
pro

INTERACTIVE UNIX* System V/386
Release 3.2
User's Guide

INTERACTIVE
• • • • • • • • • • • • • •

A Kodak Company

1

2

3

Table of Contents

Preface

Part 1: UNIX System Overview

What Is the UNIX System?
What the UNIX System Does
How the UNIX System Works

Basics for UNIX System .Users
Getting Started
The Terminal
Obtaining a Login Name
Establishing Contact with the UNIX System

Part 2: UNIX System Tutorials

Using the File System
Introduction
How the File System is Structured

xiii

1-1

1-3

2-1

2-2

2-13

2-14

2-22

3-1

3-2

TABLE OF CONTENTS

Table of Contents

4

5

Your Place in the File System
Organizing a Directory
Accessing and Manipulating Files
Printing Files

Overview of the Tutorials
Introduction
Text Editing
The Shell
Communicating Electronically
Programming in the System

Line Editor Tutorial (ed)
Introducing the Line Editor
Suggestions for Using this Tutorial
Getting Started
Exercise 1
General Format of ed Commands
Line Addressing
Exercise 2
Displaying Text in a File
Creating Text
Exercise 3
Deleting Text
Substituting Text
Exercise 4
Special Characters
Exercise 5
Moving Text
Exercise 6
Other Useful Commands and Information
Exercise 7
Answers to Exercises

ii USER'S GUIDE

3-4

3-1 5

3-30
3-72

4-1

4-2
4-7

4- 1 2

4-1 3

5-1
5-2
5-3

5-1 4
5-1 5
5-1 6
5-30
5-31
5-34
5-42
5-44
5-49
5-58
5-60
5-71
5-73
5-84
5-85
5-95
5-96

6

7

Screen Editor Tutorial (vi)
Introduction
Getting Started
Creating a File
Editing Text: the Command Mode
Quitting vi
Exercise 1
Moving the Cursor Around the Screen
Positioning the Cursor in Undisplayed Text
Exercise 2
Creating Text
Exercise 3
Deleting Text
Exercise 4
Modifying Text
Cutting And Pasting Text Electronically
Exercise 5
Special Commands
Using Line Editing Commands in vi

Quitting vi
Special Options For vi
Exercise 6
Answers To Exercises

Shell Tutorial
Introduction
Shell Command Language
Command Language Exercises
Shell Programming
Modifying Your Login Environment
Shell Programming Exercises
Answers To Exercises

Table of Contents

6-1

6-4

6-7

6-10

6-19

6-22

6-23

6-40

6-52

6-54

6-59

6-60

6-67

6-68

6-76

6-80

6-81

6-84

6-90

6-93

6-96

6-97

7-1

7-2

7-35

7-36

7-90

7-97

7-99

TABLE OF CONTENTS ill

Table of Contents

8

9

A

B

C-shell Tutorial
Introduction

Communication Tutorial
Introduction
Exchanging Messages
mail
mailx
mailx Overview
Command Line Options
How to Send Messages: the Tilde Escapes
How to Manage Incoming Mail
The .mailrc File
Transferring Files
Networking

Appendices, Glossary, Index

Summary of the File System
The UNIX System Files
UNIX System Directories

Summary of UNIX System
Commands

Basic UNIX System Commands

iv USER'S GUIDE

8-1

9-1

9-2

9-3

9-1 6

9-1 7

9-1 9

9-20
9-32
9-42
9-47
9-67

A-1

A-4

8-1

--

Table of Contents

c

D

E

F

Quick Reference to ed Commands
ed Quick Reference

Quick Reference to vi Commands
vi Quick Reference

Summary of Shell Command
Language

Summary of Shell Command Language

Setting upon the Terminal
Setting the TERM Variable
Example
Windowing

G Glossary

1 Index

C-1

D- 1

E-1

F-1
F-4
F-6

TABLE OF CONTENTS v

Figure 1-1:

Figure 1-2:

Figure 1-3:

Figure 1-4:

Figure 1-5:

Figure 2-1:

Figure 2-2:

Figure 2-3:

Figure 2-4:

Figure 2-5:

Figure 3-1:

Figure 3-2:

Figure 3-3:

Figure 3-4:

Figure 3-5:

Figure 3-6:

Figure 3-7:

List of Figures

Model of the UNIX System 1 -4

Functional View of the Kernel 1 -6

The Hierarchical Structure of the File System 1 -7

Example of a File System 1 -9

Execution of a UNIX System Command 1 -1 4

A Video Display Terminal and a Printing Terminal 2-2

Keyboard Layout of a Teletype 5410 Terminal 2-6

UNIX System Typing Conventions 2-7

Data Phone Set, Modem, and Acoustic Coupler 2-1 5

Troubleshooting Problems When Logging In* 2-22

A Sample File System 3-3

Directory of Home Directories 3-5

Summary of the pwd Command 3-7

Full Path Name of the juserljstarship Directory 3-9

Relative Path Name of the draft Directory 3-1 1

Relative Path Name from starship to outline 3-1 2

Example Path Names 3-1 3

LIST OF FIGURES vii

List of Figures

Figure 3-8: Summary of the mkdir Command

Figure 3-9: Description of Output Produced by the Is -I Com-
mand

Figure 3-10: Summary of the Is Command

Figure 3-11: Summary of the cd Command

Figure 3-12: Summary of the rmdir Command

Figure 3-13: Basic Commands for Using Files

Figure 3-14: Summary of the cat Command

Figure 3-15: Summary of the more Command

Figure 3-16: Summary of Commands to Use with pg

Figure 3-17: Summary of the pg Command

Figure 3-18: Summary of the cp Command

Figure 3-19: Summary of the copy Command

Figure 3-20: Summary of the mv Command

Figure 3-21: Summary of the rm Command

Figure 3-22: Summary of the we Command

Figure 3-23: Summary of the chmod Command

Figure 3-24: Summary of the diff Command

Figure 3-25: Summary of the grep Command

Figure 3-26: Summary of the sort Command

Figure 3-27: Summary of the pr Command

Figure 3-28: Print Commands and Their Functions

Figure 3-29: Summary of the Ip Command

viii USER'S GUIDE

3-1 6

3-23

3-24

3-27

3-29

3-31

3-35

3-38

3-39

3-42

3-45

3-49

3-52

3-53

3-56

3-63

3-66

3-68

3-71

3-75

3-76

3-91

Figure 4-1:

Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure 5-5:

Figure 5-6:

Figure 5-7:

Figure 5-8:

Figure 5-9:

Figure 6-1:

Figure 6-2:

Figure 6-3:

Figure 6-4:

Figure 6-5:

Figure 6-6:

Figure 6-7:

Figure 6-8:

Figure 6-9:

Figure 6-10:

Figure 6-11:

Figure 6-12:

List of Figures

Comparison of Line and Screen Editors (ed and vi) 4-6

Summary of ed Editor Commands 5-1 3

Summary of Line Addressing 5-29

Sample Addresses for Displaying Text 5-32

Summary of Commands for Displaying Text 5-33

Summary of Commands for Creating Text 5-41

Summary of Commands for Deleting Text 5-48

Summary of Special Characters 5-70

Summary of ed Commands for Moving Text 5-83

Summary of Other Useful Commands 5-94

Displaying a File with a vi Window 6-2

Summary of Commands for the vi Editor 6-21

Summary of vi Motion Commands (Sheet 1 of 4) 6-36

Summary of vi Motion Commands (Sheet 2 of 4) 6-37

Summary of vi Motion Commands (Sheet 3 of 4) 6-38

Summary of vi Motion Commands (Sheet 4 of 4) 6-39

Summary of Additional vi Motion Commands 6-51

Summary of vi Commands for Creating Text 6-58

Summary of Delete Commands 6-66

Summary of vi Commands for Changing Text 6-75

Summary of the Yank Command 6-77

Summary of vi Commands for Cutting and Pasting
Text 6-79

LIST OF FIGURES ix

List of Figures

Figure 6-13: Summary of Special Commands

Figure 6-14: Summary of Line Editor Commands

Figure 6-15: Summary of the Quit Commands

Figure 6-16: Summary of Special Options for vi

Figure 7-1: Characters with Special Meanings in the Shell
Language

Figure 7-2: Summary of Metacharacters

Figure 7-3: Summary of the spell Command

Figure 7-4: Summary of the cut Command

Figure 7-5: Summary of the date Command

Figure 7-6: Summary of the batch Command

Figure 7-7: Summary of the at Command

Figure 7-8: Summary of the ps Command

Figure 7-9: Summary of the kill Command

Figure 7-10: Summary of the nohup Command

Figure 7-11: Summary of the dl Shell Program

Figure 7-12: Summary of the bbday Command

Figure 7-13: Summary of the whoson Command

Figure 7-14: Summary of the get.num Shell Program

Figure 7-15: Summary of the show.param Shell Program

Figure 7-16: Summary of the mknum Shell Program

Figure 7-17: Summary of the num.please Shell Program

Figure 7-18: Summary of the t Shell Program

x USER'S GUIDE

6-83

6-89

6-92

6-95

7-3

7-9

7-1 8

7-22

7-24

7-27

7-30

7-32

7-33

7-34

7-40

7-44

7-45

7-47

7-50

7-55

7-55

7-57

List of Figures

Figure 7-19: Summary of the log.time Shell Program 7-59

Figure 7-20:

Figure 7-21:

Figure 7-22:

Figure 7-23:

Figure 7-24:

Figure 7-25:

Figure 7-26:

Figure 7-27:

Figure 7-28:

Figure 7-29:

Figure 7-30:

Figure 7-31:

Figure 7-32:

Figure 9-1:

Figure 9-2:

Figure 9-3:

Figure 9-4:

Figure 9-5:

Figure 9-6:

Figure 9-7:

Format of a Here Document 7-61

Summary of the gbday Command 7-62

Summary of the ch.text Command 7-64

Format of the for Loop Construct 7-66

Summary of mv.file Shell Program 7-69

Format of the while Loop Construct 7-70

Format of the if .•• then Conditional Construct 7-73

Format of the if ••. then ... else Conditional Construct 7-75

Summary of the search Shell Program 7-76

Summary of the mv.ex Shell Program 7-80

The case ••• esac Conditional Construct 7-81

Summary of the set.term Shell Program 7-84

Summary of the tail Command 7-92

Summary of Sending Messages with the mail Com-
mand 9-8

Summary of the uname Command 9-1 1

Summary of the uuname Command 9-1 1

Summary of Reading Messages wi th the mail Com-
mand 9-1 5

Sample .mailrc File 9-43

Summary of the uucp Command 9-57

Summary of the uuto Command 9-62

LIST OF FIGURES xi

List of Figures

Figure 9-8: Summary of the uustat Command 9-63

Figure 9-9: Summary of the uupick Command 9-66

Figure 9-10: Summary of the ct Command 9-69

Figure 9-11: Command Strings for Use with cu (Sheet 1 of 2) 9-72

Figure 9-12: Command Strings for Use with cu (Sheet 2 of 2) 9-73

Figure 9-13: Summary of the cu Command 9-75

Figure 9-14: Summary of the uux Command 9-77

Figure A-1: Directory Tree from root A-2

xii USER'S GUIDE

Preface

The material in this guide is organized into two major parts: an overview
of the UNIX Operating System and a set of tutorials on the main tools avai l
able on the UNIX System. A brief description of each part fol lows. The last
section of this Preface, " Notational Conventions, " describes the typographical
notation with which all the chapters of this Guide conform. You may want to
refer back to this section from time to time as you read the Guide.

System Overview

This part consists of Chapters 1-3, which introduce you to the basic prin
ciples of the UNIX Operating System. Each chapter builds on information
presented in preceding chapters, so it is important to read them in sequence.

• Chapter 1 , " What is the UNIX System? " , provides an overview of the
operating system.

• Chapter 2, " Basics for UNIX System Users, " discusses the general
rules and guidelines for using the UNIX System. It covers topics
related to using your terminal, obtaining a system account, and estab
l ishing contact with the UNIX System .

• Chapter 3, " Using the File System, " offers a working perspective of
the file system. I t introduces commands for building your own direc
tory structure, accessing and manipulating the subdirectories and files
you organize within it, and examining the contents of other directories
in the system for which you have access permission.

UNIX System Tutorials

The second part of the Guide consists of tutorials on the following topics:
the ed text edi tor, the vi text editor, the shel l command l anguage and pro
gramming language, and electronic communication tools. ror a thorough
understanding of the material , we recommend that you work through the
examples and exercises as you read each tutorial. The tutorials assume you
understand the concepts introduced in Chapters 1-3.

PREFACE xiii

Preface

• Chapter 4, " Overview of the Tutorials, " introduces the four chapters
of tutorials in the second half of the Guide. It highlights UNIX System
capabilities such as command execution, text editing, electronic com
munication, programming, and aids to software development.

• Chapter 5, " Line Editor Tutorial (ed)," teaches you to how to use the
ed text editor to create and modify text on a video display terminal or
paper printing terminal.

• Chapter 6, " Screen Editor Tutorial (vi), " teaches you how to use the
visual text editor, vi, to create and modify text on a video display ter
minal.

vi, the visual editor, is based on software developed by The University of
California, Berkeley, California; Computer Science Division, Department of
Electrical Engineering and Computer Science, and such software is owned
and l icensed by the Regents of the University of California.

• Chapter 7, " Shell Tutorial, " teaches you how to use the shell, both as
a command interpreter and as a programming language, to create shell
programs.

• Chapter 8, " C-Shell Tutorial (csh), " teaches you how to use the C
shell, both as a command interpreter and as a programming language,
to create shell programs.

• Chapter 9, " Communication Tutorial," teaches you how to send mes
sages and files to users of both your UNIX System and other UNIX
Systems.

xiv USER'S GUIDE

Preface

Reference Information

Six appendices and a glossary of UNIX System terms are also provided for
reference.

• Appendix A, "Summary of the File System," illustrates how the
UNIX System stores information.

• Appendix B, "Summary of UNIX System Commands," alphabetically
lists and describes each UNIX System command discussed in the Guide.

• Appendix C, "Quick Reference to ed Commands," is a quick refer
ence for the line editor, ed. (For details, see Chapter 5, "Line Editor
Tutorial (ed). ") The commands are organized by topic, as covered in
Chapter 5 .

• Appendix D, "Quick Reference to vi Commands," is a reference for
the full screen editor, vi, discussed in Chapter 6, "Screen Editor
Tutorial (vi). " Commands are organized by topic, as covered in
Chapter 6.

• Appendix E, "Summary of Shell Command Language," is a summary
of the shell command language, notation, and programming constructs,
as discussed in Chapter 7, "Shell Tutorial."

• Appendix F, "Setting Up the Terminal," explains how to configure
your terminal for use with the UNIX System and create multiple win
dows on the screens of terminals with windowing capability.

• The Glossary defines terms pertaining to the UNIX System used in this
book.

PREFACE xv

Notational Conventions

The following notational conventions are used throughout this Guide:

bold

italic

oonstant width

<>

<·char>

[I

xvi USER'S GUIDE

User input, such as commands, options to com
mands, and names of directories and files, appear
in bold.

Names of variables to which values must be
assigned (such as filename) appear in italic.

UNIX System output, such as prompt signs and
responses to commands, appear in oanstant
width.

Input that does not appear on the screen when
typed, such as passwords, keys used as com
mands, or <RETURN> and other special keys,
appear between angle brackets.

Control characters are shown between angle
brackets because they do not appear on the screen
when typed. The circumflex () represents the
control key (usually labeled CTRL). To type a
control character, hold down the control key
while you type the character specified by char.
For example, the notation < • d> means to hold
down the control key while pressing the D key;
the letter D will not appear on the screen.

Command options and arguments that are
optional, such as [-msCj], are enclosed in square
brackets.

The vertical bar separates optional arguments
from which you may choose one. For example,
when a command line has the format

command [arg1 I arg2J

you may use either arg1 or arg2 when you issue
command.

t

command(number)

Notational Conventions

An ellipsis after an argument means that more
than one argument may be used on a single com
mand line.

Arrows on the screen (shown in examples in
Chapter 6) represent the cursor.

A command name followed by a number in
parentheses refers to the part of a UNIX System
reference manual that documents that command.
(There are two reference manuals: the
User'sjSystem Administrator's Reference Manual
and the Programmer's Reference Manual.) For
example, the notation cat(l) refers to the page in
section 1 of the User'sjSystem Administrator's
Reference Manual that documents the cat com
mand.

In sample commands, the dollar sign ($) is used as the shell command
prompt. This is not true for all systems. Whichever symbol your system uses,
keep in mind that prompts are produced by the system; although a prompt is
sometimes shown at the beginning of a command line as it would appear on
your screen, you are not meant to type it. (The $ sign is also used to refer
ence the value of positional parameters and named variables; see Chapter 7
for details.)

In all chapters, full and partial screens are used to display examples of
how your terminal screen will look when you interact with the UNIX System.
These examples show how to use the UNIX System editors, write short pro
grams, and execute commands. The input (characters typed by you) and out
put (characters printed by the UNIX System) are shown in these screens in
accordance with the conventions listed above. All examples apply regardless
of the type of terminal you use.

PREFACE xvll

Notational Conventions

The commands discussed in each section of a chapter arc reviewt'd at tlw
end of that section. A summary of vi commands is found in Appendix D,
where they are listed by topic. At the end of some sections, exercises are also
provided so you can experiment with the commands. The answers to all the
exercises in a chapter are at the end of that chapter.

xviii

The text in the User's Guide was prepared with the U NIX System text editors
described in the Guide and formatted with the DOCUMENTER'S WORK
BENCH Software: troff, tbl, pic, and mm macros.

USER'S GUIDE

1 What Is the UNIX System?

What the UNIX System Does

How the UNIX System Works
The Kernel
The File System

• Ordinary Files

• Directories
• Special Files

The Shell
Commands

• What Commands Do
• How to Execute Commands

• How Commands Are Executed

1 -1

1 -3

1 -5
1 -7

1 -7
1 -8
1 -8

1 -1 0
1 - 1 1
1 -1 1
1 -1 2
1 -1 4

WHAT I S THE UNIX SYSTEM?

What the UNIX System Does

The UNIX Operating System is a set of programs (or software) that con
trols the computer, acts as the link between you and the computer, and pro
vides tools to help you do your work. It is designed to provide an uncompli
cated, efficient, and flexible computing environment. Specifically, the UNIX
Systt'm offt•rs the following advantages:

• a general purpose system for performing a wide variety of jobs or
applications

• an interactive environment that allows you to communicate directly
with the computer and receive immediate responses to your requests
and messages

• a multi-user environment that allows you to share the computer's
resources with other users without sacrificing productivity

This technique is called timesharing. The UNIX System interacts
between users on a rotating basis so quickly that it appears to be
interacting with all users simultaneously.

• a multi-tasking environment that enables you to execute more than
one program simultaneously .

The organization of the UNIX System is based on four major components :

the kernel

the file system

the shell

The kernel is a program that constitutes the nucleus of
the operating system; it coordinates the functioning of
the computer's internals (such as allocating system
resources). The kernel works invisibly; you need
never be aware of it while doing your work.

The file system provides a method of handling data
that makes it easy to store and access information .

The shell is a program that serves as the command
interpreter. It acts as a liaison between you and the
kernel, interpreting and executing your commands.
Because it reads input from you and sends you mes
sages, it is described as interactive.

WHAT IS THE UNIX SYSTEM? 1 - 1

What the UNIX System Does

commands

1·2 USER'S GUIDE

Commands are the names of programs that you
request the computer to execute. Packages of pro
grams are called tools. The UNIX System provides
tools for jobs such as creating and changing text, writ
ing programs and developing software tools, and
exchanging information with others via the computer.

How the UNIX System Works

Figure 1 - 1 is a model of the UNIX System. Each circle represents one of
the major components of the UNIX System: the kernel, the shell, and user
programs or commands. The arrows suggest the shell's role as the medium
through which you and the kernel communicate. The remainder of this
chapter describes each of these components, along with another component of
the UNIX System, the file system.

WHAT IS THE UNIX SYSTEM? 1 -3

How the UNIX System Works

Additional
Utility

Programs

Programming
Environment

Figure 1 -1 : Model of the UNIX System

1 -4 USER'S GUIDE

Text
Processing

Information
Management

How the UNIX System Works

The Kernel

The nucleus of the UNIX System is called the kernel. The kernel controls
access to the computer, manages the computer's memory, maintains the file
system, and allocates the computer's resources among users. Figure 1-2 is a
functional view of the kernel .

WHAT IS THE UNIX SYSTEM? 1 ·5

How the UNIX System Works

Manages
memory

Kernel

Allocates
system

resources

Controls
access to
computer

Figure 1-2: Functional View of the Kernel

1 ·6 USER'S GUIDE

Maintains
file systems

How the UNIX System Works

The File System

The file system is the cornerstone of the UNIX Opera ting System. It pro
vides a logica l method of organizing, retrieving, and managing information .
The structure of the file system is hierarchical; if you could see it, it might
look like an organiza tion chart or an inverted tree (Figure 1-3).

0 = Directories

D = Ordinary Files

'\] = Special Files

Figure 1-3: The Hierarchical Structure of the File System

The file is thl' basic unit of the UNIX System. and it can be any one of
thrt•e types: an ordinary file, a directory, or a spec ial file. (See Chapter 3,

11 Using the File System . 11)

Ordinary Files

An ordinary fi le is a collection of characters that is treated as a unit by the
system . Ordi nary files are used to store any informa tion you want to save.
They may contain text for letters or reports, code for the programs you write,
or commands to ru n your programs. Once you have crea ted a file, you can

WHAT IS THE UNIX SYSTEM? 1 -7

How the UNIX System Works

add m.Jtl•rial to it, delete matenal from it, or remove it entirely when it is no
longPr needed.

Directories

A directory is a super-fi le that contains a group of related files. For exam
ple, a directory called sales may hold files containing monthly sales figures
called jan, feb, mar, and so on . You can create directories, add or remove
fi les from them, or remove directories themselves at any time.

Your home directory is a directory assigned to you by the system when
you receive a recognized login. You have control over this directory; no one
else can read or write files in it without your explicit permission, and you
determine its structure.

The UNIX System also maintains several directories for i ts own use. The
structure of these d irectories is much the same on all UNIX Systems. These
directories, which include junix (the kernel) and several important system
directories, are located directly under the root directory in the file hierarchy.
The root directory (designated by /) is the source of the UNIX file structure;
all directories and files are arranged hierarchically under it.

Special Files

Special files constitute the most unusual feature of the file system. A spe
cia l . file represents a physical device such as a terminal, disk drive, magnetic
tape drive, or communication link. The system reads and writes to special
files in the same way it does to ordinary files. However, the system's read
and write requests do not activate the normal file access mechanism; instead,
they activate the device handler associated with the file.

Some operating systems require you to define the type of file you have
and to use it in a specified way. In those cases, you must consider how the
fi les are stored since they might be sequential, random-access, or binary files.
To the UNIX System, however, all files are alike. This makes the UNIX Sys
tem fi le structure easy to use . For example, you need not specify memory
r<'quirt.>ments for your files since the system automatically does this for you.
Or i f you or a program you write needs to access a certain device, such as a
printer, you speci fy the device just as you would another one of your files. In
the UNIX System, there is only one interface for all input from you and out
put to you; this simplifies your interaction with the system.

1 ·8 USER'S GUIDE

How the UNIX System Works

Figure 1-4 shows an example of a typical file system. Notict.' that thl' root
directory contains the kernel (/unix) and several important system directories.

Q = Directories

0 = Ordinary Files

\J = Special Files

Figure 1-4: Example of a File System

fbin

fdev

fete

/lib

ftmp

fusr

contains many executable programs and utilities

contains special files that represent peripheral devices such as
the console, the line printer, user terminals, and disks

contains programs and data files for system administration

contains libraries for programs and languages

contains temporary files that can be created by any user

contains other directories, including mail, which contain files
for storing electronic mail, and news, which contains files for
storing newsworthy items.

WHAT IS THE UNIX SYSTEM? t-9

How the UNIX System Works

In summary, the directories and files you create comprise the portion of
the file system that you control . Other parts of the file system are provided
and maintained by the operating system, such as jbin, jdev, jete, flib, jtmp
and jusr, and have much the same structure on all UNIX Systems.

You will learn more about the file system in other chapters . Chapter 3
shows how to organize a file system directory structure, and access and mani
pulate files. Chapter 4 gives an overview of UNIX System capabilities. The
effective use of these capabilities depends on your familiarity with the file sys
tem and your ability to access information stored within it. Chapters 5 and 6
are tutorials designed to teach you how to create and edit files.

The Shell

The shell is a unique command interpreter that allows you to communi
cate with the operating system. The shell reads the commands you enter and
interprets them as requests to execute other programs, access files, or provide
output. The shell is also a powerful programming language, not unlike the C
programming language, that provides conditional execution and control flow
features. The model of a UNIX System in Figure 1 - 1 shows the two-way flow
of communication between you and the computer via the shell .

In addition, this version of UNIX supports the C-shell, a command inter
preter with a C-like syntax. Like the standard shell, the C-shell is .an interface
between you and the UNIX commands and programs.

Chapter 4 describes the shell's capabilities. Chapter 7 is a tutorial that
teaches you to write simple shell programs called shell scripts and custom
tailor your environment. Chapter 8 describes the C-shell and provides exam
ples for customizing your C-shell environment, as well as writing C-shell
scripts.

1 -10 USER'S GUIDE

How the UNIX System Works

Commands

A program is a set of instructions to the computer. Programs that can be
executed by the computer without need for translation are called execu table
programs or commands. As a typical user of the UNIX System, you have
many standard programs and tools ava ilable to you . If you use the UNIX Sys
tem to write programs and develop software, you can a lso draw on system
calls, subroutines, and other tools. Of course, any programs you write your
self will be at your disposal, too.

This book in troduces you to many of the UNIX System programs and
tools that you will use on a regular basis . If you need additional information
on these or other standard programs, refer to the User'sjSystem Administrator's
Reference Manual. For information on tools and rout ines rela ted to program
ming and software development, consul t the Programmer's Rcfcrozcc Manual.
The Documentation Roadmap describes and explains how to order all UNIX
System documents from AT&T.

What Commands Do

The outer circle of the UN IX System model in Figure 1-1 organizes the
system programs and tools into functional ca tegories . These functions include

text processing

information management

electronic communication

software development

The system provides programs such as
l ine and screen edi tors for creating and
changing text, a spel l ing checker for locat
ing spell ing errors, and optional text for
matters for producing high-quality paper
copies that are sui table for publication.

The system provides many programs that
allow you to create, organize, and remove
files and directories.

Several programs, such as mail, enable
you to transmit in formation to other users
and to other UNIX Systems.

Several UNIX System programs establi sh
a friendly programming environment by

WHAT IS THE UNIX SYSTEM? 1·11

How the UNIX System Works

.1dditional utilities

provid ing UNIX-to-programming-language
in terfaces and by supplying numerous
u til i ty programs.

Tlw systt>m also offprs capabili ties for gen
erating graphics and performing cakula
tions.

How to Execute Commands

To make your requests comprehensible to the UNIX System, you must
prt>sent each command in the correct format, or command line syntax . This
syntax defines the order in which you enter the components of a command
lint>. Just as you must put the subject of a sentence before the verb in an
English scntt'nce, s o must you put the parts of a command l ine in the order
n'quin'd by the command line syntax. Otherwise, the UNIX System shell will
not bt• a ble to intcrprl't your request . Hen· is an example of the syntax of a
UNIX Systt>m command line:

((111//1/alld opt io11(s) 111',1!.!1111('1//(S)< CR>

On every UNIX System command line, you must type at !east two com
ponents: a command name and the <RETURN> key . (The notation <CR> is
used as an instruction to press the <RETURN> key throughout this Guide.) A
command line may also contain ei ther options or arguments, or both. What
are commands, options, and arguments?

• A command is the name of the program you want to run .

• An optio11 modifies how the command runs.
• An argument specifies data on which the command is to operate (usu

ally the name of a directory or file) .

In command l ines that include options andjor arguments, the component
words are separated by at least one blank space. (You can insert a blank by
pressing the space bar.) If an argument name contains a blank, enclose that
name in double quotation marks. For example, if you want the argument to
your command to be sample 1, you must type it as "sample 1 ". I f you for
get th1.' double quotation marks, the shell will in terpret sample and 1 as two
separate arguments.

1-1 2 USER'S GUIDE

How the UNIX System Works

Some commands allow you to specify multiple options andjo r arguments
on a command line. Consider the following command line:

command

opt ion�

!
A�
we -1 -w t � '

file1 file2 file3

In this example, we is the name of the command and -1 and -w
are two options that have been specified . (The UNIX System usually
allows you to group options such as these to read -lw if you prefer.)
In addition, three files (file1, file2, and file3) are specified as argu
ments. Although most options can be grouped together, arguments
cannot.

The fol lowing examples show the proper sequence and spacing in
command line syntax:

Incorrect

wefiJ.o
we-lfi/c

we -l w file

we file1file2

CorrPct

we file-
we -1 Jilt•
we -lw file

or
we -1 -w file

we file1 file2

Remember, regardless of the number of components, you must
end every command l ine by pressing the <RETURN> key.

WHAT IS THE UNIX SYSTEM? 1·13

How the UNIX System Works

How Commands Are Executed

Figure 1-5 shows the flow of control when the UNIX System executes a
command.

YOU I�
I�I·(.)ULSI

PROGRAM
EXECUTION

DIRECTORY
SEARCH

Figure 1-5: Execution of a UNIX System Command

To execute a command, enter a command line when a prompt (such as a
$ sign) appears on your screen. The shell considers your command as input,
searches through one or more directories to retrieve the program you speci
fied, and conveys your request, along with the program requested, to the ker
nel . The kernel then fol lows the instructions in the program and executes the
command you requested . After the program has finished running, the shell
signals that it is ready for your next command by printing another prompt.

This chapter has described some basic principles of the UNIX Operating
System. The fol lowing chapters will help you apply these principles accord
ing to your computing needs.

1-14 USER'S GUIDE

2 Basics for UNIX System Users

Getting Started

The Terminal
Required Terminal Settings
Keyboard Characteristics
Typing Conventions

• The Command Prompt

• Correcting Typing Errors
• Using Special Characters as Literal Characters
• Typing Speed
11 Stopping a Command
• Using Control Characters

Obtaining a Login Name

Establishing Contact with the
UNIX System
Login Procedure
Password
Possible Problems when Logging In

Simple Commands
Logging Off

2-1

2-2

2-3

2-4

2-6

2-7

2-8

2-1 0

2-1 0

2-1 1

2-1 1

2-1 3

2-1 4

2-1 6

2-1 6

2-20

2-22

2-23

2-24

BASICS FOR UNIX SYSTEM USERS

Getting Started

This chapter acquaints you with the general rules and guidl'lines for work
ing on the UNIX System. Specifical ly, it lists the required terminal settings
and explains how to use the keyboard, obtain a login, log on to Jnd off of tlw

system, and enter simple commands.

To establish contact with the UNIX System, you need

• a terminal

• a login name (a name by which the UNIX System identifit•s you as one
of i ts authorized users)

• a password that verifies your identity

• instructions for dialing in and accessing the UNIX System if your ter
minal is not directly connected or hard-wired to the computer

BASICS FOR UNIX SYSTEM USERS 2-1

The Terminal

A terminal is an input/output device: you use it to enter requests to the
UNIX System, and the system uses it to send its responses to you. There are
two basic types of terminals: video display terminals and printing terminals
(see Figure 2-1).

Figure 2-1: A Video Display Terminal and a Printing Terminal

Teletype
Model 43

The video display terminal shows input and output on a display screen; the
printing terminal, on continuously fed paper. In most respects, this difference
has no effect on the user's actions or the system's responses. Instructions
throughout this book that refer to the terminal screen apply in the same way
to the paper in a printing terminal, unless otherwise noted.

2-2 USER'S GUIDE

The Terminal

Required Terminal Settings

Regard less of the type of terminal you usc, you must configure it properly
to communicate with the UNIX System. I f you have not set terminal options
lwfore, you might feel more comfortable seeking help from someone who has.

How you configure a terminal depends on the type of terminal you are
using . Some terminals are configured with switches; others are configured
directly from the keyboard by using a set of function keys. To determine how
to con figure your terminal, consult the owner's manual provided by the
manu facturer.

The fol lowing is a list of configuration checks you should perform on any
tt>rminal before trying to log in on the UNIX System :

I . Turn on the power.

2. Set the terminal to ON-LINE or REMOTE operation. This setting
ensures the terminal is under the direct control of the computer.

3. Set the terminal to FULL DU PLEX mode. This mode ensures two
way communication (input/output) between you and the UNIX Sys
tem.

4. If your terminal is not d irectly connected or hard-wired to the com
puter, make sure the acoustic coupler or data phone set you are using
is set to the FULL DUPLEX mode.

5. Set character generation to LOWERCASE. If your terminal generates
only uppercase letters, the UNIX System will accommodate it by
printing everything in uppercase letters.

h. Set tlw lt>rminal to NO PAIUI'Y.

7. St-t the baud ra te. This is the spet>d at which the computl'r communi
cates with the terminal, measured in characters per second . (For
example, a terminal set at a baud rate of 4800 sends and receives
480 characters per second.) Depending on the computer and the ter
minal, baud rates between 300 and 1 9200 are available. Some com
puters may be capable of processing characters at higher speeds.

BASICS FOR UNIX SYSTEM USERS 2·3

The Terminal

Keyboard Characteristics

There is no standard layout for terminal keyboards. However, all terminal
keyboards share a standard set of 128 characters called the ASCI I character
set. (ASCII is an acronym for American Standard Code for Information Inter
change.) While the keys are labeled with characters that are meaningful to
you (such as the let ters of the alphabet), each one is also associated with an
ASCII code that is meaningful to the computer.

The keyboard layout on a typical ASCII terminal is basically the same as a
typewriter's, with a few additional keys for functions such as interrupting
tasks. Figure 2-2 shows an example of a keyboard on an ASCI I terminal .

2-4 USER'S GUIDE

The Terminal

Figure 2-2: Keyboard Layout of a Teletype 5410 Terminal

BASICS FOR UNIX SYSTEM USERS 2-5

The Terminal

The keys correspond to the following:

• the letters of the English alphabet (both uppercase and lowercase)

• the numerals (0 through 9)

• a variety of symbols (including ! @ # $ % • & () _ - + = - ' { } []
\ : ; " ' < > ' ? /)

• specially defined words (such as <RETURN> and <BREAK>) and
abbreviations (such as for delete, <CTRL> for control, and
<ESC> for escape)

While terminal and typewriter keyboards both have alphanumeric keys,
terminal keyboards also have keys designed for use with a computer. These
keys are labeled with characters or symbols that remind the user of their func
tions. However, their placement may vary from terminal to terminal because
there is no standard keyboard layout.

Typing Conventions

To interact effectively with the UNIX System, you should be familiar with
its typing conventions. The UNIX System requires that you enter commands
in lowercase letters (unless the command includes an uppercase letter). Other
conventions enable you to perform tasks, such as erasing letters or deleting
lines, simply by pressing one key or entering a specific combination of charac
ters. Characters associated wi th tasks in this way are known as special char
acters. Figure 2-3 lists the conventions based on special characters. Detailed
explanations of them are provided on the next few pages.

2-6 USER'S GUIDE

•

t

Key(s)

$
#*

@
<BREAK>

<ESC>

<CR>

.
< S>

< q>

The Terminal

Meaning

System's command prompt (your cue to issue a command).

Erases a character.

Erases or ki l ls an entire l ine.

Stops execution of a program or command.

Deletes or kills the current command line.

When used with another character, performs a speci fic function
(called an escape sequence).

When used in an edi ting session with the vi editor, ends the tl•xt
input mode and returns you to the command mode.

Press the <RETURN> key. This ends a line of typi ng and puts
the cursor on a new line.

Stops input to the system or logs off.

Backspaces for terminals without a backspace key.

Tabs horizontally for terminals without a tab key .

Temporarily stops output from printing on the screen.

Makes the output resume printing on the screen after it has been
stopped by the <

.
s> command .

Nonprinting characters are shown in angle brackets (< >).

Characters preceded by a circumflex () are ca lled control characters and are pronounced
control-lciii'T. To type a control character, hold down the <CTRL> key and press tht•
specified letter.

Figure 2-3 : UNIX System Typing Conventions

The Command Prompt

The standard UNIX System command prompt is the dollar sign ($). When
the prompt appears on your terminal screen, the UNIX System is waiting for
instructions from you. The appropriate response to the prompt is to issue a
command and press the RETURN key.

BASICS FOR UNIX SYSTEM USERS 2·7

The Terminal

The $ sign is the default value for the command prompt. Chapter 7
explains how to change it if you would prefer another character or character
string as your command prompt.

Correcting Typing Errors

There are two keys you can use to delete text so that you can correct typ
ing errors. The @ (at) sign key kills the current line and the # (pound) sign
key erases the last character typed. These keys are available by default to per
form these functions . However, if you want to use other keys, you can reas
sign the erase and kill functions. (For instructions, see " Reassigning the
Delete Functions " later in this section and " Setting Terminal Options " in
Chapter 7.)

Deleting the Current Line: the @ Sign

The @ sign key kills the current line. When you press it, an @ sign is
added to the end of the line, and the cursor moves to the next line. The line
containing the error is not erased from the screen but is ignored.

The @ sign key works only on the current line; be sure to press it before
you press the RETURN key if you want to kill a line. In the following exam
ple, a misspelled command is typed on a command line, and the command is
cancelled with the @ sign:

whooo@
who<CR>

Deleting the Last Characters Typed: the # Sign Key

The # sign key deletes the character(s) last typed on the current line.
When you type a # sign, the cursor backs up over the last character and lets
you retype it, thus effectively erasing it. This is an easy way to correct a typ
ing error.

You can delete as many characters as you like as long as you type a
corresponding number of # signs. For example, in the following command
line, two characters are deleted by typing two # signs:

dattw##e<CR>

The UNIX System interprets this as the date command, typed correctly .

2-8 USER'S GUIDE

The Terminal

The BACKSPACE Key

Many people prefer to use the BACKSPACE key for the erase function
instead of the # sign key . When you press the BACKSPACE key, the cursor
backs up over your errors, erasing them as it goes. I t does not print anyth ing,
unlike the # sign key, which prints a # sign on your screen between an error
and a correction . When you have finished correcting an error with the BACK
SPACE key, the l ine of text on the screen looks as though it was typed per
fectly .

The # sign and BACKSPACE keys are equal ly effective at deleting charac
ters, but using the BACKSPACE key gives you better visual information about
what you are doing.

Some terminals may not recogn ize the # sign key as a delete character.

Reassigning the Delete Functions

As stated earl ier, you can change the keys that kill lines and erase charac
ters . I f you want to change these keys for a single working session, you can
issue a command to the shell to reassign them; the delete functions wil l revert
to the default keys (# and @) as soon as you log off. I f you want to use other
keys regularly, you must specify the reassignment in a file called .profile.
Instructions for making both temporary and permanent key reassignments,
along with a description of the .profile, are given in Chapter 7.

There are three points to keep in mind if you reassign the delete functions
to non-default keys. First, the UNIX System allows only one key at a t ime to
perform a delete function . When you reassign a function to a non-defaul t key,
you also take that function away from the default key. For example, i f you
reassign the erase function from the # sign key to the BACKSPACE key, you
will no longer be able to use the # sign key to erase characters .

Secondly, such reassignments are inherited by any other UNIX System
program that allows you to perform the function you have reassigned . For
example, the interactive text editor called ed (described in Chapter 5) allows
you to delete text with the same key you use to correct errors on a shell com
mand line (as described in this section). Therefore, if you reassign the erase
function to the BACKSPACE key, you will have to use the BACKSPACE key
to erase characters while working in the ed editor, as well . The # sign key
will no longer work.

BASICS FOR UNIX SYSTEM USERS 2-9

The Terminal

Finally, keep in mind that any reassignments you have specified in your
.profile do not become effective until a fter you log in. Therefore, i f you make
an error while typing your login name or password, you must use the # sign
key to correct i t .

Whichever keys you use, remember that they work only on the current
l ine. Be sure to correct your errors before pressing the RETURN key at the
end of a line.

Using Special Characters as Literal Characters

What happens if you want to use a special character with l i teral meaning
as a unit of text? Since the UNIX System's default behavior is to interpret
special characters as commands, you must tell the system to ignore or escape
from a character's special meaning whenever you want to use it as a l i teral
character. The backslash (\) enables you to do this. Type a \ before any spe
cial character that you want to have treated as it appears. By doing this you
essentially tell the system to ignore this character's special meaning and treat
it as a l i teral unit of text .

For example, suppose you want to add the following sentence to a fi le:

Only one # appears on this sheet of music.

To prevent the UNIX System from interpreting the # sign as a request to
delete a character, enter a \ in front of the # sign . I f you do not, the system
will erase the space after the word one and print your sentence as follows:

Only one appears on this sheet of =ic .

To avoid this, type your sentence as follows:

Only one \# appears on this sheet of music.

Typing Speed

After the prompt appears on your terminal screen, you can type as fast as
you want, even when the UNIX System is executing a command or respond
ing to one. Since your input and the system's output appear on the screen
simultaneously, the printout on your screen will appear garbled. However,
while this may be inconvenient for you, it does not interfere with the UNIX
System's work because the UNIX System has read-ahead capability. This
capability allows the system to handle input and output separately. The sys
tem takes and stores input (your next request) while i t sends output (i ts
response to your last request) to the screen.

2-10 USER'S GUIDE

The Terminal

Stopping a Command

If you want to stop t lw extocu t i on of a com mand, s im pl y pn•ss tlw 13REAK
or DELETE key. The UNIX System wi l l stop the program aPd pri n t a prompt
on the screl•n . This is i ts signal that it has stopped the last com mand from
runn ing and is ready for your next command .

Using Control Characters

Locate the control key on your terminal keyboard . It may be labeled
CONTROL or CTRL and is probably to the left of the A key or below the
Z key. The control key is used in combination with other characters to per
form physical control ling actions on lines of typing. Commands entered i n
this way are called control characters . Some control characters perform mun
dane tasks such as backspacing and tabbing. Others define commands that
are specific to the UNIX System. For example, CONTROL-s temporari ly halts
ou tpu t that is being printed on a terminal screen .

To type a control character, hold down the control key and press the
appropriate alphabetic key . Most control characters do not appear on the
screen when typed and therefore are shown between angle brackets (see
" Nota tional Conventions " in the Preface) . The con trol key is represented by
a circumflex () before the letter. Thus, for example, < · s> designates the
CONTROL-s character.

The two functions for which control characters are most often used are to
control the printing of output on the screen and to log off the system. To
prevent information from rolling off the screen on a video display terminal,
type < · s>; the printing will stop. When you are ready to read more output,
type <

. q> and the printing will resume.

To Jog off the UNIX System, type <
-d> .

BASICS FOR UNIX SYSTEM USERS 2- 1 1

The Terminal

In addition, the UNIX System uses control characters to provide capabili
ties that some terminals fail to make available through function-specific keys.
If your keyboard does not have a BACKSPACE key, you can use the <.h>
key instead. You can also set tabs without a TAB key by typing <.i> if your
terminal is set properly. (Refer to the section entitled " Possible Problems
When Logging In " for information on how to set the TAB key.)

Now that you have configured the terminal and inspected the keyboard,
one step remains before you can establish communication with the UNIX Sys
tem: you must obtain a login name.

2·1 2 USER'S GUIDE

Obtaining a Login Name

A login name is the name by which the UNIX System verifies that you are
an authorized user of the system when you request access to it. It is so cal led
because you must enter it every time you want to log in. (The expression log
ging in is derived from the fact that the system maintains a l og for each user,
in which it records the type and amount of system resources being used .)

To obtain a login name, set up a UNIX System account through your sys
tem administrator. There are few rules governing your choice of a login
name. Typically, it is three to eight characters long. It can contain any com
bination of lowercase alphanumeric characters, as long as it starts with a letter.
It cannot contain any symbols.

However, your login name will probably be determ ined by local practices.
The users of your system may all use their initials, last names, or nicknames
as their login names. Here are a few examples of legal login names: starship,
mary2, and jmrs.

BASICS FOR UNIX SYSTEM USERS 2-1 3

Establishing Contact with the UNIX Sys
tem

Typically, you will be using either a terminal that is wired directly to a
computer or a terminal that communicates with a computer over a telephone
l ine.

This section describes a typical procedure for logging in, but it may not
apply to your system. There are many ways to log in on a UNIX System
over a telephone line. Security precautions on your system may require that
you use a special telephone number or other security code. For instructions
on logging in on your UNIX System from outside your computer installation
site, see your system administrator.

Turn on your terminal . If it is directly connected, the login: prompt will
immediately appear in the upper left-hand corner of the screen.

I f you are going to communicate with the computer over a telephone line,
you must now establish a connection. The following procedure is an example
of a method you might use to do this. (For the procedure required by your
system, see your system administrator.)

1 . Dial the telephone number that connects you to the UNIX System.
You will hear one of the fol lowing:

0 A busy signal . This means that either the circuits are busy or the
line is in use. Hang up and dial again.

0 Continuous ringing and no answer. This usual ly means that
there is trouble with the telephone line or that the system is inop
erable because of mechanical failure or electronic problems. Hang
up and dial again later.

0 A high-pitched tone. This means that the system is accessible.

2 . When you hear the high-pitched tone, place the handset o f the phone
in the acoustic coupler or momentarily press the appropriate button on
the data phone set (see the owner's manual for the appropriate equip
ment) . Then replace the handset in the cradle (see Figure 2-4).

3 . After a few seconds, the login: prompt will appear in the upper left
hand comer of the screen.

2·1 4 USER'S GUIDE

Establishing Contact with the UNIX System

4 . A series of meaningless characters may appear on your screen. This
means that the telephone number you called serves more than one
baud rate; the UNIX System is trying to communicate with your ter
minal, but is using the wrong speed. Press the BREAK or RETURN
key; this signals the system to try another speed. I f the UNIX System
does not display the login : prompt within a few seconds, press the
BREAK or RETURN key again .

AT&T Dataphone I I
Modem

AT&T Data Phone
Set 212A

Figure 2-4: Data Phone Set, Modem, and Acoustic Coupler

AT&T Acoust ic
Coupler

BASICS FOR UNIX SYSTEM USERS 2· 1 5

Establishing Contact with the UNIX System

Login Procedure

When the login: prompt appears, type your login name and press the
R ETURN key . For example, if your login name is starship, your login line
will look like the following:

login : starship<CR>

Remember to type in lowercase letters. If you use uppercase from the time
you log in, the UNIX System will expect and respond in uppercase
exclusively until the next time you log in. It will accept and run many com
mands typed in uppercase but will not allow you to edit files.

Password

Next, the system prompts you for your password. Type your password
and press the RETURN key. For security reasons, the UNIX System does not
print (or echo) your password on the screen.

2-1 6 USER'S GUIDE

Establishing Contact with the UNIX System

If both your login name and password are acceptable to the U N IX Systt'm,
the system may print the message of the day andjor current news items and
then the default command prompt ($). (The message of the day might include
a schedule for system maintenance, and news items might include an
announcement of a new system tool .) When you have logged in, your screen
wiii look similar to the following:

login: starship<CR>
pasS>Ord :

UNIX System news
$

I f you make a typing mistake when logging in, the UNIX System prints
the message login incorrect on your screen. Then, it gives you a second
chance to log in by printing another login: prompt.

login: ttarship<CR>
password:
login in=ect

login:

BASICS FOR UNIX SYSTEM USERS 2-1 7

Establishing Contact with the UNIX System

The login procedure may also fail if the communication link between your
terminal and the UNIX System has been dropped. I f this happens, you must
reestablish contact with the computer (specifically, with the data switch that
l inks your terminal to the computer) before trying to log in again. Since pro
cedures for doing this vary from site to site, ask your system administrator to
give you exact instructions for getting a connection on the data switch.

I f you have never logged in on the UNIX System, your login procedure
may di ffer from the one just described . This is because some system adminis
trators follow the optional security procedure of assigning temporary pass
words to new users when they set up their accounts. If you have a temporary
password, the system will force you to choose a new password before it
al lows you to log in .

By forcing you to choose a password for your exclusive use, this extra step
helps to ensure a system's security. Protection of system resources and your
personal fi les depends on your keeping your password private .

The actual procedure you follow will be determined by the administrative
procedures at your computer installation site. However, it will probably be
similar to the following example of a first-time login procedure:

1 . You establish contact; the UNIX System displays the login: prompt.
Type your login name and press the RETURN key.

2 . The UNIX System prints the password prompt. Type your temporary
password and press the RETURN key.

3 . The system tells you your temporary password has expired and you
must select a new one.

4 . The system asks you to type your old password again. Type your
temporary password.

5 . The system prompts you to type your new password. Type the pass
word you have chosen .

Passwords must meet the following requirements:

D Each password must have at least six characters. Only the first
eight characters are significant.

D Each password must contain at least two alphabetic characters
and at least one numeric or special character. Alphabetic charac
ters can be uppercase or lowercase letters.

2- 1 8 USER'S GUIDE

6 .

7 .

Establishing Contact with the UNIX System

D Each password must differ from your login name and any reverse
or circular shift of that login name. For comparison purposes, an
uppercase letter and its correspond ing lowercase letter are
equi valent.

[] A IWW password must d i ffer from t lw old by a t least t h n•t• ch a r
a<·ters . For comparison pu rposes, a n u ppt•rcast> l e t tt•r a n d i ts
corrt>spon d i n g lowt•rcasl' le ttl•r a n• t•q u i v a l t•n t .

Examples o f valid passwords are : mar84ch, JonathOn, and BRA V3S.

The UN IX System you are using may have different requirements to con
sider when choosing a password. Ask your system administrator for
details.

For veri fication, the system asks you to re-enter your new password .
, Type your new password again.

I f you do not re-enter the new password t>xactly a s typt>d t h e f irst
timL•, the system tel ls you tht• password s do not ma tch and asks you
to try the procedure again . On some systems, however, the com m u n i
cation link may b e dropped i f you d o not re-enter the password
exactly as typed the first time. If this happens, you must return to
step 1 and begin the login procedure again. When the passwords
match, the system displays the prompt.

The following screen summarizes this procedure (steps 1 through 6) for
first-time UNIX System users.

BASICS FOR UNIX SYSTEM USERS 2- 1 9

Establishing Contact with the UNIX System

login : starship <CR>

pasS\oiOrd : <CR>

Your password has expired .

Oloose a new one .
Old pasS>IOrd: < CR>

New pasS>IOrd: <CR>

Re-enter new pasS>IOrd : <CR>

$

Possible Problems when Logging In

A term ina l usually behaves predictably when you have configured it prop
erly . Sometimes, however, it may act peculiarly . For example, the carriage
return may not work properly.

Some problems can be corrected simply by logging off the system and
logging in again . If logging in a second time does not remedy the problem,
you should first check the following and try logging in once again:

the keyboard Keys labeled CAPS, NUM, SCROLL, and so on
should not be enabled (put into the locked posi
tion). You can usual ly disable theSl' keys simply
by pressing them.

tht• data phone set
o r n1odt•n1

the switches

2-20 USER'S GUIDE

If your terminal is connected to the computer
via tt•lephone l ines, veri fy that the baud rate and
duplt>x settings a re t'orrt>ct l y speci fil•d .

Somt• term i nals have severa l switches that must
be set to be compatible with the UNIX System. If
this is the case with the terminal you are using,
make sure they are set properly.

Establishing Contact with the UNIX System

Refer to the section " Required Terminal Settings " in this chapter if you
need information to verify the terminal configuration . I f you need additional
information about the keyboard, terminal, data phone, or modem, check the
owner's manuals for the appropriate equipment .

Figure 2-5 presents a list of procedures you can follow to detect, diagnose,
and correct some problems you may experience when logging in . If you need
further help, contact your system administrator.

BASICS FOR UNIX SYSTEM USERS 2-21

*

t

:j:

Problemt

M<'aningless characters

Input/ou tpu t appears in
U PPER CASE letters

Input appears in UPPER
CASE, output in lower case

Inpu t is printed twice

Tat> kt•y does not work prop
erly

Com mun icat ion link cannot
lw t•s t ,lhlish<'d a l though high
pildwd tone is ht•ard when
diil l i ng in

Communi,·ation l i n k (term ina l
to U N I X System) is repeat
t•d l y dropped

Possible Cause

UNIX System at wrong speed

Terminal configuration
includes UPPER CASE setting

Key labeled CAPS (or CAPS
LOCK) is enabled

Terminal is set to HALF
DUPLEX mode

Tabs are not set correctly

Terminal is set to LOCAL or
OFF- LI N E mode

Bad telephont' l ine or bad
communications port

Action/Remedy

Press RETURN or BREAK key

Log off and set character gen
eration to lower case

Press CAPS or CAPS LOCK
key to disable setting

Change setting to FULL
DUPLEX mode

Type stty -tabs:j:

Set terminal to ON-LINE
mode try logging in again

Call systl'm admin istrator

Numerous problems can occur if your terminal is not configured properly. To eliminate
these possibili ties before attempting to log in, perform the configuration checks listed
u ndt>r • Required Terminal Settings. "

Some problems may be specific to your terminal, data phone set, or modem. Check the
owner's manual for the appropriate equipment if suggested actions do not remedy the
problem.

Typing stty -tabs corrects the tab setting only for your current computing session. To
ensure a correct tab setting for all sessions, add the line stty -tabs to your .profile (see
ChaptPr 7).

Figun• 2-5 : Troubleshooting Problems When Logging In*

2-22 USER'S GUIDE

Simple Commands

When the prompt appears on your screen, the UNIX System has recog
nized you as an authorized user and is waiting for you to request a program
by entering a command.

For example, try running the date command . After the prompt, type the
command and press the RETURN key. The U N IX System accesses a program
cal led date, executes it, and prints its results on the screen, as shown below.

$ date<CR>
Wed Oct 15 09 : 49 : 44 IDl' 1986

$

As you can see, the date command prints the date and time, using the 24-
hour dock.

Now type the who command and press the RETURN key. Your screen
will look something like this :

$ who<CR>
starship ttyOO
mary2 tty02

acct 1 23 tty05

"jmrs t ly06

$

Oct 12 8 : 53

Oct 1 2 8 : 56

Oct 1 2 R : 54

Oct 1 2 H : !)6

BASICS FOR UNIX SYSTEM USERS 2·23

The who command lists the login names of everyone currently working on
your system. The tty designations refer to the special files that correspond to
each user's terminal . The date and time at which each user logged in are also
shown .

Logging Off

When you have completed a session with the UNIX System, type < · d>
after the prompt. (Remember that control characters such as < · d> are typed
by holding down the control key and pressing the appropriate alphabetic key.
Because they are nonprinting characters, they do not appear on your screen .)
After several seconds, the UNIX System wi l l display the login: prompt again .

$ <.d>
login :

This shows that you have logged off successfully and the system is ready for
someone else to log in .

Always l o g off t h e U N I X System b y typing < . d> before you turn off the
terminal or hang up the telephone. If you do n ot, you may not be actual ly
l ogged off the system .

The exit command also allows you to log off but is not used by most
users . I t may be convenient i f you want to include a command to log off
within a shell program. (For details, see the 1 1 Special Commands 11 section of
the sh(l) page in the User'sjSystem Administrator's Reference Manual.)

2-24 USER'S GUIDE

3 Using the File System

Introduction 3-1

How the File System is Structured-- 3-2

Your Place in the File System 3-4
Your Home Directory 3-4
Your Current Directory 3-6

Path Names 3-7

• Ful l Path Names 3-7

• Relative Path Names 3-1 0

• Naming Directories and Files 3-1 4

Organizing a Directory 3-1 5

Creating Directories: the mkdir Command 3-1 5

Listing the Contents of a Directory : the ls
Command 3-1 7

• Frequently Used ls Options 3-1 9

Changing Your Current Directory : the cd
Command 3-25

Removing Directories: the rmdir Command 3-27

Accessing and Manipulating Files 3-30

Basic Commands 3-30

• Displayi ng a File's Contents: the cat, more, pg,

and pr Commands 3-32

USING THE FILE SYSTEM

Using the File System

• Making a Duplicate Copy of a File: the cp
Command

• Copying a Group of Files: the copy Command

• Frequently Used copy Options

• Moving and Renaming a File: the mv Command
• Removing a File: the rm Command

• Counting Lines, Words, and Characters in a File:
the we Command

• Protecting Your Files: the chmod Command

Advanced Commands
• ldt'nt i fying Differenn's BPtween Files: thl' diff

Command
• Searching a Fil e for a Pattern: the grep

Command
• Sorting and Merging Files: the sort Command

3-43

3-45

3-47

3-50

3-52

3-54

3-56

3-64

3-64

3-66

3-68

Printing Files 3-72

Prin t Partially Formatted Contents of a File: the pr
Command 3-72

The LP Print Service
• Requesting a Paper Copy of a File: the lp

Command
• Select a Print Destination
• Specia l Pri n t ing Modt'S
• l'agl' Sizt• a nd Pitl'h S1• t t i ngs

• 1\1).\l'S a n d Copi1•s to lw l 'ri n t Pd

• Qut•ue Priori ty

• Pre- Printed Forms
• Character Sets and Print Wheels
• Content Type

• No File Breaks between Files

• Banner-Page Options

• Messages from the Print Service

• Changing a Request

• Canceling a Request
• Getting Printer Status and Information: lpstat

• Enabling and Disabling a Printer
• Summary

ii USER'S GUIDE

3-76

3-77

3-78

3-78

3-78

3-80

3-8 1

3-82

3-82

3-83

3-84

3-84

3-84

3-85

3-86

3-86

3-88

Introduction

To use the UNIX file system effectively you must be familiar with its
structure, know something about your relationship to this structure, and
understand how the relationship changes as you move around within it .
This chapter prepares you to use this file system.

The first two sections (" How the Fi le System is Structured " and " Your
Place in the File System ") offer a working perspective of the fi le system .
The rest of the chapter introduces UNIX System commands that allow you to
build your own directory structure, access and manipulate the sub..Qire.�tories
and files you organize within it, and examine the contents of other directories
in the system for which you have access permission.

Each command is discussed in a separate subsection. Tables at the end of
these subsections summarize the features of each command so that you can
later review a command's syntax and capabilities quickly. Many of the com
mands presented in this section have additional, sophisticated uses.
These, however, are left for more experienced users and are described in other
UNIX System documentation. All the commands presented here are basic to
using the file system efficiently and easily . Try using each command as you
read about it.

USING THE FILE SYSTEM 3-1

How the File System is Structured

Thl• fi le system is made up of a set of ordinary files, special files, and
directories. These components provide a way to organize, retrieve, and
manage information electronically. Chapter 1 introduced the properties of
directories and files; this section will review them briefly before discussing
how to use them.

• An ordinary file is a col lection of characters stored on a disk. It may
contain text for a report or code for a program .

• A special file represents a physical device, such as a terminal or disk.

• A directory is a collection of files and other directories (sometimes
called subdirectories). Use directories to group files together on the
basis of any criteria you choose. For example, you might create a direc
tory for each product that your company sells or for each of your
student's records.

The set of all the directories and files is organized into a tree shaped struc
ture. Figure 3-1 shows a sample file structure with a directory called root (/)
as its source. By moving down the branches extending from root, you can
reach several other major system directories. By branching down from these,
you can, in tum, reach all the directories and files in the file system.

In this hierarchy, files and directories that are subordinate to a directory
have what is called a parent/child relationship. This type of relationship is
possible for many layers of files and directories. In fact, there is no limit to
the number of fi les and directories you may create in any directory that you
own . Neither is there a limit to the number of layers of directories that you
may create. Thus, you have the capability to organize your files in a variety
of ways, as shown in Figure 3-1 .

3-2 USER'S GUIDE

Figure 3-1: A Sample File System

How the File System is Structured

Q = Directories

0 = Ordinary Files

'\J = Special Files

USING THE FILE SYSTEM 3-3

Your Place in the File System

Whenever you interact with the UNIX System, you do so from a location
in its file system structure. The UNIX System automatically places you at a
specific point in its file system every time you log in. From that point, you
can move through the hierarchy to work in any of your directories and files
and to access those belonging to others that you have permission to use.

The following sections describe your position in the file system structure
and how this position changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the UNIX System
places you at a specific point in its file system structure called your login or
home directory. The login name assigned to you when your UNIX System
account was set up is usually the name of this home directory. Every user
with an authorized login name has a unique home directory in the file system.

The UNIX System is able to keep track of all these home directories by
maintaining one or more system directories that organize them. For example,
the home directories of the login names starship, mary2, and jmrs are con
tained in a system directory called userl . Figure 3-2 shows the position of a
system directory such as userl in relation to the other important UNIX System
directories discussed in Chapter 1 .

3-4 USER'S GUIDE

Q = Directories

0 = Ordinary Files

\J = Specia l Files

= Branch

Figure 3-2: Directory of Home Directories

Your Place in the File System

USING THE FILE SYSTEM 3-5

Your Place in the File System

Within your home directory, you can create files and additional directories
(called subdirectories) in which to group them. You can move and delete your
files and directories, and you can control access to them. You have full
responsibility for everything you create in your home directory because you
own it. Your home directory is a vantage point from which to view all the
files and directories it holds, and the rest of the file system, all the way up to
root.

Your Current Directory

As long as you continue to work in your home directory, i t is considered
your current working directory . If you move to another directory, that direc
tory becomes your new current directory.

The pwd command (short for print working directory) prints the name of
the directory in which you are now working. For example, if your login name
is starship and you execute the pwd command in response to the first prompt
after logging in, the UNIX System responds as follows:

The system response gives you both the name of the directory in which
you are working (starship) and the location of that directory in the file sys
tem. The path name /user 1/starship tells you that the root directory (shown
by the leading / in the line) contains the directory userl which, in turn, con
tains the directory starship . (All other slashes in the path name other than
root are used to separate the names of directories and files, and to show the
position of each directory relative to root.) A directory name that shows the
directory's location in this way is called a full or complete directory name or
path name. In the next few pages we will analyze and trace this path name
so you can start to move around in the file system .

3-6 USER'S GUIDE

Your Place in the File System

Remember, you can determine your position in the file system at any time
simply by issuing the pwd command. This is especially helpful if you want to
read or copy a file and the UNIX System tells you the file you are trying to
access does not exist. You may be surprised to find you are in a different
directory than you thought.

Figure 3-3 provides a summary of the syntax and capabilities of the pwd
command.

Command Recap

pwd - prints full name of working directory

command options arguments

pwd none none

Description: pwd prints the full path name of the directory in
which you are currently working.

Figure 3-3: Summary of the pwd Command

Path Names

Every file and directory in the UNIX System is identified by a unique path
name. The path name shows the location of the file or directory and provides
directions for reaching it. Knowing how to follow the directions given by a
path name is your key to moving around the file system successfully. The
first step in learning about these directions is to learn about the two types of
path names: full and relative.

Full Path Names

A full path name (sometimes called an absolute path name) gives direc
tions that start in the root directory and lead you down through a unique
sequence of directories to a particular directory or file. You can use a full path
name to reach any file or directory in the UNIX System in which you are
working.

USING THE FILE SYSTEM 3-7

Your Place In the File Svatem

Because a full path name always starts at the root of the file system, its
leading character is always a I (slash). The final name in a full path name
can be either a file name or a directory name. All other names in the path
must be directories.

To understand how a full path name is constructed and how it directs
you, consider the following example. Suppose you are working in the star
ship directory, located in luse.-1. You issue the pwd command and the sys
tem responds by printing the full path name of your working directory:
/user1/starship. Analyze the elements of this path name using the following
diagram and key.

I (leading)

userl

root

system
directory home

directory

= the slash that appears as the first character in the path name
is the root of the file system

= system directory one level below root in the hierarchy to
which root points or branches

I (subsequent) = the next slash separates or delimits the directory names Qserl
and starship

starship = current working directory

3·8 USER'S GUIDE

Your Place in the File System

Now follow the bold l ines in Figure 3-4 to trace the full path to
juserljstarship.

Q = Directories

0 = Ordinary Fi les

'\J = Specia l Files

Figure 3-4: Ful l Path Name of the fuserl jstarship Directory

USING THE FILE SYSTEM 3·9

Your Place in the File System

Relative Path Names

A relative path name gives directions that start in your current working
directory and lead you up or down through a series of directories to a particu
lar file or directory. By moving down from your current directory, you can
access files and directories you own. By moving up from your current direc
tory, you pass through layers of parent directories to the grandparent of all
system directories, root. From there you can move anywhere in the file sys
tem.

A relative path name begins with one of the following: a directory or file
name; a . (pronounced dot), which is a shorthand notation for your current
directory; or a •• (pronounced dot dot), which is a shorthand notation for the
directory immediately above your current directory in the file system hierar
chy. The directory represented by .. (dot dot) is called the parent directory of .
(your current directory).

For example, say you are in the directory starship in the sample system
and starship contains directories named draft, letters, and bin and a file
named mbox. The relative path name to any of these is simply its name, such
as draft or mbox. Figure 3-5 traces the relative path from starship to draft.

3-1 0 USER"S GUIDE

Your Place in the File System

Q = Directories

0 = Ordinary Files

Figure 3-5: Relative Path Name of the draft Directory

The draft directory belonging to starship contains the fi les outline and
table. The relative path name from starship to the file outline is
draftfoutline.

Figure 3-6 traces this relative path. Notice that the slash in this path
name separates the directory named draft from the file named outline. Here,
the slash is a delimiter showing that outline is subordinate to draft; that is,
outline is a child of its parent, draft.

USING THE FILE SYSTEM 3-1 1

Your Place in the File System

Q = Directories

0 = Ordinary Files

Figure 3-6: Relative Path Name from starship to outline

So fa r, the discussion of relative path names has covered how to speci fy
names of files and directories that belong to, or are children of, your current
directory. You now know how to move down the system hierarchy level by
level until you reach your destination. However, you can also ascend the lev
els in the system structure or ascend and subsequently descend into other files
and directories.

To ascend to the parent of your current directory, you can use the .. nota
tion . This means that if you are in the directory named draft in the sample
file system, •• is the path name to starship, and •• f .. is the path name to
starship's parent directory, userl .

3- 1 2 USER'S GUIDE

Your Place in the File System

From draft, you can also trace a path to tlw di rl•dory sanders by using
the path name • • flettersfsanders. The • . brings you up to starship. Then the
names letters and sanders take you down through the letters directory to the
sanders directory.

Keep in mind that you can always use a full path name in place of a rela
tive one.

Figure 3-7 shows some examples of full and relative path names.

Path Name Meaning

/ full path name of the root directory

/bin full path name of the bin directory (contains
most executable programs and utilities)

juserl/starship/bin/tools full path name of the tools directory belonging
to the bin directory that belongs to the starship
directory belonging to userl that belongs to
root

bin/tools relative path name to the directory tools in the
directory bin

tools

If the current directory is f, then the U N IX Sys
tem searches for /bin/tools. However, if the
current directory is starship, then the system
searches the full path
fuserl/starship /bin/tools.

relative path name of the directory tools in the
current directory.

Figure 3-7: Example Path Names

You may need some practice before you can use path names such as these
to move around the file system with confidence. However, this is to be
expected when learning a new concept.

USING THE FILE SYSTEM 3-1 3

Your Place in the File System

Naming Directories and Files

You can give your directories and files any names you want, as long as
you observe the following rules:

• The name of a directory or file can be from one to fourteen characters
long.

• All characters other than / are legal.

• Some characters are best avoided, such as a <SPACE>, <TAB>,
<BACKSPACE>, and the following:

? @ # $ & * () ' [] \ I ; ' " < >

I f you use a blank or tab in a directory or file name, you must enclose
the name in quotation marks on the command line.

• Avoid using a +, - or . as the first character in a file name.

• Uppercase and lowercase characters are distinct to the UNIX System.
For example, the system considers a directory or file named draft to be
different from one named DRAFT.

The following are examples of legal directory or file names:

memo
file.d

MEMO
chap3+4

section2
iteml-10

ref:list
outline

Tht> rest of this chapter introduces UNIX System commands that enable
you to examine the file system.

3-1 4 USER'S GUIDE

Organizing a Directory
This section introduces four UNIX System commands that enable you to

organize and use a directory structure: mkdir, Is, cd, and rmdir.

mkdir

Is

cd

rmdir

enables you to make new directories and subdirec
tories within your current directory

l ists the names of all the subdirectories and files in a
directory

enables you to change your location in the fil e system
from one directory to another

enables you to remove an empty directory

These commands can be used with either ful l or relative path names.
Two of the commands, Is and cd, can also be used without a path name.
Each command is described more fully in the four sections that follow .

Creating Directories: the mkdir Command

It is recommended that you create subdirectories in your home directory
according to a logical and meaningful scheme that will facil i tate the retrieval
of information from your files. If you put al l files pertaining to one subject
together in a directory, you will know where to find them later.

To create a directory, use the mkdir command (short for make directory) .
Simply enter the command name, followed by the name you are giving your
new directory or file . For example, in the sample file system, the owner of the
draft subdirectory created draft by issuing the fol lowing command from the
home directory (/userljstarship) :

$ mkdir draft <CR>
$

The second prompt shows that the command has succeeded; the subdirectory
draft has been created .

USING THE FILE SYSTEM 3-1 5

Organizing a Directory

Sti l l in the home directory, this user created other subdirectories, such as
letters and bin, in the same way.

$ mkdir letters<CR>
$ mkdir bin<CR>
$

The user could have created all three subdirectories (draft, letters, and bin)
simultaneously by listing them all on a single command line.

$ mkdir draft letters bin <CR>
$

You can also move to a subdirectory you created and build additional sub
directories within it. When you build directories or create files, you can name
them anything you want as long as you follow the guidelines listed earlier
under " Naming Directories and Files. "

Figure 3-8 summarizes the syntax and capabilities of the mkdir command.

--

commarzd

mkdir
. . - ·

Description:

Remarks:

Command Recap

mkdir - makes a new directory

options arguments

none directorynamr(s)

mkdir creates a new directory (subdirectory).

The system returns a prompt ($ by default) if the
directory is successfully created.

Figure 3-8: Summary of the mkdir Command

3- 1 6 USER'S GUIDE

Organizing a Directory

Listing the Contents of a Directory: the Is
Command

All directories in the file system have information about the files and
directories they contain, such as name, size, and the date last modified. You
can obtain this information about the contents of your current directory and
other system directories by executing the Is command (short for list) .

The Is command l ists the names of all fi les and subdirectori<>s in a spl'ci
fied directory. I f you do not specify a dir('ctory, Is l ists the nnml'S of fi l l'S a nd
direl'tories in your current directory. To understand how the Is com mand
works, consider the sample file system (Figu re 3 -2) onn• agai n .

Say you are logged in to the UNIX System and you run the pwd com
mand. The system responds with the path name juserljstarship. To display
the names of files and directories in this current directory, you then type Is
and press the <RETURN> key. After this sequence, your terminal will read

$ pwd<CR>
$/user1/starship
$ ls<CR>
bin

draft
letters
list

mbax
$

As you can see, the system responds by listing, in alphabetical order, the
names of files and directories in the current directory starship. (If the first
character of any of the file or directory names had been a number or an
uppercase letter, it would have been printed first.)

USING THE FILE SYSTEM 3-t 7

Organizing a Directory

To print the names of files and subdirectories in a directory other than
your current directory without moving from your current directory, you must
specify the name of that directory as follows:

Is pathname<CR>

The directory name can be either the full or relative path name of the desired
directory. For example, you can list the contents of draft while you are work
ing in starship by entering Is draft and pressing the <RETURN> key. Your
screen will look like the following:

$ Is draft<CR>

Here, draft is a relative path name from a parent (starship) to a child (draft)
directory.

You can also use a relative path name to print the contents of a parent
d irectory when you are located in a child directory. The • • (dot dot) notation
provides an easy way to do this. For example, the following command line
specifies the relative path name from starship to userl :

$ Is .. <CR>
jmrs
maxy2
starship

$

3-1 8 USER'S GUIDE

Organizing a Directory

You can get the same results by using the full path name from root to userl .
If you type Is fuserl and press the <RETURN> key, the system will respond
by printing the same list.

Similarly, you can list the contents of any system directory that you have
permission to access by executing the Is command with a full or relative path
name.

The Is command is useful if you have a long l ist of files and you are try
ing to determine whether one of them exists in your current directory . For
example, if you are in the directory draft and you want to determine if the
files named outline and notes are there, use the Is command as fol lows:

$ Is outline notes<CR>

The system acknowledges the existence of outline by printing its name and
says that the file notes is not found.

The Is command does not print the contents of a file . If you want to see
what a file contains, use the cat, more, pg, or pr command. These commands
are described in 11 Accessing and Manipulating Files, 11 later in this chapter.

Frequently Used Is Options

The Is command also accepts options that cause specific attributes of a file
or subdirectory to be listed. There are more than a dozen available options
for the Is commands. Of these, -a and -1 will probably be most valuable in
your basic use of the UNIX System. Refer to the ls(l) page in the
User'sjSystem Administrator's Reference Manual for detail s about other options.

Listing All Files
Some important file names in your home directory, such as .profile (pro

nounced dot-profile), begin with a period. (As you can see from this example,
when a period is used as the first character of a file name, it is pronounced

USING THE FILE SYSTEM 3-1 9

Organizing a Directory

dot.) When a file name begins with a dot, it is not included in the list of files
reported by the Is command. If you want the Is to include these files, use the
-a option on the command line.

For example, to list all the files in your current directory (starship),
including those that begin with a . (dot), type Is -a and press the <RETURN>
key:

$ ls -a<CR>

. profile
bin

draft
letters
list
ml:x:lx
$

Listing Contents in Short Format

The -C and -F options for the Is command are frequently used. Together,
these options list a directory's subdirectories and files in columns, and identify
executable files with an * and directories with a /. Thus, you can list all files
in your working directory starship by executing the command line shown
here:

$ ls -CF<CR>

3·20 USER'S GUIDE

letters/
list*

Organizing a Directory

This version of the UNIX System includes the lc (short for list in
columns) command. Like Is, lc accepts pathname arguments and recog
nizes several options. When used with no options, lc produces output
that is identical to the output produced by Is -C. For more information
about lc and a list of available options, see the ls(l) entry in the
User'sjSystem Administrator's Reference Manual.

Listing Contents in Long Format

Probably the most informative Is option is -1, which displays the contents
of a directory in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file. For example, say you
run the Is -1 command while in the starship directory:

$ Is -l<CR>
total 30

dxwxr-xr-x 3 starship project 96 Oct 27 08 : 16 bin

dxwxr-xr-x 2 starship project 64 Nov 1 14 : 19 draft

dxwxr-xr-x 2 starship project 80 Nov 8 08 : 4 1 l etters

-rwx- - ---- 2 starship project 1230 1 Nov 2 1 0 : 1 5 list

-:rw------- 1 starship project 40 Oct 27 1 0 : 00 mbox
$

The first line of output (total 30) shows the amount of disk space used,
measured in blocks. Each of the rest of the lines comprises a report on a
directory or file in starship . The first character in each line (d, -, b, or c) tells
you the type of file.

d directory

ordinary disk file

b block special file

c character special file

USING THE FILE SYSTEM 3-21

Organizing a Directory

Using this key to interpret the previous screen, you can see that thl' starship
directory contains three directories and two ordinary disk fi les.

The next several characters, which are either letters or hyphens, identify
who has permission to read and use the file or directory. (Permissions are
discussed in the description of the chmod command under 11 Accessing and
Manipulating Files 11 later in this chapter.)

The following number is the link count. For a file, this equals the number
of users l inked to that file. For a directory, this number shows the number of
directories immediately under it plus two (for the directory itself and its parent
directory).

Next, the login name of the file's owner appears (here it is starship), fol
lowed by the group name of the file or directory (project) .

The following number shows the length of the file or directory entry
measured in units of information (or memory) called bytes. The month, day,
and time that the file was last modified is given next. F inally, the last column
shows the name of the directory or file.

Figure 3-9 identifies each column in the rows of output from the
Is -1 command .

3-22 USER'S GUIDE

number of
blocks used

owner
name

number
of links

�
File

ito:::�:��: �
type rwxr-xr-x 2

rwx - - - - - - 2
rw- - - - - - - 1

'-v-'

t
permissions

starship
starship
starship
starship
starship

group
name

project
project
project
project
project

Organizing a Directory

namt'

96 Oct 27 08: 1 6 bin
64 Nov 1 1 4 : 1 9 draft
80 Nov 8 08 :41 letters

1 2301 Nov 2 1 0 : 1 5 l ist
40 Oct 27 1 0 :00 mbox

'---v---J

t
timejdate last

modified

Figure 3-9: Description of Output Produced by the Is -1 Command

Figure 3-10 summarizes the syntax and capabilities of the Is command
and two available options.

USING THE FILE SYSTEM 3·23

Organizing a Directory

*

Command Recap

Is - lists the contents of a directory

command options arguments

Is -a, -1, and others* directoryname(s)

Description: Is lists the names of the files and subdirectories in
the specified directories. If no directory name is
given as an argument, the contents of your work-
ing directory are listed.

Options: -a lists all entries, including those beginning
with . (dot)

-1 lists contents of a directory in long format,
furnishing mode, permissions, size in
bytes, and time of last modification

Remarks: If you want to read the contents of a file, use the
cat or more command.

The lc command is similar to this command,
except lc lists a directory's contents in multiple
columns by default.

s,.,. the /�(1) page in the Usrr'sjSystem Admi11istrator's Re{ere11cr Ma11ua/ for all available
options and an explanation of their capabilities.

Figure 3-1 0: Summary of the Is Command

3-24 USER'S GUIDE

Organizing a Directory

Changing Your Current Directory: the cd
Command

When you first log in on the U N I X System, you are placed in your home
directory. As long as you do work in it, it is also your current working direc
tory . However, by using the cd command (short for change directory), you
can work in other directories as well . To use this command, enter cd, fol
lowed by a path name to the directory to which you want to move:

cd pathname_of_newdirectory<CR>

Any valid path name (full or relative) can be used as an argument to the cd
command. I f you do not specify a path name, the command will move you to
your home directory. Once you have moved to a new directory, it becomes
your current directory.

For example, to move from the starship directory to its child directory
draft (in the sample file system), type cd draft and press the <RETU RN>
kt>y . (Here draft is the relative path name to the desired directory .) When
you get a prompt, veri fy your new location by typing pwd and pressing the
<RETURN> key . Your terminal screen will look l ike the following:

$ cd d raft<CR>

$ pwd<CR>

/user 1/starship/draft

$

Now that you are in the draft directory, you can create subdirectories i n it by
using the mkdir command and new files by using the ed and vi editors. (See
Chapters 5 and 6 for tutorials on the ed and vi commands, respectively.)

USING THE FILE SYSTEM 3·25

Organizing a Directory

It is not necessary to be in the draft directory to access files within it . You
can access a file in any directory by specifying a full path name for it . For
example, to cat the sanders file in the letters directory
(/user1fstarship/letters) while you are in the draft directory
(/user1jstarship/draft), specify the full path name of sanders on the com
mand line:

cat fuserlfstarship flettersfsanders<CR>

You may also use full path names with the cd command. For example, to
move to the letters directory from the draft directory, specify
fuser1jstarshipfletters on the command line as follows:

cd fuser1jstarshipfletters<CR>

Also, because letters and draft are both children of starship, you can use
the relative path name • • fletters with the cd command. The .. notation
moves you to the directory starship, and the rest of the path name moves you
to letters.

Figure 3-11 summarizes the syntax and capabilities of the cd command.

3-2& USER'S GUIDE

Organizing a Directory

Command Recap

cd - changes your working directory

command options argu ments

cd none directory11ame

Description: cd changes your posi tion in the fi le system from the
curren t directory to the directory speci fied . I f no
directory name is given as an argument, the cd com-
mand places you in your home dirt:'ctory .

Remarks: When the shell places you in a speci fied di rectory,
the prompt ($ by default) is returned to you . To
access a directory that is not in your worki ng direc-
tory, you must use the fu l l or relative path name in
place of a simple directory name.

Figure 3- 1 1 : Summary of the cd Command

Removing Directories: the rmdir Command

If you no longer need a directory, you can remove it with the rmdir com
mand (short for remove a directory). The standard syntax for this command is

rmdir directoryl!ame(s)<CR>

You can speci fy more than one d i rectory namt' on the command l ine .

The rmdir command wi l l not remove a directory i f you are not the owner
of it or if the directory is not empty. I f you want to remove a fi le in another
user's directory , the owner must give you write permission for the parent
diredory of the fi le you want to remove.

USING THE FILE SYSTEM 3-27

Organizing a Directory

I f you try to remove a directory that still contains subdirectories and fi les
(that is, it is not empty), the rmdir command prints the message directorynamc
not empty. You must remove all subdirectories and files; only then will the
command succeed.

For example, say you have a directory called memos that contains one
subdirectory, tech, and two files, june.30 and july.31 . (Create this directory in
your home directory now so you can see how the rmdir command works.) If
you try to remove the directory memos (by issuing the rmdir command from
your home directory), the command responds as follows:

$ rmdir memos<CR>
menos not empty

To removl' the directory memos, you must first remove its contents: the sub
directory tech and the files june.30 and july.31 . You can remove the tech
subdirectory by executing the rmdir command. For instructions on removing
fi les, set> 11 Accessing and Manipulating Files 1 1 later in this chapter.

Once you have removed the contents of the memos directory, memos
itsel f can be removed . First, however, you must move to its parent directory
(your home directory). The rmdir command will not work if you are still in
the directory you want to remove. From your home directory, type

rmdir memos<CR>

I f memos is empty, the command will remove it and return a prompt.

3-28 USER'S GUIDE

Organizing a Directory

figure 3 - 1 2 summarizes the syntax and capabi l i ties of the rmdir com
mand .

Command Recap

rmdir - removes a directory

com mand options arguments

rmdir none di n•ctorylltl /1 / l '(s)

Description: rmdir rt>movt•s spt•d fit•d d i n•d orit•s if t lwy do not
contain fi l es andjor subdirectories.

Remarks: If the directory is empty, it is removed and the
system returns a prompt. I f the directory contains
files or subdirectories, the com mand returns the
message, rm:lir : directoryname not empty.

Figure 3 - 1 2 : Summary of the rmdir Command

USING THE FILE SYSTEM 3·29

Accessing and Manipulating Files

This section in troduces several U N I X System com mands that access and
manipulate files in the fi le system structure. I n forma tion in this section is
organized into two parts: basic and advanced . The part devoted to basic com
mands is fundamental to using the file system; the advanced commands offer
more sophisticated information processing techniques for working with files.

Basic Commands

This section discusses UNIX System commands that are necessary for
accessing and using the files in the directory structure. Figure 3 - 1 3 lists these
commands.

3•30 USER'S GUIDE

Accessing and Manipulating Files

Command Function

cat prints the contents of a specified fi le on
a terminal

more prints the contents of a speci fied fi l e on
a terminal, one screenful at a t ime

pg prints the contents of a specified fi le on
a terminal in chunks or pages

pr prints a partially formatted version of a
specified file on the terminal

lp requests a paper copy of a file from a
line printer

cp makes a d u pl ica tl' copy of an t•x i s t i n �
fi lt•

copy copies groups of fi les (including direc-
tories and subdi rectories) to another
directory

mv moves and renames a file

rm removes a file

we reports the number of l ines, words, and
characters in a file

chmod changes permission modes for a fi l e (or
a directory)

Figu n• 1 - D: Basic Com m a nds for U s i n g Fi l l's

USING THE FILE SYSTEM 3·3 1

Accessing and Manipulating Files

Each command is discussed in detail and summarized in a table that you
can easily reference later. These tables will allow you to review the syntax
and capabilities of these commands at a glance.

Displaying a File's Contents: the cat, more, pg, and pr
Commands

The UNIX System provides four commands for displaying and printing
the contents of a file or files: cat, more, pg, and pr. The cat command (short
for concatenate) displays the contents of the file(s) specified. This output is
displayed on your terminal screen unless you tell cat to direct it to another file
or a new command.

The more command displays the contents of a file on the terminal, one
screenful at a time. While the cat command causes the entire file to scroll
quickly on the screen, more causes the scrolling to pause at the end of each
screenful, until you instruct more to display the next screenful . This feature is
helpful i f you think the file you wish to view is larger than one screenful .

The pg command is particularly useful when you want to read the con
tents of a long file because it displays the text of a file in pages a screenful at
a time. Unlike more, pg lets you scroll through the file backward, as well as
forward . The pr command formats specified files and displays them on your
terminal or, i f you request, directs the formatted output to a printer. See the
section 11 Printing Files 11 in this chapter for more information on using the pr
command.

The following sections describe how to use the cat, more, pg, and pr com
mands.

Concatenate and Print Contents of a File: the cat Command

The cat command displays the contents of a file or files. For example, say
you are located in the directory letters (in the sample file system) and you
want to display the contents of the file johnson. Type the command line
shown on the screen, and you will receive the following output :

3-32 USER'S GUIDE

$ cal johnson · C R · ·
March 5 , 1986

Mr . Ran Johnson
Layton Printing
52 Hudson street
New York, N . Y .

Dear Mr . Johnson:

I enjoyed speaking with you this norning

a!Jout your oanpany ' s plans to autanate
your rusiness .
Enclosed please find
the material you requested
alJout AB&C ' s line of CCIIIplters

and office autanatian software .

If I can be of further assistance to you ,

please don ' t hesitate to call .

Yours truly ,

John liJwe
$

Accessing and Manipulating Files

To display the contents of two (or more) files, simply type the names of
the files you want to see on the command line. For example, to display the
contents of the fi les johnson and sanders, type

$ cat johnson sanders<CR>

The cat command reads johnson and sanders and displays their contents in
that order on your terminal .

USING THE FILE SYSTEM 3-33

Accessing and Manipulating Files

3-34

$ cat johnson sanders<CR>
March 5 , 1986

Mr . Ron Johnson
Layton Printing

52 Hudson street
New York , N.Y .

Dear Mr: . Johnson:

I enjoyed speaking with you this norning

Yours truly ,

Jotm Howe

March 5 , 1986

Mrs . D . L . Sanders

&1nrters Research , Inc .

4.1 Nassnu Street
p, i ur.et o n . N . J .

l >t •. n Mrs . Sanders :

My ooll eagues and I have been tollowing , with great interest. ,

S.1.ncerely ,

.Jol m Howe
$

USER'S GUIDE

Accessing and Manipulating Files

To direct the output of the cat com mand to another fi l e or to a new com
mand, see the sections in Chapter 7 that discuss input and output redirection .

..

Figure 3- 1 4 summarizes the syntax and capabilities of the cat command.

Command Recap

cat - concatenates and prints a file's contents

command options arguments

cat available* filename(s)

Description: The cat command reads the name of each fi le speci -
fied on the command l ine and displays its con tents.

Remarks: If a specified file exists and is readable, its conten ts
are displayed on the terminal screen; otherwise, the
message cat : cannot open filename appears on the
screen .

To display the contents of a directory, use the Is
command .

s,.,. i l w "''(I) 1"1)\1' in i lw l /s,•r's; .<;ys l f 'lll Admiuis l rato r's (.1, .,., . ,., .,, . , . Mll l l l f fl l lm il l l

,\ v ,l i l ,l h l t• oplion!-1 ,1 nd a n « "x p l tt n a t iun o f t ht• ir c.t pa hi l i t i . .-s .

Figu re 3 - 1 4 : Summary of the cat Command

Display Contents of a File: the more Command

The more command lets you examine the contents of a file or group of
fi les, one screenful at a time. At the end of each screenful , more tel ls you
what percentage of the file you have viewed so far and awaits your instruction
to continue viewing the file or to quit more. In general , more has the follow
ing form:

more filellame(s) <CR>

USING THE FILE SYSTEM 3-35

Accessing and Manipulating Files

For example, suppose you are located in the letters directory (in the sam
ple fi le system). If you wish to display the contents of the file johnson, type
the command l ine shown on the screen and you will receive the following
ou tpu t :

$ more johnson <CR>
March 5, 1986

Mr 0 Ron Jolmsan
Layton Printin;J

52 Hudson Street
New York, N .Y .

Dear Mr 0 Jolmsan:

I enjoyed speaking with you this m:n:nin;r
about your ocmpany ' s plans to autaiate
your business .
Enclosed please find
the naterial you requested
about AE&C ' s line of ClCiliJUters
and office autaiatian software .

If I can be of further assistance to you ,
please don ' t hesitate to call .

Yours truly,

John Howe
$

The first screenful of johnson is displayed on your screen. In this exam
ple. johnson is a small file, so the text fits on one screen. If johnson had con
tai ned enough text to fill two screens, more would have prompted you to con
t i ml l ' or quit, by displaying a prompt at the end of the first screenful, as
shown in the following example:

3-36 USER'S GUIDE

I

$ more johnson<CR>
March 5, 1986

Mr . Ran Johnson
Layton Printing
52 Hudson Street
New York, N .Y .

De ar Mr . Johnscm:

I enjoyed speaking with you this nonring
about your �· s plans to autanate
your rusiness .
Enclosed please fini
the material you requested
about AB&C ' s line of OCIIJP.lterS

and office autanaticm software .

If I can be of further assistance to you,
please don ' t hesitate to call .

Yours truly,

Jolm Howe

--More-- (50%)

Accessing and Manipulating Files

At this more prompt, you could choose either to view thP rema i mkr of
johnson or to quit more. To view the next screen fu l of tht> fi le , pn•ss lh l'

SPACEBAR key . To view the file one line at a time, press <CR> . To qu i t
more and return to the system prompt, type q .

Figure 3- 15 summarizes the syntax and capabilities of the more command .

USING THE FILE SYSTEM 3-37

Accessing and Manipulating Files

*

Command Recap

more - prints a fi le's contents, one screenful at a time

COIII II/Q I1d optiOIIS arguments

more available* filename(s)

Description: The more command reads the name of each file
specified on the command line and displays its con-
tents, one screenful at a time.

Remarks: If a speci fied fi le exists and is readable, its contents
arP d isplayed on the terminal screen. If the fi le
exists, bu t you do not have read permission for it,
the message IIDre : Permission denied appears on
the screen . I f the file does not exist, the message
nore : no such file or directory appears on the
screen.

To display the contents of a directory, use the ls or
lc command.

s,.,. t h o:> mor<'(l) page i n t h e User'sjSystem Administrator's Reference Manual for
a l l avai lahll• options and an explanation of their capabilities .

J-:igure 3 - 1 5 : Summary of the more Command

Paging Through the Contents of a File: the pg Command

The pg command (short for page) allows you to examine the contents of
a fi le or fi les, page by page, on a terminal . The pg command displays the text
of a fi le in pages (chunks) followed by a colon prompt (:) , a signal that the
program is waiting for your instructions. Possible instructions you can then
issue include requests for the command to continue displaying the file's con
tents a page at a time or a request that the command search through the file(s)
to locate a specific character pattern. Figure 3-16 summarizes some of the
available instructions.

3-38 USER'S GUIDE

*

t

Command*

h

q or Q
<CR>

1

d or

. or

f

n

p

$

.

.

I

d

jpattem

?pattern

Accessing and Manipulating Files

Function

help; displays list of available pgt commands

quits pg mode

displays next p< · �e of text

displays next line of text

displays additional half page of text

redisplays current page of text

skips next page of text and displays fol lowing one

begins displaying next file you specified
on command l ine

displays previous file specified on command l ine

displays last page of text in fi le currently displayed

searches forward in file for specified character pat
tern

searches backward in file for specified character
pattern

Most com mands can be typed with a n u m ber preceding them . For example,
+ 1 (display next page), -1 (display previous page), or 1 (display first page of
text).

See the Uscr'sjSystem Administrator's Rcfcmrcc Ma11ual for a detailed explanation

of a l l a vailable pg com mands.

Figure 3- 16 : Summary of Commands to Use with pg

Like more, the pg command is useful when you want to read a l ong file
or a series of files because the program pauses after displaying each page,
al lowing you time to examine it. The size of the page displayed depends on
the terminal . For example, on a terminal capable of displaying twenty-
four l ines, one page is defined as twenty- three lines of text and a l ine

USING THE FILE SYSTEM 3-39

Accessing and Manipulating Files

containing a colon . However, i f a file is less than twenty-three lines long, its
page size will be the number of l ines in the file plus one (for the colon) .

To look at the contents of a file with pg, use the fol lowing command line
format :

pg filename(s)<CR>

For example, to display the contents of the file outline in the sample file
system, type

pg outline<CR>

The first page of the file will appear on the screen. Because the file has more
l ines in i t than can be displayed on one page, a colon appears at the bottom of
the screen . This is a reminder to you that there is more of the file to be seen.
When you are ready to read more, press the <RETURN> key, and pg will
print the next page of the file .

The following screen summarizes our discussion of the pg command this
far:

$ pg outline<CR>
After you analyze the subject for your

report , you must =nsider organizing and
arranging the material you want to use in

writing it .

An outline is an effective method of

organizing the material . The outline

is a type of blueprint or skeleton ,

a framework for you the builder-writer

of the report ; in a sense it is a recipe

: < CR>

3-40 USER'S GUIDE

Accessing and Manipulating Files

A fter you press the <RETURN> key, pg wil l resume printing the fi le's con
tents on the screen :

that contains the naJies of the
ingredients and the order in which
to use them .

Your outline need not be elaborate or

overly detailed; it is simply a guide you
ll\3.y consult as you write , to be varied ,

if need be, when additional important

ideas are suggested in the actual writing .

(EOF) :

Notice the l ine at the bottom of the screen containing the string (EDF) : .
This expression (EDF) means you have reached the end of the file . The colon
prompt is a cue for you to issue another command.

When you have finished examining the file, press the <RETURN> key; a
prompt will appear on your terminal . (Typing q or Q and pressing the
<RETURN> key also gives you a prompt.) Or you can use one of the other
ava ilable commands, depending on your needs. In addition, there are a
number of options that can be specified on the pg command line (see the

PX(l) page i n the User'sjSystem Administrator's Reference Manual) .

Proper execution of the pg command depends on specifying the type of
terminal you are using because the pg program was designed to be flexible
enough to run on many different terminals; how i t is executed differs from ter
minal to terminal . By specifying one type, you are tell ing this command

• how many l ines to print

• how many columns to print

USING THE FILE SYSTEM 3-41

Accessing and Manipulating Files

• how to clear the screen

• how to highlight prompt signs or other words

• how to erase the current line

To speci fy a terminal type, assign the code for your terminal to the TERM
variable in your .profile file . (For more information about TERM and .profile,
see Chapter 7; for instructions on setting the TERM variable, see Appendix F.)

*

Figure 3- 1 7 summarizes the syntax and capabilities of the pg command.

Command Recap

pg - displays a fi le's contents in chunks or pages

comma11d opthms arguments

pg available* filename(s)

Description: The pg command displays the contents of the
speci fied file(s) in pages.

Remarks: After displaying a page of text, the pg command
awaits instructions from you to do one of the fol-
lowing: continue to display text, search for a pat-
tern of characters, or exit the pg mode. In addi-
lion, a nu m ber of options are ava i labl(•. For exam-
pie, you ca n d isplay a st•ction of a fi le, beginning
a t a speci fic l i rw or a t a l i rw con ta in ing a certa i n
Sl'l)Uenn• o r pa l ll•rn . You can a lso opt to go back
and n•vil'W tl•x t tha t has a l ready lwt>n displayed .

S'"" thl' Jl,i:(I) page in the Usa'sjSyslt•m Admiuistrator's Refen·uce Mauual for al l
av,1 i lahll" options and a n explanation of their capabil ities.

Figure 3 - 1 7: Summary of the pg Command

3-42 USER'S GUIDE

Accessing and Manipulating Files

Making a Duplicate Copy of a File: the cp Command

Wh<>n using the U NIX System, you may want to m a ke a copy of a fi le .
For t>xa m plt•, you m igh t wan t to rev isl' a fi l l ' w h i lt• lea v i ng t lw origi na l vprs i o n
i n t .l d . The cp command (short for copy) copies thl' complete con ten ts of o n e
fi le into another. The cp command also allows you to copy one or more files
from one directory into another while leaving the original file or files in place.

To copy the file named outline to a file named new.outline in the sample
directory, simply type cp outline new.outline and press the <RETURN>
key. The system returns the prompt when the copy is made. To verify the
existence of the new file, you can type Is and press the <RETURN> key.
This command lists the names of all files and directories in the current direc
tory, in this case draft. The following screen summarizes these activities:

$ cp outline new.outline<CR>
$ ls<CR>
new.outline
outline
table
$

The UNIX System does not allow you to have two files with the same
name in a directory. In this case, because there was no file called
new.outline when the cp command was issued, the system created a new file
with that name. However, if a file called new.outline had already existed, it
would have been replaced by a copy of the file outline; the previous version
of new.outline would have been deleted.

I f you had tried to copy the file outline to another file named outline in
the same directory, the system would have told you th<> fi le namt>s wt>n'
idt >ntka l and r<> tu nwd tht• pro m p t to you . I f you h a d t lwn l is t t•d t lw nll1 h' n l s
of the d i rl'clory t o dt>tt•rm i tw l'xact ly h o w m a n y copi t>s of o u t l i nl' t>x i s t t >d, you
would have received the fol lowing output on your screl•n :

USING THE FILE SYSTEM 3·43

Accessing and Manipulating Files

$ cp outline outline<CR>
cp : outline and outline are identical

$ J s..-CR>
outljne
table
$

The UNIX System does allow you to have two files with the same name
as long as they are in different directories. For example, the system would let
you copy the fi le outline from the draft directory to another file named out
line i n the letters directory. If you were in the draft directory, you could use
a n y o n e of four command l ines. In the following two command lines, you
speci fy the name of the new file you are creating by making a copy:

• cp outline juserljstarshipjlettersjoutline<CR> (full path name
specified)

• cp outline .. jlettersjoutline<CR> (relative path name specified)

However, the cp command does not require that you specify the name of
the new file . If you do not include a name for it on the command line, cp
gives your new file the same name as the original one, by default. Therefore,
you cou ld also use either of these command lines:

• cp outline juserljstarshipjletters<CR> (full path name specified)

• cp outline .. jletters<CR> (relative path name specified)

In any of these four cases, cp will make a copy of the outline file in the
letters directory and call it outline, too.

Of course, if you want to give your new file a different name, you must
s peci fy it. For example, to copy the file outline in the draft directory to a file
n a m ed outline.vers2 in the letters directory, you can use either of the follow
ing command lines:

3-44 USER'S GUIDE

Accessing and Manipulating Files

• cp outline juserljstarshipjlettersjoutline.vers2<CR> (full path
name)

• cp outl ine .. jlettersjoutline.vers2<CR> (rela tivf.' path namt')

When assigning new names, keep in mind the conventions for naming direc
tories and files described in 11 Naming Directories and Files 11 in this chapter.

Figure 3 - 1 8 summarizes the syntax and capabilities of the cp command.

Command Recap

cp - makes a copy of a file

command options arguments

file1 file2
cp none fi/e(s) directory

Description: cp allows you to make a copy of file1 and call it file2
leaving file1 intact or to copy one or more files into a
different directory.

Remarks: When you are copying file1 to file2 and a file cal led
file2 already exists, the cp command overwrites the first
version of file2 with a copy of file1 and calls it file2 .
The first version of file2 is deleted.

You cannot copy directories with the cp command.

l .'igure 3-1 8 : Summary of the cp Command

Copying a Group of Files: the copy Command

Thl' copy command lets you copy groups of fi l es to another d in•ctory,
wh ile leaving the original (source) fi les intact . To copy a gro u p o f fi l es from
your current d irectory to another directory, fol l ow th is forma t :

copy so u ra destination <CR>

USING THE IFILE SYSTEM 3-45

Accessing and Manipulating Files

You can use full or relative path names for the source and destination
arguments . The source argument can consist of a single file name, or a combi
nation of file names and directory names. If source is a single file name, copy
behaves like cp. If files or subdirectories do not exist at the destination, copy
creates them with the same modes as the source.

The copy command lets you easily reorganize your directories without
having to copy individual files from one directory to another. For example,
suppose you are in the juserljstarship directory. This directory contains the
subdirectories draft and letters. You can use the copy command to copy the
contents of draft into letters. The following sample screen shows your input
and the system's output:

$ copy draft letters<CR>

$ lc letters<CR>
johnson new.outline outline
sanders table
$

The files in the juserljstarshipjdraft directory (new.outline, outline,
and table) have been copied into juserljstarshipjletters. Note that there is
no "draft" subdirectory under letters. The copy command duplicated the
contents of draft into letters, without copying the actual "draft" directory
name.

If you want these files to be in a subdirectory called draft under the
juserljstarshipjletters directory, add "draft" to the destination path, as
shown in the following example:

3·46 USER'S GUIDE

$ copy draft lettersjdraft<CR>
$ lc letters<CR>
draft johnson sanders

Accessing and Manipulating Files

The new draft subdirectory appears among the contents of letters. Now, i f
you list the contents o f letters, you will see a new subdirectory called draft
that has the same contents as fuserlfstarshipfdraft:

$ lc lettersjdraft<CR>
new .outline outline table

$

Frequently Used copy Options

The copy command accepts several options that let you copy files and
directories in many ways. This section describes four frequently used copy
options. You can use these options together or separately to customize a
specific copy session.

Copying Files and Directories Interactively

By default, the copy program copies the specified source files quickly to
tht.• i r destination, returning you to the system prompt when it has finished
d u pl icating the fi les. However, suppose you wish to copy most (hu t not a l l)
of tht.• fi les in so u ra to another directory . In this case, you wou ld l i kt• to see
the name of each source fi le before it is copied, so that you can decide
whether to copy i t to destination. To copy files in this interactive manner, use
the -a option. With the -a option, you can reply y (yes) or n (no) each time
copy asks you whether it should copy a specific file.

USING THE FILE SYSTEM 3·47

Accessing and Manipulating Files

For example, suppose you are working in the juserljstarship directory
and wish to copy the contents of the letters subdirectory, except for the file
sanders, to the draft subdirectory. To do this, type the copy command as it
appears in the following example:

$ copy -a letters draft <CR>
copy file sanders? n <CR>
copy file johnson? y <CR>
$

For each file in source, copy asks you whether you wish to put a copy in desti
nation. Only the files you answer y to are copied. In this example, copy
copied johnson, but not sanders, into the draft directory.

Maintaining Original File Settings

When copy duplicates a file, i t sets the owner and group IDs of the copy
in destination to that of the user who invoked copy. The owner and group of
files in source remain intact. If you want a copied file to have the same owner
and group IDs as its source file, use the -o option. This option is helpful when
you are reorganizing your directories and wish to maintain original file statis
tics.

Similarly, copy automatically sets the modificatior:l . time of each file it
copies to the time of the copy. If you want the copied files to have the same
modification time as their corresponding source files, use the -m option. Like
the -o option, -m is convenient when you wish to reorganize your directories,
while maintaining previous modification times.

Copying Directories Recursively

By default, copy duplicates only files (not subdirectories) even when
source contains subdirectories. If you want copy to duplicate subdirectories
and their contents, as well as just files, you must specify a recursive copy pro
cess . . . A recursive copy process duplicates all files and subdirectories in source
to destination, creating subdirectories at the destination as they are needed,

3-48 USER'S GUIDE

Accessing and Manipulating Files

and maintaining the same directory hierarchy as in source. To recursivel y
copy the contents of source to destination, use the -r option with the fol lowing
syntax:

copy -r source destination <CR>

Figure 3- 1 9 summarizes the syntax and capabilities of the copy com
mand .

Command Recap

copy - copies grou ps of fi l l's

COII/IIl tl l ld options arguments

copy -a, -r, and others* source, destination

Description: copy copies the files andjor subdirectories speci-
fied in source to destination. If no source argument
is given, the contents of your working directory are
copied to destination.

Options: -a Asks the user before attempting a copy.

-r Examines every subdirectory it encounters
in source, copyi ng each subdirectory and i ts
contents to destinaticm . By defau l t, copy
duplicates only thl' fi les in soura.

Remarks: If you want to list the contents of a directory, use
the Is or lc command.

See the copy(l) page in the User'sjSystem Administrator's Reference Manual for al l a vai lable
options and an explanation of their capabilities.

Figure 3-19 : Summary of the copy Command

USING THE FILE SYSTEM 3-49

Accessing and Manipulating Files

Moving and Renaming a File: the mv Command

The mv command (short for move) allows you to rename a file in the
sa m e di rectory or to move a fi le from one directory to another. If you move a
fi l l' to il di fferent directory, the file can be renamed or it can retain its original
na m l' .

T o r<'name a fi le within a directory, fol low this format:

mv file1 file2<CR>

Tht' mv com mand changes a file's name from file1 to file2 and deletes
fi/1' 1 . l{emember that the names file 1 and file2 can be any valid names,
i ncluding path names.

For example, if you are in the directory draft in the sample file system
and you would like to rename the file table to new.table, simply type
mv table new.table and press the <RETURN> key. If the command exe
cutes successfully, you will receive a prompt. To verify that the file new.table
exists, you can list the contents of the directory by typing Is and pressing the
< RETU RN> key. The screen shows your input and the system's output as
follows:

$ mv table new.table<CR>
$ ls<. CR>
n.,., . table
ou t J ine
$

You can also move a file from one directory to another, keeping the same
nnme or changing it to a different one. To move the file without changing its
na me, use the fol lowing command line:

mv filr(s) directory<CR>

Tlw fi l l' and d irectory names can be any valid names, including path names.

3-50 USER'S GUIDE

Accessing and Manipulating Files

for example, say you want to move the fi le table from the cu rrt•nt d i rec
tory named draft (whose full path name is juserljstarshipfdraft) to a fi le
with the same name in the directory letters (whose relative path name from
draft is .. fletters and whose full path name is juserlfstarshipfletters), you
can use any one of several command lines, including the fol lowing:

mv table juserljstarshipjletters<CR>

mv table juserljstarshipjlettersjtable<CR>

mv table .. fletters<CR>

mv table .. flettersjtable<CR>

mv juserljstarshipfdraftjtable juserljstarshipflettersjtable<CR>

Now suppose you want to rename the fi le table as table2 when moving it
to the directory letters. Use any of these command l ines:

mv table juserljstarshipflettersjtable2<CR>

mv table .. flettersjtable2<CR>

mv juserljstarshipjdraftjtable2 juserljstarshipjlettersjtable2<CR>

You can verify that the command worked by using the Is command to list the
contents of the directory .

Figure 3-20 summarizes the syntax and capabilities of the mv command.

USING THE FILE SYSTEM 3-51

Accessing and Manipulating Files

Command Recap

mv - moves or renames files

Cc ll //1/ l l l l ld LIJII iLl l iS argumL' I l ls

file1 file2
mv none file(s) directory

Description: mv allows you to change the name of a file or
to move a file(s) into another directory.

Remarks: When you are moving file1 to file2, if a file
called file2 already exists, the mv command
overwrites the first version of file2 with file1
and renames i t file2. The first version of file2 is
deleted .

Figure 3-20: Summary of the mv Command

Removing a File: the rm Command

When you no longer need a file, you can remove it from your directory by
t'xecut ing the rm command (short for remove). The basic format for this com
mand is

rm file(s)<CR>

You can remove more than one file at a time by specifying those files you
wa n t to delete on the command line with a space separating each filename:

rm file1 file2 file3<CR>

Thl• system does not save a copy of a file it removes; once you have executed
th is command, your file is removed permanently.

3-52 USER'S GUIDE

Accessing and Manipulating Files

After you have issued the rm command, you can veri fy i ts successfu l t.'Xl'
cution by running the Is command. Because Is lists the files in your directory,
you'll immediately be able to see whether or not rm has executed successfully .

For example, suppose you have a directory that contains two files, outline
and table. You can remove both files by issuing the rm command once. I f
r m i s executed successfully, your directory will be empty . Veri fy this by run
ning the Is command:

$ rm outline table <CR>
$ Is
$

The prompt shows that outline and table were removed .

Figure 3-2 1 summarizes the syntax and capabilities of the rm command .

Command Recap
rm - removes a fi l e

command options arguments

rm available* file(s)

Description: rm allows you to remove one or more files.

Remarks: Files specified as arguments to the rm com-
mand are removed permanently.

Sel' the rm(l) page in the Usrr'sjSystem Administrator's R1·{nenc«' Manual fur a l l
available options a n d an explanation of thl'ir capabi l i t il'S.

Figure 3-2 1 : Summary of the rm Command

USING THE FILE SYSTEM 3·53

Accessing and Manipulating Files

Counting Lines, Words, and Characters in a File: the we
Command

The we command (short for word count) reports the number of lines,
words, and characters there are in the file(s) named on the command line. If
you name more than one file, the we program counts the number of lines,
words, and characters in each specified file and then totals the counts. In
addition, you can direct the we program to give you only a line, a word, or a
character count by using the -1, -w, or -e options, respectively .

To determine the number of lines, words, and characters in a file, use the
following format on the command line:

we filel <CR>

The system responds with a line in the following format:

w c filel

where

• 1 represents the number of lines in file l .

• w represents the number of words in file l .

• c represents the number of characters in filel .

For example, to count the lines, words, and characters in the file johnson
(located in the current directory, letters), type the following command line:

$ we johnson<CR>
24 66 406 johnson
$

The system response means that the file johnson has 24 lines, 66 words, and
406 characters .

To count the lines, words, and characters in more than one file, use the
following format:

we filel file2<CR>

3-54 USER'S GUIDE

Accessing and Manipulating Files

The system responds in the following format:

w
w
w

c
c
c

filel
file2
total

Line, word, and character counts for file1 and fi/r2 are d isplayt>d on Sl,para te
l i nt's and tht• com bi ned counts appea r on t h e last l i n e bPsidt> tlw word total .

For exa m pll', ask the we progra m to cou n t t ht• l i n es, words, a n d t·h a radt•rs
i n t ht• fi les johnson and sanders in thl' curn•nt d i rl'ctory .

$ we johnson sanders<CR>

$

24 66 406 jahnsan

28

52

92

158

559 saniers

965 total

The first l ine reports that the johnson file has 24 l ines, 66 words, and 406
characters. The second line reports 28 l ines, 92 words, and 559 characters in
the sanders file . The last line shows that these two files together have a total
of 52 l ines, 1 5 8 words, and 965 characters.

To get only a line, a word, or a character count, select the appropriate
command l ine format from the following l ines:

we -1 file1 <CR> (line count)
we -w filel <CR> (word count)
we -e file l <CR> (character count)

For example, if you use the -1 option , the system reports on l y the number
of l ines in sanders:

$ we -1 sanders<CR>
28 san:iers

$

USING THE FILE SYSTEM 3-55

Accessing and Manipulating Files

If the -w or -c option had been specified instead, the command would
have reported the number of words or characters, respectively, in the file.

Figure 3-22 summarizes the syntax and capabilities of the we command .

Command Recap

we - counts lines, words, and characters in a file

COII/ 11/Qild options arguments

we -1, -w, -e file(s)

Description: we counts lines, words, and characters in the speci-
fied file(s), keeping a total count of all tallies when
more than one file is specified.

Options -I counts the number of lines in the specified
file(s)

-w counts the number of words in the specified
file(s)

-e counts the number of characters in the
specified file(s)

Remarks: When a fi le name is specified in the command line,
it is Qfi nted wi th the count(s) requested .

Figu n• J-22: Summary of the we Command

Protecting Your Files: the chmod Command

The chmod command (short for change mode) allows you to decide who
can read, write, and use your files and who cannot. Because the UNIX
Operat ing System is a multi-user system, you usually do not work alone in
tht> fi le system. System users can follow path names to various directories
and read and use files belonging to one another, as long as they have permis
sion to do so.

3-56 USER'S GUIDE

Accessing and Manipulating Files

I f you own a file, you can decide who has the right to read it, write in i t
(make changes to it}, or, i f i t i s a program, execute it . You can also restrict
permissions for directories with the chmod command. When you grant exe
cute permission for a directory, you allow the specified users to cd to it and
list its contents with the Is command .

To assign these permissions, use the fol lowing three symbols :

r al lows system users to read a fi le or to copy its contents

w allows system users to write changes into a fi le (or a copy of it)

x allows system users to run an executable fi le

To speci fy the users to whom you are grant ing (or de ny ing) t lwsl' (ll'nn i s
sions, use the fol lowing three symbols :

u you, the owner of your fi les and d irectories (u is short for user)

g members of the group to which you belong (the group could con
sist of team members working on a project, members of a depart
ment, or a group arbitrarily designated by the person who set up
your UNIX System account)

o all other system users

When you create a file or a directory, the system automatically grants or
denies permissions to you, members of your group, and other system users .
You can alter this automatic action by modi fying your environment (see
Chapter 7 for details) . Moreover, regardless of how the permissions are
granted when a file is created, as the owner of the file or directory, you
always have the option of changing them. For example, you may want to
keep certain files private and reserve them for your exclusive use. You may
want to grant permissions to read and write changes into a file to members of
your group and al l other system users as wel l . Or you may share a program
with members of your group by granting them permission to execute it .

How to Determine Existing Permissions

You can determine what permissions are currently in effect on a fi l e or a
directory by using the command that produces a long l isting of a d i rectory's
con tents : Is -1. For example, typing Is -1 and pressing the < RETU R N > key

while in the directory named starshipjbin in the sample fi le system produces
the following output:

USING THE FILE SYSTEM 3-57

Accessing and Manipulating Files

$ Is -I<CR>
total 35

r"WXr-xr· x
rw r - - r ·· -

drwx - -x--x
$

1 starship

1 starship

2 starship

project

project

project

9346 Nov 1 08 : 06 display
6428 Dec 2 1 0 : 24 list

32 Nov 8 1 5 : 32 tools

Permissions for the display and list files and the tools directory are
show n on the left of the screen under the line total 35, and appear in this
format:

-rwxr-xr-x (for the display file)
-rw-r- -r- - (for the list file))
drwx--x--- (for the tools directory)

After the initial character, which describes the file type (for example,
a - (dash) symbolizes a regular file and a d, a directory), the other nine char
ach.'rs that set the permissions comprise three sets of three characters. The
first set refers to permissions for the owner, the second set, to permissions for
group members, and the last set, to permissions for all other system users.
W i thin each set of characters, the r, w, and x show the permissions currently
granted to each category. I f a dash appears instead of an r, w, or x, permis
sion to rl'ad, w ri te, or execute is denied .

The fol lowing d iagram summarizes t h i s breakdown for the file named
display:

3-58 USER'S GUIDE

Accessing and Manipulating Files

user group others

\ 1 /
�

rwxr-xr-x
/I � Permission to write to

� the file denied to

read group and other

write
execute

As you can see, the owner has r, w, a nd x p('rm issions, a n d llll' lll hl'rs of the
group and other system users have r and x permissions .

There are two exceptions to this notation system . Occasionally, the letter
s or the letter 1 may appear in the permissions line, instead of an r, w or x.
The letter s (short for set user ID or set group ID) represen ts a special type of
permission to execute a file. It appears where you normally see an x (or -)
for the user or group (the first and second sets of permissions). From a user's
point of view, it is equivalent to an x in the same position; it implies that exe
cute permission exists . It is significant only for programmers and
system administrators . (See the Operations/System Administration Guide for
details about setting the user or group ID.)

The letter 1 is the symbol for lock enabling. I t does not mean that the file
has been locked. It simply means that the function of locking is enabled, or
possible, for this file . The file may or may not be locked; that cannot be
determined by the presence or absence of the letter 1.

USING THE FILE SYSTEM 3-59

Accessing and Manipulating Files

How to Change Existing Permissions

After you have determined what permissions are in effect, you can change
them by executing the chmod command in the following format:

or

chmod who+pcrmissi<m fi/c(s)<CR>

chmod who=permission fi/e(s)<CR>

The fol lowing list defines each component of this command line:

chmod

who

name of the program

one of three user groups (u, g, or o)
u = user
g = group
o = others

+ or - instruction that grants (+) or denies (-) permission

perm ission any combination of three authorizations (r, w, and x)
r = read

filc(s)

w = write
x = execute

fi le or directory name(s) l isted; assumed to be branches
from your current directory, unless you use ful l path
names

The chmod command will not work if you type a space(s) between who, the
instruction that gives (+) or denies (-) permission, and permission.

The following examples show a few possible ways to use the chmod com
mand . As the owner of display, you can read, write, and run this executable
fi le . You can protect the file against being accidentally changed by denying
yourself write (w) permission . To do this, type the command line

chmod u-w display<CR>

3-60 USER'S GUIDE

Accessing and Manipulating Files

A fter receivi ng the prom pt, type Is -1 and pn•ss tht• < RETU R N > kl'Y to Vl'r ify
that this permission has been changed, as shown i n the fol lo w i n g screen :

$ chmod u-w display<CR>
$ Is -I<CR>
total 35

-r-xr-xr-x

-rw-r--r--

drwx--x--x

$

1 starship
1 starship
2 starship

project

project

project

9346 Nov 1 08 : 06 display

6428 Dec 2 10 : 24 list

32 Nov 8 15 : 32 tools

As you l'an Sl'l', you no l onger have pt•rmission to wri tl• changl'S i n l o l lw fi l l• .
You will not b e able t o change this file u n ti l you restore write perm ission for
yoursel f.

Now consider another example . Notice that permission to wri te i n to the
fi l e display has been denied to members of you r group and other system
users . However, they do have read perm i ssion . This mea n s they ca n copy
the fi le into their own directories and then make changes to i t . To preven t all
system users from copying this file, you can deny them read permission by
typi ng

chmod go-r display<CR>

The g and o stand for group members and all other system u sers, respectively,
and the -r denies them perm ission to read or copy the fil e . Chl•ck the resu l ts
w i th the Is -1 command :

USING THE FILE SYSTEM 3-61

Accessing and Manipulating Files

$ chmod go-r display<CR>
$ Is -l<CR>
total 35

-rwx--x--x

-:r:w-r--r--

drwx--x--x

$

1 starship

1 starship

2 starship

project

project

project

A Note on Permissions and Directories

9346 Nov 1 08 : 06 display

6428 Dec 2 1 0 : 24 list

32 Nov 8 1 5 : 32 tools

You can use the chmod command to grant or deny permission for direc
tories as well as files. Simply specify a directory name instead of a file name
on the command line.

However, consider the impact on various system users of changing per
missions for directories. For example, say you grant read permission for a
directory to yourself {u), members of your group (g), and other system users
(o). Every user who has access to the system will be able to read the names
of the files contained in that directory by running the Is -1 command. Simi
larly, granting write permission allows the designated users to create new files
in the directory and remove existing ones. Granting permission to execute the
directory allows designated users to move to that directory (and make it their
current directory) by using the cd command.

An Alternative Method

There are two methods by which the chmod command can be executed.
The method described above, in which symbols such as r, w, and x are used
to specify permissions, is called the symbolic method.

An alternative method is the octal method. Its format requires you to
specify permissions using three octal numbers, ranging from 0 to 7. (The octal
number system is different from the decimal system that we typically use on a
day-to-day basis.) To learn how to use the octal method, see the chmod(1)
page in the User'sjSystem Administrator's Reference Manual .

3·62 USER'S GUIDE

Accessing and Manipulating Files

Figure 3-23 summarizes the syntax and capabi l i ties of the chmod com
mo:md .

Command Recap

chmod - changes permission modes for files and directories

command instruction argumen ts

chmod who + - permission filename(s)
directoryname(s)

Description: chmod gives (+) or removes (-) permission to
read, write, and execute files for three
categories of system users: user (you), group
(members of your group), and other (all other
users able to access the system on which you
are working).

Remarks: The instruction set can be represented in either
octal or symbolic terms.

Figure 3-23: Summary of the chmod Command

USING THE FILE SYSTEM 3-63

Accessing and Manipulating Files

Advanced Commands

Us<.' of the commands already introduced will increase your familiarity
with the fi le system. As this familiarity increases, so might your need for
more sophisticated information processing techniques when working with
fi l es . This section introduces the following three commands that provide just
that :

diff finds differences between two files

grep searches for a pattern in a file

sort sorts and merges files

For additional information about these commands refer to the User'sjSystem
Administrator's Reference Manual .

Identifying Differences Between Files: the diff Command

The diff command locates and reports all differences between two files
and tells you how to change the first file so that it is a duplicate of the second.
The basic format for the command is

diff file1 file2<CR>

I f filc 1 and file2 are identical, the system returns a prompt to you. If they are
not, the diff command instructs you on how to change the first file so it
matches the second by using ed (line editor) commands. (See Chapter 5 for
details about the line editor.) The UNIX System flags lines in file1 (to be
changed) with the < (less than) symbol and lines in file2 (the model text) with
the > (greater than) symbol.

For Px<� rn pl e, say you t•xecute the diff command to identify the di fferences
lw l wt•t•n t lw fi l es johnson and mcdonough. The mcdonough fi le con tains the
sa m t• l l ' l ter that is in the johnson fi le, with appropriate changes for a different
n.•ci pient . The diff command will identify those changes as follows:

3-64 USER'S GUIDE

3 , 6c3 , 6

< Mr 0 Ron Johnson
< Layton Printin3'

< 52 Hudson Street

< New York, N . Y .

> Mr 0 J 0 J 0 Mc:D:mough
> tJhu Press

> 37 OU.co Place
> Springfield, N .J .

9c9

< Dear Mr 0 Johnson:

> Dear Mr 0 Mclkloough:

The first line of output from diff is

3 , 6c3 , 6

Accessing and Manipulating Files

This means that if you want johnson to match mcdonough, you must change
(c) lines 3 through 6 in johnson to lines 3 through 6 in mcdonough. The diff
command then displays both sets of lines.

I f you make these changes (using a text editor such as ed or vi), the john
son file will be identical to the sanders file. Remember, the diff command
identifies differences between specified files. If you want to make an identical
copy of a file, use the cp command.

Figure 3-24 summarizes the syntax and capabi l i ties of the diff command.

USING THE FILE SYSTEM 3-65

Accessing and Manipulating Files

*

Command Recap

diff - fi nds d i fferences betwet•n two fi l es

C0/11 1/lQ ild options arguments

diff available* file1 file2

Description: The diff command reports what lines are dif-
ferent in two files and what you must do to
make the first file identical to the second.

Remarks: Instructions on how to change a file to bring it
into agreement with another file are line editor
(ed) commands: a (append), c (change), and d
(delete). Numbers given with a, c, or d show
the l ines to be modified. Also used are the
symbols < (showing a line from the first file)
and > (show ing a line from the second file).

� •. ,. lhe diff(l) page in the Usrr's/Systcm Administrator's Reference Manval for all
ava i lahl<• options and an explanation of their capabilities.

Figun• 3 - 2 4 : Summary of the diff Command

Searching a File for a Pattern: the grep Command

You can instruct the UNIX System to search through a file for a specific
word, phrase, or group of characters by executing the grep command (short
for global ly search for a regular expression and print). Put simply, a regular
expression is any pattern of characters (a word, a phrase, or an equation) that
you speci fy .

3-66 USER'S GUIDE

Accessing and Manipulating Files

The basic format for the command line is

grep pattern file(s)<CR>

For example, to locate any lines that contain the word automation in the
file johnson, type

grep automation johnson<CR>

The system responds with

$ grep automation johnson <CR ·

and office autanation software .

$

The output consists of all the lines in the file johnson that contain the pattern
for which you were searching (automation).

If the pattern contains multiple words or any character that conveys spe
cial meaning to the UNIX System (such as $, I , *, ?, and so on), the entire pat
tern must be enclosed in single quotes. (For an explanation of the special
meaning for these and other characters see " Metacharacters " in Chapter 7.)
For example, say you want to locate the lines containing the pattern office

autanation. Your command line and the system's response will read:

$ grep 'office automation' johnson<CR>
and office autanation software .

$

But what if you cannot recal l which letter contained a reference to office
automation? Was it your letter to Mr. Johnson or the one to Mrs. Sanders?
Type the following command line to find out:

$ grep 'office automation' johnson sanders<CR>
johnsan: and office autanation software .

$
The output tells you that the pattern office autanation is found once in the
johnson file.

In addition to the grep command, the UNIX System provides variations of
it called egrep and fgrep, along with several options that enhance the search
ing powers of the command. See the grep(l), egrep(l), and fgrep(l) pages in
the User'sjSystem Administrator's Reference Manual for further information
about these commands.

USING THE FILE SYSTEM 3-67

Accessing and Manipulating Files

•

Figure 3-25 summarizes the syntax and capabilities of the grep command.

Command Recap

grep - searches a file for a pattern

t'0/11 /It al ld options arguments

grep available* pattem file(s)

Description: The grep command searches through specified
file(s) for lines containing a pattern and then
prints the lines on which it finds the pattern. If
you specify more than one file, the name of the
file in which the pattern is found is also
reported.

Remarks: If the pattern you give contains multiple words
or special characters, enclose the pattern in sin-
gle quotes on the command line .

5<'<' thl' gn'J>(l) page in the User'sjSystem Administrator's Reference Manual for all
ilv,l i l ,lbll' options and an explanation of their capabilities.

Figure 3-25 : Summary of the grep Command

Sorting and Merging Files: the sort Command

The UNIX System provides an efficient tool called sort for sorting and
mergi ng fi les. The format for the command line is

sort fi/c(s)<CR>

This command causes lines in the specified files to be sorted and merged in
the fol lowing order:

• Lines beginning with numbers are sorted by digit and listed before
l ines beginning with letters.

3-68 USER'S GUIDE

Accessing and Manipulating Files

• Lines beginning with uppercase letters a n• l is tl•d hdore l i m•s Lwgi n n i n g
with lowercase letters.

• Lines beginning with symbols, such as •, %, or @, are sorted on the
basis of the symbol's ASCII representation .

For example, let's say you have two fi l es, groupl and group2, l'c:tch con
taining a l ist of names. You want to sort each l ist alphabetical ly and then
combine the two lists into one. First, display the contents of the fi les by exe
cuting the cat command on each:

$ cat groupl<CR>
9nith , Allyn

Janes , Barbara

Cook, Karen
Mx>re , Peter
�lf , Robert
$ cat group2<CR>
Frank , M. Jay
Nelson, James

West , Donna
Hi ll , Olarles

lobrgan , Kr i stine

$

(Instead of printing these two files individually, you could have requested
both files on the same command line. If you had typed cat groupl group2
and pressed the <RETURN> key, the output would have been the same.)

Now sort and merge the contents of the two files by executing the sort
command. The output of the sort program will be printed on the terminal
screen unless you specify otherwise.

USING THE FILE SYSTEM 3-69

Accessing and Manipulating Files

$ sort groupl group2<CR>
C=k, Karen
Frank , M. Jay

Hill , Olarles

Janes , Barbara

Moore , Peter
Morgan, Kristine

Nelson , James

Smith, Allyn

Wel>t , Darma

Wolf . Robert

$

In addition to combining simple lists as in the example, the sort command
can rearrange lines and parts of lines (called fields) according to a number of
other speci fications you designate on the command line. The possible specifi
cations are complex and beyond the scope of this text. Refer to the
Uscr'sjSystem Administrator's Reference Manual for a full description of avail
able options.

figure 3-26 summarizes the syntax and capabilities of the sort command.

3-70 USER'S GUIDE

..

Accessing and Manipulating Files

Command Recap

sort - sorts and merges files

command options arguments

sort available* file(s)

Description: The sort command sorts and mergt-s l i m•s from
a fi le or fi les you spl'ci fy and d isplays i ts ou tpu t
o n your terminal scn•t'n .

Remarks: I f no options an.• spl•ci fiPd on thl' commnnd
line, lines are sorted and merged in the ordPr

defined by the ASCI I representations of the
characters in the lines .

See the sort(I) page in thl' User'sjSystem Admiuistrator's Rrfen·uce Mauual for a l l
avai lable options and an explanation of their capabi l i t ies.

figure 3-26: Summary of the sort Command

USING THE FILE SYSTEM 3-71

Printing Files

This section in troduces the pr command, which prepares files to be
pri ntl.'d and the lp command, which prints fi les.

Print Partially Formatted Contents of a File:
the pr Command

The pr command prepares files for printing. It supplies titles and head
ings, paginates, and prints a file, in any of various page lengths and widths,
on your terminal screen .

You have the option of requesting that the command print its output on
another device, such as a line printer (read the discussion of the lp command
in this section). You can also direct the output of pr to a different file (see the
sections on input and output redi rection in Chapter 7).

I f you choose not to speci fy any of the available options, the pr command
produn•s output in a single col umn that contains 66 J ines per page and is pre
t'l'Ut'd hy a short heading. The heading consists of five l ines: two blank l ines;
a l i m• containing the date, time, file name, and page number; and two more
b l a n k l ines. The formatted file is followed by five blank lines.

The pr command is often used together with the lp command to provide a
paper copy of text as it was entered into a file. (See the section on the lp
com mand for details .) However, you can also use the pr command to format
and prin t the contents of a file on your terminal. For example, to review the
contmts of the file johnson in the sample file system, type

$ pr johnson<CR>

Tht> fol lowing screen gives an example of output from this command:

3-72 USER'S GUIDE

$ pr johnson<CR>

Mar 5 1 5 : 43 1986 johnson Page 1

March 5 , 1986

Mr. Ron Johnson

Layton Printing

52 Hudson Street

New York , N .Y .

Dear Mr . Johnson :

I enjoyed speaking with you this n=ning

about your ccaq:>any ' s plans to autanate

your blsiness .

Enclosed please find

the material yoo requested

about AB&..C ' s line of cx:llp.lterS
and office autanation software .

If I can be of further assistance to yoo ,
please don ' t hesitate to call .

Yours truly,

John Howe

$

Printing Files

USING THE FILE SYSTEM 3-73

Printing Files

The ellipses after the last line in the file represent the remaining lines (all
blank in this case) that pr formatted into the output (so that each page con
tains a total of sixty-six lines). If you are working on a video display terminal,
which allows you to view twenty-four lines at a time, the entire sixty-six lines
of the formatted file will be printed rapidly without pause. This means that
the first forty-two lines will roll off the top of your screen, making it impossi
ble for you to read them unless you have the ability to roll back a screen or
two. However, if the file you are examining is particularly long, even this
ability may not be sufficient to allow you to read the file.

In such cases, type < · s> to interrupt the flow of printing on your screen.
When you are ready to continue, type < · q> to resume printing.

Figure 3-27 summarizes the syntax and capabilities of the pr command.

3-74 USER'S GUIDE

•

Printing Flies

Command Recap

pr - prints formatted contents of a file

command options ar�uments

pr available* filename(s)

Description: The pr command prints a copy of a file(s) on
your terminal screen unless you speci fy other-
wise. It prints the text of the fi l e(s) on sixty -s ix
l i m• pages and plan•s fi ve hlank l i m·s a t the
bottom of l'ach pagl' and a fi vP l i lw hea d i n g at
the top of each page. Tht• ht•ad ing i nd udes
two blank l ines; a line containing the date,
time, file name, and page number; and two
additional blank lines.

Remarks: If a specified file exists, its contents are format-
ted and displayed; if not, the message pr :

can ' t open filename is printed.

The pr command is often used with the lp
command to produce a paper copy of a file . It
can also be used to review a file on a video
display terminal . To stop and restart the print-
ing of a file on a terminal, type < · s> and
< · q>, respectively .

See the pr(l) page in the User'sjSystem Administrator's Reference Manual for at!
available options and an explanation of their capabili ties.

Figure 3-27: Summary of the pr Command

USING THE FILE SYSTEM 3·75

Printing Files

The LP Print Service

You c�n perform various printing tasks by using a set of UN IX System
software tools called the LP print service. You can make requests for print
jobs, change or cancel those requests, enable and disable printers, and obtain
information about the printers available to you by using five commands asso
ciated with the LP print service: lp, cancel, lpstat, enable, and disable. This
section explains how to use these commands to accomplish such tasks.

The function of each print service command is shown in Figure 3-28.

Command Function

lp requests a paper copy of a file
from a printer

ca ncel cancels a request for a
paper copy of a file

Ipstat displays information on the screen
about the current status of the LP
print service

enable activates the printer(s) specified
so jobs that are requested through
the lp command can be printed

disable deactivates the printer(s) specified
so jobs that are requested through
the lp command can no longer
be printed

Figure 3-28 : Print Commands and Their Functions

3-76 USER'S GUIDE

Printing Files

Thl• enable and disable commands a n• not a l ways ava i lable to usl•rs .
The system administrator wi l l decide whether to make these comma nds
available to all users.

Requesting a Paper Copy of a File: the lp Command

Some terminals have built-in printers that allow you to get paper copies of
files. If you have such a terminal, you can get a paper copy of your file sim
ply by turning on the printer and executing the cat or pr command.

If you are using a video display terminal, however, you will need a printer
to obtain a paper copy of a file. The lp command (originally named for " line
printer ") allows you to request a print job from a printer. To request a simple
print job, enter the command line

lp filename<CR>

where filename is the name of the file you want to have pri n ted. For example,
to request that the file johnson be printed, type

lp johnson<CR>

The system wi l l respond with the name (or type) of the pri n ter on which the
fi le is being prin ted and an identifi cation (ID) number for you r request :

$ lp johnson<CR>
request id is laser-6885 { 1 file)

$

This system response shows that your job will be printed on a printer
named " laser " (the default printer for this system), has a request ID number
of laser-6885, and consists of one file.

Options to lp
The options available with the lp command allow you to request the fol

lowing for your print job: a specific printer or class of printers (referred to
here as " print destination "); special print modes (such as landscape or por
trait); page size and pitch settings; which pages are to be printed and the
number of copies to be made; queue priority; forms (instead of blank paper);
character sets and print wheels; content type; continuous printing of fi les
(wi thout breaks between separate files); banner-page options; and messages
from the lp command . This section explains how to take advantage of these
options.

USING THE FILE SYSTEM 3-77

Printing Files

Select a Print Destination

The term " print destination " refers to any device that your system
administrator has defined to be a printer (such as " bif2 ") or class of printers
(such as " bi f "). The -d dest (short for destination) option on the command
l ine causes your file to be printed at the destination specified in the desc argu
ment, as long as a printer is available and capable of meeting your specifica
tions for the job. In the following example, a request is made to have a file
cal l ed memo printed on printer3 :

$ lp -d printer3 memo<CR>

Special Printing Modes

The final appearance of the document you are printing depends not only
on i ts con tent, but also on certain other features that affect the composition of
the page. For example, you might want to print your document on one side
of the paper or on both sides. You might want your memo to be marked
" draft " or to appear as the final, official version. Or, if you have a chart that
wil l n ot fi t on a page in the usual " portrait " mode, you may want to print it
sideways on the page in " landscape " mode. The number of these special
pri n ting modes that are available to you depends on the available printer(s).

To n.•quest special printing modes for your print job, include the -y option
on the n>mmand line as fol lows:

$ lp -y l is t_of_modes filename<CR>

Each i tem in the list of modes must be a one-word name; it can be any combi
nation of letters and numbers.

The printer will accept your request if all the modes you requested in the
l ist are known by the " filter " being used as an interface between your print
request and the printer. To find out which filters are available on your system
and wh ich -y options are allowed, check with your system administrator.

Page Size and Pitch Settings

Page sizt' consists of two measurements: length and width. Pitch settings
a rl' spl•d fications for the number of l i nes per inch (vertical measurement) and
t lw n u mber of characters per i nch (horizontal measuremen t). When a fi l e is
prin ted , these d i mensions may be determined in one of the fol lowing four
ways:

3-78 USER'S GUIDE

• by the printer's default dimensions

Printing Files

• by the default dimensions established by your system administrator

• by the dimensions provided with a particular form which you have
selected

• by you r spl'Ci fica t ion for tha t pn rt inda r job

To request your own specification for a prin t job, use the -o option to lp,
and speci fy the desired sizes in " scaled decimal numbers . " The term " scaled
decimal number " refers to a non-negative number used to indicate a uni t of
size. (The type of unit is shown by a " trailing " letter attached to the
number.) Three types of scaled decimal numbers are discussed for the LP
print service: numbers that show sizes in centimeters (marked with a trailing
" c "); numbers that show sizes in inches (marked with a trailing " i "); and
numbers that show sizes in units appropriate to use (without a trailing letter),
such as lines, columns, lines per inch, or characters per inch . The fol lowing
command line shows how to request a print job with your own specifications
for page size and pitch settings (specifications are shown in sdn or scaled
decimal numbers):

$ lp -o " length=sdn width=sdn lpi=sdn cpi=sdn " filename<CR>

For example, to request pages that are 8 - 1/2 inches long and 6-1 /4 inches
wide, type the following command line:

$ lp -o length=??? -o width=???<CR>

where ??? represents the correct scaled decimal numbers for the printer
you are using.

I f you do not specify the page dimensions for your print request, are not
using a form for which those dimensions are defined, and are not using a
printer for which those dimensions have been defined by an administrator,
your job will be printed according to the default dimensions for the type of
printer you are using. These default dimensions are listed in a database called
Terminfo; your system administrator is responsible for maintaining this data
base and can give you details about i t .

USING THE FILE SYSTEM 3-79

Printing Files

For example, if you are using an AT&T Model 455 printer, the default
d imensions for the printer will be as follows:

Page length : 66 lines
Page width : 1 32 columns
Line pitch : 6 lines per inch
Character pitch : 1 2 characters per inch

I f, however, you are using an AT&T Model 470 printer, the default dimen
sions will be slightly different:

Page l ength : 66 lines
Page width: 80 columns
Line pitch: 6 lines per inch
Character pitch : 10 characters per inch

Pages and Copies to be Printed

Some fi l ters al low you to specify a list of pages to be printed so that you
need not print an entire file to obtain a subset of it . Perhaps you want to
proofread a section you have edited, give an excerpt of a file to someone, or
print the portion of a file that remains unprinted after a print job has been
in terrupted . With the proper filter, you can limit the printing of a file to a
subset of pages by using the -P option of the lp command.

for example, suppose you have a thirty-page business report in a file
ca l l l•d july.sales. Your boss wants to include a copy of the summary and a
fl'W of the charts from your report in a package of materials she's putting
together for a new director in your division . Because the charts and summary
appear on a total of five pages, you don't want to print a copy of the entire
thirty-page report. Fortunately, your printer has a filter that allows you to
specify a l ist of pages to be printed. You request only pages 4-6 (for the
charts) and 28-29 (for the summary) :

$ lp -P 4-6,28,29 july.sales<CR>

I f you do not have any filters or if your filters do not accept a list of pages
to print, any requests you make with the -P option will be rejected and you
wil l be notified of the failure.

3-80 USER'S GUIDE

Printing Files

Your system administrator installs and maintains fil ters for your system.
Check with your administrator to find out if filters are available and
whether they will accept the -P option and l ists of pages to be printed .

By specifying a list of pages with -P, you can request that prin ting be
sta rted in the middle of a file and that certa i n pages be skipped . You can
present your list of pages in any order; the pages wil l be prin ted in ordt•r of
ascending page number. Also, the LP print system will drop a n y dupl icate
requests for pages so that only one copy of each page will be prin ted .

If you do not include the -P option on the command line, the entire fi le
will be printed.

If you want to have more than one copy made, you can request a multiple
printing by issuing the -n (for " number ") option . For example, to have four
copies made, enter a command line such as the fol lowing:

lp -n 4 filename<CR>

When you do not use this option, only one copy is made by default .

Queue Priority

As you and other users send requests for prin t jobs to the prin ters on your
system , your requests are arranged in a queue that determ ines thL' ord er of
prin ting. H ighest priority is given to requ Ps ts tha t have been assigm•d ll'vt• l 0
priori ty; lowest priority is given to requests with a level of 39 . Whether your
job is assigned high or low priority depends on several factors .

First, the default value for job priority on your system is 20, unless your
system administrator has defined it otherwise. Every job you submit to a
printer will be given this medium-level priority. If your administrator has
redefined the default priority level so that it is now, for example, 1 0, all jobs
that you send to the printer will be given this higher priority.

You can change this priority level, however, by requesting a level other
than default; to do so, use the -q option of the lp command. For example, i f
you need a memo printed immediately, you can send i t t o the front o f the
queue by assigning it the highest priority : 0 .

$ lp -q 0 urgent.memo

USING THE FILE SYSTEM 3-81

Printing Files

Not e t h ,l l t lw systt,•m administrator ca n l i m i t thl:' priori ty level that you can
ww . I f your ,1d m i nistra tor has l i m i ted thl• priori ty levl'l a va i lable to you and
you n•qut-st a priori ty h igher than that, the priori ty level wi l l rl•main, by
defau l t , a t the level set by the administrator. Check with your system
admin istrator to find out what the default priority level is and whether there
is a l i m i t on the priority level you can request.

Pre-Printed Forms

Pre- printed forms, such as payroll checks, are often used by companies
that nel:'d to issue a variety of specialized documents. To accommodate users
who have this need, the LP print service is capable of printing your files on
pre-printed forms. It gives you the option of assigning a form to each print
request you make.

To request a particular form, include the -f option on the command line,
fol lowed by the name of the form. In this example, a request is being made
to have a file called april.payroll printed on a type of form called paycheck
on a printer called printer4:

$ Ip -d printer4 -f paycheck april.payroll<CR>

Thl' LP print service will assume that you want your job to be printed on
the form specified by the printer listed . If the printer you have listed is not
capable of handling this form, it will be rejected . To allow your request to
pri n t on any printer on which the form is mounted, include the -d option, fol
lowed by the argument any. Your command line would be entered as fol
lows:

$ lp -d any -f form_name filename<CR>

The LP print service will then send your request to any printer that is capable
of printing the type of form required for your job.

Character Sets and Print Wheels

The lp command allows you to select a character set or print wheel with
which your job wil l be printed. To do so, include the -S option on the com
mand line as follows:

$ Ip -S character__set filename<CR>

3-82 USER'S GUIDE

Printing Flies

If you have no preference and if you haven't chosen a form that defines a par
ticular character set or print-wheel, you can skip this option .

Content Type

To print a file, a printer must be capable of correctly in terpr£>ting its con
tents . Di fferent printers have di fferent ca pa hi l i t i l'S in t h i s scnsl'; not l'very
printer is able to print every type of content . You can make sure that the LP
print service assigns your request to a printer capable of printing i t by using
the -T option of the lp command.

The -T option allows you to specify the type of printer that can interpret
the content of your file. For example, suppose you want to print a file con
taining your monthly report for July (july.report) and you know that the
AT&T Model 455 printer can interpret i ts contents. You also know that there
is more than one 455 printer in your system, hut you don't know the names
of any of them. The -T option lets you request any Model 455 pri n ter
without speci fying one by name as fol lows:

$ lp -T 455 july.report<CR>

Your file will be forwarded to the first available Model 455 for printing.

What happens if there are no Model 455 printers? The answer depends
on whether or not your system supports any filters . A fil ter is a program that
converts data from one format to another; in this case, the fi l ter converts data
from the format in which it was typed in the fi le to a format which can he
" read " by a printer. If there are no printers that can handle the content type
of your file and your system supports fil ters, your print request will be sent to
a fi l ter. The contents of the file will be converted, by the fil ter, to a content
type that the printer can handle. I f, however, there are no printers that can
handle the content type of your file and there is no fil ter that will convert the
file, your print request will be rejected.

Fil ters make it possible to have files printed by a variety of prin ters .
There may he si tuations, however, in which the content type is a cri t ica l factor
of the job. I n such a case, you do not want to havP a fi ll' pri n ted u n l ess it nm
he printed with the original content type. I f your system supports fi l ters a nd
you do not want your print request to be sen t to one, spec i fy t lw -r option
after the -T option of the lp command as fol lows:

$ lp -T 455 -r july.report<CR>

USING THE FILE SYSTEM 3-83

Printing Files

Note that with the -r option, if your print request cannot be handled by any
pri n ter on your system (because of content type), your print request will be
rej ected .

Fil ters are instal led and maintained on your LP print service by your system
administrator. Ask your administrator for a l ist of content types available to
your system .

No File Breaks between Files

Your print request may consist of more than one file. By default, the LP
print service will assume that you want each file to be printed separately. If
you want the set of fi les to be printed continuously, without having each file
lwgin o n a new page, speci fy the -o option with nofilebreak as follows:

$ lp -o nofilebreak filenames<CR>

Banner-Page Options

The LP print service automatically prints a title page (known here as a
" banner " page) with every job printed. If you do not want a banner page
printed with your job, include the -o option with nobanner as follows:

$ lp -o nobanner filename<CR>

Your system administrator can tum off this option for particular printers. If
your administrator has done so, any request you make for such a printer will
be rejected.

M essages from the Print Service

The LP print service does not automatically notify you when your job has
been printed. To make sure you will be notified, list the -w option on the lp
command line as follows:

$ lp -w filename<CR>

The print service will display a message on your terminal screen to let you
know when your files have been printed. If you are not logged in when the
message is ready to be sent, the message will be sent to you via electronic
mai l instead .

3-84 USER'S GUIDE

Printing Files

If you want to be notified through electronic mail that your files have
been printed, include the -m option on your command line as fol lows:

$ lp -m filename<CR>

Changing a Request

Suppose you have just noticed that when submitting a request to the print
service a little while ago, you forgot to request a longer than usual page
length for the job, as you had originally planned to do. Don't worry; i t may
not be too late to change your print request! As long as the job has not actu
ally been printed, you may submit changes to your original request. Simply
execute the lp command again, this time including the -i option, followed by
the ID number assigned to your request. The -i option signals your inten t to
change the previous request to the printer.

For example, suppose your original request was for a page h•ngth of 50, a
width of 70, no banner, and 3 copies:

$ lp -o " length=50,width=70,nobanner " -n 3 july.report<CR>
request id is printer2-23

When you later remembered to request a longer page, you reissued the com
mand as follows:

$ lp -i printer2-23 -o " length=60,width=70,nobanner " <CR>

Notice that al though there were two options in the original command line (-o
and -n), only one of them (-o) is included in the change request . A change
request should specify only those options from the original command line for
which you want new values.

However, as this example also demonstrates, when changing the values in
a -o option, you must not only request additional arguments or request dif
ferent arguments in place of existing ones, but you must also repeat those
arguments that you want to preserve. (This requirement also appl ies to the -y
option .) Look again at the command lines in the the preceding example.
Notice that three arguments are given for the -o option : " length, 1 1 1 1 width, 1 1

and " nobanner. 1 1 Although only one argument to -o is being changed (from
11 length=SO " to 11 length=60 11 }, all three arguments art• l i s lt•d i n Lhl' change
request. Repeating the 11 width " and " nobanner " arguments is necessary;
they are not otherwise preserved from the original command line.

USING THE FILE SYSTEM 3-85

Printing Files

Canceling a Request

To cancel a request to a printer, type the cancel command and specify the
request ID number. For example, to cancel the printing of the file letters
(n•quest ID laser-6885), type

$ cancel laser-6885<CR>

Note that you can only cancel your own requests .

Getting Printer Status and Information: lpstat
At some time a fter issuing a request for a print job, you may want to find

out whPther it is proceeding properly or if problems have arisen . You can
check the status of all print requests by executing the lpstat command . When
issued a lone, without any options, this command will tell you the status of all
requests you have made to the LP print service.

I f you do not want to know about all print requests, you can specify a
su bset of requests by listing the request ID numbers for those jobs on the
command line. (Whenever a print request is issued, a request ID number for
it is d isplayed on the screen .)

$ lpstat " laser-6885, printer-227 " <CR>

In this example, you are asking for the status of two print requests with the ID
numbers " laser-6885 " and " printer-227. "

In addition, by using various options, you can request the following types
of in formation from lpstat:

• the status of local printers

• a list of available pre-printed forms

• a list of available character sets and print wheels

• a l ist of available printers

Thl' rest of this section contains instructions for getting these types of informa
t i on by issu ing the options of the Ipstat command .

3-86 USER'S GUIDE

Printing Files

What is the Status of the Printers?

First, if you do not already know, you may want to find out the names of
the printers in your system. Which printers are available to you depends on
your U N I X System faci l ity . Ask your system administrator for the names of
avai lable l ine printers, or type the following command line:

$ lpstat -p ali<CR>

A l ist of printers will be displayed, showing which printers are enabled and
which are disabled, as follows:

pr:inter phil_1 enabled since Aug 22 16 : 00 . available .

pr:inter phil_3 disabled since Aug 26 22 : 00 . available .

If you already have the names of the printers on your system, you can get
a status report on one or more of them by listing the appropriate names in
place of the argument all in the preceding example:

$ lpstat -p phiL1,phiL3<CR>

More detailed status reports can be obtained by adding the -1 option to
the lpstat command line as follows:

$ lpstat -p phiL1,phiL3 -I<CR>

For each printer you have specified, a status report will be displayed . Each
report will include the following: the printer type, the types of forms
mounted on it, acceptable content types, the names of users allowed to use
the printer, the default dimensions for page size and character pitch, and so
on.

The system administrator may restrict access to certain printers. If you are
not allowed access to a printer, the phrase not available will appear.

What Forms are Available?

To find out which pre-printed forms are available on your system, issue
the lpstat command with the -f option and the argument all as follows:

$ lpstat -£ all

The command prints a Jist of all the forms that your system recognizes and
can handle. Forms that are mounted on printers in your system are identi fied
as follows:

fonn payroll_check is available to you, nomted an phil_4

USING THE FILE SYSTEM 3-87

Printing Files

Forms that are recognized and can be handled by your system but are not
mounted on printers are l isted as follows:

fonn payroll_check is available to you

The system administrator may restrict access to certain forms. If you are not
allowed access to a form, the phrase is not available to you will appear.

If you want to know whether specific forms are available on your system,
list them after the -f option in place of the argument all, as in the following
example:

$ lpstat -f bilLl,bilL2

If you want detailed information about any or all the available forms, use
the -1 option with lpstat -f as follows:

$ lpstat -f all -1

A description of each form, including page length, page width, number of
pages, ribbon color, and so on, will be displayed.

Which Character Sets or Print Wheels are Available?

First, you may want to find out which character sets and/or print wheels
are available on your LP print system. Issue the lpstat command with the
-S option and the argument all as follows:

$ lpstat -S all <CR>

A list of all character sets and print wheels that can be used on printers in
your system will be displayed. If you want to check on whether one or more
specific character sets or print wheels are available, list it on the command line
in place of the argument all:

$ lpstat -S " charseLl wheeL3 " <CR>

Enabling and Disabling a Printer

3-88

Whether or not you, as a computer user, are able to issue the commands to
enable and disable printers depends on your system administrator. Because
these functions are administrative, it is left to the discretion of the system
administrator to decide whether or not to make the enable and disable
commands available to users.

USER'S GUIDE

Printing Files

Before a printer is able to start printing files requested through the lp
command, it must be activated. You can activate a printer by issuing the
enable command with one argument: a list of printers.

$ enable printer1 printer2 printer3<CR>

You can veri fy that you have enabled a printer by requesting a sta tus
report for it (see 11 What is the Status of the Printers? 1 1 above).

If you do not want a printer to continue taking print requests, you must
deactivate it by issuing the disable command.

$ disable printerl <CR>

The printer will stop printing the current job and save it to complete later.

There are other ways to have your current job handled, however. You
may have the current job completed immediately, before the printer is dis
abled, by using the -W option. On the other hand, you may not care whether
or not it is completed at all (either immediately or later) . If so, specify the
-c option; any requests that are currently being printed will be cancelled and
thrown out as the printer is disabled. The -W and -c options are mutual ly
exclusive.

Finally, when you disable a printer, it is a good idea to record the reason
for your action so that other users may understand why a particu lar pri n te r is
unavailable. To record your reason, add the -r opt ion , fol lowed by a n•ason,
to the command line. Be sure to enclost' the words that make up you r n•n son
in double quotes so that they will be treated as a single argument :

$ disable -r 1 1 disabling for reconfiguration 1 1 printer42b<CR>

The reason you provide will be displayed by the lpstat command when a user
requests a status report on that printer. (If you do not supply a reason, lpstat
wil l provide a default reason .)

USING THE FILE SYSTEM 3·89

Printing Files

Summary

Fi�u n• 3-29 su mmarizes tlw syntax and capabi l i t i£'s of l h l• lp mm mand.

Command Recap

lp requests a paper copy of a file from a printer

command options arguments

lp (as listed) file(s)

Description: The lp command requests that specified files be printed by
a printer, thus providing paper copies of the contents.

Options: -d dest Allows you to choose dest as the printer or class
of printers to produce the paper copy. You do
not have to use this option if the administrator
has set a default destination or if you have set
the LPDEST environment variable.

-y mode Requests special printing modes, such as por-
trait or landscape. (This option requires a spe-
cial filter; check with your system administrator
to find ou t whether your system has an
approprict te fi l ter.)

-o option Defines page dimensions: length and width,
number of lines per inch, and number of char-
acters per inch (-o performs other tasks, too;
see lp(l) in the User'sjSystem Administrator's
Reference Manual).

3·90 USER'S GUIDE

Printing Flies

Command Recap

lp requests a paper copy of a file from a printer

command options arguments

lp (as listed) file(s)

-P pages

-n copies
-f form

-S char_set

-T type
-w

-m

-q level

Specifies subset of pages to be printed. (This
option requires a special filter; check with your
system administrator to find out whether your
sy�>tem has an appropriate filter.)
Specifies number of copies to be made.
Specifies pre-printed form on which fi les are to
be printed .
Specifies character set or print wheel to be
used.
Specifies content type of print request.
Notifies you by screen message when print job
is complete.
Notifies you by mail when print job is com
plete. ?-i req_id?T { Allows you to change a
print request already issued (but not yet
printed).
Allows you to specify a priority level for your
job request.

Remarks: You can cancel a request to the printer by typing cancel
and the request ID given to you by the system when
the request was acknowledged.

Check with your system administrator for information
on additional and/or different commands for printers
that may be available at your location.

Figure 3-29: Summary of the lp Command

USING THE FILE SYSTEM 3-91

4 Overview of the Tutorials

Introduction

Text Editing
What is a Text Editor?
How Does a Text Editor Work?

• Text Editing Buffers
• Modes of Operation

Line Editor
Screen Editor

The Shell
Customizing Your Computing Environment
Programming in the Shell

Communicating Electronically

Programming in the System

4-1

4-2

4-2

4-2

4-3

4-4

4-4

4-5

4-7

4-7

4-9

4-1 2

4-1 3

OVERVIEW OF THE TUTORIALS

Introduction

This chapter serves as a transition between the overview that comprises
the first three chapters and the tutorials in the following four chapters.
Specifically, it provides an overview of the subjects covered in these tutorials:
text editing, working in both the standard shell and the C-shell, and commun
icating electronically. Text editing is covered in Chapter 5, " Line Editor
Tutorial, " and Chapter 6, " Screen Editor Tutorial . " How to work and pro
gram in the standard shell is taught in Chapter 7, " Shell Tutorial, " and
Chapter 8, " C-Shell Tutorial, " illustrates how to work and program in the C
shell. Finally, methods of electronic communication are covered in Chapter 9,
" Communication Tutorial . "

OVERVIEW OF THE TUTORIALS 4·1

Text Editing

Using the file system is a way of life in a UNIX System environment.
This sPction will teach you how to create and modify files with a software tool
ca l led a text editor. The section begins by explaining what a text editor is and
how it works. Then it introduces two types of text editors supported on the
U N IX System: the line editor, ed, and the screen editor, vi (short for visual
editor) . A comparison of the two edi tors is also included. For detailed infor
mation about ed and vi, see Chapters 5 and 6.

What is a Text Editor?

Whl•never you r(•v isl' a ll'lter, memo, or report, you must perform one or
more of the fol lowing tasks: insert new or additional material, delete
unneeded material, transpose material (sometimes called cutting and pasting),
and, finally, prepare a clean, corrected copy. Text editors perform these tasks
at your d irection, making writing and revising text much easier and quicker
than if done by hand.

The U N I X System text editors, l ike the UNIX System shell, are interactive
programs; they accept your commands and then perform the requested func
tions. From the shell's point of view, the editors are executable programs.

A major difference between a text editor and the shell, however, is the set
of commands that each recognizes. All the commands introduced up to this
point belong to the shell's command set. A text editor has its own distinct set
of commands that allow you to create, move, add, and delete text in files, as
Wl' l l as acqu i re text from other fi les.

How Does a Text Editor Work?

To understand how a text editor works, you need to understand the
environment created when you use an editing program and the modes of
operation understood by a text editor.

4-2 USER'S GUIDE

Text Editing

Text Editing Buffers

When you use a text editor to create a new file or modify an existing one,
you first ask the shell to put the editor in control of your computing session.
As soon as the editor takes over, it .. llocates a temporary work space called
the editing buffer; any information that you enter while editing a file is stored
in this buffer where you can modify it.

Because the buffer is a temporary work space, any text you enter and any
changes you make to it are also temporary. The buffer and its contents will
exist only as long as you are editing. If you want to save the file, you must
tell the text editor to write the contents of the buffer into a file. The file is
then stored in the computer's memory. If you do not, the buffer's contents
will disappear when you leave the editing program. To prevent this from
happening, the text editors send you a reminder to write your file if you
attempt to end an editing session without doing so.

If you have mC�de a critical mistake or are unhappy with the edited ver
sion, you can choose to leave the editor without writing the file. By
doing so, you leave the original file intact; the edited copy disappears.

Regardless of whether you are creating a new file or updating an existing
one, the text in the buffer is organized into lines. A line of text is simply a
series of characters that appears horizontally across the screen and is ended
when you press the <RETURN> key. Occasionally, files may contain a l ine
of text that is too long to fit on the terminal screen . Some terminals automati
cally display the continuation of the line on the next row of the screen; others
do not.

OVERVIEW OF THE TUTORIALS 4·3

Text Editing

Modes of Operation

Text editors are capable of understanding two modes of operation: com
mand mode and text input mode. When you begin an editing session, you
wi l l bt> placed automatically in command mode. In this mode you can move
around in a fi le, search for patterns in it, or change existing text. However,
you cannot create text while you are in command mode. To do this, you must
be in text input mode. While you are in this mode, any characters you type
are placed in the buffer as part of your text file. When you have finished
entering text and want to run editing commands again, you must return to
command mode.

Because a typical editing session involves moving back and forth between
these two modes, you may sometimes forget which mode you are working in.
You may try to enter text while in command mode or a command while in
input mode. This is something even experienced users do from time to time.
It wil l not take long to recognize your mistake and determine the solution
a fter you complete the tutorials in Chapters 5 and 6.

Line Editor

Thl' l ine edi tor, accessed by the ed command, is a fast, versatile program
for pn•pari ng tl•xt fi les. It is cal led a l ine editor because it manipulates text on
a l ine-by- l ine basis. This means you must specify, by l ine number, the line
containing the text you want to change. Then ed prints the line on the screen
where you can modify it.

This text editor provides commands with which you can change lines,
print l ines, read and write files, and enter text. In addition, you can invoke
the line editor from a shell program; something you cannot do with the screen
editor. (See Chapter 7 for information on basic shell programming tech
niques.)

The l ine editor (ed) works well on video display terminals and paper
printing terminals. It will also accommodate you if you are using a slow
speed telephone line. (The visual editor, vi, can be used only on video
display terminals.) Refer to Chapter 5, " line Editor Tutorial, " for instructions
on how to use ed. Also see Appendix C for a summary of line editor com
mands.

4·4 USER'S GUIDE

Text Editing

Screen Editor

The screen editor, accessed by the vi command, is a display-oriented,
interactive software tool . It allows you to view the file you are editing a page
at a time. This editor works most efficiently when used on a video display
terminal operating at 1 200 or higher baud.

For the most part, you modify a file (by adding, deleting, or changing text)
by positioning the cursor at the point on the screen where the modification is
to be made and then making the change. The screen editor immediately
displays the results of your editing; you can see the change you made in the
context of the surrounding text. Because of this feature, the screen editor is
considered more sophisticated than the line editor.

Furthermore, the screen editor offers a choice of commands. For example,
a number of screen editor commands allow you to move the cursor around a
file. Other commands scroll the file up or down on the screen. Still other
commands allow you to change existing text or to create new text. In addition
to its own set of commands, the screen editor can access line editor com
mands.

The trade-off for the screen editor's speed, visual appeal, efficiency, and
power is the heavy demand it places on the computer's processing time.
Every time you make a change, no matter how simple, vi must update the
screen. Refer to Chapter 6, 11 Screen Editor Tutorial, 11 for instructions on how
to use vi. Appendix D contains a summary of screen editor commands, and
Figure 4-1 compares the features of the line editor (ed) and the screen editor
(vi).

OVERVIEW OF THE TUTORIALS 4·5

Text Editing

Feature

Recommended
terminal type

Speed

Versatility

Sophistication

Power

Advantages

Line Editor (ed)

Video display or
paper-printing.

Accommodates high
and low-speed data
transmission lines.

Can be specified to
run from shell scripts
as well as used during
editing sessions.

Changes text quickly.
Uses comparatively
small amounts of pro
cessing time.

Provides a full set of
editing commands.
Standard UNIX Sys
tem text editor.

There are fewer com
mands you must learn
to use ed.

Screen Editor (vi)

Video display.

Works best via high
speed data transmission
lines (1200+ baud).

Must be used interac
tively during editing ses
sions.

Changes text easily.
However, can make
heavy demands on com
puter resources.

Provides its own editing
commands and recog
nizes line editor com
mands as well .

vi allows you to see the
effects of your editing in
the context of a page of
text, immediately.
(When you use the ed
editor, making changes
and viewing the results
are separate steps.)

Figure 4- 1 : Comparison of Line and Screen Editors (ed and vi)

4-& USER'S GUIDE

The Shell

Every time you log in to the UNIX System, you start communicating with
the shell and continue to do so until you log off the system. However, while
you are using a text editor, your interaction with the shell is suspended; it
resumes as soon as you stop using the editor.

The shell is much like other programs, except that instead of performing
one job, as cat or Is does, it is central to your interactions with the UNIX Sys
tem. The shell's primary function is to act as a command interpreter between
you and the computer system. As an interpreter, the shell translates your
requests into language the computer understands, calls requested programs
into memory, and executes them.

This section introduces methods of using the shell that enhance your abil
ity to use system features. In addition to using it to run a single program, you
may also use the shell to

• interpret the name of a file or a directory you enter in an abbreviated
way using a type of shell shorthand

• redirect the flow of input and output of the programs you run

• execute multiple programs simultaneously or in a pipeline format

• tailor your computing environment to meet your individual needs

In addition to being the command language interpreter, the shell is a pro
gramming language. For detailed information on how to use the shell as a
command interpreter and a programming language, refer to Chapter 7.

Customizing Your Computing Environment

This section deals with another control provided by the shell : your
environment. When you log in to the UNIX System, the shell automatically
sets up a computing environment for you. The default environment set up by
the shell includes these variables:

HOME

LOGNAME

your login directory

your login name

OVERVIEW OF THE TUTORIALS 4·7

The Shell

PATH route the shell takes to search for executable files or com
mands (typically PATH=:/bin:jusrjbin)

The PATH variable tells the shell where to look for the executable pro
gram in voked by a command. Therefore, it is used every time you issue a
command. If you have executable programs in morP than one directory, you
will want all of them to be searched by the shell to make sure every command
can be found.

You can use the default environment supplied by your system or you can
tailor an environment to meet your needs. If you choose to modify any part
of your environment, you can use either of two methods to do so. If you
want to change a part of your environment only for the duration of your
current computing session, specify your changes in a command line (see
Chapter 7 for details). However, if you want to use a different environment
(not the default environment) regularly, you can specify your changes in a ffie
that will set up the desired environment for you automatically every time you
log in. This file must be called .profile and must be located in your home
directory.

The .profile typically performs some or all of the following tasks: checks
for mail; sets data parameters, terminal settings, and tab stops; assigns a char
acter or character string as your login prompt; and assigns the erase and kill
functions to keys. You can define as few or as many tasks as you want in
your .profile. You can also change parts of it at any time. For instructions on
modifying a .profile, see " Modifying Your Login Environment " in Chapter 7.

Now check to see whether or not you have a .profile. If you are not
already in your home directory, c:d to it. Then examine your .profile by issu
ing this command :

cat .profile

If you have a .profile, its contents will appear on your screen. If you do not
have a .profile you can create one with a text editor, such as ed or vi. (See
" Modi fying Your Login Environment " in Chapter 7 for instructions.)

4-8 USER'S GUIDE

The Shell

Programming in the Shell

The shell is not only the command language interpreter but also a com
mand level programming language. This means that instead of always using
the shell strictly as a liaison between you and the computer, you can also pro
gram it to repeat sequences of instructions automatically. To do this, you
must create executable files containing lists of commands. These files are
called shell procedures or shell scripts. Once you have a shell script for a par
ticular task, you can simply request that the shell read and execute the con
tents of the script whenever you want to perform that task.

Like other programming languages, the shell provides such features as
variables, control structures, subroutines, and parameter passing. These
features enable you to create your own tools by linking together system com
mands.

For example, you can combine three UNIX System programs (the date,
who, and we commands) into a simple shell script called users that tells you
the current date and time, and how many users are working on your system.
If you use the vi editor (described in Chapter 6) to create your script, you can
follow this procedure. First, create the file users with the editor by typing

vi users<CR>

The editor will draw a blank page on your screen and wait for you to enter
text.

OVERVIEW OF THE TUTORIALS 4·8

The Shell

cursor

•users• [New file]

Enter the three UNIX System commands on one line:

date; who I we -1

Then write and quit the file:

:wq

Make users executable by adding execute permission with the chmod com
mand:

chmod ug+x users<CR>

Now try running your new command. The following screen shows the kind
of output you will get:

4-10 USER'S GUIDE

$ users<CR>
Sat Mar 1 16 :40 : 12 EST 1986

4
$

The Shell

The output tells you that four users were logged in on the system when
you typed the command at 1 6:40 on Saturday, March 1, 1 986.

For step-by-step instructions on writing shell scripts and information
about more sophisticated shell programming techniques, see Chapter 7, " Shell
Tutorial . "

OVERVIEW OF THE TUTORIALS 4·1 1

Communicating Electronically

As a UN IX System user, you can send messages or transmit information
stored in fi les to other users who work on your system or another UNIX Sys
tl•m . To do so, you must be logged in on a UNIX System that is capable' of
l·nm m u n icati ng with the UNIX System to which you want to send informa
tion . The command you use to send information depends on what you are
send i ng . This guide introduces you to these communication programs:

mail This command allows you to send messages or files to
other UNIX System users, using their login names as
addresses. It also allows you to receive messages sent by
other users. mail holds messages and lets the recipients
read them at their convenience.

mailx This command is a sophisticated, more powerful version of
mail It offers a number of options for managing the elec
tronic mail you send and receive.

uucp This command is used to send files from one UNIX System
to another. (Its name is an acronym for UNIX to UNIX
System copy.) You can use uucp to send a file to a direc
tory you specify on a remote computer. When the file has
been transferred, the owner of the directory is notified of
its arrival by mail

uutojuupick These commands are used to send and retrieve files. You
can usc the uuto command to send a file(s) to a public
directory; when it is available, the recipient is notified by
mail that the file(s) has arrived. The recipient then can use
the uupick command to copy the file(s) from the public
directory to a directory of choice.

uux This command lets you execute commands on a remote
computer. It gathers files from various computers, executes
the specified command on these files, and sends the stan
dard output to a file on the specified computer.

Chapter 9 offers tutorials on each of these commands.

4·1 2 USER'S GUIDE

Programming in the System

The UNIX System provides a powerful and convenient environment for
programming and software development, using the C programming language,
FORTRAN-77, BASIC, Pascal, and COBOL. As well, the UNIX System pro
vides some sophisticated tools designed to make software development easier
and to provide a systematic approach to programming.

For information on available UNIX System programming languages, see
the Product Overview or Documentation Roadmap.

For information on the general topic of programming in the U N I X System
environment, see the Programmer's Guide, which provides tutorials on the fol
lowing five tools:

sees
make

lex

yacc

Source Code Control System

a program that maintains programs

a program that g<>m•ra ll'S progra ms for s i m p ll• l l•x ica l tasks

a program that generates parser programs

OVERVIEW OF THE TUTORIALS 4-1 3

5 Line Editor Tutorial (ed)

Introducing the Line Editor 5-1

Suggestions for Using this Tutorial 5-2

Getting Started 5-3
How to Enter ed 5-3
How to Create Text 5-4

How to Display Text 5-5

How to Delete a Line of Text 5-7

How to Move Up or Down in the File 5-9

How to Save the Buffer Contents in a File 5-10

How to Quit the Editor 5-1 1

Exercise 1 5-1 4

General Format of ed Commands 5-15

Line Addressing 5-16

Numerical Addresses 5-16

Symbolic Addresses 5-17

• Symbolic Address of the Current Line 5-1 7

• Symbolic Address of the Last Line 5-1 8

• Symbolic Address of the Set of All Lines 5-19

LINE EDITOR TUTORIAL (ed)

Line Editor Tutorial (ed)

• Symbolic Address of the Current Une through

the Last Line 5-20
• Relative Addresses: Adding or Subtracting Lines

from the Current Line 5-20
• Character String Addresses 5-22
• Specifying a Range of Lines 5-25

• Specifying a Global Search 5-27

Exercise 2 5-30

Displaying Text in a File 5-31

Displaying Text Alone: the p Command 5-31

Displaying Text with Line Addresses: the n
Command 5-32

Creating Text 5-34
Appending Text: the a Command 5-34

Inserting Text: the i Command 5-37
Changing Text: the c Command 5-39

Exercise 3 5-42

Deleting Text 5-44

Deleting Lines: the d Command 5-44

Undoing the Previous Command: the u Command 5-45

How to Delete in Text Input Mode 5-47

• Escaping the Delete Function 5-47

Substituting Text 5-49

ii USER'S GUIDE

Line Editor Tutorial (ed)

Substituting on the Current Line 5-50
Substituting on One Line 5-51
Substituting on a Range of Lines 5-52
Global Substitution 5-54

Exercise 4 5-58

Special Characters 5-6o

Exercise 5 5-71

Moving Text 5-73
Move Lines of Text 5-73
Copy Lines of Text 5-76
Joining Contiguous Lines 5-79
Write Lines of Text to a File 5-80
Problems 5-81
Read in the Contents of a File 5-82

Exercise 6 5-84

Other Useful Commands and
Information 5-85

Help Commands 5-85

Display Nonprinting Characters 5-88

The Current File Name 5-89

Escape to the Shell 5-91

Recovering From System Interrupts 5-92

Conclusion 5-93

LINE EDITOR TUTORIAL (ed) IIi

Line Editor Tutorial (ed)

Exercise 7

Answers to Exercises
Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise 5
Exercise 6
Exercise 7

lv USER'S GUIDE

5-95

5-96

5-96

5-98

5-1 01

5-1 04

5-1 07

5-1 1 0

5-1 1 3

Introducing the Line Editor

This chapter is a tutorial on the line editor, ed. ed is versatile and
requires little computer time to perform editing tasks. It can be used on any
type of terminal. The examples of command lines and system responses in
this chapter will apply to your terminal, whether it is a video display terminal
or a paper printing terminal . The ed commands can be typed in at your ter
minal or they can be used in a shell program (see Chapter 7, " Shell
Tutorial ") .

ed is a line editor; during editing sessions it is always pointing at a single
line in the file called the current line. When you access an existing fi le, ed
makes the last line the current line so you can start appending tex t easi l y .
Unless you speci fy the number of a di fferent l ine or range of l i m•s, ed wi l l
perform each command you issue on the current line. In add i tion to let t ing
you change, delete, or add text on one or more l ines, ed a l lows you to add
text from another file to the buffer.

During an editing session with ed, you are altering the contents of a file in
a temporary buffer, where you work until you have finished creating or
correcting your text. When you edit an existing file, a copy of that file is
placed in the buffer and your changes are made to this copy. The changes
have no effect on the original file until you instruct ed to move the contents of
the buffer into the file by using the write command.

After you have read through this tutorial and tried the examples and exer
cises, you will have a good working knowledge of ed. The following basics
are included:

• entering the line editor ed, creating text, writing the text to a file, and
quitting ed

• addressing particular lines of the file and displaying lines of text

• deleting text

• substituting new text for old text

• using special characters as shortcuts in search and substitute pattt>rns

• moving text around in the file, as well as other useful commands and
information

LINE EDITOR TUTORIAL (ed) 5·1

Suggestions for Using this Tutorial

The commands discussed in each section are reviewed at the end of that
section. A summary of all ed commands introduced in this chapter is found
in Appendix C, where they are listed by topic.

At the end of some sections, exercises are given so you can experiment
with the commands. The answers to all exercises are at the end of this
chapter.

The notational conventions used in this chapter are those used throughout
this Guide. They are described in the Preface.

5-2 USER'S GUIDE

Getting Started

The best way to learn ed is to log in to the UNIX System and try the
examples as you read this tutorial . Do the exercises; do not be afraid to exper
iment. As you experiment and try out ed commands, you will learn a fast and
versatile method of text editing.

In this section you will learn the commands used to

• enter ed

• append text

• move up or down in the file to display a line of text

• delete a line of text

• write the buffer to a file

• quit ed

How to Enter ed

To enter the line editor, type ed and a file name:

ed filename<CR>

Choose a name that reflects the contents of the file. If you are creating a
new file, the system responds with a question mark and the file name:

$ ed new-file<CR>
?new-file

If you edit an existing file, ed responds with the number of characters in the
file:

$ ed old-file<CR>
235

LINE EDITOR TUTORIAL (ed) 5·3

Getting Started

How to Create Text

The editor receives two types of input from your terminal: editing com
mands and text. To avoid confusing them, ed recognizes two modes of edit
ing work: command mode and text input mode. When you work in com
mand mode, any characters you type are interpreted as commands. In input
mode, any characters you type are interpreted as text to be added to a file.

Whenever you enter ed, you are put into command mode. To create text
in your file, change to input mode by typing a (for append) on a line by itself
and pressing the <RETURN> key:

a<CR>

Now you are in input mode; any characters you type from this point will be
added to your file as text. Be sure to type a on a line by itself; if you do not,
the editor will not execute your command.

After you have finished entering text, type a period on a line by itself.
This takes you out of text input mode and returns you to command mode.
Now you can give ed other commands.

The following example shows how to enter ed, create text in a new file
called try-me, and quit text input mode with a period:

$ ed try-me<CR>
? try-me
a· CR,.
This Is the first l ine of tellt. •c CR">
This Is the second line, <CR>
and this Is the third llne.<CR>
.<CR>

5-4 USER'S GUIDE

Getting Started

Notice that ed does not give a responst> to tht> period; i t j ust wa i ts for a
new command. If ed does not respond to a command, you may have forgot

ten to type a period after entering text and may still be in text input mode.
Type a period and press the <RETURN> key at the beginning of a l ine to
return to command mode. Now you can execute edi ting commands. For
example, if you have added some unwanted characters or lines to your text,
you can delete them once you have returned to command mode.

How to Display Text

To display a line of a file, type p (for print) on a line by i tself. The p
command prints the current line, that is, the last line on which you worked .
Continue with the previous example. You have just typed a period to exit
input mode. Now type the p command to see the current line:

$ ed try-me<CR>
? �
a<CR>
This is the first line of text.<CR>
This is the second line,<CR>
and this is the third line.<CR>
.<CR>
p<CR>
and this is the third line .

You can print any line of text by specifying i ts line number (also known
as the address of the line). The address of the first line is 1; of the second, 2;
and so on. For example, to print the second line in the file try-me, type

2p<CR>
This is the second line ,

LINE EDITOR TUTORIAL (ed) 5·5

GeHing Started

You can also use line addresses to print a span of lines by specifying the
addresses of the first and last lines of the section you want to see, separated
by a comma. For example, to print the first three lines of a file, type

1,3p<CR>

You can even print the whole file this way. For example, you can display
a twenty- l ine fi le by typing 1,20p. If you do not know the address of the last
line in your file, you can substitute a $, the ed symbol for the address of the
last line. (These conventions are discussed in detail in the section " Line
Addressing. ")

1,$p<CR>
This is the first line of text.
This is a secozxl. line,
and this is the third line .

I f you forget to quit text input mode with a period, you will add text that
you do not want. Try to make this mistake. Add another line of text to your
try-me file, and then try the p command without quitting text input mode.
Then quit text input mode and print the entire file:

5-6 USER'S GUIDE

p<CR>
and this is the third line .

a<CR>
This is the fourth l ine.<CR>
p <CR>
.<CR>
1,$p<CR>
This is the first line of text .

This is the seamd line ,

and this is the third line .

This is the fourth line .

p

Getting Started

What did you get? The next section will explain how to delete the unwanted
l ine.

How to Delete a Line of Text

To delete text, you must be in the command mode of ed. Typing d
deletes the current line . Try this command on the last example to rem ove the
unwanted line containing p. Display the current l ine (p command), delete i t
(d command), and display the remaining l ines in the fi le (p command) . Your
screen should look like this:

LINE EDITOR TUTORIAL (ed) 5-7

Getting Started

p<CR>
p
d<CR>
1,$p<CR>
This is the first line of text .

This is a second line ,

and this i s the third line .

This is the . fourth line .

ed does not send you any messages to confirm that you have deleted text.
The only way you can verify that the d command has succeeded is by printing
the contents of your file with the p command. To receive verification of your
deletion, you can put the d and p commands together on one command line.
If you repeat the previous example with this command, your screen should
look like this:

p<CR>
p
dp<CR>
This is the fourth line .

5-8 USER'S GUIDE

Getting Started

How to Move Up or Down in the File

To display the l ine below the current l ine, press the <RETU R N > key
whill' in command mode. I f there is no l ine hclow the current l i n L>, ed
n•sponds with a ? and cont inm•s to trl'<t t tht' last l i m• of t ht• fi l l' as t lw curn•nt
l i m• . To display the l int' ahow the t'Urrl•n t l i nl•, press thl• m i n us kt•y (-) .

The fol lowing screen provides examples of how both of thcs£' commands
a rl' used :

�-------------- . .. -------

p<CR>
This is the fourth line .
-<CR>
and this is the third line .

-<CR>
This is a second line ,

-<CR>
This is the first line of text .
<CR>
This is a second line ,
<CR>
and this is the third line .

Notice that by typing -<CR> or <CR>, you can display a line of text without
typing the p command. These commands are also line addresses. Whenever
you type a l ine address and do not follow it with a command, ed assumes that
you want to see the line you have specified. Experiment with these com
mands: create some text, delete a line, and display your file .

LINE EDITOR TUTORIAL (ed) 5-9

GeHing Started

How to Save the Buffer Contents in a File

As we discussed earlier, during an editing session, the system holds your
text in a temporary storage area called a buffer. When you have finished edit
ing, you can save your work by writing it from the temporary buffer to a per
manent fi le in the computer's memory. By writing to a file, you are simply
putt ing a copy of the contents of the buffer into the file. The text in the buffer
is not disturbed, and you can make further changes to it.

It is a good idea to write the buffer text into your file frequently. If an inter
rupt occurs (such as an accidental loss of power to your terminal), you may
lose the material in the buffer, but you will not lose the copy written to
your file.

To write your text to a file, enter the w command. You do not need to
speci fy a file name; simply type w and press the <RETURN> key. If you
have just created new text, ed creates a file for it with the name you specified
when you entered the editor. If you have edited an existing file, the w com
mand wri tes the contents of the buffer to that file by default.

I f you prefer, you can speci fy a new name for your fi le as an argument on
tlw w command line. Be careful not to use the name of a file that already
l'Xists un less you want to replace its contents with the contents of the current
bu ffer. ed will not warn you about an existing file; it w i l l simply overwrite
that fi ll• with your buffer contents.

For example, if you decide you would prefer the try-me file to be called
stuff, you can rename it:

5-1 0 USER'S GUIDE

$ ed try-me<CR>
? try-me
a<CR>
This is the first line of text. <CR>
This is the second line,<CR>
and this is the third line.<CR>

w stuff <CR>
85

Getting Started

Notice the last line of the screen. This is the number of characters in your
text. When the editor reports the number of characters in this way, the write
command has succeeded.

How to Quit the Editor

When you have completed editing your text, write i t from the buffer i n to a

file with the w command. Then leave the editor and return to the shell by
typing q (for quit):

w<CR>
85

q<CR>
$

LINE EDITOR TUTORIAL (ed) 5-1 1

GeHing Started

The system responds with a shell prompt. At this point, the editing buffer
vanishes . If you have not executed the write command, your text in the
buffl'r has also vanished . If you did not make any changes to the text during
your t•d i ting session, no harm is done. However, if you did make changes,
you could lose your work in this way. Therefore, if you type q after changing
the file without writing it, ed warns you with a ?. You then have a chance to
write and quit:

q<CR>
?
w<CR>
85
q<CR>
$

If, instead of writing, you insist on typing q a second time, ed assumes
you do not want to write the buffer's contents to your file and returns you to .
the shell. Your file is left unchanged and the contents of the buffer are wiped
out.

You now know the basic commands needed to create and edit a file using
ed. Figure 5-l summarizes these commands.

5- 1 2 USER'S GUIDE

Getting Started

Command Function

ed file enters ed to edit file

a appends text after the current l ine

. quits text input mode and returns to ed com-
mand mode

p prints text on your terminal

d deletes text

<CR> displays the next line in the buffer (literally,
carriage return)

+ displays the next line in the buffer

- displays the previous line in the buffer

w writes the contents of the buffer to the file

q quits ed and returns to the shell

Figure 5 - l : Summary of ed Editor Commands

LINE EDITOR TUTORIAL (ed) 5·1 3

Exercise 1

Answers for all the exercises in this chapter are found at the end of the
chapter. However, they are not necessarily the only possible correct answers.
Any method that enables you to perform a task specified in an exercise is
correct, even i f i t does not match the answer given.

1 - 1 . Enter ed with a file named junk. Create a line of text containing
Hello World, write it to the file, and quit ed.

Now use ed to create a file called stuff. Create a line of text contain
ing two words, Goodbye world, write this text to the file, and quit ed.

1 -2 . Enter ed again with the file named junk. What was the editor's
response? Was the character count for it the same as the character
count reported by the w command in Exercise 1 - 1 ?

Display the contents o f the file. I s that your file junk?

How can you return to the shell? Try q without writing the file. Why
do you think the editor allowed you to quit without writing to the
bu ffer?

1 -3 . Enter ed with the file junk. Add a line:

Wendy's horse came through the window.

Since you did not specify a line address, where do you think the line
was added to the buffer? Display the contents of the buffer. Try quit
ting the buffer without writing to the file. Try writing the buffer to a
d i fferent file called stuff. Notice that ed does not warn you that a file
ca l l ed stuff already exists . You have erased the contents of stuff and
replaced them with new text.

5-1 4 USER'S GUIDE

General Format of ed Commands

ed commands have a simple and regular format:

[address1 [,address2]]command[argument]<CR>

The brackets around address l , address2, and argument show that these are
optional . The brackets are not part of the command line.

address1 ,address2

command

argument

The addresses give the position of lines in the buffer.
Addressl through address2 gives you a range of lines that
will be affected by the command. I f address2 is omitted,
the command will affect only the line specified by
addressl .

The command is one character and tells the editor what
task to perform.

The arguments to a command are those parts of the text
that will be modified, a file name, or another line
address.

This format will become clearer to you when you begin to expt>ri mPnl
with the ed commands.

LINE EDITOR TUTORIAL (ed) 5· 1 5

Line Addressing

A l i m' add ress is a character or group of charactE'rs that identifies a l ine of
text. Bl'fore ed can execute commands that add, delete, move, or change text,
it must know the line address of the affected text. Type the line address
before the command:

[address1], [address2]command<CR>

Both address1 and address2 are optional. Specify address1 alone to request
action on a single line of text; specify both address1 and address2 to request a
span of lines. If you do not specify any address, ed assumes that the line
address is the current line.

The most common ways to specify a line address in ed are

• by entering line numbers (assuming that the lines of the files are con
secutively numbered from 1 to n, beginning with the first line of the
file)

• by entering special symbols for the current line, last line, or a span of
l ines

• by adding or subtracting lines from the current line

• by searching for a character string or word on the desired line

You can access one l ine or a span of lines, or make a global search for all
l ines containing a specified character string. (A character string is a set of suc
cessive characters, such as a word.)

Numerical Addresses

ed gives a numerical address to each line in the buffer. The first line of
the bu ffer i s 1 , the second l ine is 2, and so on, for each line in the buffer.
Any l i m' can be accessed by ed with its line address number. To see how line
numbers address a line, enter ed with the file try-me and type a number:

5-1 6 USER'S GUIDE

$ ed try-me<CR>
1 10
l <CR>
This is the first line of text .

3<CR>
and this is the third line .

Line Addressing

Remember that p is the default command for a line address speci fied
wi thout a command. Because you gave a line address, ed assumes you want
that line displayed on your terminal.

Numerical line addresses frequently change in the course of an editing
session. Later in this chapter you will create lines, delete l ines, or move a line
to a different position. This will change the line address numbers of some
lines. The number of a specific line is always the current position of that line
in the editing buffer. For example, if you add five lines of text between line 5
and 6, line 6 becomes line 1 1 . If you delete line 5, line 6 becomes line 5.

Symbolic Addresses

Symbolic Address of the Current Line

The current line is the line most recently acted on by any ed command. If
you have just entered ed with an existing file, the current line is the last line
of the bu ffer. The symbol for the address of the current line is a period.
Therefore, you can display the current line simply by typing a period (.) and
pressing the <RETURN> key.

Try this command in the file try-me:

LINE EDITOR TUTORIAL (ed) 5-1 7

Line Addressing

$ ed try-me<CR>
1 1 0

.<CR>
This is the fourth line.

The . is the address. Because a command is not specified after the period, ed
executes the default command p and displays the line found at this address.

To get the line number of the current line, type the following command:

. = <CR>

ed responds with the line number. For example, in the try-me file, the
current line is 4:

.<CR>
This is the fourth line .
. = <CR>
4

Symbolic Address of the Last Line

The symbolic address for the last line of a file is the $ sign. To verify that
the $ sign accesses the last line, access the try-me file with ed and specify this
address on a line by itself. (Keep in mind that when you first access a file,
your current line is always the last line of the file.)

5 . . 1 8 USER'S GUIDE

$ ed try-me<CR>
1 10
.<CR>
This is the fourth line .
$<CR>
This is the fourth line .

Line Addressing

Remember that the $ address within ed is not the same as the $ prompt from
the shell .

Symbolic Address of the Set of All Lines

When used as an address, a comma (,} refers to all the lines of a fi le, from
the first through the last line. It is an abbreviated form of the string men
tioned earlier that represents all lines in a file, 1,$. Try this shortcut to print
the contents of try-me:

,p<CR>
This is the first line of text.
This is the seoand line,
and this is the third line .

This is the fourth line .

LINE EDITOR TUTORIAL (ed) S..19

Line Addressing

Symbolic Address of the Current Line through the Last
Line

The semicolon (;) represents a set of lines, beginning with the current line
and ending with the last line of a file. It is equivalent to the symbolic address
. ,$. Try it with the file try-me:

2p<CR>
This is the seoand line,
;p<CR>
This is the seoond line,

aJld this is the t:hi%d line.
This is the foorth line .

Relative Addresses: Adding or Subtracting Lines from the
Current Line

You may often want to address lines with respect to the current line. You
can do this by adding or subtracting a number of lines from the current line
with a plus (+) or a minus (-) sign. Addresses derived in this way are called
relative addresses. To experiment with relative line addresses, add several
more l ines to your file try-me, as shown in the following screen. Also, write
thl' buffer contents to the file so your additions will be saved:

5-20 USER1S GUIDE

$ ed try-me<CR>
1 10
.<CR>
'lhis is the foorth line.

a<CR>
five<CR>
six<CR>
seven<CR>
eight<CR>
nine<CR>
ten<CR>
.<CR>
w<CR>
140

Line Addressing

Now try adding and subtracting line numbers from the current line:

4<CR>
'1his is the foorth line .

+3<CR>
seven
-S<CR>
'1his is a second line ,

What happens if you ask for a line address that is greater than the last line, or
if you try to subtract a number greater than the current line number?

LINE EDITOR TUTORIAL (ed) 5-21

Line Addressing

S<CR>
five

-6<CR>
?
.= <CR>
5

+7<CR>
?

Notice that the current line remains at line 5 of the buffer. The current line
changes only if you give ed a correct address. The ? response means there is
an error. " Other Useful Commands and Information, " at the end of this
chapter, explains how to get a help message that describes the error.

Character String Addresses

You can search forward or backward in the file for a line containing a par
ticular character string. To do so, specify a string preceded by a delimiter.

Delimiters mark the boundaries of character strings; they tell ed where a
string starts and ends. The most common delimiter is / (slash) used in the
following format:

/pattern

When you specify a pattern preceded by a / (slash), ed begins at the current
line and searches forward (down through subsequent lines in the buffer) for
the next line containing the pattern . When the search reaches the last line of
the buffer, ed wraps around to the beginning of the file and continues its
search from line 1 to the line where you began the search.

The following rectangle represents the editing buffer. The path of the
arrows shows the search initiated by a / :

5-22 USER'S GUIDE

Line Addressing

.- - - - ,
I
I
I

first line I

l I
I
I
I
I

+ current line
I

1

I
I
I
I
I last line I
I
L - - - .J

Another useful delimiter is ?. If you specify a pattern preceded by a ?,
(?pattern), ed begins at the current line and searches backward (up through
previous lines in the buffer) for the next line containing the pattern . If the
search reaches the first line of the file, it will wrap around and continue
searching upward from the last line of the file to the line where you began the
search.

The following rectangle represents the editing buffer. The path of the
arrows shows the search initiated by a ? :

.- - - - ,
I __L
I

1 I
I
I
I
I
I

t
I

l
I
I
I
I
I
I
I
I
L - - - .J

first line

current line

la!:t line

LINE EDITOR TUTORIAL (ed) 5-23

Line Addressing

Experiment with these two methods of requesting address searches on the
file try-me. What happens if ed does not find the specified character string?

$ ed try-me<CR>
140

.<CR>
ten

?first<CR>
This is the first line of text .
/fourth<CR>
This is the fourth line .
/junk<CR>
?

In this example, ed found the specified strings first and fourth. Then,
because no command was given with the address, it executed the p command
by default, displaying the lines it had found. When ed cannot find a specified
string (such as junk), it responds with a ? .

You can also use the / (slash) to search for multiple occurrences of a pat
tern without typing it more than once. First, specify the pattern by typing
jpattern, as usual. After ed has printed the first occurrence, it waits for
another command. Type / and press the <RETURN> key; ed will continue
to search forward through the file for the last pattern specified. Try this com
mand by searching for the word line in the file try-me:

5-24 USER'S GUIDE

.<CR>
'Ibis is the first line of text .
jline<CR>
'Ibis is the seoand line,

/<CR>
and this is the third line .

/<CR>
'Ibis is the fourth line .

/<CR>
'Ibis is the first line of text .

Line Addressing

Notice that after ed has found all occurrences of the pattern between the
line where you requested a search and the end of the file, it wraps around to
the beginning of the file and continues searching.

Specifying a Range of Lines

There are two ways to request a group of lines. You can specify a range
of lines, such as address1 through address2, or you can specify a global search
for all lines containing a specified pattern.

The simplest way to specify a range of lines is to use the line numbers of
the first and last lines of the range, separated by a comma. Place this address
before the command. For example, if you want to display lines 2 through 7 of
the editing buffer, give addressl as 2 and address2 as 7 in the following format:

2,7p<CR>

Try this on the file try-me:

LINE EDITOR TUTORIAL (ed) 5·25

Line Addressing

2,7p<CR>
This is the second line ,

and this is the third line.

This is the foorth line .

five

six

Did you try typing 2,7 without the p? What happened? If you do not add
the p command, ed prints only address2, the last line of the range of
addresses.

Relative line addresses can also be used to request a range of lines. Be
sure that addressl precedes address2 in the buffer. Relative addresses are cal
culated from the current line, as the following example shows:

4<CR>
This is the foorth line
-2,+3p<CR>
This is the seoond. line,
and this is the third line .

This is the foorth line.
five
six
seven

5-26 USER'S GUIDE

Line Addressing

Specifying a Global Search

There are two commands that do not follow the general format of ed
commands: g and v. These are global search commands that speci fy
addresses with a character string (pattern). The g command searches for all
l ines containing the string pattern and performs the command on those l ines .
Tlw v command searches for all l ines that do not con ta i n the patlt•m a n d JWr
forms thl• 1'11111 11/alld on thosl' l i nl'S .

The general format for these comma nds is

g/ pattern I command <CR>
v jpatternjcommand<CR>

Try these commands by using them to search for the word line in try-me:

gjlinefp<CR>
This is the first line of text .
This is the secxmd line ,
and this is the th:ixd line .
This is the fourth line

v flinefp<CR>
five

six

seven
eight
nine
ten

LINE EDITOR TUTORIAL (ed) 5·27

Line Addressing

Notice the function of the v command: it finds all the lines that do not
contain the word specified in the command line (line).

Once again, the default command for the lines addressed by g or v is p;
you do not need to include a p as the last delimiter on your command line.

gjline<CR>
This is the first line of text.
This is the seocmd line,

and this is the thiJ:d line .

This is the foorth Une

However, if you are giving line addresses to be used by other ed commands,
you need to include beginning and ending delimiters. You can use any of the
methods discussed in this section to specify line addresses for ed commands.
Figure 5-2 summarizes the symbols and commands available for addressing
lines.

5-28 USER'S GUIDE

Line Addressing

Address Description

n the number of a line in the buffer

the current line (the line most recently acted on by an ed
command)

.
= the command used to request the line number of the

current line

$ the last line of the file

I the set of lines from line 1 through the last line

i the set of lines from the current line through the last line

+ n the line that is located n lines after the current line

- n the line that is located n lines before the current l ine

jabc the command used to search forward in the buffer for the
first line that contains the pattern abc

?abc the command used to search backward in the buffer for
the first l ine that contains the pattern al1c

gjal1t' t hl• sl' l of a l l l i m•s t h a t n m t a i n l lw pal l t>rn a/11 '
vfabc the set of al l l ines tha t do not mntain the pa ltl•rn a/1c

Figure 5-2: Summary of Line Addressing

LINE EDITOR TUTORIAL (ed) 5-29

Exercise 2
2- 1 . Create a file called towns with the following lines:

My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York
I lost my heart in
San Francisco
I lost $$ in
Las Vegas

2-2 . Display line 3 .

2-3 . I f you specify a range of lines with the relative address -2,+3p, what
l ines are displayed ?

2-4. What is the current line number? Display the current line.

2-5 . What does the last line say?

2-6 . What l ine is displayed by the following request for a search?

?town<CR>

After ed responds, type this command alone on a line:

?<CR>

What happened?

2-7. Search for all l ines that contain the pattern " in. " Then search for all
lines that do not contain the pattern " in. "

5-30 USER'S GUIDE

Displaying Text in a File

ed provides two commands for displaying lines of text in the editing
buffer: p and n.

Displaying Text Alone: the p Command

You have already used the p command in several examples . You are
probably now familiar with its general format:

[address1 ,address2]p<CR>

p does not take arguments. However, it can be combined with a substitution
command line. This will be discussed later in this chapter.

Experiment with the line addresses shown in Figure 5-3 on a file in your
home directory. Try the p command with each address and see if ed responds
as described in the figure.

LINE EDITOR TUTORIAL (ed) 5-31

Displaying Text in a File

Specify this Address Check for this Response

1,$p<CR> ed should display the entire file on
your screen.

-5p<CR>

+2p<CR>

1,jxjp<CR>

ed should move backward five lines
from the current line and display the
line found there.

ed should move forward two lines from
the current line and display the line
found there.

ed displays the set of lines from line
one through the first line after the
current line that contains the character
x. It is important to enclose the letter x
between slashes so that ed can distin
guish between the search pattern
address (x) and the ed command (p).

Figure 5-3: Sample Addresses for Displaying Text

Displaying Text with Line Addresses: the n

Command

The n command d isplays text and precedes each line with its numerical
l ine address. It is helpful when you are deleting, creating, or changing lines.
The general command line format for n is the same as that for p:

[address1 ,address2Jn<CR>

Like p, n does not take arguments, but it can be combined with the substitute
command .

5-32 USER'S GUIDE

Try running n on the try-me file:

$ ed try-me<CR>
140
1,$n<CR>

Displaying Text in a File

1 This is the first line of text .
2 This is the secaOO. line,
3 arrl this is the third line .
4 This is the foorth line .
5 five
6 six
7 seven
8 eight
9 nine
10 ten

Figure 5-4 summarizes the ed commands for displaying text.

Command Function

p displays specified lines of text in the editing buffer on
your screen

n displays specified lines of text in the editing buffer with
their numerical line addresses on your screen

Figure 5-4: Summary of Commands for Displaying Text

LINE EDITOR TUTORIAL (ed) 5-33

Creating Text

ed has three basic commands for creating new lines of text:

a append text

insert text

c change text

Appending Text: the a Command

The append command, a, allows you to add text AFTER the current line
or a specified address in the file. You have already used this command in the
" Getting Started " section of this chapter. The general format for the append
command line is

[addressl]a<CR>

Specifying an address is optional. The default value of addressl is the current
line.

In previous exercises, you used this command with the default address.
Now try using different line numbers for addressl . In the following example,·
a new file called new-file is created. In the first append command line, the
default address is the current line. In the second append command line, line 1
is specified as addressl . The lines are displayed with n so that you can see
their numerical line addresses. Remember, the append mode is ended by typ
ing a period (.) on a line by itself.

5-34 USER'S GUIDE

$ ed new-file<CR>
-m--file
a<CR>
Create some lines
of text in
this file .
. <CR>
1,$n<CR>
1 Create scme lines
2 of text in
3 this file .
la<CR>
This will be line 2<CR>
This will be line 3<CR>
.<CR>
1,$n<CR>
1 Create scme lines
2 This will be line 2

3 This will be line 3

4 of text in
5 this file .

Creating Text

Notice that after you append the two new l ines, the l ine tha t was origi
na l ly l i ne 2 (of text in) becomes l ine 4 .

You can take shortcuts to places in the file where you want to append text
by combining the append command with symbolic addresses. The following
three command lines allow you to move through and add to the text quickly
in this way:

.a<CR> appends text after the current line

$a<CR> appends text after the last line of the file

Oa<CR> appends text before the first line of the file (at a symbolic
address called line 0)

LINE EDITOR TUTORIAL (ed) 5·35

Creating Text

To try using these addresses, create a one-line file called lines and type
the examples shown in the following screens. (The examples appear in
separate screens for easy reference only; it is not necessary to access the lines
file three times to try each append symbol . You can access lines once and try
all three consecutively.)

$ ed lines<CR>
?lines
a<CR>
This is the current line.<CR>
.<CR>
p<CR>
This is the current line .

. a<CR>
This line is after the current line.<CR>
.<CR>
-l,.p<CR>
This is the current line .
This line is after the current line .

$a<CR>
This is the last line now.<CR>
.<CR>
$<CR>
This is the last line DCM.

5-36 USER'S GUIDE

Oa<CR>
This is the first line now.<CR>
This is the second line now.<CR>
The line numbers change<CR>
as lines are added.<CR>
.<CR>
1,4n<CR>
1 This is the first line now .

2 This is the secarrl line now .

3 '!be line numbers chailge
4 as lines are added.

Creating Text

Because the append command creates text after a specified address, the
last example refers to the line before line 1 as the line after line 0. To avoid
such circuitous references, use another command provided by the editor: the
insert command, i.

Inserting Text: the i Command

The insert command (i), al lows you to add text BEFORE a speci fied l ine in
the editing buffer. The general command l ine format for i is the same as that
for a:

[address1]i<CR>

As with the append command, you can insert one or more lines of text. To
quit input mode, you must type a period (.) alone on a line.

Create a file called insert in which you can try the insert command (i):

LINE EDITOR TUTORIAL (ed) 5-37

Creating Text

$ ed insert<CR>
?insert
a<CR>
Line l <CR>
Line 2<CR>
Line 3<CR>
Line 4<CR>
.<CR>
w<CR>
69

Now insert one line of text above line 2 and another above line 1 . Use the n
command to display all the lines in the buffer:

2i<CR>
This is the new line 2.<CR>
.<CR>
1,$n<CR>
1 Line 1
2 'Ibis is the new line 2 .

3 Line 2

4 Line 3
5 Line 4
l i <CR>
This is the beginning.<CR>
.<CR>
1,$n<CR>
1 In the beginning
2 Line 1

3 Now this is line 2

4 Line 2

5 Line 3

6 Line 4

5-38 USER'S GUIDE

Creating Text

Experiment with the insert command by combining it with symbol ic l ine
addresses as follows:

• . i<CR>

• $i<CR>

Changing Text: the c Command

The change text command (c) erases all specified lines and allows you to
create one or more lines of text in their place. Because c can erase a range of
lines, the general format for the command line includes two addresses:

[address1 ,address2]c<CR>

The change command puts you in text input mode. To lea ve i n p u t mode,

type a period alone on a line.

Address1 is the first and address2 is the last of the range of lines to be
replaced by new text. To erase one line of text, specify only address1 . If no
address is specified, ed assumes the current line is the line to be changed.

Now create a file called change in which you can try this command.
After entering the text shown in the screen, change lines one through four by
typing 1,4c:

LINE EDITOR TUTORIAL (ed) 5·39

Creating Text

l,Sn<CR>
1 line
2 line 2

3 line 3

4 line 4
5 line 5
1,4c<CR>
Change line l<CR>
and lines 2 through 4<CR>
.<CR>
l,$n<CR>
1 change line 1

2 and lines 2 th.rx:ugh 4

3 line 5

Now experiment with c and try to change the current line:

.<CR>
line 5
c<CR>
This is the new line 5 .
. <CR>
.<CR>
This is the new line 5 .

I f you are not sure whether you have left text input mode, i t i s a good
idea to type another period. If the current line is displayed, you know you are
in the command mode of ed.

5·40 USER'S GUIDE

Creating Text

Figure 5-5 summarizes the ed commands for creating text.

Command Function

a appends text after the specified line in the buffer

i inserts text before the specified line in the buffer

c changes the text on the specified line(s) to new text

. quits text input mode and returns to ed command mode

Figure 5-5: Summary of Commands for Creating Text

LINE EDITOR TUTORIAL (ed) 5·41

Exercise 3
3- I . Create a new file called ex3. Instead of using the append command to

create new text in the empty buffer, try the insert command. What
happens?

3-2 . Enter ed with the file towns. What is the current line?

Insert above the third line:

Illinois<CR>

Insert above the current line:

or<CR>
Naperville<CR>

Insert before the last line:

hotels in<CR>

Display the text in the buffer preceded by line numbers.

3-3 . I n the file towns, display lines 1 through 5 and replace lines 2
through 5 with:

London<CR>

Display lines 1 through 3 .

3-4 . After you have completed exercise 3-3, what is the current line?

Find the line of text containing:

Toledo

Replace

Toledo

with

Peoria

Display the current line.

5-42 USER'S GU&nE

Exercise 3

3-5 With one command line search for and replace:

New York

with:

Iron City

LINE EDITOR TUTORIAL (ed) 5-43

Deleting Text

This section discusses two types of commands for deleting text in ed. One
type is to be used when you are working in command mode: d deletes a line
and u undoes the last command. The other type of command is to be used in
text input mode: # (the pound sign) deletes a character and @ (the at sign)
kills a line. The delete keys that are used in input mode are the same keys
you use to delete text that you enter after a shell prompt. They are described
in detail in 11 Correcting Typing Errors 11 in Chapter 2.

Deleting Lines: the d Command

You have already deleted lines of text with the delete command (d) in the
11 Getting Started 11 section of this chapter.

The general format for the d command line is

[address1 ,address2]d <CR>

You can delete a range of lines (address1 through address2), or you can delete
one line only (address1) . If no address is specified, ed deletes the current line.

The next example displays lines one through five and then deletes lines
two through four:

l,Sn<CR>
1 1 l::orse

2 2 chickens
3 3 ham tacos

4 4 cans of mustard

5 5 bails of hay
2,4d<CR>
1,$n<CR>
1 1 J::orse

2 5 bails of hay

5-44 USER'S GUIDE

Deleting Text

How can you delete only the last line of a file? Using a symbol ic l in<>
address makes this easy :

$d<CR>

How can you delete the current l ine? One of the most common errors i n
ed is forgetting to type a period to leave text input mode. When this ha ppens ,

unwanted text may be added to the buffer. In the next example, a l ine l"On
taining a print command (1,$p) is accidentally added to the text before the
user leaves input mode. Because this line was the last one added to the text,
it becomes the current line. The symbolic address . is used to delete it .

a<CR>
Last line of text<CR>
1,$p<CR>
.<CR>
p<CR>
1 , $p
.d<CR>
p<CR>
Last line of text .

Before experimenting with the delete command, you may first want to
team about the undo command, u.

Undoing the Previous Command: the u
Command

The u command (short for undo) null i fies the last command and restores
any text changed or deleted by that command. It takes no addresses or argu
ments. The format is

u<CR>

LINE EDITOR TUTORIAL (ed) 5-45

Deleting Text

One purpose for which the u command is useful is to restore text you
have m i stakenl y deleted. If you delete all the lines in a file and then type p,
ed w i l l rl'Spond with a ? since there are no more l ines in the file. Use the u
command to n•store them:

l,Sp<CR>
This is the first line .
This is the middle line .
This is the last line.

l ,$d<CR>
p<CR>
?
U<CR>
p<CR>
This is the last line .

N o w experiment with u: use it to undo the append command:

.<CR>
This is the only line of text

a<CR>
Add this line<CR>
.<CR>
l,Sp<CR>
This is the only line of text

Add this line
u<CR>
l,Sp<CR>
This is the only line of text

5-46 USER'S GUIDE

Deleting Text

u cannot be used to undo the write command (w) or the quit command
(q). However, u can undo an undo command (u).

How to Delete in Text Input Mode

While in text input mode, you can correct the current l ine of input w i t h
the same keys you use to correct a shell command line. By defaul t, there arl'
two keys available to correct text. The @ sign key kills the current l ine . The
sign key backs up over one character on the current line so you can retype
it, thus effectively erasing the original character. (See " Correcting Typing
Errors " in Chapter 2 for details.)

As mentioned in Chapter 2, you can reassign the line kill and character
erase functions to other keys if you prefer. (See " Modifying Your Login
Environment " in Chapter 7 for instructions.) If you have reassigned these
functions, you must use the keys you chose while working in ed; the default
keys (@ and #) will no longer work.

Escaping the Delete Function

You may want to include an @ sign or a # sign as a character of text . To
avoid having these characters interpreted as delete commands, you must pre
cede them with a \ (backslash), as shown in the following example:

a<CR>
leave San Francisco \@ 20:15 on flight \#347 <CR>
.<CR>
p<CR>
leave San Francisco @ 20 : 15 on flight #347

LINE EDITOR TUTORIAL (ed) 5-47

Deleting Text

Figure 5-6 summarizes the ed commands and shell commands for deleting
text in ed.

Command Function

In command mode:

<d> deletes one or more lines of text

<u> undoes the previous command

<@> deletes the current command line

In text input mode:

<@> deletes the current line

<#> or
<BACKSPACE> deletes the last character typed in

Figure S-6: Summary of Commands for Deleting Text

5-48 USER'S GUIDE

Substituting Text

You can modify text with the substitute command. This command
replaces the first occurrence of a string of characters with new text. The gen
t>ral com mand l ine format is

) add n•:-;s I ,add rl'ss 2 Js I of d I 1 'XI 1 Il l ' I I ' l t •x/ IJnl lll l l l tl l ld J • t' R ·

Each component of the command line is described below:

addressl ,address2
The range of l ines being addressed by s. The address can
be one line (addressl), a range of lines (addressl through
address2), or a global search address . If no address is
given, ed makes the substitution on the current line.

s The substitute command.

jold_text The argument specifying the text to be replaced. It is usu
ally delimited by slashes but can be delimited by other
characters such as a ? or a period. It consists of the words
or characters to be replaced. The command replaces the
first occurrence of these characters that it finds in the text.

jnew_text The argument specifying the text to replace old_text. It is
delimited by slashes or the same delimiters used to specify
the o[d_text. It consists of the words or characters that are
to replace the old_text.

jcommand Any one of the fol lowing four commands:

LINE EDITOR TUTORIAL (ed) 5-49

Substituting Text

g

n

p

Changes a l l occurrences of oltLtrxt on the speci fit•d lines.
Displays the last line of substituted text, including non
printing characters. (See the last section of this chapter,
11 Other Useful Commands and Information. 11)

Displays the last line of the substituted text preceded by
its numerical line address.

Displays the last line of substituted text.

Substituting on the Current Line

The simplest example of the substitute command is making a change to
the current line. You do not need to give a line address for the current line,
as shown in the following example:

sfold_textjnew_textf<CR>

The next example contains a typing error. While the line that contains it
is still the current line, you make a substitution to correct it. The old text is
the ai of airor and the new text is er:

a<CR>
In the beginning, I made an airor .
. <CR>
.p<CR>
In the beginn:in;J, I made an airor.
sjaijer<CR>

Notice that ed gives no response to the substitute command. To verify
tha t thL' command has succeeded in this case, you either have to display the
l ine w i th p or n, or include p or n as part of the substitute command line. In
the fol lowing example, n is used to verify that the word file has been substi
tuted for the word toad:

5-50 USER'S GUIDE

.p<CR>
This is a test toad

sjtoadjfilejn<CR>
1 This is a test file

Substituting Text

However, ed al lows you one shortcut : i t prints lht• results of tht• l'Ommand
automatical ly i f you omit the last delimiter after the new_text argument:

.p<CR>
This is a test file

sjfilejfrog<CR>
This is a test frog

Substituting on One Line

To substitute text on a l ine that is not the current l ine, include an address
in the command line as fol lows:

[addressl]sfold_text fnew_textf <CR>

LINE EDITOR TUTORIAL (ed) 5-51

Substituting Text

For example, in the following screen the command line includes an
address for the line to be changed (line 1) because the current line is line 3:

1,3p<CR>
This is a pest toad

testing testing
cane in toad

.<CR>
cane in toad

lsjpestjtest<CR>
This is a test toad

As you can see, ed printed the new line automatically after the change was
made because the last delimiter was omitted.

Substituting on a Range of Lines

You can make a substitution on a range of lines by specifying the first
address (address1) through the last address (address2):

(address1 ,address2]sj old_text jnew_text f <CR>

If ed does not find the pattern to be replaced on a line, no changes are made
to that line.

In the following example, all the lines in the file are addressed for the
substitute command; however, only the lines that contain the string es (the
old_text argument) are changed:

5-52 USER'S GUIDE

1,$p<CR>
'Drls is a test toad
testiD] testiDJ
cane in toad

testiD] 1 , 2, 3

1,$sjesjES/n<CR>
4 t:EStin;J 1 • 2. 3

Substituting Text

When you specify a range of lines and include p or n at the end of the substi
tute line, only the last line changed is printed.

To display all the lines in which text was changed, use the n or p com
mand with the address 1,$:

l,$n<CR>
1 'lbis is a tESt toad
2 t:EStin;J testing
3 oane in toad
4 t:EStin;J 1 • 2. 3

Notice that only the first occurrence of es (on line 2) has been changed.
To change every occurrence of a pattern, use the g command, described in the
next section.

LINE EDITOR TUTORIAL (ed) 5·53

Substituting Text

Global Substitution

One of the most versatile tools in ed is global substitution . By placipg the
g command after the last delimiter on the substitute command line, you can
change every occurrence of a pattern on the specified lines. Try changing
every occurrence of the string es in the last example. If you are following
along, doing the examples as you read this, remember you can use u to undo
the last substi tute command.

u<CR>
1,$p<CR>
This is a test toad

testirg , testirg

cane in toad
testirg 1 , 2 , 3
l,$sjesfES/g<CR>
1 ,$p<CR>
This is a tESt toad

tEStirg tEStirg

cane in toad
tEStirg 1 , 2 , 3

Another method is to use a global search pattern as an address instead of
the range of lines specified by 1,$:

5-54 USER'S GUIDE

1 ,$p<CR.>
This is a test toad

testii"X] testii"X]

cane in toad

testii"X] 1 , 2 , 3
g/testjsjesjES/g<CR>
1 ,$p<CR>
This is a tESt toad

tEStii"X] tEStii"X]

cane in toad

tEStii"X] 1 • 2 • 3

Substituting Text

If the global search pattern is unique and matches the argument o/d_text (text
to be replaced), you can use an ed shortcut : specify the pattern once as the
global search address and do not repeat it as an old_text argument. ed will
rPmember the pattern from the search address and use i t again as the pattern
to lw rPplacPd :

gfoltLtcxtfsf fncw_tcxt /g<CR>

Whenever you use this shortcut, be sure to include two slashes (/ /) after
the s.

LINE EDITOR TUTORIAL (ed) 5-55

Substituting Text

1 ,$p<CR>
This is a test toad
test:in;J test:in;J

cane :in toad
test:in;J 1 , 2 , 3

gjesjs//ES/g<CR>
1,$p<CR>
This is a tESt toad
tESt:in;J tESt:in;J

cane :in toad

tESt:in;J 1 ' 2 ' 3

Experiment with other search pattern addresses:

fpattern<CR>
?pattern<CR>
v fpattern<CR>

See what they do when combined with the substitute command. In the fol
lowing example, the v fpattern search format is used to locate lines that do not
contain the pattern testing. Then the substitute command (s) is used to
replace the existing pattern (in) with a new pattern (out) on those lines:

v jtestingjsjinjout<CR>
This is a test toad
cane out toad

5-56 USER'S GUIDE

Substituting Text

Note that the line This is a test toad was also printed, even though no
substitution was made on it. When the last delimiter is omitted, a l l l inl's
found with the search address are prin ted, regardless of whether or not substi
tutions have been made on them.

Now search for lines that do contain the pattern testing with the g com
mand:

gjtestingjs/ jjumping<CR>
� testing
jumpin:J 1 • 2. 3

Notice that this command makes substitutions only for the first occurrence of
the pattern (testing) in each line. Once again, the lines are displayed on your
terminal because the last delimiter has been omitted.

LINE EDITOR TUTORIAL (ed) 5-57

Exercise 4

4- 1 . In your fi le towns change town to city on all lines but the line with
little town on it.

The file should read:

My kind of city is
London
Like being no where at all in
Peoria
I lost those little town blues in
Iron City
I lost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

4-2. Try using ? as a delimiter. Change the current line

Las Vegas

to

Toledo

Bl'cause you are changing the whole line, you can also do this by
using the changl' command, c.

4-3 . Try searching backward in the file for the word

lost

and substitute

found

using the ? as the delimiter. Did it work?

5·58 USER'S GUIDE

4-4. Search forward in the file for

no

and substitute

NO

Exercise 4

for it. What happens if you try to use 7 as a delimiter?

Experiment with the various command combinations available for address
ing a range of lines and doing global searches.

What happens if you try to substitute something for the $$? Try to sub
stitute Big $ for $ on line 9 of your file. Type:

9sf$/Big $<CR>

What happened?

LINE EDITOR TUTORIAL (ed) 5-59

Special Characters

If you try to substitute the $ sign in the line

I lost IllY $ in Las Vegas

you wi l l find that instead of replacing the $, the new text is placed at the end
of the l ine. The $ is a special character in ed that is symbolic for the end of
the line.

ed has several special characters that give you a shorthand for search pat
tt•rns and substi tution patterns. The characters act as wild cards. If you have
tri<•d to type in any of these cha racters, the result was probably different than
what you had expected.

The special characters are as follows:

•

.•

matches any one character

matches zero or more occurrences of the preceding charac
ter

matches zero or more occurrences of any character follow
ing the period

matches the beginning of the line

$ matches the end of the line

\ takes away the special meaning of the special character
that follows

&: repeats the old text to be replaced in the new text of the
replacement pattern

[...] matches the first occurrence of a character in the brackets

r ...] matches the first occurrence of a character that is not in the
brackets

5-60 USER'S GUIDE

Special Characters

In the following example, ed searches for any three-character sequence
ending in the pattern at:

1,$p<CR>
rat
cat

turtle

OCM
goat
gj.at<CR>
rat
cat
goat

Notice that the word goat is included because the string oat matches the
string .at.

The * (asterisk) represents zero or more occurrences of a specified charac
ter in a search or substitute pattern. This can be useful in deleting repeated
occurrences of a character that have been inserted by mistake. For example,
suppose you hold down the " r " key too long while typing the word broke.
You can use the * to delete every unnecessary " r " with one substitution com
mand:

p<CR>
brrroke

sjbr• jbr<CR>
broke

LINE EDITOR TUTORIAL (ed) 5-61

Special Characters

Notice that the substitution pattern includes the b before the first r. If
the b were not included in the search pattern, the • would interpret it during
the search as a zero occurrence of r, make the substitution on it, and quit.
(Remember, only the first occurrence of a pattern is changed in a substitution
unless you request a global search with g.) The following screen shows how
the substitution would be made if you did not specify both the b and the r

before the •:

p<CR>
brrroke
sjr•jr<CR>
rbrrroke

If you combine the period and the •, the combination will match all char
acters. With this combination, you can replace all characters in the last part of
a line:

p<CR>
Toads are slimy, cold creatures
sjare.• fare wonderful and warm<CR>
Toads are w::mderful and warm

5-62 USER'S GUIDE

Special Characters

The .* can also replace all characters between two patterns:

p<CR>
Toads are slimy, cold creatures
sjare.•crejare wonderful and warm cre<CR>
Toads are wonderful arxl. warm creatures

If you want to insert a word at the beginning of a line, use the (circum
flex) for the old text to be substituted. This is very helpful when you want to
insert the same pattern in the front of several lines. The next example places
the word all at the beginning of each line:

1,$p<CR>
creatures great arrl small
things wise and wonderful
things bright and beautiful
1,$s/fall / <CR>
1,$p<CR>
all creatures great arxl. small

all things wise arrl wonderful
all things bright and beautiful

The $ sign is useful for adding characters at the end of a line or a range of
lines:

LINE EDITOR TUTORIAL (ed) 5-63

Special Characters

1 ,$p<CR>
I love
I need
I use

The IRS wants II!Y
1,sf! money.<CR>
l,$p<CR>
I love m::mey.

I need m::mey .

I use m::mey.
The IRS wants II!Y m:mey.

In these examples, you must remember to put a space after the word all

or before the word m::mey because ed adds the specified characters to the very
beginning or the very end of the sentence. If you forget to leave a space
before the word m::mey, your file will look like this:

1,sffmoney /<CR>
l,$p< CR>
I lovem::mey
I needm::mey
I useocney
The IRS wants mym:ney

The $ sign also provides a handy way to add punctuation to the end of a line:

5-64 USER'S GUIDE

1,$p<CR>
I love lllll'ley
I need noney
I use lllll'ley
The IRSants my money
1,$8/$/./<CR>
1,$p/<CR>
I love lllll'ley .

I need lllll'ley .

I use lllll'ley .

The IRSants my money.

Special Characters

Because . is not matching a character (old text), but replacing a character
(new text), i t does not have a special meaning. To change a period in the
m iddle of a l ine, you must take away the special meaning of the period in the
old text. To do this, simply precede the period with a \ (backslash). This is
how you take away the special meaning of some special characters that you
want to treat as normal text characters in search or substitute arguments. For
example, the following screen shows how to take away the special meaning of
the period:

p<CR>
way to go . \'k:M 1
s/\./I<CR>
way to go I \'k:M I

LINE EDITOR TUTORIAL (ed) 5-65

Special Characters

The same method can be used with the backslash character itself. If you
want to tn•at a \ as a normal text character, be sure to precede it with a \. For
example, if you want to replace the \ symbol with the word backslash, use
the substitute command line shown in the following screen:

1,2p<CR>
This chapter explains

how to use the \ .

s/\ Vbackslash<CR>
how to use the backslash.

If you want to add text without changing the rest of the line, the & pro
vides a useful shortcut. The & (ampersand) repeats the old text in the replace
ment pattern so that you do not have to type the pattern twice. For example:

p< CR>
The neanderthal skeletal renains
sjthalj& man's/<CR>
p <CR>
The neanderthal man ' s skeletal renains

ed automatically remembers the last string of characters in a search pat
tern or the old text in a substitution. However, you must prompt ed to repeat
the replacement characters in a substitution with the % sign. The % sign
al lows you to make the same substitution on multiple lines without requesting
a global substitution. For example, to change the word money to the word
gold, repeat the last substitution from line 1 on line 3, but not on line 4:

5-66 USER'S GUIDE

1,$n<CR>
1 I love m:mey
2 I need food

3 I use noney

4 The IRS wants my m:mey
lsjmoney jgold<CR>
I love gold

3s//%<CR>
I use gold
1,$n<CR>
1 I love gold

2 I need food
3 I use gold
4 The IRS wants my m:mey

Special Characters

ed automatically remembers the word noney (the old text to be replaced)
so that string does not have to be repeated between the first two delimiters .
The % sign tells ed to use the last replacement pattern, gold.

ed tries to match the first occurrence of one of the characters enclosed in
brackets and substitute the specified old text with new text . The brackets can
be at any position in the pattern to be replaced.

In the following example, ed changes the first occurrence of the numbers
6 , 7 , 8 , or 9 to 4 on each line in which i t finds one of those numbers :

LINE EDITOR TUTORIAL (ed) 5-67

Special Characters

1,$p<CR>
Monday 33 , 000
Tuesday 75 , 000
Wednesday 88 , 000

Thursday 62 . 000
1,$s/J6789)/4<CR>
MOnday 33 , 000

Tuesday 45 , 000

Wednesday 48 , 000
Thursday 42 , 000

The next example deletes the Mr or Ms from a list of names:

l,$1> · <.:R •

Ml: Artlrur Middleton
Mr Matt Lewis
Ms Anna Kelley

Ms M. L. Hodel

1,$sfM(rs) I /<CR>
1,$p<CR>
Artlrur Middleton
Matt Lewis
Anna Kelley

M. L. Hodel

If a (circumflex) is the first character in brackets, ed interprets it as an
instruction to match characters that are not within the brackets. However, if
the circumflex is in any other position within the brackets, ed interprets it
l iterally, as a circumflex:

5-88 USER'S GUIDE

1,$p<CR>
grade A Canputer SCience
grade B Robot Design

grade A Boolean Algebra
grade D Jogging
grade c Termis
1,$sjgrade r A B)/grade A<CR>
1,$p<CR>
grade A Canputer SCience
grade B
grade A
grade A
grade A

Robot Design
Boolean Algebra
Jogging
Termis

Special Characters

Whenever you use special characters as wild cards in the text to be
changed, remember to use a unique pattern of characters. In the above exam
ple, if you had used only

1,$sf(AB)/ A<CR>

you would have changed the g in the word grade to A. Try it.

Experiment with these special characters. Find out what happens (or does
not happen) if you use them in different combinations.

Figure 5-7 summarizes the special characters for search or substitute pat
terns.

LINE EDITOR TUTORIAL (ed) 5-69

Special Characters

Command Function

matches any one character in a search or substitute pat-
tern

• matches zero or more occurrences of the preceding char-
acter in a search or substitute pattern

• matches zero or more occurrences of any characters fol-
lowing the period

A

matches the beginning of the line in the substitute pat-
tern to be replaced or in a search pattern

$ matches the end of the line in the substitute pattern to be
replaced

\ takes away the special meaning of the special character
that follows in the substitute or search pattern

& repeats the old text to be replaced in the new text
replacement pattern

o/o matches the last replacement pattern

[
. . .] matches the first occurrence of a character in the brackets

r . . . J matches the first occurrence of a character that is not in
the brackets

Figure 5-7: Summary of Special Characters

5-70 USER'S GUIDE

Exercise 5

5 - 1 . Create a file that contains the fol lowing lines of text:

A Computer Science
D Jogging
C Tennis

What happens if you try this command l ine:

1,$sfrAB)/A/<CR>

Undo the above command. How can you make the C and D unique?
(Hint: they are at the beginning of the line, in the position shown by
the • .) Do not be afraid to experiment!

5-2. Insert the following line above line 2:

These are not really my grades.

Using brackets and the · character, create a search pattern that you
can use to locate the line you inserted. There are several ways to
address a line. When you edit text, use the way that is quickest and
easiest for you .

5-3 . Add the fol lowing lim's to your fi le:

I love money
I need money
The IRS wants my money

Now use one command to change them to:

It's my money
It's my money
The IRS wants my money

LINE EDITOR TUTORIAL (ed) 5-71

Exercise 5

Using two command lines, do the following: change the word on the
first l ine from money to gold, and change the last two lines from
money to gold without using the words money or gold themselves.

5-4. How can you change the line

102023 1020

to

10202031020

without repeating the old digits in the replacement pattern?

5-5. Create a line of text containing the following characters:

Substitute a letter for each character. Do you need to use a backslash
for every substitution?

5-72 USER'S GUIDE

Moving Text

You have now learned to address lines, create and delete text, and make
substitutions. ed has one more set of versatile and important commands. You
can move, copy, or join lines of text in the editing buffer. You can also read
in text from a file that is not in the editing buffer or write lines of the file in
the buffer to another file in the current directory. The commands that move
text are

m moves lines of text

t copies lines of text

joins contiguous lines of text

w writes lines of text to a file

r reads in the contents of a file

Move Lines of Text

The m command allows you to move blocks of text to another place in the
file. The general format is

[address1 ,address2]m[address3]<CR>

The components of this command line include

address1,address2

m

address3

The range of lines to be moved. If only one line is moved,
only address1 is given. If no address is given, the current line
is moved.

The move command.

The new location of the lines to be moved. Note that the new
lines will follow address3.

LINE EDITOR TUTORIAL (ed) 5-73

Moving Text

Try the following example to see how the command works. Create a file
that contains these three lines of text:

Type

I want to move this line.
I want the first line
below this line.

lm3<CR>

ed will move line 1 below line 3.

� I want to rrove this line.

I want the first line

below this line.

1-+ I want to rrove this line.

The next screen shows how this will appear on your terminal:

l,$p<CR>
I want to IIOVe this line .

I want the first line

below this line .

l m3<CR>
1,$p<CR>
I want the first line

below this line .

I want to IIOVe this line .

If you want to move a paragraph of text, have address1 and address2
define the range of lines of the paragraph.

5-74 USER'S GUIDE

Moving Text

In the following example, a block of text (lines 8 through 1 2) i s moved
below line 65. Notice the n command that prints the line numbers of the fi le:

8,12n<CR>
8 This is line 8 .

9 It is the beg:innin;J of a

10 very s00rt paragraph.

1 1 This paragraph eiXis
12 an this line .

64,65n <CR>
64 Move the block of text
65 below this line .

8,12m65<CR>
59,65n<CR>
59 Move the block of text
60
61
62
63
64
65

below this line .

This is line 8 .

I t i s the beg:innin;J of a

very sOOrt paragraph.

This paragraph eiXis
an this line .

How can you move l i n l's above thl' fi rst l i ne of the fi l l'? Try t lw fol lowing
command:

3,4m0<CR>

When address3 is 0, the lines are placed at the beginning of the file.

LINE EDITOR TUTORIAL (ed) 5-75

Moving Text

Copy Lines of Text

The copy command, t (short for transfer), acts like the m command except
that the block of text is not deleted at the original address of the line. A copy
of that block of text is placed after a specified line of text.

5-76 USER'S GUIDE

Moving Text

The general format of the t command also looks like the m command:

[address 1 ,ad dress2]t[address3]<CR>

address1 ,address2

address3

The range of lines to be copied . If only one l ine is copied,
only address1 is given . If no address is given, the current line
is copied .

The copy command.

The new location of the lines to be copied . Note that the new
lines will follow address3 .

The next example shows how to copy three lines of text below the last
l ine:

Safety procedures :

If there is a fire :in the building :

Close the door of the roan to seal off the fire

Break glass of nearest alann.
Pull lever .
Locate and use fire extinguisher .

.

.

A chemical fire in the lab requires that you :

Break glass of nearest alann

Pull lever
Locate and use fire extinguisher

LINE EDITOR TUTORIAL (ed) 5-77

Moving Text

The commands and ed's responses to them are displayed in the next
scn•en . Aga i n , the n command displays the line numbers:

5,8n<CR>
5
6
7
8
30n<CR>

Close the door of the roan, to seal off the fire .

Break glass of neare st alarm.

Pull lever.
locate and use fire extinguisher.

30 A chemical fire in the lab requires that you:
6,8t30<CR>
30,$n<CR>
30 A chemical fire in the lab requires that you:
3 1 Break glass of nearest alarm

32 Pull lever
33 locate and use fire extinguisher
6,8n<CR>
6 Break glass of nearest alarm

7 Pull lever
8 locate and use fire extinguisher

Tht• text in l ines 6 through 8 remains in place. A copy of those three lines
is placed a fter line 50.

Experiment with m and t on one of your files.

5-78 USER'S GUIDE

Moving Text

Joining Contiguous Lines

The j command (short for join) joins the current line with the following
line. The general format is

[address1,address1]j<CR>

The next example shows how to join severa l l i n es together. A n l'asy way
of doing this is to display the l ines you want to join using p or n :

1,2p<CR>
Now is the time to join
the team.
p<CR>
the team.
lp<CR>
Now is the time to join
j<CR>
p<CR>
Now is the time to jointhe team.

Notice that there is no space between the last word (join) and the first
word of the next line (the). You must place a space between them by using
the s command.

LINE EDITOR TUTORIAL (ed) 5-79

Moving Text

Write Lines of Text to a File

The w command (short for write) writes text from the buffer into a file.
The general format is

[address1,address2]w [filename]<CR>

address1,address2

w

filename

The range of lines to be placed in another flle. If you do not
use address1 or address2, the entire flle is written into a new
flle.

The write command.

The name of the new flle that contains a copy of the block of
text.

In the following example, the body of a letter is saved in a file called
memo so that it can be sent to other people:

1,$n<CR>
1 Mllrdl 17. 1986
:7. Dear Kelly,
J 'ftlere will be a meeting in the
4 green roc:m at 4 : 30 P.M. today.
5 Refreshments will be sened.
3,6w memo<CR>
87

The w command places a copy of lines three through six into a new flle
called memo. ed responds with the number of characters in the new flle.

5-80 USER'S GUIDE

Moving Text

Problems

The w command overwrites pre-existing files; it erases the current file and
puts the new block of text in the file without warning you. I f, in our example,
a fi le called memo had existed before we wrote our new file to that name, the
original file would have been erased.

In 11 Other Useful Commands and Information, 11 later in this chapter, you
will learn how to execute shell commands from ed. Then you can list the file
names in the directory to make sure that you are not overwriting a file.

Another potential problem is that you cannot write other lines to the file
memo. If you try to add lines 13 through 1 6, the existing lines (3 through 6)
will be erased and the file will contain only the new lines (1 3 through 1 6) .

LINE EDITOR TUTORIAL (ed) 5·81

Moving Text

Read in the Contents of a File

The r command (short for read) appends text from a ftle to a buffer. The
general format for the r command is

[addressl]r filename<CR>

addressl The location where the new text will be placed. Note that the
new text will follow addressl . If addressl is not given, the file is
added to the end of the buffer.

r The read command.

{ile11ame The name of the file to be copied into the editing buffer.

Using the example from the w command, the next screen shows a file
being edited and new text being read into it:

1,$n <CR>
1
2
3

March 17 . 1986
Dear Michael ,
Are you free later today?
li:lpe to see you there .

3r memo<CR>
87
3,$n<CR>
3 Are you free later today?

4 '!here is a meeting in the
5 green rcx:m at 4 : 30 P .M. today.

6 Refreshments will be served.
7 li:lpe to see you there .

ed n•sponds to the read command with the number of characters in the file
bt•i n� added to the buffer (in the memo file).

5·82 USER'S GUIDE

Moving Text

I t is a good idea to display new or l·ha ngl•d l i nes of tex t to lw sun• that
they are correct.

Figure 5-8 summarizes the ed commands for moving text.

Command Function

m moves lines of text

t copies lines of text

j joins contiguous lines

w writes text into a new file

r reads in text from another file

Figure 5-8: Summary of ed Commands for Moving Text

LINE EDITOR TUTORIAL (ed) 5-83

Exercise 6
6- 1 . There are two ways to copy lines of text in a buffer: by issuing the t

command or by using the w and r commands to first write text to a
file and then read the file into a buffer.

Writing to a file and then reading the file into a buffer is a longer pro
cess. Can you think of an example where this method would be more
practical?

What commands can you use to copy lines 10 through 1 7 of the exer
file into the exer6 file at line 7?

6-2. Lines 33 through 46 give an example that you want placed after line
3, not after line 32. What command performs this task?

6-3. Say you are on line 10 of a file and you want to join lines 13 and 14.
What commands can you issue to do this?

5-84 USER'S GUIDE

Other Useful Commands and Informa
tion

There are four other commands and a special file that will be useful to
you during editing sessions:

h or H

f

ed.hup

accesses the help commands, which provide error messages

displays characters that are not normally displayed

d isplays thl' rurrent fi le naml'

temporari ly escapes ed to execute a shell command

saves a copy of the ed buffer when a system interrupt occurs

Help Commands

You may have noticed when you were editing a fi le that ed responds to
some of your commands with a ? . The ? is a diagnostic message issued by
ed when it has found an error. The help commands give you a short message
to explain the reason for the most recent diagnostic.

There are two help commands:

h Displays a short error message that explains the reason for the most
recent ? .

H Places ed in help mode so that a short error message is d isplayed
every time the ? appears. (To cancel this request, type H.)

If you try to quit ed without writing the changes in the buffer to a file,
you will get a ?. Do this now. When the ? appears, type h:

LINE EDITOR TUTORIAL (ed) 5-85

Other Useful Commands and Information

q<CR>
?
h<CR>
warning" : expect:in;J •w•

The ? is also displayed when you specify a new file name on the ed com
mand line. Give ed a new file name. When the ? appears, type h to find out
what the error message means:

ed newfile<CR>
? newfile
h<CR>
cannot open inp.lt file

Th is message means one of two things: either there is no file called newfile
or thl•n' is such a file but ed is not allowed to read it.

As l'Xplained earlier, the H command responds to the ? and then turns on
the help mode of ed so that ed gives you a diagnostic explanation every time
the ? is subsequently displayed. To tum off help mode, type H again. The
next screen shows H being used to tum on help mode. Sample error mes
sages are also displayed in response to some common mistakes:

5-86 USER'S GUIDE

Other Useful Commands and Information

$ ed newfile<CR>
e newfile<CR>
?newfile
H<CR>
<·annot open input fi le

/hello<CR>
?

illegal suffix
1,22p<CR>
?

line out of ran;re
a<CR>
I am appending this line to the buffer .
. <CR>
s/$ tea party<CR>
?

illegal or missing delimiter
,sf/ tea party<CR>
?

IIIlknc7..m CCIIIl\'lild
H<CR>
q<CR>
?

h <CR>

warning: expecting ' w '

You may have encountered the following error messages during previous edit
ing sessions:

illegal suffix

ed cannot find an occurrence of the search pattern hello because the
buffer is empty .

line out of range

ed cannot print any J i nes because the buffer is empty or the l i ne speci
fied is not in the buffer.

LINE EDITOR TUTORIAL (ed) 5-87

Other Useful Commands and Information

A line of text is appended to the buffer to show you some error messages
associated with the s command:

illegal or missin;:J delimiter
The delimiter between the old text to be replaced and the new text is
missing.

unknown ccmnand
addressl was not typed in before the comma; ed does not recognize ,$.

Help mode is then turned off, and h is used to determine the meaning of
the last ? . While you are learning ed, you may want to leave help mode
turned on. If so, use the H command. However, once you become adept at
using ed, you will only need to see error messages occasionally. Then you
can use the h command.

Display Nonprinting Characters

If you are typing a tab character, the terminal will normally display up to
eight spaces (covering the space up to the next tab setting). (Your tab setting
may be more or less than eight spaces. See Chapter 7, " Shell Tutorial, " on
settings using stty.)

I f you want to see how many tabs you have inserted into your text, use
the 1 (l ist) command . The general format for the 1 command is the same as
for n and p:

[addressl ,addressl]l<CR>

The components of this command line are

addressl ,addressl
The range of lines to be displayed. If no address is
given, the current line will be displayed. If only
addressl is given, only that line will be displayed.

I The command that displays the nonprinting characters
along with the text.

5·88 USER'S GUIDE

Other Useful Commands and Information

The 1 command denotes tabs with a > (greater than) character. To type
control characters, hold down the CONTROL key and press the appropriate
alphabetic key. The key that sounds the bell is < · g> (CTRL-g). It is
di�pJayed as \07 which is the octal representation (the computer's code) for
< g> .

Type in two lines of text that contain a <. g> (CTRL-g) and a tab. Then
use the 1 command to display the lines of text on your screen:

a<CR>
Add a <

.g> (CTRL-g) to this line.<CR>
Add a <tab> (tab) to this line.<CR>
.<CR>
1,2l<CR>
Add a '07 (Clm.-g) to this line . <a>

.Add a > (tab) to this line . <a>

Did the bell sound when you typed < · g>?

The Current File Name

In a long editing session, you may forget the file name. The f command
will remind you which file is currently in the buffer. Or, you may want to
preserve the original ftle that you entered into the editing buffer and write the
contents of the buffer to a new ftle. In a long editing session, you may forget
and accidentally overwrite the original file with the customary w and q com
mand sequence. You can prevent this by telling the editor to associate the
contents of the buffer with a new file name while you are in the middle of the
editing session. This is done with the f command and a new file name.

The format for displaying the current file name is f alone on a line:

f<CR>

To see how f works, enter ed with a file . For example, if your file is called
o1dfi1e, ed will respond as shown in the following screen :

LINE EDITOR TUTORIAL (ed) 5-89

Other Useful Commands and Information

ed oldfile<CR>
323
f<CR>
oldfile

To associate the contents of the editing buffer with a new file name use
this general format:

f newfile<CR>

If no file name is specified with the write command, ed remembers the
file \name given at the beginning of the editing session and writes to that file.
If yoh do not want to overwrite the original file, you must either use a new
file name with the write command or change the current file name using the f
command followed by the new file name. Because you can use f at any point
in an editing session, you can change the file name immediately. You can
then continue with the editing session without worrying about overwriting the
original file.

The next screen shows the commands for entering the editor with oldfile
and then changing its name to newfile. A line of text is added to the buffer
and then the w and q commands are issued:

5-90 USER'S GUIDE

ed oldfile<CR>
323

f<CR>
oldfile

f newfile<CR>
newfile

a<CR>
Add a l im• of h·x t . ..-cR >
. ·- CR-..
W <_CR>
343
q<CR>

Other Useful Commands and Information

Once you havl' re t u rned to the shl• l l , you ca n l ist you r fi les and vt'ri fy tht'
t>xistence of the new fi le, newfile. newfi le should con ta in a copy of the con
tents o f oldfile plus the new l ine of text.

Escape to the Shell

How can you make sun' you are not overwri t ing an exist ing fi l l' when you
write the contents of the edi tor to a new file name? You n eed to retu rn to the
shell to list your files. The ! allows you to temporarily return to the shel l , exe
cu te a shell command, and then return to the current line of the editor.

The general format for the escape sequence is

!shell command line<CR>
shell response to the ccmnand line

!

When you type the ! as the first character on a line, the shell command
must follow on that same line. The program's response to your command will
appear as the command is running. When the command has finished execut
ing, the I will be appear alone on a line. This means that that you are back
in the editor at the current line.

LINE EDITOR TUTORIAL (ed) 5-91

Other Useful Commands and Information

For example, if you want to return to the shell to find out the correct date,
type ! and the shell command date:

p<CR>
This is the current line

I date<CR>
TUe Apr 1 1 4 : 24 : 22 EST 1986

p <CR>
This is the current line .

The screen first displays the current line. Then the command is given to tem
porarily leave the editor and display the date. After the date is displayed, you
are returned to the current line of the editor.

If you want to execute more than one command on the shell command
line, see the discussion on ; in the section called " Special Characters " in
Chapter 7.

Recovering From System Interrupts

What happens if you are creating text in ed and there is an interrupt to
the system, you are accidentally hung up on the system, or your terminal is
unplugged? When an interrupt occurs, the UNIX System tries to save the con
tents of the editing buffer in a special file named ed.hup. Later you can
retrieve your text from this file in one of two ways. First, you can use a shell
command to move ed.hup to another file name, such as the name the file had
while you were editing it (before the interrupt). Second, you can enter ed and
use the f command to rename the contents of the buffer. An example of the
second method is shown in the following screen:

5-92 USER'S GUIDE

ed ed.hup<CR>
928

f myfile<CR>
myfile

Other Useful Commands and Information

If you use the second method to recover the contents of the buffer, be sure to
remove the ed.hup file afterward.

Conclusion

You now are familiar with many useful commands in ed. The commands
that were not discussed in this tutorial, such as G, P, Q and the use of () and
{ } , are discussed on the ed(l) page of the User'sjSystem Administrator's Refer
ence Manual. You can experiment with these commands and try them to see
what tasks they perform.

Figure 5-9 summarizes the functions of the commands introduced in this
section .

LINE EDITOR TUTORIAL (ed) 5·93

Other Useful Commands and Information

Command Function

h Displays a short error message for the preceding
diagnostic ? .

H Turns on help mode. An error message will be
given with each diagnostic ? . The second H turns
off help mode.

1 Displays nonprinting characters in the text.

f Displays the current file name.

f newfile Changes the current file name associated with the
editing buffer to newfile.

!cmd Temporarily escapes to the shell to execute a shell
command cmd.

ed.hup Saves the editing buffer if the terminal is hung up
before a write command.

Figure 5-9: Summary of Other Useful Commands

5-94 USER'S GUIDE

Exercise 7

7- 1 . Create a new file called newfilet . Access ed and change the fi le's
name to currentt. Then create some text and write and quit ed. Run
the Is command to verify that there is not a file called newfilet in
your directory. If you type the shell command Is, you will see that
the directory does not contain a file called newfiiet .

7-2. Create a file called filet . Append some lines of text to the file . Leave
append mode but do not write the file. Turn off your terminal . Then
turn on your terminal and log in again . Issue the Is command in the
shel l . Is there a new file called ed .hup? Place ed.hup in ed. How
can you change the curren t fi le naml' to fi lel ? D isplay t lw con ! l ·n t s of
the fi le. Are the l i nes the same l i nes you crt>a tl•d hl'fon• you tu rned
off your terminal?

7-3. While you are in ed, temporarily escape to the shell and send a mail
message to yourself.

LINE EDITOR TUTORIAL (ed) 5-95

Answers to Exercises

Exercise 1

1 -2 .

1 - 1 .

$ ed junk<CR>
? junk
a<CR>
Hello world.<CR>
.<CR>
w<CR>
12

q<CR>
$

$ ed junk<CR>
12

1,$p<CR>
Hello world.<CR>
q<CR>
$

5-96 USER'S GUIDE

Answers to Exercises

The system did not respond with the warning question mark because you
did not make any changes to the buffer.

1 -3 .

$ ed junk<CR>
12

a<CR>
Wendy's horse came through the window.<CR>
.<CR>
l,$p<CR>
Hello "'lr ld.
Wendy • s b::lrse came through the window.
q<CR>
?

w stuff<CR>
60

q<CR>
$

LINE EDITOR TUTORIAL (ed) 5-97

Answers to Exercises

Exercise 2
2- 1 .

2-2.

5-98

$ ed towns<CR>
? towns

a<CR>
My kind of town is<CR>
Chicago<CR>
Like being no where at all in<CR>
Toledo<CR>
I lost those little town blues in<CR>
New York<CR>
I lost my heart in<CR>
San Francisco<CR>
I lost $$ in<CR>
Las Vegas<CR>
.<CR>
w<CR>
164

3<CR>
Like being no where at all in

USER'S GUIDE

2 3 .

2 - 4 .

-2, +3p<CR>
My kind of town is

Chicago
Like beif¥1 no where at all in

'lbledo
I lost t:h:>se little town blues in

New York

. = <CR>
6
6<CR>
New York

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5-99

Answers to Exercises

2-5 .

2-6.

$<CR>

Las Vegas

?town<CR>
J lost those little town blues in

? •c CR:--
My kind of town is

5-1 00 USER'S GUIDE

2-7.

g/in<CR>
My kini of town is
Like bein;J IX> where at all in
I lost those little town blues in
I lost my heart in
I lost $$ in

vfin<CR>
Chicago
Toledo

New York

San Francisco
Las Vegas

Exercise 3
3-1 .

$ ed ex3<CR>
?ex3
i<CR>
?
q<CR>

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5·101

Answers to Exercises

The ? after the i means there is an error in the command. There is no
current line before which text can be inserted.

3-2.

$ ed towns<CR>
164

.n<CR>
10

3i<CR>
Illinois<CR>
.<CR>
.i<CR>

Ias Vegas

or<CR>
Naperville<CR>
.<CR>
$i<CR>
hotels in<CR>
1,$n<CR>

1 . II!Y Jdnd of town is

2 Chicago
3 or
4 Napmville
5 Illinois

6 Like being n6 where at all in

7 'lbledo

8 I lost these little town blues in

9 New York
10 I lost 11!Y heart in

1 1 San Francisco
12 I lost $$ in

13 lxJtels in
14 Ias Vegas

5-102 USER'S GUIDE

3-3.

3-4 .

1,5n.:CR ·.,
1 My kind of tam is
2 Chicago
3 or

4 Naperville

5 Illinois

2,5c<CR>
London<CR>
.<CR>
1,3n<CR>
1 My kind of tam is
2 Landon
3 Like bein:J no where at all

. <CR>
Like bein;J no where at all
/Tol<CR>
Toledo

c<CR>
Peoria<CR>
.<CR>
.<CR>
Peoria

Answers to Exercises

LINE EDITOR TUTORIAL (ad) 5-1 03

Answers to Exercises

3-5 .

. <CR>
/New Yjc<CR>
Iron City<CR>
.<CR>
.<CR>
Iran City

Your search string need not be the entire word or line. It only needs to be
unique.

Exercise 4
4-1 .

v /little townjsjtownjcity<CR>
My kind of city is
Larrlan
Like being no where at all in

Peoria

Iran City
I lost ll!Y heart in

San Francisco
I lost $$ in

hotels in

Las Vegas

5-1 04 USER'S GUIDE

Anawera to Exerclaea

The line

I lost tb:lse little town blues in

was not printed because it was NOT addressed by the v command.

4-2 .

4-3 .

. <CR>
Las Vegas
s?Las Vegas?Toledo<CR>
'lbledo

?lost?s??found<CR>
I famd $$ in

LINE EDITOR TUTORIAL (ed) 5·1 05

Answers to Exercises

4 - 4 .

jno?s??NO<CR>
?
jnojsj JNO<CR>
Like being 00 where at all in

You cannot mix delimiters such as / and ? in a command line.

The substitution command on line 9 produced this output:

I found $$ inBig $

It did not work correctly because the $ sign is a special character in ed.

5·1 06 USER'S GUIDE

Exercise 5
5-l .

$ ed filel<CR>
? file1
a<CR>
A Computer Science<CR>
D Jogging<CR>
C Tennis<CR>
.<CR>
1,$sfr AB)/ A/ <CR>
1,$p<CR>
A Clalplter Science
A Jogging
A Temris
u<CR>

1,$s/r AB)/ A<CR>
l,$p<CR>
A Callputer Science
A Jogginq
A Temris

Anawera to Exerclaea

LINE EDITOR TUTORIAL (ed) 5-107

Answers to . Exercises

S-2.

S-3.

2i<CR>
These are not really my grades.<CR>
1,$p<CR>
A Calplter Science
These are not xeally II!Y grades .

A Tennis
A Jogging
/fA]<CR>
'lhese are not xeally II!Y grades
?"(T]<CR>
These are not xeally II!Y grades

l,$p<CR>
I love 1101ey

I need 1101ey
The IRS .m:s 11!Y m::mey
g/1/sfl.*m /It's my m<CR>
It ' s IllY 1101ey

It ' s IllY lll:llleY

.108 USER'S GUIDE

5-4.

5-5.

fsfmoney fgold<CR>
It ' s my gold
2,$s/ /%<CR>
'1he IRS wants my gold

s/10202/&di<CR>
10202031020

a<CR>
• . \ &: % . •<CR>
.<CR>
sr/a<CR>
a . \ & " " *

sr/b<CR>
a . \ & " " b

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5-1 08

Answers to Exercises

Because there were no preceding characters, • substituted for itself.

sf \.fc<CR>
a c \ & % • b

sf \\/d<CR>
a c d &. % • b

sf&fe<CR>
a c d e % • b

sfo/off<CR>
a c d e f • b

The &: and % are only special characters in the replacement text.

sf \·fg<CR>
a c d e f g b

Exercise 6

6-1 . Any time you have lines of text that you may want to have repeated
several times, it may be easier to write those lines to a file and read in
the file at those points in the text.

If you want to copy the lines into another file you must write them to
a file and then read that file into the buffer containing the other file.

5-t1 0 USER'S GUIDE

6-2.

ed exer<CR>
725

10,17 w temp<CR>
210

q<CR>
ed exer6<CR>
305
7r temp<CR>
210

Answers to Exercises

The file temp can be called any file name.

33,46m3<CR>

LINE EDITOR TUTORIAL (ed) 5-1 1 1

Answers to Exercises

6-3 .

. = <CR>
10

llp<CR>
'Dlis is line 13.

j<CR>
.p<CR>
'Dlis is line 13.ani liiie 14.

Remember that . = gives you the current line.

5-1 1 2 USER'S GUIDE

Exercise 7
7- 1 .

7-2.

$ ed newfilel <CR>
? newfile 1

f currentl <CR>
cu=ent1
a<CR>
This is a line of text<CR>
Will it go into newfilel<CR>
or into currentl <CR>
.<CR>
w<CR>
66
q<CR>
$ ls<CR>
bin
cu=ent1

ed filel <CR>
? file 1
a<CR>
I am adding text to this file.<CR>
Will it show up in ed.hup?<CR>
.<CR>

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5·1 1 3

Answers to Exercl .. •

Turn uff your terminal.

Log in again.

7-3.

ed ed.hup<CR>
58
f filel<CR>
file1

l,$p<CR>
I am adding text to this file.
Will it shew up :In ed.Jmp?

$ ed filet <CR>
58
I mail mylogin<CR>
You will get mail when<CR>
you are done editingi<CR>
.<CR>
I

5-1 1 4 USER'S GUIDE

6 Screen Editor Tutorial (vi)

Introduction 6-1

Suggestions for Reading this Tutorial 6-3

Getting Started 6-4

Setting the Terminal Configuration 6-4

Changing Your Environment 6-5

Setting the Automatic <RETURN 6-6

Creating a File 6-7

How to Create Text: the Append Mode 6-8

How to Leave Append Mode 6-9

Editing Text: the Command Mode 6-10

How to Move the Cursor 6-1 0

Moving the Cursor to the Right or Left 6-12

How to Delete Text 6-1 5

How to Add Text 6-17

Quitting vi 6-1 9

Exercise 1 6-22

SCREEN EDITOR TUTORIAL (vi)

Screen Editor Tutorial (vi)

Moving the Cursor Around the
Screen 6-23
Positioning the Cursor on a Character 6-23

• Moving the Cursor to the Beginning or End of a

Line 6-24

• Searching for a Character on a Line 6-25

Line Positioning 6-27

• The Minus Sign Motion Command 6-27

• The Plus Sign Motion Command 6-27
Word Positioning 6-28
Positioning the Cursor by Sentences 6-32

Positioning the Cursor by Paragraphs 6-33
Positioning in the Window 6-34

Positioning the Cursor in
Undisplayed Text 6-40
Scrolling the Text 6-40

• The CTRL-f Command 6-40

• The CTRL-d Command 6-41

• The CTRL-b Command 6-42

• The CTRL-u Command 6-43
Go to a Specified Line 6-43

Line Numbers 6-44

Searching for a Pattern of Characters: the I and ?
Commands 6-45

Exercise 2

Creating Text
Appending Text
In'serting Text

II USER'S GUIDE

6-52

6-54

6-54

6-54

Screen Editor Tutorial (vi)

Opening a Line for Text 6-56

Exercise 3 6-59

Deleting Text 6-6o
Undoing Entered Text in Text Input Mode 6-60
Undo the Last Command 6-61
Delete Commands in Command Mode 6-62

• Deleting Words 6-62

• Deleting Paragraphs 6-64
• Deleting Lines 6-64
• Deleting Text After the Cursor 6-65

Exercise 4 6-67

Modifying Text 6-68
Replacing Text 6-68
Substituting Text 6-69
Changing Text 6-70

Cutting And Pasting Text
Electronically 6-76

Moving Text 6-76

Fixing Transposed Letters 6-76

Copying Text 6-77

Copying or Moving Text Using Registers 6-78

Exercise 5 6-80

SCREEN EDITOR TUTORIAL (vi) iii

Screen Editor Tutorial (vi)

Special Commands 6-81
Repeating the Last Command 6-81
Joining Two Lines 6-82
Clearing and Redrawing the Window 6-82
Changing Lowercase to Uppercase and Vice Versa 6-83

Using Line Editing Commands in vi 6-84
Temporarily Returning to the Shell: the :sh and :1

Commands 6-84
Writing Text to a New File: the :w Command 6-85
Finding the Line Number 6-86
f)pJeting thP RPst of the Buffer 6-87
1\dJing a Fi lt• to tht• Bu ffer 6-87

Making Global Changes 6-88

Quitting vi 6-90

Special Options For vi 6-93
Recovering a File Lost by an Interrupt 6-93
Editing Multiple Files 6-93

Viewing a File 6-94

Exercise 6 6-96

Answers To Exercises 6-97
Exercise 1 6-97
Exercise 2 6-98
Exercise 3 6-1 00

Exercise 4 6-1 01

Exercise 5 6-1 02

Exercise 6 6-1 02

iv USER'S GUIDE

Introduction

This chapter is a tutorial on the screen editor, vi (short for visual editor).
The vi editor is a powerful and sophisticated tool for creating and editing files.
It is designed for use with a video display terminal that is used as a window
through which you can view the text of a file. A few simple commands allow
you to make changes to the text that are quickly reflected on the screen .

The vi editor displays from one to many lines of text. It allows you to
move the cursor to any point on the screen or in the file (by specifying places
such as the beginning or end of a word, line, sentence, paragraph, or file) and
create, change, or delete text from that point. You can also use some line edi
tor commands, such as the powerful global commands that allow you to
change multiple occurrences of the same character string by issuing one com
mand. To move through the file, you can scroll the text forward or backward,
revealing the lines below or above the current window, as shown in
Figure 6-1 .

Not all terminals have text scrolling capability; whether or not you can
take advantage of vi's scrolling feature depends on what type of terminal
you have.

SCREEN EDITOR TUTORIAL (vi) 8·t

Introduction

TEXT FILE

You are in the screen editor.

This part of the file is above
the display window. You can
place it on the screen by
scrolling backward.

/

This part of the file
is in the display window.

You can edit it.

'-
This part of the file is below
the display window. You can
place it on the screen by
scrolling forward.

Figure 6- 1 : Displaying a File with a vi Window

6-2 USER'S GUIDE

'

Introduction

There are more than 1 00 commands in vi. This chapter covers the basic
commands that will enable you to use vi simply but effectively . Spe .. :ifical ly,
it explains how to do the following tasks:

• change your shell environment to set your terminal configuration and
an automatic carriage return

• set up your terminal so that vi is accessible

• enter vi, create text, delete mistakes, write the text to a file, and quit

• move text within a file

• electronically cut and paste text

• use special commands and shortcuts

• use line editing commands available within vi

• temporarily escape to the shell to execute shell commands

• recover a file lost by an interruption to an editing session

• edit several files in the same session

Suggestions for Reading this Tutorial

As you read this tutorial , keep in mind the notational conventions
described in the Preface. In the screens in this chapter, arrows are used to
show the position of the cursor.

The commands discussed in each section are reviewed at the end of the
section. A summary of vi commands is found in Appendix D, where they are
listed by topic. At the end of some sections, exercises are given so you can
experiment. The answers to all the exercises are at the end of this chapter.
The best way to learn vi is by doing the examples and exercises as you read
the tutorial . Log in on the UNIX System when you are ready to read this
chapter.

SCREEN EDITOR TUTORIAL (vi) 8-3

Getting Started

The UNIX System is flexible; it can run on many types of computers and
can be accessed from many kinds of terminals. However, because it is inter
nally structured to be able to operate in so many ways, it needs to know what
kind of hardware is being used in a given situation.

In addition, the UNIX System offers various optional features for using
your terminal that you may or may not want to incorporate into your comput
ing session routine. Your choice of these options, together with your
hardware specifications, comprise your login environment. Once you have set
up your login environment, the shell implements these specifications and
options automatically every time you log in.

This section describes two parts of the login environment: setting the ter
minal configuration, which is essential for using vi properly, and setting the
wrapmargin, or automatic (carriage) <RETURN>, which is optional.

Setting the Terminal Configuration

Before you enter vi, you must set your terminal configuration. This sim
ply means that you tell the UNIX System what type of terminal you are using.
This is necessary because the software for the vi editor is executed differently
on di fferent terminals.

Each type of terminal has several code names that are recognized by the
UNIX System. Appendix F, " Setting Up the Terminal, " tells you how to find
a recognized name for your terminal. Keep in mind that many computer ins
tallations add terminal types to the list of terminals supported by default in
your UNIX System. It is a good idea to check with your local system adminis
trator for the most up-to-date list of available terminal types.

To set your terminal configuration, type

TERM=terminaLname<CR>
export TERM<CR>
tput init<CR>

The first line puts a value (a terminal type) in a variable called TERM. The
second line exports this value; it conveys the value to all UNIX System pro
grams whose execution depends on the type of terminal being used.

6-4 USER'S GUIDE

GeHing Started

The tput command on the third l ine initializes (sets up) thl• soft wa n.• i n
your terminal so that it functions properly with the UNIX System. I t i s essen
tial to run the tput init command when you are setting your terminal confi
guration because terminal functions such as tab settings will not work prop
erly unless you do.

For example, if your terminal is a Teletype 5425 this is how your com
mands will appear on the screen:

$ TERM=5425<CR>
$ export TERM<CR>
$ tput init<CR>

Do not experiment by entering names for terminal types other than your
terminal. This might confuse the UNIX System, and you may have to log off,
hang up, or get help from your system administrator to restore your login
environment.

Changing Your Environment

If you are going to use vi regularly, you should change your login
environment permanently so you do not have to configure your terminal each
time you log in. Your login environment is controlled by a file in your home
directory called .profile.

If you specify the setting for your terminal configuration in your .profile,
your terminal will be configured automatically every time you log in. You can
do this by adding the three lines shown in the last screen (the TERM assign
ment, export command, and tput command) to your .profile. (For detailed
instructions, see Chapter 7.)

SCREEN EDITOR TUTORIAL (vi) 6·5

Getting Started

Setting the Automatic <RETURN

To set an automatic <RETURN> you must know how to create a me. If
you are familiar with another text editor, such as ed, follow the instructions
in this section. If you do not know how to use an editor but would like to .
have an automatic <RETURN> setting, skip this section for now and return
to it when you have learned the basic skills taught in this chapter.

If you want the <RETURN> key to be entered automatically, create a file
called .exrc in your home directory. You can use the .exrc file to contain
options that control the vi editing environment.

To create a .exrc file, enter an editor with that file name. Then type in
one line of text: a specification for the wrapmargin (automatic carriage return)
option. The format for this option specification is

wm=n<CR>

n represents the number of characters from the righthand side of the screen
where you want an automatic carriage return to occur. For example, say you
want a carriage return at twenty characters from the righthand side of the
screen. Type

wm=20<CR>

Finally, write the buffer contents to the file and quit the editor (see " Text
Editing Buffers " in Chapter 4). The next time you log in, this file will give
you the wrapmargin feature as you enter text in a me.

To check your settings for the terminal and wrapmargin when you are in
vi, enter the command

:set<CR>

vi will report the terminal type and the wrapmargin, as well as any other
options you may have specified. You can also use the :set command to create
or change the wrapmargin option. Try experimenting with it.

6-6 USER'S GUIDE

Creating a File

First, enter the editor by typing vi and the name of the file you want to
create or edit:

vi filename<CR>

For example, say you want to create a file called stuff. When you type the vi
command with the file name stuff, vi clears the screen and displays a window
in which you can enter and edit text:

"stuff" [New file]

The _ (underscore) on the top line shows the cursor waiting for you to
enter a command there. (On video display terminals, the cursor may be a
bl inking underscore or a reverse color block.) Every other l ine is marked with
a - (tilde), the symbol for an empty l ine.

I f, before entering vi, you have forgotten to set your terminal configura
tion or have set it to the wrong type of terminal, you will see an error mes
sage instead:

SCREEN EDITOR TUTORIAL (vi) 6-7

Creating a File

$ vi stuff<CR>
tamirraLrrame: unJmown tenninal type

[Using open JOOde]
"stuff" [New file]

You cannot set the terminal configuration while you are in the editor; you
must be in the shell . Leave the editor by typing

: q<CR>

Then set the correct terminal configuration.

How to Create Text: the Append Mode

If you have successfully entered vi, you are in command mode and vi is
waiting for your commands. How do you create text?

• Press the A key (<a>) to enter the append mode of vi. (Do not press
the <RETURN> key.) You can now add text to the file. (An A is not
printed on the screen.)

• Type in some text.

• To begin a new line, press the <RETURN> key.

If you have specified the wrapmargin option in a .exrc file, you will get
a new line whenever you get an automatic <RETURN> (see 11 Setting
the Automatic <RETURN> 11) .

6-8 USER'S GUIDE

Creating a File

How to Leave Append Mode

When you finish creating text, press the <ESC> key to leave append
mode and return to command mode. Then you can edit any text you have
created or write the text in the buffer to a file:

<a>Create some text<CR>
in the screen editor<CR>
and return to<CR>
command mode.<ESC>

If you press the <ESC> key and a bell sounds, you are already in com
mand mode. The text in the file is not affected by this, even if you press the
<ESC> key several times.

SCREEN EDITOR TUTORIAL (vi) 6·9

Editing Text: the Command Mode

To edi t an existing file, you must be able to add, change, and delete text.
However, before you can perform those tasks, you must be able to move to
the part of the file you want to edit. vi offers an array of commands for mov
ing from page to page, between lines, and between specified points inside a
line . These commands, along with commands for deleting and adding text,
are introduced in this section.

How to Move the Cursor

To l.'dit your text, you need to move the cursor to the point on the screen
where you will begin the correction. This is easily done with four keys that
are grouped together on the keyboard: h, j, k, and I .

<h> moves the cursor one character to the left

<j> moves the cursor down one line

<k> moves the cursor up one line

<I> moves the cursor one character to the right

The <j> and <k> commands maintain the column position of the cursor. For
example, if the cursor is on the seventh character from the left, when you type
<j> or <k> it goes to the seventh character on the new line. If there is no
seventh character on the new line, the cursor moves to the last character on
the line.

Many people who use vi find it helpful to mark these four keys with
arrows showing the direction in which each key moves the cursor.

6- 1 0 USER'S GUIDE

Editing Text: the Command Mode

Some terminals have special cursor control keys that are marked with
arrows. Use them in the same way you use the <h>, <j>, <k>, and
<I> commands.

Watch the cursor on the screen while you press the <h>, <j>, <k>, and
<1> keys. Instead of pressing a motion command key a number of times to
move the cursor a corresponding number of spaces or lines, you can precede
the command with the desired number. For example, to move two spaces to
the right, press <1> twice or enter <21> . To move up four lines, press <k>
four times or enter <4k>. If you cannot go any farther in the direction you
have requested, vi will sound a bell .

SCREEN EDITOR TUTORIAL (vi) 8-1 1

Editing Text: the Command Mode

Now experiment with the <j> and <k> motion commands. First, move
the cursor up seven lines. Type

<7k>

The cursor will move up seven lines above the current line. If there are less
than seven lines above the current line, a bell will sound and the cursor will
remain on the current line.

Now move the cursor down thirty-five lines. Type

<35j>

vi will dear and redraw the screen. The cursor will be on the thirty-fifth line
below the current line, appearing in the middle of the new window. If there
are less than thirty-five lines below the current line, the bell will sound and
the cursor will remain on the current line. Watch what happens when you
type the next command:

<35k>

Like most vi commands, the <h>, <j>, <k>, and <1> motion commands
are silent; they do not appear on the screen as you enter them. The only time
you should see characters on the screen is when you are in append mode and
are adding text to your file. If the motion command letters appear on the
screen, you are still in append mode. Press the <ESC> key to return to com
mand mode and try the commands again.

Moving the Cursor to the Right or Left

In addition to the motion command keys <h> and <1>, the space bar and
the <BACKSPACE> key can be used to move the cursor right or left to a
character on the current line.

<space bar>

<nspace bar>

<BACKSPACE>

<nBACKSPACE>

6·1 2 USER'S GUIDE

moves the cursor one character to the right

moves the cursor n characters to the right

moves the cursor one character to the left

moves the cursor n characters to the left

Editing Text: the Command Mode

Try typing in a n u m hl'r hl'fort> tht> com mand key . Nolin• t h a t t lw cu rsor
movl'S thl• spl'ci fil'd nu m lwr of cha ractl'rs to tht• l l'ft or righ t . I n t lw l'Xa m piP
bl•low, the cursor movemen t is show n by the a rrows.

To move the cursor quickly to the right or left, prefix a number to the
command. For example, suppose you want to create four columns on your
screen . After you've finished typing the headings for the first three columns,
you notice a typing mistake:

Column 1 Column 2 column

t
< ESC >

You want to correct your mistake before continuing. Exit insert mode and
return to command mode by pressing the <ESC> key; the cursor will move to
the n. Then use the <h> command to move back five spaces:

SCREEN EDITOR TUTORIAL (vi) 8·1 3

Editing Text: the Command Mode

Column 1 Coluon 2 oolumn

t
< Sh >

Column 1 Coluon 2 oolumn

f
< x > < i > C < ESC >

Erase the c by typing <x> . Then change to insert mode (<i>) and enter a C,
followed by the <ESC> key. Use the <1> motion command to return to your
earl ier position :

Column 1 Column 2 Column

t
< 51 >

Column 1 Column 2 Coluon

f

Again, you can specify a multiple space movement by typing a number before
pressing the space bar or <BACKSPACE> key. The cursor will move the
number of characters you request to the left or right.

6-1 4 USER'S GUIDE

Editing Text: the Command Mode

How to Delete Text

If you want to delete a character, move the cursor to that character and
press <X> . Watch the screen as you do so; the character will disappear and
the line will readjust to the change. To erase three characters in a row, press
<x> three times. In the following example, the arrows under the letters show
the positions of the cursor.

<X>

<nx>

deletes one character

deletes n characters, where n is the number of charac
ters you want to delete

Hello wurld l

f
< x >

Hello wrld l

Now try preceding <X> with the number of characters you want to delete.
For example, delete the second occurrence of the word deep from the text
shown in the following screen . Put the cursor on the first letter of the string
you want to delete, and delete five characters (for the four letters of deep plus
an extra space) :

SCREEN EDITOR TUTORIAL (vi) 8- 1 5

Editing Text: the Command Mode

'II:Ilorrow the Loch Ness ll'CII'lSter
shall slither forth fran

the deep dark deep depths of the lake .

t
< Sx >

'II:Ilorrow the Loch Ness ll'CII'lSter

shall slither forth fran
the deep dark depths of the lake .

t
< Sx >

Notice that v i adjusts the text so that n o gap appears i n place of the
deleted string. If, as in this case, the string you want to delete happens to be
a word, you can also use the vi command for deleting a word. This command
is described later in the section " Word Positioning. "

6-1 6 USER'S GUIDE

Editing Text: the Command Mode

How to Add Text

There are two basic commands for adding text: the insert (<i>) and
append (<a>) commands. To add text with the insert command at a point in
your file that is visible on the screen, move the cursor to that point by using
<h>, <j>, <k>, and <1>. Then press <i> and start entering text. As you
type, the new text will appear on the screen to the left of the character on
which you put the cursor. That character and all characters to the righ t of the
cursor will move right to make room for your new text. Tht• vi t•d i tnr wi l l
continue to accept the characters you type until you press the <ESC> key. I f
necessary, the original characters will even wrap around onto the next line:

Hello Mrld l

t
< i > o

Hello tbrld l

t
< ESC>

SCREEN EDITOR TUTORIAL (vi) 8-1 7

Editing Text: the Command Mode

You can use the append command in the same way. The only difference
is that the new text will appear to the right of the character on which you put
the cursor.

Later in this tutorial you will learn how to move around on the screen or
scroll through a file to add or delete characters, words, or lines.

6·1 8 USER'S GUIDE

Quitting vi

When you have finished entering text, you will want to write the buffer
contents to a file and return to the shell . To do this, hold down the <SHIFT>
key and press Z twice (<ZZ>) . The editor remembers the file name you
specified with the vi command at the beginning of the editing session and
moves the buffer text to the file of that name. A notice at the bottom of the
screen gives the file name and the number of lines and characters in the fi le.
Then the shell gives you a prompt:

<a> This is a test file.<CR>
I am adding text to<CR>
a temporary buffer and<CR>
now it is perfect.<CR>
I want to write this file,<CR>
and return to the shell.<ESC> <ZZ>

"stuff" [New file] 7 lines , 151 characters
$

SCREEN EDITOR TUTORIAL (vi) 6-1 9

Quitting vi

You can also use the :w and :q line editor commands for writing and quit
t ing a file. (Line editor commands begin with a colon and appear on the bot
tom l ine of the screen .) The :w command writes the buffer to a file. The :q
command leaves the editor and returns you to the shell. You can type these
commands separately or combine them into the single command :wq. It is
easier to combine them:

· · a > This is a test file.<CR>
I am adding text to<CR>
a temporary buffer and<CR- . .
now it is perfect.<CR>
I want to write this file,<CR>
and return to the shell.<ESC>

: wq<CR>

6-20 USER'S GUIDE

QuiUing vi

Figure 6-2 summarizes the basic commands you need to enter and use vi.

Command Function

TERM=terminaLname
export TERM sets the terminal configuration

tput init initializes the terminal as defined by terminaLname

vi filename enters the vi editor to edit the file called filename

<a> adds text after the cursor

<h> moves one character to the left

<j> moves down one line

<k> moves up one line

<l> moves one character to the right

<x> deletes a character

<CR> en ters a carriage return

<ESC> leaves append mode and returns to vi
command mode

:w writes to a file

:q quits vi

:wq writes to a file and quits vi

<ZZ> writes to a file and quits vi

Figure 6-2: Summary of Commands for the vi Editor

SCREEN EDITOR TUTORIAL (vi) 6-21

Exercise 1

Answers to the exercises are given at the end of this chapter. However,
keep in mind that there is often more than one way to perform a task in vi. If
your method works, it is correct.

As you give commands in the following exercises, watch the screen to see
how it changes or how the cursor moves.

1 - 1 . I f you have not logged i n yet, d o so now. Then set your terminal
configuration.

1 -2 . Enter vi and append the following five lines of text to a new file
called exert .

This is an exercise!
Up, down,
left, right,
build your terminal's
muscles bit by bit

1 -3 . Move the cursor to the first line of the file and the seventh character
from the right. Notice that as you move up the file, the cursor moves
in to the last letter of the file, but it does not move out to the last
letter of the next line.

1 -4 . Delete the seventh and eighth characters from the right.

1 -5 . Move the cursor to the last character o n the last line o f text.

1 -6 . Append the fol lowing new line of text:

and byte by byte

1 -7. Write the buffer to a file and quit vi.

1 -8 . Re-enter vi and append two more lines of text to the file exerl .
What does the notice at the bottom of the screen say once you have
re-entered vi to edit exert?

6-22 USER'S GUIDE

Moving the Cursor Around the Screen

Until now you have been moving the cursor with the <h>, <j>, <k>,
<1>, <BACKSPACE> key, and space bar. There are several other commands
that can help you move the cursor quickly around the screen . This section
explains how to position the cursor in the following ways:

• by characters on a line

• by lines

• by text objects

D words

D sentences

D paragraphs

• in the window

There are also commands that position the cursor within parts of the vi ed i t
ing buffer that are not visible on the screen. These commands wil l be dis
cussed in the next section, " Positioning the Cursor in Undisplayed Text. "

To follow this section of the tutorial, you should enter vi with a fi le that
contains at least forty lines. I f you do not have a fi le of that length, create
one now. Remember that to execute the commands described here, you must
be in vi command mode. Press the <ESC> key to make sure that you are in
command mode rather than append mode.

Positioning the Cursor on a Character

There are three ways to position the cursor on a character in a line:

• by moving the cursor right or left to a character

• by specifying the character at either end of the line

• by searching for a character on a line

The first method was discussed earlier in this chapter under " Movi ng the Cur
sor to the Right or Left. " The following sections describe the other two
methods.

SCREEN EDITOR TUTORIAL (vi) 6-23

Moving the Cursor Around the Screen

Moving the Cursor to the Beginning or End of a Line

The second method of positioning the cursor on a line is by using one of
three commands that put the cursor on the first or last character of a line.

<$> puts the cursor on the last character of a line

<0> (zero)
-

< >

puts the cursor on the first character of a line

puts the cursor on the first nonblank character of a
line

The following examples show the movement of the cursor produced by
each of these three commands:

Go to the end of the line I

t
< $>

Go to the end of the line I

t

6-24 USER'S GUIDE

Go to the beg� of the line !

t
< 0 >

Go to the beg� of the l ine I

t

Go to the first character
of the line

that is oot blank I

t
< " >

Go to the first character
of the line

that is oot blank I

t

Moving the Cursor Around the Screen

Searching for a Character on a Line

The third way to position the cursor on a line is to search for a speci fic
character on the current line. If the character is not found on the current l ine,
a bell sounds and the cursor does not move. (There is also a command that

SCREEN EDITOR TUTORIAL (vi) 6-25

Moving the Cursor Around the Screen

searches a file for patterns. This is discussed in " Searching for a Pattern of
Cha racters . ") There are six commands you can use to search within a line:
<f> , <F>, <t>, <T>, <n>, and <N>. You must specify a character after all
of them except the <n> and <N> commands.

<fx> Moves the cursor to the right to the specified character x.

<Fx> Moves the cursor to the left to the specified character x.

<tx> Moves the cursor right to the character just before the specified
character x.

<Tx> Moves the cursor left to the character just after the specified char
acter x.

<n> Continues to search in the same direction for the character speci
fied in the last command. The n remembers the character and
seeks out the next occurrence of that character on the current line.

<N> Continues to search in the opposite direction for the character
specified in the last command. The N remembers the character
and seeks out the previous occurrence of that character on the
current line.

For example, in the following screen vi searches to the right for the first
occurrence of the letter A on the current line:

Go torward to the letter A em this line .

t
< fA >

Go forward to the letter A em this line .

t

Try the search commands on one of your files.

6-26 USER'S GUIDE

Moving the Cursor Around the Screen

Line Positioning

Besides the <j> and <k> commands that you have already used, the
<+>, <->, and <CR> commands can be used to move the cursor to other
lines.

The Minus Sign Motion Command

The "<-> command moves the cursor up a line, positioning it at the first
nonblank character on the line. To move more than one line at a time,
specify the number of lines you want to move before the <-> command. For
example, to move the cursor up thirteen lines, type

<13->

The cursor will move up thirteen lines. If some of those lines are above the
current window, the window will scroll up to reveal them. This is a rapid
way to move quickly up a file.

Now try to move up 100 lines. Type

<100->

What happened to the window? If there are less then 1 00 lines above the
current line a bell will sound, telling you that you have made a mistake, and
the cursor will remain on the current line.

The Plus Sign Motion Command

The <+> or the <CR> command moves the cursor down a line. Specify
the number of lines you want to move before the <+> command. For exam
ple, to move the cursor down nine lines, type

<9+>

The cursor will move down nine lines. If some of those lines are below the
t·urrent screen, the window will scroll down to reveal them.

Now try to do the same thing by pressing the <RETURN> key. Were thl•
results the same as when you pressed the <+> key?

SCREEN EDITOR TUTORIAL (vi) &·27

Moving the Cursor Around the Screen

Word Positioning

The vi editor considers a word to be a string of characters that can includ<'
letters, numbers, or underscores (_). There are six word positioning com
mands: <w>, , <e>, <W>, <8>, and <E>. The lowercase commands
(<w>, , and <e>) treat any character other than a letter, digit, or under
score as a delimiter, signifying the beginning or end of a word. Punctuation
before or after a blank is considered a word. The beginning or end of a line is
also a delimiter.

The uppercase commands (<W>, , and <E>) treat punctuation as
part of the word; words are delimited by blanks and newlines only.

The following is a summary of the word positioning commands:

<w> Moves the cursor forward to the first character in the next word.
You may press <w> as many times as you want to reach the
word you want.

<nw> Moves the cursor forward n number of words to the first character
of that word . The end of the line does not stop the movement of
the cursor; instead, the cursor wraps around and continues count
ing words from the beginning of the next line.

The < w > oc:umand

leaps word by word through the

file . M::we fran 'lHIS word farwam

t
<6w >

six words to 'lHIS word.

t

6-28 USER'S GUIDE

The < w > ocmnand

leaps 1«lrd by 1«lrd t:hroogh the

file . M::llle fran THIS 1«lrd f�
six words to 'IHIS 1«lrd .

t

Moving the Cursor Around the Screen

<W> Ignores all punctuation and moves the cursor forward to the word
after the next blank.

<e> Moves the cursor forward in the line to the last character in the
next word.

Go f� ale 1«lrd to the en:i of

the next 1«lrd in this line

t
<e>

SCREEN EDITOR TUTORIAL (vi) 8-29

Moving the Cursor Around the Screen

Go forward ale word to the em of

the next word :in this line

t

Go to the errl of the third word after the current word .

f
< 3e >

Go to the errl of the third word af ter the current word.

t

6·30 USER'S GUIDE

Moving the Cursor Around the Screen

<E> Moves the cursor forward in the line, delimiting words only by
blanks.

 Moves the cursor backward in the line to the first character of the
previous word.

<nb> Moves the cursor backward n number of words to the first charac
ter of the nth word. The command does not stop at the
beginning of a line but moves to the end of the line above and
continues moving backward.

<8> Mows the cursor backward i n th(' l i n l', del i m i ting words only by
blank spaces and newl ines. I t trea ts all other pu nduation as
letters of a word.

Leap backward word by word through
the file . Go back foor w::>rds fran here .

t
< 4b >

the file . Go back foor w::>rds fran here .

t

SCREEN EDITOR TUTORIAL (vi) 6·31

Moving the Cursor Around the Screen

Positioning the Cursor by Sentences

The vi editor also recognizes sentences. In vi a sentence ends in
! or ? . If these delimiters appear in the middle of a line, they must be
fol lowl'd by two blanks for vi to recognize them. You should get used to th(.'
vi convention of recognizing two blanks after a period as the end of a sen
tence because it is often useful to be able to operate on a sentence as a unit.

You can move the cursor from sentence to sentence in the file with the
<(> (open parenthesis) and <)> (close parenthesis) commands.

< (> moves the cursor to the beginning of the current sentence

< n(> moves the cursor to the beginning of the nth sentence above the
current sentence

<) > moves the cursor to the beginning of the next sentence

< n) > moves the cursor to the beginning of the nth sentence below the
current sentence

The example in the following screens shows how the open parenthesis
moves the cursor around the screen:

Suddenly we spotted whales in the

distance . Daniel was the first to see them .

t
< (>

6·32 USER'S GUIDE

Moving the Cursor Around the Screen

diatanoe. Daniel 'IIIIlS the first to see tbelll.

t

Now repeat the command, preceding it with a number. For example, type

<3(> (or)
<5)>

Did the cursor move the correct number of sentences?

Positioning the Cursor by Paragraphs

Paragraphs are recognized by vi if they begin after a blank line. If you
want to be able to move the cursor to the beginning of a paragraph (or later in
this tutorial, to delete or change a whole paragraph), then make sure each
paragraph ends in a blank line.

< { >

<n{>

< } >

<n} >

moves the cursor t o the beginning o f the current para
graph, which is delimited by a blank line above it

moves the cursor to the beginning of the nth paragraph
above the current paragraph

moves the cursor to the beginning of the next paragraph

moves the cursor to the nth paragraph below the current
line

SCREEN EDITOR TUTORIAL (vi) 6·33

Moving the Cursor Around the Screen

The following two screens show how the cursor can be moved to the
beginning of another paragraph:

SUddenly, we spotted whales in the

distaiiCe . Daniel was the first to see them .

t
< I >

"Hey l.ook l Here ocme the whales l " he cried excitedly.

Suddenly , we SJ:Otted whales in the

distance . Daniel was the first to see them .

"Hey look l Here cane the whales l " he cried excitedly .

Positioning in the Window

The vi editor also provides three commands that help you position your
self in the window. Try out each command. Be sure to type them in upper
case.

6-34 USER'S GUIDE

<H>

<M>

<L>

Moving the Cursor Around the Screen

moves the cursor to the first l ine on the screen

moves the cursor to the middle line on the screen

moves the cursor to the last line on the screen

This part of the file is
above the display window.

r '
Type <H> (HOME) to move the cursor here.

t

fype <M> (MIDDLE) to move the cursor here.

Type <L> (LAST line on screen) to move f the cursor here.

This part of the file is
below the display window.

Figures 6-3 through 6-6 summarize the vi commands for moving the cur
sor by positioning it on a character, line, word, sentence, paragraph, or posi
tion on the screen. (Additional vi commands for moving the cursor are sum
marized in Figure 6-7, later in the chapter.)

SCREEN EDITOR TUTORIAL (vi) 6-35

Moving the Cursor Around the Screen

Positioning on a Character

<h> Moves the cursor one character to the left.

<1> Moves the cursor one character to the right.

<BACKSPACE> Moves the cursor one character to the left.

<space bar> Moves the cursor one character to the right.

<fx> Moves the cursor to the right to the specified
character x.

<Fx> Moves the cursor to the left to the specified
character x.

<tx> Moves the cursor to the right to the character
just before the specified character x.

<Tx> Moves the cursor to the left to the character just
after the specified character x.

<n> Continues searching in the same direction on
the line for the last character requested with
<f> I <F> I <t> I or <T>. The n remembers
the character and finds the next occurrence of it
on the current line.

<N> Continue searching in opposite direction on the
line for the last character requested with <f> 1
<F>1 <l>1 or <T>. The N remembers the
character and finds the next occurrence of it on
the current line.

Figure 6-3 : Summary of vi Motion Commands (Sheet 1 of 4)

6-36 USER'S GUIDE

Moving the Cursor Around the Screen

Positioning on o\1 Line

<k> Moves the cursor up one l ine to the same column
in the previous line (if a character exists in that
column).

<j> Moves the cursor down one line to the same
column in the next line (if a character exists in that
column).

<-> Moves the cursor up one line to the beginning of
the previous line.

<+> Moves the cursor down one line to the beginning of
the next line.

<CR> Moves the cursor down one line to the beginning of
the next line.

Figure 6-4: Summary of vi Motion Commands (Sheet 2 of 4)

SCREEN EDITOR TUTORIAL (vi) 6-37

Moving the Cursor Around the Screen

Positioning on a Word

<w> Moves the cursor forward to the first character in
the next word .

<W> Ignores all punctuation and moves the cursor for-
ward to the next word delimited only by blanks.

 Moves the cursor backward one word to the first
character of that word.

 Ignores all punctuation and moves the cursor back-
ward one word, delimited only by blanks.

<e> Moves the cursor to the end of the current word .

<E> Moves the cursor to the last character of a word
before the next blank space or end of the line.

Figu re 6-5 : Summary of vi Motion Commands (Sheet 3 of 4)

6-38 USER'S GUIDE

Moving the Cursor Around the Screen

Positioning on a Sentence

<(> Moves the cursor to the beginning of the current
sentence.

<)> Moves the cursor to the beginning of the next sen-
tence.

Positioning on a Paragraph

< { > Moves the cursor to the beginning o f the current
paragraph.

< } > Moves the cursor to the beginning o f the next para-
grctph.

Positioning in the Window

<H> Moves the cursor to the first line on the screen (the
home position).

<M> Moves the cursor to the middle line on the screen.

<L> Moves the cursor to the last line on the screen.

Figure 6-6: Summary of vi Motion Commands (Sheet 4 of 4)

SCREEN EDITOR TUTORIAL (vi) 6-39

Positioning the Cursor in Undisplayed
Text

How do you move the cursor to text that is not shown in the current edit
ing window? One option is to use the <nj> or <nk> command. However, if
you a r<' ed i ting a large file, you need to move quickly and accurately to
a nolhl•r place in the file. This section covers those commands that can help
you move around within the file in the following ways:

• by scrolling forward or backward in the file

• by going to a specified line in the file

• hy searching for a pattern in the file

Scrolling the Text

Four commands allow you to scroll the text of a file. The <
�
f> (CTRL-f)

and <
-
d> (CTRL-d) commands scroll the screen forward. The <

�
b> (CTRL

b) and <
-
u> (CTRL-u) commands scroll the screen backward.

The CTAL-f Command

The <
-
f> (CTRL-f) command scrolls the text forward one full window of

text below the current window. vi clears the screen and redraws the window.
The three lines that were at the bottom of the current window are placed at
the top of the new window. If there are not enough lines left in the file to fill
the window, the screen displays a - (tilde) to show that there are empty
lines.

6-40 USER'S GUIDE

Positioning the Cursor In Undlsplayed Text

vi clears and redraws the screen as follows:

These last three lines of the current
window become the first two lines of
the new window.

This part of the fi lt•
is below the display
window.

You can scroll forward
to place this text in the
display window.

The CTRL-d Command

The <
Ad> (CTRL-d) command scrolls down a half screen to reveal text

below the window. When you type < · d>, the text appears to be rolled up at
the top and unrolled at the bottom. This allows the lines below the screen to
appear on the screen, while the lines at the top of the screen disappear. I f
there are not enough lines in the file, a bell will sound.

SCREEN EDITOR TUTORIAL (vi) 8·41

Positioning the Cursor in Undisplayed Text

The CTRL-b Command

The < -b> (CTRL-b) command scrolls the screen back a full window to
reveal the text above the current window. vi clears the screen and redraws the
window with the text that is above the current screen. Unlike the <

-
f> com

mand, < ·b> does not leave any reference lines from the previous window. If
there are not enough lines above the current window to fill a full new win··
dow, a bell will sound and the current window will remain on the screen.

This part of the file
is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is re
drawn with the text above the window.

Now try scrolling backward. Type

<
-
b>

vi clears the screen and draws a new screen.

6-42 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is
redrawn with the text above the
window.

Any text that was in the display window is placed below the current window.

The CTRL-u Command

The < · u> (CTRL-u) command scrolls up a half screen of text to reveal the
l ines just above the window. The lines at the bottom of the window an•
Nased . Now scroll down in the text, moving the portion below the screen
into the window. Type

.

< U>

When the cursor reaches the top of the file, a bell sounds to noti fy you that
the file cannot scroll further.

Go to a Specified Line

The <G> command positions the cursor on a specified line in the win
dow; if that line is not currently on the screen, <G> clears the screen and
redraws the window around it. If you do not specify a line, <G> goes to the
last line of the file.

SCREEN EDITOR TUTORIAL (vi) 6-43

Positioning the Cursor in Undisplayed Text

<G> goes to the last line of the file

<nG> goes to the nth line of the file

Line Numbers

Each line of the file has a line number corresponding to its position in the
buffer. To get the number of a particular line, position the cursor on it and
type < "g> . The <

"
g> command gives you a status notice at the bottom of

the screen which tells you

• the name of the file

• if the file has been modified

• the line number on which the cursor rests

• the total number of lines in the buffer

• the percentage of the total lines in the buffer represented by the
current line

'ftris line is the 35th line of the buffer .

The cursor is em this line .

t
< "g>

There are several m:re lines in the

buffer .

The last line of the buffer is line 1 16 .

6-44 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

This line is the 35th line of the buffer .

'!be cursor is an this line .

There are several nnre lines in the

tuffer .

'!be last line of the buffer is line 1 16 .

"file .name" [JIDdified] line 36 of ' 1 16 --34%- -

Searching for a Pattern of Characters: the 1
and ? Commands

The fastest way to reach a specific place in your text is by using one of the
search commands: f, ?, <n>, or <N>. These commands allow you to search
forward or backward in the buffer for the next occurrence of a specified char
acter pattern . The / and ? commands are not silent; they appear as you type
them, along with the search pattern, on the bottom of the screen. The <n>
and <N> commands, which allow you to repeat the requests you made for a
search with a / or ? command, are silent.

The j, fol lowed by a pattern (/pattcm), searches forward in the buffer for
the next occurrence of the characters in pattern and puts the cursor on the first
of those characters. For example, the command line

/Hello world<CR>

finds the next occurrence in the buffer of the words Hello world and puts the
cursor under the H.

The ?, followed by a pattern (?pattern), searches backward in the buffer for
the first occurrence of the characters in pattern and puts the cursor on the first
of those characters. For example, the command line

?data set design<CR>

SCREEN EDITOR TUTORIAL (vi) 8-45

Positioning the Cursor in Undisplayed Text

finds the last occurrence in the buffer (before your current position) of the
words data set design and puts the cursor under the d in data.

These search commands do not wrap around the end of a line while
searching for two words. For example, say you are searching for the words
Hello \\'Orld. If Hello is at the end of one line and \\'Orld is at the beginning
of the next, the search command will not find that occurrence of Hello World.

However, the search commands do wrap around the end or the beginning
of the buffer to continue a search. For example, if you are near the end of the
buffer and the pattern for which you are searching (with the Jpattern com
mand) is at the top of the buffer, the command will find the pattern.

The <n> and <N> commands allow you to continue searches you have
requested with /pattern or ?pattern without retyping them.

<n> repeats the last search command

<N> repeats the last search command in the opposite direction

For example, say you want to search backward in the file for the three-letter
pattern the. Initiate the search with ?the and continue it with <n> . The fol
lowing screens offer a step-by-step illustration of how the <n> searches back
ward through the file and finds four occurrences of the character string the:

Suddenly, we spotted whales in the
distance . Daniel was the first to see tllem.

"Hey look ! Here ocme the whales ! " he =ied excitedly.

?the

6-46 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

Suddenly , we spotted whales in the
distance . D!lniel '68 the first to see them .
. I!
"Hey look ! Here ocme the whales ! " he cried excitedly .

t
(I)

Suddenly, we spotted whales in the
distance . D!lniel '68 the first to see them .

"Hey look ! Here ocme the whales ! " he cried excitedly .

t
< n >

SCREEN EDITOR TUTORIAL (vi) 6-4 7

Positioning the Cursor In Undisplayed Text

SUddenly, we spotted whales in the

distance . Ilimiel was the first to see them .

t
(2)

"Hey loall:l Here oc:me the whales ! " he cried excitedly.

Suddenly, we spotted whales in the

distance . Ilim:iel was the first to see them .

f
< n >

"Hey loak l Here CCIIII! the whales I " he cried excitedly.

6-48 USER'S GUIDE

Poeltlonlng the Cureor In Undleplayed Text

SUddenly, - spotted 1obl.les in the
distance . Daniel Willi the first to see thaD.

t
(3)

"Hey look l Here ocme the wbales l " he cried excitedly.

SUddenly, - spotted 1obl.les in the
distance . Daniel 'WIUI the first to see thaD.

t
< n >

. P
" Hey look l Here oaae the ..males t • he cried excitedly.

SCREEN EDITOR TUTORIAL (vi) 8·49

Positioning the Cursor in Unclisplayed Text

SUddenly , we spotted whales in the

t
(4)

distance . Daniel was the first to see then .
. P
"Hey look ! Here ocme the whales ! " he cried excitedly.

The 1 and ? search commands do not allow you to specify particular
occurrences of a pattern with numbers. You cannot, for example, request the
third occurrence (after your current position) of a pattern.

Figure 6-7 summarizes the vi commands for moving the cursor by scrol
l ing the text, specifying a line number, and searching for a pattern.

6-50 USER'S GU!!DE

Positioning the Cursor in Undisplayed Text

Scrolling

< .f> scrol ls the screen forward a fu ll window, reveal ing th(•
window of text below the current window

<
.
d> scrolls the screen down a half window, revealing lines

below the current window

<.b> scrolls the screen back a full window, revealing the
window of text above the current window

.

< U> scrolls the screen up a half window, revealing the lines
of text above the current window

Positioning on a Numbered Line

<lG> goes to the first line of the file

<G> goes to the last line of the file
. < g> gives the line number and file status

Searching for a Pattern

jpattern searches forward in the buffer for the next occurrence
of pattent and positions the cursor on the first character
of pattern

?pat tent searches backward in the buffer for the first occurrence
of pattern and positions the cursor under the first char-
acter of pattern

<n> repeats the last search command

<N> repeats the search command in the opposite direction

Figure 6-7: Summary of Additional vi Motion Commands

SCREEN EDITOR TUTORIAL (vi) 6-51

Exercise 2
2- 1 . Create a file called exer2. Type a number on each line, numbering

the lines from 1 to 50. Your file should look similar to the following:

1
2

3

48
49
50

2-2 . Use each of the scroll commands, noticing how many lines scroll
through the window. Try the following:

<
-
f>

<
-
b>

< U>
<

-
d>

2-3. Go to the end of the file. Append the following line of text:

123456789 123456789

What number does the command <7h> place the cursor on? What
number does the command <31> place the cursor on?

2-4. Try the command <$> and the command <0> (number zero).

2-5 . Go to the first character on the line that is not a blank. Move to the
first character in the next word. Move back to the first character of
the word to the left. Move to the end of the word.

6-52 USER'S GUIDE

Exercise 2

2-6. Go to the first line of the file. Try the commands that place the cursor
in the middle of the window, on the last line of the window, and on
the first line of the window.

2-7. Search for the number 8. Find the next occurrence of the number 8.
Find 48.

SCREEN EDITOR TUTORIAL (vi) 6-53

Creating Text

There are three basic commands for creating text:

<a> appends text

<i> inserts text

<o> opens a new line on which text can be entered

After you finish creating text with any one of these commands, you can
return to the command mode of vi by pressing the <ESC> key.

Appending Text

<a> appends text after the cursor

<A> appends text at the end of the current line

You have already experimented with the <a> command in the " Creating
a File " section. Make a new file named junk2. Append some text using the
<a> command. To return to command mode of vi, press the <ESC> key.
Then compare the <a> command to the <A> command.

Inserting Text

<i> inserts text before the cursor

<I> inserts text at the beginning of the current line before the first
character that is not a blank

To return to the command mode of vi, press the <ESC> key.

In the following examples you can compare the append and insert com
mands. The arrows show the position of the cursor, where new text will be
added:

6-54 USER'S GUIDE

Append three spaces AFrm. the H of Here

t
< a >

Append three spaces AFrm. the H of H ere .

t
< ESC >

Insert three spaces BEFC:IU: the H of Here .

t
< i >

Insert three spaces BEFC:JU: the H of Here .

< ESC >

Creating Text

Notice that in both cases, the user has left text input mode by pressing the
<ESC> key.

SCREEN EDITOR TUTORIAL (vi) 6-55

Creating Text

Opening a Line for Text

<o> Creates text from the beginning of a new line below the current
line. You can issue this command from any point in the current
line.

<0> Creates text from the beginning of a new line above the current
line. This command can also be issued from any position in the
current line.

The open command creates an opening directly above or below the
current line and puts you into text input mode. For example, in the following
screens, the <0> command opens a line above the current line, and the <o>
command opens a line below the current line. In both cases, the cursor waits
for you to enter text at the beginning of the new line:

Create text AJ!tNE the c:uznmt line 0

t
< 0 >

[blank line] t Create text AJ!tNE the c:uznmt line 0

6-56 USER'S GUIDE

Now create text BEU:M the current line.

t
< o >

Now create text BEU:M the current l ine .

l blanlt line I

t

Creating Text

Figure 6-8 summarizes the commands for creating and adding text with
the vi editor.

SCREEN EDITOR TUTORIAL (vi) 8-57

Creating Text

Command Function

<a> appends text after the cursor

<A> appends text at the end of the current line

<i> inserts text in front of the cursor

<I> inserts text before the first character on
the current line that is not a blank

<O> opens up a new line for text input below
the current line

<0> opens up a new line for text input above
the current line

<ESC> returns vi to command mode from any of
the above text input modes

Figur� 6-8: Summary of vi Commands for Creating Text

&-58 USER'S GUIDE

Exercise 3
3- 1 . Create a text file called exer3.

3-2. Insert the following four lines of text:

Append text
Insert text
a computer's
job is boring.

3-3. Add the following line of text above the last line:

financial statement and

3 - 4 . Using a text insert command, add the following line of text above the
third line:

Delete text

3-5. Add the following line of text below the current line:

byte of the budget

3-6. Using an append command, add the following line of text below the
last line:

But, it is an exciting machine.

3-7 . Move to the first line and add the word some before the word text.

Now practice using each of the six commands for creating text.

3-8. Leave vi and go on to the next section to find out how to delete any
mistakes you made in creating text.

SCREEN EDITOR TUTORIAL (vi) 6-59

Deleting Text

You can delete text with various commands in command mode and undo
the entry of small amounts of text in text input mode. In addition, you can
entirely undo the effects of your most recent command.

Undoing Entered Text in Text Input Mode

To delete a character when in text input mode, use the <BACKSPACE>
key.

<BACKSPACE> deletes the current character (the character shown by
the cursor)

The <BACKSPACE> key backs up the cursor in text input mode and
deletes each character that the cursor backs across. However, the deleted
characters are not erased from the screen until you type over them or press
the <ESC> key to return to command mode.

In the following example, the arrows represent the cursor:

�� hdd a litttl

t
< BACKSPACE > < BACKSPACE>

Mary had a litttl

t
< ESC > .

Mary had a li tt

t

6-60 USER'S GUIDE

Deleting Text

Notice that the characters are not erased from the screen until you press the
<ESC> key.

There are two other keys that delete text in text input mode. Although
you may not use them often, you should be aware that they are available. To
remove the special meanings of these keys so that they can be typed as text,
see the section on special commands.

< w> undoes th entry of the current word

<@> deletes all text entered on current line since text input mode was
entered

When you type < • w>, the cursor backs up over the word last typed and
waits on the first character. It does not literally erase the word until you press
the <ESC> key or enter new characters over the old ones. The <@> sign
behaves in a similar manner except that it removes all text you have typed on
the current line since you last entered input mode.

Undo the Last Command

Before you experiment with the delete commands, you should try the u
command. This command undoes the last command you issued.

<u> undoes the last command

<U> restores the current line to its state before you changed it

If you delete lines by mistake, type <u>; your lines will reappear on the
screen. If you type the wrong command, type <u> and it will be nullified.
The <U> command will nullify all changes made to the current line as long
as the cursor has not been moved from it.

·

If you type <u> twice in a row, the second command wil l undo the first;
your undo will be undone! For example, say you delete a line by mistake and
restore it by typing <u> . Typing <u> a second time will delete thl' line
again. Knowing this command can save you a lot of trouble.

SCREEN EDITOR TUTORIAL (vi) 6·61

Deleting Text

Delete Commands in Command Mode

You know that you can precede a command by a number. Many o� the
commands in vi, such as the delete and change commands, also allow you to
en ter a cursor movement command after another command. The cursor
movement command can specify a text object such as a word, line, sentence,
or paragraph. The general format of a vi command is

(number][command]texLobject

The brackets around some components of the command format show that
those components are optional.

All delete commands issued in command mode immediately remove
unwanted text from the screen and redraw the affected part of the screen.

The delete command follows the general format of a vi command:

[number]dtexLobject

Deleting Words

You can delete a word or part of a word with the <dw> command. Move
thl• cursor to the first character to be deleted and type <dw> . The character
under the cursor and all subsequent characters in that word will be erased:

the deep dark depths of the lake.

t
< 2dw>

6-62 USER'S GUIDE

Deleting Text

the depths of the lake .

t

The <dw> command deletes one word or punctuation mark and the
space(s) that follow it. You can delete several words or marks at once by
specifying a number before the command. For example, to delete three words
and two commas, type <5dw>:

the deep , deep, dark depths of the lake

t
< Sdw >

SCREEN EDITOR TUTORIAL (vi) 6-63

Deleting Text

the depths of the lalle

t

Deleting Paragraphs

To delete paragraphs, use the following commands:

<d{ > or <d}>

Observe what happens to your file. Remember, you can restore the deleted
text with <u>.

Deleting Lines

To delete a line, type <dd>. To delete multiple lines, specify a number
before the command. For example, typing

<tOdd>

will erase ten lines. If you delete more than a few lines, vi will display this
notice on the bottom of the screen:

10 lines deleted

If there are less than ten lines below the current line in the file, a bell will
sound and no lines will be deleted.

6-64 USER'S GUIDE

Deleting Text

Deleting Text After the Cursor

To delete all text on a line after the cursor, put the cursor on the first char
acter to be deleted and type

<D> or <d$>

Neither of these commands allows you to specify a number of lines; they can
be used only on the current line.

Figure 6-9 summarizes the vi commands for deleting text.

SCREEN EDITOR TUTORIAL (viJ 6-85

Deleting Text

Command Function

For INSERT Mode:

<BACKSPACE> deletes the current character

<.h> deletes the current character

<
.
W> deletes the current word

<@> deletes the current line of new text or
deletes all new text on the current line

For COMMAND Mode:

<U> undoes the last command

<U> restores the current line to its previous state

<X> deletes the current character

<mix> deletes n number of text objects of type x

<dw> deletes the word at the cursor through the
next space or to the next punctuation mark

<dW> deletes the word and punctuation at the
cursor through the next space

<dd> deletes the current line

<D> deletes the portion of the line to the right
of the cursor

<d)> deletes the current sentence

<d } > deletes the current paragraph

Figure 6-9: Summary of Delete Commands

6-66 USER'S GUIDE

Exercise 4
4- 1 . Create a file called exer4 and put the following four lines of text in it:

When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.

4-2. Move the cursor to line two and append to the end of that line:

tedious and unsavory

Delete the word unsavory while you are in append mode .

Dt.>ll'll' lht.> word bori ng whi lt.> you arl' i n l"Ummand modl•.

What is another way you could have deleted the word boring?

4-3. Insert at the beginning of line four:

congenial and computerized

Delete the line.

How can you delete the contents of the line without removing the l ine
itself?

Delete all the lines with one command.

4-4. Leave the screen editor and remove the empty file from your direc
tory.

SCREEN EDITOR TUTORIAL (vi) 6-67

Modifying Text

Thl· delete commands and text input commands provide one way for you
to mod i fy text. Another way you can change text is by using a command that
lets you delete and create text simultaneously. There are three basic change
commands: <r> , <s>, and <C> .

Replacing Text

<.r> J{eplaces the current character (the character shown by the cursor).
This command does not initiate text input mode, and so does not
need to be followed by pressing the <ESC> key.

< nr> Replaces n characters with the same letter. This command
automatically terminates after the nth character is replaced. It
does not need to be followed by pressing the <ESC> key.

<R> Replaces only those characters typed over until the <ESC> com
mand is given. If the end of the line is reached, this command
will append the input as new text.

The <r> command replaces the current character with the next character .
tha t is typed in . For example, suppose you want to change the word acts to
a n ts i n the following sentence:

The circus has many acts .

Place the cursor under the c of acts and type

<r>n

The sen tence becomes

The circus has many ants .

To chnnge many to 7777, place the cursor under the m of many and type

<4r7>

The <r> command changes the four letters of many to four occurrences of the
number seven :

The circus has 7777 ants .

6-68 USER'S GUIDE

Modifying Text

Substituting Text

The substitute command replaces characters and then allows you to insert
additional text from that point until you press the <ESC> key.

<s> Deletes the character shown by the cursor and appends text. End
the text input mode by pressing the <ESC> key.

<ns> Deletes n characters and appends text. End the text input mode
by pressing the <ESC> key.

<S> Replaces all characters in the line.

When you enter the <s> command, the last character in the stri ng of
characters to be replaced is overwritten by a $ sign. The characters are not
erased from the screen until you type over them, or leave text input mode by
pressing the <ESC> key.

Notice that you cannot use an argument with either <r> or <s> . Did you
try?

Suppose you want to substitute the word million for the word hundred in
the sentence My salcu:y is one hundred dollars . Put the cursor under the h
of hundred and type <7s> . Notice where the $ sign appears:

My sal.azy is one hundred dollars .

t
< 7s>

Then type million:

SCREEN EDITOR TUTORIAL (viJ 6-69

Modifying Text

My salal:y is cme hundre$ dollars .

t
million

My salary is one millicn dollars .

t

Changing Text

The substitute command replaces characters. The change command
replaces text objects and then continues to append text from that point until
you press the <ESC> key. To end the change command, press the <ESC>
key.

The change command can take an argument. You can replace a character,
word, or an entire line with new text.

<ncx> Replaces n number of text objects of type x, such as sentences
(shown by <)>) and paragraphs (shown by < } >) .

6-70 USER'S GUIDE

<eW>

<lleW>

<Ce>

<nee>

<C>

<nC>

Modifying Text

Replaces a word or the remaining characters in a word w i th
new text. The vi editor prints a $ sign to show the last char
acter to be changed.

Replaces n words.

Replaces al l the c:haracters i n the l ine.

Replaces all characters in the current line and up to 11 lines of
text.

Replaces the remaining characters in the line, from the cursor
to the end of the line.

Replaces the remaining characters from the cursor in the
current line and replaces all the lines following the current
line up to " lines.

The change commands <ew> and <C> use a $ sign to mark the last
letter to be replaced. Notice how this works in the following example:

'D1ey are now due to anive a1 'l'llesday.

t
<cw >

SCREEN EDITOR TUTORIAL (vi) 8-71

Modifying Text

They are now chJe to arrive an TuesdaS .

t
Wednesday < ESC>

They are now chJe to arrive an Wednesday.

t

Notice that the new word (wednesday) has more letters than the word it
replaced ('1\lesday). Once you have executed the change command you are in
text input mode and can enter as much text as you want. The buffer will
accept text until you press the <ESC> key.

The <C> command, when used to change the remaining text on a line,
works in the same way. When you enter the command it uses a $ sign to
mark the end of the text that will be deleted, puts you in text input mode, and
wa i ts for you to type new text over the old. The following screens offer an
example of the <C> command:

6· 72 U.SER'S GUIDE

'lhls is line 1 .
Oh, I III.1St hit.ye the wrcDJ niJIIiler .

t
< C >

'lhls is l ine 3 .
'lhls is line 4 .

'lhl s i s line 1 .
Oh, I III.1St have the wrcDJ niJIIilerS

f
This is line 2. < ESC >

'lhls is line 3 .
'lhls is line 4 .

'Jhls i s line 1 .
'lhis is line 2 .

'Dlis is l ine 3 .
'Dlis is line 4 .

Modifying Text

SCREEN EDITOR TUTORIAL (vi) 8-73

Modifying Text

Now try combining arguments. For example, type

<c{>

Because you know the undo command, do not hesitate to experiment with dif
ferent arguments or to precede the command with a number. You must press �e <ESC> key before using the <u> command, since <c> places you in text

Input mode.

· Compare <S> and <cc> . The two commands should produce the same
results.

Figure 6-10 summarizes the vi commands for changing text.

8-74 USER'S GUIDE

Modifying Text

Command Function

<r> Replaces the current character.

<R> Replaces only those characters typed over with
new characters un til the <ESC> key is prt>ssl:'d .

<s> Deletes the character the cursor is on and
appends text. End the append mode by press-
ing the <ESC> key.

<S> Replaces all the characters in the line.

<CC> Replaces all the characters in the line.

<ncx> Replaces n number of text objects of type x,
such as sentences (shown by <)>) and para-
graphs (shown by < } >) .

<CW> Replaces a word or the remaining characters in
a word with new text.

<C> Replaces the remaining characters in the line,
from the cursor to the end of the line.

Figure 6- 1 0 : Summary of vi Commands for Changing Text

SCREEN EDITOR TUTORIAL (vi) 6·75

Cutting And Pasting Text Electronically

vi provides a set of commands that cut and paste text in a file. Another
set of commands copies a portion of text and places it in another section of a
file .

Moving Text

You can move text from one place to another in the vi buffer by deleting
the lines and then placing them at the required point. The last text that was
deleted is stored in a temporary buffer. If you move the cursor to that part of
the file where you want the deleted lines to be placed and press <p>, the
deleted lines will be added below the current line.

<p> places the contents of the temporary buffer after the cursor

A partial sentence that was deleted by the <D> command can be placed
in the middle of another line. Position the cursor in the space between the
two words, then press <p> . The partial line is placed after the cursor.

Characters deleted by <nx> also go into a temporary buffer. Any text
object that was just deleted can be placed somewhere else in the text with
<p> .

The <p> command should be used right after a delete command since the
temporary buffer only stores the results of one command at a time. The <p>
command is also used to copy text placed in the temporary buffer by the yank
command. The yank command (<y>) is discussed in 11 Copying Text. 1 1

Fixing Transposed Letters

A quick way to fix transposed letters is to combine the <X> and the <p>
commands as <xp>. <X> deletes the letter. <p> places it after next charac
ter.

Notice the error in the next line:

A line of tetx

6·76 USER'S GUIDE

Cutting And Pasting Text Electronically

This error can be changed quickly by placing the cursor under the t in tx and
pressing the <X> and <p> keys, in that order. The result is

A line of text

Try this. Make a typing error in your file and use the <xp> command to
correct it. Why does this command work?

Copying Text

You can yank (copy) one or more lines of text into a temporary buffer and
then put a copy of that text anywhere in the file. To put the text in a new
position type <p>; the text will appear on the next line.

The yank command follows the general format of a vi command:

[number)y[texLobject]

Yanking lines of text does not delete them from their original position in the
file. If you want the same text to appear in more than one place, this pro
vides a convenient way to avoid typing the same text several times. However,
if you do not want the same text in multiple places, be sure to delete the origi
nal text after you have put the text into its new position .

Figure 6-1 1 summarizes the ways you can use the yank command.

Command Function

<nyx> yanks n number of text objects of type x (such
as sentences and paragraphs)

<yw> yanks a copy of a word

<yy> yanks a copy of the current line

<nyy> yanks n lines

<y)> yanks all text up to the end of a sentence

<y}> yanks all text up to the end of the paragraph

Figure 6-1 1 : Summary of the Yank Command

SCREEN EDITOR TUTORIAL (vi) 8-77

Cutting And Pasting Text Electronically

Notice that this command allows you to specify the number of text objects to
be yanked.

Try the following command lines and see what happens on your screen.
(Remember, you can always undo your last command.) Type

<Syw>

Move the cursor to another spot. Type

<p>

Now try yanking a paragraph <y} > and placing it after the current paragraph.
Then move to the end of the file <G> and place that same paragraph at the
end of the file.

Copying or Moving Text Using Registers

Moving or copying several sections of text to a different part of the file is
tedious work. vi provides a shortcut for this: named registers in which you
can store text until you want to move it. To store text you can either yank or
delete the text you wish to store.

Using registers is useful if a piece of text must appear in many places in
the file. The extracted text stays in the specified register until you either end
the editing session, or yank or delete another section of text to that register.

The general format of the command is

[number][" x]command[texLobject]

The x is the name of the register and can be any single letter. It must be pre
ceded by a double quotation mark. For example, place the cursor at the
beginning of a line. Type

<3 " ayy>

Type in more text and then go to the end of the file. Type

< " ap>

Did the lines you saved in register a appear at the end of the file?

6-78 USER'S GUIDE

Cutting And Pasting Text Electronically

Figure 6- 1 2 summarizes the cut and paste commands.

Command Function

<p> places the contents of the temporary buffer con-
taining the text obtained from the most recent
delete or yank command into the text after the
cursor

<yy> yanks a line of text and places it into a tern-
porary buffer

<uyx> yanks a copy of 11 n u mbt•r of text objl'l"ts of
type x and plan•s them in a temporary htt ffl•r

< " xyn> places a copy of a text object of type n in the
register named by the letter x

< " Xp> plac�s the contents of the register x after the
cursor

Figure 6-12 : Summary of vi Commands for Cutting and Pasting Text

SCREEN EDITOR TUTORIAL (vi) 6-79

Exercise 5
5- 1 . Enter vi with the file called exer2 that you created in Exercise 2.

Go to line eight and change its contents to END OF FILE

5-2 . Yank the first eight lines of the file and place them in register z. Put
the contents of register z after the last line of the file.

5-3 . Go to line eight and change its contents to eight is great.

5-4. Go to the last line of the file. Substitute EXERCISE for FILE Replace
OF with TO.

8-80 USER'S GUIDE

Special Commands

Here are some special commands that you will find useful :

<.> repeats the last command

joins two lines together

clears the screen and redraws it

changes lowercase to uppercase and vice versa

Repeating the Last Command

The . (period) repeats the last command to create, delete, or change text in
the file. It is often used with the search command.

For example, suppose you forget to capitalize the s in United States.

However, you do not want to capitalize the s in chemical states. One way
to correct this problem is by searching for the word states. The first time
you find it in the expression United States, you can change the s to s. Then
continue your search. When you find another occurrence, you can simply
type a period; vi will remember your last command and repeat the substitu
tion of s for S.

Experiment with this command. For example, if you try to add a period at
the end of a sentence while in command mode, the last text changl' will sud
dt•nly appt•ar on th(' Sl'rt't' n . Watch thl.' Sl'rl'<'n to Sl.'l' how thl' h•x t is a ffl'ct('d .

SCREEN EDITOR TUTORIAL (vi) 6-81

Special Commands

Joining Two Lines

The <J> command joins l ines. To enter this command, place the cursor
on the current l ine, and press the <SHIFT> and j keys simultaneously. The
current l ine is joined with the following line.

For example, suppose you have the following two lines of text:

Dear Mr .
Smith :

To jo in these two l i nes into one, place the cursor under any character in the
fi rs t l i n e a nd type

<J>

You w i l l immediately see the following on your screen:

Dear Mr. Smith :

Notice that vi automatically places a space between the last word on the first
l i n e and the first word on the second line.

Clearing and Redrawing the Window

If a n other U N I X System USl'r Sl'nds you a message us i ng the write com
mand wh i le you are ed iting w i t h v i , the message wi l l appear in your curren t
wi ndow, over part of the text you are edi ting. To restore your text after you
have read the message, you must be in command mode. (If you are in text
i n pu t mode, press the <ESC> key to return to command mode.) Then type
< ·I> (CTRL-1) . vi will erase the message and1fedraw the window exactly as it
appeared before the message arrived.

6-82 USER'S GUIDE

Special Commands

Changing Lowercase to Uppercase and Vice
Versa

A quick way to change any lowercase letter to uppercase, or vice versa, is
by putting the cursor on the letter to be changed and typing a < - > (tilde).
For example, to change the letter a to A, press -.. . You can change several
letters by typing several times, but you cannot precede the command with
a number to change several letters with one command.

Figure 6-1 3 summarizes the special commands.

Command Function

<.> repeats the last command

<J> joins the line below the current line with the current line

<.1> clears and redraws the current window

<-> changes lowercase to uppercase or vice versa

Figure 6-13 : Summary of Special Commands

SCREEN EDITOR TUTORIAL (vi) 6-83

Using Line Editing Commands in vi
The vi editor has access to many of the commands provided by a line edi

tor called ex. (For a complete list of ex commands see the ex(l) page in the
User'sjSystem Administrator's Reference Manual .) This section discusses some of
the most commonly used commands.

The ex commands are very similar to the ed commands discussed in
Chapter 5 . If you are familiar with ed, you may want to experiment on a test
file to see how many ed commands also work in vi.

Line editor commands begin with a : (colon). After the colon is typed, the
cursor will drop to the bottom of the screen and display the colon . The
remainder of the command will also appear at the bottom of the screen as you
type it .

Temporarily Returning to the Shell: the :sh
and :! Commands

When you enter vi, the contents of the buffer fill your screen, making i t
impossible to issue any shell commands. However, you may want to do so.
For example, you may want to get information from another file to incor
porate into your current text. You could get that information by running one
of the shell commands that display the text of a file on your screen, such as
the cat or pg command. However, quitting and re-entering the editor is time
consuming and tedious. vi offers two methods of leaving the editor tem
porarily so that you can issue shell commands (and even edit other files)
without having to write your buffer and quit: the :! command and the :sh
command.

The :! command allows you to escape the editor and run a shell command
on a single command line. From the command mode of vi, type : ! . These
characters will be printed at the bottom of your screen . Type a shell com
mand immediately after the ! . The shell will run your command, give you
output, and print the message [Hit return to continue] . When you press
the <RETURN> key, vi will refresh the screen and the cursor will reappear
exactly where you left it.

6-84 USER'S GUIDE

Using Line Editing Commands in vi

The ex com mand :sh al lows you to do the same thing but behaves dif
fl•rt�ntly on the screen . From the command mode of vi, type :sh and press the
< R ET U RN> key. A shel l command prompt will appear on the n ext l ine.
Type your command(s) a fter the prompt as you would normally do while
working i n tht• shel l . When you a re read y to rl•tu rn to vi, ty p£> < · d> or exit;
you r Sl'rl'l'n w i l l bl' n•freslwd with your hu ffl•r con t l•n ts, <l lld t lw cu rsor w i l l
<l ppl'ar wht•rt• you l l•ft i t .

Even changing d i rectories w h i l e you a re temporari l y i n the sh l' l l w i l l not
pn•ven t you from n•turning to the vi bu ffer when• you were ed i i i n g your Hit!

w hl•n you type exit or <
. d> .

Writing Text to a New File: the :w Command

The :w command (short for write) allows y o u to create a fi l e by copying
l ines of text from the fi l e you are currently editing into a fi le that you specify .
T o create y o u r n e w file, y o u m u s t specify a l ine o r range of lines (w i t h their
line n umbers) with the name of the new fil e on the command line. You can
wri te as many l ines as you l ike. The general format is

:line_number[, fine_llumber]w filename

For l'Xam ph·, to wrih• t hl' t h i rd l ine of thl• bu ffN to a l i rw n a nwd th ree,
t y pl'

:3w t h ree < C R >

vi reports t h e successfu l creation of your n e w file with t h e following i n forma
tion :

"three" [New file] 1 l:ine , 20 characters

To write your current l ine to a file, you can use a . (period) as the l i n e
address:

:.w junk<CR>

A new fi le called junk will be created . I t wil l contain on l y the cu rren t l ine in
the vi bu ffer.

SCREEN EDITOR TUTORIAL (vii 6-85

Using Line Editing Commands in vi

You can also write a whole section of the buffer to a new file by specify
ing a range of lines. For example, to write lil,les 23 through 37 to a file, type
the following:

:23,37w newfile<CR>

Finding the Line Number

To determine the line number of a line, move the cursor to it and type
(colon). The colon will appear at the bottom of the screen. Type .= after it,
and press the <RETURN> key:

If you want to knc:M the munber
of this line , type :.=<CR>

: . =

As soon as you press the <RETURN> key, your command line will disappear
from the bottom line and be replaced by the number of your current line in
the buffer:

6-86 USER'S GUIDE

If you want to know the number
of this line , type in : .= <CR>

34

Using Line Editing Commands in vi

You can move the cursor to any line in the buffer by typing : and the line
number. The command line

:n<CR>

means to go to the nth l ine of the buffer.

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines between the current line
and the end of the buffer is by using the line editor command d with the spe
cial symbols for the current and last lines:

:.,$d<CR>

The . represents the current line; the $ sign, the last line.

Adding a File to the Buffer

To add text from a file below a specific line in the editing buffer, use the :r
command (short for read .) For example, to put the contents of a fi l e cal l ed
data into your current file, place the cursor on the line above the location
where you want it to appear. Type

:r data<CR>

You may also specify the line number instead of moving the cursor. For
example, to insert the file data below line 56 of the buffer, type

SCREEN EDITOR TUTORIAL (vi) 6-87

Using Line Editing Commands in vi

:56r data<CR>

Do not be afraid to experiment; you can use the <u> command to undo ex
commands, too.

Making Global Changes

One of the most powerful commands in ex is the global command. The
global command is described here to help those users who are familiar with
the l ine editor. Even if you are not familiar with a line editor, you may want
to try the command on a test file.

For example, say you have several pages of text about the DNA molecule
in which you refer to its structure as a " helix. " Now you want to change
every occurrence of the word " helix " to " double helix. " The ex editor's glo
bal command allows you to do this with one command line. First, you need
to understand a series of commands:

:gjpattemjcommand<CR>

For each line containing pattern, ex executes command. For exam
ple, type :gjhelix<CR>. The line editor will print all lines that
contain the pattern helix.

:sjpattemfnew_wordsf <CR>

For each l ine containing pattern, ex substitutes new_words for the
first occurrence of pattern .

:sjpatternjnew_wordsjg<CR>

If you add the letter g after the last delimiter of this command
l ine, ex changes every occurrence of pattern on the current line to
new_words. If you· do not, ex changes only the first occurrence.

:gjhelixjsj jdouble helixjg<CR>

For each l ine containing helix, ex substitutes double helix for every
occurrence of helix. The del imiters after the s do not need to have
helix typed in again. The command remembers the word from the
delimiters after the global command g. This is a powerful

6-88 USER'S GUIDE

Using Line Editing Commands in vi

command. For a more detailed explanation of global and substitu
tion commands, see Chapter 5.

Figure 6- 1 4 summarizes the
.
line editor commands available in vi.

Command Function

: specifies that the commands that follow are
line editor commands

:sh<CR> temporarily returns you to the shell to per-
form shell commands

<
.
d> escapes the temporary shel l and rE'tums

you to the current window o f vi tn con-
tinue edi t ing

:n<CR> goes to the nth line of the buffer

:x,yw data<CR> writes lines from the number x through the
number y into a new file (data)

:$<CR> goes to the last line of the buffer

:.,$d<CR> deletes all the lines in the buffer from the
current line to the last line

:r shell.file<CR> inserts the contents of shell.file after the
current line of the buffer

:sjtextjnew_wordsj<CR> replaces the first instance of the characters
text on the current line with new_words

:sjtextjnew_wordsjg<CR> replaces every occurrence of text on the
current line with new_words

:gjtextfs/ jnew_wordsjg<CR> replaces every occurrence of text in the file
with new_words

Figure 6-14: Summary of Line Editor Commands

SCREEN EDITOR TUTORIAL (vi) 6-89

Quitting vi

There are five basic command sequences to quit the vi editor. Commands
that are preceded by a colon (:) are line editor commands.

<ZZ> or :wq<CR>

:w filcname<CR>
:q<CR>

:w! filename<CR>
:q<CR>

:q!<CR>

:q<CR>

Writes the contents of the vi buffer to the UNIX file
currently being edited and quits vi.

Writes the temporary buffer to a new file named
filename and quits vi.

Overwrites an existing file called filename with the
contents of the buffer and quits vi.

Quits vi without writing the buffer to a file and dis
cards all changes made to the buffer.

Quits vi without writing the buffer to a UNIX file.
This works only if you have made no changes to
the buffer; otherwise, vi will warn you that you
must either save the buffer or use the :q!<CR>
command to terminate.

Tht> <ZZ> command and :wq command sequence both write the contents
of the bu ffer to a file, quit vi, and return you to the shell . You have tried the
<ZZ> command. Now try to exit vi with :wq. vi remembers the name of
the file currently being edited, so you do not have to specify it when you
want to write the buffer's contents back into the file. Type

:wq<CR>

The system responds in the same way it does for the <ZZ> command. It tells
you the name of the file and reports the number of lines and characters in the
file.

What must you do to give the file a different name? For example, sup
pose you want to write to a new file called junk. Type

:w junk<CR>

6-90 USER'S GUIDE

A fter you wri tl' to t lw Jll'W fi l t' , l£>avt• vi . Ty pl'

:q<CR>

QuiHing vi

If you try to write to an existing file, you will receive a warning. For
example, if you try to write to a file called johnson, the system will respond
with

" johnson" File exists - use "w l johnson" to overwrite

If you want to replace the contents of the existing file with the contents of the
buffer, use the :w! command to overwrite johnson:

:w! johnson<CR>

Your new fi le will overwrite the existing one.

If you edit a file called memo, make some changes to i t , and then decide
you don't want to keep the changes, or if you accidentally press a key that
gives vi a command you cannot undo, leave vi without writing to the file.
Type

:q!<CR>

SCREEN EDITOR TUTORIAL (vi) 6-91

QuiHing vi

Figure 6- 1 5 summarizes the quit commands.

Command Function

<ZZ> writes the file and quits vi

:wq<CR> writes the file and quits vi

:w filename<CR> writes the editing buffer to filename and quits vi
:q<CR>

:w! filename<CR> overwrites the existing file with the contents of the
:q<CR> editing buffer and quits vi.

:q!<CR> quits vi without writing the buffer to a file

:q<CR> quits vi without writing the buffer to a file

Figure 6- 15 : Summary of the Quit Commands

6·92 USER'S GUIDE

Special Options For vi

The vi command has some special options. I t allows you to

• recover a file lost by an interrupt to the UNIX System

• place several files in the editing buffer and edit each in sequence

• view a file at your own pace by using the vi cursor positioning com
mands

Recovering a File Lost by an Interrupt

I f there is a system interrupt or disconnect, the system will exit the vi
command without writing the text in the buffer back to its file. However, the
UNIX System will store a copy of the buffer for you . When you log back in to
the UNIX System, you will be able to restore the file with the -r option for
the vi command. Type

vi -r filename<CR>

The changes you made to filename before the interrupt occurred are now in
the vi buffer. You can continue editing the file, or you can write the file and
quit vi. The vi editor will remember the file name and write to that file.

Editing Multiple Files

I f you want to edit more than one file in the same edi ting session, issue
the vi command and specify each file name. Type

vi filel file2<CR>

vi responds by telling you how many files you are going to edit. For exam
ple:

2 files to edit

SCREEN EDITOR TUTORIAL (vi) 6-93

Special Options For vi

After you have edited the first file, write your changes (in the buffer) to
the file (filel) . Type

:w<CR>

The system response to the :w <CR> command will be a message at the bot
tom of the screen giving the name of the file and the number of lines and
characters in that file. Then you can bring the next file into the editing buffer
by using the :n command. Type

:n<CR>

The system responds by printing a notice at the bottom of the screen, telling
you the name of the next file to be edited and the number of characters and
lines in that file .

Select two of the files in your current directory. Then enter vi and place
the two files in the editing buffer at the same time. Notice the system
responses to your commands at the bottom of the screen.

Viewing a File

It is often convenient to be able to inspect a file by using vi's powerful
search and scroll capabilities. However, you might want to protect yourself
against accidentally changing a file during an editing session. The read-only
option prevents you from writing in a file. To avoid accidental changes, you
can set this option by invoking the editor as view rather than vi.

Figure 6-1 6 summarizes the special options for vi.

6-94 USER'S GUIDE

Special Options For vi

Option Function

vi file1 file2 file3<CR> enters file1, file2, and file3 into the vi
buffer to be edited

:w<CR> writes the current file and calls the next
:n<CR> file into the buffer

vi -r file1 <CR> restores the changes made to file1

Figure 6- 16 : Summary of Special Options for vi

SCREEN EDITOR TUTORIAL (vi) 8·95

Exercise 6
6- 1 . Try to restore a file lost by an interrupt.

Enter vi and create some text in a file called exer6. Tum off your ter
minal without writing to a file or leaving vi. Tum your terminal back
on and log in again. Then try to get back into vi and edit exer6.

6-2 . Place exert and exer2 in the vi buffer to be edited . Write exert and
call in the next me in the buffer, exer2.

Write exer2 to a me called junk.

Quit vi.

6-3. Try out the following command:

vi exer*<CR>

What happens? Try to quit all the files as quickly as possible.

6-4. Look at exer4 in read-only mode.

Scroll forward.

Scroll down.

Scroll backward.

Scroll up.

Quit and return to the shell.

&-98 USER'S GUIDE

Answers To Exercises

There is often more than one way to perform a task in vi. Any method
that works is correct. The following are suggested ways of doing the exer
cises.

Exercise 1

1 - 1 . Ask your system administrator for your terminal's system name. Type

TERM=terminaL.name<CR>

1 -2. Enter the vi command for a ftle called exert:

vi exert <CR>

Then use the append command (<a>) to enter the following text in
your ftle:

This is an exercisei<CR>
Up, down<CR>
left, right,<CR>
build your terminal's<CR>
muscles bit by bit<ESC>

1-3 . Use the <k> and <h> commands.

1-4 . Use the <x> command.

1 -5 . Use the <j> and <1> commands.

SCREEN EDITOR TUTORIAL (vi) 8-87

Answers To Exercises

1 -6 . Enter vi and use the append command (<a>) to en ter the follow ing
text:

and byte by byte<ESC>

Then use <j> and <1> to move to the last line and character of the
fi le. Use the <a> command again to add text. You can create a new
line by pressing the <RETURN> key. To leave text input mode, press
the <ESC> key.

1 -7 . Type

1 -8 . Type

<ZZ>

vi exerl <CR>

Notice the system response:

"exer 1 " 7 lines , 102 characters

Exercise 2

2 - 1 . Type
vi exer2<CR>
<a>l<CR>
2<CR>
3<CR>

48<CR>
49<CR>
50<ESC>

6-98 USER'S GUIDE

Answers To Exercises

2-2. Type

Notice the line numbers as the screen changes.

2-3. Type
<G>
<O>
123456789 123456789<ESC>
<7h>
<31>

Ty ping <7h> puts tht> cu rsor
on the 2 in the second st'l of num lwrs .
Typing <31> puts the cursor
on the 5 in the
second set of numbers.

2-4. $ = end of line

2-5.

2-6.

2-7.

0 = first character in the line

Type
.

< >
<w>

<e>

Type
<lG>
<M>
<L>
<H>

Type
/8
<n>
/48

SCREEN EDITOR TUTORIAL (vi) 8-88

Answers To Exercises

Exercise 3

3-1 . Type

3-2. Type

3-3. Type

3-4. Type

vi exer3<CR>

<a> Append text <CR>
Insert text<CR>
a computer's <CR>
job is boring.<ESC>

<0>
financial statement and<ESC>

<3G>
<i>Delete text<CR><ESC>

The text in your file now reads as fol lows:

Append text
Insert text
Delete text
a OCIIplter ' s

financial statement and

job is boring.

3-5. The current line is a OCIIplter ' s. To create a line of text below that
line, use the <o> command.

3-6. The current line is byte of the budget.

<G> puts you on the bottom line.
<A> lets you begin appending at the end of the line.
<CR> creates the new line.
Add the sentence: But, it is an exciting machine.
<ESC> leaves append mode.

6-1 00 USER'S GUIDE

3-7. Type
<lG>
jtext
<i>some<space bar> <ESC>

Answers To Exercises

3-8 . <ZZ> will write the buffer to exer3 and return you to the shell .

Exercise 4

4 - 1 . Type

4-2 . Type

vi exer4<CR>
<a> When in the course of human events<CR>
there are many repetitive, boring<CR>
chores, then one ought to get a<CR>
robot to perform those chores.<ESC>

<2G>
<A> tedious and unsavory<BACKSPACE> <CR>
<ESC>

Press <h> until you get to the b in boring. Then type
<dw> . (You can also use <6x>.)

4-3. You are at the second line. Type
<2j>
<I> congenial and computerized<ESC>
<dd>

To lh• l l ' l l ' t lw l i nt • a n d h•iJ VI ' it bla n k , t y pt ·
< 0 > (:t.l'ro movl'S t lw l'U rsor t o t lw l:wgi n n i n g o f t lw l i m•)
<D>

<H>
<3dd>

4-4 . Write and quit vi:

<ZZ>

SCREEN EDITOR TUTORIAL (vi) 6-1 01

Answers To Exercises

Remove the file:

rm exer4<CR>

Exercise 5

5 - l . Type

S-2 . Type

S-3. Type

S-4. Type

vi exer2<CR>
<8G>
<cc> END OF FILE <ESC>

<lG>
<8 " zyy>
<G>
< " zp>

<8G>
<cc> 8 is great<ESC>

<G>
<2W>
<cw>
EXERCISE<ESC>
<2b>
<CW>
TO<ESC>

Exercise 6

6- 1 . Type
vi exer6<CR>
<a> (append several lines of text)
<ESC>

Turn off the terminal .

6-1 02 USER'S GUIDE

Answers To Exercises

Turn on the terminal .
Log in on your UNIX System. Type

vi -r exer6<CR>

6-2 . Type

6-3. Type

6-4. Type

:wq<CR>

vi exert exer2<CR>
:w<CR>
:n<CR>

:w junk<CR>
<ZZ>

vi exer*<CR>

Response:
8 files to edit (vi calls all files with names that begin with exer.)

<ZZ>
<ZZ>

view exer4<CR>
<

.
f>

<
.
d>

<
.
b>

.
< U>
:q<CR>

SCREEN EDITOR TUTORIAL (vi) 6-1 03

7 Shell Tutorial

Introduction 1-1

Shell Command Language 7-2

Metacharacters 7-4

• The Metacharacter That Matches All Characters:
the Asterisk (*) 7-4

• The Metacharacter That Matches One Character:
the Question Mark (?) 7-6

• Using the • or ? to Correct Typing Errors 7-7

• The Metacharacters That Match One of a Set:

Brackets ([]) 7-8

Special Characters 7-9

• Running a Command in Background: the
Ampersand (&) 7-1 0

• Executing Commands Sequentially: the
Semicolon (;) 7-1 1

• Turning Off Special Meanings: the Backslash (\) 7-1 1

• Turning Off Special Meanings: Quotes 7-1 2

• Using Quotes to Turn Off the Meaning o f a Space 7-1 2

Input and Output Redirection 7-1 3

• Redirecting Input: the < Sign 7-1 4

• Redirecting Output to a File: the > Sign 7-1 4

• Appending Output to an Existing File: the >>

Symbol 7-1 6

• Useful Applications of Output Redirection 7-1 7

• Combining Background Mode and Output

Redirection 7-1 9

• Redirecting Output to a Command: the Pipe (I) 7-1 9

• A Pipeline Using the cut and date Commands 7-20

SHELL TUTORIAL

Shell Tutorial

• Substituting Output for an Argument 7-25
Executing and Terminating Processes 7-25

• Running Commands at a Later Time With the

batch and at Commands 7-25

• Obtaining the Status of Running Processes 7-31

• Terminating Active Processes 7-32
• Using the nohup Command 7-33

Command Language Exercises 7-35

Shell Programming 7-36
Shell Programs 7-37

• Creating a Simple Shell Program 7-37
• Executing a Shell Program 7-38
• Creating a bin Directory for Executable Files 7-39

• Warnings about Naming Shell Programs 7-40
Variables 7-41

• Positional Parameters 7-41

• Special Parameters 7-46
• Named Variables 7-50

• Assigning a Value to a Variable 7-52

Shell Programming Constructs 7-59

• Comments 7-60

• The here Document · 7-60

• Using ed in a Shell Program 7-62

• Return Codes 7-65

• Looping 7-66

• The Shell's Garbage Can: fdevfnull 7-72

• Conditional Constructs 7-72

• Unconditional Control Statements: the break and
continue Commands 7-84

Debugging Programs 7-86

Modifying Your Login Environment 7-9o

II USER•S GUIDE

Adding Commands to Your .profile
Setting Terminal Options
Creating an rje Directory
Using Shell Variables

Shell Tutorial

7-90
7-9 1

7-93

7-93

Shell Programming Exercises 7-97

Answers To Exercises
Command Language Exercises
Shell Programming Exercises

7-99

7-99

7-1 00

SHELL TUTORIAL iii

Introduction

This chapter describes how to use the UNIX System shell to do routine
tasks . For example, it shows you how to use the shell to manage your files, to
manipulate file contents, and to group commands together to make programs
the shell can execute for you.

The chapter has two major sections. The first section, " Shell Command
Language, " covers in detail using the shell as a command interpreter. It tells
you how to use shell commands and characters with special meanings to
manage files, redirect standard input and output, and execute and terminate
processes. The second section, " Shell Programming, " covers in detail using
the shell as a programming language. It tells you how to create, execute, and
debug programs made up of commands, variables, and programming con
structs like loops and case statements. Finally, it tells you how to modify your
login environment.

The chapter offers many examples. You should log in to your UNIX Sys
tem and recreate the examples as you read the text. As in the other examples
in this guide, different type (bold, ital ic, and constant width) is used to dis
tinguish your input from the UNIX System's output. See " Notational Con
ventions " in the Preface for details.

In addition to the examples, there are exercises at the end of both the
" Shell Command Language " and " Shell Programming " sections. The exer
cises can help you better understand the topics discussed. The answers to the
exercises are at the end of the chapter.

Your UNIX System might not have all commands referenced in this
chapter. If you cannot access a command, check with your system
administrator.

If you want an overview of how the shell functions as both command
interpreter and programming language, see Chapters 1 and 4 before reading
this chapter. Also, refer to Appendix E, Summary of Shell Command
Language.

SHELL TUTORIAL 7-1

Shell Command Language

This section introduces commands and, more importantly, some characters
with special meanings that let you

• find and manipulate a group of files by using pattern matching

• run a command in the background or at a specified time

• run a group of commands sequentially

• redirect standard input and output from and to files and other com
mands

• terminate processes

It first covers the characters having special meanings to the shell and then
covers the commands and notation for carrying out the tasks listed above.
Figure 7-1 summarizes the characters with special meanings discussed in this
chapter.

7-2 USER'S GUIDE

Shell Command Language

Character Function

• ? [] provide a shortcut for specifying file names by pattern
matching

& places commands in background mode, leaving your
terminal free for other tasks

; separates multiple commands on one command line

\ turns off the meaning of special characters, such as •, ? ,
[) , &, ; , > , <, and I

I I turns off the delimiting meaning of a space and the . . .
special meaning of all special characters

" " turns off the delimiting meaning of a space and the . . .
special meaning of all special characters except $ and '

> redirects output of a command into a file (replaces
existing contents)

< redirects input for a command to come from a file

> > redirects output o f a command to b e added to the end
of an existing file

I creates a pipe of the output of one command to the
input of another command

' ' allows the output of a command to be used directly as . . .
arguments on a command line

$ used with positional parameters and user-defined vari-
abies; also used as the default shell prompt symbol

Figure 7- 1 : Characters with Special Meanings in the Shell Language

SHELL TUTORIAL 7·3

Shell Command Language

Metacharacters

Metacharacters, a subset of the special characters, represent other charac
ters. They are sometimes called wild cards because they are like the joker in a
card game that can be used for any card. The metacharacters * (asterisk), ?
(qut•stion mark), and [] (brackets) are discussed here.

These characters are used to match file names or parts of file names,
thereby simplifying the task of specifying files or groups of files as command
arguments. (The files whose names match the patterns formed from these
metacharacters must already exist.) This is known as file name expansion.
For example, you may want to refer to all file names containing the letter
" a " , all file names consisting of five letters, and so on.

The Metacharacter That Matches All Characters: the
Asterisk (*)

The asterisk (*) matches any string of characters, including a null (empty)
string. You can use the * to specify a full or partial file name. The * alone
refers to all the file and directory names in the current directory. To see the
effect of the •, try it as an argument to the echo command. Type

echo * <CR>

The echo command displays its arguments on your screen. Notice that the
system response to echo • is a listing of all the file names in your current
directory. However, the file names are displayed horizontally rather than in
vertical columns such as those produced by the Is command.

V
The * is a powerful character. For example, if you type rm * you will
erase all the files in your current directory. Be very careful how you use
it!

7·4 USER'S GUIDE

Shell Command Language

For another example, say you have written several reports and have
named them report, reportl, reportla, reportlb.Ol, report25, and report316.
By typing reportl * you can refer to all files that are part of report l , col lec
tively. To find out how many reports you have written, you can use the Is
command to list all files that begin with the string 11 report, " as shown in the
following example:

$ Is report• <CR>
report
report1
report1a
report1b . 0 1

report25

report3 16
$

The * matches any characters after the string 11 report, " including no letters at
all . Notice that * matches the files in numerical and alphabetical order. A
quick and easy way to print the contents of your report fi l es in order on your
screen is by typing the following command :

pr report*<CR>

Now try another exercise . Choose a character that all the file names in
your current directory have in common, such as a lowercase 11 a 11 • Then
request a listing of those files by referring to that character. For example, i f
you choose a lowercase 11 a 11 , type the following command line:

Is *a*<CR>

The system responds by printing the names of all the files in your current
directory that contain a lowercase 11 a 11 •

The * can represent characters in any part of the file name. For example,
if you know that several files have their first and last letters in common, you

SHELL TUTORIAL 7-5

Shell Command Language

can request a Jist of them on that basis. For such a request, your command
line might look like this:

Is F*E<CR>

The system response will be a list of file names that begin with F, end with E,
and are in the following order:

Fl23E
FATE
FE
Fig3.4E

The order is determined by the ASCII sort sequence of numbers, uppercase
letters, and lowercase letters.

The Metacharacter That Matches One Character: the
Question Mark (?)

The question mark (?) matches any single character of a file name. Let's
say you have written several chapters in a book that has twelve chapters, and
you want a list of those you have finished through Chapter 9. Use the Is
command with the ? to list all chapters that begin with the string " chapter "
and end with any single character, as shown below:

$ Is chapter7<CR>
chapter1

chapter2

chapterS

chapter9

$

The system responds by printing a list of all file names that match.

7·6 USER'S GUIDE

Shell Command Language

Although ? matches any one character, you can use it more than once in a
file name. To list chapters 1 0 through 1 2 of your book, type

Is chapter??<CR>

Of course, if you want to list all the chapters in the current directory, use the
. .

Is chapter*

Using the * or ? to Correct Typing Errors

Suppose you use the mv command to move a file, and you make an error
and enter a character in the file name that is not printed on your screen . The
system incorporates this non-printing character into the name of your file and
subsequently requires it as part of the file name. I f you do not include this
character when you enter the file name on a command line, you get an error
message. You can use • or ? to match the file name with the non-printing
character and rename it to the correct name.

Try the following example.

1 . Make a very short file called trial.

2 . Type

mv trial trial< A g> 1 <CR>

(Remember, to type <A g> you must hold down the <CTRL> key and
press the g key.)

3. Type

Is triall <CR>

The system will respond with an error message:

tria1 1 : no such file or directory

$

4 . Type

Is trial?l<CR>

The system will respond with the file name triall (including the non
printing character), verifying that this file exists. Use the ? again to
correct the file name:

SHELL TUTORIAL 7-7

Shell Command Language

$ mv trial?l triall<CR>
$ Is triall <CR>
trial 1

$

The Metacharacters That Match One of a Set: Brackets ([
])

Use brackets ([]) when you want the shell to match any one of several
possible characters that may appear in one position in the file name. For
example, if you include [crf) as part of a file name pattern, the shell will look
for file names that have the letter 11 c 11 , the letter 11 r 11 , or the letter 11 f 11 in the
specified position, as the following example shows:

$ Is [crf)at<CR>
cat
fat
rat
$

This command displays all file names that begin with the letter 11 C 11 , 11 r 11 , or
11 f 11 and end with the letters 11 at 11 • Characters that can be grouped within
brackets in this way are collectively called a 11 character class. 11

Brackets can also be used to specify a range of characters, whether
numbers or letters. For example, if you specify

chapter[l-5)

the shell will match any files named chapterl through chapterS. This is an
easy way to handle only a few chapters at a time.

7-8 USER'S GUIDE

Shell Command Language

Type the pr com mand wi th an a rgu ment in brackets:

$ pr chapter [2-4]<CR>

This command will print the contents of chapter2, chapter3, and chapter4, in
that order, on your terminal.

A character class may also specify a range of letters . If you specify [A-Z],
the shell will look only for uppercase letters; if [a-z], only lowercase letters.

The uses of the metacharacters are summarized in Figure 7-2. Experiment
with the metacharacters on the files in your current directory.

Character Function

• matches any string of characters, including an empty
(null) string

? matches any single character

[] matches one of the sequence of characters speci fi ed
within the brackets or one of the range of characters
specified

Figure 7-2: Summary of Metacharacters

Special Characters

The shell language has other special characters that perform a variety of
useful functions. Some of these additional special characters are discussed in
this section; others are described in the next section, 11 Input and Output
Redirection. 11

SHELL TUTORIAL 7-9

Shell Command Language -------------------

Running a Command in Background: the Ampersand I&J

Some shell commands take considerable time to execute. The ampersand
(&) is used to execute commands in background mode, thus freeing your ter
minal for other tasks. The general format for running a command in back
ground mode is

command &<CR>

You should not run interactive shell commands, such as read, in the back
ground.

In the example below, the shell is performing a long search in background
mode . Specifically, the grep command is searching for the string " delin
quent " in the file accounts.) Notice the & is the last character of the com
mand line:

$ grep delinquent accounts &<CR>
21940
$

When you run a command in the background, the UNIX System displays a
process number; 2 1940 is the process number in the example. You can use
this number to stop the execution of a background command. (Stopping the
execution of processes is discussed in the " Executing and Terminating
Processes " section.) The prompt on the last line means the terminal is free
and waiting for your commands; grep has started running in background.

Running a command in background affects only the availability of your
terminal; it does not affect the output of the command. Whether or not a
command is run in background, it prints its output on your terminal screen,
unless you redirect it to a file. (See n Redirecting Output to a File� n later in
this chapter, for details.)

I f you want a command to continue running in background after you log
off, you can submit it with the nohup command. (This command is discussed
in " Using the nohup Command, " later in this chapter.)

7-1 0 USER'S GUIDE

Shell Command Language

Executing Commands Sequentially: the Semicolon t)
You n1n t y pl' two or n10n• commands on onl' l i m• as long as Pach pa i r is

sl•parated by a semicolon (;) as follows:

command1; command2; command3<CR>

The U N IX System executes the commands in the order that they appear in the
l i ne and prints all output on the screen. This process is called sequential exe
cution.

Try this exercise to see how the ; works. Type

cd; pwd; ls<CR>

The shell executes these commands sequentially:

1 . cd changes your location to your login directory

2 . pwd prints the full path name of your current directory

3 . Is lists the files in your current directory

If you do not want the system's responses to these commands to appear on
your screen, refer to " Redirecting Output to a File " for instructions.

Turning Off Special Meanings: the Backslash (\)
The shell interprets the backslash (\) as an escape character that allows

you to tum off any special meaning of the character immediately after it. To
see how this works, try the following exercise. Create a two-line file called
trial that contains the following text:

The all * game

was held in Sl.mmit .

Use the grep command to search for the asterisk in the file, a s shown i n the
following example:

$ grep \ * trial <CR>
The all * game

$

The grep command finds the * in the text and displays the line in which it
appears. Without the \ the shell would interpret the * as a metacharacter and
would match all file names in the current directory .

SHELL TUTORIAL 7-1 1

Shell Command Language

Turning Off Special Meanings: Quotes

Another way to escape the meaning of a special character is to use quota
tion marks. Single quotes (' . . . ') tum off the special meaning of any character.
Double quotes (" . . . ") tum off the special meaning of all characters except $
and ' (grave accent), which retain their special meanings within double quotes.
An advantage of using quotes is that numerous special characters can be
enclosed in the quotes; this can be more concise than using the backslash.

For example, if your file named trial also contained the line

He really wondered why? Why???
you could use the grep command to match the line with the three question
marks as follows:

$ grep '???' trial<CR>
He really wondered why? Why???
$

If you had instead entered the command

grep ??? trial<CR>

the three question marks would have been used as shell metacharacters and
matched all file names of length three.

Using Quotes to Turn Off the Meaning of a Space

A common use of quotes as escape characters is for turning off the special
meaning of the blank space. The shell interprets a space on a command line
as a delimiter between the arguments of a command. Both single and double
quotes allow you to escape that meaning.

For example, to locate two or more words that appear together in text,
make the words a single argument (to the grep command) by enclosing them
in quotes. To find the two words " The all " in your file trial, enter the fol
lowing command line:

$ grep 'The all' trial<CR>
'!he all * game

$

7-1 2 USER'S GUIDE

Shell Command Language

grep finds the string " The all " and prints the line that contains it. What
would happen if you did not put quotes around that string?

The ability to escape the special meaning of a space is especially helpful
when you are using the banner command. This command prints a message
across a terminal screen in large, poster size letters .

To execute banner, specify a message consisting of one or more a rgu
ments (in this case usually words), separated o n the command line b y spaces.
The banner command will use these spaces to delimit the arguments and
print each argument on a separate line:

banner happy birthday to you <CR>

To print more than one argument on the same l ine, enclose the words you
want to keep together in double quotes. For example, to send a birthday
gret•ting to another user, type

banner happy birthday " to you " <CR>

Notice that the words " to " and " you " now appear on the same line. The
space between them has lost its meaning as a delimiter.

Input and Output Redirection

In the UNIX System, some commands expect t o receive their input from
the keyboard (standard input), and most commands display their output at the
terminal (standard output) . However, the UNIX System lets you reassign the
standard input and output to other files and programs. This is known as
redirection. With redirection, you can tell the shell to

• take its input from a file rather than the keyboard

• send its output to file rather than the terminal

• use a program as the source of data for another program

The Jess than sign (<), the greater than sign (>), two greater than signs
(>>), and the pipe (I) redirect input and output .

SHELL TUTORIAL 7-1 3

Shell Command Language

Redirecting Input: the < Sign

To redirect input, specify a file name after a less than sign (<) on a com
mand line:

command < file<CR>

For example, assume that you want use the mail command (described in
Chapter 9) to send a message to another user with the login colleague and
that you already have the message in a file named report. You can avoid
retyping the message by specifying the file name as the source of input:

mail colleague < report<CR>

Redirecting Output to a File: the > Sign

To redirect output, specify a file name after the greater than sign (>) on a
command line:

command > file<CR>

If you n•d irel'l ou tput to a fi ll' tha t alr1•ady exists, thl• output of your ,·om
mand will overwrite the contents of the existing fi ll'.

Before redirecting the output of a command to a particular file, make sure
that a file by that name does not already exist, unless you do not mind losing
it. Because the shell does not allow you to have two files of the same name
in a directory, it will overwrite the contents of the existing file with the output
of your command if you redirect the output to a file with the existing file's
name. The shell does not warn you about overwriting the original file.

7-1 4 USER'S GUIDE

Shell Command Language

To make sure there is no file with the name you plan to use, run the Is
command, specifying your proposed file name as an argument. If a file with
that name exists, Is will list it; if not, you will receive a message that the file
was not found in the current directory. For example, checking for the
existence of the files temp and junk would give you the following output:

$ I s temp<CR>
temp
$ Is junk<CR>
junk: no such file ar direct:aty
$

This means you can name your new output file junk, but you cannot name it
temp unless you no longer want the contents of the existing temp file.

SHELL TUTORIAL 7·1 5

Shell Command Language

Appending Output to an Existing File: the > > Symbol

To keep from destroying an existing file, you can also use the double
redirection symbol (>>) as follows:

command >> file<CR>

This appends the output of a command to the end of the file file. If file does
not exist, it is created when you use the >> symbol this way.

The following example shows how to append the output of the cat com
mand to an existing ffie. First, the cat command is executed on both files
without output redirection to show their respective contents. Then the con
tents of trial2 is added after the last line of triall by executing the cat com
mand on trial2 and redirecting the output to triall :

$ cat triall <CR>
This is the first line of trial 1 .
Hello.
This is the last line of trial1 .
$
$ cat trial2<CR>
This is the beginni:nq of trial2 .
Hello.
This is the end of trial2 .
$

$ cat trial2 >> triall <CR>
$ cat triall<CR>
This is the first line of trial 1 .
Hello.
This is the last line of trial1 .
This is the beginning of trial2 .
Hello.
This is the end of trial2 .

$

7-1 6 USER"S GUIDE

Shell Command Language

Useful Applications of Output Redirection

Redirecting output is useful when you do not want it to appear on your
scn•£'n immt•diately or when you want to sav£' it . Output redir£'ction is also
especially useful when you run commands tha t perform clerica l chort•s on tt•xt
files. Two such commands are spell and sort.

The spell Command

The spell command compares every word in a file against its internal
vocabulary list and prints a list of all potential misspellings on the screen. If
spell does not have a listing for a word (such as a person's name), i t will
report that as a misspelling, too.

Running spell on a lengthy text file can take a long time and may pro
duce a list of misspellings that is too long to fit on your screen . spell prints
all its output at once; if it does not fit on the screen, the command scrolls it
continuously off the top until it has all been displayed. A long list of misspel
l ings will roll off your screen quickly and may be difficult to read.

You can avoid this problem by redirecting the output of spell to a file. In
the following example, spell searches a fi le named memo and places a l ist of
misspel led words in a file named misspell:

$ spell memo > misspell<CR>

Figure 7-3 summarizes the syntax and capabilities of the spell command .

SHELL TUTORIAL 7-1 7

Shell Command Language

•

Command Recap

spell - finds spelling errors

command options arguments

spell available• file

Description: spell collects words from a specified file or files and
looks them up in a spelling list. Words that are not
on the spelling list are displayed on your terminal.

Options: spell has several options, including one for check-
ing British spellings.

Remarks: The list of misspelled words can be redirected to a
file .

See the spell(I) manual page in the User'sjSystem Administrator's Reference Manual for all
available options and an explanation of their capabilities.

Figure 7-3 : Summary of the spell Command

The sort Command

The sort command arranges the lines of a specified file in alphabetical
order (see Chapter 3 for details). Because users generally want to keep a file
that has been alphabetized, output redirection greatly enhances the value of
this command.

Be careful to choose a new name for the file that will receive the output of
the sort command (the alphabetized list). When sort is executed, the shell
first empties the file that will accept the redirected output. Then it performs
the sort and places the output in the blank file. If you type

sort list > list<CR>

the shell will empty list and then sort nothing into list.

7·1 8 USER'S GUIDE

Shell Command Language

Combining Background Mode and Output Redirection

Running a command in background does not affect the command's out
put; unless it is redirected, output is always printed on the terminal screen . I f
you are using your terminal to perform other tasks while a command runs in
background, you will be interrupted when the command displays its output
on your screen . However, if you redirect that output to a file, you can work
undisturbed.

For example, in the " Special Characters " section you learned how to exe
cute the grep command in background with &. Now suppose you want to
fi nd occurrenn's of the word test in a fi le named schedule. Run the grep
command in backgrou nd , and red i rect i ts ou t pu t to a fi le ca l led testfi le:

$ grep test schedule > testfile &<CR>

You can then use your terminal for other work and examine testfile when
you have finished it.

Redirecting Output to a Command: the Pipe (I)
The I character is called a pipe. Pipes are powerful tools that allow you to

take the output of one command and use it as input for another command
without creating temporary files. A multiple command line created in this
way is called a pipeline.

The general format for a pipeline is

com mand1 I command2 I colll tlla lld.L . <CR>

The output of commaud1 is used as the input of command2. The output of
command2 is then used as the input for commaud3.

To understand the efficiency and power of a pipeline, consider the con
trast between two methods that achieve the same results:

• To use the inputjoutput redirection method, first run one command
and redirect its output to a temporary file. Then, run a second com
mand that takes the contents of the temporary file as its input. Finally,
remove the temporary file after the second command has finished run
ning.

• To use the pipeline method, run one command and pipe its output
directly into a second command.

SHELL TUTORIAL 7-1 9

Shell Command Language

For example, say you want to mail a happy birthday message in a banner
to lhl• owner of the login david. Doing this without a pipeline is a three-step
procedure. You must perform the fol lowing steps:

1 . Enter the banner command and redirect its output to a temporary file:

banner happy birthday > message.tmp

2 . Enter the mail command using message.tmp as its input:

mail david < message.tmp

3 . Remove the temporary file:

rm message.tmp

However, by using a pipeline you can do this in one step:

banner happy birthday I mail david<CR>

A Pipeline Using the cut and date Commands

The cut and date commands provide a good example of how pipelines
can increase the versatility of individual commands. The cut command allows
you to extract part of each line in a file. It looks for characters in a specified
part of the line and prints them. To specify a position in a line, use the -c
option and identify the part of the file you want by the numbers of the spaces
it occupies on the line, counting from the left-hand margin.

For example, say you want to display only the dates from a file called
birthdays. The file contains the following list:

7·20 USER'S GUIDE

Shell Command Language

Anne 12/26
Klaus 7/4

Mary 10/18

Peter 1 1/9

Nan:l:y 4/23

sam 8/ 12

The birthdays appear between the ninth and thirteenth spaces on each line.
To display them, type

cut -c9-13 birthdays<CR>

The outpu t i s shown below:

12/26
7/4
10/18
1 1/9
4/23
8/12

Figure 7-4 summarizes the syntax and capabilities of the cut command .

SHELL TUTORIAL 7-21

Shell Command Language

Command Recap

cut - cuts out selected fields from each line of a file

command

cut

Description:

Options:

Remarks:

options arguments

-clist file
-£list [-d]

cut extracts columns from a table or fields from
each line of a file.

-c lists the number of character positions from
the left. A range of numbers such as characters
1 -9 can be specified by -cl-9.

-f lists the field number from the left separated
by a delimiter described by -d.

-d gives the field delimiter for -f. The default
is a space. If the delimiter is a colon, this would
be specified by -d : .

If you find the cut command useful, you may
also want to use the paste command and the
split command.

Figure 7-4: Summary of the cut Command

7-22 USER'S GUIDE

Shell Command Language

The cut command is usually executed on a file. However, piping makes it
possible to run this command on the output of other commands, too. This is
useful if you want only part of the information generated by another com
mand. For example, you may want to have the time printed . The date com
mand prints the day of the week, date, and time as follows:

$ date<CR>
Sat Dec 27 13 : 12 : 32 EST 1986

Notice that the time is given between the twel fth and nineteenth span•s of the
l ine. You can display the time (without the date) by piping the ou tput of date
into cut, specifying spaces 12-19 with the -c option. Your command line and
its output will look like this:

$ date : cut -c12-19<CR>
1 3 : 14 : 56

Figure 7-5 summarizes the syntax and capabilities of the date command.

SHELL TUTORIAL 7-23

Shell Command Language

Command Recap

date - displays the date and time

command options arguments

date +%m%d%y* available*
+%H%%M%S

Description: date displays the current date and time on your
terminal.

Options: +% followed by m (for month), d (for day), y (for
year), H (for hour), M (for month), and S (for
second) will echo these back to your terminal.
You can add explanations such as:

date '+%H:%M is the time'

Remarks: If you are working on a small computer system
of which you are both a user and the system
administrator, you may be allowed to set the
date and time using optional arguments to the
date command. Check your reference manual
for details. When working in a multiuser
environment, the arguments are available only
to the system administrator.

Figure 7-5 : Summary of the date Command

• See the date(1) manual page in the User'sjSystem Administrator's Refemrce Manual for all
available options and an explanation of their capabilities.

7-24 USER'S GUIDE

Shell Command Language

Substituting Output for an Argument

The output of any command may be captured and used as arguments on
a command line. This is done by enclosing the command in grave accents
(' . . . ') and placing it on the command line in the position where the output
should be treated as arguments . This is known as command substitution.

For example, you can substitute the output of the date and cut pipeline
command used previously for the argument in a banner printout by typing
the following command line:

$ banner 'date I cut -c12-19'<CR>

Notice the results: the system prints a banner with the current time.

The 11 Shell Programming 11 section in this chapter shows you how you can
also use the output of a command line as the value of a variable.

Executing and Terminating Processes

This section discusses the following topics :

• how to schedule commands to run at a later time by using the batch
or at command

• how to obtain the status of active processes

• how to terminate active processes

• how to keep background processes running after you have logged off

Running Commands at a Later Time With the batch and at
Commands

The batch and at commands allow you to specify a command or sequence
of commands to be run at a later time. With the batch command, the system
determines when the commands run; with the at command, you determine
when the commands run. Both commands expect input from standard input
(the terminal); the list of commands entered as input from the terminal must
ht• ended by pressing < · d> (CTRL-d).

SHELL TUTORIAL 7·25

Shell Command Language

The batch command is useful if you are running a process or shell pro
gram that uses a large amount of system time. The batch command submits a
batch job (containing the commands to be executed) to the system. The job is
put in a queue and runs when the system load falls to an acceptable leveL
This frees the system to respond rapidly to other input and is a. courtesy to
other users.

The general format for batch is

batch<CR>
first command<CR>

last command<CR>
<

A
d>

If there is only one command to be run with batch, you can enter it as fol
lows:

batch command-'ine<CR>
<

"
d>

The next example uses batch to execute the grep command at a con
venient time. Here grep searches all files in the current directory for dollar

and redirects the output to the file dol.file:

$ batch grep dollar • > dol-file<CR>
<"d>
job 155223 14 1 .b at Sun Dec 7 1 1 : 14 : 54 1986

$

After you submit a job with batch, the system responds with a job number,
date, and time. This job number is not the same as the process number that
the system generates when you run a command in the background.

7-2& USER'S GUIDE

Shell Command Language

Figure 7-6 summarizes the syntax and capabili ties of the batch Com
mand .

Command Recap

batch - executes commands at a later time

comma 11d options i11put

batch none command_fillcs

Description: batch submits a batch joh, which is placed in a
queue and executed when the load on the sys -
tern falls to an acceptable level .

Remarks: The list of commands must end with a < · d>
(CTRL-d).

Figure 7-6: Summary of the batch Command

The at command allows you to specify an exact time to execute the com
mands. The general format for the at command is

at time<CR>
first command<CR>

last command<CR>
< .d>

The time argument consists of the time of day and, if the date is not
today, the date.

The following example shows how to use the at command to mail a
happy birthday banner to login emily on her birthday:

SHELL TUTORIAL 7-27

Shell Command Language

$ at 8:15am Feb 27<CR>
banner happy birthday I mail emily<CR>
<�d>
job 453400603 .a at Thurs Feb 27 08 : 15 : 00 1986

$

Notice that the at command, like the batch command, responds with the job
number, date, and time.

If you decide you do not want to execute the commands currently waiting
in a batch or at job queue, you can erase those jobs by using the -r option of
the at command with the job number. The general format is

at -r jobnumber<CR>

Try erasing the previous at job for the happy birthday banner. Type

at -r 453400603.a<CR>

If you have forgotten the job number, the at -1 command will give you a list
of the current jobs in the batch or at queue, as the following screen shows:

$ at -l<CR>
user = mylogin 168302040 . a at Sat Nov 29 13 : 00 : 00 1986
user = mylogin 453400603 . a at Fri Feb 27 08 : 15 : 00 1987

$ "

Notice that the system displays the job number and the time the job will run.

7-28 USER"S GUIDE

Shell Command Language

Using the at command, mail yourself t lw fi lt• memo at noon to l t• l l you i t
is lunch time. (You must redirect the file into mail unless you use t lw 11 here
document, " described in the 11 Shell Programming " section.) Then try the at
command with the -1 option:

$ at 12:00pm<CR>
mail mylogin < memo<CR>
<

"
d>

jab 263 13 1754 . a at Jun. 30 12 : 00 : 00 1986
$
$ at -I<CR>
user = mylogin 26313 1754 .a at JUn. 30 1 2 : 00 : 00 1986
$

Figure 7-7 summarizes the syntax and capabilities of the at command.

SHELL TUTORIAL 7-29

Shell Command Language

Command Recap

at - executes commands at a specified time

command options arguments

at -r time (date)
-1 jobnumber

Description: at executes commands at the time specified.
You can use between one and four digits, and
am or pm to show the time. To specify the
date, give a month name followed by the
number for the day. You do not need to enter
a date if you want your job to run the same
day. See the at(l) manual page in the
User'sjSystem Administrator's Reference Manual
for other default times.

Options: The -r option with the job number removes
previously scheduled jobs.

The -1 option (no arguments) reports the job
number and status of all scheduled at and
batch jobs.

Remarks: Examples of how to specify times and dates
with the at command are as follows:

at 08:15am Feb 27
at 5:14pm Sept 24

Figure 7-7: Summary of the at Command

7-30 USER'S GUIDE

Shell Command Language

Obtaining the Status of Running Processes

The ps command gives you the status of all the processes you are
currently running. For example, you can use the ps command to show the
status of all processes that you run in the background using & (described in
t he earlier section " Special Characters ") .

The next section, " Terminating Active Processes, " discusses how you can
use the PID (process identification) number to stop a command from execut
ing. A PID number is a number from 1 to 30,000 that the UNIX System
assigns to each active process.

In the following example, grep is run in the background, and then the ps
command is issued. The system responds with the process identification (PID)
and the terminal identification (Tl'Y) numbers. It also gives the cumulative
execution time for each process (TIME) and the name of the command that is
being executed (<::n'JMAND):

$ grep word • > temp &:<CR>
28223

$
$ ps<CR>
PID
28124
28223
28224
$

Tl'Y TIME a:MWID
tty10 0 : 00 sh
tty10 0 : 04 grep
tty10 0 : 04 ps

Notice that the system reports a PID number for the grep command, as
well as for the other processes that are running:· the ps command itself and
the sh (shell) command that runs while you are logged in. The shell program
sh interprets the shell commands and is discussed in Chapters 1 and 4.

SHELL TUTORIAL 7-31

Shell Command Language

•

Figure 7-8 summarizes the syntax and capabilities of the ps command.

Command Recap

ps - reports process status

command options arguments

ps several• none

Description: ps displays information about active processes.

Options: ps has several options. I f none are specified, ps
displays the status of all active processes you
are running.

Remarks: ps gives you the PID (process identification).
This is needed to stop the process from execut-
ing, or kill the process .

See the ps(l) manual page in the User'sjSystem Administrator's Reference Manual for all
available options and an explanation of their capabilities.

Figure 7-8: Summary of the ps Command

Terminating Active Processes

The kill command is used to terminate active shell processes. The general
format for the kill command is

kill PID<CR>

You ca n use the kill command to terminate processes that are running in the
background. Note that you cannot terminate background processes by press
ing the <BREAK> or <DELETE> key.

7-32 USER'S GUIDE

Shell Command Language

The following example shows how you can terminate the grep command
that you started executing in the background in the previous exam pll':

$ kill 28223<CR>
28223 Terminated

$

Notice the system responds with a message and a $ prompt, showing that
the process has been killed. If the system cannot find the PID number you
specify, it responds with an error message:

*

kil1 : 28223 : No such �ess

Figure 7- 1 1 summarizes the syntax and capabilities of the kill command .

Command Recap

kill - terminates a process

command options arguments

kill available* job number or PID

Description: kill terminates the process specified by the PID
number.

See the kil/(1) manual page in the User'sjSystem Administrator's Reference Manual for al l
available options and an explanation of their capabilities.

Figure 7-9 : Summary of the kill Command

Using the nohup Command

All processes are killed when you log off. If you want a background pro
cess to continue running after you log off, you must use the nohup command
to submit that background command.

SHELL TUTORIAL 7-33

Shell Command Language

To execute the nohup command, follow this format:

nohup command &:<CR>

Notice that you place the nohup command before the command you intend to
run as a background process.

For example, say you want the grep command to search all the files in the
current directory for the string word and redirect the output to a file called
word.list, and you wish to log off immediately afterward. Type the command
line as follows:

nohup grep word • > word.list &: <CR>

You can terminate the nohup command by using the kill command.
Figure 7- 1 0 summarizes the syntax and capabilities of the nohup command.

Command Recap

nohup - prevents interruption of command execution by hang ups

command options arguments

nohup none command line

Description: nohup executes a command line, even if you
hang up or quit the system.

Figure 7- 1 0 : Summary of the nohup Command

Now that you have mastered these basic shell commands and notations,
use them in your shell programs! The exercises that follow will help you
practice using shell command language. The answers to the exercises are at
the end of the chapter.

7·34 USER'S GUIDE

Command Language Exercises

1 - 1 . What happens i f you use a n • (asterisk) a t the beginning of u fi lL•
name? Try to list some of the files in a directory using the • with the
last letter of one of your file names. What happens?

1 - 2. Try the following two commands; enter them as follows:

cat(0-9)* <CR>
echo *<CR>

1 -3 . Is i t acceptable to use a ? at the beginning or in the middle of a file
name generation? Try it.

1 -4 . Do you have any files that begin with a number? Can you list them
without listing the other files in your directory? Can you list only
those files that begin with a lowercase letter between a and m? (Hint:
use a range of numbers or letters in []).

1 -5 . I s it acceptable to place a command in background mode on a line
that is executing several other commands sequentially? Try it. What
happens? (Hint: use ; and &.) Can the command in background
mode be placed i n any posi tion on the command line? Try placing i t
in various positions. Experiment with each new character that you
learn to see the full power of the character.

1 -6. Redirect the output of pwd and Is into a file by using the following
command line:

cd; pwd; Is; ed trial<CR>

Remember, if you want to redirect both commands to the same file,
you have to use the >> (append) sign for the second redirection. If
you do not, you will wipe out the information from the pwd com
mand.

1 -7. Instead of cutting the time out of the date response, try redirecting
only the date, without the time, into banner. What is the only part
you need to change in the time command line?

banner 'date I cut -c12-19'<CR>

SHELL TUTORIAL 7-35

Shell Programming

You can use the shell to create programs, or customize commands. Such
programs are also called 11 shell procedures. 11 This section tells you how to
create and execute shell programs using commands, variables, positional
parameters, return codes, and basic programming control structures.

The examples of shell programs in this section are shown two ways. First,
the cat command is used in a screen to display the contents of a file contain
ing a shell program:

$ cat testfile<CR>
first command

last command
$

Second, the results of executing the shell program appear after a command
line:

$ testfile<CR>
program_output
$

You should be familiar with an editor before you try to create shell pro
grams. Refer to the tutorials in Chapter 5 (for the ed editor) and Chapter 6

(for the vi editor).

7-36 USER'S GUIDE

Shell Programming

Shell Programs

Creating a Simple Shell Program

We will begin by creating a simple shell program that will do the follow-
ing tasks, in order:

• print the current directory

• list the contents of that directory

• display this message on your terminal : " This is the end of the shell
program. "

Create a file called dl (short for directory list) using the editor of your
choice, and enter the following:

pwd<CR>
ls<CR>
echo This is the end of the shell program.<CR>

Now write and quit the file. You have just created a shell program! You can
cat the file to display its contents, as the following screen shows:

$ cat dl<CR>

pwd
ls
ech:> This is the end of the shell program.
$

SHELL TUTORIAL 7-37

Shell Programming

Executing a Shell Program

One way to execute a shell program is to use the sh command. Type

sh dl<CR>

The dl command is executed by sh, and the path name of the current direc
tory is printed first, the list of files in the current directory is printed next, and
the comment 'Ibis is the end of the shell program is printed last. The sh
command provides a good way to test your shell program to make sure it
works.

If dl is a useful command, you can use the chmod command to make it
an executable file; then you can type · dl by itself to execute the command it
contains. The following example shows how to use the chmod command to
make a file executable and then run the Is -1 command to verify the changes
you have made in the permissions:

$ chmod u+x di<CR>
$ Is -I<CR>
total 2
-rw-------

-rwx------
$

login login 3661 Nov 2
login login 48 Nov 15

10 : 28 mboK
10 : 50 ell

Notice that chmod turns on execute (+x) permission for the user (u).
Now dl is an executable program. Try to execute it. Type

dl<CR>

You get the same results as before, when you entered sh dl to execute it. For
further details about the chmod command, see Chapter 3.

7·38 USER'S GUIDE

Shell Programming

Creating a bin Directory for Executable Files

To make your shell programs accessible from all your directories, you can
make a bin directory from your login directory and move the shell files to
bin.

You must also set your shell variable PATH to include your bin directory:

PATH=$PATH:$HOMEjbin

See " Variables " and " Using Shell Variables " in this chapter for more infor
mation about PATH.

The following example will remind you of which commands are neces-
sary. In this example, dl is in the login directory. Type these command lines:

cd<CR>
mkdir bin<CR>
mv dl binjdl<CR>

Move to the bin directory and type the Is -1 command. Does dl still have
execute permission?

Now move to a directory other than the login directory, and type the fol
lowing command:

dl<CR>

What happened?

Figure 7- 1 1 summarizes your new shell program, dl.

SHELL TUTORIAL 7-39

Shell Programming

Shell Program Recap

di - displays the directory path and directory contents (user defined)

command arguments

di none

Description: di displays the output of the shell command
pwd and Is.

Figure 7- 1 1 : Summary of the di Shell Program

It is possible to give the bin directory another name; if you do so, you
need to change your shell variable PATH again.

Warnings about Naming Shell Programs

You can give your shell program any appropriate file name. However,
you should not give your program the same name as a system command. If
you do, the system will execute your command instead of the system com
mand. For example, if you had named your dl program mv, each time you
tried to move a file, the system would have executed your directory list pro
gram instead of mv.

Another problem can occur if you name the di file Is, and then try to exe
cute the file. You would create an infinite loop, since your program executes
the Is command. After some time, the system would give you the following
error message:

Too many processes , cannot fork

What happened? You typed in your new command, Is. The shell read and
executed the pwd command. Then it read the Is command in your program
and tried to execute your Is command. This formed an infinite loop.

7-40 USER'S GUIDE

Shell Programming

UNIX System designers wisely set a limit on how many times an infinite
loop can execute. One way to keep this from happening is to give the path
name for the system's Is command, /binjls, when you write your own shell
program.

The following Is shell program would work:

$ cat ls<CR>
p.«i
lbinlls

eclv:> This is the end of the shell program

If you name your command Is, then you can only execute the system Is
command by using its full path name, /binjls.

Variables

Variables are the basic data objects shell programs manipulate, other than
fi les. Here we discuss three types of variables and how you can use them:

• positional parameters

• special parameters

• named variables

Positional Parameters

A positional parameter is a variable within a shell program whose value is
set from an argument specified on the command line invoking the program.
Positional parameters are numbered and are referred to with a preceding $: $1,
$2, $3, and so on.

SHELL TUTORIAL 7·41

Shell Programming

A sheJI program may reference up to nine positional parameters. If a sh�JI
program is invoked on a command line that appears like this:

shell.prog ppl pp2 pp3 pp4 ppS pp6 pp7 pp8 pp9<CR>

then positional parameter $1 within the program will be assigned the value
ppl, positional parameter $2 within the program will be assigned the value
pp2, and so on, when the shell program is invoked.

Create a file called pp (short for positional parameters) to practice posi
tional parameter substitution. Then enter the echo commands shown in the
following screen. Enter the command lines so that running the cat command
on your completed file will produce the following output:

$ cat pp<CR>
echo The first positional parameter is : $1<CR>
echo The &eCXIIld positional parameter is : $2<CR>
echo The third positional parameter is : $3<CR>
echo The fourth positional parameter is : $4<CR>
$

If you execute this shell program with the arguments one, two, three, and
four, you will obtain the following results (first you must make the shell pro
gram pp executable using the chmod command):

7-42 USER'S GUIDE

$ chmod u+x pp<CR>
$
$ pp one two three four<CR>
'lhe first positional parameter is : one

'lhe seoorxi positional parameter is : b.'O
'lhe third positional parameter is : three

'lhe fourth positional parameter is : four

$

Shall Programming

The following screen shows the shell program bbday, which mails a
greeting to the login entered in the command line:

$ cat bbday<CR>
banner happy birthday I mail $ 1

Try sending yourself a birthday greeting. I f your login name i s sue, your
command line will be

bbday sue<CR>

Figure 7- 1 2 summarizes the syntax and capabilities of the bbday shell pro
gram.

SHELL TUTORIAL 7-43

Shell Programming

Shell Program Recap

bbday - mails a banner birthday greeting (user defined)

command arguments

bbday login

Description: bbday mails the message happy birthday, in
poster-sized letters, to the specified login.

Figure 7- 1 2 : Summary of the bbday Command

The who command lists all users currently logged in on the system. How
can you make a simple shell program, called whoson, that will tell you if the
owner of a particular login is currently working on the system?

Type the following command line into a file called whoson:

who I grep $1<CR>

The who command lists all current system users, and grep searches the out
put of the who command for a line containing the string contained as a value
in the positional parameter $1 .

Now try using your login a s the argument for the new program whoson.
For example, say your login is sue. When you issue the whoson command,
the shell program substitutes sue for the parameter $ 1 in your program and
executes as if it were

who I grep sue <CR>

The output is shown on the following screen:

7·44 USER'S GUIDE

Shell Programming

$ whoson sue<CR>
sue tty26 Jan 24 13 : 35
$

I f the owner of the specified login is not currently working on the system,
grep fails and whoson prints no output.

Figure 7- 13 summarizes the syntax and capabilities of the whoson com
mand.

Shell Program Recap

whoson - displays login information if the user is logged in (user defined)

command arguments

whoson login

Description: If a user is on the system, whoson displays the user's
login, the TTY number, and the time and date the user
logged in .

Figure 7- 13 : Summary of the whoson Command

The shell allows a command line to contains 1 28 arguments. However, a
shell program is restricted to referencing nine positional parameters, $1
through $9, at a given time. This restriction can be worked around using the
shift command, described in the manual Shell Commands and Programming.

SHELL TUTORIAL 7-45

Shell Programming

The special parameter $*, described in the next section, can also be used to
access the values of all command line arguments.

Special Parameters

$# This parameter, when referenced within a shell program, contains the
number of arguments with which the shell program was invoked. Its
value can be used anywhere within the shell program.

Enter the command line shown in the following screen in an executable
shelJ program called get.num. Then run the cat command on the file:

$ cat get.num<CR>
ecb:> The number o£ arguments is : $#
$

The program simply displays the number of arguments with which it is
invoked. For example:

$ get.num test out this program<CR>
The number o£ · arguments is : 4

$

7-46 USER'S GUIDE

Shell Programming

Figure 7- 1 4 summarizes the get.num shell program.

Shell Program Recap

get.num - counts and displays the number of arguments (user defined)

command arguments

get.num (character _string)

Description: get.num counts the number of arguments given to the
command and then displays the total .

Remarks: This command demonstrates the special parameter $#.

Figure 7- 14 : Summary of the get.num Shell Program

$* This special parameter, when referenced within a shell program, con
tains a string with all the arguments with which the shell program
was invoked, starting with the first. You are not restricted to nine
parameters as with the positional parameters $1 through $9 . .

You can write a simple shell program to demonstrate $*. Create a shell
program called show.param that will echo all the parameters. Use the com
mand l i ne shown i n the fol lowing completed fi le :

SHELL TUTORIAL 7-47

Shell Programming

$ cat show.param<CR>
echo The parameters for this ocmoa:rxi are: $*
$

show.param will echo all the arguments you give to the command. Make
show.param executable and try it out using these parameters:

Hello. How are you?

$ show.param Hello. How are you?<CR>
The parameters for this OCI'IIIIaJld are : Hello. How are you?
$

Notice that show.param echoes Hello . How are you? Now try
show.param using more than nine arguments:

7-48 USER'S GUIDE

Shell Programming

$ show.param one two 3 4 5 six 7 8 9 1 0 1 1 ' CR>
'nle parameters for this ClOillllaJ¥l are : one b«> 3 4 5 six 7 8 9 10 1 1

$

Once again, show.param echoes all the arguments you gi ve. The $* pa ra me
ll'r can be useful i f you use fi le name expansion to speci fy argu ml'nts to the
shel l com mand.

Use the fi l e name expansion feature with your show.param command.
ror example, say you have several files in your directory n amed for chapters
of a book: chapl, chap2, and so on, through chap7. show.param will pri n t a
list of all those files:

$ show.param chap?<CR>
'nle parameters for this ClOillllaJ¥l are: chap1 chap2 chap3
chap4 chapS chap6 chap?

$

Figure 7- 1 5 summarizes the show.param shl'll program .

SHELL TUTORIAL 7-49

Shell Programming

Shell Program Recap

show.param - displays all positional parameters (user defined)

command arguments

show.param (any positional parameters)

Description: show.param displays all the parameters.

Remarks: If the parameters are file name generations, the com-
mand will display each of those file names.

Figure 7- 15 : Summary of the show.param Shell Program

Named Variables

Another form of a variable that you can use within a shell program is a
named variable. You assign values to named variables. The format for
assigning a value to a named variable is

named_variable = value<CR>

Notice that there are no spaces on either side of the = sign.

In the following example, varl is a named variable, and myname is the
value or character string assigned to that variable:

varl=myname<CR>

A $ is used in front of a variable name in a shell program to reference the
value of that variable. Using the example above, the reference $varl tells the
shell to substitute the value myname (assigned to varl) for any occurrence of
the character string $varl .

7·50 USER'S GUIDE

Shell Programming

The first character of a variable name must be a letter or an underscore.
The rest of the name can be composed of letters, underscores, and digits . As
in shell program file names, it is not advisable to use a shell command name
as a variable name. Also, the shell has reserved some variable names you
should not use for your variables. A brief explanation of these reserved shell
variable names follows:

• CDPATH defines the search path for the cd command.

• HOME is the default variable for the cd command (home directory).

• IFS defines the internal field separators (normally the space, the tab,
and the carriage return).

• LOGNAME is your login name.

• MAIL names the file that contains your electronic mail .

• PATH determines the search path used by the shell to find com-
mands.

• PSl defines the primary prompt (the default is $).

• PS2 defines the secondary prompt (the default is >) .

• TERM identifies your terminal type. It is important to set this variable
if you are editing with vi.

• TERMINFO identifies the directory to be searched for information
about your terminal, for example, its screen size.

• TZ defines the time zone (default is ESTSEDT).

Many of these variables are explained in " Modifying Your Login Environ
ment " later in this chapter. You can also read more about them on the sh(l)
manual page i n the User'sjSystem Administrator's Reference Manual.

You can see the value of these variables in your shell in two ways. First,
you can type

echo $variable_name

The system displays the value of variable_name. Second, you can use the env
command to print out the value of all defined variables in the shell . To do
this, type env on a line by itself; the system displays a list of the variable
names and values.

SHELL TUTORIAL 7-51

Shell Programming

Assigning a Value to a Variable

If you edit with vi, you know you can set the TERM variable by entering
the following command line:

TERM = terminaLname<CR>

This is the simplest way to assign a value to a variable.

There are several other ways to do this:

• Use the read command to assign input to the variable.

• Redirect the output of a command into a variable by using command
substitution with grave accents (' . . . ') .

• Assign a positional parameter to the variable.

The following sections discuss each of these methods in detaiL

Using the read Command

The read command used within a shell program allows you to prompt the
user of the program for the values of variables. The general format for the
read command is

read variable<CR>

The values assigned by read to variable will be substituted for $variable wher
ever it is used in the program. If a program executes the echo command just
before the read command, the program can display directions such as Type in

. . . . The read command will wait until you type a character string, followed
by a <RETURN> key, and then make that string the value of the variable.

The following example shows how to write a simple shell program called
num.please to keep track of yoQr telephone numbers. This program uses the
following commands for the purposes specified:

echo prompts you for a person's last name

read assigns the input value to the variable name

grep searches the file list for this variable

Your finished program should look like the one displayed here:

7·52 USER'S GUIDE

$ cat num.please<CR>
echo Type in the last name :
read name
grep $name list

$

Shell Programming

Create a fi le cal led list that contains several l ast names and phone
numbers. Then try running num.please.

The next example is a program cal led mknum, which creates a l ist .
mknum includes the following commands for the purposes shown:

echo prompts for a person's name

read assigns th� person's name to the variable name

grep asks for the person's number

read assigns the telephone number to the variable num

echo adds the values of the variables name and num to the list

If you want the output of the echo command to be added to the end of list,
you must use >> to redirect it. If you use >, list will contain only the last
phone number you added.

Running the cat command on mknum displays the program's contents.
When your program looks like this, you will be ready to make it executable
with the chmod command:

SHELL TUTORIAL 7-53

Shell Programming

$ cat mknum<CR>
echo Type in name
read name
echo Type in number

read num

echo $name $num » list

$ chmod u+x mknum<CR>
$

Try out the new programs for your phone list. In the next example,
mknum creates a new listing for Mr. Niceguy. Then num.please gives you
Mr. Niceguy's phone number:

$ mknum<CR>
Type in the name
Mr. Niceguy<CR>
Type in the number

668..()()()7<CR>
$ num.please<CR>
Type in last name
Niceguy<CR>
Mr. Niceguy 668-0007
$

Notice that the variable name accepts both Mr. and Niceguy as the value.

Figures 7- 1 6 and 7- 1 7 summarize the mknum and num.please shell pro
grams, respectively.

7·54 USER'S GUIDE

Shell Programming

Shell Program Recap

mknum - places a name and number in a phone list

command arguments

mknum (interactive)

Description: mknum asks you for the name and number of a person
and adds that name and number to your ph one l ist .

Remarks: This is an interactive command.

Figure 7-1 6: Summary of the mknum Shell Program

Shell Program Recap

num.please - displays a person's name and number

command arguments

num.please (interactive)

Description: num.please asks you for a person's last name and then
displays the person 's ful l name and telephom' n u m ht•r.

Remarks: This is an interactive com mand.

Figure 7-1 7: Summary of the num.please Shel l Program

SHELL TUTORIAL 7-55

Shell Programming

Substituting Command Output for the Value of a Variable

You can substitute a command's output for the value of a variable by
using command substitution. This has the following format:

variable = 'command'<CR>

The output from command becomes the value of variable.

In one of the previous examples on piping, the date command was piped
into the cut command to get the correct time. That command line was the
following:

date I cut -c12-19<CR>

You can put this in a simple shell program called t that will give you the time.

$ cat t<CR>
time='date I cut -c12-19'
echo 'Die time is : $time
$

Remember there are no spaces on either side of the equal sign. Make the file
executable, and you will have a program that gives you the time:

7-56 USER'S GUIDE

$ chmod u+x t<CR>
$ t<CR>
The time is : 1 0 : 36
$

Figure 7- 1 8 summarizes your t program.

Shell Program Recap

Shell Programming

t - displays the correct time

command arguments

t none

Description: t gives you the correct time in hours and minutes.

Figure 7- 18 : Summary of the t Shell Program

Assigning Values with Positional Parameters

You can assign a positional parameter to a named parameter by using the
following format:

var1 = $1<CR>

The next example is a simple program called simp.p that assigns a posi
tional parameter to a variable. The following screen shows the commands in
simp.p:

SHELL TUTORIAL 7-57

Shell Programming

$ cat simp.p<CR>
var1=$1
echo $var1
$

Of course, you can also assign the output of a command that uses positional
parameters to a variable, as follows:

person='who I grep $1'<CR>

In the next example, the program log.time keeps track of your whoson
program results. The output of whoson is assigned to the variable person
and added to the file login.file with the echo command. The last echo
displays the value of $person, which is the same as the output from the who
son command:

$ cat log.time<CR>
persan='who I grep $ 1 '
echo $person » l.oqin. file

echo $person
$

The system response to log.time is shown in the following screen:

7-58 USER'S GUIDE

Shell Programming

$ Jog.time maryann<CR>
maeyann tty61 .Apr 1 1 10 : 26

$

Figure , 7- 19 summarizes the log.time shell program.

Shell Program Recap

log.time - logs and displays a specified login (user defined)

command argume11 ts

log. time login

Description: If the specified login is currently on the system,
log.time places the line of information from the who
command into the file login.file and then displays that
line of information on your terminal.

Figure 7-19 : Summary of the log. time Shell Program

Shell Programming Constructs

The shell programming language has several constructs that give added
flexibility to your programs:

SHELL TUTORIAL 7·59

Shell Programming

• Comments allow you to document a program's function.

• The 11 here document 11 allows you to include within the shell program
itself lines to be redirected to be the input to some command in the
shell program.

• The exit command allows you to terminate a program at a point other
than the end of the program and use return codes.

• The looping constructs, for and while, allow a program to iterate
through groups of commands in a loop.

• The conditional control commands, if and case, execute a group of
commands only i f a particular set of conditions is met.

• The break command allows a program to exit unconditionally from a
loop.

Comments

You can place comments in a shell program in two ways. All text on a
line following a # (pound) sign is ignored by the shell. The # sign can be at
the beginning of a line, in which case the comment uses the entire line, or it
can occur after a command, in which case the command is executed but the
remainder of the line is ignored. The end of a line always ends a comment.
The general format for a comment line is

#comment<CR>

For example, a program that contains the following lines will ignore them
when it is executed :

This program sends a generic birthday greeting. <CR>

This program needs a login as<CR>

the positional parameter . <CR>

Comments are useful for documenting a program's function and should be
included in any program you write.

The here Document

A 11 here document 11 allows you to place into a shell program lines that
are redirected to be the input of a command in that program. It is a way to
provide input to a command in a shell program without needing to use a
separate file. The notation consists of the redirection symbol << and a

7·60 USER'S GUIDE

Shell Programming

delimiter that specifies the beginning and end of the lines of input . The del
imiter can be one character or a string of characters; the ! is often used .

Figure 7-20 shows the general format for a here document.

command <<delimiter<CR>
. . . input lines ... <CR>
delimiter<CR>

Figure 7-20: Format of a Here Document

In the next example, the program gbday uses a here document to send a
generic birthday greeting by redirecting lines of input into the mail command:

$ cat gbday<CR>
mail $1 « I
Best wishes to you an your birthday.
I
$

When you use this command, you must specify the recipient's login as the
argument to the command. The input included with the use of the here docu
ment is

Best wishes to you an your birthday

For example, to send this greeting to the owner of login mary, type

$ gbday mary<CR>

Login mary will receive your greeting the next time she reads her mail mes
sages:

SHELL TUTORIAL 7-61

Shell Programming

$ mail<CR>
Fran mylogin Wed May 14 14 : 3 1 C!1l' 1986
Best wishes to yoo. an your bi.rt:lnay
$

Figure 7-2 1 summarizes the format and capabilities of the gbday com
mand .

Shell Program Recap

gbday - sends a generic birthday greeting (user defined)

command arguments

gbday login

Description: gbday sends a generic birthday greeting to the
owner of the login specified in the argument.

Figure 7-2 1 : Summary of the gbday Command

Using ed in a Shell Program

The here document offers a convenient and useful way to use ed in a
shell script. For example, suppose you want to make a shell program that will
enter the ed editor, make a global substitution to a file, write the file, and then
quit ed. The following screen shows the contents of a program called ch.text
that does these tasks:

7-82 USER'S GUIDE

$ cat ch.text<CR>
eclx> Type in the file name .
read file1
eclx> Type in the exact text to be changed.

read old_ text

Shell Programming

eclx> Type in the exact new text to replace the above .

read new _text
ed - $file1 « I
g/$old_text/s//$new_text/g
w
q
I
$

Notice the - (minus) option to the ed command. This option prevents the
character count from being displayed on the screen . Also notice the format of
the ed command for global substitution:

gjold_textjsj jnew_textjg<CR>

The program uses three variables: file1 , old_text, and new_text. When the
program is run, it uses the read command to obtain the values of these vari
ables. The variables provide the following information:

file the name of the file to be edited

old_text the exact text to be changed

new_text the new text

Once the variables are entered in the program, the here document
redirects the global substitution, the write command, and the qui t command
i n to the ed command . Try thl' new ch.text command. Thl.' fol lowing scn'l'n
shows sa mpll• n•sponsl'S to t lw pro�T<llll prom pts:

SHELL TUTORIAL 7-63

Shell Programming

$ ch.text<CR>
Type in the filename .
memo<CR>
Type in the exact text to be changed.

Dear John:<CR>
Type in the exact new text to replace the above .
To whom it may concern:<CR>
$ cat memo<CR>
To wlx:m it may concern :
$

Notice that by running the cat command on the changed file, you could
examine the results of the global substitution.

Figure 7-22 summarizes the format and capabilities of the ch.text com
mand.

Shell Program Recap

ch.text - changes text in a file

command arguments

ch.text (interactive)

Description: ch.text replaces text in a file with new text .

Remarks: This shell program is interactive.
you to type in the arguments.

Figure 7-22: Summary of the ch.text Command

7-&4 USER'S GUIDE

It will prompt

Shell Programming

If you want to become more familiar with ed, see Chapter 5, " Line Editor
Tutorial (ed). " The stream editor, sed, can also be used in shell programming.

Return Codes

Most shell commands issue return codes that indicate whether the com
mand executed properly . By convention, if the value returned is 0 (zero), then
the command executed properly; any other value indicates that it did not.
The return code is not printed automatically but is available as the value of
the shell special parameter $?.

Checking Return Codes

After executing a command interactively, you can see its return code by
typing

echo $?

Consider the following example:

$ cat hi
This is file hi .
$ echo $?
0
$ cat hello
cat : cannot open hello

$ echo $?
2
$

In the first case, the file hi exists in your directory and has read permission for
you. The cat command behaves as expected and displays the contents of the
file. It exits with a return code of 0, which you can see using the parameter
$?. In the second case, the file either does not exist or does not have read
permission for you. The cat command prints a diagnostic message and exits
with a return code of 2 .

SHELL TUTORIAL 7·65

Shell Programming

Using Return Codes With the exit Command

A shell program normally terminates when the last command in the file is
executed . However, you can use the exit command to terminate a program at
some other point. Perhaps more importantly, you can also use the exit c;om
mand to issue return codes for a shell program. For more information about
exit, see the exit(2) manual page in the Programmer's Reference Manual.

Looping

In thl' previous examples in this chapter, the commands in shell programs
have been executed in sequence. The for and while looping constructs allow
a program to execute a command or sequence of commands several times.

The for Loop

The for loop executes a sequence of commands once for each member of a
list. Figure 7-23 shows its format.

for variable<CR>
in a_lisLof_values<CR>

do<CR>
command 1 <CR>
command 2<CR>

last conmw11d<CR>
done<CR>

Figure 7-23: Format of the for Loop Construct

For each iteration of the loop, the next member of the list is assigned to
the variable given in the for clause. References to that variable can be made
anywhere in the commands within the do clause.

7-66 USER'S GUIDE

Shell Programming

It is easier to read a shell program if the looping constructs are visually
clear. Since the shell ignores spaces at the beginning of lines, each section of
commands can be indented as it was in the above format. Also, if you indent
each command section, you can easily check to make sure each do has a
corresponding done at the end of the loop.

The variable can be any name you choose. For example, if you call it var,
then the values given in the list after the keyword in will be assigned in turn
to var; references within the command list to $var will make the value avail
able. If the in clause is omitted, the values for var will be the complete set of
arguments given to the command and available in the special �arameter s•.
The command list between the keywords do and done will be executed once
for each value.

When the commands have been executed for the last value in the list, the
program will execute the next line below done. If there is no line, the pro
gram will end.

The easiest way to understand a shell programming construct is to try an
example. Create a program that will move files to another directory Include
the following commands for the purposes shown:

echo

read

for variable

in lisLof_values

Prompts the user for a path name to the new
directory.

Assigns the path name to the variable path.

Calls the variable file; it can be referenced as
$file in the command sequence.

Supplies a list of values. If the in clause is omit
ted, the list of values is assumed to be s• (all the
arguments entered on the command line).

do command__sequence Provides a command sequence. The construct for
this program will be:

do
mv $file $path/$file<CR>

done

SHELL TUTORIAL 7·67

Shell Programming

The following screen shows the text for the shell program mv.file:

$ cat mv.file<CR>
echo Please type in the directo:cy path
read path

for file
in meno 1 meno2 meno3

do

mv $file $path/$file
dane
$

In this program, the values for the variable file are already in the pro
gram. To change the files each time the program is invoked, assign the values
using positional parameters or the read command. When positional parame
ters are used, the in keyword is not needed, as the next screen shows:

$ cat mv.file<CR>
echo type in the directory path
read path
for file
do

mv $file $path/$file
dane
$

7-68 USER'S GUlDF

Shell Programming

You can move several files at once with this command by speci fying a list
of file names as arguments to the command. (This can be done most easily
using the file name expansion mechanism described earlier).

Figure 7-24 summarizes the mv.file shell program.

Shell Program Recap

mv.file - moves files to another directory (user defined)

command arguments

mv.file filenames
(interactive)

Description: mv.file moves files to a new directory.

Remarks: This program requires file names to be given as
arguments. The program prompts for the path
to the new directory.

Figure 7-24 : Summary of mv.file Shell Program

The while Loop

Another loop construct, the while loop, uses two groups of commands. I t
will continue executing the sequence o f commands in the second group, the
do ... done list, as long as the final command in the first group, the while list,
returns a status of true (meaning the command can be executed) .

The general format of the while loop is shown in Figure 7-25 .

SHELL TUTORIAL 7-69

Shell Programming

while<CR>
command 1 <CR>

last command<CR>
do<CR>

command 1 <CR>

last command<CR>
done<CR>

Figure 7-25: Format of the while Loop Construct

For example, a program called enter.name uses a while loop to enter a
list of names into a file. The program consists of the following command
lines:

$ cat enter.name<CR>
while

read x
do

echo $x»xfile
done
$

7-70 USER'S GUIDE

With some added refinements, the program becomes

$ cat enter.name<CR>
echo Please type in each persan' s name and then a <CR>
echo Please end the list of names with a <Ad>

while read x
do

echo $x»xfile
done
echo xfile oontains the followinq names :

cat xfile
$

Shell Programming

Notice that after the loop is completed, the program executes the commands
below the done.

You used special characters in the first two echo command lines, so you
must use quotes to tum off the special meaning. The next screen shows the
results of enter.name:

$ enter.name<CR>
Please type :in each perscm ' s name and then a <CR>
Please end the list of names with a <Ad>
Mary Lou <CR>
Janice<CR>
<

"
d>

xfile oontains the following names :

Ma%y lOu
Janice
$

SHELL TUTORIAL 7-71

Shell Programming

Notice that after the loop completes, the program prints all the names con
tained in xfile.

The Shell's Garbage Can: fdevjnull

The fi le system has a file called fdev jnull, where you can have the shell
deposit any unwanted output.

Try out fdevjnull by destroying the results of the who command. First,
type in the who command. The response tells you who is on the system.
Now, try the who command, but redirect the output into fdev jnull:

who > fdevjnull<CR>

Notice that the system responded with a prompt. The output from the
who command was placed in fdev /null and was effectively discarded.

Conditional Constructs

if ... then

The if command tells the shell program to execute the then sequence of
commands only if the final command in the if command list is successful.
The if construct ends with the keyword fi.

The general format for the if construct is shown in Figure 7-26.

7-72 USER'S GUIDE

if<CR>
command1 <CR>

last command<CR>
then<CR>

command1 <CR>

last commaud<CR>
fi<CR>

Shell Programming

Figure 7-26: Format of the if ... then Conditional Construct

For example, a shell program called search demonstrates the use of the
if • . . then construct. search uses the grep command to search for a word in a
file. If grep is successful, the program will echo that the word is found in the
file. Copy the search program (shown on the following screen) and try i t
yourself:

$ cat search<CR>
echo Type in the w:>rd and the file name .
read w:>rd file

if grep $wozd $file

fi

$

then echo $wozd is in $file

SHELL TUTORIAL 7-73

Shell Programming

Notin• that thE' read command assigns values lo two variables. The first
characters you type, up until a space, are assigned to word. The rest of the
characters, including embedded spaces, are assigned to file.

A problem with this program is the unwanted display of output from the
grep command. If you want to dispose of the system response to the grep
command in your program, use the file fdev fnull, changing the if command
line to the following:

if grep $word $file > fdevfnull<CR>

Now execute your search program. It should respond only with the message
specified after the echo command.

if ... then ... else

The if ... then construction can also issue an alternate set of commands
with else when the if command sequence is false. It has the format shown in
Figure 7-27.

7-74 USER'S GUIDE

if<CR>
comma11d1 <CR>

last command<CR>
then<CR>

command1 <CR>

last command<CR>
else<CR>

command1 <CR>

last command<CR>
fi<CR>

Shell Programming

Figure 7-27: Format of the if .•. then ... else Conditional Construct

You can now improve your search command so that it will tell you when
it cannot find a word, as well as when it can . The following screen shows
how your improved program will look:

SHELL TUTORIAL 7·75

Shell Programming

$ cat search<CR>
ecb:> Type in the \o10rd and the file name .
read '!NOrd file

if
grep � $file >/dev/null

then
ecb:> $'!NOrd is in $file

else

fi
$

ecb:> $\o10rd is NJl' in $file

Figure 7-28 summarizes your enhanced search program.

Shell Program Recap

search - tells you if a word is in a file (user defined)

command arguments

search interactive

Description: search n•ports w h<•thl'r a word is in a fi le .

Remarks: The command prompts you for the arguments
(the word and the file) .

Figure 7-28: Summary of the search Shell Program

7-76 USER'S GUIDE

Shell Programming

The test Command for Loops

The test command, which checks to see if certain conditions are true, is a
useful command for conditional constructs. I f the condition is true, the loop
will continue . If the condition is false, the loop will end, and the next com
mand will be executed. Some of the useful options for the test command are

test -r filc<CR> true if the fi le exists and is readable

test -w file<CR> true if the file exists and has write permission

test -x file<CR> true i f the file exists and is executable

test -s file<CR> true if the file exists and has at least one character

test var1 -eq var2 <CR> true if var1 equals var2

test var1 -ne var2 <CR> true i f var1 dm•s not (•q u a l var2

You may want to create a shel l program to move a l l the executah lt> fi les in
the current directory to your bin directory . You can use the test -x command
to select the executable files. Review the example of the for construct that
occurs in the mv.file program, shown in the following screen :

$ cat mv.file<CR>
eclx:> type in the directory path

read path

for file

do

mv $file $path/$file

done

$

Create a program called mv.ex that includes an if test -x statement in the
do ... done loop to move executable files only. Your program will be as fol
lows:

SHELL TUTORIAL 7-77

Shell Programming

$ cat mv.ex<CR>
echo type in the di.rectaey path
read path

far file

do

if test --x $file

then

fi
done

$

mv $file $path/$file

. The directory path will be the path from the current directory to the bin
directory. However, if you use the value for the shell variable HOME, you
will not need to type in the path each time. $HOME gives the path to the
login directory. $HOMEjbin gives the path to your bin.

In the following example, mv.ex does not prompt you to type in the direc
tory name, and therefore, does not read the path variable:

$ cat mv.ex<CR>
far file

do

if test --x $file
then

fi
done

$

mv $file $!Dmlbin/$file

7-78 USER'S GUIDE

Shell Programming

Test the command by using all the files in the current directory and speci
fying the "' metacharacter as the command argument. The command lines
shown in the following example execute the command from the current direc
tory, and then change to bin and list the files in that directory. All executable
files should be there:

$ mv.ex *<CR>
$ cd; cd bin; ls<CR>
lisLof_executable_files
$

Figure 7-29 summarizes the format and capabilities of the mv.ex shell
program.

SHELL TUTORIAL 7·79

Shell Programming

Shell Program Recap

mv.ex - moves all executable files in the current
directory to the bin directory

command arguments

mv.ex • (all file names)

Description: mv.ex moves all files in the current directory
with execute permission to the bin directory.

Remarks: All executable files in the bin directory (or any
directory shown by the PATH variable) can be
executed from any directory.

Figure 7-29: Summary of the mv.ex Shell Program

case .. esac

The case ••. esac construction has a multiple choice format that allows you
to choose one of several patterns and then execute a list of commands for that
pattern. The pattern statements must begin with the keyword in, and a)
must be placed after the last character of each pattern . The command
sequence for each pattern is ended with ;; . The case construction must end
with esac (the letters of the word case reversed).

The general format for the case construction is shown in Figure 7-30.

7·80 USER'S GUIDE

case word<CR>
in<CR>

pattern l)<CR>
command line 1 <CR>

last command liHe<CR>
;;<CR>
pattern2)<CR>

command line 1 <CR>

last command line<CR>
;;<CR>
pattern3)<CR>

command line 1 <CR>

last command line<CR>
;;<CR>
*)<CR>

command 1 <CR>

last command<CR>
;;<CR>

esac<CR>

Figure 7-30: The case ... esac Conditional Construct

Shell Programming

The case construction tries to match word following the word case with pat
tern in the first pattern section . If there is a match, the program executes the
command lines after the first pattern and up to the corresponding ;; .

SHELL TUTORIAL 7-81

Shell Programming

If the first pattern is not matched, the program proceeds to the second
pattern . Once a pattern is matched, the program does not try to match any
more of the patterns but goes to the command following esac.

The • used as a pattern matches word, allowing you to give a set of com
mands to be executed if no other pattern matches. To do this, it must be'
placed as the last possible pattern in the case construct so that the other pat
terns are checked first. This provides a useful way to detect erroneous or
unexpected input.

The patterns that can be specified i(l the pattern part of each section may
use thl' metacharacters • , ?, and [J as described earlier in this chapter for the
shell's fi le name expansion capability. This provides useful flexibility.

The set.term program contains a good example of the case •.. esac construc
tion. This program sets the shell variable TERM according to the type of ter
minal you are using. It uses the following command line:

TERM=terminaLname<CR>

(For an explanation of the commands used, see the vi tutorial in Chapter 6.)
In the following example, the terminal is a Teletype 4420, Teletype 5410, or
Teletype 5420.

set.term first checks to see whether the value of term is 4420. If it is, the
program makes T4 the value of TERM and terminates. If it the value of term
is not 4420, the program checks for other values: 5410 and 5420. It executes
the commands under the first pattern that it finds and then goes to the first
command after the esac command.

The pattern • , meaning everything else, is included at the end of the ter
minal patterns. It will warn that you do not have a pattern for the terminal
specified and will allow you to exit the case construct:

7·82 USER'S GUIDE

$ cat set.term<CR>
echo If you have a Tl'Y 4420 type in 4420
echo If you have a Tl'Y 5410 type in 54 10
echo If you have a Tl'Y 5420 type in 5420

read term

case $term
in

esac
export TERM

4420)

TERM=T4

54 10)
TERM=TS

; ;
5420)

TERM='I7

; ;
*)
echo not a =ect ternri.nal type

; ;

echo end of program
$

Shell Programming

Notice the use of the export command. You use export to make a vari
able available within your environment and to other shell procedures. What
would happen if you placed the • pattern first? The set.term program would
never assign a value to TERM since it would always match the first pattern •,
which means everything.

Figure 7-3 1 summarizes the format and capabilities of the set.term shell
program.

SHELL TUTORIAL 7·83

Shell Programming

Shell Program Recap

set.term - assigns a value to TERM (user defined)

command arguments

set.term interactive

Description: set.term assigns a value to the shell variable
TERM and then exports that value to other
shell procedures.

Remarks: This command asks for a specific terminal code
to be used as a pattern for the case construe-
tion.

Figure 7-3 1 : Summary of the set. term Shell Program

Unconditional Control Statements: the break and continue
Commands

The break command unconditionally stops the execution of any loop in
which it is encountered and goes to the next command after the done, fi, or
esac statement. If there are no commands after that statement, the program
ends.

In the example for set.term, you could have used the break command
instead of echo to leave the program, as the next example shows:

7-84 USER'S GUIDE

$ cat set.term<CR>
ecb:l If you have a T'lY 4420 type in 4420

ecb:l If you have a T'lY 5410 type in 54 10
ecbJ If you have a T'lY 5420 type in 5420

read term

case $term

esac

in
4420)

TERM=T4

54 1 0)
'mlM=T5

; ;
5420)

'1'mlM=T7
; ;
*)

break
; ;

export TmM
ecb:l end of program
$

Shell Programming

The continue command causes the program to go immediately to the next
iteration of a do or for loop without executing the remaining commands in the
loop.

SHELL TUTORIAL 7-85

Shell Programming

Debugging Programs

At times you may need to debug a program. Debugging is the process of
finding and correcting errors. The sh command has two options (listed below)
that can help you debug a program:

sh -v shellprogramname

sh -x shellprogramname

prints the shell input lines as they are read by
the system

prints commands and their arguments as they
are executed

To try out these two options, create a shell program that has an error in it.
For exam ple, crea te a file called bug that contains the following l ist of com
mand<;:

$ cat bug<CR>
today=' date'
echo enter person
read person
mail $ 1
$person
When you log off ocme into my office please.
$today.
MI.JI
$

Notice that today equals the output of the date command, which must be
enclosed in grave accents for command substitution to occur.

The mail message sent to Tom ($ 1) at login tommy ($2) should read as
the following screen shows:

7-86 USER'S GUIDE

$ mail<CR>
Fran mlh Thu Apr 10 1 1 : 36 CST 1984
Tan
When you log off oaue into 11\Y office please .
Thu 11pr 10 1 1 : 36 : 32 csr 1986
MLH
?

Shell Programming

If you try to execute bug, you will have to press the <BREAK> or
<DELETE> key to end the program.

To debug this program, try executing bug using sh -v . This will print the
l ines of the file as they are read by the system, as shown below:

$ sh -v bug tom<CR>
today='date'
echo enter person
enter person
read person
tommy
mail $1

Notice that the output stops on the mail command since there is a prob
lem with mail . You must use the here document to redirect input into mail.

Before you fix the bug program, try executing it with sh -x, which prints
the commands and their arguments as they are read by the system:

SHELL TUTORIAL 7·87

Shell Programming

$ sh -x bug tom tommy<CR>
+date
today=Thu Apr 1 0 1 1 :07:23 CST 1 986
+ echo enter person
enter person
+ read person
tommy
+ mail tom

$

Once again, the program stops at the mail command. Notice that the
substitutions for the variables have been made and are displayed.

The corrected bug program is as follows:

$ cat bug<CR>
today= ' date'
echo enter person
read person
mail $ 1 « I
$person
When. :you log off ocme into 11\Y office please .
$today
MLH
I
$

7-88 USER'S GUIDE

Shell Programming

The tee command is a helpful command for debugging pipelines. While
simply passing its standard input to its standard output, it also saves a copy of
i ts input into the file whose name is given as an argument.

The general format of the tee command is

commandl I tee saverfile I command2<CR

saverfi/e is the fi le that saves the output of comma11dl for you to study.

For example, say you want to check on the output of the grep command
in the fol lowing command line:

who I grep $1 I cut -ct-9<CR>

You can use tee to copy the output of grep into a fi le called cht•ck without dis
turbing the rest of the pipeline:

who I grep $1 I tee check I cut -cl-9<CR>

The file check contains a copy of the grep output, as shown in the following
screen:

$ who I grep mlhmo I tee check I cut -cl-9<CR>
mllmD
$ cat check<CR>
mllmD tty61 Apr 10 1 1 : 30
$

SHELL TUTORIAL 7-89

Modifying Your Login Environment

The UNIX System lets you modify your login environment in several
ways. One modification that users commonly want to make is to change the
default values of the erase (#) and line kill (@) characters.

When you log in, the shell first examines a file in your login directory
named .profile (pronounced 11 dot profile 11) . This file contains commands that
control your shell environment.

Because .profile is a file, it can be edited and changed to suit your needs.
On some systems you can edit this file yourself, while on others, the system
administrator does this for you. To see whether you have a .profile in your
home directory, type

Is -al $HOME

If you can edit the file yourself, you may want to be cautious the first few
times. Before making any changes to your .profile, make a copy of it in
another file called safe.profile. Type

cp .profile safe.profile<CR>

You can add commands to your .profile just as you add commands to any
other shell program. You can also set some terminal options with the stty
command and set some shell variables.

Adding C�mmands to Your .profile
Practice adding commands to your .profile. Edit the file and add the fol

lowing echo command to the last line of the file:

echo Good Morning! I am ready to work for you.

Write and quit the editor.

Whenever you make changes to your .profile and you want to initiate
them in the current work session, you can execute the commands in .profile
directly using the . (dot) shell command. The shell will re-initialize your
environment by reading the commands in your .profile. Try this now. Type

. .profile<CR>

7-90 USER'S GUIDE

Modifying Your Login Environment

The system should respond with the following:

Good l>t>rning l I am ready to work for you .
$

Setting Terminal Options

The stty command can make your shel l environment more con ven i en t .
Tlwn• a n• thn'e opt ions you cn n usl' wi th stty: -tabs, erase < -h> , and echoe .

The fol lowing list describes these options:

stty -tabs

stty erase <
'
h>

stty echoe

This option preserves tabs when you are printing.
It expands the tab setting to eight spaces, which is
the default. The number of spaces for each tab
can be changed. (See stty(l) in the User'sjSystem
Administrator's Reference Manual for details.)

This option allows you to use the erase key on
your keyboard to erase a letter, instead of the
default character # . Usually the <BACKSPACE>
key is the erase key.

If you have a terminal with a screen, this option
erases characters from the screen as you erase
them with the <BACKSPACE> key.

If you want to use these options for the stty command, you can create
those command lines in your .profile just as you would create them in a shell
program. If you use the tail command, which displays the last few lines of a
fi le, you can see the results of adding those four command lines to your
.profile:

SHELL TUTORIAL 7-91

Modifying Your Login Environment

$ tail -4 .profile<CR>
eclx> Good 1-brni.ng I I am ready to �k f= you

stty -tabs
stty erase <•h>
stty eclx>e
$

Hgun' 7-32 summarizes the format and capabilities of the tail command.

Command Recap

tail - displays the last portion of a file

command options arguments

tail -n filename

Description: tail displays the last lines of a file.

Options: Use -n to specify the number of lines n (the
default is ten lines). You can specify a number
of blocks (-nb) or characters (-nc) instead of
lines.

Figure 7-32: Summary of the tail Command

7-92 USER'S GUIDE

Modifying Your Login Environment

Creating an rje Directory

We have often talked about sharing useful programs with other users in
this chapter. Similarly, these users may have programs or other files that they
want to share with you. So that these users can send you the files easily, you
should create an rje (remote job entry) directory:

mkdir rje
chmod go+w rje

Notice that you have to change the permissions of the directory using chmod.
When you have an rje directory with the correct permissions, other users can
send you files. using the uucp command. See the uucp(l) manual page in the
User'sjSystem Administrator's Reference Manual for details.

Using Shell Variables

Several of the variables reserved by the shell are used in your .profile .
You can display the current value for any shell variable by entering the fol
lowing command:

echo $variable_name

Four of the most basic shell variables are discussed next .

HOME

This variable gives the path name of your login directory . Use the
cd command to go to your login directory and type

pwd<CR>

What was the system response? Now type

echo $HOME<CR>

Was the system response the same as the response to pwd?

SHELL TUTORIAL 7-93

Modifying Your Login Environment

$HOME is the default argument for the cd command. If you do
not specify a directory, cd will move you to $HOME.

PATH

This variable gives the search path for finding and executing com
mands. To see the current values for your PATH variable type

echo $PATH<CR>

The system will respond with your current PATH value:

$ echo $PATH<CR>
: /my login/bin : /bin: /usrlbin: /Usr/lib
$

The colon (:) is a delimiter between path names in the string
assigned to the $PATH variable. When nothing is specified before
a : , then the current directory is understood. Notice how, in the last
example, the system looks for commands in the current directory first,
then in fmyloginfbinf, then in /bin, then in fusrfbin, and finally in
fusrflib.

7·94 USER'S GUIDE

Modifying Your Login Environment

If you are working on a project with several other people, you
may want to set up a group bin, a directory of special shell programs
used only by your project members. The path might be named
/projectl/bin. Edit your .profile, and add :fprojectlfbin to the end
of your PATH, as in the next example:

PATH= 11 :fmylogin/bin:/bin:fusr/lib:/projectl/bin 11 <CR>

TERM

This variable tells the shell what kind of terminal you are using.
To assign a value to it, you must execute the following three com
mands in this order:

TERM=terminaLname<CR>
export TERM<CR>
tput init

The first two lines, used together, are necessary to tell the computer
what type of terminal you are using. The last line, containing the tput
command, tells the terminal that the computer is expecting to com
municate with the type of terminal specified in the TERM variable.
Therefore, this command must always be entered after the variable
has been exported.

If you do not want to specify the TERM variable each time you
log in, add these three command lines to your .profile; they will be
executed automatically whenever you log in. To determine what ter
minal name to assign to the TERM variable, see the instructions in
Appendix F, " Setting Up the Terminal. " This appendix also contains
details about the tput command.

If you log in on more than one type of terminal, it would also be
useful to have your set.term command in your .profile.

SHELL TUTORIAL 7·85

Modifying Your Login Environment

PSl

This variable sets the primary shell prompt string (the default is
the $ sign). You can change your prompt by changing the PSl vari
able in your .profile.

Try the following example. Note that to use a multi-word
prompt, you must enclose the phrase in quotes. Type the following
variable assignment in your .profile:

PSl= " Your command is my wish " <CR>

Now execute your .profile (with the . command) and watch for your
new prompt sign:

$. . profile<CR>
Your OCillland is my wish

The mundane $ sign is gone forever, or at least until you delete the
PSI variable from your .profile.

7-96 USER'S GUIDE

Shell Programming Exercises

2- 1 . Create a shell program called time from the following command line:

banner 'date I cut -c12-19'<CR>

2-2. Write a shell program that will give only the date in a banner display.
Be careful not to give your program the same name as a UNIX System
command.

2-3 . Write a shell program that will send a rtote to several people on your
system.

2-4. Redirect the date command without the time into a file.

2-5 . Echo the phrase " Dear colleague " in the same file that contains the
date command without erasing the date.

2-6. Using the above exercises, write a shell program that will send a
memo to the same people you sent a note to in Exercise 2-3. Include
the following in your memo:

the current date and the words " Dear colleague " at the top of the
memo

the body of the memo (stored in an existing fi le)

the closing statement

2-7. How can you read variables into the mv.file program?

2-8 . Use a for loop to move a list of files in the current directory to
another directory. How can you move all your files to another direc
tory?

SHELL TUTORIAL 7-97

Shell Programming Exercises

2-9. How can you change the program search so that it searches through
several files?

Hint:

for file
in $*

2-10. Set the stty options for your environment.

2- 1 1 . Change your prompt to the word Hello.

2-12. Check the settings of the variables $HOME, $TERM, and $PATH in
your environment.

7... USER'S GUIDE

Answers To Exercises

Command Language Exercises

1-1 . The • at the beginning of a file name refers to all files that end in that
file name, including that file name.

$ Is •t<CR>
cat
123t
JII!W.t
t
•

1-2. The command cat (D-9)• will produce the following output:

1meao
100data
9
05name

The command echo • will produce a list of all the files in the current
directory.

1 -3. You can place ? in any position in a file name.

1 -4. The command Is (D-9)• will list only those files that start with a
number.

The command Is [a-m)• will list only those files that start with the
letters n a n through n m n •

SHELL TUTORIAL 7·88

Anawera To ExerciHa

1 -5 . If you placed the sequential command line in the background mode,
the immediate system response was the PID number for the job.

No, the & (ampersand.) must be placed at the end of the command
line.

1 -6. The command line would be

cd; pwd > junk; Is >> junk; ed trial<CR>

1-7. Change the -c option of the command line to read

banner 'date I cut -d-lO'<CR>

Shell Programming Exercises

2-1 .

$ cat time<CR>
bB11ner 'date I cut -c12- 19'
$
$ chmod u+x time<CR>
$ time<CR>
(banner display of the time 10 : 26)
$

7·1 00 USER'S GUIDE

2-2.

2-3.

$ cat mydate<CR>
banner 'date 1 cut --c1-10 '
$

$ cat tofriends<CR>

Answers To Exercises

ecb:l Type in the name of the file ccnt:a:ining the note .
read note
mail janice marylou bcyan < $note
$

Or, if you used parameters for the logins, instead of the logins them
selves, your program may have looked like this:

SHELL TUTORIAL 7-1 01

Answers To Exercises

$ cat tofriends<CR>
ech:l Type in the name of the file oantai.ninq the note .

read note
mail $* < $note
$

2-4. date I cut -cl-10 > filel<CR>

2-5 . echo Dear colleague >> filel<CR>

7·1 02 USER'S GUIDE

2-6.

2-7.

S cat send.memo<CR>
date 1 cut -c1-10 > IIII!IID1
echo Dear ool.league » IIII!IID 1
cat 111B1D >> IIIBID1
echo A 111B1D fran M. L. Kelly » IIIBID1
mail janice maeyl.ol bcyan < IIIBID1
$

$ cat mv .file<CR>
echo type in the directaty path

read path

echo type in file names , end with <•d>

Wile
read file

do
mv $file $pathl$file

dane
echo all done

•

Answers To Exercises

SHELL TUTORIAL 7-1 03

Answers To Exercises

2-8.

$ cat mv .file<CR>
ecb:l Please type in directary path
read path

far file in $*
do

$

mv $file $path/$file

done

The command line for moving all flles in the current directory is

$ mv.file *<CR>

2-9. See hint given with exercise 2-9.

$ cat search<CR>
far file

in $*
do

if grep $word $file >/devlhull
then echo $word is in $file
else echo Swom is !Dl' in $file
fi

done
$

7-1 04 USER'S GUIDE

2-10. Add the following lines to your .profile:

stty -tabs<CR>
stty erase < ·h><CR>
stty echoe<CR>

2- 1 1 . Add the following command lines to your .profile:

PSl=Hello<CR>
export PSI

2-1 2. To check the values of these variables in your home environment,
type

0 $ ec:ho $HOME<CR>

0 $ echo $TERM<CR>

0 $ echo $PATH<CR>

SHELL TUTORIAL 7-'1 05

8 C-shell Tutorial

Introduction
Starting the C-shell
Setting C-Shell Variables
Using the C -shell History List
Using Aliases
Redirecting Input and Output
Creating Background and Foreground Jobs
Using Built-in Commands
Creating Command Scripts

• Using the argv Variable
• Substituting Shell Variables
• Using Expressions
• Using Control Structures

Supplying Input to Commands
Catching Interrupts
Starting a Loop at a Terminal
Using Substitution to Expand Strings
Substituting Commands
Special Characters

8-1

8-1

8-2

8-4

8-9

8- 1 1

8-1 2
8- 1 3

8-1 6

8-1 6
8-1 7

8-20
8-21
8-25

8-27
8-27
8-29
8-29

8-30

C-SHELL TUTORIAL

Introduction

The C-shell program, csh, is a command language interpreter for UNIX
System users. The C-shell, like the standard UNIX shell, sh, is an interface
between you and the UNIX commands and programs. It translates command
lines typed at a terminal into corresponding system actions; gives you access
to information, such as your login name, home directory, and mailbox; and
lets you construct shell procedures for automating system tasks.

This chapter explains how to use the C-shell. It also explains the syntax
and function of C-shell commands and features, and shows you how to use
these features to create shell procedures. For a complete description of the C
shell and its capabilities, see csh(l) in the User'sjSystem Administrator's Refer
ence Manual.

Starting the C-shell

You can invoke the C-shell from another shell by typing the following
command:

csh

You can also tell the system to start the C-shell for you when you log in. If
you have given the C-shell as your login shell in your jetcjpasswd file entry,
the system automatically starts the C-shell each time you log in.

After the system starts the C-shell, the shell searches your home directory
for two command files, .cshrc and .login. The .cshrc file contains the com
mands you wish to execute each time you start a C-shell, and the .login file
contains the commands you wish to execute after logging in to the system.
The following example shows the contents of a typical .login file:

set ignoreeof
set mail=(/usrjspooljmail/bill)
set time=lS
set history=lO
mail

Once the shell finds these two files, it executes the commands contained in
them and then displays the C-shell prompt.

C-SHELL TUTORIAL 8·1

Introduction

When the C-shell finishes processing the .login file, it prompts you with
the system default prompt:

%

You can now enter commands. To log out, type the following command:

logout

The C-shell then executes commands from the .logout file if it exists in your
home directory. After that, the C-shell terminates and UNIX logs you out of
the system. If there is no .logout file in your home directory, the C-shell logs
you off the system. For more information about the .logout file, see csh(l) in
the User'sjSystem Administrator's Reference Manual.

Setting C-Shell Variables

The C -shell maintains a set of variables for customizing your working
environment. You can type the set command with no arguments to display
the values of all variables currently defined in the C-shell.

One of the most important variables is path. This variable contains a list
of directory names. When you type a command name at your terminal, the
C-shell examines each named directory in turn until it finds an executable file
whose name corresponds to the name you typed.

You can use the set command to assign values to these variables. The set
command has several forms, the most useful of which is

set name = value

The following example shows some shell variables and their typical default
values:

home

path

jusrjbill
(. /bin jusr /bin)

In this example, the path variable sets the command search path to begin
with the current directory, indicated by period (.), then /bin, and finally
jusrjbin. Standard UNIX commands reside in jbin and jusrjbin. For this
reason, it is convenient to place these directories in your search path. To do
this, add the following line to your .cshrc file:

set path=(. jbin jusrjbin)

8·2 USER'S GUIDE

Introduction

Sometimes a number of loca l ly developt'd programs n•side in t lw d in•l·tory
jusrjlocal . If you want all C-shells that you invoke to have access to these
new programs, add the new directory to the path variable in your .cshrc file,
as shown in the following example:

set path=(. /bin fusrjbin jusrflocal)

After you change one of the variables in your .cshrc file, you must log out
and log in again. This causes the C-shell to read the .cshrc file again. When
you log in, the C-shell examines each directory that you insert into your path
and determines which commands are contained there, except for the current
directory which the C-shell treats specially. This means that if commands are
added to a directory in your search path after you have started the C-shell,
they will not necessarily be found. If you wish to use a command that has
heen added after you have logged in, you can give the fol lowing command to
the C-shel l :

rehash

The rehash command causes the shell to recompute its internal table of com
mand locations so that it will find the newly added command. Since the C
shell has to look in the current directory for each command anyway, placing it
at the end of the path specification usually works best and reduces overhead.

Other useful built-in C-shell variables are home, which shows your home
directory, and ignoreeof, which can be set in your .login file to tell the C-shell
not to exit when it receives an end-of-file (CTRL-D) from a terminal . The
ignoreeof variable is one of several "toggle" shell variables. You do not need
to specify exact values for these variables; you need only specify whether the
variable is "on" or "off." For example, to set ignoreeof, type the following
command line:

set ignoreeof

To turn ignoreeof off, type the following command line:

unset ignoreeof

C-SHELL TUTORIAL 8-3

Introduction

Another useful built-in C-shell variable is noclobber. Use this variable to
prevent inadvertently overwriting the contents of an existing file. The arrow
symbols, < and >, redirect the standard output of a command, just as they do
in the regular shell and overwrite the previous contents of the named file.
This means you could accidentally overwrite a valuable file if you try to
redirect output to an existing file. To tell the C-shell not to automatically
overwrite files when instructed to with the arrow symbol, place the following
command in your .login file:

set nodobber

Suppose you have a file called now in your current directory. Because
you have set the noclobber option, typing the following command will give
you an error message stating that the file already exists:

date > now

If you really want to overwrite the contents of now, you can type the follow
ing command:

date >I now

The ">!" is a special syntax that indicates overwriting or "clobbering" the file
is okay. The space between the exclamation point (!) and the word "now" is
critical here, since "!now" would be an invocation of the history feature and
would have a totally different effect. The C-shell history feature is described
in more detail in the following section.

Using the C-shell History List

The C-shell can be instructed to maintain a history list containing the text
of previous commands. The history feature can be used to repeat previous
commands or to correct minor typing mistakes in commands. You can use
metacharacter notations that represent previously used shell commands, or
words from commands, to form new commands.

This section teaches you how to use the history list. In this tutorial, you
will use the history feature to create a sample file, compile the file, execute
the file, and perform various other commands on the file.

8-4 USER'S GUIDE

Introduction

To learn how to use the history feature, follow these steps:

1 . Create a file named bug.c using a text editor. Type the following five
lines into the file:

mainO

{

}
print£(" hello);

This file is a very simple C program that has a few intentional bugs in
it.

2 . Display the bug.c file you just created b y typing the following com
mand line:

cat bug.c

3 . Compile the bug.c file by typing the following:

cc 1$
This command line makes use of the history feature i n voked by the
exclamation mark (!). The dollar sign ($) means to use the last argu
ment to the previous command as the argument to this command.
Your terminal displays

cc blg . c

bug . c

blg . c (4) wanrillg : newline in string constant

blg . c(5) syntax error : ' } '

The C-shell echoes the command as if it had been typed without the
use of the history feature and then executes the command. The com
pilation yields error diagnostics, so now you must edit the bug.c file.

4 . Using an editor, edit line 4 of the bug.c file to look like the following
line:

print£ ("hello") ;

C-SHELL TUTORIAL 8·5

Introduction

5 . Recompile the bug.c file by typing

!c

This command line invokes the history feature and repeats the last
executed command that started with a "c". Your terminal displays

cc :ooq. c

blq. c

If other commands beginning with the letter "c" executed recently,
you could have typed "!c:p" as the command line. This command
line would print the last command starting with "c" without executing
it, so that you can check to see whether you really want to execute the
implied command.

6 . Run the default output file a.out that resulted from compiling the
bug.c file. To do this, type

a.out

The system displays the following message:

hello%

Note that the C-shell prompt (%) appears on the same line as the out
put of a.out. Suppose this is a bug that you must correct.

7 . Edit line 4 o f the bug.c file to look like

printf(" hello \n ");

This will cause the C-shell prompt to be placed on a new line when
the output file is run again.

8-8 USER"S GUIDE

Introduction

8 . Recompile the bug.c file b y typing

!c -o bug

This command line invokes the history feature, executes the last com
mand beginning with "c", and uses the -o option to tell the compiler
to name the output file bug rather than the defaul t a.out. The system
displays thl' fol lowing messagl':

cc bug . c ·� bug

bug . c

9 . Compare the sizes of the binary program images of the a.out and bug
files by typing the following:

size a.out bug

The output of this command will be similar to the following example:

a . out : 4226 + 490 + 1064 = 5780 = Ox1694

bug : 4226 + 492 + 1064 = 5782 = Ox1696

1 0 . List the output files a.out and bug i n long format by typing

Is -I !*

This command line invokes the Is command, invokes the history
feature, and uses all the arguments specified in the previous command
as arguments to this command. The output of this command line will
be similar to the following:

ls -1 a . out bug
-rwxr-xr-x 1 bill group

-rwxr-xr-x 1 bill group
3932

3932

Dec 19 09 : 4 1

Dec 19 09 : 4 1

a . out

bug

C-SHELL TUTORIAL 8-7

Introduction

1 1 . Run the output file bug to veri fy that its output is correct. To do this,
type

bug

The system displays the following message:

hello

1 2 . Print a program listing of the file bug.c by typing

pr bug.c I lpt

This command line invokes the pr command and pipes its output to a
lineprinter (lpt). The lineprinter notation lpt should really be lpr. We
introduced an intentional spelling error in this command line so you
could learn about more helpful history features. The system displays
the following message:

lpt : Camand not fOI.D1d.

1 3 . Correct the spelling error in the pr command line and request a prin
tout of the program listing again. To do this, type

-
Ip(lpr

This command line replaces the string after the first caret with the
string after the second caret in the previous command and repeats the
previous command with the new string. Your terminal displays

pr buq.c I lpr

There are also other features available for repeating commands. The his
tory command prints out a numbered list of previous commands. You can
then refer to these commands by number. You can also refer to a previous
command by searching for a string that appeared in it. For a complete
description of these features, see csh(l) in the User'sjSystem Administrator's
Reference Manual.

8·8 USER'S GUIDE

Introduction

Using Aliases

The C-shell has an alias command that transforms commands immedi
ately after they are input. You can use this feature to simplify the commands
you type, to supply default arguments to commands, or to perform transfor
mations to commands and their arguments. The alias command is similar to
a macro facility. You can assign a short abbreviation (an alias) to represent a
longer command. You can define an alias for your current login session, or
you can set it up to be valid for each login session.

For example, if it is inconvenient to type "history" each time you wish to
see the last several commands the system executed, you can create an alias for
the history command. To set up an alias that will be in effect for every sub
sequent login session, place the following C-shell command in your .cshrc file :

alias h history

After you have placed this command in your .cshrc file, tell the C-shell to
read the .cshrc file again. You can do this either by logging out and logging
in again, or by using the C-shell source command. From now on, you can
view the contents of your history list by typing the following command alias:

h

To set up the "h" alias for your current login session only, type the fol
lowing line at the shell prompt:

alias h history

To view the list of your current aliases, use the alias command with no argu
ments.

Suppose you want the Is command to always show file sizes so that you
do not have to remember to use the -s option. To set up this shortcut for this
login session only, type the following alias command line at the prompt:

alias ls ls -s

Or, if you wish to preserve the original function of the Is command (long list
ing without file sizes), you can create a new "command," dir, that performs

C-SHELL TUTORIAL 8-8

Introduction

the same function as the Is -s command. To do this, type the following line
at the prompt:

alias dir Is -s

After you have created the dir command, the following commands would give
identical results during this login session:

dir ·;accounts
Is -s -I accounts

Note that the tilde C) is a special C-shell symbol that represents the user's
home directory. For example, the path of bilk's .login file can be expressed
as jusrjbillcj.login, or ·;.login.

You can also define aliases with multiple commands or pipelines, showing
where the arguments to the original command are to be substituted using the
history feature. For example, if you want to invoke the Is command automat
ically whenever you invoke the cd command, type the following command
line:

alias cd 'cd \1* ; Is '

Single quotation marks enclose the entire alias definition to prevent most
substitutions from occurring and to prevent the semicolon (;) from being
recognized as a metacharacter. The exclamation mark (!) is escaped with a
backslash (\) to prevent it from using its standard interpretation when the
alias command is used. The "\!*" substitutes the entire argument list to the
cd command; no error is given if there are no arguments. The semicolon,
which separates commands, indicates that the commands are to be done in
sequence. For example, you can create a command that looks up its first argu
ment in the password file with the following command line:

alias whois 'grep \(jetcjpasswd'

Because the C-shell reads the .cshrc file each time it starts up, the C-shel l
wil l start s lowl y if you place a large number of a liases there. Try to limit your
al iases to a rl•asonable number (1 0 to 1 5). Too many a l iast•s l·a n also cause
delays and make the system seem sluggish when you execute commands from
within an editor or from within other programs.

8·1 0 USER'S GUIDE

Introduction

Redirecting Input and Output

Commands have a diagnostic output (error or status messages) in addition
to their standard output. This diagnostic output is normally directed to the
terminal even if the standard output is redirected to a file or a pipe. Occasion
ally, it is useful to direct the diagnostic output (along with the standard out
put) to a file. For instance, if you want to redirect the output of a long run
ning command into a file and wish to have a record of any diagnostic error
messages it produces, you can use a command line with the following form:

command > &: file

The > & tells the C-shell to route the diagnostic output and the standard out
put into file. If file already exists and cannot be overwritten (nodobber is
set), you can also use a command line of the following form:

command >&:1
file

Similarly, you can tell the shell to route standard and diagnostic output
through the pipe to the lineprinter. To do this, type the following command
line:

command I &: lpr

To append output to the end of an existing file, you can use a command
line of the following form:

command > > file

Note that you can use the double arrows to append data to an existing file
even if nodobber is set. This is because appending to a file does not
overwrite the original contents of that file. If nodobber is set, an error results
if file does not exist; otherwise, the C-shell creates file. To append a file that
does not exist with nodobber set, you can use a command line of the follow
ing form:

command >>I
file

C·SHELL TUTORIAL 8·1 1

Introduction

Creating Background and Foreground Jobs

When you type one or more commands together as a pipeline or as a
sequence of commands separated by semicolons, the C-shell creates a single
job consisting of these commands taken as a unit. Single commands without
pipes or semicolons create the simplest jobs. Usually, every line that you type
to the C-shell creates a job. For example, each of the following lines creates a
job:

sort < data
Is -s I sort -n I head -5
mail harold

If you type the ampersand (&) metacharacter at the end of the command
line, you start the job as a background job. In this case, the C-shell does not
wait for the job to finish but immediately prompts for another command. The
job runs in the background at the same time that normal (foreground) jobs
continue to be read and executed by the C-shell. For example, you can run
the du program in the background while performing other tasks by typing

du > usage &

The du command reports on the disk usage of your working directory and
puts the output into the file usage. The ampersand causes the C-shell to
return immediately with a prompt for the next command without waiting for
du to finish. The du program continues executing in the background until it
finishes, even though you can type and execute more commands in the mean
time. Background jobs are unaffected by signals from the keyboard, such as
the INTERRUPT or QUIT signals.

The kill command terminates a background job immediately. Normally,
you do this by specifying the process number of the job you want killed. You
can list the process numbers by using the ps command. For more information
on the ps command and its output, see ps(l) in the User'sjSystem
Administrator's Reference Manual.

8·1 2 USER'S GUIDE

Introduction

Using Built-in Commands

Built-in C-shell commands are executed within the shel l . This section
briefly describes how to use some of the built-in C-shell commands. For com
plete descriptions of these commands, as well as a complete list of built-in C
shell commands, see csh(l) in the User'sjSystem Administrator's Reference
Manual.

The following list describes some of the commonly used built-in com
mands:

Command Description

alias Assigns new aliases and displays existing aliases. With no argu
ments, alias prints the list of current aliases. You can also check
the current meaning of an alias by typing it as the argument to
the alias command. For example, to print the current alias for
the character "h", type the following command line:

alias h

Suppose you assigned "h" as an alias for the history command
earlier, the shell will display the following line:

history
If you did not assign an alias for the history command earlier,
the shell will display only the shell prompt.

The unalias command removes an alias from the C-shell. For
example, if you used the alias command earlier to assign the
alias "h" for the history command, you could remove that alias
by typing the following command line:

unalias h

C-SHELL TUTORIAL 8- 1 3

Introduction

env Prints out the current environment settings. The output for this

history

logout

rehash

repeat

setenv

source

command might look like the following example:

ID!E=/Usrlbill

SHELL=Jbin/csh
PATH= : /Usr/Ueb: /bin: /usrlbin: /Usr/local
'l'!»!=anSi

USER= bill

Displays the contents of the history list.

Terminates a C-shell login.

Causes the C-shell to recompute a table of command locations.
This recomputation is necessary if you add a command to a
directory in the current C-shell's search path and expect the
C-shell to find it. Otherwise, the hashing algorithm may tell the
C-shell that the command was not in that directory when the
hash table was computed.

Repeats a command several times. For example, to make five
copies of the file one in the file five, you can type

repeat 5 cat one >> five

Sets variables in the environment. For example, if you are work
ing from an ANSI-type terminal, you can set the value of the
TERM environment variable to "ANSI" by typing

setenv TERM ansi

Instructs the current C-shell to read commands from a file.
Therefore, if you wish to have a change that you have made to
the .cshrc file take effect before the next time you log in, you
could use the following command:

source .cshrc

8-1 4 USER'S GUIDE

Introduction

time T i mes a com mand, nu matter how m m·h <.: I ' U t i m e i t t ,J kl•s . For
example, to t ime a who command, type the fol low i ng com mand
l ine:

unset

time who

The output of this command might look l ike the fol lowing exam
ple:

maryw tty03 Jan 1 1 13 : 09

billc tty02 Jan 1 1 13 : 19

tamd oansole Jan 1 1 1 1 : 07

O . Ou O . Os 0 : 0 1 1 5%

According to this sample ou tpu t, the who command used 0 .0

seconds of user t ime (O .Ou) and 0.0 seconds of system ti me (O .Os)
in less than a second (0.0 1) of elapsed t ime. The percen tage,
"1 5%", ind icates that over the period when it was acti ve the
who command used an average of 13 percent of the avai lable
CPU cycles of the machine .

Removes variable definitions from the C -shell .

C-SHELL TUTORIAL 8·1 5

Introduction

Creating Command Scripts

In UNIX System V, you can place commands in files and invoke C-shells
to read and execute commands from these files. These command files are
called C-shell scripts. This section describes the C-shell features that are use
ful when creating C-shell scripts. Before you begin writing C-shell scripts,
you must be familiar with the UNIX concepts presented earlier in this Guide.

Using the argv Variable

A C-shell command script is like a "mini" program run by the shell. The
script is an executable file that contains one or more C-shell commands. To
interpret a csh command script, type a command of the following form:

csh script argument

where

script is the name of the file containing a group of C-shell commands.

argument is a sequence of command arguments.

The C-shell places these arguments in the argv variable, a special variable that
is set by the C -shell, and then begins to read commands from script. These
parameters are accessed just as any other C-shell variables.

You can make the script file executable by typing either of the following
command lines:

chmod 755 script

chmod +x script

If you want the fbinfcsh file _to be invoked automatically when you execute
your script file, you must place a C-shell comment character (#) at the begin
ning of the file. If the file does not begin with a number sign (#), the stan
dard shell, /binfsh, is used to execute it. After your script file is complete,
you can execute it by typing the following command:

script

8-1 8 USER'S GUIDE

Introduction

Substituting Shell Variables

After each input line is broken into words and history substitutions are
performed on it, the input line is parsed into distinct commands. Then, before
each command is executed, the C-shell performs variable substitution on these
distinct commands. Keyed by the dollar sign ($), this substitution replaces the
names of variables with their values. To echo the current value of the argv
variable into the output of a C-shell script, place the following command line
in the script:

echo $argv

If argv has not been defined, the C-shell script will respond to this command
line by displaying an error message.

There are a number of notations for accessing components and attributes
of variables. You can use notations to check whether a shell variable has
been set with the set command. For example, the following notation expands
to 1 if variable is set or to 0 if variable is not set:

$?variable

This notation is the fundamental tool for checking whether particular variables
have been assigned values. All other references to undefined variables cause
errors.

The following notation expands to the number of elements in variable :

$#variable

To understand how to use shell variables, try the following steps, which let
you practice defining, checking, accessing, and undefining C-shell variables:

1 . Set the values of argv by typing the following command line at the
C-shell prompt:

set argv=(a b c)

2 . Determine whether any shell variables have been assigned during this
session by typing

echo $?argv

The system displays " 1 ", indicating that the argv variable has been
set.

C-SHELL TUTORIAL 8-1 7

Introduction

3 . Determine the number of elements in the named variable argv by typ
ing

echo $#argv

The system displays "3", indicating that there are three elements in
the argv variable.

4 . However, if you remove the current definition of the argv variable
from the C-shell, the system will display "0" since there are no longer
any elements in the argv variable. To check this, first remove the
current definition of the argv variable by typing the following com
mand line:

unset argv

5 . Then verify that the argv variable is no longer defmed by typing

echo $?argv

Now that you have undefined the argv variable, there are no ele
ments in it. Thus, the notation expands to 0, and the system displays
this digit. Because there are no elements in the variable, you can tell
that the variable is not set.

6 . Determine the current value of the argv variable by typing

echo $argv

The system displays the following message, confirming that argv is
not set:

Undef:ined variable : argv.

7 . Reset the value of the argv variable to the same value as when you
began this session by typing the following command line at the
C-shell prompt:

set argv=(a b c)

8 . Determine the first element of the variable argv by typing

$argv[l]

The system displays the first element in th.e group of elements you
assigned to argv in step 7:

a

8· 1 8 USER'S GUIDE

Introduction

You can determine the first and secon d e lements of t lw argv var i a hi L·
by typing

$argv[l-2]

The system displays

a b

In addition to providing specific element numbers, you can put a
range of numbers inside the brackets . To do this, use the following
form:

$argv[n-m]

where n is the low end of the range and m is the high end of the
range. You do not have to know how many elements are present; if
m exceeds the number of elements in argv, the shell returns an empty
vector and no error results if n is within the actual range of elements
present. You can also give a subrange of the form "n-". If there are
less than n elements in the given variable, no words are substi tu ted .
This form will not produce any errors, even i f 11 is not within the
range of actual elements present.

In addition, the following two commands can be used inter
changeably where n is an integer which represents the n th element of
argv:

$n
$argv[11]

One minor difference between "$n" and "$argv[n]" should be noted
here. The form "$argv[n]" yields an error if 11 is not in the range
1-$#argv, while "$n" never yields an out-of-range subscript error.
This difference is necessary for compatibil i ty with the way previous
shells handle parameters .

Another important point is that i t is never an error to give a
subrange of the form "n-"; if there are less than "n" components of
the given variable, no words are substituted. A range of the form,
m-n, also returns an empty vector without giving an error when m
exceeds the number of elements of the given variable. An empty vec
tor without an error returns only if the subscript n is in range.

C-SHELL TUTORIAL 8-1 9

Introduction

9 . Determint> the last elemt>n t o f the variable argv by typing

$argv[$#argv]

The system displays

c

This is a convenient expansion because you do not need to know how
many elements are in the argv variable to determine the value of the
last element. You can let the shell determine the number of elements,
then you can tell the shell to use that number in another notation, as
this example illustrates. In this example, the shell processes the con
tents of the brackets first, determining that there are three elements in
the argv variable.

Then, the shell substitutes a "3" for the contents of the brackets.
At this point, the shell finishes processing the notation as if you had
typed the following command line:

$argv[3)

The system displays the current value of the third argv element:

c

The following two commands can also be used interchangeably; the first
form is a shorthand version of the second:

$*
$argv

The following notation expands to the process number of the current C
shel l :

$$

Since this process number is unique in the system, you can use it in the gen
eration of unique temporary file names.

Using Expressions

To construct useful C-shell scripts, the C-shell evaluates expressions that
are based on the values of variables. In fact, all the arithmetic operations of
the C language are available in the C-shell with the same precedence that
they have in C. In particular, the "= =" and " !=" operators compare strings,

8-20 USER'S GUIDE

Introduction

and the "&&" and "I I" operators implement the logical AND and OR opera
tions. The "=-" and "r" special operators are similar to "= =" and " !="
except that the right-hand string can have pattern-matching characters (* , ?, or
(and]). These operators test whether the string on the left matches the pat
tern on the right.

For the ful l l ist of expression componen ts, see fest(J) i n the Usa's jSystt•m
A dmi1 1 ist rator 's Reference Manual.

Using Control Structures

A Cllll f rol struct u re is a set of steps tha t syste m a tica l l y a n a l yzl'S s i m i l <tr
" pi l•n•s" o f data. C-shl'l l scri pts often con tain con t rol struct url's, s i m·p scr i p t s
a n· writtl'l1 t o perform idt•n tica l opera t ions n•pl'a tl•d l y o n la rgl' sl' ls o f d a t a .
The C-shell recognizes several command structures, including the fo l l o w i n g
structures:

or

foreach variable expression
end

if (expression) then
command
endif

This structure can also be written in the following two forms:
if (expression) (command)

if (expression) \
command

The second form requires that the final backslash (\) immediately pre
cedes the end-of-line. The command must not involve the following and
must not be another control command :

I & ;

C-SHELL TUTORIAL 8-21

Introduction

More general if statements also admit a sequence of else-if pairs followed
by a single else and an endif , as shown in the following example:

if (rxprrssion) then
commands

else if (expression) then
commands

else
commands

endif

The other control construct is a statement with the following form:

if (expression) then
command

endif

The placement of the keywords in this statement is inflexible due to the
current implementation of the C-shell. The following two formats are not
acceptable to the C-shell :

and

if (expression) # Won't work!
then

command

endif

if (expression) then command endif # Won't work

The C-shell does have another form of the if statement:

if (expression) command

This statement can also be written as follows:

if (expression) \
command

8-22 USER'S GUIDE

Introduction

The C-shell also has the control structures, while and switch, w h ich a n· si m i
lar to those control structures of C . These take the following forms:

and

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:

endsw

commands
breaksw

For more information about control structures, see csh(l) in the
User'sjSystem Administrator's Reference Manual . C programmers should note
that breaksw exits from a switch, whereas break exits a while or foreach
loop. The two commands are often confused.

Finally, the C-shell recognizes a goto statement with labels that resemble
C labels, as shown in the following example:

loop:
commands
goto loop

C-SHELL TUTORIAL 8-23

Introduction

The following sample C-shell script uses the expression feature of the C-shell ,
as well as some of its control structures:

Copyc copies those C programs in the specified list
to the directory -;backup if they differ from the files
already in -/backup

set noglob
foreach i ($argv)

end

if ($i r *.c) continue # not a .c file so do nothing

if (! -r -jbackup j$i:t) then

endif

echo $i:t not in backup ... not cp\'ed
continue

cmp -s $i -/backup j$i:t # to set $status

if ($status I= 0) then
echo new backup of $i
cp $i -jbackup j$i:t

endif

This script uses the foreach command, which iteratively executes the group of
commands between the foreach and end statements for each valid value of
the variable i. If you want to look more closely at what happens during exe
cution of a foreach loop, you can use the debug command break to stop exe
cution at any point. To resume execution, use the debug command continue.
The value of the iteration variable (i in this case) will stay at whatever it was
when the last foreach loop was completed.

In this sample script, the noglob variable is set to prevent file name
expansion of the members of argv. Set noglob if the arguments to a C-shell
script are file names that have already been expanded or if the arguments con
tain metacharacters for file name expansion.

8·24 USER'S GUIDE

Introduction

Also note that the C-shell will not execute C-shell scripts that do not
begin with the number sign character {#). In other words, you cannot execute
C-shell scripts that do not begin with comments.

Another important feature in C-shell scripts is the colon (:) modifier. You
can use the :r modifier to extract the root of a file name, or you can use :e to
extract the extension . Suppose the i variable has th£> value "jm n tj foo.bar" .
Type the follow i ng com mand l ine:

echo $i $i:r

The system displays

/Imlt/foo. bar /IIUlt/foo

This example shows how the :r modifier strips off the trailing " .bar" . Other
modifiers take off the last component of a path name leaving the :h head or
all but the last component of a path name leaving the tail, :t. These modifiers
are fully described in csh(l) in the User'sjSystem Administrator's Reference
Manual. You can also use the command substitution feature to modify strings.
Since each usage of this feature involves the creation of a new process, it is
more time consuming than the colon (:) modification feature. Also, note that
the current implementation of the C-shell limits the number of colon modifiers
on a $ substitution to 1 . Therefore, if you type a command of the form

% echo $i $i:h:t

your display will be similar to the following:

/a/b/c /a/b: t

Finally, note that the number sign characl('f (#) lexica l ly i n t rod u ces a C
shell comment i n C-shell scripts (but not from the term in a l) . A l l subsequent
characters on the input line after a # are discarded by the C-shell. You can
put this # character in single quotation marks, using the acute accent symbol
(') or backslash (\) to place it in an argument word.

Supplying Input to Commands

Commands that are run from C-shell scripts receive, by default, the stan
dard input of the C-shell that is running the script. The standard input lets
C-shell scripts fully participate in pipelines but requires extra notation for
commands that are to take inline data.

C-SHELL TUTORIAL 8-25

Introduction

Therefore, you need a metacharacter notation for supplying inline data to
commands in C-shell scripts. For example, consider the following script,
which uses the editor to delete leading blanks from the lines in each specified
argument file:

deblank -- remove leading blanks
foreach i ($argv)
ed - $i < < ' EOF'
1,$s([)*I I
w
q
I EOF'
end

The fol lowing notation means that the standard input for the ed command
is to come from the text in the C-shell script file up to the next line consisting
of exactly EOF:

<< ' EOF'

Because the EOF is enclosed in single quotation marks, the C-shell will not
perform variable substitution on the intervening lines. In this case, since the
" 1 ,$" form was used in the editor script, you need to ensure that this dollar
sign is not a variable substitution. To prevent the C-shell from performing
variable substitution on the dollar sign ($), type a backslash (\) before the
dollar sign, as shown in the following example:

1,\Ss([1* I I

By enclosing the EOF terminator in single quotation marks, you can also
prevent the $ from undergoing variable substitution.

Another quotation feature is the double quotation mark ("), which lets
only some expansion features occur on the quoted string. This feature also
makes this string into a single word as the single quotation mark (') does. For
more information about using quotation marks with the C-shell, see csh(l) in
the User'sjSystem Administrator's Reference Manual.

8-26 USER'S GUIDE

Introduction

Catching Interrupts

If your C-shell script creates temporary files, you may want to catch
interruptions of the C-shell script so that you can clean up these files. You
can start this process by issuing a command line of the following form, where
label is a label in your program:

onintr label

If the C-shell receives an interrupt, i t performs a "goto label" that lets you
remove the temporary files. The C-shell then executes an exit command to
exi t from the C-shell script. If you wish to exit with nonzero status, you can
typt' the fol lowing command to exit with status 1 :

exit (1)

Starting a Loop at a Terminal

You can also use the foreach control structure at the terminal to perform a
number of similar commands. For instance, if there are three shells in use on
a particular system, jbinjsh, jbinjnsh, and jbinjcsh, you can count the
number of persons using each shell by typing the following commands:

grep -c csh$ jetcjpasswd
grep -c nsh$ jetcjpasswd
grep -c -v sh$ jetcjpasswd

S i net' these commands a re similar, you ca n use the foreach com m a n d to s i m

pl i fy them, as shown in the fol lowing example:

$ foreach i ('sh$' 'csh$' '-v sh$')
7
grep -c $i jetcjpasswd
7
end

Note that the C-shell prompts for input with a question mark (?) when read
ing the body of the loop. This prompting occurs only when you enter the
foreach command interactively .

C-SHELL TUTORIAL 8-27

Introduction

You can also perform loops with variables containing lists of file names or
other words. To understand the basic looping concepts, try the following
steps. Suppose there are two files in your current directory called csh.n and
csh.rm:

1 . Set the value of variable a to the list of all the file names in the
current directory by typing

set a=(' Is')

2 . Display the current value of variable a by typing

echo $a

The system displays

csh.n csh. nn

3 . List all the file names in the current directory by typing

Is

The system displays

csh.n

csh. nn

4 . Determine the number of file names in the current directory by typing

echo $#a

The system displays

2

The C-shell converts the output of a command within grave accent (') marks
to a list of words, as shown in the above terminal session. You can also place
the quoted string within double quotation marks (11 11) to take each
(nonempty) line as a component of the variable. This prevents the lines from
being split into words at spaces and tabs. An :x modifier exists that you can
use later to expand each component of the original variable into another vari
able by splitting it into separate words at embedded spaces and tabs.

8-28 USER'S GUIDE

Introduction

Using Substitution to Expand Strings

In the C-shell, you can use substitution techniques to expand groups of
strings, such as groups of file names, that have common parts. One form of
fi le name expansion uses the bracket characters, { and } . These characters
specify that the enclosed strings, separated by commas (,), will be consecu
tively substituted into the containing characters, with the results expanded
from left to right. Therefore, a command line of the form

A { strl,str2, ... strn } 8

wil l expand to the following:

Astrl 8 Astr28 ...
Astrn8

By using brackets, you cause this expansion to occur before the other file
name expansions, and i t may be applied recursively. The results of each
expanded string are sorted separately, preserving left-to-right order. The
resulting file names are not required if no other expansion features are used.
This means you can use this feature to generate arguments that are not file
names but which have common parts.

For example, to create the subdirectories hdrs, retrofit, and csh in your
home directory, type the following command line:

mkdir -1 { hdrs,retrofit,csh}

This expansion feature is useful when the common prefix is long, as shown in
the following example:

chown root 1usr I demo I { filel,file2}

Substituting Commands

Before the shel l expands fi le names, it replaces any command enclosed in
grave accent marks (' ') with the output from that command. For example,
you can use the fol lowing command l ine to save the current directory in the
pwd variable:

set pwd='pwd'

C-SHELL TUTORIAL 8-29

Introduction

You can type the following command to run the vi editor, supplying as argu
ments those files that end in .c and have the "TRACE" string in them.

vi 'grep -1 TRACE *.c·

Command expansion also occurs to input that is redirected with << and
within double quotation marks (" "). For more information about the hierar
chy of C-shell expansions and substitutions, see csh(l) in the User'sjSystem
Admi11istrator's Reference Manual.

Special Characters

The following table lists the special characters used by .csh and the UNIX
System. A number of these characters also have special meaning in expres
sions. For a more complete list, see csh(l) in the User'sjSystem Administrator's
Re{ere11ce Manual .

Syntactic Metacharacters

separates commands to be executed sequentially

separates commands in a pipeline

() brackets expressions and variable values

& follows commands to be executed without waiting for completion

File Name Metacharacters

1 separates components of a file's path name

separates root parts of a file name from extensions

?

*

[]

expansion character that matches any single character

expansion character that matches any sequence of characters

expansion sequence that matches any single character from a set of char
acters

used at the beginning of a file name to indicate home directories

{ } specifies groups of arguments with common parts

8-30 USER'S GUIDE

Quotation Metacharacters
\ prevents meta-meaning of the following single character

prevents meta-meaning of a group of characters

same as ' but allows variable and command expansion

Input/Output Metacharacters
< indicates redirected input

> indica tes redirected output

Expansion/Substitution Metacharacters
$ indicates variable substitution

indicates history substi tution

precedes substitution modifiers

used in special forms of history substitu tion

indicates command substi tution

Other Metacharacters
begins scratch file names; indicates C-shell comments

prefixes option (flag) arguments to commands

Introduction

C-SHELL TUTORIAL 8-3 1

g Communication Tutorial

Introduction 9-1

Exchanging Messages 9-2

mail 9-3

Sending Messages 9-3

• Undeli verable Mail 9-4

• Sending Mail to One Person 9-5

• Sending Mail to Several People Sim ultaneously 9-7

Sending Mail to Remote Systems: the uname and
uuname Commands 9-8

Managing Incoming Mail 9-1 2

mailx 9-1 6

mailx Overview 9-1 7

Command Line Options 9-1 9

How to Send Messages: the Tilde
Escapes 9-20

Editing the Message 9-22

COMMUNICATION TUTORIAL

Communication Tutorial

Incorporating Existing Text into Your Message 9-24

• Reading a File into a Message 9-25

• Incorporating a Message from Your Mailbox into
a Reply 9-26

Changing Parts of the Message Header 9-27

Adding Your Signature 9-28

Keeping a Record of Messages You Send 9-28

Exiting from mailx 9-31

Summary 9-31

How to Manage Incoming Mail 9-32
The msglist Argument 9-32
Commands for Reading and Deleting Mail 9-33

• Reading Mail 9-33
• Scanning Your Mailbox 9-35

• Switching to Other Mail Files 9-36

• Deleting Mail 9-37
Commands for Saving Mail 9-38

Commands for Replying to Mail 9-39

Commands for Getting Out of mailx 9-40

mailx Command Summary 9-41

The .mailrc File 9-42

Transferring Files 9-47

Sending Small Files: the mail Command 9-47

Sending Large Files 9-48

Getting Ready: Do You Have Permission? 9-49

The uucp Command 9-51

Command Line Syntax 9-51

Sample Usage of Options with the uucp Command 9-53

How the uucp Command Works 9-55

The uuto Command 9-58

Sending a File: the m Option and uustat
Command 9-58

ii USER'S GUIDE

Communication Tutorial

Receiving Files Sent with uuto: the uupick
Command 9-63

Networking 9-67
Connecting to a Remote Terminal : the ct

Command 9-67

• Command Line Format 9-68

• Sample Command Usage 9-68

Calling Another UNIX System: the cu Command 9-70

• Command Line Format

• Sample Command Usage
Executing Commands on a Remote System : the

uux Command

9-71

9-73

9-75

• Command Line Format 9-76

• Sam ph• Command Usagl' 9-76

COMMUNICATION TUTORIAL iii

Introduction

The UNIX System offers a choice of commands that enables you to com
municate with other UNIX System users. Specifically, the commands allow
you to send and receive messages from other users (on either your system or
another UNIX System), exchange files, and form networks with other UNIX
Systems. Through networking, a user on one system can exchange messages
and files between computers, and execute commands on remote computers.

To help you take advantage of these capabilities, this chapter will teach
you how to use the following commands:

For exchanging messages:

For transferring files:

For networking:

mail, mailx, uname, and uuname

uucp, uuto, uupick, and uustat

ct, cu, and uux

COMMUNICATION TUTORIAL 9-1

Exchanging Messages

To send messages, you can use either the mail or mailx command. These
commands deliver your message to a file belonging to the recipient. When
the recipient logs in (or while already logged in), he or she receives a message
that says }'011 have mail. The recipient can use either the mail or mailx com
mand to read your message and reply at his or her leisure.

The main difference between mail and mailx is that only mailx offers the
following features:

• a choice of text editors (ed or vi) for handling incoming and outgoing
messages

• a list of waiting messages that allows the user to decide which mes
sages to handle and in what order

• several options for saving files

• commands for replying to messages and sending copies (of both
incoming and outgoing messages) to other users

You can also use mail or mailx to send short files containing memos,
reports, and so on. However, if you want to send someone a file that is over
a page long, use one of the commands designed for transferring files: uuto or
uucp. (See 11 Sending Large Files 11 later in this chapter for descriptions of
these commands.)

9-2 USER'S GUIDE

mail
This section presents the mail command . I t discusses the basics of send

ing mail to one or more people simultaneously, whether they are working on
the local system (the same system as you) or on a remote system. It also cov
ers receiving and handling incoming mail .

Sending Messages

The basic command line format for sending mail is

mail login<CR>

where login is the recipient's login name on a UNIX System. This login name
can be either of the following:

• a login name if the recipient is on your system (for example, bob)

• a system name and login name if the recipient is on another U N I X
System that can communicate with yours (for example, sys21bob)

For the moment, assume that the recipient is on the local system. (We will
deal with sending mail to users on remote systems later.) Type the mail com
mand at the system prompt, press the <RETURN> key, and start typing the
text of your message on the next line. There is no limit to the length of your
message. When you have finished typing it, send the message by typing a
period (.) or a < • d> (control-d) at the beginning of a new line.

The following example shows how this procedure will appear on your
screen:

COMMUNICATION TUTORIAL 9-3

mail

$ mail phyllis<CR>
My meeting with Smith's<CR>
group tomorrow has been moved<CR>
up to 3:00 so I won't be able to<CR>
see you then. Could we meet<CR>
in the morning instead?<CR>
.<CR>
$

The prompt on the last line means that your message has been queued
(placed in a waiting line of messages) and will be sent.

Undeliverable Mail

If you make an error when typing the recipient's login, the mail command
will not be able to deliver your mail. Instead, it will print two messages tel
ling you that it has failed and that it is returning your mail . Then it will
return your mail in a message that includes the system name and login name
of both the sender and intended recipient, and an error message stating the
reason for the failure.

For example, say you (owner of the login kol) want to send a message to
a user with the login chris on a system called marmaduk. Your message says
The meeting has been changed to 2 : 00 . Failing to notice that you have
incorrectly typed the login as cris, you try to send your message:

9·4 USER'S GUIDE

$ mail cris<CR>
The meeting has been changed to 2:00 .
. <CR>
nail : Can ' t sen to =is

nail : Return to kol

you have nail in /usr/maillkol

$

mail

The mail that is waiting for you in fusrjmail will be useful if you do not
know why the mail command has failed or if you want to retrieve your mail
so that you can resend it without typing it in again. It contains the fol lowing:

$ mail<CR>
Fran kol Sat Jan 18 17 : 33 EST 1986
>Fran kol Sat Jan 18 17 : 33 EST 1986 forwarded by kol

***** UNDELIVERABLE MAIL sent to =is , being returned by mannaduk !kol *****
nail : ERRCR # 8 ' Invalid recipient ' encountered an system mannaduk

The meeting has been changed to 2 : 00 .

?

To learn how to display and handle this message, see 11 Managing Incoming
Mail 11 later in this chapter.

Sending Mail to One Person

The following screen shows a typical message:

COMMUNICATION TUTORIAL 9·5

mail

$ mail tommy<CR>
Tom,<CR>
There's a meeting of the review committee<CR>
at 3:00 this afternoon. D.F. wants your<CR>
comments and an idea of how long you think<CR>
the project will take to complete.<CR>
B.K. <CR>
.<CR>
$

When Tom logs in at his terminal (or while he is already logged in), he
receives a message that tells him he has mail waiting:

$ you have mail

To find out how he can read his mail, see the section 11 Managing Incoming
Mail 11 in this chapter.

You can practice using the mail command by sending mail to yourself.
Type in the mail command and your login 10, and then write a short message
to yourself. When you type the final period or <Ad>, the mail will be sent to
a file named after your login ID in the jusrjmail directory, and you will
receive a notice that you have mail .

Sending mail to yourself can also serve as a handy reminder system. For
example, suppose you (login ID bob) want to call someone the next morning.
Send yourself a reminder in a mail message:

9·6 USER'S GUIDE

$ mail bob<CR>
Call Accounting and find out<CR>
why they haven't returned my 1985 figures!<CR>
.<CR>

$

mail

When you log in the next day, a notice will appear on your screen informing
you that you have mail waiting to be read.

Sending Mail to Several People Simultaneously

You can send a message to a number of people by including their login
names on the mail command line. For example:

$ mail tommy jane wombat dave<CR>
Diamond cutters,<CR>
The game is on for tonight at diamond three.<CR>
Don't forget your gloves!<CR>
Your Manager<CR>
.<CR>
$

Figure 9- 1 summarizes the syntax and capabilities of the mail command.

COMMUNICATION TUTORIAL 9-7

mail

Command Recap

mail - sends a message to another user's login

command options arguments

mail none [system_name�login

Description: Typing mail followed by one or more login
names sends the message typed on the lines
following the command line to the specified
login(s).

Remarks: Typing a period or a < • d> (followed by the
<RETURN> key) at the beginning of a new
line sends the message.

Figure 9-1 : Summary of Sending Messages with the mail Command

Sending Mail to Remote Systems: the uname
and uuname Commands

Until now, we have assumed that you are sending messages to users on
the local UNIX System. However, your company may have three separate
computer systems, each in a different part of a building, or you may have
offices in several locations, each with its own system.

You can send mail to users on other systems simply by adding the name
of the recipient's system before the login ID on the command line:

mail sys21bob<CR>

Notice that the system name and the recipient's login ID are separated by an
exclamation point.

9·8 USER'S GUIDE

mail

Before you can run this command, however, you need to know the fol -
lowing three things:

• whether or not your system and the remote system communicate

• the name of the remote system

• the recipient's login name

The uname and uuname commands allow you to find this information.

If you can, get the name of the remote system and the recipient's login
name from the recipient. If the recipient does not know the system name,
have him or her issue the following command on the remote system:

uname -n<CR>

The command will respond with the name of the system. For example:

$ uname -n<CR>
dumbo
$

Once you know the remote system name, the uuname command can help
you verify that your system can communicate with the remote system. At the
prompt, type

uuname<CR>

This generates a list of remote systems with which your system can communi
cate. If the recipient's system is on that list, you can send messages to it by
mail

You can simplify this step by using the grep command to search through
the uuname output. At the prompt, type

uuname I grep system<CR>

(Here system is the recipient's system name.) If grep finds the specified sys
tem name, it prints it on the screen. For example:

$ uuname I grep dumbo<CR>
dumbo
$

COMMUNICATION TUTORIAL 9-9

mail

This means that dumbo can communicate with your system. If dumbo does
not communicate with your system, uuname returns a prompt:

$ uuname I grep dumbo<CR>
$

To summarize our discussion of uname and uuname, consider an exam
ple. Suppose you want to send a message to login sarah on the remote sys
tem dumbo. Verify that dumbo can communicate with your system and send
your message. The following screen shows both steps:

$ uuname I grep dumbo<CR>
duntlo

$ mail dumbolsarah<CR>
Sarah,<CR>
The final counts for the writing seminar<CR>
are as follows:<CR>
<CR>
Our department - 18<CR>
Your department - 20<CR>
<CR>
Tom<CR>
.<CR>
$

Figures 9-2 and 9-3 summarize the syntax and capabilities of the uname
and uuname commands, respectively.

8-1 0 USER'S GUIDE

mail

Command Recap

uname - displays the system naml'

command options arKuments

uname -n and others* none

Description: uname -n displays the name of the system on
which your login resides.

Figure 9-2: Summary of the uname Command

* See the uname(l) manual page in the User'sjSystem Administrator's
Reference Manual for all available options and an explanation of their
capabilities.

Command Recap

uuname -- displ ays a l i st of networked systems

command options arguments

uuname none none

Description: uuname displays a list of remote systems that
can communicate with your system.

Figure 9-3: Summary of the uuname Command

COMMUNICATION TUTORIAL 9-1 1

mail

Managing Incoming Mail

As stated earlier, the mail command also allows you to display messages
sent to you by other users on your screen so you can read them. If you are
logged in when someone sends you mail, the following message is printed on
your screen:

you have mail

This means that one or more messages are being held for you in a ffie called
jusrjmailjyour_login, usually referred to as your mailbox. To display these
messages on your screen, type the mail command without any arguments:

mail<CR>

The messages will be displayed one at a time, beginning with the one
most recently received. A typical mail message display looks like this:

$ mail
Fran tcmi!Y Wed May 21 15 : 33 CST 1986
Bob,
Looks like the meeting has been cancelled.
Do you still want the material far the teclmical review?

Tan

?

The first line, called the header, provides information about the message: the
login name of the sender and the date and time the message was sent. The
lines after the header (up to the line containing the ?) comprise the text of the
message.

If a long message is being displayed on your terminal screen, you may not
be able to read it all at once. You can interrupt the printing by typing < • s>
(control-s). This will freeze the screen, giving you a chance to read. When
you are ready to continue, type < • q> and the printing will resume.

9-1 2 USER'S GUIDE

mail

After displaying each message, the mail command prints a ? prom p t a n d
waits for a response. You have many options: for example, you can leave the
current message in your mailbox while you read the next message, you can
delete the current message, or you can save the current message for future
reference. For a list of mail's available options, type a ? in response to mail's
? prompt.

To display the next message without deleting the current message, press
the <RETURN> key after the question mark:

?<CR>

The current message remains in your mailbox, and the next message is
displayed . I f you have read a l l the messages in your mailbox, a prompt
a ppears .

To delett• a nwssagt•, t ypt• a d aftl•r t lw qut•s t ion mark :

? d<CR>

The message is deleted from your mailbox. I f there is another message wait
ing, it is then displayed. If not, a prompt appears as a signal that you have
finished reading your messages.

To save a message for later reference, type an s after the question mark:

? s<CR>

This saves the message, by default, in a file called mbox in your home direc
tory. To save the message in another file, type the name of that file after the
s command.

For example, to save a message in a file called mailsave (in your current
directory), enter the response shown after the question mark:

If mailsave is an existing file, the mail command appends the message to i t .
I f there i s no file by that name, the mail command creates one and stores
your message in it. You can later verify the existence of the new file by using
the Is command, which lists the contents of your current directory.

COMMUNICATION TUTORIAL 9-1 3

mail

You can also save the message in a file in a different directory by specify
ing a path name. For example:

? s projectljmemo<CR>

This is a relative path name that identifies a file called memo (where your
message will be saved) in a subdirectory called projectl of your current direc
tory. You can use either relative or full path names when saving mail mes
sages. (For instructions on using path names, see Chapter 3.)

To quit reading messages, enter the response shown after the question
mark:

? q<CR>

Any messages that you have not read are kept in your mailbox until the next
time you use the mail command.

To stop the printing of a message entirely, press the <BREAK> key. The
mail command will stop the display, print a ? prompt, and wait for a response
from you.

Figure 9-4 summarizes the syntax and capabilities of the mail command
for reading messages.

8-1 4 USER'S GUIDE

Command Recap

mail - reads messages sent to your login

command options arguments

mail available* none

Description: When issued without options, the mail com-
mand displays any messages waiting in your
mailbox (the system file fusrjmailfyour_login).

Remarks: A question mark (?) at the end of a message
means that a response is expected . A full l i st of
possible responses is given in the User'sjSystem
Administrator's Reference Manual.

Figure 9-4: Summary of Reading Messages with the mail Command

• See the mai/(1) manual page in the User'sjSystem Administrator's
Reference Manual for all available options and an explanation of their
capabilities.

mail

COMMUNICATION TUTORIAL 9-1 5

mailx
This section introduces the mailx facility. It explains how to set up your

mailx environment, send messages with the mailx command, and handle
messages that have been sent to you. The material is presented in four parts:

• mailx Overview

• How to Send Messages

• How to Manage Incoming Mail

• The .mailrc File

9-1 6 USER'S GUtDE

mailx Overview

The mailx command is an enhanced version of the mail command. There
are many options to mailx that are not available in mail for sending and
reading mail . For example, you can define an alias for a single login or for a
group. This allows you to send mail to an individual using a name or word
other than their login ID and to send mail to a whole group of people using a
single name or word. When you use mailx to read incoming mail , you can
save it in various fi les, edit it, forward it to someone else, respond to the per
son who originated the message, and so forth. By using mailx Pnv ironnw n t
variables, you can develop a n environment to suit your i nd iv id u .1 l t ash•s.

I f you type the mailx command with one or more logins as a rgu m�;•n ts,
mailx decides you are sending mail to the named users, prompts you for a
summary of the subject, and then waits for you to type in your message or
issue a command. The section " How to Send Messages " describes features
that are available to you for editing, incorporating other files, adding names to
copy lists, and more.

If you enter the mailx command with no arguments, mailx checks incom
ing mail for you in a file named jusrjmailjyour_login. If there is mail for
you in that file, you are shown a list of the items and given the opportunity to
read, store, remove or transfer each one to another file. The section entitled
1 1 How to Manage Incoming Mail " provides some examples and describes the
options available.

I f you choose to customize mailx, you should create a start-up file in your
home directory called .mailrc. The section 11 The .mailrc File 11 describes vari
ables you can include in your start-up file.

mailx has two modes of functioning: input mode and command mode.
You must be in input mode to create and send messages . Com mand mode is
used to read incoming mail. You can use any of the following methods to
control the way mailx works for you:

• Entering options on the command line. (See the mailx(1 } man ua l page
in the User'sfSystem Administrator's Refereuce Mauual .)

• Issuing commands when you are in input mode, for example, creating
a message to send. These commands are always preceded by a - (tilde)
and are referred to as tilde escapes. (See the mailx(l) manual page in
the User'sjSystem Administrator's Reference Manual .)

COMMUNICATION TUTORIAL 9-1 7

mailx

• Issuing commands when you are in command mode, for example,
reading incoming mail .

• Storing commands and environment variables in a start-up file in your
home directory called $HOMEj.mailrc.

Tilde escapes are discussed in 11 How to Send Messages, 11 command mode
commands in 11 How to Manage Incoming Mail, 11 and the .mailrc file in 11 The
.mailrc File. 11

9·1 8 USER'S GUIDE

Command Line Options

I n t h is st•ction, wt• wil l look a t com mnnd l i nl' options .

The syn tax for thl• mailx com mand is

mailx [options] [name . . .]

The options are flags that control the action of the command, and name . . .
represents the intended recipients.

Anything on the command line other than an option preceded by a
hyphen is read by mailx as a name; that is, the login or alias of a person to
whom you are sending a message.

Two of the command line options deserve special mention :

• -f [filename]: Allows you to read messages from filename instead o f
your mailbox.

Because mailx lets you store messages in any file you name, you need
the -f option to review these stored options. The default storage file is
$HOMEjmbox, so the command

mailx -f

is used to review messages stored there.

• -n: Do not initialize from the system default mailx.rc file .

I f you have your own .mailrc file (see " The .mailrc Fi le "), mailx will
not look through the system defa u l t fi le for speci fica tions when you usl'
the -n option but w i l l go d i rectly to your .maitre fi le. Th is n.•su l ts i n
faster initialization, substantial ly faster when the system i s busy.

COMMUNICATION TUTORIAL 9-1 9

How to Send Messages: the Tilde
Escapes

To send a message to another UNIX System user, enter the following
command:

$ mailx daves<CR>

The specified login name belongs to the person who is to receive the message.
The system puts you into input mode and prompts you for the subject of the
message. (You may have to wait a few seconds for the SUbject : prompt if
the system is very busy.) This is the simplest way to use the mailx command;
it differs very little from the way you use the mail command.

The fol lowing examples show how you can edit messages you are send
ing, incorporate existing text into your messages, change the header informa
tion, and perform other tasks that take advantage of the mailx command's
capabilities. Each example is followed by an explanation of the key points
illustrated in the example .

$ mailx daves<CR>
Subject :

Whether to include a subject or not is optional. If you elect not to, press
the < R ET U R N > key. The cursor moves to the next line, and the program
waits for you to enter the text of the message:

9-20 USER'S GUIDE

How to Send Messages: the Tilde Escapes

$ mailx daves<CR>
Subject : meeting<CR>
We're having a meeting for novice mailx users in<CR>
the auditorium at 9:00 tomorrow.<CR>
Would you be willing to give a demonstration?<CR>
Bob<CR>
-. <CR>
cc : <CR>
$

There are two important things to notice about the above example:

• You break up the lines of your message by pressing the <RETURN>
key at the end of each line. This makes it easier for the recipient to
read the message and prevents you from overflowing the line buffer.

• You end the text and send the message by entering a tilde and a
period together C.) at the beginning of a line. The system responds
with an end-of-text notice (EDT) and a prompt.

There are several commands available to you when you are in input mode
(as we were in the example) . Each of them consists of a tilde C), followed by
an alphabetic character, entered at the beginning of a line. Together they are
known as tilde escapes. (See the mailx(l) manual page in the User'sjSystem
Administrator's Reference Manual .) Most of them are used in the examples in
this section.

You can include the subject of your message on the command line by
using the -s option. For example, the command line

$ mailx -s " meeting " daves<CR>

is equivalent to

$ mailx daves<CR>
Subject : meeting<CR>

COMMUNICATION TUTORIAL 9-21

How to Send Messages: the Tilde Escapes

The subject line will look the same to the recipient of the message. Notice
that when putting the subject on the command line, you must enclose a sub
ject that has more than one word in quotation marks.

Editing the Message

When you are in the input mode of mailx, you can invoke an editor by
entering the ·e (tilde e) escape at the beginning of a line. The following
example shows how to use a tilde:

$ mallx daves<CR>
Subject: Testing my tilde<CR>
When entering the text of a message<CR>
that has somehow goHen grabled<CR>
you may invoke your favorite editor<CR>
by means of a -e (tilde e).

Notice that you have misspelled a word in your message. To correct the
error, use ·e to invoke the editor, in this case, the default editor, ed:

8-22 USER'S GUIDE

How to Send Messages: the Tilde Escapes

-e<CR>
12
/grabled/p
that has SCillellcM gotten qrabled
s/gra/gar/p
that has SCillellcM gotten garbled
w
132

q
(continue)
What more can I tell you?

In this example the ed editor was used . Your .profile or a .mailrc file
controls which editor will be invoked when you issue a -e escape command.
The -v (tilde v) escape invokes an alternate editor (most commonly, vi) .

When you exited from ed (by typing q), the mailx command returned you
to input mode and prompted you to continue your message. At this point,
you rnay want to preview your corrected message by entering a -p (tilde p)
escape. The -p escape prints out the entire message up to the point where the
-p was entered. Thus, at any time during text entry, you can review the
current contents of your message:

COMMUNICATION TUTORIAL 8-23

How to Send Messages: the Tilde Escapes

Message contains :
To: daves
SUbject: Test:ID] IllY tilde

When enter:ID] the text of a message

that has sanehow gotten garbled

you may invoke your favorite editor
by means of a tilde e (-e) .

What uore can I tell you?

(continue)

ror
$

I ncorporating Existing Text into Your Message

mailx provides four ways to incorporate material from another source into
the message you are creating. You can

• read a file into your message

• read a message you have received into a reply

• incorporate the value of a named environment variable into a message

• execute a shell command and incorporate the output of the command
into a message

The following examples show the first two of these functions, which are
the most commonly used of these four functions. For information about the
other two, see the mailx(l) manual page of the User'sjSystem Administrator's
Reference Manual.

9·24 USER'S GUIDE

How to Send Messages: the Tilde Escapes

Reading a File into a Message

The following example i l lustrates how to read a file into a message:

$ mailx daves<CR>
SUbject : Work Schedule<CR>
As you can see from the following<CR>
·r lettersjfi lel
"letters/file 1 " 10/725

we have our work cut out for us.
J>lease give me your thoughts on this.
- Bob

ror
$

As the example shows, the -r (tilde r) escape is followed by the name of
the file you want to include. The system displays the file name and the
number of lines and characters it contains. You are still in input mode and
can continue with the rest of the message . When the recipien t gets the mes
sage, the text of lettersjfilel is included . (You can, of course, use the -p
(tilde p) escape to preview the contents before sending your message.)

COMM UNICATION TUTORIAL 9-25

How to Send Messages: the Tilde Escapes

Incorporating a Message from Your Mailbox into a Reply

The following example illustrates how to incorporate a mail message into
a reply:

$ mailx<CR>
mailx version 2 . 14 2/9/85 Type ? for help.

"usr/mail/roberts" : 2 messages 1 new
>N 1 abc Tue May 1 08 : 09 8/155 Meeting Notice

2 hqtrs Man Apr 30 16 : 57 4/127 Schedule

? m jones<CR>
Subject : Hq Schedule<CR>
Here is a copy of the schedule from headquarters ... <CR>
•t 2<CR>
Interpolating : 2

(continue)
As you can see, the boss will be visiting our district on<CR>
the 14th and 15th.<CR>
- Robert

:ror
?

There are several important points illustrated in this example:

• The sequence begins in command mode, where you read and respond
to your incoming mail . Then you switch into input mode by issuing
the command m jones (meaning send a message to jones).

• The -f escape is used in input mode to call in one of the messages in
your mailbox and make it part of the outgoing message. The number 2
after the •f means message 2 is to be interpolated (read in).

• mailx tells you that message 2 is being interpolated and then tells you
to continue.

9·28 USER'S GUIDE

How to Send Messages: the Tilde Escapes

• When you fin ish creating and sending the message, you arc back i n
command mode, a s shown b y the ? prompt. You may now d o some
thing else in command mode or exit mailx by typing q.

An alternate command, the -m (tilde m) escape, works the way that -f
does except the read-in message is indented one tab stop. Both the -m and
-f commands work only i f you start out in command mode and then en ter a
command that puts you into input mode. Other commands that work this
way will be covered in the section 11 How to Manage Incoming Mail . 11

Changing Parts of the Message Header

The ht>ader of a mailx message has four components:

• subject

• recipient(s)

• carbon copy list

• blind carbon copy list (a list of intended recipients that is not shown
on the copies sent to other recipients)

When you enter the mailx command followed by a login or an alias, you
are put into input mode and prompted for the subject of your message. Once
you end the subject line by pressing the <RETURN> key, mailx expects you
to type the text of the message. I f, at any point in input mode, you want to
change or supplement some of the header information, there are four tilde
escapes that you can use: -h, -t, -c, and o.

-h Displays all the header fields: subject, recipient, carbon copy list,
and blind copy list. You can change a current value, add to it, or,
by pressing the <RETURN> key, accept it.

-t Lets you add names to the list of recipients. Names can be either
login names or aliases .

-c Lets you create or add to a carbon copy list for the message.
Enter either login names or aliases of those to whom a copy 'of the
message should be sent.

COMMUNICATION TUTORIAL 9-27

How to Send Messages: the Tilde Escapes

-b Lets you create or add to a blind carbon copy list for the message.

All tilde escapes must be in the first position on a line. For the *t, -c or
-b, any additional material on the line is taken to be input for the list in ques
tion. Any additional material on a line that begins with a -h is ignored . . ·

Adding Your Signature
If you want, you can establish two different signatures with the sign and

Sign environment variables. These can be invoked with the ·a (tilde a) or -A
(tilde A) escape, respectively. Assume you have set the value Supreme Com
mander to be called by the -A escape. Here's how it would work:

$ mailx -s orders all<CR>
Be ready to move out at 0400 hours.<CR>
-A<CR>
Supreme Cam!arXIer
-.<CR>
ror
$

Having both escapes Ca and -A) allows you to set up two forms for your
signature. However, because the sender's login automatically appears in the
message header when the message is read, no signature is required to identify
you.

Keeping a Record of Messages You Send

The mailx command offers several ways to keep copies of outgoing mes
sages . Two that you can use without setting any special environment vari
ables are the ·w (tilde w) escape and the -F option on the command line.

9-28 USER'S GUIDE

How to Send Messages: the Tilde Escapes

The -w followed by a file name causes the message to be written to the
named file:

$ mailx bdr<CR>
SUbject: Saving Copies<CR>
When you want to save a copy of<CR>
the text of a message, use the tilde w.<CR>
·w savemail
"savenail" 217 1

IDT
$

If you now display the contents of savemail, you will see this:

$ cat savemail<CR>
When you want to save a copy of
the text of a message , use the tilde w .
$

The drawback to this method, as you can see, is that none of the header infor
mation is saved.

COMMUNICATION TUTORIAL 9-29

How to Send Messages: the Tilde Escapes

Using the -F option on the command line preserves the header informa
tion. It works as follows:

$ mailx -F -s Savings bdr<CR>
This method appends this message to a
file in my current directory named bdr.

:ror
$

We can check the results by looking at the file bdr:

$ cat bdr<CR>
Fran : kol Fri May 2 1 1 : 14 : 45 1986

'lb: bdr
Subject: Savings

This method a:weOOs this message to a

file in my current directcn:y named bdr .

$

The -F option appends the text of the message to a file named after the
first recipient. If you have used an alias for the recipient(s), the alias is first
converted into the appropriate login(s), and the first login is used as the file
name. As noted above, if you have a file by that name in your current direc
tory, the text of the message is appended to it.

9·30 USER'S GUIDE

How to Send Messages: the Tilde Escapes

Exiting from mailx
Wh('n you havP fi nishPd compos ing your nwssn�(', you nm l l'i! Vl' mai l x

b y typing a n y o f t lw fol lowing lhr\'l' nmun.1 1 1ds:

Tilde period C.) is the standard way of leaving input mode. It
also sends the message. If you entered input mode from the com
mand mode of mailx, you now return to the command mode (as
shown by the ? prompt you receive after typing this command).
If you started out in input mode, you now return to the shell (as
shown by the shell prompt).

·q Tilde q Cq) simulates an interrupt. It lets you exit the input mode
of mailx. If you have entered text for a message, it wi l l be saved
in a file called dead.letter in your home directory.

"x Tilde X rx> simulates an interrupt. It lets you exit the input mode
of mailx without saving anything.

Summary

In the preceding paragraphs we have described and shown examples of
some of the tilde escape commands available when sending messages via the
mailx command. (See the mailx(l) manual page in the User'sjSystem
Administrator's Reference Manual.)

COMMUNICATION TUTORIAL 9-31

How to Manage Incoming Mail

mailx has over fifty commands which help you manage your incoming
mail. See the mailx(l) manual page in the User'sjSystem Administrator's Refer
ence Manual for an alphabetical list of all of them (and their synonyms). The
most commonly used commands and arguments are described in the following
subsections:

• the msglist argument

• commands for reading and deleting mail

• commands for saving mail

• commands for replying to mail

• commands for getting out of mailx

The msglist Argument

Many commands in mailx take a form of the msglist argument. This
argument provides the command with a list of messages on which to operate.
If a command expects a msglist argument and you do not provide one, the
command is performed on the current message. Any of the following formats
can be used for msglist:

n message number n

$
•

n-m

the first undeleted message

the last message

all messages

an inclusive range of message numbers

user all messages from user

jstring All messages with string in the subject line (case is ignored)

:c all messages of type c where c is

9·32 USER'S GUIDE

d - deleted messages
n - new messages
o - old messages
r - read messages
u - unread messages

How to Manage Incoming Mail

The context of the command determines whether this type of speci fication
makes sense.

Here are two examples (the ? is the command mode prompt) :

? d 1-3 (Delete messages 1 , 2 and 3)
? s bdr bdr (Sat'l' all mrssages from user bdr ill a

fill' named bdr.)

7

Additional examples may be found throughout the next three subsections.

Commands for Reading and Deleting Mail

When a message arrives in your mailbox, the following notice appears on
your screen:

you have mail

The notice appears when you log in · or when you return to the shell from
another procedure.

Reading Mail

To read your mail, enter the mailx command with or without arguments .
Execution of the command places you in the command mode of mailx. The
next thing that appears on your screen is a display that looks something like
this:

COMMUNICATION TUTORIAL 9-33

How to Manage Incoming Mail

mailx version 2 . 14 10/19/86 Type ? for help

"/Usrlinaillbdr" :

> N 1 rbt
N 2 admin
N 3 daves

?

3 messages 3 new
Thur Apr 30 14: 20
Thur Apr 30 1 5 : 56
Fri May 1 08 : 39

8/190 Review Session
5/84 New printer

64/1574 Reorganization

The first line identifies the version of mailx used on your system, displays
the date, and reminds you that help is available by typing a question mark (?) .
The second line shows the path name of the file used as input to the display
(the file name is normally the same as your login name) together with a count
of the total number of messages and their status. The rest of the display is
header information from the incoming messages. The messages are numbered
in sequence with the last one received at the bottom of the list. To the left of
the numbers there may be a status indicator: N for new and U for unread. A
greater than sign (>) points to the current message. Other fields in the header
line show the login of the originator of the message; the day, date and time it
was delivered; the number of lines and characters in the message; and the
message subject. The last field may be blank.

When the header information is displayed on your screen, you can print
messages either by pressing the <RETURN> key or entering a command fol
lowed by a msglist argument. If you enter a command with no msglist argu
ment, the command acts on the message pointed at by the > sign. Pressing
the <RETURN> key is the equivalent of a typing the p (for print) command
without a msglist argument; the message displayed is the one pointed at by
the > sign. To read some other message (or several others in succession),
enter a p (for print) or t (for type) followed by the message number(s). Here
are some examples:

9-34 USER'S GUIDE

? <CR> [Print the current message.]

? p 2<CR> [Print message number 2.

How to Manage Incoming Mail

? p daves<CR> [Print all messages from user daves.

The command t (for type) is a synonym of p (for print).

Scanning Your Mailbox

The mailx command lets you look through the messages in your mailbox
while you decide which ones need your immediate attention .

When you first enter the mailx command mode, the banner tells you how
many messages you have and displays the header line for twenty messages.
(I f you are dialed into the computer system, only the header lines for ten mes
sages are displayed.) I f the total number of messages exceeds one screenfu l ,
you can display the next screen by entering the z command. Typing z
causes a previous screen (if there is one) to be displayed. I f you want to see
the header information for a specific group of messages, enter the f (for from)
command followed by the msglist argument.

Here are examples of those commands:

? z [Scroll forward one screenful of header li11es.]

? z- [Scroll backward one screenful.]

? f daves [Display headers of all messages from user daves.

COMMUNICATION TUTORIAL 9-35

How to Manage Incoming Mail

Switching to Other Mail Files

When you enter mailx by issuing the command

$ mailx<CR>

you are looking at the file fusrfmailfyour_login.

mailx lets you switch to other mail files and use any of the mailx commands
on their contents. (You can even switch to a non-mail file, but if you try to
use mailx commands, you are told No applicable messages.) The switch to
another file is done with the fi or fold command (they are synonyms) fol
lowed by the filename. The following special characters work in place of the
filename argument:

% the current mailbox

%login the mailbox of the owner of login (if you have the required per
missions)

the previous file

& the current mbox

Here is an example of how this might look on your screen:

9-38 USER'S GUIDE

$ mailx<CR>

uailx version 2. 14 10/19/86 Type ? for help.

"usr/llail/daves" : 3 messages 2 new 3 unread

How to Manage Incoming Mail

u 1 jaf Sat May 9 07 : 55 7/1 37 test25

> N 2 todd Sat May 9 08 : 59 9/377 UNITS requirements

N 3 has Sat May 9 1 1 : 08 29/1214 access to hailey

? fi & (Enter this command to transfer to your mbox.

Held 3 messages in /usr/mail/daves

"/fs 1/daves/mbax" : 74 messages 10 unread

? q<CR>
$

Deleting Mail

To delete a message, enter a d followed by a msglist argument. If the
msglist argument is omitted, the current message is deleted. The messages are
not deleted until you leave the mailbox file you are processing. Prior to that,
the u (for undelete) gives you the opportunity to change your mind . Once
you have issued the quit command (q) or switched to another file, however,
the deleted messages are gone.

mailx permits you to combine the delete and print command and enter a
dp. This is like saying, " Delete the message I just read and show me the next
one. " Here are some examples of the delete command:

COMMUNICATION TUTORIAL 9-37

How to Manage Incoming Mail

? d .
? d r
? dp
? d 2-5

[Delete all my messages.]
[Delete all messages that have been read.]
[Delete the current message and print the pert one.]
[Delete messages 2 through 5.]

Commands for Saving Mail

All messages not specifically deleted are saved when you quit mailx.
Messages that have been read are saved in a fJ.le in your home directory called
mbox. Messages that have not been read are held in your mailbox
(/usr jmail.jyour _login).

The command to save messages comes in two forms: with an uppercase s
or a lowercase s. The syntax for the uppercase version is

S [msglist]

Messages specified by the msglist argument are saved in a fJ.le in the current
directory named for the author of the first message in the list.

The syntax for the lowercase version is

s [msglist] [filename]

Messages specified by the msglist argument are saved in the file named in the
filename argument. If you omit the msglist argument, the current message is
saved. If you are using logins for fJ.le names, this can lead to some ambiguity.
If mailx is puzzled, you will get an error message.

8-38 USER'S GUIDE

How to Manage Incoming Mail

Commands for Replying to Mail

The command for replying to mail comes in two forms: with an upper
case r or a lowercase r. The principal difference between the two forms is
that the uppercase form (R) causes your response to be sent only to the origi
nator of the message, while the lowercase form (r) causes your response to be
sent not only to the originator but also to all other recipients. (There are other
di fferences between these two forms. For details, see the mailx(l) manual
page in the User'sjSystem Administrator's Reference Manual.)

When you reply to a message, the origi nal su bject l ine is pickl•d u p and
usPd a s tlw su bject of you r repl y . Here's a n l'Xa mpll• of thl• wa y i t looks:

$ mailx<CR>

1113.ilx version 2 . 14 10/19/83 Type ? for help.
"usr/mail/daves" : 3 messages 2 new 3 unread

u 1 jaf Wed May 9 07 : 55 7/137 test25

> N 2 todd Wed May 9 08 : 59 9/377 UNITS requirements

N 3 has Wed May 9 1 1 : 08 29/1214 access to bailey

? R 2
To: todd
Subject : Re : UNITS requirements

Assu ming the message abou t U NITS requ i remen ts had been sen t to some
additional people and the lowercase r had been used, the header might have
appeared like this:

COMMUNICATION TUTORIAL 9-39

How to Manage Incoming Mail

? r 2
To: todd eg has jcb bdr

Subject : Re: UNITS requirellents

Commands for Getting Out of mailx

There are two standard ways of leaving mailx: with a q or with an x. If
you leave mailx with a q, you see messages that summarize what you did
with your mail. They look like this:

? q < CR>
Saved 1 message in /fs 1 1bdr/mbax

HE>ld 1 message in /usr/ma i l lbdr

$

From the example, we can surmise that user bdr had at least two mes
sages and read one then either left the other unread or issued a command ask
ing that it be held in jusrjmailfbdr. If there were more than two messages,
the others were deleted or saved in other files. mailx does not issue a mes
sage about those.

9-40 USER'S GUIDE

How to Manage Incoming Mail

If you leave mailx with an x, it is almost as if you had never entered.
Mail read and messages deleted are retained in your mailbox. However, if
you have saved messages in other files, that action has already taken place
and is not undone by the x.

mailx Command Summary

In the preceding subsections we have described some of the most fre
quently used mailx commands. (See the mailx(1) manual page in the
User'sjSystem Administrator's Reference Manual for a complete list .) If you
need help while you are in the command mode of mailx, type either a ? or
help after the ? prompt. A list of mailx commands and what they do will be
displayed on your terminal screen.

COMMUNICATION TUTORIAL 9-41

The .mailrc File

The .mailrc file contains commands to be executed when you invoke
mailx.

There may be a system-wide start-up file (/usrflibfmailxfmailx.rc) on
your system. If it exists, it is used by the system administrator to set common
variables. Variables set in your .mailrc file take precedence over those in
mailx.rc.

Most mailx commands are legal in the .mailrc file. However, the follow
ing commands are NOT legal entries:

I (or) shell

Copy

edit

visual

followup

Followup

mail

reply

Reply

escapes to the shell

saves messages in msglist in a flle whose name is
chosen by the author

invokes the editor

invokes vi

responds to a message

responds to a message, sending a copy to msglist

switches into input mode

responds to a message

responds to the author of each message in msglist

You can create your own .mailrc with any editor or copy a friend's.
Figure 9-5 shows a sample .mailrc flle.

9-42 USER'S GUIDE

if r

cd $1KME/mail

endif

set allnet append asksub askcc autoprint dot

set metoo quiet save showto header hold keep keepsave

set outfolder

set folder= 'mail '

set reoord= ' autbox '

set crt=24

set EDI'KJR= ' lbin/ed '

set sign= ' Roberts '

set Sign= ' Jackson Roberts , Supervisor '

set toplines= 1 0

alias fred

alias bob

alias alice

alias mark

alias donna
alias pat

group robertsgrp
group accounts

fjs

ran

ap

met
dr

pat

fred bob alice pat mark

robertsgrp donna

Figure 9-5 : Sample .mailrc File .

mailx

The example in Figure 9-5 includes the commands you are most likely to
find useful : the set command and the alias or group command.

The set command is used to establish values for environment variables.
The command syntax is

set
set name
set name = string
set name = number

COMMUNICATION TUTORIAL 9-43

mailx

When you issue the set command without any arguments, set produces a
list of all defined variables and their values. The argument name refers to an
environmental variable. More than one name can be entered after the set
command . Some variables take a string or numeric value. String values are
enclosed in single quotes.

When you put a value in an environment variable by making an assign
ment such as HOME=my_login, you are telling the shell how to interpret that
variable. However, this type of assignment in the shell does not make the
value of the variable accessible to other UNIX System programs that need to
reference environment variables. To make it accessible, you must export the
variable. If you set the TERM variable in your environment when doing the
exercises in Chapter 6 or Chapter 7, you wil l remember using the export com
mand, as shown in the following example:

$ TERM=5425
$ export TERM

When you export variables from the shell in this way, programs that refer
ence environment variables are said to import them. Some of these variables
(such as EDITOR and VISUAL) are not peculiar to mailx but may be speci
fied as general environment variables and imported from your execution
environment. If a value is set in .mailrc for an imported variable, it overrides
the imported value. There is an unset command, but it works only against
variables set in .mailrc; it has no effect on imported variables.

There are forty-one environment variables that can be defined in your
.mailrc, too many to be ful ly described in this document. For complete infor
mation, consu l t the mailx(l) manual page in the User'sjSystrm Administrator's
Reference Manual .

.
Three variables used in the example in Figure 9-5 deserve special attention

because they demonstrate how to organize the filing of messages. These vari
ables are folder, record, and outfolder. All three are interrelated and control ·

the directories and files in which copies of messages are kept.

To put a value into the folder variable, use the following format:

set folder=directory

9-44 USER'S GUIDE

mailx

This specifics the directory i n which you w a n t to s a v t• st.1 n d a rd nhl i l fi l l's. If
t lw directory name spec i fied does not begin with a I (slash), i t is pn•su mPd to
be relative to $HOME. If folder is an exported shell variable, you ca n speci fy
fi le names (in commands that call for a filename argument) with a I before the
name; the name will be expanded so that the file is put into the folder direc
tory .

To put a value in the record variable, use the following format:

set record=filenamc

This directs mailx to save a copy of all outgoing messages in the specified fi le .
The header information is saved along with the text of the message. By
default, this variable is disabled.

The outfolder variable causes the file in which you store copies of outgo
ing messages (enabled by the variable record=) to be located in the folder
directory . It is established by being named in a set command. The defaul t is
nooutfolder.

The alias and group commands are synonyms. In Figure 9-5, the alias
command is used to associate a name with a single login; the group command
i s used to speci fy multiple names that can be called in with one pseudonym.
Th is is a n ice way to d isti nguish betw�·en single and group al iasPs, hu t if you
want , you ca n t rea t the comm a nds as t'X<Kt t•q u i va l t> n ts . Not in•, too, t h a t
a l iases can be m•sted .

In the mailrc fi le shown in Figure 9-5, the alias robertsgroup represents
fi ve users; three of them are speci fied by previously defined aliases and one i s
specified by a login . The fi fth user, pat, is speci fied by both a login and an
al ias. The next group command in the example, accounts, uses the al ias
robertsgroup plus the alias donna. It expands to twelve logins .

The .mailrc file in Figure 8-5 includes an if-endif command. The ful l
syntax of that command is

if s I r maiLcommal!ds

else maiLcommands

endif

COMMUNICATION TUTORIAL 9·45

mailx

The s and r stand for send and receive, so you can cause some initializing
commands to be executed according to whether mailx is entered in input
mode (send) or command mode (receive) . In the preceding example, the com
mand is issued to change directory to $HOME/mail if reading mail . The user
in this case had elected to set up a subdirectory for handling incoming mail.

The environment variables shown in this section are those most com
monly included in the .mailrc file. You can, however, specify any of them for
one session only whenever you are in command mode. For a complete list of
the environment variables you can set in mailx see the mailx(l) manual page
in the User'sjSystem Administrator's Reference Manual.

9-46 USER'S GUIDE

Transferring Files

This section describes the commands available for transferring files: the
mail command for small files (a page or less) and the uucp and uuto com
mands for long files. The mail command can be used for transferring a file
either within a local system or to a remote system. The uucp and uuto com
mands transfer files from one system to another.

Sending Small Files: the mail Command

To send a fi ll• in a mail m(•ssage, you must n•d irPl't thP i npu t to th <l t fi l l'

on th(• command l ine. Use the < (less than) n•d i n•ct ion sy mho l as fol l o w s :

mail login < filename<CR>

(For further information on input redirection, see Chapter 7.) Here login is the
recipient's login 10, and filename is the name of the file you want to send. For
example, to send a copy of a file called agenda to the owner of login sarah
(on your system) type the following command line:

$ mail sarah < agenda<CR>
$

The prompt that appears on the second line means the contents of agenda
have been sent. When sarah issues the mail command to read her messages,
she will receive agenda.

To send the same file to more than one user on your system, use the same
command line format with one difference: i n place of one login ID, type
several separated by spaces. For example:

$ mail sarah tommy dingo wombat < agenda<CR>
$

Again, the prompt returned by the system in response to your command is a
signal that your message has been sent.

The same command line format with one addition can also be used to
send a file to a user on a remote system that can communicate with yours. In
this case, you must specify the name of the remote system before the user's
login name. Separate the system name and the login name with an ! (excla
mation point):

COMMUNICATION TUTORIAL 9·47

Transferring Files

mail system!login < filename<CR>

For example:

$ mail dumbolwombat < agenda<CR>
$

The system prompt on the second line means that your message (containing
tht• fi le) has been queued for sending.

If you are using mailx, you cannot use the mail command line syntax to
s<'nd a fi le . Instead, use the ·r option as follows:

s mailx phyllis
Sllbj ect : Memo
·r memo
$

Sending Large Files

T lw uucp and uuto commands a l l ow you to transfer fi les to a remote
computer. uucp allows you to send files to the directory of your choice on
the destination system. If you are transferring a file to a directory that you
own, you will have permission to put the file in that directory. (See
Chapter 3 for information on directory and file permissions.) However, if you
are transferring the file to another user's directory, you must be sure, in
advance, that the user has given you permission to write a file to his or her
di rectory. In addition, because you must specify path names that are often
long and require accuracy, uucp command lines may be cumbersome and lead
to error.

9·48 USER'S GUIDE

Transferring Files

The uuto command is an enhanced version of uucp . It a u tom a t i ca l l y
sends files to a public directory on the recipient's system ca lled
jusrjspooljuucppublic. This means you cannot choose a destination fi le .
However, i t also means that you can transfer a file at any time without having
to request write permission from the owner of the destination directory .
Finally, the uuto command line is shorter and less complicated than the uucp
command line. When you type a uuto command line, the likelihood of mak
ing an error is greatly reduced.

Getting Ready: Do You Have Permission?

Before you actually send a file with the uucp or uuto command, you need
to find out whether or not the file is transferrable . To do that, you m ust
check the fi le's permissions. If you own the files and they are not correct, you
must liSt' the chmod com mand to change them . (Perm issions and t lw c h m od
com mand a re covered i n Chapter 3 .)

There are two permission criteria that must be met be fore a fi le ca n be
transferred using uucp or uuto:

• The file to be transferred must have read permission (r) for others .

• The directory that contains the file must have read (r) and execute (x)
permission for others.

For example, assume that you have a file named chicken under a direc
tory named soup (in your home directory) . You want to send a copy of the
chicken file to another user with the uuto command. First, check the permis
sions on soup:

$ Is -l<CR>
total 4

drwxr-xr-x

$

2 reader group 1 45 Feb 9 1 0 :43 soup

COMMUNICATION TUTORIAL 9-49

Transferring Files

The response of the Is command shows that soup has read (r) and execute (x)
permissions for all three groups; no changes have to be made. Now use the
cd command to move from your home directory to soup, and check the per
missions on the file chicken:

$ Is -1 chicken<CR>
total 4

-rw-------
$

reader group1 3 1 0 1 Mar 1 18 : 22 chicken

The command's output means that you (the user) have permission to read the
file chicken, but no one else does. To add read permissions for your group
(g) and others (o), use the chmod command:

$ chmod go+r chicken<CR>

Now check the permissions again with the Is -I command:

$ Is -1 chicken<CR>
total 4
-rw-r--r--

$
reader group1 3 1 0 1 Mar0 1 18: 22 chicken

This l·on firms that the file is now transferable; you can send it wi th the uucp
or uuto command . After you send copies of the file, you can reverse the pro
cedure and replace the previous permissions.

9-50 USER'S GUIDE

Transferring Files

The uucp Command

The uucp command (short for U N I X - to - U N I X Systl'm copy) a l lows you to
copy a fi le directly to the home directory of a user on another computer, or to
any other directory you specify and for which you have write permission.

uucp is not an interactive command. It performs its work silently, invisi
ble to the user. Once you issue this command, you may run other processes .

Transferring a file between computers is a mu l tiple-step procedure . first,
a work fi lt• that conta ins instructions for tht• fi l t• transfer must hl' cn•ated .
Wht•n rt•questt•d, a da t a fi le (a copy of the fi le being sent) is a lso made. Tht•n,
the fi le is ready to be sent . When you issue the uucp command, i t performs
the preliminary steps described above (creating the necessary fi les in a dedi
cated directory called a spool directory) and then calls the uucico daemon that
actually transfers the file. (Daemons are system processes that run in back
ground .) The file is placed in a queue, and uucico sends i t at the first avail
able time.

Thus, the uucp command allows you to transfer files to a remote com
puter without knowing anything except the name of the remote computer and,
possibly, the login ID of the remote user(s) to whom the file is being sent.

Command Line Syntax

uucp allows you to send

• one file to a file or a directory

• multiple files to a directory

To deliver your file(s), uucp must know the full path name of both the
source-file and the destination-file. However, this does not mean you must
type out the full path name of both files every time you use the uucp com
mand . There are several abbreviations you can use once you become familiar
with their formats; uucp wil l expand them to fu l l path names .

COMMUNICATION TUTORIAL 9·51

Transferring Files

To choose the appropriate designations for your source-file and
dt•s tillatioll-file, begin by identifying the source-file's location relative to your
own current location in the file system. (We'll assume, for the moment, that
the source-file is in your local system.) If the source-file is in your current
directory, you can specify it by its name alone (without a path). If the source
file is not in your current directory, you must specify its full path name.

How do you specify the destination-file? Because it is on a remote system,
the dt•stination-file must always be specified with a path name that begins
with tht! name of the remote system. After that, however, uucp gives you a
l·hoin•: you can specify the full path or use either of two forms of abbrevia
tion . You r destination-file should have one of the following three formats:

• system_name!fulLpath

• system_name!"login_name[j directory_name /filename]

• systemnamer flogin_name [/ directory_namejfilename]

The login name, in this case, belongs to the recipient of the file.

Until now, we have described what to do when you want to send a file
from your local system to a remote system. However, it is also possible to use
uucp to send a file from a remote system to your local system. In either case,
you can use the formats described above to specify either source-files or
destination-files. The important distinction in choosing one of these formats is
not whether a file is a source-file or a destination-file, but where you are
currently located in the file system relative to the files you are specifying.
Therefore, in the formats shown above, the login_name could refer to the
login of the owner or the recipient of either a source-file or a destination-file.

For l'Xa m pll•, l t.•t 's say you <l rl' login kol on a system cal led mickey . Your
homl' d i n•l·tory is fusrfkol and you wan t to send a fi ll� cal led chapl (in a
directory called text in your home directory) to login wsm on a system cal led
minnie. You are currently working in fusrfkolftext, so you can specify the
source-file with its relative path name, chapl. Specify the destination-file in
a n y of the ways shown in the following command lines:

9·52 USER'S GUIDE

• Specify the destination-file with its full path name:

uucp chapl minnie!jusrjwsmjreceivejchapl

Transferring Files

• Specify the destination-file with *login_name (which expands to the
name of the recipient's home directory) and a name for the new file:

uucp chapl minnierwsmjreceivejchapl

(The file will go to minnie!jusrjwsmjreceivejchapl.)

• Specify the destination-file with *login_name (which expands to the
recipient's home directory) but without a name for the new file; uucp
will give the new file the same name as the source-file:

uucp chapl minnierwsmjreceive

(The file will go to minnie!jusrjwsmjreceivejchapl.)

• Specify the destination-file with -Jlogin_name. This expands to the
recipient's subdirectory in the public directory on the remote system:

uucp chapl minnier jwsm

(The file will go to minnie!jusrjusrjspooljuucppublicjwsm.)

Sample Usage of Options with the uucp
Command

Suppose you want to send a file called minutes to a remote computer
named eagle. Enter the command line shown in the following screen :

$ uucp -m -s status -j minutes eagle!jusrjgwsjminutes<CR>
eaqleN3f45
$

COMMUNICATION TUTORIAL 9-53

Transferring Files

This sends the file minutes (located in your current directory on your local
computer) to the remote computer eagle and places it under the path name
jusrjgws in a file named minutes. When the transfer is complete, the user
gws on the remote computer is notified by mail.

The -m option ensures that you (the sender) are also notified by mail as
to whether or not the transfer has succeeded. The -s option followed by the
name of the file (status) asks the program to put a status report of the file
transfer in the specified file (status).

Be su rl' to include a file name after the -s option. If you do not, you will
g('t this message: uucp failed cx:arpletely.

The job 10 (eagleN3f45) is displayed in response to the -j option.

Even if uucp does not notify you of a successful transfer soon after you
send a file, do not assume that the transfer has failed. Not all systems
equipped with networking software have the hardware needed to call other
systems. Files being transferred from these so called passive systems must be
collected periodically by active systems equipped with the required hardware
(see " How the uucp Command Works " for details). Therefore, if you are
transferring files from a passive system, you may experience some delay.
Check with your system administrator to find out whether your system is
active or passive.

The previous example uses a full path name to specify the destination-file.
There are two other ways the destination-file can be specified:

• The login directory of gws specified through use of the - (tilde):

eagle!-gwsfminutes

eagleljusrjgwsjminutes

9-54 USER'S GUIDE

Transferring Files

• The uucppublic area is referenced by a similar use of the tilde prefix
to the path name. For example:

eagle!� jgwsfminutes

is interpreted as

fusrjspooljuucppublicjgwsfminutes

How the uucp Command Works

This section is an overview of what happens when you issue the uucp
command . An u nderstanding of the pron•sscs invol vt•d may ht•l p you to ht•

aw.uP of the n>mmand 's l i m itations and n•q u i n•mt•nts: why it ca n �wrform
some tasks and not others, why it performs tasks when it does, and why you
may or may not be able to use it for tasks that uucp performs. For further
details see the Operations/System Administration Guide and the User'sjSystem
Administrator's Reference Manual.

When you enter a uucp command, the uucp program creates a work file
and usually a data file for the requested transfer. (uucp does not create a data
fi le when you use the -c option .) The work file contains information required
for transferring the file(s) . The data file is simply a copy of the specified
source file. After these files are created in the spool directory, the uucico dae
mon is started.

The uucico daemon attempts to establish a connection to the remote com
puter that is to receive the file(s). It first gathers the information required for
establishing a link to the remote computer from the Systems file. This is how
uucico knows what type of device to use in establishing the link. Then
uucico searches the Devices file looking for the devices that match the
requirements listed in the Systems file. After uucico finds an available dev
ice, it attempts to establish the link and log in on the remote com puter.

COMMUNICATION TUTORIAL 9-55

Transferring Files

When uucico logs in on the remote computer, it starts the uucico daemon
on the remote computer. The two uucico daemons then negotiate the line
protocol to be used in the file transfer(s) . The local uucico daemon transfers
the fi le(s) that you are sending to the remote computer; the remote uucico
places the file in the speci fied path name(s} on the remote computer. A fter
your local computer completes the transfer(s), the remote computer may send
files that are queued for your local computer. The remote computer can be
denied permission to transfer these files with an entry in the Permissions file.
I f this is done, the remote computer must establish a link to your local com
puter to perform the transfers.

I f the remote computer or the device selected to make the connection to
the remote computer is unavailable, the request remains queued in the spool
directory. Each hour (default), uudemon.hour is started by cron, which in
turn starts the uusched daemon. When the uusched daemon starts, it
searches the spool directory for the remaining work files, generates the ran
dom order in which these requests are to be processed, and then starts the
transfer process (uucico) described in the previous paragraphs.

The transfer process described generally applies to an active computer.
An active computer (one with calling hardware and networking software) can
be set up to poll a passive computer. Because it has networking software, a
passive computer can queue file transfers. However, it cannot call the remote
computer because it does not have the required hardware. The Poll file

·

(/usrjlibjuucpjPoll) contains a list of computers that are to be polled in this
manner.

9-56 USER'S GUIDE

Transferring Files

Figu re 9-6 su mmarizes t lw syntax a n d ca pa bi l i t ies o f t lw u u cp com m a n d .

Command Recap

uucp - copies a fi le from one computer to another

command options arguments

uucp -jl, -m, -s and others* source-file

Description: uucp performs preliminary tasks required to
copy a fi le from one computer to another and
call s uucico, the daemon (background process)
that transfers the file. The user need only issue
the uucp command for a file to be copied .

Remarks: By default, the only directory to which you can

*

write fi les is jusrjspooljuucppublic. To wri te
to d i n•ctories belonging to a n other user, you
must n•n•i vt• w r i te 1wrm iss ion from t h <� l user.
A l t hough thPrt• a n• severa l ways of n-prt'Sl' ll l i ng
pa t h n ames as a rgu ml•n ts, it is rt•com mt•ndcd
that you type ful l path names to avoid confu-
sion.

See the uucp(1) manual page in the User'sjSystem Administrator's
Reference Manual for all available options and an explanation of their
capabilities.

Figure 9-6: Summary of the uucp Command

COMMUNICATION TUTORIAL 9-57

Transferring Files

The uuto Command

The uuto command allows you to transfer files to the public directory of
another system . The basic format for the uuto command is

uuto filename system!login<CR>

where filename is the name of the file to be sent, system is the recipient's sys
tem, and login is the recipient's login name.

If you send a file to someone on your local system, you may omit the sys
tem name and use the following format:

uuto filename login<CR>

Sending a File: the -m Option and uustat
Command

Now that you know how to determine if a file is transferable, let's take an
example and see how the whole thing works.

The process of sending a file by uuto is referred to as a job. When you
issue a uuto command, your job is not sent immediately. First, the file is
stored in a queue (a waiting line of jobs) and assigned a job number. When
the job's number comes up, the file is transmitted to the remote system and
placed in a public directory there. The recipient is notified by a mail message
and must use the uupick command (discussed later in the chapter) to retrieve
the file.

9-58 USER'S GUIDE

For the fol lowing discussions, assume this information :

wombat

sysl

marie

sys2

money

your login naml'
your sysll' lll naml'
recipient's login name
recipient's system name

file to be sent

Transferring Files

Also assume that the two systems can communicate with each other.

ing:
To send the file money to login marie on system sys2, enter the follow-

$ uuto money sys2!marie<CR>
$

The prompt on the second l ine is a signal that the file has been sent to a job
queue. The job is now out of your hands; all you can do is wait for confirma
tion that the job reached its destination.

How do you know when the job has been sent? The easiest method is to
alter the uuto command line by adding a -m option, as follows:

$ uuto -m money sys21marie<CR>
$

This option sends a mail message back to you when the job has reached the
recipient's system. The message may look something like this:

$ maii<CR>
Fran llllCp Thur Apr3 09: 45 EST 1986

file /sys1/wanbat/maney, system sys 1
copy succeeded

?

COMMUNICATION TUTORIAL 9·59

Transferring Files

If you would like to check if the job has left your system, you can use the
uustat command. This command keeps track of all the uucp and uuto jobs
you submit and reports the status of each on demand. For example:

$ uustat<CR>
1 145 wombat sys2 10/05-09 : 3 1 1 0/05-09 : 33 JOB IS QUEUED
$

The elements of this sample status message are as follows:

• 1 145 is the job number assigned to the job of sending the file money
to marie on sys2.

• wombat is the login name of the person requesting the job.

• sys2 is the recipient's system.

• 10/05-09 : 3 1 is the date and time the job was queued .

• 10/05-09 : 33 is the date and time this uustat message was sent.

• The final part is a status report on the job. Here the report shows that
the job has been queued but has not yet been sent.

To receive a status report on only one uuto job, use the -j option and
specify the job number on the command line:

uustat -jjobnumber<CR>

9-&0 USER'S GUIDE

Transferring Files

For example, to get a report on the job described in the previous example,
SJWl"ify 1 1 45 (the job number) after the -j option:

--

$ uustat -j1145<CR>
1 145 wombat sys2 10/05-09 : 3 1 10/05-09 : 37 COPY FINISHED,JOB DELETED
$

This status report shows that the job was sent and deleted from the job queue;
it is now in the public directory of the recipient's system. Other status mes
sages and options for the uustat command are described in the User'sjSystem
Administrator's Reference Manual .

That is all there is to sending files. To practice, try sending a file to your
self.

Figures 9-7 and 9-8 summarize the syntax and capabilities of the uuto and
uustat commands, respectively.

COMMUNICATION TUTORIAL 9-61

Transferring Files

Command Recap

uuto - sends files to another login

C0/1/11/tllld options arguments

uuto -m and others* file system!login

Description: uuto sends a speci fied fi le to the public d i n•c -
tory of a speci fied system and noti fies the
i n tendl•d reci pit'nt (by mail addressed to h is or
lwr logi n) that the fi l l • has a rri Vl'd t h l•n·.

Remarks: 1-'i les to bl� Sl�n t m ust have read pl•rmission for

..

others; the file's parent directory must have
read and execute permissions for others.

The -m option notifies the sender by mail
when the file has arrived at its destination .

See the uuto(I) manual page in the User'sjSystem Administrator's
Reference Manual for all available options and an explanation of their
capabilities.

Figure 9-7: Summary of the uuto Command

9-62 USER'S GUIDE

•

Transferring Files

Command Recap

uustat - checks job status of a uucp or uuto job

command options arKuments

uustat -j and olhl•rs • nonl'

Description: uustat reports the status of n i l uucp and uuto
jobs you have requested .

Remarks: The -j option followed by a job number allows
you to request a status report on only the speci-
fied job .

See the uustat(1) manual page in the User'sjSystem Admi11 istrator's
Referellce Manual for all available options and an explanation of their
capabilities.

Figure 9-8: Summary of the uustat Command

Receiving Files Sent with uuto: the uupick
Command

When a file sent by uuto reaches the publ ic di rectory on your U N I X Sys
tem, you receive a mail message. To continue the previous example, the
owner of login marie receives the following mail message when the fi le
money has arrived in her system's public directory:

COMMUNICATION TUTORIAL 9-63

Transferring Files

$ mail

Fran I1I1Cp Wed May 14 09 : 22 EST 1986
/usr/spool/UUcppubl.ic/receive/marie/sys1/IDxlney fran sys1 1waubat arrived
$

The message contains the following pieces of information:

• The first line tells you when the file arrived at its destination.

• The second line, up to the two slashes (/ /), gives the path name to the
part of the public directory where the file has been stored.

• The rest of the line after the two slashes gives the name of the file and
the sender.

Once you have disposed of the mail message, you can use the uupick
command to store the fi le where you want it . Type the following command
after the system prompt:

uupick<CR>

The command searches the public directory for any files sent to you. If it
finds any, it reports the filename(s). It then prints a ? prompt as a request for
further instructions from you.

For example, say the owner of login marie issues the uupick command to
retrieve the money file. The command will respond as follows:

$ uupick<CR>
fran system sys 1 : file m:m.ey
?

There are several available responses; we will look at the most common
responses and what they do.

9-64 USER'S GUIDE

Transferring Files

The first th ing you shou ld do is move thl• fi le from tht> publ ic d i rl•l' l o ry
and place it in your login directory. To do so, type an m after the question
mark :

?
m<CR>
$

This response moves the file into your current directory. I f you want to put i t
i n some other directory instead, follow the m response with the d i rectory
name:

?
m other_directory<CR>

If there are other files waiting to be moved, the next one is displayed, fol
lowed by the question mark. If not, uucpick returns a prompt.

I f you do not want to do anything to that file now, press the <RETURN>
key after the question mark:

?
<CR>

Tht> current file remains in the public d i rectory until the next t ime you use the
uupick command . I f th�;•re are no more messages, the system rl• turns a
prompt.

If you a lready know that you do not want to save the fi le, you ca n de lete
it by typing d after the question mark :

?
d<CR>

This response deletes the current file from the public directory and displays
the next message (if there is one) . If there are no additional messages about
waiting files, the system returns a prompt.

Finally, to stop the uupick command, type a q after the question mark:

?
q<CR>

Any unmoved or undeleted files will wait in the public directory until the next
t ime you use the uupick command.

COMMUNICATION TUTORIAL 9-65

Transferring Files

Otht•r avai lable responses are listed in the User'sjSystem Administrator's
Rl'{l'rt'llc 'l' Mamtal.

Figu n• 9-9 sum m a rizt•s t lw syn tax and capabi l i t il'S of t lw uupick com
mand.

Command Recap

uupick - searches for files sent by uuto or uucp

command options arguments

uupick -s system name

Description: uupick searches the public directory of your
system for files sent by uuto or uucp. I f any
are found, the command displays information
about the file and prompts you for a response.

Remarks: The question mark (?) at the end of the mes-
sage shows that a response is expected. A com-
plete list of responses is given in the
User'sjSystem Administrator's Reference Manual.

Figure 9-9: Summary of the uupick Command

9-66 USER'S GUIDE

Networking

N t•tworking is tht• pron•ss of l inking ,·om pu tt>rs and lt•rmina ls so t ha t
usl'I"S may l:w a hlt· t o

• log in on a remote computer as well as a lm·a l o n e

• log in and work on two computers in one work session (without al ter
nately logging off one and logging in on the other)

• exchange data between computers

The commands presented in this section make it possible for you to per
form these tasks. The ct command allows you to connect your computer to a
remote terminal that is equipped with a modem. The cu command enables
you to connect your computer to a remote computer, and the uux command
le ts you ru n commands on a remote system without being logged in on i t .

On sonw sma l l nnn p u l l•rs, l h P pn•sl' Jl <'l' o f l hl'Sl' l"om m a n d s may dl'Jll 'nd
on whl•l hl•r or not J ll' tworking soft w a n• is inst a l l l•d . If i t is not i n s t a l h•d
on your systl•m, you w i l l rt.'cl'i Vl' a llll'SS<lg<' sm·h as l hl• fol l o w i n g w lwn
you type a net working command:

cu : not found

Check with your system administrator to verify the availability of net
working commands on your UNIX System.

Connecting to a Remote Terminal: the ct
Command

The ct command connects your computer to a remote terminal equipped
with a modem and allows a user on that terminal to log in. To do this, the
command dials the phone number of the modem. The modem must be able
to answer the cal l automatica l ly . When ct detects that the call has been
answered, it issues a getty (login) process for the remote termina l and a l lows
a user on it to log in on the computer.

COMMUNICATION TUTORIAL 9-67

Networking

This command can be useful when issued from the opposite end, that is,
from t lw n•mott> ll•rminal itself. I f you an' using a remote terminal that is far
from your computer and want to avoid long distance charges, you can usl' ct
to have the computer place a call to your terminal . Simply call the computer,
log in, and issue the ct command. The computer will hang up the current line
and call your remote terminal back.

If ct cannot find an available dialer, it tells you that all dialers are busy
and asks if it should wait until one becomes available. If you answer yes, it
asks how long (in minutes) it should wait for one.

Command Line Format

To execute the ct command, follow this format:

ct [options] telno<CR>

The a rgument telno is the telephone number of the remote terminal .

Sample Command Usage

Suppose you are logged in on a computer through a local terminal and
you want to connect a remote terminal to your computer. The phone number
of the modem on the remote terminal is 932-3497. Enter this command line:

ct -h -w5 -s1200 9=9323497<CR>

The equal sign (=) represents a secondary dial tone, and dashes (-) follow
ing the phone number represent delays (the dashes are useful following a
long distance number) .

ct will call the modem, using a dialer operating at a speed of 1 200 baud. If a
dialer is not available, the -w5 option will cause ct to wait for a dialer for five
minutes before quitting. The -h option tells ct not to disconnect the local ter
minal (the terminal on which the command was issued) from the computer.

Now imagine that you want to log in on the computer from home. To
avoid long distance charges, use ct to have the computer call your terminal:

ct -s1200 9=9323497 <CR>

9-68 USER'S GUIDE

Networking

Because you did not specify the -w option, if no device is available, ct sends
you the following message:

1 busy dialer at 1200 baud Wait for dialer?

If you type n (no), the ct command exits. If you type y (yes), ct prompts you
to specify how long ct should wait:

Tilre , in minutes?

If a dialer is available, ct responds with

Allocated dialer at 1200 baud

This means that a dialer has been found. In any case, ct asks if you want the
line connecting your remote terminal to the computer to be dropped:

Confinn hangup?

If you type y (yes), you are logged off, and ct calls your remote terminal back
when a dialer is available. I f you type n (no), the ct command exits, leaving
you logged in on the computer.

•

Figure 9-10 summarizes the syntax and capabilities of the ct command.

Command Recap

ct - connects a computer to a remote terminal

command options arguments

ct -h, -w, -s and others* tel no

Description: ct connects the computer to a remote terminal
and allows a user to log in from that terminal.

Remarks: The remote terminal must have a modem capa-
ble of answering phone calls automatically .

See the ct(l) manual page in the User'sjSystem Administrator's Refer
ence Manual for all available options and an explanation of their capa
bilities.

Figure 9-10 : Summary of the ct Command

COMMUNICATION TUTORIAL 9-69

Networking

Calling Another UNIX System: the cu

Command

The cu command connects a remote computer to your computer and
allows you to be logged in on both computers simultaneously. This means
that you can move back and forth between the two computers, transferring
files and executing commands on both, without dropping the connection.

The method used by the cu command depends on the information you
specify on the command line. You must specify the telephone number or sys
tem name of the remote computer. I f you speci fy a phone number, it is
passed on to the automatic dial modem . If you speci fy a system name, cu
obtains the phone number from the Systems file. If an automatic dial modem
is not used to establish the connection, the line (port) associated with the
direct link to the remote computer can be specified on the command line.

Once the connection is made, the remote computer prompts you to log in
on it. When you have finished working on the remote terminal, log off and
terminate the connection by typing <-.> . You will still be logged in on the
local computer.

9-70

The cu command is not capable of detecting or correcting errors; data may
be lost or corrupted during file transfers. After a transfer, you can check for
loss of data by running the sum command or the Is -1 command on the file
that was sent and the file that was received. Both of these commands will
report the total number of bytes in each file; if the totals match, your
transfer was SUl"l't>ssful . The sum command checks more quickly and gives
output that is l'asil•r to i n t l•rpn•t . (Sl'l' thl• sum(I) and thl• ls(l) manu;ll pagl•s
in the User'sjSystem A,fmi11istrator's Refm·,�·,· Ma11ual for details.)

USER'S GUIDE

Command Line Format

To execute the cu command, follow this format:

cu [options] telno I systemname<CR>

The components of the command l ine are

tclno the telephone number of a remote computer

Networking

Equal signs (=} represent secondary dial tones, and dashes
(-) represent four-second delays.

systcmname a system name that is l isted in the Systems fi le

The cu command obtains the telephone number and baud
rate from the Systems fi le and searches for a d ia lt>r . The -s,
-n, and -1 options should not be used together with system
name. (To see the list of computers in the Systems file, run
the uuname command.)

Once your terminal is connected and you are logged in on the remote
computer, all standard input (input from the keyboard) is sent to the remote
computer. Figures 9-1 1 and 9 - 12 show the commands you can execute while
connected to a remote computer through cu.

COMMUNICATION TUTORIAL 9·71

Networking

String

-

-!

-!command

-$command

- %cd path

- %take from [to]

- %put from [to]

- -...

- %break

Interpretation

Terminates the link.

Escapes to the local computer without dropping
the lin� . To return to the remote computer,
type < d> (control-d).

Executes command on the local computer.

Runs command locally and sends its output to
the remote system.

Changes the directory on the local computer
where path is the path name or directory name.

Copies a file named from on the remote com-
puter to a file named to on the local computer.
If to is omitted, the from argument is used in
both places.

Copies a file named from on the local computer
to a file named to on the remote computer. If
to is omitted, the from argument is used in both
places.

Sends a line beginning with - (- -...) to the
remote computer.

Transmits a <BREAK> to the remote computer
(can also be specified as - %b).

Figure 9-1 1 : Command Strings for Use with cu (Sheet 1 of 2)

9-72 USER'S GUIDE

Networking

String Interpretation

- %nostop Turns off the handshaking protocol for the
remainder of the session . This is useful when
the remote computer does not respond properly
to the protocol characters.

- %debug Turns the -d debugging option on or off (can
also be specified as - %d).

- t Displays the values o f the term inal 1 /0
(inputjoutput) structure variables for your ter-

minal (useful for debugging) .

- I Displays the values o f the termio structun• vari -
abies for the remote communication l ine (useful
for debugging).

Figure 9-12 : Command Strings for Use with cu (Sheet 2 of 2)

The use of - %put requires stty and cat on the remote computer. It also
requires that the current erase and kill characters on the remote computer
be identical to the current ones on the local computer.

The use of - %take requires the existence of the echo and cat commands
on the remote compu ter. Also, stty tabs mode should be S<'t on the
remote com puter if tabs are to be copied wi thou t expansion .

Sample Command Usage

Suppose you want to connect your computer to a remote com pu ter ca l led
eagle. The phone number for eagle is 847-7867. En ter the fol l o w i n g com

mand l ine:

cu -s1200 9=8477867<CR>

The -s1200 option causes cu to use a 1 200 baud dialer to cal l eagle. If the -s
option is not specified, cu uses a dialer at the default speed, 300 baud.

COMMUNICATION TUTORIAL 9-73

Networking

Wlwn eagle answl•rs thl• l·a l l , cu noti fil'S you t h a t the comw,·tion has hl'l'll
made and prompts you for a login ID:

cx:mnected
login:

Enter your login ID and password.

The take command allows you to copy files from the remote computer to
the local computer. Suppose you want to make a copy of a file named propo
sal for your local computer. The following command copies proposal from
your current directory on the remote computer and places it in your current
directory on the local computer. If you do not specify a file name for the new
file, it will also be called proposal.

-%take proposal <CR>

The put command allows you to do the opposite: copy files from the
local computer to the remote computer. Say you want to copy a file named
minutes from your current directory on the local computer to the remote com
puter. Type

- %put minutes minutes.9-18<CR>

In this case, you specified a different name for the new file (minutes.9-18).
Therefore, the copy of the minutes file that is made on the remote computer
will be called minutes.9-18.

9·74 USER'S GUIDE

•

Networking

Figure 9- 1 3 summarizes the syntax and capabi l i ties of the cu command.

Command Recap

cu - connects a computer to a remote computer

fommand options arKuments

cu -s and others• telno (or) systemname

Description: cu connects your computer to a remote com-
puter and allows you to he logged in on both
simultaneously . Once you are logged in, you
can move between compu ters to execute com -
mands and transfer fi les on each without drop-
ping the link .

See the cu(l) manual page in the User'sfSysttm Administrator's Reftr
ence Manual for all available options and an explanation of their capa
bilities.

Figure 9-13 : Summary of the cu Command

Executing Commands on a Remote System:
the uux Command

The uux command (short for UNIX-to-UNIX System command execution)
allows you to execute UNIX System commands on remote computers . It can
gather files from various computers, execute a command on a specified com
puter, and send the standard output to a file on a specified computer. The
execution of certain commands may be restricted on the remote machine. The
command notifies you by mail if the command you have requested is not
allowed to execute.

COMMUNICATION TUTORIAL 8·78

Networking

Command Line Format

To execute the uux command, follow this format:

uux [options] command-string<CR>

The command-string is made up of one or more arguments. All special shel l
characters (such as " <>(") must be quoted either by quoting the entire
command-string or quoting the character as a separate argument. Within the
command-string, the command and file names may contain a system name! pre
fix. All arguments that do not contain a systemname are interpreted as com
mand arguments. A file name may be either a full path name or the name of
a file under the current directory on the local computer.

Sample Command Usage

If your computer is hard-wired to a larger host computer, you can use uux
to get printouts of files that reside on your computer by entering

pr minutes I uux -p host!lp<CR>

This command line queues the file minutes to be printed on the area printer
of the computer host.

9-76 USER'S GUIDE

Networking

Figure 9- 14 summarizes the syntax and capabil i ties of the uux command .

Command Recap

uux - executes commands on a remote computer

command options arguments

uux -1, -p, and others* command-strinx

Description: uux allows you to run U N I X System commands
on remote computers . It can gather files from
various computers, run a command on a speci-
fied computer, and send the standard output to
a file on a specified computer.

Remarks: By default, users of the uux command have

•

permission to run only the mail and mailx
commands. Check with your system adminis-
trator to find out if users on your system have
been granted perm ission to run other com-
mands .

See the u ux(I C) manual page in the User'sjSystem Administrator's
Reference Manual for all available options and an explanation of their
capabilities.

Figure 9- 14 : Summary of the uux Command

COMMUNICATION TUTORIAL 9·77

!

A Summary of the File System

The UNIX System Files
File System Structure

UNIX System Directories

SUMMARY OF THE FILE SYSTEM

A-1

A-1

A-4

The UNIX System File$
This appendix summarizes the description of the file system given in

Chapter 1 and reviews the major system directories in the root directory.

File System Structure

The UNIX System files are organized in a hierarchy; their structure is
often described as an inverted tree. At the top of this tree is the root direc
tory, the source of the entire file system. It is designated by a / (slash). All
other directories and files descend and branch out from root, as shown in Fig
ure A-1 .

SUMMARY OF THE FILE SYSTEM A-1

The UNIX System Files

Q = Directories

D = Ordinary Files

"\1 = Special Files

Figure A - 1 : Din•ctory Tree from root

One path from root leads to your home directory. You can organize and
store information in your own hierarchy of directories and files under your
home directory.

A-2 USER'S GUIDE

The UNIX System Files

Other paths lead from root to system directories that are available to all
users. The system directories described in this book are common to al l UNIX
System installations and are provided and maintained by the operating sys
tem.

In addition to this standard set of directories, your UNIX System may
have other system directories. To obtain a listing of the directories and files in
the root directory on your UNIX System, type the following command line:

Is -I / <CR>

To move around in the file structure, you can use path names. For exam
ple, you can move to the directory /bin (which contains UNIX System execut
able files) by typing the following command line:

cd jbin<CR>

To list the contents of a directory, issue one of the following command l ines:

Is<CR>
ls -l<CR>

for a list of file and directory names
for a detailed list of file and
directory names

To l i s t tht• con tl'n ts of a d i rl'ctory in w h ich you a rl' not l ocatl•d , issl ll' t h l'
ls command, as shown in the following examples:

Is jbin<CR>
Is -I jbin<CR>

for a short l isting
for a detailed listing

The following section provides brief descriptions of the root directory and
the system directories under it, as shown in Figure A-1 .

SUMMARY OF THE FILE SYSTEM A-3

UNIX System Directories

I The source of the file system (called root directory)

/bin Contains many executable programs and utilities, such as

cat
date
login
grep
mkdir
who

/lib Contains available program libraries and language libraries,
such as

libc.a

libm.a

system calls, standard lfO

math routines and support for languages
such as C, FORTRAN, and BASIC

fdev Contains special flies that represent peripheral devices, such
as

jete

jtmp

jusr

console
lp
ttyn
dsk/*

console
line printer
user terminal(s)
disks

Contains programs and data files for system administration

Contains temporary files, such as the buffers created for edit
ing a file

Contains the following subdirectories, which in tum contain
the data listed below:

news
mail
spool

important news items
electronic mail
files waiting to be printed on the line
printer

A-4 USER'S GUIDE

B Summary of UNIX System Com
mands

Basic UNIX System Commands s-1

SUMMARY OF UNIX SYSTEM COMMANDS I

Basic UNIX System Commands

at Requests that a command be run in background mode at a
time you specify on the command line. If you do not specify
a time, at displays the job numbers of all jobs you have run
ning in at, batch, or background mode.

banner

batch

A sample format is

at 8:45am Jun 09<CR>
commandl <CR>
command2<CR>
<

A
d>

If you use the at command without the date, the command
executes within twenty-four hours of the time specified.

Displays a message (in words up to ten characters long) in
large letters on the standard output.

Submits command(s) to be processed when the system load is
at an acceptable level. A sample format of this command is

batch<CR>
commandl<CR>
command2<CR>
<

A
d>

You can use a shell script for a command in batch. This may
be useful and timesaving if you have a set of commands you
frequently submit using this command.

cat Displays the contents of a specified file at your terminal. To
halt the output on an ASCII terminal temporarily, use <

A
s>;

type <
A
q> to restart the output. To interrupt the output and

return to the shell on an ASCII terminal, press the <BREAK>
or <DELETE> key.

cd Changes directory from the current one to your home direc
tory. If you include a directory name, you can change from
the current directory to the directory specified. By using a

SUMMARY OF UNIX SYSTEM COMMANDS 8·1

Basic UNIX System Commands

copy

cp

cut

date

diff

echo

ed

grep

kill

lc

lex

path name in place of the directory name, you can jump
several levels with one command.

Copies a specified directory (including its subdirectories and
files) into another d irectory, leaving the original directory
intact.

Copies a speci fied file i n to a new fi le, leaving the original file
intact.

Cuts out specified fields from each line of a file. This com
mand can be used to cut columns from a table, for example.

Displays the current date and time.

Compares two files. The diff command reports which lines
are different and what changes should be made to the second
file to make it the same as the first file.

Displays input on the standard output (the terminal), includ
ing the carriage return, and returns a prompt.

Edits a specified file using the line editor. If there is no file
with the name specified, the ed command creates one. See
Chapter 5 for detailed instructions on using the ed editor.

Searches a specified file(s) for a specified pattern and prints
those lines that contain the pattern. If you name more than
one file, grep prints the file that contains the pattern.

Terminates a background process specified by its process iden
tification number (PlD). You can obtain a PID by running the
ps command.

Lists, in multiple columns, the names of all files and direc
tories (except those that begin with a dot) in the current direc
tory. Options are available for listing more detailed informa
tion about the contents of a directory. For more information
about available options, see the ls(l) page in the User'sjSystrm
Administrator's Re{ere11ce Ma11ual.

Generates programs to be used in simple lexical analysis of
text, perhaps as a first step in creating a compiler. See the
User'sjSystem Administrator's Reference Manual for details.

8-2 USER'S GUIDE

lp

Ips tat

Is

mail

mailx

make

mkdir

more

Basic UNIX System Commands

Prints the contents of a specified file on a line prin ter , giving
you a paper copy of the fi le .

Displays the status of any requests made to thl' l i m• prin ter.
Options are available for requesting more detailed informa
tion .

Lists the names of all files and directories except those whose
names begin with a dot (.). Options are available for listing
more detailed information about the files in the directory.
(See the ls(l) page in the User'sjSystem Administrator's Refer
ence Manual for details.)

Displays any electronic mail you may have received at your
terminal, one message at a time. Each message ends with a 7
prompt; mail waits for you to request an option, such as sav
ing, forwarding, or deleting a message. To obtain a list of the
available options, type ?.

When followed by a login name, mail sends a message to the
owner of that name. You can type as many lines of text as
you want. Then type <-d> to end the message and send it to
the recipient. Press the <BREAK> key to interrupt the mail
session.

mailx is a more sophisticated, expanded version of electronic
mail .

Maintains and supports large programs or documents on the
basis of smaller ones. See the make(l) page in the
Programmer's Reference Manual for details.

Makes a new directory. The new directory becomes a sub
directory of the directory in which you issue the mkdir com
mand. To create subdirectories or files in the new directory,
you must first move into the new directory with the cd com
mand.

Displays the contents of a file, one full screen at a time.
Options are available for specifying how more will display the
file. For more information about available options, see the
more(l) entry in the User'sjSystem Administrator's Reference
Manual.

SUMMARY OF UNIX SYSTEM COMMANDS 8·3

Basic UNIX System Commands

mv

nohup

pg

pr

ps

pwd

rm

rmdir

sort

Moves a file to a new location in the file system. You can
move a file to a new file name in the same directory or to a
different directory. If you move a file to a different directory,
you can use the same file name or choose a new one.

Places execution of a command in the background so that it
will continue executing after you log off of the system. Error
messages are placed in a file called nohup.out.

Displays the contents of a specified file on your terminal, a
page at a time. After each page, the system pauses and waits
for your instructions before proceeding.

Displays a partially formatted version of a specified file at
your terminal. The pr command shows page breaks but does
not implement any macros supplied for text formatter pack
ages.

Displays the status and number of every process currently
running. The ps command does not show the status of jobs
in the at or batch queues, but it includes these jobs when they
a re executing.

Displays the full path name of the current working directory .

Removes a file from the file system. You can use metacharac
ters with the rm command, but you should use them with
caution; a removed file cannot be recovered easily.

Removes a directory. You cannot be in the directory you
want to delete, and you cannot delete a directory unless it is
empty. Therefore, you must remove any subdirectories and
files that remain in a directory before using this command.
(See rm -r in the User'sjSystem Administrator's Reference
Manual for information on removing directories that are not
empty.)

Sorts a file in ASCII order and displays the results on your
terminal. ASCI I order is as follows:

1 . numbers before letters
2. uppercase lettl'rs before lowercase lettE'rs
3 . alphahetkal ordl'r

B-4 USER'S GUIDE

Basic UNIX System Commands

There are other options for sorting a file. For a complete l ist
of sort options, see the sort(l) page in the User'sjSystem
Administrator's Reference Manual.

spell Collects words from a specified file and checks them against a
spelling list. Words not on the list or not related to words on
the list (with suffixes, prefixes, and so on) are displayed .

stty Reports the settings of certain inputjoutput options for your
terminal. When issued with the appropriate options and argu
ments, stty also sets these inputjoutput options. (Sl'l' the
stty(l) page in the User'sjSystem Administrator's Rt•fama
Manual.)

uname Displays the name of the UNIX System on which you are
currently working.

uucp Sends a specified file to another U NIX System. (See the
uucp(1) page in the User'sjSystem Administrator's Reference
Manual for details.)

uuname Lists the names of remote UNIX Systems that can communi
cate with your UNIX System.

uupick Searches the public directory for files sent to you by the uuto
command. If a file is found, uupick displays its name and the
system it came from, and prompts you (with a ?) to take
action.

uustat Reports the status of the uuto command you issued to send
files to another user.

uuto Sends a specified file to another user. You must specify the
destination in the format system ! login . system must be on the
list of systems generated by the uuname command .

vi Edits a specified file using the vi screen editor. If there is no
file by the name you specify, vi creates one. (See Chapter 6
for detailed information on using the vi editor.)

we Counts the number of lines, words, and characters in a speci
fied file and displays the results on your terminal .

SUMMARY OF UNIX SYSTEM COMMANDS 8·5

Basic UNIX System Commands

who

yacc

Displays the login names of the users currently logged in on
your UNIX System and lists the terminal address for each
login and the time each user logged in.

Imposes a structure on the input of a program. See the ,

yacc(l) page in the Programmer's Reference Manual for details.

B-8 USER'S GUIDE

c Quick Reference to ed Com
mands

ed Quick Reference
Commands for Getting Started
Line Addressing Commands
Display Commands
Text Input
Deleting Text
Substituting Text
Special Characters
Text Movement Commands
Other Useful Commands and Information

QUICK REFERENCE TO ed COMMANDS

C-1

C-1

C-2

C-2

C-3

C-3

C-3

C-4

C-4

C-5

ed Quick Reference

The general format for ed commands is

(addressl,addressl)command[parameter] . . . <CR>

where addressl and address2 denote line addresses, and the parameters show
the data on which the command operates. The commands appear on your
terminal as you type them. You can find complete information on using ed
commands in Chapter 5, 11 Line Editor Tutorial (ed). 11

The following is a glossary of ed commands. The commands are grouped
according to function.

Commands for Getting Started

ed filename Accesses the ed line editor to edit a specified file.

a

p

d
<CR>

Appends text after the current line.

Ends the text input mode and returns to the command mode.

Displays the current line.

Deletes the current line.

Moves down one line in the buffer.

Moves up one line in the buffer.

w Writes the buffer contents to the file currently associated with
the buffer.

q Ends an editing session. If changes to the buffer were not
written to a file, a warning (?) is issued. Typing q a second
time ends the session without writing to a file.

QUICK REFERENCE TO ed COMMANDS C-1

eel Quick Reference

Line Addressing Commands

1, 2, 3 ••. Denotes line addresses in the buffer.

Displays the current line in the buffer .

• = Displays the current line address.

$ Denotes the last line in the buffer.

+x

-x

fabc

?abc

gjabc

vfabc

Addresses the first through the last line.

Addresses the current line through the last line.

Adds x to the current line number and displays the relative
address.

Subtracts x from the current line number and displays the
relative address.

Searches forward in the buffer and addresses the first line
after the current line that contains the pattern abc.

Searches backward in the buffer and addresses the first line
before the current line that contains the pattern abc.

Addresses all lines in the buffer that contain the pattern abc.

Addresses all lines in the buffer that do not contain the pat
tern abc.

Display Commands

p Displays the specified lines in the buffer.

n Displays the specified lines preceded by their line addresses
and a tab space.

C·2 USER'S GUIDE

Text Input

eel Quick Reference

a Enters text after the specified line in the buffer.

i Enters text before the specified line in the buffer.

c: Replaces text in the specified lines with new text.

When typed on a line by itself, ends the text input mode and
returns to the command mode.

Deleting Text

d Deletes one or more lines of text (command mode).

u Undoes the last command given (command mode).

@ Deletes the current line (in text input mode) or a command
line (in command mode).

or BACKSPACE
Deletes the last character entered as text (in input mode).

Substituting Text

address1,address2sf old_text jnew_text /command
Substitutes new_text for olLtext within the range of lines
denoted by address1,address2 (which may be numbers, sym
bols, or text). command may be g, 1, n, p, or gp.

QUICK REFERENCE TO ed COMMANDS C-3

ed Quick Reference

Special Characters

Matches any single character in search or substitution pat
terns.

* Matches zero or more occurrences of the preceding character
in search or substitution patterns.

[...] Matches the first occurrence of a pattern in the brackets.

r ...) Matches the first occurrence of a character that is not in the
brackets.

·* Matches zero or more occurrences of any characters following
the period in search or substitution patterns.

$

\

&

%

Matches the beginning of the line in search or substitution
patterns.

Matches the end of the line in search or substitution patterns.

Takes away the special meaning of the special character that
follows in search and substitution patterns.

Repeats the last pattern to be substituted.

Repeats the last replacement pattern.

Text Movement Commands

m Moves the specified lines of text after a destination line;
deletes the lines at the old location.

t Copies the specified lines of text and places the copied lines
after a destination line.

Joins the current line with the next contiguous line.

w Copies (writes) the buffer contents into a file.

r Reads in text from another file and appends it to the buffer.

C-4 USER'S GUIDE

ed Quick Reference

Other Useful Commands and Information

h Displays a short explanation for the preceding diagnostic
response (?).

H Turns on the help mode, which automatically displays an
explanation for each diagnostic response (?) during the edit
ing session.

I Displays nonprinting characters in the text.

f Displays the current file name.

f newfile Changes the current file name associated with the buffer to
newfile.

!command Allows you to temporarily escape to the shell to execute a
shell command.

ed.hup Saves the editing buffer if the terminal is hung up before a
write command.

QUICK REFERENCE TO ed COMMANDS C·S

D Quick Reference to vi Com
mands

vi Quick Reference
Commands for Getting Started

• Shell Commands
• Basic vi Commands

Commands for Positioning in the Window
• Positioning by Character
• Positioning by Line
• Positioning by Word
• Positioning by Sentence
• Positioning by Paragraph
• Positioning in the Window

Commands for Positioning in the File
• Scrolling
• Positioning on a Numbered Line
• Searching for a Pattern

Commands for Inserting Text
Commands for Deleting Text

• In Text Input Mode
• In Command Mode

Commands for Modifying Text
• Characters, Words, Text Objects
• Cutting and Pasting Text

Other Commands
• Special Commands
• Line Editor Commands

• Commands for Quitting vi

Special Options for vi

QUICK REFERENCE TO vi COMMANDS

D-1
D-1
D-1
D-2
D-2
D-2
D-3
D-3
D-4
D-4
D-4
D-4
D-4
D-5
D-5
D-5
D-6
D-6
D-6
D-6
D-6
D-7
D-7
D-7
D-8
D-9
D-9

vi Quick Reference

This appendix is a glossary of commands for the screen editor vi. The
commands are grouped according to function.

The general format of a vi command is

[x][command]text-object

where x denotes a number, and text-object shows the portion of text on which
the command operates. The commands appear on your screen as you type
them. For an introduction to the use of vi commands, see Chapter 6, 11 Screen
Editor Tutorial (vi). 11

Commands for Getting Started

Shell Commands

TERM=code

export TERM

tput init

Puts a code name for your terminal into the variable
TERM.

Conveys the value of TERM (the terminal code) to
any UNIX System program that is terminal-dependent.

Initializes the terminal so that it will function properly
with various UNIX System programs.

Before you can use vi, you must complete the first three steps
represented by the above three lines: setting the TERM variable, export
ing the value of TERM, and running the tput init command.

vi filename Accesses the vi screen editor so that you can edit a
specified file.

QUICK REFERENCE TO vi COMMANDS D-1

vi Quick Reference

Basic vi Commands

<a>

<ESC>

<h>

<j>

<k>

<1>

<X>

<CR>

<ZZ>

:w
:q

Enters text i nput mode and appends text after the cur
sor.

Escape; leaves text input mode and returns to com
mand mode.

Moves the cursor to the left one character.

Moves the cursor down one line in the same column.

Moves the cursor up one line in the same column.

Moves the cursor to the right one character.

Deletes the current character.

Carriage return; moves the cursor down to the begin
ning of the next line.

Writes changes made to the buffer to the file and quits
vi.

Writes changes made to the buffer to the file.

Quits vi if changes made to the buffer have been writ
ten to a file.

Commands for Positioning in the Window

Positioning by Character

<h> Moves the cursor one character to the left.

<BACKSPACE> Moves the cursor one character to the left.

<1> Moves the cursor one character to the right.

<space bar> Moves the cursor one character to the right.

<fx> Moves the cursor right to the specified character x.

D·2 USER'S GUIDE

<Fx>

<tx>

<Tx>

<;>

<,>

vi Quick Reference

Moves the cursor left to the specified character x.

Moves the cursor right to the character just before
the specified character x.

Moves the cursor left to the character just after the
specified character x.

Continues the search for the character specified by
the <f>, <F>, <t>, or <T> command. The ;
remembers the character speci fied and searches for
the next occurrence of it on the current l ine .

Continues the search for the character speci fied by
the <f>, <F>, <t>, or <T> command. The ,
remembers the character specified and searches for
the previous occurrence of it on the current line.

Positioning by Line

<j>

<k>

<+>

<CR>

<->

Moves the cursor down one line in the same column.

Moves the cursor up one line in the same column.

Moves the cursor down to the beginning of the next
line.

Carriage return; moves thP cursor down to thP ht>gin
ning of the next l ine.

Moves the cursor up to the beginning of the next line.

Positioning by Word

<w>

<e>

Moves the cursor to the first character in the next
word.

Moves the cursor to the first character of the previous
word.

Moves the cursor to the end of the current word.

QUICK REFERENCE TO vi COMMANDS D-3

vi Quick Reference

Positioning by Sentence

<(>

<)>

Moves the cursor to the beginning of the sentence.

Moves the cursor to the beginning of the next sen
tence.

Positioning by Paragraph

< {>

<}>

Moves the cursor t o the beginning of the paragraph .

Moves the cursor to the beginning of the next para
graph.

Positioning in the Window

<H>

<M>

<L>

Moves the cursor to the first line on the screen, or
" home. "

Moves the cursor to the middle line on the screen.

Moves the cursor to the last line on the screen.

Commands for Positioning in the File

Scrolling

<
"
f>

<
"
d>

< u>

D-4 USER'S GUIDE

Scrolls the screen forward a full window, revealing
the window of text below the current window.

Scrolls the screen down a half window, revealing lines
of text below the current window.

Scrolls the screen back a full window, revealing the
window of text above the current window.

Scrolls the screen up a half window, revealing the
lines of text above the current window.

vi Quick Reference

Positioning on a Numbered Line

<G>

<nG>

Moves the cursor to the beginning of the last line in
the buffer.

Moves the cursor to the beginning of the nth line of
the file (n = line number).

Searching for a Pattern

jpattern

?pattern

<n>

<N>

Searches forward in the buffer for the next occurrence
of pattern. Positions the cursor under the first charac
ter of pattern.

Searches backward in the buffer for the first
occurrence of pattern. Positions the cursor under the
first character of pattern.

Repeats the last search command.

Repeats the search command in the opposite direction.

Commands for Inserting Text

<a>

<i>

<O>

<0>

<ESC>

Enters text input mode and appends text after the cur
sor.

Enters text input mode and inserts text before the cur
sor.

Enters text input mode by opening a new line
immediately below the current line.

Enters text input mode by opening a new line
immediately above the current line.

Escape; returns to command mode from text input
mode (entered with any of the above commands).

QUICK REFERENCE TO vi COMMANDS D·5

vi Quick Reference

Commands for Deleting Text

In Text Input Mode

<BACKSPACE> Deletes the current character.

< w> Deletes the current word delimited by blanks.

<@> Erases the current line of text.

In Command Mode

<X>

<dw>

<dd>

<ndx>

<D>

Deletes the current character.

Deletes a word (or part of a word) from the cursor
through the next space or to the next punctuation .

Deletes the current line.

Deletes n number of text objects of type x, where x
may be a word, line, sentence, or paragraph.

Deletes the current line from the cursor to the end of
the line.

Commands for Modifying Text

Characters, Words, Text Objects

<r>

<S>

<S>

D·& USER'S GUIDE

Replan•s the current charader.

Deletes the current character and appends text u n t i l
the <ESC> command is typed.

Replaces all the characters in the current line.

Changes uppercase to lowercase or lowercase to
uppercase.

<CW>

<CC>

<ncx>

vi Quick Reference

Replaces the current word or the remaining characters
in the current word from the cursor to the next space
or punctuation with new text.

Replaces all the characters in the current line.

Replaces n number of text objects of type x, where x
may be a word, line, sentence, or paragraph.

Replaces the remaining characters in the current line,
from the cursor to the end of the line, with new text.

Cutting and Pasting Text

<p>

<yy>

<nyx>

< " lyx>

< " xp>

Places the contents of the temporary buffer (contain
ing the output of the last delete or yank command)
into the text after the cursor or below the current line.

Yanks (extracts) a specified line of text and puts it into
a temporary buffer.

Extracts a copy of n number of text objects of type x
and puts it into a temporary buffer.

Places a copy of text object x into a register named by
a letter l. x may be a word, line, sentence, or para
graph.

Places the contents of register x after the cursor or
below the current line.

Other Commands

Special Commands

< g>

<.>

Gives the line number of the current cursor position in
the buffer and modification status of the file.

Repeats the action performed by the last command.

QUICK REFERENCE TO vi COMMANDS D-7

vi Quick Reference

<u>

<U>

<J>

Undoes the effects of the last command .

Restores the current line to its state prior to present
changes.

Joins the line immediately below the current line with
the current line.

Clears and redraws the current window.

Line Editor Commands

:sh

<-d>

:n

:x,zw filename

:$

:.,$d

:r filename

:sftextfnew_textf

:sftextfnew_textfg

Tells vi that the next commands you issue will be line
editor commands.

Temporarily returns to the shell to perform some shell
commands without leaving vi.

Escapes the temporary return to the shell and returns
to vi so you can edit the current window.

Goes to the nth line of the buffer.

Writes lines from the number x through the number z
into a new file called filename.

Moves the cursor to the beginning of the last line in
the buffer.

Deletes all the lines from the current line to the last
line.

Inserts the contents of filename under the current line
of the buffer.

Replaces the first instance of text on the current line
with new_text.

Replaces every occurrence of text on the current l ine
with new_text.

:gftextfsf fnew_textfg

D-8 USER'S GUIDE

Changes every occurrence of text in the buffer to
new_text.

vi Quick Reference

Commands for Quitting vi

<ZZ>

:wq

:w filename
:q

:wl filename
:q

:ql

:q

Writes the buffer to the file and quits vi.

Writes the buffer to the file and quits vi.

Writes the buffer to the new file filename and quits vi.

Overwrites the existing file filename with the contents
of the buffer and quits vi.

Quits vi whether or not changes made to the buffer
were written to a file. Does not incorporate changes
made to the buffer since the last write (:w) command.

Quits vi if changes made to the buffer were written to
a file.

Special Options for vi

vi file1 file2 file3

:w
:n

vi -r file1

view file1

Enters three files into the vi buffer to be edited.
Those files are file1, file2, and file3 .

When more than one file has been called on a single
vi command line, writes the buffer to the file you are
editing and then calls the next file in the buffer (use :n
only after :w).
Restores the changes made to file1 that were lost
because of an interrupt in the system.

Displays file1 in the read-only mode of vi. Any
changes made to the buffer will not be allowed to be
written to the file.

QUICK REFERENCE 1'0 vi COMMANDS D·9

E Summary of Shell Command
Language

Summary of Shell Command
Language
The Vocabulary of Shell Command Language

• Special Characters in the Shell
• Redirecting Input and Output
• Executing and Terminating Processes
• Making a File Accessible to the Shell
• Variables
• Variables Used in the System

Shell Programming Constructs
• Here Document
• For Loop
• While Loop
• If. . .Then
• If . . . Then . . . Else
• Case Construction
• break and continue Statements

SUMMARY OF SHELL COMMAND LANGUAGE

E-1

E-1

E-1

E-2

E-2

E-3
E-3
E-4
E-5
E-5
E-5
E-6
E-6
E-7
E-8
E-8

Summary of Shell Command Language

This appendix is a summary of the shell command language and program
ming constructs discussed in Chapter 7, 11 Shell Tutorial . 11 The first section
reviews metacharacters, special characters, input and output redirection, vari
ables, and processes. These are arranged by topic in the order that they were
discussed in the chapter. The second section contains models of the shell pro
)',ra mming constructs .

The Vocabulary of Shell Command Language

Special Characters in the Shell

* 7 []

&:

\

II II

Metacharacters; provide a shortcut to referencing file names,
by pattern matching.

Executes commands in the background mode.

Separates commands typed on one line for sequential execu
tion.

Turns off the special meaning of the special character that fol
lows.

Enclosing single quotes; tum off the special meaning of all
characters.

Enclosing double quotes; turn off the special meaning of all
characters except $ and •

SUMMARY OF SHELL COMMAND LANGUAGE E-1

Summary of Shell Command Language

Redirecting Input and Output

<

>

>>

Redirects the contents of a file into a command.

Redirects the output of a command into a new file or
replaces the contents of an existing file with the output.

Redirects the output of a command so that it is appended to
the end of a file.

Directs the output of one command to become the input of
the next command.

'command' Substitutes the output of the enclosed command in place of
'command'.

Executing and Terminating Processes

batch

at

at -1

at -r

ps

kill PID

Submits the following commands to be processed at a time
when the system load is at an acceptable level. < · d> ends
the batch command.

Submits the following commands to be executed at a specified
time. < • d> ends the at command.

Reports which jobs are currently in the at or batch queue.

Removes the at or batch job from the queue.

Reports the status of the shell processes.

Terminates the shell process with the specified process ID
(PID).

nohup command list &
Continues background processes after logging off.

E-2 USER'S GUIDE

Summary of Shell Command Language

Making a File Accessible to the Shell

chmod u+x filcllaml'
Gives the user permission to execute the file (usefu l for shell
program files).

mv filename $HOMEfbinffilename
Moves your file to the bin directory in your home directory.
This bin holds executable shell programs that you want to be
accessible. Make sure the PATH variable in your .profile file
specifies this bin. If it does, the shell will search in
$HOME/bin for your file when you try to execute it. If your
PATH variable does not include your bin, the shell will not
know where to find your file and will be unable to execute
your command.

filename A file that contains a shell program; becomes the command
that you type to run that shell program.

Variables

positional parameter

echo

$#

s•

A numbered variable used within a shell program to refer.
ence values automatically assigned by the shell from the
arguments of the command line invoking the shell pro
gram.

A command used to pri n t th(' value of a variahiP on your
term i n a l .

A special parameter that contains the number of arguments
with which the shell program has been executed.

A special parameter that contains the values of all argu
ments with which the shell program has been executed .

named variable
A variable to which the user can give a name and assign
values.

SUMMARY OF SHELL COMMAND LANGUAGE E-3

Summary of Shell Command Language

Variables Used in the System

HOME The default variable for the cd command; denotes your
home directory.

PATH Defines the path your login shell follows to find com
mands.

CDPATH Defines the search path for the cd command .

MAIL Gives the name of the file containing your electronic mai l .

PSl PS2 Define the primary and secondary prompt strings.

TERM Defines the type of terminal.

LOGNAME Defines the login name of the user.

IFS Defines the internal field separators (normally the space,
tab, and carriage return).

TERMINFO Allows you to request that the curses and terminfo sub
routines search a specified directory tree before searching
the default directory for your terminal type.

TZ Sets and maintains the local time zone.

E-4 USER'S GUIDE

Summary of Shell Command Language

Shell Programming Constructs

Here Document

For Loop

command <<!
input lim•s
!

for variable<CR>
in this l ist of values<CR>

do the following commands<CR>
command 1 <CR>
command 2<CR>

.<CR>

.<CR>
last command<CR>

done<CR>

SUMMARY OF SHELL COMMAND LANGUAGE E-5

Summary of Shell Command Language

While Loop

lf • • • Then

while command list<CR>
do<CR>

commandl <CR>
command2<CR>

.<CR>

.<CR>
last comma11d<CR>

done<CR>

if th is command is successful<CR>
then command1 <CR>

command2<CR>
.<CR>
.<CR>

last command<CR>
fi<CR>

E·& USER'S GUIDE

Summary of Shell Command Language

lf • • • lrllttll···l!lstt

if command list<CR>
then command list<CR>
else command list<CR>

fi<CR>

SUMMARY OF SHELL COMMAND LANGUAGE E-7

Summary of Shell Command Language

Case Construction

case word<CR>
in<CR>

pattern1)<CR>
command line 1 <CR>

.<CR>

.<CR>
last command line<CR>

;;<CR>
pattern2)<CR>

command line 1 <CR>
.<CR>
.<CR>

last command line<CR>
;;<CR>
pattem3)<CR>

command line 1 <CR>
.<CR>
.<CR>

last command line<CR>
;;<CR>

esac<CR>

break and continue Statements

A break or continue statement forces the program to leave any loop and
execute the command following the end of the loop.

E·8 USER'S GUIDE

F Setting upon the Terminal

Setting the TERM Variable
Acceptable Terminal Names

Example

Windowing
Creating Windows

• Drawing Windows With a Mouse
• Drawing Windows Without a Mouse

Working with Layers

F-1
F-2

F-4

F-6

F-6
F-7
F-7

F-1 0

SETTING UP THE TERMINAL

Setting the TERM Variable

AT&T supports many types of terminals for use with the UNIX System.
Because some commands are terminal-dependent, the system must know what
type of terminal you are using whenever you log in. The system determines
the characteristics of your terminal by checking the value of a variable called
TERM, which holds the name of a terminal. If you have put the name of
your terminal into this variable, the system will be able to execute all pro
grams in a way that is suitable for your terminal .

This method of telling the UNIX System what type of terminal you are
using is called setting the terminal configuration. To set your terminal confi
guration, type the command lines shown on the following screen, substituting
the name of your terminal for terminaLname:

$ TERM=terminaLname<CR>
$ export TERM<CR>
$ tput init<CR>

These lines must be executed in the order shown; otherwise, they will not
work. Also, this procedure must be repeated every time you log in. There
fore, most users put these lines into a file called .profile that is automatically
executed every time they log in. For details about the .profile file, see
Chapter 7.

The first two lines in the screen tell the UNIX System shell what type of
terminal you are using. The tput init command line instructs your terminal to
behave in ways that the UNIX System expects a terminal of that type to
behave. For example, it sets the terminal's left margin and tabs if those capa
bilities exist for the terminal .

SETTING UP THE TERMINAL F-1

Setting the TERM Variable

The tput command uses the entry in this database for your terminal to
ma kl• tNminal -dependent capabi l ities and information available to the shel l .
Because the values of these capabil i ties differ for t•ach type of t<'rm ina l , you
must execute the tput init command line every time you change the TERM
variable.

For each terminal type, a set of capabilities is defined in a database. This
database is usually found in either the jusrjlibjterminfo or
jusrjlib.COREterm directory, depending on the system.

Every system has at ll•ast om• of these di r!'doril•s; soml' may havl' not h .
Your system administrator can tel l you wht•ther your system has thl• ter
minfo and/or the .COREterm directory.

The following sections describe how you can determine what
terminaLnames are acceptable. Further information about the capabilities in
the terminfo database can be found on the terminfo(4) manual page in the
Programmer's Reference Manual.

Acceptable Terminal Names

The UNIX System recognizes a wide range of terminal types. Before you
put a terminal name into the TERM variable, you must make sure that your
tl•rm ina l is within that rangl'.

You must also verify that the name you put into the TERM variable is a
recognized terminal name. There are usually at least two recognized names:
the name of the manufacturer and the model number. However, there are
several ways to represent these names: by varying the use of uppercase and
lowercase, by using abbreviations, and so on. Do not put a terminal name in
the TERM variable until you have verified that the system recognizes it.

The tput command provides a quick way to make sure your terminal is
supported by your system. Type

tput -TterminaLname longname<CR>

If your system supports your terminal, it will respond with the complete name
of your terminal. Otherwise, you will get an error message.

F-2 USER'S GUIDE

Setting the TERM Variable

To find an acceptable name that you can put in the TERM variable, find a
listing for your terminal in either of two d irPctories: jusrjlibjterminfo or
jusrjlibj.COREterm. Each of thesl' d i rl:'ctories is a col l ection of fi l l's with
si ngle-character names. Each file, in turn, holds a l ist of terminal names that
all begin with the name of the file. (This name can be either a letter, such as
the initial A in AT&T, or a number, such as the initial 5 in 5425 .) Find the
fi le whose name matches the first character of your terminal's name. Then list
the file's contents and look for your terminal .

You can also check with your system administrator for a list of terminals
supported by your system and the acceptable names you can put in the
TERM variable.

SETTING UP THE TERMINAL F·3

Example

Suppose your terminal is an AT&T Teletype Model 5425. Your login is
jim and you are currently in your home directory. First, you verify that your
system supports your terminal by running the tput command. Next, you find
an acceptable name for it in the fusrflibf.COREtermfA directory. The fol
lowing screen shows which commands you need to do this:

$ tput -T5425 longname<CR>
AT&T 4425/5425
$ cd fusrflibf.COREtermfA<CR>
$ Is
A'l'l'4410
A'l'l'4415
A'l'l'4418
A'l'l'4424
A'l'l'4424-2
A'l'l'4425
A'l'l'4426
A'l'1'513
A'l'1'5410
A'l'1'5418
A'l'1'5420
A'l'1'5420-2
A'l'1'5425
A'l'1'5620
A'l'l'6100C'r
ATl'Pl'SOS
$

Now you are ready to put the name you found, ATT5425, in the TERM vari
able. Whenever you do this, you must also export TERM and execute. tput
init:

F-4 USER'S GUIDE

$ TERM=ATT5425<CR>
$ export TERM<CR>
$ tput init<CR>
$

Example

The UNIX System now knows what type of terminal you are using and
will execute commands appropriately.

SETTING UP THE TERMINAL F-5

Windowing
The area of the terminal screen in which you work and display files is

similar to the window of a house: both are devices that frame a part of a
whole (whether the world or a file) for viewing. For this reason, the working
area of a terminal screen is called a window. Until now we have assumed
that your terminal screen has only one window (the whole screen). However,
some terminals allow you to create more than one window on your screen.
Each window on a windowing terminal has its own shell and functions almost
exactly like a separate terminal . To help you take advantage of this feature,
the UNIX System provides a set of software tools called the Basic Windowing
Utilities.

We have already discussed how you can perform several tasks simultane
ously with one screen by using tools such as background mode and the at
command. With multiple windows, you have the additional capability of
working interactively with more than one process at a time. You can keep
track of several processes at once or look at more than one file simultane
ously. If you have a windowing terminal and the Basic Windowing Utilities
are installed on your UNIX System, you can use the techniques described in
this section to make efficient use of your terminal.

Creating Windows

To create a window, you must draw it on your screen and set up the shell
associated with it. The shell is the command interpreter; it allows you to
work interactively with the UNIX System. Without a shell assigned to it, a
window is simply a drawing on your screen.

The layers command allows you to draw a window on any windowing
terminal. If you execute it without any arguments, you must use the mouse to
draw a window. If you give specifications for windows as arguments to the
layers command, you can program the drawing of windows and avoid using
the mouse; your windows will be drawn automatically by the layers com
mand.

F-6 USER'S GUIDE

Windowing

Drawing Windows With a Mouse

The easiest way to draw windows is with the mouse. First, enter the
layers command:

layers<CR>

Next, prPss a button on your mouse; a pop-u p menu of layer opera tions wil l
a ppear on the screen . Choose the menu opt ion for drawing windows (such as
New), and use tht� mouse to draw one (st't.' the owner's manual for the tNminal
for instruct ions) .

To create more than one window, reinvoke the menu, make your selec
tion, and draw with the mouse. (You cannot issue the layers command
again.) In response, the terminal draws your window(s) on the screen and
then waits for commands from the terminal.

Drawing Windows Without a Mouse

If you prefer to program the drawing of windows, you must first create a
file containing the number and dimensions of the windows you want. Then
run the layers command with the name of that file as an argument and the -f
option. This option tells the command to read your specifications file. The
general command line format is

layers -f file<CR>

The specifications file must contain a line for each window you want in the
following format:

origin_x origin_y corner_x corner_y command_list

The first four fields of the line define the coordinates of the window. The
origin_x and origin_y entries specify the position on the screen of the top, left
hand comer of the window, the point at which the command starts drawing.
The corner_x and corner_y entries specify the position of the lower, righthand
corner.

SETTING UP THE TERMINAL F-7

Windowing

origin_x ori�in_v

comer_x comcr_y

For example, to create a large rectangular window and a small one, write
a specification file with the following lines:

0
650

0
0

650
792

300
1 75

Windows drawn to these specifications will look like this:

The fifth field of each line in your specifications file is command_list.
Here you must enter a command that will assign a shell to the window. You
can also assign a particular terminal type or an editor to the window in this
field.

F-8 USER'S GUIDE

Windowing

The command that allows you to assign a shell to your window is exec
(short for execute). Enter this command with an argument speci fying the type
of shell you want to run in the window. To run the same type of shell that
normally runs in your terminal, enter the fol lowing:

exec $SHELL

To run the standard UNIX System shell , enter

exec fbin/sh

You may also want your window to provide features that are available
only on a type of terminal other than the one you are using. Specify the ter
minal type you want and assign it to the TERM variable. If you include this
assignment in the commands_list field, place it before the exec command.
Separate all three requests (terminal type, TERM assignment, and exec com
mand) with semicolons and leave spaces on both sides of each semicolon. For
example, say you want your window to provide the features of an HP 2621
terminal running the same type of shell that you normally run on your termi
nal . Type the commands_list field in your specifications file as follows:

jim ; exec $SHELL

To sum mari ze, the speci fica tions fi le must con tain a l i ne for l'ach wi ndow
that you want to create, and each line must include five fields: four coord i
nates for drawing the window and one command line that assigns a shell to
the window. The command line may also include the assignment of a partic
ular editor or terminal to the window. The following example of a specifica
tions file incorporates the previous examples of fields:

B
675
0
0

0
0

200
BOO

650
BOO

BOO
792

300
175
900
1024

exec $SHELL
exec lbinlsh
jim ; exec $SHELL
hp262 1 ; Tmt=hp262 1 ; exec $SHELL

SETTING UP THE TERMINAL F-9

Windowing

When your specifications fi le is ready, run the layers command as fol lows:

layers -f specifications_file<CR>

The windows you have requested will be drawn on the screen, and the shells
you assigned to them will be activated and ready for your commands.

Working with Layers

Once you have windows on your screens, you need to learn how to work
with them: how to navigate among them, use each one as a terminal, and
delete them. You can perform all these tasks by pressing different buttons on
the mouse (see the owner's manual for your terminal for specific instructions) .

Programmers who want to write their own programs for creating or using
windows can do so with the library of functions called libwindows. (See the
libwindows(3X) page in the Programmer's Reference Manual.)

F-t O USER'S GUIDE

Glossary
acoustic coupler

A device that permits transmission of data over an ordinary tele
phone line. When you place a telephone handset in the coupler,
you link a computer at one end of the phone line to a peripheral
device, such as a user terminal, at the other end.

address
Generally, a number that indicates the location of information in the
computer's memory. In the UNIX System, the address is part of an
editor command that specifies a line number or range.

append mode
A text editing mode in which the characters you type are entered as
text into the text editor's buffer. In this mode you enter (append)
text after the current position in the buffer. See text input mode;
compare with command mode and insert mode.

argument
The element of a command line that specifies data on which a com
mand is to operate. Arguments follow the command name and can
include numbers, letters, or text strings. For instance, in the com
mand lp -m myfile, lp is the command and myfile is the argu
ment. See option.

ASCII
(pronounced as'-kee) American Standard Code for Information Inter
change, a standard for data transmission that is used in the UNIX
System. ASCII assigns sets of Os and ls to represent 1 28 characters,
including alphabetical characters, numerals, and standard special
characters, such as #, $, %, and &.

AT&T 3B Computers
Computers manufactured by AT&T Technologies, Inc.

background
A type of program execution where you request the shell to run a
command away from the interaction between you and the computer
(11 in the background 11). While this command runs, the shell
prompts you to enter other commands through the terminal.

GLOSSARY G·1

Glossary

baud rate
A measure of the speed of data transfer from a computer to a peri
pheral device (such as a terminal) or from one device to another.
Common baud rates are 300, 1 200, 4800, and 9600. As a general
guide, divide a baud rate by 1 0 to get the approximate number of
English characters transmitted each second.

buffer
A temporary storage area of the computer used by text editors to
make changes to a copy of an existing file. When you edit a file, its
contents are read into a buffer where you make changes to the text.
For the changes to become part of the permanent file, you must
write the buffer contents back into the file. See permanent file.

child directory
See subdirectory.

command
The name of a file that contains a program that can be executed by
the computer on request. Compiled programs and shell programs
are forms of commands.

command file
See executable file.

command language interpreter
A program that acts as a direct interface between you and the com
puter. In the UNIX System, a program called the shell takes com
mands and translates them into a language understood by the com
puter.

command line
A line containing one or more commands, ended by typing a car
riage return (<CR>) . The line may also contain options and argu
ments for the commands. You type a command line to the shell to
instruct thl' computer to perform one or more tasks.

G-2 USER'S GUIDE

Glossary

command mode
A text editing mode in which the characters you type are interpreted
as editing commands. This mode permits actions such as moving
around in the buffer, deleting text, or moving lines of text. See text
input mode, compare with append mode and insert mode.

context search
A technique for locating a specified pattern of characters (called a
string) when in a text editor. Editing commands that cause a context
search scan the buffer, looking for a match with the string specified
in the command. See string.

control character
A nonprinting character that is entered by holding down the
<CTRL> key and typing a character. Control characters are often
used for special purposes. For instance, when viewing a long file on
your screen with the cat command, typing CTRL-s (s) stops the
display so you can read it, and typing CTRL-q (q) continues the
display.

current directory
The directory in which you are presently working. You have direct
access to all files and subdirectories contained in your current direc
tory. The shorthand notation for the current directory is a dot (.) .

cursor
A cue printed on the terminal screen that indicates the position at
which you enter or delete a character. It is usually a rectangle or a
blinking underscore character.

default
An automatically assigned value or condition that exists unless you
explicitly change it. For example, the shell prompt string has a
default value of $ unless you change it.

delimiter
A character that logically separates words or arguments on a com
mand line. Two frequently used delimiters in the UNIX System are
the space and the tab.

diagnostic
A message printed at your terminal to indicate an error encountered
while trying to execute some command or program. Generally, you
need not respond directly to a diagnostic message.

GLOSSARY G-3

Glossary

directory

disk

A type of file used to group and organize other files or directories.
You cannot directly enter text or other data into a directory.

A magnetic data storage device consisting of several round plates
similar to phonograph records. Disks store large amounts of data
and allow quick access to any piece of data.

electronic mail
The feature of an operating system that allows computer users to
exchange written messages via the computer. The UNIX System
mail command provides electronic mail in which the addresses are
the login names of users.

environment
The conditions under which you work while using the UNIX Sys
tem. Your environment includes those things that personalize your
login and allow you to interact in specific ways with the UNIX Sys
tem and the computer. For example, your shell environment
includes such things as your shell prompt string, specifics for back
space and erase characters, and commands for sending output from
your terminal to the computer.

erase character
The character you type to delete the previous character you typed.
The UNIX System default erase character is # ; some users set the
erase character to the BACKSPACE key.

escape
Tht• pron•ss of gl'l t ing i n to the slll'll from wi th in a l l'XI l'd i t or or
other program.

execute
The computer's action of running a program or command and per
forming the indicated operations.

executable file
A file that can be processed or executed by the computer without
any further translation. When you type in the file name, the com
mands in the file are executed. See shell procedure.

G-4 USER'S GUIDE

file

Glossary

A collection of information in the form of a stream of characters.
Files may contain data, programs, or other text. You access UNIX
System files by name. See ordinary file, permanent file, and exe
cutable file.

file name
A sequence of characters that denotes a file. (In the UNIX System, a
slash character (/) cannot be used as part of a file name.)

file system
A collection of files and the structure that links them together. The
UNIX file system is a hierarchical structure. (For more detail, see
Appendix A, Summary of the File System.)

filter
A command that reads the standard input, acts on it in some way,
and then prints the result as standard output.

final copy
The completed, printed version of a file of text.

foreground
The normal type of command execution. When executing a com
mand in foreground, the shell waits for one command to end before
prompting you for another command. In other words, you enter
something into the computer and the computer " replies " before you
enter something else.

full-duplex
A type of data communication in which a computer system can
transmit and receive data simultaneously. Terminals and modems
usually have settings for half-duplex (one-way) and full-duplex com
munication; the UNIX System uses the full-duplex setting.

full path name
A path name that originates at the root directory of the UNIX Sys
tem and leads to a specific file or directory. Each file and directory
in the UNIX System has a unique full path name, sometimes called
an absolute path name. See path name.

GLOSSARY G-5

Glossary

global
A term that indicates the complete or entire fi le . While normal l:'di
tor commands commonly act on only the first instance of a pattern
in the file, global commands can perform the action on all instances
in the file.

hardware
The physical machinery of a computer and any associated devices .

hidden character
One of a group of cha ra ch•rs with in thl• s tandard ASC I I character set
that are not printable. Characters such as backspace, escape, and
<

�
d> are examples.

home directory
The directory in which you are located when you log in to the UNIX
System, also known as your login directory.

inputjoutput
The path by which information enters a computer system (input)
and leaves the system (output). A terminal keyboard is an input
device, and a terminal display is an output device.

insert mode
A text editing mode in which the characters you type are entered as
text into the text editor's buffer. In this mode you enter (insert) text
before the current position in the buffer. See text input mode; com
pare with append mode and command mode.

interactive
Describes an operating system (such as the UNIX System) that can
handle immediate-response communication between you and the
computer. In other words, you interact with the computer from
moment to moment.

line editor
An editing program in which text is operated upon on a line-by-line
basis within a file. Commands for creating, changing, and removing
text use line addresses to determine where in the file the changes are
made. Changes can be viewed after they are made by displaying
the lines changed. See text editor; compare with screen editor.

G-6 USER'S GUIDE

Glossary

login
The procedure used to gain access to the UNIX Operating System .

login directory
See home directory.

login name
A string of characters used to identify a user. Your login name is
different from other login names.

log off
The procedure used to exit the UNIX Operating System.

metacharacter
A subset of the sc>t of specia l charal·ters that have spt•da l nwa n i ng to
the shel l . The metacharacters are •, ?, and thc> pai r []. Ml'tacharac
ters are used in patterns to match file names.

mode
In general, a particular type of opera tion (for example, an editor's
append mode). In relation to the file system, a mode is an octal
number used to determine who can have access to your files and
what kind of access they can have. See permissions.

modem
A device that connects a terminal and a computer by way of a tele
phone line. A modem converts digital signals to tones and converts
tones back to digital signals, allowing a terminal and a computer to
exchange data over standard telephone lines.

multi-tasking
The ability of an operating system to execute more than one pro
gram at a time.

multi-user
Thl' a bi l i ty o f a n opl'ra t in� systt•m to su pport Sl'Vl'ra l usPrs on t lw
systl'm a t t lw sanw t i m t• .

nroff
A text formatter available as an add-on to the U N I X System. You
can use the nroff program to produce a formatted on-line copy or a
printed copy of a file. See text formatter.

GLOSSARY G-7

Gloaaary

operating system
The software system on a computer under which all other software
runs. The UNIX System is an operating system.

option
Special instructions that modify how a command runs. Options are
a type of argument that follow a command and usually precede
other arguments on the command line. By convention, an option is
preceded by a minus sign (-); this distinguishes it from other argu
ments. You can specify more than one option for some commands
given in the UNIX System. For example, in the command
Is -1 -a directory, -1 and -a are options that modify the Is com
mand. See argument.

ordinary file
A file, containing text or data, that is not executable. See executable
file.

output
Information processed in some fashion by a computer and delivered
to you by way of a printer, a terminal, or a similar device.

parameter
A special type of variable used within shell programs to access
values related to the arguments on the command line or the
environment in which the program is executed . See positional
parameter.

parent directory
The directory immediately above a subdirectory or file in the file
system organization. The shorthand notation for the parent direc
tory is two dots (. .) .

parity
A method used by a computer for checking that the data received
matches the data sent.

password
A code word known only to you that is called for in the login pro
cess. The computer uses the password to verify that you may
indeed use the system.

G-8 USER'S GUIDE

Glossary

path name
A sequence of directory names separated by the slash character (/)
and ending with the name of a file or directory. The path name
defines the connection path between some directory and the named
file.

peripheral device
An auxiliary device, under the control of the main computer, that is
used mostly for input, output, and storage functions. Some exam
ples include terminals, printers, and disk drives.

permanent file
The data stored permanently in the file system structure. To change
a permanent file, you can make use of a text editor, which maintains
a temporary work space, or buffer, apart from the permanent files.
Once changes have been made to the buffer, they must be written to
the permanent file to make the changes permanent. See buffer.

permissions

pipe

Access modes for directories and files that permit or deny system
users the ability to read, write, andjor execute the directories and
files. You determine the permissions for your directories and files by
changing the mode for each one with the chmod command .

A method of redirecting the output of one command to be the input
of another command. It is named for the I character, which redirects
the output. For example, the shell command who I we -1 pipes
output from the who command to the we command, telling you the
total number of people logged into your UNIX System.

pipeline
A series of filters separated by the I character. The output of each
filter becomes the input of the next filter in the line. The last fil ter
in the pipeline writes to its standard output or may be redirected to
a file. See filter.

GLOSSARY G-9

Glossary

positional parameter
A numbered variable used within a shel l procedure to access the
strings specified as arguments on the command line invoking the
shell procedure. The name of the shell procedure is positional
parameter $0.
See variable and shell procedure.

prompt
A cue displayed at your terminal by the shell, telling you that the
shell is ready to accept your next request. The prompt can be a
character or a series of characters. The UNIX System default prompt
is the dollar sign character ($).

printer
An output device that prints the data it receives from the computer
on paper.

process
Generally a program that is at some stage of execution. In the UNIX
System, it also refers to the execution of a computer environment,
including contents of memory, register values, name of the current
directory, status of files, information recorded at login time, and
various other items.

program
The instructions given to a computer on how to do a specific task.
Programs are user-executable software.

read-ahead capability
The ability of the UNIX System to read and interpret your input
while sending output information to your terminal in response to
previous input. The UNIX System separates input from output and
processes each correctly.

relative path name
The path name to a file or directory that varies in relation to the
directory in which you are currently working.

remote system

root

A system other than the one on which you are working.

The source directory of all files and directories in the file system.
The root is designated by the slash character (/).

G-1 0 USER'S GUIDE

Glossary

screen editor
An ed i ting program in which text is opera ted on relat ive to lht• posi
t ion of t ht• cu rsor on a v isual d i splay. Com mands for t•n h•ri ng,
changing, and removing text involve moving the cursor to the area
to be altered and performing the necessary operation. Changes are
viewed on the terminal display as they are made. See text editor;
compare with line editor.

search pattern
See string.

search string
See string.

secondary prompt
A cue displayed at your terminal by the shell to tell you that the
command typed in response to the primary prompt is incomplete.
The UNIX System default secondary prompt is the greater-than char
acter (>).

shell
A UNIX System program that handles the communication between
you and the computer. The shell is also known as a command
language interpreter because it translates your commands into a
language understandable by the computer. The shell accepts com
mands and causes the appropriate program to be executed.

shell procedure
An executable file that is not a compiled program. A shell procedure
calls the shell to read and execute commands contained in a file.
This lets you store a sequence of commands in a file for repeated
use. It is also called a shell program or command file. See execut
able file.

silent character
See hidden character.

software
Instructions and programs that tell the computer what to do. Con
trast with hardware.

GLOSSARY G-1 1

Glossary

source code
The uncompiled version of a program written in a language such as
C or Pascal. The source code must be translated to machine
language by a program known as a compiler before the computer
can execute the program.

special character
A character having special meaning to the shell program and used
for common shell functions such as file redirection, piping, back
ground execution, and file name expansion. The special characters
include <, >, I , ;, &, •, ?, [, and) .

special file
A file, called a device driver, used as an interface to an input/output
device, such as a user terminal, a disk drive, or a line printer.

standard input
An open file that is normally connected directly to the keyboard.
Standard input to a command normally goes from the keyboard to
this file and then into the shell. You can redirect the standard input
to come from another file instead of from the keyboard; use an argu
ment in the form < file. Input to the command will then come from
the specified file.

standard output
An open file that is normal l y connE'ctt•d d i rectly to a primary ou tpu t
device, such as a terminal printer or snC't' n . Standard output from
the computer normally goes to this fi lE' and then to the outpu t dt•v
ice. You can redirect the standard output into another file instead of
to the printer or screen; use an argument in the form > file. Output
will then go to the specified file.

string
Designation for a particular group or pattern of characters, such as a
word or phrase, that may contain special characters. In a text editor,
a context search interprets the special characters and attempts to
match the specified pattern with a string in the editor buffer.

string variable
A sequence of characters that can be the value of a shell variable.
See variable.

G-t2 USER'S GUIDE

subdirectory
A directory pointed to by a directory one level above it in the file
system organization; also called a child directory.

system administrator
The person who monitors and controls the computer on which your
UNIX System runs, sometimes referred to as a super-user.

terminal
An inputjoutput device connected to a computer system, usually
consisting of a keyboard with a video display or a printer. A termi
nal allows you to give the computer instructions and to receive
information in response.

text editor
Software for creating, changing, or removing text with the aid of a
computer. Most text editors have two modes: an input mode for
typing in text and a command mode for moving or modifying text.

Two examples are the UNIX System editors, ed and vi. See line
editor and screen editor.

text formatter
A program that prepares a file of text for printed output. To make
use of a text formatter, your file must also contain some special com
mands for structuring the final copy. These special commands tell
the formatter to justify margins, start new paragraphs, set up lists
and tables, place figures, and so on. Two text formatters available as
add-ons to your UNIX System are nroff and troff.

text input mode
A text editing mode in which the characters you type are entered as
text into the text editor's buffer. To execute a command, you must
leave text input mode. See command mode; compare with append
mode and insert mode.

timesharing

tool

A method of operation in which several users share a common com
puter system seemingly simultaneously. The computer interacts
with each user in sequence, but the high-speed operation makes it
seem that the computer is giving each user its complete attention.

A package of software programs.

GLOSSARY G-1 3

Glossary

troff

tty

A text formatter available as an add-on to the UNIX System. The
troff program drives a phototypesetter to produce high-quality
printed text from a file. See text formatter.

Historically, the abbreviation for a teletype terminal. Today, it is
generally used to denote a user terminal.

user
Anyone who uses a computer or an operating system.

user-defined
Something determined by the user.

user-defined variable
A named variable given a value by the user. See variable.

UNIX System
A general-purpose, multi-user, interactive, time-sharing operating
system developed by AT&T Bell Laboratories. The UNIX System
allows limited computer resources to be shared by several users and
efficiently organizes the user's interface to a computer system.

utility
Software used to carry out routine functions or to assist a program
mer or system user in establishing routine tasks.

variable
A symbol whose value may change. In the shell, a variable is a
symbol representing some string of characters (a string value).
Variables may be used in an interactive shell as well as within a
shell procedure. Within a shell procedure, positional parameters and
keyword parameters are two forms of variables. (Keyword parame
ters are discussed fully in 11 Shell Commands and Programming. 11)

video display terminal
A terminal that uses a television-like screen (a monitor) to display
information. A video display terminal can display information much
faster than printing terminals.

G-14 USBR'S GUIDE

Glossary

visual editor
See screen editor.

working directory
See current directory.

GLOSSARY G-1 5

Index

Acceptable Terminal Names F-2
Accessing and Manipulating Files . . .

3-30
Adding a File to the Buffer . . . 6-87
Adding Commands to Your .profile

. . . 7-90
Adding Your Signature . . . 9-28
Advanced Commands . . . 3-64
Answers to Exercises . . . 5-96, 6-97,

7-99
Appending Output to an Existing

File: the >> Symbol . . . 7-1 6
Appending Text . . . 6-54
Appending Text: the a Command . . .

5-34
Assigning a Value to a Variable . . .

7-52
Banner-Page Options . . . 3-84
Basic Commands . . . 3-30
Basic UNIX System Commands . . .

B-1
Basic vi Commands . . . D-2
break and continue Statements . . .

E-8
Calling Another UNIX System: the

cu Command . . . 9-70
Canceling a Request . . . 3-86
Case Construction . . . E-8
Catching Interrupts . . . 8-27
Changing a Request . . . 3-85
Changing Lowercase to Uppercase

and Vice Versa . . . 6-83
Changing Parts of the Message

Header . . . 9-27
Changing Text . . . 6-70
Changing Text: the c Command . . .

5-39
Changing Your Current Directory:

the cd Command . . . 3-25

Changing Your Environment . . . 6-5
Character Sets and Print Wheels . . .

3-82
Character String Addresses . . . 5-22
Characters, Words, Text Objects . . .

D-6
Clearing and Redrawing the

Window . . . 6-82
Combining Background Mode and

Output Redirection . . . 7-1 9
Command Language Exercises . . .

7-35
Command Language Exercises . . .

7-99
Command Line Format . . . 9-68,

9-71, 9-76
Command Line Options . . . 9-19
Command Line Syntax . . . 9-51
Command Prompt . . . 2-7
Commands . . . 1-1 1
Commands for Deleting Text . . . D-6
Commands for Getting Out of mailx

. . . 9-40
Commands for Getting Started . . .

C-1, D-1
Commands for Inserting Text . . . D-5
Commands for Modifying Text . . .

D-6
Commands for Positioning in the

File . . . D-4
Commands for Positioning in the

Window . . . D-2
Commands for Quitting vi . . . D-9
Commands for Reading and

Deleting Mail . . . 9-33
Commands for Replying to Mail . . .

9-39
Commands for Saving Mail . . . 9-38
Comments . . . 7-60

INDEX 1-1

Index --

Communicating Electronically . . .
4-12

Conclusion . . . 5-93
Conditional Constructs . . . 7-72
Connecting to a Remote Terminal :

the ct Command . . . 9-67
Content Type . . . 3-83
Copy Lines of Text . . . 5-76
Copying a Group of Files: the copy

Command . . . 3-45
Copying or Moving Text Using

Registers . . . 6-78
Copying Text . . . 6-77
Correcting Typing Errors . . . 2-8
Counting Lines, Words, and Charac-

ters in a File: the we Command
. . . 3-54

Creating a bin Directory for
Executable Files . . . 7-39

Creating a File . . . 6-7
Creating a Simple Shell Program . . .

7-37
Creating an rje Directory . . . 7-93
Creating Background and Fore

ground Jobs . . . 8-1 2
Creating Command Scripts . . . 8-1 6
Creating Directories: the mkdir

Command . . . 3-1 5
Creating Text . . . 5-34, 6-54
Cn•ating Windows . . . F-6
< T R L· ll Command . . . 6-42
< TR J . -d Command . . . 6-4 1
CTRL-f Command . . . 6-40
CTRL-u Command . . . 6-43
Current File Name . . . 5-89
Customizing Your Computing

Environment . . . 4-7
Cutting and Pasting Text . . . D-7
Cutting And Pasting Text

Electronically . . . 6-76
Debugging Programs . . . 7-86

1·2 USER'S GUIDE

Delete Commands in Command
Mode . . . 6-62

Deleting Lines . . . 6-64
Deleting Lines: the d Command . . .

5-44
Deleting Mail . . . 9-37
Deleting Paragraphs . . . 6-64
Deleting Text . . . 5-44, 6-60
Deleting Text After the Cursor . . .

6-65
Deleting Text . . . C-3
Deleting the Rest of the Bu ffer . . .

6-87
Deleting Words . . . 6-62
Directories . . . 1-8
Display Commands . . . C-2
Display Nonprinting Characters . . .

5-88
Displaying a File's Contents: the

cat, more, pg, and pr
Commands . . . 3-32

Displaying Text Alone: the p
Command . . . 5-3 1

Displaying Text i n a File . . . 5-3 1
Displaying Text with Line

Addresses: the n Command . . .
5-32

Drawing Windows With a Mouse . . .
F-7

Drawing Windows W i thou t a Mous!'
. . . F-7

ed Qu ick l{l'fl'rl'tll'e . . . C - 1
Ed i ting Mu l tiple Fi les . . . 6-93
Edi ting Text: the Command Mode

. . . 6- 10
Editing the Message . . . 9-22
Enabling and Disabling a Printer . . .

3-88
Escape to the Shell . . . 5-91
Escaping the Delete Function . . . 5-4 7
Establishing Contact with the UNIX

System . . . 2-1 4
Example F-4
Exchanging Messages . . . 9-2
Executing a Shell Program . . . 7-38
Executing and Terminating

Processes . . . 7-25
Executing and Terminating

Processes . . . E· 2
Executing Commands on a Remote

System: the uux Command . . .
9-75

Executing Commands Sequentially:
the Semicolon (;) . . . 7-1 1

Exercise 1 . . . 5-1 4, 5-96, 6-22, 6-97
Exercise 2 . . . 5-30, 5-98, 6-52, 6·98
Exercise 3 . . . 5-101 , 5·42, 6-100,

6-59
Exercise 4 . . . 5-104, 5-58, 6-101 ,

6-67
Exercise 5 . . . 5-107, 5·71 , 6·102,

6-80
Exercise 6 . . . 5-1 1 0, 5-84, 6-102,

6-96
Exercise 7 . . . 5-1 13, 5·95
Exiting from mailx . . . 9-31
File System . . . 1-7
File System Structure . . . A-1
Finding the Line Number . . . 6-86
Fixing Transposed Letters . . . 6-76
For Loop . . . E-5
Frequently Used copy Options . . .

3-47
Frequently Used Is Options . . . 3-19
Full Path Names . . . 3-7
General Format of ed Commands . . .

5-15
Getting Printer Status and

Information: lpstat . . . 3-86
Getting Ready: Do You Have

Permission? . . . 9-49
Getting Started . . . 2-1 , 5-3, 6-4

Global Substitution . . . 5-54
Glossary . . . G-1
Go to a Specified Line . . . 6-43
Help Commands . . . 5-85
here Document . . . 7-60
Here Document . . . E-5

Index

How Commands Are Executed . . .
1-14

How Does a Text Editor Work? . . .
4-2

How the File System is Structured . . .
3-2

How the UNIX System Works . . . 1-3
How the uucp Command Works . . .

9-55
How to Add Text . . . 6-1 7
How to Create Text . . . 5-4
How to Create Text: the Append

Mode . . . 6-8
How to Delete a Line of Text . . . 5-7
How to Delete in Text Input Mode

. . . 5-47
How to Delete Text . . . 6-15
How to Display Text . . . 5-5
How to Enter ed . . . 5-3
How to Execute Commands . . . 1-12
How to Leave Append Mode . . . 6-9
How to Manage Incoming Mail . . .

9-32
How to Move the Cursor . . . 6-10
How to Move Up or Down in the

File . . . 5-9
How to Quit the Editor . . . 5-1 1
How to Save the Buffer Contents in

a File . . . 5-10
How to Send Messages: the Tilde

Escapes . . . 9-20
Identifying Differences Between

Files: the diff Command . . .
3-64

If . . . Then . . . E-6

INDEX 1·3

Index

J f. . . Tht•n . . . EJse . . . E-7

In Command Mode . . . D-6

I n Text Input Mode . . . D-6

Incorporating a Message from Your
Mailbox into a Reply . . . 9-26

Incorporating Existing Text into
Your Message . . . 9-24

Input and Output Redirection . . .

7-1 3
Inserting Text . . . 6-54
Inserting Text: the i Command . . .

5-37
Introducing the Line Editor . . . 5- 1
Joining Contiguous Lines . . . 5-79
Joining Two Lines . . . 6-82
Keeping a Record of Messages You

Send . . . 9-28
Kernel . . . 1-5
Keyboard Characteristics . . . 2-4
Line Addressing . . . 5- 1 6
Line Addressing Commands . . . C-2
Line Editor . . . 4-4
Line Editor Commands . . . D-8
Line Numbers . . . 6-44
Line Positioning . . . 6-27
Listing the Contents of a Directory:

the Is Command . . . 3- 1 7

Logging Off . . . 2-24
Login Procedure . . . 2- 1 6
Looping . . . 7-66
I .P Print Service . . . 3-76

mail . . . 9-3
mailx . . . 9-1 6
mailx Command Summary . . . 9-4 1
mailx Overview . . . 9-1 7
Making a Duplicate Copy of a File:

the cp Command . . . 3-43
Making a File Accessible to the

Shell . . . E-3
Making Global Changes . . . 6-88
Managing Incoming Mail . . . 9-1 2

1-4 USER'S GUIDE

MPssagPs from t lw Pri n t Sl·rv in• . . .
3-84

Metacharacter That Matches Al l

Characters: the Asterisk (*) . . .
7-4

Metacharacter That Matches One
Character: the Question Mark
(?) . . . 7-6

Metacharacters . . . 7-4
Metacharacters That Match One of a

Set: Brackets ([]) . . . 7-8

Minus Sign Motion Command . . .
6-2 7

Modes of Operation . . . 4-4
Modifying Text . . . 6-68
Modifying Your Login Environment

. . . 7-90

Move Lines of Text . . . 5-73
Moving and Renaming a File: the

mv Command . . . 3-50

Moving Text . . . 5-73, 6-76
Moving the Cursor Around the

Screen . . . 6-23
Moving the Cursor to the Beginning

or End of a Line . . . 6-24

Moving the Cursor to the Right or
Left . . . 6- 1 2

msglist Argument . . . 9-32
Named Variables . . . 7-50

Naming Directories and Pi lt•s . . . 3- 1 4

Networking . . . 9-67

No Pi l t• Breaks betwt•en Fi lt•s . . . 3-H4

Notational Conventions xv
Numerical Addresses . . . 5- 1 6
Obtaining a Login Name . . . 2- 1 3
Obtaining the Status o f Runn ing

Processes . . . 7-3 1
Opening a Line for Text . . . 6-56

Ordinary Files . . . 1-7
Organizing a Directory . . . 3- 1 5

Other Commands . . . D- 7

Other Useful Commands and In for
mation . . . 5-85, C-5

Page Size and Pitch Settings . . . 3-78
Pages and Copies to be Printed . . .

3-80
Password . . . 2-1 6
Path Names . . . 3-7
Pipeline Using the cut and date

Commands . . . 7-20
Plus Sign Motion Command . . . 6-27
Positional Parameters . . . 7-41
Positioning by Character . . . D-2
Positioning by Line . . . D-3
Positioning by Paragraph . . . D-4
Position ing by Sentence . . . D-4
Positioning by Word . . . D-3
Positioning in the Window . . . 6-34,

D-4
Positioning on a Numbered Line . . .

D-5
Positioning the Cursor by

Paragraphs . . . 6-33
Positioning the Cursor by Sentences

. . . 6-32
Positioning the Cursor in

Undisplayed Text . . . 6-40
Positioning the Cursor on a

Character . . . 6-23
Possible Problems when Logging In

. . . 2-20
Pre-Printed Forms . . . 3-82
Preface . . . xii
Print Partially Formatted Contents

of a File: the pr Command . . .
3-72

Printing Files . . . 3-72
Problems . . . 5-8 1
Programming i n the Shell . . . 4-9
Programming in the System . . . 4-1 3
Protecting Your Files: the chmod

Command . . . 3-56

Queue Priority . . . 3-B I
Quitting vi . . . 6- 19
Quitting v i . . . 6-90

Index

Read in the Contents of a File . . .
5-82

Reading a File into a Message . . .

9-25
Reading Mail . . . 9-33
Receiving Files Sent with uuto: the

uupick Command . . . 9-63
Recovering a File Lost by an Inter

rupt . . . 6-93
Recovering From System Interrupts

. . . 5-92
Redirecting Input and Output . . .

8- 1 1

Redirecting Input and Output . . . E-2
Redirecting Input: the < Sign .. .

7-14
Redirecting Output to a Command:

the Pipe (I) . . . 7- 1 9
Redirecting Output to a File: the >

Sign . . . 7-14
Reference Information . . . xiv
Relative Addresses: Adding or

Subtracting Lines from the
Current Line . . . 5-20

Relative Path Names . . . 3- 10
Removing a File: the rm Command

. . . 3-52
Removing Directories: the rmdir

Command . . . 3-27
Repeating the Last Command . . .

6-8 1
Replacing Text . . . 6-68
Requesting a Paper Copy of a File:

the lp Command . . . 3-77
Required Terminal Settings . . . 2-3
Return Codes . . . 7-65

INDEX 1-5

Index

Running a Command in Back
ground: the Ampersand (&) . . .
7-10

Running Commands at a Later Time
With the batch and at
Commands . . . 7-25

Sample Command Usage . . . 9-68,
9-73, 9-76

Sample Usage of Options with the
uucp Command . . . 9-53

Scanning Your Mailbox . . . 9-35
Screen Editor . . . 4-5
Scrolling .. . D-4
Scrolling the Text . . . 6-40
Searching a File for a Pattern : the

grep Command . . . 3-66
Searching for a Character on a Line

. . . 6-25
Searching for a Pattern . . . D-5
Searching for a Pattern of Charac

ters: the f and ? Commands . . .
6-45

Select a Print Destination . . . 3-78
Sending a File: the m Option and

uustat Command . . . 9-58
Sending Large Files . . . 9-48
Sending Mail to One Person . . . 9-5
Sending Mail to Remote Systems:

the uname and uuname
Commands . . . 9-8

Sending Mail to Several People
Simultaneously . . . 9-7

Sending Messages . . . 9-3
Sending Small Files: the mail

Command . . . 9-47
Setting C-Shell Variables . . . 8-2
Setting Terminal Options . . . 7-91
Setting the Automatic <RETURN . . .

6-6
Setting the TERM Variable . . . F-1
Setting the Terminal Configuration

1·6 USER'S GUIDE

. . . 6-4
Shell . . . 1-10, 4-7
Shell Command Language . . . 7-2
Shell Commands . . . D-1
Shell Programming . . . 7-36
Shell Programming Constructs . . .

7-59
Shell Programming Constructs . . .

E-5
Shell Programming Exercises . . .

7-100
Shell Programming Exercises . . . 7-97
Shell Programs . . . 7-37
Shell's Garbage Can: jdev /null . . .

7-72
Simple Commands . . . 2-23
Sorting and Merging Files: the sort

Command . . . 3-68
Special Characters . . . 5-60, 7-9, 8-30,

C-4
Special Characters in the Shell . . .

E-1
Special Commands . . . 6-81
Special Commands . . . D-7
Special Files . . . 1-8
Special Options For vi . . . 6-93
Special Options for vi . . . D-9
Special Parameters . . . 7-46
Special Printing Modes . . . 3-78
Specifying a Global Search . . . 5-27
Specifying a Range of Lines . . . 5-25
Starting a Loop at a Terminal . . .

8-27
Starting the C-shell . . . 8-1
Stopping a Command . . . 2-1 1
Substituting Commands . . . 8-29
Substituting on a Range of Lines . . .

5-52
Substituting on One Line . . . 5-5 1
Substituting on the Current Line . . .

5-50

Substituting Output for an Argu-
ment . . . 7-25

Substituting Shell Variables . . . 8-1 7
Substituting Text . . . 5-49
Substituting Text . . . 6-69
Substituting Text . . . C-3
Suggl'stions for Reading this

Tutorial . . . 6-3
Suggestions for Using this Tutorial

. . . 5-2
Summary of Shell Command

Language . . . E-1
Supplying Input to Commands . . .

8-25
Switching to Other Mail Files . . .

9-36
Symbolic Address of the Current

Line . . . 5-1 7
Symbolic Address of the Current

Line through the Last Line . . .
5-20

Symbolic Address of the Last Line
. . . 5-1 8

Symbolic Address of the Set of All
Lines . . . 5-19

Symbolic Addresses . . . 5-1 7
System Overview . . . xii
Temporarily Returning to the Shell :

the :sh and :! Commands . . .

6-84
Terminal . . . 2-2
Terminating Active Processes . . .

7-32
Text Editing . . . 4-2
Text Editing Buffers . . . 4-3
Text Input . . . C-3
Text Movement Commands . . . C-4
Transferring Files . . . 9-47
Turning Off Special Meanings:

Quotes . . . 7-12
Turning Off Special Meanings: the

Index

Backslash (\) . . . 7- 1 1
Typing Conventions . . . 2-6
Typing Speed . . . 2-10
Unconditional Control Statements:

the break and continue
Commands . . . 7-84

Undeliverable Mail . . . 9-4
Undo the Last Command . . . 6·61
Undoing Entered Text in Text Input

Mode . . . 6-60
Undoing the Previous Command:

the u Command . . . 5-45
UNIX System Directories . . . A-4
UNIX System Files . . . A-1
U NI X System Tutorials . . . xii
Useful Applications of Outpu t

Redirection . . . 7-1 7
Using Aliases . . . 8-9
Using Built-in Commands . . . 8-13
Using Control Characters . . . 2-1 1
Using Control Structures . . . 8-21
Using ed in a Shell Program · . . . 7-62
Using Expressions . . . 8-20
Using Line Editing Commands in vi

. . . 6-84
Using Quotes to Tum Off the

Meaning of a Space . . . 7-12
Using Shell Variables . . . 7-93
Using Special Characters as Literal

Characters . . . 2-10
Using Substitution to Expand

Strings . . . 8-29
Using the • or ? to Correct Typing

Errors . . . 7-7
Using the argv Variable . . . 8-16
Using the C-shell History List . . . 8-4
Using the nohup Command . . . 7-33
uucp Command . . . 9-5 1
uuto Command . . . 9-58
Variables . . . 7-41
Variables . . . E-3

INDEX 1·7

Index
--

--

Va riables Used in the Systt>m . . . E-4
vi Quick Reference . . . D- 1
Viewing a File . . . 6-94
Vocabulary of Shell Command

Language . . . E-1
Warnings about Naming Shell

Programs . . . 7-40
What Commands Do . . . 1-1 1
What is a Text Editor? . . . 4-2
What the UNIX System Does . . . 1-1
While Loop . . . E-6
Windowing . . . F-6
Word Positioning . . . 6-28
Working with Layers . . . F-10
Write Lines of Text to a File . . . 5-80
Writing Text to a New File: the :w

Command . . . 6-85
Your Current Directory . . . 3-6
Your Home Directory . . . 3-4
Your Place in the File System . . . 3-4

1-8 USER'S GUIDE

I NTERACTIVE
• • • • • • • • • • • • • •

A Kodak Company

DOC0065-2Y

l> • -

� - z
a.

� · -1 b' · m 3 •

� . JJ
:)>
· 0
• -I · -
· <
: m

	Untitled

