates the present working directory set by the cd command.

RANDOM Generates a random integer, uniformly distributed between 0 and 32767. The sequence of random
numbers can be initialized by assigning a numeric value to the RANDOM variable.

REPLY Set by the select statement and by the read regular built-in command when no arguments are
supplied.

SECONDS Specifies the number of seconds since shell invocation is returned. If this variable is assigned a

value, then the value returned upon reference will be the value that was assigned plus the number
of seconds since the assignment.

Variables used by the Korn shell or POSIX shell:

The following are variables that are used by the shell.

CDPATH Indicates the search path for the cd (change directory) command.

COLUMNS Defines the width of the edit window for the shell edit modes and for printing select lists.

EDITOR If the value of this parameter ends in emacs, gmacs, or vi, and the VISUAL variable is not set with the set
special built-in command, then the corresponding option is turned on.

ENV If this variable is set, then parameter substitution is performed on the value to generate the path name of
the script that will be executed when the shell is invoked. This file is typically used for alias and function
definitions. This variable will be ignored for noninteractive shells.

FCEDIT Specifies the default editor name for the fc regular built-in command.

FPATH Specifies the search path for function definitions. This path is searched when a function with the -u flag is

referenced and when a command is not found. If an executable file is found, then it is read and executed
in the current environment.

Operating system and device management 153

HISTFILE

If this variable is set when the shell is invoked, then the value is the path name of the file that will be
used to store the command history.

The initialization process for the history file can be dependent on the system start-up files because some
start-up files can contain commands that effectively preempt the settings the user has specified for
HISTFILE and HISTSIZE. For example, function definition commands are recorded in the history file. If
the system administrator includes function definitions in a system start-up file that is called before the
ENV file or before HISTFILE or HISTSIZE variable is set, the history file is initialized before the user can
influence its characteristics.

HISTSIZE

If this variable is set when the shell is invoked, then the number of previously entered commands that are
accessible by this shell will be greater than or equal to this number. The default is 128 commands for
nonroot users and 512 commands for the root user.

HOME

Indicates the name of your login directory, which becomes the current directory upon completion of a
login. The login program initializes this variable. The cd command uses the value of the SHOME
parameter as its default value. Using this variable rather than an explicit path name in a shell procedure
allows the procedure to be run from a different directory without alterations.

IFS

Specifies IFS (internal field separators), which are normally space, tab, and newline, used to separate
command words that result from command or parameter substitution and for separating words with the
regular built-in command read. The first character of the IFS parameter is used to separate arguments for
the $* substitution.

LANG

Provides a default value for the LC_* variables.

LC_ALL

Overrides the value of the LANG and LC_* variables.

LC_COLLATE

Determines the behavior of range expression within pattern matching.

LC_CTYPE

Defines character classification, case conversion, and other character attributes.

LC_MESSAGES

Determines the language in which messages are written.

LINES

Determines the column length for printing select lists. Select lists print vertically until about two-thirds of
lines specified by the LINES variable are filled.

MAIL

Specifies the file path name used by the mail system to detect the arrival of new mail. If this variable is
set to the name of a mail file and the MAILPATH variable is not set, then the shell informs the user of new
mail in the specified file.

MAILCHECK

Specifies how often (in seconds) the shell checks for changes in the modification time of any of the files
specified by the MAILPATH or MAIL variables. The default value is 600 seconds. When the time has
elapsed, the shell checks before issuing the next prompt.

MAILPATH

Specifies a list of file names separated by colons. If this variable is set, then the shell informs the user of
any modifications to the specified files that have occurred during the period, in seconds, specified by the
MAILCHECK variable. Each file name can be followed by a ? and a message that will be printed. The
message will undergo variable substitution with the $_ variable defined as the name of the file that has
changed. The default message is you have mail in §_.

NLSPATH

Determines the location of message catalogs for the processing of LC_MESSAGES.

PATH

Indicates the search path for commands, which is an ordered list of directory path names separated by
colons. The shell searches these directories in the specified order when it looks for commands. A null
string anywhere in the list represents the current directory.

PS1

Specifies the string to be used as the primary system prompt. The value of this parameter is expanded for
parameter substitution to define the primary prompt string, which is a $ by default. The ! character in the
primary prompt string is replaced by the command number.

PS2

Specifies the value of the secondary prompt string, which is a > by default.

PS3

Specifies the value of the selection prompt string used within a select loop, which is #? by default.

PS4

The value of this variable is expanded for parameter substitution and precedes each line of an execution
trace. If omitted, the execution trace prompt is a +.

SHELL

Specifies the path name of the shell, which is kept in the environment.

154 AIX Version 6.1: Operating system and device management

SHELL PROMPT When used interactively, the shell prompts with the value of the PS1 parameter before reading a
command. If at any time a new line is entered and the shell requires further input to complete a
command, the shell issues the secondary prompt (the value of the PS2 parameter).

TMOUT Specifies the number of seconds a shell waits inactive before exiting. If the TMOUT variable is set to a
value greater than zero (0), the shell exits if a command is not entered within the prescribed number of
seconds after issuing the PS1 prompt. (Note that the shell can be compiled with a maximum boundary
that cannot be exceeded for this value.)

Note: After the timeout period has expired, there is a 60-second pause before the shell exits.

VISUAL If the value of this variable ends in emacs, gmacs, or vi, then the corresponding option is turned on.

The shell gives default values to the PATH, PS1, PS2, MAILCHECK, TMOUT, and IFS parameters, but the
HOME, SHELL, ENV, and MAIL parameters are not set by the shell (although the HOME parameter is set
by the login command).

Command substitution in the Korn shell or POSIX shell:

The Korn Shell, or POSIX Shell, lets you perform command substitution. In command substitution, the
shell executes a specified command in a subshell environment and replaces that command with its
output.

To execute command substitution in the Korn shell or POSIX shell, type the following:

$ (command)

or, for the backquoted version, type the following:
“command”

Note: Although the backquote syntax is accepted by ksh, it is considered obsolete by the X/Open
Portability Guide Issue 4 and POSIX standards. These standards recommend that portable applications
use the $(command) syntax.

The shell expands the command substitution by executing command in a subshell environment and
replacing the command substitution (the text of command plus the enclosing $() or backquotes) with the
standard output of the command, removing sequences of one or more newline characters at the end of
the substitution.

In the following example, the $() surrounding the command indicates that the output of the whoami
command is substituted:

echo My name is: $(whoami)

You can perform the same command substitution with:

echo My name is: “whoami~

The output from both examples for user dee is:

My name is: dee

You can also substitute arithmetic expressions by enclosing them in (). For example, the command:

echo Each hour contains $((60 * 60)) seconds

produces the following result:
Each hour contains 3600 seconds

The Korn shell or POSIX shell removes all trailing newline characters when performing command
substitution. For example, if your current directory contains the filel, file2, and file3 files, the

command:

Operating system and device management 155

echo $(1s)

removes the newline characters and produces the following output:
filel filez file3

To preserve newline characters, insert the substituted command in
echo "§$(1s)"

Arithmetic evaluation in the Korn shell or POSIX shell:
The Korn shell or POSIX shell regular built-in let command enables you to perform integer arithmetic.

Constants are of the form [Base]Number. The Base parameter is a decimal number between 2 and 36
inclusive, representing the arithmetic base. The Number parameter is a number in that base. If you omit
the Base parameter, the shell uses a base of 10.

Arithmetic expressions use the same syntax, precedence, and associativity of expression as the C
programming language. All of the integral operators, other than double plus (++), double hyphen (-),
question mark-colon (?:), and comma (,), are supported. The following table lists valid Korn shell or
POSIX shell operators in decreasing order of precedence:

Operator Definition

- Unary minus

! Logical negation

~

Bitwise negation

* Multiplication

/ Division

% Remainder

+ Addition

- Subtraction

<<, >> Left shift, right shift
<=>= <> == I= Comparison

& Bitwise AND

n Bitwise exclusive OR
| Bitwise OR

& Logical AND

[Logical OR

= %=, [=, &= 4=, -5, <<=, > >=, 8=, "=, |= Assignment

Many arithmetic operators, such as *, &, <, and >, have special meaning to the Korn shell or POSIX shell.
These characters must be quoted. For example, to multiply the current value of y by 5 and reassign the
new value to y, use the expression:

let "y =y = 5"
Enclosing the expression in quotation marks removes the special meaning of the * character.

You can group operations inside let command expressions to force grouping. For example, in the
expression:

let "z =q~* (z - 10)"

the command multiplies g by the reduced value of z.

156 AIX Version 6.1: Operating system and device management

The Korn shell or POSIX shell includes an alternative form of the let command if only a single expression
is to be evaluated. The shell treats commands enclosed in (()) as quoted expressions. Therefore, the
expression:

((x =x/3))

is equivalent to:
Tet "x = x / 3"

Named parameters are referenced by name within an arithmetic expression without using the parameter
substitution syntax. When a named parameter is referenced, its value is evaluated as an arithmetic
expression.

Specify an internal integer representation of a named parameter with the -i flag of the typeset special
built-in command. Using the -i flag, arithmetic evaluation is performed on the value of each assignment
to a named parameter. If you do not specify an arithmetic base, the first assignment to the parameter
determines the arithmetic base. This base is used when parameter substitution occurs.

Related concepts
[“Korn shell or POSIX shell commands” on page 189
The Korn shell is an interactive command interpreter and command programming language. It conforms

to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

[“Parameters in the Korn shell” on page 166|
Korn shell parameters are discussed below.

Field splitting in the Korn shell or POSIX shell:

After performing command substitution, the Korn shell scans the results of substitutions for those field
separator characters found in the IFS (Internal Field Separator) variable. Where such characters are
found, the shell splits the substitutions into distinct arguments.

The shell retains explicit null arguments (""
from parameters that have no values).

or '') and removes implicit null arguments (those resulting

e If the value of IFS is a space, tab, or newline character, or if it is not set, any sequence of space, tab, or
newline characters at the beginning or end of the input will be ignored and any sequence of those
characters within the input will delimit a field. For example, the following input yields two fields,
school and days:

<newline><space><tab>school<tab><tab>days<space>

¢ Otherwise, and if the value of IFS is not null, the following rules apply in sequence. IFS white space is
used to mean any sequence (zero or more instances) of white-space characters that are in the IFS value
(for example, if IFS contains space/comma/tab, any sequence of space and tab characters is considered
IFS white space).

1. IFS white space is ignored at the beginning and end of the input.

2. Each occurrence in the input of an IFS character that is not IFS white space, along with any
adjacent IFS white space, delimits a field.

3. Nonzero length IFS white space delimits a field.
List of Korn shell or POSIX shell special built-in commands:

Special commands are built into the Korn shell and POSIX shell and executed in the shell process.

Operating system and device management 157

: (colon) Expands only arguments.

. (dot) Reads a specified file and then executes the commands.

break Exits from the enclosing for, while, until, or select loop, if one exists.

continuel Resumes the next iteration of the enclosing for, while, until, or select loop.

evall Reads the arguments as input to the shell and executes the resulting command or commands.

exe Executes the command specified by the Argument parameter, instead of this shell, without creating a new
process.

Exits the shell whose exit status is specified by the n parameter.

Marks names for automatic export to the environment of subsequently executed commands.
Equivalent to the exec/usr/bin/newgrp [Group ...] command.

Marks the specified names read-only.

Causes a shell to return to the invoking script.

Unless options or arguments are specified, writes the names and values of all shell variables in the collation
sequence of the current locale.

shift Renames positional parameters.

times| Prints the accumulated user and system times for both the shell and the processes run from the shell.
tra Runs a specified command when the shell receives a specified signal or signals.

typese Sets attributes and values for shell parameters.

unset Unsets the values and attributes of the specified parameters.

Related concepts

[’Korn shell or POSIX shell built-in commands” on page 172|
Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

Korn shell or POSIX shell regular built-in commands:

The following is a list of the Korn shell or POSIX shell regular built-in commands.

Prints a list of aliases to standard output.

bg Puts specified jobs in the background.

cd Changes the current directory to the specified directory or substitutes the current string with the specified string.

echo Writes character strings to standard output.

fc Selects a range of commands from the last HISTSIZE variable command typed at the terminal. Re-executes the
specified command after old-to-new substitution is performed.

fg Brings the specified job to the foreground.

getopts Checks the Argument parameter for legal options.

jobs Lists information for the specified jobs.

Sends the TERM (terminate) signal to specified jobs or processes.

let Evaluates specified arithmetic expressions.

print Prints shell output.

pwd Equivalent to the print -r -$PWD command.

read Takes shell input.

ulimit Sets or displays user process resource limits as defined in the /etc/security/Timits file.

umask Determines file permissions.

Removes the parameters in the list of names from the alias list.

wait Waits for the specified job and terminates.

whence Indicates how each specified name would be interpreted if used as a command name.

For more information, see [“Korn shell or POSIX shell built-in commands” on page 172)

Related concepts

[“Korn shell or POSIX shell built-in commands” on page 172|
Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

Conditional expressions for the Korn shell or POSIX shell:

A conditional expression is used with the [[compound command to test attributes of files and to
compare strings.

158 AIX Version 6.1: Operating system and device management

Word splitting and file name substitution are not performed on words appearing between [[and]].
Each expression is constructed from one or more of the following unary or binary expressions:

-a File

-b File

-c File

-d File

-e File

-f File

-g File

-h File

-k File

-n String
-0 Option
-p File

-r File

-s File

-t FileDescriptor
-u File
-w File

-x File

-z String

-L File

-O File

-G File

-S File

Filel -nt File2

Filel -ot File2

Filel -ef File2

Stringl = String2

Stringl != String2

String = Pattern

String '= Pattern

Stringl < String2

Stringl > String2
Expressionl -eq
Expression2

Expression] -ne
Expression2

Expression1 -1t Expression2
Expression1 -gt Expression2
Expression] -le Expression2
Expressionl -ge
Expression2

True, if the specified file is a symbolic link that points to another file that does exist.
True, if the specified file exists and is a block special file.

True, if the specified file exists and is a character special file.

True, if the specified file exists and is a directory.

True, if the specified file exists.

True, if the specified file exists and is an ordinary file.

True, if the specified file exists and its setgid bit is set.

True, if the specified file exists and is a symbolic link.

True, if the specified file exists and its sticky bit is set.

True, if the length of the specified string is nonzero.

True, if the specified option is on.

True, if the specified file exists and is a FIFO special file or a pipe.

True, if the specified file exists and is readable by the current process.

True, if the specified file exists and has a size greater than 0.

True, if specified file descriptor number is open and associated with a terminal device.
True, if the specified file exists and its setuid bit is set.

True, if the specified file exists and the write bit is on. However, the file will not be writable on a
read-only file system even if this test indicates true.

True, if the specified file exists and the execute flag is on. If the specified file exists and is a directory,
then the current process has permission to search in the directory.

True, if length of the specified string is 0.

True, if the specified file exists and is a symbolic link.

True, if the specified file exists and is owned by the effective user ID of this process.
True, if the specified file exists and its group matches the effective group ID of this process.
True, if the specified file exists and is a socket.

True, if Filel exists and is newer than File2.

True, if Filel exists and is older than File2.

True, if Filel and File2 exist and refer to the same file.

True, if String1 is equal to String2.

True, if Stringl is not equal to String2.

True, if the specified string matches the specified pattern.

True, if the specified string does not match the specified pattern.

True, if Stringl comes before String2 based on the ASCII value of their characters.
True, if Stringl comes after String2 based on the ASCII value of their characters.
True, if Expressionl is equal to Expression2.

True, if Expressionl is not equal to Expression2.

True, if Expression] is less than Expression2.

True, if Expressionl is greater than Expression2.

True, if Expression] is less than or equal to Expression2.
True, if Expressionl is greater than or equal to Expression2.

Note: In each of the previous expressions, if the File variable is similar to /dev/fd/n, where n is an
integer, then the test is applied to the open file whose descriptor number is 7.

You can construct a compound expression from these primitives, or smaller parts, by using any of the
following expressions, listed in decreasing order of precedence:

Operating system and device management

159

(Expression) True, if the specified expression is true. Used to group expressions.

! Expression True, if the specified expression is false.
Expression] && Expression2 True, if Expression] and Expression2 are both true.
Expression] | | Expression2 True, if either Expressionl or Expression2 is true.

Quotation of characters in the Korn shell or POSIX shell:

When you want the Korn shell or POSIX shell to read a character as a regular character, rather than with
any normally associated meaning, you must quote it.

Each metacharacter has a special meaning to the shell and, unless quoted, causes termination of a word.
The following characters are considered metacharacters by the Korn shell or POSIX shell and must be
quoted if they are to represent themselves:

* pipe (])

e ampersand (&)

* semicolon ()

* less-than sign (<) and greater-than sign (>)
* left parenthesis (() and right parenthesis ())
* dollar sign ($)

* backquote (7) and single quotation mark (')
* backslash (\)

* double-quotation marks (")

* newline character

* space character

* tab character

To negate the special meaning of a metacharacter, use one of the quoting mechanisms in the following
list.

Backslash A backslash (\) that is not quoted preserves the literal value of the following
character, with the exception of a newline character. If a newline character follows
the backslash, then the shell interprets this as line continuation.

Single Quotation Marks Enclosing characters in single quotation marks (' ') preserves the literal value of
each character within the single quotation marks. A single quotation mark cannot
occur within single quotation marks.

A backslash cannot be used to escape a single quotation mark in a string that is set in
single quotation marks. An embedded quotation mark can be created by writing, for
example: "a’\”’b’, which yields a'b.

160 AIX Version 6.1: Operating system and device management

Double Quotation Marks Enclosing characters in double quotation marks (" ") preserves the literal value of all
characters within the double quotation marks, with the exception of the dollar sign,
backquote, and backslash characters, as follows:

$ The dollar sign retains its special meaning introducing parameter
expansion, a form of command substitution, and arithmetic expansion.

The input characters within the quoted string that are also enclosed
between §(and the matching) will not be affected by the double
quotation marks, but define that command whose output replaces the
$(...) when the word is expanded.

Within the string of characters from an enclosed ${ to the matching }, there
must be an even number of unescaped double quotation marks or single
quotation marks, if any. A preceding backslash character must be used to
escape a literal { or }.

The backquote retains its special meaning introducing the other form of
command substitution. The portion of the quoted string, from the initial
backquote and the characters up to the next backquote that is not preceded
by a backslash, defines that command whose output replaces ~ ... =~ when
the word is expanded.

\ The backslash retains its special meaning as an escape character only when
followed by one of the following characters: §, ~, ", \, or a newline
character.

A double quotation mark must be preceded by a backslash to be included within double quotation
marks. When you use double quotation marks, if a backslash is immediately followed by a character that
would be interpreted as having a special meaning, the backslash is deleted, and the subsequent character
is taken literally. If a backslash does not precede a character that would have a special meaning, it is left
in place unchanged, and the character immediately following it is also left unchanged. For example:

u\$u > $

u\au > \a

The following conditions apply to metacharacters and quoting characters in the Korn or POSIX shell:

* The meanings of dollar sign, asterisk ($*) and dollar sign, at symbol ($@) are identical when not
quoted, when used as a parameter assignment value, or when used as a file name.

* When used as a command argument, double quotation marks, dollar sign, asterisk, double quotation
marks ("$*") is equivalent to "$1d$2d...", where d is the first character of the IFS parameter.

* Double quotation marks, at symbol, asterisk, double quotation marks ("$@") are equivalent to "$1"
"$2H

* Inside backquotes (), the backslash quotes the characters backslash (\), single quotation mark ('), and
dollar sign ($). If the backquotes occur within double quotation marks (" "), the backslash also quotes
the double quotation marks character.

* Parameter and command substitution occurs inside double quotation marks (" ").

* The special meaning of reserved words or aliases is removed by quoting any character of the reserved
word. You cannot quote function names or built-in command names.

Restricted Korn shell:

The Restricted Korn Shell is used to set up login names and execution environments whose capabilities
are more controlled than those of the regular Korn shell.

The or -r command opens the Restricted Korn Shell. The behavior of these commands is
identical to those of the ksh command, except that the following actions are not allowed:

¢ Change the current working directory
e Set the value of the SHELL, ENV, or PATH variables
* Specify the pathname of a command containing a / (slash)

Operating system and device management 161

* Redirect output of a command with > (right caret), >| (right caret, pipe symbol), <> (left caret, right
caret), or >> (two right carets).

If the Restricted Korn Shell determines that a command to be run is a shell procedure, it uses the Korn
shell to run the command. In this way;, it is possible to provide an end user with shell procedures that
access the full power of the Korn shell while imposing a limited menu of commands. This situation
assumes that the user does not have write and execute permissions in the same directory.

If the File [Parameter] parameter is specified when the Korn shell is started, the shell runs the script file
identified by the File parameter, including any parameters specified. The script file specified must have
read permission. Any setuid and setgid settings for script files are ignored. The shell then reads the
commands. If either the -c or -s flag is used, do not specify a script file.

When started with the rksh command, the shell enforces restrictions after interpreting the .profile and
/etc/environment files. Therefore, the writer of the .profile file has complete control over user actions
by performing setup actions and leaving the user in an appropriate directory (probably not the login
directory). An administrator can create a directory of commands in the /usr/rbin directory that the rksh
command can use by changing the PATH variable to contain the directory. If it is started with the ksh -r
command, the shell applies restrictions when interpreting the .profile files.

When called with the rksh command, the Restricted Korn Shell reads the user’s .profile file
($HOME/ .profile). It acts as the regular Korn shell while doing this, except that an interrupt causes an

immediate exit instead of a return to command level.

Reserved words in the Korn shell or POSIX shell:

The following reserved words have special meaning to the Korn shell or POSIX shell.

! case do
done elif else
esac fi for
function if in

select then time
until while {
} [[11

The reserved words are recognized only when they appear without quotation marks and when the word
is used as the following;:

* First word of a command
* First word following one of the reserved words other than case, for, or in
* Third word in a case or for command (only in is valid in this case)

Enhanced Korn shell (ksh93):
In addition to the default system Korn shell (/usr/bin/ksh), AIX provides an enhanced version available
as Korn shell /usr/bin/ksh93. This enhanced version is mostly upwardly compatible with the current

default version, and includes a few additional features that are not available in Korn shell /usr/bin/ksh.

Some scripts might perform differently under Korn shell ksh93 than under the default shell because
variable handling is somewhat different under the two shells.

Note: There is also a restricted version of the enhanced Korn shell available, called rksh93.

The following features are not available in Korn shell /usr/bin/ksh, but are available in Korn shell
/usr/bin/ksh93:

162 AIX Version 6.1: Operating system and device management

Arithmetic
enhancements

You can use libm functions (math functions typically found in the C programming language), within
arithmetic expressions, such as $ value=$((sqrt(9))). More arithmetic operators are available, including
the unary +, ++, --, and the ?: construct (for example, "x ? y : z"), as well as the , (comma) operator.
Arithmetic bases are supported up to base 64. Floating point arithmetic is also supported. "typeset -E”
(exponential) can be used to specify the number of significant digits and "typeset -F” (float) can be used to
specify the number of decimal places for an arithmetic variable. The SECONDS variable now displays to
the nearest hundredth of a second, rather than to the nearest second.

Compound variables

Compound variables are supported. A compound variable allows a user to specify multiple values within a
single variable name. The values are each assigned with a subscript variable, separated from the parent
variable with a period (.). For example:

$ myvar=(x=1 y=2)

$ print "${myvar.x}"

1

Compound
assignments

Compound assignments are supported when initializing arrays, both for indexed arrays and associative
arrays. The assignment values are placed in parentheses, as shown in the following example:

$ numbers=(zero one two three)
$ print ${numbers[0]} ${numbers[3]}
zero three

Associative arrays

An associative array is an array with a string as an index.

The typeset command used with the -A flag allows you to specify associative arrays within ksh93. For
example:

§ typeset -A teammates

§ teammates=([john]=smith [mary]=jones)
$ print ${teammates[mary]}

jones

Variable name
references

The typeset command used with the -n flag allows you to assign one variable name as a reference to
another. In this way, modifying the value of a variable will in turn modify the value of the variable that is
referenced. For example:

$ greeting="hello"

$ typeset -n welcome=greeting # establishes the reference
$ welcome="hi there" # overrides previous value
$ print $greeting

hi there

Parameter expansions

The following parameter-expansion constructs are available:
* ${!lvarname} is the name of the variable itself.

lvarname[@]} names the indexes for the varname array.
* ${param:offset} is a substring of param, starting at offset.
param:offset:num} is a substring of param, starting at offset, for num number of characters.

@:o0ffset} indicates all positional parameters starting at offset.

{
${
${
$4
${
* ${@:offset:num} indicates num positional parameters starting at offset.
${param/pattern/repl} evaluates to param, with the first occurrence of pattern replaced by repl.
${param//pattern/repl} evaluates to param, with every occurrence of pattern replaced by repl.
${param/#pattern/repl} if param begins with pattern, then param is replaced by repl.
$4

param/%pattern/repl} if param ends with pattern, then param is replaced by repl.

Operating system and device management 163

Discipline functions

A discipline function is a function that is associated with a specific variable. This allows you to define and
call a function every time that variable is referenced, set, or unset. These functions take the form of
varname.function, where varname is the name of the variable and function is the discipline function. The
predefined discipline functions are get, set, and unset.

* The varname.get function is invoked every time varname is referenced. If the special variable .sh.value is
set within this function, then the value of varname is changed to this value. A simple example is the time
of day:

§ function time.get

> {

> .sh.value=§(date +%r)

>}

$ print $time

09:15:58 AM

$ print $time # it will change in a few seconds
09:16:04 AM

* The varname.set function is invoked every time varname is set. The .sh.value variable is given the value
that was assigned. The value assigned to varname is the value of .sh.value when the function completes.
For example:
$ function adder.set
> {

Tet .sh.value="

{.sh.value} + 1"

adder=0
echo $adder

adder=$adder
echo $adder

NAA AV oV
f—

* The varname.unset function is executed every time varname is unset. The variable is not actually unset
unless it is unset within the function itself; otherwise it retains its value.

Within all discipline functions, the special variable .sh.name is set to the name of the variable, while
.sh.subscript is set to the value of the variables subscript, if applicable.

Function
environments

Functions declared with the function myfunc format are run in a separate function environment and
support local variables. Functions declared as myfunc () run with the same environment as the parent shell.

Variables

Variables beginning with .sh. are reserved by the shell and have special meaning. See the description of

|Discipline Functions|in this table for an explanation of .sh.name, .sh.value, and .sh.subscript. Also available

is .sh.version, which represents the version of the shell.

Command return
values

Return values of commands are as follows:
¢ If the command to be executed is not found, the return value is set to 127.

e If the command to be executed is found, but not executable, the return value is 126.

* If the command is executed, but is terminated by a signal, the return value is 256 plus the signal number.

PATH search rules

Special built-in commands are searched for first, followed by all functions (including those in FPATH
directories), followed by other built-ins.

Shell history

The hist command allows you to display and edit the shells command history. In the ksh shell, the fc
command was used. The fc command is an alias to hist. Variables are HISTCMD, which increments once

for each command executed in the shells current history, and HISTEDIT, which specifies which editor to use

when using the hist command.

164 AIX Version 6.1: Operating system and device management

Built-in commands The enhanced Korn shell contains the following built-in commands:

The builtin command lists all available built-in commands.

The command works in a similar manner as the printf() C library routine. See the printf
command.

The disown blocks the shell from sending a SIGHUP to the specified command.

The [getconf]| command works in the same way as the stand-alone command /ust/bin/getconf. See the
getconf command.

Thebuilt—in command has the following flags:
— read -d {char} allows you to specify a character delimiter instead of the default newline.

— read -t {seconds} allows you to specify a time limit, in seconds, after which the read command will
time out. If read times out, it will return FALSE.

The exec built-in command has the following flags:

- exec -a {name} {cmd} specifies that argument 0 of cmd be replaced with name.
— exec -c {cmd} tells exec to clear the environment before executing cmd.
Thebuilt-in command has the following flags:

— kill -n {signum} is used for specifying a signal number to send to a process, while kill -s {signame} is
used to specify a signal name.

— kill -1, with no arguments, lists all signal names but not their numbers.
The whence built-in command has the following flags:

— The -a flag displays all matches, not only the first one found.

— The -f flag tells whence not to search for any functions.

An escape character sequence is used for use by the print and echo commands. The Esc (Escape) key can
be represented by the sequence \E.

All regular built-in commands recognize the -? flag, which shows the syntax for the specified command.

Other miscellaneous Other differences are:

differences between
Korn shell ksh and
Korn shell ksh93

With Korn shell ksh93, you cannot export functions using the typeset -fx built-in command.
With Korn shell ksh93, you cannot export an alias using the alias -x built-in command.

With Korn shell ksh93, a dollar sign followed by a single quote ($') is interpreted as an ANSI C string.
You must quote the dollar sign (\"$\"") to get the old (ksh) behavior.

Argument parsing logic for Korn shell ksh93 built-in commands has been changed. The undocumented
combinations of argument parsing to Korn shell ksh built-in commands do not work in Korn shell ksh93.
For example, typeset -4i works similar to typeset -i4 in Korn shell ksh, but does not work in Korn shell
ksh93.

With Korn shell ksh93, command substitution and arithmetic expansion is performed on special
environment variables PS1, PS3, and ENV while expanding. Therefore, you must escape the grave symbol
(7) and the dollar sign and opening parenthesis symbols ($() using a backslash (\) to retain the old
behavior. For example, Korn shell ksh literally assigns x=$'name\toperator' as $name\toperator; Korn
shell ksh93 expands \t and assigns it as name<\t expanded>operator. To preserve the Korn shell ksh
behavior, you must quote $. For example, x="$""'name\toperator'.

The ERRNO variable has been removed in Korn shell ksh93.

In Korn shell ksh93, file names are not expanded for non-interactive shells after the redirection symbol.
With Korn shell ksh93, you must use the -t option of the alias command to display tracked aliases.

With Korn shell ksh93, in emacs mode, Ctrl+T swaps the current and previous character. With ksh,
Ctrl+T swaps the current and next character.

Korn shell ksh93 does not allow unbalanced parentheses within ${name operator value}. For example,
${name-(} needs an escape such as ${name-\(} to work in both versions.

With Korn shell ksh93, the kill -1 command lists only the signal names, not their numerical values.

Exit status in the Korn shell or POSIX shell:

Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit status.
Otherwise, the shell returns the exit status of the last command carried out.

Operating system and device management 165

The shell reports detected runtime errors by printing the command or function name and the error
condition. If the number of the line on which an error occurred is greater than 1, then the line number is
also printed in [] (brackets) after the command or function name.

For a noninteractive shell, an error encountered by a special built-in or other type of command will cause
the shell to write a diagnostic message as shown in the following table:

Error Special Built-In Other Utilities
Shell language syntax error will exit will exit
Utility syntax error (option or operand error) will exit will not exit
Redirection error will exit will not exit
Variable assignment error will exit will not exit
Expansion error will exit will exit
Command not found not applicable may exit

Dot script not found will exit not applicable

If any of the errors shown as "will (may) exit” occur in a subshell, the subshell will (may) exit with a
nonzero status, but the script containing the subshell will not exit because of the error.

In all cases shown in the table, an interactive shell will write a diagnostic message to standard error,
without exiting.

Parameters in the Korn shell:
Korn shell parameters are discussed below.

A parameter is defined as the following:

¢ Identifier of any of the characters asterisk (x), at sign (@), pound sign (#), question mark (?), hyphen (-),
dollar sign ($), and exclamation point (!). These are called special parameters.

* Argument denoted by a number (positional parameter)
* Parameter denoted by an identifier, with a value and zero or more attributes (named parameter/variables

).

The typeset special built-in command assigns values and attributes to named parameters. The attributes
supported by the Korn shell are described with the typeset special built-in command. Exported
parameters pass values and attributes to the environment.

The value of a named parameter is assigned by:
Name=Value [Name=Value] ...

If the -i integer attribute is set for the Name parameter, then the Value parameter is subject to arithmetic
evaluation.

The shell supports a one-dimensional array facility. An element of an array parameter is referenced by a
subscript. A subscript is denoted by an arithmetic expression enclosed by brackets []. To assign values
to an array, use set -A Name Value The value of all subscripts must be in the range of 0 through 511.
Arrays need not be declared. Any reference to a named parameter with a valid subscript is legal and an
array will be created, if necessary. Referencing an array without a subscript is equivalent to referencing
the element 0.

Positional parameters are assigned values with the set special command. The $0 parameter is set from

argument 0 when the shell is invoked. The $ character is used to introduce parameters that can be
substituted.

166 AIX Version 6.1: Operating system and device management

Related concepts

[“Shell startup” on page 192|
You can start the Korn shell with the ksh command, psh command (POSIX shell), or the exec command.

[’Korn shell functions” on page 193]

The function reserved word defines shell functions. The shell reads and stores functions internally. Alias
names are resolved when the function is read. The shell executes functions in the same manner as
commands, with the arguments passed as positional parameters.

[Arithmetic evaluation in the Korn shell or POSIX shell” on page 156|
The Korn shell or POSIX shell regular built-in let command enables you to perform integer arithmetic.

Related reference

[“Korn shell compound commands” on page 191]

A compound command can be a list of simple commands or a pipeline, or it can begin with a reserved
word. Most of the time, you will use compound commands such as if, while, and for when you are
writing shell scripts.

Parameter substitution in the Korn shell or POSIX shell:
The Korn shell, or POSIX shell, lets you perform parameter substitutions.

The following are substitutable parameters:

${ Parameter} The shell reads all the characters from the ${ to the matching } as part of the same word, even
if that word contains braces or metacharacters. The value, if any, of the specified parameter is
substituted. The braces are required when the Parameter parameter is followed by a letter,
digit, or underscore that is not to be interpreted as part of its name, or when a named
parameter is subscripted.

If the specified parameter contains one or more digits, it is a positional parameter. A positional
parameter of more than one digit must be enclosed in braces. If the value of the variable is *
or @), each positional parameter, starting with §$1, is substituted (separated by a field separator
character). If an array identifier with a subscript * or @ is used, then the value for each of the
elements (separated by a field separator character) is substituted.

$ {#Parameter} If the value of the Parameter parameter is * or @, the number of positional parameters is
substituted. Otherwise, the length specified by the Parameter parameter is substituted.

$ {#Identifier[*]} The number of elements in the array specified by the Identifier parameter is substituted.

${Parameter:-Word} If the Parameter parameter is set and is not null, then its value is substituted; otherwise, the
value of the Word parameter is substituted.

${ Parameter:=Word} If the Parameter parameter is not set or is null, then it is set to the value of the Word
parameter. Positional parameters cannot be assigned in this way.

${Parameter:?Word} If the Parameter parameter is set and is not null, then substitute its value. Otherwise, print the
value of the Word variable and exit from the shell. If the Word variable is omitted, then a
standard message is printed.

${Parameter:+Word} If the Parameter parameter is set and is not null, then substitute the value of the Word variable.
${ Parameter#Pattern} | If the specified shell Pattern parameter matches the beginning of the value of the Parameter
${ Parameter##Pattern} parameter, then the value of this substitution is the value of the Parameter parameter with the

matched portion deleted. Otherwise, the value of the Parameter parameter is substituted. In the
first form, the smallest matching pattern is deleted. In the second form, the largest matching
pattern is deleted.

Operating system and device management 167

${Parameter%Pattern} | If the specified shell Pattern matches the end of the value of the Parameter variable, then the

${ Parameter%%Pattern} value of this substitution is the value of the Parameter variable with the matched part deleted.
Otherwise, substitute the value of the Parameter variable. In the first form, the smallest
matching pattern is deleted; in the second form, the largest matching pattern is deleted.

In the previous expressions, the Word variable is not evaluated unless it is to be used as the
substituted string. Thus, in the following example, the pwd command is executed only if the
-d flag is not set or is null:

echo ${d:-$(pwd)}

Note: If the : is omitted from the previous expressions, the shell checks only whether the Parameter
parameter is set.

Related concepts

[“Unattended terminals” on page 232|

All systems are vulnerable if terminals are left logged in and unattended. The most serious problem
occurs when a system manager leaves a terminal unattended that has been enabled with root authority.
In general, users should log out anytime they leave their terminals.

Predefined special parameters in the Korn shell or POSIX shell:
Some parameters are set automatically by the Korn shell or POSIX shell.

The following parameters are automatically set by the shell:

@ Expands the positional parameters, beginning with §1. Each parameter is separated by a space.

If you place " around $6, the shell considers each positional parameter a separate string. If no positional
parameters exist, the shell expands the statement to an unquoted null string.

* Expands the positional parameters, beginning with $1. The shell separates each parameter with the first character
of the|IFS parameter|value.

If you place " around $*, the shell includes the positional parameter values in double quotation marks. Each
value is separated by the first character of the IFS parameter.

Specifies the number (in decimals) of positional parameters passed to the shell, not counting the name of the
shell procedure itself. The $# parameter thus yields the number of the highest-numbered positional parameter
that is set. One of the primary uses of this parameter is to check for the presence of the required number of
arguments.

- Supplies flags to the shell on invocation or with the set command.

? Specifies the exit value of the last command executed. Its value is a decimal string. Most commands return 0 to
indicate successful completion. The shell itself returns the current value of the $? parameter as its exit value.

$ Identifies the process number of this shell. Because process numbers are unique among all existing processes,
this string of up to 5 digits is often used to generate unique names for temporary files.

The following example illustrates the recommended practice of creating temporary files in a directory used only
for that purpose:

temp=$HOME/temp/$$
1s >$temp

rm $temp

! Specifies the process number of the most recent background command invoked.

zero (0) Expands to the name of the shell or shell script.

File name substitution in the Korn shell or POSIX shell:

168 AIX Version 6.1: Operating system and device management

The Korn shell, or POSIX shell, performs file name substitution by scanning each command word
specified by the Word variable for certain characters.

If a command word includes the *), ? or [characters, and the -f flag has not been set, the shell regards
the word as a pattern. The shell replaces the word with file names, sorted according to the collating
sequence in effect in the current locale, that match that pattern. If the shell does not find a file name to
match the pattern, it does not change the word.

When the shell uses a pattern for file name substitution, the . and / characters must be matched explicitly.
Note: The Korn shell does not treat these characters specially in other instances of pattern matching.

These pattern-matching characters indicate the following substitutions:

* Matches any string, including the null string.

? Matches any single character.
[

.| Matches any one of the enclosed characters. A pair of characters separated by a hyphen (-) matches any character
lexically within the inclusive range of that pair, according to the collating sequence in effect in the current locale. If the
first character following the opening [is !, then any character not enclosed is matched. A hyphen (-) can be included
in the character set by putting it as the first or last character.

You can also use the [:charclass:] notation to match file names within a range indication. This format
instructs the system to match any single character belonging to class. The definition of which characters
constitute a specific character class is present through the LC_CTYPE category of the ... Subroutine.
All character classes specified in the current locale are recognized.

The names of some of the character classes are as follows:
* alnum
* alpha
e cntrl
* digit
e graph
* lower
° print
* punct
* space
* upper
* xdigit

For example, [[:upper:]] matches any uppercase letter.

The Korn shell supports file name expansion based on collating elements, symbols, or equivalence
classes.

A PatternList is a list of one or more patterns separated from each other with a |. Composite patterns are
formed with one or more of the following:

Operating system and device management 169

?(PatternList) Optionally matches any one of the given patterns

*(PatternList) Matches zero or more occurrences of the given patterns
+(PatternList) Matches one or more occurrences of the given patterns
@(PatternList) Matches exactly one of the given patterns

!(PatternList) Matches anything, except one of the given patterns

Pattern matching has some restrictions. If the first character of a file name is a dot (.), it can be matched
only by a pattern that also begins with a dot. For example, * matches the file names myfile and yourfile
but not the file names .myfile and .yourfile. To match these files, use a pattern such as the following:

*+file

If a pattern does not match any file names, then the pattern itself is returned as the result of the
attempted match.

File and directory names should not contain the characters *, ?, [, or] because they can cause infinite
recursion (that is, infinite loops) during pattern-matching attempts.

Quote removal:
Some characters will be removed if they are not quoted.

The quote characters, backslash (\), single quote ('), and double quote (") that were present in the
original word will be removed unless they have themselves been quoted.

Input and output redirection in the Korn shell or POSIX shell:

Before the Korn shell executes a command, it scans the command line for redirection characters. These
special notations direct the shell to redirect input and output.

Redirection characters can appear anywhere in a simple command or can precede or follow a command.
They are not passed on to the invoked command.

The shell performs command and parameter substitution before using the Word or Digit parameter
except as noted. File name substitution occurs only if the pattern matches a single file and blank
interpretation is not performed.

<Word Uses the file specified by the Word parameter as standard input (file descriptor 0).

>Word Uses the file specified by the Word parameter as standard output (file descriptor 1). If the file does not exist,
the shell creates it. If the file exists and the noclobber option is on, an error results; otherwise, the file is
truncated to zero length.
Note: When multiple shells have the noclobber option set and they redirect output to the same file, there
could be a race condition, which might result in more than one of these shell processes writing to the file. The
shell does not detect or prevent such race conditions.

> | Word Same as the >Word command, except that this redirection statement overrides the noclobber option.

> >Word Uses the file specified by the Word parameter as standard output. If the file currently exists, the shell appends
the output to it (by first seeking the end-of-file character). If the file does not exist, the shell creates it.

<>Word Opens the file specified by the Word parameter for reading and writing as standard input.

<<[-][Word Reads each line of shell input until it locates a line containing only the value of the Word parameter or an

end-of-file character. The shell does not perform parameter substitution, command substitution, or file name
substitution on the file specified. The resulting document, called a here document, becomes the standard
input. If any character of the Word parameter is quoted, no interpretation is placed upon the characters of the
document.

170 AIX Version 6.1: Operating system and device management

The here document is treated as a single word that begins after the next newline character and continues
until there is a line containing only the delimiter, with no trailing blank characters. Then the next here
document, if any, starts. The format is as follows:

[n]<<word

here document
delimiter

If any character in word is quoted, the delimiter is formed by removing the quote on word. The here
document lines will not be expanded. Otherwise, the delimiter is the word itself. If no characters in word
are quoted, all lines of the here document will be expanded for parameter expansion, command
substitution, and arithmetic expansion.

The shell performs parameter substitution for the redirected data. To prevent the shell from interpreting
the \, $, and single quotation mark (') characters and the first character of the Word parameter, precede
the characters with a \ character.

If a hyphen (-) is appended to <<, the shell strips all leading tabs from the Word parameter and the
document.

<&Digit Duplicates standard input from the file descriptor specified by the Digit parameter
>& Digit Duplicates standard output in the file descriptor specified by the Digit parameter
<&- Closes standard input

>&- Closes standard output

<&p Moves input from the co-process to standard input

>&p Moves output to the co-process to standard output

If one of these redirection options is preceded by a digit, then the file descriptor number referred to is
specified by the digit (instead of the default 0 or 1). In the following example, the shell opens file
descriptor 2 for writing as a duplicate of file descriptor 1:

. 2>81

The order in which redirections are specified is significant. The shell evaluates each redirection in terms
of the (FileDescriptor, File) association at the time of evaluation. For example, in the statement:

. 1>File 2>&1

the file descriptor 1 is associated with the file specified by the File parameter. The shell associates file
descriptor 2 with the file associated with file descriptor 1 (File). If the order of redirections were reversed,
file descriptor 2 would be associated with the terminal (assuming file descriptor 1 had previously been)
and file descriptor 1 would be associated with the file specified by the File parameter.

If a command is followed by an ampersand (&) and job control is not active, the default standard input
for the command is the empty file /dev/null. Otherwise, the environment for the execution of a
command contains the file descriptors of the invoking shell as modified by input and output
specifications.

Related concepts

[“Input and output redirection” on page 27§

The AIX operating system allows you to manipulate the input and output (I/O) of data to and from your
system by using specific I/O commands and symbols.

Related tasks

[“Redirecting output to inline input (here) documents” on page 281/
You can redirect output to inline input (here) documents.

Coprocess facility:

Operating system and device management 171

The Korn shell, or POSIX shell, allows you to run one or more commands as background processes.
These commands, run from within a shell script, are called coprocesses.

Designate a coprocess by placing the |& operator after a command. Both standard input and output of the
command are piped to your script.

A coprocess must meet the following restrictions:

* Include a newline character at the end of each message
* Send each output message to standard output

* Clear its standard output after each message

The following example demonstrates how input is passed to and returned from a coprocess:

echo "Initial process"

./FileB.sh [&

read -pabcd

echo "Read from coprocess: $a $b $c $d"

print -p "Passed to the coprocess"

read -pabcd

echo "Passed back from coprocess: $a $b $c $d"

FileB.sh
echo "The coprocess is running"
read a b c d
echo $a $b $c $d

The resulting standard output is as follows:

Initial process
Read from coprocess: The coprocess is running
Passed back from coprocess: Passed to the coprocess

Use the print -p command to write to the coprocess. Use the read -p command to read from the
coprocess.

Related concepts
[“Korn shell or POSIX shell commands” on page 189
The Korn shell is an interactive command interpreter and command programming language. It conforms

to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

Redirection of coprocess input and output:

The standard input and output of a coprocess is reassigned to a numbered file descriptor by using 1/O
redirection.

For example, the command:
exec 5>&p

moves the input of the coprocess to file descriptor 5.
After this coprocess has completed, you can use standard redirection syntax to redirect command output

to the coprocess. You can also start another coprocess. Output from both coprocesses is connected to the
same pipe and is read with the read -p command. To stop the coprocess, type the following:

read -ub

Korn shell or POSIX shell built-in commands:

Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

172 AIX Version 6.1: Operating system and device management

Unless otherwise indicated, the output is written to file descriptor 1 and the exit status is zero (0) if the
command does not contain any syntax errors. Input and output redirection is permitted. There are two
types of built-in commands: special built-in commands and regular built-in commands.

Special built-in commands differ from regular built-in commands in the following ways:

* A syntax error in a special built-in command might cause the shell executing the command to end.
This does not happen if you have a syntax error in a regular built-in command. If a syntax error in a
special built-in command does not end the shell program, the exit value is nonzero.

* Variable assignments specified with special built-in commands remain in effect after the command
completes.

¢ I/O redirections are processed after parameter assignments.

In addition, words that are in the form of a parameter assignment following the export, readonly, and
typeset special commands are expanded with the same rules as a parameter assignment. Tilde
substitution is performed after the =, and word-splitting and file name substitution are not performed.

Related concepts

[“Korn shell or POSIX shell commands” on page 189

The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

[“Korn shell functions” on page 193]

The function reserved word defines shell functions. The shell reads and stores functions internally. Alias
names are resolved when the function is read. The shell executes functions in the same manner as
commands, with the arguments passed as positional parameters.

Related reference

[“List of Korn shell or POSIX shell special built-in commands” on page 157]
Special commands are built into the Korn shell and POSIX shell and executed in the shell process.

[“Korn shell or POSIX shell regular built-in commands” on page 15|
The following is a list of the Korn shell or POSIX shell regular built-in commands.

Special built-in command descriptions for the Korn shell or POSIX shell:
Special commands are built into the Korn shell and POSIX shell and executed in the shell process.

The special built-in commands of the Korn shell are described below:

eval
exec
exit

export|

Operating system and device management 173

: [Arqument ...]

Expands only arguments. It is used when a command is necessary, as in the then condition of an if
command, but nothing is to be done by the command.

. File [Arqument ...]

Reads the complete specified file and then executes the commands. The commands are executed in
the current shell environment. The search path specified by the[PATH] variable is used to find the
directory containing the specified file. If any arguments are specified, they become the positional
parameters. Otherwise, the positional parameters are unchanged. The exit status is the exit status of
the most recent command executed. See|“Parameter substitution in the Korn shell or POSIX shell” on|
for more information on positional parameters.

Note: The .File [Arqument ...] command reads the entire file before any commands are carried out.
Therefore, the alias and unalias commands in the file do not apply to any functions defined in the
file.

break [n]

Exits from the enclosing for, while, until, or select loop, if one exists. If you specify the n parameter,
the command breaks the number of levels specified by the n parameter. The value of 7 is any integer
equal to or greater than 1.

continue [1]

Resumes the next iteration of the enclosing for, while, until, or select loop. If you specify the n
parameter, the command resumes at the n™ enclosing loop. The value of 7 is any integer equal to or
greater than 1.

eval [Argument ...]

Reads the specified arguments as input to the shell and executes the resulting command or
commands.

exec [Argument ...]

Executes the command specified by the argument in place of this shell (without creating a new
process). Input and output arguments can appear and affect the current process. If you do not
specify an argument, the exec command modifies file descriptors as prescribed by the input and
output redirection list. In this case, any file descriptor numbers greater than 2 that are opened with
this mechanism are closed when invoking another program.

exit [n]

Exits the shell with the exit status specified by the n parameter. The # parameter must be an
unsigned decimal integer with range 0-255. If you omit the n parameter, the exit status is that of the
most recent command executed. An end-of-file character also exits the shell unless the ignoreeof
option of the|sef| special command is turned on.

export -p [Name[= Value]] ...

Marks the specified names for automatic export to the environment of subsequently executed
commands.

-p writes to standard output the names and values of all exported variables, in the following format:

"export %s= %s\n", <name> <value>

newgrp [Group]

Equivalent to the exec/usr/bin/newgrp [Group] command.
Note: This command does not return.

readonly -p [Name[= Value]]

Marks the names specified by the Name parameter as read-only. These names cannot be changed by
subsequent assignment.

-p writes to standard output the names and values of all exported variables, in the following format:

"export %s= %s\n", <name> <value>

return [n]

Causes a shell function to return to the invoking script. The return status is specified by the n
parameter. If you omit the 1 parameter, the return status is that of the most recent command
executed. If you invoke the return command outside of a function or a script, then it is the same as
an exit command.

174 AIX Version 6.1: Operating system and device management

set [+ |-abCefhkmnostuvx |
[+ I-0 Option]... [+ |-AName]
[Arqument ...]

If no options or arguments are specified, the set command writes the names and values of all shell
variables in the collation sequence of the current locale. When options are specified, they will set or
unset attributes of the shell, described as follows:

-A

-a

-b

-e

-f
-h
-k

-m

-n

Array assignment. Unsets the Name parameter and assigns values sequentially from the
specified Argument parameter list. If the +A flag is used, the Name parameter is not unset
first.

Automatically exports all subsequent parameters that are defined.
Notifies the user asynchronously of background job completions.
Equivalent to set -o noclobber.

Executes the ERR trap, if set, and exits if a command has a nonzero exit status unless the
simple command is:

+ contained in an && or || list

+ the command immediately following if, while or until

+ contained in the pipeline following !
This mode is disabled while reading profiles.
Disables file name substitution.
Designates each command as a tracked alias when first encountered.

Places all parameter-assignment arguments in the environment for a command, not only
those arguments that precede the command name.

Runs background jobs in a separate process and prints a line upon completion. The exit
status of background jobs is reported in a completion message. On systems with job
control, this flag is turned on automatically for interactive shells. For more information, see
[“Job control in the Korn shell or POSIX shell” on page 182

Reads commands and checks them for syntax errors, but does not execute them. This flag
is ignored for interactive shells.

Operating system and device management 175

-0 Option
Prints current option settings and an error message if you do not specify an argument. You
can set more than one option on a single ksh command line. If the +o flag is used, the
specified option is unset. When arguments are specified, they will cause positional
parameters to be set or unset. Arguments, as specified by the Option variable, can be one
of the following:

allexport
Same as the -a flag.

bgnice Runs all background jobs at a lower priority. This is the default mode.
emacs Enters an emacs-style inline editor for command entry.

errexit Same as the -e flag.

gmacs Enters a gmacs-style inline editor for command entry.

ignoreeof
Does not exit the shell when it encounters an end-of-file character. To exit the
shell, you must use the exit command or press the Ctrl-D key sequence more
than 11 times.

keyword
Same as the -k flag.

Note: This flag is for backward compatibility with the Bourne shell only. Its use
is strongly discouraged.

markdirs
Appends a backslash / to all directory names that are a result of file name
substitution.

monitor
Same as the -m flag.

noclobber
Prevents redirection from truncating existing files. When you specify this option,
a vertical bar must follow the redirection symbol (>|) to truncate a file.

noexec Same as the -n flag.
noglob Same as the -f flag.

nolog Prevents function definitions in .profile and $ENV files from being saved in the
history file.

nounset
Same as the -u flag.

privileged
Same as the -p flag.

176 AIX Version 6.1: Operating system and device management

P

=S

-t

-u

-V

=X

trackall Same as the -h flag.

verbose
Same as the -v flag.

vi Enters the insert mode of a vi-style inline editor for command entry. Entering
escape character 033 puts the editor into the move mode. A return sends the line.

viraw Processes each character as it is typed in vi mode.
xtrace ~ Same as the -x flag.

Disables processing of the $HOME/.profile file and uses the /etc/suid_profile file instead
of the ENV file. This mode is enabled whenever the effective user ID (UID) or group ID
(GID) is not equal to the real UID or GID. Turning off this option sets the effective UID or
GID to the real UID and GID.

Note: The system does not support the -p option because the operating system does not
support setuid shell scripts.

Sorts the positional parameters lexicographically.
Exits after reading and executing one command.

Note: This flag is for backward compatibility with the Bourne shell only. Its use is strongly
discouraged.

Treats unset parameters as errors when substituting.

Prints shell input lines as they are read.

Prints commands and their arguments as they are executed.

Turns off the -x and -v flags and stops examining arguments for flags.

Prevents any flags from being changed. This option is useful in setting the $1 parameter to
a value beginning with -. If no arguments follow this flag, the positional parameters are
not set.

Preceding any of the set command flags with a + rather than a - turns off the flag. You can use these
flags when you invoke the shell. When ’set +0” is invoked without any arguments, it displays the
current option settings in a format that is suitable for re-input to the shell as commands that achieve
the same option setting. The current set of flags is found in the $- parameter. Unless you specify the
-A flag, the remaining arguments are positional parameters and are assigned, in order, to $1, $2, ...,
and so on. If no arguments are given, the names and values of all named parameters are printed to
standard output.

shift [n] Renames the positional parameters, beginning with $n+1 ... through $1 The default value of the n
parameter is 1. The n parameter is any arithmetic expression that evaluates to a nonnegative number
less than or equal to the $# parameter.

times Prints the accumulated user and system times for the shell and for processes run from the shell.

Operating system and device management 177

trap [Command] [Signal] ...

Runs the specified command when the shell receives the specified signal or signals. The Command
parameter is read once when the trap is set and once when the trap is taken. The Signal parameter
can be given as a number or as the name of the signal. Trap commands are executed in order of
signal number. Any attempt to set a trap on a signal that was ignored on entry to the current shell is
ineffective.

If the command is -, all traps are reset to their original values. If you omit the command and the
first signal is a numeric signal number, then the ksh command resets the value of the Signal
parameter or parameters to the original values.

Note: If you omit the command and the first signal is a symbolic name, the signal is interpreted as a
command.

If the value of the Signal parameter is the ERR signal, the specified command is carried out
whenever a command has a nonzero exit status. If the signal is DEBUG, then the specified
command is carried out after each command. If the value of the Signal parameter is the 0 or EXIT
signal and the trap command is executed inside the body of a function, the specified command is
carried out after the function completes. If the Signal parameter is 0 or EXIT for a trap command set
outside any function, the specified command is carried out on exit from the shell. The trap command
with no arguments prints a list of commands associated with each signal number.

For a complete list of Signal parameter values used in the trap command without the SIG prefix, see
the sigaction, sigvec, or signal subrouting in the AIX Version 6.1 Technical Reference: Base Operating
System and Extensions Volume 2.

typeset [+HLRZfilrtux [n]]
[Name[=Value]] ...

Sets attributes and values for shell parameters. When invoked inside a function, a new instance of
the Name parameter is created. The parameter value and type are restored when the function
completes. You can specify the following flags with the typeset command:

-H Provides AIX-to-host-file mapping on non-AIX machines.

-L Left-justifies and removes leading blanks from the Value parameter. If the n parameter has
a nonzero value, it defines the width of the field; otherwise, it is determined by the width
of the value of its first assignment. When the parameter is assigned, it is filled on the right
with blanks or truncated, if necessary, to fit into the field. Leading zeros are removed if the
-Z flag is also set. The -R flag is turned off.

-R Right-justifies and fills with leading blanks. If the n parameter has a nonzero value, it
defines the width of the field; otherwise, it is determined by the width of the value of its
first assignment. The field remains filled with blanks or is truncated from the end if the
parameter is reassigned. The L flag is turned off.

-Z Right-justifies and fills with leading zeros if the first nonblank character is a digit and the
-L flag has not been set. If the n parameter has a nonzero value, it defines the width of the
field; otherwise, it is determined by the width of the value of its first assignment.

-f Indicates that the names refer to function names rather than parameter names. No
assignments can be made and the only other valid flags are -t, -u, and -x . The -t flag turns
on execution tracing for this function. The -u flag causes this function to be marked
undefined. The FPATH variable is searched to find the function definition when the
function is referenced. The -x flag allows the function definition to remain in effect across
shell scripts that are not a separate invocation of the ksh command.

-i Identifies the parameter as an integer, making arithmetic faster. If the # parameter has a
nonzero value, it defines the output arithmetic base; otherwise, the first assignment
determines the output base.

-1 Converts all uppercase characters to lowercase. The -u uppercase conversion flag is turned
off.
-r Marks the names specified by the Name parameter as read-only. These names cannot be

changed by subsequent assignment.

178 AIX Version 6.1: Operating system and device management

-t Tags the named parameters. Tags can be defined by the user and have no special meaning
to the shell.

-u Converts all lowercase characters to uppercase characters. The -1 lowercase flag is turned
off.
-X Marks the name specified by the Name parameter for automatic export to the environment

of subsequently executed commands.

Using a + rather than a - turns off the typeset command flags. If you do not specify Name
parameters but do specify flags, a list of names (and optionally the values) of the
parameters that have these flags set is printed. (Using a + rather than a - keeps the values
from being printed.) If you do not specify any names or flags, the names and attributes of
all parameters are printed.

unset [-fv | Name ...

Unsets the values and attributes of the parameters given by the list of names. If -v is specified, Name
refers to a variable name, and the shell will unset it and remove it from the environment. Read-only
variables cannot be unset. Unsetting the ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND,
RANDOM, SECONDS, TMOUT, and underscore (_) variables removes their special meanings even if
they are subsequently assigned.

If the -f flag is set, then Name refers to a function name, and the shell will unset the function
definition.

Regular built-in command descriptions for the Korn shell or POSIX shell:

The built-in commands for the Korn or POSIX shells are described here.

The Korn shell provides the following regular built-in commands:

alias fg print ulimit

bg getopts pwd umask

cd jobs read unalias

command kill setgroups wait

echo let setsenv test whence
fc

alias [-t] [-x]
[AliasName[= String]] ...

Creates or redefines alias definitions or writes existing alias definitions to standard output.

For more information, see the |alias|command.

bg [JobID..]

Puts each specified job into the background. The current job is put in the background if a JobID
parameter is not specified. See|“Job control in the Korn shell or POSIX shell” on page 182|for more
information about job control.

For more information about running jobs in the background, see the command.

cd [Argument]
cd Old New

This command can be in either of two forms. In the first form, it changes the current directory to the one
specified by the Argument parameter. If the value of the Arqument parameter is a hyphen (-), the
directory is changed to the previous directory. The HOME shell variable is the default value of the
Argument parameter. The PWD variable is set to the current directory.

The CDPATH shell variable defines the search path for the directory containing the value of the
Argument parameter. Alternative directory names are separated by a colon (:). The default path is null,
specifying the current directory. The current directory is specified by a null path name, which appears
immediately after the equal sign or between the colon delimiters anywhere in the path list. If the
specified argument begins with a slash (/), the search path is not used. Otherwise, each directory in the
path is searched for the argument.

The second form of the cd command substitutes the string specified by the New variable for the string
specified by the Old variable in the current directory name, PWD, and tries to change to this new
directory.

Operating system and device management 179

command [-p]
CommandName [Argument
o]

command [-v | -V]
CommandName

Causes the shell to treat the specified command and arguments as a simple command, suppressing
shell-function lookup.

For more information, see the command] command.

echo [String ...]

Writes character strings to standard output. See the fecho]command for usage and description. The -n
flag is not supported.

fc [-r] [-e Editor] [First
[Last]]

fc -1 [-n] [-r] [First
[Last]]

fc -s [Old= New] [First]

Displays the contents of your command history file or invokes an editor to modify and re-execute
commands previously entered in the shell.

For more information, see the IE command.

fg [JobID]

Brings each job specified into the foreground. If you do not specify any jobs, the command brings the
current job into the foreground.

For more information about running jobs in the foreground, see the [fg] command.

getopts OptionString
Name [Arqument ...]

Checks the Argument parameter for legal options.

For more information, see the command.

jobs [-1 | -n | -p] [JobID
]

Displays the status of jobs started in the current shell environment. If no specific job is specified with the
JobID parameter, status information for all active jobs is displayed. If a job termination is reported, the
shell removes that job’s process ID from the list of those known by the current shell environment.

For more information, see the command.

kill [-s { SignalName |
SignalNumber } |
ProcessID...

kill [-SignalName |
-SignalNumber |
ProcessID...

kill -1 [ExitStatus |

Sends a signal (by default, the SIGTERM signal) to a running process. This default action normally
stops processes. If you want to stop a process, specify the process ID (PID) in the ProcessID variable. The
shell reports the PID of each process that is running in the background (unless you start more than one
process in a pipeline, in which case the shell reports the number of the last process). You can also use
the ps command to find the process ID number of commands.

Lists signal names.

For more information, see the [killlcommand.

let Expression ...

Evaluates specified arithmetic expressions. The exit status is 0 if the value of the last expression is
nonzero, and 1 otherwise. See|”Arithmetic evaluation in the Korn shell or POSIX shell” on page 156|for
more information.

print [-Rnprsu [n]]
[Argument ...]

Prints shell output. If you do not specify any flags, or if you specify the hyphen (-) or double hyphen
(-) flags, the arguments are printed to standard output as described by the echo command. The flags do
the following:

-R Prints in raw mode (the escape conventions of the echo command are ignored). The -R flag
prints all subsequent arguments and flags other than -n.

-n Prevents a newline character from being added to the output.

- Writes the arguments to the pipe of the process run with |& instead of to standard output.

-r Prints in raw mode. The escape conventions of the echo command are ignored.

-s Writes the arguments to the history file instead of to standard output.

-u Specifies a one-digit file descriptor unit number, 1, on which the output is placed. The default
is 1.

Equivalent to print -r - $PWD.
Note: The internal Korn shell pwd command does not support symbolic links.

180 AIX Version 6.1: Operating system and device management

read [-prsu [n]]
[Name? Prompt] [Name...]

Takes shell input. One line is read and broken up into fields, using the characters in the IFS variable as
separators.

For more information, see the command.

setgroups

Executes the /ust/bin/setgroups command, which runs as a separate shell. See the [setgroups| command
for information on this command. There is one difference, however. The setgroups built-in command
invokes a subshell, but the setgroups command replaces the currently executing shell. Because the
built-in command is supported only for compatibility, it is recommended that scripts use the absolute
path name /usr/bin/setgroups rather than the shell built-in command.

setsenv

Executes the /usr/bin/setsenv command, which replaces the currently executing shell. See the
command for information on this command.

test

Same as [expression]. See|“Conditional expressions for the Korn shell or POSIX shell” on page 158] for
usage and description.

ulimit [-HSacdfmst |
[Limit]

subrouting

Sets or displays user-process resource limits as defined in the /etc/security/limits file. This file
contains the following default limits:

fsize = 2097151

core = 2048
cpu = 3600
data = 131072
rss = 65536
stack = 8192
threads = -1

These values are used as default settings when a user is added to the system. The values are set with
the mkuser command when the user is added to the system or changed with the chuser command.

Limits are categorized as either soft or hard. Users might change their soft limits, up to the maximum
set by the hard limits, with the ulimit command. You must have root user authority to change resource
hard limits.

Many systems do not contain one or more of these limits. The limit for a specified resource is set when
the Limit parameter is specified. The value of the Limit parameter can be a number in the unit specified
with each resource or the value unlimited. You can specify the following ulimit command flags:

-H Specifies that the hard limit for the given resource is set. If you have root user authority, you
can increase the hard limit. Any user can decrease it.

-S Specifies that the soft limit for the given resource is set. A soft limit can be increased up to the
value of the hard limit. If neither the -H or -S options are specified, the limit applies to both.

-a Lists all of the current resource limits.

-c Specifies the number of 512-byte blocks on the size of core dumps.

-d Specifies the size, in KB, of the data area.

-f Specifies the number of 512-byte blocks for files written by child processes (files of any size
can be read).

-m Specifies the number of KB for the size of physical memory.

-n Specifies the limit on the number of file descriptors a process might have open.

-r Specifies the limit on the number of threads per process.

-5 Specifies the number of KB for the size of the stack area.

-t Specifies the number of seconds to be used by each process.

The current resource limit is printed when you omit the Limit variable. The soft limit is printed unless
you specify the -H flag. When you specify more than one resource, the limit name and unit is printed
before the value. If no option is given, the -f flag is assumed. When you change the value, set both hard
and soft limits to Limit unless you specify -H or -S.

For more information about user and system resource limits, see the [getrlimit, setrlimit, or vlimit|

Operating system and device management 181

umask [-S] [Mask] Determines file permissions. This value, along with the permissions of the creating process, determines a
file’s permissions when the file is created. The default is 022. If the Mask parameter is not specified, the
umask command displays to standard output the file-mode creation mask of the current shell
environment.

For more information about file permissions, see the command.

unalias { -a | Removes the definition for each alias name specified, or removes all alias definitions if the -a flag is
AliasName... } used. Alias definitions are removed from the current shell environment.

For more information, see the junaliasl command.

wait [ProcessID...] Waits for the specified job and terminates. If you do not specify a job, the command waits for all
currently active child processes. The exit status from this command is that of the process for which it
waits.

For more information, see the command.

whence [-pv | Name ... Indicates, for each name specified, how it would be interpreted if used as a command name. When used
without either flag, whence will display the absolute path name, if any, that corresponds to each name.

-p Performs a path search for the specified name or names even if these are aliases, functions, or
reserved words.

-v Produces a more verbose report that specifies the type of each name.

Job control in the Korn shell or POSIX shell:
The Korn shell, or POSIX shell, provides a facility to control command sequences, or jobs.

When you execute the @ -m special command, the Korn shell associates a job with each pipeline. It
keeps a table of current jobs, printed by the jobs command, and assigns them small integer numbers.

When a job is started in the background with an ampersand (&), the shell prints a line that looks like the
following:

[1] 1234

This output indicates that the job, which was started in the background, was job number 1. It also shows
that the job had one (top-level) process with a process ID of 1234.

If you are running a job and want to do something else, use the Ctrl-Z key sequence. This key sequence
sends a STOP signal to the current job. The shell normally indicates that the job has been stopped and
then displays a shell prompt. You can then manipulate the state of this job (putting it in the background
with the bg command), run other commands, and then eventually return the job to the foreground with
the fg command. The Ctrl-Z key sequence takes effect immediately, and is like an interrupt in that the
shell discards pending output and unread input when you type the sequence.

A job being run in the background stops if it tries to read from the terminal. Background jobs are
normally allowed to produce output. You can disable this option by issuing the @ tostop command. If

you set this terminal option, then background jobs stop when they try to produce output or read input.

You can refer to jobs in the Korn shell in several ways. A job is referenced by the process ID of any of its
processes or in one of the following ways:

182 AIX Version 6.1: Operating system and device management

%Number Specifies the job with the given number.

%String Specifies any job whose command line begins with the String variable.
%?String Specifies any job whose command line contains the String variable.
%% Specifies the current job.

Yo+ Equivalent to %%.

Y- Specifies the previous job.

This shell immediately recognizes changes in the process state. It normally informs you whenever a job
becomes blocked so that no further progress is possible. The shell does this just before it prints a prompt
so that it does not otherwise disturb your work.

When the monitor mode is on, each completed background job triggers traps set for the CHLD signal.

If you try to leave the shell (either by typing exit or using the Ctrl-D key sequence) while jobs are
stopped or running, the system warns you with the message There are stopped (running) jobs. Use
the jobs command to see which jobs are affected. If you immediately try to exit again, the shell
terminates the stopped and running jobs without warning.

Signal handling:

The SIGINT and SIGQUIT signals for an invoked command are ignored if the command is followed by
an ampersand (&) and the job monitor option is not active. Otherwise, signals have the values that the
shell inherits from its parent.

When a signal for which a trap has been set is received while the shell is waiting for the completion of a
foreground command, the trap associated with that signal will not be executed until after the foreground
command has completed. Therefore, a trap on a CHILD signal is not performed until the foreground job
terminates.

Inline editing in the Korn shell or POSIX shell:
Normally, you type each command line from a terminal device and follow it by a newline character
(RETURN or LINE FEED). When you activate the emacs, gmacs, or vi inline editing option, you can edit

the command line.

The following commands enter edit modes:

set -0 emacs Enters emacs editing mode and initiates an emacs-style inline editor.
set -0 gmacs Enters emacs editing mode and initiates a gmacs-style inline editor.
set -0 vi Enters vi editing mode and initiates a vi-style inline editor.

An editing option is automatically selected each time the VISUAL or EDITOR variable is assigned a value
that ends in any of these option names.

Note: To use the editing features, your terminal must accept RETURN as a carriage return without line
feed. A space must overwrite the current character on the screen.

Each editing mode opens a window at the current line. The window width is the value of the COLUMNS
variable if it is defined; otherwise, the width is 80 character spaces. If the line is longer than the window
width minus two, the system notifies you by displaying a mark at the end of the window. As the cursor
moves and reaches the window boundaries, the window is centered about the cursor. The marks
displayed are as follows:

Operating system and device management 183

> Indicates that the line extends on the right side of the window.
< Indicates that the line extends on the left side of the window.
* Indicates that the line extends on both sides of the window.

The search commands in each edit mode provide access to the Korn shell history file. Only strings are
matched. If the leading character in the string is a carat (), the match must begin at the first character in
the line.

Related concepts

[“Korn shell or POSIX shell commands” on page 189

The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

emacs editing mode:

The emacs editing mode is entered when you enable either the emacs or gmacs option. The only
difference between these two modes is the way each handles the Ctrl-T edit command.

To edit, move the cursor to the point needing correction and insert or delete characters or words, as
needed. All of the editing commands are control characters or escape sequences.

Edit commands operate from any place on a line (not only at the beginning). Do not press the Enter key
or line-feed (Down Arrow) key after edit commands, except as noted.

Ctrl-F Moves the cursor forward (right) one character.

Esc-F Moves the cursor forward one word (a string of characters consisting of only letters, digits, and
underscores).

Ctrl-B Moves the cursor backward (left) one character.

Esc-B Moves the cursor backward one word.

Ctrl-A Moves the cursor to the beginning of the line.

Ctrl-E Moves the cursor to the end of the line.

Ctrl-] ¢ Moves the cursor forward on the current line to the indicated character.

Esc-Ctrl-] ¢ Moves the cursor backward on the current line to the indicated character.

Ctrl-X Ctrl-X Interchanges the cursor and the mark.

ERASE Deletes the previous character. (User-defined erase character as defined by the stty command, usually

the Ctrl-H key sequence.)

Ctrl-D Deletes the current character.

Esc-D Deletes the current word.

Esc-Backspace Deletes the previous word.

Esc-H Deletes the previous word.

Esc-Delete Deletes the previous word. If your interrupt character is the Delete key, this command does not work.
Ctrl-T Transposes the current character with the next character in emacs mode. Transposes the two previous

characters in gmacs mode.

Ctrl-C Capitalizes the current character.
Esc-C Capitalizes the current word.
Esc-L Changes the current word to lowercase.

184 AIX Version 6.1: Operating system and device management

Ctrl-K

Deletes from the cursor to the end of the line. If preceded by a numeric parameter whose value is less
than the current cursor position, this editing command deletes from the given position up to the cursor.
If preceded by a numeric parameter whose value is greater than the current cursor position, this editing
command deletes from the cursor up to the given cursor position.

Ctrl-W Deletes from the cursor to the mark.

Esc-P Pushes the region from the cursor to the mark on the stack.

KILL User-defined kill character as defined by the stty command, usually the Ctrl-G key sequence or @. Kills
the entire current line. If two kill characters are entered in succession, all subsequent kill characters
cause a line feed (useful when using paper terminals).

Ctrl-Y Restores the last item removed from the line. (Yanks the item back to the line.)

Ctrl-L Line feeds and prints the current line.

Ctrl-@ (Null character) Sets a mark.

Esc-space Sets a mark.

Ctrl-J (New line) Executes the current line.

Ctrl-M (Return) Executes the current line.

EOF Processes the end-of-file character, normally the Ctrl-D key sequence, as an end-of-file only if the
current line is null.

Ctrl-P Fetches the previous command. Each time the Ctrl-P key sequence is entered, the previous command
back in time is accessed. Moves back one line when not on the first line of a multiple-line command.

Esc-< Fetches the least recent (oldest) history line.

Esc-> Fetches the most recent (youngest) history line.

Ctrl-N Fetches the next command line. Each time the Ctrl-N key sequence is entered, the next command line

forward in time is accessed.

Ctrl-R String

Reverses search history for a previous command line containing the string specified by the String
parameter. If a value of 0 is given, the search is forward. The specified string is terminated by an Enter
or newline character. If the string is preceded by a carat ("), the matched line must begin with the
String parameter. If the String parameter is omitted, then the next command line containing the most
recent String parameter is accessed. In this case, a value of 0 reverses the direction of the search.

Ctrl-O (Operate) Executes the current line and fetches the next line relative to the current line from the history
file.

Esc Digits (Escape) Defines the numeric parameter. The digits are taken as a parameter to the next command. The
commands that accept a parameter are Ctrl-F, Ctrl-B, ERASE, Ctrl-C, Ctrl-D, Ctrl-K, Ctrl-R, Ctrl-P,
Ctrl-N, Ctrl-], Esc-., Esc-Ctrl-], Esc-_, Esc-B, Esc-C, Esc-D, Esc-F, Esc-H, Esc-L, and Esc-Ctrl-H.

Esc Letter (Soft-key) Searches the alias list for an alias named _Letfer. If an alias of this name is defined, its value

is placed into the input queue. The Letfer parameter must not specify one of the escape functions.

Esc-[Letter

(Soft-key) Searches the alias list for an alias named double underscore Letter (__Letter). If an alias of this
name is defined, its value is placed into the input queue. This command can be used to program
function keys on many terminals.

Esc-. Inserts on the line the last word of the previous command. If preceded by a numeric parameter, the
value of this parameter determines which word to insert rather than the last word.

Esc-_ Same as the Esc-. key sequence.

Esc-* Attempts file name substitution on the current word. An asterisk (*) is appended if the word does not
match any file or contain any special pattern characters.

Esc-Esc File name completion. Replaces the current word with the longest common prefix of all file names that
match the current word with an asterisk appended. If the match is unique, a slash (/) is appended if the
file is a directory and a space is appended if the file is not a directory.

Esc-= Lists the files that match the current word pattern as if an asterisk (*) were appended.

Operating system and device management 185

Ctrl-U Multiplies the parameter of the next command by 4.

\ Escapes the next character. Editing characters and the ERASE, KILL and INTERRUPT (normally the
Delete key) characters can be entered in a command line or in a search string if preceded by a backslash
(\). The backslash removes the next character’s editing features, if any.

Ctrl-v Displays the version of the shell.

Esc-# Inserts a pound sign (#) at the beginning of the line and then executes the line. This causes a comment
to be inserted in the history file.

vi editing mode:
The vi editing mode has two typing modes.

The modes are:
e Input mode. When you enter a command, the vi editor is in input mode.
* Control mode. Press the Esc key to enter control mode.

Most control commands accept an optional repeat Count parameter prior to the command. When in vi
mode on most systems, canonical processing is initially enabled. The command is echoed again if one or
more of the following are true:

* The speed is 1200 baud or greater.
* The command contains any control characters.
* Less than one second has elapsed since the prompt was printed.

The Esc character terminates canonical processing for the remainder of the command, and you can then
modify the command line. This scheme has the advantages of canonical processing with the type-ahead
echoing of raw mode. If the viraw option is also set, canonical processing is always disabled. This mode
is implicit for systems that do not support two alternate end-of-line delimiters and might be helpful for
certain terminals.

Available vi edit commands are grouped into categories. The categories are as follows:

Input edit commands:

The input edit commands for the Korn shell are described below.

Note: By default, the editor is in input mode.

ERASE Deletes the previous character. (User-defined erase character as defined by the stty command, usually Ctrl-H or #.)
Ctrl-W Deletes the previous blank separated word.

Ctrl-D Terminates the shell.

Ctrl-v Escapes the next character. Editing characters, such as the ERASE or KILL characters, can be entered in a command

line or in a search string if preceded by a Ctrl-V key sequence. The Ctrl-V key sequence removes the next character’s
editing features (if any).

\ Escapes the next ERASE or KILL character.

Motion edit commands:
The motion edit commands for the Korn shell are described below.

Motion edit commands move the cursor as follows:

186 AIX Version 6.1: Operating system and device management

[Count]l

Moves the cursor forward (right) one character.

[Countlw Moves the cursor forward one alphanumeric word.

[Count]W Moves the cursor to the beginning of the next word that follows a blank.

[Count]e Moves the cursor to the end of the current word.

[Count]E Moves the cursor to the end of the current blank-separated word.

[Count]h Moves the cursor backward (left) one character.

[Count]b Moves the cursor backward one word.

[Count]B Moves the cursor to the previous blank-separated word.

[Count]| Moves the cursor to the column specified by the Count parameter.

[Count]fc Finds the next character ¢ in the current line.

[Count]Fc Finds the previous character c in the current line.

[Count]tc Equivalent to f followed by h.

[Count]Tc Equivalent to F followed by L

[Count]; Repeats for the number of times specified by the Count parameter the last single-character find command: £, F,
t,orT.

[Count], Reverses the last single-character find command the number of times specified by the Count parameter.

0 Moves the cursor to the start of a line.

A Moves the cursor to the first nonblank character in a line.

$ Moves the cursor to the end of a line.

Search edit commands:

Search edit commands access your command history as follows:

[Count]k Fetches the previous command.

[Count]- Equivalent to the k command.

[Countlj Fetches the next command. Each time the j command is entered, the next command is accessed.

[Count]+ Equivalent to the j command.

[Count]G Fetches the command whose number is specified by the Count parameter. The default is the least recent history
command.

/String Searches backward through history for a previous command containing the specified string. The string is
terminated by a RETURN or newline character. If the specified string is preceded by a carat ("), the matched line
must begin with the String parameter. If the value of the String parameter is null, the previous string is used.

?String Same as /String except that the search is in the forward direction.

n Searches for the next match of the last pattern to /String or ? commands.

N Searches for the next match of the last pattern to /String or ? commands, but in the opposite direction. Searches

history for the string entered by the previous /String command.

Text modification edit commands:

Text-modification edit commands modify the line as follows:

Operating system and device management 187

a Enters the input mode and enters text after the current character.

A Appends text to the end of the line. Equivalent to the $a command.

[Count]cMotion

c[Count]Motion Deletes the current character through the character to which the Motion parameter specifies to
move the cursor, and enters input mode. If the value of the Motion parameter is ¢, the entire
line is deleted and the input mode is entered.

C Deletes the current character through the end of the line and enters input mode. Equivalent to
the ¢$ command.

Equivalent to the cc command.

D Deletes the current character through the end of line. Equivalent to the d$ command.

[Count]dMotion Deletes the current character up to and including the character specified by the Motion
parameter. If Motion is d, the entire line is deleted.

d[Count]Motion

i Enters the input mode and inserts text before the current character.

I Inserts text before the beginning of the line. Equivalent to the 0i command.

[Count]P Places the previous text modification before the cursor.

[Count]p Places the previous text modification after the cursor.

R Enters the input mode and types over the characters on the screen.

[Count]rc Replaces the number of characters specified by the Count parameter, starting at the current
cursor position, with the characters specified by the ¢ parameter. This command also advances
the cursor after the characters are replaced.

[Count]x Deletes the current character.

[Count]X Deletes the preceding character.

[Count]. Repeats the previous text-modification command.

[Count]~ Inverts the case of the number of characters specified by the Count parameter, starting at the
current cursor position, and advances the cursor.

[Count]_ Appends the word specified by the Count parameter of the previous command and enters input
mode. The last word is used if the Count parameter is omitted.

* Appends an asterisk (*) to the current word and attempts file name substitution. If no match is
found, it rings the bell. Otherwise, the word is replaced by the matching pattern and input
mode is entered.

\ File name completion. Replaces the current word with the longest common prefix of all file

names matching the current word with an asterisk (*) appended. If the match is unique, a slash
/ is appended if the file is a directory. A space is appended if the file is not a directory.

Miscellaneous edit commands:

The most commonly used edit commands include the following:

188 AIX Version 6.1: Operating system and device management

[Count]yMotion

yl[Count]Motion Yanks the current character up to and including the character marked by the cursor position
specified by the Motion parameter and puts all of these characters into the delete buffer. The text
and cursor are unchanged.

Y Yanks from the current position to the end of the line. Equivalent to the y$ command.

u Undoes the last text-modifying command.

U Undoes all the text-modifying commands performed on the line.

[Count]v Returns the command fc -e ${VISUAL:-${EDITOR:-vi}} Count in the input buffer. If the Count
parameter is omitted, then the current line is used.

Ctrl-L Line feeds and prints the current line. This command is effective only in control mode.

Ctrl-J (New line) Executes the current line regardless of the mode.

Ctrl-M (Return) Executes the current line regardless of the mode.

Sends the line after inserting a pound sign (#) in front of the line. Useful if you want to insert the

current line in the history without executing it.

If the command line contains a pipe or semicolon or newline character, then additional pound signs
(#) will be inserted in front of each of these symbols. To delete all pound signs, retrieve the
command line from history and enter another pound sign (#).

= Lists the file names that match the current word as if an asterisk were appended to it.

@Letter Searches the alias list for an alias named _Letter. If an alias of this name is defined, its value is
placed into the input queue for processing.

Korn shell or POSIX shell commands:

The Korn shell is an interactive command interpreter and command programming language. It conforms
to the Portable Operating System Interface for Computer Environments (POSIX), an international
standard for operating systems.

POSIX is not an operating system, but is a standard aimed at portability of applications, at the source
level, across many systems. POSIX features are built on top of the Korn shell. The Korn shell (also known
as the POSIX shell) offers many of the same features as the Bourne and C shells, such as I/O redirection
capabilities, variable substitution, and file name substitution. It also includes several additional command
and programming language features:

Note: There is a restricted version of Korn shell available, called rksh. For more details, refer to the
command.

Arithmetic evaluation The Korn shell, or POSIX shell, can perform integer arithmetic using the built-in let command, using
any base from 2 to 36.

In order to enable recognition of numbers starting with 0 (Octal) and 0x (Hexadecimal) in the Korn
shell, run the following commands:

export XPG_SUS_ENV=0ON
Exporting the XPG_SUS_ENV variable causes the commands that are run and the libraries
that they use to be completely POSIX-compliant.
Note: Because the entire library system becomes POSIX-compliant, a given command’s
default expected behavior might change.

export OCTAL_CONST=ON
Exporting this variable causes the interpretation of constants declared in the Korn shell to be
POSIX-compliant as far as the recognition of octal and hexadecimal constants is concerned.

Command history The Korn shell, or POSIX shell, stores a file that records all of the commands you enter. You can use a
text editor to alter a command in this history file and then reissue the command.

Operating system and device management 189

Coprocess facility Enables you to run programs in the background and send and receive information to these background

processes.

Editing The Korn shell, or POSIX shell, offers inline editing options that enable you to edit the command line.

Editors similar to emacs, gmacs, and vi are available.

A Korn shell command is one of the following:

Simple command|
‘PiEelinel
[Compound command|

When you issue a command in the Korn shell or POSIX shell, the shell evaluates the command and does
the following:

Makes all indicated substitutions.

Determines whether the command contains a slash (/). If it does, the shell runs the program named by
the specified path name.

If the command does not contain a slash (/), the Korn shell or POSIX shell continues with the following
actions:

Determines whether the command is a special built-in command. If it is, the shell runs the command
within the current shell process.

Compares the command to user-defined functions. If the command matches a user-defined function,
then the positional parameters are saved and then reset to the arguments of the function call. When the
function completes or issues a return, the positional parameter list is restored, and any trap set on EXIT
within the function is carried out. The value of a function is the value of the last command executed. A
function is carried out in the current shell process.

If the command name matches the name of a regular built-in command, then that regular built-in
command will be invoked.

Creates a process and attempts to carry out the command by using the exec command (if the command
is neither a built-in command nor a user-defined function).

The Korn shell, or POSIX shell, searches each directory in a specified path for an executable file. The
PATH shell variable defines the search path for the directory containing the command. Alternative
directory names are separated with a colon (:). The default path is /usr/bin: (specifying the /usr/bin
directory, and the current directory, in that order). The current directory is specified by two or more
adjacent colons, or by a colon at the beginning or end of the path list.

If the file has execute permission but is not a directory or an a.out file, the shell assumes that it contains
shell commands. The current shell process spawns a subshell to read the file. All nonexported aliases,
functions, and named parameters are removed from the file. If the shell command file has read
permission, or if the setuid or setgid bits are set on the file, then the shell runs an agent that sets up the
permissions and carries out the shell with the shell command file passed down as an open file. A
parenthesized command is run in a subshell without removing nonexported quantities.

190 AIX Version 6.1: Operating system and device management

Related concepts

[“Available shells” on page 147|

The following are the shells that are provided with AIX.

[“Coprocess facility” on page 171|

The Korn shell, or POSIX shell, allows you to run one or more commands as background processes.
These commands, run from within a shell script, are called coprocesses.

[“Inline editing in the Korn shell or POSIX shell” on page 183

Normally, you type each command line from a terminal device and follow it by a newline character
(RETURN or LINE FEED). When you activate the emacs, gmacs, or vi inline editing option, you can edit
the command line.

[Arithmetic evaluation in the Korn shell or POSIX shell” on page 156

The Korn shell or POSIX shell regular built-in let command enables you to perform integer arithmetic.
[“Korn shell or POSIX shell built-in commands” on page 172]

Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

Korn shell compound commands:
A compound command can be a list of simple commands or a pipeline, or it can begin with a reserved
word. Most of the time, you will use compound commands such as if, while, and for when you are

writing shell scripts.

The following is a list of list of Korn shell or POSIX shell compound commands:

Command syntax Description

for [[dentifier] [in[Word ...] ;do[Lisf] ~ Each time a for command is executed, the Identifier parameter is set to the next word taken

;done from the in Word ... list. If the in Word ... command is omitted, then the for command executes
the do List command once for each positional parameter that is set. Execution ends when there
are no more words in the list.

select [[dentifier] [in [Word] ...] ;do A select command prints on standard error (file descriptor 2) the set of words specified, each

;done preceded by a number. If the in Word ... command is omitted, then the positional parameters
are used instead. The PS3 prompt is printed and a line is read from the standard input. If this
line consists of the number of one of the listed words, then the value of the Identifier parameter
is set to the word corresponding to this number.

If the line read from standard input is empty, the selection list is printed again. Otherwise, the
value of the Identifier parameter is set to null. The contents of the line read from standard input
is saved in the REPLY parameter. The List parameter is executed for each selection until a break
or an end-of-file character is encountered.

case in (] Pattern [| A case command executes the List parameter associated with the first Pattern parameter that

Pattern] ...)] ... esac matches the Word parameter. The form of the patterns is the same as that used for file name
substitution.

if;then List [elif List ;then The List parameter specifies a list of commands to be run. The shell executes the if List

List] ... [;else List] ;fi command first. If a zero exit status is returned, it executes the then List command. Otherwise,

the commands specified by the List parameter following the elif command are executed.

If the value returned by the last command in the elif List command is zero, the then List
command is executed. If the value returned by the last command in the then List command is
zero, the else List command is executed. If no commands specified by the List parameters are
executed for the else or then command, the if command returns a zero exit status.

while ;do List ;done until The List parameter specifies a list of commands to be run. The while command repeatedly

;do List ;done executes the commands specified by the List parameter. If the exit status of the last command in
the while List command is zero, the do List command is executed. If the exit status of the last
command in the while List command is not zero, the loop terminates. If no commands in the
do List command are executed, then the while command returns a zero exit status. The until
command might be used in place of the while command to negate the loop termination test.

Operating system and device management 191

Command syntax Description

(The List parameter specifies a list of commands to run. The shell executes the List parameter in
a separate environment.
Note: If two adjacent open parentheses are needed for nesting, you must insert a space
between them to differentiate between the command and arithmetic evaluation.

{} The List parameter specifies a list of commands to run. The List parameter is simply executed.

Note: Unlike the metacharacters (), { } denote reserved words (used for special purposes, not
as user-declared identifiers). To be recognized, these reserved words must appear at the
beginning of a line or after a semicolon (;).

[[Expression]] Evaluates the Expression parameter. If the expression is true, then the command returns a zero
exit status.

function { ;) or Defines a function that is referred to by the Identifier parameter. The body of the function is the
function Identifier () {List ;} specified list of commands enclosed by { }. The () consists of two operators, so mixing blank

characters with the identifier, (and) is permitted, but is not necessary.

time Executes the Pipeline parameter. The elapsed time, user time, and system time are printed to
standard error.

Related concepts

[“Parameters in the Korn shell” on page 166|
Korn shell parameters are discussed below.

Shell startup:
You can start the Korn shell with the ksh command, psh command (POSIX shell), or the exec command.

If the shell is started by the exec command, and the first character of zero argument ($0) is the hyphen
(-), then the shell is assumed to be a login shell. The shell first reads commands from the /etc/profile
file and then from either the .profile file in the current directory or from the $HOME/.profile file, if
either file exists. Next, the shell reads commands from the file named by performing parameter
substitution on the value of the ENV environment variable, if the file exists.

If you specity the File [Parameter] parameter when invoking the Korn shell or POSIX shell, the shell runs
the script file identified by the File parameter, including any parameters specified. The script file specified
must have read permission; any setuid and setgid settings are ignored. The shell then reads the
commands.

Note: Do not specify a script file with the -c or -s flags when invoking the Korn shell or POSIX
shell.

For more information on positional parameters, see [‘Parameters in the Korn shell” on page 166

Related concepts

[“Parameters in the Korn shell” on page 166|
Korn shell parameters are discussed below.

Korn shell environment:

All variables (with their associated values) known to a command at the beginning of its execution
constitute its environment.

This environment includes variables that a command inherits from its parent process and variables
specified as keyword parameters on the command line that calls the command. The shell interacts with
the environment in several ways. When it is started, the shell scans the environment and creates a
parameter for each name found, giving the parameter the corresponding value and marking it for export.
Executed commands inherit the environment.

192 AIX Version 6.1: Operating system and device management

If you modify the values of the shell parameters or create new ones using the export or typeset -x
commands, the parameters become part of the environment. The environment seen by any executed
command is therefore composed of any name-value pairs originally inherited by the shell, whose values
might be modified by the current shell, plus any additions that resulted from using the export or typeset
-x commands. The executed command (subshell) will see any modifications it makes to the environment
variables it has inherited, but for its child shells or processes to see the modified values, the subshell
must export these variables.

The environment for any simple command or function is changed by prefixing with one or more
parameter assignments. A parameter assignment argument is a word of the form Identifier=Value. Thus,
the two following expressions are equivalent (as far as the execution of the command is concerned):

TERM=450 Command arguments
(export TERM; TERM=450; Command arguments)

Korn shell functions:

The function reserved word defines shell functions. The shell reads and stores functions internally. Alias
names are resolved when the function is read. The shell executes functions in the same manner as
commands, with the arguments passed as positional parameters.

The Korn shell or POSIX shell executes functions in the environment from which functions are invoked.
All of the following are shared by the function and the invoking script, and side effects can be produced:

* Variable values and attributes (unless you use typeset command within the function to declare a local
variable)

* Working directory

* Aliases, function definitions, and attributes
* Special parameter $

* Open files

The following are not shared between the function and the invoking script, and there are no side effects:
 DPositional parameters

* Special parameter #

* Variables in a variable assignment list when the function is invoked

* Variables declared using typeset command within the function

* Options

 Traps. However, signals ignored by the invoking script will also be ignored by the function.

Note: In earlier versions of the Korn shell, traps other than EXIT and ERR were shared by the function
as well as the invoking script.

If trap on 0 or EXIT is executed inside the body of a function, then the action is executed after the
function completes, in the environment that called the function. If the trap is executed outside the body of
a function, then the action is executed upon exit from the Korn shell. In earlier versions of the Korn shell,
no trap on 0 or EXIT outside the body of a function was executed upon exit from the function.

When a function is executed, it has the same syntax-error and variable-assignment properties described in
Korn shell or POSIX shell built-in commands.

The compound command is executed whenever the function name is specified as the name of a simple
command. The operands to the command temporarily will become the positional parameters during the
execution of the compound command. The special parameter # will also change to reflect the number of
operands. The special parameter 0 will not change.

Operating system and device management 193

The return special command is used to return from function calls. Errors within functions return control
to the caller.

Function identifiers are listed with the -f or +f option of the typeset special command. The -f option also
lists the text of functions. Functions are undefined with the -f option of the unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf option of the typeset special
command allows a function to be exported to scripts that are executed without a separate invocation of
the shell. Functions that must be defined across separate invocations of the shell should be specified in
the ENV file with the -xf option of the typeset special command.

The exit status of a function definition is zero if the function was not successfully declared. Otherwise, it
will be greater than zero. The exit status of a function invocation is the exit status of the most recent
command executed by the function.

Related concepts

[“Parameters in the Korn shell” on page 166|
Korn shell parameters are discussed below.

[“Korn shell or POSIX shell built-in commands” on page 172|
Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.

Korn shell or POSIX shell command history:
The Korn shell or POSIX shell saves commands entered from your terminal device to a history file.

If set, the HISTFILE variable value is the name of the history file. If the HISTFILE variable is not set or
cannot be written, the history file used is $HOME/.sh_history. If the history file does not exist and the
Korn shell cannot create it, or if it does exist and the Korn shell does not have permission to append to it,
then the Korn shell uses a temporary file as the history file. The shell accesses the commands of all
interactive shells using the same named history file with appropriate permissions.

By default, the Korn shell or POSIX shell saves the text of the last 128 commands for nonroot users and
512 commands for the root user. The history file size (specified by the HISTSIZE variable) is not limited,
although a very large history file can cause the Korn shell to start slowly.

Command history substitution:

Use the fc built-in command to list or edit portions of the history file. To select a portion of the file to
edit or list, specify the number or the first character or characters of the command.

You can specify a single command or range of commands.

If you do not specify an editor program as an argument to the regular built-in command, the editor
specified by the FCEDIT variable is used. If the FCEDIT variable is not defined, then the /usr/bin/ed file
is used. The edited command or commands are printed and run when you exit the editor.

The editor name hyphen (-) is used to skip the editing phase and run the command again. In this case, a
substitution parameter of the form 01d=New can be used to modify the command before it is run. For
example, if r is aliased to fc -e -, then typing r bad=good c runs the most recent command that starts
with the letter ¢ and replaces the first occurrence of the bad string with the good string.

194 AIX Version 6.1: Operating system and device management

Related tasks

[“Listing previously entered commands (history command)” on page 73|
Use the history command to list commands that you have previously entered.

Command aliasing in the Korn shell or POSIX shell:
The Korn shell, or POSIX shell, allows you to create aliases to customize commands.

The command defines a word of the form Name=String as an alias. When you use an alias as the
first word of a command line, the Korn shell checks to see if it is already processing an alias with the
same name. If it is, the Korn shell does not replace the alias name. If an alias with the same name is not
already being processed, the Korn shell replaces the alias name by the value of the alias.

The first character of an alias name can be any printable character except the metacharacters. The
remaining characters must be the same as for a valid identifier. The replacement string can contain any
valid shell text, including the metacharacters.

If the last character of the alias value is a blank, the shell also checks the word following the alias for
alias substitution. You can use aliases to redefine special built-in commands but not to redefine reserved
words. Alias definitions are not inherited across invocations of ksh. However, if you specify alias -x, the
alias stays in effect for scripts invoked by name that do not invoke a separate shell. To export an alias
definition and to cause child processes to have access to them, you must specify alias -x and the alias
definition in your environment file.

Use the alias command to create, list, and export aliases.
Use the unalias command to remove aliases.

The format for creating an alias is as follows:
alias Name=String

where the Name parameter specifies the name of the alias, and the String parameter specifies the value
of the alias.

The following exported aliases are predefined by the Korn shell but can be unset or redefined. It is not
recommended that you change them, because this might later confuse anyone who expects the alias to
work as predefined by the Korn shell.

autoload="'typeset -fu'
false='let 0'
functions="'typeset -f'
hash='alias -t'
history='fc -1'
integer="'typeset -i'
nohup="nohup '

r="'fc -e -'

true=":"'

type='whence -v'

Aliases are not supported on noninteractive invocations of the Korn shell (ksh); for example, in a shell
script, or with the -c option in ksh, as in the following:

ksh -c alias

Operating system and device management 195

Related tasks

[“Creating a command alias (alias shell command)” on page 7§
An alias lets you create a shortcut name for a command, file name, or any shell text. By using aliases, you
save a lot of time when doing tasks you do frequently. You can create a command alias.

Tracked aliases:

Frequently, aliases are used as shorthand for full path names. One aliasing facility option allows you to
automatically set the value of an alias to the full path name of a corresponding command. This special
type of alias is a tracked alias.

Tracked aliases speed execution by eliminating the need for the shell to search the PATH variable for a
full path name.

The set -h command turns on command tracking so that each time a command is referenced, the shell
defines the value of a tracked alias. This value is undefined each time you reset the PATH variable.

These aliases remain tracked so that the next subsequent reference will redefine the value. Several tracked
aliases are compiled into the shell.

Tilde substitution:

After the shell performs alias substitution, it checks each word to see if it begins with an unquoted tilde
(V). If it does, the shell checks the word, up to the first slash (/), to see if it matches a user name in the
/etc/passwd file. If the shell finds a match, it replaces the ™ character and the name with the login
directory of the matched user. This process is called tilde substitution.

The shell does not change the original text if it does not find a match. The Korn shell also makes special
replacements if the ™ character is the only character in the word or followed by plus sign (+) or hyphen

(-):

~ Replaced by the value of the HOME variable
~+ Replaced by the $PWD variable (the full path name of the current directory)
~- Replaced by the $§OLDPWD variable (the full path name of the previous directory)

In addition, the shell attempts tilde substitution when the value of a variable assignment parameter
begins with a tilde ™~ character.

Bourne shell
The Bourne shell is an interactive command interpreter and command programming language.

The command runs the Bourne shell.

The Bourne shell can be run either as a login shell or as a subshell under the login shell. Only the login
command can call the Bourne shell as a login shell. It does this by using a special form of the bsh
command name: -bsh. When called with an initial hyphen (-), the shell first reads and runs commands
found in the system /etc/profile file and your $HOME/.profile, if one exists. The /etc/profile file sets
variables needed by all users. Finally, the shell is ready to read commands from your standard input.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell runs the script file
identified by the File parameter, including any parameters specified. The script file specified must have
read permission; any setuid and setgid settings are ignored. The shell then reads the commands. If
either the -c or -s flag is used, do not specify a script.

196 AIX Version 6.1: Operating system and device management

Related concepts

[“Available shells” on page 147|
The following are the shells that are provided with AIX.

Bourne shell environment:

All variables (with their associated values) known to a command at the beginning of its execution
constitute its environment. This environment includes variables that a command inherits from its parent
process and variables specified as keyword parameters on the command line that calls the command.

The shell passes to its child processes the variables named as arguments to the built-in export command.
This command places the named variables in the environments of both the shell and all its future child
processes.

Keyword parameters are variable-value pairs that appear in the form of assignments, normally before the
procedure name on a command line (but see also the flag for the set command). These variables are
placed in the environment of the procedure being called.

See the following examples:

* Consider the following procedure, which displays the values of two variables (saved in a command file
named key command):

key_command
echo $a $b

The following command lines produce the output shown:

Input Qutput
a=keyl b=key2 key command keyl key?2
a=tom b=john key_command tom john

A procedure’s keyword parameters are not included in the parameter count stored in $#.

A procedure can access the values of any variables in its environment. If it changes any of these values,
however, the changes are not reflected in the shell environment. The changes are local to the procedure in
question. To place the changes in the environment that the procedure passes to its child processes, you
must export the new values within that procedure.

See the following examples:

* To obtain a list of variables that are exportable from the current shell, type the following:
export

* To obtain a list of read-only variables from the current shell, type the following:
readonly

* To obtain a list of variable-value pairs in the current environment, type the following:
env

For more information about user environments, see [*/etc/environment file” on page 251)

Conditional substitution in the Bourne shell:
Normally, the shell replaces the expression $Variable with the string value assigned to the Variable
variable, if there is one. However, there is a special notation that allows conditional substitution, depending

on whether the variable is set or not null, or both.

By definition, a variable is set if it has ever been assigned a value. The value of a variable can be the null
string, which you can assign to a variable in any one of the following ways:

Operating system and device management 197

A=

bed=""
Efg="" Assigns the null string to the A, bcd, and Efg.
set 't Sets the first and second positional parameters to the null string and unsets all other positional parameters.

The following is a list of the available expressions you can use to perform conditional substitution:

${Variable- String} If the variable is set, substitute the Variable value in place of this expression. Otherwise,
replace this expression with the String value.

${Variable:-String} If the variable is set and not null, substitute the Variable value in place of this expression.
Otherwise, replace this expression with the String value.

${Variable=String} If the variable is set, substitute the Variable value in place of this expression. Otherwise,
set the Variable value to the String value and then substitute the Variable value in place of
this expression. You cannot assign values to positional parameters in this fashion.

${Variable:=String} If the variable is set and not null, substitute the Variable value in place of this expression.
Otherwise, set the Variable value to the String value and then substitute the Variable value
in place of this expression. You cannot assign values to positional parameters in this
fashion.

${Variable?String} If the variable is set, substitute the Variable value in place of this expression. Otherwise,
display a message of the following form:

Variable: String

and exit from the current shell (unless the shell is the login shell). If you do not specify a
value for the String variable, the shell displays the following message:

Variable: parameter null or not set

${Variable:?String} If the variable is set and not null, substitute the Variable value in place of this expression.
Otherwise, display a message of the following form:

Variable: String

and exit from the current shell (unless the shell is the login shell). If you do not specify
the String value, the shell displays the following message:

Variable: parameter null or not set

${Variable+String} If the variable is set, substitute the String value in place of this expression. Otherwise,
substitute the null string.

${Variable:+String} If the variable is set and not null, substitute the String value in place of this expression.
Otherwise, substitute the null string.

In conditional substitution, the shell does not evaluate the String variable until the shell uses this variable
as a substituted string. Thus, in the following example, the shell executes the pwd command only if d is
not set or is null:

echo ${d:-"pwd™}
Related concepts

[“User-defined variables in the Bourne shell” on page 207]
The Bourne shell recognizes alphanumeric variables to which string values can be assigned.

Positional parameters in the Bourne shell:

When you run a shell procedure, the shell implicitly creates positional parameters that reference each
word on the command line by its position on the command line.

The word in position 0 (the procedure name) is called $0, the next word (the first parameter) is called $1,
and so on, up to $9. To refer to command line parameters numbered higher than 9, use the built-in

command.

198 AIX Version 6.1: Operating system and device management

You can reset the values of the positional parameters explicitly by using the built-in [set| command.

Note: When an argument for a position is not specified, its positional parameter is set to null. Positional
parameters are global and can be passed to nested shell procedures.

Related concepts

[“User-defined variables in the Bourne shell” on page 207]
The Bourne shell recognizes alphanumeric variables to which string values can be assigned.

Related reference

[“Predefined special variables in the Bourne shell” on page 210|
Several variables have special meanings. The following variables are set only by the Bourne shell:

File name substitution in the Bourne shell:
The Bourne shell permits you to perform file name substitutions.

Command parameters are often file names. You can automatically produce a list of file names as
parameters on a command line. To do this, specify a character that the shell recognizes as a
pattern-matching character. When a command includes such a character, the shell replaces it with the file
names in a directory.

Note: The Bourne shell does not support file name expansion based on equivalence classification of
characters.

Most characters in such a pattern match themselves, but you can also use some special pattern-matching
characters in your pattern. These special characters are as follows:

* Matches any string, including the null string

? Matches any one character

[...] Matches any one of the characters enclosed in square brackets

[r...1 Matches any character within square brackets other than one of the characters that follow the exclamation
mark

Within square brackets, a pair of characters separated by a hyphen (-) specifies the set of all characters
lexicographically within the inclusive range of that pair, according to the binary ordering of character
values.

Pattern matching has some restrictions. If the first character of a file name is a dot (.), it can be matched

only by a pattern that also begins with a dot. For example, * matches the file names myfile and yourfile
but not the file names .myfile and .yourfile. To match these files, use a pattern such as the following:

+file

If a pattern does not match any file names, then the pattern itself is returned as the result of the
attempted match.

File and directory names should not contain the characters *, ?, [, or] because they can cause infinite
recursion (that is, infinite loops) during pattern-matching attempts.

Input and output redirection in the Bourne shell:
There are redirection options that can be used in commands.
In general, most commands do not know whether their input or output is associated with the keyboard,

the display screen, or a file. Thus, a command can be used conveniently either at the keyboard or in a
pipeline.

Operating system and device management 199

The following redirection options can appear anywhere in a simple command. They can also precede or
follow a command, but are not passed to the command.

<File Uses the specified file as standard input.

>File Uses the specified file as standard output. Creates the file if it does not exist; otherwise, truncates it to
zero length.

> >File Uses the specified file as standard output. Creates the file if it does not exist; otherwise, adds the output
to the end of the file.

<<[-]eofstr Reads as standard input all lines from the eofstr variable up to a line containing only eofstr or up to an
end-of-file character. If any character in the eofstr variable is quoted, the shell does not expand or
interpret any characters in the input lines. Otherwise, it performs variable and command substitution
and ignores a quoted newline character (\newline). Use a backslash (\) to quote characters within the
eofstr variable or within the input lines.

If you add a hyphen (-) to the << redirection option, then all leading tabs are stripped from the eofstr
variable and from the input lines.

<&Digit Associates standard input with the file descriptor specified by the Digit variable.
>&Digit Associates standard output with the file descriptor specified by the Digit variable.
<&- Closes standard input.

>8- Closes standard output.

Note: The restricted shell does not allow output redirection.

For more information about redirection, see [‘Input and output redirection” on page 278

List of Bourne shell built-in commands:

The following is a list of Bourne shell built-in commands.

El Returns a zero exit value
N Reads and executes commands from a file parameter and then returns.
Exits from the enclosing for, while, or until command loops, if any.

Changes the current directory to the specified directory.

Resumes the next iteration of the enclosing for, while, or until command loops.

Writes character strings to standard output.

Reads the arguments as input to the shell and executes the resulting command or commands.

Executes the command specified by the Argument parameter, instead of this shell, without creating a new

process.
Exits the shell whose exit status is specified by the n parameter.
expor Marks names for automatic export to the environment of subsequently executed commands.
has Finds and remembers the location in the search path of specified commands.
pwd| Displays the current directory.
read| Reads one line from standard input.
monlﬂ Marks name specified by Name parameter as read-only.
retur Causes a function to exit with a specified return value.
set] Controls the display of various parameters to standard output.
shift Shifts command-line arguments to the left.
test] Evaluates conditional expressions.
times Displays the accumulated user and system times for processes run from the shell.
tra Runs a specified command when the shell receives a specified signal or signals.
@ Interprets how the shell would interpret a specified name as a command name.
ulimi Displays or adjusts allocated shell resources.
umas Determines file permissions.
unset Removes the variable or function corresponding to a specified name.
wai Waits for the specified child process to end and reports its termination status.

200 AIX Version 6.1: Operating system and device management

Related reference

[“Bourne shell built-in commands” on page 203|
Special commands are built into the Bourne shell and run in the shell process.

Bourne shell commands:
You can issue commands in the Bourne shell.

When you issue a command in the Bourne shell, it first evaluates the command and makes all indicated
substitutions. It then runs the command provided that:

¢ The command name is a Bourne shell special built-in command.
OR

¢ The command name matches the name of a defined function. If this is the case, the shell sets the
positional parameters to the parameters of the function.

If the command name matches neither a built-in command nor the name of a defined function and the
command names an executable file that is a compiled (binary) program, the shell (as parent) spawns a
new (child) process that immediately runs the program. If the file is marked executable but is not a
compiled program, the shell assumes that it is a shell procedure. In this case, the shell spawns another
instance of itself (a subshell), to read the file and execute the commands included in it. The shell also runs
a parenthesized command in a subshell. To the user, a compiled program is run in exactly the same way
as a shell procedure. The shell normally searches for commands in file system directories in this order:

/usr/bin

/etc

/usr/sbin
/usr/uch
$HOME/bin
/usr/bin/X11
/sbin

Current directory

© N o oA~ 0N~

The shell searches each directory, in turn, continuing with the next directory if it fails to find the
command.

Note: The PATH variable determines the order in which the shell searches directories. You can change the
particular sequence of directories searched by resetting the PATH variable.

If you give a specific path name when you run a command (for example, /usr/bin/sort), the shell does
not search any directories other than the one you specify. If the command name contains a slash (/), the

shell does not use the search path.

You can give a full path name that begins with the root directory (such as /usr/bin/sort). You can also
specify a path name relative to the current directory. If you specify, for example:

bin/myfile
the shell looks in the current directory for a directory named bin and in that directory for the file myfile.
Note: The restricted shell does not run commands containing a slash (/).

The shell remembers the location in the search path of each executed command (to avoid unnecessary
exec commands later). If it finds the command in a relative directory (one whose name does not begin

Operating system and device management 201

with /), the shell must redetermine the command’s location whenever the current directory changes. The
shell forgets all remembered locations each time you change the PATH variable or run the hash -r
command.

Character quotation:

Many characters have a special meaning to the shell. Sometimes you want to conceal that meaning,.
Single (') and double (") quotation marks surrounding a string, or a backslash (\) before a single
character allow you to conceal the character’s meaning.

All characters (except the enclosing single quotation marks) are taken literally, with any special meaning
removed. Thus, the command:

stuff="echo $? $x; 1s * | wc'

assigns the literal string echo $? $x; 1s * | wc to the variable stuff. The shell does not execute the
echo, 1s, and wc commands or expand the $? and $* variables and the asterisk (*) special character.

Within double quotation marks, the special meaning of the dollar sign (§$), backquote (), and double
quotation (") characters remains in effect, while all other characters are taken literally. Thus, within
double quotation marks, command and variable substitution takes place. In addition, the quotation marks
do not affect the commands within a command substitution that is part of the quoted string, so
characters there retain their special meanings.

Consider the following sequence:

1s *

filel file2 file3

message="This directory contains “1s * ~
echo $message

This directory contains filel file2 file3

This shows that the asterisk (*) special character inside the command substitution was expanded.

To hide the special meaning of the dollar sign ($), backquote (*), and double quotation (") characters
within double quotation marks, precede these characters with a backslash (\). When you do not use
double quotation marks, preceding a character with a backslash is equivalent to placing it within single
quotation marks. Therefore, a backslash immediately preceding a newline character (that is, a backslash at
the end of the line) hides the newline character and allows you to continue the command line on the next
physical line.

Signal handling:

The shell ignores INTERRUPT and QUIT signals for an invoked command if the command is terminated
with an ampersand (&); that is, if it is running in the background. Otherwise, signals have the values
inherited by the shell from its parent, with the exception of the SEGMENTATION VIOLATION signal.
For more information, see the Bourne shell built-in command.

Bourne shell compound commands:

A compound command is one of the following.

* Pipeline (one or more simple commands separated by the pipe (|) symbol)
¢ List of simple commands

* Command beginning with a reserved word

* Command beginning with the control operator left parenthesis (()

202 AIX Version 6.1: Operating system and device management

Unless otherwise stated, the value returned by a compound command is that of the last simple command
executed.

Reserved words:

The following reserved words for the Bourne shell are recognized only when they appear without
quotation marks as the first word of a command.

for do done
case esac

if then fi
elif else

while until

{ }

()

forldentifier [inWord. . .] doList Sets the Identifier parameter to the word or words specified by the Word parameter (one at a

done time) and runs the commands specified in the List parameter. If you omit in Word. . ., then the
for command runs the List parameter for each positional parameter that is set, and processing
ends when all positional parameters have been used.

case Word in Pattern Runs the commands specified in the List parameter that are associated with the first Pattern
[| Pattern] . . .) List;; [Pattern parameter that matches the value of the Word parameter. Uses the same character-matching
[I Pattern] . . .) List;;] . . . esac notation in patterns that are used for file name substitution, except that a slash (/), leading dot

(.), or a dot immediately following a slash (/.) do not need to match explicitly.

if List then List [elif List then List] Runs the commands specified in the List parameter following the if command. If the command

. . . [else List] fi returns a zero exit value, the shell runs the List parameter following the first then command.
Otherwise, it runs the List parameter following the elif command (if it exists). If this exit value
is zero, the shell runs the List parameter following the next then command. If the command
returns a nonzero exit value, the shell runs the List parameter following the else command (if it
exists). If no else List or then List is performed, the if command returns a zero exit value.

while List do List done Runs the commands specified in the List parameter following the while command. If the exit
value of the last command in the while List is zero, the shell runs the List parameter following
the do command. It continues looping through the lists until the exit value of the last command
in the while List is nonzero. If no commands in the do List are performed, the while command
returns a zero exit value.

until List do List done Runs the commands specified in the List parameter following the until command. If the exit
value of the last command in the until List is nonzero, runs the List following the do command.
Continues looping through the lists until the exit value of the last command in the until List is
zero. If no commands in the do List are performed, the until command returns a zero exit

value.

(List) Runs the commands in the List parameter in a subshell.

{ List; } Runs the commands in the List parameter in the current shell process and does not start a
subshell.

Name () { List } Defines a function that is referenced by the Name parameter. The body of the function is the list

of commands between the braces specified by the List parameter.

Bourne shell built-in commands:
Special commands are built into the Bourne shell and run in the shell process.

Unless otherwise indicated, output is written to file descriptor 1 (standard output) and the exit status is 0
(zero) if the command does not contain any syntax errors. Input and output redirection is permitted.

The following special commands are treated somewhat differently from other special built-in commands:

Operating system and device management 203

: (colon) exec

. (dot) exit
break export
continue readonly
eval return

The Bourne shell proc

shift
times
trap
wait

esses these commands as follows:

* Keyword parameter assignment lists preceding the command remain in effect when the command

completes.

* 1/0 redirections are processed after parameter assignments.

* Errors in a shell script cause the script to stop processing.

Related reference

[“List of Bourne shell built-in commands” on page 200|

The following is a list

of Bourne shell built-in commands.

Special command descriptions:

The Bourne shell provides the following special built-in commands.

Returns a zero exit value.

. File Reads and runs commands from the File parameter and returns. Does not start a subshell. The shell uses
the search path specified by the PATH variable to find the directory containing the specified file.
break [n | Exits from the enclosing for, while, or until command loops, if any. If you specify the n variable, the

break command breaks the number of levels specified by the n variable.

continue [7 |

Resumes the next iteration of the enclosing for, while, or until command loops. If you specify the n
variable, the command resumes at the n™ enclosing loop.

cd Directory]

Changes the current directory to Directory. If you do not specify Directory, the value of the HOME shell
variable is used. The CDPATH shell variable defines the search path for Directory. CDPATH is a
colon-separated list of alternative directory names. A null path name specifies the current directory
(which is the default path). This null path name appears immediately after the equal sign in the
assignment or between the colon delimiters anywhere else in the path list. If Directory begins with a
slash (/), the shell does not use the search path. Otherwise, the shell searches each directory in the
CDPATH shell variable.

Note: The restricted shell cannot run the cd shell command.

echo String . . .]

Writes character strings to standard output. See the echo command for usage and parameter
information. The B flag is not supported.

eval [Arqument . . .] Reads arguments as input to the shell and runs the resulting command or commands.

exec [Argument . . . | Runs the command specified by the Argument parameter in place of this shell without creating a new
process. Input and output arguments can appear, and if no other arguments appear, cause the shell
input or output to be modified. This is not recommended for your login shell.

exit [n | Causes a shell to exit with the exit value specified by the n parameter. If you omit this parameter, the
exit value is that of the last command executed (the Ctrl-D key sequence also causes a shell to exit). The
value of the 1 parameter can be from 0 to 255, inclusive.

export [Name . . . | Marks the specified names for automatic export to the environments of subsequently executed
commands. If you do not specify the Name parameter, the export command displays a list of all names
that are exported in this shell. You cannot export function names.

hash [-r][Finds and remembers the location in the search path of each Command specified. The -r flag causes the

Command . . .] shell to forget all locations. If you do not specify the flag or any commands, the shell displays

information about the remembered commands in the following format:

Hits Cost Command

204 AIX Version 6.1: Operating system and device management

Hits indicates the number of times a command has been run by the shell process. Cost is a measure of

the work required to locate a command in the search path. Command shows the path names of each

specified command. Certain situations require that the stored location of a command be recalculated; for
example, the location of a relative path name when the current directory changes. Commands for which

that might be done are indicated by an asterisk (*) next to the Hits information. Cost is incremented

when the recalculation is done.

pwd Displays the current directory. See the command for a discussion of command options.
read [Name . . .] Reads one line from standard input. Assigns the first word in the line to the first Name parameter, the

second word to the second Name parameter, and so on, with leftover words assigned to the last Name

parameter. This command returns a value of 0 unless it encounters an end-of-file character.

readonly [Name . . .

]

Marks the name specified by the Name parameter as read-only. The value of the name cannot be reset. If

you do not specify any Name, the readonly command displays a list of all read-only names.

return [n]

Causes a function to exit with a return value of n. If you do not specify the n variable, the function
returns the status of the last command performed in that function. This command is valid only when
run within a shell function.

set [Flag [Arqument
o]

Sets one or more of the following flags:

-a Marks for export all variables to which an assignment is performed. If the assignment
precedes a command name, the export attribute is effective only for that command execution
environment, except when the assignment precedes one of the special built-in commands. In
this case, the export attribute persists after the built-in command has completed. If the
assignment does not precede a command name, or if the assignment is a result of the
operation of the getopts or read commands, the export attribute persists until the variable is
unset.

-e Exits immediately if all of the following conditions exist for a command:

* It exits with a return value greater than 0 (zero).

* It is not part of the compound list of a while, until, or if command.

* It is not being tested using AND or OR lists.

* It is not a pipeline preceded by the ! (exclamation point) reserved word.

-f Disables file name substitution.

-h Locates and remembers the commands called within functions as the functions are defined.
(Normally, these commands are located when the function is performed; see the
command.)

-k Places all keyword parameters in the environment for a command, not just those preceding the
command name.

-n Reads commands but does not run them. To check for shell script syntax errors, use the -n
flag.

-t Exits after reading and executing one command.

-u Treats an unset variable as an error and immediately exits when performing variable
substitution. An interactive shell does not exit.

-v Displays shell input lines as they are read.

-X Displays commands and their arguments before they are run.

Does not change any of the flags. This is useful in setting the $1 positional parameter to a
string beginning with a hyphen (-).

Using a plus sign (+) rather than a hyphen (-) unsets flags. You can also specify these flags on the shell
command line. The $- special variable contains the current set of flags.

Any Argument to the set command becomes a positional parameter and is assigned, in order, to $1, $2,
..., and so on. If you do not specify a flag or Argument, the set command displays all the names and
values of the current shell variables.

Operating system and device management 205

shift [n]

Shifts command line arguments to the left; that is, reassigns the value of the positional parameters by
discarding the current value of $1 and assigning the value of $2 to $1, of $3 to $2, and so on. If there are
more than 9 command line arguments, the 10" is assigned to $9 and any that remain are still unassigned
(until after another shift). If there are 9 or fewer arguments, the shift command unsets the
highest-numbered positional parameter that has a value.

The $0 positional parameter is never shifted. The shift # command is a shorthand notation specifying n
number of consecutive shifts. The default value of the n parameter is 1.

test Expression | [

Expression |

Evaluates conditional expressions. See the test command for a discussion of command flags and
parameters. The -h flag is not supported by the built-in test command in bsh.

times

Displays the accumulated user and system times for processes run from the shell.

trap [Command | [n

1...

Runs the command specified by the Command parameter when the shell receives the signal or signals
specified by the n parameter. The trap commands are run in order of signal number. Any attempt to set
a trap on a signal that was ignored on entry to the current shell is ineffective.

Note: The shell scans the Command parameter once when the trap is set and again when the trap is
taken.If you do not specify a command, then all traps specified by the n parameter are reset to their
current values. If you specify a null string, this signal is ignored by the shell and by the commands it
invokes. If the n parameter is zero (0), the specified command is run when you exit from the shell. If
you do not specify either a command or a signal, the trap command displays a list of commands
associated with each signal number.

type [Name . . .

I

Indicates how the shell would interpret it as a comman