
pro

International Supplement
Guide

First printing (October 1991)
No part of this manual may be reproduced in any form or by any means without
written permission of:

INTERACTIVE Systems Corporation
2401 Colorado Avenue
Santa Monica, California 90404

©Copyright INTERACTIVE Systems Corporation 1985-1991
©Copyright AT&T Corporation 1987-1988
©Copyright X/Open Company Limited 1989

RESTRICTED RIGHTS:
For non-U.S. Government use: l
These programs are supplied under a license. They may be used, disclosed, andjor
copied only as permitted under such license agreement. Any copy must contain
the above copyright notice and this restricted rights notice. Use, copying, andjor
disclosure of the programs is strictly prohibited unless otherwise provided in the
license agreement.
For U.S. Government use:
Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in FAR Section 52.227-14 (Alternate III) or subparagraph (c)(l)(ii) of the
clause at DFARS 252.227-7013, Rights in Technical Data and Computer
Software.
All rights reserved. Printed in the U.S.A.
The following trademarks shown as registered are registered in the United States
and other countries:
TEN /PLUS is a registered trademark of INTERACTIVE Systems Corporation.
VP fix is a trademark of INTERACTIVE Systems Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
Adobe is a registered trademark of Adobe Systems Incorporated.
DEC and VT220 are trademarks of Digital Equipment Corporation.
386 and 486 are trademarks of Intel Corporation.
A
C

T and . IBM are registered trademarks of International Business Machines � orporatlon. 1
PCfXT is a trademark of International Business Machines Corporation.
MS-DOS is a registered trademark of Microsoft Corporation.
SunRiver is a registered trademark of SunRiver Corporation.
X/Open is a trademark of XjOpen Company Limited.

International Supplement Guide

CONTENTS

International Supplement Overview and Installation Instructions

International Supplement User's Manual

International Supplement Manual for Advanced Users

X/Open Conformance Statement - Questionnaire

International Supplement Reference Manual

, _ ___

International Supplement

Overview and Installation Instructions

CONTENTS

1 . OVERVIEW . • • . . . • • .

2. INSTALLATION INSTRUCTIONS .

3. DOCUMENTATION REFERENCES

- 1 -

1

3

4

;"'
.... ___ :7J

(� .. _ _..

� I

International Supplement

Overview and Installation Instructions

1. OVERVIEW

INTERACTIVE's International Supplement extends the INTER­
ACTIVE UNIX* System V /386 Release 3.2 Operating System for
use in an international environment. It allows software vendors to
develop their applications in such a way that the text of one single
application can be displayed in a different language, depending on
the environment in which it is executed; a separate copy of the
application for each language is not required.

The International Supplement contains internationalised versions of
the most popular UNIX System utilities, such as d a t e , s ort , and
1 s . When using these utilities, users see the date displayed in their
own language and can sort text files using the dictionary order of
any supported language they specify.

The International Supplement also adds to the INTERACTIVE
UNIX Operating System the functionality needed to make it fully
compliant with X/Open* Company Limited's Issue 3 of the XfOpen
Portability Guide (XPG3) (available from Prentice Hall). This
guide contains practical standards for application portability, as
adopted by XfOpen Company Limited. This international group of
hardware manufacturers and software vendors has defined a Com­
mon Applications Environment (CAE) that is built on the interfaces
to the UNIX Operating System. Compliance with this CAE is now
a requirement when systems are offered to most governments and
corporations.

The International Supplement Guide includes:

• International Supplement Overview and lnstaUation Instructions
Provides a general overview of this guide, information about in­
stallation requirements, and references and conventions used.

• International Supplement User's Manual
Provides a comprehensive description of how the INTERACTIVE
UNIX System can be used in non-U.S. environments. Among
other things, it discusses how to use different keyboards and how
to correctly use UNIX System utilities.

2 - International Supplement Overview and Installation

• International Supplement Manual for Advanced Users
This manual is intended for system administrators, programmers,
and other advanced users. It describes how to set up a user's
international environment to correctly enter data on the key­
board, use UNIX System utilities, and run internationalised
applications. It describes the format of collation tables and
character classification tables and tells how they should be
installed. It also gives a brief overview of the facilities that need
to be added to a C source program to give the resulting applica­
tion internationalised capabilities.

• X/Open Conformance Statement- Questionnaire
Provides the information required to describe the conformance of
the INTERACTIVE UNIX Operating System with XjOpen Com­
pany Limited's Issue 3 of the X/Open Portability Guide .

• International Supplement Reference Manual
Includes most of the relevant utilities and new library routines
referred to in this guide. Although many of these entries are
also present in the documentation for the INTERACTIVE UNIX
Operating System, users and system administrators can now gen-
erally find them in one centralised place. Manual entries for the
internationalised versions of UNIX System commands can be l
found in Volume 1 of the X/ Open Portability Guide, Issue 3.

International Supplement Overview and Installation 3

2. INSTALLATION INSTRUCTIONS

The International Supplement is installed using sysadm
installpkg in the same manner as other INTERACTIVE sub­
sets or extensions.

• For information about installing optional subsets, refer to section
6. 1 of the "INTERACTIVE UNIX Operating System Installation
Instructions" in the INTERACTIVE UNIX Operating System
Guide .

• For information about using sysadm, refer to sections 2 and 3
of the "INTERACTIVE UNIX Operating System Maintenance
Procedures" in the INTERACTIVE UNIX Operating System
Guide .

After you have installed the International Supplement, your INTER­
ACTIVE UNIX System will contain internationalised versions of
several UNIX System commands, such as date and who. These
are installed in the standard UNIX System directories where they
belong, for example, /bin and /usr/bin. Copies of the original
binaries can be found in a subdirectory of the original directory
called . sysV, for example, /bin/. sysV and
/usr/bin/. sysV. Refer to section 10 of the "International
Supplement User's Manual" for a list of the internationalised com­
mands and functionality.

In addition to the commands specified by XPG3, INTERACTIVE has
added the colldef and showcat commands. Refer to
colldef(IP) and showcat(IP) for more information. The supple­
ment also contains sample files for locales, message catalogues,
and charmap files (the latter are used by iconv(IP) and
colldef(IP)) . locales are installed in the directory
/lib/locale/ISC. Where appropriate, source files for these
locales are located in / 1 ib/locale/ISC/localename/src.
The default message catalogue location is
/lib/locale/ISC/msgcat. The libc. cat message
catalogue contains the English language version of the error mes­
sages displayed by the library routines perror (3P) and strerror(3P).
/lib/locale/ISC/msgcat/src/libc .msg is the source
file; it can be translated into other languages, which can then be
used to generate alternate message catalogues for use by those
routines.

4 International Supplement Overview and Installation

A subset of contributed data files containing additional l o c a l es,
keyboard mapping files, and so on, is also supplied. Some of these
files have been contributed by third parties. All of these files are
supplied "as-is" and are not supported.

3. DOCUMENTATION REFERENCES

Throughout this guide, the following full documentation titles will
be referenced in shortened versions as follows:

Full Title

INTERACTIVE UNIX System V /386
Release 3.2
Operating System Guide

INTERACTIVE UNIX System V /386
Release 3.2
User'sfSystem Administrator's
Reference Manual

INTERACTIVE Software
Development System Guide and
Programmer's Reference Manual

Shortened Version

INTERACTIVE UNIX

Operating System Guide

INTERACTIVE UNIX System
User'sfSystem Administrator's
Reference Manual

INTERACTIVE SDS Guide and
Programmer's Reference Manual

References of the form name(n) refer to an entry called name in
section n of the reference manual or manual entries associated with
that product or as stated in the documentation. Manual entries
referred to in this guide may be found in either the "International
Supplement Reference Manual" in this guide, the INTERACTIVE

SDS Guide and Programmer's Reference Manual that accompanied
your INTERACTIVE Software Development System (make special
note of ctime(3P), perror (3P), printf(3P), scanf(3P), environ (5P),
and regexp5P)), or the INTERACTIVE UNIX System User's/System
Administrator's Reference Manual that accompanied your INTER­
ACTIVE UNIX Operating System.

International Supplement

User's Manual

CONTENTS

I. INTRODUCTION

2. INTERNATIONALISATION

3. THE X/OPEN PORTABILITY GUIDE
3.I Computer Applications and Portability . • •
3.2 Standardisation and the Portability Guide • • • •
3 . 3 Common Applications Environment • • • • . .
3 .4 Standard Portable Operating System Interface

(POSIX.I) . • . • • •
3 .5 POSIX.2 • • • • . . • •
3 .6 The INTERACTIVE UNIX Operating

System . . . • • . • •

4. ENTERING DATA . . . • . • • . • • . • .
4.I U.S. Personal Computer Keyboard Layout
4.2 Generating Characters Not Present on a U.S.

Keyboard • •
4.2.I Deadkeys . • . . • . • . . • .
4.2.2 Composing Characters Using Compose

Sequences • • •
4.2. 3 Decimal Representation • • • •
4.2.4 Smiling Faces . • . . • • • . • . .

4. 3 European Personal Computer Keyboard
Layouts • • • . •

4.4 Cyrillic or Greek Keyboards . • • . •
4.5 Keyboard Layouts on 7-bit Terminals •
4.6 Using the VP fix Environment • • . .
4.7 Entering Data and Using INTERACTIVE

XII •

5 . STORING DATA IN THE COMPUTER • • •
5.I ASCII • . . •
5 .2 8-bit Characters and Codesets . • . .
5 . 3 IBM Codepages .
5 .4 ISO Codesets
5 . 5 7-bit Codesets

- I -

1

2

3
3
3
4

4
5

5

7
8

9
9

1 0
1 1
1 1

I 1
I4
1 7
1 7

I8

1 9
19
20
22
23
24

5 .6 Choosing and Configuring a Codeset 24
5 .6. 1 Converting From One Codeset to

Another 25

6. DISPLAYING DATA 26
6. 1 7-bit Terminals 26
6.2 The Console 27
6 .3 Displaying Data and Using INTERACTIVE

X 1 1 27

7. THE INTERNATIONAL ENVIRONMENT 28
7. 1 The International Environment 28
7. 2 Controlling the International Environment 30

8 . INTERNATIONALISED BEHAVIOUR 32
8 . 1 Date and Time Format 32
8.2 Character Classification 33
8 . 3 Collation 34

8 .3 . 1 An Example • 34
8.4 Numeric and Monetary Formatting 35
8 .5 Yes/No Responses 35
8 .6 Message Catalogues 36
8. 7 The X/Open Environment . . . 36 �

9. THE SYSTEM V ENVIRONMENT 37
9. 1 Date and Time Formats 37
9 .2 Character Classification 37

10. INTERNATIONALISED INTERACTIVE UNIX
SYSTEM UTILITIES 39

GLOSSARY 43

- ii -

International Supplement

User's Manual

1. INTRODUCTION

This document explains the internationalisation features of the
INTERACTIVE UNIX* Operating System and describes how to use
it on computer systems outside the United States (U.S.), where there
are differences in local language, customs, and standards. This
document focuses on usability and is restricted to those areas where
languages are spoken that use an alphabet that contains fewer than
one hundred letters. Korean, Japanese, Chinese, and other
languages with thousands of different letters are not supported by
the standard INTERACTIVE UNIX Operating System. In certain
countries, INTERACTIVE's distributors sell a special version of the
product to accommodate these special markets. Contact your sales
representative for more information.

To find out how to set up a user to use the system in an interna­
tional environment, refer to the "International Supplement Manual
for Advanced Users."

2 International Supplement User's Manual

2. INTERNATIONALISATION

Computers and their method of operation have generally been asso­
ciated with American English. Until recently, computer users and
programmers accepted the fact that operating and programming a
computer had to be in English.

Internationalisation is the art of making a computer, a computer
system, or a computer program (often called an application) func­
tion in a non-U.S. environment. The word itself illustrates that the
different behaviour a computer system must support not only
depends on the use of a different language, but also on the country
of origin, even if the language is the same. Spelling may be
different, for example - in American English the word is spelled
internationalization, while in England the spelling is internationali­
sation. To avoid the spelling problem, the acronym /18N is becom­
ing common (whether in the U.S. or England, internationalisation
begins with the letter I, ends with N, and has 1 8 letters in between) .

When the word internationalisation is brought up in a conversation,
people often react with comments such as: "Oh. You are going to
have a French or German version of your product, as well ." But
I 1 8N does not refer to the translation of software, but rather to its
usability and translatability. An internationalised application or
computer system is one that can be adapted to different environ­
ments without needing modification. The term localisation (and its
acronym Ll ON) is used to describe the adaptation of computer pro­
grams to a single language andfor country, which, if mismanaged,
can be as costly as making a separate version for each language.

International Supplement User's Manual 3

3. THE X/OPEN PORTABILITY GUIDE

The term X/Open* is often associated with standards. X/Open is a
trade name, as well as trademark, of XjOpen Company Limited.
This organisation started as a consortium of European computer
manufacturers (Bull, ICL, Siemens, Olivetti, Nixdorf, and Philips}
whose principal aim is to increase the volume of applications avail­
able on their computer systems. In parallel, they have attempted to
maximize the return on investments in software development made
by users and independent software vendors (/SVs) . Today, almost
all major computer manufacturers are members of the X/Open
group.

3.1 Computer Applications and Portability

In the sixties, most computer applications were developed on and for
a single proprietary computer system. In order to make the same
application run on a different computer system, it had to be com­
pletely rewritten, usually in a different computer language. In the
late seventies and early eighties, with the advent of the UNIX
Operating System, this situation changed dramatically. This very
portable operating system became available on a variety of
hardware and supported a common new language - C.

There was still room for improvement, however. Most implementa­
tions of the UNIX Operating System were actually different flavors
with different features. The C programming language by itself was
simply a definition of a language. Supplying libraries with functions
like pr i nt f , which software developers could immediately use in
their programs, was the responsibility of compiler vendors. As far
as interfacing with terminals and databases, there was no standard
at all. As a result, despite the UNIX Operating System, porting
applications (modifying the source program of an application to
make it work on a different computer system) required a lot of
effort and experienced programmers. Porting became a separate
skill.

3.2 Standardisation and the Portability Guide

Many standards committees, as well as AT&T (the developer of the
� UNIX System), tried to achieve a higher level of standardisation

and compatibility. AT&T published the first issue of their System V
Interface Definition (SVID), describing all the features of the UNIX
Operating System that would be maintained, new ones that would
be introduced, and old ones that would disappear in the next release.

4 International Supplement User's Manual

This was a step in the right direction, but it was incomplete because
it described only the interfaces to the operating system.

In 1 985 , the XjOpen Company Limited published the XfOpen Por-
tability Guide (XPG). It basically listed the SVID as its first

�, chapters, but also included a description of the C language, the 1
COBOL language, how to interface with databases, and other infor-
mation. It is important to note that the XjOpen Company always
adopted standards where they existed, as opposed to creating new
ones. Where standards were missing (for example, for interna­
tionalisation), they recommended standards.

3.3 Common Applications Environment

Now, more than five years later, the third issue of the XjOpen Por­
tability Guide (XPG3) is accepted by most governments and major
corporations as the "bible" of the computer industry. Published in
1 989, it consists of seven volumes describing the Common Applica­
tions Environment (CAE) defined by the XjOpen Company and
built on top of the interfaces of the UNIX Operating System, cover­
ing other aspects required for a comprehensive applications inter­
face. The portion that discusses the operating system and its utilities
is referred to as the X/Open System Interface (XSI). The seven l volumes are:

• XSI Commands and Utilities

• XSI System Interfaces and Headers

• XSI Supplementary Definitions

• Programming Languages

• Data Management

• Window Management

• Networking Services

3.4 Standard Portable Operating System Interface (POSIX.1)

Volume 2 of the X/Open Portability Guide , XSI System Interfaces
and Headers , is a superset of the POSIX.l Standard published by
the Institute of Electrical and Electronics Engineers, Inc. (IEEE). � POSIX.l stands for the Standard Portable Operating System Inter-
face for Computer Environments. This standard defines a standard
operating system interface and environment based on the UNIX
Operating System documentation to support application portability

International Supplement User's Manual 5

at the source level. This is the first of a group of proposed stan­
dards known colloquially and collectively as POSIX. It is a superset
of the system interfaces of the UNIX Operating System. XSI also
adds a number of interfaces, particularly in the area of interna­
tionalisation, which go beyond both the SVID and POSIX.1.

3.5 POSIX.2

Volume 1 of XPG3, XSI Commands and Utilities , is based on the
SVID, which means that the utilities have the same names and
features as the standard utilities supplied with the UNIX System
(with some additional utilities). However, when used in an interna­
tional environment, many of these utilities exhibit additional
behaviour, based on the draft POSIX.2 Standard. The latter
describes how the command interpreter and the utilities of the
operating system should work and interface with the user; it is
expected to become an official standard very soon.

Volume 3 of XPG3, XSI Supplementary Definitions , contains a sec­
tion specifically about internationalisation, which defines the
requirements and pieces together the 11 8N features in XPG3.

3.6 The INTERACTIVE UNIX Operating System

The INTERACTIVE UNIX Operating System is fully compliant
with the POSIX.l Standard and with XPG3. The International Sup­
plement adds to the INTERACTIVE UNIX Operating System the
items needed for full compliance with the XJOpen standard, where
appropriate for an operating system, its utilities, and its interface to
the C language.

The supplement contains a set of UNIX System utilities that have
been enhanced to function according to the description of volume 1
of XPG3. These utilities and their new features are described in
section 1 0 of this document.

The combination of the following software provides customers with
a system that is fully compliant with the X/Open standard and that
will be branded with the X/Open BASE logo:

• INTERACTIVE UNIX Operating System

• INTERACTIVE Software Development System

• International Supplement

The full seven-volume X/Open Portability Guide is now published
by Prentice Hall and is available in specialized bookstores. This set

6 International Supplement User's Manual

is the only official and complete documentation for the X/Open
standard. The documentation supplied with the International Sup­
plement focuses on internationalisation issues only.

International Supplement User's Manual 7

4. ENTERING DATA

The UNIX System is an interactive, multi-user, time-sharing operat­
ing system, which means that several computer users interact with
the computer at the same time, usually by typing on a keyboard.
This input, as well as the result of the computations done by the
application used, is displayed on the computer screen as output.

The device used to interact with the computer is either a self­
contained unit with a keyboard and a screen that is connected to a
serial port of the computer (a terminal), or a directly connected
keyboard and a monitor attached to the computer's video card, usu­
ally referred to as the console.

Input consists of keystrokes that typically represent letters and other
symbols, which are pictured on the keys of the keyboard. A com­
puter, however, speaks no particular language and has no notion of
what a letter is. Instead, a letter is stored in a computer (either in
its memory or in a file on the fixed disk) as a number. Unless every
computer system uses the same number to store a certain letter,
much confusion is created when attempting to transfer data from
one type of machine to another. For that reason, conventions and
standards for storing characters into a computer have been created.
For more information about this, refer to section 5, "STORING
DATA IN THE COMPUTER."

Most keyboards today have 101 or 102 keys. These keys can be
divided into three groups:

• The central section of the keyboard

• The numeric keypad

• The function keys

The central section of the keyboard contains keys used to type regu­
lar letters and punctuation characters such as the period (.) and
semicolon (;) . The layout of this section of the keyboard differs
from country to country.

The numeric keypad is a section of the keyboard that is designed for
easy and fast access to all the numeric characters (0-9) and sym­
bols indicating operators, such as plus (+) and the asterisk (*) . It is
often compared to the keys on a calculator. ·This set of keys can be
used in two modes. In the first, they generate the numerals and sym­
bols pictured on the keycaps; in the second, they act as special func­
tion keys and cursor movement keys. The mode in effect is

8 International Supplement User's Manual

indicated by the NUMLOCK light and can be changed by using the
INUMLOCK I key. When the NUMLOCK light is on, the keys gen­
erate the numerals and symbols on the keycaps.

The layout of the function key section of the keyboard depends on
the manufacturer, but today most computer keyboards are relatively �
standard. They usually contain 10 or 12 function keys on the top
row of the keyboard, labeled IFtl to FlO or IF121. These keys gen-
erate sequences of characters, such as ESC (escape, the code gen-
erated by the escape key) [i] [i], often called escape sequences.

Applications can take advantage of these keys by determining the
actual escape sequence generated by a function key through the
t e r m c a p or t e rm i nf o interface. These interfaces allow the
development of terminal-independent applications.

The layout of both the numeric keypad section and the function key
section of the keyboard is the same regardless of the country in
which a specific keyboard is used.

4.1 U.S. Personal Computer Keyboard Layout

The central section of a keyboard designed for use in the United
States contains keys for all letters of the English alphabet, all digits, """, and the most commonly used punctuation characters and special
symbols. Some of these symbols, the slash (/), for example, are
especially important when using the INTERACTIVE UNIX Operat-
ing System. In addition, a few special modifier keys are present.

The ISHIFT I key, when pressed simultaneously with a letter key,
generates an uppercase character instead of a lowercase character,
or alternate symbols instead of the numbers and symbols on the top
row.

The I CAPS LOCK I key exchanges uppercase and lowercase. In other
words, when this key is pressed, it changes the state of the keyboard
so that all characters subsequently typed are automatically upper­
case and only appear in lowercase when pressed together with the
ISHIFTI key. A CAPS LOCK light indicates the status of the key­
board.

The spacebar generates a space character to put one or more spaces �
between words. Other special keys are ITAB I , IALTI , IENTER I , and 1
I BACKSPACE. I To learn more about the meaning of these keys, refer
to the INTERACTIVE UNIX Operating System Guide , and for more
technical details, refer to the manual entry keyboard(?) .

International Supplement User's Manual 9

The layout of the keyboard is not randomly chosen but is basically
the same as on most typewriters. The layout is often referred to as
QWERTY, after the order of the first five letters on the top row of
keys containing letters. By using the same layout on all typewriters
and terminal keyboards, computer users can type in text at a very
high speed, regardless of the equipment they are using.

Although one might expect that the layout was chosen to give the
easiest access to the most frequently used characters, this is not the
case. The QWERTY keyboard layout was originally designed to be
slow enough so that mechanical typesetting machine operators
would not be able to type fast enough to jam their machines.
Another keyboard layout, called DVORAK, places the most common
letters in the English language on the home row of keys, but this
layout is not in common use.

4.2 Generating Characters Not Present on a U.S. Keyboard

Although non-English characters like the German a or the French e
are not present on a keyboard designed for use in American English,
most of these characters can be generated. This allows non­
Americans to write French letters on American systems, for exam­
ple. There are three ways to generate characters for which there
are no keycaps (explicit symbols on the keyboard) :

• Deadkeys

• Compose sequences

• The decimal representation of the character

4. 2. 1 Deadkeys

The deadkey was invented by typewriter manufacturers. For exam­
ple, imagine you need the French character e. A French typewriter
does not have a key for this character, but it has keys for both e and
A. When the key [J is pressed, a circumflex is printed but the type­
writer carriage does not move. When the [i] key is then pressed, the
letter "e" is printed on the same spot as the circumflex and an e is
formed. This technique works very similarly on a terminal. The
only difference is that when [J is pressed, nothing happens until [i] is

� pressed, after which the character e appears on the screen.

A utility developed by INTERACTIVE that can be used to assign
deadkeys, t tymap, is supplied with the INTERACTIVE UNIX
Operating System. This utility is used to do everything discussed in

10 International Supplement User's Manual

this section. To define [] as a deadkey and try the other examples
listed below, type the command:

ttymap / us r / l i b/keyboard/us a.map

Now when you press [] , nothing appears on the screen. When an e
is typed next, the letter e appears. To use the "" character alone, �
press [] first and then the spacebar. If a sequence of two characters
is typed that does not make sense at all, no character is sent to the
application that is currently being used, and the machine beeps to
indicate that an erroneous combination was typed.

4. 2. 2 Composing Characters Using Compose Sequences

Although assigning deadkeys supports more characters than the ones
printed on the keyboard, it has its disadvantages. As illustrated
above, it is annoying when one needs the specific character alone
that has been assigned as a deadkey. Instead of one keystroke, two
keystrokes are needed to access that character. If too many keys
act as deadkeys, the system is difficult for everyone to use.

Fortunately, another method exists, often referred to as compose
sequences. A special key or sequence of keys is used to put the key-
board into a special mode. We will call the key or key sequence the

� ICOMPOSE I key and the special mode the COMPOSE mode. The J
default ICOMPOSE I key sefuen; for the INTERACTIVE UNIX
Operating System is ICTRLI SHIFf IFI I. (Many MS-DOS* (DOS)
users will be familiar with it.) When in COMPOSE mode, the sys-
tem expects two more characters to be typed� the user before a
character is generated. Press ICTRLI ISHIFrl l!!J followed by [!] L]
to produce the Spanish ii (the n in manana} on the screen. If you
press the I COMPOSE I key sequence followed by pressing III twice, an
inverted exclamation sign appears on the screen.

Both the value of the I COMPOSE I key and the list of I COMPOSE I
key sequences and the characters they generate can be specified in a
file that is then processed by the ttymap command. Refer to the
"International Supplement Manual for Advanced Users" or
ttymap(l) for more details.

Some terminals, for example, the DEC* VT220,* have a dedicated
I COMPOSE I key on the keyboard, and the characters are generated � by the terminal hardware.

International Supplement User's Manual 11

4.2. 3 Decimal Representation

A third method of generating characters is using their decimal
representation. As explained in section 5, "STORING DATA IN
THE COMPUTER," every character corresponds to a unique
number. Up to 256 different characters can be used (although some
terminals only support 128). When the ICOMPOSE I key is used, fol­
lowed by three digits, the character that is internally represented by
the three-digit number (in decimal) is generated. This feature is also
derived from the DOS system. Press the I COMPOSE I key sequence,
followed by 0 6 5, and an A appears on the screen. 65 is the
decimal value used by computers to store the uppercase letter A.
Press the ICOMPOSEI key sequence followed by 136 and the letter
e appears. If you type:

t tymap -d

all deadkeys and compose sequences are disabled.

4.2.4 Smiling Faces

Those familiar with personal computers and certain DOS applica­
tions may have seen interesting images the size of a character, such
as smiling faces or musical notes. When control characters are used
(characters generated by pressing I crRL I and a letter key simultane­
ously), normally nothing is displayed on the screen. However, when
the IESCI key is pressed before pressing lcrRLI, an image appears
on the screen (note that this only works on the console) . For exam­
ple, IESCI IcrRLI [!]produces a smiling face.

4.3 European Personal Computer Keyboard Layouts

In Europe, computers are sold with either U.S. keyboards (to be
used with very technical, engineering-style applications, usually in
English) or keyboards designed for the local country. These key­
boards differ from U.S. keyboards in the following ways:

• Keyboard layout

• 102 rather than 101 keys

The extra key is usually located between the lsHIFrl key and the
leftmost bottom row key (Z on a U.S. keyboard). In most countries,
this key has the angle bracket characters, < and > , printed on it.
In addition, the backslash key (\) on U.S. keyboards, typically the
rightmost or second rightmost key in the top row of the central key­
board section, is usually moved to the left of the IENTERI key in the

12 International Supplement User's Manual

third row (see Figure l). The layout usually is the same as the one
found on typewriters used in these countries. They are often named
after the order of the first five keys on the second row of keys; key­
boards used in France are called AZERTY keyboards, and keyboards
used in Germany are called QWERTZ keyboards.

� i

lf!Nt r-. t I VH<

"m

--

._ ... ' 7
"'

-·- -�"""- ... __ 4 ...
1
"'
0
ln11r

-

Figure 1. French Personal Computer Keyboard Layout

I *

- "" .

8 t 9 t
5 6 ...
2 ... 3 '

......
-

,-

�

+I ..,;;;z
Enll

I�
I

5"
�
I (I)
:§

l
�
�
!!l
rn·

�
�

...
(,.)

14 International Supplement User's Manual

Most Western European languages have an alphabet that contains
only a few more letters than English (usually not more than 12).
For example, French uses all the letters used in English, as well as a
number of accented characters, such as e, e, and a. Some of the
characters, such as the e used in previous examples, are accessed
using a deadkey; most of the others are printed on a keycap.

The keys that are used for symbols, such as the square bracket ([)
and curly brace ({) on U.S. keyboards, have local language
accented characters printed on them rather than the American char­
acters (see Figure 1). Although not often used in text, these sym­
bols are certainly important in the context of the UNIX Operating
System, especially when the system is used for C programming.
Having sacrificed these symbols to support the local language, there
must be an alternative way of obtaining them. The solution pro­
vided by most keyboard manufacturers is to print three symbols on
the top row keys. In addition to the digits and symbols, such as plus
(+) and minus (-), the braces and brackets are printed either in the
right bottom corner or on the front of the keycap. To generate
these symbols, press the key simultaneously with the right IALTI
key. (When using the INTERACTIVE UNIX Operating System, no
distinction is made between the left and the right IALTI key, but in
certain applications, such as those based on X 11, a distinction is
made.)

In the INTERACTIVE UNIX Operating System, ttymap input
files are provided for all major European keyboards. When the sys­
tem is properly configured by the system administrator, keyboards
function correctly without user intervention, even before logging into
the system (an INTERACTIVE feature).

Keyboards to be used in France and Switzerland require special
attention. On French keyboards, the lsuwrl key must be used to
access the digits printed on the top row. A Swiss keyboard can be
used in two modes. It has keys with four characters printed on it
(the same two characters are printed twice, but in opposite order).
In German Swiss mode, German characters like o are accessed by
pressing a key, French ones like a by using the lsuwrl key as well.
In French Swiss mode, it works the opposite way.

4.4 Cyrillic or Greek Keyboards

Certain languages, such as Greek or Russian, use completely
different alphabets, sometimes referred to as Cyrillic. Although they
may look similar, the Russian and Greek alphabets do differ. What

International Supplement User's Manual 15

they have in common is the fact that they consist of a reasonably
small set of letters (31 for Russian) and that, although some of the
letters also exist in English, all of these letters are considered
separate from the English set. A personal computer keyboard that
supports these languages is designed differently than the ones dis­
cussed in the previous section.

The remainder of this section discusses a keyboard designed to sup­
port both U.S. English and Russian (use with Greek is theoretically
the same). A U.S. English/Russian keyboard (other variants, such
as German/Russian keyboards, exist) is physically identical to U.S.
English keyboards. The only difference is that in addition to the
English letters, the Russian letters are also pictured on the keycaps,
usually in a different color (see Figure 2). Using t tymap, the
keyboard is mapped to generate Russian characters when a key is
pressed. A special key, called a toggle key, can be used within an
application to switch between Russian and English. The default
sequence for toggling between languages is lcrRLllSHIFrllF2l.

This feature of the INTERACTIVE UNIX tty system and the
t tymap utility has been especially designed to support languages
such as Greek and Russian. The same toggle key can be used with
European keyboards to temporarily cause deadkeys to no longer act
like deadkeys, for example. A French programmer might decide to
use the toggle key when he switches between a C source code file
and a French text file, for example.

P' IF2 IF3 IF4 J

. -LOCI< I;
:

7 8
Home t

4 5
-

1 2
End �
0
"''

-

Figure 2. English/Russian Personal Computer Keyboard Layout

*

-

9
... Up

6
-

3
•• On

Del

L
+

...____

Ent•r

._

......
0)

5"
�
g .
§_ (/)
-§ "0
�
�
......

�
CD
....
rn·

�
:;:,

§_

International Supplement User's Manual 17

4.5 Keyboard Layouts on 7-bit Terminals

The keyboards described so far are keyboards that are attached to
devices capable of supporting 256 different symbols. Certain termi­
nals only support up to 128 different symbols. The national key­
boards su_pplied with these terminals sacrifice some of the symbols
(such as t and \, although these are very useful in the context of the
UNIX Operating System) and replace them with local language
characters. The terminal itself usually has a I SETUP I key that
allows the user to specify the language of choice to make the key­
board function properly.

The substitution characters can still be generated, but not displayed
(see section 6, "DISPLAYING DATA"). To accommodate program­
mers who use such terminals, a new feature called trigraphs has
been introduced into the ANSI C language. Trigraphs are three­
letter sequences used in an ANSI C source file that are interpreted
as a single symbol (essential to the C language). This allows a pro­
grammer who uses an Italian 7-bit terminal, for example, to still get
the job done. The one-to-one relationship between trigraphs and the
symbols they represent is listed in the table below:

Trigraph Symbol Represented

??= #
??j \
??'

..

??([
??)]
??! I

?? < {
??> }
??-

-

Note that this feature is not available with the traditional Ker­
nighan and Ritchie C compiler.

4.6 Using the VP/ix Environment

The Virtual Personal computer Interactive eXecutive environment
(VP fix*) is a product developed and sold by INTERACTIVE Sys­
tems Corporation. It is a UNIX System application that emulates an
IBM* PC/XT*-compatible computer, which allows users of the
INTERACTIVE UNIX Operating System to run DOS and DOS

18 International Supplement User's Manual

applications as if they were UNIX System utilities. A copy of DOS
is furnished with the product and is used by default whenever vp i x
(the name of the actual command) is invoked.

When the VP fix Environment is used, all previously installed key­
board mapping is automatically disabled until the user leaves the
VP fix Environment. If a non-U.S. keyboard is used, DOS must be
informed. With the VP fix Environment, the system administrator
can choose to give each VP fix user an individual C : drive (this is a
virtual disk drive, in reality a UNIX System file, that contains DOS
and is used to boot it) or to use a system-wide C : drive. When a
non-U.S. keyboard is used, using individual C : drives is preferable
because this drive contains the essential DOS system files,
C ONFIG . SYS and AUTOEXEC . BAT, that need to be edited to
insert information about the keyboard and language used, as well as
which country's conventions should be applied. Refer to the docu­
mentation that accompanied your DOS system for details.

4. 7 Entering Data and Using INTERACTIVE X1 1

When INTERACTIVE X 1 1 is used with the system, a special pro­
gram called a d i s p l ay s e rver is invoked. This program
switches the system from a character-based environment to an all � graphical environment. From that point on, all mapping informa-
tion specified through the t tymap interface is no longer used. The
server program is responsible for performing the correct actions
each time a key is pressed on the keyboard. By default, it treats
any keyboard as a U.S. keyboard. A utility called xttyma p is
provided to change the default actions of the server. It can read
and interpret the same input file that is used with ttymap.

Due to limitations in the MIT code of X 1 1 Release 4, I COMPOSE I
key sequences and deadkeys cannot be supported when X-based
applications are run. The one exception to this, however, is when
text-based applications are used in an xp c t e rm window. These
applications have access to the tty system, so ttymap can then be
used to define deadkeys or compose sequences.

International Supplement User's Manual 19

5. STORING DATA IN THE COMPUTER

The previous section explained how keyboards are used to generate
letters and other characters on a computer running the INTER­
ACTIVE UNIX Operating System. Typically, these characters are
processed by the application that is currently running (it could be
the shell, which is the command interpreter, or an editor, or any
other application). In most cases, the characters are echoed on the
screen.

Applications such as editors, vi or e (the TEN /PLUS* editor), for
example, store these characters in a file. As mentioned earlier, a
computer speaks no particular language and has no notion of what a
letter is. It stores numbers in the file rather than letters. Unless
every computer system uses the same number to store a certain
letter, files created on one computer cannot be read on another.

Most computer manufacturers use the same convention to represent
characters internally; however, some differences in standards do
exist. For example, many IBM computers (not PCs) use a standard
called EBCDIC. The UNIX Operating System was designed to use
the American Standard Code for Information Interchange (ASCII)
standard for internal storage.

5.1 ASCII

ASCII is a convention, or codeset, describing one-to-one relation­
ships between symbols and numbers. It represents letters as
numbers that can be stored in 7 bits of the computer's memory,
which means a choice of 128 different symbols (0 to 1 27). The
numbers 0 to 32 are reserved for characters that cannot be
displayed on the screen but have a special meaning to the system
(so-called nonprintable characters). As an example, 7 represents the
sound a computer makes when you press lcrRL IIi]. These charac­
ters are often referred to as control characters because the lcrRLI
key is needed to generate them. The smiling faces that can be pro­
duced on the console (as discussed in the previous section) are not
part of the ASCII standard.

Only 7 bits of internal storage are needed to store 128 different
� numbers (0 - 127), so the ASCII codeset is called a 7-bit codeset

(7-bit US ASCII).

The 96 printable ASCII characters are encoded as follows:

20 International Supplement User's Manual

3 2 3 3 3 4 • 3 5 # 3 6 $ 37 " 38 &. 3 9 '
4 0 (4 1 4 2 * 4 3 + 44 • 4 5 - 46 . 4 7 I
4 8 0 4 9 so 2 5 1 3 5 2 4 5 3 5 54 6 5 5 7
5 6 8 5 7 9 5 8 5 9 ; 6 0 < 6 1 = 6 2 > 6 3 ?
6 4 @ 6 5 A 6 6 B 6 7 c 68 D 6 9 E 7 0 F 7 1 G
7 2 H 7 3 I 7 4 J 7 5 K 7 6 L 7 7 M 7 8 N 7 9 0
8 0 p 8 1 Q 8 2 R 8 3 s 84 T 8 5 u 86 v 8 7 w
8 8 X 8 9 y 9 0 z 9 1 [9 2 \ 9 3] 9 4 • 9 5
9 6 ' 9 7 a 9 8 b 9 9 c 1 0 0 d 1 0 1 e 1 0 2 f 1 0 3 g

1 0 4 h 1 0 5 i 1 0 6 j 1 0 7 k 1 0 8 1 1 0 9 m 1 1 0 n 1 1 1 0
1 1 2 p 1 1 3 q 1 1 4 r 1 1 5 s 1 1 6 t 1 1 7 u 1 1 8 v 1 1 9 w
1 2 0 X 1 2 1 y 1 2 2 z 1 2 3 (1 2 4 I 1 2 5) 1 2 6 - 1 2 7 I

There are a few interesting points about the ASCII codeset. Upper­
case characters are represented using lower numbers than lowercase
characters, and the difference between the value of an uppercase
character and its corresponding lowercase character is constant
(32). This has often been used (and misused) by programmers. The
last character, 1 27, is not always printable. This does not cause any
problems, as this character is used by the INTERACTIVE UNIX
Operating System as the DELETE character to interrupt programs.
The ASCII codeset contains all letters of the English alphabet and
none of the additional letters used in French, German, and other
languages.

5.2 8-bit Characters and Codesets

Inside the computer, 7-bit numbers are actually stored as 8-bit enti­
ties. In most computers, a byte (8 bits or a series of 8 possible
zeroes and ones) is the smallest possible unit used to store informa­
tion, which makes it possible to actually use 256 different characters
and symbols. Today this is true if you use the console. If you have
a compiler on your system, you can compile and run the following
program:

#de f i n e XOPEN SOURCE
#i n c l ude -<std i o . h>
ma i n (argc , a r gv)
i n t argc ; char • • argv ;
(

i nt c ;
c = 3 2 ;
wh i l e (c <=2 5 5)

pr i nt f (" "4d "c • , c , c) ;
i f ((c+ 1) "8 == 0)

pr i nt f (" \ n ") ;
C++ ;

pr i nt f (" \ n ") ;

to display all letters and symbols that you can use on the console
and the number by which they are represented inside the computer.

�
-

International Supplement User's Manual 21

If you are not familiar with the C language, follow these instruc­
tions to compile and run this program:

1. Use an editor to create a file with a name that ends in . c , for
example, s how . c , and insert the exact text of the program.

2. For example, to create s how . c, type:
make show

3. Then to run the program, type:
./ s how

Historically, the eighth bit of the byte that is used to store charac­
ters was used by the UNIX Operating System and its utilities for a
variety of purposes. It could be used in a sorting algorithm to see if
a character was already processed or, when a program allocated
bytes of memory, to indicate that the byte was already used. In
communication software across telephone lines (which are not 100
percent reliable), the eighth bit was used to do additional checking
by forcing the software to always use either even or odd values for
the number represented by the byte to send across the wire. This
bit was then called a parity bit.

� Most utilities provided with the UNIX Operating System were care­
less enough to ignore the value of this last bit, preventing the use of
characters with the 8-bit set (such as the ones displayed when run­
ning the program listed above), usually referred to as 8-bit charac­
ters. Utilities such as v i were basically useless for editing non­
English texts.

Beginning with UNIX System V Release 3.1, most utilities became
what is called "8-bit clean." The INTERACTIVE UNIX Operating
System is based on UNIX System V Release 3.2 and therefore con­
tains these 8-bit utilities.

As 8-bit characters are now supported, an 8-bit codeset can be used,
and the convention is to map 256 unique symbols to 256 unique
numbers. As might be expected, more than one such codeset exists
in the industry. Fortunately, all have one important feature in com­
mon: the first 128 characters of these codesets are exactly the same
as the characters in the ASCII codeset. In other words, they are all
supersets of the ASCII codeset.

22 International Supplement User's Manual

5.3 IBM Codepages

The codeset used in IBM-compatible personal computers is probably
the single most popular codeset used today, primarily by people who
are not even aware that it is designed to support non-English
languages. Until recently, this codeset was referred to as IBM- �
extended ASCII (which is a very good description of what an 8-bit
codeset is: it extends the 128 character ASCII codeset by another
1 28 characters).

The characters used in this codeset and the way they are encoded
are exactly those characters displayed by the sample program,
s how . c , used in section 5.2, "8-bit Characters and Codesets. " If
you run this program again and look at the output, you will note the
following:

• There is a symbol for almost every code in the second half of
this codeset.

• The symbols consist of accented letters, both uppercase and
lowercase, special symbols, and graphics characters to draw lines
and boxes.

• For some lowercase accented characters, there are no uppercase
equivalents (for example, e).

Many personal computer programmers and applications use the
graphics characters to draw straight lines, draw boxes around text,
and so on. This codeset clearly supports most characters used in the
major Western European languages, such as French and German. In
recent years, alternate codesets were developed for personal comput­
ers, and software was developed to change the codeset used by them
when running DOS. (Software to support this was developed for the
INTERACTIVE UNIX Operating System as well.) In the DOS
world, the name codepage was used, and the popular IBM-extended
ASCII codeset is now called IBM codepage 437.

The introduction of additional codesets supports more languages
spoken in a particular territory. A list of some of the existing IBM
codepages and the targeted area or language includes:

International Supplement User's Manual 23

Codepage Territory or Language

437 U.S. English and Western Europe
850 International codepage (supports more

letters and fewer graphics characters
than codepage 437)

863 Canada
865 Norway /Denmark
866 Supports Russian alphabet

This list is incomplete; there are codepages for Greek and for the
Slavic languages as well. Try running the program from the previ­
ous section again, but showing codepage 850 instead. Type:

loadfont 8 5 0

The screen will flash and the shell prompt will reappear. Now the
console is using a different codeset. Notice the differences between
the output of the command and the previous output. To switch
back, type:

loadfont 4 3 7

� 5.4 ISO Codesets

The organization that sets internatiQnal standards, called ISO, has
also defined 8-bit codesets to be used on computer systems in
different territories. This standard is more widely adopted on larger
computer systems running the UNIX Operating System. This fam­
ily of codesets is referred to as the ISO 8859 standard. The codeset
used in Western Europe is the 8859- 1 codeset, which is the standard
adopted by the X/Open Company for information interchange.
Type:

loadfont 8 8 5 9

and run the s how program again. The following can be observed:

• There is no symbol for the first 32 values of the second 128
numbers.

• There are no graphics characters to draw boxes.

� • The difference between the values of an uppercase character and
a lowercase character is always constant (32).

24 International Supplement User's Manual

• The values chosen for the accented characters are different from
IBM codepage 437 (for example, e is represented by 234 in ISO
8859- 1 and by 1 34 in IBM codepage 437) .

To switch back, type:
loadfont 4 3 7

There are 9 different 8859 codesets, each for a different territory.
The most important ones are:

ISO Codeset Territory or Languages Intended

ISO 8859- 1 Western Europe
ISO 8859-2 Eastern Europe (English, Czech, Polish and so on)
ISO 8859-5 English and Russian alphabet
ISO 8859-7 English and Greek alphabet

5.5 7 -bit Codesets

Earlier in this document, we described terminals that support only
128 different characters and use a ISETUPI key to select a language
or country. The 7-bit characters generated by most of these termi-
nals follow an ISO standard convention, ISO 646, which is the ISO �
code name for the ASCII standard. For use with languages other
than English, the local language letters are substituted for symbols
such as t.
5.6 Choosing and Configuring a Codeset

It is the system administrator's responsibility to deal with codesets.
The INTERACTIVE UNIX System utility that configures the system
to correctly store characters that are generated by the keyboard is
the same utility that is used to configure the keyboard, t tymap.
The system administrator has to verify that data storage happens
consistently, regardless of the type of terminal used. Otherwise
what was edited as a e on the console yesterday may appear as a {
on a regular terminal today.

The system administrator must choose between one of the IBM
codepages and one of the ISO 8859 conventions. The first issue that
determines that decision is obvious - which language(s) will be used �
on the system. The other criteria that should be considered in this
decision are as follows:

International Supplement User's Manual 25

• If many files developed on a DOS system need to be processed or
many applications will be used in the VP fix Environment, an
IBM codepage should be used.

• If the system needs to communicate with a heterogenous net-
� work of computers, an ISO 8859 codeset is the better choice.

All the files supporting international keyboards that are supplied
with the INTERACTIVE UNIX Operating System (which are
located in /us r I 1 i b/keyboard) configure the console to use
the IBM codepage 437 (850 for Norway) . Additional mapping files
are provided as-is with the International Supplement, located in sub­
directories of /u s r / 1 i b/keyboa r d. They are named after the
codeset, 437 or 8859- 1 , for example, and their names follow the
XjOpen convention for l o c a l e names, for example:

/ u s r / l i b/keyboard/ 8 8 5 9 - 1 / fr _FR

which represents the mapfile for French in France, using the ISO
8859- 1 codeset.

5. 6. 1 Converting From One Codeset to Another

The International Supplement contains a utility, i c o nv, which can
be used to convert the encoding of characters in a file from one
codeset to another. The following example shows the command
needed to convert the encoding in filename from the IBM codepage
437 to ISO 8859- 1 :

i conv - f 4 3 7 - t 8 8 5 9 filename > file.new

Refer to iconv(1P) for more details.

26 International Supplement User's Manual

6. DISPLAYING DATA

When characters are displayed on the screen of your terminal or
console, these characters physically consist of a set of white dots
that make up the picture of the character. Typically, a rectangle of
8 by 1 6 dots is reserved for every character. The one-to-one rela­
tionship between a character (actually the numeric representation of
a character) and its picture is called a font. Depending on how the
INTERACTIVE UNIX System is used, fonts may or may not be
modified.

After typing a character and possibly storing that character in file, a
code (usually the same as the input code) is sent to the terminal to
indicate that it should display something. If necessary, the code sent
by the system or the application can be modified before it is sent to
the screen. This practice is called output mapping. Again,
t tymap is the utility responsible for this function. Proper output
mapping and possible modification of the font guarantees the display
of the proper character (or, when the actual character cannot be
displayed, at least something that makes sense). Here are a number
of suggestions for making the INTERACTIVE UNIX System work
correctly.

6.1 7-bit Terminals

When 7-bit character terminals are used, a 128-character font that
is hardcoded inside the terminal hardware is used. This font cannot
be modified, but more sophisticated terminals allow access to several
different fonts, one for each language supported. These terminals
support the ISO 646 ASCII variants described in the previous sec­
tion. To ensure consistency throughout the system (assuming a
French 7-bit terminal is used):

• On input, map the 7-bit code generated for the French charac­
ters into their actual 8-bit value.

• On output, map the 8-bit code back to the 7-bit code to display
the correct French character.

• Use trigraphs for ANSI C programming.

• To generate curly braces and other such characters, use the
decimal representation. On output, map to a space character.

This ensures the proper display of the file used, especially when the
same file is later edited on devices such as the console.

International Supplement User's Manual 27

If the inability to display curly braces and other typical UNIX Sys­
tem characters, such as \, is too annoying, use this alternative
approach:

• Use the ISETUP I key of the terminal to switch it to U.S.
English. You now have access to a U.S. ASCII font but still
have a French keyboard layout.

• When a French character key is pressed, it is mapped and stored
using its correct 8-bit value.

• On output, it is mapped to the corresponding character without
the accent, or the closest-looking English letter (for example, a
c instead of a y)

• Use decimal representation for the UNIX System characters,
which are automatically stored as 7-bit characters and displayed
correctly.

Your system administrator should develop the correct t tymap
description file for your machine.

6.2 The Console

On the console, a font of 256 different symbols can be used. That
font information is stored in Random Access Memory (RAM) on
the video card inside the computer, to which the monitor is
attached. The information can be changed (on old or inexpensive
systems, the information is stored in Read Only Memory (ROM)
and can only be changed by replacing the ROM with a different
ROM).

INTERACTIVE has developed a utility called l o a d f ont to
change the font information in the video card. This utility has
predefined, built-in fonts. However, anyone can use it to develop a
personalized font. Refer to loadfont (l) for more information.

6.3 Displaying Data and Using INTERACTIVE X1 1

INTERACTIVE X l l and Xl l -based applications always use fonts
when text is displayed. Most applications have a command line
option, - f n, to indicate which font to use. Fonts for both the
8859- 1 (most of the supplied fonts) and IBM 437 codesets are sup­
plied with INTERACTIVE Xl l . The font files supplied with the
International Supplement can also be used with INTERACTIVE X 1 1
after converting them with the bd f t o s n f utility.

28 International Supplement User's Manual

7. THE INTERNATIONAL ENVIRONMENT

The internationalisation features discussed thus far have all involved
compliance with international standards and the ability to correctly
enter, store, and display the letters used by the local language.
Some of the other features an internationalised system should have
are discussed here.

The X/Open Portability Guide dedicates 7 chapters to international­
isation (see Volume 3, XSI Supplementary Definitions , chapters 2-
8) describing these features. The INTERACTIVE UNIX Operating
System supports all the features described there. The abilities
described allow developers to create internationalised applications
and users to take advantage of the fact that these applications are
indeed internationalised.

An internationalised application is a program that makes no hard­
coded assumptions about the language, the local customs, or the
coded character set. When the proper environment is set up for the
user of that application, a program that displays the date displays it
according to the local custom, a program that sorts takes into
account the "natural" order of letters, and so on.

The international environment is used to define user preferences , l
and internationalised utilities and features adapt their behaviour to
those preferences, even when they change. A default environment is
often established, but the user is always free to change the environ-
ment as required.

The remainder of this section describes the international environ­
ment, how it is set up, and how it interacts with internationalised
utilities and applications.

7.1 The International Environment

Running applications in an internationalised environment is based
on the concept of a local environment or l o c a l e , which is defined
as the subset of the user's environment that depends on language
and cultural conventions.

A 1 o c a 1 e consists of a number of categories, with each category
controlling a specific aspect of the international environment. Each """""'
category is usually referred to by the variable used to set or modify 1
it. The International Supplement recognizes the following
categories:

International Supplement User's Manual 29

• Date and Time Format
This category, LC T I ME, affects how date and time are
displayed. -

• Character Classification
This category, LC CTYPE, defines codeset characteristics and
character classification.

• Collation
This category, LC COLLATE, affects the collation ("sorting")
order. -

• Numeric and Monetary Formatting
These categories, LC NUMER I C and LC MONETARY, affect
the format of nonmon-etary and monetary numeric information,
such as the decimal delimiter.

• Yes/No Responses
This category, LC ME S SAG E S , affects the strings used to indi­
cate yesjno answers to utility and application queries. (Note
that while the internationalised yesjno response is required by
XPG3 for certain commands, the LC ME S SAGE S category is
not part of the l o c a l e as defined by XPG3.)

• Message Catalogues
Message catalogues are not yet covered by the l o c a l e
categories, but use similar mechanisms.

The 1 o c a 1 e and the various categories only affect the behaviour
of an application if the application is set up to do so. This ensures
that old applications do not suddenly start behaving strangely. In
addition, a particular 1 o c a 1 e instance that describes the desired
behaviour must also have been created. Such instances are referred
to by their name. X/Open has adopted a format for constructing
l o c a l e names that makes them easy to identify. The format is:

language [_territory [• code set l l

where language is a two-letter abbreviation, for example, f r for
French; territory is a two-letter abbreviation, FR for France or CA
for Canada, for example; and codeset i s the codeset designation,

� such as 437. One l o c a l e category is always present - the "C"
or POSIX l o c a l e , which defines the traditional UNIX System
behaviour.

The creation of l o c a l e instances is described in the "Interna­
tional Supplement Manual for Advanced Users."

30 International Supplement User's Manual

7.2 Controlling the International Environment

A programmer can set and change the 1 o c a 1 e explicitly inside a
program. This can be done to ensure a particular environment, for
example, so that a particular program always behaves the same
way. In most cases, however, the programmer leaves the choice to
the end user by specifying that the 1 o c a 1 e be set to what the end
user specified via environment variables. The environment variables
are:

LC-ALL

LC_COLLATE

LC_CfYPE

If this environment variable is set, the
environment is set to that locale for all
categories, regardless of whether any of the
other variables are set. Example:
LC ALL = f r FR . 4 3 7 .

- -
This environment variable defines the desired
environment for the LC COLLAT E
category. LC COLLATE = f r CA . 8 6 3 , for
example. - -

This environment variable defines the desired
environment for the LC CTYPE category.
Example: LC _ CTYPE = C�

LC_MESSAGES This environment variable defines the desired
environment for the LC ME S S AGE S
category. LC ME S SAGE S = d e DE . 8 5 0 ,
for example. - -

LC__MONET ARY This environment variable defines the desired
environment for the LC MONETARY
category. - Example:
L C MONETARY= e s E S . 8 8 5 9 - 1 .

- -
LC_NUMERIC This environment variable defines the desired

environment for the LC NUME R I C
category. LC NUMERI C = d a DK . 8 6 5 , for
example. - -

LC_TIME

LANG

This environment variable defines the desired
environment for the LC T I ME category.
Example: LC _ TIME = en _UK . 4 3 7 .

If this environment variable is set, the
specified value is used for all categories not
explicitly set; in other words, it is the

International Supplement User's Manual 31

"fallback" (unless LC ALL is also set).
The LANG variable is also used to locate a
specific message catalogue. Example:
LANG = en US .

32 International Supplement User's Manual

8. INTERNATIONALISED BEHAVIOUR

This section explains how the international environment affects the
behaviour of system utilities and applications.

8.1 Date and Time Format

The default conventions for the date and time format, as well as the
names of the days of the week and months, follow U.S. conventions
and are rarely applicable in other countries. By defining and using
the date and time environment, the dates and times displayed by the
system, utilities, and applications follow the local conventions and
use the names of the days and months in the correct language.

The following aspects of formatting are supported by the INTER­
ACTIVE UNIX Operating System:

• Format of time display.

• Format of date display.

• Format of combined date and time display.

• Format of 12-hour time display.

• Names of days of the week.

• Abbreviated names of days of the week.

• Names of the months.

• Abbreviated names of the months.

• Format of the ante meridiem and post meridiem strings used in
12-hour clock time displays.

For example: In a French environment, the output of d a t e could
be:

Mard i 3 0 j u i l l e t 1 9 9 1 1 1 : 0 7 : 3 5 PDT

and the output of 1 s - 1 :
t o t a l 6 3 6
- rw- r - - r - - 1 paul other 2 7 3 9 9 j anv . 2 4 1 8 3 6 : 0 2 c h 0 1
- rw- r - - r - - 1 paul other 1 3 8 4 2 j u i l . 9 1 8 3 6 : 0 3 c h 0 2
- rw- r - - r - - 1 paul other 9 0 5 7 ma i 1 2 1 8 3 6 : 0 3 ch 0 3
- rw- r - - r - - 1 paul other 2 6 3 ma i 1 2 1 5 4 4 : 4 5 document
- rw- r - - r - - paul other 3 9 8 s ept . 2 4 1 2 3 7 : 3 4 Make f i l e
- rwxr - x r - x paul other 2 4 2 0 2 avr i l 1 0 1 9 9 1 show

International Supplement User's Manual 33

8.2 Character Classification

Regardless of how it is encoded, a character has certain features.
For example, it is either printable or nonprintable. If a different
codeset is used, different numbers represent the characters. To keep
track of this, the system uses a classification table, which contains
information about all 256 characters in the codeset. Things that can
be specified are:

• Lowercase letters

• Uppercase letters

• Digits

• White-space characters

• Punctuation characters

• Control characters

• Uppercase to lowercase conversion

• Lowercase to uppercase conversion

• Printable characters or nonprintable characters

Programs that are written to use functions like i s up p e r and
i s d i g i t (refer to ctype(3C)) access this table and behave
accordingly. The default table used by the system is the ASCII
table that considers every 8-bit character nonprintable. This explains
why programs such as v i do not display 8-bit characters correctly,
but their octal representations instead, unless the proper environ­
ment is set up.

Using more than just the ASCII characters changes the meaning of
many things, including the meaning of regular expressions. The
string [a - z] no longer represents all lowercase characters. In
some languages, there are alphabetic characters after z in the dic­
tionary, and as discussed earlier, most codesets contain lowercase
characters that are stored as 8-bit characters, which would be
ignored if the above expression were evaluated numerically.

The X/Open Portability Guide specifies internationalised regular
expressions. It introduces keywords that can be used to specify
classes of characters, for example, [[: l owe r :]] is a regular
expression that means .. any lowercase letter."

34 International Supplement User's Manual

The INTERACTIVE UNIX Operating System fully supports interna­
tionalised regular expressions. Where appropriate, UNIX System
utilities have been enhanced to support these capabilities. These util­
ities are supplied with the International Supplement (see section 1 0,
"INTERNATIONALISED INTERACTIVE UNIX SYSTEM UTILI­
TIES") . For a detailed description of internationalised regular
expressions, refer to regexp(SP).

8.3 Collation

Collation, according to a dictionary, is the "act of putting things in
their proper order." Thus, collation rules define how the data are
put in the proper order, or sorted. Traditionally, the collating order
in the UNIX System has been ASCII order, that is, the order in
which the characters appear in the ASCII codeset. This is the
natural collating order for the English language.

For most languages in the world, however, this is not enough. Most
European languages contain more letters than the 26 in the English
language, with the additional letters typically collating between the
letters in the ASCII set. For instance, an accented a sorts between a
and b. The average European user expects sorted lists (for instance,
the output from the l s command) to appear in the collation order � of his or her language.

Languages with non-Latin-based alphabets, such as Russian or
Greek, use a completely different set of characters. For these
languages, collation takes on additional complexities.

The INTERACTIVE UNIX Operating System allows users to define
their own collation order. This capability is a superset of the
X/Open requirement for an internationalised system and is expected
to satisfy the requirements for dictionary ordering for most Euro­
pean languages and non-European alphabetic languages. The stan­
dard utilities that depend on collation, such as s ort and l s , have
been modified to understand this user-specified collation order and
are supplied with the International Supplement.

8. 3. 1 An Example

Consider the following four lines (the four seasons in French):
pr i ntemps
et e
automne
h i v e r

The regular UNIX System s o r t utility sorts them as follows:

International Supplement User's Manual

automne
h i ve r
pr i ntemps
et e

35

It uses the numeric representation of characters, and because e is
fiiiM" represented by an 8-bit character, it is listed last. The UNIX Sys­

tem s o r t used to strip the eighth bit, sorting the above sequence
as:

et e
automne
h i v e r
pr i ntemps

which is, of course, wrong as well. (Making utilities 8-bit clean is
not always sufficient.)

The internationalised s ort gives the following (correct) result:
automne
ete
h i v e r
pr i nt emps

8.4 Numeric and Monetary Formatting

The default conventions for decimal delimiter and other numeric
� formatting rules are seldom correct in an international environment.

For example, the default decimal delimiter in the U.S. is a period,
but in most European countries the comma is used instead, which,
in turn, is used in the U.S. as the thousands separator character.
So $ 1 ,000, which is one thousand dollars in the U.S., could be inter­
preted as a single dollar in Europe. Misinterpreting things the other
way around could be quite an expensive mistake! By defining
numeric and monetary formatting with the correct values, programs
display fractions using the appropriate decimal delimiter.

Applications such as accounting programs often have to be modified
to display the correct monetary symbol. The manner in which
numbers representing amounts of money are formatted is also sub­
ject to local conventions.

8.5 Yes/No Responses

Some utilities, such as rm, require the user to acknowledge whether
� a specific action should be taken. The usual response is either "yes"

or "no." Before internationalisation, such utilities required the user
to respond using the English y or n. Such a response is not natural
to French-speaking people in the world, where, of course, ou i
would be more natural instead of ye s . INTERACTIVE has added

36 International Supplement User's Manual

the capability to define the correct yes and no responses for a partic­
ular l o c a l e .

8.6 Message Catalogues

The message catalogue system specified by XPG3 allows program
messages to be stored separately from the logic of the program, to
be translated into different languages, and to be retrieved at run
time, according to the language requirements of the user. This
means that a single application (a single UNIX System executable)
can support many languages. The program can be translated
without requiring access to the C source code of the application -
all that is needed is a message catalogue source file in one language,
which can be used to translate it in to other languages.

For performance reasons, two different message catalogue formats
are used:

• A message text source file.

• A message catalogue (used by the application and produced
from the message text source using a new utility called g e n c a t
(refer to gencat(lP)). INTERACTIVE has also added a utility,
showc at, that can be used to translate the contents of a mes- 1
sage catalogue into its message text source (that is, the opposite
of the g e n c a t utility), unless an option to prevent this transla-
tion was used when g e n c at was used to create the message
catalogue. Refer to showcat (IP) for more information.

8. 7 The X/ Open Environment

The set of internationalisation features described previously func­
tions according to the X/Open Portability Guide and far exceeds
those supported by UNIX System V.

Every application developed using the INTERACTIVE Software
Development System and compiled with the - Xp option has access
to this functionality. The International Supplement provides the
ability to create and use l o c a l es other than the default (U.S.
English, the "C" 1 o c a 1 e). It also provides the enhanced UNIX
System utilities that understand the X/Open announcement
mechanism (discussed below).

Refer to the "International Supplement Manual for Advanced
Users," the "International Supplement Reference Manual," and
Volumes 1 , 2, and 3 of the X/Open Portability Guide for more
details.

International Supplement User's Manual 37

9. THE SYSTEM V ENVIRONMENT

Beginning with UNIX System V Release 3. 1 , serious attempts were
made to make the UNIX Operating System function better in an
international environment. Most UNIX System utilities that
stripped the eighth bit of a byte were made 8-bit clean. In addition,
some of the functionality described in the previous section was made
available (in particular, date and time formats and character
classification). In order to access the local language information, a
utility or application needs to know its location. The mechanism
used to communicate its location is called an announcement
mechanism . Unfortunately, the System V and X/Open announce­
ment mechanisms are different. The System V mechanism is
described in this section because certain UNIX System utilities, such
as v i , support it.

9.1 Date and Time Formats

Most UNIX System utilities that display the time or the date
(d a t e and 1 s , for example) and all applications developed on
UNIX System V that use the c f t i me function (see ctime(3C))
can be given access to a different method of displaying the date
(typically, in a different language, but the feature can also be used
if you want to call Saturday "Partyday" instead, for instance). The
date and time information needs to be stored in a text file. The fol­
lowing information is required:

• Abbreviated month names (in order)

• Month names (in order)

• Abbreviated weekday names (in order)

• Weekday names (in order)

• Default strings that specify formats for local time and date

• Strings used to replace AM and PM

This file must be stored in the directory / l i b/ c f t i m e . When
the shell variable LANGUAGE is set to the name of the file, the date
and time are displayed accordingly. (Note that the X/Open
mechanism uses LC _ T IME instead.)

9.2 Character Classification

UNIX System V Releases 3 . 1 and later also supports character
classification. A utility, chr t b l , converts a text file that contains a

38 International Supplement User's Manual

description of the codeset into a binary file. When that file is
installed in / l i b/ c hr c l a s s , and the shell variable CHRCLAS S
is set to the name of that file, the correct character classification is
used. The format of that file is described in chrtbl(l M). (Note
that the X/Open mechanism uses LC CTYPE instead.) �
Although the use of the X/Open announcement mechanism is
recommended, the System V method should be used for System V
utilities and applications, such as v i , which were not international­
ised for XPG3. All programs that are written using functions such
as i s upp e r have access to this mechanism.

I

International Supplement User's Manual

1 0. INTERNATIONALISED INTERACTIVE UNIX SYSTEM
UTILITIES

39

To use the internationalisation features described in the previous
sections, a number of UNIX System utilities needed to be modified.
Their enhanced behaviour complies with the specifications listed in
volume 1 of the XfOpen Portability Guide (Issue 3) . Most of the
differences in behaviour are transparent to the user. In most cases,
when no local environment (l o c a l e) is set up, the behaviour
defaults to the standard System V behaviour. The manual entries in
the INTERACTIVE UNIX System User'sfSystem Administrator's
Reference Manual have not been modified to reflect the interna­
tionalised behaviour. Refer to volume 1 of the X/Open Portability
Guide for more details.

These utilities are supplied with the International Supplement and
are installed in the directories where the original UNIX System V
utilities are located. A list of these utilities and the 1 o c a 1 e
categories they understand follows. One category, described in the
"International Supplement Manual for Advanced Users," which
deals with regular expressions, is referred to as Internationalised
Regular Expressions (Int. RE).

The following utilities are supplied:

Categories

Utility Int. LC_- LC_- LC_- LC_- LC_-

COLL NUME- MESS-
RE CTYPE

ATE
TIME

RIC AGES

ar y
awk y y y y
c omm y
c p y
c p i o y y y
c s p l i t y
d a t e y
e d y y y
e g r e p y y y
expr y y y

40 International Supplement User's Manual

Categories

Utility Int. LC_- LC_- LC_- LC_- LC_-

COLL NUME- MESS-
RE CTYPE

ATE
TIME

RIC AGES

f g r e p y
f i nd y y y
g r e p y y y
j o i n y
l n y
l p s t a t y
l s y y y
ma i l y
mv y
pg y y y
pr y y
p s y
r e d y y y
rm y
r s h y y
s e d y y y
s h y y
s o r t y y y
t a r y y
t r y y
un i q y
uucp y y y
uu s ta t y
uux y y y
we y
who y
y a c c y

For awk, the period (.) is used as the decimal delimiter in scripts
(to provide portability), but in data to be processed, as well as out­
put, the decimal delimiter of the current 1 o c a 1 e is honored.

a r and ya c c are supplied with the INTERACTIVE Software
Development System rather than the International Supplement.

In addition to the functionality specified by XPG3, other uuc p­
related commands have been changed so that they are affected by
the category LC _ TIME in the l o c a l e . One of these commands,

International Supplement User's Manual 41

uux, is included in XPG3; the remainder are not. (They may be
found in the INTERACTIVE UNIX System User'sfSystem
Administrator's Reference Manual .) The following is a summary
of the additional functionality:

I""' uuc i c o, uu s c h e d, uux, uuxqt
LC T IME determines the format of date and time
strings output by these commands.

uuc l e a nup
LC T IME affects the format of date strings included in
messages composed by uuc l e anup.

/� · �--- ·

International Supplement User's Manual 43

GLOSSARY

announcement mechanism
The mechanism used to communicate the location
of local language information.

ANSI American National Standards Institute.

ASCII American Standard Code for Information Inter-
change.

AZERTY Name used to reference French keyboard layouts.

CAE Common Applications Environment

codepage A codeset. This term is used in the DOS world,
particularly by IBM.

codeset A convention describing one-to-one relationships
between symbols and numbers. It represents
letters as numbers that can be stored in a
computer's memory.

collation The act of putting things in their proper order
(sorting) .

compose sequence

console

dead key

A special key or sequence of keys used to put the
keyboard into a special mode where the system
expects two more characters to be typed by the
user before a character is generated. The default
ICOMPOSEI key sequence for the INTERACTIVE
UNIX Operating System is lcrRLI I SHIFI'I IFtl.

A directly connected keyboard and a monitor
attached to a computer's video card.

A procedure for overprinting invented by type­
writer manufacturers, where when one key is
pressed, a character is printed but the typewriter
carriage does not move until the second key key is
pressed, so that characters consisting of two
separate characters, such as e, can be formed.
The INTERACTIVE t tymap utility can be used
to assign deadkeys. The only difference is that
when the first key is pressed, nothing happens until
the second key is pressed, after which the entire
character appears on the screen.

44 International Supplement User's Manual

escape sequence

IBM

IEEE

Sequences of characters, such as l[i]cl (escape, the
code generated by the escape key) o li].
International Business Machines.

Institute of Electrical and Electronics Engineers,
Inc.

internationalisation

ISO

ISV

118N

LJON

Making a computer, a computer system, or a com­
puter program function appropriately in a non-U.S.
environment.

The international standards organisation. (Note
that ISO is not an acronym.)

Independent Software Vendor.

Internationalisation.

Localisation.

l o c a l e An abbreviation for the X/Open concept local
environment, that subset of the user's environment

localisation

that depends on language and cultural conventions. �
It consists of the following categories: Date and
Time Format, Character Classification, Collation,
Numeric and Monetary Formatting, Yes/No
Responses, and Message Catalogues.

The adaptation of computer programs to a single
language and/or country.

output mapping

POSIX

POSIX J

POSIX. 2

Modification of the code sent by the system or the
application to the screen before a character is
displayed.

Portable Operating System Interface for Computer
Environments.

International Standard (ISO/IEC 9945- 1) defining
system interfaces.

Draft standard for shell and utilities.

�

International Supplement User's Manual 45

QWERTY

QWERTZ

RAM

ROM

SVID

terminal

trigraph

XPG3

XSI

Name used to reference U.S. English keyboard
layouts.

N arne used to reference German keyboard layouts.

Random Access Memory.

Read Only Memory.

System V Interface Definition.

A self-contained unit with a keyboard and a screen
that is connected to a serial port of a computer.

Three-letter sequences used in an ANSI C source
file that are interpreted as a single symbol This is
essential to the C language.

X/ Open Portability Guide , Issue 3 .

XjOpen System Interface.

International Supplement Manual

for Advanced Users

�
CONTENTS

1 . INTRODUCTION 1

2. SETTING UP THE ENVIRONMENT FOR USERS'
TERMINALS 2
2. 1 Motivation 2
2.2 Mapping Features 3
2 .3 The t tymap Program 4

2 .3 . 1 A Sample map£ i 1 e 5
2.4 Activating Mapping Prior to Login 6

2.4. 1 The System Console . . . 6
2.4.2 Changing the Default Font for the

Console 6
2.4. 3 Other Terminals 7
2.4.4 User-Specific Configuration . . . 7
2.4.5 General ttymap Guidelines 8

3 . SPECIFYING DATE AND TIME FORMATS 1 0
3 . 1 When to Use the Date and Time l o c a l e

Category 10
3 . 2 Date and Time Formatting • 1 0
3 . 3 Creating a Date and Time Formatting

Definition 1 1
3 . 3 . 1 abday Keyword 1 2
3 . 3 .2 day Keyword 1 2
3 . 3 . 3 a bmon Keyword 1 2
3 . 3 .4 mon Keyword 1 3
3 . 3 . 5 d _ t _ fmt Keyword 1 3
3 . 3 . 6 d _ fmt Keyword 1 3
3 . 3 . 7 t _ fmt Keyword 1 3
3 . 3 . 8 am _ pm Keyword 1 3
3 . 3 . 9 t _ fmt _ ampm Keyword 1 4

� 3 . 3 . 1 0 A Sample File 14
3 . 3 . 1 1 How a Program Uses This

Information 1 4

4. SPECIFYING CHARACTER CLASSIFICATION
INFORMATION 1 5

- i -

4. 1 Defining Character Classification 1 5
4. 2 When to Use the Character Classification l o c a l e

Category 1 5
4. 3 Creating a Character Classification Category �

Definition 1 5
4. 3 . 1 An Example of a Character Classification

Definition 1 7
4. 3 .2 How a Program Uses This

Information 1 7
4. 3 . 3 Use in Regular Expressions and Shell Pattern

Matching 1 7

5 . PREPARING AND INSTALLING A COLLATION
SEQUENCE 1 9
5 . 1 When to Use a Collation Sequence 1 9
5 .2 Defining Collation 1 9
5 .3 Capabilities 20
5.4 Creating a Collation Sequence Definition . . . 2 1

5 .4. 1 charmap Files • 23
5 .5 Source File Organisation 24

5 .5 . 1 c o l l a t i ng - e l ement Keyword 25 �
5 .5 .2 c o l l at i ng - symbo l Keyword . 25
5 .5 . 3 subs t i tut e Keyword 25
5 .5 .4 o r d e r _ s ta r t Keyword . . . 26
5 .5 . 5 o r d e r _ end Keyword 29
5 .5 .6 An Example 30
5 .5 .7 Use in Regular Expressions and Shell Pattern

Matching 32

6 . SPECIFYING NUMERIC AND MONETARY
INFORMATION 33
6. 1 Reasons for Defining Numeric and Monetary

Formatting 33
6 .2 Defining Numeric and Monetary Formatting 33
6. 3 When to Use the Numeric and Monetary l o c a l e

Category 33
6.4 Numeric Editing 33
6 . 5 Creating a Numeric Category Definition . . . 34 �

6.5 . 1 d e c i ma l _ po i nt Keyword 35
6. 5 .2 thou s and s _ s e p Keyword 35
6. 5 . 3 g roup i ng Keyword 35
6.5 .4 An Example of a Numeric Category

Definition 36

- ii -

6.6
6 .7

6 .5 .5 How a Program Uses This
Information • •

Monetary Editing • • • •
Creating a Monetary Category Definition
6 .7 . 1 i nt curr symbo l Keyword
6 .7 .2 c u r r e ncy - symbo l Keyword
6 .7 . 3 mon d e c i ma l po i nt Keyword
6 .7 .4 mon - thou s ands s e p Keyword
6.7 . 5 mon - group i ng Keyword . •
6.7 .6 p o s i t i ve s i gn/nega t i ve s i gn

6.7 .7
6 .7 .8
6 .7 .9

Keywords .
-

. . . . •
-

i nt f r a c d i g i t s Keyword
f r a c _ d i g I t s Keyword • . •
p c s p r e c e d e s /n c s pre c e d e s
Keywords : .

-
. . • • •

6.7 . 1 0 p s ep by spac e /n s e p by s pa c e
Keywords .

-
• . • .

-
• •

-
• : . .

6 .7 . 1 1 p _ s i gn _ posnjn _ s i gn _ p o s n
Keywords • . • •

6. 7. 1 2 An Example of a Monetary Category
Definition . . . • . • • . •

6.7 . 1 3 How a Program Uses This
Information . . • . .

7 . SPECIFYING YES/NO RESPONSE
INFORMATION . •
7 . 1 Reasons for Defining YesjNo Responses
7 .2 Defining Yes/No Responses • . • • •
7 .3 When to Use the YesjNo Response l o c a l e

Category • . • • • • • • . .
7.4 Creating a Yes/No Response Category

Definition . • • • . • • • .
7.4. 1 ye s expr Keyword . • •
7.4.2 no expr Keyword . . • • . • .
7.4. 3 An Example of a Response Category

Definition . • . • • • .
7.4.4 How a Program Uses This

Information . • .

36
36
36
38
38
39
39
39

39
39
39

40

40

40

4 1

4 1

42
42
42

42

42
43
43

43

43

8. TIPS FOR PROGRAMMERS . • . • . 44
8 . 1 Character Mapping . • . • . • . • . 44
8 .2 Giving Programs Access to l o c a l es . • • 45
8 . 3 Date and Time • 45

- Ill -

8 .4 Character Classification • 46
8 . 5 Collation 46
8 .6 Regular Expressions 46
8 .7 Numeric and Monetary Formatting . 46 �
8 .8 Message Catalogues 47

8 .8 . 1 Extension of pr i nt £ Syntax 48

� I

- iv -

International Supplement Manual

for Advanced Users

1 . INTRODUCTION

This document explains how to prepare and install a properly func­
tioning international environment on an INTERACTIVE UNIX*
Operating System. It also summarizes the internationalisation
features and provides tips for C programmers who want to develop
internationalised applications. Developers of such applications
should also consult the X/ Open Portability Guide .

Note that before reading this document, you should have already
read the "International Supplement User's Manual."

2 International Supplement Manual for Advanced Users

2. SETTING UP THE ENVIRONMENT FOR USERS'
TERMINALS

This section describes how a system administrator can configure the
terminals on the system to use the appropriate codesets and the key-
boards supported by those terminals. It also explains the need for � character mapping ability and give tips for establishing the correct
mapping from boot time.

2.1 Motivation

The original UNIX Operating System and most systems derived
from it have been based on the ASCII 7-bit coded character set and
American English. The ASCII character set consists of 1 28
different characters, each represented by a single byte (the eighth
bit is not used). Beginning with UNIX System V Release 3 . 1 , most
applications have been modified to properly support characters
represented as a byte with the eighth bit set as well. This means
that now 256 characters can be supported at the same time. A con­
sistent coding convention needs to be applied, however. In the IBM*
PC world, an 8-bit coding scheme referred to as IBM extended
ASCII has been used for several years. This codeset is currently
referred to as IBM codepage 437. In heterogeneous UNIX System
environments a different codeset, called ISO 8859- 1 , has been pro- �
moted. Both of these codesets are supersets of ASCII.

Although an 8-bit system meets most of the European requirements
(for the major Asian Languages, a 1 6-bit system is necessary even
to support a single language), it should function properly in conjunc­
tion with the available hardware and, in particular, with the termi­
nals. To use characters from the French, German, Finnish, and
other alphabets, several terminals are available that generate 7-bit
codes but display the characters from those alphabets on the screen
instead of the ones found on a U.S. terminal. Their keyboards have
the same number of keys, but different characters are pictured on
the key caps. Others, like the DEC* VT220*, support 256 characters
at a time but use their own proprietary codeset and have an extra
I COMPOSEI key.

To illustrate the problems that occur when trying to use such termi-
nals in a mixed language environment, imagine an INTERACTIVE """') UNIX System with a console and a French 7-bit terminal connected
to the serial port. When editing a file on the terminal and using the
French character e in text, the terminal (hardware) actually gen-
erates the ASCII code 1 23, which is the code normally used for the

International Supplement Manual for Advanced Users 3

left curly brace ({). (This example assumes that the terminal uses
the French national variant of ASCII called ISO 646f.) If the file
that was edited is looked at on the console, the letter actually
appears to be a curly brace. Therefore input and output mapping
should be supported by the tty subsystem to allow consistent use
of one single codeset throughout the system.

Implementing character mapping support inside the tty subsystem
has the advantage that its features are automatically supported by
all peripherals that use the standard line discipline, without modify­
ing the device drivers for these peripherals.

2.2 Mapping Features

For each t t y device, character mapping can be done on input as
well as on output. The information is stored in a buffer, the size of
which should not exceed 1 K. The following mapping features are
supported:

• Input mapping
On input, any byte can be mapped to any byte. Using the exam­
ple from the previous section, 1 23 could be mapped to 1 30, the
code used for e in the IBM extended ASCII codeset, or C9, its
equivalent in the ISO 8859- 1 codeset.

• Output mapping
On output, any byte can be mapped to either a byte or a string.
In the previous example, 1 30 or C9 would be mapped back to
1 23 to properly display the character on the screen. If the con­
nected device is a printer that does not support the e character,
it can be mapped into the string e BACKSPACE ' .

• Deadkeys
Certain keys on typewriters behave differently from the others,
because when these keys are pressed, the carriage of the type­
writer does not move. A is such a character, for example. When
it is followed by an e, the letter e is generated. This is called a
deadkey or a non-spacing character. The tty subsystem sup­
ports the use of deadkeys. Typically, the A character and the
umlaut character are used as deadkeys.

� • Compose sequences
Characters can also be generated using compose sequences. A
dedicated character, called the c ompo s e char a c t e r , fol­
lowed by two other keystrokes, generates a single character. As
an example, I COMPOSE I followed by the plus sign and the minus

4 International Supplement Manual for Advanced Users

sign could generate the plus/minus sign. Compose sequences can
also be used as an alternative for deadkeys, for example,
I COMPOSE I A e instead of A e alone.

• Decimal representation
Rarely used characters can be generated by pressing """'
! COMPOSE! , followed by three digits (which are the decimal
representation of the character). This feature has been added by
INTERACTIVE. This should alleviate most of the inconvenience
caused by the 1 K limitation of the mapping buffer.

• Toggle key
An optional toggle key can be defined to temporarily disable the
current mapping at any time. This can be useful when a German
programmer wants easy access to the curly braces and the
brackets. A toggle key is also used by Greek users to switch
between ASCII and Greek. The toggle key feature and the
i o c t 1 calls that implement this are INTERACTIVE
enhancements.

2.3 The t tymap Program

t tymap is an INTERACTIVE utility that permits a user to activate
character mapping for the user's terminal on input and output. This �
utility can be used for regular terminals as well as for scancode de-
vices such as the AT* console. It makes full use of all the features
of the terminal (t ty) driver and the keyboard display driver that
support such mapping.

The keyboard of the console differs from the keyboards used with
regular terminals in two ways: they contain a number of keys, such
as the IALTI key, that are not found on regular terminals, and they
generate scancodes rather than ASCII or extended ASCII codes.
Scancodes generated by PC keyboards typically represent the loca­
tion of the key on the keyboard; the keyboard driver has to properly
translate these scancodes. Without changing the scancode transla­
tion, if French users type an A, they see a Q on the screen. Several
status keys can influence the translated code as well. The keyboard
driver, and thus the t tymap program, make a distinction between
two sets of key combinations that can be translated:

· �� � �
• Function keys

Up to 60 key combinations are recognised as function keys. The
first 1 2 are the 1 2 function keys of a 1 0 1 -key PC keyboard.

International Supplement Manual for Advanced Users 5

[lliJ to I F24l are the same keys used in combination with
ISHIFfl, I F25 I to � when used with lcrRLI, and I F37 I to I F48 I
when used with lcrRLI and ISHIFTI together. I F49 I to I F60 I are
the keys on the numeric keypad.

On the console, it is more flexible to change the scancode translation
than to use the general mapping features described earlier. It also
reduces the risk of reaching the 1 K limit of the mapping buffer.

ttymap(1) describes how the desired mapping should be laid out in
a m a p f i l e .

2.3. 1 A Sample mapf i 1 e

Consider the following input to the ttymap program:
s amp l e f i l e
i nput :

togg l e : O x 1 4

dead : ' "' ' I I 1 " 1
' e ' O x B B

compo s e key

CTRL SHIFT F 2

c i r cumf lex
<c i r cumflex>
<e - c i rcumf lex>

c ompo s e : O x 1 8 # CTRL SHIFT F 1
' e ' ' : ' O x 8 9 # <e - d i a e r e s i s>

output :
' "' u ' ' K ' ' I ' ' L ' ' L '
s c ancode s :
map CTRL S H I F T F 1 to be O x 1 8 for the compo s e cha r a c t e r key
F 3 7 O x 1 8
map CTRL S H I FT F 2 t o be O x 1 4 for the togg l e key
F 3 8 O x 1 4

This file defines the compose and toggle keys, two deadkey
sequences, one compose sequence, and "KILL" as the string to be
displayed whenever AU is sent to the output.

Assuming this file is named mapf i l e , this mapping could be
activated by typing:

t tymap mapf i l e

The terminal currently in use will then behave according to the
mapping described. This has its drawbacks, however, for users with
a French keyboard. For example, if a user with the login name
p a u l can only use the keyboard correctly after typing this com­
mand, he is then forced to type pqu l to log in to the system, has to
have chosen a password that can still be typed in, and has to type:

6 International Supplement Manual for Advanced Users

t ty ; qp ; qpf i l e

to access the t tymap command itself.

To avoid this awkward situation, INTERACTIVE has enhanced the
g e tty command to activate the mapping prior to login. A new
option, - m, has been added. Refer to section 2.4 and getty(l M) for
details.

2.4 Activating Mapping Prior to Login

2. 4. 1 The System Console

When the INTERACTIVE UNIX System is installed, the system
asks for keyboard information. This automatically configures the
system for the proper mapping on the console for the keyboard
selected (providing IBM codepage 437 is used).

2.4. 2 Changing the Default Font for the Console

When the system is booted, IBM codepage 437 is automatically used
on the console. The system can be configured to automatically use a
different font, without the need for any additional commands from
the user.

To do this, create a shell script with a name that starts with s and a �
number (for example, S 9 5 f ont), with the appropriate 1
l o a d f ont command replacing the one in this example:

s e t the appropr i at e loadfont

/ u s r /b i n/ loadfont 8 8 5 9

Place this file in the directory I etc I r c 2 . d, which contains a
number of shell scripts that are automatically executed when the
system comes up in multi-user mode. The order of execution
depends on the number in the file name. We recommend using a
number greater than all the others for the script that changes the
font. The directory also contains files with names that begin with
the letter K; these are executed when the system is switched back to
single-user mode. For example, this directory might contain:

K 3 6 s endma i l
S 0 1 MOUNTFSYS
S O SRMTMP F I L E S

S 0 6TMPRAMD
S 1 1 uname
S 2 0 sysetup

S 2 1 pe r f
S 7 0uucp
S 9 5 font

International Supplement Manual for Advanced Users 7

2.4. 3 Other Terminals

When the system is booted, a g e t ty program is started on every
terminal that is configured in the system. This program prints
l og i n : or any other "herald" on the screen and waits until some-

� one types input. It then calls the l og i n program for password
verification, which in turn executes the user's login program, which
is typically the UNIX System command interpreter, the shell.

Each such terminal is represented by one line in the system file
/ e t c / i n i t t ab. By modifying such a line, mapping can be
activated prior to logging in on any terminal. For example, a line
for the console would be:

co : 1 2 3 4 5 : r e s pawn : / e t c/qetty -m /usr/ l i b/keyboard/ 4 3 7 /en_US con s o l e cons o l e

To activate mapping on another terminal, simply add the - m option,
followed by the name of the appropriate mapping file to the g e tty
command on the line representing the terminal. Most terminal de­
vices have a name that contains the string t ty. For example:

0 0 : 2 3 4 5 : o f f : / e t c /getty /dev/tty O O 9 6 0 0

represents the first serial port of the computer. To test the new
configuration, first kill any existing g e tty processes for the devices
with entries that have been changed, then as superuser, type:

t e l i n i t q

This has the system reread the / e t c / i n i tt a b file. This file is
recreated each time a new UNIX System kernel is built, using infor­
mation stored in other files. Therefore, one more step needs to be
taken after the terminal setup has been successfully tested. Add the
same line with g e t ty - m to either
/ e t c / c on f / c f . d/ i n i t . ba s e (the base i n i t t ab file that
contains information about the console) or the file in the directory
/ e t c / c on f / i n i t . d that corresponds to the device driver of the
peripheral to which the terminal is attached (for example, a s y for
the serial port) .

2.4.4 User-Specific Configuration

The configuration guidelines given in the previous section assume
� that all users of a particular terminal use the system in the same

fashion. This may not always be the case. A French user using a
U.S. terminal may want to see a circumflex defined as a deadkey;
an American user would not. If this is the case, you can add the
appropriate l o a d f ont or ttymap commands to the user's

8 International Supplement Manual for Advanced Users

$ HOME / . p r o f i 1 e file for Bourne Shell users or to the appropri­
ate user-specific configuration files for other shells. These com­
mands override the system-wide configuration.

2. 4. 5 General t tymap Guidelines

INTERACTIVE supplies t tymap files for the console to support all �
major keyboard types. These files are delivered with the INTER­
ACTIVE UNIX Operating System in the /usr / 1 i b/keyboard
directory and are named * . map. A number of other ttymap files
and font files (which have names with the suffix • bdf, for example,
vga 8 5 5 . bdf) , some of which have been supplied to INTER­
ACTIVE by third parties, are distributed with the International Sup­
plement on an as-is basis. The t tymap files include:

Language/ Codesets
Territory 437 850 863 865 866 8859- 1 8859-5
da_DK X X X X
de_CH X X X
de_DE X X X
en_ UK X X X
en_ US X X X
es_ES X X X
fr_CA X X
fr_CH X X X
fr_FR X X X
iLIT X X X
no_NO X X X X
r\LRU X X
sv_8E X X X

These files are located in directories under the
/u s r / 1 i b/keyboard directory that represent the codeset {437,
850, 863, and so on) and are named for the /anguage_territory,
d e _ DE , for example.

In many cases, the experienced user or the system administrator
needs to create or modify an existing mapf i 1 e to support a
specific terminal or environment. The following categories deter-
mine how the mapping should be configured: �

International Supplement Manual for Advanced Users 9

• The type of terminal used.

• The codeset used.

• The layout of the keyboard used.

• The country it is used in, or the language spoken by the user.

Each time one of these categories changes, a different t tymap file
is required.

10 International Supplement Manual for Advanced Users

3. SPECIFYING DATE AND TIME FORMATS

Date and time formatting consists of rules that define how date and
time strings appear. These rules are created by placing
specifications in the LC _ TIME file in a l o c a l e directory. �
The default conventions for the date and time format, as well as the
names for the days of the week and the months, follow the U.S.
conventions and are rarely applicable in other countries. By
defining and using the date and time l o c a l e category, you can
ensure that the dates and times displayed by the system follow your
conventions and use the local names of days and months.

3.1 When to Use the Date and Time l o c a fe Category

A created and installed definition is not activated until the user
specifies that it should be used. To do this, set the L C ALL,
L C TIME, or LANG environment variable to the directory in

-
which

the
-
files are stored. This must be done before a program using the

stored definitions is executed. Note that the program must be set
up to check and set the international environment (via the
s e t l o c a l e function) . In the INTERACTIVE UNIX Operating
System, the standard utilities that display the date and time, such as � d a t e and 1 s , have been modified to use the international
environment.

3.2 Date and Time Formatting

Date and time formatting controls the appearance of date and time
strings created by the system. The following aspects of formatting
are controlled via the LC _ TIME l o c a l e category:

• Format of the time display.

• Format of the date display.

• Format of the combined date and time display.

• Format of the 12-hour time display.

• Names of the days of the week.

• Abbreviated names of the days of the week.

• Names of the months.

• Abbreviated names of the months.

• Format of the ante meridiem and post meridiem strings used in
1 2-hour clock time displays.

�-

International Supplement Manual for Advanced Users 11

Note that the standard INTERACTIVE UNIX System library rou­
tine s t r f t j me (refer to ctime(3P)) is set up to use this informa­
tion. The System V c f t j me routine, on the other hand, does not
use the information created in this manner; it uses a different shell
variable and searches in a different directory (refer to section 9,
"THE SYSTEM V ENVIRONMENT," in the "International Supple­
ment User's Manual" for more information).

3.3 Creating a Date and Time Formatting Definition

The source language for the date and time category in the INTER­
ACTIVE UNIX System is the language defined by the POSIX.2
group for the L C _ T IME l o c a l e category.

A date and time editing source definition consists of a header, a
date and time editing body, and a trailer. The header consists of
the word L C _ T IME. The trailer consists of the string
END LC T IME.

The date and time editing body consists of one or more lines of text.
Each line contains a keyword followed by one or more operands.
Keywords are separated from the operands by one or more blank
characters (space or tab).

Operands are characters, strings of characters, or digits. When a
keyword is followed by more than one operand, the operands must
be separated by semicolons (;). Blanks are allowed before and/or
after a semicolon. Strings must be surrounded by quotes. Indivi­
dual characters may be surrounded by quotes, but it is not required.
Blank lines or lines containing a number sign (#) in the first column
are ignored. A line can be continued by typing a backslash (\) as
the last character on the line.

The following keywords are recognised:

L C T I ME The header.

abday

day

a bmon

mon

Defines the abbreviated names of the week­
days, starting with Sunday.

Defines the names of the weekdays, starting
with Sunday.

Defines the abbreviated names of the
months, starting with January.

Defines the names of the months, starting
with January.

12

t fmt

d fmt

d t fmt

International Supplement Manual for Advanced Users

Defines the format of the time string.

Defines the format of the date string.

Defines the format of the combined date and
time string. �
Defines the strings used to specify ante meri-
diem and post meridiem in a time string
according to the 12-hour clock.

t _ fmt _ ampm Defines the format of the 12-hour time
display.

END L C T I ME The trailer.

Refer to date(1) for more information about date field descriptors.

3. 3. 1 abday Keyword

This keyword defines the abbreviated weekday names, corresponding
to the d a t e %a field descriptor. The operand must consist of seven
strings, separated by semicolons. The first string must be the abbre­
viated name of the first day of the week (Sunday), the second string
must be the abbreviated name of the second day, and so on. For
example: �

abday " Sun • ; " Mon • ; " Tue • ; " Wed • ; " Thu • ; " Fr i " ; • s at "

3.3.2 day Keyword

This keyword is used to define the full weekday names, correspond­
ing to the d a t e %A field descriptor. The operand must consist of
seven strings, separated by semicolons. The first string must be the
full name of the first day of the week (Sunday), the second string
must be the full name of the second day, and so on. For example:

day • Sonntag • ; " Montag • ; " D i enstag • ; \
" M i t twoch " ; " Donner s t ag " ; " Fr e i t ag " ; " Samstag "

3. 3. 3 abmon Keyword

This keyword is used to define the abbreviated month names,
corresponding to the d a t e %b field descriptor. The operand must
consist of twelve strings, separated by semicolons. The first string
must be the abbreviated name of the first month of the year (Janu- �
ary), the second string must be the abbreviated name of the second
month, and so on. For example:

International Supplement Manual for Advanced Users

abmon " Jan " ; " F eb " ; " Mar " ; " Apr " ; " May " ; " Jun " ; \
" Ju l " ; : Aug " ; " S ep " ; " Oc t " ; " Nov " ; " De c "

3. 3.4 mon Keyword

13

This keyword is used to define the full month names, corresponding
to the d a t e %B field descriptor. The operand must consist of
twelve strings, separated by semicolons. The first string must be the
full name of the first month of the year (January), the second the
full name of the second month, and so on. For example:

mon " Januar " ; " F ebruar " ; " M&r z " ; " Apr i l " ; \
" Ma i " ; " Jun i " ; " Ju l i " ; " Augu st " ; \
" S ept ember " ; " Oktober " ; " November " ; " D e z ember "

3. 3. 5 d _ t _ fmt Keyword

This keyword is used to define the appropriate date and time
representation, corresponding to the d a t e %c field descriptor. The
operand must consist of a string and may contain any combination
of characters and d a t e field descriptors. In addition, the string
may contain the d a t e %n and %t field descriptors for newline and
tab characters, respectively. For example:

d _ t _ fmt " %a %b %d %H : %M : %S %Y "

3. 3. 6 d _ fmt Keyword

This keyword is used to define the appropriate date representation,
corresponding to the d a t e %x field descriptor. The operand must
consist of a string and may contain any combination of characters
and date field descriptors. For example:

d fmt " %m/%d/%y "

3. 3. 7 t _ fmt Keyword

This keyword is used to define the appropriate time representation,
corresponding to the d a t e %X field descriptor. The operand must
consist of a string and may contain any combination of characters
and date field descriptors. For example:

t _ fmt " %H : %M : %S "

3. 3. 8 am _ pm Keyword

This keyword is used to define the appropriate representation of the
ante meridiem and post meridiem strings, corresponding to the
d a t e % p field descriptor. The operand must consist of two strings,
separated by a semicolon. The first string must represent the ante
meridiem designation; the last string, the post meridiem designation.
For example:

14 International Supplement Manual for Advanced Users

am_pm " AM " ; " PM "

3. 3. 9 t _ fmt _ ampm Keyword

This keyword is used to define the appropriate time representation
in the 1 2-hour clock format with am pm, corresponding to the
d a t e %r field descriptor. The operand must consist of a string and
may contain any combination of characters and date field descrip­
tors. If this keyword is not defined, the default (%I : %M : % S %p) is
used. For example:

t _ fm t _ ampm " % I . %M . %S %p "

3. 3. 1 0 A Sample File

L C T IME
-

abday

day

abmon

mon

d t fmt
d _ fmt
t fmt
am pm
t fmt ampm
#- -

END LC T IME

" S on " ; " Mon " ; " D i e " ; \
" M i t " ; " Don " ; " Fr e " ; " S am "
" Sonntag " ; " Montag " ; " D i enstag " ; \
" M i ttwoch " ; " Donnerstag " ; " Fr e i tag " ; " S ams t a g "
" Jan " ; " F eb " ; " Mi"r z " ; " Apr " ; \
" M a i " ; " Jun i " ; " Jul i " ; • Aug " ; \
" S ept " ; " Okt " ; " Nov " ; " D e z "
" Januar " ; " Februar " ; " Mir z " ; " Apr i l " ; \
" M a i • ; " Jun i " ; " Jul i " ; " Augus t " ; \
" S eptember " ; " Oktober " ; " November " ; " De z embe r "
" % I . %M . %S %p %m/%d/%y "
" %m/%d/%y "
" %I . %M . %S %p "
" VM " ; " NM "
" % I . %M . %S %p "

3. 3. 1 1 How a Program Uses This Information

If a program needs to access the values in the current l o c a l e , it
can do so via the library subroutine n l l ang i nf o, as well as by
using the definition via the s t r f t i me-library subroutine (refer to
ctime(3P)) . Refer to section 8, "TIPS FOR PROGRAMMERS," for
more information.

'-- -

International Supplement Manual for Advanced Users

4. SPECIFYING CHARACTER CLASSIFICATION
INFORMATION

15

The character classification category determines classification of
characters as letters, digits, and so on, as well as some other infor­
mation about the codeset and character set used. The default char­
acter classification only recognises the 26 ASCII letters as such,
which means that any program processing non-English text that
depends on the classification will behave incorrectly. For example,
take v i , which prints nonprintable characters using an octal nota­
tion. For v i to correctly display non-ASCII characters, you must
change the character classification. Another example is programs
that do uppercase to lowercase conversion; the standard table han­
dles only ASCII.

4.1 Defining Character Classification

These definitions are created by placing a specification in the
L C CTYPE file in a l o c a l e directory. This specification is out­
put -by the chrtbl utility (refer to chrtbl(l M)) . The created
table should also be copied to the I 1 i b I c hr c 1 a s s directory.

4.2 When to Use the Character Classification 1 o c a 1 e
Category

The created and installed definitions are not activated until the user
specifies that they should be used. To do this, the user must set the
LC ALL, LC CTYPE, or LANG environment variable to the direc­
tory in which the files are stored. This must be done before a pro­
gram using the stored definitions is executed. Note that the pro­
gram must be set up to check and set the international environment
(via the s e t l o c a l e function) . In the INTERACTIVE UNIX Sys­
tem, the standard utilities that depend on character classification,
such as g r e p, l s , e d, and s ort, have been modified to use the
international environment. However, the v i program has not been
modified to use the international environment; it uses the informa­
tion in the l l i bl chr c l a s s directory and the value of the
environment variable CHRCLAS S . Refer to section 9, "THE SYS­
TEM V ENVIRONMENT," in the "International Supplement User's
Manual" for more information.

4.3 Creating a Character Classification Category Definition

Character classification definitions are created using the chrtbl
utility. The source language for the character classification
category in the INTERACTIVE UNIX Operating System allows the

16 International Supplement Manual for Advanced Users

user to define the name of the data file created by chrtb l , the
assignment of characters to character classifications, and the rela­
tionship between uppercase and lowercase letters. The character
classifications recognised by chrtb l are:

chr c l a s s Name of the data file to be created by chrtb l .

i s upp e r

i s l ow e r

i s d i g i t

i s s p a c e

i s punc t

i s c ntr l

i s b l ank

Character codes to be classified as uppercase letters.

Character codes to be classified as lowercase letters.

Character codes to be classified as numeric.

Character codes to be classified as spacing
(delimiter) characters.

Character codes to be classified as punctuation
characters.

Character codes to be classified as control
characters.

Character code for the space character.

i s xd i g i t Character codes to be classified as hexadecimal

u l

digits. �
Relationship between uppercase and lowercase
characters.

Any lines with a number sign (#) in the first column are treated as
comments and are ignored. Blank lines are also ignored.

A character can be represented as a hexadecimal or octal constant
(for example, the letter a can be represented as Ox6 1 in hexadecimal
or 0 1 4 1 in octal). Hexadecimal and octal constants may be
separated by one or more space or tab characters.

The dash character (-) can be used to indicate a range of consecu­
tive numbers. Zero or more space characters may be used for
separating the dash character from the numbers. The backslash
character (\) is used for line continuation. Only a carriage return is
permitted after the backslash character.

The relationship between uppercase and lowercase letters, u l , is �
expressed as ordered pairs of octal or hexadecimal constants:
< uppercase_character lowercase_character> . These two con-
stants may be separated by one or more space characters. Zero or

�

International Supplement Manual for Advanced Users 17

more space characters may be used for separating the angle brack­
ets (< >) from the numbers.

4. 3. 1 An Example of a Character Classification Definition

The following is an example of an input file:
chr c l a s s L C CTYPE
i s upper o x 4 1 - O x S a
i s lower O x 6 1 - O x 7 a
i s d i q i t O x 3 0 - O x 3 9
i s s p a c e O x 2 0 Ox9 - O xd
i s punct O x 2 1 - O x 2 f O x 3 a - O x 4 0 \

O x S b - O x 6 0 O x 7 b - O x 7 e
i s cn t r l O x O - O x 1 f O x 7 f
i s b l ank O x 2 0
i s xd i q i t O x 3 0 - O x 3 9 Ox6 1 - O x 6 6 \

O x 4 1 - O x 4 6
ul <Ox4 1 Ox6 1 > <Ox42 O x 6 2> <Ox43 O x 6 3> \

<Ox44 O x 6 4> <O x 4 5 O x 6 5> < O x 4 6 O x 6 6> \
<Ox47 O x 6 7> <Ox48 O x 6 8> <Ox49 O x 6 9> \
<Ox4a Ox6a> <Ox4b Ox6b> <O x4c Ox6c> \
<Ox4d O x6d> <O x4e Ox6e> <Ox4f Ox6f> \
<Ox S O Ox7 0> <Ox5 1 Ox7 1> < O x 5 2 O x 7 2> \
<Ox 5 3 Ox7 3> <Ox54 O x 7 4> <O x S S Ox7 5> \
<Ox 5 6 O x 7 6> <O x 5 7 O x 7 7> <Ox58 O x 7 8> \
<Ox 5 9 O x 7 9> <O x S a O x 7 a>

4.3.2 How a Program Uses This Information

Programs access this information by using the character
classification and conversion library interfaces (refer to ctype(3C)).
As v i does not use the information via the l o c a l e , we recom­
mend that the table also be copied to the / l i b/ c hrc l a s s direc­
tory and given the same name as the l o c a l e .

4. 3. 3 Use in Regular Expressions and Shell Pattern Matching

The information in the character classification definition can be
directly used in regular expressions, via the character class syntax
inside a bracket expression. The syntax is:

[: class-name : 1

where class-name is the name of one of the following:

a l pha a letter

upp e r an uppercase letter

l ow e r a lowercase letter

d i g i t a decimal digit

xd i g i t a hexadecimal digit

18

a lnum

s pa c e

pun c t

pr i nt

g r aph

c nt r l

International Supplement Manual for Advanced Users

an alphanumeric (letter or digit)

a character that produces white space in displayed
text

a punctuation character

a printing character

a character with a visible representation

a control character

For example, the following command will find all file names in the
current directory that begin with an uppercase letter:

l s " [[: upper :)) • "

These specifications are primarily intended to replace the current
use of expressions like [A- z] , which are not portable (Z is not the
last letter in all alphabets).

International Supplement Manual for Advanced Users 19

5. PREPARING AND INSTALLING A COLLATION SEQUENCE

A collation sequence specifies how characters and collating elements
should be sorted, that is, the order between characters and collating
elements. Collation sequences are created using the c o l l d e f pro­
cessor (refer to co/ldef(lP) for more information). This section
describes how to set up a source collation sequence definition and
use it to create a collation sequence. Once the source definition is
created and tested, you can use it to create "object" collation
sequences, which are stored in a file named LC COLLATE in a
l o c a l e directory. -

5.1 When to Use a Collation Sequence

A created and installed collation sequence definition is not activated
until the user specifies that it should be used. To do this, set the
L C ALL, L C COLLAT E, or LANG environment variable to the
directory in which the files are stored. This must be done before a
program using the stored definitions is executed. Note that the pro­
gram must be set up to check and set the international environment
(via the s e t l o c a l e function).

User-defined collation is supported through the c o l l d e f utility
and the library functions s trxfrm and s tr c o l l (refer to
strxfrm(3P) and strcoll(3P) for more information) . These func­
tions are used to compare strings based on the defined collation
order and rules. Traditional programs that need to do sorting use
s tr c mp, which does byte-to-byte comparison. In the INTER­
ACTIVE UNIX Operating System, the standard utilities that depend
on collation, such as s o r t and 1 s , have been modified to use the
international environment (refer to string(3P) for more
information) .

5.2 Defining Collation

Collation, according to a dictionary, is the "act of putting things in
their proper order." Collation rules define how the data are put in
the proper order, or sorted. Traditionally, the collating order in the
UNIX System has been ASCII order, that is, the order in which the
characters appear in the ASCII codeset. This is also the natural col­
lating order for the English language.

For most languages in the world, however, this is not enough. Most
European languages contain more letters than the 26 in the English
language, with the additional letters typically collating between the
letters in the ASCII set. For example, an a sorts between a and b.

20 International Supplement Manual for Advanced Users

The European user expects sorted lists (for instance, the output
from the 1 s command) to appear in the collation order of his or her
language.

The INTERACTIVE UNIX Operating System provides users with
the ability to define their own collation order. This capability is a
superset of the X/Open* requirement for an internationalised sys­
tem, and it is expected to satisfy the requirements for dictionary
ordering for most European languages and non-European alphabetic
languages.

5.3 Capabilities

The following capabilities are provided:

1 . Multicharacter collating elements.
The term collating element is used to describe the basic enti­
ties that are compared in collation. All characters in the
character set are automatically collating elements. In addi­
tion, the user can define multicharacter collating elements
(sequences of two or more characters to be collated as a single
entity) . For example, the Spanish ch collates as an entity
between c and d.

2. User-defined ordering of collating elements.
The user has complete control over the order in which charac­
ters (and multicharacter collating elements) are sorted.

3 . Multiple weights and equivalence classes.
For many languages, the basic ordering is sufficient, but others
require more complex rules. For example, in German, the o
and the o collate as the same character, but if two words are
equal except for the o and the o, then the word with o comes
first. In French, all accented letters collate equally with the
base character; if the words are equal, there is a defined
"secondary ordering" among these characters. All characters
(or collating elements) that initially collate equally are said to
belong to an equivalence class . Such characters typically have
more than one "weight." The first {primary) weight is that of
the equivalence class; the second weight is determined by their
relative order. The INTERACTIVE UNIX System supports up � to {COLL WE IGHTS MAX} (defined as 4 in 1
/ u s r / i nc l-ud e / s y s /-l i m i t s . h) different weights for
each character or collating element.

International Supplement Manual for Advanced Users 21

4. One-to-many mapping.
A single character is mapped into a string of collating ele­
ments. An example of this is the German {J, which collates as
s s .

5. Many-to-many substitution.
A string is substituted for another string of one or more char­
acters. The string that is substituted can be an empty string.
In other words, the character or characters are ignored for
collation purposes.

6. Ordering by weights.
To determine their relative order, two strings are first com­
pared based on the primary weight. If they are equal, and
more than one weight has been assigned, then the strings are
compared again and again until the strings either compare
unequally or the weights are exhausted. Comparisons may
proceed either from the beginning of the strings toward the
end, or from the end toward the beginning.

5.4 Creating a Collation Sequence Definition

The source language for collation definitions in the INTERACTIVE
UNIX System is the language specified by the POSIX.2 group for
the L C _ COLLATE l o c a l e category.

A collation sequence definition describes the relative order among
collating elements (characters and multicharacter collating ele­
ments) in the l o c a l e . This order is expressed in terms of colla­
tion values or weights by assigning each element one or more colla­
tion values. The collation sequence definition is used by regular
expressions, pattern matching, and sorting.

A collation source definition consists of a collation header, a colla­
tion body, and a collation trailer. The collation header is the word
LC _ COLLATE . The collation trailer is the string
END L C COLLATE.

The collation body consists of one or more lines of text, each of
which contains an identifier, optionally followed by one or more
operands. Identifiers are either keywords or collating elements.

r-... Identifiers are separated from the operands by one or more blank
characters (space or tab) .

Operands are characters, collating elements, or strings of characters.
When a keyword is followed by more than one operand, the

22 International Supplement Manual for Advanced Users

operands must be separated by semicolons; blanks are allowed
before and/or after a semicolon.

A line modifying the comment character (the default is #) can be
inserted before the header. The format is:

comment _ char new-comment-character

starting in the first column. Empty lines and lines containing the
new-comment-character in the first position are ignored.

A line modifying the escape character (the default is a backslash, \)
can also be inserted before the header. The format is:

e s c a p e _ char escape-character

starting in the first column. A line can be continued by placing an
escape character as the last character on the line. Comment lines
cannot be continued on a subsequent line using an escaped newline
character.

Individual characters, characters in strings, or collating elements
can be represented in operands in any of the following formats:

1 . Symbolic notation.
A character is specified via a symbolic character name, �
enclosed within angle brackets (< >) . A symbolic name, 1
including the angle brackets, must either be a symbol defined
via a c o l l a t i ng - symbo l or c o l l a t i ng - e l ement
keyword or must exactly match a symbolic name defined in
the charmap file specified via the c o l l d e f - f option. It
is not an error to specify a collating element via a c ha rmap
symbol that does not exist in the current charmap file (refer
to charmap(5P)) . The processor assumes that the definition is
a "generic" one, intended for use with many codesets. Such a
generic definition may contain characters not present in all
codesets. Therefore, the c o 1 1 de f processor assumes that
the character should simply be ignored and issues a warning
message to that effect. Note that any escape character or
right angle bracket in a symbolic name must be preceded by
the escape character.

Using symbolic names rather than any other notation makes it �
possible to use the same source definition with several 1
codesets. For example:

<c> ; <a \>> ; <c - c ed i l l a> " <M><a><y> "

International Supplement Manual for Advanced Users 23

2. Character notation.
A character is specified by the character itself. The quote,
comma, semicolon, angle brackets, and escape character (" ,
; < > and escape-character) must be escaped (preceded by
the escape character) if they are found outside strings
enclosed by double quotes; only the double quote must be
escaped inside quoted strings. For example:

c ; c; ; ci " May •

3 . Octal notation.
An octal constant must be specified as the escape character,
followed by two or three octal digits. For example:

\ 1 4 3 ; \ 3 4 7 ' \ 1 1 5 \ 1 4 1 \ 1 7 1 '

4. Hexadecimal notation.
A hexadecimal constant must be specified as the escape char­
acter, followed by an x, followed by one or two hexadecimal
digits. For example:

\ x 6 3 ; \ x e 7 ' \ x 4 d \ x6 1 \ x 7 9 "

5 . Decimal notation.
A decimal constant must be specified as the escape character,
followed by a d, followed by one, two, or three decimal digits.
For example:

\ d 9 9 ; \ d 2 3 1 " \ d 7 7 \ d 9 7 \ d 1 2 1 '

5.4. 1 c h a rmap Files

The c o l l d e f processor (as well as the i c onv utility) can use
the information stored in a cha rmap file. (Refer to iconv(lP) for
more information.) These files are used to document the supported
codesets. Each character in the coded character set is described with
a symbolic name and the character encoding. The following is an
excerpt from the charmap file describing IBM codepage 437.
Refer to charmap(5P) for more information.

24 International Supplement Manual for Advanced Users

<c - c e d i l l a> \ d 1 2 8 LATIN CAP I TAL LETTER C WITH CEDILLA
<u - d i a e r e s i s> \ d 1 2 9 LAT IN SMALL LETTER U WITH DIAERE S I S
<e - acute> \ d 1 3 0 LATIN SMALL L ETTER A WITH ACUTE
<a - c i r cumf l e x> \ d 1 3 1 LATIN SMALL LETTER A WITH C I RCUMFLEX
<a - d i a e r e s i s> \ d 1 3 2 LAT IN SMALL LETTER A WITH DIAERE S I S
<a - grave> \ d 1 3 3 LAT IN SMALL L ETTER A WITH GRAVE
<a - r i ng> \ d 1 3 4 LAT IN SMALL LETTER A WITH RING ABOVE
<c - c e d i l l a> \ d 1 3 5 LATIN SMALL LETTER C WITH C E D I L LA � <e - c i r cumf l ex> \ d 1 3 6 LATIN SMALL LETTER E WITH C I RCUMFLEX
<e - d i a e r e s i s> \ d 1 3 7 LAT IN SMALL LETTER E WITH D IAERE S I S
<e - gr ave> \ d 1 3 8 LATIN SMALL LETTER E WITH GRAVE
<i - d i ae r e s i s> \ d 1 3 9 LATIN SMALL LETTER I WITH DIAERES I S
<i - c i r cumf l e x> \ d 1 4 0 LAT IN SMALL LETTER I WITH C I RCUMFLEX
<i - gr ave> \ d 1 4 1 LAT I N SMALL LETTER I WITH GRAVE
<A - d i a e r e s i s> \ d 1 4 2 LATIN CAPI TAL LETTER A WITH DIAERE S I S
<A- r i ng> \ d 1 4 3 LATIN CAPI TAL LETTER A WITH RING ABOVE
<E - acut e> \ d 1 4 4 LATIN CAPITAL LETTER E WITH ACUTE
<ae> \ d 1 4 5 LATIN SMALL LETTER AE
<AE> \ d 1 4 6 LATIN CAP I TAL LETTER AE
<a - c i r cumf l ex> \ d 1 4 7 LAT IN SMALL LETTER 0 WITH C I RCUMFLEX

5.5 Source File Organisation

The source file contains the following keywords, described in detail
in the following sections:

LC COLLATE
- The header.

c o l l a t i ng - e l ement
A c o l l at i ng - e l ement keyword i s used to specify �
multicharacter collating elements. This keyword is
optional.

c o l l a t i ng - s ymbo l
A c o l l a t i ng - symbo l keyword is used to specify
collation symbols for use in collation order statements.
This keyword is optional.

subs t i tut e
Zero or more s ub s t i tut e keywords define mapping
between strings. This keyword is optional.

o r d e r s t a r t
This keyword is followed by one or more collation order
statements, assigning character collation values and col­
lation weights to collating elements.

o r d e r end
This keyword terminates the collation order lines.

END LC COLLATE
The trailer.

International Supplement Manual for Advanced Users 25

5. 5. 1 c o l l at i ng - e l ement Keyword

Every character in the character set is also a collating element. If
the language (or application) for which this collation sequence
definition is intended also recognises multicharacter collating ele­
ments (such as the Spanish ch) , these must be specified via a
c o l l a t i ng - e l ement keyword. The syntax is:

c o l l a t i ng - e l ement symbol from string

The symbol operand must be a string of one or more characters,
enclosed between angle brackets (< >) , which cannot duplicate
any symbolic name in the current charmap file or any other sym­
bolic name defined in this collation definition. The string operand is
a string of two or more characters to be collated as an entity. For
example:

c o l l a t i ng - e l ement <ch> from <c><h>
c o l l a t i ng - e l ement <ss> f rom s s

5. 5. 2 c o l l a t i ng - symbo l Keyword

In addition to characters and multicharacter collating elements, you
can also define special symbols for use in collation sequence state­
ments, that is, between the order s t a r t and the o r d e r end
keywords. Such a symbol does not have any character associated
with it, as the cha rmap symbols do. However, placing such a
symbol in the collating sequence assigns to it a relative order that
can be used in other collation collating element specifications. The
syntax is:

c o l l a t i ng - symbol symbol

The symbol is a string of one or more characters, surrounded by
angle brackets, which must not duplicate any symbolic name in the
current charmap file or any other symbolic name defined in this
collation definition. For example:

c o l l a t i ng - symbol <UPPER CASE>
c o l l a t i ng - symbol <LOWER

-
CASE>

c o l l a t i ng - symbol <NO ACCENT>
c o l l a t i ng - symbol <GRAVE>
c o l l a t i ng - symbol <ACUTE>

5. 5. 3 s ub s t i tute Keyword

The s u b s t i tut e keyword is used to define a substring substitu­
tion in a string to be collated. The syntax is:

subs t i tute " regexp " w i th " rep/"

26 International Supplement Manual for Advanced Users

The first operand is treated as a simple regular expression. The
replacement operand consists of zero or more characters and regular
expression backreferences (for example, \ 1 through \9).
When strings are collated based on a collation definition containing
substitute statements, any substitutions are performed before strings
are compared. For instance, if you have a substitute statement:

subs t i tute " Me " w i th " Mac "

and you compare the two strings McArthur and Ma cArthur,
the substitute i s first applied to both strings. As a result, the first
string is replaced by Ma cArthur and the two strings compare as
equals.

Ranges in the regular expression are interpreted according to the
current character collation sequence, and character classes are inter­
preted according to the character classification specified via the
L C CTYPE environment variable at collation time. If more than
one- substitute statement is present in the collation definition, the
substitute statements are applied in the order in which they occur in
the source definition.

Both operands must be enclosed within double-quotes (" ") or a null
replacement is indicated by two adjacent double-quotes. For exam­
ple:

s ub s t i tute " Me " w i th " "

5. 5.4 o r d e r _ s t ar t Keyword

The o r d e r s t a r t keyword precedes collation order entries and
also defines -the number of weights for this collation sequence
definition and other collation rules.

The syntax of the o r d e r _ s t a r t keyword is:
order s t a r t sort-rules ; sort-rules ; . . .

The operands to the order s tart keyword are optional. If
present, the operands define rules to be applied when strings are
compared. The number of operands defines how many weights each
element is assigned; if no operands are present, one forward operand
is assumed. If present, the first operand defines rules to be applied
when comparing strings using the first (primary) weight; the second, �
when comparing strings using the second weight; and so on.
Operands are separated by semicolons (;). Each operand consists
of one or more collation directives, separated by commas (,). If
the number of operands exceeds the {COLL _WE I GHTS _MAX}

International Supplement Manual for Advanced Users 27

limit, the utility ignores the operands in excess of the limit and
issues a warning message. The following directives are supported:

f orwa r d

b a c kw a r d

p o s i t i on

Specifies that comparison operations for the
weight level proceed from the beginning of the
string to the end of the string.

Specifies that comparison operations for the
weight level proceed from the end of the string
to the beginning of the string.

Specifies that comparison operations for the
weight level will consider the relative position
of non-I GNOREed elements in the string such
that, if strings compare as equals, the element
with the shortest distance from the starting
point of the string is collated first.

The directives f orward and b a c kward are mutually exclusive.
For example:

orde r _ s tart f orward ; backward ; forward

The absence of operands for this keyword is taken as a directive to
perform comparisons on a character basis rather than on a string
basis.

5. 5.4. 1 Collation Order. The order s ta r t keyword is followed
by c o l l a t i ng - e l ement entries. The syntax for the
c o l l at i ng - e l ement entries is:

c o l l a t i ng - e l ement weight ; weight ; • • •

Each c o l l a t i ng - e l ement consists of either a character (in
any of the forms defined above) , a c o l l a t i ng - e l ement sym­
bol, a c o l l a t i ng - s ymbol symbol, an ellipsis (. . .) , or the
special symbol UND E F INED. The order in which c o l l a t i ng ­
e l e m ents are specified determines the character collation
sequence, such that each c o l l a t i ng - e l ement compares less
than the elements following it. The NULL character compares
lower than any other character.

A c o l l a t i ng - e l ement symbol is used to specify multicharac­
ter collating elements and indicates that the character sequence
specified via the c o l l a t i ng - e l ement symbol is to be collated
as a unit and in the relative order specified by its place. A
c o l l at i ng - s ymb o l symbol is used to define a position in the
relative order for use in weights.

28 International Supplement Manual for Advanced Users

The ellipsis symbol (. . .) specifies that a sequence of characters
collates according to their encoded character values, that is, all
characters with a coded character set value higher than the value of
the character in the preceding line and lower than the coded charac­
ter set value for the character in the following line are placed in the
character collation order between the previous and the following
character in ascending order according to their coded character set
values. An initial ellipsis is interpreted as if the line preceding it
specified the NULL character, and a trailing ellipsis is interpreted as
though the line following it specified the highest coded character set
value in the current coded character set. An ellipsis is treated as
invalid if the lines preceding or following it do not specify charac­
ters in the current coded character set. Note that the use of the
ellipsis symbol ties the definition to a specific coded character set
and may preclude the definition from being portable. The
c o l l d e f utility issues a warning to this effect if an ellipsis is
detected. The explicit specification elsewhere of a character
automatically included via an ellipsis symbol is treated as an error.

All characters not defined in the order sequence (either explicitly or
via an ellipsis) are placed in the collation order via the special sym-
bol UND E F I NED . All such characters are placed in to the existing l order at the point of the UND E F I NED symbol, and ordered accord-
ing to their coded character set values. If no UNDEF I NE D symbol
is specified, and the current coded character set contains characters
not specified in this clause, c o 1 1 de f issues a warning message
and places such characters at the end of the character collation
order.

The optional operands for each c o l l a t i ng - e l ement are used
to define the primary, secondary, or subsequent weights for the
c o 1 1 a t i n g - e 1 em e n t. The first operand specifies the relative
primary weight, the second the relative secondary weight, and so on.
Two or more c o l l a t i ng - e l ement s can be assigned the same
weight. They are said to belong to the same equivalence class . In
string collation, each pair of strings is first compared based on pri­
mary weight. If equal, c o l l at i ng - e l ements belonging to pri­
mary equivalence classes are compared again based on their secon-
dary weights. If still equal, secondary equivalence class elements l are compared again based on tertiary weights, up to the limit
{COLL _ W E I G H T S _ MAX} .

Weights must be expressed as characters (in any of the forms
specified above) , c o l l a t i ng - symbo ls, c o l l a t i ng -

International Supplement Manual for Advanced Users 29

e l e m e n ts, an ellipsis, or the special symbol I GNORE. A single
character, a c o l l a t i ng - symbol symbol, or a c o l l a t i ng ­
e 1 e m e n t symbol represents the relative order in the character col­
lating sequence of the character or symbol, rather than its absolute

� value. Multiple characters or symbols indicate one-to-many
mapping.

The special symbol I GNORE means that this character is to be
ignored at the defined weight level for collation purposes. For
example, if the dash (-) is I GNOREd, then the two strings

co - ord i n a t e

and
coord i n a t e

collate as equals. In regular expressions, such characters are never
ignored. Ranges are based on the order in which elements are listed
in the definition (basic character ordering sequence), and all charac­
ters are explicitly or implicitly listed.

All characters specified via an ellipsis are assigned unique weights
and are ordered according to their coded character set values.

� Characters specified via an explicit or implicit UND E F INED special
symbol are by default assigned the same primary weight (that is,
they belong to the same equivalence class). An ellipsis symbol as a
weight is interpreted to mean that each character in the sequence
must have unique weights, equal to the relative order of the charac­
ter in the character collation sequence. Secondary and subsequent
weights have unique values. The use of the ellipsis as a weight is
treated as an error if the c o l l a t i ng - e l ement is neither an
ellipsis nor the special symbol UND E F I NED.

An empty weight implies that the c o l l at i ng - e l ement will be
assigned a weight equal to the current position in the order. In
other words, the c o l l at i ng - e l ement "collates as itself."

5. 5. 5 o r d e r _ end Keyword

The o r d e r _ end keyword terminates the ordering statements.

30 International Supplement Manual for Advanced Users

5. 5. 6 An Example

LC COLLATE

c o l l a t i ng - e l ement <ch> from <c><h>
col l a t i ng - e l ement <s s> f rom s s

c o l l a t i ng - symbol <UPPER CASE>
c o l l a t i ng - s ymbo l <LOWER- CASE>
c o l l a t i n g - symbo l <NO ACCENT>
c o l l a t i n g - symbol <GRAVE>
c o l l a t i ng - symbo l <ACUTE>

s ub s t i tute " Me " w i th "Mac "

order s t a r t forward ; ba ckward ; f orward
-

S e e Note 1

<UPPER CASE> # S e e Note 2
<LOWER- CASE>
<NO ACCENT>
<GRAVE>
<ACUTE>
<spa c e>
\ . . .
<A>
<a>
<a - a cute>
<a - g r ave>

<C>
<C - c e d i l l a>
<c>
<a - c e d i l l a>
<ch>
<s>
<s>
<s s>
<sharp- s>
UNDEFINED
order end
END L C _ C OLLATE

Notes

I GNORE ; IGNORE ; IGNORE
<A> ; <UPPER CASE> ; <NO ACCENT>
<A> ; <LOWER- CASE> ; <NO -ACCENT>
<A> ; <LOWER- CASE> ; <ACUTE>
<A> ; <LOWER=CASE> : <GRAVE>

<c> ; <c> ; <c>
<c> ; <c> ; <c - c ed i l l a>
<c> ; <c> ; <c>
<C> ; <c> ; <c - c ed i l l a>
<ch> ; <ch> ; <ch>
<s> ; <s> ; <s>
<S> ; <s> ; <s>
<S><S> ; <s><s> ; <s><s>
<s><s> ; <s><s> ; <s><s>
I GNORE ; IGNORE ; I GNORE

S e e Note 3
S e e Note 4

S e e Note 5

S e e Note 6

S e e Note 7
S e e Note 8

1 . The character sequences c h and s s are defined as collating
elements.

2. The c o l l a t i ng - symbo l s < UPPER CAS E > ,
< LOWER CAS E > , < NO ACC ENT > , < GRAVE > , and
< ACUT E > are placed first Tn the ordering sequence, followed
by the s pa c e symbol.

3. Characters with code values between s pa c e and A are
placed in the basic ordering sequence after the space, but are
ignored for collation purposes.

International Supplement Manual for Advanced Users 31

4. The accented and unaccented A's have the same primary
weight, that is, they belong to an equivalence class. The
secondary weight is based on case, but ignores accents. The
third weight considers accents. This definition uses the collat­
ing symbols and their relative order (uppercase before lower­
case, no accents before accents).

The definition can be viewed as a directive to transform
strings by weight before comparing them. For example, when
comparing the strings abba and Abba, the two strings are
first compared using the primary weight. This equates to
comparing ABBA with ABBA, that is, they compare as equals.
On secondary weighting, they compare as follows:

<LOWER _ CAS E><LOWER_CASE><LOWER_CAS E><LOWER_ CASE>

against:
<OPPER_CASE><LOWER_CASE><LOWER_CASE><LOWER_CASE>

The first collates after the second.

5. The accented and unaccented C's also belong to an
equivalence class. Secondary ordering and tertiary ordering
are defined using the characters themselves. The uppercase
letters collate before the lowercase ones and the accented
letters after the unaccented ones.

The two strings <;a and C a first compare as CA versus CA.
Based on secondary weights, they still compare as equals:
(C < LOWER CAS E > versus C < LOWER CAS E >). On ter­
tiary weight comparison, the two strings compare as
<; < LOWER CAS E > versus C < LOWER CAS E > , that is,
the second compares lower. -

6. The string ch compares as a single element. The string
B a c h consists of three collating elements and collates after
the string B a c k.

7. The character fJ (eszet or "sharp s") is a German character
that collates as two "esses" (s s). This means that the two
strings S t r a s s e and S t r a{Je should collate as equals.

8 . All characters not explicitly defined (or implicitly included via
an ellipsis) are placed last in the collation sequence, in order
according to their coded values. They are ignored for colla­
tion purposes.

32 International Supplement Manual for Advanced Users

5. 5. 7 Use in Regular Expressions and Shell Pattern Matching

The collation sequence determines how bracket expressions in regu­
lar expressions are interpreted:

1 . All characters are valid in a bracket expression. Multicharac­
ter collating elements (such as < ch > in the example above)
are also recognised.

2. Multicharacter collating elements must be entered using a
special "bracket-dot" syntax, for example, [. ch .] , to distin­
guish the multicharacter element from the sequence "ch".

3 . All characters belonging to an equivalence class can be refer­
enced using the special "bracket-equal" syntax; [= a =] is
shorthand for A , a , a a in the example above.

4. Range expressions are interpreted according to the basic char­
acter collation order, that is, the order in which the characters
are listed in the definition. In the previous example, all char­
acters not explicitly specified collate last via the UNDE F I NED
statement. This means that, using the previous example,
[a - s] only specifies the characters in the list between a and
s :

a a a B b c G c q " ch " s s

Likewise, a range such as [r - t] will not contain s .

5 . To be able to find both "S tr a s s e " and " S t r aPe " in text
with one expression, it is necessary to make s s into a collat­
ing element. Then, the following regular expression will find
both strings: "S tra [[. s s .] [. /:1 .]] e ".

� I

International Supplement Manual for Advanced Users 33

6. SPECIFYING NUMERIC AND MONETARY INFORMATION

Numeric and monetary formatting determines how numeric and
monetary items appear. This section explains how it can be used
and how the files that contain the information should be set up.

6.1 Reasons for Defining Numeric and Monetary Formatting

The default conventions for decimal delimiter and other numeric
formatting rules are seldom appropriate in an international environ­
ment. For example, the default decimal delimiter is a period, but in
most European countries the comma is used instead. By defining
numeric and monetary formatting with the correct values, programs
display fractions using the appropriate decimal delimiter.

6.2 Defining Numeric and Monetary Formatting

These definitions are created by placing a specification in the
appropriate file (either LC NUMERI C or LC MONETARY) in a
l o c a l e directory.

6.3 When to Use the Numeric and Monetary 1 o c a 1 e
Category

The created and installed definitions are not activated until the user
specifies that they should be used. The user must set the
L C NUMER I C environment variable to the directory in which that
file 1s stored and the L C MONETARY environment variable to the
directory in which that file is stored. Alternately, the user can set
the L C ALL or LANG environment variable to the directory to
specify both. This must be done before a program using the stored
definitions is executed. Note that the program must be set up to
check and set the international environment (via the s e t l o c a l e
function). In the INTERACTIVE UNIX System, the standard utili­
ties that depend on numeric editing, such as a wk, have been
modified to use the international environment.

6.4 Numeric Editing

Numeric editing controls the appearance of (nonmonetary)
numbers, as well as the input format. The following three aspects
of numeric editing are controlled via the L C _ NUMER I C l o c a l e
category:

34 International Supplement Manual for Advanced Users

1 . The character used as a decimal delimiter.

2. The character used to separate groups of digits (thousands
separator).

3. The size of such groups. �
It should be noted that, while the standard INTERACTIVE UNIX
System library subroutines pr i nt f , s c an£ , and s trtod (refer
to printf(3P), scanf(3P), and strtod(3C) for more information) are
sensitive to the decimal delimiter, they do not support grouping of
digits. Consequently, while user-developed functions can (and
should) take into account grouping and thousands separators, the
standard functions do not.

6.5 Creating a Numeric Category Definition

The source language for the numeric category in the INTER­
ACTIVE UNIX System is the language defined by the POSIX.2
group for the LC _ NUMERIC l o c a l e category.

A numeric editing source definition consists of a header, a numeric
editing body, and a trailer. The header is the word LC NUMERI C.
The trailer is the string END LC _ NUMERIC. -

The numeric editing body consists of one or more lines of text.
Each line contains a keyword followed by one or more operands.
Keywords are separated from the operands by one or more blank
characters (space or tab).

Operands are characters, strings of characters, or digits. When a
keyword is followed by more than one operand, the operands must
be separated by semicolons (;). Blank characters are allowed
before andfor after a semicolon. Strings must be surrounded by
quotes. Individual characters may be surrounded by quotes, but it is
not required. Blank lines or lines containing a number sign (#) in
the first column are ignored.

The following keywords are recognised:

L C NUME R I C
- The header.

d e c i m a l p o i nt
Defines the decimal delimiter character.

thou s and s s e p
Defines -the thousands separator character.

International Supplement Manual for Advanced Users 35

g r oup i ng
Defines the grouping of digits.

END L C NUMERI C
The trailer.

6. 5. 1 d e c i ma l _ po i nt Keyword

This keyword specifies the character to use as the decimal delimiter
in the editing of floating-point numbers (both on input and output) .
The format is:

dec i m a l _ po i nt character

where character is the character chosen as the decimal delimiter.

6. 5.2 thou s ands _ s e p Keyword

This keyword specifies the character to be used as the thousands
separator. The format is:

thous ands _ s ep character

where character is the character chosen to separate groups of digits
to the left of the decimal delimiter in formatted nonmonetary quan­
tities. Note that none of the standard INTERACTIVE UNIX Sys­
tem subroutines or commands recognises a thousands separator.

6. 5. 3 g roup i ng Keyword

The g roup i ng keyword defines the size of each group of digits in
formatted nonmonetary quantities. The format is:

group i ng digit [; digit] • • •

where the operands are integers separated by semicolons. Each
integer specifies the number of digits in a group, with the initial
integer defining the size of the group immediately preceding the
decimal delimiter and the following integers defining the preceding
groups. Grouping is performed only for groups with a defined size
unless the last integer is zero, in which case the size of the last
group is used repeatedly for the remainder of the digits.

As an example of the interpretation of the group i ng keyword,
assume that the value to be formatted is 1 23456789 and the

� thou s and s s ep is " ". The following are the results with the
various groupings shown:

36 International Supplement Manual for Advanced Users

g r oup i ng Formatted Value

3
3 ;0
3 ;2
3 ;2;0

1 23456 798
1 23 456 789
1 234 56 789

12 34 56 789

6. 5.4 An Example of a Numeric Category Definition
L C NUMERIC

-

d e c imal po i nt

-

thous ands s e p

-

group i ng

END L C _ NUMERIC

. . '

3 ; 0

6. 5. 5 How a Program Uses This Information

If a program needs to access the values in the current 1 o c a 1 e , it
can do so via the library interfaces l o c a l e c onv and
n l l ang i n f o . Refer to localeconv(3P) and nLJanginfo(3P) for
more information.

6.6 Monetary Editing

Monetary editing controls the appearance of monetary numbers.
Note that no standard INTERACTIVE UNIX System library rou­
tines or commands take into account monetary editing. The follow­
ing aspects of monetary editing are controlled via the
LC _ MONETARY l o c a l e category:

1 . The character used as a monetary decimal delimiter.

2. The number of fractional digits.

3. The character used to separate groups of digits (thousands
separator) .

4. The size of such groups.

5. The content (and placement) of strings used to denote the
currency.

6. Positive and negative signs and their placement.

6. 7 Creating a Monetary Category Definition

The source language for the monetary category in the INTER­
ACTIVE UNIX Operating System is the language defined by the
POSIX.2 group for the LC _MONETARY l o c a l e category.

�
I

International Supplement Manual for Advanced Users 37

A monetary editing source definition consists of a header, a mone­
tary editing body, and a trailer. The header is the word
L C _MONETARY. The trailer is the string END L C _MONE TARY.

The monetary editing body consists of one or more lines of text.
Each line contains a keyword followed by one or more operands.
Keywords are separated from the operands by one or more blank
characters (space or tab).

Operands are characters, strings of characters, or digits. When a
keyword is followed by more than one operand, the operands must
be separated by semicolons. Blank characters are allowed before
andjor after a semicolon. Strings must be surrounded by quotes.
Individual characters may be surrounded by quotes, but it is not
required. Blank lines or lines containing a number sign (#) in the
first column are ignored.

The following keywords are recognised:

i nt c u r r symbo l
- Defines the ISO standard four-character (three letters

and a space) code for currency, for example, "USD " for
U.S. dollar.

curr ency s ymb o l
Defines the character to be used as the currency sym­
bol, for example "$ ".

mon d e c i m a l po i nt
Defines the decimal delimiter for monetary quantities.

mon thou s ands s e p
- Defines the thousands separator for monetary quantities.

mon g r oup i ng
- Defines the grouping of digits.

p o s i t i ve s i gn
Defines the positive sign.

n e g a t i ve s i gn
Defines the negative sign.

i nt f r a c d i g i t s
- Defines the number of fractional digits displayed when

formatting using the i nt _ curr _ symbo l .

38 International Supplement Manual for Advanced Users

f r a c d i g i t s
-Defines the number of fractional digits displayed when
formatting using the currency _ symbo l .

p c s pr e c e d e s
-Defines whether the currency symbo l succeeds or
precedes a positive quantity. -

p s ep by s p a c e
- Defines whether a space separates the

c u r r e n c y _ s ymbo l from a positive quantity.

n c s pr e c e d e s
Defines whether the currency symbo l succeeds or
precedes a negative quantity. -

n s e p by s p a c e
- Defines whether a space separates the

c u r r e n c y _ s ymbo l from a negative quantity.

p s i gn po s n
Defines the placement of the sign and a positive
quantity.

n s i gn p o s n �
Defines the placement of the sign and a negative
quantity.

6. 7. 1 i nt _ curr _ s ymbo l Keyword

This keyword is used to define the international currency symbol.
The operand must be a four-character string, with the first three
characters containing the alphabetic international currency symbol
in accordance with those specified in ISO 42 1 7 (Codes for the
representation of currencies and funds). The fourth character must
be the character used to separate the international currency symbol
from the monetary quantity, normally a space. For example:

i n t _ curr _ s ymbo l " FMK •

6. 7. 2 c u r r e n c y _ s ymbo l Keyword

This keyword defines the string to be used as the local currency
symbol. For example: �

currency _ s ymbo l $

International Supplement Manual for Advanced Users 39

6. 7. 3 mon _ d e c i m a l _ po i nt Keyword

The operand is the character to be used as the decimal delimiter to
format monetary quantities. For example:

� mon _ d e c i m a l _point • s •

is the Portuguese monetary decimal delimiter.

6. 7. 4 mon _ thou s and s _ s ep Keyword

This operand is the string to be used as the separator for groups of
digits to the left of the decimal delimiter in formatted monetary
quantities. For example:

mon _ thousand s _ s ep " "

6. 7. 5 mon _ g roup i ng Keyword

This keyword is used to define the size of each group of digits in
formatted monetary quantities. The operand is a sequence of
integers separated by semicolons. Each integer specifies the number
of digits in each group, with the initial integer defining the size of
the group immediately preceding the decimal delimiter and the fol­
lowing integers defining the preceding groups. Grouping is per­
formed only for groups with a defined size, unless the last integer is
zero, in which case the size of the last group is repeatedly used for
the remainder of the digits. For example:

mon _ g r oup i ng 3 ; 0

6. 7. 6 p o s i t i v e _ s i gn/negat i v e _ s i gn Keywords

The operand is a string used to indicate positive or negative values.
For example:

pos i t i ve _ s i gn

6. 7. 7 i nt f r a c d i g i t s Keyword

This keyword is an integer that represents the number of fractional
digits (those to the right of the decimal delimiter) to be displayed in
a formatted monetary quantity using i nt curr s ymbo l . For
example: - -

� i n t _ f ra c _ d i g i t s 2

6. 7. 8 f r a c _ d i g i t s Keyword

This keyword is an integer that represents the number of fractional
digits (those to the right of the decimal delimiter) to be displayed in

40 International Supplement Manual for Advanced Users

a formatted monetary quantity using curr ency_ s ymbo l . For
example:

f r a c _ d i q i t s 2

6. 7. 9 p _ c s _ p r e c e d e s /n _ c s _ pre c e d e s Keywords

Each keyword is an integer that is set to 1 if the
c ur r e n c y s ymbo l precedes the value for a positive or negative
formatted monetary quantity, respectively, and set to 0 if the sym­
bol succeeds the value. For example:

p cs p r e c e d e s

6. 7. 1 0 p _ s e p _ by _ s pa c e /n _ s ep _ by _ s pa c e Keywords

Each keyword is an integer that is set to 1 if a space separates the
c ur r e n c y s ymb o l from the value for a positive or negative
formatted monetary quantity, respectively. They are set to 0 if no
space separates the symbol from the value.

6. 7. 1 1 p _ s i gn _ po s n/n _ s i gn _ posn Keywords

Each keyword is an integer that is set to a value indicating the posi­
tioning of the po s i t i ve s i gn or negat i v e s i gn for a
positive or negative formatted monetary quantity, respectively. The
following integer values are recognised:

0 Parentheses enclose the quantity and the
c u r r e n c y s ymb o l . -

1 The sign string precedes the quantity and the
c u r r e n c y _ s ymbo l .

2 The sign string succeeds the quantity and the
c ur r e ncy symb o l . -

3 The sign string immediately precedes the
c ur r e n cy _ s ymbo l .

4 The sign string immediately succeeds the
c u r r e n c y _ s ymbol .

International Supplement Manual for Advanced Users

6. 7. 12 An Example of a Monetary Category Definition

LC MONETARY

-

i nt curr symbo l
curr ency

-
symbo l

mon_de c i ma l _point
mon _ thou s a nd s _ s e p
m o n group i ng
pos i t i ve s i gn
negat i v e

-
s i gn

i nt £ r a e
-

d i g i t s
f r ac _ d i g i t s
p c s p r e c e d e s
p= s ep_ by_ s p a c e
n c s p r e c e d e s
n= s ep_by_ s p a c e
p s i gn p o s n
n

-
s i gn

-
posn

#
- -

END LC MONETARY

' CHF "
" S Fr s . "

.
3 ; 0

• c •
2
2
0
0
1
0
1
2

41

With the above definition, a monetary quantity should be edited as
follows:

Pos i t ive
Negat ive

S F r s . 1 , 2 3 4 . 5 6
S F r s . 1 , 2 3 4 . 5 6 C

6. 7. 1 3 How a Program Uses This Information

If a program needs to access the values in the current 1 o c a 1 e , it
can do so via the library interfaces 1 o c a 1 e c onv and
n 1 1 a ng i n f o . Refer to localeconv(3P) and n/_/anginfo(3P) for
more information.

42 International Supplement Manual for Advanced Users

7. SPECIFYING YES/NO RESPONSE INFORMATION

The "yesfno" response category determines the correct string to be
used as affirmative (yes) and negative (no) responses to program
queries.

7.1 Reasons for Defining Yes/No Responses

The standard UNIX System utilities that require this kind of
interaction (such as rm) normally expect either a y or an n. In
countries that do not normally use the English language, this is not
the obvious response. In France, for instance, the obvious affirmative
response would be o (for oui); in Spain, it would be s (for si) .
7.2 Defining Yes/No Responses

These definitions are created by placing a specification in the
L C ME S SAG E S file in a l o c a l e directory.

7.3 When to Use the Yes/No Response 1 o c a 1 e Category

The created and installed definitions are not activated until the user
specifies that they should be used. To do this, the user must set the
L C ALL, LC ME S SAGE S, or LANG environment variable to the
directory in which the files are stored. This must be done before a 'l program using the stored definitions is executed. Note that the pro-
gram must be set up to check and set the international environment
(via the s e t l o c a l e function) . In the INTERACTIVE UNIX Sys-
tem, the standard utilities that depend on a yesfno response, such as
1 n and rm, have been modified to use the international environ-
ment. Note that while the internationalised yesfno response is
required by XPG3 for certain commands, the LC ME S SAGE S
category is not part of the l o c a l e as defined by XPG3.

7.4 Creating a Yes/No Response Category Definition

The source language for the yesfno response category in the
INTERACTIVE UNIX Operating System is the language defined by
the POSIX.2 group for the LC _ME S SAGES category.

A yes f no response source definition consists of a header, a response
body, and a trailer. The header is the word LC ME S SAG E S . The
trailer is the string END LC _ME S SAGE S .

-
�

The response body consists of one or more lines of text. Each line
contains a keyword, followed by one or more operands. Keywords
are separated from the operands by one or more blank characters
(space or tab) .

International Supplement Manual for Advanced Users 43

Operands are characters, strings of characters, or digits. When a
keyword is followed by more than one operand, the operands must
be separated by semicolons (;). Blank characters are allowed
before and/or after a semicolon. Strings must be surrounded by

� quotes. Individual characters may be surrounded by quotes, but it is
not required. Blank lines or lines containing a number sign (#) in
the first column are ignored.

The following keywords are recognised:

LC ME S SAG E S The header.

y e s expr

noexpr

Defines the affirmative (yes) response.

Defines the negative (no) response.

END L C ME S S AG E S The trailer.

7. 4. 1 ye s e xpr Keyword

This keyword specifies the character or string to use as the
affirmative (yes) response. The format is:

y e s expr regular-expression

where regular-expression is a regular expression which, when used
to match affirmative responses, will report a match.

7.4.2 n o e xpr Keyword

This keyword specifies the character or string to use as the negative
(no) response. The format is:

noexpr regular-expression

where regular-expression is a regular expression which, when used
to match negative responses, will report a match.

7.4. 3 An Example of a Response Category Definition

LC ME S SAGES

-

y e s expr

noexpr

END L C _MES SAGES

' " [Nn] on '

7.4.4 How a Program Uses This Information

If a program needs to access the values in the current l o c a l e , it
can do so via the n l l ang i n f o library interface. Refer to
nl_langinfo(3P) for more information.

44 International Supplement Manual for Advanced Users

8. TIPS FOR PROGRAMMERS

This section is written for programmers who want to take advantage
of the INTERACTIVE Software Development System capabilities
that support features that deal with internationalisation, in particu­
lar those described in the X/ Open Portability Guide . It is not
designed as a programmer's guide, but simply points programmers
to the appropriate references where these features are described.
Manual entries that deal with the features appear in the "Interna­
tional Supplement Reference Manual" and in the INTERACTIVE
SDS Guide and Programmer's Reference Manual . To be able to
use all the features described, programs should always be compiled
and linked using the - Xp option and contain the following line in
the source file before the inclusion of any header files:

#d e f i ne _XOPEN_ SOURCE

8.1 Character Mapping

We do not recommend trying to change the active character map­
ping from an application. However, some programs (the VP/ix*
Environment or vp i x, for example, which uses MS-DOS*-style
(DOS) mapping) might want to disable the mapping and set it back
before exiting. i o c t l commands are available to do this. The fol- l
lowing syntax is used:

i o c t l (f d , COMMAND , buf f e r) ;

f d is the file descriptor for the tty port for which the COMMAND is
intended. buf f e r is a pointer of type un s i gn e d char pointing
to a buffer of size l K. The following i o c t l commands can be
used:

• L D SMAP
The buffer is checked for correctness. If some pointers have the
wrong value or the size of the buffer exceeds l K, the ioctl call
fails and returns - 1 . Otherwise, the buffer is copied into kernel
space and mapping is activated.

• LDGMAP
If no mapping buffer is present for the terminal port correspond-
ing to f d, the i o c t l returns - 1 . Otherwise, the content of the
mapping buffer is copied from kernel space into buf f e r and 1
the i o c t 1 returns 0.

International Supplement Manual for Advanced Users 45

• LDNMAP
If no mapping buffer is present for the terminal port correspond­
ing to fd , the i o c t l returns - 1 . Otherwise, the content of the
mapping buffer is freed and mapping is disabled.

• LDDMAP
If no mapping buffer is present for the terminal port correspond­
ing to f d, the i o c t 1 returns - 1 . Otherwise, mapping is tern­
porarily disabled.

• L DEMAP
If no mapping buffer is present for the terminal port correspond­
ing to f d, the i o c t l returns - 1 . Otherwise, it is reenabled.

A description of all i o c t 1 commands listed here and the structure
of the mapping buffer can be found in the file
/u s r / i n c l ud e / sy s / emap . h.

8.2 Giving Programs Access to 1 o c a 1 e s

The s e t l o c a l e function sets, changes, or queries the program's
l o c a l e according to the values of the c a t e gory and l o c a l e
arguments. Therefore, every program that wants to take advantage
of the internationalisation features described in this document and
the "International Supplement User's Manual" should, at a
minimum, contain the following statements:

i n c lude <loc a l e . h>

and
s e t l o c a l e (LC _ ALL , " ") ;

The latter statement causes the program to find out the current
l o c a l e value. If the second argument is not an empty string, it
sets the l o c a l e instead. Refer to setlocale (3P) for more
information.

8.3 Date and Time

In order to have access to the date and time information, a
s e t l o c a l e statement must be part of the program. If all other
1 o c a 1 e categories are not to be used,

s e t l o c a l e (" LC _ T I ME , " ") ;

is sufficient. In addition, the s t r f t i me function should be used
instead of the traditional c f t i m e . Refer to ctime(3P) for more
information.

46 International Supplement Manual for Advanced Users

When, in the flow of the program, the value of the local day or
month is needed, the n 1 1 an g i nf o function can be used. It
returns a string with the value requested. Refer to nLlanginfo(3P)
for more information.

8.4 Character Classification

At a minimum, use the following statement in your program:
s e t l o c a l e (" LC _ CTYPE , " ") ;

Make sure you also use the family of toupper , i s upp e r , and
similar functions. No further changes have to be made to the pro­
gram. Refer to ctype(3C) for more information.

8.5 Collation

There are two functions for handling international sorting:
s t r c o 1 1 and s tr x f rm. They are also part of the ANSI C stan­
dard. They differ from the traditional s t r cmp in that they use the
sorting rules defined in a given 1 o c a 1 e rather than using the
internal byte representation inside the computer. At a minimum,
the following statement should be part of the program:

s e t l o c a l e (" LC _ COLLATE , " ") ;

s t r c o 1 1 is very similar to s t r cmp, but is slower than the older
function since it is table-driven. s t rxfrm is a different type of
function in that it transforms the data it gets and returns a string of
characters that can be given to s t r cmp to be sorted. It is useful
when performance is an issue and the same set of data needs to be
compared several times. Refer to strco/1(3P), strxfrm(3P), and
string(3P) for more information.

8.6 Regular Expressions

Programs have access to internationalised regular expressions when
they are compiled with the - Xp option and include the following
statements in the program:

#de f i ne XOPEN S OURCE
#inc lude -<r e gexp . h>

8.7 Numeric and Monetary Formatting

p r i n t f and other functions have been modified to use numeric �
formatting. It is accessed using the statement:

s e t l o c a l e (" L C _ NOMERI C , " ") ;

International Supplement Manual for Advanced Users 47

in the program. Although no functions currently use monetary for­
matting, applications can do so by using the statement:

s e t l o c a l e (" LC _MONETARY , " ") ;

in the program. Note that using LC ALL is sufficient to do the job
for all l o c a l e categories. -

When the value of one of the numeric or monetary conventions is
needed in the flow of the program, the l o c a l e c onv function can
be used. It returns a data structure containing all the relevant
values. Refer to loca/econv(3P) for more information.

8.8 Message Catalogues

Three functions should be used to write programs that use message
catalogues rather than hardcoded text:

• c at o p e n
This function takes two arguments, the second of which should
always be zero. The first argument, name, of type c h a r * ,
specifies the name of the message catalogue to be opened. If
name contains a slash (I), it specifies a complete name for the
message catalogue. Otherwise, the environment variable
N L S PATH is used with name substituted for %N (refer to
environ (5P) for the description of NLS PATH) . If N L S PATH
does not exist in the environment, or if a message catalogue can­
not be opened in any of the components specified by N L S PATH,
then the default used by this implementation is
/ l i b/ l o c a l e / I S C /ms g c a t/name. The function returns
a message catalogue descriptor (type n l c a td, defined in the
include file n l type s . h) . Refer to the h e l l o . c sample
file later in this section and to catopen (3P) for more
information.

• c a t g e t s
This key function takes four arguments. The first is the message
catalogue descriptor returned by a previous c a top e n. The
second is the set number or identifier (the default set identifier,
NL S E TD, is defined in n l typ e s . h) . The third is the mes­
sage number or identifier. The fourth is the default message in
case no message catalogue is found or the specified message is
not in the message catalogue. Refer to catgets (3P) for more
information.

48 International Supplement Manual for Advanced Users

• c a t c l o s e
This should be used at the end of the program to close the previ­
ously opened message catalogue. It takes one argument, which is
a message catalogue descriptor returned by a previous
c a to p e n. Refer to catclose(3P) for more information. �

A message catalogue · can then be created containing the text of the
local language. This is a text file with a particular format (refer to
gencat (4P) for details). The gencat utility (see gencat (lP))
should then be used to convert the message catalogue source into a
real (binary) message catalogue.

INTERACTIVE has added a utility, showcat , that can be used to
translate the contents of a message catalogue into its message text
source (that is, the opposite of the gencat utility), unless an
option to prevent this translation was used when g e n e at was used
to create the message catalogue. Refer to showcat (IP) for more
information.

The following example lists the source of the famous he l l o . c
program when fully internationalised:

#de f i ne XOPEN SOURCE
i n c l ud e -<s t d i o . h>
#inc lude <l o c a l e . h>
#inc lude <n l type s . h>
ma i n (a r q c , a rgv)
i n t a r q c ;
char • • arqv ;
{

nl catd c atd ;
s e t l o c a l e (LC ALL , " ") ;
catd = catopen (arqv [O] , O) ;
pr i nt f (" % s \ n " , c atqets (c atd , NL SETD , 1 , " h e l l o , world ")) ;
c a t c l o s e (c atd) ;

-

The message catalogue source looks like this:
S s e t 1
1 he l l o , wor ld

8. 8. 1 Extension of pr i nt £ Syntax

The example shown handles a simple case of a message catalogue -
a string without parameters to be filled in. However, many messages
do have parameters. When text is translated, the words in the
translated version often have to be in a different order than in the
original because of grammatical differences. For example, in
English, adjectives precede nouns (white lady, a cocktail), whereas
in French, they usually follow nouns (dame blanche, a famous ice

International Supplement Manual for Advanced Users 49

cream dish). When program messages are translated and the pro­
gram uses pr i nt f, X/Open extensions provided in the INTER­
ACTIVE UNIX System can be used to indicate the order.

Normally, conversions in a format string are performed in the order
they are specified in the format statement, that is, the first argument
is applied to the first conversion specification, the second argument
to the second format specification, and so on. However, the conver­
sions can be applied to the nth argument in the argument list, rather
than to the next unused one, if the conversion character % is
replaced by the sequence %digit $, where di�t is a decimal integer n
in the range between 1 and {NL ARGMAXJ (defined in the include
file 1 i m i t s . h), giving the position of the argument in the argu­
ment list. For example:

pr i nt f (" % 1 S s %2 S s \ n " , ad j e c t i v e , noun) ;

In format strings containing the %digit$ form of a conversion
specification, a field width or precision may be indicated by the
sequence *digit $, where digit is a decimal integer n in the range
between 1 and {NL ARGMAX} , giving the position of the argument
containing the field width or precision. For example:

p r i nt f (" % 1 $ d : % 2 S . • 3 S d : %4 S . • 3 S d \ n " , hour , m i n , prec i s i on , s e c) ;

The format string can contain either numbered argument
specifications (%digit $ and *digit $) or unnumbered argument
specifications, but not both. When numbered argument specifications
are used, specifying the nth argument requires that all the leading
arguments, from the first to the (n-I }th, be specified in the format
string.

I ·

I
I
I .
I

X/Open Conformance Statement - Questionnaire

X/Open Portability Guide 3

Completed by INTERACTIVE Systems Corporation

September, 1 99 1

Document Revision Number 3 . 2

XjOpen Conformance Statement

Questionnaire

XCS-QUE-3 .2

Chapter 2:

Chapter 3:

Contents

Internationalised System Calls and Libraries

Section 2. 1 :

Section 2.2:

Section 2.3 :

General Attributes

Process Handling

File Handling

Section 2.4: General Terminal Interface

Section 2.5 : Internationalised System Interfaces

Commands and Utilities

Section 3 . 1 :

Section 3.2:

Section 3.3 :

Basic Utilities

Development Utilities

Internationalisation Option

Chapter 4: C Language

Chapter 1 5: Source Code Transfer

··�

X/Open Conformance Statement
Questionnaire

XCS-QUE- 3 . 2

Chapter 2: Internationalised System Calls and Libraries

Product Identification

Product Identification INTERACTIVE UNIX System V /386 Release 3 .2

Version/Release No. 3.0

If you do not supply this component yourself, please identify below the
supplier you reference.

Conformance Reference

Indicator of Compliance

VSX Test Suite Release 3.204

Testing Agency Name UniSoft Corporation

Address 6 1 2 1 Hollis Street

Emeryville, CA 94608-2092

Environment Specification

Enter below details of the hardware and software environment in
which testing took place, including compilation routines and in­
stallation procedures (if any). Sufficient detail must be supplied
to enable conformant behaviour and any test results to be
reproduced.

Any 386/486-compatible system with at least 4 MB of RAM and
� with the following INTERACTIVE UNIX System V /386 Release

Page 2. 1

X/Open Conformance Statement
Questionnaire

XCS-QUE- 3 . 2

3.2, Version 3.0 subsets and extensions installed (approximately
40 MB of disk space is needed) :

Core
Kernel Configuration
File Management
International Supplement
INTERACTIVE Software Development System

Temporary Waivers

List below references to any temporary waivers granted by """
X/Open in respect of minor errors in the product referenced l
above. This should include the X/Open reference and the waiver
expiry date. The waivers as granted shall be made available with
this document on request.

PG3.239 expiration date April 2, 1 992

Page 2.2

,�

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

Section 2. 1 : General Attributes

2. 1 . 1 POSIX. 1 Supported Features

Question 1 : Which of the following options, specified in the < unistd.h >
header file, are available on the system?

Answer:

Macro Name Meaning Provided

_pQSDLCHOWN__RESTRICTED The use of chownO Yes
is restricted

_pQSIXJOB_CONTROL Job Control option Yes

_pQSIJLNO_TRUNC Long path name Yes
components gen-
erate an error

_pQSDLSA VED_IDS Effective user and Yes
group IDs are
saved

_pQSIJL VDISABLE Terminal special Yes
characters can be
disabled

Options:
When the option is variable a description is required for the cases
over which the variations occur.

Page 2. 1 . 1

X/Open Conformance Statement
Questionnaire

Rationale

XCS-QUE-3 .2

For an X/Open conforming implementation, the
_posi:x_sA VED_IDS option must be provided. The other options
may or may not be provided. The provision of the file system related �
options can vary within a system. For example, a system which has
traditionally supported both System V and BSD type file systems
may provide a mechanism whereby the option is enforced for certain
files or processes but not for others. This technique can be used to
achieve a degree of backwards compatibility that would not other-
wise be possible.

Reference
XPG3 Volume 2 Page 579 - <unistd.h>

2. 1.2 C Standard

Question 2: Does the implementation only support Common Usage C or
also support ANSI C Standard interface definitions?

�
Answer: '

Only Common Usage C.

1 . Only Common Usage C

2. Both Common Usage C and ANSI C

Rationale
The POSIX. l standard allows for a conforming system to support
either Common Usage C or ANSI C Standard interface definitions.
The XPG is based on a Common Usage C definition but does not
prohibit an ANSI C implementation. A Common Usage C definition
must provide function declarations for the C language functions in
the XPG as well as providing function semantics that conform to the
XPG. An ANSI /c Standard interface must provide function proto­
types and ANSI C semantics as well as providing XPG semantics.
There are no known areas of contradiction between the ANSI C and
XPG semantics.

Page 2. 1 .2

X/Open Conformance Statement
Questionnaire

Reference

XCS-QUE- 3 . 2

XPG3 Volume 2 Page 1 2 - The Compilation Environment

2. 1 .3 Limit Values

Question 3: What are the values associated with the following limits
specified in the <limits.h> header file?

Answer:

Macro Name Meaning Minimum Maximum

ARG_MAX Max length of 5 1 20 5 1 20
argument list
and environ-
ment data

CHILD_MAX Max number 1 5 60
of processes
per user ID

LINILMAX Max number 1000 1 000
of links to a
single file

MAX_CANON Max bytes in a 255 255
terminal
canonical
input line

MAK.__INPUT Max bytes in a 255 255
terminal input
queue

Page 2. 1 . 3

X/Open Conformance Statement XCS-QUE-3 .2
Questionnaire

NAME._MAX Max charac- 1 4 1 4
ters in a file
name

OPEN_MAX Max number 20 1 00
of files open in
a process

PASS_MAX Max 8 8
significant
characters in a
password

PATH_MAX Max charac- 255 255
ters in a path
name

PIPE._BUF Max bytes in 1 0240 1 0240
an atomic
write to a pipe

NGROUPS_MAX Max number 1 6 1 6 � of supplemen-
tary group IDs

TMP_MAX Max number 1 7576 1 7576
of unique tern-
porary file
names

Options:
Specify a minimum and maximum limit for each limit value. The
minimum limit should be the result of evaluating the associated
macro in < limits.h > . The maximum limit should be the largest
value that is returned from sysconf() or pathconf(). The maximum
values can be specified as indeterminate.

Page 2. 1 .4

X/Open Conformance Statement
Questionnaire

Rationale

XCS-QUE-3 .2

Each of these limits can vary within bounds set by the X/Open
Portability Guide. The minimum value that a limit can take on any

r-., XJOpen conforming system is given in the corresponding _pQSIX_
value. A specific conforming implementation may provide a higher
minimum value than this and the maximum value that it provides
can differ from the minimum. Some conforming implementations
may provide a potentially infinite value as the maximum, in which
case the value is considered to be indeterminate. The minimum
value must always be definitive since the _pQSIX_ value provides a
known lower bound for the range of possible values.

�

Reference
XPG3 Volume 2 Page 538 - <limits.h>

Question 4: What are the values associated with the following constants
specified in the <limits.h> header file?

Answer:

Macro Name Meaning Value

CHAILBIT Number of bits 8
in a char

LONG_BIT Number of bits 32
in a long

WORD_BIT Number of bits 32
in a word

DBLDIG Digits of precision 1 5
of a double

DBL_MAX Maximum decimal 1 . 797693 1 348623 1 57e+308
value of a double

Page 2. 1 . 5

X/Open Conformance Statement
Questionnaire

FLT_DIG Digits of precision 6
of a float

XCS-QUE-3 .2

FLT_MAX Maximum decimal 3.4028234663852885e+ 38
value of a float

Rationale
This set of constants provides useful information regarding the
underlying architecture of the implementation.

Reference
XPG3 Volume 2 Page 537 - <limits.h>

2. 1 .4 Error Conditions

Question 5: Which of the following optional errors listed in the XPG are
detected in the circumstances specified?

Answer:

Function

access()

atof()

atoi()

atol()

cfsetispeed()

cfsetospeed()

chmod()

chown()

Error

EINVALt
ETXTBSY

ERANGE

ERANGE

ERANGE

EINVAL

EINVAL

EINVAL

EINVALt

Detected

No
Yes

Yes

No

No

No

No

No

No

Page 2. 1 .6

X/Open Conformance Statement XCS-QUE- 3 . 2
Questionnaire

Function Error Detected

closedir() EBADFt Yes
fi1" exec ENOMEMt Yes

ETXTBSY Yes

fcntl() EDEADLKt Yes

fdopen() EBADF No
EINVAL No

feof() EBADF No

ferror() EBADF No

fileno() EBADF No

fopen() EINVAL No
ETXTBSY Yes

freopen() EINVAL No
ETXTBSY Yes

fork() ENOMEM Yes

fseek() EINVAL Yes

ftw() EINVAL No

getcwd() EACCESt Yes

isatty() EBADF No
ENOTTY No

open() EINVAL Yes
ETXTBSY Yes

opendir() EM FILEt Yes
ENFILEt Yes

pathconf() EACCESt No
EINVALt No
ENAMETOOLONGt No

�

Page 2. 1 .7

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

Function Error Detected

ENOENTt No
ENOTDIRt No �

fpathconf() EBADFt No
EINVALt Yes

printf() EINVAL Yes

readdir() EBADFt Yes

rename() ETXTBSY No

scanf() EINVAL Yes

setvbuf() EBADF No

sigaddset() EINVALt Yes

sigdelset() EINVALt Yes

sigismember() EINVALt Yes

strcoll() EINVAL No

strerror() EINVAL Yes

strtol() EINVAL Yes
ERANGE Yes

strxfrm() EINVAL Yes

unlink() ETXTBSY Yes

Rationale
Each of the above error conditions is marked as optional in the XPG

and an implementation may return this error in the circumstances
specified or may not provide the error indication. Those items
marked with a t are also considered to be optional error conditions
in POSIX. l . The EINV AL error condition for the three functions
sigaddset(), sigdelset(), and sigismemberO are mandated in the XPG

but are considered optional in POSIX. l . An X/Open-conforming
implementation will always produce these errors, but a POSIX.l - �
conforming implementation may not. I

Page 2. 1 . 8

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

Reference
XPG3 Volume 2 Page 32 - Error Numbers

2. 1 .5 Mathematical Interfaces

Question 6: What format of floating point numbers are supported by
this implementation?

Answer:
IEEE floating point format.

Options:

1 . IEEE floating point format.

2. Description of floating point format supported.

Rationale
Most implementations support IEEE floating point format either in
hardware or software. Some implementations support other formats
with different exponent and mantissa accuracy. These differences
need to be defined.

Question 7: Is long double form supported and what precision is associ­
ated with this form?

Answer:
Not supported. Long double equates to double.

Options:

1 . Not supported. Long double equates to double.

2. Description of exponent and mantissa precision and number of
bits associated with the long double format.

Page 2. 1 .9

X/Open Conformance Statement
Questionnaire

Rationale

XCS-QUE-3 .2

The long double format can both vary in length and precision. I f it
is supported, other than as a synonym for double, the format needs
to be described.

Reference
XPG3 Volume 2 Page 328 - printf()
XPG3 Volume 2 Page 362 - scanf()

2. 1.6 Data Encryption

Question 8: Are the optional data encryption interfaces provided?

Answer:

crypt() No
encrypt() No
setkey() No

Rationale
Normally an implementation will either provide all three of these
routines or will provide none of them at all. If the routines are not
provided, then the implementation must provide a dummy interface
which always raises an ENOSYS error condition.

Reference
XPG3 Volume 2 Page 3 - Status of Interfaces

Page 2. 1 . 1 0

X/Open Conformance Statement
Questionnaire

XCS-QUE- 3 . 2

Section 2.2: Process Handling

2.2. 1 Process Generation

Question 9: Which file types (regular, directory, FIFO special etc.) are
considered to be executable?

Answer:
Regular.

Options:
A list of the types of file that are considered to be executable.

Rationale
The EACCES error associated with exec functions occurs in cir­
cumstances when the implementation does not support execution of
files of the type specified. A list of these file types needs to be
provided.

Example
Only regular file types may be executed.

Reference
XPG3 Volume 2 Page 1 29 - exec

Page 2.2. 1

X/Open Conformance Statement
Questionnaire

2.2.2 Process Termination

XCS-QUE-3 .2

Question 1 0 : Is the SIGCHLD signal sent to the parent process when a
child exits?

Answer:
Yes

Rationale
Some systems support the sending of SIGCHLD in these cir­
cumstances. This is mandatory if job control is supported.

Reference
XPG3 Volume 2 Page 1 32 - exit()

2.2.3 Process Environment

Question 1 1 : Is the setpgidO interface provided?

Answer:
Yes

Rationale
This interface is mandatory on systems which support job control
and may be provided on other systems.

Reference
XPG3 Volume 2 Page 3 - Status of Interfaces

Page 2.2.2

X/Open Conformance Statement
Questionnaire

Section 2.3: File Handling

2.3.1 Access Control

XCS-QUE-3 .2

Question 1 2: What file access control mechanisms does the implementa­
tion provide?

Answer:
Standard access control is provided.

Options:

1 . Standard access control is provided.

2. Refer to: POSIX. l Conformance Document Section 2.4.

3 . Provide a definition of the additional or alternate access
mechanisms.

Rationale
The XPG (and POSIX) allow an implementation to provide either
additional or alternate file access control mechanisms other than the
standard access control mechanism. The document should either
describe or provide a reference to the details of alternate or addi­
tional access mechanisms. In particular, the method by which an
application can execute using standard file access control should be
explained and details of the changes required to utilised the alter­
nate or additional access mechanisms should be given.

Reference
XPG3 Volume 2 page 1 6 - File Access Permissions

Page 2.3. 1

X/Open Conformance Statement
Questionnaire

2.3.2 Files and Directories

XCS-QUE- 3.2

Question 13: Are any extended security controls implemented that could �
cause fstat() or stat() to fail?

Answer:
No

Rationale
The XPG notes that there could be an interaction between extended
security controls and the success of fstat() and stat(). This would
suggest that an implementation can allow access to a file but not
allow the process to gain information about the status of the file.

Reference
XPG3 Volume 2 Page 478 - tempnam()

2.3.3 Formatting Interfaces

Question 14: Is the L modifier to printf() and scanf() supported on this
implementation?

Answer:
No

Rationale
The XPG notes that the L modifier which is exactly equivalent to
the 1 modifier when the implementation does not differentiate
between double and long double, is not supported on all systems and
is only included for compatibility with ANSI C.

Reference
XPG3 Volume 2 Page 328 - printf()
XPG3 Volume 2 Page 362 - scanf()

Page 2. 3 .2

X/Open Conformance Statement
Questionnaire

XCS-QUE- 3 . 2

Question 1 5 : Does the printfO function produce character string
representations for Infinity and NaN to represent the respective
special double precision values?

Answer:
Yes

Rationale
This behaviour is often provided on systems with mathematical
functions that produce these results.

Reference
XPG3 Volume 2 Page 33 1 - printf()

Page 2.3 .3

XjOpen Conformance Statement
Questionnaire

XCS-QUE-3.2

Section 2.4: General Terminal Interface

2.4. 1 Interfaces Supported

Question 16: Are the following terminal control interfaces provided?

tcgetpgrp() tcsetpgrp()

Answer:
Yes

Rationale
These interfaces are mandatory for implementations that support
job control. Implementations that do not support job control, may
either always return the error indication [ENOSYS] or may provide
the interface with the behaviour specified for an implementation l that supports job control. This later case is useful for implementa-

.

tions which support only part of the job control specifications.

Reference
XPG3 Volume 2 Page 47 1 - tcgetpgrp
XPG3 Volume 2 Page 475 - tcsetpgrp

Page 2.4. 1

X/Open Conformance Statement
Questionnaire

XCS-QUE-3.2

Section 2.5: Internationalised System Interfaces

2.5.1 Codesets

Question 17: Does the implementation support the ISO 8859-1:1987
codeset for data transmission?

Answer:
Yes

Rationale
The XPG defines the ISO 8859- 1 : 1 987 as the major Western Euro­
pean transmission codeset and also recommends its use as the
corresponding internal codeset.

Reference
XPG3 Volume 3 Page 1 9 - Character Codesets and Text Transfer

Question 18: Does the implementation use the ISO 8859-1:1987 as its
internal codeset?

Answer:
The implementation does not prescribe a specific internal codeset.
Any single-byte codeset that is a true superset of ISO 646 (IRV),
including ISO 8859- 1 : 1 987, can be used as the internal codeset.

Rationale
The XPG defines the ISO 8859- 1 : 1 987 as the major Western Euro­
pean transmission codeset and also recommends its use as the
corresponding internal codeset.

Reference
XPG3 Volume 3 Page 1 9 - Character Codesets and Text Transfer

Page 2.5 . 1

X/Open Conformance Statement
Questionnaire

2.5.2 Regular Expression Interfaces

XCS-QUE-3 .2

Question 1 9 : What form of regular expression syntax is supported by
the regexp() interface?

Answer:
Simple Internationalised (assuming this is in regard to the regexp.h
interface)

Rationale
The regexp() interface may support either the simple regular expres­
sion or the simple internationalised regular expression syntax as
defined in the XPG3 Volume 3 - Supplementary Definitions.

Reference
XPG3 Volume 3 Pages 49-5 1 - Regular Expressions

Page 2.5 .2

� '

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

Chapter 3: Commands and Utilities

Product Identification

Product Identification INTERACTIVE UNIX System V /386 Release 3 .2

Version/Release No. 3.0

If you do not supply this component yourself, please identify below the
supplier you reference.

Conformance Reference

Indicator of Compliance
None

Environment Specification

Enter below details of the hardware and software environment in
which conformance is claimed, including compilation routines and
installation procedures (if any). Sufficient detail must be supplied
to enable conformant behaviour to be reproduced.

Any 386/486-compatible system with at least 4 MB of RAM and
the following INTERACTIVE UNIX System V /386 Release 3.2,
Version 3.0 subsets and extensions installed (approximately 40
MB of disk space is needed):

Page 3 . 1

X/Open Conformance Statement
Questionnaire

Core
Kernel Configuration
File Management
International Supplement

XCS-QUE-3.2

INTERACTIVE Software Development System

Conformance Expectations

Volume 1 of XPG3 recognises that convergence of implementa­
tions towards a common specification for commands and utilities
is not yet complete and therefore does not require a vendor to
supply all of the commands and utilities (and individual options)
specified in XPG3.

This chapter explicitly identifies those commands and utilities not
supplied by the vendor and any supplied which do not conform to
the published specification. (Reference : XPG3 Volume 1 Page
1).

Page 3.2

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

Section 3. 1 : Basic Utilities

3.1 . 1 Supported Commands

Question 1 : Which of the basic utilities (non-development utilities)
defined in the XPG are not provided with the implementation?

Answer:
All are provided.

Options:
A list of utilities that are not provided.

Rationale
The XPG Volume 1 states that "this volume in its current form is
useful only as a guide to portability, but it is not possible to pre­
cisely define or test conformance to it." This question determines
whether or not the implementation provides a command of the name
specified in the XPG, it does not attempt to determine whether it
supports the semantics of that command. The (optional) develop­
ment utilities are excluded from this question and are dealt with in
the next section of the questionnaire.

Example
The mailx and newgrp commands are not provided.

Reference
XPG3 Volume I Page I - Introduction

Page 3. 1 . 1

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

3. 1 .2 Command Behaviour

Question 2: In what ways do the commands provided by the implemen­
tation behave differently from the specifications contained in the
XPG?

Answer:
The commands behave in the manner specified for each of the com­
mand options detailed in the XPG.

Options:

1 . The commands behave in the manner specified for each of the
command options detailed in the XPG.

2. A list of deviances for each of the commands is provided. This
list should be in a tabular form giving the name of the com­
mand, the command option and a description of the deviant
behaviour.

Rationale
This question provides a greater degree of granularity than the pre- �
vious question, requiring the semantic differences associated with
the commands to be specified. Again, the question relates to the
basic utilities rather than the development utilities. The question
only relates to the semantics of the options specified within the XPG,
implementation specific extensions should not be documented.

Page 3. 1 .2

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

Section 3.2: Development Utilities

3.2. 1 Supported Commands

Question 3: Which of the development utilities defined in the XPG are
not provided with the implementation?

Answer:
All are provided.

Options:

1 . All are provided

2. None are provided

3. A list of utilities that are not provided

Rationale
The XPG Volume 1 states that "The development utilities might not
be present in all X/Open compliant systems; in designated
(DEVELOPMENT) systems all of the development utilities must be
present and must conform to the published definition."

Reference
XPG3 Volume 1 Page 2 - Status of Interfaces

Page 3.2. 1

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

3.2.2 Command Behaviour

Question 4: In what ways do the development utilities provided by the �
implementation behave differently from the specifications contained
in the XPG?

Answer:

Command Option Description

cc -Xp compiles and links for the POSIX and XPG3

environments
mailx does not support internationalised behavior

Options:

1 . The development utilities behave in the manner specified for
each of the options detailed in the XPG.

2. A list of deviances for each of the utilities is provided. This
list should be in a tabular form giving the name of the utili-
ties, the option and a description of the deviant behaviour. �

Rationale
This question provides a greater degree of granularity than the pre­
vious question, requiring the semantic differences associated with
the development utilities to be specified.

Page 3.2.2

XjOpen Conformance Statement
Questionnaire

XCS-QUE-3 .2

Section 3.3: Internationalisation Option

3.3. 1 Commands and Utilities

Question 5: Is an internationalised environment, reflecting changes in the
locale setting as described in XPG Volume 1 - XSI Commands and
Utilities, supported?

Answer:
Except for mailx, the commands listed below support Internationali­
sation in the manner specified in XPG3.

Options:

1 . The commands listed below support Internationalisation in the
manner specified in XPG3.

2. A list of deviations in the Internationalised behaviour of the
following commands, compared to that specified in XPG3, is
provided.

Command Behaviour Specified in XPG3 Supported

ar LC_TIME affects date format

awk LC_COLLATE, LC_CTYPE affect regular
expression matching
LC_COLLATE affects the behaviour of
string comparisons

Yes

Yes

Yes

LC_NUMERIC affects the behaviour of the Yes
radix character

As per POSIX. l , awk only recognizes the
period (.) as the radix character in scripts

Page 3 .3 . 1

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

Command Behaviour Specified in XPG3

comm LC_COLLATE affects sorting sequence

cp,ln,mv LANG affects yes string

cpio LC_COLLATE, LC_CTYPE affect filename
pattern matching
LC_ TIME affects date format

date LC_TIME affects date formatting options

ed,red LC_COLLATE, LC_CTYPE affect regular
expression matching

egrep

expr

fgrep

find

grep

LC_CTYPE is used to determine whether
characters are printable

LC_COLLATE, LC_CTYPE affect regular
expression matching
LC_CTYPE is used to determine character
classification
(alphabetic, upper-case, lower-case)

LC_COLLATE, LC_CTYPE affect regular
expression matching
LC_COLLATE affects the behaviour of
relational operators

LC_CTYPE is used to determine character
classification
(alphabetic, upper-case, lower-case)

LANG affects yes string
LC_COLLATE, LC_CTYPE affect filename
pattern matching

LC_COLLATE, LC_CTYPE affect regular
expression matching

Supported

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Yes

Page 3.3 .2

XjOpen Conformance Statement XCS-QUE-3 .2
Questionnaire

Command Behaviour Specified in XPG3 Supported

LC_CTYPE is used to determine character Yes

,� classification
(alphabetic, upper-case, lower case)

join LC_COLLATE affects sorting sequence Yes

lpstat LC_TIME affects date format Yes

ls LC_COLLATE affects sorting sequence Yes
LC_CTYPE is used to determine whether a Yes
character is printable
LC_ TIME affects date format Yes

mail LC_ TIME affects date format Yes

mailx LC_COLLATE, LC_CTYPE affect file name No
pattern matching
LC_TIME affects date format No

pg LC_COLLATE, LC_CTYPE affect filename Yes
pattern matching

pr LC_TIME affects date format Yes
LC_CTYPE is used to determine whether a Yes
character is printable

ps LC_ TIME affects date format Yes

rm,rmdir LANG affects yes string Yes

sed LC_COLLATE, LC_CTYPE affect regular Yes
expression matching
LC_CTYPE is used to determine whether a Yes
character is printable

sh LC_COLLATE, LC_CTYPE affect filename Yes
pattern matching
LC_CTYPE is used to determine whether a Yes
character is alphabetic

Page 3 .3 .3

X/Open Conformance Statement XCS-QUE-3 .2
Questionnaire

Command Behaviour Specified in XPG3 Supported

sort LC_CQLLATE affects sorting sequence Yes
LC_CTYPE affects character classification Yes
(alphabetic, uppercase, printing)
LC_NUMERIC affects the determination of Yes
the radix character

tar LC_TIME affects date format Yes
LANG affects yes string Yes

tr LC_CQLLATE, LC_CTYPE affect bracketed Yes
expressions
LC_CTYPE affects the definition of the Yes
character universe

uniq LC_COLLATE affects sorting sequence Yes

uucp LC_TIME affects date format Yes

uustat LC_TIME affects date format Yes

we LC_CTYPE is used to determine white-space Yes
characters

who LC_TIME affects date format Yes

yacc LC_CTYPE is used to determine character Yes
classification

Rationale
This behaviour is collectively optional, that is, it should be provided
for all commands listed (subject to sections 3. 1 and 3.2 which iden­
tify those commands not supplied by the vendor and those which do
not fully support the X/Open specification).

Reference
XPG3 Volume 1 Pages 4-5 - Status of Interfaces

Page 3.3 .4

�

l

XJOpen Conformance Statement
Questionnaire

XCS-QUE-3.2

3.3.2 Regular Expressions in Commands

Question 6: Which form of regular expression syntax is supported by
those commands which use regular expressions?

Answer:

Command Regular Expression Syntax Supported

awk Extended Internationalised

csplit Simple Internationalised

ed Simple Internationalised

egrep Extended Internationalised

ex Simple

expr Simple Internationalised

grep Simple Internationalised

lex Extended

pg Simple Internationalised

sdb Simple

sed Simple Internationalised

vi Simple

Note: An XPG 3 conforming system which claims support for inter­
nationalised commands should provide the regular expression syntax
marked in bold in the above table. Where neither options are
marked in bold, either may be provided.

Rationale
The XPG Volume 3 - XSI Supplementary Definitions requires that
an internationalised set of commands will provide regular expression
syntax for the above commands in one of the forms specified for
that command. The XPG encourages the implementation of

Page 3 .3 .5

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

internationalised regular expressions for all of the above utilities. It
should be noted that the sdb command is an optional development
utility and may not be available on all XPG conforming systems.

Reference
XPG3 Volume 3 Pages 49-5 1 - Regular Expressions

Page 3 .3 .6

XjOpen Conformance Statement
Questionnaire

XCS-QUE-3 .2

Chapter 4: C Language

Product Identification

Product Identification INTERACTIVE UNIX System V /386 Release 3.2

Version/Release No. 3.0

If you do not supply this component yourself, please identify below the
supplier you reference.

Conformance Reference

Indicator of Compliance

VSX Test Suite Release 3.204

Testing Agency Name UniSoft Corporation

Address 6 1 2 1 Hollis Street

Emeryville, CA 94608-2092

Environment Specification

Enter below details of the hardware and software environment in
which testing took place, including compilation routines and in­
stallation procedures (if any). Sufficient detail must be supplied
to enable conformant behaviour and any test results to be
reproduced.

Any 386/486-compatible system with at least 4 MB of RAM and
the following INTERACTIVE UNIX System V /386 Release 3.2,

Page 4. 1

X/Open Conformance Statement
Questionnaire

XCS-QUE-3.2

Version 3 .0 subsets and extensions installed (approximately 40
MB of disk space is needed):

Core
Kernel Configuration
File Management
International Supplement
INTERACTIVE Software Development System

Temporary Waivers

List below references to any temporary waivers granted by
X/Open in respect of minor errors in the product referenced
above. This should include the X/Open reference and the waiver
expiry date. The waivers as granted shall be made available with
this document on request.

Page 4.2

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

Section 4.1 : Implementation Limits

Question 1 : What limits does the implementation impose on the
significant part of a identifier?

Answer:

External identifiers an infinite number of characters

Non-External identifiers an infinite number of characters

Rationale
The XPG states that, while there is no limit to the length of an
identifier, only a certain number of characters are significant. The
XPG points out that there must be at least eight characters for a
non-external name, but may be less for external names.

Reference
XPG3 Volume 4 Page 3 - Lexical Conventions

Page 4. 1 . 1

X/Open Conformance Statement
Questionnaire

Section 4.2: General

XCS-QUE-3.2

Question 2: What truncation rules are applied when a floating value is
converted to an integral value?

Answer:
Truncation toward zero.

Options:
A description of the manner in which floating values are converted.
The description should address the rules for truncation of both posi­
tive and negative values.

Rationale
The XPG states that such conversions are machine dependent. In
particular, the XPG points out the differences related to the trunca­
tion of negative numbers.

Reference
XPG Volume 4 Page 1 0 - Conversions

Question 3: What truncation rules are applied when using the division
operator and either of the operands is negative?

Answer:
Truncation toward zero.

Rationale
The XPG states that such truncations are machine dependent.

Reference
XPG Volume 4 Page 1 6 - Expressions

Page 4.2. 1

X/Open Conformance Statement
Questionnaire

XCS-QUE-3 .2

Chapter 15: Source Code Transfer

Section 15. 1 : Utilities

Product Identification

Product Identification INTERACTIVE UNIX System V /386 Release 3 .2

Version/Release No. 3.0

If you do not supply this component yourself, please identify below the
supplier you reference.

1 5. 1 . 1 Conformance Reference

Indicator of Compliance
None.

Environment Specification

Enter below details of the hardware and software environment in
which conformance is claimed, including compilation routines and
installation procedures (if any). Sufficient detail must be supplied
to enable conformant behaviour to be reproduced.

Any 386 f 486-compatible system with at least 4 MB of RAM and
the following INTERACTIVE UNIX System V /386 Release 3 .2,
Version 3.0 subsets and extensions installed {approximately 40
MB of disk space is needed):

Page 1 5 . 1 . 1

X/Open Conformance Statement
Questionnaire

Core
Kernel Configuration
File Management
International Supplement

XCS-QUE-3.2

INTERACTIVE Software Development System

1 600 bpi PE magnetic tape is supported with the INTERACTIVE
UNIX Operating System when using a controller card and a tape
unit for which a device driver is available. Several vendors pro­
vide such hardware/ software.

Temporary Waivers

List below references to any temporary waivers granted by �
X/Open in respect of minor errors in the product referenced
above. This should include the X/Open reference and the waiver
expiry date. The waivers as granted shall be made available with
this document on request.

Page 1 5 . 1 .2

XjOpen Conformance Statement
Questionnaire

Formats

XCS-QUE-3 .2

Question 1 : Which exchange media format(s) may be written by the
system?

Answer:

80 track diskettes Yes
40 track diskettes Yes
1 600bpi PE magnetic tape Yes

Rationale
XPG3 states that standards are referenced for transfer of diskettes
and magnetic tapes between machines. Because of the different
nature of X/Open conformant systems, it is not possible to define a
single portable medium that is supported across the whole range of
systems.

Reference
XPG 3 Volume 3 Chapters 1 5, 1 6, and 1 7

Question 2: Which exchange media format(s) may be read b y the
system?

Answer:

80 track floppy disk Yes
40 track floppy disk Yes
1 600bpi PE magnetic tape Yes

Rationale
XPG 3 states that standards are referenced for transfer of diskettes
and magnetic tapes between machines. Because of the different
nature of X/Open conformant systems, it is not possible to define a
single portable medium which is supported across the whole range
of systems. In addition, some systems can read a wider range of
formats that they can write.

Page 1 5 . 1 . 3

X/Open Conformance Statement
Questionnaire

Reference
XPG3 Volume 3 Chapters 1 5, 1 6, and 1 7

Utilities

XCS-QUE-3 .2

Question 3 : Which utilities are used to create and read the archive for­
mats specified in XPG Volume 3 - XSI Supplementary Definitions?

Answer:

Format Creating Reading

Extended tar tar tar

cpio cpio cpio

Options:
A definition of the commands used to create and read these formats.
If a special option is required to produce the specified format this
must be detailed.

Refer to: POSIX. 1 Conformance Document Section 1 0. 1

Rationale
There is no explicit definition as to the commands that must be used
to create and retrieve these archives. On most systems this will be
achieved by the tar and cpio commands. There are other commands
available that produce these archives. On some implementations the
command may need a special option to enable reading of the
specified formats with the "standard" option being to create
archives which are backwards compatible with previous versions of
the command.

Reference
XPG3 Volume 3 Page 1 5 1 -2 - Utilities

Page 1 5. 1 .4

XjOpen Conformance Statement
Questionnaire

XCS-QUE-3 .2

Invalid File Names

Question 4: What file name is used to contain data from the archive in
the case that the file name on the archive is invalid for the system
on which the file hierarchy is being created?

Answer:

Format File

Extended tar The archive reading utility relies
on standard file and directory creating system
interfaces to create files and directories. On
extraction from the archive, the only case where a
filename would be changed is if a pathname
component exceeds the system filename length limit
of NAME_MAX (1 4 characters), in which case it
would be truncated to NAME_MAX characters.

cpio The archive reading utility handles invalid

Options:

file and directory names in the same manner as
extended tar.

1 . Definition of the file name used.

2. None, if the file is not stored on the archive.

3. Refer to: POSIX. 1 Conformance Document Sections 1 0. 1 . 1
and 1 0. 1 .2.2.

Rationale
Because an archive can contain non-portable file names, it is neces­
sary for an archive reading utility to be able to generate a file and
store the data associated with a non-portable file name when this is
encountered on the archive. There may be a need to generate a
number of such file names in the same directory and the
specification should detail the algorithm used to generate these file
names.

Page 1 5 . 1 . 5

X/Open Conformance Statement
Questionnaire

Reference
XPG3 Volume 3 Page 1 5 1 - Utilities

MULTI VOLUME ARCHIVES

XCS-QUE-3.2

Question 5: How does the archive reading utility determine which file to
read as the next volume when an end-of-file or end-of-media con­
dition is encountered?

Answer:

Format Method

Extended tar Prompts when ready for the next
volume and asks the user to type "go" when
ready to proceed. There is no way to specify the
device - the initial device is used.

cpio Prompts that it has reached the end of the
medium and asks the user to type the device/file
name for the next archive when ready.

Options:
Description of method used by each utility.

Refer to: POSIX. 1 Conformance Document Section 1 0. 1 . 3 .

Rationale
In many cases the utility will prompt the user for the path name of
the device to use for the next volume. There may be extensions to
the utility syntax which allow the definition of alternate addresses
for subsequent volumes.

Reference
XPG3 Volume 3 Pages 1 5 1 -2 - Utilities

Page 1 5 . 1 .6

chrtbl(l M)
colldef(l P)
gencat(IP)
iconv(lP)
loadfont(l)
showcat(lP)
ttymap(l)
catclose(3P)
catgets(3P)
catopen(3P)
localeconv(3P)
nUanginfo(3P)
setlocale(3P)
strcoll(3P)
strerror(3P)
strxfrm(3P)
gencat(4P)
loadfont(4)
charmap(SP)
langinfo(SP)
locale(SP)

International Supplement
Reference Manual

CONTENTS

chrtbl (I M) chrtbl (l M)

NAME
chrtbl - generate character classification and conversion tables

SYNOPSIS
chrtbl [file]

DESCRIPTION
The chrtbl command creates a character classification table and an
upper /lowercase conversion table. The tables are contained in a byte­
sized array encoded such that a table lookup can be used to determine
the character classification of a character or to convert a character (see
ctype(3C)). The size of the array is 257*2 bytes: 257 bytes are
required for the 8-bit code set character classification table and 257
bytes for the uppercase to lowercase and lowercase to uppercase
conversion table.
chrtbl reads the user-defined character classification and conversion
information from file and creates two output files in the current direc­
tory. One output file, ctype.c (a C-language source file), contains the
257*2-byte array generated from processing the information from file .
You should review the content of ctype.c to verify that the array is set
up as you had planned. (In addition, an application program could use
ctype.c.) The first 257 bytes of the array in ctype.c are used for char­
acter classification. The characters used for initialising these bytes of
the array represent character classifications that are defined in
fusr/include/ctype.h; for example, _L means a character is lower case
and -.sf _B means the character is both a spacing character and a
blank. The last 257 bytes of the array are used for character conver­
sion. These bytes of the array are initialised so that characters for
which you do not provide conversion information will be converted to
themselves. When you do provide conversion information, the first
value of the pair is stored where the second one would be stored nor­
mally, and vice versa; for example, if you provide < Ox41 Ox61 > , then
Ox61 is stored where Ox41 would be stored normally, and Ox61 is
stored where Ox41 would be stored normally.

The second output file (a data file) contains the same information, but
is structured for efficient use by the character classification and conver­
sion routines (see ctype(3C)). The name of this output file is the value
of the character classification chrclass read in from file . This output
file must be installed in the /lib/chrclass directory under this name by
someone who is superuser or a member of group bin. This file must be
readable by user, group, and other; no other permissions should be set.
To use the character classification and conversion tables on this file, set
the environmental variable CHRCLASS (see environ(5)) to the name of
this file and export the variable; for example, if the name of this file
(and character class) is xyz, you should issue the commands:
CHRCLASS-xyz ; export CHRCLASS .

If no input file is given, or if the argument - is encountered, chrtbl
reads from the standard input file.

The syntax of file allows the user to define the name of the data file
created by chrtbl, the assignment of characters to character
classifications and the relationship between uppercase and lowercase
letters. The character classifications recognised by chrtbl are:

INTERACTIVE UNIX System - l - International Supplement

chrtbl(1 M)

chrclass

is upper

islower

isdigit

iss pace

ispunct

iscntrl

is blank

isxdigit

chrtbl(1 M)

name of the data file to be created by chrtbl.

character codes to be classified as uppercase
letters.
character codes to be classified as lowercase
letters.
character codes to be classified as numeric.
character codes to be classified as a spacing
(delimiter) character.
character codes to be classified as a punctuation
character.
character codes to be classified as a control char­
acter.
character code for the space character.
character codes to be classified as hexadecimal
digits.

ul relationship between uppercase and lowercase
characters.

Any lines with the number sign (#) in the first column are treated as
comments and are ignored. Blank lines are also ignored.
A character can be represented as a hexadecimal or octal constant (for
example, the letter a can be represented as Ox6 1 in hexadecimal or
0 14 1 in octal). Hexadecimal and octal constants may be separated by)
one or more space and tab characters.
The dash character (-) may be used to indicate a range of consecutive
numbers. Zero or more space characters may be used for separating
the dash character from the numbers.
The backslash character (\) is used for line continuation. Only a car­
riage return is permitted after the backslash character.
The relationship between uppercase and lowercase letters (ul) is
expressed as ordered pairs of octal or hexadecimal constants:
< upper-case_character lower-case_character> . These two constants
may be separated by one or more space characters. Zero or more
space characters may be used for separating the angle brackets (< >)
from the numbers.

EXAMPLE
The following is an example of an input file used to create the ASCII
code set definition table on a file named ascii:

chrclass ascii .
isupper Ox4 1 - Ox5a
islower Ox6 1 - Ox7a l isdigit Ox30 - Ox39
isspace Ox20 Ox9 - Oxd
ispunct Ox2 1 - Ox2f Ox3a - Ox40 \

Ox5b - Ox60 Ox7b - Ox7e
iscntrl OxO - Oxl f Ox7f

INTERACTIVE UNIX System - 2 - International Supplement

chrtbl (1 M) chrtbl(1 M)

FILES

is blank
isxdigit

ul

Ox20
Ox30 - Ox39 Ox6 1 - Ox66 \
Ox4 1 - Ox46
<Ox4 1 Ox6 1 > <Ox42 Ox62 > < Ox43 Ox63 > \
<Ox44 Ox64 > < Ox45 Ox65 > < Ox46 Ox66 > \
< Ox47 Ox67 > < Ox48 Ox68 > < Ox49 Ox69 > \
< Ox4a Ox6a> < Ox4b Ox6b > < Ox4c Ox6c> \
< Ox4d Ox6d> < Ox4e Ox6e > < Ox4f Ox6f> \
<Ox50 Ox70> < Ox5 1 Ox7 1 > < Ox52 Ox72> \
< Ox53 Ox73 > < Ox54 Ox74> < Ox55 Ox75 > \
< Ox56 Ox76 > <Ox57 Ox77 > < Ox58 Ox78 > \
<Ox59 Ox79 > < Ox5a Ox7a >

/lib/ chrclass / * data file containing character classification and
conversion tables created by chrtb/

jusr /include/ ctype.h
header file containing information used by character
classification and conversion routines

SEE ALSO
ctype(3C), environ(S) in the INTERACTIVE SDS Guide and
Programmer's Reference M anua/ .

DIAGNOSTICS
The error messages produced by chrtbl are intended to be self­
explanatory. They indicate errors in the command line or syntactic
errors encountered within the input file.

NOTE TO USERS
This entry is reprinted from the INTERACTIVE UNIX System
User's/System Administrator's Reference Manual.

INTERACTIVE UNIX System - 3 - International Supplement

colldef(l P) colldef(l P)

NAME
colldef - generate collation table

SYNOPSIS
colldef [-c] [-fcharmap] [-iinputfile] [-s] locale

D!SCRIPTION
The colldef utility converts collation source definitions into a format
usable by the strcoll(3P) and strxfrm(3P) functions, as well as in sort­
ing and regular expression processing.

The colldef command has the following options:

-c A collation table is created if warning messages have
been issued. (Normally both error and warning messages
cause the command to terminate without creating the
collation table.)

-f charmap The path name of a file containing a mapping of charac­
ter symbols and collating element symbols to actual
character encodings. This option must be specified if
symbolic names (other than collating symbols defined in
a collating-symbol keyword) are used. If the name does
not contain a "/", the program will assume that the char­
map is located in the directory /lib f channap.

-i inputfile The path name of a file containing the source definitions.
If this option is not present, source definitions are read
from standard input.

-s When this flag is used, the colldef command will not
print warning messages.

The locale argument identifies the target locale . If the argument con­
tains one or more slash characters or consists of dot (.), it will be inter­
preted as an absolute path name for the directory in which the created
collation table will be stored. Otherwise, the argument is interpreted
as the name of a directory under /lib/locale/ISC. The created colla­
tion table is stored in a file named LC_COLLATE within the locale
directory.

The character set mapping file specified as the charmap option­
argument is described under charmap(5P).

The collation source definition file contains statements describing the
desired collation behaviour. Each statement consists of a keyword,
optionally followed by arguments and by collation order entries. The
following keywords are recognised:
L{;_COLLATE This keyword must be the first in the file.

collating-symbol This keyword names symbolic names used in colla­
tion order entries.

collating-element This keyword defines multi-character collating
elements.

substitute This keyword describes regular expression-type
substitutes.

INTERACTIVE UNIX System - l - International Supplement

colldef(I P) colldef(I P)

order__start This keyword defines the collation evaluation direc­
tion and immediately precedes the collation order
entries.

order_end This keyword immediately follows the last collation
order entry.

END L<:_COLLATE
This keyword must be the last in the file.

Each collation order entry consists of a character, a collating symbol,
or a multi-character collating element, followed by weight information.

The detail format of the collation definition source is described in the
"International Supplement User's Manual."

The setting of the L<:_ * environment variables does not affect the
behaviour of the colldef command.

ERRORS

FILES

If an error is detected, no collation tables are created.

If warnings occur, specifying the -c option will cause permanent out­
put to be created. The following conditions will cause warning mes­
sages to be issued:
1 . If a symbolic name not found in the charmap file is used to

define a collating element, the element is discarded and a warn­
ing message issued.

2. If the number of arguments to the order keyword exceeds the .�
{COLL_WEIGHTS_MAX} limit, which is defined in the file)
fusr /includefsysjtimits.h, a warning message will be issued.

/tib /locale/ISC/* /L<:_COLLATE
/UbI charmap /*

SEE ALSO
strcoll(3P), strxform(3P), charmap(5P), locale(5P) .
"International Supplement User's Manual."

INTERACTIVE UNIX System - 2 - International Supplement

gencat(I P) gencat(I P)

NAME
gencat - generate a formatted message catalogue

SYNOPSIS
gencat -c catfile msgfile . . .

� DESCRIPTION
The gencat utility merges the message text source :file(s) msgfile into a
formatted message catalogue catfile . The file catfile will be created if
it does not already exist. If catfile does exist, its messages will be
included in the new catfile . If set and message numbers collide, the
new message text defined in msgfile will replace the old message text
currently contained in catfile .

If the -c option is specified on the command line or the existing catfile
was generated with the -c option, the catfile will be "confidential,"
that is, it will not be translatable into a message text source file by the
showcat(lP) utility.
In this implementation, gencat makes the following interpretations with
respect to the format of a message text source file (see gencat(4P) for
the format of a message text source file as defined in the X/Open Por­
tability Guide, Volume 3, XSI Supplementary Definitions , Section
5.2. 1 , "Message Text Source Files"):
1. Set number ordering relates to set numbers from both $set and

Sdelset directives. Thus, the following is illegal:

$delset 2
$set 1

2. A set or message number can be equal to the preceding one. Thus,
the following is legal:

$delset 2
$set 2

3. If any line in a message text source file (not just a text string) ends
with a backslash (\), that is treated as a line continuation.

This utility operates in an 8-bit transparent manner.
ERRORS

If there are any errors in the course of processing any msgfile or, if it
exists, catfile , gencat will not generate a new catfile and its exit status
will be 1 . Under certain error conditions, gencat will continue process­
ing all msgfiles before exiting with an error status. These conditions
include:
1 . If catfile exists, either it cannot be opened, there is an error reading

it, or it has corrupted data.
2. For any msgfile, either it cannot be opened or it has a syntax error.
For any other errors, exit will be immediate.

INTERACTIVE UNIX System - 1 - International Supplement

gencat(l P) gencat(l P)

WARNINGS

NOTES

The following conditions will not generate an error but will cause a
warning message to be printed:
I . There is an attempt to delete a message or set that doesn't exist.
2. The specified catfile is an empty file.
3. A temporary file cannot be unlinked.

Using non-contiguous set or message numbers, using a set number
other than I as the first set, or using a message number other than I
as the first message of a set will cause the size of catfile to be larger
than using only contiguous numbers starting with I .

Message catalogues produced by gencat are binary encoded, which
means that their portability cannot be guaranteed between different
types of machines. Thus, just as C programs need to be recompiled
for each type of machine, so message catalogues must be recreated via
gencat .

SEE ALSO
showcat(IP), gencat(4P).

NOTE TO USERS
This entry is reprinted from the INTERACTIVE UNIX System
User'sjSystem Administrator's Reference Manual.

INTERACTIVE UNIX System - 2 - International Supplement

iconv(l P) iconv(lP)

NAME
iconv - codeset conversion

SYNOPSIS
iconv [-S default-char-specification] -f fromcode -t tocode [file]

� DESCRIPTION
The iconv utility converts the encoding of characters in file from one
codeset to another and writes the results to standard output. The input
and output codesets are identified by fromcode and tocode , respec­
tively. If no file argument is specified on the command line, iconv
reads the standard input.
Character encodings in either codeset may include single-byte values
(e.g., for ISO standard ISO 8859-1:1987 characters) or multi-byte
values (e.g. , for certain characters in ISO standard ISO 6937:1983). A
character in the input stream that does not have a correspondins
conversion in the "to" codeset defaults to the underscore character (_)
i n the output stream.
The iconv utility contains six built-in conversion tables. When the -f
and -t file specifications are both taken from the following list, the
built-in conversion tables are used:

437 IBM codepage 437
850 IBM codepage 850
8859 ISO/IEC 8859- 1 codeset

If a path name does not contain a slash (/), the program assumes that
the file is located in the directory /lib/charmap. Otherwise, fromcode
and tocode are path names for the charmap files.
The -S command option allows the default character to be dynami­
cally changed. The format of default-char-specification is either of
the following:

< new-default-char >
"\dnnn"

"\xnn"

"\nnn"

The first specification, which must be a valid charmap symbol from the
file defined as the "to" file, is only valid if charmap files rather than
the built-in tables are specified.
The latter three formats can only be used with the built-in tables and
specify the code value of the new default character. When the charac­
ter following the "\" is d, then nnn is a decimal value, e.g., 43 for the
plus sign. When the character following the "\" is x, then nn is a hex­
adecimal value, e.g. , 2B for the plus sign. When the character follow­
ing the "\" is numeric, then nnn is an octal value, e.g. , 53 for the plus
sign.

EXAMPLES
1 . The following example uses the built-in tables to convert from the

ISO/IEC 8859- 1 codeset to the IBM codepage 437 codeset and uses
the plus character (+) as the default output character:
iconv -f 8859 -t 437 -S "\d43" file

INTERACTIVE UNIX System - 1 - International Supplement

iconv(l P) iconv(l P)

NOTE

2. In the following example, both the fromcode file 8859-4.cmap and
the tocode file 865.cmap must exist in the directory /lib/charmap:

iconv -f 8859-4.cmap -t 865.cmap -S < plus-sign > infi/e >outfi/e
3. In the following example, the fromcode file is located in the

current directory. The tocode file being utilized is in the mydir
subdirectory of the current directory:
iconv -f .f8859-5.cmap -t mydir/866.cmap file

4. The following example converts the contents of the file mail.x400
from codeset ISO 6937:1983 to ISO 8859-1:1987 and stores the
results in the file mail.local:

iconv -f 6937.cmap -t 8859.cmap mail.x400 > mail.local

8859 is used as a synonym for 8859- 1 , both in the built-in table (8859)
and in the charmap file (/libfcharmapf8859.cmap).

SEE ALSO
charmap(5P) .

INTERACTIVE UNIX System - 2 - International Supplement

loadfont (1) loadfont(1)

NAME
loadfont - list or change font information in the RAM of the video
card

SYNOPSIS
loadfont

loadfont -f filename

loadfont codepage
loadfont -1
loadfont -d

loadfont -m mode

DESCRIPTION
The loadfont utility allows a user to load and activate a different font
into the RAM of the video card used by the console of the INTER­
ACTIVE UNIX Operating System. It can also be used to display infor­
mation about the font currently in use. In addition, the -m option can
be used to change the size of the characters on the screen; it can also
be used to change the number of lines or colors, e.g., to run an applica­
tion at the console at 43 lines at a time instead of 25. loadfont will
always read from standard output; this will allow a system administra­
tor to use it from a remote terminal.

Options
load font

When used without arguments, loadfont displays the different
ways the command can be used, as shown in the synopsis.

loadfont -f filename
This command reads the contents of filename and subse­
quently loads the font specified in the file into the RAM of the
video card. If the file does not have the correct format, an
error message is produced.

loadfont codepage
If codepage is the name of a hard-coded font available for the
current font size, this font will be loaded into the RAM of the
video card and activated. Available font names are listed
when the -1 option is used. If the codepage argument
specified is not the name of a valid font, an error message will
be produced.

loadfont -1
This option displays a short description of the fonts that are
hard-coded into the program and the name that can be passed
as a codepage . Only the fonts that match the current font
size are listed. loadfont -1 also displays the different charac­
ter modes supported by loadfont and the exact name that
should be used with the -m option. Here is a sample output:

INTERACTIVE UNIX System - l - International Supplement

loadfont(1)

Codepages supported for this size font are:
Name

437
8859
8859g
850

Description

IBM 437 codepage
ISO 8859- 1 codeset
ISO 8859- 1 with graphics
IBM 850 codepage

Different possible text modes supported are:
Name Description

E80x43 EGA 80 columns 43 lines
E40x25 EGA 40 columns 25 lines
E80x25 EGA 80 columns 25 lines
V 40x25 VGA 40 columns 25 lines
V80x25 VGA 80 columns 25 lines

loadfont(1)

8859g means the 8859- 1 codeset with box-drawing characters
in column 9 of the table (characters Ox90 to Ox9a).

loadfont -d
This reads the font information from the video RAM and
writes it to standard output in a format compatible with the
Binary Distribution Format version 2. 1 as developed by Adobe
Systems, Inc.

loadfont -m mode

Fonts

This will attempt to change the mode of the console as
specified. This will result in having a different font size
and/or different number of lines and columns on the screen.
The mode that can be specified should be one of the choices
listed above in the loadfont -1 output. If an invalid argument
is specified, an error message is produced.

A font is the representation of characters by images. The need to use
different fonts can be imposed by:

1 . The codeset used to represent the characters internally.
2. The resolution used to display the characters.

Each font contains exactly 256 images. All fonts supported are fixed
size (constant width and constant height), i.e., each character takes the
same amount of space on the screen. When the monitor is not being
used in graphics mode, the loadfont utility allows a user to modify the
font used by the video card, so different images are displayed on the
screen of the console for the various characters. Depending on the
type of video card used, different text modes can be supported by the
same video card. They typically differ by the number of pixels used to
represent a single character. For each character, the same number of) pixels is used. For the standard video cards, the different resolutions
supported (all or a subset) are:

8 by 8 (8 horizontally and 8 vertically)
8 by 1 4
8 by 1 6

INTERACTIVE UNIX System - 2 - International Supplement

loadfont (1) loadfont(1)

When loadfont is invoked to modify the existing font, it will attempt to
do so for the font size currently in use. Use the -m option to switch
to another font size.

loadfont and ttymap
There is an almost one-to-one relationship between the use of the load­
font utility and the ttymap utility. Whereas loadfont is used to list or
modify the images that correspond with the various characters, the
ttymap utility is used to determine how characters are generated from
the keyboard and which code (a single byte code) will be used to
represent the character internally. The default representation is the
IBM extended ASCII codeset, often also referred to as "IBM codepage
437." A ttymap sample input file is supplied that can be used for this
codeset on a console with a U.S. keyboard (usa.map). When a
different keyboard is used, a different ttymap input file is required
(e.g., french.map for a French keyboard).
When a different codeset is used, both a different ttymap input file and
a different font are required. For the most popular codesets , fonts are
hard-coded into the loadfont program for the 8 by 1 6 resolution (see
"Fonts"). If these fonts do not satisfy your needs (because you want
to use a different font size or because a customized font is required,
e.g., a Greek font), a loadfont description file to be used with the -f
option is needed. A sample file that describes the IBM extended ASCII
font for an 8 by 1 6 resolution is supplied (vga437.bdf). A second sam­
ple file, 646g.bdf, contains a font file for German ASCII. See
ttymap(l) and load font (4) for additional details.

WARNING

FILES

When an attempt is made to switch to a mode that the video card does
not support (e.g., a switch to EGA on a VGA card that has no EGA
mode) you will get a blank screen. There is nothing wrong with the
system; simply type in the command to set the mode back, e.g. :

loadfont -m V80x25

fusr /lib floadfontjvga437 .bdf
sample Bitmap Distribution Format
(BDF) file for IBM 437 font on a VGA

Jusrflibfloadfont/646g.bdf sample BDF file for German ASCII

SEE ALSO
ttymap(l).
display(?) in the INTERACTIVE UNIX System User's/System
Administrator's Reference Manual.
loadfont(4) in the INTERACTIVE SDS Guide and Programmer's
Reference Manual.

� NOTE TO USERS
This entry is reprinted from the INTERACTIVE UNIX System
User's/System Administrator's Reference Manual.

INTERACTIVE UNIX System - 3 - International Supplement

� · --·

showcat(1 P) showcat(1 P)

NAME
showcat - generate a message catalogue source file from a binary mes­
sage catalogue

SYNOPSIS
showcat msgfile catfile

DESCRIPTION
showcat generates a message catalogue source file from a binary mes­
sage catalogue (i.e. , the opposite of gencat (IP)). If the binary file is
"confidential" (i.e., it was generated by gencat -c), no attempt is
made to translate it to source and a corresponding message is printed.
If the binary file is not confidential but is not in the proper format
(i.e. , it is corrupted), then the source file will not be generated.

The generated source file uses quoting, with the double quote as the
quote character. For the message text, printable characters in the
locale are written as-is in the source file. For the other characters, if
there is a defined escape sequence, that is written; otherwise, an octal
bit pattern is written.

EXAMPLE
The following is an example of the source file format generated by
showcat :

$quote "

$set 1
1 ''This is set 1 , message 1 . "
2 "This is set 1 , message 2. "
3 "This is set 1 , message 3. It is continued where there was a\n\
newline character in the input. "

$set 3
1 "This is set 3, message 1 . "
3 "This is set 3 , message 3 . "
5 "This i s set 3, message 5. The following, within single quotes, is\n\
the representation of the character with value 200 octal\n\
when showcat is run in the C locale: '\200'. "

SEE ALSO
gencat(1 P).

INTERACTIVE UNIX System - 1 - International Supplement

� •. '

ttymap(1) ttymap(1)

NAME
ttymap - set terminal mapping and scancode translation

SYNOPSIS
ttymap mapfile
ttymap -r

ttymap -d

DESCRIPTION
ttymap is a utility that permits a user to activate character mapping
on input and output for the user's terminal. This same utility can be
used for regular terminals as well as for scancode devices such as the
AT console. It makes full use of all the features of the terminal (tty)
driver and the keyboard display driver that support such mapping.
The command ttymap mapfile reads the contents of the file mapfile
and sets the corresponding mapping as supported by the terminal
driver andjor keyboard/display driver. The layout of the mapfile and
the functionality supported by both drivers are described below.
ttymap -d disables the current mapping by the terminal driver.
ttymap -r resets the scancode translation back to that of a U.S. PC
keyboard.

Terminal Mapping
The original UNIX operating system was written to support the ASCII
codeset. ASCII is one of many standards to represent a number of
characters internally as certain numbers. Typical for ASCII is that it
supports 1 2� different characters, each represented by a single byte of
which the 8 bit is not used. Many UNIX system applications, includ­
ing the shell, took advantage of this. Starting with UNIX System V
Release 3 . 1 , most of these applications have been m�ified to properly
support characters represented as a byte with the 8 bit set as well.
This means that now 256 characters can be supported at the same
time. However, a consistent coding convention needs to be applied. In
the IBM PC world, an 8-bit coding referred to as IBM extended ASCII
has been used for several years; MS-DOS users are quite familiar with
that. In heterogeneous UNIX System environments, a different
codeset, called IS08859, has been promoted. In both codesets, charac­
ters found in the ASCII codeset are represented in the same way. The
other 1 28 characters are encoded differently, however, and some char­
acters found in one codeset will be missing in the other. The
INTERACTIVE UNIX Operating System supports both codesets; actu­
ally, it supports any 8-bit one byte codeset.
To be able to use characters from the French, German, Finnish, and
other alphabets, several terminals are available on the market that gen­
erate 7-bit codes but display the above-mentioned characters on the
screen instead of the ones found on a U.S. terminal. On the keyboard
there are an equal number of keys, but there are different characters
on the key caps. Others, such as a DEC VT220, will support 256
different characters at a time but use their own proprietary codesets.
Assume you are using the INTERACTIVE UNIX Operating System
with a console and a French 7-bit terminal connected to the serial port.
If you edit a file on the terminal and use the French character e in

INTERACTIVE UNIX System - 1 - International Supplement

ttymap(1) ttymap (1)

text, the terminal will actually generate the ASCII code 1 23, which is
the code normally used for the left curly brace. If you look at the
edited file on the console, the letter will actually appear to be a curly
brace. Therefore, input and output mapping should be supported by
the terminal driver to allow the consistent use of one single codeset
throughout the system. The INTERACTIVE UNIX Operating System
supports all mapping features that are now standard in the System V
Release 3 .2 terminal driver, as well as some enhancements by
INTERACTIVE Systems Corporation.
Input mapping

On input, any byte can be mapped to any byte. Using the
example above, you could map 1 23 to 1 30, the code used for e
in the IBM extended ASCII codeset.

Output mapping
On output, any byte can be mapped to either a byte or a
string. In the above example, 1 30 would be mapped back to
1 23 to properly display the character on the screen. If the
connected device is a printer that does not support the e char­
acter, it could be mapped to the string:
e BACKSPACE '

Dead keys
On typewriters, keys can be found that behave slightly
differently than all the others, because when you press them,
the printing wheel of the typewriter does not move. CfRL (")
is such a character. When it is followed by an e , the letter e
is generated. This is called a deadkey or a non-spacing char­
acter. The terminal driver supports the use of deadkeys. Typ­
ically, the " character and the umlaut character are used as
deadkeys.

Compose sequences
Characters can also be generated using a compose sequence.
A dedicated character called the "compose character" fol­
lowed by two other keystrokes will generate a single character.
As an example, COMPOSE followed by the plus and the minus
sign could generate the plusfminus sign (±) . Compose
sequences can also be used as an alternative for deadkeys, e.g. ,
"COMPOSE " e" instead of ""e" to get e.

Decimal representation
Rarely used characters can be generated by pressing the com­
pose key followed by three digits.

Toggle key
An optional toggle key can be defined to temporarily disable
the current mapping from within an application. This can be
useful when, for example, a German programmer wants easy
access to the curly braces and the brackets.

Scancode Mapping
The keyboards of the console and some other peripherals such as
SunRiver workstations behave differently than those of regular termi­
nals. They generate what are called scancodes and you will also find a
number of keys on these keyboards, such as the ALT key, that are not

INTERACTIVE UNIX System - 2 - International Supplement

-�

ttymap(1) ttymap(1)

found on regular terminals. Scancodes generated by PC keyboards
typically represent the location of the key on the keyboard. The key­
board driver has to properly translate these scancodes. The different
national variants of a PC keyboard not only have non-English charac­
ters printed on some of the keycaps, but the order of some of the keys
is different as well. Without changing the scancode translation, a
French user would type A and see a Q on his screen. Several status
keys can influence the translated code as well. The keyboard driver,
and thus the ttymap program, makes a distinction between two sets of
key combinations that can be translated.
Function keys
Up to 60 key combinations are recognised as function keys. The first
1 2 are the 1 2 function keys of a 10 1 -key PC-keyboard (the first 1 0 on
an 84-key keyboard).
If you do not know whether you have an 84- or 10 1 -key keyboard, you
can use the following scheme to determine which type you have:

If your keyboard has arrow keys that are separate from the
ones on the numeric keypad, then you have a 10 1 -key
keyboard.
If the arrow keys on your keyboard are located on the numeric
keypad only, then you have an 84-key keyboard.

F 1 3 to F24 are the same keys used in combination with SHIFf, F25 to
F36 when used with CfRL, and F37 to F48 when used with CfRL and
SHIFf together. F49 to F60 are the keys on the numeric keypad, in
the following order:

7
8
9

4
5
6
+
1
2
3
INS

Each of these function keys can be given a string as a value. The total
length of all strings should not exceed 5 1 2 characters. See keyboard(?)
for a list of default values.
Regular keys
Scancodes generated by all keys on the PC keyboard can be translated
in a different way as well. For each key, a different translation can be
specified for each of the following four cases:
1 . The key is pressed.
2. The key and the SHIFf key are pressed simultaneously.
3. The key and the ALT key are pressed simultaneously.
4. The key, the SHIFf, and the ALT keys are pressed simultaneously.

INTERACTIVE UNIX System - 3 - International Supplement

ttymap(1) ttymap(1)

For each of these cases, the scancode can be translated into one of the
following:

a single byte
a single byte preceded by ESC N
a single byte preceded by ESC 0
a single byte preceded by ESC [

Internally, special bits are set to indicate that an escape sequence
needs to be generated. Other bits are used to indicate whether the
translated code should be influenced by some special keys.
NUM LOCK

If the NUM LOCK bit is set, the regular and SHIFT values are
swapped, as are the ALT and SHIFT ALT values, whenever the
NUM LOCK LED is on. By default, only the keys on the
numeric keypad have this bit set. That is why these keys gen­
erate 7, 8, 9, etc. when the NUM LOCK LED is on, which is the
same value that would be produced if SHIFT were used with
these keys.

CAPS LOCK
This has the same effect as the NUM LOCK key. By default,
this bit is set for all letters and not set for punctuation signs.

CfRL When a key is translated into a single byte (no escape
sequence) and this bit is set, the corresponding control charac­
ter will be generated when the CfRL key is pressed simultane-

mapfiles

ously. This is equally valid for the SHIFf, ALT, and SHIFT �
AL T combination. When this bit is not used, the CfRL key
combination will not generate anything.

This section describes the layout of a mapfile that is read by the
ttymap program.
A mapfile is a text file that consists of several sections. A sharp sign
(#) can be used to include comments. Everything following the #
until the end of the line will be ignored by the ttymap program. Inside
a line, C-style comments can be used as well. The beginning of each
section is indicated by a keyword. Spaces and tabs are silently ignored
and can be used at all times to improve readability. All but one sec­
tion, the one that defines the compose character, can be left out. The
order in which the different sections should appear is predefined. Here
is the list of keywords in the order they should appear:

input:
toggle:
dead:
compose:
output:
scancodes:

Characters can be described in several different ways. ASCII charac­
ters can be described by putting them between single quotes. For
example:

'a' ' {'

INTERACTIVE UNIX System - 4 - International Supplement

ttymap(1) ttymap(1)

Between single quotes, control characters can be listed by using a
circumflex sign before the character that needs to be quoted. For
example:

'"'x'

When a backslash (\) is used, what follows will be interpreted as a
decimal, octal (leading zero), or hexadecimal (leading x or X)
representation of the character, although in this case the use of single
quotes is not mandatory. For example:

'\x88'

is the same as:
Ox88 (zero needed when not quoted)

and:
'\007'

is the same as:
007

When strings are needed, a list of character representations should be
used. Quoted strings will be supported in the future.
The following paragraphs describe what goes in each section.
Input section
The input section describes which input characters should be mapped
into a single byte. A very small sample input section could be:
input:
'A' 'B'
'#' Ox9c

Toggle section

map A into B on input
map sharp sign into pound sign

The toggle section is a one-line section that defines which key is to tog­
gle between mapping and no mapping. For example:
toggle:
'""y' # ctrl y is the toggle key

Deadkey section
The deadkey section defines which keys should be treated as deadkeys.
A dead: keyword followed by the specification of the character appears
in this section for each deadkey. The subsequent lines describe what
key should be generated for each key following the deadkey. A dead­
key followed by a key not described in this part of the mapfile will not
generate any key and a beep tone will be produced on the terminal.
For example:

' ' ' ""'
'e' Ox88
dead: ' "'
' ' ' "'
'a' Ox84

circumflex is a deadkey
circumflex followed by space generates circumflex
circumflex followed by e generates e circumflex
double quote used as a deadkey
double quote space generates double quote
double quote a generates an umlaut

INTERACTIVE UNIX System - 5 - International Supplement

ttymap(1) ttymap(l)

Compose section
The first line of this section describes what the compose character is.
That line should always be present in the mapfi/e . Subsequent lines
consist of three character representations indicating each time that the
third character needs to be generated on input when the compose char-
acter is followed by the first two. Compose sequences with the same �. first character should be grouped together. For example:
compose: '"x'
"" 'e' Ox89 # e with umlaut is generated when typing "x " e
' "' 'a' Ox84 # a with umlaut
'e' ' "' Ox89 # e with umlaut is generated 'when typing "x e 11
'a' "" Ox84 # a with umlaut

The following example would give the wrong result. All lines starting
with the same character specification should be grouped together.
compose: '"x'
' 11' 'e' Ox89 # e with umlaut is generated when typing "x 11 e
'e' "" Ox89 # e with umlaut is generated when typing "x e "
' "' 'a' Ox84 # a with umlaut
'a' "" Ox84 # a with umlaut

Output section
This section describes the mapping on output, either single byte to sin­
gle byte, or single byte to string. A string is specified as a series of
character specifications. For example:
output: "l
Ox82 ' {' # map e with accent to { to display e with accent
'"u' '("K"I"L"L")' # print (KILL) when kill character is used

Scancodes section
This section will only have an effect when your terminal is a scancode
device. No error message will be produced when this section is mistak­
enly in your mapfi/e , because the ttymap program will find out
whether the terminal is a scancode device or not. The lines in this sec­
tion can have two different formats. One format will be used to
describe what the values of the function keys must be. The other for­
mat describes the translation of scancodes into a byte or an escape
sequence. No specific order is required.
Function keys
Here is an example of a line defining a string for a function key:
F 1 3 'd"a"t"e"\n' # SHIFT Fl is the date command

The numbering convention of the functionkeys is described in a previ­
ous section. Currently, the use of quoted strings such as 11date\n11 is
not supported.
Scan codes
Specifying how to translate a scancode is a more complex task. The
general format of such a line is:
scancode normal shift alt shiftalt flags

INTERACTIVE UNIX System - 6 - International Supplement

ttymap(I) ttymap(I)

scancode should list the hexadecimal representation of a scancode gen­
erated by a key (unquoted). How keys correspond with scancodes can
be found in keyboard(7).

normal, shift, alt and shiftalt are character representations in one of
the formats described throughout this document, optionally followed by
one of the following special keywords:
IC This indicates that the key is influenced by the CfRL key.
IN This indicates that ESC N should preceed the specified character.
10 This indicates that ESC 0 should preceed the specified character.
I [This indicates that ESC [should preceed the specified character.
The normal field defines how the scancode is translated when no other
key is pressed, the shift field defines the translation for when the SHIFf
key is used simultaneously, the alt field specifies what to do when the
ALT key is pressed together with this and the shiftalt field contains the
information on what to generate when both the SHIFf and ALT keys
are pressed.
All five fields must be filled in. When no translation is requested (that
is, the current active translation does not need to be changed) a dash
(-) can be used. The sixth field is optional. This field can contain the
special keyword CAPS or NUM or both, to indicate whether or not the
CAPS LOCK key or NUM LOCK key status have any effect. Here is a
sample line that describes the default translation for the 'Q' key:
Ox lO 'q' IC 'Q' IC 'q' IN 'Q' IN CAPS

If the normal or shift field is filled out for a scancode that represents a
function key, a self-explanatory message will be produced and that
translation information will be ignored.
A more detailed example of a scancodes section is:
scan codes:
the w key
Ox l l 'w' IC 'W' IC 'w' IN 'W' IN CAPS
left square bracket and curly brace key
control shift [does not generate anything (no C flag)
Ox l a ' [' IC ' {' ' [' IN T IN
9 on numeric keypad
Ox49 'V' I ['9' '9' 1N '9' 1N NUM
F 1 3 'd"a"t"e"O # SHIFT F l

More complete examples of mapfiles can be found in
jusr /fib /keyboardjusa.map and fusr /fib /keyboard/ •.map.

INTERACTIVE UNIX System - 7 - International Supplement

ttymap(1)

FILES
fusr /lib fkeyboardfusa.map

fusr /lib /keyboard/ •.map

fusr /lib /keyboard/keys

/ usr /lib /keyboard/ strings

SEE ALSO

ttymap(1)

sample map.file for using compose
character sequences and deadkeys on a
U.S. keyboard
sample map.files for European key­
boards without compose and deadkey
sections
dump of default keytable for PC
keyboard
dump of default stringtable for PC
keyboard

stty(l), keyboard(?), termio(7) in the INTERACTIVE UNIX System
User's/System Administrator's Reference Manual.

NOTE TO USERS
This entry is reprinted from the INTERACTIVE UNIX System
User's/System Administrator's Reference Manual.

INTERACTIVE UNIX System - 8 - International Supplement

catclose (3P)

NAME
catclose - close a message catalogue descriptor

SYNOPSIS
#include < nLtypes.h >

� int catclose (catd)
nLcatd catd;

DESCRIPTION

catclose(3P)

The cat close function closes the message catalogue identified by catd.
The file descriptor underlying the message catalogue descriptor will be
closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned.

ERRORS
No errors are defined.

SEE ALSO
catopen(3P).

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - l - International Supplement

I�

catgets (3P) catgets (3P)

NAME
catgets - read a program message

SYNOPSIS
#include < nLtypes.h >

char *catgets (catd, seLid, msg_id, s)
nLcatd catd;
int seLid, msg_id;
char *s;

DESCRIPTION
The catgets function attempts to read message msg_id, in set set_id,
from the message catalogue identified by catd. The catd argument is
a message catalogue descriptor returned from an earlier call to
catopen(3P). The s argument points to a default message string that
will be returned by catgets if it cannot retrieve the identified message.

RETURN VALUES
If the identified message is retrieved successfully, catgets returns a
pointer to an internal buffer area containing the null terminated mes­
sage string. If the call is unsuccessful for any reason, s is returned.

ERRORS
No errors are defined.

SEE ALSO
catopen(3P).

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 1 - International Supplement

· ---- -·

catopen(3P) catopen (3P)

NAME
catopen - open a message catalogue

SYNOPSIS
#include < nLtypes.h >

nLcatd catopen (name, oftag)
char •name;
int oftag;

DESCRIPTION
The catopen function opens a message catalogue and returns a message
catalogue descriptor. The name argument specifies the name of the
message catalogue to be opened. If name contains a slash (/), then
name specifies a complete name for the message catalogue. Otherwise,
the environment variable NLSPATH is used with name substituted for
% N (see environ(SP) for the description of NLSPATH from the
X/Open Portability Guide, Volume 2, XSI System Interface and
Headers). If NLSPATH does not exist in the environment, or if a mes­
sage catalogue cannot be opened in any of the components specified by
NLSPATH, then the default used by this implementation is
/fib/locale/ISC/msgcat/ name.

In this implementation, catopen makes the following interpretations
with respect to the processing of NLSPATH:

1 . If the result from evaluating a % c, a % /, or a % t substitution field
in NLSPATH exceeds NLLANGMAX characters (see the file
fusr/include/Hmits.h), it will be truncated to NLLANGMAX
characters.

2. The result from evaluating a template in NLSPATH must not
exceed PATH-MAX characters (see fusrfinclude/Hmits.h).

3. A % in NLSPATH not followed by a defined keyword or another
% will be ignored.

The FD_CLOEXEC flag will be set for the file descriptor underlying
the message catalogue descriptor.
The oflag argument is reserved for future use and should be set to 0
(zero). The results of setting this field to any other value are
undefined.

RETURN VALUES
Upon successful completion, catopen returns a message catalogue
descriptor for use on subsequent calls to catgets(3P) and catclose(3P).
Otherwise, catopen returns (nL . ..catd) - 1 and sets errno to indicate the
error, unless the message catalogue is corrupted, in which case errno
may not be set.

ERRORS
In this implementation, catopen will fail if:
[EINVAL]

1) name contains a slash and exists but is not a message
catalogue, or 2) name does not contain a slash, a message
catalogue was not found using NLSPATH, and the system
default, /fib/locale/ISC/msgcatfname, exists but is not a mes- .
sage catalogue.

INTERACTIVE UNIX System - l - International Supplement

catopen(3P) catopen (3P)

[ENOMEM]
Insufficient storage space is available (for internal buffer
areas).

The following are possible failures from the underlying fopen(3) of the
message catalogue:
[EACCES] �

Search permission is denied on a component of the path prefix,
or the file exists and the permissions specified by mode are
denied, or the file does not exist and write permission is denied
for the parent directory of the file to be created.

[EINTR]
A signal was caught during the fopen function.

[EMFILE]
{FOPEN_MAX} file descriptors, directories, and message
catalogues are currently open in the calling process.

[ENAMETOOLONG]
The length of the filename string exceeds {PATILMAX}, or a
path name component is longer than {NAMLMAX} while
LPOSDLNO_TRUNC} is in effect.

[ENFILE]
The system file table is full.

[ENOENT]
The named file does not exist, or the filename argument points �
to an empty string. I

[ENOTDIR]
A component of the path prefix is not a directory.

[ENXIO]
The named file is a character special or block special file, and
the device associated with this special file does not exist.

SEE ALSO
catclose(3P), cat gets(3P).
environ(5P) in the INTERACTIVE SDS Guide and Programmer's
Reference Manual.

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 2 - International Supplement

localeconv(3P) localeconv(3P)

NAME
localeconv - numeric formatting convention inquiry

SYNOPSIS
#include < locale.h >
struct lconv •localeconv(void);

DESCRIPTION
The localeconv function sets the components of an object with type
struct lconv with values appropriate for the formatting of numeric
quantities (monetary and otherwise) according to the rules of the
current locale.
The members of the structure with type char • are pointers to strings,
any of which (except decimaLpoint) can point to "", to indicate that
the value is not available in the current locale or is of zero length. The
members with type char are non-negative numbers, any of which can
be CHAR..._MAX to indicate that the value is not available in the
current locale. The members include the following:
char •decimaLpoint

The decimal-point character used to format non-monetary
quantities.

char •thousands_sep
The character used to separate groups of digits before the
decimal-point character in formatted non-monetary quantities.

char •grouping
A string whose elements indicate the size of each group of
digits in formatted non-monetary quantities.

char •int_curr _symbol
The international currency symbol applicable to the current
locale. The first three characters contain the alphabetic inter­
national currency symbol in accordance with those specified in
ISO 421 7 Codes for the Representation of Currency and
Funds . The fourth character (immediately preceding the null
character) is the character used to separate the international
currency symbol from the monetary quantity.

char •currency_symbol
The local currency symbol applicable to the current locale.

char •mon_decima/_point
The decimal-point used to format monetary quantities.

char •mon_thousands_sep
The separator for groups of digits before the decimal-point in
formatted monetary quantities.

char •mon_grouping
A string whose elements indicate the size of each group of
digits in formatted monetary quantities.

char •positive_sign
The string used to indicate a nonnegative-valued formatted
monetary quantity.

INTERACTIVE UNIX System - 1 - International Supplement

localeconv (3P) localeconv(3P)

char •negative......sign
The string used to indicate a negative-valued formatted mone­
tary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point)
to be displayed in an internationally formatted monetary
quantity.

char frac_digits
The number of fractional digits (those after the decimal-point)
to be displayed in a formatted monetary quantity.

char p___cs_precedes
Set to 1 or 0 if the currency......symbol respectively precedes or
succeeds the value for a non-negative formatted monetary
quantity.

char p......sep_by......space
Set to 1 or 0 if the currency......symbol respectively is or is not
separated by a space from the value for a non-negative for­
matted monetary quantity.

char n_cs_precedes
Set to 1 or 0 if the currency......symbol respectively precedes or
succeeds the value for a negative formatted monetary quantity.

char n......sep_by......space
Set to 1 or 0 if the currency......symbol respectively is or is not
separated by a space from the value for a negative formatted �
monetary quantity.

char p......sign_posn
Set to a value indicating the positioning of the positive......sign
for a non-negative formatted monetary quantity.

char n......sign_posn
Set to a value indicating the positioning of the negative......sign
for a negative formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according
to the following:
CHAR.....MAX

No further grouping is to be performed.
0 The previous element is to be repeatedly used for the

remainder of the digits.
other The integer value is the number of digits that comprise the

current group. The next element is examined to determine the
size of the next group of digits before the current group.

The value of p......sign_posn and n......sign_posn is interpreted according
to the following:

INTERACTIVE UNIX System - 2 - International Supplement

localeconv(3P) localeconv(3P)

0 Parentheses surround the quantity and currency __symbol .

The sign string precedes the quantity and currency __symbol .

2 The sign string succeeds the quantity and currency __symbol .

3 The sign string immediately precedes the currency__symbo/ .
� 4 The sign string immediately succeeds the currency __symbol .

RETURN VALUES
The /oca/econv function returns a pointer to the filled-in object. The
structure pointed to by the return value shall not be modified by the
program, but may be overwritten by a subsequent call to the
/oca/econv function. In addition, calls to the set/oca/e function with
categories LC-ALL, LC-MONETARY, or LC-NUMERIC may overwrite
the contents of the structure.

SEE ALSO
locale(5P).

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 3 - International Supplement

nUanginfo(3P) nUanginfo(3P)

NAME
nUanginfo - language information

SYNOPSIS
#include < nLtypes.h >
#include < langinfo.h >

char *nLianginfo (item)
nLitem item;

DESCRIPTION
The nLJanginfo function returns a pointer to a string containing infor­
mation relevant to the particular language or cultural area defined in
the program's locale. The manifest constant names and values of item
are defined in the file fusr/includejlanginfo.h. For example:

nUanginfo (ABDAY_l)

would return a pointer to the string Dom if the identified language was
Portuguese, and Sun if the identified language was English.
The array pointed to by the return value should not be modified by the
program, but may be modified by further calls to nLJanginfo . In
addition, calls to the setlocale(3P) function with a category
corresponding to the category of item or to the category LC-ALL may
overwrite the array.

RETURN VALUES
In a locale where langinfo data is not defined, nL/anginfo returns a
pointer to the corresponding string in the C locale. In all locales,
nL/anginfo returns a pointer to an empty string if item contains an
invalid setting.

ERRORS
No errors are defined.

SEE ALSO
setlocale(3P), langinfo(5P) , locale(5P) .

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 1 - International Supplement

setlocale(3P) setlocale (3P)

NAME
setlocale - locale control

SYNOPSIS
#include < locale.h >
char �tlocale (int category, const char •locale);

DESCRIPTION
The setlocale function sets, changes, or queries the program's locale
according to the values of the category and locale arguments. The pos­
sible values for category are:
LC__.ALL Names the entire locale .

LC_COLLATE Affects the behaviour of the string collation functions.
LC_CfYPE Affects the behaviour of the character handling func­

tions. The functions isdigit and isxdigit are not
affected by the current locale.

L<:__MESSAGES Affects the interpretation of the strings associated
with affirmative (y) and negative (n) responses.

LL-MONETARY Affects the monetary formatting information returned
by the localeconv function.

LC-NUMERIC Affects the decimal-point character for the formatted
inputfoutput functions and the string conversion
functions, as well as the non-monetary formatting
information returned by the localeconv function.

LC_TIME Affects the behaviour of the strftime function.
The value LC__.ALL for category names all of the categories of the
program's locale; LC__.ALL is a special constant, not a category.
The locale argument is a pointer to a character string that can be an
explicit string, a NULL pointer, or a null string.
When locale is an explicit string, the contents of the string determines
the locale. The values POSIX or C for locale are reserved for the
default locale, which is the environment required for C translation, and
also corresponds with the System V default behaviour. If setlocale is
not invoked, the program's locale is the default locale.
When the locale is a NULL pointer, the program's locale is queried
according to the value of category . The returned string contains the
locale identifiers; if the category is LC__.ALL, the string contains
semicolon-separated locale identifiers. Portable progams cannot rely on
either the content or format of the returned string.
When the locale is a null string, the setlocale function takes the name
of the new locale for the specified category from the environment as
defined by the first condition met below:
1 . If LC__.ALL is defined in the environment and is not null, the

value of LC__.ALL is used.
2. If there is a variable defined in the environment with the same

name as the category and that is not null, the value specified by
that environment variable is used.

INTERACTIVE UNIX System - l - International Supplement

setlocale(3P) setlocale(3P)

3. If LANG is defined in the environment and is not null, the value
of LANG is used.

If the resulting value is a supported locale, setlocale sets the specified
category of the program's locale to that value and returns the value
specified below. If the value does not name a supported locale (and is
not null), setlocale returns a NULL pointer and the program's locale is �
not changed by this function call. If no non-null environment variable
is present to supply a value, setlocale sets the SJ?CCified category of the
program's locale to the default locale (see above).
Setting all of the categories of the program's locale is similar to suc­
cessively setting each individual category of the program's locale,
except that all error checking is done before any actions are per­
formed. To set all categories of the program's locale, setlocale is
invoked as:

setlocale(LC-ALL, "");
In this case, setlocale first verifies that the values of all environment
variables it needs according to the precedence above indicate supported
locales. If the value of any of these environment variable searches
yields a locale that is not supported (and non-null), the setlocale func­
tion returns a NULL pointer and the program's locale is not changed.
If all environment variables name supported locales, setlocale then
proceeds as if it had been called for each category, using the appropri­
ate value from the associated environment variable or from the default
locale if there is no such value.

RETURN VALUES
A successful call to setlocale returns a string that corresponds to the
locale set. The string is such that a subsequent call with that string
and its associated category will restore that part of the program's
locale. The string returned shall not be modified by the program, and
· may be overwritten by a subsequent call to the set locale function.

RESTRICTIONS

NOTES

The L<:_ALL environment variable is an extension to the X/Open
specification; it is derived from the 1990 C language standard.
The Lc...MESSAGES category (and environment variable) is also an
extension to the X/Open specification; it is added in anticipation of the
POSIX.2 standard.
Portable programs should avoid using or depending on these environ­
ment variables and on the LC-MESSAGES category.

For information on how a locale is defined, see locale(5P).

SEE ALSO
localeconv(3P).

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 2 - International Supplement

strcoll(3P) strcoll(3P)

NAME
strcoll - string comparison using collating information

SYNOPSIS
#include < string.h. >

� int strcoll (sl, sl)
char *sl, *sl;

DESCRIPTION
The strcoll function compares the string pointed to by sl to the string
pointed to by s2, both interpreted as appropriate to the LC_COLLATE
category of the current locale (see locale(5P)).

The sign of a nonzero value returned by strco/1 is determined by the
relative ordering within the current collating sequence of the first pair
of characters that differ in the objects being compared.

RETURN VALUE
Upon successful completion, the strco/1 function returns an integer
greater than, equal to, or less than zero, according to whether the
string pointed to by sl is greater than, equal to, or less than the string
pointed to by s2 when both are interpreted as appropriate to the
current locale. On error, strcoll sets errno, but no return value is
reserved to indicate an error.

ERRORS

NOTE

The strcoll function may fail if:
[EINVAL]

The sl or s2 argument contains characters outside the domain
of the collating sequence.

The strxfrm(3P) and strcmp (see string(3P)) functions should be used
for sorting large lists.

SEE ALSO
strxfrm(3P).
string(3P) in the INTERACTIVE SDS Guide and Programmer's Refer­
ence Manual.

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - l - International Supplement

n ··- -

strerror(3P) strerror (3 P)

NAME
strerror - error message strings

SYNOPSIS
#include < string.h >

char *strerror (errnum)
int errnum;

DESCRIPTION
The strerror function maps the error number in errnum to a
language-dependent error message string and returns a pointer to it.
The string pointed to will not be modified by the program, but may be
overwritten by a subsequent call to the strerror function.
In this implementation, strerror obtains the error message strings from
a message catalogue named libc.cat. If such a message catalogue is
not found in NLSPATH (see environ(5P)), then the system default
catalogue, /libflocale/ISC/msgcatjlibc.cat, which contains the English
version of the error messages, will be used.

RETURN VALUE
Upon successful completion, strerror returns a pointer to the generated
message string. No return value is reserved to indicate an error.

ERRORS
The strerror function may fail if:
[EINVAL]

The value of errnum is not a valid error message number.
SEE ALSO

perror(3P), environ(5P) in the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - l - International Supplement

- �� - - -- - - ---

� ·-. .__. . /

strxfrm (3P) strxfrm (3P)

NAME
strxfrm - string transformation

· SYNOPSIS
#include < string.h >

size_t strxfrm (sl, s2, n)
char *sl, *s2;
size_t n;

DESCRIPTION
The strxfrm function transforms the string pointed to by s2 and places
the resulting string into the array pointed to by sl . The transforma­
tion is such that if the strcmp (see string(3P)) or memcmp (see
memory(3C)) functions are applied to the two transformed strings, it
returns a value greater than, equal to, or less than zero, corresponding
to the result of the strcoi/ (3P) function applied to the same two origi­
nal strings, based on the collating sequence information in the
program's locale (category LC_COLLATE); see locale(5P). No more
than n characters are placed into the resulting array pointed to by sl ,
including the terminating null character. If n is zero, sl is permitted
to be a null pointer. If copying takes place between objects that over­
lap, the behaviour is undefined.

RETURN VALUE
The strxfrm function returns the length of the transformed string (not
including the terminating null character). If the value returned is n or
more, the contents of the array pointed to by sl are indeterminate.
The strxfrm function returns (size_t) - I on error and sets errno to
indicate the error.

ERRORS
The strxfrm function may fail if:
[EINVAL]

The s 1 or s2 argument contains characters outside the domain
of the collating sequence.

SEE ALSO
strcoll(3P), locale(5P).
memory(3C), string(3P) in the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 1 - International Supplement

' ;,

0

gencat (4P) gencat(4P)

NAME
gencat - format of message text source file used as input to
gencat(lP)

DESCRIPTION
This entry supplies the format of a message text source file as defined
by the X/Open Portability Guide, Volume 3, XSI Supplementary
Definitions , Section 5 .2. 1 , "Message Text Source Files." The follow­
ing symbolic constant values are found in jusr /includejsysjlimits.h and
jusr /include/nLtypes.h, respectively:

Symbolic Value Constant

NL.SETMAX 255
NLMSGMAX 32767
NLTEXTMAX 1 023
NL...SETD 1

The format of a message text source file is defined as follows. Note
that the fields of a message text source line are separated by a single
ASCII space or tab character. Any other ASCII spaces or tabs are
considered as being part of the subsequent field.
$set n comment

This line specifies the set identifier of the messages that follow
until the next $set, Sdelset, or end-of-file appears. The n
denotes the set identifier, which is defined as a number in the
range [1 , {NL..SETMAX}]. Set identifiers must be presented
in ascending order within a single source file but need not be
contiguous. Any string following the set identifier is treated as
a comment. If no $set directive is specified in a message text
source file, all messages will be located in an implementation­
defined default message set NL.SETD.

Sdelset n comment
This line deletes message set n from an existing message
catalogue. The n denotes the set number [I , {NL.SETMAXJ].
Any string following the set number is treated as a comment.

$ comment
A line beginning with $ followed by an ASCII space or tab
character is treated as a comment.

m message-text
The m denotes the message identifier, which is defined as a
number in the range [1 , {NLMSGMAX}] . The message-text
is stored in the message catalogue with the set identifier
specified by the last $set directive, and with message identifier
m . If the message-text is empty and an ASCII space or tab
field separator is present, an empty string is stored in the mes­
sage catalogue. If a message source line has a message
number but neither a field separator nor message-text , the
existing message with that number (if any) is deleted from the
catalogue. Message identifiers must be in ascending order
within a single set but need not be contiguous. The length of
message-text must be in the range [0, {NL-TEXTMAX} 1.

INTERACTIVE UNIX System - 1 - International Supplement

gencat(4P)

$quote c

gencat(4P)

This specifies an optional quote character c, which can be used
to surround message-text so that trailing spaces or null
(empty) messages are visible in a message source line. By
default, or if an empty $quote directive is supplied, no quoting
of message-text will be recognised.

Empty lines in a message text file are ignored. The effects of lines
starting with any character other than those defined above are imple­
mentation defined.
Text strings can contain the special characters and escape sequences
defined in the following table:

Description Symbol Sequence
new-line character NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form-feed FF \f
backslash \ \\
bit pattern ddd \ddd

The escape sequence \ddd consists of a backslash followed by one, two,
or three octal digits, which are taken to specify the value of the desired
character. If the character following a backslash is not one of those �
specified, the backslash is ignored.
A backslash followed by an ASCII new-line character is also used to
continue a string on the following line. Thus, the following two lines
describe a single message string:

1 This line continues \
to the next line

which is equivalent to:
1 This line continues to the next line

SEE ALSO
gencat(l P).

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 2 - International Supplement

loadfont(4) loadfont(4)

NAME
loadfont - format of a loadfont input file

DESCRIPTION
This section describes the format of files that can be used to change
the font used by the console when using the /oadfont utility with the

� -f option.
The format is compatible with the Binary Distribution Format version
2. 1 as developed by Adobe Systems, Inc., however, certain restrictions
apply. Video cards, when used with the INTERACTIVE UNIX Operat­
ing System in textmode, only accept constant width, constant height
fonts of certain sizes. The loadfont utility also requires that there is a
description of all 256 characters of the codeset used specified in the
fontfile. Certain attributes are not used by /oadfont but are main­
tained for compatibility purposes.
As a consequence, fontfiles used with loadfont can also be used for
other purposes, such as with the INTERACTIVE X 1 1 Windowing Sys­
tem, but not always the other way around.

File Format
A loadfont input file is a plain ASCII file containing only printable
characters (octal 40 through 1 76) and a carriage return at the end of
each line.
The information about a particular font should be contained in a single
file. The file begins with information on the font in general, followed
by the information and bitmaps for the individual characters. The file
should contain bitmaps for all 256 characters, and each character
should be of the same size.
A font bitmap description file has the following general form, where
each item is contained on a separate line of text in the file. Items on a
line are separated by spaces:

The word STARTFONT followed by the version number 2. 1 .

One or more lines beginning with the word COMMENT These
lines can be used to add comments to the file and will be
ignored by the /oadfont program.
The word FONT followed by the full name of the font. The
name continues all the way to the end of the line, and may
contain spaces.
The word SIZE followed by the point size of the characters,
the x resolution, and the y resolution of the font. The sizes
are not verified by loadfont but the line containing this key­
word needs to be there for compatibility purposes.
The word FONTBOUNDINGBOX followed by the width in x,
height in y, and the x and y displacement of the lower left­
hand corner from the origin. Again, the sizes are not verified
by loadfont but this line containing the keyword needs to be
there for compatibility purposes.
Optionally, the word STARTPROPERTIES followed by the
number of properties that follow. If present, the number needs
to match the number of lines following this one before the

INTERACTIVE UNIX System - l - International Supplement

loadfont(4) loadfont(4)

occurrence of a line beginning with ENDPROPERTIES These
lines consist of a word for the property name followed by
either an integer or string surrounded by double quotes. Pro­
perties named FONT_ASCENT FONT_])ESCENT and
DEFAULT_CHAR are typically present in BDF files to define
the logical font-ascent and font-descent and the default-char � for the font.
As mentioned above, this section, if it exists, is terminated by
END PROPERTIES.

The word CHARS followed by the number of characters that
follow. This number should always be 256.

This terminates the part of the /oadfont input file describing features
of the font in general. The rest of the file contains descriptions of the
individual characters. They consist of the following parts:

The word STARTCHAR followed by up to 1 4 characters (no
blanks) describing the character. This can either be some­
thing like C0041, which indicates the hex value of the charac­
ter or uppercaseA, which describes the character.
The word ENCODING followed by a positive integer represent­
ing value by which this character is represented internally in
the codeset for which this font is used. The integer needs to
be specified in decimal.
The word SWIDTH followed by the scalable width in x and y
of character. Scalable widths are in units of 1 / 1 000th of the �
size of the character. The y value should always be 0; the x
value is typically 666 for the type of characters used with
loadfont The values are not checked by the loadfont utility,
but this line needs to be there for compatibility purposes.
The word DWIDTH followed by two numbers, which in a BDF
file would mean the width in x and y of the character in device
units. The y value is always zero. The x value is typically 8 .
loadfont checks only for the presence of the DWIDTH
keyword.
The word BBX followed by the width in x, height in y and x
and y displacement of the lower left-hand corner from the ori­
gin of the character.
Most fonts used by video cards will not use the bottom 4 rows
of pixels, which basically means a vertical (y) displacement of
-4. The only width allowed by /oadfont is 8; heights sup­
ported are 8, 1 4, and 1 6. All BBX lines of the subsequent
characters should list the same height and width as the first
one (because only fixed size fonts are supported). "l
The optional word ATTRIBUTES followed by the attributes as
4 hex-encoded characters. The /oadfont utility will accept this
line, if present, but there is no meaning attached to it.
The word BITMAP, which indicates the beginning of the bit­
map representation of the character. This line should be fol­
lowed by height lines (height as specified in the BBX line)

INTERACTIVE UNIX System - 2 - International Supplement

loadfont(4)

Example

loadfont(4)

representing a hex-encoded bitmap of the character, one byte
per line.
The word ENDCHAR indicating the end of the bitmap for this
character.
After all the bitmaps, the end of the file is indicated by the
ENDFONT keyword.

The following example lists the beginning of the /oadfont input file for
an 8 by 1 6 font, supporting the IBM 437 codeset, as well as the bitmap
representation of the character uppercase A.

STARTFONT 2. 1
FONT 8xl 6
SIZE 1 6 7 5 75
FONTBOUNDINGBOX 8 16 0 -4
STARTPROPERTIES 3
FONT_DESCENT 4
FONL...ASCENT 1 2
DEFAULT_CHAR 0
ENDPROPERTIES
CHARS .256
STARTCHAR COOOO
ENCODING O

Bitmap for uppercase A character:

STARTCHAR C004 l
ENCODING 65
SWIDTH 666 0
DWIDTH 8 0
BBX 8 1 6 0 -4
BITMAP
00
00
10
38
6c
c6
c6
fe
c6
c6
c6
c6
00
00
00
00
ENDCHAR

INTERACTIVE UNIX System - 3 - International Supplement

loadfont(4)

FILES
/usr /lib /loadfontfvga437. bdf

SEE ALSO
loadfont(1) .

NOTE TO USERS

loadfont(4)

This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 4 - International Supplement

charmap(5P) charmap(5P)

NAME
charmap - character set description file

/lib I charmap I •

DESCRIPTION
The INTERACTIVE UNIX System supports single-byte coded charac­
ter sets that are supersets of the ASCII coded character set. Examples
of such coded character sets are:
mM codepage 437 This is the familiar "IBM PC" codeset, which is

the default codeset in the INTERACTIVE UNIX
System.

ffiM codepage 850

ISO/IEC 8859-1

This is the IBM "International" codepage.
This is an international standard coded character
set, also known as "Latin Alphabet No. 1 ," which
covers Western European languages.

Note that the 7-bit ASCII codeset must be contained within each of
these codesets.
The charmap files are used to define and document the supported
coded character sets, primarily for use in the col/def(lP) and
iconv(lP) utilities. Each character in the coded character set is
described with a symbolic name and the character encoding. The
INTERACTIVE UNIX System provides charmap files for the above
coded character sets, as well as a charmap for ASCII. Users may add
charmap files provided that the following rules are followed:
1 . The new charmap must contain the symbolic names and values

used in the ASCII charmap.
2. The charmap can only contain entries describing single-byte

characters between the CHARMAP and END CHARMAP
statements.

The default location for charmap files used by colldef and iconv is
/lib/charmap; a charmap file in any other directory must be specified
by a path name containing a slash (/) .

The format of a charmap file is as follows:
declarations
CHARMAP This is the charmap header.
regular_entries These are the regular single-byte coded charac­

ter set descriptions.
END CHARMAP Defines the end of the charmap.
EXTENDED_CHARMAP

Starts optional section defining sequences of one
or more bytes to be treated as characters by the
iconv command.

extended_entries These are the extended charmap entries.
END EXTENDED_CHARMAP

Defines the end of the extended charmap section.

INTERACTIVE UNIX System - 1 - International Supplement

charmap(SP) charmap(5P)

The following is a description of the permissible entries in each section
and their format.

DECLARATIONS
The following optional declarations can precede the character
definitions. Each declaration consists of the symbol shown in the fol­
lowing list, starting in column 1 , including the surrounding brackets,
followed by one or more spaces or tabs, followed by the value to be
assigned to the symbol.
< code_seL.name>

The name of the coded character set for which the
character set description file is defined. Only charac­
ters defined in the ASCII charmap can be used in
the name.

< escape_char> The escape character is used to indicate that the
characters following will be interpreted in a special
way, as defined later. The default is the backslash
(\) character.

< commenLchar>

< mb_cur_max>

The comment character is used to indicate that the
characters following on the line constitute a com­
ment and will be ignored. The default is the #
character.

The maximum number of bytes in a character in the �
regular charmap. The default value (which is the
only value permitted in the INTERACTIVE UNIX
System) is 1 .

< mb_cur_min> The minimum number of bytes in a character in the
regular charmap. The value cannot exceed the
value of <mb_cur_max> .

CHARMAP
The charmap starts with an identifier line containing the string
CHARMAP starting in column 1 , and ends with a trailer line contain­
ing the string END CHARMAP starting in column 1 . Empty lines and
lines containing a # in the first column are ignored. Each noncom­
ment line of the character set mapping definition (i.e., between the
CHARMAP and END CHARMAP lines of the file) is in the form:

<symbolic-name> encoding
A symbolic name is one or more characters from the set defined in the
ASCII charmap enclosed between angle brackets. A character follow­
ing an escape character is interpreted as itself; for example, the
sequence " <\ \\ > > " represents the symbolic name "\ > " enclosed
between angle brackets.
The encoding part must be expressed as a decimal, octal, or hexade­
cimal constant in the following formats (the "\" represents the escape
character) :

INTERACTIVE UNIX System - 2 - International Supplement

charmap (5P) charmap(5P)

\ dnnn

\ xnn

\nnn

decimal value
hexadecimal value
octal value

Decimal constants are represented by two or three decimal digits, pre­
ceded by the escape character and the lowercase letter d; for example,
\ d97 or \ d143. Hexadecimal constants are represented by two hexa­
decimal digits, preceded by the escape character and the lowercase
letter x; for example, \x6 1 or \x8f. Octal constants are represented by
two or three octal digits preceded by an escape character, for example,
\ 141 or \ 217.

Example of (part of) a charmap file:
CHARMAP
<NUL>
<newl i ne>
<pe r c e nt - s i gn>
<one>
<A>
<A- a cute>

END CHARMAP

\ d O D O
\ 1 2
\ x 2 5
\ d 0 4 8
\ d 0 6 5
\ d 1 9 3

EXTENDED_CHARMAP

NOTES

The INTERACTIVE UNIX System does not support multi-byte coded
character sets. However, certain common codesets (such as ISO 6937)
define certain accented letters as combinations of two bytes ("dead key
sequences"). As an example, the letter < A-acute> may be
represented by a two-byte sequence, the first byte representing the
accent and the second the base letter. The iconv utility requires that
such characters be defined in the charmap. They must be defined in
the optional EXTENDED_CHARMAP section.
The format is the same as in the charmap section, except that the
encoding consists of two (or more) concatenated constants, for
example:
EXTENDED CHARMAP
<A- a cute> \ d 0 3 9 \ d 0 6 5
END EXTENDED CHARMAP

"8859" is used as a synonym for the ISO/IEC 8859- 1 codeset.

INTERACTIVE UNIX System - 3 - International Supplement

charmap{ SP) charmap{ SP)

FILES
User-defined charmap files must be stored in the jlib/charmap
directory.
/lib/charmapj*

/lib/ charmap I ASCII.cmap
/libjcharmapj437.cmap

/libjcharmapj850.cmap

/lib/charmapj* j8859.cmap

SEE ALSO
colldef(1 P), iconv(1 P).

INTERACTIVE UNIX System

Default directory for charmap files (* is
the name of charmap file).
Contains ASCII charmap entries.
Contains IBM codepage 437 charmap
entries.
Contains IBM codepage 850 charmap
entries.
Contains ISO/IEC 8859- 1 charmap
entries.

- 4 - International Supplement

langinfo(5P) langinfo(5P)

NAME
langinfo - language information

DESCRIPTION
The langinfo.h header file defines the symbolic constants to be used in
the nLlanginfo function to retrieve langinfo data. The mode of the
constants is given in nLtypes.h.

The following symbolic constants are recognized:
D_TJMT String for formatting date and time.
DJMT

T_FMT

AM_8TR

PM_8TR

DAY_l

DAY-2

DAY_3

DAY_4

DAY_S

DAY_6

DAY_7

ABDAY_l

ABDAY_2

ABDAY_3

ABDAY_4

ABDAY_S

ABDAY_6
ABDAY_7

MON_l

MON_2

MON_3
MON_4
MON_S
MON_6
MON_7
MON_8
MON_9

String for formatting of date.
String for formatting of time.
Ante Meridiem abbreviation.
Post Meridiem abbreviation.
Name of the first day of the week (e.g. , Sunday).
Name of the second day of the week (e.g. , Monday).
Name of the third day of the week (e.g., Tuesday).
Name of the fourth day of the week (e.g. ,
Wednesday).
Name of the fifth day of the week (e.g. , Thursday).
Name of the sixth day of the week (e.g., Friday).
N arne of the seventh day of the week (e.g.,
Saturday).
Abbreviated name of the first day of the week.
Abbreviated name of the second day of the week.
Abbreviated name of the third day of the week.
Abbreviated name of the fourth day of the week.
Abbreviated name of the fifth day of the week.
Abbreviated name of the sixth day of the week.
Abbreviated name of the seventh day of the week.
Name of the first month of the year (e.g. , January).
Name of the second month of the year (e.g. ,
February).
Name of the third month of the year (e.g. , March).
Name of the fourth month of the year (e.g., April).
Name of the fifth month of the year (e.g. , May).
Name of the sixth month of the year (e.g. , June).
Name of the seventh month of the year (e.g. , July).
Name of the eighth month of the year (e.g. , August).
Name of the ninth month of the year (e.g.,
September).

INTERACTIVE UNIX System - 1 - International Supplement

langinfo(SP)

MON_lO
MON_l l

MON_l 2

ABMON_l

langinfo (SP)

Name of the tenth month of the year (e.g., October).
Name of the eleventh month of the year (e.g. ,
November).
Name of the twelfth month of the year (e.g.,
December).
Abbreviated name of the first month of the year.

ABMON_2 Abbreviated name of the second month of the year.
ABMON_3 Abbreviated name of the third month of the year.
ABMON_4 Abbreviated name of the fourth month of the year.
ABMON_5 Abbreviated name of the fifth month of the year.
ABMON_6 Abbreviated name of the sixth month of the year.
ABMON_7 Abbreviated name of the seventh month of the year.
ABMON_8 Abbreviated name of the eighth month of the year.
ABMON_9 Abbreviated name of the ninth month of the year.
ABMON_lO Abbreviated name of the tenth month of the year.
ABMON_l l Abbreviated name of the eleventh month of the year.
ABMON_l 2 Abbreviated name of the twelfth month of the year.
RADIXCHAR Decimal delimiter.
THOUSEP

YESSTR

NOSTR

CRNCYSTR

SEE ALSO
nUanginfo(3P).

NOTE TO USERS

Thousands separator.
Affirmative response for yesfno. Note that this is
returned as an uncompiled regular expression.
Negative response for yesfno. Note that this is
returned as an uncompiled regular expression.
Currency symbol, preceded by "·" if the symbol
should appear before the value, by "+" if the symbol
should follow the value, or by "." if the symbol
should replace the decimal delimiter.

This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 2 - International Supplement

locale(5P) locale (5P)

NAME
locale - define and set international environment

DESCRIPTION
A locale is made up from one or more categories. Each category is
identified by its name and controls specific aspects of the behaviour of
components of the system. Category names correspond to the follow­
ing environment variable names:
Lc_.u.L Overrides the settings of all of the following

environment variables.
LC_COLLATE Affects the behaviour of the string collation

functions.
Lc_CfYPE Affects the behaviour of the character handling

functions.
LC-MESSAGES Affects the interpretation of the strings associated

with affirmative (y) and negative (nJ responses.
LC-MONETARY Affects the monetary formatting information

returned by the localeconv(3P) function.
LC-NUMERIC

Lc_TIME

Affects the decimal-delimiter character for the for­
matted inputfoutput functions and the string
conversion functions, as well as the non-monetary
formatting information returned by the localeconv
function.
Affects the behaviour of the strftime function (see
ctime(3P)).

LANG Provides a "fallback" value to be used if one of the
above (except LC ALL) is not set or is set to the
empty string.

Programs compiled and linked with the -Xp option can use the
setlocale function to modify the environment. When the program
starts, the environment is set to the C locale , which corresponds to the
traditional UNIX System environment. Programs can modify this
environment by using the setlocale(3P) function.
If so directed by the program, the values of the above environment
variables will be used to set the environment.
The value assigned to the environment variable Lc_.u.L, if set, will be
used for all locale categories. LC.....ALL is primarily intended for use
when a user wishes to make sure that a particular program is executed
with one locale only (i.e., no mixed locales).
The value assigned to the environment variable LANG will be used as
the value for any of the above variables for which no valid value is
assigned. If LANG is set to a valid value, and none of the above vari­
ables are set, then the entire environment will be set to the value indi­
cated by LANG.

INTERACTIVE UNIX System - l - International Supplement

locale (5P) locale (5P)

The information that defines a specific locale must be stored in data
files on the system. The information for each category is stored in a
file with a name corresponding to the environment variable name. The
default location is within a directory under /Hbflocale/ISC. The name
of the directory is the name of the locale :

/ l i b

/ l o c a l e

/ I S C

+ - +

l o c a l e - 1 l o c a l e - 2 l o c a l e - 3

+ - +

I I I
LC C T Y P E I LC COL LATE L C _ T IME I L C _ NUME R I C

LC MONETARY LC MES SAG E S

Creating a Locale
The following steps are used to create the locale information.
Locales installed under /Hb/locale/ISC should be viewed as "public"
locales; all others should be considered private. Installation procedures
are the same for both private and public locales. Only the system
administrator should be able to create, modify, or delete public locales.
As a first step, create a directory with the desired name of the locale
within /lib/locale/ISC (or, in case of a private locale, the appropriate
directory) . Then, the individual categories should be created as
described in the following sections.

LC_COLLATE
The information in the Lc_coLLATE file is generated via the col/def
utility. For details, see the utility description.

LC_CTYPE
The information in the Lc_CTYPE file is generated via the chrtbl util­
ity. After executing the chrtbl utility, the generated data file must be
copied or moved to the locale directory and given the name of
Lc_CTYPE. As an example, assuming that the name or the desired
locale is fr_FR.8859 and the chrclass value in the character
classification table is french, then the following steps should be
performed:

Schrtbl sourcename
Scp french flibflocale/ISC/frJ'R.8859/LC_CTYPE

INTERACTIVE UNIX System - 2 - International Supplement

locale(5P) locale(5P)

LC-MESSAGES
The information in the LC-MESSAGES file is in text format and
defines the strings associated with the affirmative ("y") and negative
("n") responses used by selected utilities. Each line in the text file
contains a keyword and a value, separated by space(s) or tab(s).

� Strings must be enclosed in quotation marks; individual characters can
be so enclosed, but it is not required. Lines starting with a # are
ignored. The following keywords are recognised:
LC-MESSAGES This keyword must be the first in the file.
yesexpr The value is a regular expression used to evaluate

an affirmative response. The regular expression
must be enclosed in quote marks.

noexpr The value is a regular expression used to evaluate a
negative response. The regular expression must be
enclosed in quote marks.

END Lc_.MESSAGES
This keyword must be the last in the file.

Example:
LC M E S S AG E S
y e s expr " [Yy] [[: a l pha : l l * "
n o e xp r " [Nn) . * "
END LC M E S SAG E S

LC-MONETARY
The information in the LC_MONETARY file is in text format. Each
line in the text file contains a keyword and a value, separated by
space(s) or tab(s). Strings must be enclosed in quotation marks; indi­
vidual characters can be so enclosed, but it is not required. Lines
starting with a # are ignored. For a detailed definition of the values,
see /ocaleconv(3P). The following keywords are recognised:
LC_MONET ARY This keyword must be the first in the file.
inLcurr_symbol The value is the four-character string to be used

as international currency symbol, enclosed in
quote marks.

currency_symbol The value is the character used as currency
symbol.

mon_decimaLpoint The value is the decimal delimiter used to for­
mat monetary values.

mon_thousands_sep The value is the separator used to format mone­
tary values.

mon_grouping The value is a string of semicolon-separated
numbers, as described in localeconv(3P).

positive_sign The string used to indicate a value for a non­
negative formatted monetary quantity.

negative_sign The string used to indicate a negative-valued for­
matted monetary quantity.

INTERACTIVE UNIX System - 3 - International Supplement

locale(SP }

int-Jrrac__digits

frac__digits

p_cs_precedes

n_cs_precedes

n_sep_by_space

p_sign_posn

locale(SP)

The number of fractional digits (those after the
decimal delimiter) to be displayed in an interna­
tionally formatted monetary quantity.
The number of fractional digits (those after the
decimal delimiter) to be displayed in a formatted
monetary quantity. �
Set to 1 or 0 if the currency_symbol respectively
precedes or succeeds the value for a non-negative
formatted monetary quantity.
Set to 1 or 0 if the currency_symbol respectively
is or is not separated by a space from the value
for a non-negative formatted monetary quantity.
Set to 1 or 0 if the currency_symbol respectively
is or is not separated by a space from the value
for a negative formatted monetary quantity.
Set to 1 or 0 if the currency_symbol respectively
is or is not separated by a space from the value
for a negative formatted monetary quantity.
Set to a value indicating the positioning of the
positive_sign for a non-negative formatted mone-
tary quantity.

ILSign_posn Set to a value indicating the positioning of the
negative_sign for a negative formatted monetary l. quantity.

END LC-MONETARY

Example:
LC MON ETARY
i nt curr symbol
currency - s ymbo l
mon de c i ma l po i nt
mon -thous ands s e p
mon-group i ng -
negat i ve s i gn
i nt f r a c - d i g i t s
f r a c _ d i g i t s
p _ c s _ pr e c e d e s
p s ep b y s p a c e
n: c s j) r e c e d e s
n s e p b y s p a c e
n- s i gn p o s n
END LC

-
MONE TARY

This keyword must be the last in the file.

" USD "
" $ "
. .

3
" CR "
2
2
0
1
0
1

LC_NUMERIC l The information in the L�C file is in text format. Each line
.

in the text file contains a keyword and a value, separated by space(s)
or tab(s). Lines starting with a # are ignored. The following keywords
are recognized:
LC-NUMERIC This keyword must be the first in the file.

INTERACTIVE UNIX System - 4 - International Supplement

locale(SP) locale(SP)

decimaLpoint The value is the character to be used as decimal
delimiter; it may be enclosed in quotation marks.

thousand�p The value is the character used as the thousands
separator; it may be enclosed in quotation marks.

grouping The value is a string of semicolon-separated
numbers, as described in localeconv(3P).

END Lc....NUMERIC This keyword must be the last in the file.
Example:
LC NUMERIC
d e c imal po int
thousand s _ s ep
group i ng
END L C _ NUMERI C

LC_TIME

3 ; 3 ; 0

The information in the LC_TIME file is in text format. Each line in
the text file contains a keyword and one or more values. The keyword
is separated from the values by space(s) or tab(s). Values are
separated by semicolons which can have spaces or tabs before or after
them. Strings must be enclosed in quotation marks; individual charac­
ters can be so enclosed, but it is not required. Lines starting with a #
are ignored. Lines can be continued by using a backslash (\) at the
end of the line. The following keywords are recognised:
LC_TIME This keyword must be the first in the file.
abday Defines the abbreviated names of the weekdays,

starting with Sunday.
day

abmon

moo

Lfmt

cLfmt

cLLfmt

LfmL.ampm

END Lc_TIME

INTERACTIVE UNIX System

Defines the names of the weekdays, starting with
Sunday.
Defines the abbreviated names of the months,
starting with January.
Defines the names of the months, starting with
January.
Defines the format of the time string, using the
strftime conversion specifiers (see ctime(3P)).

Defines the format of the date string, using the
strftime conversion specifiers (see ctime(3P)).

Defines the format of the combined date and time
string, using the strftime conversion specifiers (see
ctime(3P)).

Defines the strings used to represent ante meri­
diem and post meridiem (in that order).
Defines the format of the time string in 1 2-hour
format.
This keyword must be the last in the file.

- 5 - International Supplement

locale(SP)

Example:
L C - T IME
abday
day

abmon

mon

t fmt
d

-
fmt

d t fmt

locale (SP)

" Sun " ; " Mon " ; " Tue " ; " Wed " ; " Thu " ; " Fr i " ; " S at "
" Sunday " ; " Monday " ; " Tue s day " ; " Wedne s day " ; \
" Thur s d ay " ; " Fr i day " ; " S aturday "
" Jan • ; " F eb " ; " Ma r " ; " Apr " ; " May " ; " Jun " ; " Ju l " ; \ � " Aug " ; " S e p " ; " O c t " ; " Nov " ; " D e c "
" January " ; " F e bruary " ; " Ma r ch " ; " Apr i l " ; " May " ; \
" June " ; " Ju l y " ; " Augus t " ; " S eptemb e r " ; " O c t o b e r " ; \
" Novembe r " ; " De c embe r "
" "H : "M : " S "
" "d /"m/"y "
" "a "b "d "H "M "S "Y "

a m _ pm " AM " ; " PM "
t _ fmt _ ampm " "I : "M : "S "P "
END LC T I ME

Locale Naming Conventions and Usage
X/Open recommends that locale names follow a certain convention.
The recommended format is:

language Lterritory] [. [codeset]] [@modifier]
where:
language

territory

codeset

modifier

Example:

Indicates the language area, e.g., fr (for French).
Indicates the geographical area, e.g. , CH (for Switzer­
land), which controls, for example, monetary editing
rules. 'l
Indicates the used code set, e.g., 8859.
Can be used to distinguish between otherwise identical
names (for instance between two different collation
sequences).

$ LANG = f r FR . 8 8 5 9
$ L C _ C OLLAT E = $ HOME /my l o c a l e

In the above declarations, the default locale is French (France), using
the 8859- 1 codeset. (8859 is used as a synonym for the ISO/IEC
8859- 1 codeset, also known as "Latin- I .") This is the locale chosen
for all categories except Lc_COLLATE, for which a "private" locale in
the directory mylocale is chosen.

INTERACTIVE UNIX System - 6 - International Supplement

locale(SP) locale (SP)

FILES
/lih/locale/ISC/* Default directory for locale directory

tures (* is the name of the locale).
/libjlocalejiSC/* /LC_CQLLATE

Contains LC_COLLATE information.
/libjlocale/ISC/* /LC_CTYPE

Contains LC_CTYPE information.
/libjlocalejiSC/* /LC_MESSAGES

Contains LC_MESSAGES information.
/libjlocale/ISC/* /LC_MQNETARY

Contains LC_MONETARY information.
/libjlocalejiSC/* /LC_NUMERIC

Contains LC_NUMERIC information.
/lib /locale /ISC /* /LC_ TIME

Contains LC_TIME information.

struc-

SEE ALSO
chrtbl(1 M), colldef(1 P), localeconv(3P), setlocale(3P).
ctime(3P), environ(SP) in the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

NOTE TO USERS
This entry is reprinted from the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE UNIX System - 7 - International Supplement

