INTERACTIVE UNIX* System V/386
Release 3.2
User's Guide

INTERACTIVE

A Kodak Company

Table of Contents

Preface

Xiii

Part 1: UNIX System Overview

What Is the UNIX System?

What the UNIX System Does 1-1

How the UNIX System Works 1-3

Basics for UNIX System Users

Getting Started 21

The Terminal 2-2

Obtaining a Login Name 2-13

Establishing Contact with the UNIX System 2-14
2-22

Part 2: UNIX System Tutorials

Using the File System

Introduction 3-1

How the File System is Structured 3-2

TABLE OF CONTENTS i

Table of Contents

Your Place in the File System 3-4
Organizing a Directory 3-15
Accessing and Manipulating Files 3-30
Printing Files 3-72
4 Overview of the Tutorials
Introduction 4-1
Text Editing 4-2
The Shell 4-7
Communicating Electronically 4-12
Programming in the System 4-13

5 Line Editor Tutorial (ed)

Introducing the Line Editor 5-1
Suggestions for Using this Tutorial 5-2
Getting Started 5-3
Exercise 1 5-14
General Format of ed Commands 5-15
Line Addressing 5-16
Exercise 2 5-30
Displaying Text in a File 5-31
Creating Text 5-34
Exercise 3 5-42
Deleting Text 5-44
Substituting Text 5-49
Exercise 4 5-58
Special Characters 5-60
Exercise 5 5-71
Moving Text 5-73
Exercise 6 5-84
Other Useful Commands and Information 5-85
Exercise 7 5-95
Answers to Exercises 5-96

Table of Contents

Screen Editor Tutorial (vi)

Introduction 6-1
Getting Started 6-4
Creating a File 6-7
Editing Text: the Command Mode 6-10
Quitting vi 6-19
Exercise 1 6-22
Moving the Cursor Around the Screen 6-23
Positioning the Cursor in Undisplayed Text 6-40
Exercise 2 6-52
Creating Text 6-54
Exercise 3 6-59
Deleting Text 6-60
Exercise 4 6-67
Modifying Text 6-68
Cutting And Pasting Text Electronically 6-76
Exercise 5 6-80
Special Commands 6-81
Using Line Editing Commands in vi 6-84
Quitting vi 6-90
Special Options For vi 6-93
Exercise 6 6-96
Answers To Exercises 6-97
Shell Tutorial

Introduction 7-1
Shell Command Language 7-2
Command Language Exercises 7-35
Shell Programming 7-36
Modifying Your Login Environment 7-90
Shell Programming Exercises 7-97
Answers To Exercises 7-99

TABLE OF CONTENTS ii

Table of Contents

C-shell Tutorial

Introduction 8-1
9 Communication Tutorial
Introduction 9-1
Exchanging Messages 9-2
mail 9-3
mailx 9-16
mailx Overview 9-17
Command Line Options 9-19
How to Send Messages: the Tilde Escapes 9-20
How to Manage Incoming Mail 9-32
The .mailrc File 9-42
Transferring Files 9-47
Networking 9-67
Appendices, Glossary, Index
A Summary of the File System
The UNIX System Files A-1
UNIX System Directories A-4
B Summary of UNIX System
Commands
Basic UNIX System Commands B-1

iv USER’S GUIDE

Quick Reference to ed Commands

Table of Contents

ed Quick Reference C-1
D Quick Reference to vi Commands

vi Quick Reference D-1
E Summary of Shell Command

Language

Summary of Shell Command Language E-1
F Setting upon the Terminal

Setting the TERM Variable F-1

Example F-4

Windowing F-6
G Glossary
[Index

TABLE OF CONTENTS

List of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:

Model of the UNIX System

Functional View of the Kernel

The Hierarchical Structure of the File System
Example of a File System

Execution of a UNIX System Command

A Video Display Terminal and a Printing Terminal

Keyboard Layout of a Teletype 5410 Terminal
UNIX System Typing Conventions

Data Phone Set, Modem, and Acoustic Coupler
Troubleshooting Problems When Logging In*

A Sample File System

Directory of Home Directories

Summary of the pwd Command

Full Path Name of the /userl/starship Directory
Relative Path Name of the draft Directory
Relative Path Name from starship to outline

Example Path Names

LIST OF FIGURES

2-15
2-22

3-5
3-7
3-9
3-11
3-12

3-13

List of Figures

Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 3-20:
Figure 3-21:
Figure 3-22:
Figure 3-23:
Figure 3-24:
Figure 3-25:
Figure 3-26:
Figure 3-27:
Figure 3-28:
Figure 3-29:

Summary of the mkdir Command

Description of Output Produced by the Is -1 Com-

mand

Summary of the Is Command
Summary of the cd Command
Summary of the rmdir Command
Basic Commands for Using Files
Summary of the cat Command
Summary of the more Command
Summary of Commands to Use with pg
Summary of the pg Command
Summary of the cp Command
Summary of the copy Command
Summary of the mv Command
Summary of the rm Command
Summary of the we Command
Summary of the chmod Command
Summary of the diff Command
Summary of the grep Command
Summary of the sort Command
Summary of the pr Command

Print Commands and Their Functions

Summary of the Ip Command

viii USER’S GUIDE

3-16

3-23
3-24
3-27
3-29
3-31
3-35
3-38
3-39
3-42
3-45
3-49
3-52
3-53
3-56
3-63
3-66
3-68
3-71
3-75
3-76
3-91

Figure 4-1:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:
Figure 6-10:
Figure 6-11:
Figure 6-12:

Comparison of Line and Screen Editors (ed and vi)
Summary of ed Editor Commands
Summary of Line Addressing
Sample Addresses for Displaying Text
Summary of Commands for Displaying Text
Summary of Commands for Creating Text
Summary of Commands for Deleting Text
Summary of Special Characters
Summary of ed Commands for Moving Text
Summary of Other Useful Commands
Displaying a File with a vi Window
Summary of Commands for the vi Editor
Summary of vi Motion Commands (Sheet 1 of 4)
Summary of vi Motion Commands (Sheet 2 of 4)
Summary of vi Motion Commands (Sheet 3 of 4)
Summary of vi Motion Commands (Sheet 4 of 4)
Summary of Additional vi Motion Commands
Summary of vi Commands for Creating Text
Summary of Delete Commands

Summary of vi Commands for Changing Text

Summary of the Yank Command

Summary of vi Commands for Cutting and Pasting

Text

LIST OF FIGURES

List of Figures

4-6
5-13
5-29
5-32
5-33
5-41
5-48
5-70
5-83
5-94

6-2
6-21
6-36
6-37
6-38
6-39
6-51
6-58
6-66
6-75
6-77

6-79

List of Figures

Figure 6-13:
Figure 6-14:
Figure 6-15:
Figure 6-16:

Summary of Special Commands
Summary of Line Editor Commands
Summary of the Quit Commands

Summary of Special Options for vi

Figure 7-1: Characters with Special Meanings in the Shell

Language

Figure 7-2: Summary of Metacharacters

Figure 7-3: Summary of the spell Command

Figure 7-4: Summary of the cut Command

Figure 7-5: Summary of the date Command

Figure 7-6: Summary of the batch Command

Figure 7-7: Summary of the at Command

Figure 7-8: Summary of the ps Command

Figure 7-9: Summary of the kill Command

Figure 7-10:
Figure 7-11:
Figure 7-12:
Figure 7-13:
Figure 7-14:
Figure 7-15:
Figure 7-16:
Figure 7-17:
Figure 7-18:

Summary of the nohup Command
Summary of the dl Shell Program

Summary of the bbday Command
Summary of the whoson Command
Summary of the get.num Shell Program
Summary of the show.param Shell Program
Summary of the mknum Shell Program
Summary of the num.please Shell Program

Summary of the t Shell Program

6-83
6-89
6-92
6-95

7-9
7-18
7-22
7-24
7-27
7-30
7-32
7-33
7-34
7-40
7-44
7-45
7-47
7-50
7-55
7-55
7-57

Figure 7-19:
Figure 7-20:
Figure 7-21:
Figure 7-22:
Figure 7-23:
Figure 7-24:
Figure 7-25:
Figure 7-26:
Figure 7-27:
Figure 7-28:
Figure 7-29:
Figure 7-30:
Figure 7-31:
Figure 7-32:
Figure 9-1:

Figure 9-2:
Figure 9-3:
Figure 9-4:

Figure 9-5:
Figure 9-6:
Figure 9-7:

Summary of the log.time Shell Program
Format of a Here Document

Summary of the gbday Command

Summary of the ch.text Command

Format of the for Loop Construct

Summary of mv.file Shell Program

Format of the while Loop Construct

Format of the if...then Conditional Construct
Format of the if...then...else Conditional Construct
Summary of the search Shell Program
Suramary of the mv.ex Shell Program

The case...esac Conditional Construct
Summary of the set.term Shell Program
Summary of the tail Command

Summary of Sending Messages with the mail Com-
mand

Summary of the uname Command
Summary of the uuname Command

Summary of Reading Messages with the mail Com-
mand

Sample .mailrc File
Summary of the uucp Command

Summary of the uuto Command

LIST OF FIGURES

List of Figures

7-59
7-61
7-62
7-64
7-66
7-69
7-70
7-73
7-75
7-76
7-80
7-81
7-84

7-92

9-8
9-11
9-11

9-15
9-43
9-57
9-62

List of Figures

Figure 9-8: Summary of the uustat Command

Figure 9-9: Summary of the uupick Command

Figure 9-10: Summary of the ¢t Command

Figure 9-11: Command Strings for Use with cu (Sheet 1 of 2)
Figure 9-12: Command Strings for Use with cu (Sheet 2 of 2)
Figure 9-13: Summary of the cu Command

Figure 9-14: Summary of the uux Command

Figure A-1: Directory Tree from root

xii USER’S GUIDE

9-63
9-66
9-69
9-72
9-73
9-75
9-77

A-2

Preface

The material in this guide is organized into two major parts: an overview
of the UNIX Operating System and a set of tutorials on the main tools avail-
able on the UNIX System. A brief description of each part follows. The last
section of this Preface, "Notational Conventions," describes the typographical
notation with which all the chapters of this Guide conform. You may want to
refer back to this section from time to time as you read the Guide.

System Overview

This part consists of Chapters 1-3, which introduce you to the basic prin-
ciples of the UNIX Operating System. Each chapter builds on information
presented in preceding chapters, so it is important to read them in sequence.

B Chapter 1, "What is the UNIX System?", provides an overview of the
operating system.

B Chapter 2, "Basics for UNIX System Users," discusses the general
rules and guidelines for using the UNIX System. It covers topics
related to using your terminal, obtaining a system account, and estab-
lishing contact with the UNIX System.

B Chapter 3, "Using the File System," offers a working perspective of
the file system. It introduces commands for building your own direc-
tory structure, accessing and manipulating the subdirectories and files
you organize within it, and examining the contents of other directories
in the system for which you have access permission.

UNIX System Tutorials

The second part of the Guide consists of tutorials on the following topics:
the ed text editor, the vi text editor, the shell command language and pro-
gramming language, and electronic communication tools. For a thorough
understanding of the material, we recommend that you work through the
examples and exercises as you read each tutorial. The tutorials assume you
understand the concepts introduced in Chapters 1-3.

PREFACE xiii

Preface

NOQTE

Chapter 4, "Overview of the Tutorials," introduces the four chapters
of tutorials in the second half of the Guide. It highlights UNIX System
capabilities such as command execution, text editing, electronic com-
munication, programming, and aids to software development.

Chapter 5, "Line Editor Tutorial (ed)," teaches you to how to use the
ed text editor to create and modify text on a video display terminal or
paper printing terminal.

Chapter 6, "Screen Editor Tutorial (vi)," teaches you how to use the
visual text editor, vi, to create and modify text on a video display ter-
minal.

vi, the visual editor, is based on software developed by The University of
California, Berkeley, California; Computer Science Division, Department of

Electrical Engineering and Computer Science, and such software is owned
and licensed by the Regents of the University of California.

Chapter 7, "Shell Tutorial," teaches you how to use the shell, both as
a command interpreter and as a programming language, to create shell
programs.

Chapter 8, "C-Shell Tutorial (csh)," teaches you how to use the C-
shell, both as a command interpreter and as a programming language,
to create shell programs.

Chapter 9, "Communication Tutorial," teaches you how to send mes-
sages and files to users of both your UNIX System and other UNIX
Systems.

Preface

Reference Information

Six appendices and a glossary of UNIX System terms are also provided for
reference.

Appendix A, "Summary of the File System," illustrates how the
UNIX System stores information.

Appendix B, "Summary of UNIX System Commands," alphabetically
lists and describes each UNIX System command discussed in the Guide.

Appendix C, "Quick Reference to ed Commands," is a quick refer-
ence for the line editor, ed. (For details, see Chapter 5, "Line Editor
Tutorial (ed).") The commands are organized by topic, as covered in
Chapter 5.

Appendix D, "Quick Reference to vi Commands," is a reference for
the full screen editor, vi, discussed in Chapter 6, "Screen Editor
Tutorial (vi)." Commands are organized by topic, as covered in
Chapter 6.

Appendix E, "Summary of Shell Command Language," is a summary
of the shell command language, notation, and programming constructs,
as discussed in Chapter 7, "Shell Tutorial."

Appendix F, "Setting Up the Terminal," explains how to configure
your terminal for use with the UNIX System and create multiple win-
dows on the screens of terminals with windowing capability.

The Glossary defines terms pertaining to the UNIX System used in this
book.

PREFACE xv

Notational Conventions

xvi

The following notational conventions are used throughout this Guide:

bold

italic

canstant width

<>

< char>

(]

User input, such as commands, options to com-
mands, and names of directories and files, appear
in bold.

Names of variables to which values must be
assigned (such as filename) appear in italic.

UNIX System output, such as prompt signs and
responses to commands, appear in canstant
width

Input that does not appear on the screen when
typed, such as passwords, keys used as com-
mands, or <RETURN> and other special keys,
appear between angle brackets.

Control characters are shown between angle
brackets because they do not appear on the screen
when typed. The circumflex (') represents the
control key (usually labeled CTRL). To type a
control character, hold down the control key
while you type the character specified by char.
For example, the notation <"d> means to hold
down the control key while pressing the D key;
the letter D will not appear on the screen.

Command options and arguments that are
optional, such as [-msCj), are enclosed in square
brackets.

The vertical bar separates optional arguments
from which you may choose one. For example,
when a command line has the format

command [arg] ! arg2)

you may use either argl or arg2 when you issue
command.

Notational Conventions

An ellipsis after an argument means that more
than one argument may be used on a single com-
mand line.

t Arrows on the screen (shown in examples in
Chapter 6) represent the cursor.

command(number) A command name followed by a number in
parentheses refers to the part of a UNIX System
reference manual that documents that command.
(There are two reference manuals: the
User’s/System Administrator’s Reference Manual
and the Programmer’s Reference Manual.) For
example, the notation cat(1) refers to the page in
section 1 of the User’s/System Administrator’s
Reference Manual that documents the cat com-
mand.

In sample commands, the dollar sign ($) is used as the shell command
prompt. This is not true for all systems. Whichever symbol your system uses,
keep in mind that prompts are produced by the system; although a prompt is
sometimes shown at the beginning of a command line as it would appear on
your screen, you are not meant to type it. (The $ sign is also used to refer-
ence the value of positional parameters and named variables; see Chapter 7
for details.)

In all chapters, full and partial screens are used to display examples of
how your terminal screen will look when you interact with the UNIX System.
These examples show how to use the UNIX System editors, write short pro-
grams, and execute commands. The input (characters typed by you) and out-
put (characters printed by the UNIX System) are shown in these screens in
accordance with the conventions listed above. All examples apply regardless
of the type of terminal you use.

PREFACE xvii

Notational Conventions

The commands discussed in each section of a chapter are reviewed at the
end of that section. A summary of vi commands is found in Appendix D,
where they are listed by topic. At the end of some sections, exercises are also
provided so you can experiment with the commands. The answers to all the
exercises in a chapter are at the end of that chapter.

The text in the User’s Guide was prepared with the UNIX System text editors
NOTE| described in the Guide and formatted with the DOCUMENTER’S WORK-
BENCH Software: troff, tbl, pic, and mm macros.

xviii USER’S GUIDE

What Is the UNIX System?

What the UNIX System Does

1-1

How the UNIX System Works
The Kernel
The File System
@ Ordinary Files
® Directories
® Special Files
The Shell
Commands
® What Commands Do
m How to Execute Commands
s How Commands Are Executed

WHAT IS THE UNIX SYSTEM?

1-3

1-7
1-7
1-8
1-8
1-10
1-11
1-11
1-12
1-14

What the UNIX System Does

The UNIX Operating System is a set of programs (or software) that con-
trols the computer, acts as the link between you and the computer, and pro-
vides tools to help you do your work. It is designed to provide an uncompli-
cated, efficient, and flexible computing environment. Specifically, the UNIX
System offers the following advantages:

B a general purpose system for performing a wide variety of jobs or
applications

B an interactive environment that allows you to communicate directly
with the computer and receive immediate responses to your requests
and messages

B a multi-user environment that allows you to share the computer’s
resources with other users without sacrificing productivity

This technique is called timesharing. The UNIX System interacts
between users on a rotating basis so quickly that it appears to be
interacting with all users simultaneously.

B a multi-tasking environment that enables you to execute more than
one program simultaneously.

The organization of the UNIX System is based on four major components:

the kernel The kernel is a program that constitutes the nucleus of
the operating system; it coordinates the functioning of
the computer’s internals (such as allocating system
resources). The kernel works invisibly; you need
never be aware of it while doing your work.

the file system The file system provides a method of handling data
that makes it easy to store and access information.

the shell The shell is a program that serves as the command
interpreter. It acts as a liaison between you and the
kernel, interpreting and executing your commands.
Because it reads input from you and sends you mes-
sages, it is described as interactive.

WHAT IS THE UNIX SYSTEM? 1-1

What the UNIX System Does

1-2

commands

Commands are the names of programs that you
request the computer to execute. Packages of pro-
grams are called tools. The UNIX System provides
tools for jobs such as creating and changing text, writ-
ing programs and developing software tools, and
exchanging information with others via the computer.

How the UNIX System Works

Figure 1-1 is a model of the UNIX System. Each circle represents one of
the major components of the UNIX System: the kernel, the shell, and user
programs or commands. The arrows suggest the shell’s role as the medium
through which you and the kernel communicate. The remainder of this
chapter describes each of these components, along with another component of
the UNIX System, the file system.

WHAT IS THE UNIX SYSTEM? 1-3

How the UNIX System Works

User Programs

Programming
Environment

Text
Processing

Electronic
Communication

Additional
Utility Information

Programs Management

Figure 1-1: Model of the UNIX System

1-4 USER’S GUIDE

How the UNIX System Works

The Kernel

The nucleus of the UNIX System is called the kernel. The kernel controls
access to the computer, manages the computer’s memory, maintains the file
system, and allocates the computer’s resources among users. Figure 1-2 is a
functional view of the kernel.

WHAT IS THE UNIX SYSTEM? 15

How the UNIX System Works

Kernel

Allocates
system
resources

Maintains

Manages
file systems

memory

Controls
access to
computer

Figure 1-2: Functional View of the Kernel

1-6 USER’S GUIDE

How the UNIX System Works

The File System

The file system is the cornerstone of the UNIX Operating System. It pro-
vides a logical method of organizing, retrieving, and managing information.
The structure of the file system is hierarchical; if you could see it, it might
look like an organization chart or an inverted tree (Figure 1-3).

O = Directories
[:] = Ordinary Files
v = Special Files

Figure 1-3: The Hierarchical Structure of the File System

The file is the basic unit of the UNIX System, and it can be any one of
three types: an ordinary file, a directory, or a special file. (See Chapter 3,
" Using the File System.")

Ordinary Files

An ordinary file is a collection of characters that is treated as a unit by the
system. Ordinary files are used to store any information you want to save.
They may contain text for letters or reports, code for the programs you write,
or commands to run your programs. Once you have created a file, you can

WHAT IS THE UNIX SYSTEM? 1-7

How the UNIX System Works

add material to it, delete matenal from it, or remove it entirely when it is no
longer needed.

Directories

A directory is a super-file that contains a group of related files. For exam-
ple, a directory called sales may hold files containing monthly sales figures
called jan, feb, mar, and so on. You can create directories, add or remove
files from them, or remove directories themselves at any time.

Your home directory is a directory assigned to you by the system when
you receive a recognized login. You have control over this directory; no one
else can read or write files in it without your explicit permission, and you
determine its structure.

The UNIX System also maintains several directories for its own use. The
structure of these directories is much the same on all UNIX Systems. These
directories, which include /unix (the kernel) and several important system
directories, are located directly under the root directory in the file hierarchy.
The root directory (designated by /) is the source of the UNIX file structure;
all directories and files are arranged hierarchically under it.

Special Files

Special files constitute the most unusual feature of the file system. A spe-
cial file represents a physical device such as a terminal, disk drive, magnetic
tape drive, or communication link. The system reads and writes to special
files in the same way it does to ordinary files. However, the system’s read
and write requests do not activate the normal file access mechanism; instead,
they activate the device handler associated with the file.

Some operating systems require you to define the type of file you have
and to use it in a specified way. In those cases, you must consider how the
files are stored since they might be sequential, random-access, or binary files.
To the UNIX System, however, all files are alike. This makes the UNIX Sys-
tem file structure easy to use. For example, you need not specify memory
requirements for your files since the system automatically does this for you.
Orif you or a program you write needs to access a certain device, such as a
printer, you specify the device just as you would another one of your files. In
the UNIX System, there is only one interface for all input from you and out-
put to you; this simplifies your interaction with the system.

1-8 USER’S GUIDE

How the UNIX System Works

Figure 1-4 shows an example of a typical file system. Notice that the root
directory contains the kernel (/unix) and several important system directories.

TILIN

O = Directories
D = Ordinary Files
v = Special Files

Figure 1-4: Example of a File System

/bin
/dev

/etc
/1ib
/tmp
jusr

contains many executable programs and utilities

contains special files that represent peripheral devices such as
the console, the line printer, user terminals, and disks

contains programs and data files for system administration
contains libraries for programs and languages
contains temporary files that can be created by any user

contains other directories, including mail, which contain files
for storing electronic mail, and news, which contains files for
storing newsworthy items.

WHAT IS THE UNIX SYSTEM? 1-9

How the UNIX System Works

In summary, the directories and files you create comprise the portion of
the file system that you control. Other parts of the file system are provided
and maintained by the operating system, such as /bin, /dev, /etc, /lib, /tmp
and /usr, and have much the same structure on all UNIX Systems.

You will learn more about the file system in other chapters. Chapter 3
shows how to organize a file system directory structure, and access and mani-
pulate files. Chapter 4 gives an overview of UNIX System capabilities. The
effective use of these capabilities depends on your familiarity with the file sys-
tem and your ability to access information stored within it. Chapters 5 and 6
are tutorials designed to teach you how to create and edit files.

The Shell

The shell is a unique command interpreter that allows you to communi-
cate with the operating system. The shell reads the commands you enter and
interprets them as requests to execute other programs, access files, or provide
output. The shell is also a powerful programming language, not unlike the C
programming language, that provides conditional execution and control flow
features. The model of a UNIX System in Figure 1-1 shows the two-way flow
of communication between you and the computer via the shell.

In addition, this version of UNIX supports the C-shell, a command inter-
preter with a C-like syntax. Like the standard shell, the C-shell is an interface
between you and the UNIX commands and programs.

Chapter 4 describes the shell’s capabilities. Chapter 7 is a tutorial that
teaches you to write simple shell programs called shell scripts and custom
tailor your environment. Chapter 8 describes the C-shell and provides exam-
ples for customizing your C-shell environment, as well as writing C-shell
scripts.

1-10 USER’S GUIDE

How the UNIX System Works

Commands

A program is a set of instructions to the computer. Programs that can be
executed by the computer without need for translation are called executable
programs or commands. As a typical user of the UNIX System, you have
many standard programs and tools available to you. If you use the UNIX Sys-
tem to write programs and develop software, you can also draw on system
calls, subroutines, and other tools. Of course, any programs you write your-
self will be at your disposal, too.

This book introduces you to many of the UNIX System programs and
tools that you will use on a regular basis. If you need additional information
on these or other standard programs, refer to the User’s/System Administrator’s
Reference Manual. For information on tools and routines related to program-
ming and software development, consult the Progranmer’s Reference Manual.
The Documentation Roadmap describes and explains how to order all UNIX
System documents from AT&T.

What Commands Do

The outer circle of the UNIX System model in Figure 1-1 organizes the
system programs and tools into functional categories. These functions include

text processing The system provides programs such as
line and screen editors for creating and
changing text, a spelling checker for locat-
ing spelling errors, and optional text for-
matters for producing high-quality paper
copies that are suitable for publication.

information management The system provides many programs that
allow you to create, organize, and remove
files and directories.

electronic communication Several programs, such as mail, enable
you to transmit information to other users
and to other UNIX Systems.

software development Several UNIX System programs establish
a friendly programming environment by

WHAT IS THE UNIX SYSTEM? 1-11

How the UNIX System Works

providing UNIX-to-programming-language
interfaces and by supplying numerous
utility programs.

additional utilities The system also offers capabilities for gen-
erating graphics and performing calcula-
tions.

How to Execute Commands

To make your requests comprehensible to the UNIX System, you must
present each command in the correct format, or command line syntax. This
syntax defines the order in which you enter the components of a command
line. Just as you must put the subject of a sentence before the verb in an
English sentence, so must you put the parts of a command line in the order
required by the command line syntax. Otherwise, the UNIX System shell will
not be able to interpret your request. Here is an example of the syntax of a
UNIX System command line:

command option(s) argument(s)e CR>

On every UNIX System command line, you must type at least two com-
ponents: a command name and the <RETURN> key. (The notation <CR> is
used as an instruction to press the <RETURN> key throughout this Guide.) A
command line may also contain either options or arguments, or both. What
are commands, options, and arguments?

B A command is the name of the program you want to run.
B An option modifies how the command runs.

B An argument specifies data on which the command is to operate (usu-
ally the name of a directory or file).

In command lines that include options and/or arguments, the component
words are separated by at least one blank space. (You can insert a blank by
pressing the space bar.) If an argument name contains a blank, enclose that
name in double quotation marks. For example, if you want the argument to
your command to be sample 1, you must type it as "sample 1". If you for-
get the double quotation marks, the shell will interpret sample and 1 as two

separate arguments.

1-12 USER’S GUIDE

How the UNIX System Works

Some commands allow you to specify multiple options and /or arguments
on a command line. Consider the following command line:

command
arguments

options

I

AN
we -1 -w filel file2 file3

In this example, wc is the name of the command and -1 and -w
are two options that have been specified. (The UNIX System usually
allows you to group options such as these to read -1lw if you prefer.)
In addition, three files (filel, file2, and file3) are specified as argu-
ments. Although most options can be grouped together, arguments
cannot.

The following examples show the proper sequence and spacing in
command line syntax:

Incorrect Correct
wcfile wc file
wc-Ifile wc -1 file
wce -1 w file wc -lw file
or
we -1 -w file
wec filelfile2 wec filel file2

Remember, regardless of the number of components, you must
end every command line by pressing the <RETURN> key.

WHAT IS THE UNIX SYSTEM? 1-13

How the UNIX System Works

How Commands Are Executed

Figure 1-5 shows the flow of control when the UNIX System executes a
command.

YOUR
RIQUEST

\ DIRECTORY e
> | SEARCH I » SOURCE
II —

SHELL

(CORMMAND

ouTruT
m LANGLAGE PROGRAM PROGRAM
L iNTERPRL TER [l EXECUTION RETIIEVAL

EXECUTABLE
FROGKAMS,

Figure 1-5: Execution of a UNIX System Command

To execute a command, enter a command line when a prompt (such as a
$ sign) appears on your screen. The shell considers your command as input,
searches through one or more directories to retrieve the program you speci-
fied, and conveys your request, along with the program requested, to the ker-
nel. The kernel then follows the instructions in the program and executes the
command you requested. After the program has finished running, the shell
signals that it is ready for your next command by printing another prompt.

This chapter has described some basic principles of the UNIX Operating
System. The following chapters will help you apply these principles accord-
ing to your computing needs.

1-14 USER’S GUIDE

Basics for UNIX System Users

Getting Started 2-1
The Terminal 2-2
Required Terminal Settings 2-3
Keyboard Characteristics 2-4
Typing Conventions 2-6
@ The Command Prompt 2-7
a Correcting Typing Errors 2-8
@ Using Special Characters as Literal Characters 2-10
s Typing Speed 2-10
® Stopping a Command 2-11
m Using Control Characters 2-1
Obtaining a Login Name 2-13

Establishing Contact with the

UNIX System 2-14
Login Procedure 2-16
Password 2-16
Possible Problems when Logging In 2-20

2-22
Simple Commands 2-23
Logging Off 2-24

BASICS FOR UNIX SYSTEM USERS i

Getting Started

This chapter acquaints you with the general rules and guidelines for work.
ing on the UNIX System. Specifically, it lists the required terminal settings
and explains how to use the keyboard, obtain a login, log on to and off of the
system, and enter simple commands.

To establish contact with the UNIX System, you need
B a terminal

B a login name (a name by which the UNIX System identifies you as one
of its authorized users)

B a password that verifies your identity

B instructions for dialing in and accessing the UNIX System if your ter-
minal is not directly connected or hard-wired to the computer

BASICS FOR UNIX SYSTEM USERS 2-1

The Terminal

A terminal is an input/output device: you use it to enter requests to the
UNIX System, and the system uses it to send its responses to you. There are
two basic types of terminals: video display terminals and printing terminals
(see Figure 2-1).

Teletype
Model 43

Teletype
Moadel 5410

Figure 2-1: A Video Display Terminal and a Printing Terminal

The video display terminal shows input and output on a display screen; the
printing terminal, on continuously fed paper. In most respects, this difference
has no effect on the user’s actions or the system’s responses. Instructions
throughout this book that refer to the terminal screen apply in the same way
to the paper in a printing terminal, unless otherwise noted.

2-2 USER’S GUIDE

The Terminal

Required Terminal Settings

Regardless of the type of terminal you use, you must configure it properly
to communicate with the UNIX System. If you have not set terminal options
before, you might feel more comfortable seeking help from someone who has.

How you configure a terminal depends on the type of terminal you are
using. Some terminals are configured with switches; others are configured
directly from the keyboard by using a set of function keys. To determine how
to configure your terminal, consult the owner’s manual provided by the
manufacturer.

The following is a list of configuration checks you should perform on any
terminal before trying to log in on the UNIX System:

1. Turn on the power.

2. Set the terminal to ON-LINE or REMOTE operation. This setting
ensures the terminal is under the direct control of the computer.

3. Set the terminal to FULL DUPLEX mode. This mode ensures two-
way communication (input/output) between you and the UNIX Sys-
tem.

4. If your terminal is not directly connected or hard-wired to the com-
puter, make sure the acoustic coupler or data phone set you are using
is set to the FULL DUPLEX mode.

5. Set character generation to LOWERCASE. If your terminal generates
only uppercase letters, the UNIX System will accommodate it by
printing everything in uppercase letters.

6. Set the terminal to NO PARITY.

7. Set the baud rate. This is the speed at which the computer communi-
cates with the terminal, measured in characters per second. (For
example, a terminal set at a baud rate of 4800 sends and receives
480 characters per second.) Depending on the computer and the ter-
minal, baud rates between 300 and 19200 are available. Some com-
puters may be capable of processing characters at higher speeds.

BASICS FOR UNIX SYSTEM USERS 2-3

The Terminal

Keyboard Characteristics

There is no standard layout for terminal keyboards. However, all terminal
keyboards share a standard set of 128 characters called the ASCII character
set. (ASCII is an acronym for American Standard Code for Information Inter-
change.) While the keys are labeled with characters that are meaningful to
you (such as the letters of the alphabet), each one is also associated with an
ASCII code that is meaningful to the computer.

The keyboard layout on a typical ASCII terminal is basically the same as a
typewriter’s, with a few additional keys for functions such as interrupting
tasks. Figure 2-2 shows an example of a keyboard on an ASCII terminal.

2-4 USER’S GUIDE

The Terminal

1R 2103851151 31 5191 91 9 e 0 v
Y S0 S |) 5

Figure 2-2: Keyboard Layout of a Teletype 5410 Terminal

BASICS FOR UNIX SYSTEM USERS 2-5

The Terminal

The keys correspond to the following:
B the letters of the English alphabet (both uppercase and lowercase)

B the numerals (0 through 9)

B a variety of symbols (including ' @ # $ % " & () — -+ =~ " {}[]
\:; "' <>,?))

B specially defined words (such as <RETURN> and <BREAK>) and
abbreviations (such as for delete, <CTRL> for control, and
<ESC> for escape)

While terminal and typewriter keyboards both have alphanumeric keys,
terminal keyboards also have keys designed for use with a computer. These
keys are labeled with characters or symbols that remind the user of their func-
tions. However, their placement may vary from terminal to terminal because

there is no standard keyboard layout.

Typing Conventions

To interact effectively with the UNIX System, you should be familiar with
its typing conventions. The UNIX System requires that you enter commands
in lowercase letters (unless the command includes an uppercase letter). Other
conventions enable you to perform tasks, such as erasing letters or deleting
lines, simply by pressing one key or entering a specific combination of charac-
ters. Characters associated with tasks in this way are known as special char-
acters. Figure 2-3 lists the conventions based on special characters. Detailed
explanations of them are provided on the next few pages.

The Terminal

Key(s) Meaning

$ System’s command prompt (your cue to issue a command).

#* Erases a character.

@ Erases or kills an entire line.

<BREAK> Stops execution of a program or command.

 Deletes or kills the current command line.

<ESC> When used with another character, performs a specific function

(called an escape sequence).

When used in an editing session with the vi editor, ends the text
input mode and returns you to the command mode.

<CR> Press the <RETURN> key. This ends a line of typing and puts
the cursor on a new line.

< d>t Stops input to the system or logs off.

< h> Backspaces for terminals without a backspace key.

< i> Tabs horizontally for terminals without a tab key.

<s> Temporarily stops output from printing on the screen.

<q> Makes the output resume printing on the screen after it has been

stopped by the <'s> command.

Nonprinting characters are shown in angle brackets (< >).

T Characters preceded by a circumflex () are called control characters and are pronounced
control-letter. To type a control character, hold down the <CTRL> key and press the
specified letter.

Figure 2-3: UNIX System Typing Conventions

The Command Prompt

The standard UNIX System command prompt is the dollar sign ($). When
the prompt appears on your terminal screen, the UNIX System is waiting for
instructions from you. The appropriate response to the prompt is to issue a
command and press the RETURN key.

BASICS FOR UNIX SYSTEM USERS 2-7

The Terminal

The $ sign is the default value for the command prompt. Chapter 7
explains how to change it if you would prefer another character or character
string as your command prompt.

Correcting Typing Errors

There are two keys you can use to delete text so that you can correct typ-
ing errors. The @ (at) sign key kills the current line and the # (pound) sign
key erases the last character typed. These keys are available by default to per-
form these functions. However, if you want to use other keys, you can reas-
sign the erase and kill functions. (For instructions, see "Reassigning the
Delete Functions" later in this section and "Setting Terminal Options" in
Chapter 7.)

Deleting the Current Line: the @ Sign

The @ sign key kills the current line. When you press it, an @ sign is
added to the end of the line, and the cursor moves to the next line. The line
containing the error is not erased from the screen but is ignored.

The @ sign key works only on the current line; be sure to press it before
you press the RETURN key if you want to kill a line. In the following exam-
ple, a misspelled command is typed on a command line, and the command is
cancelled with the @ sign:

whooo@
who<CR>
Deleting the Last Characters Typed: the # Sign Key

The # sign key deletes the character(s) last typed on the current line.
When you type a # sign, the cursor backs up over the last character and lets
you retype it, thus effectively erasing it. This is an easy way to correct a typ-
ing error.

You can delete as many characters as you like as long as you type a
corresponding number of # signs. For example, in the following command
line, two characters are deleted by typing two # signs:

dattw##e<CR>
The UNIX System interprets this as the date command, typed correctly.

The Terminal

The BACKSPACE Key

Many people prefer to use the BACKSPACE key for the erase function
instead of the # sign key. When you press the BACKSPACE key, the cursor
backs up over your errors, erasing them as it goes. It does not print anything,
unlike the # sign key, which prints a # sign on your screen between an error
and a correction. When you have finished correcting an error with the BACK-
SPACE key, the line of text on the screen looks as though it was typed per-
fectly.

The # sign and BACKSPACE keys are equally effective at deleting charac-
ters, but using the BACKSPACE key gives you better visual information about
what you are doing.

Some terminals may not recognize the # sign key as a delete character.
NOTE

T

Reassigning the Delete Functions

As stated earlier, you can change the keys that kill lines and erase charac-
ters. If you want to change these keys for a single working session, you can
issue a command to the shell to reassign them; the delete functions will revert
to the default keys (# and @) as soon as you log off. If you want to use other
keys regularly, you must specify the reassignment in a file called .profile.
Instructions for making both temporary and permanent key reassignments,
along with a description of the .profile, are given in Chapter 7.

There are three points to keep in mind if you reassign the delete functions
to non-default keys. First, the UNIX System allows only one key at a time to
perform a delete function. When you reassign a function to a non-default key,
you also take that function away from the default key. For example, if you
reassign the erase function from the # sign key to the BACKSPACE key, you
will no longer be able to use the # sign key to erase characters.

Secondly, such reassignments are inherited by any other UNIX System
program that allows you to perform the function you have reassigned. For
example, the interactive text editor called ed (described in Chapter 5) allows
you to delete text with the same key you use to correct errors on a shell com-
mand line (as described in this section). Therefore, if you reassign the erase
function to the BACKSPACE key, you will have to use the BACKSPACE key
to erase characters while working in the ed editor, as well. The # sign key
will no longer work.

BASICS FOR UNIX SYSTEM USERS 2-9

The Terminal

Finally, keep in mind that any reassignments you have specified in your
.profile do not become effective until after you log in. Therefore, if you make
an error while typing your login name or password, you must use the # sign
key to correct it.

Whichever keys you use, remember that they work only on the current
line. Be sure to correct your errors before pressing the RETURN key at the
end of a line.

Using Special Characters as Literal Characters

What happens if you want to use a special character with literal meaning
as a unit of text? Since the UNIX System’s default behavior is to interpret
special characters as commands, you must tell the system to ignore or escape
from a character’s special meaning whenever you want to use it as a literal
character. The backslash (\) enables you to do this. Type a \ before any spe-
cial character that you want to have treated as it appears. By doing this you
essentially tell the system to ignore this character’s special meaning and treat
it as a literal unit of text.

For example, suppose you want to add the following sentence to a file:
Only one # appears on this sheet of music.

To prevent the UNIX System from interpreting the # sign as a request to
delete a character, enter a \ in front of the # sign. If you do not, the system
will erase the space after the word one and print your sentence as follows:

Only one appears on this sheet of music.
To avoid this, type your sentence as follows:

Only one \# appears on this sheet of music.

Typing Speed

After the prompt appears on your terminal screen, you can type as fast as
you want, even when the UNIX System is executing a command or respond-
ing to one. Since your input and the system’s output appear on the screen
simultaneously, the printout on your screen will appear garbled. However,
while this may be inconvenient for you, it does not interfere with the UNIX
System’s work because the UNIX System has read-ahead capability. This
capability allows the system to handle input and output separately. The sys-
tem takes and stores input (your next request) while it sends output (its
response to your last request) to the screen.

2-10 USER’S GUIDE

The Terminal

Stopping a Command

If you want lo stop the execution of a command, simply press the BREAK
or DELETE key. The UNIX System will stop the program and print a prompt
on the screen. This is its signal that it has stopped the last command from
running and is ready for your next command.

Using Control Characters

Locate the control key on your terminal keyboard. It may be labeled
CONTROL or CTRL and is probably to the left of the A key or below the
Z key. The control key is used in combination with other characters to per-
form physical controlling actions on lines of typing. Commands entered in
this way are called control characters. Some control characters perform mun-
dane tasks such as backspacing and tabbing. Others define commands that
are specific to the UNIX System. For example, CONTROL-s temporarily halts
output that is being printed on a terminal screen.

To type a control character, hold down the control key and press the
appropriate alphabetic key. Most control characters do not appear on the
screen when typed and therefore are shown between angle brackets (see
"Notational Conventions" in the Preface). The control key is represented by
a circumflex (') before the letter. Thus, for example, < s> designates the
CONTROL-s character.

The two functions for which control characters are most often used are to
control the printing of output on the screen and to log off the system. To
prevent information from rolling off the screen on a video display terminal,
type < s>; the printing will stop. When you are ready to read more output,
type < @> and the printing will resume.

To log off the UNIX System, type < d>.

BASICS FOR UNIX SYSTEM USERS 2-11

The Terminal

In addition, the UNIX System uses control characters to provide capabili-
ties that some terminals fail to make available through function-specific keys.
If your keyboard does not have a BACKSPACE key, you can use the < h>
key instead. You can also set tabs without a TAB key by typing <'i> if your
terminal is set properly. (Refer to the section entitled "Possible Problems
When Logging In" for information on how to set the TAB key.)

Now that you have configured the terminal and inspected the keyboard,
one step remains before you can establish communication with the UNIX Sys-
tem: you must obtain a login name.

2-12 USER’S GUIDE

Obtaining a Login Name

A login name is the name by which the UNIX System verifies that you are
an authorized user of the system when you request access to it. It is so called
because you must enter it every time you want to log in. (The expression log-
ging in is derived from the fact that the system maintains a log for each user,
in which it records the type and amount of system resources being used.)

To obtain a login name, set up a UNIX System account through your sys-
tem administrator. There are few rules governing your choice of a login
name. Typically, it is three to eight characters long. It can contain any com-
bination of lowercase alphanumeric characters, as long as it starts with a letter.
It cannot contain any symbols.

However, your login name will probably be determined by local practices.
The users of your system may all use their initials, last names, or nicknames
as their login names. Here are a few examples of legal login names: starship,
mary2, and jmrs.

BASICS FOR UNIX SYSTEM USERS 2-13

Establishing Contact with the UNIX Sys-
tem

Typically, you will be using either a terminal that is wired directly to a
computer or a terminal that communicates with a computer over a telephone
line.

This section describes a typical procedure for logging in, but it may not
NOTE] apply to your system. There are many ways to log in on a UNIX System
over a telephone line. Security precautions on your system may require that
] you use a special telephone number or other security code. For instructions

on logging in on your UNIX System from outside your computer installation
site, see your system administrator.

Turn on your terminal. If it is directly connected, the login: prompt will
immediately appear in the upper left-hand corner of the screen.

If you are going to communicate with the computer over a telephone line,
you must now establish a connection. The following procedure is an example
of a method you might use to do this. (For the procedure required by your
system, see your system administrator.)

1. Dial the telephone number that connects you to the UNIX System.
You will hear one of the following:

O A busy signal. This means that either the circuits are busy or the
line is in use. Hang up and dial again.

O Continuous ringing and no answer. This usually means that
there is trouble with the telephone line or that the system is inop-
erable because of mechanical failure or electronic problems. Hang
up and dial again later.

O A high-pitched tone. This means that the system is accessible.

2. When you hear the high-pitched tone, place the handset of the phone
in the acoustic coupler or momentarily press the appropriate button on
the data phone set (see the owner’s manual for the appropriate equip-
ment). Then replace the handset in the cradle (see Figure 2-4).

3. After a few seconds, the login: prompt will appear in the upper left
hand corner of the screen.

2-14 USER’S GUIDE

Establishing Contact with the UNIX System

4. A series of meaningless characters may appear on your screen. This
means that the telephone number you called serves more than one
baud rate; the UNIX System is trying to communicate with your ter-
minal, but is using the wrong speed. Press the BREAK or RETURN
key; this signals the system to try another speed. If the UNIX System
does not display the login: prompt within a few seconds, press the
BREAK or RETURN key again.

AT&T Data Phone
Set 212A

A

B
= AT&T Acoustic
Coupler

AT&T Dataphone 11
Modem

Figure 2-4: Data Phone Set, Modem, and Acoustic Coupler

BASICS FOR UNIX SYSTEM USERS 2-15

Establishing Contact with the UNIX System

Login Procedure

When the login: prompt appears, type your login name and press the
RETURN key. For example, if your login name is starship, your login line
will look like the following:

login: starship<CR>

Remember to type in lowercase letters. If you use uppercase from the time

NOTE[you log in, the UNIX System will expect and respond in uppercase
exclusively until the next time you log in. It will accept and run many com-
I mands typed in uppercase but will not allow you to edit files.
Password

Next, the system prompts you for your password. Type your password
and press the RETURN key. For security reasons, the UNIX System does not
print (or echo) your password on the screen.

2-16 USER’S GUIDE

Establishing Contact with the UNIX System

If both your login name and password are acceptable to the UNIX System,
the system may print the message of the day and/or current news items and
then the default command prompt ($). (The message of the day might include
a schedule for system maintenance, and news items might include an
announcement of a new system tool.) When you have logged in, your screen

will look similar to the following:

login: starship<CR>
password:

UNIX System news

$

If you make a typing mistake when logging in, the UNIX System prints
the message login incorrect on your screen. Then, it gives you a second
chance to log in by printing another login: prompt.

login: ttarship<CR>
passward:

login incarrect
login:

BASICS FOR UNIX SYSTEM USERS 2-17

Establishing Contact with the UNIX System

The login procedure may also fail if the communication link between your
terminal and the UNIX System has been dropped. If this happens, you must
reestablish contact with the computer (specifically, with the data switch that
links your terminal to the computer) before trying to log in again. Since pro-
cedures for doing this vary from site to site, ask your system administrator to
give you exact instructions for getting a connection on the data switch.

If you have never logged in on the UNIX System, your login procedure
may differ from the one just described. This is because some system adminis-
trators follow the optional security procedure of assigning temporary pass-
words to new users when they set up their accounts. If you have a temporary
password, the system will force you to choose a new password before it
allows you to log in.

By forcing you to choose a password for your exclusive use, this extra step
helps to ensure a system'’s security. Protection of system resources and your
personal files depends on your keeping your password private.

The actual procedure you follow will be determined by the administrative
procedures at your computer installation site. However, it will probably be
similar to the following example of a first-time login procedure:

1. You establish contact; the UNIX System displays the login: prompt.
Type your login name and press the RETURN key.

2. The UNIX System prints the password prompt. Type your temporary
password and press the RETURN key.

3. The system tells you your temporary password has expired and you
must select a new one.

4. The system asks you to type your old password again. Type your
temporary password.

5. The system prompts you to type your new password. Type the pass-
word you have chosen.
Passwords must meet the following requirements:

O Each password must have at least six characters. Only the first
eight characters are significant.

O Each password must contain at least two alphabetic characters
and at least one numeric or special character. Alphabetic charac-
ters can be uppercase or lowercase letters.

2-18 VUSER'’S GUIDE

Establishing Contact with the UNIX System

O Each password must differ from your login name and any reverse
or circular shift of that login name. For comparison purposes, an
uppercase letter and its corresponding lowercase letter are
equivalent.

] A new password must differ from the old by at least three char-
acters. For comparison purposes, an uppercase letter and its
corresponding lowercase letter are equivalent.

Examples of valid passwords are: mar84ch, JonathOn, and BRAV3S.

The UNIX System you are using may have different requirements to con-
NOTE[sider when choosing a password. Ask your system administrator for
details.

6. For verification, the system asks you to re-enter your new password.
Type your new password again.

7. If you do not re-enter the new password exactly as typed the first
time, the system tells you the passwords do not match and asks you
to try the procedure again. On some systems, however, the communi-
cation link may be dropped if you do not re-enter the password
exactly as typed the first time. If this happens, you must return to
step 1 and begin the login procedure again. When the passwords
match, the system displays the prompt.

The following screen summarizes this procedure (steps 1 through 6) for
first-time UNIX System users.

BASICS FOR UNIX SYSTEM USERS 2-19

Establishing Contact with the UNIX System

6 starship <CR>

password: <CR>

Choose a new ane.
01d password: <CR>
New password: <CR>

$

Your password has expired.

Re-enter new password: <CR>

/

Possible Problems when Logging In

A terminal usually behaves predictably when you have configured it prop-
erly. Sometimes, however, it may act peculiarly. For example, the carriage
return may not work properly.

Some problems can be corrected simply by logging off the system and
logging in again. If logging in a second time does not remedy the problem,
you should first check the following and try logging in once again:

the keyboard

the data phone set
or modem

the switches

Keys labeled CAPS, NUM, SCROLL, and so on
should not be enabled (put into the locked posi-
tion). You can usually disable these keys simply
by pressing them.

If your terminal is connected to the computer
via telephone lines, verify that the baud rate and
duplex settings are correctly specified.

Some terminals have several switches that must
be set to be compatible with the UNIX System. If
this is the case with the terminal you are using,
make sure they are set properly.

Establishing Contact with the UNIX System

Refer to the section "Required Terminal Settings" in this chapter if you
need information to verify the terminal configuration. If you need additional
information about the keyboard, terminal, data phone, or modem, check the
owner’s manuals for the appropriate equipment.

Figure 2-5 presents a list of procedures you can follow to detect, diagnose,
and correct some problems you may experience when logging in. If you need
further help, contact your system administrator.

BASICS FOR UNIX SYSTEM USERS 2-21

Problemt

Possible Cause

Action/Remedy

Meaningless characters

Input/output appears in
UPPER CASE letters

Input appears in UPPER
CASE, output in lower case

Input is printed twice

Tab key does not work prop-
erly

Communication link cannot
be established although high
pitched tone is heard when
dialing in

Communication link (terminal
to UNIX System) is repeat-
edly dropped

UNIX System at wrong speed

Terminal configuration
includes UPPER CASE setting

Key labeled CAPS (or CAPS
LOCK) is enabled

Terminal is set to HALF
DUPLEX mode

Tabs are not set correctly

Terminal is set to LOCAL or
OFF-LINE mode

Bad telephone line or bad
communications port

Press RETURN or BREAK key

Log off and set character gen-
eration to lower case

Press CAPS or CAPS LOCK
key to disable setting

Change setting to FULL
DUPLEX mode

Type stty -tabsg}

Set terminal to ON-LINE
mode try logging in again

Call system administrator

* Numerous problems can occur if your terminal is not configured properly. To eliminate
these possibilities before attempting to log in, perform the configuration checks listed
under "Required Terminal Settings."

1 Some problems may be specific to your terminal, data phone set, or modem. Check the
owner’s manual for the appropriate equipment if suggested actions do not remedy the

problem.

Typing stty -tabs corrects the tab setting only for your current computing session. To

ensure a correct tab setting for all sessions, add the line stty -tabs to your .profile (see

Chapter 7).

Figure 2-5: Troubleshooting Problems When Logging In*

Simple Commands

When the prompt appears on your screen, the UNIX System has recog-
nized you as an authorized user and is waiting for you to request a program
by entering a command.

For example, try running the date command. After the prompt, type the
command and press the RETURN key. The UNIX System accesses a program
called date, executes it, and prints its results on the screen, as shown below.

$ date<CR>
Wed Oct 15 09:49:44 EDT 1986
$

As you can see, the date command prints the date and time, using the 24-
hour clock.

Now type the who command and press the RETURN key. Your screen
will look something like this:

$ who<CR>

starship tty00 Oct 12 8:53
mary2 tty02 Oct 12 8:56
acct:123 tty05 Oct 12 8:54
Jrs tty06 Oct 12 8:56

$

BASICS FOR UNIX SYSTEM USERS 2-23

The who command lists the login names of everyone currently working on
your system. The tty designations refer to the special files that correspond to
each user’s terminal. The date and time at which each user logged in are also
shown.

Logging Off

When you have completed a session with the UNIX System, type <d>
after the prompt. (Remember that control characters such as < d> are typed
by holding down the control key and pressing the appropriate alphabetic key.
Because they are nonprinting characters, they do not appear on your screen.)
After several seconds, the UNIX System will display the login: prompt again.

$ <'d>

login:
This shows that you have logged off successfully and the system is ready for
someone else to log in.

Always log off the UNIX System by typing < d> before you turn off the
NOTE| terminal or hang up the telephone. If you do not, you may not be actually
logged off the system.

The exit command also allows you to log off but is not used by most
users. It may be convenient if you want to include a command to log off
within a shell program. (For details, see the "Special Commands" section of
the sh(1) page in the User’s/System Administrator’s Reference Manual.)

2-24 USER’S GUIDE

Using the File System

Introduction 3-1
How the File System is Structured 3-2
Your Place in the File System 3-4
Your Home Directory 3-4
Your Current Directory 3-6
Path Names 3-7

@ Full Path Names 3-7

m Relative Path Names 3-10

a Naming Directories and Files 3-14
Organizing a Directory 315
Creating Directories: the mkdir Command 3-15
Listing the Contents of a Directory: the ls

Command 3-17

@ Frequently Used lIs Options 3-19
Changing Your Current Directory: the cd

Command 3-25
Removing Directories: the rmdir Command 3-27
Accessing and Manipulating Files 3-30
Basic Commands 3-30

m Displaying a File’s Contents: the cat, more, pg,

and pr Commands 3-32

USING THE FILE SYSTEM i

Using the File System

a Making a Duplicate Copy of a File: the cp

Enabling and Disabling a Printer

Command 3-43
m Copying a Group of Files: the copy Command 3-45
a Frequently Used copy Options 3-47
® Moving and Renaming a File: the mv Command 3-50
® Removing a File: the rm Command 3-52
a Counting Lines, Words, and Characters in a File:
the we Command 3-54
® Protecting Your Files: the chmod Command 3-56
Advanced Commands 3-64
m ldentifying Differences Between Files: the diff
Command 3-64
® Searching a File for a Pattern: the grep
Command 3-66
m Sorting and Merging Files: the sort Command 3-68
Printing Files 372
Print Partially Formatted Contents of a File: the pr
Command 3-72
The LP Print Service 3-76
a Requesting a Paper Copy of a File: the lp
Command 3-77
@ Select a Print Destination 3-78
@ Special Printing Modes 3-78
m Page Size and Pitch Settings 3-78
& Pages and Copices to be Printed 3-80
& Quecue Priority 3-81
& Pre-Printed Forms 3-82
@ Character Sets and Print Wheels 3-82
a Content Type 3-83
@ No File Breaks between Files 3-84
m Banner-Page Options 3-84
® Messages from the Print Service 3-84
a Changing a Request 3-85
@ Canceling a Request 3-86
® Getting Printer Status and Information: lpstat 3-86
[] 3-88
[

Summary

ii USER’S GUIDE

Introduction

To use the UNIX file system effectively you must be familiar with its
structure, know something about your relationship to this structure, and
understand how the relationship changes as you move around within it.
This chapter prepares you to use this file system.

The first two sections (" How the File System is Structured" and " Your
Place in the File System") offer a working perspective of the file system.
The rest of the chapter introduces UNIX System commands that allow you to
build your own directory structure, access and manipulate the subdirectories
and files you organize within it, and examine the contents of other directories
in the system for which you have access permission.

Each command is discussed in a separate subsection. Tables at the end of
these subsections summarize the features of each command so that you can
later review a command’s syntax and capabilities quickly. Many of the com-
mands presented in this section have additional, sophisticated uses.

These, however, are left for more experienced users and are described in other
UNIX System documentation. All the commands presented here are basic to
using the file system efficiently and easily. Try using each command as you
read about it.

USING THE FILE SYSTEM 3-1

How the File System is Structured

The file system is made up of a set of ordinary files, special files, and
directories. These components provide a way to organize, retrieve, and
manage information electronically. Chapter 1 introduced the properties of
directories and files; this section will review them briefly before discussing
how to use them.

B An ordinary file is a collection of characters stored on a disk. It may
contain text for a report or code for a program.

B A special file represents a physical device, such as a terminal or disk.

B A directory is a collection of files and other directories (sometimes
called subdirectories). Use directories to group files together on the
basis of any criteria you choose. For example, you might create a direc-
tory for each product that your company sells or for each of your
student’s records.

The set of all the directories and files is organized into a tree shaped struc-
ture. Figure 3-1 shows a sample file structure with a directory called root (/)
as its source. By moving down the branches extending from root, you can
reach several other major system directories. By branching down from these,
you can, in turn, reach all the directories and files in the file system.

In this hierarchy, files and directories that are subordinate to a directory
have what is called a parent/child relationship. This type of relationship is
possible for many layers of files and directories. In fact, there is no limit to
the number of files and directories you may create in any directory that you
own. Neither is there a limit to the number of layers of directories that you
may create. Thus, you have the capability to organize your files in a variety
of ways, as shown in Figure 3-1.

How the File System is Structured

(root)
unix bin dey el lib tmp usr
consale Ly 00 nyl1
dare cat hews mail

O = Directories
D = Ordinary Files
v = Special Files

Figure 3-1: A Sample File System

USING THE FILE SYSTEM 3-3

Your Place in the File System

Whenever you interact with the UNIX System, you do so from a location
in its file system structure. The UNIX System automatically places you at a
specific point in its file system every time you log in. From that point, you
can move through the hierarchy to work in any of your directories and files
and to access those belonging to others that you have permission to use.

The following sections describe your position in the file system structure
and how this position changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the UNIX System
places you at a specific point in its file system structure called your login or
home directory. The login name assigned to you when your UNIX System
account was set up is usually the name of this home directory. Every user
with an authorized login name has a unique home directory in the file system.

The UNIX System is able to keep track of all these home directories by
maintaining one or more system directories that organize them. For example,
the home directories of the login names starship, mary2, and jmrs are con-
tained in a system directory called userl. Figure 3-2 shows the position of a
system directory such as userl in relation to the other important UNIX System
directories discussed in Chapter 1.

3-4 USER’S GUIDE

LIEx 0

Your Place in the File System

bty Tat

O = Directories
D = Ordinary Files
V = Special Files

~=— = Branch

list

starship

betters

bty

autline Labie

sanduers

johnson display

Figure 3-2: Directory of Home Directories

USING THE FILE SYSTEM 3-5

Your Place in the File System

Within your home directory, you can create files and additional directories
(called subdirectories) in which to group them. You can move and delete your
files and directories, and you can control access to them. You have full
responsibility for everything you create in your home directory because you
own it. Your home directory is a vantage point from which to view all the
files and directories it holds, and the rest of the file system, all the way up to
root.

Your Current Directory

As long as you continue to work in your home directory, it is considered
your current working directory. If you move to another directory, that direc-
tory becomes your new current directory.

The pwd command (short for print working directory) prints the name of
the directory in which you are now working. For example, if your login name
is starship and you execute the pwd command in response to the first prompt
after logging in, the UNIX System responds as follows:

$ pwd<CR>
suser 1/starship
13

The system response gives you both the name of the directory in which
you are working (starship) and the location of that directory in the file sys-
tem. The path name /useri/starship tells you that the root directory (shown
by the leading / in the line) contains the directory userl which, in turn, con-
tains the directory starship. (All other slashes in the path name other than
root are used to separate the names of directories and files, and to show the
position of each directory relative to root.) A directory name that shows the
directory’s location in this way is called a full or complete directory name or
path name. In the next few pages we will analyze and trace this path name
SO you can start to move around in the file system.

3-6 USER’S GUIDE

Your Place in the File System

Remember, you can determine your position in the file system at any time
simply by issuing the pwd command. This is especially helpful if you want to
read or copy a file and the UNIX System tells you the file you are trying to
access does not exist. You may be surprised to find you are in a different
directory than you thought.

Figure 3-3 provides a summary of the syntax and capabilities of the pwd
command.

Command Recap

pwd - prints full name of working directory

command options arguments
pwd none none
Description: pwd prints the full path name of the directory in

which you are currently working,

Figure 3-3: Summary of the pwd Command

Path Names

Every file and directory in the UNIX System is identified by a unique path
name. The path name shows the location of the file or directory and provides
directions for reaching it. Knowing how to follow the directions given by a
path name is your key to moving around the file system successfully. The
first step in learning about these directions is to learn about the two types of
path names: full and relative.

Full Path Names

A full path name (sometimes called an absolute path name) gives direc-
tions that start in the root directory and lead you down through a unique
sequence of directories to a particular directory or file. You can use a full path
name to reach any file or directory in the UNIX System in which you are
working.

USING THE FILE SYSTEM 3-7

Your Place in the File System

Because a full path name always starts at the root of the file system, its
leading character is always a / (slash). The final name in a full path name
can be either a file name or a directory name. All other names in the path
must be directories.

To understand how a full path name is constructed and how it directs
you, consider the following example. Suppose you are working in the star-
ship directory, located in /userl. You issue the pwd command and the sys-
tem responds by printing the full path name of your working directory:
/user1/starship. Analyze the elements of this path name using the following
diagram and key.

system
directory home
root directory
delimiter
\userl/starship
/ (leading) = the slash that appears as the first character in the path name

is the root of the file system

userl = system directory one level below root in the hierarchy to
which root points or branches

/ (subsequent) = the next slash separates or delimits the directory names userl
and starship

current working directory

starship

Now follow the bold lines in Figure 3-4 to trace the full path to
/user1/starship.

Linix o

date

cat

O = Directories

D = Ordinary Files

V = Special Files

Tisl

(=) ()
\VAVAV

raft

\
i

Tt lun

Your Place in the File System

mluw

e

Table

s

(G dinjelay I}

Figure 3-4: Full Path Name of the /userl/starship Directory

1wl

USING THE FILE SYSTEM 3-9

Your Place in the File System

Relative Path Names

A relative path name gives directions that start in your current working
directory and lead you up or down through a series of directories to a particu-
lar file or directory. By moving down from your current directory, you can
access files and directories you own. By moving up from your current direc-
tory, you pass through layers of parent directories to the grandparent of all
system directories, root. From there you can move anywhere in the file sys-
tem.

A relative path name begins with one of the following: a directory or file
name; a . (pronounced dot), which is a shorthand notation for your current
directory; or a .. (pronounced dot dot), which is a shorthand notation for the
directory immediately above your current directory in the file system hierar-
chy. The directory represented by .. (dot dot) is called the parent directory of .
(your current directory).

For example, say you are in the directory starship in the sample system
and starship contains directories named draft, letters, and bin and a file
named mbox. The relative path name to any of these is simply its name, such
as draft or mbox. Figure 3-5 traces the relative path from starship to draft.

3-10 USER’S GUIDE

Your Place in the File System

autline

table

sander

johnsan display list

O = Directories

D = Ordinary Files

Figure 3-5: Relative Path Name of the draft Directory

The draft directory belonging to starship contains the files outline and
table. The relative path name from starship to the file outline is

draft/outline.

Figure 3-6 traces this relative path. Notice that the slash in this path
name separates the directory named draft from the file named outline. Here,
the slash is a delimiter showing that outline is subordinate to draft; that is,

outline is a child of its parent, draft.

USING THE FILE SYSTEM 3-11

Your Place in the File System

list

-

table d. jork play lis1

O = Directories

D = Ordinary Files

9
.
outline 1

r=="

-=d

Figure 3-6: Relative Path Name from starship to outline

So far, the discussion of relative path names has covered how to specify
names of files and directories that belong to, or are children of, your current
directory. You now know how to move down the system hierarchy level by
level until you reach your destination. However, you can also ascend the lev-
els in the system structure or ascend and subsequently descend into other files
and directories.

To ascend to the parent of your current directory, you can use the .. nota-
tion. This means that if you are in the directory named draft in the sample
file system, .. is the path name to starship, and ../.. is the path name to
starship’s parent directory, userl.

3-12 USER’S GUIDE

Your Place in the File System

From draft, you can also trace a path to the directory sanders by using
the path name ../letters/sanders. The .. brings you up to starship. Then the
names letters and sanders take you down through the letters directory to the

sanders directory.

Keep in mind that you can always use a full path name in place of a rela-

tive one.

Figure 3-7 shows some examples of full and relative path names.

Path Name

Meaning

/
/bin

/userl/starship/bin/tools

bin/tools

tools

full path name of the root directory

full path name of the bin directory (contains
most executable programs and utilities)

full path name of the tools directory belonging
to the bin directory that belongs to the starship
directory belonging to userl that belongs to
root

relative path name to the directory tools in the
directory bin

If the current directory is /, then the UNIX Sys-
tem searches for /bin/tools. However, if the
current directory is starship, then the system
searches the full path
/userl/starship/bin/tools.

relative path name of the directory tools in the
current directory.

Figure 3-7: Example Path Names

You may need some practice before you can use path names such as these
to move around the file system with confidence. However, this is to be
expected when learning a new concept.

USING THE FILE SYSTEM 3-13

Your Place in the File System

Naming Directories and Files

You can give your directories and files any names you want, as long as
you observe the following rules:

B The name of a directory or file can be from one to fourteen characters
long.

B All characters other than / are legal.
B Some characters are best avoided, such as a <SPACE>, <TAB>,
<BACKSPACE>, and the following:
?@#S &*O'[INI ;<>
If you use a blank or tab in a directory or file name, you must enclose
the name in quotation marks on the command line.
B Avoid using a +, - or . as the first character in a file name.

B Uppercase and lowercase characters are distinct to the UNIX System.
For example, the system considers a directory or file named draft to be
different from one named DRAFT.

The following are examples of legal directory or file names:

memo MEMO section2 ref:list
file.d chap3+4 item1-10 outline

The rest of this chapter introduces UNIX System commands that enable
you to examine the file system.

3-14 USER’S GUIDE

Organizing a Directory

This section introduces four UNIX System commands that enable you to
organize and use a directory structure: mkdir, Is, cd, and rmdir.

mkdir enables you to make new directories and subdirec-
tories within your current directory

Is lists the names of all the subdirectories and files in a
directory

cd enables you to change your location in the file system

from one directory to another

rmdir enables you to remove an empty directory

These commands can be used with either full or relative path names.
Two of the commands, 1Is and ¢d, can also be used without a path name.
Each command is described more fully in the four sections that follow.

Creating Directories: the mkdir Command

It is recommended that you create subdirectories in your home directory
according to a logical and meaningful scheme that will facilitate the retrieval
of information from your files. If you put all files pertaining to one subject
together in a directory, you will know where to find them later.

To create a directory, use the mkdir command (short for make directory).
Simply enter the command name, followed by the name you are giving your
new directory or file. For example, in the sample file system, the owner of the
draft subdirectory created draft by issuing the following command from the
home directory (/userl/starship):

$ mkdir draft <CR>
$

The second prompt shows that the command has succeeded; the subdirectory
draft has been created.

USING THE FILE SYSTEM 3-15

Organizing a Directory

Still in the home directory, this user created other subdirectories, such as
letters and bin, in the same way.

$ mkdir letters<CR>
$ mkdir bin<CR>
$

The user could have created all three subdirectories (draft, letters, and bin)
simultaneously by listing them all on a single command line.

$ mkdir draft letters bin<CR>
$

You can also move to a subdirectory you created and build additional sub-
directories within it. When you build directories or create files, you can name
them anything you want as long as you follow the guidelines listed earlier
under "Naming Directories and Files."

Figure 3-8 summarizes the syntax and capabilities of the mkdir command.

Command Recap

mkdir — makes a new directory

command options arguments
mkdir none directoryname(s)
Description: mkdir creates a new directory (subdirectory).
Remarks: The system returns a prompt ($ by default) if the

directory is successfully created.

Figure 3-8: Summary of the mkdir Command

3-16 USER’S GUIDE

Organizing a Directory

Listing the Contents of a Directory: the ls
Command

All directories in the file system have information about the files and
directories they contain, such as name, size, and the date last modified. You
can obtain this information about the contents of your current directory and
other system directories by executing the Is command (short for list).

The 1s command lists the names of all files and subdirectories in a speci-
fied directory. If you do not specify a directory, Is lists the names of files and
directories in your current directory. To understand how the Is command
works, consider the sample file system (Figure 3-2) once again.

Say you are logged in to the UNIX System and you run the pwd com-
mand. The system responds with the path name /userl/starship. To display
the names of files and directories in this current directory, you then type lIs
and press the <RETURN> key. After this sequence, your terminal will read

s/pwtkClb

$/user1/starship
$ Is<CR>

bin

draft

letters

list

mbax

$

\

.

As you can see, the system responds by listing, in alphabetical order, the
names of files and directories in the current directory starship. (If the first
character of any of the file or directory names had been a number or an
uppercase letter, it would have been printed first.)

USING THE FILE SYSTEM 3-17

Organizing a Directory

To print the names of files and subdirectories in a directory other than
your current directory without moving from your current directory, you must
specify the name of that directory as follows:

Is pathname<CR>

The directory name can be either the full or relative path name of the desired
directory. For example, you can list the contents of draft while you are work-
ing in starship by entering s draft and pressing the <RETURN> key. Your

screen will look like the following:

$ Is draft<CR>
outline

table

%

Here, draft is a relative path name from a parent (starship) to a child (draft)
directory.

You can also use a relative path name to print the contents of a parent
directory when you are located in a child directory. The .. (dot dot) notation
provides an easy way to do this. For example, the following command line
specifies the relative path name from starship to userl:

$1s .<CR>
jurs

starship

3-18 USER’S GUIDE

Organizing a Directory

You can get the same results by using the full path name from root to userl.
If you type 1s /userl and press the <RETURN> key, the system will respond
by printing the same list.

Similarly, you can list the contents of any system directory that you have
permission to access by executing the 1s command with a full or relative path
name.

The 1s command is useful if you have a long list of files and you are try-
ing to determine whether one of them exists in your current directory. For
example, if you are in the directory draft and you want to determine if the
files named outline and notes are there, use the 1s command as follows:

$ 1s outline notes<CR>
outline

motes not foand

3

The system acknowledges the existence of outline by printing its name and
says that the file notes is not found.

The 1s command does not print the contents of a file. If you want to see
what a file contains, use the cat, more, pg, or pr command. These commands
are described in " Accessing and Manipulating Files," later in this chapter.

Frequently Used Is Options

The Is command also accepts options that cause specific attributes of a file
or subdirectory to be listed. There are more than a dozen available options
for the Is commands. Of these, -a and -1 will probably be most valuable in
your basic use of the UNIX System. Refer to the Is(1) page in the
User’s/System Administrator’s Reference Manual for details about other options.

Listing All Files

Some important file names in your home directory, such as .profile (pro-
nounced dot-profile), begin with a period. (As you can see from this example,
when a period is used as the first character of a file name, it is pronounced

USING THE FILE SYSTEM 3-19

Organizing a Directory

dot.) When a file name begins with a dot, it is not included in the list of files
reported by the 1s command. If you want the Is to include these files, use the
-a option on the command line.

For example, to list all the files in your current directory (starship),
including those that begin with a . (dot), type Is -a and press the <RETURN>
key:

Ca<CR> \

.profile
bin
draft
letters
list
mbox
$

N _/

Listing Contents in Short Format

The -C and -F options for the Is command are frequently used. Together,
these options list a directory’s subdirectories and files in columns, and identify
executable files with an * and directories with a /. Thus, you can list all files
in your working directory starship by executing the command line shown
here:

$ 1s -CF<CR>

bin/ letters/ ke
draft/ list*

s

3-20 USER’S GUIDE

Organizing a Directory

This version of the UNIX System includes the lc (short for list in
NOTE| columns) command. Like Is, lc accepts pathname arguments and recog-
nizes several options. When used with no options, lc¢ produces output

! that is identical to the output produced by Is -C. For more information
about Ic and a list of available options, see the Is(1) entry in the
User's/System Administrator’s Reference Manual.

Listing Contents in Long Format

Probably the most informative 1s option is -1, which displays the contents
of a directory in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file. For example, say you
run the Is -1 command while in the starship directory:

-~

$ Is -1<CR>

total 30

drwxxr-xx-x 3 starship
drwxax-xxr-x 2 starship
drwxxr-xxr-x 2 starship
“rwx------ 2 starship
“rw--—---- 1 starship

project 96 Oct 27 08:16 bin
project 64 Nov 1 14:19 draft
project 80 Nov 8 08:41 letters
project 12301 Nov 2 10:15 1list
project 40 Oct 27 10:00 mbox

The first line of output (total 30) shows the amount of disk space used,
measured in blocks. Each of the rest of the lines comprises a report on a
directory or file in starship. The first character in each line (4, —, b, or c) tells

you the type of file.

directory
ordinary disk file
block special file

character special file

USING THE FILE SYSTEM 3-21

Organizing a Directory

Using this key to interpret the previous screen, you can see that the starship
directory contains three directories and two ordinary disk files.

The next several characters, which are either letters or hyphens, identify
who has permission to read and use the file or directory. (Permissions are
discussed in the description of the chmod command under " Accessing and
Manipulating Files" later in this chapter.)

The following number is the link count. For a file, this equals the number
of users linked to that file. For a directory, this number shows the number of
directories immediately under it plus two (for the directory itself and its parent
directory).

Next, the login name of the file’s owner appears (here it is starship), fol-
lowed by the group name of the file or directory (project).

The following number shows the length of the file or directory entry
measured in units of information (or memory) called bytes. The month, day,
and time that the file was last modified is given next. Finally, the last column
shows the name of the directory or file.

Figure 3-9 identifies each column in the rows of output from the
Is -1 command.

Organizing a Directory

number of owner
blocks used name
number group
of links name name

' | '

total 30
rwxr-xr-x 3 starship project 96 Oct 27 08:16 bin
File rwxr-xr-x 2 starship project 64 Nov 1 14:19 draft
type rwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
rwWX------ 2 starship project 12301 Nov 2 10:15 list
TW------- 1 starship project 40 Oct 27 10:00 mbox

o C—

T T

time/date last
permissions modified

Figure 3-9: Description of Output Produced by the Is -1 Command

Figure 3-10 summarizes the syntax and capabilities of the Is command
and two available options.

USING THE FILE SYSTEM 3-23

Organizing a Directory

Command Recap

Is — lists the contents of a directory

command options arguments
Is -a, -1, and others* directoryname(s)
Description: Is lists the names of the files and subdirectories in

the specified directories. If no directory name is
given as an argument, the contents of your work-
ing directory are listed.

Options: -a lists all entries, including those beginning
with . (dot)
-1 lists contents of a directory in long format,
furnishing mode, permissions, size in
bytes, and time of last modification
Remarks: If you want to read the contents of a file, use the

cat or more command.

The l¢ command is similar to this command,
except Ic lists a directory’s contents in multiple
columns by default.

* Sce the Is(1) page in the User’s/System Administrator’s Reference Manual for all available
options and an explanation of their capabilities.

Figure 3-10: Summary of the 1Is Command

3-24 USER’S GUIDE

Organizing a Directory

Changing Your Current Directory: the cd
Command

When you first log in on the UNIX System, you are placed in your home
directory. As long as you do work in it, it is also your current working direc-
tory. However, by using the ¢d command (short for change directory), you
can work in other directories as well. To use this command, enter cd, fol-
lowed by a path name to the directory to which you want to move:

cd pathname_of_newdirectory<CR>

Any valid path name (full or relative) can be used as an argument to the cd
command. If you do not specify a path name, the command will move you to
your home directory. Once you have moved to a new directory, it becomes
your current directory.

For example, to move from the starship directory to its child directory
draft (in the sample file system), type c¢d draft and press the <RETURN>
key. (Here draft is the relative path name to the desired directory.) When
you get a prompt, verify your new location by typing pwd and pressing the
<RETURN> key. Your terminal screen will look like the following;:

$ cd draft<CR>

$ pwd<CR>>

/user 1/starship/draft
$

Now that you are in the draft directory, you can create subdirectories in it by
using the mkdir command and new files by using the ed and vi editors. (See
Chapters 5 and 6 for tutorials on the ed and vi commands, respectively.)

USING THE FILE SYSTEM 3-25

Organizing a Directory

It is not necessary to be in the draft directory to access files within it. You
can access a file in any directory by specifying a full path name for it. For
example, to cat the sanders file in the letters directory
(/user1/starship/letters) while you are in the draft directory
(/userl/starship/draft), specify the full path name of sanders on the com-
mand line:

cat /userl/starship/letters/sanders<CR>

You may also use full path names with the ¢d command. For example, to
move to the letters directory from the draft directory, specify
/userl/starship/letters on the command line as follows:

cd /userl/starship/letters<CR>

Also, because letters and draft are both children of starship, you can use
the relative path name ../letters with the cd command. The .. notation
moves you to the directory starship, and the rest of the path name moves you
to letters.

Figure 3-11 summarizes the syntax and capabilities of the cd command.

3-26 USER’S GUIDE

Organizing a Directory

Command Recap

cd - changes your working directory

command options arguments
od none directorynanie
Description: cd changes your position in the file system from the

current directory to the directory specified. If no
directory name is given as an argument, the ¢d com-
mand places you in your home directory.

Remarks: When the shell places you in a specified directory,
the prompt ($ by default) is returned to you. To
access a directory that is not in your working direc-
tory, you must use the full or relative path name in
place of a simple directory name.

Figure 3-11: Summary of the cd Command

Removing Directories: the rmdir Command
If you no longer need a directory, you can remove it with the rmdir com-
mand (short for remove a directory). The standard syntax for this command is
rmdir directoryname(s)<CR>
You can specify more than one directory name on the command line.

The rmdir command will not remove a directory if you are not the owner
of it or if the directory is not empty. If you want to remove a file in another
user’s directory, the owner must give you write permission for the parent
directory of the file you want to remove.

USING THE FILE SYSTEM 3-27

Organizing a Directory

If you try to remove a directory that still contains subdirectories and files
(that is, it is not empty), the rmdir command prints the message directoryname
not empty. You must remove all subdirectories and files; only then will the

command succeed.

For example, say you have a directory called memos that contains one
subdirectory, tech, and two files, june.30 and july.31. (Create this directory in
your home directory now so you can see how the rmdir command works.) If
you try to remove the directory memos (by issuing the rmdir command from
your home directory), the command responds as follows:

$ rmdir memos<CR>
rmdir: memos not empty
%

To remove the directory memos, you must first remove its contents: the sub-
directory tech and the files june.30 and july.31. You can remove the tech
subdirectory by executing the rmdir command. For instructions on removing
files, see " Accessing and Manipulating Files" later in this chapter.

Once you have removed the contents of the memeos directory, memos
itself can be removed. First, however, you must move to its parent directory
(your home directory). The rmdir command will not work if you are still in
the directory you want to remove. From your home directory, type

rmdir memos<CR>

If memos is empty, the command will remove it and return a prompt.

3-28 USER'’S GUIDE

Organizing a Directory

Figure 3-12 summarizes the syntax and capabilities of the rmdir com-
mand.

Command Recap

rmdir - removes a directory

command options arguments
rmdir none directoryname(s)
Description: rmdir removes specified directories if they do nol

contain files and/or subdirectories.

Remarks: If the directory is empty, it is removed and the
system returns a prompt. If the directory contains
files or subdirectories, the command returns the
message, rmdir: direcioryiame not empty.

Figure 3-12: Summary of the rmdir Command

USING THE FILE SYSTEM 3-29

Accessing and Manipulating Files

This section introduces several UNIX System commands that access and
manipulate files in the file system structure. Information in this section is
organized into two parts: basic and advanced. The part devoted to basic com-
mands is fundamental to using the file system; the advanced commands offer
more sophisticated information processing techniques for working with files.

Basic Commands

This section discusses UNIX System commands that are necessary for
accessing and using the files in the directory structure. Figure 3-13 lists these
commands.

3-30 USER’S GUIDE

Accessing and Manipulating Files

Command Function
cat prints the contents of a specified file on
a terminal
more prints the contents of a specified file on
a terminal, one screenful at a time
Pg prints the contents of a specified file on
a terminal in chunks or pages
pr prints a partially formatted version of a
specified file on the terminal
Ip requests a paper copy of a file from a
line printer
cp makes a duplicate copy of an existing,
copy copies groups of files (including direc-
tories and subdirectories) to another
mv moves and renames a file
rm removes a file
wc reports the number of lines, words, and
characters in a file
chmod changes permission modes for a file (or

a directory)

Figure 3-13: Basic Commands for Using Files

USING THE FILE SYSTEM 3-31

Accessing and Manipulating Files

Each command is discussed in detail and summarized in a table that you
can easily reference later. These tables will allow you to review the syntax
and capabilities of these commands at a glance.

Displaying a File’s Contents: the cat, more, pg, and pr
Commands

The UNIX System provides four commands for displaying and printing
the contents of a file or files: cat, more, pg, and pr. The cat command (short
for concatenate) displays the contents of the file(s) specified. This output is
displayed on your terminal screen unless you tell cat to direct it to another file
or a new command.

The more command displays the contents of a file on the terminal, one
screenful at a time. While the cat command causes the entire file to scroll
quickly on the screen, more causes the scrolling to pause at the end of each
screenful, until you instruct more to display the next screenful. This feature is
helpful if you think the file you wish to view is larger than one screenful.

The pg command is particularly useful when you want to read the con-
tents of a long file because it displays the text of a file in pages a screenful at
a time. Unlike more, pg lets you scroll through the file backward, as well as
forward. The pr command formats specified files and displays them on your
terminal or, if you request, directs the formatted output to a printer. See the
section "Printing Files" in this chapter for more information on using the pr
command.

The following sections describe how to use the cat, more, pg, and pr com-
mands.

Concatenate and Print Contents of a File: the cat Command

The cat command displays the contents of a file or files. For example, say
you are located in the directory letters (in the sample file system) and you
want to display the contents of the file johnson. Type the command line
shown on the screen, and you will receive the following output:

3-32 USER'’S GUIDE

Accessing and Manipulating Files

$ cal johnson- CR"-
March 5, 1986

Mr. Ron Jahnsan
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Jahmsan:

I enjoyed speaking with you this morning
about your campany's plans to autamate
your business.

Enclosed please find

the material you requested

about ABSC's line of camputers

and office autamation software.

If I can be of further assistance to you,
please dan't hesitate to call.

Yours truly,

John Howe
$

To display the contents of two (or more) files, simply type the names of

$ cat johnson sanders<CR>

the files you want to see on the command line. For example, to display the
contents of the files johnson and sanders,

type

The cat command reads johnson and sanders and displays their contents in
that order on your terminal.

USING THE FILE SYSTEM 3-33

Accessing and Manipulating Files

$ cat johnson sanders<CR>
March 5, 1986

Mr. Ron Jahnsan
Layton Printing

52 Hudsan Street

New York, N.Y.

Dear Mr. Jaohnsan:

I enjoyed speaking with you this morning
Yours truly,

John Howe

March 5, 1986

Mrs. D.L. Sanders
Sanders Research, Inc.
43 Nassau Street

I inceton, N.J.

Dear Mrs. Sanders:

My colleagues and I have been following, with great interest.,

Sincerely,

John Howe
$

3-34 USER’S GUIDE

Accessing and Manipulating Files

To direct the output of the cat command to another file or to a new com-
mand, see the sections in Chapter 7 that discuss input and output redirection.

Figure 3-14 summarizes the syntax and capabilities of the cat command.

Command Recap

cat — concatenates and prints a file’s contents

command options arguments
cat available* filename(s)
Description: The cat command reads the name of each file speci-

fied on the command line and displays its contents.

Remarks: If a specified file exists and is readable, its contents
are displayed on the terminal screen; otherwise, the
message cat: cannot open filename appears on the
screen.

To display the contents of a directory, use the Is
command.

See the cal(1) page in the User's/System Administrator's Reference Manual tor all
available options and an explanation of their capabilities,

Figure 3-14: Summary of the cat Command

Display Contents of a File: the more Command

The more command lets you examine the contents of a file or group of
files, one screenful at a time. At the end of each screenful, more tells you
what percentage of the file you have viewed so far and awaits your instruction
to continue viewing the file or to quit more. In general, more has the follow-
ing form:

more filename(s) <CR>

USING THE FILE SYSTEM 3-35

Accessing and Manipulating Files

For example, suppose you are located in the letters directory (in the sam-
ple file system). If you wish to display the contents of the file johnson, type
the command line shown on the screen and you will receive the following
output:

$ more johnson<CR>
March 5, 1986

Mr. Ron Johnsan
Layton Printing
52 Hudsan Street
New York, N.Y.

Dear Mr. Johnsan:

I enjoyed speaking with you this marning
about your campany's plans to autamate
your business.

Enclosed please find

the material you requested

about ABSC's line of camputers

and office automation software.

If I can be of further assistance to you,
please dan't hesitate to call.

Yours truly,

John Howe

$

The first screenful of johnson is displayed on your screen. In this exam-
ple. johnson is a small file, so the text fits on one screen. If johnson had con-
tained enough text to fill two screens, more would have prompted you to con-
tinue or quit, by displaying a prompt at the end of the first screenful, as
shown in the following example:

3-36 USER’S GUIDE

Accessing and Manipulating Files

$ more johnson<CR>
March 5, 1986

Mr. Ron Johnsan
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning
about your campany's plans to autamate
your business.

Enclosed please find

the material you requested

about ABSC's line of camputers

and office autamation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,
John Howe

--More--(50%)

At this more prompt, you could choose either to view the remainder of

johnson or to quit more. To view the next screenful of the file, press the
SPACEBAR key. To view the file one line at a time, press <CR>. To quit
more and return to the system prompt, type q.

Figure 3-15 summarizes the syntax and capabilities of the more command.

USING THE FILE SYSTEM 3-37

Accessing and Manipulating Files

Command Recap

more — prints a file’s contents, one screenful at a time

command options arguments
more available* filename(s)
Description: The more command reads the name of each file

specified on the command line and displays its con-
tents, one screenful at a time.

Remarks: If a specified file exists and is readable, its contents
are displayed on the terminal screen. If the file
exists, but you do not have read permission for it,
the message more: Permission denied appears on
the screen. If the file does not exist, the message
more: no such file or directary appears on the
screen.

To display the contents of a directory, use the Is or
lc command.

* See the more(1) page in the User’s/System Administrator’s Reference Manual for
all available options and an explanation of their capabilities.

Figure 3-15: Summary of the more Command

Paging Through the Contents of a File: the pg Command

The pg command (short for page) allows you to examine the contents of
a file or files, page by page, on a terminal. The pg command displays the text
of a file in pages (chunks) followed by a colon prompt (:), a signal that the
program is waiting for your instructions. Possible instructions you can then
issue include requests for the command to continue displaying the file’s con-
tents a page at a time or a request that the command search through the file(s)
to locate a specific character pattern. Figure 3-16 summarizes some of the
available instructions.

3-38 USER'’S GUIDE

Command* Function

h help; displays list of available pgt commands

qor Q quits pg mode

<CR> displays next pi.:e of text

1 displays next line of text

dor d displays additional half page of text

.or 1 redisplays current page of text

f skips next page of text and displays following one

n begins displaying next file you specified
on command line

p displays previous file specified on command line

$ displays last page of text in file currently displayed

/pattern searches forward in file for specified character pat-
tern

?pattern searches backward in file for specified character
pattern

Most commands can be typed with a number preceding them. For example,
+1 (display next page), -1 (display previous page), or 1 (display first page of

text).

See the User’s/System Administrator’s Reference Manual for a detailed explanation
of all available pg commands.

Accessing and Manipulating Files

Figure 3-16: Summary of Commands to Use with pg

Like more, the pg command is useful when you want to read a long file
or a series of files because the program pauses after displaying each page,
allowing you time to examine it. The size of the page displayed depends on
the terminal. For example, on a terminal capable of displaying twenty-
four lines, one page is defined as twenty-three lines of text and a line

USING THE FILE SYSTEM 3-39

Accessing and Manipulating Files

containing a colon. However, if a file is less than twenty-three lines long, its
page size will be the number of lines in the file plus one (for the colon).

To look at the contents of a file with pg, use the following command line
format:

pg filename(s)<CR>

For example, to display the contents of the file outline in the sample file
system, type

pg outline<CR>

The first page of the file will appear on the screen. Because the file has more
lines in it than can be displayed on one page, a colon appears at the bottom of
the screen. This is a reminder to you that there is more of the file to be seen.
When you are ready to read more, press the <RETURN> key, and pg will
print the next page of the file.

The following screen summarizes our discussion of the pg command this
far:

(ca

pg outline<CR>
After you analyze the subject for your
report, you must consider organizing and
arranging the material you want to use in
writing it.

An outline is an effective method of
organizing the material. The outline

is a type of blueprint or skeleton,

a framework for you the builder-writer
of the report; in a sense it is a recipe
:<CR>

3-40 USER'’S GUIDE

Accessing and Manipulating Files

After you press the <RETURN> key, pg will resume printing the file’s con-
tents on the screen:

Ccontains the names of the

ingredients and the order in which
to use them.

Your ocutline need not be elaborate or
overly detailed; it is simply a guide you
may cansult as you write, to be varied,

if need be, when additional important
ideas are suggested in the actual writing.
(EOF) :

Notice the line at the bottom of the screen containing the string (EOF):.
This expression (EOF) means you have reached the end of the file. The colon
prompt is a cue for you to issue another command.

When you have finished examining the file, press the <RETURN> key; a
prompt will appear on your terminal. (Typing q or Q and pressing the
<RETURN> key also gives you a prompt.) Or you can use one of the other
available commands, depending on your needs. In addition, there are a
number of options that can be specified on the pg command line (see the
pg(1) page in the User's/System Administrator's Reference Manual).

Proper execution of the pg command depends on specifying the type of
terminal you are using because the pg program was designed to be flexible
enough to run on many different terminals; how it is executed differs from ter-
minal to terminal. By specifying one type, you are telling this command

B how many lines to print

B how many columns to print

USING THE FILE SYSTEM 3-41

Accessing and Manipulating Files

B how to clear the screen

@ how to highlight prompt signs or other words

B how to erase the current line

To specify a terminal type, assign the code for your terminal to the TERM

variable in your .profile file. (For more information about TERM and .profile,
see Chapter 7; for instructions on setting the TERM variable, see Appendix F.)

Figure 3-17 summarizes the syntax and capabilities of the pg command.

Command Recap

pg - displays a file’s contents in chunks or pages

command options arguments
Pg available* filename(s)
Description: The pg command displays the contents of the

specified file(s) in pages.

Remarks: After displaying a page of text, the pg command
awaits instructions from you to do one of the fol-
lowing: continue to display text, search for a pat-
tern of characters, or exit the pg mode. In addi-
tion, a number of options are available. For exam-
ple, you can display a section of a file, beginning
at a specific line or at a line containing a certain
sequence or paltern. You can also opt to go back
and review text that has already been displayed.

* Sce the pg(1) page in the User's/System Administrator’s Reference Manual for all
available options and an explanation of their capabilities.

Figure 3-17: Summary of the pg Command

3-42 USER’S GUIDE

Accessing and Manipulating Files

Making a Duplicate Copy of a File: the cp Command

When using the UNIX System, you may want to make a copy of a file.
lor example, you might want to revise a file while leaving the original version
intact. The cp command (short for copy) copies the complete contents of one
file into another. The cp command also allows you to copy one or more files
from one directory into another while leaving the original file or files in place.

To copy the file named outline to a file named new.outline in the sample
directory, simply type cp outline new.outline and press the <RETURN>
key. The system returns the prompt when the copy is made. To verify the
existence of the new file, you can type lIs and press the <RETURN> key.

This command lists the names of all files and directories in the current direc-
tory, in this case draft. The following screen summarizes these activities:

$ cp outline new.outline<CR>
$ Is<CR>

new.outline

ocutline

table

$

The UNIX System does not allow you to have two files with the same
name in a directory. In this case, because there was no file called
new.outline when the cp command was issued, the system created a new file
with that name. However, if a file called new.outline had already existed, it
would have been replaced by a copy of the file outline; the previous version
of new.outline would have been deleted.

If you had tried to copy the file outline to another file named outline in
the same directory, the system would have told you the file names were
identical and returned the prompt to you. If you had then listed the contents
of the directory to determine exactly how many copies of outline exisled, you
would have received the following output on your screen:

USING THE FILE SYSTEM 3-43

Accessing and Manipulating Files

$ cp outline outline<CR>

cp: outline and cutline are identical
$ Is-CR>

outline

table

$

The UNIX System does allow you to have two files with the same name
as long as they are in different directories. For example, the system would let
you copy the file outline from the draft directory to another file named out-
line in the letters directory. If you were in the draft directory, you could use
any one of four command lines. In the following two command lines, you
specify the name of the new file you are creating by making a copy:

B cp outline /userl/starship/letters/outline<CR> (full path name
specified)

B cp outline ../letters/outline<CR> (relative path name specified)

However, the cp command does not require that you specify the name of
the new file. If you do not include a name for it on the command line, cp
gives your new file the same name as the original one, by default. Therefore,
you could also use either of these command lines:

B cp outline /userl/starship/letters<CR> (full path name specified)

B cp outline ../letters<CR> (relative path name specified)

In any of these four cases, cp will make a copy of the outline file in the
letters directory and call it outline, too.

Of course, if you want to give your new file a different name, you must
specify it. For example, to copy the file outline in the draft directory to a file
named outline.vers2 in the letters directory, you can use either of the follow-
ing command lines:

3-44 USER’S GUIDE

Accessing and Manipulating Files

@ cp outline /userl/starship/letters/outline.vers2<CR> (ful! path
name)

B cp outline ../letters/outline.vers2<CR> (relative path namc)

When assigning new names, keep in mind the conventions for naming direc-
tories and files described in "Naming Directories and Files" in this chapter.

Figure 3-18 summarizes the syntax and capabilities of the cp command.

Command Recap

cp — makes a copy of a file

command options arguments

filel file2
cp none file(s) directory

Description: cp allows you to make a copy of filel and call it file2
leaving filel intact or to copy one or more files into a
different directory.

Remarks: When you are copying filel to file2 and a file called
file2 already exists, the cp command overwrites the first
version of file2 with a copy of filel and calls it file2.
The first version of file2 is deleted.

You cannot copy directories with the ¢p command.

ligure 3-18: Summary of the cp Command

Copying a Group of Files: the copy Command

The copy command lets you copy groups of files to another directory,
while lcaving the original (source) files intact. To copy a group of files from
your current directory to another directory, follow this format:

copy source destination <CR>

USING THE FILE SYSTEM 3-45

A

Accessing and Manipulating Files

You can use full or relative path names for the source and destination
arguments. The source argument can consist of a single file name, or a combi-
nation of file names and directory names. If source is a single file name, copy
behaves like cp. If files or subdirectories do not exist at the destination, copy
creates them with the same modes as the source.

The copy command lets you easily reorganize your directories without
having to copy individual files from one directory to another. For example,
suppose you are in the /userl/starship directory. This directory contains the
subdirectories draft and letters. You can use the copy command to copy the
contents of draft into letters. The following sample screen shows your input
and the system’s output:

$ copy draft letters<CR>

$ lc letters<CR>

johnsan new.outline cutline
sanders table

$

The files in the /userl/starship/draft directory (new.outline, outline,
and table) have been copied into /userl/starship/letters. Note that there is
no “draft” subdirectory under letters. The copy command duplicated the
contents of draft into letters, without copying the actual ““draft’” directory
name.

If you want these files to be in a subdirectory called draft under the
/userl/starship/letters directory, add “draft” to the destination path, as
shown in the following example:

3-46 USER’S GUIDE

Accessing and Manipulating Files

$ copy draft letters/draft<CR>
$ Ic letters<CR>
draft jalnsan sanders

The new draft subdirectory appears among the contents of letters. Now, if
you list the contents of letters, you will see a new subdirectory called draft
that has the same contents as /userl/starship/draft:

$ Ic letters/draft<CR>
new.outline ocutline table
$

Frequently Used copy Options

The copy command accepts several options that let you copy files and
directories in many ways. This section describes four frequently used copy
options. You can use these options together or separately to customize a
specific copy session.

Copying Files and Directories Interactively

By default, the copy program copies the specified source files quickly to
their destination, returning you to the system prompt when it has finished
duplicating the files. However, suppose you wish to copy most (but not all)
of the files in source to another directory. In this case, you would like to sce
the name of each source file before it is copied, so that you can decide
whether to copy it to destination. To copy files in this interactive manner, use
the -a option. With the -a option, you can reply y (yes) or n (no) each time
copy asks you whether it should copy a specific file.

USING THE FILE SYSTEM 3-47

Accessing and Manipulating Files

For example, suppose you are working in the /userl/starship directory
and wish to copy the contents of the letters subdirectory, except for the file
sanders, to the draft subdirectory. To do this, type the copy command as it
appears in the following example:

$ copy -a letters draft <CR>
copy file sanders? n <CR>
copy file johnson? y <CR>

$

For each file in source, copy asks you whether you wish to put a copy in desti-
nation. Only the files you answer y to are copied. In this example, copy
copied johnson, but not sanders, into the draft directory.

Maintaining Original File Settings

When copy duplicates a file, it sets the owner and group IDs of the copy
in destination to that of the user who invoked copy. The owner and group of
files in source remain intact. If you want a copied file to have the same owner
and group IDs as its source file, use the -0 option. This option is helpful when
you are reorganizing your directories and wish to maintain original file statis-
tics.

Similarly, copy automatically sets the modification.time of each file it
copies to the time of the copy. If you want the copied files to have the same
modification time as their corresponding source files, use the -m option. Like
the -0 option, -m is convenient when you wish to reorganize your directories,
while maintaining previous modification times.

Copying Directories Recursively

By default, copy duplicates only files (not subdirectories) even when
source contains subdirectories. If you want copy to duplicate subdirectories
and their contents, as well as just files, you must specify a recursive copy pro-
cess. . A recursive copy process duplicates all files and subdirectories in source
to destination, creating subdirectories at the destination as they are needed,

3-48 USER’S GUIDE

Accessing and Manipulating Files

and maintaining the same directory hierarchy as in source. To recursively
copy the contents of source to destination, use the -r option with the following
syntax:

copy -r source destination <CR>

Figure 3-19 summarizes the syntax and capabilities of the copy com-
mand.

Command Recap

copy - copies groups of files

command options arquments
copy -a, -1, and others* source, destination
Description: copy copies the files and/or subdirectories speci-

fied in source to destination. If no source argument
is given, the contents of your working directory are
copied to destination.

ions: .
Options -a Asks the user before attempting a copy.

-r Examines every subdirectory it encounters
in source, copying each subdirectory and its
contents to destination. By default, copy
duplicates only the files in source.

Remarks: If you want to list the contents of a directory, use

the Is or Ic command.

* See the copy(1) page in the User's/System Administrator’s Reference Manual for all available

options and an explanation of their capabilities.

Figure 3-19: Summary of the copy Command

USING THE FILE SYSTEM 349

Accessing and Manipulating Files

Moving and Renaming a File: the mv Command

The mv command (short for move) allows you to rename a file in the
same directory or to move a file from one directory to another. If you move a
file to a different directory, the file can be renamed or it can retain its original
name,

‘T'o rename a file within a directory, follow this format:

mv filel file2<CR>

The mv command changes a file’s name from filel to file2 and deletes
filel. Remember that the names filel and file2 can be any valid names,
including path names.

I'or example, if you are in the directory draft in the sample file system
and you would like to rename the file table to new.table, simply type
mv table new.table and press the <RETURN> key. If the command exe-
cutes successfully, you will receive a prompt. To verify that the file new.table
exists, you can list the contents of the directory by typing Is and pressing the
<RETURN> key. The screen shows your input and the system’s output as
follows:

$ mv table new.table<CR>
$ Is<CR>

new. table

out | ine

$

You can also move a file from one directory to another, keeping the same
name or changing it to a different one. To move the file without changing its
name, use the following command line:

mv file(s) directory<CR>

The file and directory names can be any valid names, including path names.

3-50 USER’S GUIDE

Accessing and Manipulating Files

For example, say you want to move the file table from the current direc-
tory named draft (whose full path name is /userl/starship/draft) to a file
with the same name in the directory letters (whose relative path name from
draft is ../letters and whose full path name is /userl/starship/letters), you
can use any one of several command lines, including the following;:

mv table /userl/starship/letters<CR>