
pro

INTERACTIVE NFS*
Guide

Second printing (February 1992)
No part of this manual may be reproduced in any form or by any means without written
permission of:

SunSoft, Inc.
6601 Center Drive West
Los Angeles, California 90045

©Copyright Sun Microsystems, Inc. 1985,1986, 1988-1991

© Copyright Lachman Associates, Inc. 1986, 1989

SunSoft has reformatted and made editorial changes in the System V NFS Release 3.2.5
Netwmk File System Protocol Specifications and User's Guide, System V NFS Release
3.2.5 User's Reference Manual, System V NFS Release 3.2.5 Programmer's Reference
Manual, and the System V NFS Release 3.2.5 Administrator's Reference Manual con
tained in this guide.
Revisions are copyright © 1988-1991 Sun Microsystems, Inc. and licensed to SunSoft
and as such may not be reproduced by any means without written petmission from
SunSoft.
System V NFS* was developed by Lachman Associates, Inc. in cooperation with Sun
Microsystems.
RES1RICfED RIGHTS:
For non-U.S. Government use:
These programs are supplied under a license. They may be used, disclosed, and/or
copied only as permitted under such license agreement. Any copy must contain the
above copyright notice and this restricted rights notice. Use, copying, and/or disclosure
of the programs is strictly prohibited unless otherwise provided in the license agreement.
For U.S. Government use:
Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 and FAR 52.227-19.

All rights .reserved. Printed in the U.S.A.

SunSoft cannot assume responsibility for any consequences resulting from this
publication's use. The information contained herein is subject to change. Revisions to
this publication or new editions of it may be issued to incorporate such changes.
INTERACTIVE NFS is derived from System V NFS• developed by Lachman Associ
ates, Inc.

The following trademlllks shown as registered are registered in the United States and
other countries:
UNIX is a registered trademark of UNIX System Laboratories, Inc.
3COM is a registered trademark of 3COM Corporation.
Yellow Pages is a registered trademark in the United Kingdom of British Telecommunications pic,
and may also be a trademark of various telephone companies around the world.
VAX is a trademark of Digital Equipment Corporation .

MS-DOS is a registered trademark of Microsoft Corporation.
NFS and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.
Sun and SunOS are trademarks of Sun Microsystems, Inc.
Ada is a registered trademark of the U.S. Department of Defense A.J.P.O.
Ethernet and XEROX are registered trademarks of XEROX Corporation.
The term "network information service (NIS)" is now uRed to refer to the service formerly known as �
Sun Yellow Pages. The functionality remains the same; only the name has changed. The name
Yellow Pages is a registered trademark in the United Kingdom of British Teleconununications pic,
and may not be used without permission.

INTERACTIVE NFS Guide

CONTENTS

Introduction to the INTERACTIVE NFS Extension

INTERACTIVE NFS Release Notes

INTERACTIVE NFS User's Manual

INTERACTIVE NFS System Administrator's Manual

INTERACTIVE NFS Protocol Specifications
and User's Guide

INTERACTIVE NFS User's Reference Manual

INTERACTIVE NFS Programmer's Reference Manual

INTERACTIVE NFS Administrator's Reference Manual

. '-�

Introduction to the
INTERACTIVE NFS* Extension

Welcome to the INTERACTIVE NFS Guide . This guide contains
the information you need to install, maintain, and use the
INTERACTIVE NFS extension. INTERACTIVE NFS is derived
from System V NFS* developed by Lachman Associates, Inc.
Whether you are an experienced Network File System (NFS) user
or brand new to NFS, be sure to read the next few pages of this
document. They will tell you what is contained in this guide and
how to use the guide to your best advantage.

WHAT'S INCLUDED

The INTERACTIVE NFS Guide includes:

• INTERACTIVE NFS Release Notes
Provides a description of the current release of the INTER
ACTIVE NFS extension.

• INTERACTIVE NFS User's Manual
Provides the basic information and commands needed to share
and use files under INTERACTIVE NFS.

• INTERACfiVE NFS System Administrator's Manual
Provides information to set up and maintain INTERACTIVE
NFS using the INTERACTIVE TCP /IP transport protocol.

• INTERACTIVE NFS Protocol Specifications and User's Guide
Release 3.2.5
Provides an overview of the Network File System and a descrip
tion of its protocol specifications.

• INTERACTIVE NFS User's Reference Manual
Provides manual entries of interest to INTERACTIVE NFS users.

• INTERACfiVE NFS Programmer's Reference Manual
Provides manual entries of interest to INTERACTIVE NFS
programmers.

• INTERACTIVE NFS Administrator's Reference Manual
Provides manual entries of interest to INTERACTIVE NFS sys
tem administrators.

2 Introduction to the INTERACTIVE NFS Extension - Version 2.2

• Reader's Comment Form
Provides you with a way to tell us what you like or dislike about
this guide and to send us your ideas for making it even better.

WHERE TO BEGIN

The INTERACTIVE NFS Guide includes a variety of documents for
users at varying levels of experience. Depending on your needs, you
may want to use this guide in a number of different ways. The fol
lowing outline provides some suggested ways to use this guide:

• If you are a beginner o o o

Work through the "INTERACTIVE NFS User's Manual" to
learn the commands you need to use the INTERACTIVE NFS
extension.

• If you are an experienced NFS user o o o

Read the "INTERACTIVE NFS Protocol Specifications and
User' s Guide Release 3.2.5," "INTERACTIVE NFS User's
Reference Manual," "INTERACTIVE NFS Programmer's Refer
ence Manual," and the "INTERACTIVE NFS Administrator's
Reference Manual" for technical details and information about
commands.

• If you are installing the system o o o

Read the "INTERACTIVE NFS System Administrator's
Manual." Be sure you have read the INTERACTIVE TCP/IP
Guide and have installed INTERACTIVE TCP /IP on your
system.

• If you want the latest system information o o o

Read the "INTERACTIVE NFS Release Notes" included with
the INTERACTIVE NFS extension. These notes provide you the
latest information on what's new in the most recent release of
the INTERACTIVE NFS extension.

• If you are a programmer or want more detailed information o o o

Read the "INTERACTIVE NFS Protocol Specifications and
User's Guide Release 3.2 .5 ," "INTERACTIVE NFS User's
Reference Manual," "INTERACTIVE NFS Programmer's Refer
ence Manual," and "INTERACTIVE NFS Administrator's Refer
ence Manual."

Introduction to the INTERACTIVE NFS Extension - Version 2.2 3

OVERVIEW OF THE INTERACTIVE NFS .EXTENSION

INTERACTIVE NFS is an extension to INTERACTIVE UNIX* Sys
tem V /386 Release 3 .2 that provides a full implementation of Sun

� Microsystems* Network File System Release 3 .5 . NFS is a de facto
industry standard for transparent file access among differing
hardware architectures and operating systems. With the
INTERACTIVE NFS extension, users on the network can share files
as if they were on the user's local machine, regardless of whether
they reside on mainframes, minicomputers, high-performance work
stations, or personal computers. Since the protocols are independent
of the operating system and transport network, new software and
hardware technologies can be integrated easily into the network.

The specification of a "stateless" protocol contributes to the NFS
network's reliability and file system integrity. Crash recovery is
simple because there is no record-locking state to track or file lock
ing tables to reconstruct. If a particular machine crashes, users can
wait for recovery or can use resources elsewhere on the network.

The INTERACTIVE NFS extension provides network services that
allow users in heterogeneous computing environments to share files,

� access remote resources, and mount file systems across a network.
Network administration facilities, as well as services for monitoring
and maintaining network integrity, are included to make network
administration flexible and efficient.

The INTERACTIVE NFS extension interfaces with INTERACTIVE
TCP /IP transport layer services. You must have INTERACTIVE
TCP /IP installed and operating in order to use the INTERACTIVE
NFS extension.

INTERACTIVE NFS FEATURES

The INTERACTIVE NFS extension contains the following features
to enhance the INTERACTIVE UNIX Operating System networking
environment:

• Remote Procedure Calls (RPC}
� Allow remote communication and provide standard message for

mats for use in specifying higher-level protocols. These provide
the facility to specify commands and tasks to be executed on
remote machines.

4 Introduction to the INTERACTIVE NFS Extension - Version 2.2

• eXternal Data Representation (XDR)
Provides a vendor-independent representation for data to be
exchanged on the network, making heterogeneous communica
tion possible. Byte orders, word length, and floating-point
representations appear the same to all machines on the network, �
circumventing data translation and interpretation problems.

• Remote EXecution (REX}
Allows users and applications to execute commands or programs
on remote systems, extending their computing power beyond the
capabilities of the local machine.

• Network Lock Manager
Provides file and record locking of remote files, allowing only one
user or program at a time to access a particular file or record.

• Status Monitor
Monitors the status of any node on the network to deal with net
work loading or failure. It works with the Network Lock
Manager to provide simple recovery in the ·event of system or
network crashes.

• Network Information Service (available as an optional subset)
The Network Information Service (NIS), formerly called the �
Yellow Pages* , simplifies network administration by providing
centralized database storage of password, group, network, and
host information. All users have access to the most current data
and can use the NIS subset to look up information about
resources by name or type.

f"

�

Introduction to the INTERACTIVE NFS Extension - Version 2.2 5

DOCUMENTATION REFERENCES

Throughout this guide, the following full documentation titles will
be referenced in shortened versions as follows:

Full Title Shortened Version

INTERACTIVE UNIX System V /386 INTERACTIVE UNIX
Release 3 .2 Operating System Guide
Operating System Guide

INTERACTIVE UNIX System V /386 INTERACTIVE UNIX System
Release 3 .2 Guide for New Users
Guide for New Users

INTERACTIVE UNIX System V /386 INTERACTIVE UNIX System
Release 3 .2 User's/System Administrator's
User's/System Administrator's Reference Manual
Reference Manual

INTERACTIVE Software INTERACTIVE SDS Guide and
Development System Guide and Programmer's Reference Manual
Programmer's Reference Manual

FOR MORE INFORMATION

The INTERACTIVE NFS extension is supported by a complete set
of documentation. For a complete listing of all documentation that
relates to the INTERACTIVE UNIX Operating System, refer to the
"Documentation Roadmap" included in the INTERACTIVE UNIX
Operating System Guide . For information about installing and
maintaining INTERACTIVE TCP/IP, refer to the INTERACTIVE
TCP/IP Guide .

!� < ,� '·· --

1 . INTRODUCTION

INTERACTIVE NFS*

Version 2.2
Release Notes

November 1991

This document describes the current release of the INTERACTIVE
NFS extension for the INTERACTIVE UNIX* Operating System.
This release is based on NFS Release 3 .5 from Sun Microsystems*.
These release notes serve as a caveat sheet, not as an installation
guide. Read them before attempting to install the NFS extension on
your system. Refer to the "INTERACTIVE NFS System
Administrator's Manual" for instructions on installing the
INTERACTIVE NFS extension.

2. RELEASE CONTENTS

r-" • Two diskettes containing INTERACTIVE NFS utilities and ker-
nel modules in sys adrn i n s t a l l pkg format

• INTERACTIVE NFS Guide

3. RELEASE REQUIREMENTS

This release of INTERACTIVE NFS works only with the INTERAC
TIVE UNIX Operating System Version 2.2 or later. For specific
subset requirements, refer to "INSTALLING INTERACTIVE NFS"
in the "INTERACTIVE NFS System Administrator's Manual" in
this guide. The INTERACTIVE Network Information Service
(NIS) , formerly called the INTERACTIVE Yellow Pages*, is
optional and is not included with this package. If you purchased
INTERACTIVE NFS, you are entitled to the NIS software. A
coupon for NIS is included with each INTERACTIVE NFS software
package.

4. NEW FEATURES

The following new features have been added to this release:

• The automounter feature allows NFS file hierarchies to be
mounted and unmounted as needed. It uses the daemon program

2 INTERACTIVE NFS Release Notes - Version 2.2

aut omount(lM) which acts as the NFS server that handles
file requests and mounts the appropriate remote hierarchy based
on the information specified in the automounter map files. The
automounter actually mounts the remote hierarchies under a
temporary directory and then uses NFS's symbolic link support
to associate the real mount point with the one in the temporary
directory. Support for the automounter requires Version 3.0 of
the INTERACTIVE UNIX Operating System. See section 8 ,
"The Automounter Guide," in the "INTERACTIVE NFS Proto
col Specifications and User's Guide" for more information about
this new feature.

• The expor t f s (lM) command provides finer control over
hosts allowed remote access. It is used to export and unexport
directories (or local files) to NFS clients. The format of the
/ e t c / e xpo r t s file has changed to support this new feature.
See exports(4) for details.

• The Lock Manager has been rewritten so that it no longer inter
cepts file locking on the local system. This greatly enhances its
performance and reliability.

• The rwa 1 1 (1M) command is similar to the UNIX System �
w a 1 1 command except that it is used to broadcast messages to
users on remote hosts. rwa 1 1 is supported by the
rwa 1 1 d(lM) daemon program which handles the rwa 1 1
requests on the receiving end.

5. BUG FIXES

The following bug fixes have been made in this release:

• Improved Symbolic Link Handling provides better symbolic link
handling when used with servers that support symbolic links
(BSD, SunOS*) .

• The performance of the 1 o ckd daemon program has been
improved. In previous releases, it would core dump and die
when the system was heavily loaded. Now that it no longer
intercepts all the file locking on the system, the 1 o ckd program
operates more accurately as well.

• Several race conditions in the kernel which would occasionally
cause processes (receiving alarm signals while paging) to be
killed have been fixed.

INTERACTIVE NFS Release Notes - Version 2.2 3

6. INTERACTIVE NFS AND SunOS 4.x

Since SunOS 4.x adds an additional security check to NFS, when
connecting a SunOS 4.x machine running the INTERACTIVE UNIX

f"""" Operating System, make sure the setup on Sun* is correct based on
Sun's documentation.

7. KNOWN PROBLEMS

7.1 Mounting With 8K Buffers

If you use the mount command for INTERACTIVE NFS with no
options, the file system will be mounted with 8K read and write size.
If you are using a 3COM* 3C50 1 Ethernet* board, you must mount
file systems with a smaller read/write buffer size. For a 3C50 1
board, type:

mount - f NFS , r s i z e = 4 0 9 6 , ws i z e = 4 0 9 6 <machine>:<dir> <dir>

It is not recommended that this board be used with NFS.

7.2 Novell NE-2000 Network Adapters

Due to problems with performance and packet loss under high loads,
� it is not recommended that the Novell NE-2000 network adapter be

used in file servers or other systems with a large amount of NFS
traffic.

7.3 Version 3.0 of the INTERACTIVE UNIX System

A minor incompatibility between version 3 .0 of the INTERACTIVE
UNIX Operating System and version 2. 1 of the NIS subset results in
slight corruption to the root user's c rontab file after using the
sys adm yp s e tup command. To work around this problem, edit
the /us r / s p oo l / c ron/ c r ontab s / root file. Three lines
may begin with the text L "A "G . Replace the text with the string 1
on the first line, 1 1 on the second line, and 2 1 on the third line.

\:;··

· '

!

INTERACTIVE NFS

User's Manual

CONTENTS

1 . INTRODUCTION 1
1 . 1 Before You Begin 1
1 . 2 Command Syntax 1
1 . 3 Basic NFS Terms 2

2. USER NETWORKING COMMANDS 4
2. 1 Listing Local Mounted File Systems

(/ e t c /mount) 4
2.2 Listing Machines With Remotely Mounted File Systems

(/ e t c / s howmount) 6
2. 3 Listing A vail able File Systems

(/ e t c / s howmount -e) 6
2 .4 Listing All Remotely Mounted File Systems

(/ e t c / s howmount -a) 7
2. 5 Using UNIX System Commands on Remote

Resources 8

GLOSSARY 1 1

- I -

1 . INTRODUCTION

INTERACTIVE NFS*
User's Manual

INTERACTIVE NFS is an optional extension to the INTERACTIVE
UNIX* Operating System that allows several computers to trans
parently share files across a network. Once the file systems are
made available on the network, users on remote machines can access
and read or edit the files in the file systems on the remote machines
exactly as if the file systems were physically located on their local
machine. This means that many different users with login accounts
on several different computers can have access to a single set of
resource files. Users are not required to keep copies of files that
need to be shared on every individual machine. This saves disk
space and assures that users are accessing the most current
information .

. � 1 .1 Before You Begin

This document contains the basic information and commands you
may need to use and share files on INTERACTIVE NFS. Before you
attempt to use any of the commands or procedures outlined here,
you should:

1 . Check with your system administrator to verify that the
INTERACTIVE NFS extension has been installed and initial
ized on your system.

2. Read and understand the contents of the "INTERACTIVE
UNIX Operating System Primer" in the INTERACTIVE UNIX
System Guide for New Users.

3 . Read this introduction carefully.

If you have problems finding or accessing remote files, see your sys
tem administrator.

1 .2 Command Syntax

The UNIX System is case sensitive , which means that the system
always distinguishes between uppercase and lowercase letters. Most

2 INTERACTNE NFS User's Manual - Version 2.2

UNIX System commands, options, and arguments are typed in
lowercase letters. Options typically begin with a dash (-). Each
command, option, or argument consists of one word, which is inter
preted as a group, or string, of characters surrounded by spaces.

If you make an error when typing a command, use the
!BACKSPACE! key to correct the error. Do not use the cursor posi
tioning keys.

Unless otherwise specified, always type the command name first, fol
lowed by a space; the desired option or options, each followed by a
space; then any arguments, separated by spaces.

Commands in this document will be presented in the following for
mat the first time they appear:

COMMAND NAME

FORMAT

DESCRIPTION

OPTIONS

·ARGUMENTS

command name

command [option(s)] argument(s)

A brief description of what the command
does.

A list of the most useful options and a
brief description of each.

Mandatory or optional arguments.

If an argument is not required, it is shown in square brackets [1.
Options are always "optional," so they are always shown in square
brackets [] . Only the most common options and arguments are
discussed in this document. If there are additional options or argu
ments available for a particular command that are not presented
here, this is indicated by the phrase "Not presented in this docu
ment." For a complete listing of the available options and argu
ments for a command, refer to the reference manuals for your
system.

1 .3 Basic NFS Terms

NFS allows users on many different computers to share file systems
or resources across a network. A machine in an NFS environment
that is configured to share file systems is called a host . File systems
are made available to the users on other hosts on the network by the

INTERACTIVE NFS User's Manual - Version 2.2 3

system administrator. This process is called exporting. Once a file
system on another computer has been exported, the system adminis
trator of your local machine can make it available to you by mount
ing it on one of your local directories.

Each remote file system available to you has a mount path name.
This consists of the name of the machine where the file system is
located, a colon, and the ·name of the file system, for example,
s c otty : / s r c . The file system does not actually leave the
machine it resides on, but once it is exported and mounted on your
local machine, you can access and read or edit the files in the
remote file systems exactly as if the file systems were physically
present on your local machine.

4 INTERACTIVE NFS User's Manual - Version 2.2

2. USER NETWORKING COMMANDS

Sharing file systems across a network using the INTERACTIVE NFS
extension is almost as easy as working with files on your own
machine. There are only a few special commands you will need to
know.

2.1 Listing Local Mounted File Systems (/ e t c /mount)

To find out what file systems are currently available (mounted) on
your local machine, use the / e t c /mount command.

COMMAND NAME

FORMAT

DESCRIPTION

OPTIONS

ARGUMENTS

/etc/mount

/etc/mount

Lists all file systems mounted on the local
machine; if local, the device on which it is
mounted, or if remote, its file system mount
path name; the permissions for each, whether
each is a local or a remote resource, and the
time each was mounted.

None.

None.

This command lists all file systems mounted on your local machine.
If the file system is a local one (one that is physically located on
your machine), it gives the name of the device on which the file sys
tem is mounted. If it is a remote file system, / e t c /mount lists
the mount path name instead, since the file system is not physically
loaded onto any local device. / e t c /mount also gives the permis
sions for a file system, whether it is a remote or a local resource,
and the time each was mounted. When you type / e t c /mount,
your screen will look similar to this:
$ / e t c /mount
/ on /dev/dsk/ O s 1 re ad/wr i t e on Mon Mar 14 0 9 : 1 5 : OS 1 9 8 8
/usr on /dev/dsk/ O s 3 read/wr i t e o n Mon M a r 1 4 0 9 : 1 7 : 5 0 1 9 8 8
/us r 2 o n /dev/dsk/ O s 4 re ad/wr i t e o n Mon Mar 1 4 0 9 : 1 7 : 5 1 1 9 8 8 � /us r 2 / t e s t on o l l i e : / s r c / t e s t read/remote on Wed Mar 2 3 1 1 : 1 7 : 5 2 1 9 8 8

.

/us r 2 / r e l / s r c on s c otty : / s r c read/wr i te/remote on Mon Mar 2 1 1 5 : 48 : 44 1 9 8 8

.�

INTERACTIVE NFS User's Manual - Version 2.2 5

For example, the first listing gives you the following information:

File System Device Name Permissions Date and Time
Name on Local and Type of of Mounting on

Machine File System Local Machine

I fdev fdskf0s1 read/write Mon Mar 14
09:15:05 1988

The local root file system {I) is mounted on ldevlds kl0s 1 .
This file system is accessed by typing c d I , so you do not need to
be concerned with the device it is mounted on. (You can refer to
"System Administration for New Users of the INTERACTIVE
UNIX Operating System" in the INTERACTIVE UNIX System
Guide for New Users if you want to learn more about mounting file
systems and the naming conventions used for devices.) Since the
output of the command does not say r emot e after the permissions
(r e adlwr i t e) , this is a local file system.

The last listing gives this information:

File System Remote Mount
Name on Local Path Name

Machine

fusr jnewreljsrc scotty: f src

Permissions
and Type of
File System

read fwrite /remote

Date and Time
of Mounting on
Local Machine

Mon Mar 21
15:48:44 1988

The file system named I s r c that is located on the machine named
s c otty is available on your local machine as a file system named
l u s r lnewr e l l s r c . If you want to look at the files and
directories in s c otty: l s r c , type cd l s r c lnewr e l l s r c to
"go" to that directory and then type 1 s to see a listing of its con
tents, just as you do to look at local directories.

If a file system you need to use is not currently mounted on your
local machine, see your system administrator. You must be the
root user to mount a file system when running the INTERACTIVE
NFS extension on your system.

6 INTERACTIVE NFS User's Manual - Version 2.2

2.2 Listing Machines With Remotely Mounted File Systems
(/ e t c / s howmount)

If you want to list all the machines in the domain that have
mounted remote file systems, use the / e t c / showmount �
command.

COMMAND NAME

FORMAT

DESCRIPTION

OPTIONS

ARGUMENTS

/etc/showmount

/e tc/showmount [-dae] [hostname]

List all the machines with remotely mounted
file systems. If the name of another machine
is used as an argument, list the remote
machines that have mounted file systems from
that machine.

-e Print the list of exported file systems.
-a Print all remote mounts in the format

hostname:dire ctoryname.
-d List directories that have been remotely

mounted by other machines.

The name of a particular machine. If no
machine name is given, the local machine name
is assumed.

Used with no options, the / e t c / s howmount command lists all
the machines on your domain that have remotely mounted file sys
tems. For example, if you want to see if the computer called
scotty is currently on the domain and using any remote file sys
tems, type / e t c / s howmount:

S / e t c / s howmount
marlon s cotty o l l i e stan

There are currently four machines on the domain with remotely
mounted file systems; one of them is s cotty.

2.3 Listing Available File Systems (/ e t c / s howmount - e)

To find out which file systems from your local machine ·are available �
to other users on your domain, type / e t c / s howmount - e .
Your screen will look similar to this:

INTERACTIVE NFS User's Manual - Version 2.2

/ s r c / t e s t
/usr/ s a l e s
/usr/of f i c e s /new info

7

If you want to know whether or not a particular file system is avail
able (has been exported) from another machine on your domain,
type / e t c / s howmount - e machinename. For example, to
determine whether the file system /u s r 2 /pub s is available from
the machine named s t an, type:

S /etc/showmount - e s tan

/ a r c /mover
/tes t/newr e l
/us r 2 /pubs

Three file systems are available from s t an, one of which is
/us r 2 /pub s .

2.4 Listing All Remotely Mounted File Systems
(/etc / s howmount - a)

To find out all the remotely mounted file systems on the domain,
type / e t c / s howmount - a . For example, to determine whether

.� or not the file system called /us r 2 /pub s is currently available to
Gerald, who uses the machine named mar 1 on, type
/ e t c / s howmount - a . Your screen will look similar to this:

S / e t c / showmount - a

mar l on : / s r c / t e s t
mar l on : / s r c
o l l i e : /us r / s a l e s
o l l i e : /usr/of f i c e s /new i nfo
o l l i e : /usr2 /pubs
s c otty : /u s r / s a l e s
s cotty : /t e s t/newre l
s cotty : /usr/off i c e s /newinfo
stan : /usr/of f i c e s /newinfo

The machine ma r 1 on does not have the /us r 2 /pub s file sys
tem mounted on it at this time.

If you type the name of a particular machine as a second argument,
the system lists the machines on the network that have remotely
mounted a file system from that machine. For example, to deter
mine what machines on the network have the file system
/ s r c / t e s t from the machine named o 1 1 i e available, type:

s / e t c / s howmount -a ol l i e

Your screen will look similar to this:

8 INTERACTIVE NFS User's Manual - Version 2.2

marlon : / s r c / t e s t
s cotty : /usr/b i n
bob : /u s r /b i n

/usr /b i n and / s r c / t e s t are the only two file systems avail-
able from o l l i e at this time. Only the machine named mar l on �
has / s r c / t e s t available at this time.

2.5 Using UNIX System Commands on Remote Resources

Once you know what directories are available to you, you can use
standard UNIX System commands (cd, pwd, l s , and so on) to
access a remote directory and manipulate the files and directories
located there. For example, to access the remote directory named
/ s a l e s from the machine named ma r l on, which is mounted on
your local machine on the directory /us r 2 /new/ s a l e s , type:

cd /us r 2 /new/ s a l e s

You can now type 1 s to see a list of the remote files and directories
available to you. If there is wr i t e permission on the files as well,
you can use local editors to edit the remote files just as you would
any other file on your local machine.

The / s a l e s directory is physically located on mar l on and really �
has no connection with your local machine. Before the system
administrator mounts / s a l e s on /us r 2 /new/ s a l e s on your
local machine, it looks like this:

your local machine

I

usr pubs

the sales directory on marlon

I
sales

I

But, after your system administrator mounts the remote s a 1 e s �
directory on your local directory /us r 2 /new/ s a l e s , you can
access the f or e c a s t s and l e ads files as if they were physi-
cally present on your local machine.

INTERACTIVE NFS User's Manual - Version 2.2 9

your local machine the sales directory on marl on

I I

I sales

I
� usr usr2 pubs

foreclsts lJds I
new

I
sales

I
I

forecasts
I

leads

. . . . � . -. . . :.: ...

INTERACTIVE NFS User's Manual - Version 2.2

GLOSSARY

case sensitive
Distinguishes between uppercase and lowercase letters.

r-" exporting

11

The method by which a file system is made available for
sharing with remote machines.

host A machine in an NFS environment that is configured to
share file systems. The database files are actually edited
only on this machine.

mount To make a directory available to users on a particular
machine.

mount path name
The full path name of a remote directory that has been
exported, consisting of the name of the machine where
the file system is located, a colon, and the name of the
file system, for example, s t an : / s r c /n e wr e l .

resource
A file system that is shared on the NFS network.

word A series of characters surrounded by spaces.

INTERACTIVE NFS User's Manual - Version 2.2

argument 2
BACKSPACE key 2
brackets, square 2
case sensitive I
command format 2
command syntax I
commands, user 4
cursor positioning keys 2
fete/mount command 4
fetcfshowmount command 6
fetcfshowmount command, -a option 7
fetcfshowmount command, -e option 6
exporting a file system 3
file system, exporting 3
file system, mounting 3
file systems, listing available 6
host 2
keys, cursor positioning 2
listing available file systems 6
listing local mounted file systems 4
listing machines with remote mounted file sys-

tems 6
listing remote mounted file systems 7
local mounted file systems, listing 4
mount path name 3
mounting a file system 3
option 2
path name, mount 3
remote mounted file systems, listing 7
remote mounted file systems, listing machines

with 6
square brackets 2
syntax, command I
user commands 4
using UNIX System commands remotely 8

INDEX

13

�-

INTERACTIVE NFS
System Administrator's Manual

CONTENTS

1 . INTRODUCTION
1 . 1 Purpose of This Document . .

2. INSTALLATION REQUIREMENTS

3. HARDWARE REQUIREMENTS

4. INSTALLING INTERACTIVE NFS

5. THE NFS MANAGEMENT MENU

6. SETTING UP AND MAINTAINING INTERACTIVE
NFS
6. 1

6. 2

6. 3

6.4
6 .5

6 .6

6 .7

6 .8

Setting Up INTERACTIVE NFS
(s e tupn f s)
Starting INTERACTIVE NFS
(s t a r t s topn f s)
Stopping INTERACTIVE NFS
(s t a r t s topn f s)
Exporting a File System (exportnf s)
Adding a Host to the List of Allowed Hosts
(e xportn f s)
Mounting a Remote File System or Changing Its Entry
(mountn f s)
U nexporting a File System
(unexportnf s)
Unmounting a Remote File System
(umountn f s)

GLOSSARY

- 1 -

1
2

3

3

4

1 1

1 2

1 2

1 2

1 3
14

1 6

1 7

22

23

25

·.f' .

��
-·

INTERACTIVE NFS*

System Administrator's Manual

1 . INTRODUCTION

INTERACTIVE NFS is an optional extension to the INTERACTIVE
UNIX* Operating System that allows users to share file systems
transparently across a Transmission Control Protocol/Internet Pro
tocol (TCP jiP) network protocol suite.

TCP jiP is a widely used networking protocol suite; INTERACTIVE
TCP /IP can be purchased as an optional extension to the INTER
ACTIVE UNIX Operating System. INTERACTIVE TCP /IP must be
installed on your machine in order to use the INTERACTIVE NFS
extension. The applications program libraries provided with
INTERACTIVE TCP /IP allow use of the following facilities: TEL
NET and FTP commands for logging into remote machines and
transferring files between computers; several of the Berkeley 4. 3 r
utilities, including r s h, r l og i n, and rep; and a C-callable net
work programming library compatible with the Berkeley 4.3 socket
system calls for porting existing applications to board-based TCP /IP
networking.

The INTERACTIVE NFS extension allows several computers to
transparently share file systems across a network. Once the file sys
tems are shared, they can be accessed and read or edited by users
on remote machines exactly as if the file systems were physically
located on the local machine.

The INTERACTIVE NFS extension also provides an optional subset
called the Network Information Service . This allows a common dis
tributed database of system files (for example, the I e t c /p a s s wd,
I e t c / g r oup, and I e t c /ho s t s files) to be maintained across
all the machines on the network. Refer to the INTERA CTIVE Net
work Information Service Guide (formerly called the INTER
A CTIVE Yellow Pages Guide) that accompanies the optional subset
software for information about installing, maintaining, and using the
Network Information Service facility.

2 INTERACTIVE NFS System Administrator's Manual - Version 2.2

1 .1 Purpose of This Document

The instructions in this document provide the information required
to set up and maintain the INTERACTIVE NFS extension using the
INTERACTIVE TCP /IP package. �
Refer to the following documents in the INTERACTIVE TCP/IP
Guide that accompanies your INTERACTIVE TCP /IP package for
more information about installing and using the facilities it provides:

• "Introduction to INTERACTIVE TCP /IP"

• "INTERACTIVE TCP /IP Networking Primer"

• "INTERACTIVE TCP /IP System Administrator's Manual"

• "INTERACTIVE TCP /IP Programmer's Supplement"

The following documentation is also available to support your
system.

• INTERACTIVE UNIX System User's/System Administrator's
Reference Manual

• INTERACTIVE UNIX System V/386 Release 3.2 User's Guide

• INTERACTIVE SDS
, Guide and Programmer's Reference

Manual

• UNIX System V/386 Release 3.2 Programmer's Guide

These documents may be ordered separately from INTERACTIVE
Systems Corporation or your sales representative.

INTERACTIVE NFS System Administrator's Manual - Version 2.2 3

2. INSTALLATION REQUIREMENTS

Before you install the INTERACTIVE NFS extension, the following
requirements must be met:

• The Kernel Configuration subset must be installed on your
machine. (See the "INTERACTIVE UNIX Operating System
Installation Instructions" in the INTERACTIVE UNIX Operating
System Guide for information on how to do this .)

• The INTERACTIVE TCP JIP optional subset must be installed on
your machine. (Refer to the "INTERACTIVE TCP /IP System
Administrator's Manual" in the INTERACTIVE TCP/IP Guide
for information on how to do this.)

• The files installed and maintained using the s y s a dm TCP JIP
Management Menu (I e t c /ho s t s . equ i v and
/ e t c /ho s t s) must be consistent across all machines on the
network. (For information about maintaining these files, refer to
section 3 of the "INTERACTIVE TCP /IP System Administrator's
Manual" in the INTERACTIVE TCPJIP Guide .

• 4 MB of RAM must be available.

• If your disk is partitioned according to the system defaults, the
following disk space is required:

• 750 blocks on the root file system.

• 2500 blocks on the /us r file system.

3. HARDWARE REQUIREMENTS

There are no hardware requirements specifically for INTERACTIVE
NFS. The only hardware requirements that apply are those for
INTERACTIVE TCP JIP.

4 INTERACTIVE NFS System Administrator's Manual - Version 2.2

4. INSTALLING �INTERACTIVE NFS

The INTERACTIVE NFS extension is delivered on two diskettes.
The optional Network Information Service subset is available
separately; it does not have to be installed in order to install and use �
INTERACTIVE NFS.

The INTERACTIVE NFS extension is installed using the system
administration menus. This subset must be installed on all
machines in the planned network.

,. If NFS is already running, type i n i t 2 before installing the
new version of NFS.

1 . Use the System Administration command, sys adm, or log in
as s y s adm to access the bar menu. Your screen will look
similar to this:

Disk File Machine Software User Help Quit

Manage disks and diskettes

YSTEM ADM�NXSTRATXON

... ,

2. Use the left and right arrow keys to move to S o f twar e , and
press IENTERI to access the S o f twar e menu. Your screen
will then look similar to this:

INTERACTIVE NFS System Administrator's Manual - Version 2.2 5

Disk Pile Machine Software User Help Quit

Install a software package

YST

Install a eackage

Remove a package

List installed packages
Mail System Setup

Basic Networking ->
Quit

3 . Press IENTERI to select I n s t a l l a p a c k a g e . Your
screen will look similar to this:

Disk Pile Machine Software User Help Quit
J:nstall a software package

YST

J J:nstall a packaqe

Remove a package
Instal a Software Package

Select installation media type: r::iskette Types�
isk0_1.2M

isk0_360k

0 I CANCEL I 8

4. Use the up and down arrow keys to move to the type of
diskette you are using, and press I ENTER I to select it. Press

6

Disk

INTERACTIVE NFS System Administrator's Manual - Version 2.2

!ENTER! again while on the OK button to move to the next
screen. The system will then ask:

File Machine Software User Help Quit

YST

Install a package

Remove a package

List installed packages

-Begin iskette Operation---
->

Please insert the 1.2M

diskette into drive 0. , _

Do you want to continue?

8 0 B

5 . Insert the first INTERACTIVE NFS Extension diskette into the
diskette drive and press !ENTER! while the YE S button is
highlighted to continue the installation. Your screen will look
similar to this:

INTERACTIVE NFS System Administrator's Manual - Version 2.2 7

Disk File Machine Software User Help Quit

Install an INTERACTIVE-ty�e Software Package

Select Backage!sl to install:

Beep when diskette is finished: <�

Install? Package name Version
<yes> INTERACTIVE NFS 2 .2
< >
< >
< >
< >
< >
< >
< >

0 I CANCEL I B

Press I ENTER I twice to start the installation. Your screen will
look similar to this:

Runn i ng dependenc i e s rout ine
Runn i ng copyr i ght rout ine
Copyr i ght (c) 1 9 8 8 - 1 9 9 1 Interac t i ve Systems Corp .
A l l Ri ghts Re s e rved .
INTERACT IVE NFS i s de r i ved from System V NFS (TM) deve loped
by La chman Assoc i a te s , Inc .
NFS i s a trademark of Sun Mi crosystems , Inc .
Insta l l i ng INTERACT IVE NFS - Vers i on 2 . 2
The f o l low i ng f i l e s are be i ng instal l e d :
I
/usr
/us r / l ib
/us r / l ib/l ibrpcsvc . a
/us r / l ib/l ibrpc . a

/ e t c /b i od
1 9 1 6 blocks
F i l e uncompr e s s i on i n progr e s s

P l e a s e remove the f l oppy from the dr i ve and i n s ert
The INTERACTIVE NFS - Ver s i on 2 . 2 Disk Number 2 .
Type <r eturn> when re ady :

6. Remove the first diskette, insert the second one, and press
IENTERl to continue. When the installation has finished, the
following message appears:

Tun i ng up system conf i gurat i on parameters

8 INTERACTIVE NFS System Administrator's Manual - Version 2.2

A few system parameters need to be raised to a set of higher
values for better performance when using NFS. If the current
values on your system are lower than those values (probably
the case for the first-time installation), the installation pro
cedure will prompt you to confirm that the values should be
changed:

Tunabl e parame ter ' NQUEUE ' i s currently s e t to 2 5 6 .

I s i t O . K . to change i t to 5 1 2 ? (y/n)

7. If you have at least 4 MB of memory on your system, type y
to change the value; otherwise, type n. The system then asks:

Tunabl e parameter ' NMUXLINK ' is currently set to 3 2 .

I s i t O . K . to chang e i t to 6 4 ? (y/n)

8. If you have at least 4 MB of memory on your system, type y
to change the value; otherwise, type n. The system then asks:

Tunable parame ter 'NS TREAM ' i s currently s e t to 6 4 .

I s i t O . K . to change i t to 9 6 ? (y/n)

9. If you have at least 4 MB of memory on your system, type y
to change the value; otherwise, type n. The system then asks:

Tunable parameter ' NBLK4 0 9 6 ' i s currently s e t to 4 .

I s i t O . K . to change i t to 5 6 ? (y/n)

1 0. If you have at least 4 MB of memory on your system, type y
to change the value; otherwise, type n. The system then asks:

Tunabl e parame ter ' NBLK2 0 4 8 ' i s currently s e t to 3 2 .

I s i t O . K . to change i t to 8 0 ? (y/n)

1 1 . If you have at least 4 MB of memory on your system, type y
to change the value; otherwise, type n. The system then asks:

Tunable parameter 'NBLK 1 0 24" i s currently s e t to 3 2 .

I s i t O . K . to change i t to 6 4 ? (y/n)

1 2. If you have at least 4 MB of memory on your system, type y
to change the value; otherwise, type n. The system then asks:

Tunabl e parame ter 'NBLK5 1 2" i s currently set to 3 2 .

I s i t O . K . to change i t to 1 2 8 ? (y/n)

1 3 . If you have at least 4 MB of memory on your system, type y
to change the value; otherwise, type n. The system then asks:

INTERACTIVE NFS System Administrator's Manual - Version 2.2 9

Tunable parameter "NBLK2 5 6" i s currently s e t to 6 4.

I s i t O.K. to change i t to 1 2 8 ? (y/n)

1 4. If you have at least 4 MB of memory on your system, type y
� to change the value; otherwise, type n. The system then asks:

Tunab l e parameter "NBLK 1 2 8" i s currently s e t to 1 2 8.

I s i t O . K. to change it to 5 1 2 (y/n)

15. If you have at least 4 MB of memory on your system, it is
recommended that you type y to change the value; otherwise,
type n. The system then asks:

Tunable parame ter "NBLK4" i s currently s e t to 1 2 8.

Is it O.K. to change it to 2 5 6 ? (y/n)

1 6. If you have at least 4 MB of memory on your system, type y
to change the value; otherwise, type n. Your screen will then
look similar to this:

In order to complete the installat ion , a new kerne l mus t be
bui l t.
I f you wi l l later i n s t a l l a package
that bu i l ds a new kerne l ,
you may s k i p the kerne l bu i ld.

Do you wi sh to bu i ld a new kerne l now? [y , n) ?

17. If you want to build a new kernel, type y. The kc onf i g
utility will be called to build a new kernel. Your screen will
look similar to this:

Bu i ld i ng kernel to include Ne twork F i l e System Package.

Kerne l rebui lt.

Insta l l i ng a new kernel requ i r e s a system r e - boot.
When f i n i shing i n s t a l l i ng package s , to i n s ta l l the newly
bujlt kernel, as user root, enter :

cd I
i nskern un i x.n

Run the system command 'setupnfs' f i r s t to i n i t i a l ize the
Network Fi l e Syst em. Use the sys adm command 'startstopnfs'
to start NFS.

Insta l l a t i on of INTERACTIVE NFS-Ve r s i on 2.2 i s comp l e te.

Note that the non the screen will be replaced by the appropri
ate kernel number for your system, based on the number of
kernels you have built previously. If you do not want to build
a new kernel now, type n. Your screen will look similar to
this:

10 INTERACTIVE NFS System Administrator's Manual - Version 2.2

Run the system command 'setupnfs' f i rst to i n i t i a l ize the
Network F i l e System . Use the sys adm command 'startstopnf s'
to start NFS .

Follow these instructions after you have finished initializing
INTERACTIVE NFS to install the new kernel.

The INTERACTIVE NFS extension is now installed and can
be initialized for use. You will need to run s e tupnf s using
the system administration n f s mgmt command. You will
also need to build a new kernel that includes the INTER
ACTIVE NFS files you have just installed, if you did not do it
when asked during installation.

�
I

INTERACTIVE NFS System Administrator's Manual - Version 2.2 11

5. THE NFS MANAGEMENT MENU

After you have installed the INTERACTIVE NFS extension on your
fixed disk, initialize and maintain NFS on your system using the
s y s adm nf smgmt (Network File System Management)
command.

You can access the system administration bar menu by logging in as
s y s adm or by typing the sys adm command. As an alternative,
you can type s y s adm nf smgmt to access the Network File Sys
tem Management menu directly. Your screen will look similar to
this:

Export a network file system

YSTEM ADMINISTRATION
ezportnfs

mountnfs

setupnfa

startstopnfs

umountnfs

unezportnfs

Quit

Use the up and down arrow keys to move to the option you want,
and press I ENTER I to select it.

Each option and its use is described in detail in section 6.

12 INTERACTIVE NFS System Administrator's Manual - Version 2.2

6. SETTING UP AND MAINTAINING INTERACTIVE NFS

6.1 Setting Up INTERACTIVE NFS (s e tupnf s)

The s e tupn f s option i s used once only, at the time of INTER
ACTIVE NFS installation. The s e tupnf s option enables the
INTERACTIVE NFS servers. (A server is a daemon process that
performs actions requested by the client machines.)

To set up INTERACTIVE NFS, access the Network File System
Management menu and select the s e tupnf s option. Your screen
will look similar to this:

Enab l i ng NFS Server
Enab l i ng NFS Mount S e rver
Enab l i ng Automat i c Startup of NFS

6.2 Starting INTERACTIVE NFS (s t a r t s topnf s)

The s t a r t s topnf s option i s used to start INTERACTIVE NFS
sessions. The system must be at run level 3 for these commands to
work.

1 . Access the Network File System Management menu and
select the s t a r t s topnf s option. Your screen will look
similar to this:

Enter the i tem number of the operat i on you wi sh to use .
1 Start NFS .
2 S top NFS .
3 Start NFS and make entr i e s to automa t i c a l ly start

up NFS .
4 S top NFS and r emove entr i e s to automa t i c a l ly start

up NFS .
q To exi t .

Enter your s e l e c t i on :

2. Select option 1 if you want to start a single session of INTER
ACTIVE NFS. The screen will look similar to this:

Star t i ng NFS
NFS Startup . . .
ONC daemons : portmap rexd pcnf sd rwa l l d
L o c k manager : s t a t d l ckclnt (4) lockd
NFS daemons : nf s c lnt (4) b i od (4)
NFS Startup compl ete .
NFS i ni t i a l i z ed

P r e s s the RETURN key to see the nfsmgmt menu [? , · , q J :

3. If you want NFS to start automatically every time you bring
the system up to multi-user /networking mode, select option 3
rather than option 1 .

INTERACTIVE NFS System Administrator's Manual - Version 2.2 13

If you select option 3, your screen will look similar to this:
Start i ng NFS
NFS Startup . . .
ONC daemons : portmap rexd pcnf sd rwa l l d
L o c k manage r : statd lckclnt (4) l ockd
NFS daemons : nfsclnt (4) b i od (4)
NFS Startup complete .
Che cking for f i l e s
L i nk i ng appropr i ate f i l e s
N F S i n i t i a l i z ed

Pre s s the RETURN key to see the nfsmgmt menu [? , · , q] :

The files necessary to run INTERACTIVE NFS are now in place.

6.3 Stopping INTERACTIVE NFS (s t a r t s topn f s)

At some time you may need to stop INTERACTIVE NFS, for exam
ple, if you are having network problems. The s ta r t s topnf s
option is used to stop INTERACTIVE NFS sessions.

1 . Access the Network File System Management menu and
select the s t art s topnf s option. Your screen will look
similar to this:

Ent er the i tem number of the operat i on you wi sh to u s e .
1 Start NFS .
2 Stop NFS .
3 Start NFS and make entr i e s to automat i ca l l y start

up NFS .
4 Stop NFS and remove entr i e s to automat i ca l l y start

up NFS .
q To ex i t .

Ente r your s e l e c t i on :

2. Select option 2 to simply stop the current session of INTER
ACTIVE NFS. Your screen will look similar to this:

Stopp i ng NFS
NFS Shutdown : [NFS Shutdown Complete]
P r e s s the RETURN key to s e e the nfsmgmt menu [? , · , q] :

3 . If you have previously configured the INTERACTIVE NFS
extension to start automatically every time you bring the sys
tem up to multi-user /networking mode and you want to
change this, select option 4 rather than option 2 . INTER
ACTIVE NFS will no longer start every time you bring your
system up to multi-user/networking mode; you will have to
start it manually using the s ta r t s topn f s option. This
operation may take up to 1 minute to complete. Your screen
will look similar to this:

14 INTERACTIVE NFS System Administrator's Manual - Version 2.2 .

Stopp i ng NFS
NFS Shutdown : [NFS shutdown compl ete]
Removi ng entr i e s for automa t i c a l l y start i ng NFS

P r e s s the RETURN key to see the nfsmgmt menu [? , q] :

6.4 Exporting a File System (exportn f s)

Exporting a file system notifies the other machines in the network of
the availability of a file system on your local machine. Once a file
system is exported, the system administrators of other machines in
the network can mount that file system under the directories of their
choice on their machines. Users on remote machines can then
access files that exist in your local exported file system just as if
they were physically located on the remote machines.

To export a file system, you provide the mount directory name of
the file system you want to export and any restrictions you want to
place on which hosts (machines) in the network may access the file
system.

1 . Start INTERACTIVE NFS (if it is not already running).
Access the Network File System Management menu and
select the e xportnf s option. Your screen will look similar
� �= �

Enter the i tem number of the export operat i on you w i sh to
execute . Opt i ons are :

1 Export a f i l e system .

2 Add a hos t to the l i st of a l l owed hos t s for a
f i l e system .

S e l e c t export operat i on (q) :

2. To export a file system for the first time, select option 1 . The
system then asks:

Ava i l able f i l e systems :
/us r 2
/us r / l o c a l
/ v
/ u s r

E n t e r t h e mount d i r e ctory of the f i l e system you want
to export [? , q] :

3 . Enter the full mount directory name of the file system you
plan to export, /us r for example. The system then asks: ·�

Should /usr be exported read-only? [y , n , q]

INTERACTIVE NFS System Administrator's Manual - Version 2.2 15

4. Type y to prevent all remote users from altering Ius r files
and directories; type n if changes will be allowed. The system
then asks:

Cont i nue add i ng Host Names for /us r ? [y , n , q]

5. Type y to add the name of a host that will be allowed to
access Iu s r . Your screen will look similar to this:

Enter a Host name for /us r :

6. Type in the network node name of the machine (for example,
do r r i t) you want to give access to Ius r . Your screen will
then look similar to this:

Should dorr i t be g i ven root a c c e s s ? [y , n , q]

7. Type y to allow the root user access to all files on this file
system, regardless of the files' permissions. Type n to deny
this access.

,.. Note that selecting y could compromise your system's
security. Select y only if you are sure you can trust the
superuser(s) on the remote system to which you are
exporting this file system.

Your screen will then look similar to this:
Should dor r i t be g i ven read-only acce s s ? [y , n , q]

8. Type y to give r e a d - on l y access to users on the remote
host; type n to allow the remote users to modify files, if their
permissions allow it. Note that r e ad - on l y access only
affects this particular client system. Your - screen will then
look similar to this:

Cont i nue add i ng Host Name s for /us r ? [y , n , q]

9. Type y to repeat these steps for another machine; n to stop.

1 0.

1 1 .

The system will then ask for a comment or description of the
file system:

Enter a br i e f comment about /usr :

Type in a short description, such as Sha r e d u s r f i l e
s y s t em. The system will then ask:

Okay to export /us r ? [y , n , q]

Type y if you have entered all the necessary information
correctly. The file system is then exported and your screen
will look similar to this:

16 INTERACTIVE NFS System Administrator's Manual - Version 2.2

P r e s s the RETURN key to s e e the nf smgmt menu [? , q] :

6.5 Adding a Host to the List of Allowed Hosts (exportnf s)

1 . Start INTERACTIVE NFS (if it is not already running).
Access the Network File System Management menu and)
select the exportnf s option. Your screen will look similar
to this:

Enter the i tem number of the export operat i on you w i s h to
execute . Opt i ons are :

1 Export a f i l e system .

2 Add a host to the l i s t of a l l owed hos t s for a
f i l e system .

S e l e c t export operat i on (q) :

2. To add host machines for a file system you have already
exported, select option 2 . The system then asks:

Ava i l able f i l e systems :

/usr

Ente r the mount d i r e ctory of the f i l e system you want
to add hos t s for [? , q] :

3. Type in the name of the mount directory for /usr . The sys- �
tern then asks:

Current hos t s a l r e ady ava i lable for /usr :

root a l l owed : dorr i t
read/wr i te : dorr i t muf fy
r e ad-only : rangoon

Cont i nue add i ng Host Name s for /us r ? [y , n , q]

4. To add a new h()st, type y. Your screen will look similar to
this:

Ente r a Host name for /usr :

5 . Type in the network node name of the machine (for example,
dor r i t) that you want to give access to / u s r . Your
screen will then look similar to this:

Should dor r i t be g i ven root acce s s ? [y , n , q]

6. Type y to allow the root user access to all files on this file
system, regardless of the files' permissions. Type n to deny ·'l
this access .

.,. Note that selecting y could compromise your system's
security. Select y only if you are sure you can

INTERACTIVE NFS System Administrator's Manual - Version 2.2 1 7

trust the superuser(s) on the remote system to which you
are exporting this file system.

Your screen will then look similar to this:
� Should dor r i t be g i ven read-only acc e s s ? [y , n , q]

7. Type y to give r e a d - only access to users on the remote
host; type n to allow the remote users to modify files, if their
permissions allow it. Note that r e a d - on l y access only
affects this particular client system. Your screen will then
look similar to this:

Cont i nue add i ng Host Names for /us r ? [y , n , q]

8 . Type y to repeat these steps for another machine; n to stop.
The system will then ask:

Okay to export /us r ? [y , n , q]

9 . Type y if you have entered all the necessary information
correctly. The file system is then exported and your screen
will look similar to this:

Pre s s the RETURN key to s e e the nfsmgmt menu [? , q] :

� 6.6 Mounting a Remote File System or Changing Its Entry
(mountnf s)

Mounting a remote file system under a directory on your machine
lets users transparently access files and directories on that machine.
All that is required to mount a remote file system is a valid direc
tory under which it can be placed on the local machine.

1 . Before beginning the mount procedure, identify or create a
directory where the remote file system will be mounted.

2. Access the Network File System Management menu and
select the mountnf s option. The screen will look similar to
this:

Enter the i tem number of the mount operat i on you w i sh to
exe cute . Opt i ons are :

1 Mount a f i l e system .

2 Make an entry for automat i c a l ly mount i ng a f i l e
system when NFS i s started .

3 Change an entry for automat i ca l ly mount i ng a f i l e
system when NFS i s started .

S e l e c t mount operat i on (q) :

18 INTERACTIVE NFS System Administrator's Manual - Version 2.2

3 . Select option 1 if you want the file system to be mounted dur
ing the current INTERACTIVE NFS session. Select option 2
if you want the file system to be mounted every time INTER
ACTIVE NFS is brought up. After selecting option 1 , your
screen will look similar to this:

Ente r the Host you want to mount from :

4. Enter the name of the remote host system (for example,
dorr i t) that contains the file system that you want to
mount on your local system. The screen will then look similar
to this:

Ava i l able f i l e systems :

/v
/y
/ e t c
/usr

Ent er the f i l e system you want to mount [q] :

5 . Type /u s r to select that file system for mounting. The sys
tem will then ask where it should be mounted:

Enter the d i r e ctory to mount /usr under :

6. Enter the full path name of a valid directory under which
/ u s r is to be mounted, for example, /r emo t e . The system
will then ask about restrictions:

Mount /usr a s Read-Only? [y , n , q]

7 . Type y i f you do not want users on your local machine to
have wr i t e permission in the remote file system. Type n if
you want them to be able to modify the files. The screen will
then look similar to this:

Mount /usr soft ? [y , n , q]

8. Type y if you want the system to return an error when the
server does not respond. Type n if you want the system to
continue to retry indefinitely. The screen will then look simi
lar to this:

Enter the mount buf f e r s i z e : [1) 1 K , 2) 4K , 3) 8K]

9. Select an appropriate r e ad/wr i t e buffer size. If there is
no specific restriction on your LAN board (refer to the release
notes that accompany this package), you should always select
option 3 (8K) to get the best performance. The screen will
then look similar to this:

INTERACTIVE NFS System Administrator's Manual - Version 2.2 19

OK to mount /usr under /remote? [y , n , q]

1 0. Type y. The system will then display the message:
/usr i s now mounted under /remote .

P r e s s the RETURN key to see the nf smgmt menu [? , q] :

Option 2 is used to mount the file system automatically every time
INTERACTIVE NFS is started in the future.

For example, to make an entry for mounting the file system / u s r
under / r emot e :

1 . Access the Network File System Management menu and
select mountnf s . Your screen will look similar to this:

2.

Enter the i tem number of the mount operat i on you w i sh to
execute . Opt i ons are :

1 . Mount a f i l e system .

2 . Make an entry for automat i ca l l y mount i ng a f i l e
system when NFS i s started .

3 . Change an entry for automat i ca l l y mount ing a f i l e
system when NFS i s started .

S e l e c t mount operat i on (q) :

Select option 2 . The screen will then look similar to this:
Enter the Host you want to mount f rom :

3 . Enter the name of the remote host system (for example,
dorr i t) that contains the file system that you want to
mount on your local system. The screen will then look similar
to this:

4.

5.

Ava i l ab l e f i l e systems :

/v
ly
/etc
/usr

Enter the f i l e system you want to mount automat i c a l ly [q] :

Type / u s r to select that file system for mounting. The sys
tem will then ask about restrictions:

Automat i ca l ly mount /usr read -only? [y , n , q]

Type y i f you do not want users on your local machine to
have wr i t e permission in the remote file system. Type n if

20 INTERACTIVE NFS System Administrator's Manual - Version 2.2

you want them to be able to modify the files. The screen will
then look similar to this:

Automat i c a l ly mount /usr soft ? [y , n , q]

6. Type y if you want the system to return an error when the
server does not respond. Type n if you want the system to
continue to retry indefinitely. The screen will then look simi
lar to this :

Automat i ca l ly mount /usr in the background ? [y , n , q]

7. Type y if you want system startup to continue immediately
while the mounting operation runs in the background rather
than waiting for the mount to complete before startup
proceeds. If you type y, and the server on which this file sys
tem is located is dead or hung, it will not delay the boot pro
cess on your machine. Type n if you do not want this protec
tion. The screen will then look similar to this:

Ent er the mount buf fer s i z e : [1) 1 K , 2) 4K , 3) 8K]

8. Select an appropriate r e ad/wr i t e buffer size. If there is
no specific restriction on your LAN board (refer to the release
notes that accompany this package), you should always select
option 3 (8K) to get the best performance. The system will
then ask where it should be mounted:

Ente r the d i r e c tory to mount /usr under :

Enter the full path name of a valid directory under which
f u s r is to be mounted, for example, /remo t e . The system
then asks:

Make entry for mount i ng /usr under . /remote automat i c a l ly
when NFS i s started? [y , n , q]

9. Type y. The system then displays the message:
Entry made .

Mount dorr i t : /usr under /r emote now? [y , n , q]

1 0. Type y if you want to mount / u s r immediately. Your
screen will look similar to this:

/usr i s now mounted under /remote .

Pre s s the RETURN key to s e e the nf smgmt menu [? , q] :

Option 3 is used to change entries for resources that are to be
mounted automatically when INTERACTIVE NFS is started. You
can change the file system name, the directory under which it is

INTERACTIVE NFS System Administrator's Manual - Version 2.2 21

mounted, and, if wr i t e permission is available on the file system,
its permissions. If the resource is already mounted because an
INTERACTIVE NFS session is currently running, the change will
not take effect until INTERACTIVE NFS is stopped and started
again. For example, to mount the file system / u s r under
/ c l i ent instead of /r emote , do the following:

1 . Access the Network File System Management menu and
select mountnf s . Your screen will look similar to this:

Enter the i tem number of the mount operat i on you w i sh to
execute . Opt i ons are :

1 Mount a f i l e system .

2 Make an entry for automat i c a l ly mount i ng a f i l e
system when NFS i s started .

3 Change an entry for automat i ca l l y mount i ng a
f i l e system when NFS i s started .

S e l e c t mount operat i on (q) :

2. Select option 3 . The screen will then look similar to this:
Current entr i e s :
dorr i t : /usr /r emote -r NFS , r s i z e = 4 0 9 6 , ws i z e = 4 0 9 6 , soft , bg

� Ava i l able F i l e Systems :
dorr i t : /usr
Ent e r the r e s ource (s) you want to change [? , q] :

3. Type the name of the file system, for example,
d o r r i t : /usr . The screen will then look similar to this:

S e l ec t :
1 To change host/f i l e system name
2 To change d i rectory name
3 To turn on/of f re ad-only
q To qu i t

Enter s e l e c t i on :

4. Type 2 to change the directory name. The system will then
ask for a replacement name:

5 .

6.

Enter replac ement name for /remote

Type in the name of your new directory, for example,
/newr emo t e . The screen will then look similar to this:

Okay to change d i r e ctory name /r emote to
/newremote ? [y , n , q]

Type y to change the directory. Your screen will then look
similar to this:

22 INTERACTIVE NFS System Administrator's Manual - Version 2.2

/ r emote changed to /newremote

Pre s s the RETURN key to s e e the nf smgmt menu [? , q] :

6.7 Unexporting a File System (unexportnf s)

Unexporting a file system makes that file system on your local �
machine unavailable to remote users.

,. Note that if you unexport a file system during an INTER
ACTIVE NFS session and that file system has already been
mounted on another machine, the other machine will see error
messages such as Cannot s t at f s / u s r : f i l e
d e s c r i pt o r i n bad s t a t e .

Before unexporting a file system, it is a good idea to type the com
mand s howmount - a to list the machines that have your
exported file systems currently mounted. You may want to ask the
system administrators of those machines to unmount your file sys
tem before you unexport it.

1 . To unexport a file system, access the Network File System
Management menu and select the unexportnf s option.
Your screen will look similar to this:

Enter the i tem number of the export operat i on you w i sh to
execute . Opt i ons are :

1 Unexport a f i l e system .

2 D e l e t e a host on the l i st of a l l owed hos t s for
a f i l e system .

S e l e c t operat i on (q) :

2. If you want to unexport a file system, select option 1 . If you
want to delete hosts from the list of hosts allowed to access a
particular file system, select option 2 . If you selected option
1 , your screen will look similar to this:

Ava i l able f i l e systems :
/usr
Enter the mount d i rectory (s) of the f i le systems you want
to unexport [? , q] :

3 . Enter the name of the file system, for example, /us r . If you
selected option 1 , the system then asks:

Okay to unexport /usr ? [y , n , q]

4. Type y to unexport /usr .

5. If you selected option 2 above (delete a host on the list of
allowed hosts), your screen will look similar to this:

INTERACTIVE NFS System Administrator's Manual - Version 2.2

Ava i l a b l e f i l e sys tems :
/usr

Enter the mount d i rectory (s) of the f i le systems
you want to d e l ete hosts from [? , q] :

23

Type in the name of the mount directories you want. Your
screen will look similar to this:

Current ho s t s ava i l ab l e for delet i on for /usr :

root a l l owed : dorr i t
r e ad/wr i te : dor r i t muffy kanga
r e a d - only : rangoon

Enter Ho s t name to delete for /us r :

6. Type in the remote host name. The system then asks:
Cont i nue d e l e t ing host name s for /us r ? [y , n , q]

7 . Type y if you want to delete additional hosts that are
currently able to mount this file system. Type n if you do not
want to delete any additional hosts. The system will then ask:

Okay to update /usr? [y , n , q]

8 . Type y if you have entered all the necessary information
� correctly. The file system will then be unexported and your

screen will look similar to this:
Pre s s the RETURN key to s e e the nfsmgmt menu [? , q] :

6.8 Unmounting a Remote File System (umountnf s)

U nmounting a remote file system makes it unavailable to users on
your local machine.

,.. Note that when you unmount a remote file system, local users
must not be using that file system. If a user is currently in that
file system, the attempt to unmount it will fail.

1 . To unmount a remote file system, access the Network File
System Management menu and select the umountn f s
option. Your screen will look similar to this:

Enter the i tem number of the operat i on you w i s h to execute .
Opt i ons a r e :

1 Unmount a f i l e system .

2 Remove an entry for automat i c a l l y mount i ng a
f i l e system for when NFS i s started .

S e l e c t operat i on (q) :

2. Select option 1 if you want to unmount a file system for the
current INTERACTIVE NFS session only. If the file system is

24 INTERACTIVE NFS System Administrator's Manual - Version 2.2

mounted automatically each time INTERACTIVE NFS is
started, choosing option 1 will not affect its availability during
future INTERACTIVE NFS sessions. Select option 2 if you
want to permanently unmount a file system. If you select 1 ,
your screen will look similar to this:

Mounted f i l e systems :
/r emote

Enter the f i l e system (s) you want to unmount [? , q] :

3 . Type in the mount directory name of the file system you want
to unmount, for example, /r emote . The system then asks:

Okay to unmount /remote [y , n , q]

4. Type y. The machine will then display:
/remote has been unmounted .

Pre s s the RETURN key to s e e the nf smgmt menu [? , q] :

Option 2 removes the entry in the file I e t c I f s t a b that automat
ically mounts the selected file system.

1 . If you select option 2 , your screen will look similar to this :
R e s our c e s mounted automat i c a l ly :
dorr i t : /usr /remote - r NFS , rs i z e = 4 0 9 6 , ws i ze = 4 0 9 6 , soft , bg

2.

Enter Resour c e s to remove :

Enter the remote file
dorr i t :/usr . The
confirmation:

system name, in
screen then prompts

this
for

case,
your

Okay to r emove permanent entry for dorr i t : /us r ? [y , n , q]

3 . Type y . Your screen will look similar to this :
Entry for dorr i t : /usr has been removed .

Pre s s the RETURN key to s e e the nfsmgmt menu [? , q] :

INTERACTIVE NFS System Administrator's Manual - Version 2.2 25

GLOSSARY

exporting
The method by which a file system is made available for
sharing with remote machines.

host A machine in an NFS environment that is configured to
share file systems.

server A daemon process that performs actions required by the
client machines.

soft mount
Return error if server does not respond.

Network Information Service
An optional subset of the INTERACTIVE NFS package
that allows the system administrator to maintain a com
mon distributed database of system files (for example,
/ e t c /p a s swd, / e t c /gr oup, and / e t c /ho s t s)
across all the machines on the network (formerly called
the Yellow Pages subset).

� 'J

INTERACTIVE NFS System Administrator's Manual - Version 2.2

changing a file system entry 1 4, 1 6
database I
dependencies 3

� documentation, additional 2
exporting a file system 1 4
file system, unexporting 22
initialization 1 2
installation 4
INTERACTIVE TCPfiP I , 3
Kernel Configuration subset 3
mounting a remote file system 1 7
Network Information Service I
networking protocol I
prerequisites 3
remote file system, mounting 1 7
remote file system, unmounting 23
server 1 2
showmount command 22
starting INTERACTIVE NFS 1 2
stopping INTERACTIVE NFS 1 3
sysadm, bypassing menus I I
sysadm install pkg 4
sysadm mountnfs 1 7
sysadm nfsmgmt I I
sysadm setupnfs 1 2
sysadm startstopnfs 1 2, 1 3
sysadm tcpipmgmt 3
sysadm umountnfs 23

� sysadm unexportnfs 22
unexporting a file system 22
unmounting a remote file system 23

INDEX

27

INTERACTIVE NFS

Protocol Specifications
and

User's Guide

CONTENTS

I . NFS OVER VIEW 1
1 . 1 Introduction 1

1 . 1 . 1 Computing Environments 2
1 . 1 .2 Terms and Concepts . . 3

1 .2 Examples of How INTERACTIVE NFS
Works 4
1 . 2. 1 Mounting a Remote File System 4
1 . 2 .2 Exporting a File System . . . 5
1 .2 . 3 Administering a Server Machine 5
1 . 2.4 Administering a Client Machine 6

1 . 3 Architecture of NFS . . . 6
1 . 3 . 1 Design Goals . . . 6
1 . 3 . 2 INTERACTIVE NFS

Implementation 8
1 . 3 . 3 The NFS Interface 1 0

1 .4 Network Documentation Roadmap 1 3

2. NFS ADMINISTRATION 1 4
2. 1 Introduction 1 4

2. 1 . 1 Terminology 1 4
2. 1 . 2 The INTERACTIVE UNIX Operating System

and the NFS Network Service 1 5
2. 1 . 3 Debugging the INTERACTIVE UNIX Operating

System in the Network Environment 1 6
2.2 NFS: The Network File System . 1 6

2.2. 1 What Is the NFS Service? 1 6
2.2.2 How NFS Works . . . 1 7
2.2 .3 Becoming an NFS Server 1 7
2 .2 .4 Remote Mounting a File System 1 8
2 .2 .5 Debugging NFS 1 8
2 .2 .6 Incompatibilities With Standard INTERACTIVE

UNIX System Releases 26
2.2.7 Clock Skew in User Programs 28

- 1 -

3 . RPCGEN PROTOCOL COMPILER 30
3. 1 Introduction 30
3 .2 Converting Local Procedures Into Remote

Procedures 3 1 � 3 .3 Generating XDR Routines 36
3 .4 The C Preprocessor • . . . 4 1
3 .5 RPC Language 41

3 .5 . 1 Definitions 42
3 .5 .2 Structures 42
3 . 5 . 3 Unions 43
3 .5 .4 Enumerations . . . 43
3 .5 .5 Typedef 44
3 .5 .6 Constants 44
3 .5 .7 Programs 44
3 . 5 . 8 Declarations 45
3 .5 .9 Special Cases 46

4. RPC GUIDE 48
4. 1 Introduction 48
4.2 Introductory Examples • 50

4.2. 1 Highest Layer 50 � 4.2.2 Intermediate Layer . . . 50
4.2 .3 Assigning Program Numbers 53
4.2 .4 Passing Arbitrary Data Types 53

4 . 3 Lower Layers of RPC 56
4 .3 . 1 More on the Server Side • . 56
4 .3 .2 Memory Allocation With XDR . . . 59
4. 3 . 3 The Calling Side 60

4.4 Other RPC Features 62
4.4. 1 Select on the Server Side . . . 62
4.4.2 Broadcast RPC 63
4.4. 3 Batching • 64
4.4.4 Authentication 68

4.5 More Examples 72
4. 5 . 1 Versions 72
4. 5 .2 TCP 73
4 .5 .3 Callback Procedures . . . 77

4.6 Synopsis of RPC Routines 80 "")
5 . RPC PROTOCOL SPECIFICATION 1 0 1

5 . 1 Introduction 1 0 1
5 . 1 . 1 Terminology 1 0 1
5 . 1 .2 The RPC Model 1 0 1

- ii -

5 . 1 . 3 Transports and Semantics
5 . 1 .4 Binding and Rendezvous

Independence • • •

5 . 1 . 5 Message Authentication • .

5 .2 Requirements . • • • • • • • •

5.2 . 1 Remote Programs and Procedures • • • • •

5 .2 .2 Authentication • • • • •

5 .2 .3 Program Number Assignment • • • •

5 .3 Other Uses and Abuses of the RPC
Protocol • • • • • • • • •

5 .3 . 1 Batching • • • • • • • • • • •

5 .3 .2 Broadcast RPC . • . • • • • • • •

5 .4 The RPC Message Protocol • • • • • • •

5 . 5 Authentication Parameter Specification • • •

5 .5 . 1 Null Authentication • • • • • • •

5 .5 .2 UNIX System Authentication • •

5 .6 Record Marking Standard • • • • • • • • •

5 . 7 Port Mapper Program Protocol • • • • • • • •

5 .7 . 1 The Port Mapper RPC Protocol • • •

6. XDR PROTOCOL SPECIFICATION • • • • •

6. 1 Introduction • • . • • • • • • • • •

6 .2 Justification • . • • • • • • • • • •

6 .3 XDR Library Primitives • • • • • • • •

6 .3 . 1 Number Filters • • • . • • • • • •

6. 3 .2 Floating Point Filters • • • • • • •

6 .3 . 3 Enumeration Filters • • • • • • •

6. 3 .4 No Data • • • • • • •

6 .3 .5 Constructed Data Type Filters . • • • • •

6 .3 .6 Non-Filter Primitives • • •

6 .3 .7 XDR Operation Directions • • • • • • •

6.4 XDR Stream Access • • • • • • •

6.4. 1 Standard 1/0 Streams • • • • • .

6.4.2 Memory Streams • • • • • • • • • •

6.4.3 Record (TCP /IP) Streams . • • • •

6 .5 XDR Stream Implementation • • • •

6.5 . 1 The XDR Object • • • • • •

6.6 XDR Standard • • • • • • • • • • • • .
6 .6 . 1 Basic Block Size • • • • • . • • • .
6 .6 .2 Integer • • • • • • • • •

6.6 .3 Unsigned Integer . • • •

6.6 .4 Enumerations . • • • • • • • • • •

- lll -

1 02

1 02
1 03
1 03
1 03
1 04
1 05

1 06
1 06
1 06
1 07
1 1 0
1 1 0
1 1 0
1 1 1
1 1 2
1 1 2

1 1 5
1 1 5
1 1 5
1 20
1 20
1 2 1
1 22
1 22
1 22
1 3 1
1 32
1 32
1 32
1 33
1 3 3
1 34
1 35
1 36
1 37
1 37
1 37
1 37

6.6 .5 Boo leans 0 0 0 0 0 0 0 0 0 0 0 0 0 1 38
6 .6 .6 Hyper Integer and Hyper Unsigned 1 38
6 .6 .7 Floating Point and Double Precision 0 0 1 38
6 .6 .8 Opaque Data 0 0 0 0 0 0 0 1 39 � 6.6 .9 Counted Byte Strings o 0 0 0 0 0 0 0 0 1 39
6.6 . 1 0 Fixed Arrays 0 0 0 0 0 1 40
6.6 . 1 1 Counted Arrays 0 0 0 0 0 0 1 40
6.6 . 1 2 Structures 0 0 0 0 0 0 0 0 1 40
6.6 . 1 3 Discriminated Unions 0 0 0 0 0 0 1 4 1
6.6 . 1 4 Missing Specifications 0 0 0 0 0 0 1 4 1
6 .6 . 1 5 Library PrimitivejXDR Standard Cross

Reference 0 0 0 0 0 0 0 0 1 4 1
6 .7 Advanced Topics 0 0 0 0 0 0 0 0 0 0 1 42

6.7 . 1 Linked Lists 0 0 0 0 0 0 0 0 0 1 43
6 .8 The Record Marking Standard 0 0 0 0 0 0 1 46
6.9 Synopsis of XDR Routines 0 0 0 0 0 0 0 0 0 1 47

7. NFS PROTOCOL SPECIFICATION 0 1 55
7. 1 Introduction 0 0 0 0 0 0 0 0 0 0 0 0 1 55

7. 1 . 1 Remote Procedure Call 0 0 0 0 0 0 0 0 1 55
7 . 1 . 2 eXternal Data Representation 1 55 � 7. 1 . 3 Stateless Servers 0 0 0 0 0 0 1 56

7 .2 NFS Protocol Definition 0 0 0 0 0 0 0 0 1 5 7
7 .2. 1 Server/ Client Relationship 0 0 0 0 0 0 0 1 57
7 .2 .2 Permission Issues 0 0 0 0 0 0 1 58
7 .2. 3 RPC Information 0 0 0 0 1 59
7 .2.4 Sizes 0 0 0 0 0 0 0 0 1 60
7 .2 .5 Basic Data Types 0 0 0 0 0 0 0 0 1 60
7 .2 .6 Server Procedures 0 0 0 0 0 0 1 66

7 .3 Mount Protocol Definition 0 0 0 1 73
7 .3 . 1 Version 1 0 0 0 0 1 7 3

8 . AUTOMOUNTER GUIDE 0 0 0 0 1 78
8 . 1 Introduction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 78
8 .2 Using the Automounter 0 0 0 0 0 0 1 80

8 .2. 1 Preparing the Maps 0 0 0 0 0 0 0 1 80
8 .2 .2 Starting Automount 0 0 0 0 0 0 0 0 0 1 94

8 . 3 Error Messages 0 0 0 0 0 0 0 0 0 0 0 0 0 1 97
� 8 .3 . 1 Error Messages Generated by the Verbose

Option 0 0 0 0 0 0 0 0 0 1 97
8 .3 .2 General Error Messages 0 0 0 0 0 0 1 99

- iv -

INTERACTIVE NFS*

Protocol Specifications

and

1 . NFS OVERVIEW

1 .1 Introduction

User's Guide

Release 3.2.5

This section provides an overview of the INTERACTIVE Network
File System (NFS), which allows users to mount directories across
the network and then to treat remote files as if they were local files.
INTERACTIVE NFS is derived from System V NFS* developed by
Lachman Associates, Inc. Advanced users may wish to skip this
section and go on to read section 1 . 2, which shows examples of how
NFS works. Casual users may not be interested in section 1 . 3 ,
which discusses the NFS architecture. Section 1 .4 provides a brief
description of the other sections in this document.

The Network File System is a facility for sharing files in a hetero
geneous environment of machines, operating systems, and networks.
Sharing is accomplished by mounting a remote file system, then
reading or writing files in place.

A distributed network of machines can provide more aggregate com
puting power than a mainframe computer, with far less variation in
response time over the course of the day. Thus, a network is gen
erally more cost-effective than a central mainframe. However, a
mainframe has often been preferred for large programming projects
and database applications because all files can be stored on a single
machine.

Those who work with personal computers that are not part of a net
work know the inconveniences resulting from data fragmentation.
Even in a network environment, sharing programs and data can

� sometimes be difficult. Either files have to be copied to each
machine where they are needed or users have to log in to the remote
machine that has the required files. Network logins are time
consuming, and having multiple copies of a file becomes confusing
as incompatible changes are made to separate copies.

2 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

To solve this problem, a distributed file system that permits client
systems to access shared files on a remote system has been designed.
Client machines request resources provided by other machines,
which are called servers. A server machine makes particular file
systems available. Client machines can mount these as local file �
systems. Thus, users can access remote files as if they were on the
local machine.

The INTERACTIVE NFS extension was not designed by extending
the INTERACTIVE UNIX* Operating System onto the network;
instead, it was designed to fit into the network services architecture.
Thus, the INTERACTIVE NFS extension is not a distributed operat
ing system, but rather an interface that allows a variety of machines
and operating systems to play the role of client or server.

1 . 1. 1 Computing Environments

The current computing environment in many businesses and univer
sities looks like this:

terminal l

Mainframe

terminal3

terminal4

Figure 1. Typical Computing Environment

The major problem with this environment is competition for CPU
cycles. A workstation environment solves that problem, but

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 3

introduces more disk drives into the picture. A network of worksta
tions looks like this:

workstation2 workstation3 workstation4

I ethernet

workstation 1 server

A A A
printer

� � �

Figure 2. Typical Workstation Environment

The goal of NFS is to make all disks available as needed. Individual
workstations have access to all information residing anywhere on the
network. Printers and supercomputers may also be available on the
network.

1 . 1 .2 Terms and Concepts

A machine that provides resources to the network is a server, while
a machine that employs these resources is a client . A machine may
be both a server and a client. A person logged in on a client
machine is a user , while a program or set of programs which runs
on a client is an application . There is a distinction between the
code implementing the operations of a file system (called file system
operations) and the data making up the structure and contents of
the file system (called file system data).

The Remote Procedure Call (RPC) facility provides a mechanism
whereby one process (the caller process) can cause another process

r·

4 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

(the server process) to execute a procedure call, as if the caller pro
cess had executed the procedure call in its own address space (as in
the local model of a procedure call). Because the caller and the
server are now two separate processes, they no longer need to exist
on the same physical machine. �
The RPC mechanism is implemented as a library of procedures, plus
a specification for portable data transmission known as the eXternal
Data Representation (XDR). Both RPC and XDR are portable, pro-
viding a standard I/0 library for interprocess communication on one
machine or across a network. Thus, programmers now have stand-
ardized access to these facilities without having to be concerned
about the low-level details of any particular implementation.

The INTERACTIVE NFS extension is composed of a modified
INTERACTIVE UNIX System kernel, a set of library routines, and
a collection of utility commands. NFS presents a network client
with a complete remote file system. Since NFS is largely trans
parent to the user, this document provides information on subjects
of which an NFS user may be unaware. The INTERACTIVE NFS
extension is an open system that can accommodate other machines
on the net, even those not running the INTERACTIVE UNIX

� Operating System, without compromising security.
. .

1 .2 Examples of How INTERACTIVE NFS Works

1 . 2. 1 Mounting a Remote File System

Suppose a user wants to read some on-line manual entries. These
entries are not available on the client machine, called c l i ent , but
are available on a machine called doc s e rv. The directory con
taining the entries can be mounted as follows:

client # /etc /mount - f NFS docs erv : /usr/man /usr/man

Note that the user must be root in order to issue a mount com
mand. The man command can now be used whenever it is required;
as it accesses the manual entries from the /usr /man directory, it
transparently uses the copies located on the machine do c s e rv. If
the d f command is run after the remote file system has been
mounted, its output will look something like this:

I (/dev/dsk/ c 1 d 0 s 0)
/usr (/dev/dsk/ c 1 d 0 s 2)
/usr/man (do c s erv : /usr /man)

1 6 3 6 blocks
5 3 6 8 blocks

3 6 3 6 4 blocks

1 42 4 i -nod e s
4 4 8 0 i -node s

0 i - nod e s

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 5

1 .2.2 Exporting a File System

Suppose two users on different systems need to work together on a
programming project. The source code is on the first user's

[machine, s e n i or , in the directory /us r/pro j .

Suppose that after creating the proper directory, the second user
tries to remote mount the directory /usr/pr o j . Unless the
directory has been specifically exported, the remote mount will fail
with a "permission denied" message.

To export the directory, the first user must become superuser and
edit the file / e t c / export s . The following line should be placed
in / e t c / e xpor t s :

/usr/pro j - a c c e s s = junior

if the second user is on a machine named j un i or . Without the
specification of - a c c e s s = j un i or , any system on the network
would be permitted to remotely mount the directory /us r /pro j .
The exportfs(I M) command should then be run to export the file
system just added to / e t c / expo r t s . The command will look
like:

� s e n i or# /etc/ exportfs - a

The expo rt f s command will also update the file, / e t c /xt ab.
The NFS mount request server mountd(I M) will read the
/ e t c /xtab file if necessary whenever it receives a request for a
remote mount. Now the second user can remote mount the source
directory by issuing this command:

j un i or# /etc /mount -f NFS s en i or : /usr/pr o j /usr/pro j

1 .2. 3 Administering a Server Machine

System administrators must know how to set up the NFS server
machine so that client workstations can mount all the necessary file
systems. File systems are exported (that is, made available) by
placing appropriate lines in the / e t c / e xpor t s file. Here is a
sample / e t c / expo r t s file for a typical server machine:

I
/usr
/usr/pro j - a c c e s s = theteam

The path names specified in / e t c / expo r t s must be real file
systems, that is, directory mount points for disk devices. The root
file system must be exported if directories directly under root ,
such a s / 1 i b are to be made available to NFS clients. A

6 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

"netgroup," such as the t e am, may be specified after the file sys
tem, in which case remote mounts are limited to machines that are
members of this netgroup. Netgroups are defined in
/ e t c /ne t groups and are documented in netgroup(4). The
complete format of / e t c / e xports and / e t c /xtab files is
described in exports(4). The showmount (I M) command shows
which file systems have been exported.

1 .2.4 Administering a Client Machine

The mount (I M) command is the tool for administering a client sys
tem. System administrators usually set up NFS on a client server
machine so that users see all the necessary file systems already
mounted by the time they log in. The file / e t c / f s tab is a con
venient place to keep the associations between remote machine file
systems and the local mount points. For example, in
/ e t c / f s t a b something similar to the following may appear:

/dev/dsk/ c 1 d 0 s 2 /usr
doc s erv : /r e f e rence/re l 3 /usr/man /usr/man NFS

The second line enables the system administrator, or a user, to sim
ply type:

client # /etc /mount /usr/man

and the remote association to machine do c s erv and its manual
entries used will be made for the client system.

1 .3 Architecture of NFS

1 .3. 1 Design Goals

1 .3. 1 . 1 Transparent Information Access. Users are able to get
directly to the files they want without knowing the network address
of the data. To the user, all universes look alike; there seems to be
no difference between reading or writing a file contained on a
private disk and reading or writing a file on a disk in the next build
ing. Information on the network is truly distributed.

1 .3. 1 .2 Different Machines and Operating Systems. The INTER
ACTIVE NFS extension is a standard for the exchange of data
between different machines and operating systems.

1 .3. 1 .3 Easily Extendable. A distributed system must have an
architecture that allows integration of new software technologies
without disturbing the existing software environment. To allow this,
NFS provides network services, rather than a new network operating
system. That is, NFS does not depend on extending the underlying

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 7

operating system onto the network, but instead offers a set of proto
cols for data exchange. These protocols can be easily extended.

1 . 3. 1 .4 Easy Network Administration. NFS has a convenient set of
maintenance commands that have been developed over the years.
Some new utilities are provided for network administration, but
most of the old utilities have been retained.

The INTERACTIVE Network Information Service (NIS), formerly
known as the Yellow Pages facility, is one example of a network
service made possible with NFS. By storing password information
and host addresses in a centralized database, the NIS facility eases
the task of network administration.

The most obvious use of NIS is for administering / e t c /p a s s wd.
Since NFS uses a UNIX System protection scheme across the net
work, it is advantageous to have a common / e t c /p a s s wd data
base for all machines on the network. NIS allows a single point of
administration and gives all machines access to a recent version of
the data.

Since the NIS interface is implemented using RPC and XDR, the
,.,.... service is available to non-UNIX operating systems. NIS servers do

not interpret data, so it is possible for new databases to take advan
tage of the NIS service without modifying the servers. For more
information on the INTERACTIVE Network Information Service,
see the INTERACTIVE Network Information Service Guide.

1 . 3. 1 . 5 Reliable. The file server protocol is designed so that client
workstations can continue to operate even when the server crashes
and reboots. Continuation after reboot is achieved without making
assumptions about the fail-stop nature of the underlying server
hardware.

The major advantage of a stateless server is robustness in the face
of client, server, or network failures. Should a client fail, it is not
necessary for a server (or human administrator) to take any action
to continue normal operation. Should a server or the network fail, it
is only necessary that clients continue to attempt to complete NFS
operations until the server or network returns to the net. This

� robustness is especially important in a complex network of hetero
geneous systems, many of which are not under the control of a
disciplined operations staff, and which may be running untested sys
tems often rebooted without warning.

8 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

1 .3. 1 . 6 High Performance. The flexibility of NFS allows
configuration for a variety of cost and performance trade-oft's. For
example, configuring servers with large, high-performance disks and
clients with no disks may yield better performance at lower cost
than having many machines with small, inexpensive disks. Further- �
more, it is possible to distribute the file system data across many
servers and achieve the added benefit of multi-processing without
losing transparency. In the case of read-only files, copies can be
kept on several servers to avoid bottlenecks.

Several performance enhancements have been made to the
INTERACTIVE NFS extension, such as "fast paths" for frequent
operations, asynchronous service of multiple requests, caching of
disk blocks, and asynchronous read-ahead and write-behind. The
fact that caching and read-ahead occur on both client and server
machines effectively increases the cache size and read-ahead dis
tance. Caching and read-ahead do not add state to the server; noth
ing (except performance) is lost if cached information is thrown
away. In the case of write-behind, both the client and server
attempt to flush critical information to disk whenever necessary to
reduce the impact of an unanticipated failure; clients do not free
write-behind blocks until the server verifies that the data is written. �

1 .3.2 INTERACTIVE NFS Implementation

In the INTERACTIVE UNIX System implementation of NFS, three
entities must be considered: the operating system interface, the
logical file system (FSS) interface, and the Network File System
{NFS) interface. The INTERACTIVE UNIX Operating System
interface has not been modified for the implementation of NFS,
ensuring compatibility with existing applications.

The FSS interface is a set of routines within the INTERACTIVE
UNIX Operating System kernel that separates file system operations
from the semantics of their implementation. Above the FSS inter
face, the operating system deals with generic file objects; below this
interface, the file system specific data structures implement a file
object.

The remote file system defines and implements the NFS interface
using the RPC mechanism. RPC allows communication with remote
services in a manner similar to the procedure calling mechanism
available in many programming languages. The RPC protocols are
described using the XDR package. XDR permits a machine-

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 9

independent representation and definition of high-level protocols on
the network.

The following figure shows the flow of a request from a client (at
the top left) to a server machine where the data requested lives on a
local disk. The boxes labeled "filesys" refer to those functions
within the operating system that provide access to data on the
system's attached disks.

potential
future
filesys

system calls

FSS

local
filesys

NFS
remote
filesys

network

NFS
server

process

Server
system

local
file system

Figure 3. Flow of Request From Client to Server

In the case of access through a local file system, requests are
directed to file system data on devices connected to the client
machine. In the case of access through a remote file system, the
request is passed through the RPC and XDR layers onto the net
work. In the current implementation, UDP fiP protocols and the
Ethernet* are used. On the server side, requests are passed through

10 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

the RPC and XDR layers to an NFS server. This path is retraced to
return results.

The INTERACTIVE UNIX System implementation Qf NFS provides
five types of transparency:

1 . File System Type: The FSS permits an operating system to
interface transparently to a variety of file system types.

2. File System Location: Since there is no differentiation in the
interface to a local or a remote file system implementation, the
location of file system data is transparent.

3. Operating System Type: The RPC mechanism allows inter
connection of a variety of operating systems on the network
and makes the operating system type of a remote server
transparent.

4. Machine Type: The XDR definition facility allows a variety of
machines to communicate on the network and makes the
machine type of a remote server transparent.

5 . Network Type: RPC and XDR can be implemented for a
variety of network and internet protocols, thereby making the l network type transparent.

Other NFS implementations are possible at the expense of some
advantages of the INTERACTIVE UNIX System version. In partic
ular, a client (or server) may be added to the network by imple
menting one side of the NFS interface. An advantage of the
INTERACTIVE UNIX System implementation is that the client and
server sides are identical; thus, it is possible for any machine to be
client, server or both. Users at client machines with disks can
arrange to share over the NFS without having to appeal to a system
administrator or configure a different system on their workstation.

1 .3.3 The NFS Interface

The NFS interface itself is open and can be used by anyone wishing
to implement an NFS client or server for the network. The interface
defines traditional file system operations for reading directories,
creating and destroying files, reading and writing files, and reading
and setting file attributes. The interface is designed so that file
operations address files with an uninterpreted identifier, starting
byte address, and length in bytes.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 1 1

Commands are provided for NFS servers to initiate service
(mountd) and to serve a portion of their file system to the network
(/ e t c / expo r t s). A client builds its view of the file systems
available on the network with the mount command.

The NFS interface is defined so that a server can be stateless . This
means that a server does not have to remember anything about its
clients from one transaction to the next, transactions completed, or
files operated on. For example, there is no open operation, as this
would imply state in the server; of course, the INTERACTIVE UNIX
Operating System interface uses an open operation, but the infor
mation in the INTERACTIVE UNIX System operation is remem
bered by the client for use in later NFS operations.

The stateless nature of an NFS server causes a problem when an
INTERACTIVE UNIX System application un l i nks an open file.
This is done to achieve the effect of a temporary file that is
automatically removed when the application terminates. If the file
in question is served by NFS, the unl i nk removes the file, since
the server does not remember that the file is open. Thus, subsequent
operations on the file will fail. In order to avoid state on the server,
the client operating system detects the situation, renames the file
rather than unlinking it, and unlinks the file when the application
terminates. In certain failure cases, this leaves unwanted "tem
porary" files on the server; these files can be removed as a part of
periodic file system maintenance.

Another example of how NFS provides a friendly interface to the
INTERACTIVE UNIX Operating System without introducing state
is the mount command. A client of NFS "builds" its view of the
file system on its local devices using the mount command; thus, it
is natural for the client to initiate its contact with NFS and build its
view of the file system on the network via an extended mount com
mand. This mount command does not imply state in the server,
since it only acquires information for the client to establish contact
with a server. The mount command may be issued at any time,
but is typically executed as a part of client initialization. The
corresponding umoun t command is only an informative message to
the server, but it does change state in the client by modifying its
view of the file system on the network.

The major advantage of a stateless server is robustness in the face
of client, server, or network failures. Should a client fail, it is not
necessary for a server (or human administrator) to take any action

12 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

to continue normal operation. Should a server or the network fail, it
is only necessary that clients continue to attempt to complete NFS
operations until the server or network is fixed. This robustness is
especially important in a complex network of heterogeneous systems,
many of which are not under the control of a disciplined operations
staff and may be running untested systems andfor may be rebooted
without warning.

An NFS server can be a client of another NFS server. However, a
server does not act as an intermediary between a client and another
server. Instead, a client may ask what remote mounts the server has
and then attempt to make similar remote mounts. The decision to
disallow intermediary servers is based on several factors. First, the
existence of an intermediary will impact the performance charac
teristics of the system; the potential performance implications are so
complex that it seems best to require direct communication between
a client and server. Second, the existence of an intermediary com
plicates access control; it is much simpler to require a client and
server to establish direct agreements for service. Finally, disallowing
intermediaries prevents circularity in the service arrangements; this
is preferred to detection or avoidance schemes.

NFS currently implements file protection by making use of the
authentication mechanisms built into RPC. This retains tran
sparency for clients and applications that make use of file protec
tion. Although the RPC definition allows other authentication
schemes, their use may have adverse effects on transparency.

Although NFS is UNIX System-friendly, it does not support all
UNIX System file system operations. For example, the "special
file" abstraction of devices is not supported for remote file systems
because it is felt that the interface to devices would greatly compli
cate the NFS interface. Other incompatibilities are due to the fact
that NFS servers are stateless. For example, file locking and
guaranteed append mode are not supported for the remote case
by NFS. These services are provided through other, transparent net
work services.

Omitting certain features from NFS preserves the stateless imple
mentation of servers and defines a simple, general interface. The
availability of open RPC and NFS interfaces means that customers
and users who need stateful or complex features can implement
them "beside" or "within" NFS.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 13

1 .4 Network Documentation Roadmap

Section 2, "NFS ADMINISTRATION," is a reference guide for sys
tem administrators implementing and administering the Network

(" File System on new machines.

Section 3, "RPCGEN PROTOCOL COMPILER," is intended for pro
grammers who wish to write RPC applications simply and directly,
instead of spending most of their time debugging their network
interface code.

Section 4, "RPC GUIDE," is intended for programmers who wish to
write network applications using remote procedure calls, thus avoid
ing low-level system primitives. Readers must be familiar with the
C programming language and should have a working knowledge of
network theory.

Section 5, "RPC PROTOCOL SPECIFICATION," is .a reference
guide for system programmers implementing the Network File Sys
tem on new machines. It is of little interest to programmers writing
network applications.

Section 6, "XDR PROTOCOL SPECIFICATION," is intended for
programmers who write complicated applications using remote pro
cedure calls and who need to pass complicated data across the net
work. It is also a reference guide for system programmers imple
menting the Network File System on new machines.

Section 7, "NFS PROTOCOL SPECIFICATION," is a reference
guide for system programmers implementing the Network File Sys
tem on new machines. It is of little interest to programmers writing
network applications.

Section 8, "AUTOMOUNTER GUIDE," is a reference guide for sys
tem administrators implementing and administering the System V
Network File System, using the automounter facility for NFS.

14 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

2. NFS ADMINISTRATION

2.1 Introduction

This section introduces the NFS service. The service currently
available is described, and some terms in the network environment �
are defined.

Following that, the NFS service is explained, and information about
periodic maintenance and trouble-shooting for this service can be
found.

While some of this material tends to be theoretical, its specific
implications will be seen again and again as you become familiar
with system administration. For example, a user running NFS must
understand that some typical INTERACTIVE UNIX Operating Sys
tem procedures have changed in the NFS environment. This section
covers only those aspects of the NFS network service necessary for
performing the duties of system administration.

2. 1 . 1 Terminology

Any machine that provides a network service is a server. Servers
are entirely passive and wait for clients to call them; they never call l the clients.

A client is any entity that accesses a network service. The term
entity is used because the thing doing the accessing may be an
actual machine or simply an INTERACTIVE UNIX System process
generated by a piece of software.

The degree to which clients are bound to their servers varies with
each of the network services. For example, an NIS client binds ran
domly to one of the NIS servers by broadcasting a request. At any
point, the NIS client may decide to broadcast for a new server.
However, an NFS client selects a specific server from which to
mount a given file system.

The client initiates the binding. The server completes the binding
subject to access control rules. Since most network administration
problems occur at bind time, a system administrator should know
how a client binds to a server and what (if any) access control pol- � icy the server uses.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 15

2. 1 . 2 The INTERACTIVE UNIX Operating System and the NFS
Network Service

Unlike many recently marketed distributed operating systems, the
UNIX operating system was originally designed without knowledge
that networks existed. This "networking ignorance" presents three
impediments to linking the INTERACTIVE UNIX Operating System
with currently available high performance networks:

1 . The UNIX System was never designed to yield to a higher
authority, such as a network authentication server, for critical
information or services. As a result some INTERACTIVE
UNIX Operating System semantics are hard to maintain "over
the net." For example, it may not always be appropriate to
trust user ID 0 (root).

2. Some INTERACTIVE UNIX Operating System execution
semantics are difficult. For example, the INTERACTIVE
UNIX Operating System allows a user to remove an open file,
yet the file does not disappear until closed by everyone. In a
network environment a client INTERACTIVE UNIX System
machine may not own an open file. Therefore, a server may
remove a client's open file.

3. When an INTERACTIVE UNIX Operating System machine
crashes, it takes all its applications down with it. When a net
work node crashes, whether client or server, it should not drag
all of its bound neighbors down. The treatment of node
failure on a network raises difficulties in any system and is
especially difficult in the UNIX System environment. A sys
tem of "stateless" protocols has been implemented to circum
vent the problem of a crashing server dragging down its bound
clients. Stateless here means that a client is independently
responsible for completing work and that a server need not
remember anything from one call to the next. In other words,
the server keeps no state. With no state left on the server,
there is no state to recover when the server crashes and comes
back up. · From the client's point of view, a crashed server
appears to be no different than a very slow server.

In implementing the INTERACTIVE UNIX Operating System over
the network, NFS remains compatible with the INTERACTIVE
UNIX Operating System whenever possible. However, certain
incompatibilities have been introduced. These are typically of two
kinds: first, those issues that would make a networked

16 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

INTERACTIVE UNIX System evolve into a distributed operating
system, rather than a collection of network services, and second,
those issues that would make crash recovery extremely difficult from
both the implementation and administration point of view.

All incompatibilities are documented in the appropriate administra
tion sections.

2. 1 .3 Debugging the INTERACTIVE UNIX Operating System in the
Network Environment

Most problems involving the NFS network service lie in the one of
the following four areas, which are listed in order of probability:

1 . The network access control policies do not allow the operation,
or architectural constraints prevent the operation.

2 . The client software or environment is broken.

3 . The server software or environment i s broken.

4. The network is broken.

The following sections present specific instructions on how to check
for these causes of failure in the NFS environment.

2.2 NFS: The Network File System

2.2. 1 What Is the NFS Service?

NFS enables users to share file systems over the network. A client
may mount or unmount file systems from an NFS server machine.
The client always initiates the binding to a server's file system by
using the mount (l M) command. Typically, a client remembers
specific remote file systems and their mount points by placing lines
like these in the file / e t c / f s t ab:

t i tan : /us r 2 /us r 2 NFS
venus : /usr/man /usr/man - r NFS , soft

See fstab (4) for a full description of the format.

Since clients initiate all remote mounts, NFS servers keep control
over who may mount a file system by limiting named file systems to
desired clients with an entry in the / e t c / expo r t s file. For '"""""
example: '

/usr/ l o c a l # export to any mach i ne
/us r 2 - a c c e s s = b i gmo : larry : cur ley # export to only the s e mach i n e s

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 1 7

Note that path names given in / e t c / expo r t s must be the
mount point of a local file system. See exports(4) for a full descrip
tion of the format.

� 2.2.2 How NFS Works

Two remote programs implement the NFS service - mountd(l M)
and nfsd(l M) . A client's mount request talks to mountd which
checks the access permission of the client and returns a pointer to a
file system. After the mount completes, access to that mount point
and below goes through the pointer to the server's n f s d daemon
using rpc(4) . Client kernel file access requests (write-behind and
read-ahead) are handled by the biod(l M) daemons on the client.

2.2.3 Becoming an NFS Server

An NFS server is simply a machine that exports a file system or sys
tems. The following steps must be taken to enable any machine to
export a file system:

1 . The superuser must place the mount point path name of the
file system to be exported in the file / e t c / expo r t s . See
exports (4) for file format details. For example, to export
/us r / l b i n, the export file would look like:

/us r / l b i n

Of course, an NFS server may only export file systems of its
own.

2. The entries in / e t c / expo r t s need to be exported. They
can be exported with the exportfs(1 M) command. The
expor t f s command is usually run from the NFS startup
script, usually / e t c / r c 3 . d/ s 7 2nf s .

3 . The / e t c /mountd program must be running for a remote
mount to succeed. This is started from the NFS startup script,
/ e t c / r c 3 . d / s 7 2nf s .

4. A remote mount also needs some number of nf s d NFS dae
mon processes to be running on the NFS server. The actual
number depends on the number of client NFS requests that the

� server should be able to handle concurrently, and thus depends
on the speed and capacity of the server machine. This exam
ple shows four nf s d daemons. The NFS startup script, such
as / e t c / r c 3 . d/ s 7 2nf s , should be checked for lines like
these:

18 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

i f [- f /etc/exports]
then

f i

e cho • nfsd (x4) \ c "
nfsd 4

These lines (or similar ones) should be added to the new NFS
server's NFS startup script to enable n f s ds. The superuser
can enable the nf s ds daemons at any time by typing:

/etc/nfsd 4

After these steps, the NFS server should be able to export the
named file system.

2.2.4 Remote Mounting a File System

Any exported file system can be remote mounted onto a machine, as
long as its server can be reached over the network and the machine
is included in the / e t c / exports list for that file system. On
the machine where the file system is to be mounted, the superuser
should type the following:

mount -f NFS server..Jiame:ffi/e....system fmount..point

For example, to mount the manual entries from remote machine
e l v i s on the directory /usr/e l v i s . man, type:

mount - f NFS e lv i s : /usr/man /usr/elv i s . man

To make sure the file system is mounted where it is expected to be,
use the mount (l M) command without any arguments. This
displays the currently mounted file systems.

Frequently used file systems should be listed, with any needed
options, in the file / e t c / f s t ab. See fstab (4) for the syntax and
contents of the file.

2.2.5 Debugging NFS

Before trying to debug NFS, the user should read the section on how
NFS works and also the manual entries for mount (l M),
mountd(l M), nfsd(l M), rpcinfo(l M), showmount(l M),
exports (4), fstab(4), mnttab(4), and rmtab(4). It is not necessary
to understand them fully, but the user should be familiar with the
names and functions of the various daemons and database files.

When tracking down an NFS problem, the user should keep in mind
that, like all network services, there are three main points of failure:
the server, the client, or the network itself. The debugging strategy
outlined below tries to isolate each component to find the one that is

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 19

not working. For example, consider a sample mount request as
made from an NFS client machine:

$ mount -f NFS krypton : /usr/src /krypton . s rc

The example asks the server machine krypton to return a file
handle (f h a nd l e) for the directory /us r / s r c . This fhand l e
is then passed to the kernel in the mount (2) system call. The kernel
looks up the ·- directory /krypton . s r c , and if everything is
correct, it ties the fhand l e to the directory in a mount record.
From now on all file system requests to that directory and below
will go through the fhand l e to the server krypton.

The above describes the way in which the system should work. Be
aware that some things may go wrong. Following are some general
pointers and then a list of the possible errors and what might have
caused them.

2.2.5. 1 General Hints. When there are network or server problems,
programs that access hard mounted remote files fail in different
ways to those which access soft mounted remote files. Hard
mounted remote file systems cause programs to retry until the server
responds again. Soft mounted remote file systems return an error
after trying for awhile.

Once a hard mount succeeds, programs that access hard mounted
files hang as long as the server fails to respond. In this case, NFS
should print a "server not responding" message on the console. On
a soft mounted file system programs get an error when a file whose
server is dead is accessed.

If a client is having NFS trouble, the first check must be to make
sure the server is up and running. From a client, the following
should be typed to see if the server is up at all:

$ rpc info -p server.JUlme

20 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

It should print out a list of program, version, protocol, and port
numbers that resembles:

program v e r s proto port
1 0 0 0 0 0 2 tcp 1 1 1 portmapper
1 0 0 0 0 0 2 udp 1 1 1 portmapper
1 0 0 0 1 7 tcp 1 0 2 4 rexd
1 0 0 0 0 5 1 udp 1 0 2 7 mountd
1 0 0 0 0 3 2 udp 2 0 4 9 n f s
1 0 0 0 2 4 1 udp 1 0 3 9 s tatus
1 0 0 0 2 4 1 tcp 1 0 2 5 status
1 0 0 0 2 1 1 tcp 1 0 2 6 nlockmgr
1 0 0 0 2 1 1 udp 1 0 5 1 nlockmgr
1 0 0 0 2 0 1 udp 1 0 5 4 l lockmgr
1 0 0 0 2 0 1 tcp 1 0 2 8 l l ockmgr
1 0 0 0 2 1 2 tcp 1 0 3 2 nlockmgr
1 0 0 0 0 4 2 udp 1 0 6 3 yps erv
1 0 0 0 0 4 2 tcp 1 0 3 3 yps erv
1 0 0 0 0 4 1 udp 1 0 6 3 yps erv
1 0 0 0 0 4 1 tcp 1 0 3 3 yps erv
1 0 0 0 0 7 2 tcp 1 0 3 4 ypb ind
1 0 0 0 0 7 2 udp 1 0 74 ypb i nd
1 0 0 0 0 7 tcp 1 0 3 4 ypb i nd
1 0 0 0 0 7 udp 1 0 7 4 ypbi nd

The r p c i nf o command can also be used to check if the mountd
server is running:

$ rpc i nfo -u server.JZame mountd

This should return:
program 1 0 0 0 0 5 ver s i on 1 ready and wa i t ing

If these steps fail, a login should be tried on the server's console to
see if it is running.

If the server is alive but a client machine cannot reach it, the
Ethernet connections between the machines should be checked.

If the server and the network are alive, use p s to check the client
daemons. An nf s c lnt and several b i od daemons should be
running. For example:

S ps - e f

should print lines for nf s c lnt and b i od.

The four sections below deal with the most common types of failure.
The first covers the steps to be taken if a remote mount fails; the
next three discuss servers that do not respond when file systems are
mounted.

2.2.5.2 Remote Mount Failed. This section deals with problems
related to mounting. If mount fails for any reason, the sections
below should be checked for specific details about what to do. They

�

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 21

are arranged according to where they occur in the mounting
sequence and are labeled with the error message likely to be
displayed.

The mount command can get its parameters either from the com
mand line or from the file / e t c / f s tab (see mount (l M)) . The
example below assumes command line arguments, but the same
debugging techniques would apply if / e t c / f s t a b was the source
of the options.

The interaction of the various parts of the mount request should be
considered. In the example mount request given above:

S mount - f NFS krypton : /usr/src /krypton . sr c

mount goes through the following steps to mount a remote file
system.

1 .

2.

3 .

4 .

5 .

6 .

7.

The mount command opens / e t c /mnttab and checks
that this mount has not already been done.

The mount command parses the first argument into host
krypton and remote directory /us r / s r c .

The mount command then resolves the host, krypton, into
an internet protocol address.

The mount command calls krypton's portmapper to get
the port number of mountd.

The mount command calls krypton's mountd and passes
it to /us r / s r c .

krypton's mountd reads / e t c / export s and looks for
the exported file system that contains /us r / s r c .

krypton's mountd may call the NIS server yp s e rv to
expand the host names and netgroups in the export list for
/us r / s r c .

8 . krypton's mountd does a getfh (2) system call on
/u s r / s r c to get the £ hand l e .

9. krypton's mountd returns the £hand l e .

1 0. Back on the client, mount does a mount(2) system call with
the £hand l e and /krypton . s r c .

1 1 . The mount command checks if the caller is superuser and if
/krypton . s r c is a directory.

22 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

1 2. The mount command does a statfs(2) call to krypton's
NFS server (nf s d) .

1 3 . The mount command opens / e t c /mnt tab and adds an
entry. �

· Any one of these steps can fail, some of them in more than one way.
The entries below give detailed descriptions of the failures associ
ated with specific error messages:

mount : c a nnot open / e t c /mnttab
The table of mounted file systems is kept in the file
/ e t c /mntt ab. This file must exist before mount can
succeed. / e t c /mnttab is created when the system is
booted and is maintained automatically after that by the
mount and umoun t commands.

mount : / d ev/n f s d i s a l r e ady mount e d , . . .
i s busy , or a l l owab l e number o f mount po i nt s
e x c e e d e d

This message reveals an attempt to mount a file system which
is already mounted. All NFS mount requests that fail with
this message will display the name /d ev/nf s d (a byproduct
of the implementation) regardless of the actual mount
request.

mount : . . . or . . . , no s uch f i l e or d i r e ctory
The N F S o r krypton: part of

mount - f NFS krypton : /usr/src /krypton . s rc

was probably omitted. The mount command assumes that a
local mount is being done unless the - f flag is used on the
command line, or the requested directory as listed in
/ e t c / f s t ab specifies file system type NFS .

More simply, this message also appears when for a correct
mount request, the specified local mount point is not an
existing directory.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 23

mount : c annot open < l e t c / f s t a b >
The mount command tried to look up the information needed
to complete a mount request in / e t c / f s t ab, but there
was no such file. This file should be created by the system
administrator as part of initial system setup.

not i n ho s t s dat aba s e
The system name specified on the mount request suffixed by
the colon (:) could not be resolved to a network address. The
spelling of the host name and placement of the colon in the
mount call should be checked.

mount : d i r e c tory argument < . . . > mu s t b e a
f u l l path name

The second argument to mount i s the path of the directory to
be covered. This must be an absolute path starting at I.

mount : . . . s e rver not r e s pond i ng(l):
R P C PMAP F A I LURE - RPC T IMED OUT -

Either the server to which the mount is being attempted is
down or its portmapper is dead or hung. An attempt should
be made to log in to that machine; if that attempt succeeds,
the problem may be in the portmapper. Run the following
from your system to test the portmapper on the server system:

rpc info -p hostname

The result should be a list of registered programs. If this is
not the case, the remote portmapper must be killed and re
started. Restarting the portmapper is a complicated process
because all registered services are lost, and their associated
daemons must be restarted also. This is done by the superuser
as follows:

ps - e f

find the process IDs of portmap and other service daemons.
k i l l -9 portmap..pid daemon...idl daemon...ii/2

is used to kill the daemons; then, as an example:
/etc/portmap
/etc/mountd
/etc/nfsd 4
and so on

to start new ones.

24 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

Another alternative to all this is to simply reboot the server
when it is convenient. Because of the stateless nature of the
NFS server implementation, there should be no adverse effect
on the clients of the system other than the time that they will
suspend awaiting the return of the server. �
If the server is up but it is not possible to r 1 og i n to it, the
client's Ethernet connection should be checked by trying to
r l o g i n to some other machine. The server's Ethernet con-
nection should also be checked.

mount : . . . s e rv e r not r e spond i ng :
R P C PROG NOT RE G I S T E R E D -

This means
-

that mount got through to the portmapper, but
the NFS mount daemon moun td was not registered. The
server should be checked to ensure that / e t c /mountd
exists and is running.

mount : /dev/nf s d or . . . , no such f i l e
or d i r e c tory

Either the remote directory does not exist on the server or the
local directory does not exist. Again note that /d ev/nf s d
will always be printed to represent the remote directory. �

mount : a c c e s s d e n i e d f or . . . : . . .
The machine on which the mount attempt is being made is
not in the server's export list for the file system to be mounted.
A list of the server's exported file systems can be obtained by
running:

showmount - e hostname

If the file system which is wanted is not in the list or the
machine name or netgroup name is not in the user list for the
file system, the I e t c / exports file on the server should be
checked for the correct file system entry. A file system name
that appears in the / e t c / expor t s file but not in the out
put from s howmount indicates a failure in mountd.
Either it could not parse that line in the file, it could not find
the file system, or the file system name was not a local
mounted file system. See exports (4) for more information. �
This message can also be an indication that authentication
failed on the server. It may be displayed because the machine
that is attempting the mount is not in the server's export list,
because the server is not aware of the machine, or because the

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 25

server does not believe the identity of the machine. The
server's / e t c / expor t s file should be checked.

Another possible authentication problem may be that the
client process doing the mount request may be a member of
too many groups for the RPC on the server to handle. Various
servers can have different numbers of simultaneous groups.
The limit should be checked on the server.

mount : . . . not a d i r e ctory
The remote path on the server i s not a directory.

mount : not s up e r u s e r
The mount command can be done only by the superuser
because it affects the file system for the whole machine.

2.2.5. 3 Programs Hung. If programs hang doing file related work,
the NFS server may be dead. The message:

WARN I NG : NFS s e rver sysname not respond i ng , s t i l l try i ng

may be displayed on the machine's console. The message includes
the name of the NFS server which is down.

� This is probably a problem either with one of the NFS servers or
with the Ethernet.

If a machine hangs completely, a check should be made of the
server(s) from which file systems have been mounted. If one (or
more) of them is down, client machines may hang. When the server
comes back up, programs will continue automatically and will not
be affected.

If a soft mounted server dies, other work should not be affected.
Programs that time-out trying to access soft mounted remote files
will fail, but it should still be possible to get work done on other file
systems.

If other clients of the server seem to be functioning correctly, the
Ethernet connection and connection of the server should be checked.

2.2.5.4 Everything Works Slowly. If access to remote files seems
unusually slow, the server should be checked by entering (on the
server):

ps - e f

If the server i s functioning and other users are getting good
response, block 1/0 daemons on the client should be checked by

26 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

typing p s - e f (on the client) and looking for b i od. If the dae
mons are not running or are hung, they should be killed by typing:

ps - e f I qrep b i od

to find the process IDs, followed by:
ki 11 - 9 pidl pid2 pid3 pid4

The daemons should then be restarted with:
/ e t c / b i od 4

To determine whether the daemons are hung, p s should be used as
above, then a large file copied. Another p s will show whether the
b i o ds are accumulating cpu time: if not, they are probably hung.

If b i od appears to be functioning correctly, the Ethernet connec
tion should be checked. The nf s s tat - c and n f s s ta t - s
commands can be used to discover whether a client is doing a lot of
retransmitting. A retransmission rate of 5 percent is considered
high. Excessive retransmission usually indicates a bad Ethernet
board, a bad Ethernet tap, a mismatch between board and tap, or a
mismatch between the client machine's Ethernet board and the
server's board.

It is also possible that the server's Ethernet board can not handle
the load being placed on it. In this case, remote file systems from
this server should be unmounted and then remounted with reduced
r e ad and wr i t e sizes. This will help to avoid IP fragmentation
and will reduce the number of back-to-hack packets that the server
will need to be able to handle. See the NFS mount options as
described in mount(l M) for more information. Typically, reducing
both sizes to 4096 or even 1 024, will help.

In rare cases, it is possible for the client's Ethernet interface to be
unable to handle the load that the client is generating. The solution
is the same in this case, reducing the r e ad and wr i t e sizes.

2.2. 6 Incompatibilities With Standard INTERACTIVE UNIX System
Releases

A few things work in different ways, or not at all, on remote NFS
file systems. The next section discusses the incompatibilities and
offers suggestions on working around them.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 27

2.2. 6. 1 No SU Over the Network. Under NFS a server exports file
systems it owns so that clients may remote mount them. When a
client becomes superuser, it may be denied permission on remote
mounted file systems, depending on the expor t f s options.
Remote su (root) access to files may be enabled by changing
/ e t c / e xpor t s on the server to permit root access. See
exportfs(l M) and exports(4) for details. Consider the following
example:

$ touch te s t 1 t e s t 2
$ chmod 7 7 7 t e s t 1
$ chmod 7 0 0 t e s t 2
$ 1 s - 1 t e s t *
- rwxrwxrwx 1 j s bach
- rwx- - - - - - 1 j sbach

0 Mar 24 1 6 : 1 2 test 1
0 Mar 2 4 1 6 : 1 2 test2

The example is tried again by the superuser:
$ su
P a s sword :
touch t e s t 1
touch t e s t 2
touch : t e st 2 : Permi s s i on den i e d
1 s - 1 t e s t *
- rwxrwxrwx 1 j sbach 0 Mar 24 1 6 : 1 6 test 1
- rwx - - - - - - 1 j sbach 0 Mar 2 4 1 6 : 1 2 t e s t 2

The problem usually shows up during the execution of a set-uid
r o o t program. Programs that run as root cannot access files or
directories unless the permission for "other" allows it.

Another aspect of this problem is that ownership of remote mounted
files cannot always be changed, specifically, if they are on a server
that does not permit users to execute chown. Since r o o t is
treated as the "other" user for remote accesses, only r o o t on the
server can change the ownership of remote files. For example, con
sider a user trying to chown a new program, a • out, which must
be set-uid root . It will not work, as shown below:

$ chmod 4 7 7 7 a . out
$ su
P a s sword :
chown root a . out
a . out : Not owner

To change the ownership, the user must either log in to the server as
r o o t and then make the change or move the file to a file system
owned by the user's machine (for example /us r/tmp will usually
be owned by the local machine) and make the change there.

28 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

2.2.6.2 File Operations Not Supported. Append mode and atomic
writes are not guaranteed to work on remote files accessed by more
than one client simultaneously. This is due to the stateless nature of
the NFS protocol.

2.2.6.3 Cannot Access Remote Devices. In NFS it is not possible
to access a remote mounted device or any other character or block
special file or named pipes.

2.2. 7 Clock Skew in User Programs

Since the NFS architecture differs in some minor ways from stan
dard releases of the INTERACTIVE UNIX Operating System, users
should be aware of those places where their own programs could run
up against these incompatibilities. The section "Incompatibilities
With Standard INTERACTIVE UNIX System Releases" above
discusses features that do not work over the network.

Because each machine keeps its own time, the clocks may be out of
sync between the NFS server and client. This might cause prob
lems. For example, consider the following.

Many programs assume that an existing file could not have been
created in the future. For example, the command 1 s - 1 has two ·�
basic forms of output, depending upon how old the file is:

server$ date
S a t Apr 12 1 5 : 2 7 : 4 8 GMT 1 9 8 6
server$ touch f i l e 2
server$ l s - 1 f i l e *
- rw- r - - r - - 1 j sbach
- rw- r - - r - - 1 j sbach

0 Dec 2 7 1 9 84 f i l e
0 Apr 1 2 1 5 : 2 7 f i l e 2

The first type of output from 1 s prints the year, month, and day of
the last file modification if the file is more than 6 months old. The
second form prints the month, day, hour, and minute of the last file
modification if the file is less than 6 months old.

The 1 s command calculates the age of a file by simply subtracting
the modification time of the file from the current time. If the result
is greater than 6 months, the file is "old."

Assume that the time on the server is Apr 12 1 5 : 30:3 1 , which is 3
minutes ahead of the local machine's time:

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

client$ date
Apr 12 1 5 : 2 7 : 3 1 GMT 1 9 86
client$ touch f i l e 3
client$ l s - 1 f i l e •
- rw- r - - r - - 1 j s bach
-rw- r - - r - - 1 j sbach
- rw- r - - r - - 1 j sbach

0 Dec 2 7 1 9 84 f i l e
0 Apr 1 2 1 5 : 2 7 f i l e 2
0 Apr 1 2 1 9 8 6 f i l e 3

29

The difference between the current time and the library's modify
time is a huge unsigned number, equal to - 1 80 seconds.

Thus, 1 s believes the new file was created long ago in the past.

In general, users should remember that applications that depend
upon local time and/or the file system timestamps need to deal with
clock skew problems if remote files are used.

The Network Time Protocol (NTP) or "timed" programs (which are
part of INTERACTIVE TCP /IP) may be used to reduce these
problems.

30 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

3. RPCGEN PROTOCOL COMPILER

3.1 Introduction

The details of program�ing applications to use Remote Procedure
Calls can be overwhelming. Perhaps most daunting is the writing of)
the XDR routines necessary to convert procedure arguments and
results into their network format and vice versa.

Fortunately, rpcgen exists to help programmers write RPC appli
cations simply and directly. The rpcgen command does most of
the dirty work, allowing programmers to debug the main features of
their application, instead of requiring them to spend most of their
time debugging their network interface code.

,

The r p c g e n command is a compiler. It accepts a remote program
interface definition written in a language, called RPC Language,
which is similar to C. It produces a C language output which
includes stub versions of the client routines, a server skeleton, XDR
filter routines for both parameters and results, and a header file that
contains common definitions. The client stubs interface with the
RPC library and effectively hide the network from their callers. The
server stub similarly hides the network from the server procedures
that are to be invoked by remote clients. The r p c g e n's output
files can be compiled and linked in the usual way. The developer
writes server procedures - in any language that observes C calling
conventions - and links them with the server skeleton produced by
r p c g e n to get an executable server program. To use a remote
program, a programmer writes an ordinary main program that
makes local procedure calls to the client stubs produced by
r p c g e n. Linking this program with rpcgen's stubs creates an
executable program. (At present the main program must be written
in C) . The r p c g e n command options can be used to suppress stub
generation and to specify the transport to be used by the server stub.

Like all compilers, rpcgen reduces development time that would
otherwise be spent coding and debugging low-level routines. All
compilers, including rpcgen, do this at a small cost in efficiency
and flexibility. However, many compilers allow escape hatches for
programmers to mix low-level code with high-level code. The
rpcgen command is no exception. In speed-critical applications,
handwritten routines can be linked with the rpcgen output
without any difficulty. Also, one may proceed by using r p c g e n
output as a starting point, and rewriting it as necessary.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 31

3.2 Converting Local Procedures Into Remote Procedures

Assume an application that runs on a single machine, one that needs
to be converted to run over the network. The following demon
strates such a conversion by way of a simple example - a program
that prints a message to the console:

/ *
* pr i ntmsg . c : pr i nt a me s s age o n the console
* I

#inc lude <s t d i o . h>

ma i n (argc , argv)

/ *

i nt argc ;
char *argv [] ;

char *me s s age ;

i f (argc < 2) {
fpr i ntf (s tderr , " usage : %s <me s s age>\ n " , argv [O]) ;
e x i t (1) ;

me s s ag e = argv [1] ;

i f (l pr i ntme s sage (me s sage))
fpr i nt f (s tderr , " % s : couldn ' t pr int your me s s a ge \ n " ,

argv [O]) ;
exi t (1) ;

pr i nt f ("Me s s age del ivered l \n ") ;

* P r i nt a me s s age to the consol e .
* Re turn a bool ean indi cat ing whether the mes s age
* was a c tua l ly pr i nted .
* I

pr i ntme s s age (ms g)
char *ms g ;

FILE * f ;

f = fopen (" /dev/console " , "w ") ;
i f (f = = NULL) {

r e turn (0) ;

fpr intf (f , "%s \ n " , msg) ;
f c l o s e (f) ;
return (1) ;

And then, of course:
example % cc pr i ntms g . c -o pr i ntmsg
example % pr i ntmsg ' ' He l l o , ther e . ' '
Me s s age de l i vered !
example %

If pr i ntme s s ag e was turned into a remote procedure, then it
could be called from anywhere in the network. Ideally, one would
just like to stick a keyword like "remote" in front of a procedure to

32 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

turn it into a remote procedure. Unfortunately, one has to live
within the constraints of the C language, since it existed long before
RPC did. But even without language support, it is not very difficult
to make a procedure remote.

In general, it is necessary to figure out what the types are for all
procedure inputs and outputs. In this case, there is a procedure
p r i ntme s s a g e that takes a string as input and returns an
integer as output. Knowing this, one can write the following proto
col specification in RPC language that describes the remote version
of pr i ntme s s ag e :

/ •
* m s g . x : Remote me s s age pr i nt i ng protocol
• /

program MES SAGEPROG {
ver s i on MESSAGEVERS

I ; 1 ;
I ; 9 9 ;

int PRINTMESSAGE (st r i ng) 1 ;

Since remote procedures are part of remote programs, what was
actually declared was an entire remote program that contains the
single procedure PRI NTME S SAGE . This procedure was declared
to be in version 1 of the remote program. No null procedure (pro- �
cedure 0) is necessary because rpcgen generates it automatically.

Notice that everything is declared with all capital letters. This is
not required, but it is a good convention to follow.

Notice also that the argument type is "string" and not "char *" .
This is because a "char *" in C is ambiguous. Programmers usually
intend it to mean a null-terminated string of characters, but it could
also represent a pointer to a single character or a pointer to an
array of characters. In RPC language, a null-terminated string is
unambiguously called a "string."

There are just two more things to write. First, there is the remote
procedure itself. Following is the definition of a remote procedure
to implement the PRI NTME S SAGE procedure that was declared
above:

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

/ *
* m s g proc . c : impl ementat i on of the remote proc edure
* " pr intme s s age "
* /

#inc lude <std i o . h>
#inc lude <rpc/rpc . h> / * always needed */

33

#inc lude " msg . h " / * need th i s too : msg . h w i l l be generated */
/ * by rpcgen * /

* Remote ve r s i on of " pr i ntme s s age "

i nt *
p r i ntme s sage 1 (msg)

char
-

• •msg ;

stat i c i nt result ; /* mus t be s t at i c ! * /
F I LE * f ;

f = fopen (" /dev/conso l e " , " w ") ;
i f (f = = NULL) {

result = 0 ;
r e turn (&result) ;

fpr i ntf (f , " %s \n " , *meg) ;
f c l o s e (f) ;
result = 1 ;
return (&result) ;

Notice that the declaration of the remote procedure
pr i ntme s s ag e 1 differs from that of the local procedure
p r i ntme s s ag e In three ways:

1 . It takes a pointer to a string instead of a string itself. This is
true of all remote procedures; they always take pointers to
their arguments rather than the arguments themselves.

2. It returns a pointer to an integer instead of an integer itself.
This is also generally true of remote procedures; they always
return a pointer to their results.

3 . I t has an "_} " appended to its name. In general, all remote
procedures called by rpc g e n are named by the following
rule: the name in the program definition (in this example
PRI NTME S SAGE) is converted to all lower-case letters, an
underbar ("_") is appended to it, and finally the version
number (in this example l) is appended.

The last thing to do is declare the main client program that will call
the remote procedure:

34 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

/ •
* rpr i ntms g . c : remote
• /

ver s i on o f " pr i ntmsg . c •

#inc lude <std i o . h>
#inc l ude <rpc/rpc . h>
#include "msg . h "

ma i n (argc , argv)
i nt argc ;
char • argv [) ;

CLIENT • c l ;
int • r e s u l t ;
char • s erve r ;
char •me s s age ;

i f (argc < 3)

/ • a lways needed •/
/• need th i s too : msg . h w i l l be generated • /
/ • b y rpcgen • /

fpr intf (stderr , "usage : %s hos t me s s a ge D , argv [O)) ;
exi t (1) ;

/ •
* S ave values o f command l ine arguments
•/

s erver = argv [1) ;
me s s age = argv [2) ;

/ •
* Create c l i ent " handl e " used f o r cal l i ng MESSAGEPROG
* on the s e rver des i gnated on the command l i ne . We t e l l
* t h e RPC package to u s e the " tcp " protocol when
* cont a c t i ng the s e rver .
• /

c l = c lnt create (s erver , MESSAGEPROG , MES SAGEVERS , " tcp ') ;
i f (c 1 = = -NULL) I

/ •

/ •
* Couldn ' t establ i sh conne c t i on w i th serve r .
* P r i nt error me s s age and d i e .
• /

c l nt pcreateerror (s erver) ;
e x i t (1) ;

* C a l l the remot e proc edure " pr i ntme s s age • on the s erver
•/

r e s u l t = pr i ntme s s age 1 (&me s sage , e l l ;
i f (re su l t = = NULL) 1 -

/ •

/ •
* An error occurred wh i l e c a l l ing the s erver .
* Pr i nt error me s s age and d i e .
• /

c lnt perror (c l , s erver) ;
e x i t (1) ;

* Okay , we suc c e s s fully cal l ed the remote proc edur e .
• /

i f (• result = = 0) I
/ •

* Server w a s unable t o pr i nt our me s s age .

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

* Pr i nt error me s s age and d i e .
•I

35

f pr i ntf (stderr , " % s : %s couldn ' t pr i nt your me s s age O ,
argv [O] , s e rver) ;

exi t (1) ;

I •
• The me s s age got printed o n the s e rver ' s conso l e
• I

pr i ntf (" M e s s age del ivered t o %s l 0 , s erver) ;

There are two things to note:

1 . First a client "handle" is created using the RPC library rou
tine c 1 n t c r e a t e . This client handle will be passed to the
stub routines which call the remote procedure.

2. The remote procedure pr i ntme s s ag e 1 is called exactly
the same way as it is declared in m s g pr o c . c except for
the inserted client handle as the first argument.

Here is how to put all of the pieces together:

example % r p c g e n m s g . x

example % c c rpr i ntm s g . c m s g _ c l nt . c - l r p c - l i n e t - o rpr i nt m s g
example % c c m s g _ proc . c m s g _ svc . c - l rpc - l i n e t - o m s g _ s e r v e r

Two programs were just compiled: the client program pr i ntms g
and the server program m s g s e rve·r . Before doing this though,
r p c g en was used to fill in the missing pieces.

This is what r p c g e n did with the input file m s g . x:

1 . It created a header file called m s g . h that contained
#d e f i n es fur ME S SAGEPROG, ME S SAGEVERS , and
PRI NTME S SAGE for use in the other modules.

2. It created client "stub" routines in the ms g c 1 n t . c file. In
this case there is only one, the pr i ntme s s a g e 1 that was
referred to from the pr i ntmsg client program.- The name
of the output file for client stub routines is always formed in
this way: if the name of the input file is FOO • x, the client
stubs output file is called FOO _ c 1nt . c .

� 3 . It created the server program which calls
pr i ntme s s ag e 1 in m s g pr o c . c. This server pro
gram is named ms g svc . c . The rule for naming the server
output file is similar to the previous one: for an input file
called FOO . x, the output server file is named FOO _ svc . c .

36 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

Try the following. First, copy the server to a remote machine and
run it. For this example, the machine is called moon. Server
processes are run in the background because they never exit.

moon% m s g _ s erver &

Then on the local machine (s un) you can print a message on
moon's console.

sun% p r i ntmsg moon " H e l l o , moon . "

The message will get printed to moon's console. You can print a
message on anybody's console (including your own) with this pro
gram if you are able to copy the server to their machine and run it.

3.3 Generating XDR Routines

The previous example only demonstrated the automatic generation
of client and server RPC code. The rpcgen command may also
be used to generate XDR routines, that is, the routines necessary to
convert local data structures into network format and vice versa.
This example presents a complete RPC service - a remote directory
listing service, which uses rpcgen not only to generate stub rou
tines, but also to generate the XDR routines. Following is the proto-
col description file: �

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 37

* d i r . x : Remote d i rectory l i s t i ng protocol
*I

const MAXNAMELEN = 2 5 5 ; / * maxi mum l ength of a d i r e ctory entry * /

typedef s t r i ng nametype<MAXNAMELEN> ;

typedef s truct namenode *name l i s t ;

/ *
* A node i n the d i r e ctory l i s t i ng
* I

s truct namenode (

I* a d i rectory entry * /

/ * a l i nk i n t h e l i s t ing * /

nametype name ;
name l i s t next ;

/* name of d i r e ctory entry * /
/ * next entry * /

J ;
/ *

* The r e s u l t of a READDIR operat i on .
* /

un i on readd i r r e s switch (i nt errno) (
c a s e 0 :

-

name l i s t l i s t ; /* no error : re turn d i r e c tory l i s t i ng * /
defaul t :

vo i d ; / * error oc curred : noth ing e l s e t o return * /
J ;
/ *

* The d i re ctory program def i n i t i on
* /

program D IRPROG (
ver s i on DIRVERS (

re add i r r e s READDIR (nametype)
J = 1 ;

J = 7 6 ;

1 . .

Running r p c g e n on d i r . x creates four output files. Three are
the same as before: header file, client stub routines, and server
skeleton. The fourth consists of the XDR routines necessary for con
verting the data types that were declared into XDR format and vice
versa. These are output in the file d i r _ xdr . c .

Here i s the implementation of the "READDIR" procedure:

38 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

/ +
* d i r proc . c : remote readd i r i mpl ementat i on
+ /

-

#inc lude <rpc/rpc . h>
<sys/d i r ent . h>
#includ e " d i r . h "

extern i nt errno ;
extern char +ma l l oc () ;
extern char + s trdup () ;

readd i r r e s *
r eadd i r

-
1 (d i rname) -
nametype + d i rname ;

DIR + d i rp ;
s truct d i rent +d ;
name l i s t nl ;
name l i s t +nlp ;
stat i c readd i r res r e s ; /+ mus t be s tat i c l + /

/ +
* Open d i r ectory
+ /

d i rp = opend i r (+ d i rname) ;
i f (d i r p = = NULL) I

r e s . errno = errno ;
return (&.r e s) ;

/ +
* F r e e prev i ous result
*/

xdr _ f re e (xdr _readd i r _ r e s , &.res) ;

/ +
* Co l l e c t d i rectory entr i e s
* /

nlp = &.re s . readd i r r e s u . l i st ;
whi l e (d = r eadd i r(d i rp)) I

nl = •nlp = (namenode •) malloc (s i z eof (namenode)) ;
n l ->name = strdup (d->d name) ;
nlp = &.nl ->next ;

-

+nlp = NULL ;

/ *
* Return the result
+/

r e s . errno = 0 ;
c l o s e d i r (d i rp) ;
. return (&.r e s) ;

Finally, there is the client side program to call the server:

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

/ •
* r l s . c : Remote d i r e ctory l i s t i ng c l i ent
• /

i n c l ude <s t d i o . h>
#inc lude <rpc/rpc . h> / • a lways need th i s • /

39

#include " d i r . h " /• need th i s · too : w i l l be generated by rpcgen • /

extern i n t e r rno ;

ma i n (argc , argv)
int argc ;
char •argv [] ;

CLI ENT • c l ;
char • s erver ;
char •d i r ;
readd i r r e s • r e sult ;
name l i s t nl ;

i f (argc I = 3)

/ •

fpr i ntf (s tderr , " usage : %s hos t d i r ectory\ n " , argv [O]) ;
e x i t (1) ;

* Remember what our command l i ne arguments r e f e r to

s erver = argv [1] ;
d i r = argv [2] ;

/ •
* Create c l i ent " handle " used f o r c a l l i ng DIRPROG o n the
* s erver des i gnated on the command l i ne . We t e l l the
* RPC package to use the " tcp " protoc o l
* when contact i ng t h e s e rver .
• /

c l = c lnt create (s erver , DIRPROG , DIRVERS , " t cp ") ;
i f (c l = =

-
NULL) (

/ •

/ •
* Couldn ' t e s tabl i sh conne c t i on w i th s e rver .
* P r i nt error me s s age and d i e .
• /

c lnt pcreate error (s erver) ;
e x i t (1) ;

* C a l l the remote procedure readd i r on the s erver
•/

r e s u l t = readd i r 1 (&d i r , e l l ;
i f (r e s u l t = = NULL) (

/ •

/ •
* An error occurred wh i l e c a l l i ng the s e rver .
* P r i nt error me s s age and d i e .
• /

c lnt perror (c l , s erver) ;
e x i t (1) ;

* Okay , we successfully cal l ed the remot e proc edure .
• /

40 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

if (r e s u l t ->errno I = 0) (

I •

I •
* A remote system error occurred .
* Pr i nt error message and d i e .
• I

e rrno = result->errno ;
perror (d i r) ;
ex i t (1) ;

* Suc c e s s fully got a d i r ectory l i s t i ng .
* P r i nt i t out .

for (nl = result->re add i r res u . l i s t ; nl I = NULL ;
nl = nl ->next) (- -

pr i ntf (" % s \ n " , nl ->name) ;

Compile everything, and run.
sun% rpcgen d i r . x
sun% c c r l s . c d i r c l nt . c d i r xdr . c - l rpc - l i net - o r l s
s un% c c d i r svc . c d i r proc . c d i r _xdr . c - l rpc - l i net -o d i r _ svc
sun% d i r sv� &

-

moon% r l s sun lusrlpub

a s c i i
eqnchar
greek
kbd
marg8
t ab c l r
tabs
t ab s 4
moon%

A final note about r p c g e n is that the client program and the
server procedure can be tested together as a single program by sim
ply linking them with each other rather than with the client and
server stubs. The procedure calls will be executed as ordinary local
procedure calls, and the program can be debugged with a local
debugger such as s db. When the program is working, the client
program can be linked to the client stub produced by r p c g e n, and
the server procedures can be linked to the server stub produced by
r p c g e n.

Note that if you do this, you may want to comment out
calls to RPC library routines and have client-side rou
tines call server routines directly.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 41

3.4 The C Preprocessor

Since the C preprocessor is run on all input files before they are
compiled, all the preprocessor directives are legal within a • x file.
Four symbols may be defined, depending upon which output file is
getting generated:

Symbol Usage
RPC_HDR
RPC_){DR
RPC_8VC
RPC_CLNT

For header file output
For XDR routine output
For server skeleton output
For client stub output

Also, r p c g e n does a little preprocessing of its own. Any line that
begins with a percent sign is passed directly into the output file,
without any interpretation of the line. Here is a simple example
that demonstrates the preprocessing features:

I •
* t i me . x : Remote t i me protocol
•I

program T IMEPROG {
ve r s i on T IMEVERS

} = 1 ;
} = 4 4 ;

i f d e f RPC _ SVC
" i nt *
"t i meget 1 (}
" { -

un s i gned int TIMEGET (vo i d } 1 ;

" stat i c int thet ime ;
"
" thet ime = t i me (O } ;
" re turn (&thet i me } ;
" }
#end i f

The '% ' feature is not generally recommended, as there is no
guarantee that the compiler will stick the output where you
intended.

3.5 RPC Language

RPC language is an extension of XDR language. The sole extension
is the addition of the program type. For a complete description of
the XDR language syntax, see section 6, "XDR PROTOCOL
SPECIFICATION." For a description of the RPC extensions to the
XDR language, see section 5, "RPC PROTOCOL SPECIFICATION."

42 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

However, XDR language is so close to C that if you know C, you
know most of it already. Following is a description of the syntax of
the RPC language, as well as a few examples. Also shown is how
the various RPC and XDR type definitions get compiled into C type
definitions in the output header file. �
3.5. 1 Definitions

An RPC language file consists of a series of definitions:
d e f i n i t i on- l i st :

d e f i n i t i on " ; "
d e f i n i t i on " ; " def i n i t i on- l i s t

It recognizes six types of definitions:
d e f i n i t i on :

s truct-de f i n i t i on
un i on - de f i n i t i on
enum - de f i n i t i on
typede f - de f i n i t i on
const-de f i n i t i on
program-def i n i t i on

3.5.2 Structures

An XDR structure is declared almost exactly like its C counterpart.
It looks like the following: �

struct-de f i n i t i on :
" s truct " struct - i dent " { "

dec l arat i on- l i s t
" } .

d e c l arat i on- l i s t :
d e c l arat i on " ; "
d e c l arat i on " ; " declarat i on- l i s t

As an example, here is an XDR structure to define a two
dimensional coordinate, and the C structure that it gets compiled
into in the output header file:

s truct coord {
int x ;
int y ;

} ;
- ->

struct coord {
int x ;
i nt y ;

} ;
typedef s truct coord coord ;

The output is identical to the input, except for the added typ e d e f
at the end of the output. This allows one to use "coord" instead of
"struct coord" when declaring items. �

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 43

3. 5.3 Unions

XDR unions are discriminated unions, and they look quite different
from C unions. They are more analogous to Pascal variant records

� than they are to C unions.
un i on-de f i n i t i on :

" un i on " un i on - i dent " swi tch " " (" declarat i on ") " " { "
cas e - l i s t

. I .
c a s e - l i s t :

" ca s e " value " : " declarat i on " ; "
" de f au l t " " : " declarat i on " ; "
" ca s e " value " : " declarat i on " ; " c a s e - l i st

Here is an example of a type that might be returned as the result of
a "read data" operation. If there is no error, return a block of data.
Otherwise, do not return anything.

uni on r e a d _ r e sult switch (int errno) {
c a s e 0 :

opaque data [1 0 2 4] ;
d e f au l t :

vo i d ;
I ;

It gets compiled into the following:
s truct read_result {

int e rrno ;
uni on {

I ;

char data [1 0 2 4] ;
I read_result_u ;

typedef struct read_result read_result ;

Notice that the union component of the output struct has the same
name as the type name, except for the trailing "_u."

3.5.4 Enumerations

XDR enumerations have the same syntax as C enumerations:
enum - de f i n i t i on :

" enum " enum- i dent " { "
enum-value - l i s t . I .

enum-value - l i s t :
enum-value
enum-value " , " enum-value - l i s t

enum-va lue :
enum-value - i dent
enum-va lue - i dent · � · va lue

Following is a short example of an XDR enum and the C enum that
it gets compiled into:

44 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

enum colortype {
RED = 0 ,
GREEN = 1 ,
BLUE = 2

} ;
- ->

enum colortype {
RED = 0 ,
GREEN = 1 ,
BLUE = 2

} ;
typedef enum colortype colortype ;

3. 5.5 Typedef

XDR typedefs have the same syntax as C typedefs:
typedef -def i n i t i on :

" typedef " declarat ion

Here is an example that defines a fname type used for declaring
file name strings that have a maximum length of 255 characters:

typedef str i ng fname_type<2S S> ; - -> typedef char • fname _type ;

3.5.6 Constants

XDR constants symbolize constants that may be used wherever an
integer constant is used, for example, in array size specifications:

const-de f i n i t i on :
" const " const- ident " ; " integer

For example, the following defines a constant DOZEN equal to 1 2:
const DOZEN = 1 2 ; - -> #def ine DOZEN 1 2

3.5. 7 Programs

RPC programs are declared using the following syntax:
program-def in it ion :

" program " program- ident • { •

vers i on- l i st
" } " " = " value

ver s i on- l i st :

ver s i on :

ver s i on " ; "
vers ion " ; • vers ion- l i st

"vers ion " ver s i on- i dent " { "
procedure - l i st

" } " " = " value

procedure - l i st :
procedure " ; "
procedure " ; " procedure- l i st

procedure :
type - i dent procedure- ident " (" type - ident ") " " = " value �

For example, here is the time protocol:

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

/•
* t ime . x : G et or set the t ime . T ime i s represented as
* number of seconds s ince 0 : 0 0 , January 1 , 1 9 7 0 .

program TIMEPROG {
vers i on TIMEVERS {

uns i gned int TIMEGET (vo id) = 1 ;
vo id TIMESET (uns i gned) = 2 ;

I = 1 ;
I = 44 ;

This file compiles into #d e f i n es in the output header file:
#de f i ne TIMEPROG 4 4
#def i ne TIMEVERS 1
#def i ne TIMEGET 1
#def i ne TIMESET 2

3. 5. 8 Declarations

In XDR, there are only four kinds of declarations:
declara t i on :

s i mple -declarat ion
f i xed-array-declarat ion
var i able-array-dec larat i on
po i nter-declarat ion

1) Simple Declarations are just like simple C declarations:
s i mple -declarat ion :

type - i dent var i able- ident

Example:
colortype color ; - -> colortype color ;

45

2) Fixed-length Array Declarations are just like C array
declarations:

f i xed-array-declarat ion :
type - i dent var i able - i dent ' [' value ') '

Example:
colortype palette [B J ; - -> colortype palette [B J ;

3) Variable-Length Array Declarations have no explicit syntax in C,
so XDR invents its own using angle-brackets:

var i able- array-declarat ion :
type- i dent var i able - ident '< ' value "> '
type - ident var i able - ident '< ' "> '

� The maximum size is specified between the angle brackets. The size
may be omitted, indicating that the array may be of any size:

int he i ghts<1 2> ;
int wi dths<> ;

/• at most 1 2 i tems •/
/• any number of i tems • /

46 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

Since variable-length arrays have no explicit syntax in C, these
declarations are actually compiled into "structs." For example, the
"heights" declaration gets compiled into the following struct:

struct (
uint he i ghts len ;
int •he ights -val ;

} he i ghts ; -

I• # of i tems in array •I
I• po inter to array •I

Note that the number of items in the array is stored in the l en
component, and the pointer to the array is stored in the va l

-
com

ponent. The first part of each of these component's names is the
same as the name of the declared XDR variable.

4) Pointer Declarations are made in XDR exactly as they are in C.
You cannot really send pointers over the network, but you can use
XDR pointers for sending recursive data types such as lists and
trees. The type is actually called "optional-data," not "pointer," in
XDR language:

po inter-declarat ion :
type - i dent " * " var i able- ident

Example:
l i st i tem •next ; - ->

3.5. 9 Special Cases

l i st item •next ;

There are a few exceptions to the rules described above.

Booleans: C has no built-in boolean type. However, the RPC library
does have a boolean type called boo l t that is either TRUE or
FAL S E . Things declared as type boo l-in XDR language are com
piled into boo l _ t in the output header file.

Example:
bool marr i ed ; - -> bool_t marr ied ;

Strings: C has no built-in string type, but instead uses the null
terminated "char *" convention. In XDR language, strings are
declared using the "string" keyword and compiled into "char *"s in
the output header file. The maximum size contained in the angle
brackets specifies the maximum number of characters allowed in the
strings (not counting the NULL character) . The maximum size may
be - left off, indicating a string of arbitrary length.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

Examples:
str ing name<3 2> ;
s tr ing longname<> ;

- ->
- ->

char *name ;
char •longname ;

47

Opaque Data: Opaque data is used in RPC and XDR to describe
untyped data, that is, just sequences of arbitrary bytes. It may be
declared either as a fixed or variable length array.
Examples:

opaque d i skblock [5 1 2] ; - ->

opaque f i l edata<1 0 24> ; - ->

char d i skblock [5 1 2] ;

struct (
uint f i l edata len ;
char • f i l edata _val ;

I f i l edata ;

Voids: In a void declaration, the variable is not named. The
declaration is just "void" and nothing else. Void declarations can
only occur in two places: union definitions and program definitions
(as the argument or result of a remote procedure).

48 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

4. RPC GUIDE

4.1 Introduction

This section is intended for programmers who wish to write network � applications using remote procedure calls (explained below), thus J
avoiding low-level system primitives based on sockets. The pro
grammer must be familiar with the C programming language and
should have a working knowledge of network theory.

Programs that communicate over a network need a paradigm for
communication. A low-level mechanism might send a signal on the
arrival of incoming packets, causing a network signal handler to
execute. A high-level mechanism would be the Ada*
r ende zvou s . The method used by the NFS is the Remote Pro
cedure Call (RPC) paradigm, in which a client communicates with a
server. In this process, the client first calls a procedure to send a
data packet to the server. When the packet arrives, the server calls
a dispatch routine, performs the service requested, sends back the
reply, and the procedure call returns to the client.

The RPC interface is divided into three layers. The highest layer is
totally transparent to the programmer. To illustrate, at this level a
program can contain a call to rnu s e r s () , which returns the
number of users on a remote machine. The user need not be aware
that RPC is being used, since the call is simply made in a program,
just as rna 1 1 o c () would be called.

At the middle layer, the routines r e g i s t e rrpc () and
c a 1 1 rp c () are used to make RPC calls: r eg i s t e rr p c ()
obtains a unique system-wide number, while c a 1 1 rpc () executes
a remote procedure call. The rnus e r s () call is implemented
using these two routines. The middle-layer routines are designed for
most common applications and shield the user from needing to know
about sockets.

The lowest layer is used for more sophisticated applications, which
may want to alter the defaults of the routines. At this layer, sockets
used for transmitting RPC messages can be explicitly manipulated.
This level should be avoided if possible.

Although this section only discusses the interface to C, remote pro
cedure calls can be made from any language. Even though this sec
tion discusses RPC when it is used to communicate between
processes on different machines, it works just as well for communi
cation between different processes on the same machine.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

Following is a diagram of the RPC paradigm:

client
program

Machine A

program
continues

I
I
I
I
I
I
I
I
I
I

callrpc()
functiOn

return
reply

I
I
I
I

service 1
daemon 1

I
I
I

execute
request

I
I
I
I
I
I
I

request
completed

I
I
I
I
I
I
I

v

call
serv1ce

return
answer

M achin

Figure 4. Network Communications With RPC

49

e B

service
executes

50 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

4.2 Introductory Examples

4.2. 1 Highest Layer

Consider a program that needs to know how many users are logged
in to a remote machine. This can be done by calling the library �
routine r nu s e r s () as illustrated below:

#include <std io . h>

ma i n (argc , argv)
int argc ;
char • •argv ;

uns i gned num ;

i f (argc < 2)
fpr intf (stderr , •usage : rnusers hostname \ n " l ;
exi t (1) ;

i f ((num = rnus ers (argv [1])) < 0) (
fpr intf (stderr , " error : rnusers \n ") ;
exi t (- 1) ;

printf (" Xd users on %s\n " , num , argv [1]) ;
exi t (O) ;

RPC library routines such as rnus e r s () are included in the C
library l i brpc svc . a . Thus, the program above could be com- �
piled with:

$ c c program . c - lrpcsvc - lrpc - l inet

Some other library routines are r s tat () to gather remote perfor
mance statistics and ypma tch () to glean information from the
NIS. The NIS library routines are documented in the manual entry
ypclnt (3N) in the INTERACTIVE Network Information Service
Guide.

4.2.2 Intermediate Layer

The simplest interface, which explicitly makes RPC calls, uses the
functions c a l l rp c () and r e g i s t e r �pc () . Using this
method, another way to get the number of remote users is:

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

#include <std i o . h>
#include <rpc/rpc . h>
#inc lude <rpcsvc/rusers . h>

ma i n (argc , argv)
int argc ;
char • •argv ;

uns i gned long nusers ;

i f (argc < 2) (
fpr intf (stderr , "usage : nusers hostname \ n " l ;
exi t (- 1) ;

51

i f (c allrpc (argv [1] , RUSERSPROG , RUSERSVERS , RUSERSPROC NOM ,
xdr vo id , 0 , xdr u long , &nusers) I = 0) (-

-fpr intf (stderr � " error : callrpc \ n ") ;
ex i t (1) ;

pr intf (" number of users on %s i s %d\n " , argv [1] , nus ers) ;
exi t (0) ;

A program number, version number, and procedure number define
each RPC procedure. The program number defines a group of
related remote procedures, each of which has a different procedure
number. Each program also has a version number, so when a minor
change is made to a remote service (adding a new procedure, for

,.....,., example), a new program number does not have to be assigned.

When a procedure is to be called to find the number of remote
users, the appropriate program, version, and procedure numbers are
looked up in a manual, in a manner similar to looking up the name
of memory allocator when memory is to be allocated.

The simplest routine in the RPC library used to make remote pro
cedure calls is c a 1 1 r p c () . It has eight parameters. The first is
the name of the remote machine. The next three parameters are
the program, version, and procedure numbers. The following two
parameters define the argument of the RPC call, and the final two
parameters are for the return value of the call. If it completes suc
cessfully, c a 1 1 r p c () returns zero, but nonzero otherwise. The
exact meaning of the return codes is found in < r p c / c lnt . h >
and is, in fact, an e num c l nt _ s t at cast into an integer.

Since data types may be represented differently on different
('*" machines, c a l l rp c () needs both the type of the RPC argument

and a pointer to the argument itself (and similarly for the result).
For RUS ERS PROC NUM, since the return value is an
uns i gn e d l ong, ca l l rpc () has xdr u l ong as its first
return parameter, which says that the- result is of type

52 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

un s i gn e d l ong, and &nu s e r s as its second return parameter,
which is a pointer to where the l ong result will be placed. Since
RUS ERS PROC NUM takes no argument, the argument parameter
of c a l l rp c (f is xdr _ vo i d.

After trying several times to deliver a message, if c a 1 1 r p c ()
gets no answer, it returns with an error code. The delivery mechan
ism is UDP, which stands for User Datagram Protocol. Methods for
adjusting the number of retries or for using a different protocol
require the use of the lower layer of the RPC library, discussed later
in this section. The remote server procedure corresponding to the
above might look like this:

char *
nuser (indata)

char • i ndata ;

stat i c int nusers ;

/ •
* code here to compute the number of users
* and place result in var i able nusers
• /

return ((char • l &nusers l ;

It takes one argument, which is a pointer to the input of the remote �
procedure call (ignored in the above example), and it returns a
pointer to the result. In the current version of C, since character
pointers are the generic pointers, both the input argument and the
return value are cast to char (* .

Normally, a server registers all of the RPC calls it plans to handle
and then goes into an infinite loop waiting to service requests. In
this example, there is only one procedure to register, so the main
body of the server would look like this:

#include <std i o . h>
#include <rpc/rpc . h>
#include <rpcsvc/rusers . h>

char •nuser () ;

main ()
(

}

reqi sterrpc (RUSERSPROG , RUSERSVERS , RUSERSPROC NOM , nuser ,
xdr vo i d , xdr u long) ; -

svc run() ; - - /• never returns •/ � fprintf (stderr , ' Error : svc run returned l \n ' l ;
exi t (1) ;

-

The r e g i s t e rrpc () routine establishes what C procedure
corresponds to each RPC procedure number. The first three

�

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 53

parameters, RUS ERPROG, RUS ERSVERS, and
RUS ERS PROC NUM, are the program, version, and procedure
numbers of the -remote procedure to be registered; nus e r is the
name of the C procedure implementing it; and xdr vo i d and
xdr u l ong are the types of the input to and output from the
procedure.

Only the UDP transport mechanism can use r e g i s t e r r p c () ;
thus, it is always safe in conjunction with calls generated by
c a l l rp c () .

.- The UDP transport mechanism can only deal with argu
ments and results that are reasonably small. The limit is
typically 4 to 8 KB in length.

4.2.3 Assigning Program Numbers

Program numbers are assigned in groups of Ox20000000
(5368709 1 2) according to the following chart:

0 l fffffff defined by Sun Microsystems
20000000 3fffffff defined by user
40000000 5fffffff transient
60000000 7fffffff reserved
80000000 9fffffff reserved
aOOOOOOO bfffffff reserved
cOOOOOOO dfffffff reserved
eOOOOOOO ffffffff reserved

Sun Microsystems* administers the first group of numbers, and the
intent is that they will be identical across all systems and applica
tions. If a customer develops an application that might be of gen
eral interest, that application should be given a number assigned by
Sun* from the first range. The second group of numbers is reserved
for specific customer applications; this range is intended primarily
for debugging new programs. The third group is reserved for appli
cations that generate program numbers dynamically. The final
groups are reserved for future use and should not be used.

4.2.4 Passing Arbitrary Data Types

In the previous example, the RPC call passes a single
un s i gn e d l ong. RPC can handle arbitrary data structures,
regardless of different machines' byte orders or structure layout con
ventions by always converting them to a network standard called

54 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

eXternal Data Representation (XDR) before sending them over the
wire. The process of converting from a particular machine
representation to XDR format is called serializing, and the reverse
process is called deserializing. The type field parameters of
c a l l rp c () and r e g i s t e rrpc () can be a built-in procedure
like xdr u l ong () in the previous example, or a user supplied
one. XDR has these built-in type routines:

xdr i nt ()
xdr - long ()
xdr = short ()

xdr_u_ int () xdr enum ()
xdr u long () xdr-bool ()
xdr=u= short () xdr= str ing ()

As an example of a user-defined type routine, if it was wished to
send the structure:

s truct s imple {
i nt a ;
short b ;

] s imple ;

then c a 1 1 r p c should be called as:
callrpc (hostname , PROGNUM , VERSNUM , PROCNUM , xdr_ s impl e , &s imple • • .) ;

where xdr _ s i mp 1 e () is written as:
#inc lude <rpc/rpc . h>

xdr s imple (xdrsp , s implep)
- XDR •xdrsp ;

s truct s impl e • s imple p ;

i f (l xdr i nt (xdrsp , & s implep->a))
return (0) ;

i f (l xdr short (xdrsp , &s implep->b l l
return (0) ;

return (1) ;

An XDR routine returns nonzero (true in the sense of C) if it com
pletes successfully, and zero otherwise. Since a complete description
of XDR is in section 6, "XDR PROTOCOL SPECIFICATION," this
section only gives a few examples of XDR implementation.

In addition to the built-in primitives, there are also the prefabri
cated building blocks:

xdr array ()
xdr =reference ()

xdr bytes ()
xdr =union ()

To send a variable array of integers, they might be packaged up as �
a structure like this:

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

s truct var intarr {
i nt *data ;
int arrlnth ;

) arr ;

and make an RPC call such as:

55

cal lrpc (hostname , PROGNUM , VERSNUM , PROCNUM , xdr _var intarr , &arr . . .) ;

with xdr _ var i nt a r r () defined as:
xdr_var intarr (xdrsp , arrp)

XDR •xdrsp ;
struct var i ntarr •arrp ;

return (xdr array (xdrsp , &arrp->data , &arrp->arrlnth , MAXLEN ,
s i zeof (int) , xdr _ i nt)) ;

This routine takes as parameters the XDR handle, a pointer to the
array, a pointer to the size of the array, the maximum allowable
array size, the size of each array element, and an XDR routine for
handling each array element.

If the size of the array is known in advance, then the following
could also be used to send out an array of length S I Z E:

i nt i ntarr [S I ZE] ;

xdr _ i ntarr (xdrsp , intarr)
XDR *Xdrsp ;
int intarr [] ;

i nt i ;

for (i = 0 ; i < SIZE ; i + +) {
i f (l xdr int (xdrsp , & intarr [i]))

return (0) ;

return (1) ;

XDR always converts quantities to 4-byte multiples when deserializ
ing. Thus, if either of the examples above involved characters
instead of integers, each character would occupy 32 bits. That is
the reason for the XDR routine xdr byt e s () , which is like
xdr a r r a y () except that it packs- characters. It has four
parameters which are the same as the first four parameters of
xdr a r r ay () . For null-terminated strings, there is also the
xdr

-
s tr i ng () routine, which is the same as xdr byt e s ()

witho-ut the length parameter. On serializing it gets the string
length from s t r l en () , and on deserializing it creates a null
terminated string.

56 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

Here is a final
xdr _ s i mp l e ()
xdr _ s t r i ng ()
pointers:

example that calls the previously written
as well as the built-in functions

and xdr r e f e r enc e () , which chases

s truct f inalexample {
char * Str ing ;
struct s i mple * S i mplep ;

} f inalexample ;

xdr _ f inalexample (xdrsp , f i nalp)
XDR *Xdrsp ;

}

struct f i nalexample *f inalp ;

i f (l xdr string (xdrsp , &f inalp->str ing , MAXSTRLEN))
return (0) ;

i f (l xdr reference (xdrsp , &f inalp->s implep ,
s i zeof (struct s imple) , xdr s i mple))

return (0) ; -
return (1) ;

4.3 Lower Layers of RPC

In the examples given so far, RPC takes care of many details
automatically. This section shows how to change the defaults by
using lower layers of the RPC library. It is assumed that the reader
is familiar with sockets and the system calls for dealing with them. �
4.3. 1 More on the Server Side

A number of assumptions are built into r e g i s t e r rpc () . One
is that the UDP datagram protocol is being used. Another is that
the user does not want to do anything unusual while deserializing,
since the deserialization process happens automatically before the
user's server routine is called. The server for the nus e r s program
shown below is written using a lower layer of the RPC package,
which does not make these assumptions:

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 57

#include <std io . h>
#i nclude <rpc/rpc . h>
#inc lude <rpcsvc/rusers . h>

int nuser () ;

main ()
{

SVCXPRT +transp ;

transp ; svcudp create (RPC ANYSOCK) ;
i f (transp ; ; NULL) {

fpr i ntf (stderr , " couldn ' t create an RPC server \n ") ;
exi t (1) ;

pmap unset (ROSERSPROG , ROSERSVERS) ;
i f (l ave reg i ster (transp , ROSERSPROG , ROSERSVERS , nuser ,

I PPROTO ODP)) {
fpr intf (stderr , " couldn ' t regi ster ROSER serv i ce \n ") ;
exi t (1) ;

svc run () ; / + never returns +/
fprintf (stderr , " should never reach thi s po int \ n ") ;

nuser (rqstp , transp)
struct svc req +rqstp ;
SVCXPRT +t�ansp ;

uns i gned long nusers ;

switch (rqstp->rq_proc)
case NOLLPROC :

i f (l ave sendreply (transp , xdr vo id , 0)) {
fpr intf (�tderr , " couldn ' t reply to RPC cal l \n ") ;
exi t (1) ;

return ;
case ROSERSPROC NOM :

* code here to compute the number of users
* and put in var iable nusers
+ /

i f (l ave s endreply (transp , xdr u long , &nusers)) {
fpr intf (stderr , " couldn ' t reply to RPC ca l l \n ") ;
ex i t (1) ;

return ;
default :

svcerr_noproc (transp) ;
return ;

First, the server gets a transport handle, which is used for sending
out RPC messages. The r e g i s t e r rp c () command uses
s v c udp c r e a t e () to get a UDP handle. If a reliable protocol
is required, s v c t c p c r e a t e () should be called instead. If the
argument to s v c udp c r e at e () is RPC ANYS OCK, the RPC
library creates a socket-on which to send out RPC calls. Otherwise,

58 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

s v c udp c r e a t e () expects its argument to be a valid socket
number. If the user specifies his own socket, it can be bound or
unbound. If it is bound to a port by the user, the port numbers of
s v c ud p c r e a t e () and c l ntudp c r e a t e () (the low-level
client routine) must match. -)
When the user specifies RPC ANYSOCK for a socket or gives an
unbound socket, the system determines port numbers in the follow-
ing way: when a server starts up, it advertises to a port mapper
daemon on its local machine, which picks a port number for the
RPC procedure if the socket specified to svcudp c r e a t e () is
not already bound. When the c l ntudp c r e a t e

-
() call is made

with an unbound socket, the system queries the port mapper on the
machine to which the call is being made and gets the appropriate
port number. If the port mapper is not running or has no port
corresponding to the RPC call, the RPC call fails. Users can make
RPC calls to the port mapper themselves. The appropriate pro-
cedure numbers are contained in the i nc 1 ud e file
< r p c / pmap _ p r o t . h > .

After creating an SVCXPRT, the next step is to call
pma p uns e t () so that if the nu s e r s server crashed earlier, �
any previous trace of it is erased before restarting. More precisely,

.

pmap uns e t () erases the entry for RUS ERS from the port
mapper's tables.

Finally, the program number for nus e r s is associated with the
procedure nu s e r () . The final argument to svc r e g i s t e r ()
is normally the protocol being used which, iii this case, is
I P PROTO UDP . Notice that unlike r e g i s t e rrpc () , there
are no XDR routines involved in the registration process. Also,
registration is done on the program, rather than procedure, level.

The user routine nus e r () must call and dispatch the appropriate
XDR routines based on the procedure number. Note that two things
are handled by nu s e r () which are handled automatically by
r e g i s t e r r p c () . The first is that procedure NULLPROC
(currently zero) returns with no arguments. This can be used as a
simple test for detecting if a remote program is running. Second,
there is a check for invalid procedure numbers. If one is detected, �
s v c e r r _ nopr o c () is called to handle the error.

The user service routine serializes the results and returns them to
the RPC caller via s v c s endr e p l y () . Its first parameter is
the SVCXPRT handle, the second is the XDR routine, and the third

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 59

is a pointer to the data to be returned. Not illustrated above is how
a server handles an RPC program that passes data. As an example,
a procedure, RUS ERS PROC BOOL, which has an argument
nus e r s and returns TRUE or-FAL S E depending on whether there
are nus e r s logged on can be added. It would look like this:

case RUS ERSPROC BOOL : {
i nt booi ;
uns igned nuserquery ;

i f (l ave getargs (transp , xdr u int , &nuserquery)) {
svcerr decode (transpi ; -

return'i

• code to set nusers = number of users

if (nuserquery == nusers)
bool = TRUE ;

e l s e
bool = FALSE ;

i f (l ave sendreply (transp , xdr bool , &bool)) {
-fpr intf (stderr , " couldn ' t reply to RPC cal l \ n " l ;

exi t (1) ;

return ;

� The relevant routine is svc g e t a r g s {) , which takes as argu
ments an SVCXPRT handle� the XDR routine, and a pointer to
where the input is to be placed.

4.3.2 Memory Allocation With XDR

XDR routines not only do input and output, they also do memory
allocation. This is why the second parameter of xdr a r r a y {) is
a pointer to an array, rather than the array itself. If it is NULL,
then xdr a r r ay {) allocates space for the array and returns a
pointer to 11:, putting the size of the array in the third argument. As
an example, consider the following XDR routine,
xdr c h a r a r r 1 {) , which deals with a fixed array of bytes with
length S I Z E :

xdr chararr 1 (xdrsp , chararr)
- XDR •xdrsp ;

char chararr [J ;

char •p ;
int len ;

p = chararr ;
len = SIZE ;
return (xdr_bytes (xdrsp , &p , &len , SIZE)) ;

It might be called from a server like this,

60 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

char chararr [SIZE] ;

svc_getargs (transp , xdr_chararr 1 , chararr) ;

where char a r r has already allocated space. If XDR was wanted
to do the allocation, this routine would have to be rewritten in the) following way:

xdr_ chararr2 (xdrsp , chararrp)
XDR *Xdr!;!p ;
char * * chararrp ;

int len ;

len = SIZE ;
return (xdr bytes (xdrsp , chararrp , &len , S I ZE)) ;

The RPC call might then look like this:
char •arrptr ;

arrptr = NULL ;
svc getargs (transp , xdr_chararr2 , &arrptr) ;
I * -

* use the result here
*I

svc_freeargs (xdrsp , xdr chararr2 , &arrptr) ;

After using the character array, it can be freed with
s v c f r e e a r g s () . In the routine xdr f i n a 1 e xamp 1 e ()
given-earlier, if f i na 1 p ->str i ng was NULL in the call

svc_getargs (transp , xdr_f inalexample , &f inalp) ;

then
svc freeargs (xdrsp , xdr_f inalexample , &f inalp) ;

frees the array allocated to hold f i na 1 p - > s tr i ng; otherwise,
it frees nothing. The same is true for f i na 1 p - > s i mp 1 e p.

To summarize, each XDR routine is responsible for serializing,
deserializing, and allocating memory. When an XDR routine is
called from c a 1 1 r p c () , the serializing part is used. When called
from s v c g e t a r g s () , the deserializer is used. When called
from s v c

-
f r e e a rg s () , the memory deallocator is used. When

building simple examples like those in this section, a user does not
have to worry about the three modes.

4.3.3 The Calling Side �

When c a 1 1 r p c is used, there is no control over the RPC delivery
mechanism or the socket used to transport the data. To illustrate

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 61

the layer of RPC that allows adjustment of these parameters, con
sider the following code to call the nus e r s service:

#inc lude <std i o . h>
#include <rpc/rpc . h>
#include <rpcsvc/rusers . h>
#include <sys/socket . h>
#include <sys/fs/nfs/time . h>
#inc lude <netdb . h>

ma i n (argc , argv)
int argc ;
char • •argv ;

struct hostent •hp ;
s truct t i meval pertry t imeout , total t i meout ;
struct sockaddr in server addr ; -
int addrlen , sock = RPC ANYSOCK ;
reg i ster CLIENT • c l i ent;
enum c lnt stat c lnt stat ;
uns i gned long nusers ;

i f (argc < 2) {
fprintf (stderr , " usage : nusers hostname \ n ") ;
exit (- 1) ;

i f ((hp = gethostbyname (argv [1])) = = NULL) {
fpr intf (stderr , " c annot get addr for ' %s ' \n " , argv [1)) ;
ex i t (- 1) ;

pertry t imeout . tv sec = 3 ;
pertry-t i meout . tv-usec = 0 ;
addrl en = s i zeof (struct sockaddr i n) ;
bcopy (hp->h addr , (caddr t) &server addr . s in addr , hp->h length) ;
s erver addr : s i n fami ly = -AF INET ; - - -
server- addr . s in-port = 0 ; -
i f ((c l i ent = c lntudp create (&server addr , RUSERSPROG ,

RUSERSVERS , pertry t imeout , &sock)) NULL) {
perror (" c lntudp create ") ;
exi t (- 1) ; -

total t imeout . tv sec = 2 0 ;
total - t imeout . tv-usec = 0 ;
c lnt stat = c lnt- call (c l ient , RUSERSPROC NOM , xdr_vo i d , 0 ,

xdr u long , &nusers , total t imeout) ; -
i f (c lnt stat I = RPC SUCCESS) 1

clnt perror (cl i ent , " rpc ") ;
exit(- 1) ;

c lnt_destroy (c l i ent) ;

The low-level version of c a l l r p c () is c l nt c a l l () . It takes
a C L I ENT pointer rather than a host name. The parameters to
c l nt c a l l () are a C L I ENT pointer, the procedure number, the
XDR routine for serializing the argument, a pointer to the argu
ment, the XDR routine for deserializing the return value, a pointer
to where the return value will be placed, and the time in seconds to
wait for a reply.

62 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

The C L I ENT pointer is encoded with the transport mechanism.
The c a l l rp c () command uses UDP; thus it calls
c l ntudp c r e a t e () to get a CLI ENT pointer. To get TCP
(TransmissiOn Control Protocol}, c l ntt c p c r e a t e () would be
used. - l
The parameters to c l ntudp c r e a t e () are the server address,
the length of the server address, the program number, the version
number, a timeout value (between tries), and a pointer to a socket.
The final argument to c l nt c a l l () is the total time to wait for
a response. Thus, the number of tries is the c l nt c a l l ()
timeout divided by the c 1 n t udp _ c r e a t e () timeout. -

One thing should be noted when using the c l nt d e s t r oy ()
call - it deallocates any space associated with the CL I ENT handle,
but it does not close the socket associated with it, which was passed
as an argument to c 1 n t udp c r e a t e () . The reason is that if
there are multiple client bandies using the same socket, then it is
possible to close one handle without destroying the socket that other
handles are using.

/

To make a stream connection, the ' call to c l ntudp c r e a t e ()
is replaced with a call to c l nttcp _ c r e at e () :

-
�

c lnttcp create (&server addr , prognum , versnum , &socket , input s i z e , - - outputs i ze) ; -

There is no timeout argument; instead the receive and send buffer
sizes must be specified. When the c 1 n t t c p c r e a t e () call is
made, a TCP connection is established. All RPC calls using that
C L I ENT handle would use this connection. The server side of an
RPC call using TCP has svcudp c r e a t e () replaced by
s vc t c p _ c r e a t e () .

-

4.4 Other RPC Features

This section discusses some other aspects of RPC.

4.4. 1 Select on the Server Side

Suppose a process is processing RPC requests while performing some
other activity. If the other activity involves periodically updating a
data structure, the process can set an alarm signal before calling ') s v c run () . However, if the other activity involves waiting for a
file descriptor, the svc run () call will not work. The code for
s v c _ run () is as follows:

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 63

voi d
svc run ()
(-

int readfds ;

for (; ; l (
readfds = svc fds ;
switch (s elect (3 2 , &readfds , NULL , NULL , NULL)) (
case - 1 :

case 0 :

i f (·errno = = EINTR)
cont inue ;

perror (" rstat : select ") ;
return ;

break ;
default :

svc_getreq (readfds) ;

The s v c run () command can be bypassed, and
s v c g e treq () called directly. To do this the file descriptors of
the socket(s) associated with the programs which are being waited
for must be known. Thus, users can write their own s e l e c ts,
which wait on both the RPC socket and their own descriptors.

4.4.2 Broadcast RPC

The pmap and RPC protocols implement broadcast RPC. Here are
the main differences between broadcast RPC and normal RPC calls:

1 . Normal RPC expects one answer, whereas broadcast RPC
expects many answers (one or · more answer from each
responding machine).

2 . Broadcast RPC can only be supported by packet-oriented (con
nectionless) transport protocols like UDP /IP.

3 . The implementation of broadcast RPC treats all unsuccessful
responses as garbage by filtering them out. Thus, if there is a
version mismatch between the broadcaster and a remote ser
vice, the user of broadcast RPC never knows.

4. All broadcast messages are sent to the portmap port. Thus,
only services that register themselves with their portmapper
are accessible via the broadcast RPC mechanism.

64 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

4.4.2. 1 Broadcast RPC Synopsis.
#include <rpc/pmap_clnt . h>

enum c lnt_ stat c lnt_stat ;

clnt stat =

clnt-broadcast (prog , vera , proc , xargs , argsp , xresults , re sultsp ,
eachresult)
ulong
ulong
ulong
xdrproc t
caddr t
xdrproc t
c addr · t -
bool _t

prog ;
vera ;
proc ;
xargs ;
argsp ;
xresults ;
resultsp ;
(• eachresult) () ;

/• program number •/
/• vers i on number •/
/• procedure number • /
/• xdr rout ine f o r args • /
/• po inter to args • /
/ • xdr rout ine for results • /
/• po inter to results • /
/• c a l l w ith each result •/
/• obtained •/

The procedure e a c hr e s ul t () i s called each time a valid result
is obtained. It returns a boolean that indicates whether or not the
client wants more responses:

bool_t done ;

done = eachresul t (resultsp , raddr)
caddr t re sultsp ;
struct sockaddr in •raddr ; / • address of machine that sent •/ - /• response •/

If d o n e is TRUE, broadcasting stops and c l nt b r o a d c a s t ()
returns successfully. Otherwise, the routine waits for another
response. The request is rebroadcast after a few seconds of waiting.
If no responses come back, the routine returns with
RPC T I MEDOUT. To interpret c l nt s t at errors, feed the
error-code to c l nt p e rrno () .

-

4.4.3 Batching

The RPC architecture is designed so that clients send a call message
and wait for servers to reply that the call succeeded. This implies
that clients do not compute while servers are processing a call. This
is inefficient if the client does not want or need an acknowledgment
for every message sent. It is possible for clients to continue comput
ing while waiting fo1· a response, using RPC batch facilities.

RPC messages can be placed in a "pipeline" of calls to a desired
server; this is called hatching. Batching assumes that:

1 . Each RPC call in the pipeline requires no response from the
server, and the server does not send a response message.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 65

2. The pipeline of calls is transported on a reliable byte stream
transport such as TCP jiP (Transmission Control
Protocol/Internet Protocol).

Since the server does not respond to every call, the client can gen
erate new calls in parallel with the server executing previous calls.
Furthermore, the TCP jiP implementation can buffer up many call
messages and send them to the server in one wr i t e system call.
This overlapped execution greatly decreases the interprocess com
munication overhead of the client and server processes and the total
elapsed time of a series of calls.

Since the hatched calls are buffered, the client should eventually do
a legitimate call in order to flush the pipeline.

A contrived example of hatching follows. Assume a string render
ing service (like a window system) has two similar calls - one
renders a string and returns void results, while the other renders a
string and remains silent. The service (using the TCP jiP transport)
may look like:

#include <std io . h>
#include <rpc/rpc . h>

� #include <rpcsvc/windows . h>

vo i d windowd i spatch () ;

ma in ()
{

SVCXPRT •transp ;

transp = svctcp create (RPC ANYSOCK , 0 , 0) ;
i f (transp = = NULL) {

fpr intf (stderr , " couldn ' t create an RPC s erver\n ") ;
exi t (1) ;

pmap unset (WINDOWPROG , WINDOWVERS) ;
i f (l ave reg i s ter (transp , WINDOWPROG , WINDOWVERS , windowd i spatch ,

IPPROTO TCP)) {
fprintf (stderr , " couldn ' t reg i ster WINDOW servi c e \n ") ;
exi t (1) ;

ave run () ; / • never returns • /
fprintf (stderr , " should never reach thi s po int \ n " l ;

66 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

vo i d
w i ndowd i spatch (rqstp , transp)

s truct svc req •rqstp ;
SVCXPRT • trans p ;

char * S = NOLL ;

s w i t ch (rqstp->rq proc) {
c a s e NOLLPROC :

i f (l ave s endreply (trans p , xdr vo i d , 0))
fpr i ntf (stderr , " couldn ' t reply to RPC c a l l \ n " l ;
exi t (1) ;

return ;
c a s e RENDERSTRING :

i f (l ave getargs (transp , xdr wrapst r i ng , &s)) {
fpr intf (s tderr , " couldn ' t de code arguments \ n " l ;
svcerr_decode (transp) ; I • t e l l c a l l e r he • I

I • screwed u p • I
break ;

I •
* c a l l here t o t o render the str i ng s
• I

i f (l ave s endreply (transp , xdr vo i d , NOLL))
fpr intf (s tderr , " couldn ' t reply to RPC c a l l \ n ") ;
ex i t (1) ;

break ;

c a s e RENDERSTRING BATCHED :
i f (l ave getargs (transp , xdr wraps tr i ng , &s)) { �

fpr i ntf (stderr , " couldn ' t decode argument s \ n ") ; 1

I •

I •
* w e a r e s i lent in the f a c e of protocol
* errors
•I

break ;

* c a l l here to to render the str i ng s ,
* but s ends no reply l

break ;
d e f aul t :

/ *

svcerr noproc (transp) ;
r e turn;

* now f r e e s t r i ng al located whi l e decod i ng argument s
• I

svc _ f r e eargs (transp , xdr_wrapst r i ng , &s) ;

Of course the service could have one procedure that takes the string
and a boolean to indicate whether or not the procedure should
respond.

In order for a client to take advantage of hatching, the client must
perform RPC calls on a TCP /IP-based transport, and the actual calls
must have the following attributes:

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

1 . The result's XDR routine must be 0 (NULL).

2. The RPC call's timeout must be 0.

67

Following is an example of a client that uses hatching to render a
bunch of strings; the hatching is flushed when the client gets a null
string:

#inc lude <s td i o . h>
#i nclude <rpc/rpc . h>
#inc lude <rpcsvc/w i ndows . h>
#inc lude <sy s / socket . h>
#inc lude <sys / f s /nfs/t ime . h>
#i nc lude <ne tdb . h>

ma i n (argc , argv)
int argc ;
char • • argv ;

s truct hos tent •hp ;
s truct t i meval pertry t imeout , total t imeout ;
s truct s o ckaddr in s e;ver addr ;

-

int addr l en , sock = RPC ANYSOCK ;
r e g i st e r CLIENT • c l i ent i
enum c lnt stat c lnt stat ;
char buf [1 0 0 0] ;

-

char • s = buf ;

/ •
• i n i t i a l a s i n examp l e 3 . 3
• /

i f ((c l i ent = c lnttcp creat e (&server addr , WINDOWPROG ,
WINDOWVERS , &sock: O , 0)) = = NULL)

perror (' c lnttcp create ") ;
ex i t (- 1) ;

-

total t i meout . tv s e c = 0 ;
total

-
t i meout . tv

-
usec = 0 ;

whi l e
-

(s canf (' %s • , s) I = EOF)

/ •

c lnt s t a t = c l nt c a l l (c l i ent , RENDERSTRING BATCHED ,
xdr wraps t r i ng , &s , NULL , NULL , total t imeout) ;

i f (c lnt stat I = RPC SUCCESS) (-

c lnt perror (c l i ent , ' batched rpc ') ;
e x i t(- 1) ;

* now f lush the p i pe l i ne
• /

total t i meout . tv s e c = 2 0 ;
c l nt s tat = c lnt

-
c a l l (c l i ent , NULLPROC ,

xdr vo i d , NULL , xdr vo i d , NULL , tota l t i meout) ;
i f (c lnt stat I = RPC SUCCESS) (

c lnt perror (cl i ent , ' rp c ') ;
e x i t(- 1) ;

c l n t _ d e s troy (c l i ent) ;

68 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

Since the server sends no message, the clients cannot be notified of
any of the failures that may occur. Therefore, clients are on their
own when it comes to handling errors.

The above example was completed to render all of the (2000) lines � in the file / e t c / t e rmc ap. The rendering service did nothing '
but to throw the lines away. The example was run in the following
four configurations:

1 . Machine to itself, regular RPC

2. Machine to itself, hatched RPC

3 . Machine to another, regular RPC

4. Machine to another, hatched RPC

The results are as follows:

1 . 50 seconds

2. 1 6 seconds

3. 52 seconds

4. 1 0 seconds

Running f s c a n f () on / e t c / t e rmcap only requires 6
seconds. These timings show the advantage of protocols that allow
for overlapped execution, though these protocols are often hard to
design.

4.4.4 Authentication

In the examples presented so far, the caller never identified itself to
the server, and the server never required an ID from the caller.
Clearly, some network services, such as a network file system,
require stronger security measures than those that have been
presented so far.

In reality, every RPC call is authenticated by the RPC package on
the server, and similarly, the RPC client package generates and
sends authentication parameters. Just as different transports
(TCP fiP or UDP /IP) can be used when creating RPC clients and
servers, different forms of authentication can be associated with �
RPC clients; the default authentication type used as a default is type
non e .

The authentication subsystem of the RPC package is open ended;
that is, numerous types of authentication are easy to support.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 69

However, this section deals only with INTERACTIVE UNIX Operat
ing System type authentication, which besides none is the only
supported type.

4.4.4. 1 The Client Side. When a caller creates a new RPC client
handle as in:

c lnt = c lntudp _ c r eate (addr e s s , prognum , versnum , wa i t , sockp)

the appropriate transport instance defaults the associate authentica
tion handle to be:

c lnt->c l _ auth = authnone _create () ;

The RPC client can choose to use the INTERACTIVE UNIX Operat
ing System type authentication by setting c 1 n t - > c 1 au th after
creating the RPC client handle:

-

c lnt->c l _ auth = authunix_ create_de f ault () ;

This causes each RPC call associated with c 1 n t to carry with it
the following authentication credentials structure:

/ *
* UNIX type credent i a l s .
* I

s truct authun i x parma (
ulong a�p t i me ;

) ;

char *aUp machname ;
int aup � i d ;
i nt aup

-
g i d ;

u i nt aup= len ;

int *aup_g i d s ;

I* credent i a l s creat i on t ime * /
I * h o s t name of c l i ent mach ine * /
/ * c l i ent ' s U N I X e f f e c t i ve u i d * /
/ * c l i ent ' s current UNIX group I D */
I * the e l ement l e ngth of aup gids * /
I * array * /

-

I * array of groups to wh i ch user * /
I * belongs * /

These fields are set by authun i x c r e a t e d e f au 1 t () by
invoking the appropriate system calls.

- -

Since the RPC user created this new type of authentication, he is
responsible for destroying it with:

auth _ d e s troy (c lnt ->c l _ auth) ;

4.4.4.2 The Server Side. It is more difficult for service implemen
tors dealing with authentication issues since the RPC package passes
the service dispatch routine a request that has an arbitrary authenti
cation type associated with it. Consider the fields of a request han
dle passed to a service dispatch routine:

70 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

* An RPC S e rv i c e reque s t

s truct svc req
ulong
u long

rq_ prog ;
rq_vers ;

I• serv i c e program number • I
I• serv i c e protocol ver s i on • I
I • number • I

I ;

ulong rq proc ; I • the de s i red procedure number•/
s truct opaque auth rq_cred ; /* raw credent i a l s f rom the • I

I• • w i r e " • I
caddr t rq_c lntcred ; I• read only , cooked credent i a l s • I

The r q c r e d i s mostly opaque, except for one field of interest -
the type -of authentication credentials:

I •
* Authent i cat i on info . Mostly opaque to the programme r .
• I

s truct opaque auth {

I ;

enum t oa f l avor ;
cadd� t oa

-
bas e ;

u i nt oa= l ength ;

I • type of credent i a l s • I
I• addr e s s of more auth s tuf f • I
I • not to exceed MAX _AUTH_BYTES • I

The RPC package guarantees the following to the service dispatch
routine:

1 . That the request's r q c r e d is well formed. Thus, the ser-
vice implementor - may inspect the request's 'l
r q c r e d . o a f l avor to determine which type of authen-
tication the calier used. The service implementor may also
wish to inspect the other fields of rq c r e d if the type is not
one of the types supported by the RPC package.

2. That the request's rq c l nt c r e d field is either NULL or
points to a well formed structure that corresponds to a sup
ported type of authentication credentials. As only INTER
ACTIVE UNIX System type is currently supported,
r q _ c l n t c r e d could be cast to a pointer to an
authun i x parms structure. If rq c l nt c r e d is
NULL, the service implementor may wish to-inspect the other
(opaque) fields of rq c r e d in case the service knows about
a new type of authentication that the RPC package does not
know about.

The remote users' service example can be extended so that it com-
putes results for all users except UID 1 6: l

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 71

nus e r (rqstp , transp)
s truct s v c _ req •rqstp ;
SVCXPRT • t ransp ;

struct authun i x parma •un i x cred ;
i n t u i d ;
uns i gned long nus e r s ;

I •
* w e don ' t care about authent i cat i on f o r the nul l procedure
• I

i f (rqstp ->rq proc = = NULLPROC) {

I •

i f (l svc
-

s endreply (transp , xdr vo i d , 0))
fpr i nt f (stderr , " couldn ' t reply to RPC c a l l \ n ") ;
ex i t (1) ;

r e turn ;

* now g e t the u i d
• I

swi tch (rqstp->rq_cred . oa f l avor) {
c a s e AUTH UNIX :

un i x
-

cred = (struct authun i x parma •) rqstp->rq_ c lntcred ;
u i d ; un i x cred->aup u i d ;

-

break ;
- -

c a s e AUTH NULL :
d e f aul t :

svcerr _we akauth (transp) ;
r e turn ;

swi tch (rqstp->rq_proc)
c a s e RUSERS PROC NUM :

I •
* make sure the cal l er i s a l lowed to c a l l th i s
* procedure .
• I

i f (u i d = = 1 6)

I •

svcerr
re turn ;

systemerr (transp) ;

* code here to compute the number of u s e r s
* a n d put i n var i able nus ers
• I

i f (l ave s endr eply (transp , xdr u long , &nu s e r s)) {
fpr intf (stderr , ' could� ' t reply to RPC c a l l \ n ') ;
exi t (1) ;

return ;
default :

svcerr _noproc (transp) ;
return ;

A few things should be noted here. First, it is customary not to
check the authentication parameters associated with the
NUL LPROC (procedure number 0). Second, if the authentication
parameter's type is not suitable for a particular user's service,

72 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

s v c e r r we akauth () should be called. Finally, the service
protocol itself should return status for access denied; in the case of
the above example, the protocol does not have such a status, so the
service primitive s v c e r r _ s y s t emerr () is called instead.

The last point underscores the relationship between the RPC authen
tication package and the services; RPC deals only with authentica
tion and not with individual services' access control. The services
themselves must implement their own access control policies and
reflect these policies as return statuses in their protocols.

4.5 More Examples

4.5. 1 Versions

By convention, the first version number of program FOO is
F OOVERS ORI G, and the most recent version is FOOVERS . Sup
pose there 1s a new version of the nus e r program that returns an
un s i gn e d s h o r t rather than a l ong. If this version was
named RUS ER S VERS S HORT, then a server that wants to support
both versions would do a double register.

i f (l ave r e g i s t e r (transp , RUSERSPROG , RUSERSVERS ORIG , nus e r ,
I PPROTO TCP)) I -

fpr intf (s tderr , " couldn ' t regi ster RUSER s e rv i c e \ n ") ;
exi t (1) ;

i f (l ave r eg i s t e r (transp , RUSERSPROG , RUSERSVERS SHORT , nus e r ,
IPPROTO TCP)) I

fpr intf (s tderr , " couldn ' t regi ster ROS ER s e rv i c e \ n ") ;
ex i t (1) ;

Both versions can be handled by the same C procedure:

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

nus er (rqstp , transp)
struct svc_req •rqstp ;
SVCXPRT •transp ;

uns i gned long nusers ;
uns i gned short nusers2

swi tch (rqstp->rq_proc)
case NULLPROC :

i f (I svc sendreply (transp , xdr vo id , 0)) I
fprintf (stderr , " couldn ' t-reply to RPC c a l l \n ") ;
exi t (1) ;

return ;
case RUSERSPROC _NUM :

* code here to compute the number of users
* and put in var i able nusers
•I

nusers2 = nusers ;
i f (rqstp->rq vers = = RUSERSVERS ORIG) I

73

i f (l svc- sendreply (transp , idr u long , &nusers)) I
fpr intf (stderr , ' couldn ' t ;eply to RPC call \n ') ;
exit (1) ;

e l s e
i f (l svc sendreply (transp , xdr u short , &nusers 2)) I

fpr intf (stderr , ' couldn ' t ;eply to RPC cal l \n ") ;
exi t (1) ;

return ;
defaul t :

svcerr_noproc (transp) ;
return ;

4.5.2 TCP

Here is an example that is essentially r ep. The initiator of the
RPC s nd () call takes its standard input and sends it to the server
r c v () , which prints it on standard output. The RPC call uses
TCP. This also illustrates an XDR procedure that behaves
differently on serialization than on deserialization:

74 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

/ •
* The xdr rout ine :
*
* on decode , read from wire , wr i t e onto fp
* on encode , read f rom fp , wr ite onto w i r e
• /

#inc lude <std i o . h>
#inc lude <rpc/rpc . h>

xdr rcp (xdrs , fp) -
XDR •xdr s ;
FILE • f p ;

uns i gned l ong s i z e ;
char buf [MAXCHUNK] , •p ;

i f (xdrs ->x_op = = XDR FREE) / • noth i ng to free • /
return (1) ;

-

wh i l e (1) {
i f (xdrs ->x op XDR ENCODE) {

i f ((s i z e = fread (buf , s i zeof (char) , MAXCHUNK , fp l l
0 && ferror (fp)) {

p buf ;

fpr i ntf (stderr , ' couldn ' t freadO) ;
ex i t (1) ;

i f (l xdr byte s (xdrs , &p , &s i z e , MAXCHUNK))
return (0) ;

i f (s i z e = = 0)
return (1) ;

i f (xdrs ->x op = = XDR DECODE) { �
i f (fwr i te (buf , s i zeof (char) , s i z e , f p) I = s i z e) ,�

fprintf (stderr , ' couldn ' t fwr i t e O) ;
exi t (1) ;

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

I •
* The s ender rout ines
• I

#include <std io . h>
#include <netdb . h>
#include <rpclrpc . h>
#include <syslsocket . h>
#inc lude <syslfslnfsltime . h>

ma i n (argc , argv)
i nt argc ;
char * *argv ;

i nt err ;

i f (argc < 2) {
fpr intf (stderr , " usage : %s server-name \n ' , argv [O]) ;
exi t (- 1) ;

75

i f ((err = callrpctcp (argv [1] , RCPPROG , RCPPROC FP , RCPVERS ,
xdr rep , std i n , xdr vo i d , 0)) I = 0) { -

c lnt perrno (err) ;
fpr intf (stderr , • couldn ' t make RPC cal l \n ") ;
exit (1) ;

c a l lrpctcp (host , prognum , procnum , versnum , inproc , i n , outproc , out)
char *host , * i n , •out ;
xdrproc _ t inproc , outproc ;

struct sockaddr in server addr ;
int socket = RPC ANYSOCK ;

enum clnt stat c lnt stat ;
struct hostent •hp ; -
reg i ster CLIENT • c l i ent ;
struct t i meval total_t imeout ;

i f ((hp = gethostbyname (host)) NULL) {
fpr intf (stderr , " c annot get addr for ' %s ' \n " , host) ;
exi t (- 1) ;

bcopy (hp->h addr , (caddr t) &server addr . s in addr , hp->h_ length) ;
s erver addr� s in fami ly = -AF INET ; - -

s e rver-addr . s in-port = 0 ; -
i f ((c l i ent = c lnttcp create (&server addr , prognum ,

versnum , &socket , BUFSIZ , BUFSIZ) l = = NULL)
perror (" rpctcp create ") ;
exi t (- 1) ; -

total t imeout . tv sec = 2 0 ;
total -t i meout . tv-usec = 0 ;
c lnt stat = c lnt- call (c l i ent , procnum , inproc , i n ,

outproc , out , -total t imeout) ;
c lnt destroy (c l i ent) -
retu�n ((i nt) clnt_stat) ;

76 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

/*
* The rece iving rout ines
*I

#include <std i o . h>
#include <rpc/rpc . h>

ma in ()
{

reg i s ter SVCXPRT *transp ;

i f ((transp = svctcp create (RPC ANYSOCK , 1 0 24 , 1 0 24))
fpr i ntf (stde;r , " svctcp-create : error \n " l ;
exit (1) ; -

pmap unset (RCPPROG , RCPVERS) ;
i f < l ave regi ster (transp , RCPPROG , RCPVERS , rcp_s ervi ce ,

IPPROTO TCP)) {
fprintf (stderr , " svc_reg i s ter : error \ n ") ;
exi t (1) ;

svc run () ; / * never returns */
fprintf (stderr , " svc run should never return\n ") ;

rep servi ce (rqstp , transp)
- reg i ster struct svc req *rqstp ;

reg i ster SVCXPRT *transp ;

swi tch (rqstp->rq_proc) {
case NULLPROC :

i f (l ave sendreply (transp , xdr vo i d , 0)) {
fpr intf (stderr , " err : ;cp_servi ce ") ;
exi t (1) ;

return ;
case RCPPROC FP :

i f < lave getargs (transp , xdr rep , s tdout)) {
svcerr_decode (transp) ;
return ;

i f (l ave s endreply (transp , xdr vo i d , 0))
fpr intf (stderr , " c an ' t -reply\n " l ;
return ;

exi t (O) ;
default :

svcerr_noproc (transp) ;
return ;

NULL) {

)
/

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 77

4.5.3 Callback Procedures

Occasionally, it is useful to have a server become a client and make
an RPC call back to the process which is its client. An example is

r-" remote debugging, where the client is a window system program,
\ and the server is a debugger running on the remote machine. Most

of the time, the user clicks a mouse button at the debugging win
dow, which converts this to a debugger command, and then makes
an RPC call to the server (where the debugger is actually running),
telling it to execute that command. However, when the debugger
hits a breakpoint, the roles are reversed, and the debugger wants to
make an RPC call to the window program, so that it can inform the
user that a breakpoint has been reached.

In order to do an RPC callback, a program number to make the
RPC call on is needed. Since this will be a dynamically generated
program number, it should be in the transient range, Ox40000000 -
Ox5FFFFFFF. The routine g e t trans i en t () returns a valid
program number in the transient range and registers it with the
portmapper. It only talks to the portmapper running on the same
machine as the g e ttrans i ent () routine itself. The call to

,-.., pmap s e t () is a test and set operation, in that it indivisibly tests
whether a program number has already been registered and if it has
not, reserves it. On return, the s o c kp argument will contain a
socket that can be used as the argument to an
s v c udp _ e r e a t e () or svctcp _ e r e a t e () call.

78 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

#include <atd i o . h>
#include <rpclrpc . h>
#include <ayalaocket . h>

gettrana i ent (proto , vera , aockp)
int * BOCkp ;

stat i c int prognum = Ox4 0 0 0 0 0 0 0 ;
int a , len , aocktype ;
atruct aockaddr_ i n addr ;

awitch (proto) (
case IPPROTO UDP :

aocktype = SOCK_DGRAM ;
))reak ;

case IPPROTO TCP :

default :

aocktype = SOCK_STREAM ;
))reak ;

fpr intf (atderr , • unknown protocol type \ n ") ;
return (0) ;

i f (• aockp = = RPC ANYSOCK) (

e l s e

i f ((a c socket (AF INET , aocktype , 0)) < 0) (
perror (" aocket " l ;
return (0) ;

• aockp = a ;

B = *BOckp ;
addr . a in addr . a addr = 0 ;
addr . a in- fam i ly- = AF INET ;
addr . a in-port = 0 ; -

len = a i zeof (addr l ;
I •

* may))e already))ound , so don ' t check for err
•I

(vo i d))) ind (a , &addr , len) ;
i f (getaockname (a , &addr , &len) < 0) (

perror (" getaockname " l ;
return (0) ;

whi l e (pmap aet (prognum+ + , vera , proto , addr . a in port) = = 0)
cont inue ; -

return (prognum- 1) ;

The following pair of programs illustrate how to use the
g e t t r a n s i en t () routine. The client makes an RPC call to the
server, passing it a transient program number. Then the client waits
around to receive a callback from the server at that program
number. The server registers the program EXAMPL EPROG, so that
it can receive the RPC call informing it of the callback program �
number. Then at some random time (on receiving an ALRM signal
in this example), it sends a callback RPC call, using the program
number it received earlier:

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

/ *
* c l i ent
* /

#include <std i o . h>
#include <rpc/rpc . h>

int cal lback () ;
char hostname [2 5 6] ;

ma i n (argc , argv)
char * * argv ;

int x , ans , s ;
SVCXPRT *Xprt ;

gethostname (hostname , s i zeof (hostname)) ;
s = RPC ANYSOCK ;
x = gettrans i ent (IPPROTO UDP , 1 , &s) ;
fpr intf (stderr , ' c l i ent gets prognum %d\n ' , x) ;

i f ((xprt = svcudp create (s)) = = NULL) {
fpr intf (stderr , ' rpc s erver : svcudp create \n ") ;
ex i t (1) ; - -

(vo i d) svc_regi ster (xprt , x , 1 , cal lback , 0) ;

ans = callrpc (hostname , EXAMPLEPROG , EXAMPLEPROC CALLBACK ,
EXAMPLEVERS , xdr int , &x , xdr vo i d , 0) ;

i f (ana I = 0) { - -

fpr intf (stderr , ' call : ") ;
c lnt perrno (ans) ;
fpr i�tf (stderr , " \ n ") ;

svc run () ;

79

fprintf (stderr , ' Error : svc run shouldn ' t have returned\n ") ;

cal lback (rqstp , transp)
reg i ster struct svc req *rqstp ;
regi ster SVCXPRT *transp ;

switch (rqstp->rq_proc) {
case 0 :

case 1 :

i f (l ave sendreply (transp , xdr vo i d , 0))
fpr intf (stderr , ' err : rusersd\n ') ;
exi t (1) ;

exi t (O) ;

i f (l ave getargs (transp , xdr vo i d , 0))
svcerr decode (transp) ;
exi t (1) ;

fpr intf (stderr , " c l i ent got cal lback\n ") ;
i f (l ave s endreply (transp , xdr vo i d , 0)) {

fpr intf (stderr , " err : rusersd ") ;
exi t (1) ;

80 INTERACTIV� NFS Protocol Specs/User's Guide - Release 3.2.5

I *
* s erver
*I

#include <std i o . h>
#include <rpc/rpc . h>
#include <sys / s i gnal . h>

char *getnewprog () ;
char hostname [2 5 6] ;
i nt docal lback () ;
i nt pnum ; /*program number for cal lback rout ine */

ma i n (argc , argv)
char * *argv ;

gethostname (hostname , s i zeof (hostname)) ;
reg i s terrpc (EXAMPLEPROG , EXAMPLEPROC CALLBACK , EXAMPLEVERS ,

getnewprog , xdr int , xdr vo id) ; -
fpr intf (stderr , " server going into svc run\n " l ;
a l arm (1 0) ; -

s i gnal (S IGALRM , docallback) ;
svc run () ;
fprintf (stderr , " Error : svc _run shouldn ' t have returned\n ") ;

char *
getnewprog (pnump)

char *Pnump ;

pnum = * (int *) pnump ;
return (NULL) ;

doca l lback ()
(

}

i nt ana ;

ans = callrpc (hostname , pnum , 1 , 1 , xdr_vo i d , 0 , xdr_vo id , 0) ;
i f (ans I = 0) (

fpr i ntf (stderr , " server : ") ;
c lnt perrno (ans) ;
fpr i �t f (stderr , " \n " l ;

4.6 Synopsis of RPC Routines

autiLdestroy()

voi d
auth destroy (auth)

- AUTH *aUth ;

A macro that destroys the authentication information associ
ated with auth. Destruction usually involves deallocation of
private data structures. The use of au th is undefined after �
calling auth _ d e s troy () .

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

authnone_create()

AUTR *
authnone _create ()

81

Creates and returns an RPC authentication handle that passes
no usable authentication information with each remote pro
cedure call.

autbunix_create()

AUTR *
authunix create (host , u id , g id , len , aup_g ids)

char •host ;
int u id , g i d , l en , •aup_gids ;

Creates and returns an RPC authentication handle that con
tains INTERACTIVE UNIX System authentication informa
tion. The parameter ho s t is the name of the machine on
which the information was created; u i d is the user's user ID;
g i d is the user's current group ID; and l e n and a up g i d s
refer to a counted array of groups to which the user belongs.
It is easy to impersonate a user.

autbunix_create_default()

AUTR *
authunix_create _default ()

Calls authun i x _ c r e at e () with the appropriate parame
ters.

caUrpc()

cal lrpc (host , prognum , versnum , procnum , inproc , i n , outproc ,
out)

char •host ;
ulong prognum , versnum , procnum ;
char • in , •out ;
xdrproc _t inproc , outproc ;

Calls the remote procedure associated with prognum,
v e r s num, and procnum on the machine, ho s t. The
parameter i n is the address of the procedure's argument(s),
and out is the address of where to place the result(s);
i npro c is used to encode the procedure's parameters, and
outp r o c is used to decode the procedure's results. This
routine returns 0 if it succeeds, or the value of
e num c l nt s t at cast to an integer if it fails. The routine
c l nt _ p e r r

-
no () is handy for translating failure statuses

into messages.

82 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

WARNING: Calling remote procedures with this routine uses
UDP/IP as a transport; see c 1 ntudp c r e a t e () for res-
trictions. -

clnLbroadcast()

enum c lnt stat
c lnt_broadcast (prognum , versnum , procnum , inproc , i n ,
outproc , out , eachresult)

ulong prognum , versnum , procnum ;
char • i n , •out ;
xdrproc t inproc , outproc ;
resultproc_t eachresult ;

Like c a 1 1 r p c () , except the call message is broadcast to all
locally connected broadcast nets. Each time it receives a
response, this routine calls e a c hr e su1 t, the form of which
is:

eachresult (out , addr)
char •out ;
struct sockaddr in •addr ;

where out is the same as out passed to
c 1 nt broadc a s t () , except that the remote procedure's
output -is decoded there; addr points to the address of the
machine that sent the results. If e a chr e s u 1 t () returns 0, \
c 1 nt broad c a s t () waits for more replies; otherwise it
returns with appropriate status.

clnLcall()

enum c lnt stat
c lnt ca l l (c lnt , procnum , inproc , in , outproc , out , tout)

C L I ENT • c lnt ; long procnum ;
xdrproc t inproc , outproc ;
char * i ii , *Out ;
s truct t imeval tout ;

A macro that calls the remote procedure procnum associ
ated with the client handle, c 1 n t, which is obtained with an
RPC client creation routine such as c 1 n t udp c r e a t e .
The parameter i n is the address of the procedure's
argument(s), and out is the address where the result(s)
should be placed; i nproc is used to encode the procedure's
parameters, and outproc is used to decode the procedure's
results; and tout is the time allowed for results to come
back.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 83

clnLdestroy()

c lnt destroy (c lnt) -
CLIENT •c lnt ;

A macro that destroys the client's RPC handle. Destruction
usually involves deallocation of private data structures, includ
ing c lnt itself. Use of c l nt is undefined after calling
c lnt _ d e s t r oy () .

WARNING: Client destruction routines do not close sockets
associated with c l nt; this is the responsibility of the user.

clnt.Jreeres()

c lnt freeres (c lnt , outproc , out) -
CLI ENT •c lnt ;
xdrproc t outproc ;
char •out ;

A macro that frees any data allocated by the RPC/XDR sys
tem when it decodes the results of an RPC call. The parame
ter out is the address of the results, and outp r o c is the
XDR routine describing the results in simple primitives. This
routine returns 1 if the results were successfully freed, 0

� otherwise.

clnLgeterr()

void
� lnt geterr (c lnt , errp) -

CLIENT •clnt ;
struct rpc_err . • errp ;

A macro that copies the error structure out of the client han
dle to the structure at address errp.

cln�reateerror()

vo id
c lnt pcreateerror (s)

- char •s ;

Prints a message to standard error indicating why a client
RPC handle could not be created. The message is prepended
with string s and a colon.

84 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

clnLperrno()

vo i d
c lnt_perrno (stat)

enum c lnt stat stat ;

Prints a message to standard error corresponding to the condi
tion indicated by s t at.

clnLperror()

c lnt perror (c lnt , s) -
CLI ENT *C lnt ;
char * S ;

Prints a message to standard error indicating why an RPC call
failed; c 1 n t is the handle used to do the call. The message
is prepended with string s and a colon.

clntraw_create()

C L IENT *
c lntraw create (prognum , versnum)

-ulong prognum , versnum ;

This routine creates a toy RPC client for the remote program
prognum, version v e r s num. The transport used to pass
messages to the service is actually a buffer within the process's
address space, so the corresponding RPC server should live in
the same address space; see svcraw c r e a t e () . This
allows simulation of RPC and acquisition of RPC overheads,
such as round trip times, without any kernel interference.
This routine returns NULL if it fails.

clnttcp_create()

CLI ENT *
c lnttcp create (addr , prognum , versnum , sockp , s ends z , recvsz)

- s truct sockaddr in *addr ;
ulong pro�num , ;ersnum ;
i nt * SOCkp ;
u i nt sendsz , recvsz ;

This routine creates an RPC client for the remote program
prognum, version ve r s num; the client uses TCP/IP as a
transport. The remote program is located at Internet address
* addr . If addr - > s i n port is 0, then it is set to the
actual port that the remote program is listening on (the "-) remote portmap service is consulted for this information).
The parameter * S O ckp is a socket; if it is RPC ANYS OCK,
then this routine opens a new one and sets * s o

-
c kp. Since

TCP-based RPC uses buffered 1/0, the user may specify the
size of the send and receive buffers with the

(�

�.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 85

parameters s ends z and r e cvs z ; values of 0 choose suit
able defaults. This routine returns NULL if it fails.

clntudp_create()

C L I ENT "
clntudp create (addr , prognum , versnum , wa i t , sockp)

-s truct sockaddr in •addr ;
ulong prognum , versnum ;
struct t i meval wa i t ;
i nt •sockp ;

This routine creates an RPC client for the remote program
prognum, version v e r s num; the client uses UDP/IP as a
transport. The remote program is located at Internet address
* a ddr . If addr - > s i n port is 0, then it is set to the
actual port that the remote program is listening on (the
remote por tmap service is consulted for this information).
The parameter * S o c kp is a socket; if it is RPC ANYS OCK,
then this routine opens a new one and sets * So c kp. The
UDP transport resends the call message in intervals of wa i t
time until a response is received or until the call times out.

WARNING: ·Since UDP-based RPC messages can only hold up
to 4 or 8 KB of encoded data, this transport cannot be used
for procedures that take large arguments or return huge
results.

geLmyaddress()

voi d
get_myaddress (addr)

struct sockaddr in •addr ;

Places the machine's IP address in * a ddr, without consulting
the library routines that deal with host name to address reso
lution. The port number is always set to
htons (PMAP PORT) .

pmap_getmaps()

struct pmapl i st "
pmap_getmaps (addr)

struct sockaddr in •addr ;

A user interface to the portmap service, which returns a list
of the current RPC program-to-port mappings on the host
located at IP address * addr. This routine can return NULL .
The command r pc info - p uses this routine.

86 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

pmoap�etport()

ushort
pmap getport (addr , prognum , versnum , protocol) - struct sockaddr in •addr ;

ulong prognum , versnum , protocol ;

A user interface to the por tmap service, which returns the
port number on which waits a service that supports program
number prognum, version vers num, and speaks the tran
sport protocol associated with protocol. A return value of 0
means that the mapping does not exist or that the RPC system
failed to contact the remote portmap service. In the latter
case, the global variable rpc c r e a t e e r r contains the
RPC status.

-

pmoap_nntcaU()

enum c lnt stat
pmap rmtcal l (addr , prognum , versnum , procnum , - inproc , in , outproc , out , tout , portp)

struct sockaddr in •addr ;
ulong prognum , versnum , procnum ;
char ·· i n , •out ;
xdrproc t inproc , outproc ;
struct t imeval tout ;
ulong •portp ;

A user interface to the portmap service, which instructs
p o r tmap on the host at IP address * addr to make an RPC
call on the user's behalf to a procedure on that host. The
parameter *POrtp will be modified to the program's port
number if the procedure succeeds. The definitions of other
parameters are discussed in c a 1 1 r p c () and
c lnt _ c a l l () ; refer also to c l nt _ broad c a s t () .

pmoap_set()

pmap set (prognum , versnum , protocol , port)
- ulong prognum , versnum , protocol ;

ushort port ;

A user interface to the portmap service, which establishes a
mapping between the [prognum , ve r s num , proto c o l]
triple and port on the machine's portmap service. The
value of protocol is most likely I P PROTO UDP or
I P PROTO TCP . This routine returns 1 if it succeeds, 0 � otherwise. -

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 87

pmap_unset()

pmap unset (proqnum , versnum)
- ulonq proqnum , versnum ;

A user interface to the portmap service, which destroys all
mappings between the triple [prognum , ve r s num , *] and
por t s on the machine's portmap service. This routine
returns 1 if it succeeds, 0 otherwise.

registerrpc()

req i sterrpc (proqnum , versnum , procnum , procname , i nproc ,
outproc)

ulonq proqnum , versnum , procnum ;
char • l •procname) () ;
xdrproc_t inproc , outproc ;

Registers procedure procname with the RPC service pack
age. If a request arrives for program prognum, version
v e r s num, and procedure procnum, pro cname is called
with a pointer to its parameter(s); pro cname should return
a pointer to its static result(s); i nproc is used to decode the
parameters, while outpro c is used to encode the results.
This routine returns 0 if the registration succeeded, - 1 other
wise.

WARNING: Remote procedures registered in this form are
accessed using the UDP /IP transport; refer to
s v c udp _ e r e a t e {) for restrictions.

rpc_createerr

s truct rpc _createerr rpc_createerr ;

A global variable whose value is set by any RPC client crea
tion routine that does not succeed. Use the routine
c l nt _ p c r e a t e e r ror {) to print the reason why.

svc_destroy()

svc _destroy (xprt)
SVCXPRT •xprt ;

A macro that destroys the RPC service transport handle
xprt . Destruction usually involves deallocation of private
data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

88 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

svcJds

int svc fds ;

A global variable reflecting the RPC service side's read file
descriptor bit mask; it is suitable as a parameter to the
s e 1 e c t system call. This is only of interest if a service
implementor does not call svc run () , but rather does his
own asynchronous event processing. This variable is read
only, yet it may change after calls to svc _ g e t r e q () or
any creation routines.

svcJreeargs()

svc freeargs (xprt , inproc , i n)
SVCXPRT *Xprt ;
xdrproc_ t inproc ;
char * i n ;

A macro that frees any data allocated by the RPC/XDR sys
tem when it decodes the arguments to a service procedure
using s v c g e ta r g s () . This routine returns 1 if the
results were -successfully freed, 0 otherwise.

svc_getargs()

svc getargs (xprt , inproc , i n)
SVCXPRT *Xprt ;
xdrproc t inproc ;
char * i D ;

A macro that decodes the arguments of an RPC request asso
ciated with the RPC service transport handle xprt. The
parameter i n is the address where the arguments will be
placed; i npr o c is the XDR routine used to decode the argu
ments. This routine returns 1 if decoding succeeds, 0
otherwise.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

svc_getcaller()

s truct sockaddr in
svc_getcal l er (xprt }

SVCXPRT xprt ;

89

� The approved way of getting the network address of the caller
of a procedure associated with the RPC service transport han
dle xprt .

svc_getreq()

svc getreq (rdfds }
int rdfds ;

This routine is only of interest if a service implementor does
not call svc run () , but instead implements custom asyn
chronous event processing. It is called when the s e 1 e c t sys
tem call has determined that an RPC request has arrived on
some RPC socket(s); rdfds is the resultant read file descrip
tor bit mask. The routine returns when all sockets associated
with the value of rd f d s have been serviced.

svc_register()

svc_reg i ster (xprt , prognum , versnum , d i spatch , protocol }
SVCXPRT *Xprt ;
ulong prognum , versnum ;
vo id (*d i spatch } (} ;
ulong protocol ;

Associates prognum and v e r s num with the service
dispatch procedure d i spat ch. If proto c o l is not zero, a
mapping of [prognum , v e r s num , prot o c o l] to
xprt - > xp port is also established with the local port
map service Cgenerally proto c o l is 0, I PPROTO UDP, or
I P PROTO TC P). The procedure d i s p a t c h () - has the
following form:

d i spatch (request , xprt }
struct svc _req *request ;
SVCXPRT *Xprt ;

The svc r e g i s t e r routine returns 1 if it succeeds, 0
otherwise.

90 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

svc_run()

svc_run ()

This routine never returns. It waits for RPC requests to arrive
and calls the appropriate service procedure (using �
s v c g e tr e q) when one arrives. This procedure is usually
waiting for a s e l e c t system call to return.

svc__sendreply()

svc _ s endreply (xprt , outproc , out)
SVCXPRT *Xprt ;
xdrproc t outproc ;
char *Out ;

Called by an RPC service's dispatch routine to send the results
of a remote procedure call. The parameter xprt is the
caller's associated transport handle, ou tpr o c is the XDR
routine that is used to encode the results, and out is the
address of the results. This routine returns 1 if it succeeds, 0
otherwise.

svc_unregister()

voi d
svc unreq i s ter (proqnum , versnum) - ulonq proqnum , versnum ;

Removes all mapping of the double [prognum , v e r s num]
to dispatch routines and of the triple
[prognum , ve r s num , *] to port number.

svcerr_auth()

voi d
svcerr auth (xprt , why) -

SVCXPRT *Xprt ;
enum auth_stat why ;

Called by a service dispatch routine that refuses to · perform a
remote procedure call due to an authentication error.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

svcerr_decode()

vo i d
svcerr_decode (xprt)

SVCXPRT •xprt ;

91

Called by a service dispatch routine that cannot successfully
decode its parameters. See also svc _ g e t a r g s () .

svcerr _noproc()

vo i d
svcerr_noproc (xprt)

SVCXPRT •xprt ;

Called by a service dispatch routine that does not implement
the desired procedure number the caller requested.

svcerr _noprog()

vo i d
svcerr_noproq (xprt)

SVCXPRT •xprt ;

Called when the desired program is not registered with the
RPC package. Service implementors usually do not need this
routine.

svcerr_progvers()

vo i d
svcerr_proqvers (xprt)

SVCXPRT •xprt ;

Called when the desired version of a program is not registered
with the RPC package. Service implementors usually do not
need this routine.

svcerr__systemmerr()

voi d
svcerr_systemerr (xprt)

SVCXPRT •xprt ;

Called by a service dispatch routine when it detects a system
error not covered by any particular protocol. For example, if
a service can no longer allocate storage, it may call this
routine.

92 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

svcerr_ weakauth()

voi d
svcerr weakauth (xprt) -

SVCXPRT *Xprt ;

Called by a service dispatch routine that refuses to perform a
remote procedure call because of insufficient (although
correct) authentication parameters. The routine calls
s v c e r r _ auth (xprt , AUTH _ TOOWEAK) .

svcraw_create()

SVCXPRT *
svcraw_create ()

This routine creates a toy RPC service transport, to which it
returns a pointer. Since the transport is really a buffer within
the process's address space, the corresponding RPC client
should live in the same address space; see
c 1 n t r aw c r e at e () . This routine allows simulation of
RPC and acquisition of RPC overheads (such as round trip
times) without any kernel interference. This routine returns
NULL if it fails.

svctcp_create()

SVCXPRT *
svctcp create (sock , send buf s i z e , recv buf s i ze)

int sock ;
u int send_buf _ s i z e , recv_buf _ s i z e ;

This routine creates a TCP /IP-based RPC service transport, to
which it returns a pointer. The transport is associated with
the socket s o c k, which may be RPC ANYS OCK, in which
case a new socket is created. If the socket is not bound to a
local TCP port, then this routine binds it to an arbitrary port.
Upon completion, xpr t - > xp sock is the transport's
socket number, and xpr t - > xp port is the transport's
port number. This routine returns NULL if it fails. Since
TCP-based RPC uses buffered 1/0, users may specify the size
of the s end and r e c e i ve buffers; values of 0 choose suit
able defaults.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

svcudp_create()

SVCXPRT •
svcudp create (sock)

- int sock ;

93

This routine creates a UDP /IP-based RPC service transport, to
which it returns a pointer. The transport is associated with
the socket s o ck, which may be RPC ANYSOCK, in which
case a new socket is created. If the socket is not bound to a
local UDP port, this routine binds it to an arbitrary port.
Upon completion, xpr t - > xp s o c k is the transport's
socket number, and xpr t - > xp port is the transport's
port number. This routine returns NULL if it fails.

WARNING: Since UDP-based RPC messages can only hold up
to 4 or 8 KB of encoded data, this transport cannot be used
for procedures that take large arguments or return huge
results.

xdr_accepted..._reply()

xdr_accepted_reply (xdrs , ar)
XDR •xdrs ;
struct accepted_reply +ar ;

Used for describing RPC messages externally. This routine is
useful for users who wish to generate RPC-type messages
without using the RPC package.

xdr_array()

xdr_array (xdrs , arrp , s i zep , maxs i z e , e l s i ze , e lproc)
XDR •xdrs ;
char • •arrp ;
u int • s i zep , maxs ize , e l s i z e ;
xdrproc _t e lproc ;

A filter primitive that translates between arrays and their
corresponding external representations. The parameter a r r p
is the address of the pointer to the array, while s i z e p is the
address of the element count of the array; this element count
cannot exceed max s i z e . The parameter e 1 s i z e is the
s i z e o f () each of the array's elements, and e l proc is an
XDR filter that translates between the array elements' C form
and their external representation. This routine returns 1 if it
succeeds, 0 otherwise.

94 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

xdr_authuoix_parms()

xdr authunix parms (xdrs , aupp) -
XDR ;xdrs ;
struct authunix_parms *&upp ;

Used for describing UNIX Operating System credentials exter- �
nally. This routine is helpful for users who wish to generate
these cre�entials without using the RPC authentication
package.

xdr-hool()

xdr bool (xdr s , bp) -
XDR *Xdrs ;
bool _t *bp ;

A filter primitive that translates between booleans (C integers)
and their external representations. When encoding data, this
filter produces values of either 1 or 0. This routine returns 1
if it succeeds, 0 otherwise.

xdr_bytes()

xdr _bytes (xdrs , sp , s i z ep , maxs i z e)
XDR *Xdrs ;
char * * &p ;
u int * B i zep , maxs ize ;

A filter primitive that translates between counted byte strings
and their external representations. The ·parameter s p is the
address of the string pointer. The length of the string is
located at address s i z e p; strings cannot be longer than
max s i z e . This routine returns 1 if it succeeds, 0 otherwise.

xdr_callhdr()

voi d
xdr cal lhdr (xdrs , chdr) -

XDR *Xdrs ;
s truct rpc_msq *Chdr ;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-type messages
without using the RPC package.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

xdr_callmsg()

xdr_ c a l lmsg (xdrs , cmsg)
XDR *Xdrs ;
s truct rpc_msg * Cmsg ;

95

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-type messages
without using the RPC package.

xdr_double()

xdr_double (xdrs , dp)
XDR *Xdrs ;
doubl e *dp ;

A filter primitive that translates between C doub l e precision
floating point numbers and their external representations.
This routine returns 1 if it succeeds, 0 otherwise.

xdr_enum()

xdr enum (xdrs , ep)
XDR *Xdrs ;
enum_t *ep ;

A filter primitive that translates between C e nums (actually
integers) and their external representations. This routine
returns 1 if it succeeds, 0 otherwise;

xdr _float()

xdr_f loat (xdrs , fp)
XDR *Xdrs ;
f loat * fp ;

A filter primitive that translates between C f 1 o a t s (single
precision floating point numbers) and their external represen
tations. This routine returns 1 if it succeeds, 0 otherwise.

xdr _jolioe()

long *
xdr _ inl ine (xdrs , l en)

XDR *Xdrs ;
int len ;

A macro that invokes the in-line routine associated with the
XDR stream xdr s . The routine returns a pointer to a con
tiguous piece of the stream's buffer; l e n is the byte length of
the desired buffer. Note that pointer is cast to l ong * .

WARNING: xdr i n l i ne () may return 0 (NULL) if it
cannot allocate a contiguous piece of a buffer. Therefore, the

96 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

behavior may vary among stream instances; it exists for the
sake of efficiency.

xdr_int()

xdr_ int (xdrs , ip)
XDR •xdrs ;
i nt • i p ;

A filter primitive that translates between C integers and their
external representations. This routine returns 1 if it succeeds,
0 otherwise.

xdr_long()

xdr_long (xdrs , lp)
XDR •xdrs ;
l ong • l p ;

A filter primitive that translates between C 1 ong integers
and their external representations. This routine returns 1 if it
succeeds, 0 otherwise.

xdr _opaque()

xdr_opaque (xdrs , cp , cnt)
XDR •xdrs ;
char •cp ;
u int cnt ;

A filter primitive that translates between fixed size opaque
data and its external representation. The parameter c p is the
address of the opaque object, and cnt is its size in bytes.
This routine returns 1 if it succeeds, 0 otherwise.

xdr_opaque__auth()

xdr opaque auth (xdrs , ap)
- XDR •xdrs ;

struct opaque auth •ap ;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-type messages
without using the RPC package.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

xdr_pmap()

xdr_pmap (xdrs , regs)
XDR *Xdrs ;
struct pmap *regs ;

97

Used for describing parameters to various por tmap pro
cedures externally. This routine is helpful for users who wish
to generate these parameters without using the pmap
interface.

xdr_pmaplist()

xdr_pmapl i st (xdrs , rp)
XDR *Xdrs ;
s truct pmapl i st * * rp ;

Used for describing a list of port mappings externally. This
routine is helpful for users who wish to generate these param
eters without using the pmap interface.

xdr_reference()

xdr_refere�ce (xdrs , pp , s i ze , proc)
XDR *Xdrs ;
char * *PP ;
u int s i z e ;
xdrproc_t proc ;

A primitive that provides pointer chasing within structures.
The parameter pp is the address of the pointer, s i z e is the
s i z e o f (} the structure that * PP points to, and proc is
an XDR procedure that filters the structure between its C
form and its external representation. This routine returns 1 if
it succeeds, 0 otherwise.

xdr_rejected_reply()

xdr r e j ected reply (xdrs , rr) -
XDR ;xdrs ;
struct r e j ected_reply *rr ;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-type messages
without using the RPC package.

98 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

xdr__replymsg()

xdr replymsg (xdrs , rmsg) -
XDR *Xdrs ;
struct rpc_msg *rmsg ;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-type messages
without using the RPC package.

xdr_..short()

xdr short (xdrs , sp)
XDR *Xdrs ;
short * sp ;

A filter primitive that translates between C short integers
and their external representations. This routine returns 1 if it
succeeds, 0 otherwise.

xdr _string()

xdr str ing (xdrs , sp , maxs ize) -
XDR *Xdrs ;
char * * SP ;
u int maxs i z e ;

A filter primitive that translates between C strings and their
corresponding external representations. Strings cannot be
longer than max s i z e . Note that s p is the address of the
string's pointer. This routine returns 1 if it succeeds, 0
otherwise.

xdr_lL..int()

xdr u int (xdrs , up)
XDR •xdrs ;
uns i gned •up ;

A filter primitive that translates between C uns i gn e d
integers and their external representations. This routine
returns 1 if it succeeds, 0 otherwise.

� I

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

xdr _u_long()

xdr_u_long (xdrs , ulp)
XDR •xdr s ;
uns i gned long •ulp ;

99

A filter primitive that translates between C
uns i gn e d l ong integers and their external representations.
This routine returns 1 if it succeeds, 0 otherwise.

xdr_u...._short()

xdr u short (xdr s , usp)
XDR •xdrs ;
uns igned short •usp ;

A filter primitive that translates between C
un s i gn e d s hort integers and their external representa
tions. This routine returns 1 if it succeeds, 0 otherwise.

xdr_union()

xdr uni on (xdrs , ds cmp , unp , cho ices , dfault) -
XDR •xdrs ;
i nt •dscmp ;
char •unp ;
struct xdr d i scrim •cho ices ;
xdrproc_t dfault ;

A filter primitive that translates between a discriminated C
un i on and its corresponding external representation. The
parameter d s cmp is the address of the union's discriminant,
while unp in the address of the union. This routine returns 1
if it succeeds, 0 otherwise.

xdr_void()

xdr vo i d ()

This routine always returns 1 .

100 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

xdr _ wrapstring()

xdr_wrapstring (xdrs , sp)
XDR •xdrs ;
char * * Bp ;

The primitive xdr wrap s t r i ng () calls �
xdr s tr i ng (xdrs , s p , MAXUN S I GNED) , where MAX
UNS I GNE D is the maximum value of an unsigned integer.
This is useful because the RPC package passes only two
parameters to XDR routines, whereas xdr s t r i ng () , one
of the most frequently used primitives, requires three parame-
ters. This routine returns 1 if it succeeds, 0 otherwise.

xprLregister()

voi d
xprt reg i s ter (xprt) -

SVCXPRT •xprt ;

After RPC service transport handles are created, they should
register themselves with the RPC service package. This rou
tine modifies the global variable svc f d s . Service imple
mentors usually do not need this routine�

xprLunregister()

void
xprt unreg i ster (xprt) -

SVCXPRT •xprt ;

Before an RPC service transport handle is destroyed, it should
deregister itself with the RPC service package. This routine
modifies the global variable svc f d s . Service implementors
usually do not need this routine.

-

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

5. RPC PROTOCOL SPECIFICATION

5.1 Introduction

101

This section specifies a message protocol used in implementing the
Remote Procedure Call (RPC) package. The message protocol is
specified with the eXternal Data Representation (XDR) language.

This section assumes that you are familiar with both RPC and XDR.
It does not attempt to justify RPC or its uses. Also, the casual user
of RPC does not need to be familiar with the information in this
section.

5. 1. 1 Terminology

This section discusses servers, services, programs, procedures,
clients, and versions. A server is a machine where some number of
network services are implemented. A service is a collection of one
or more remote programs. A remote program implements one or
more remote procedures; the procedures, their parameters, and
results are documented in the specific program's protocol
specification (see section 5 .5 for an example). Network clients are
pieces of software that initiate remote procedure calls to services. A
server may support more than one version of a remote prograpt in
order to be forward compatible with changing protocols.

For example, a network file service may be composed of two pro
grams. One program may deal with high-level applications such as
file system access control and locking. The other may deal with
low-level file 1/0 and have procedures like "read" and "write." A
client machine of the network file service would call the procedures
associated with the two programs of the service on behalf of some
user on the client machine.

5. 1 . 2 The RPC Model

The remote procedure call model is similar to the local procedure
call model. In the local case, the caller places arguments to a pro
cedure in some well specified location (such as a result register). It
then transfers control to the procedure, and eventually gains back
control. At that point, the results of the procedure are extracted
from the well specified location, and the caller continues execution.

The remote procedure call is similar, except that one thread of con
trol winds through two processes - one is the caller's process, the
other is a server's process. That is, the caller process sends a call
message to the server process and waits (blocks) for a reply

102 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

message. The contents of the call message include the procedure's
parameters. The contents of the reply message include the
procedure's results. Once the reply message is received, the results
of the procedure are extracted, and the caller's execution is
resumed.)
On the server side, a process is dormant awaiting the arrival of a
call message. When one arrives, the server process extracts the
procedure's parameters, computes the results, sends a reply message,
and then awaits the next call message. Note that in this model,
only one of the two processes is active at any given time. That is,
the RPC protocol does not explicitly support multi-threading of
caller or server processes.

5. 1 .3 Transports and Semantics

The RPC protocol is independent of transport protocols. That is,
RPC does not care how a message is passed from one process to
another. The protocol only deals with the specification and interpre
tation of messages.

Because of transport independence, the RPC protocol does not
attach specific semantics to the remote procedures or their execu
tion. Some semantics can be inferred from (but should be explicitly
specified by) the underlying transport protocol. For example, RPC
message passing using UDP /IP is unreliable. Thus, if the caller
retransmits call messages after short time-outs, the only thing which
can be inferred from no reply message is that the remote procedure
was executed zero or more times (and from a reply message, one or
more times). On the other hand, RPC message passing using
TCP /IP is reliable. No reply message means that the remote pro
cedure was executed at most once, whereas a reply message means
that the remote procedure was executed exactly once.

'lltr Note that RPC is currently implemented on top of
TCP /IP and UDP /IP transports.

5. 1 .4 Binding and Rendezvous Independence

The act of binding a client to a service is not part of the remote pro-
cedure call specification; This important and necessary function is �
left up to some higher level software. (The software may use RPC 1
itself; see section 5 . 7)

lmplementors should think of the RPC protocol as the jump
subroutine instruction ("JSR") of a network; the loader (binder)

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 103

makes JSR useful, and the loader itself uses JSR to accomplish its
task. Likewise, the network makes RPC useful, using RPC to
accomplish this task.

� 5. 1 . 5 Message Authentication
\

The RPC protocol provides the fields necessary for a client to iden
tify itself to a service and vice versa. Security and access control
mechanisms can be built on top of the message authentication.

5.2 Requirements

The RPC protocol must provide for the following:

• Unique specification of a procedure to be called

• Provisions for matching response messages to request messages

• Provisions for authenticating the caller to service and vice versa

Besides these requirements, features that detect the following are
worth supporting because of protocol roll-over errors, implementa
tion bugs, user error, and network administration:

• RPC protocol mismatches

• Remote program protocol version mismatches

• Protocol errors (like mis-specification of a procedure's
parameters)

• Reasons why remote authentication failed

• Any other reasons why the desired procedure was not called

5.2. 1 Remote Programs and Procedures

The RPC call message has three unsigned fields: remote program
number, remote program version number, and remote procedure
number. The three fields uniquely identify the procedure to be
called. Program numbers are administered by some central author
ity (currently Sun Microsystems). Once an implementor has a pro
gram number, he can implement his remote program; the first
implementation would most probably have the version number of 1 .
Because most new protocols evolve into better, stable, and mature
protocols, a version field of the call message identifies which version
of the protocol the caller is using. Version numbers make speaking
old and new protocols through the same server process possible.

104 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

The procedure number identifies the procedure to be called. These
numbers are documented in the specific program's protocol
specification. For example, a file service's protocol specification may
state that its procedure number 5 is r e ad and procedure number
1 2 is wr i t e . l
Just as remote program protocols may change over several versions,
the actual RPC message protocol could also change. Therefore, the
call message also has the RPC version number in it; this field must
be two (2) .

The reply message to a request message has enough information to
distinguish the following error conditions:

• The remote implementation of RPC does not speak protocol ver
sion 2. The lowest and highest supported RPC version numbers
are returned.

• The remote program is not available on the remote system.

• The remote program does not support the requested version
number. The lowest and highest supported remote program ver
sion numbers are returned.

• The requested procedure number does not exist. (This is usually
a caller side protocol or programming error.)

• The parameters to the remote procedure appear to be garbage
from the server's point of view. (Again, this is caused by a
disagreement about the protocol between client and service.)

5.2.2 Authentication

Provisions for authentication of caller to service and vice versa are
provided as a part of the RPC protocol. The call message has two
authentication fields: the credentials and verifier. The reply mes
sage has one authentication field: the response verifier. The RPC
protocol specification defines all three fields to be the following
opaque type:

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

enum auth_ f l avor {

} ;

AUTH NULL = 0 ,
AUTH-UNIX = 1 ,
AUTH- SHORT = 2
I • and more to be def ined • I

struct opaque auth {
uni on- swi tch (enum auth flavor)

} ;
default : str ing -auth_body<40 0> ;

} ;

105

Any opaque auth structure is an auth f l avor enumeration
followed by a

-
counted string, whose bytes are opaque to the RPC

protocol implementation.

The interpretation and semantics of the data contained within the
authentication fields is specified by individual, independent authenti
cation protocol specifications. Section 5 .5 defines three authentica
tion protocols.

If authentication parameters are rejected, the response message con
tains information stating why they are rejected.

5.2.3 Program Number Assignment

Program numbers are given out in groups of Ox20000000
(5368709 1 2) according to the following chart:

0 l fffffff defined by Sun
20000000 3fffffff defined by user
40000000 5fffffff transient
60000000 7fffffff reserved
80000000 9fffffff reserved
aOOOOOOO bfffffff reserved
cOOOOOOO dfffffff reserved
eOOOOOOO ffffffff reserved

The first group is a range of numbers administered by Sun
Microsystems and should be identical for all RPC users. When a
user develops an application that might be of general interest, that
application should be given an assigned number in the first range.
The second range is for applications peculiar to a particular user; it
is intended primarily for debugging new programs. The third group
is for applications that generate program numbers dynamically.
The final groups are reserved for future use and should not be used.

106 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

5.3 Other Uses and Abuses of the RPC Protocol

The intended use of this protocol is for calling remote procedures.
That is, each call message is matched with a response message.
However, the protocol itself is a message passing protocol with �
which other (non-RPC) protocols can be implemented. The RPC
message protocol is currently used for two non-RPC protocols:
hatching (or pipelining) and broadcast RPC. These two protocols
are discussed, but not defined, below.

5.3. 1 Batching

Batching allows a client to send an arbitrarily large sequence of call
messages to a server; hatching uses reliable bytes stream protocols
(like TCP /IP) for their transport. In the case of hatching, the client
never waits for a reply from the server, and the server does not send
replies to batch requests. A sequence of batch calls is usually ter
minated by a legitimate RPC in order to flush the pipeline (with
positive acknowledgment).

5.3.2 Broadcast RPC

In broadcast RPC-based protocols, the client sends a broadcast
packet to the network and waits for numerous replies. Broadcast
RPCs use unreliable, packet-based protocols, such as UDP /IP, as
their transports. Servers that support broadcast protocols only
respond when the request is successfully processed, and are silent in
the face of errors.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 107

5.4 The RPC Message Protocol

This section defines the RPC message protocol in the XDR data
description language. The message is defined in a top down style.

� Note that this is an XDR specification, not C code.
'

enum msg type (
CALL = 0 ,
REPLY = 1

) ;
I •

* A reply t o a c a l l mes sage can take o n two forms :
* the me s sage was e i ther accepted or r e j ected .
• I

enum reply_ stat (

) ;
I •

MSG ACCEPTED 0 ,
MSG DENIED

* Given that a call message was accepted ,
* the following i s the status of
* an attempt to call a remote procedure .
• I

enum accept stat
SUCCESS = 0 ,

) ;
I •

I • remote procedure was successfully executed •I
PROG_UNAVAIL = 1 ,

I • remote machine exports the program number • I
PROG_MISMATCH = 2 ,

I • remote machine can ' t support ver s i on number • I
PROC_UNAVAIL = 3 ,

I • remote program doesn ' t know about procedure • I
GARBAGE ARGS = 4

I • remote procedure can ' t f i gure out parameters • I

* Reasons why a call message was re j ected :
• I

enum re j ect_ stat
RPC_MISMATCH 0 ,

) ;

I • RPC vers ion number was not two (2) • I
AUTH_ERROR = 1

I • caller not authent i cated on remote machine • I

108 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

* Why authent icat i on fai led :
* /

enum auth_ stat (
AUTH_BADCRED = 1 ,

) ;
/ *

/ * bogus credent ials (s eal broken) */
AUTH REJECTEDCRED = 2 , - /* c l i ent should beg in new ses s i on * /
AUTH BADVERF = 3 ,

- / * bogus ver i f ier (s eal broken) */
AUTH REJECTEDVERF = 4 ,

- / * ver i f ier expi red or was replayed */
AUTH_TOOWEAK = 5

/* r e j ected due to secur i ty reasons */

* The RPC message :
* Al l messages start with a transact ion ident i f i er ,
* x id , followed by a two-armed d i scrim inated un ion .
* The uni on ' s d i scr iminant i s a mag type whi ch
* swi tches to one of the two types of the message .
* The x id of a REPLY message always matches that
* of the i n i t i at i ng CALL message .
* NB : The x id f i eld i s only used for c l i ents
* matchi ng reply messages with call messages ;
* the serv i c e s i de cannot treat th i s ID as any
* type of sequence number .
*/

struct

) ;
/ *

rpc m a g (
unii igned x id ;
uni on swi tch (enum mag type) (

CALL : struct cal l body ;
REPLY : struct reply_body ;

) ;

* Body of an RPC request cal l :
* In ver s i on 2 of the RPC protocol spec i f i cation ,
* rpcvers must be equal to 2 .
* The f i e lds prog , vera , and proc spec i fy the
* remote program , i ts vers ion , and the procedure
* w i thin the remote program to be called .
* Thes e f i e lds are fol lowed by two authent i cation
* parameters , cred (authent ication credent i als)
* and verf (authent i cat ion ver i f i er) . The
* authent i cat ion parameters are fol lowed by
* the parameters to the remote procedure ;
* thes e parameters are spec i f i ed by the
* spec i f i c program protocol .
*/

struct cal l body

) ;

uns igned rpcvers ; / * must be equal to two (2) */
uns i gned prog ;
uns igned vera ;
uns igned proc ;
struct opaque auth cred ;
struct opaque-auth verf ;
/ * procedure iipe c i f i c parameters start here * /

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

/•
* Body of a reply to an RPC request .
* The cal l message was e i ther accepted or r e j ected .

struct reply body (
uni on switch (enum reply stat) (

MSG ACCEPTED : struct accepted reply ;
MSG=DENIED : struct r e j e cted_reply ;

) ;
) ;
/ •

* Reply to an RPC request that was accepted by the server .
* Note : there could be an error even though the request
* was accepted . The f i rst f i eld i s an authent icat ion
* ver i f i er wh i ch the server generates in order to
* val i date i t s e l f to the caller . It i s fol lowed by
* a uni on whose d i scriminant i s an enum accept stat .
* The SUCCESS arm of the union i s protocol spec i f i c .
* The PROG UNAVAIL , PROC UNAVAIL , and GARBAGE ARGS
* arms of the un ion are vo i d . The PROG MISMATCH
* arm spec i f i e s the lowest and h ighest ver s i on
* numbers of the remote program that are supported
* by the server .
• /

struct accepted reply
struct opaque auth verf ;
un i on swi tch (enum accept stat)

SUCCESS : struct (
/•

109

* procedure-spec i f i c results s tart here
•/

) ;
) ;

) ;
PROG_MISMATCH : struct (

uns i gned low ;
uns i gned high ;

) ;
default : struct (

) ;

/•
* voi d . Cases inc lude PROG UNAVAIL ,
* PROC UNAVAIL , and GARBAGE ARGS .
•/ - -

1 10 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

I •
* R e p l y t o a n RPC r e que s t that was r e j e c t e d by the s e rv e r .
* The r e q u e s t can be r e j e c ted because of two r e a s o n s -
* e i ther the s e rver i s not runn i ng a compa t i b l e ve r s i on
* o f the RPC protocol (RPC MISMATCH) , or the s e rver
* r e f u s e d to authent i c ate the c a l l e r (AUTH_ ERROR) .
* I n the c a s e o f an RPC ver s i on m i smat ch , the s e rver
* r e turns the l ow e s t and h i ghest supported RPC v e r s i on
* numbe r s . In the c a s e of r e f u s e d authent i c a t i on ,
* the f a i l u r e status i s r e turned .

s tr u c t r e j e c t ed _ r e p l y (

} ;

un i on s w i t c h (e nurn r e j e c t s tat)
RPC_MI SMATCH : s t ruc t (

uns i gned l ow ;
uns i gned h i gh ;

} ;

} ;
AUTH ERROR : enurn auth_ s t a t ;

5.5 Authentication Parameter Specification

As previously stated, authentication parameters are opaque, but
open-ended to the rest of the RPC protocol. This section defines
some types of authentication that have been implemented and are
generally supported.

5. 5. 1 Null Authentication

Often calls must be made in which the caller does not know who he
is and the server does not care who the caller is. In this case, the
auth f l avor value (the discriminant of the opaque auth's
union)- of the RPC message's credentials, verifier, and -response
verifier is AUTH NULL(O). The bytes of the auth body string
are undefined. It-is recommended that the string length be zero.

5. 5.2 UNIX System Authentication

The caller of a remote procedure may wish to identify himself as he
is identified on an INTERACTIVE UNIX Operating System. The
value of the c r e d e nt i a l 's discriminant of an RPC call message
is AUT H UNI X(l). The bytes of the c r e d ent i a l 's string
encode the following (XDR) structure:

s t r u c t auth un i x (

} ;

uns i gned
s t r ing
uns i gned
uns i gned
uns i gned

s t amp ;
rnachi nename<2 S S > ;
u i d ;
g i d ;
g i d s< 1 0 > ;

The s t amp i s an arbitrary ID that the caller machine may gen
erate. The m a c h i n e name is the name of the caller's machine

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 1 1 1

(like "krypton") . The u i d is the caller's effective user ID. The
g i d is the caller's effective group ID. The g i d s is a counted
array of groups that contain the caller as a member. The
v e r i f i e r accompanying the credentials should be of
AUTH _ NULL (defined above).

The value of the discriminate of the r e spon s e ve r i f i e r
received in the reply message from the server may be AUTH NULL
or AUTH S H ORT(2). In the case of AUTH SHORT, the bytes of
the r e s pon s e ve r i f i e r's string encode an auth opaque
structure. This new auth opaque structure may now-be passed
to the server instead of the original AUTH UN I X flavor credentials.
The server keeps a cache that maps shorthand auth opaque
structures (passed back via a AUTH S HORT style
r e s pon s e v e r i f i e r) to the original credentials of the caller.
The caller can save network bandwidth and server cpu cycles by
using the new credentials.

The server may flush the shorthand auth opaque structure at
any time. If this happens, the remote procedure call message will
be rejected due to an authentication error. The reason for the
failure will be AUTH REJECTEDCRED. At this point, the caller
may wish to try the original AUTH _ UN I X style of credentials.

5.6 Record Marking Standard

When RPC messages are passed on top of a byte stream protocol
(like TCP fiP), it is necessary, or at least desirable, to delimit one
message from another in order to detect and possibly recover from
user protocol errors. This is called record marking (RM). This
RM/TCP fiP transport is used for passing RPC messages on TCP
streams. One RPC message fits into one RM record.

A record is composed of one or more record fra:ftments. A record
fragment is a 4-byte header followed by 0 to 2 - 1 bytes of frag
ment data. The bytes encode an unsigned binary number; as with
XDR integers, the byte order is from highest to lowest. The number
encodes two values - a boolean which indicates whether the frag
ment is the last fragment of the record (bit value 1 implies the frag
ment is the last fragment) and a 3 1 -bit unsigned binary value which
is the length in bytes of the fragment's data. The boolean value is
the highest-order bit of the header; the length is the 3 1 low-order
bits.

1 12 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

Note that this record specification is not in XDR standard form.

5. 7 Port Mapper Program Protocol

The port mapper program maps RPC program and version numbers
to UDP /IP or TCP jiP port numbers. This program makes dynamic
binding of remote programs possible.

This is desirable because the range of reserved port numbers is very
small and the number of potential remote programs is very large.
By running only the port mapper on a reserved port, the port
numbers of other remote programs can be ascertained by querying
the port mapper.

5. 7. 1 The Port Mapper RPC Protocol

The protocol is specified by the XDR description language:
Port Mapper RPC Program Number : 1 0 0 0 0 0

Vers i on Number : 1

/ *

Supported Transports :
UDP/IP on port 1 1 1
RM/TCP/IP on port 1 1 1

* Handy transport protocol numbers
* I

#def ine IPPROTO TCP 6
I * protocol number used for rpc/rm/tcp/ ip * /

#de f i ne I PPROTO UDP 1 7
/ * protocol number used for rpc/udp/ ip * /

I * Procedures * /

/ *
* Convent i on : procedure zero o f any protocol takes n o parameters
* and returns no results .
* I

0 . PMAPPROC _NULL () returns ()

/ *
* Procedure 1 , setting a mapping :
* When a program f i rst becomes ava i lable on a
* machine , i t regi sters itself w ith the port mapper program on
* the s ame mach ine . The program passes its program number
* (prog) , vers i on number (vera) , transport protocol number (prot) ,
* and the port (port) on whi ch i t awa its service request . The
* procedure returns success whose value is TRUE if the
* procedure successfully establ i shed the mapping and FALSE
* otherwi s e . The procedure w i l l refuse to establ i sh a mappi ng
* i f one already exi st s for the tuple [prog , vera , prot] .
* I

1 . PMAPPROC S E T (prog , vera , prot , port) returns (succe s s)
uns i gned prog ;
uns i gned vera ;
uns i gned prot ;
uns i gned port ;
boolean success ;

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

I*
* Procedure 2 , Unsetting a mapping :
* When a program becomes unava i lable , i t should unregi ster
* i t s e l f w ith the port mapper program on the same mach i ne .
* The parameters and results have meanings ident i cal to those
* of PMAPPROC SET .
*I

1 13

2 . PMAPPROC_UNSET (prog , vers , dummy 1 , dummy2) returns (succe s s)
uns i gned prog ;
uns i gned vera ;
uns i gned dummy 1 ;
uns i gned dummy2 ;
boolean success ;

I* th i s value i s always i gnored * I
I* thi s value i s always i gnored *I

Procedure 3 , looking-up a mapping :
* G iven a program number (prog) , vers ion number (vers) and
* transport protocol number (prot) , thi s procedure returns
* the port number on whi ch the program is awa i t i ng call
* requests . A port value of zeros means that the program
* has not been reg i stered .
*I

3 . PMAPPROC GETPORT (prog , vers , prot , dummy) returns (port)
uns igned prog ;

I *

uns i gned vers ;
uns i gned prot ;
uns i gned dummy ;
uns i gned port ;

I* th i s value i s always i gnored *I
I* zero means the program i s not *I
I* regi stered * I

* Procedure 4 , dumping the mappings :
* Thi s procedure enumerates all entr i e s in the port mapper ' s
* database . Th i s procedure takes no parameters and returns
* a " l i st ' of [program , vers ion , prot , port] values .
*I

4 . PMAPPROC DUMP () returns (mapl i st)
striict mapu st (

union switch (boolean) (

} ;
mapl i st ;

FALSE : struct (I* vo i d , end of l i st * I) ;
TRUE : struct (

uns i gned prog ;
uns igned vers ;
uns igned prot ;
uns i gned port ;

} ;
struct mapl i s t the_rest ;

1 14 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

I *
* Procedure 5 , ind i rect c a l l routine :
* The procedure al lows a caller to call another remote
* procedure on the same mach ine without knowing the remote
* procedure ' s port number . Its intended use is for
* support i ng broadcasts to arbitrary remote programs
* v i a the wel l -known port mapper ' s port . The parameters
* prog , ver s , proc , and the bytes of args are the program
* number , vers i on number , procedure number , and
* parameters of the remote procedure .
*
* NB :
* 1 . Thi s procedure only sends a re sponse i f the procedure was
* successfully executed and i s s i lent (No response) otherwi se .
* 2 . The port mapper communi cates with the remote program v i a
* UDPIIP only .
*
* The procedure returns the port number of the remote program
* and the bytes of results are the results of the remote
* procedure .
* I

5 . PMAPPROC CALLIT (prog , vers , proc , args) returns (port , results)
uns igned prog ;
uns i gned vers ;
uns igned proc ;
str ing args<> ;
uns igned port ;
str ing results<>;

� I

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

6. XDR PROTOCOL SPECIFICATION

6.1 Introduction

1 15

This section describes library routines that allow a C programmer to
describe arbitrary data structures in a machine-independent fashion.
The eXternal Data Representation (XDR) standard is the backbone
of the Remote Procedure Call package, in the sense that data for
remote procedure calls is transmitted using the standard. XDR
library routines should be used to transmit data that is accessed
(read or written) by more than one type of machine.

This section contains a description of XDR library routines, a guide
to accessing currently available XDR streams, information on
defining new streams and data types, and a formal definition of the
XDR standard. XDR was designed to work across different
languages, operating systems, and machine architectures. Most
users (particularly RPC users) only need the information in sections
6.2 and 6. 3 . Programmers wishing to implement RPC and XDR on
new machines will need the information in sections 6.4, 6 .5 , and 6.6.
Advanced topics, not necessary for all implementations, are covered
in section 6. 7.

C programmers who want to use XDR routines should include in
their programs the file < rpc/rpc . h > , which contains all of the
necessary interfaces to the XDR system. Programs should be com
piled as:

$ cc proqram . c - lrpc - l i net

The compile flag - 1 rpc will request the inclusion of the RPC
library 1 i brpc . a, and - 1 i net includes the networking library.

6.2 Justification

Consider the following two programs, wr i t e r :
#inc lude <std io . h>

ma in () /• wr iter . c •/
{

long i ;

for (i = 0 ; i < 8 ; i + +) {
i f (fwr ite ((char •) & i , s i zeof (i) , 1 , stdout) I = 1) {

fpr intf (stderr , " fa i l ed l \ n ") ;
exi t (1) ;

1 16 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

and r e ad e r :
#inc lude <std i o . h>

ma i n ()
(

long i , j ;

for (j = 0 ; j < 8 ; j + +) (
i f (fread ((char * l & i , s i zeof (i) , 1 , stdin) I = 1) (

fpr intf (stderr , " fa i l ed l \n ") ;
exi t (1) ;

printf (" %ld • , i) ;

pr intf (" \n •) ;

The two programs appear to be portable, because

a. They pass 1 i n t checking.

b. They exhibit the same behavior when executed on two
different hardware architectures, for example, a Sun and a
VAX*.

Piping the output of the wr i t e r program to the r e ad e r pro
gram gives identical results on a Sun or a VAX.

sun% wr iter reader
0 1 2 3 4 5 6 7
sun%

vax% wr i ter reader
0 1 2 3 4 5 6 7
vax%

With the advent of local area networks came the concept of "net
work pipes" - a process produces data on one machine, and a
second process consumes data on another machine. A network pipe
can be constructed with wr i t e r and r e ader . Here are the
results if the first produces data on a Sun and the second consumes
data on a VAX:

sun% wr iter I rsh vax reader
0 1 6 7 7 7 2 1 6 3 3 5 5 4 4 3 2 5 0 3 3 1 64 8 6 7 1 0 8864 8 3 8 8 6 0 8 0 1 0 0 6 6 3 2 9 6
1 1 7 4 4 0 5 1 2
sun%

Identical results can be obtained by executing wr i t e r on the VAX
and r e ad e r on the Sun. These results occur because the byte l ordering of long integers differs between the VAX and the2�un, even
though word size is the same. Note that 1 67772 1 6 is 2 - when
four bytes are reversed, the 1 winds up in the 24th bit.

�
(
I

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 1 1 7

Whenever data is shared by two or more machine types, there is a
need for portable data. Programs can be made data-portable by
replacing the r e ad () and wr i t e () calls with calls to an XDR
library routine ltdr l ong () , a filter that knows the standard
representation of a long integer in its external form. Shown below
are the revised versions of wr i t e r :

#include <std i o . h>
#include <rpc/rpc . h> /* xdr i s a sub- l i brary of the rpc */

/ * l ibrary */

ma in {) / * wr iter . c */
I

XDR xdrs ;
long i ;

xdrstd i o create { &xdrs , stdout , XDR ENCODE) ;
for { i =

- 0 ; i < 8 ; i + +) I -
i f { I xdr long { &xdrs , &i l l I

fprintf { stderr , " fa i led l \n ") ;
exi t { 1) ;

and r e a d e r :
#include <std i o . h>
#inc lude <rpc/rpc . h> /* xdr i s a sub- l i brary of the rpc * /

/* l i brary */

main {) / * reader . c */
I

XDR xdrs ;
long i , j ;

xdrstdio create { &xdrs , stdin , XDR DECODE) ;
for { j =

- O ; j < 8 ; j + + l I -

}

i f { I xdr long { &xdrs , &i l l I
fprintf { stderr , " fa i led I \ n ") ;
ex i t { 1) ;

printf { " %ld • , i) ;

pr intf { " \n ") ;

The new programs were executed on a Sun, on a VAX, and from a
Sun to a VAX; the results are shown below.

1 18 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

sun% wr iter I reader
0 1 2 3 4 5 6 7
sun%

vax% wr iter I reader
0 1 2 3 4 5 6 7
vax%

sun% wr i ter I rsh vax reader
0 1 2 3 4 5 6 7
sun%

Dealing with integers is only a small part of portable data. Arbi
trary data structures present portability problems, particularly with
respect to alignment and pointers. Alignment on word boundaries
may cause the size of a structure to vary from machine to machine.
Pointers are convenient to use, but they have no meaning outside the
machine where they are defined.

The XDR library package solves data portability problems. It
allows users to write and read arbitrary C constructs in a consistent,
specified, well documented manner. Thus, it makes sense to use the
library even when the data is not shared among machines on a
network.

The XDR library has filter routines for many subjects, including
strings (null-terminated arrays of bytes), structures, unions, and �
arrays, to name a few. Using more primitive routines, users can
write their own specific XDR routines to describe arbitrary data
structures, including elements of arrays, arms of unions, or objects
pointed at from other structures. The structures themselves may
contain arrays of arbitrary elements, or pointers to other structures.

The two programs are examined more closely below.

A family of XDR stream creation routines exists, in which each
member treats the stream of bits differently. In the example given,
data is manipulated using standard 1/0 routines, so
xdr s td i o c r e a t e () is used. The parameters to XDR stream
creation routines vary according to their function. In the example,
xdr s td i o c r e a t e () takes a pointer to an XDR structure that
it initializes, -a pointer to a F I LE that the input or output is per
formed on, and the operation. The operation may be
XDR ENCODE for serializing in the wr i t e r program or �
XDR= DECODE for deserializing in the r e ader program.

Note that RPC clients never need to create XDR streams; the RPC
system itself creates these streams, which are then passed to the
clients.

�
\

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 1 19

The xdr l ong () primitive is characteristic of most XDR library
primitives- and all client XDR routines. First, the routine returns
FAL s E (0) if it fails and TRUE (1) if it succeeds. Second, for each
data type, xxx , there is an associated XDR routine of the form:

xdr_xxx (xdrs , fp)
XDR •xdrs ;
XXX • fp ;

In this case, xxx is long, and the corresponding XDR routine is a
primitive, xdr l ong. The client could also define an arbitrary
structure xxx , iii which case the client would also supply the routine
xdr xxx, describing each field by calling XDR routines of the
appropriate type. In all cases the first parameter, xdr s , can be
treated as an opaque handle and passed to the primitive routines.

XDR routines are direction independent; that is, the same routines
are called to serialize or deserialize data. This feature is critical to
software engineering of portable data. The intention is to call the
same routine for either operation; this almost guarantees that serial
ized data can also be deserialized. One routine is used by both pro
ducer and consumer of networked data. This is implemented by
always passing the address of an object rather than the object itself,
only in the case of deserialization is the object modified. This
feature is not shown in the example, but its value becomes obvious
when nontrivial data structures are passed among machines. If
needed, the direction of the XDR operation can be obtained. See
section 6. 7 for details.

Consider a slightly more complicated example. Assume that a
person's gross assets and liabilities are to be exchanged among
processes; also assume that these values are important enough to
warrant their own data type:

s truct gnumbers (
long g assets ;
long g = l i abi l i t i es ;

} ;
The corresponding XDR routine describing this structure would be:

120 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

bool t /* TRUE i s success , FALSE i s f a i lure */
xdr_gnumbers (xdrs , gp)

XDR *Xdrs ;
struct gnumbers *gp ;

i f (xdr long (xdrs , &gp->g assets) &&
xdr- long (xdrs , &gp->g- l i abi l i t i e s l l - return (TRUE) ;

-

return (FALSE l ;

Note that the parameter xdr s is never inspected or modified; it is
only passed on to the subcomponent routines. It is imperative to
inspect the return value of each XDR routine call, and to give up
immediately and return FAL s E if the subroutine fails.

This example also shows that the type boo l t is declared as an
integer whose only values are TRUE (1) and FAL S E (0). This
documentation uses the following definitions:

#de f i ne bool t int
#def ine TRUE

-
1

#def i ne FAL S E 0

#de f ine enum_t int / * enum_t ' s are used for gener i c enum ' s * /

Using these conventions, xdr gnumb e r s (} can be rewritten as
follows: -

xdr _gnumbers (xdrs , gp)
XDR *Xdrs ;
struct gnumbers *gp ;

return (xdr long (xdrs , &gp->g assets) &&
xdr: long (xdrs , &gp->g= l i ab i l i t i e s)) ;

This documentation uses both coding styles.

6.3 XDR Library Primitives

This section gives a synopsis of each XDR primitive. It starts with
basic data types and moves on to constructed data types. Finally,
XDR utilities are discussed. The interface to these primitives and
utilities is defined in the i nc lude file < rp c /xdr . h > , which is
automatically included by < rpc /rpc . h > .

6.3. 1 Number Filters

The XDR library provides primitives that translate between C
numbers and their corresponding external representations. The �
primitives cover the set of numbers in:

[s i gned , uns i gned] * [short , int , long]

Specifically, the six primitives are:

(

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 121

bool -t xdr - i nt (xdrs , i p)
XDR *Xdrs ;
int * ip ;

bool t xdr - u i nt (xdrs , up)
XDR *Xdrs ;
uns i gned *UP j

bool -t xdr _long (xdrs , l i p)
XDR *Xdrs ;
long * l i p ;

bool t xdr - u long (xdrs , lup)
XDR *Xdrs ;
ulong * lup ;

bool t xdr - short (xdrs , - s i p)
XDR •xdrs ;
short * S i p ;

bool -t xdr u short (xdrs , sup)
XDR ;xdrs ;
ushort * SUp j

The first parameter, xdr s , is an XDR stream handle. The second
parameter is the address of the number that provides data to the
stream or receives data from it. All routines return TRUE if they
complete successfully and FAL s E otherwise.

6.3.2 Floating Point Filters

The XDR library also provides primitive routines for C's floating
point types:

bool t xdr_f loat (xdrs , fp)
XDR *Xdrs ;
f loat *fp ;

bool t xdr_doubl e (xdrs , dp)
XDR *Xdrs ;
double *dp ;

The first parameter, xdr s , is an XDR stream handle. The second
parameter is the address of the floating point number that provides
data to the stream or receives data from it. All routines return
TRUE if they complete successfully and FAL S E otherwise.

Note that since the numbers are represented in IEEE floating point
format, routines may fail when decoding a valid IEEE representation
into a machine-specific representation or vice versa.

122 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

6.3.3 Enumeration Filters

The XDR library provides a primitive for generic enumerations.
The primitive assumes that a C enum has the same representation
inside the machine as a C integer. The boolean type is an important ""'"')
instance of the e num. The external representation of a boolean is
always 1 (TRUE) or 0 (FAL S E) :

#de f i ne bool t int
#def i ne FALSE 0
#de f ine TRUE

#def i ne enum t int

bool t xdr enum (xdrs , ep) - XDR *Xdrs ;
enum_t *ep ;

bool t xdr bool (xdrs , bp)
XDR *Xdrs ;
bool_t *bp ;

The second parameters e p and bp are addresses of the associated
type that provides data to, or receives data from, the stream xdr s .
The routines return TRUE if they complete successfully and FAL S E
otherwise.

6.3.4 No Data

Occasionally, an XDR routine must be supplied to the RPC system,
even when no data is passed or required. The library provides such
a routine:

bool _t xdr _vo i d () ; / * always returns TRUE */

6.3.5 Constructed Data Type Filters

Constructed or compound data type primitives require more param
eters and perform more complicated functions than the primitives
discussed above. This section includes primitives for strings, arrays,
unions, and pointers to structures.

Constructed data type primitives may use memory management. In
many cases, memory is allocated when deserializing data with
XDR D E CODE . Therefore, the XDR package must provide means
to deallocate memory. This is done by an XDR operation,
XDR FREE . To review; the three XDR directional operations are l
XDR= ENCODE, XDR _ DE CODE, and XDR_ FREE.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 123

6.3. 5. 1 Strings. In C, a string is defined as a sequence of bytes ter
minated by a null byte, which is not considered when calculating
string length. However, when a string is passed or manipulated, a
pointer to it is employed. Therefore, the XDR library defines a
string to be a char * , and not a sequence of characters. The
external representation of a string is drastically different from its
internal representation. Externally strings are represented as
sequences of ASCII characters, while internally they are represented
with character pointers. Conversion between the two representa
tions is accomplished with the routine xdr _ s tr i ng () :

boo l _ t xdr _ s t r i ng (xdrs , sp , maxlength)
XDR *Xdr s ;
char • • s p ;
u i nt maxlength ;

The first parameter xdr s is the XDR stream handle. The second
parameter s p is a pointer to a string (type char * *) . The third
parameter max l ength specifies the maximum number of bytes
allowed during encoding or decoding; its value is usually specified by
a protocol. For example, a protocol specification may say that a file
name may be no longer than 255 characters. The routine returns
F AL S E if the number of characters exceeds max l ength and
TRUE if it does not.

The behavior of xdr s tr i ng () is similar to the behavior of
other routines discussed in this section. The direction
XDR ENCODE is easiest to understand. The parameter s p points
to a string of a certain length; if it does not exceed max l e ngth,
the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the
incoming string is determined; it must not exceed max l e ngth.
Next sp i s dereferenced; if the value i s NULL, a string of the
appropriate length is allocated and * s p is set to this string. If the
original value of * S P is non-NULL, the XDR package assumes that
a target area, which can hold strings no longer than max l e ngth,
has been allocated. In either case, the string is decoded into the tar
get area. The routine then appends a null character to the string.

In the XDR FREE operation, the string is obtained by dereferenc
ing sp . If the string is not NULL, it is freed and * S P is set to
NULL. In this operation, xdr _ s t r i ng ignores the max l e ngth
parameter.

124 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

6.3.5.2 Byte Arrays. Often variable-length arrays of bytes are
preferable to strings. Byte arrays differ from strings in the follow
ing three ways:

1 . The length of the array (the byte count) is explicitly located in �
an unsigned integer.

2. The byte sequence is not terminated by a null character.

3 . The external representation of the bytes is the same as their
internal representation.

The primitive xdr byt e s () converts between the internal and
external representations of byte arrays:

bool t xdr byte s (xdrs , bpp , lp , maxl ength)
- XDR *Xdr s ;

char * *bpp ;
u i nt * l p ;
u i nt maxl e ngth ;

The usage of the first, second, and fourth parameters are identical
to the first, second, and third parameters of xdr s tr i ng () ,
respectively. The length of the byte area is obtained by dereferenc
ing 1 p when serializing; * 1 p is set to the byte length when
deserializing.

6. 3.5.3 Arrays. The XDR library package provides a primitive for
handling arrays of arbitrary elements. The xdr byt e s () rou
tine treats a subset of generic arrays in which the size of array ele
ments is known to be 1 and the external description of each element
is built-in. The generic array primitive xdr a r r ay () requires
parameters identical to those of xdr byt e s () plus two more:
the size of array elements and an XDR routine to handle each of the
elements. This routine is called to encode or decode each element
of the array:

boo l t xdr array (xdrs , ap , lp , maxl ength , e l ements i z e , xdr _ e l ement)
- XDR *Xdr s ;

char * *ap ;
u i nt * lp ;
u i nt maxl ength ;
u i nt e l ements i z e ;
boo l _ t (*xdr _ e l ement) () ;

The parameter ap is the address of the pointer to the array. If � * ap is NULL when the array is being deserialized, XDR allocates
an array of the appropriate size and sets * ap to that array. The
element count of the array is obtained from * 1p when the array is
serialized; * 1 p is set to the array length when the array is deserial-
ized. The parameter max1 ength is the maximum number of

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 125

elements that the array is allowed to have; e 1 em e n t s i z e is the
byte size of each element of the array (the C function s i z e o f ()
can be used to obtain this value). The routine xdr e l ement IS
called to serialize, deserialize, or free each element o(ihe array.

Examples

Before more constructed data types are defined, review the following
three examples (Examples A, B, and C).

Example A

A user on a networked machine can be identified by

a. The machine name, such as krypton; see gethostname(3).

b. The user's UID; see getuid(2).

c. The user's GID or set of GIDs; see getgid(2) .

A structure with this information and its associated XDR routine
could be coded as follows:

s truct netuser (
char
int
u int
int

I ;

*nU machinename ;
nu_\iid ;
nu glen ;
•nii_g ids ;

#def ine NLEN 2 5 5 I • mach ine names must be shorter than 2 5 6 • I
I • chars •I

#def ine NGRPS 2 0 I • user can ' t be a member of more than 2 0 • I
I • groups •I

bool t
xdr_netuser (xdrs , nup)

XDR •xdrs ;

Example B

s truct netuser *nup ;

return (xdr string (xdrs , &nup->nu machinename , NLEN) &&
xdr _ i nt(xdrs , &nup->nu_u id) &&
xdr array (xdrs , &nup->nu g ids , &nup->nu_glen , NGRPS ,

- s i zeof (int) , xdr _ i nt)) ;

A party of network users could be implemented as an array of
n e tu s e r structures. The declaration and its associated XDR rou
tines are as follows:

126 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

s truct party I

) ;

u int p len ;
struct -netuser •p_nusers ;

#de f ine PLEN 5 0 0 / • max number of users in a party •/

bool t
xdr party (xdrs , pp) -

XDR •xdrs ;
struct party •pp ;

return (xdr array (xdrs , &pp->p nusers , &pp->p len , PLEN ,
s i zeof (struct netuser) , xdr_netuser)) ; -

Example C

The well-known parameters to ma i n () , argc , and a rgv can be
combined into a structure. An array of these structures can make
up a history of commands. The declarations and XDR routines
might look like:

struct cmd I
u i nt c _argc ;

) ;
char • • c _argv ;

#de f ine ALEN 1 0 0 0
#de f ine NARGC 1 0 0

/ • args can be no longer than 1 0 0 0 chars •/
/ • commands may have no more than 1 0 0 args •/

struct h i s tory I

) ;
u i nt h len ;
s truct -cmd •h cmds ;

#de f i ne NCMDS 7 5 /• h i story i s no more than 7 5 commands •/

bool t
xdr wrap str ing (xdrs , s p) -

XDR •xdrs ;
char • • sp ;

return (xdr str ing (xdrs , sp , ALEN)) ;

bool t
xdr cmd (xdrs , cp) -

XDR •xdrs ;
struct cmd •cp ;

bool t

return (xdr array (xdrs , &cp->c argv , &cp->c argc , NARGC ,
s i zeof (char • l , xdr_wrap_ str ing l l ; -

xdr h i s tory (xdrs , hp)
- XDR •xdrs ;

struct h i story •hp ;

return (xdr array (xdrs , &hp->h cmds , &hp->h_len , NCMDS ,
s i zeof (struct cmd) , xdr_cmd)) ;

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 127

Note that the routine xdr wrap s tr i ng () is needed to pack
age the xdr s tr i ng () -routine because the implementation of
xdr a r r ay() only passes two parameters to the array element
description routine; xdr wrap s t r i ng () supplies the third
parameter to xdr - s t r i ng () . -

By now the recursive nature of the XDR library should be obvious.
The following sections describe more constructed data types.

6.3. 5.4 Opaque Data. In some protocols, handles are passed from a
server to client. The client passes the handle back to the server at
some later time. Handles are never inspected by clients; they are
obtained and submitted. That is to say, handles are opaque. The
primitive xdr opaque () is used for describing fixed-sized,
opaque bytes: -

boo l _ t xdr _opaque (xdrs , p , len)
XDR •xdr s ;
char •p ;
u i nt len ;

The parameter p is the location of the bytes; l en is the number of
bytes in the opaque object. By definition, the actual data contained
in the opaque object are not machine portable.

6.3.5.5 Fixed-Length Arrays. The XDR library does not provide a
primitive for fixed-length arrays (the primitive xdr a r r ay () is
for variable-length arrays). Example A could be rewritten to use
fixed-length arrays in the following fashion:

#de f i ne NLEN 2 5 5 I • machine name s must be shorter than 2 5 6 • I
I • chars • I

#de f i ne NGRPS 2 0 I • user cannot be a member o f more than 2 0 • I
I • groups •I

s truct netus er (

) ;

char •nu mach i nename ;
i nt nu ui d ;
i n t nu:g i d s [NGRPS] ;

128 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

bool t
xdr _netuser (xdrs , nup)

XDR *Xdr s ;
s truct netuser *nup ;

i nt i ;

i f (I xdr str ing (xdrs , &nup->nu mach inename , NLEN))
r eturn (FALSE) ;

-

i f (I xdr int (xdrs , &nup->nu ui d))
r eturn (FALSE) ;

-

for (i = 0 ; i < NGRPS ; i + +) {
i f (I xdr int (xdrs , &nup->nu g i d s [i]))

r eturn (FALSE) ;
-

r e turn (TRUE) ;

6.3.5.6 Discriminated Unions. The XDR library supports discrim
inated unions. A discriminated union is a C union and an e n urn t
value that selects an "arm" of the union: -

s truct xdr d i s c r i m {
enum t value ;

} ;
boo l

bool =t (*proc) () ;

t xdr un i on (xdr s , ds cmp , unp , arms , defaultarm)
XDR *Xdr s ;
enum t *ds cmp ;
char

-
*unp ;

s truct xdr d i s c r i m * arms ;
boo l _ t (*de f aultarm) (l ; / * may equa l NULL * /

First the routine translates the discriminant of the union located at
* d s cmp. The discriminant is always an enum t . Next, the
union located at * Unp is translated. The parameter arms is a
pointer to an array of xdr d i s c r i m structures. Each structure
contains an order pair of [va lue , proc l If the union's discrim
inant is equal to the associated va lue , the proc is called to
translate the union. The end of the xdr d i s c r i m structure
array is denoted by a routine of value NULL (0). If the discrim
inant is not found in the arms array, the d e f aul t a rm procedure
is called if it is non-NULL; otherwise the routine returns FAL S E .

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 129

Example D

Suppose the type of a union may be integer, character pointer (a
string), or a gnumb e r s structure. Also, assume the union and its
current type are declared in a structure. The declaration is:

enum utype I INTEGER= 1 , STRING= 2 , GNUMBERS= 3 I ;
s truct u_tag I

I ;

enum utype utype ;
un i on I

int ival ;
char •pva l ;

I• th i s i s the un i on ' s d i s c r i m i nant • I

s truct gnumbers gn ;
I uva l ;

The following constructs and XDR procedure (de)serialize the
discriminated union:

s truct xdr d i s c r i m u tag arms (4] = I
I INTEGER , xdr i �t I ,
I GNUMBERS , xdr gnumbers I
I STRING , xdr wrap s t r i ng I '
I dontcare - , NULL I
1 •

-;lways term i nate arms w i th a NULL xdr _proc • I

boo l t
xdr _u_tag (xdrs , utp)

XDR •xdr s ;
s truct u_tag •utp ;

r e turn (xdr un i on (xdrs , &utp->utype , &utp->uval , u_tag_ arms ,
NULL)) ; -

The routine xdr gnumb e r s () was presented in section 6 .2;
xdr wrap s t ri ng () was presented in Example C. The
default arm parameter to xdr un i on () (the last parameter) is
NULL in this example. Therefore, the value of the union's discrim
inant may legally take on only values listed in the u tag arms
array. This example also demonstrates that the elements-of the
arm's array do not need to be sorted.

It should be noted that the values of the discriminant may be sparse,
though in this example they are not. It is always good practice to
assign explicit integer values to each element of the discriminant's
type. This practice both documents the external representation of
the discriminant and guarantees that different C compilers emit
identical discriminant values.

130 INTERACTNE NFS Protocol Specs/User's Guide - Release 3.2.5

6.3.5. 7 Pointers. In C it is often convenient to put pointers to
another structure within a structure. The primitive
xdr r e f e r e n c e () makes it easy to serialize, deserialize, and
free these referenced structures.

bool t xdr r e f erenc e (xdrs , pp , s i z e , proc)
- XDR *Xdr s ;

char * * pp ;
u i nt s s i z e ;
bool _ t (*proc) () ;

Parameter pp is the address of the pointer to the structure, parame
ter s s i z e is the size in bytes of the structure (the C function
s i z e o f () may be used to obtain this value), and p r o c is the
XDR routine that describes the structure. When decoding data,
storage is allocated if * P P is NULL.

There is no need for a primitive xdr s truc t () to describe
structures within structures, because pointers are always sufficient.

Note that xdr r e f e r e n c e () and xdr a r r ay () are not
interchangeable e-xternal representations of data.

Example E

Suppose there is a structure containing a person's name and a �
pointer to a gnumb e r s structure containing the person's gross
assets and liabilities. The construct is:

s truct pqn (
char •name ;

} ;
s truct qnu�bers *!Jnp ;

The corresponding XDR routine for this structure is:
bool t
xdr pqn (xdrs , pp)

- XDR *Xdr s ;
s truct pqn *PP ;

i f (xdr s t r i nq (xdr s , &pp->name , NLEN) &&
xdr

-
r e f erenc e (xdrs , &pp->qnp , s i zeof (s truct qnumbe r s) ,

xdr
-

qnumber s)) -
r e turn (TRUE) ;

r e turn (FALSE) ;

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 131

6.3.5.8 Pointer Semantics and XDR. In many applications, C pro
grammers attach double meaning to the values of a pointer. Typi
cally the value NULL (or zero) means data is not needed, yet some
application-specific interpretation applies. In essence, the C pro
grammer is encoding a discriminated union efficiently by overload
ing the interpretation of the value of a pointer. For instance, in
Example E a NUL L pointer value for gnp could indicate that the
person's assets and liabilities are unknown. That is, the pointer
value encodes two things - whether or not the data is known and, if
it is known, where it is located in memory. Linked lists are an
extreme example of the use of application-specific pointer
interpretation.

The primitive xdr r e f e r enc e () cannot and does not attach
any special meaning to a NULL-value pointer during serialization.
That is, passing an address of a pointer whose value is NUL L to
xdr r e f e r e n c e () when serialing data will most likely cause a
memory fault and, on the INTERACTIVE UNIX Operating System,
a core dump for debugging.

It is the explicit responsibility of the programmer to expand non
referencable pointers into their specific semantics. This usually
involves describing data with a two-armed discriminated union. One
arm is used when the pointer is valid; the other is used when the
pointer is invalid (NULL) . Section 6.7 has an example (linked lists
encoding) that deals with invalid pointer interpretation.

6.3.6 Non-Filter Primitives

XDR streams can be manipulated with the primitives discussed in
this section:

u i nt xdr ge tpos (xdrs)
XDR •xdr s ;

bool t xdr s e tpos (xdrs , pos)
- XDR •xdr s ;

u i nt pos ;

xdr destroy (xdrs)
- XDR •xdr s ;

The routine xdr getpos () returns an unsigned integer that
� describes the current position in the data stream.

WARNING: In some XDR streams, the returned value of
xdr g e tp o s () is meaningless; the routine returns a - 1 in this
case (though - 1 should be a legitimate value) .

132 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

The routine xdr _ s e tpo s {) sets a stream position to po s .

WARNING: I n some XDR streams, setting a position is impossible;
in such cases, xdr s e tpo s {) will return FAL S E. This routine
will also fail if the requested position is out-of-bounds. The �
definition of bounds varies from stream to stream. 1

The xdr d e s t r oy {) primitive destroys the XDR stream. Use
of the strea.m after calling this routine is undefined.

6.3. 7 XDR Operation Directions

At times it may be wished to optimize XDR routines by taking
advantage of the direction of the operation (XDR ENCODE,
XDR DECODE, or XDR FRE E). The value xdr s - > x op
always contains the direction of the XDR operation. Programmers
are not encouraged to take advantage of this information. There
fore, no example is presented here. However, an example in section
6.7 demonstrates the usefulness of the xdr s\- > x _ op field.

6.4 XDR Stream Access

An XDR stream is obtained by calling the appropriate creation rou
tine. These creation routines take arguments that are tailored to the
specific properties of the stream.

Streams currently exist for (de)serialization of data to or from stan
dard I/0 F I L E streams, TCPfiP connections and INTERACTIVE
UNIX System files, and memory. Section 6.5 documents the XDR
object and how to make new XDR streams when they are required.

6.4; 1 Standard 1/0 Streams

XDR streams can be interfaced to standard I/O using the
xdr s td i o c r e a t e {) routine as follows:

#inc lude <s t d i o . h>
#include <rpc/rpc . h> / * xdr streams are a part of the rpc * /

/ * l i brary * /

vo i d
xdr s td i o create (xdrs , fp , x_op)

XDR *Xdr s ;
FILE * f p ;
enum xdr _ op x_op ;

The routine xdr s td i o c r e a t e {) initializes an XDR stream �
pointed to by xdr s . The XDR stream interfaces to the standard
I/0 library. Parameter fp is an open file, and x op is an XDR
direction. -

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 133

6.4.2 Memory Streams

Memory streams allow the streaming of data into or out of a
specified area of memory.

#inc lude <rpc/rpc . h>

vo i d
xdrmem create (xdrs , addr , len , x_op) -

XDR *Xdr s ;
char *addr ;
u i nt l e n ;
enum xdr _op x_op ;

The routine xdrmem e r e a t e () initializes an XDR stream in
local memory. The memory is pointed to by parameter addr;
parameter 1 e n i s the length in bytes of the memory. The parame
ters xdr s and x op are identical to the corresponding parameters
of xdr s td i o cr e a t e () . Currently the UDP /IP implementa
tion of RPC uses xdrmem e r e a t e () . Complete call or result
messages are built in memory before calling the s end t o () system
routine.

6.4.3 Record (TCP j/P) Streams

A record stream is an XDR stream built on top of a record marking
standard that is built on top of the INTERACTIVE UNIX System
file or network connection interface.

#inc lude <rpc/rpc . h> /* xdr streams are a part of the rpc * /
I * l i brary / *

xdrrec create (xdrs , s ends i z e , recvs i z e , i ohand l e , readproc ,
wr i tep:;::oc)

XDR *Xdr s ;
u i nt s ends i z e , recvs i ze ;
char * i ohandl e ;
int (* readproc) () , (*wr i teproc) () ;

The routine xdr r e c c r e a t e () provides an XDR stream inter
face that allows for a bidirectional, arbitrarily long sequence of
records. The contents of the records are meant to be data in XDR
form. The stream's primary use is for interfacing RPC to TCP con
nections. However, it can be used to stream data into or out of nor
mal UNIX System files.

The parameter xdr s is similar to the corresponding parameter
described above. The stream does its own data buffering similar to
that of standard 1/0. The parameters s ends i z e and
r e cv s i z e determine the size in bytes of the output and input
buffers, respectively; if their values are zero (0), then predetermined
defaults are used. When a buffer needs to be filled or flushed, the
routines r e adpr o c or wr i t e proc , respectively, are called.

134 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

The usage and behavior of these routines are similar to the UNIX
Operating System system calls r e ad () and wr i t e () ; however,
the first parameter to each of these routines is the opaque parameter
i ohand l e . The other two parameters (buf and nbyt e s) and
the results (byte count) are identical to the system routines. If xxx
is r e adpr o c or wr i t e proc , then it has the following form:

/ * r eturns the actual number of bytes trans ferred .
* - 1 i s an error
*I

int
xxx (i ohandl e , buf , l e n)

char * i ohandl e ;
char *buf ;
int nbyt e s ;

The XDR stream provides the means for delimiting records in the
byte stream. The implementation details of delimiting records in a
stream are discussed in section 6.8 . The primitives that are specific
to record streams are as follows:

bool t
xdr r e c _ endofre cord (xdrs , f lushnow)

XDR *Xdr s ;
boo l _ t f lushnow ;

boo l _ t
xdr r e c s k i precord (xdrs)

XDR *Xdr s ;

bool t
xdrr�c _ eof (xdrs)

XDR *Xdr s ;

The routine xdrr e c endo f r e cord () causes the current out
going data to be marked as a record. If the parameter f l u s hnow
is TRUE, then the stream's wr i t e pro c () will be called; other
wise, wr i t e p r o c () will be called when the output buffer has
been filled.

The routine xdrr e c s k i pr e cord () causes an input stream's
position to be moved past the current record boundary and onto the
beginning of the next record in the stream.

If there is no more data in the stream's input buffer, then the rou
tine xdr r e c e o f () returns TRUE. This does not imply that
there is no more data in the underlying file descriptor.

6.5 · XDR Stream Implementation

This section provides the abstract data types needed to implement
new instances of XDR streams.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 135

6.5. 1 The XDR Object

The following structure defines the interface to an XDR stream:
enum xdr _op I XDR_ENCODE = 0 , XDR_DECODE = 1 , XDR_FREE = 2) ;

typedef struct I
enum xdr op x op ; I • operat ion ; fast add i t i onal param • I
struct xdr -ops T

bool _t l •x_getlong) () ;

bool t
bool=t
bool t
u int

bool t

(•x putlong) () ;
(•x-getbytes) () ;
(•x-putbytes) () ;
(•x=getpostn) () ;

(•x_setpostn) (l ;
caddr_t (•x _ inl ine) () ;

VOID (•x_destroy) (l ;

I• get a long from • I
I• underlying stream •I
I • put a long to • •I
I• get some byte s from • •I
I• put some bytes to • •I
I• returns byte offset from •I
I • beg inning • I
I• repos i t i ons pos i t i on in •I
I • stream •I
I • buf qu i ck ptr to buffered • I
I• data •I
I• free privates of th i s • I
I• xdr_stream •I

•x ops ;
c addr t x publ i c ;
c addr- t x-pr ivate ;
caddr- t x-base ;
i nt - x=handy ;

I• users ' data • I

XDR ;

I• po inter to pr ivate data • I
I • pr ivate used for pos i t i on info • I
I• extra pr ivate word •I

The x op field is the current operation being performed on the
stream:- This field is important to the XDR primitives, but it should
not affect the implementation of a stream. That is, the implementa
tion of a stream should not depend on this value. The fields
x p r i va t e , x b a s e , and x handy are private to the particu
lar stream's implementation. The field x pub l i c is for the XDR
client and should never be used by the XDR stream implementations
or the XDR primitives.

Macros for accessing operations x g e tpo s tn () ,
x s e tpo s tn () , and x d e s t roy () were defined in section
6.3.6 . The operation x in l i ne () takes two parameters - an
XDR * and an unsigned Integer, which is a byte count. The routine
returns a pointer to a piece of the stream's internal buffer. The
caller can then use the buffer segment for any purpose. From the
point of view of the stream, the bytes in the buffer segment have
been consumed or put. The routine may return NULL if it cannot
return a buffer segment of the requested size. (The x i n l i ne
routine is for cycle squeezers. Use of the resulting buffer is not
data-portable. Users are encouraged not to use this feature.)

The operations x g e tbyt e s () and x putbyt e s () blindly
get and put sequences of bytes from or to the underlying stream;
they return TRUE if they are successful, and FAL S E otherwise.

136 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

The routines have identical parameters (replace xxx) :
bool t
xxxbyt e s (xdrs , buf , bytecount)

XDR •xdr s ;
char •buf ;
u i nt bytecount ;

The operations x g e t l ong () and x put l ong () receive and
put long numbers from and to the data stream. It is the responsibil
ity of these routines to translate the numbers between the machine
representation and the (standard) external representation. The
UNIX System networking primitives htonl () and ntohl () can
be helpful in accomplishing this. Section 6.6 defines the standard
representation of numbers. The higher-level XDR implementation
assumes that signed and unsigned long integers contain the same
number of bits, and that non-negative integers have the same bit
representations as unsigned integers. The routines return TRUE if
they succeed, and FAL S E otherwise. They have identical
parameters:

bool t
xxxlo

-
ng (xdr s , lp)

XDR •xdr s ;
l ong • lp ;

lmplementors of new XDR streams must make an XDR structure
(with new operation routines) available to clients using some kind of
create routine.

6.6 XDR Standard

This section defines the external data representation standard. The
standard is independent of languages, operating systems, and
hardware architectures. Once data is shared among machines, it
should not matter that the data was produced on a Sun, but is con
sumed by a VAX (or vice versa). Similarly the choice of operating
systems should have no influence on how the data is represented
externally. For programming languages, data produced by a C pro
gram should be readable by a FORTRAN or Pascal program.

The external data representation standard depends on the assump
tion that bytes (or octets) are portable. A byte is defined to be
eight bits of data. It is assumed that hardware that encodes bytes -._
onto various media will preserve the bytes' meanings across l
hardware boundaries. For example, the Ethernet standard suggests
that bytes be encoded "little endian" style. Both Sun and VAX
hardware implementations adhere to the standard.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 137

The XDR standard also suggests a language used to describe data.
The language is a modified C; it is a data description language, not
a programming language. (The Xerox* Courier Standard uses
modified Mesa as its data description language.)

6.6. 1 Basic Block Size

The representation of all items requires a multiple of four bytes (or
32 bits) of data. The bytes are numbered 0 through n- 1 , where (n
mod 4)=0. The bytes are read or written to some byte stream such
that byte m always precedes byte m+ 1 .

6.6.2 Integer

An XDR signed integer is a 32-bit datum that encodes an integer in
the range [-2 1 4748 3648 , 2 1 47483647 1. The integer is represented
in two's complement notation. The most and least significant bytes
are 0 and 3, respectively. The data description of integers is
i nt e g e r .

6. 6.3 Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnega-
� tive integer in the range [0 , 4294967295]. It is represented by an

unsigned binary number whose most and least significant bytes are 0
and 3 , respectively. The data description of unsigned integers is
uns i gned.

6. 6.4 Enumerations

Enumerations have the same representation as integers. Enumera
tions are useful for describing subsets of the integers. The data
description of enumerated data is as follows:

typedef enum { name = value , . • . .) type-name ;

For example, the three colors red, yellow, and blue could be
described by an enumerated type:

typedef enum { RED = 2 , YELLOW = 3 , BLUE = 5) color s ;

138 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

6.6.5 Booleans

Booleans are important enough and occur frequently enough to war
rant their own explicit type in the standard. Boolean is an enumera-
tion with the following form: """'.

typedef enum (FALS E � 0 , TRUE � 1) bool ean ;

6.6.6 Hyper Integer and Hyper Unsigned

The standard also defines 64-bit (8-byte) numbers called
hyp e r i nt e g e r and hyp e r uns i gned. Their representa
tions are the obvious extensions of the integer and unsigned defined
above. The most and least significant bytes are 0 and 7,
respectively.

6.6. 7 Floating Point and Double Precision

The standard defines the encoding for the floating point data types
f l o a t (32 bits or 4 bytes) and doub l e (64 bits or 8 bytes) . The
encoding used is the IEEE standard for normalized single- and
double-precision floating point numbers. See the IEEE floating point
standard for more information. The standard encodes the following
three fields, which describe the floating point number:

s The sign of the number. Values 0 and 1 represent positive
and negative, respectively.

E The exponent of the number, base 2. Floats devote 8 bits
to this field, while doubles devote 1 1 bits. The exponents
for float and double are biased by 1 27 and 1 023,
respectively.

F The fractional part of the number's mantissa, base 2.
Floats devote 23 bits to this field, while doubles devote 52
bits.

Therefore, the floating point number is described by:
(- 1)S x2E-Bias * 1 .F

Just as the most and least significant bytes of a number are 0 and 3 ,
the most and least significant bits of a single-precision floating point
number are 0 and 3 1 . The beginning bit (and most significant bit) � offsets of s , E , and F are 0, 1 , and 9, respectively.

Doubles have the analogous extensions. The beginning bit (and
most significant bit) offsets of s , E, and F are 0, 1 , and 1 2,
respectively.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 139

The IEEE specification should be consulted concerning the encoding
for signed zero, signed infinity (overflow), and de normalized
numbers (underflow). Under IEEE specifications, the "NaN" (not a
number) is system dependent and should not be used.

6.6.8 Opaque Data

At times fixed-length uninterpreted data needs to be passed among
machines. This data is called opaque and is described as:

typedef opaque type -name [n] ;
opaque name [n] ;

where n is the (static) number of bytes necessary to contain the
opaque data. If n is not a multiple of four, then the n bytes are
followed by enough (up to 3) zero-valued bytes to make the total
byte count of the opaque object a multiple of four.

6.6.9 Counted Byte Strings

The standard defines a string of n (numbered 0 through n- 1) bytes
to be the number n encoded as un s i gned, and followed by the n
bytes of the string. If n is not a multiple of four, then the n bytes
are followed by enough (up to 3) zero-valued bytes to make the
total byte count a multiple of four. The data description of strings
is as follows:

typedef s t r i ng type -name<N> ;
typedef str ing type -name<> ;
s t r i ng name<N> ;
s t r i ng name<> ;

Note that the data description language uses angle brackets (< and
>) to denote anything that is of variable length (as opposed to
square brackets to denote fixed-length sequences of data).

The constant N denotes an upper bound of the number of bytes that
a string may contain. If N is not specified, it is assumed to be
232 - 1 , the maximum length. The constant N would normally be
found in a protocol specification. For example, a filing protocol may
state that a file name can be no longer than 14 bytes, such as:

str i ng f i l ename< 1 4> ;

The XDR specification does not say what the individual bytes of a
string represent; this important information is left to higher-level
specifications. A reasonable default is to assume that the bytes
encode ASCII characters.

140 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

6. 6. 1 0 Fixed Arrays

The data description for fixed-length arrays of homogeneous ele
ments is as follows:

typedef e l ementtype type -name [n] ;
e l ementtype name [n] ;

Fixed-size arrays of elements numbered 0 through n- 1 are encoded
by individually encoding the elements of the array in their natural
order, 0 through n- 1 .

6. 6. 1 1 Counted Arrays

Counted arrays provide the ability to encode variable-length arrays
of homogeneous elements. The array is encoded as the element
count n (an unsigned integer), followed by the encoding of each of
the array's elements, starting with element 0 and progressing
through element n- 1 . The data description for counted arrays is
similar to that of counted strings:

typedef e l ementtype type-name<N> ;
typedef e l ementtype type-name<> ;
e l ementtype name<N> ;
e l ementtype name<> ;

Again, the constant N specifies the maximum acceptable element �
count of an array; if N is not specified, it is assumed to be 232 - 1 .

6. 6. 12 Structures

The data description for structures is very similar to that of stan
dard C:

typedef struct (
component- type component-name ;

) typ e - name ;

The components of the structure are encoded in the order of their
declaration in the structure.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 141

6.6. 13 Discriminated Unions

A discriminated union is a type composed of a discriminant followed
by a type selected from a set of prearranged types according to the
value of the discriminant. The type of the discriminant is always an
enumeration. The component types are called "arms" of the union.
The discriminated union is encoded as its discriminant followed by
the encoding of the implied arm. The data description for discrim
inated unions is as follows:

typedef un i on swi tch (d i s c r i m i nant- type)
d i s c r i m i nant-value : arm- type ;

d e f aul t : default- arm- type ;
} typ e - name ;

The default arm is optional. If it is not specified, then a valid
encoding of the union cannot take on unspecified discriminant
values. Most specifications neither need nor use default arms.

6.6. 14 Missing Specifications

The standard lacks representations for bit fields and bitmaps, since
the standard is based on bytes. This is not to say that no
specification should be attempted.

6.6. 1 5 Library PrimitivejXDR Standard Cross Reference

The following table describes the association between the C library
primitives discussed in section 6 .3 and the standard data types
defined in this section:

142 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

C Primitive XDR Tvoe Sections
xdr_int

xdr_.long integer 6.3 . 1
xdr_short 6.6.2

xdr_u_int
xdr_u_Iong unsigned 6 .3 . 1

xdr_u_short 6.6. 3
- hyper integer 6.6 .6

hyper unsigned
xdr_float float 6 .3 .2

6.6.7
xdr_double double 6 .3 .2

6.6.7
xdr_enum enum_t 6 .3 .3

6.6.4
xdr_bool booLt 6 .3 .3

6.6. 5
xdr_string string 6. 3 .5 . 1
xdr_bytes 6 .3 .5 .2

6.6.9
xdr__array (variable arrays) 6.3 .5 . 3

6 .6. 1 1
- (fixed arrays) 6 .3 .5 . 5 . .,

. 6.6. 1 0
xdr_opaque opaque 6 .3 .5 .4

6.6. 8
xdr_union union 6 .3 .5 .6

6.6. 1 3
xdr__reference - 6. 3 .5 .7

- struct 6.6.6

6. 7 Advanced Topics

This section describes techniques for passing data structures that are
not covered in the preceding sections. Such structures include
linked lists (of arbitrary lengths). Unlike the simpler examples
covered in the previous sections, the following examples are written
using both the XDR C library routines and the XDR data descrip
tion language. Section 6.6 describes the XDR data definition
language used below.

) /

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 143

6. 7. 1 Linked Lists

The last example in section 6.2 presented a C data structure and its
associated XDR routines for a person's gross assets and liabilities.
The example is duplicated below:

s truct gnumbers (

} ;

long g assets ;
long g = l i abi l i t i e s ;

bool t
xdr_gnumbers (xdrs , gp)

XDR •xdrs ;
struct gnumbers •gp ;

i f (xdr long (xdrs , & (gp->g assets)))
-return (xdr long (xdrs , & (gp->g l i abi l i t i e s))) ;

return (FALS E) ; - -

Now assume that it is wished to implement a linked list of such
information. A data structure could be constructed as follows:

typedef s truct gnnode (

} ;

struct gnumbers gn numbers ;
struct gnnode •nxt;

typedef s truct gnnode •gnumbers_ l i s t ;

The head of the linked list can be thought of as the data object; that
is, the head is not merely a convenient shorthand for a structure.
Similarly, the nxt field is used to indicate whether or not the
object has terminated. Unfortunately, if the object continues, the
nx t field is also the address of where it continues. The link
addresses carry no useful information when the object is serialized.

The XDR data description of this linked list is described by the
recursive type declaration of gnumb e r s _ 1 i s t :

struct gnumbers (

} ;

uns i gned g assets ;
uns igned g= l i abi l i t i e s ;

typedef un i on switch (boolean) (
case TRUE : struct (

struct gnumbers current e l ement ;
gnumbers _ l i st rest_of _ l ist ;

} ;
case FALSE : struct (} ;

gnumbers _ l i st ;

In this description, the boolean indicates whether there is more data
following it. If the boolean is FAL S E, then it is the last data field
of the structure. If it is TRUE, then it is followed by a gnumb e r s

144 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

structure and (recursively) by a gnumb e r s l i s t (the rest of the
object). Note that the C declaration has- no boolean explicitly
declared in it (though the nxt field implicitly carries the informa
tion), while the XDR data description has no pointer explicitly
declared in it.

Hints for writing a set of XDR routines to successfully (de)serialize
a linked list of entries can be taken from the XDR description of the
pointer-less data. The set consists of the following mutually recur
sive routines: xdr _ gnumb e r s _ l i s t, xdr _wrap _ l i s t, and
xdr _ gnno d e .

bool t
xdr_gnnode (xdrs , gp)

XDR *Xdr s ;

bool t

s truct gnnode *gp ;

return (xdr gnumbers (xdrs , & (gp->gn number s)) &&
xdr = gnumber s _ l i s t (xdrs , & (gp->nxt))) ;

xdr wrap l i s t (xdrs , g l p) - XDR *Xdrs ;
gnumbe r s _ l i s t *glp ;

r e turn (xdr r e f erenc e (xdrs , glp , s i zeof (s truct gnnode) ,
xdr _ gnn;;de)) ;

struct xdr d i s c r i m cho i c e s [2] = I
/ *

-
C a l l ed i f another node needs (de) s er i al i z ing * /

I TRUE , x d r w r a p l i st } ,
/ * c a l l ed when there are no more nodes to be * /
/ * (de) s er i a l i z e d * /

I FALS E , xdr _vo i d }

bool t
xdr _ gnumbe r s _ l i st (xdrs , glp)

XDR *Xdr s ;
gnumbe rs _ l i s t *glp ;

boo l _ t more _ data ;

more data = (*glp I = (gnumbers l i st) NULL) ;
r e tu�n (xdr_un i on (xdrs , &more _data , glp , cho i c e s , NULL)) ;

The entry routine is xdr gnumb e r s 1 i s t () ; its job is to
translate between the boolean value mor e data and the list
pointer values. If there is no more data, the xdr un i on () prim- 1
itive calls xdr vo i d () , and the recursion is terminated. Other-
wise, xdr un ion () calls xdr wr ap l i s t () , whose job is to
dereference the list pointers. The xdr

-
gnnod e () routine actu-

ally (de)serializes data of the current node of the linked list and

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 145

recursively calls xdr gnumber s 1 i s t () to handle the
remainder of the list. - -

Readers should convince themselves that these routines function
...-... correctly in all three directions (XDR ENCODE, XDR D E C ODE, 1\

and XDR FRE E) for linked lists of any length (including zero).
Note that-the boolean mo r e data is always initialized, but in the
XDR DECODE case it is overwritten by an externally generated
value� Also note that the value of the boo 1 t is lost in the stack.
The essence of the value is reflected in the list's pointers.

The unfortunate side effect of (de)serializing a list with these rou
tines is that the C stack grows linearly with respect to the number
of nodes in the list. This is due to the recursion. The routines are
also hard to code (and understand) due to the number and nature of
the primitives involved (such as xdr r e f e r e n c e , xdr un i on,
and xdr _ vo i d) .

- -

The following routine collapses the recursive routines. It also has
other optimizations that are discussed below.

bool t
xdr gnumbers l i st (xdrs , qlp)

r-. - XDR •xdrs ;
qnumbers _ l i s t •qlp ;

bool _t more_data ;

wh i l e (TRUE) {
more data = (•qlp I = (qnumbers l i st) NULL) ;
i f (l xdr bool (xdrs , &more data))

return (FALSE) ; -
i f (I more data)

return (TRUE) ; I • we are done •I
i f (I xdr reference (xdrs , qlp , s i zeof (s truct qnnode) ,

xdr qnumbers l l
-return (FALSE) ;

qlp = & ((•qlp) ->nxt) ;

The claim is that this one routine is easier to code and understand
than the three recursive routines above. The parameter g 1 p is
treated as the address of the pointer to the head of the remainder of
the list to be (de)serialized. Thus, g 1 p is set to the address of the
current node's nxt field at the end of the while loop. The discrim
inated union is implemented in-line; the variable mor e d a t a has
the same use in this routine as in the routines above. Its value is
recomputed and re-(de)serialized each iteration of the loop. Since
* g 1 p is a pointer to a node, the pointer is dereferenced using
xdr _ r e f e r e n c e () . Note that the third parameter is truly the

146 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

size of a node (data values plus nxt pointer), while
xdr gnumb e r s () only (de)serializes the data values. This
optimization works only because the nxt data comes after all legi
timate external data.

There is a bug in this routine in the XDR FREE case, in that
xdr r e f e r e n c e () will free the node * glp. Upon return the
assignment g l p = &. ((* g l p) - > nxt) cannot be guaranteed to
work since * g 1 p is no longer a legitimate node. The following
code works in all cases. The hard part is to avoid dereferencing a
pointer which has not been initialized or which has been freed.

bool t
xdr gnumbers l i st (xdrs , glp) - XDR *Xdr s ;

gnumbers _ l i st *glp ;

bool t more data ;
bool -t free ing ;
gnumbers _ l i st *next ; /* the next value of glp *I

free ing = (xdrs ->x op = = XDR FREE) ;
whi l e (TRUE) (- -

more data = (*glp I = (gnumbers l i st) NULL) ;
i f (l xdr bool (xdrs , &more data))

return (FALSE) ; -

i f (I more data)
return (TRUE) ; /* we are done */

i f (fr e e ing)
next = & ((*glp) ->nxt) ;

i f (I xdr reference (xdrs , glp , s i zeof (struct gnnode) ,
xdr gnumbers))

-return (FALSE) ;
glp = (free ing) ? next : & ((*glp) ->nxt) ;

Note that this is the first example in this document that actually
inspects the direction of the operation (xdr s - > x op). The
claim is that the correct iterative implementation is still easier to
understand or code than the recursive implementation. It is cer
tainly more efficient with respect to C stack requirements.

6.8 The Record Marking Standard

A record is composed of one or more record fragments. A record
fragment is a 4-byte header followed by 0 to 23 1 - 1 bytes of frag
ment data. The bytes encode an unsigned binary number; as with
XDR integers, the byte order is from highest to lowest. The number
encodes two values - a boolean that indicates whether the fragment
is the last fragment of the record (bit value 1 implies the fragment
is the last fragment) and a 3 1 -bit unsigned binary value, which is
the length in bytes of the fragment's data. The boolean value is the

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 147

high-order bit of the header; the length is made up of the 3 1 low
order bits.

Note that this record specification is not in XDR standard form and
cannot be implemented using XDR primitives.

6.9 Synopsis of XDR Routines

xdr_array()

xdr _ array (xdrs , arrp , s i z ep , maxs i z e , e l s i ze , e lproc)
XDR •xdrs ;
char • • arrp ;
u i nt • s i z ep , maxs i z e , e l s i z e ;
xdrproc _ t e lproc ;

A filter primitive that translates between arrays and their
corresponding external representations. The parameter a r r p
is the address of the pointer to the array, while s i z e p is the
address of the element count of the array; this element count
cannot exceed max s i z e . The parameter e 1 s i z e is the
s i z e o f () each of the array's elements, and e l proc is an
XDR filter that translates between the array elements' C form
and their external representations. This routine returns 1 if it
succeeds, 0 otherwise.

xdr_bool()

xdr_bool (xdr s , bp)
XDR •xdr s ;
boo l _ t •bp ;

A filter primitive that translates between boo leans (C integers)
and their external representations. When encoding data, this
filter produces values of either 1 or 0. This routine returns 1
if it succeeds, 0 otherwise.

xdr _bytes()

xdr byte s (xdrs , sp , s i z ep , maxs i z e)
XDR •xdr s ;
char • • s p ;
u i nt • s i z ep , maxs i z e ;

A filter primitive that translates between counted byte strings
and their external representations. The parameter s p is the
address of the string pointer. The length of the string is
located at address s i z e p ; strings cannot be longer than
maxs i z e . This routine returns 1 if it succeeds, 0 otherwise.

148 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

xdr _destroy()

vo i d
xdr _ d e s t roy (xdrs)

XDR •xdr s ;

A macro that invokes the destroy routine associated with the
XDR stream, xdr s . Destruction usually involves freeing
private data structures associated with the stream. Using
xdr s after invoking xdr _ d e s troy () is undefined.

xdr _double()

xdr _doub l e (xdrs , dp)
XDR •xdr s ;
doub l e •dp ;

A filter primitive that translates between C doub l e precision
numbers and their external representations. This routine
returns 1 if it succeeds, 0 otherwise.

xdr_enum()

xdr enum (xdrs , ep)
XDR •xdr s ;
enum _ t *ep ;

A filter primitive that translates between C e nums (actually
integers) and their external representations. This routine
returns 1 if it succeeds, 0 otherwise.

xdr_ftoat()

xdr f loat (xdr s , fp)
XDR •xdrs ;
f loat • f p ;

A filter primitive that translates between C single precision
numbers and their external representations. This routine
returns 1 if it succeeds, 0 otherwise.

xdr _getpos()

u i nt
xdr _getpos (xdrs)

XDR •xdr s ;

A macro that invokes the get-position routine associated with
the XDR stream, xdr s . The routine returns an unsigned
integer, which indicates the position of the XDR byte stream. �
A desirable feature of XDR streams is that simple arithmetic
works with this number, although the XDR stream instances
need not guarantee this.

r� I

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

xdr _inline()
l ong *
xdr i n l i n e (xdrs , len } -

XDR *Xdr s ;
i nt len ;

149

A macro that invokes the in-line routine associated with the
XDR stream, xdr s . The routine returns a pointer to a con
tiguous piece of the stream's buffer; 1 en is the byte length of
the desired buffer. Note that the pointer is cast to 1 ong * .

WARNING: xdr i n 1 i ne () may return 0 (NULL) if it
cannot allocate a contiguous piece of a buffer. Therefore, the
behavior may vary among stream instances; it exists for the
sake of efficiency.

xdr_int()
xdr i n t (xdr s , i p }

XDR *Xdr s ;
i nt * i p ;

A filter primitive that translates between C integers and their
external representations. This routine returns 1 if it succeeds,
0 otherwise.

xdr_Iong()
xdr long (xdrs , lp }

XDR *Xdr s ;
l ong * l p ;

A filter primitive that translates between C 1 ong integers
and their external representations. This routine returns 1 if it
succeeds, 0 otherwise.

xdr _opaque()
xdr _ opaque (xdrs , cp , cnt }

XDR *Xdr s ;
char * C p ;
u i nt cnt ;

A filter primitive that translates between fixed size opaque
data and its external representation. The parameter c p is the
address of the opaque object, and cnt is its size in bytes.
This routine returns 1 if it succeeds, 0 otherwise.

150 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

xdr_reference()

xdr r e f e r e n c e (xdrs , pp , s i z e , proc)
XDR •xdrs ;
char * * PP t
u i nt s i z e ;
xdrpr o c _ t proc ;

A primitive that provides pointer chasing within structures.
The parameter pp is the address of the pointer, s i z e is the
s i z e o f () the structure that * PP points to, and p r o c is
an XDR procedure that filters the structure between its C
form and its external representation. This routine returns l if
it succeeds, 0 otherwise.

xdr _setpos()

xdr _ s e t po s (xd r s , pos)
XDR •xdr s ;
u i nt pos ;

A macro that invokes the set position routine associated with
the XDR stream, xdr s . The parameter p o s is a position
value obtained from xdr g e tpos () . This routine returns
l if the XDR stream could-be repositioned, 0 otherwise.

WARNING: Since it is difficult to reposition some types of
XDR streams, this routine may fail with one type of stream
and succeed with another.

xdr_short()

xdr short (xd r s , sp)
XDR •xdr s ;
short • s p ;

A filter primitive that translates between C s ho r t integers
and their external representations. This routine returns l if it
succeeds, 0 otherwise.

xdr _string()

xdr s t r ing (xd r s , s p , maxs i z e)
XDR *Xdr s ;
char * * Bp ;
u i nt maxs i z e ;

A filter primitive that translates between C strings and their
corresponding external representations. Strings cannot be
longer than rnaxs i z e . Note that s p is the address of the
string's pointer. This routine returns l if it succeeds, 0
otherwise.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

xdr _u_int()

xdr u i nt (xdrs , up)
XDR *Xdr s ;
uns i gned *UP ;

151

A filter primitive that translates between C un s i gn e d
integers and their external representations. This routine
returns 1 if it succeeds, 0 otherwise.

xdr_u_Iong()

xdr _ u _ l ong (xdrs , ulp)
XDR *Xdr s ;
uns i gned long *Ulp ;

A filter primitive that translates between C
un s i gned l ong integers and their external representations.
This routine returns 1 if it succeeds, 0 otherwise.

xdr_u_short()

xdr u short (xdrs , usp)
XDR *Xdr s ;
uns i gned short *usp ;

A filter pnm1t1ve that translates between C
un s i gned s hort integers and their external representa
tions. This routine returns 1 if it succeeds, 0 otherwise.

xdr_union()

xdr un i on (xdrs , ds cmp , unp , cho i c e s , dfaul t)
XDR *Xdrs ;
i nt *ds cmp ;
char *Unp ;
s truct xdr di s c r i m *Cho i c e s ;
xdrproc _ t dfault ;

A filter primitive that translates between a discriminated C
un i on and its corresponding external representation. The
parameter d s c m p is the address of the union's discriminant,
while unp is the address of the union. This routine returns 1
if it succeeds, 0 otherwise.

xdr_void()

xdr vo i d ()

This routine always returns 1 . It may be passed to RPC rou
tines that require a function parameter, where nothing is to be
done.

152 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

xdr_wrapstring()

xdr_wraps t r i ng (xd r s , s p)
XDR •xd r s ;
char • • s p ;

A primitive that calls
xdr s t r i ng (x d r s , s p , MAXUNS IGNED), where MAX
UNS I GNED is the maximum value of an unsigned integer.
This is useful because the RPC package passes only two
parameters to XDR routines, whereas xdr s t r i ng () , one
of the most frequently used primitives, requires three parame
ters. This routine returns 1 if it succeeds, 0 otherwise.

xdrmem_create()

vo i d
xdrmem c r e a t e (xd r s , addr , s i z e , op)

XDR *Xdrs ;
char • addr ;
u i nt s i z e ;
enum xdr_op op ;

This routine initializes the XDR stream object pointed to by
xdr s . The stream's data is written to, or read from, a chunk
of memory at location addr, whose length is no more than
s i z e bytes long. The op determines the direction of the
XDR stream (either XDR ENCODE, XDR D ECODE, or
XDR _ FR E E).

- -

xdrrec_create()

vo i d
x d r r e c c r e a t e (xd r s , s end s i z e , r e c vs i z e , hand l e , r e a d i t ,
wr i t e i t)

XDR •xdr s ;
u i nt s ends i z e , recv s i z e ;
char •hand l e ;
i nt (* r e a d i t) () , (* wr i t e i t) () ;

This routine initializes the XDR stream object pointed to by
xdr s . The stream's data is written to a buffer of size
s en d s i z e ; a value of 0 indicates that the system should use
a suitable default. The stream's data is read from a buffer of
size r e cv s i z e ; it too can be set to a suitable default by
passing a 0 value. When a stream's output buffer is full,
wr i t e i t () is called. Similarly, when a stream's input
buffer is empty, r e a d i t () is called. The behavior of these
two routines is similar to the INTERACTIVE UNIX Operating
System system calls r e ad and wr i t e , except that hand l e

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 153

is passed to the former routines as the first parameter. Note
that the XDR stream's op field must be set by the caller.

WARNING: This XDR stream implements an intermediate
record stream. There are, therefore, additional bytes in the
stream to provide record boundary information.

xdrrec_endofrecord()

xdr r e c _ endo f r e c or d (xdrs , s e ndnow)
XDR • xd r s ;
i n t s e ndnow ;

This routine can be invoked only on streams created by
xdr r e c c r e at e () . The data in the output buffer is
marked as a completed record, and the output buffer is option
ally written out if s end now is nonzero. This routine returns
1 if it succeeds, 0 otherwise.

xdrrec_eof()

xd r r e c e o f (xd r s)
XDR *Xdr s ;
i nt empty ;

This routine can be invoked only on streams created by
xdr r e c c r e a t e () . After consuming the rest of the
current record in the stream, this routine returns 1 if the
stream has no more input, 0 otherwise.

xdrrec_skiprecord()

xdr r e c _ s k i pr e c ord (xdrs)
XDR • xd r s ;

This routine can be invoked only on streams created by
xd r r e c c r e a t e () . It tells the XDR implementation that
the rest of the current record in the stream's input buffer
should be discarded. This routine returns 1 if it succeeds, 0
otherwise.

xdrstdio_create()

vo i d
xdr s t d i o c r e a t e (xd r s , f i l e , op)

XDR • x d r s ;
F I L E * f i l e ;
enum xdr_op op ;

This routine initializes the XDR stream object pointed to by
xdr s . The XDR stream data is written to, or read from, the
standard 1/0 stream f i l e . The parameter op determines

154 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

the direction of the XDR stream (either XDR _ ENCODE,
XDR _ D E CODE, or XDR _ FREE) .

WARNING: The destroy routine associated with such XDR
streams calls f f 1 us h () on the f i 1 e stream, but never
f c 1 o s e () .

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

7. NFS PROTOCOL SPECIFICATION

7.1 Introduction

155

The Network File System (NFS) protocol provides transparent
remote access to shared file systems over local area networks. The
NFS protocol is designed to be machine, operating system, network
architecture, and transport protocol independent. This independence
is achieved through the use of Remote Procedure Call (RPC) primi
tives built on top of an eXternal Data Representation (XDR).

The supporting mount protocol allows the server to hand out remote
access privileges to a restricted set of clients. Thus, it allows clients
to attach a remote directory tree at any point on some local file
system.

7. 1. 1 Remote Procedure Call

The remote procedure call specification, described in section 4 pro
vides a clean, procedure-oriented interface to remote services. Each
server supplies a program that is a set of procedures. The combina
tion of host address, program number, and procedure number
specifies one remote service procedure.

RPC is a high-level protocol built on top of low-level transport pro
tocols. Since it does not depend on services provided by specific
protocols, it can be used easily with any underlying transport proto
col. The only transport protocol currently supported is UDP /IP.

The RPC protocol includes a slot for authentication parameters on
every call. The contents of the authentication parameters are deter
mined by the "flavor" (type) of authentication used by the server
and client. A server may support several different flavors of authen
tication at once: AUTH NONE passes no authentication informa
tion (this is called null -authentication); AUTH UN I X passes the
INTERACTIVE UNIX System u i d, g i d, and gr oups with each
call.

Servers may change over time, and the protocol which they use may
change, too, so RPC provides a version number with each RPC
request. Thus, one server can service requests for several different
versions of the protocol at the same time.

7. 1 . 2 eXternal Data Representation

The eXternal Data Representation specification, described in section
6 provides a common way of representing a set of data types over a

156 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

network. This takes care of problems such as different byte order
ing on different communicating machines. It also defines the size of
each data type so that machines with different structure alignment
algorithms can share a common format over the network.

In this section the XDR data definition language is used to specify
the parameters and results of each RPC service procedure that a
NFS server provides. The XDR data definition language is similar
to C, although a few new constructs have been added. The notation

s t r i ng name [S I Z E] ;
s t r i ng data<D S I Z E> ;

defines n a m e , which i s a fixed size block of S I Z E bytes, and
d a t a, which is a variable size block of up to D S I Z E bytes. This
same notation is used to indicate fixed-length arrays and arrays with
a variable number of elements up to some maximum.

The discriminated union definition
un i on s w i t c h (e num s t atus) (

NFS OK :
s t r u c t

N F S ERROR :
s t r u c t

d e f a u l t :

f i l ename f i l e 1 ;
f i l ename f i l e 2 ;
i nteger count ;

e r r s t a t error ;
i nt e g e r errno ;

s t r u c t ()

means the first thing over the network is an enumeration type called
s t a t u s ; if its value is N F S OK, the next thing on the network
will be the structure containing f i 1 e 1 , f i 1 e 2 , and c ount. If
the value of s t a t u s is neither NF s OK nor NF s ERROR, then
there is no more data to look at. - -

7. 1 . 3 Stateless Servers

The NFS protocol is stateless. That is, a server does not need to
maintain state about any of its clients in order to function correctly.
Stateless servers have a distinct advantage over stateful servers in
the event of a crash. With stateless servers, a client need only retry
a request until the server responds; it does not even need to know
that the server has crashed. The client of a stateful server, on the
other hand, needs to detect a server crash and rebuild the server's
state when it comes back up.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 157

This issue may not seem important, but it affects the protocol in
several ways. It is worth extra complexity in the protocol to be able
to write very simple servers with no crash recovery provisions.

r--. 7.2 NFS Protocol Definition

The NFS protocol is designed to be operating system independent,
but it was designed in a UNIX System environment. As such, it has
some features that are very much like the INTERACTIVE UNIX
Operating System. When in doubt about how something should
work, referring to the way it is done on the INTERACTIVE UNIX
Operating System should provide assistance.

The protocol definition is given as a set of procedures with argu
ments and results defined using XDR. A brief description of the
function of each procedure should provide enough information to
allow implementation on most machines. A different section is pro
vided for each supported version of the protocol. Most of the pro
cedures, and their parameters and results, are self-explanatory.
However, a few do not fit into the normal UNIX System mold.

The LOOKUP procedure looks up one component of a path name at
a time. It is not immediately obvious why it does not take the
whole path name, look down the directories, and return a file handle
when it is done. There are two good reasons not to do this. First,
path names need separators between the directory components, and
different operating systems use different separators. A Network
Standard Pathname Representation could be defined, but in this
case every path name would have to be parsed and converted at
each end. Second, if path names were passed, the server would have
to keep track of the mounted file systems for all of its clients, so
that it could break the path name at the right point and pass the
remainder on to the correct server.

Another procedure that might seem strange is the READD IR pro
cedure. READD I R provides a network standard format for
representing directories. The argument above could have been used
to justify a READ D I R procedure that returns only one directory
entry per call. The problem is efficiency - directories can contain

� many entries, and a remote call to return each would be too slow.

7.2. 1 Server /Client Relationship

The NFS protocol is designed to allow servers to be as simple and
general as possible. Sometimes the simplicity of the server can be a

158 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

problem if the client wants to implement complicated file system
semantics.

For example, the INTERACTIVE UNIX System allows removal of
open files. A process can open a file and, while it is open, remove it
from the directory. The file can be read and written as long as the
process keeps it open, even though the file has no name in the file
system. It is impossible for a stateless server to implement these
semantics. The client can perform some functions, such as renam
ing the file on remove and only removing it on close. It is felt that
the server provides enough functionality to implement most file sys
tem semantics on the client.

Every NFS client can also be a server, and remote and local
mounted fi!� systems can be freely intermixed. This leads to some
interesting problems when a client travels down the directory tree of
a remote file system and reaches the mount point on the server for
another remote file system. Allowing the server to follow the second
remote mount means it must do loop detection, server lookup, and
user revalidation.

Instead, it was decided not to let dicnts cross a server's mount
point. When a client does a L O OKUP OP a direct0ry on which the
server has mounted a file system, the client sees the underlying
directory instead of the mounted directory. A client can do remote
mounts that match the server's mount points to maintain the
server's view.

7.2.2 Permission Issues

The NFS protocol, strictly speaking, does not define the permission
checking used by servers. However, it is expected that a server will
do normal INTERACTIVE UNIX System permission checking using
AUTH UN I X style authentication as the basis of its protection
mechanism. The server gets the client's effective u i d and effective
g i d and groups on each call, and uses them to check permission.
Various problems with this method can be resolved in interesting
ways.

Using u i d and g i d implies that the client and server share the
same u i d list. Every server and client pair must have the same
mapping from user to u i d and from group to g i d. Since every
client can also be a server, this tends to imply that the whole net
work shares the same u i dIg i d space. This is acceptable for the

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 159

short term, but a more workable network authentication method will
be necessary before long.

Another problem arises due to the semantics of open . The UNIX
� Operating System does its permission checking at open time and

then assumes that the file is open and has been checked on later
read and write requests. With stateless servers this breaks down,
because the server has no idea that the file is open and it must do
permission checking on each read and write call. On a local file
system, a user can open a file and then change the permissions so
that no one is allowed to touch it, but will still be able to write to
the file because it is open. On a remote file system, by contrast, the
write would fail. To get around this problem, the server's permis
sion checking algorithm should allow the owner of a file to access it
no matter what the permissions are set to.

A similar problem has to do with paging in from a file over the net
work. The INTERACTIVE UNIX System kernel checks for execute
permission before opening a file for demand paging, then reads
blocks from the open file. The file may not have read permission,
but after it is opened this does not matter. An NFS server cannot
tell the difference between a normal file read and a demand page-in
read. To make this work, the server allows reading of files if the
u i d given in the call has execute or read permission on the file.

In the INTERACTIVE UNIX Operating System, the user ID zero
has access to all files no matter what permission and ownership they
have. This superuser permission is not allowed on the server since
anyone who can become superuser on his own machine could gain
access to all remote files. Instead, the server maps u i d 0 to -2
before doing its access checking. This works as long as NFS is not
used to supply root file systems, where superuser access cannot be
avoided. Eventually servers will have to allow some kind of limited
superuser access.

7.2.3 RPC Information

Authentication
The NFS service uses AUTH UN I X style authentication
except in the NULL procedure -where AUTH NONE is also
allowed.

Protocols
NFS currently is supported on UDP fiP only.

160 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

Constants
These are the RPC constants needed to call the NFS service.
They are given in decimal.

PROGRAM
VERSION

Port Number

1 00003
2

The NFS protocol currently uses the UDP port number 2049.
This restriction will be waived in a future protocol revision.

7.2.4 Sizes

These are the sizes, given in decimal bytes, of various XDR struc
tures used in the protocol.

MAXDATA 8192
The maximum number of bytes of data in a READ or WRI T E
request.

MAXPATHLEN 1024
The maximum number of bytes in a path name argument.

MAXNAMLEN 255
The maximum number of bytes in a file name argument.

COOKIESIZE 4
The size in bytes of the opaque "cookie" passed by
READ D I R.

FHSIZE 32
The size in bytes of the opaque file handle.

7.2.5 Basic Data Types

The following XDR definitions are basic structures and types used in
other structures later on.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 161

7. 2. 5. 1 s ta t .
typedef enum {

} stat ;

NFS OIC= O ,
NFSERR PERM= 1 ,
NFSERR

-
NOENT = 2 ,

NFS ERR
-

10= 5 ,
NFS ERR

-
NXI0= 6 ,

NFSERR
-

ACCES = 1 3 ,
NFS ERR

-
EXIST= 1 7 ,

NFSERR
-

NODEV= 1 9 ,
NFS ERR

-
NOTD IR= 2 0 ,

NFSERR= I SDIR= 2 1 ,
NFSERR_FBIG= 2 7 ,
NFSERR NOSPC = 2 8 ,
NFSERR

-
ROF S = 3 0 ,

NFS ERR
-

NAMETOOLONG = 6 3 ,
NFSERR

-
NOTEMPTY=66 ,

NFSERR
-

DQUOT = 6 9 ,
NFS ERR

-
STALE = 7 0 ,

NFS ERR
-

WFLUSH=99

The s t a t type is returned with every procedure's results. A value
of N F S OK indicates that the call completed successfully and the
results ire valid. The other values indicate that some kind of error
occurred on the server side during the servicing of the procedure.
The error values are derived from UNIX System error numbers.

NFSERILPERM Not owner. The caller does not have
correct ownership to perform the
requested operation.

NFSERILNOENT No such file or directory. The file or
directory specified does not exist.

NFSERR._IO

NFSERR._NXIO

NFSERILACCES

NFSERLEXIST

NFSERLNODEV

NFSERLNOTDIR

1/0 error. A hard error, for example a
disk error, occurred when the operation
was in progress.

No such device or address.

Permission denied. The caller does not
have the correct permission to perform
the requested operation.

File exists. The file specified already
exists.

No such device.

Not a directory. The caller specified a
non-directory in a directory operation.

162 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

NFSERR..._ISDIR

NFSERR_FBIG

Is a directory. The caller specified a
directory in a non-directory operation.

File too large. The operation caused a
file to grow beyond the server's limit.

NFSERR_NOSPC No space left on device. The operation
caused the server's file system to reach
its limit.

NFSERLROFS Read-only file system. Write
attempted on a read-only file system.

NFSERR_NAMETOOLONG File name too long. The file name in
an operation was too long.

NFSERR_NOTEMPTY Directory not empty. Attempted to
remove a directory that was not empty.

NFSERR_DQUOT Disk quota exceeded. The client's disk
quota on the server has been exceeded.

NFSERR_STALE The fhand l e given in the arguments
was invalid. That is, the file referred
to by that file handle no longer exists
or access to it has been revoked.

NFSERR_ WFLUSH The server's write cache used in the
WRITECACHE call got flushed to disk.

7. 2.5. 2 f type .
typede f enum {

NFNON= O ,
NFREG= 1 ,
NFDIR= 2 ,
NFBLK= 3 ,
NFCHR= 4 ,
NFLNK= S

f type ;

The enumeration f type gives the type of a file. The type NFNON
indicates a non-file, NFREG is a regular file, NFD I R is a directory,
NFBLK is a block-special device, NFCHR is a character-special
device, and N FLNK is a symbolic link.

7.2.5.3 fhand l e .
typedef opaque fhandl e [FHSIZE] ;

The fhand l e is the file handle that the server passes to the client.
All file operations are done using file handles to refer to a file or

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 163

directory. The file handle can contain whatever information the
server needs to distinguish an individual file.

7.2.5.4 t i meva l .
� typedef s truct I

uns i qned s e conds ;
uns i qned use conds ;

] t i meva l ;

The t i meva l structure is the number of seconds and
microseconds since midnight on January 1 , 1 970 Greenwich Mean
Time. It is used to pass time and date information.

7.2.5.5 f a t tr .
typedef struct I

fattr ;

f type type ;
uns i qned mode ;
uns i qned n l i nk ;
uns i qned u i d ;
uns i qned q i d ;
uns i qned s i z e ;
uns i qned blocks i z e ;
uns i qned rdev ;
uns i qned blocks ;
uns i qned f s i d ;
uns i qned f i l e i d ;
t i meva l a t i me ;
t i meva l mt ime ;
t i meval c t i me ;

The f at tr structure contains the attributes of a file; type is the
type of the file; n 1 i nk is the number of hard links to the file, that
is, the number of different names for the same file; u i d is the user
identification number of the owner of the file; g i d is the group
identification number of the group of the file; s i z e is the size in
bytes of the file; b 1 o c k s i z e is the size in bytes of a block of the
file; r d e v is the device number of the file if it is type NFCHR or
NFBLK; b l o c k s is the number of blocks that the file takes up on
disk; f s i d is the file system identifier for the file system that con
tains the file; f i 1 e i d is a number that uniquely identifies the file
within its file system; at i me is the time when the file was last
accessed for either read or write; m t i me is the time when the file
data was last modified (written); and c t i me is the time when the
status of the file was last changed. Writing to the file also changes
c t i me if the size of the file changes.

The mode field is the access mode encoded as a set of bits. The
bits are the same as the mode bits returned by the stat (2) system
call in the UNIX Operating System. Notice that the file type is

164 INTERACTIVE NFS Protocol Specs/User's Guide - Release · 3.2.5

specified both in the mode bits and in the file type. This will be
fixed in future versions. The descriptions given below specify the bit
positions using octal numbers.

0040000

0020000

0060000

0100000

0120000

0140000

0004000
0002000
0001000
0000400
0000200
0000100
0000040
0000020
0000010
0000004
0000002
0000001

This is a directory. The type field should be
N F D I R.
This is a character special file. The type
field should be NFCHR.
This is a block special file. The type field
should be NFBLK.
This is a regular file. The type field should
be NFREG.
This is a symbolic link file. The type field
should be NF LNK.
This is a named socket. The type field
should be NFNON.
Set user ID on execution.
Set group ID on execution.
Save swapped text even after use.
Read permission for owner.
Write permission for owner.
Execute and search permission for owner.
Read permission for group.
Write permission for group.
Execute and search permission for group.
Read permission for others.
Write permission for others.
Execute and search permission for others.

7.2.5. 6 s a t t r .
typedef s truct {

uns i gned mode ;
uns i gned u i d ;
uns i gned g i d ;
uns i gned s i z e ;
t i meva l a t i me ;
t i meval mtime ;

sattr ;

The s at t r structure contains the file attributes that can be set -�
from the client. The fields are the same as for f a t t r above. A
s i z e of zero means the file should be truncated. A value of - 1
indicates a field that should be ignored.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 165

7.2. 5. 7 f i l ename .
typedef s t r i ng f i l ename<MAXNAMLEN> ;

The type f i 1 ename is used for passing file names or path name
� components.

�

7.2. 5.8 path .
typedef str i ng path<MAXPATHLEN> ;

The type path is a path name. The server considers it as a string
with no internal structure, but to the client it is the name of a node
in a file system tree.

7.2. 5.9 a t t r s t a t .
typedef un i on swi tch (s tat status)

NFS_OK :
fattr attr i bute s ;

default :
s truct {)

attr s t a t ;

The a t t r s t a t structure is a common procedure result. It con
tains a s t atus and, if the call succeeded, it also contains the
attributes of the file on which the operation was done.

7.2.5. 1 0 d i ropargs .
typedef s truct I

f hand l e d i r ;
f i l ename name ;

} d i ropargs ;

The d i ropa r g s structure is used in directory operations. The
file handle d i r is the directory in which to find the file name . A
directory operation is one in which the directory is affected.

7.2.5. 1 1 d i ropr e s .
typede f un i on switch (s tat status) I

NFS_OK :

default :

d i ropr e s ;

s truct
fhandle f i l e ;
fattr attr i bute s ;

s truct I I

� The results of a directory operation are returned in a d i ropr e s
structure. If the call succeeded, a new file handle f i 1 e and the
a t t r i but e s associated with that file are returned along with the
s t at u s .

166 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

7.2. 6 Server Procedures

The following sections define the RPC procedures supplied by an
NFS server. The RPC procedure number and version are given in
the header, along with the name of the procedure. The synopsis of l procedures has this format:

<proc #> . <proc name> (<arguments>) returns (<re s u l t s>)
<argument decl arat i ons>
<re s u l t s d e c l arat i ons>

In the first line, p r o c name is the name of the procedure, a r g u
ment s is a list of the names of the arguments, and r e s u 1 t s is a
list of the names of the results. The second line gives the XDR
a rgument d e c l ar at i ons and the third line gives the XDR
r e s u l t s d e c l a r a t i on s . Afterwards, there is a description of
what the procedure is expected to do and how its arguments and
results are used. If there are bugs or problems with the procedure,
they are listed at the end.

All of the procedures in the NFS protocol are assumed to be syn
chronous. When a procedure returns to the client, the client can
assume that the operation has completed and any data associated
with the request is now on stable storage. For example, a client � WRI T E request may cause the server to update data blocks, file sys-
tem information blocks (such as indirect blocks in the INTER
ACTIVE UNIX System) , and file attribute information (size and
modify times) . When the WRI T E returns to the client, it can
assume that the write is safe, even in case of a server crash, and it
can discard the data written. This is a very important part of the
statelessness of the server. If the server waited to flush data from
remote requests, the client would have to save those requests so that
it could resend them in case of a server crash.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 167

7.2. 6. 1 Do Nothing (Procedure 0, Version 2).
0 . NFSPROC_NULL () returns ()

This procedure does no work. It is made available in all RPC ser-
� vices to allow server response testing and timing.

7.2.6.2 Get File Attributes (Procedure 1, Version 2).
1 . NFSPROC GETATTR (f i l e) returns (r eply)

fhandl e f i l e ;
attrstat reply ;

If r e p l y . s t a tus is NFS OK, then r e p l y . attr i but e s
contains the attributes for the file given by f i l e .

Bugs: The r d e v field in the attributes structure is an
INTERACTIVE UNIX System device specifier. It should be
removed or generalized.

7.2.6.3 Set File Attributes (Procedure 2, Version 2).
2 . NFSPROC SETATTR (f i l e , attr i bute s) returns (reply)

fhandl e f i l e ;
sattr attr i bute s ;
attrstat reply ;

The a t t r i but e s argument contains fields that are either - 1 or
are the new value for the attributes of f i l e . If r e p l y . s t atus
i s N F S OK , then r e p l y . attr i but e s has the attributes of the
file after the s e t a t t r operation has completed.

Bugs: The use of - 1 to indicate an unused field in a t t r i but e s is
wrong.

7.2. 6.4 Get File System Root (Procedure 3, Version 2).
3 . NFSPROC _ ROOT () returns ()

Obsolete. This procedure is no longer used because finding the
r o o t file handle of a file system requires moving path names
between client and server. To do this correctly, it would be neces
sary to define a network standard representation of path names.
Instead, the function of looking up the root file handle is done by
the MNTPROC _ MNT procedure (see section 7 .3 for details) .

7.2.6. 5 Look Up File Name (Procedure 4, Version 2).
4 . NFSPROC LOOKUP (wh i ch) returns (reply)

d i ropargs wh i ch ;
d i ropre s reply ;

168 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

If r e p l y . s t atus is NFS OK, then r e p l y . f i l e and
r e p l y . a t t r i but e s are the -file handle and attributes for the
file wh i ch . name in the directory given by wh i ch . d i r .

Bugs: There is some question as to what is the correct reply to a � LOOKUP request when wh i ch . name is a mount point on the
server for a remote mounted file system. Currently, the £hand l e
of the underlying directory is returned. This is not completely
acceptable, as the clients see a different view of the file system to
that seen by the server.

7.2. 6.6 Read From Symbolic Link (Procedure 5, Version 2).
5 . NFSPROC READLINK (f i l e) returns (r eply)

fhand l e f i l e ;
un i on sw i t ch (s tat status)

NFS_OK :

reply ;

path data ;
d e f aul t :

s truct { }

If s t at u s has the value NFS OK, then r e p l y . data is the
data in the symbolic link given by-f i 1 e .

7.2.6. 7 Read From File (Procedure 6, Version 2).
6 . NFSPROC READ (f i l e , o f f s e t , count , totalcount l returns (reply)

fhandl e f i l e ;
uns i gned o f f s e t ;
uns i gned count ;
uns i gned total count ;
un i on swi tch (s tat status)

reply ;

NFS _OK :
fattr attr i butes ;
s t r i ng data<MAXDATA> ;

defaul t :
s truct { }

Returns up to c ount bytes of data from the file given by f i l e ,
starting at o f f s e t bytes from the beginning of the file. The first
byte of the file is at offset zero. The file attributes after the read
takes place are returned in attr i but e s .

Bugs: The argument tot a l c ount is unused and should be
removed.

7. 2. 6.8 Write to Cache (Procedure 7, Version 2).
7 . NFSPROC_WRI TECACHE () returns ()

Obsolete.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

7.2.6. 9 Write to File (Procedure 8, Version 2).
8 . NFSPROC WRITE (f i l e , beg inof f s e t , o f f s e t , tota l count , data)

r e turns
-

(reply)
fhand l e f i l e ;
uns i gned beg i nof f s et ;
uns i gned o f f s et ;
uns i gned tota l c ount ;
s t r i ng dat a<MAXDATA> ;
attrstat reply ;

169

Writes d a t a beginning o f f s e t bytes from the beginning of
f i 1 e . The first byte of the file is at offset zero. If
r e p l y . s t a t u s is NFS OK, then r e p l y . a t t r i bute s con
tains the attributes of the -file after the write has completed. The
write operation is atomic. Data from this WRI TE will not be mixed
with data from another client's WRI TE .

Bugs: The arguments b e g i no f f s e t and t o t a l c ount are
ignored and should be removed.

7.2.6. 10 Create File (Procedure 9, Version 2).
9 . NFSPROC CREATE (wher e , attr i but e s) returns (reply)

d i ropargs where ;
sattr attr i but e s ;
d i ropre s reply ;

The file whe r e . name is created in the directory given by
whe r e . d i r . The initial attributes of the new file are given by
a t t r i but e s . A r e p l y . s t atus of NFS OK indicates that
the file was created and that r epl y . f i l e and
r e p l y . a t t r i but e s are its file handle and attributes. Any
other r e p l y . s t atus means that the operation failed and that
no file was created.

Bugs: This routine should pass an exclusive c r e a t e flag meaning
"create the file only if it is not already there."

7.2. 6. 1 1 Remove File (Procedure 10, Version 2).
1 0 . NFS PROC REMOVE (wh i ch) returns (s tatus)

d i ropargs wh i ch ;
s t a t status ;

The file wh i ch . name is removed from the directory given by
wh i ch . d i r . A s t atus of NFS _ OK means the directory entry
was removed.

170 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

7.2.6. 1 2 Rename File (Procedure 1 1 , Version 2).
1 1 . NFS PROC RENAME (from , to) re turns (s tatus)

d i ropargs from ;
d i ropargs to ;
s tat s tatus ;

The existing file f r om . name in the directory given by
f r om . d i r is renamed to to . name in the directory given by
to . d i r . If s tatus is NFS OK, the file was renamed. The
RENAME operation is atomic on the server; it cannot be interrupted
in the middle.

7.2.6. 13 Create Link to File (Procedure 12, Version 2).
1 2 . NFSPROC LINK (f rom , to) returns (status)

fhand l e from ;
d i ropargs to ;
stat s tatus ;

Creates the file t o . name in the directory given by to . d i r ,
which i s a hard link to the existing file given by f r om. If the
return value of s t a tu s is NFS OK, a link was created. Any
other return value indicates an error and the link is not created.

A hard link should ensure that changes to either of the linked files
are reflected in both files. When a hard link is made to a file, the
attributes for the file should have a value for nl i nk which is one
greater than the value before the link.

7.2.6. 14 Create Symbolic Link (Procedure 13, Version 2) .
. 1 3 . NFSPROC SYML INK (from , to , attr i bute s) returns (s tatus)

d i ropargs from ;
path to ;
sattr attr i bute s ;
stat s tatus ;

Creates the file f rom . name with ftype NFLNK in the directory
given by f r om . d i r . The new file contains the path name t o and
has initial attributes given by attr i but e s . If the return value
of s t atus is N F S OK, a link was created. Any other return
value indicates an error and the link is not created.

A symbolic link is a pointer to another file. The name given in to
i s not interpreted by the server, just stored in the newly created file.
A READ L I NK operation returns the data to the client for
interpretation.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

7.2.6. 1 5 Create Directory (Procedure 14, Version 2).
1 4 . NFSPROC MKDIR (where , attr i but e s) returns (r eply)

d i ropargs where ;
s attr attr i bute s ;
d i ropres reply ;

1 71

The new directory whe r e . name is created in the directory given
by wh e r e . d i r . The initial attributes of the new directory are
given by attr i but e s . A r e p l y . s tatus of NFS OK indi
cates that the new directory was created and that r e p fy . f i 1 e
and r e p l y . a t t r i but e s are its file handle and attributes. Any
other r e p l y . s t atus means that the operation failed and that
no directory was created.

7.2. 6. 16 Remove Directory (Procedure 15, Version 2).
1 5 . NFSPROC RMDIR (wh i ch) returns (s tatus)

d i ropargs wh i ch ;
s t a t s t atus ;

The existing empty directory wh i ch . name in the directory given
by wh i ch . d i r is removed. If s t atus is NFS OK, the direc-
tory was removed.

-

7.2.6. 1 7 Read From Directory (Procedure 16, Version 2).
1 6 . NFSPROC READDIR (d i r , cooki e , count) returns (entr i e s)

fhandl e d i r ;
opaque cook i e [COOKIESIZE) ;
uns i gned count ;
un i on swi tch (s tat status)

NFS OK :
typedef uni on swi tch (boolean val i d)

TRUE :

FALSE :

entry ;
boo l e an eof ;

defaul t :
struct {)

entr i e s ;

s truct (
uns i gned f i l e i d ;
f i l ename name ;
opaque cook i e [COOK I E S I Z E) ;
entry nextentry ;

s truct (}

Returns a variable number of directory entries, with a total size of
up to c ount bytes, from the directory given by d i r . Each
e n try contains a f i 1 e i d which is a unique number to identify
the file within a file system, the name of the file, and a cook i e
which is an opaque pointer to the next entry in the directory. The
cookie is used in the next READDIR call to get more entries

1 72 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

starting at a given point in the directory. The special cookie zero
(all bits zero) can be used to get the entries starting at the begin
ning of the directory. The f i 1 e i d field should be the same
number as the f i 1 e i d in the attributes of the file. The e o f flag
has a value of TRUE if there are no more entries in the directory;
FAL S E otherwise. The v a 1 i d flag is used to indicate whether
there are more entries in this reply message. If the returned value
of s t atus is NFS OK, then it is followed by a variable number of
e n t r i e s .

-

7.2.6. 18 Get File System Attributes (Procedure 1 7, Version 2).
1 7 . NFSPROC STATFS (f i l e) returns (reply)

£hand l e f i l e ;
un i on switch (s tat status) (

NFS_OK :

default :

reply ;

s truct
uns i gned t s i ze ;
uns i gned bs i ze ;
uns i gned blocks ;
uns i gned bfree ;
uns i gned bava i l ;

f s attr ;

s truct ()

If r e p l y . s t atus is NFS OK, then r e p l y . f s at t r gives the
attributes for the file system that contains f i l e . The attribute
fields contain the following values:

t s i z e

b s i z e

b l o c k s

b f r e e

bava i l

The optimum transfer size of the server in bytes.
This is the number of bytes the server would
like to have in the data part of READ and
WRI TE requests.

The block size in bytes of the file system.

The total number of bs i z e blocks on the file
system.

The number of free b s i z e blocks on the file
system.

The number of b s i z e blocks available to non
privileged users.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 1 73

Bugs: This call does not work well if a file system has variable size
blocks.

7.3 Mount Protocol Definition

The mount protocol is separate from, but related to, the NFS proto
col. It provides all of the operating system specific services to get
NFS off the ground - looking up path names, validating user iden
tity, and checking access permissions. Clients use the mount proto
col to get the first file handle, which allows them entry into a remote
file system.

The mount protocol is kept separate from the NFS protocol to make
it easy to plug in new access checking and validation methods
without changing the NFS server protocol.

Notice that the protocol definition implies stateful servers because
the server maintains a list of a client's mount requests. The mount
list information is not critical for the correct functioning of either
the client or the server. It is intended for advisory use only; for
example, to warn possible clients when a server is going down.

7.3. 1 Version 1

Version one of the mount protocol communicates with version two
of the NFS protocol. The only connecting point is the fhand l e
structure, which is the same for both protocols.

7.3. 1 . 1 RPC Information.

Authentication
The mount service uses AUTH UN I X style authentication
only.

Protocols
The mount service is currently supported on UDP /IP only.

Constants
These are the RPC constants needed to call the MOUNT ser
vice. They are given in decimal.

PROGRAM
VERSION

100005
1

1 74 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

Port Number
The server's port mapper, described in section 5, should be
consulted to find which port number the mount service is
registered on.

7. 3. 1 . 2 Sizes. These are the sizes given in decimal bytes of various
XDR structures used in the protocol.

MNTPATHLEN 1024
The maximum number of bytes in a path name argument.

MNTNAMLEN 255
The maximum number of bytes in a name argument.

FHSIZE 32
The size in bytes of the opaque file handle.

7.3. 1 . 3 Basic Data Types.

f h a nd l e
type d e f opaque fhand l e [FH S I Z E] ;

The fhand l e is the file handle that the server passes to the
client. All file operations are done using file handles to refer
to a file or directory. The file handle can contain whatever
information the server needs to distinguish an individual file.

This is the same as the fhand l e XDR definition in version 2
of the NFS protocol; see the section on fhandl e under
"Basic Data Types" in that version.

f h s t a t u s
typ e d e f un i on swi tch (uns i gned status)

0 :
fhand l e d i r e c tory ;

d e f aul t :
s truct ()

If a s t at u s of zero is returned, the call completed success
fully and a file handle for the d i r e c to r y follows. A
nonzero status indicates some sort of error. In this case the
status is a UNIX System error number.

d i r pa t h
typedef s t r i ng d i rpa th<MNTPATHLEN> ;

The type d i r p a th is a normal UNIX System path name of
a directory.

...__

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 175

name
typ e d e f s tr i ng name<MNTNAMLEN> ;

The type name is an arbitrary string used for various names.

7. 3. 1 . 4 Server Procedures. The following sections define the RPC
procedures supplied by a mount server. The RPC procedure number
and version are given in the header, along with the name of the pro
cedure. The synopsis of procedures has the format:

<p roc #> . <pr o c name> (<arguments>) r e turns (<r e s u l t s>)
<argument d e c l a r a t i ons>
<r e s u l t s d e c l a r a t i ons>

In the first line, p r o c name is the name of the procedure, a rgu
m e n t s i s a list of the names of the arguments, and r e s u 1 t s i s a
list of the names of the results. The second line gives the XDR
a r gum e nt d e c l a r a t i on s and the third line gives the XDR
r e s u 1 t s d e c 1 a r a t i on s . Afterwards there is a description of
what the procedure is expected to do and how its arguments and
results are used. If there are bugs or problems with the procedure,
they are listed at the end.

7. 3. 1 . 5 Do Nothing (Procedure 0, Version 1).

0 . MNTPROC_ NULL () returns ()

This procedure does no work. It is made available in all RPC ser
vices to allow server response testing and timing.

7. 3. 1 . 6 Add Mount Entry (Procedure 1, Version 1).

1 . MNTPROC _ MNT (d i r e ctory) r e turns (r eply)
d i rpath d i rname ;
f h s t a t u s r eply ;

If r e p l y . s t a t u s is 0, r e p l y . d i r e c tory contains the file
handle for the directory d i rname. This file handle may be used
in the NFS protocol. This procedure also adds a new entry to the
mount list for this client mounting d i rname.

176 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

7. 3. 1. 7 Return Mount Entries (Procedure 2, Version 1).

2 . MNTPROC DUMP () r e turns (mount l i s t)
unio n s w i tch (bo o l e a n more entr i e s) {

T RU E :
s t ruct

name hos tname ;
d i rpath d i rectory ;
mount l i s t nextentry ;

FAL S E :
s truct { }

mount l i s t ;

Returns the list of remote mounted file systems. The mount 1 i s t
contains one entry for each hos tname and d i r e c tory pair.

7. 3. 1 . 8 Remove Mount Entry (Procedure 3, Version 1).

3 . MNTPROC_ UMNT (d i r e c tory) r e turns ()
d i rpath d i r e c tory ;

Removes the mount list entry for d i r e c t ory.

7. 3. 1 . 9 Remove All Mount Entries (Procedure 4, Version 1).

4 . MNTPROC _ UMNTALL () returns ()

Removes all of the mount list entries for this client.

7.3. 1 . 10 Return Export List (Procedure 5, Version 1).

5 . MNTPROC E XPORT () r e turns (expor t l i s t)
uni on s w i t ch (bo o l e a n rnore _ entr i e s)

TRUE :
s t r u c t {

FALS E :

d i rpath f i l e sy s ;
t yp e d e f un i on swi tch (bo o l e a n mor e _ groups)

TRUE :
s truct {

FAL S E :

group s ;

name qrname ;
groups nextgroup ;

s truct { }

export l j s t next entry ;

s truct { }
export l i s t ;

Returns in e x p o r t 1 i s t a variable number of export list entries.
Each entry contains a file system name and a list of groups that are
allowed to import it. The file system name is m

export 1 i s t . f i l e s y s , and the group name 1s in
expor t 1 i s t . group s . grname.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 177

Bugs: The e xport 1 i s t should contain more information about
the status of the file system, such as a read-only flag.

1 78 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

8. AUTOMOUNTER· GUIDE

8.1 Introduction

Sections l and 2 of this document explain how to export and mount
file systems through NFS with the mount command. You can also
NFS mount file systems using the automount program, which
enables users to mount and unmount remote directories on an as
needed basis. Whenever a user on a client machine running the
automounter invokes a command that accesses a remote file or
directory, such as opening a file with an editor, the file system to
which that file or directory belongs is mounted and remains
mounted for as long as it is needed. No mounting is done at boot
time, and the user no longer has to know the superuser password to
mount a directory. It is all done automatically and transparently.

The automounter determines which mount points to monitor and
which file systems to mount from a special set of files called maps
(see section 8 .2 . 1 , "Preparing the Maps") . These maps can reside
on the local machine or be managed via NIS. When a u tomount
is started, either from the command line or from I e t c I n f s it
forks a daemon to serve the mount points specified in the maps. It
does this by establishing itself as the NFS server for the specified
mount points. When one of these mount points is accessed or
crossed, the automounter fields the NFS protocol request as would
the real NFS server daemon, nfsd(l M) . It then mounts the
appropriate remote file system, as specified in the automounter
maps. When a predetermined amount of time has elapsed without
the file system being accessed, the automounter automatically
unmounts it.

The automounter actually mounts all file systems under the direc
tory / tmp mnt. It then uses the NFS symbolic link1 support to
associate the actual mount point with the one in I tmp mn t. The
result is that the file systems, actually mounted under /

-
tmp mn t,

appear to be mounted on the correct mount points. -

To illustrate, assume that the automounter was configured to mount
the remote file system b i gmo : /us r /man on the local directory

l . A symbolic link is conceptually similar to a standard System V link(2), but
can be established between path names residing on different file systems.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 1 79

/ u s r /man. The first user to issue the command c d / u s r /man
would cause the automounter to perform the equivalent of the fol
lowing operations:

mkd i r / tmp mnt/usr/man
mount - f NFS b i gmo : /usr/man /tmp mnt/usr/man
ln - s 2 / tmp_mnt/usr/man /usr/man

-

If the / tmp mnt or /tmp mnt /usr directories did not exist at
the time, the-automounter would dynamically mkd i r them as well.
And although the automounter does not really create symbolic links,
it does act as a symbolic link server, in this case, redirecting access
requests destined for / u s r /man to /tmp mnt /u s r /man. As
a result, b i gmo : / u s r /man would appear to be directly NFS
mounted on the local Ius r Im an directory.

NFS
client

running
Automount

usr/ ?
man/ 6 � �

Symbolic link
via Automounter

NFS mount
- - -

ni""an/

Figure 5. An Automounter Example

man/

u_man/

2. This option (not available on all versions of the operating system) is used to
indicate a symbolic link operation, in this case, associating / usr/man and
/ tmp _ mnt/usr/man.

180 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

This example shows how the automounter can be used to automati
cally mount the on-line UNIX System manual entries from a
specified server. The automounter also allows a client to configure
redundant servers. That is, it allows a client to configure a set of
servers from which a particular file system can be mounted. There
fore, in this example, instead of just specifying b i gmo as the
remote server for /us r/man, it would be possible to specify
remote servers b i g j o e and b i gben, as well. If configured in
this way, the automounter would locate the first available server
(using an RPC p i ng operation) and then NFS mount /u s r /man
from that system.

8.2 Using the Automounter

8.2. 1 Preparing the Maps

Unlike the mount command, automount does not consult
/ e t c / f s t a b for information on which file systems to mount.
Rather, it consults the map file(s) specified on the command line at
startup time (see section 8.2.2, "Starting Automount"). If no maps
are specified, it looks for an NIS map called auto . ma s t e r . If
no NIS auto . ma s t e r exists, automount exits silently.

By convention, all automounter maps are located in the directory
/ e t c and have file names prefixed with auto .

There are three kinds of automount maps:

1 . master

2. indirect

3. direct

The master map lists (as if from the command line) all other maps,
applicable options, and mount points as described below and sum
marized in the following figure:

�

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 181

auto. master

mount point map-name options

none direct optional

directory indirect optional

auto.direct "'------------, auto.indire&t-------------,

key options location # key options location

full path optional server:path simple name optional server:path

Figure 6. Master, Direct, and Indirect Maps

8.2. 1 . 1 The Master Map. Each line in the master map, by conven
tion called / e t c / auto . ma s t e r , has the syntax:

mount-point map-name [mount-options 1

where:

• mount-point is the full path name of a directory. If the direc
tory does not exist, the automounter will create it if possible.
If the directory exists and is not empty, mounting on it will
hide its contents. In this case, the automounter will issue a
warning message.

• map-name is the map the automounter should use to find the
mount points and locations.

• mount-options is an optional, comma-separated list of options
that regulate the mounting of the entries mentioned in map
name, unless the entries in map-name list other options.

182 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

A line whose first character is a # is treated as a comment, and
everything that follows until the end of line is ignored. A backslash
(\) at the end of a line permits splitting long lines into shorter ones.
The notation I - as a mount point indicates that the map in ques-
tion is a direct map and no particular mount point is associated with ·�
the map as a whole.

8.2. 1 . 2 Direct and Indirect Maps. Lines in direct and indirect maps
have the syntax:

key [mount-options J location

where:

• key is the path name of the mount point.

• The mount-options are the options you want to apply to this
particular mount.

• location is the location of the resource, specified as
server : path name [: subdirectory] .

As in the master map, a line whose first character is a # is treated
as a comment and everything that follows until the end of line is
ignored. A backslash at the end of line permits splitting long lines ""' into shorter ones.

The only formal difference between a direct and an indirect map is
that the key in a direct map is a full path name, whereas in an
indirect path name it is a simple name (no slashes) . For instance,
the following would be an entry in a direct map:

/usr/man -ro qoofy : /usr/man

and the following would be an entry in an indirect map:
par s l ey -ro veqq i e s : /usr/qreens

Clearly, the key in the indirect map requires more information,
specifically the actual location of the mount point, par s l ey. This
information must be provided at the command line or through
another map. For instance, if the above line is part of a map called
/ e t c / auto . vegg i e s , the appropriate level of qualification can
be provided through invoking the automount command as
follows: �

automount /veqq i e s /etc/auto . veqq i e s

or adding the following specification to the master map:

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 183

/vegg i e s /etc/auto . vegg i e s -ro , soft , no s u i d

In either case, the mount directory, I v egg i e s, is being used to
qualify the entries in the indirect map / e t c /auto . v e gg i e s .
The end result is that the file system /usr/ g r e e n s from the
machine v e gg i e s will be mounted on /vegg i e s /pa r s l ey,
when needed.

8.2. 1 . 3 Writing a Master Map. As stated above, the syntax for each
line in the master map is:

mount-point map-name [mount-options]

A typical auto . ma s t e r file would contain:
/ - /etc/auto . d i r ect -ro
/home / e t c / auto . home - rw
/net -hos t s

The automounter recognizes some special mount points and maps,
which are explained below.

Mount point I -

In the example above, the mount point I - is a filler that the
automounter recognizes as a directive not to associate the
entries in / e t c /auto . d i r e c t with any directory.
Rather, the mount points are to be the ones mentioned in the
map. (Remember, in a direct map the key is a full path
name.)

Mount point /home

The mount point /home i s to be the directory under which
the entries listed in / e t c / auto . home (an indirect map)
are to be mounted. That is, they will be mounted under
/ tmp mnt/home, and the NFS symbolic link machinery
will be used to associate /home/d i r e c tory and
/ tmp _ mnt /home /d i r e c tory.

Mount point / n e t

Finally, the automounter will mount under the directory
/ne t all the entries under the special map, - ho s t s . This
is a built-in map that does not use any external files except the
hosts database / e t c /ho s t s or the NIS map,
ho s t s . byname , if NIS is running. Notice that since the
automounter does not mount the entries until needed, the
specific order is not important. Once the automount dae
mon is in place, a user entering the command:

184 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

$ cd /net/gumbo

will change directory to the top of the file system (i.e. , the
root file system) of the machine gumbo, as long as the
machine is in the hosts database and it exports any of its file
systems. However, the user may not see all of the files and
directories under /net/gumbo because the automounter
can mount only the exported file systems of host gumbo, in
accordance with the restrictions placed on the exporting.

The actions of the automounter when the command in the
example above is issued are as follows:

1 . p i ng the null procedure of the server's mount service
to see if it is alive.

2. Request the list of exported file system from the server.

3 . Sort the exported list according to the length of the path
name.

/us r / s r c
/ export/home
/us r / s r c / s c c s
/ export/root/blah

This sorting ensures that the mounting is done in the l
proper order, that is, /u s r / s r c is done before
/ u s r / s r c / s c c s .

4. Proceed down the list, mounting all the file systems at
mount points in /tmp mnt (creating the mount points
as needed). -

Note that the automounter has to mount all of the file systems
that the server in question exports. Therefore, if the user
issues the following 1 s command:

$ ls /net/gumbo/usr/ i nc lude

the automounter mounts all of gumbo's exported systems, not
just / u s r .

I n addition, unmounting that occurs after a certain amount of
time has passed is from the bottom up. This means that if one
of the directories at the top is busy, the automounter has to l remount the file system and try again later.

Nevertheless, the - ho s t s special map provides a very con
venient way for users to access directories on many different
hosts without having to use the r l og i n or r s h command.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 185

In addition, users no longer have to modify their
I e t c I f s t ab files or mount the directories by hand as
superuser.

Notice that both /net and /home are arbitrary names dic
tated by convention. The automounter will create them if they
do not exist already.

8.2. 1 . 4 Writing an Indirect Map. The syntax for an indirect map is:
key [mount-options J location

where key is the basename (not the full path name) of the directory
that will be used as mount point. Once the key is obtained by the
automounter, it is suffixed to the mount point associated with it
either by the command line or by the master map that invokes the
indirect map in question.

For instance, one of the entries in the master map presented above
as an example reads:

/home /etc/auto . home -rw

Here / e t c / auto . home is the name of the indirect map that
will contain the entries to be mounted under /home .

A typical auto . home map might contain:
w i l l ow
cypr e s s
poplar
p i ne
app l e
i vy
peach - rw , nosu i d

w i l l ow : /home/w i l l ow
cypre s s : /home /cypre s s
popl ar : /home /poplar
p i ne : / export/p i ne
appl e : / export/home
i vy : /home/ i vy
peach : / export/home

As an example, assume that the map above is on the host o ak. If
the user 1 aura has an entry in the password database specifying
her home directory as /home/w i l l ow/ l aura, whenever she
logs into machine oak, the automounter will mount (as
/ tmp mnt /home /w i l l ow) the directory /hom e /w i l l ow
residing on machine w i 1 1 ow. If one of the directories is indeed
l aura , she will be in her home directory, which is mounted
r e ad/wr i t e as specified by the options field in the master map
entry.

Suppose, however, that l aura's home directory is specified as
/hom e / p e a ch/ l aura . Whenever she logs into oak the auto
mounter mounts the directory I expor t /home from p e a c h
under / tmp _mnt/home/pea ch. Her home directory will be

186 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

mounted r e ad/wr i t e , no s u i d. Any option in the file entry
overrides all options in the master map or the command line.

Now, assume the following conditions occur:

• User l aur a's home directory is listed in the password data- �
base as /hom e /w i l l ow/ l aura.

• The machine, w i l l ow, exports its home file system to the
machines mentioned in auto . home.

• All those machines have a copy of the same auto . home
and the same password database.

Under these conditions, the user, l aura, can run the l og i n com
mand or r l og i n on any of these machines and have her home
directory mounted in place for her.

In addition, 1 aura can also enter the command:
$ cd - b i gmo

and the automounter will mount b i gmo's home directory for her
(if all permissions apply).

In order to accomplish this on a network without NIS, you must) change all of the relevant databases (such as / e t c /p a s s wd) on
all of the systems on the network. On a network running NIS, make
the changes on the NIS master server and propagate the relevant
databases to the slave servers.

8.2. 1 .5 Writing a Direct Map. The syntax for a direct map (like
that for an indirect map) is:

key [mount-options] location

where:

• key is the full path name of the mount point. (Remember
that in an indirect map this is not a full path name.)

• mount-options are optional but, if present, override the options
of the calling line or the defaults for the entry in question.
(See section 8 .2.2, "Starting Automount.")

• location i s the location of the resource, specified as �
server:pathname [:subdirectory].

Of all the maps, the entries in a direct map most closely resemble,
in their simplest form, what their corresponding entries in

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 187

/ e t c / f s t ab might look like. An entry that appears in
/ e t c / f s t ab as:

danc e r : /usr/local/bin /us r/local/bin - r NFS

1� appears in a direct map as:
/usr/ l o c a l / b i n - r o dancer : /usr/loc a l /b i n

The following i s a sample / e t c /auto . d i r e c t map:
/us r / l o c a l \

/usr/man

/bin
/arc

/usr/game s
/usr/ spool /news

-ro , soft
-ro , soft
-ro , soft

-ro , soft
-ro , soft

i vy : /usr/loc a l / b i n \
i vy : /usr/loca l / s r c
oak : /usr/man \
rose : /us r/man \
wi l l ow : /usr /man
peach : /usr/game s
p i ne : /usr/spool /news

There are two unusual features in this map: multiple mounts and
multiple locations. These are the subject of the next two sections.

8.2. 1 . 6 Multiple Mounts. A map entry can describe a multiplicity
of mounts, where the mounts can be from different locations and
with different mount options. Consider the first entry in the previ
ous example:

(iii!'. /usr / l o c a l \
/bin
/arc

-ro , soft
-ro , soft

i vy : /usr/local / b i n \
i vy : /usr/local / s r c

This is, in fact, one long entry whose readability has been improved
by splitting it into three lines using the backslash and indenting the
continuation lines with blank spaces or tabs. This entry mounts
/us r / l o c a l / b i n and /u s r / l o c a l / s r c from the server
i vy, with the options r e a d - only and s o f t. The entry could
also read:

/us r / l oc a l \
/bin
/arc

-ro , soft
-ro

i vy : /usr/ l o c a l / b i n \
oak : /us r / l o c a l / s r c

where the options are different and more than one server is used.
The difference between the above and two separate entries, for
example:

/us r / l o c a l / b i n
/usr/ l o c a l / s r c

-ro , soft
-ro

i vy : /usr/ l o c a l / b i n
oak : /us r / l o c a l / s r c

is that the first case, a multiple mount, guarantees that both direc
tories will be mounted when you reference one of them. In the case
of the separate entries, if you, for instance, enter:

188 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

S cd /us r / l o c a l /b i n

you cannot c d to the other directory using a relative path, because
it is not mounted yet:

S cd • . / a r c
• • / a r c : N o s u c h f i l e or d i r e ctory

A multiple mount obviates this problem. In multiple mounts, each
file system is mounted on a subdirectory within another file system.
When the root of the file system is referenced, the automounter
mounts the whole file system.

A special case of multiple mounts occurs when the root of a file
system has to be mounted as well. This is called a hierarchical
mount. The following illustration shows a true hierarchical
mounting:

/us r / l o c a l \
I
/ b i n
/ a r c

- rw
-ro , soft
-ro

peach : /usr/local \
i vy : /usr/loc a l / b i n \
oak : /usr/loc a l / s r c

Note that a true hierarchical mount can be problematic if the server
for the root of the file system goes down. Any attempt to
unmount the lower branches will fail, since the unmounting has to
proceed through the mount root, which also cannot be unmounted �
while its server is down.

Finally, a word about mount options. In one of the examples above:
/us r / l o c a l \

/ b i n
/ a r c

-ro , soft
-ro , soft

ivy : /usr/local/b i n \
oak : /usr/local/src

both mounts share the same options. This could be modified to:
/us r / l o c a l

/b i n
/arc

-ro , soft \
ivy : /usr/ local/b i n \
oak : /usr/loc a l / s r c

If one of the mount points needed a different specification, you
could then write:

/us r / l o c a l
/ b i n
/ a r c

-ro , soft \

- rw
ivy : /usr/local/bin \
oak : /usr/loc a l / s r c

8.2. 1 . 7 Multiple Locations. In the example for a direct map, which
was:

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

/us r / l o c a l \

/usr/man

/usr /qame s
/usr/spool /news

/bin
/ a r c

-ro , soft
-ro , soft
-ro , soft

-ro , soft
-ro , soft

i vy : /usr/ l oc a l / b i n \
i vy : /usr / l o c a l / s r c
oak : /usr/man \
ros e : /us r/man \
w i l low : /usr/man
peach : /usr/qames
p i ne : /usr/spool/news

189

the mount point /us r/man lists more than one location. This
means that the mounting can be done from any of the replicated
locations, in this case, oak, r o s e , or w i 1 1 ow. This list can also
be expressed as a comma-separated list of servers, followed by the
colon and the path name (as long as the path name is the same for
all of the replicated servers), for example:

/usr/man -ro , soft oak , rose , w i l low : /us r /man

The first server to respond to the RPC p i ng issued by the auto
mounter is selected, and an attempt is made to mount from it. Note
that the list does not imply an ordering, even though servers on the
local network will be pinged first.

This redundancy, which is very useful in an environment where indi
vidual servers may or may not be exporting their file systems, is

r-.. enjoyed only at mount time. There is no status checking of the
mounted-from server by the automounter once the mount occurs. If
the server goes down while the mount is in effect, the file system
becomes unavailable. One option is to wait 5 minutes until the
auto-unmount takes place and try again. Next time around the
automounter will choose one of the other, available servers.
Another option is to use the umount command, inform the auto
mounter of the change in the mount table (as specified in section
8 .2.2. 1 , "The Mount Table"), and retry the mount.

Note that care should be taken when using multiple locations for
r e ad/wr i t e file systems, since the actual server may change
from access to access.

8.2. 1 .8 Specifying Subdirectories. Section 8 .2. 1 .4, "Writing an
Indirect Map," showed the following typical au to . home file:

w i l l ow
cypr e s s
pop lar
p i ne
app l e
i vy
peach - rw , no s u i d

w i l low : /home/w i l l ow
cypr e s s : /home/cypre s s
poplar : /home/poplar
p i ne : /export/p ine
appl e : /export/home
i vy : /home / i vy
peach : /export/home

190 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

Given this auto . home indirect file, every time a user wants to
access a home directory in, for example, /home /w i l l ow, all of
the directories under it will be mounted. Another way to organize
an auto . home file is by user name, as in:

j ohn
mary
j o e

w i l low : /home/wi l low/ j ohn
wi l low : /home/wi l low/mary
w i l low : /home/wi l low/ joe

The above example assumes that home directories are of the form
/home /u s e r rather than /home / s e rver/u s e r . If a user
now enters the following command:

the automounter has to perform the equivalent of the following
actions:

mkd i r / tmp mnt/home/ j ohn
mount - f NFS w i l low : /home/wi l low/ john /tmp_mnt/home / j ohn
ln - s /tmp_mnt/home / j ohn /home/ j ohn

mkd i r /tmp mnt/home/mary
mount -f NFS w i l low : /home /w i l l ow/mary /tmp_mnt/home/mary
l n -s /tmp_mnt/home/mary /home/mary

It is possible to optimize the work done by the automounter, by
modifying the entries in the auto . home map to use the optional �
subdirectory field of the location. The new auto . home map
would look like:

j ohn
mary
j o e

w i l low : /home/w i l low : john
w i l low : /home/wi l low : mary
w i l low : /home/wi llow : joe

Here j ohn, mary, and j o e are entries in the subdirectory field.
Now, when a user refers to j ohn's home directory, the auto
mounter mounts w i l l ow : /home/w i l l ow and links
/tmp _ mnt/home /w i l l ow/ j ohn and /home / j ohn.

If the user then requests access to mary's home directory, the auto
mounter sees that w i l l ow : /home/w i l l ow is already mounted
and simply links / tmp mnt/home /w i l l ow/mary and
/home /mary. In other words, the automounter now only per
forms the equivalent of the following:

mkd i r /tmp_mnt/home/ j ohn
mount - f NFS w i l l ow : /home/wi l low /tmp mnt/home
ln -s /tmp mnt/home/ j ohn /home/ j ohn

-

ln - s /tmp:mnt/home/mary /home/mary

In general, it is a good idea to provide a subdirectory entry in the
1 o c a t i on when different map entries refer to the same mounted
file system from the same server.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 191

8.2. 1 . 9 Metacharacters. The automounter recognizes some charac
ters as having a special meaning. Some are used for substitutions,
some to escape other characters.

Ampersand (&.)

If you have a map with many subdirectories specified, for
example:

j ohn
mary
j o e
able
baker

[• • • 1

w i l low : /home/w i l l ow : j ohn
wi l low : /home/w i l low : mary
wi l low : /home/wi l low : joe
p i ne : /export/home : ab l e
peach : /export/home : baker

consider using string substitutions. You can use the amper
sand character (&.) to substitute the key wherever it appears.

Using the ampersand, the above map now looks as follows:
j ohn
mary
j o e
a b l e
baker

[• • • 1

w i l low : /home/wi l low : &
wi l low : /home/w i l l ow : &
w i l low : /home/wi l low : &
p i ne : /export/home : &
peach : /export/home : &

If the name of the server is the same as the key itself, for
instance:

w i l l ow
peach
p i ne
oak
popl a r

[• • • 1

w i l low : /home/w i l low
peach : /home /peach
p i ne : /home/p ine
oak : /home /oak
poplar : /home/poplar

the use of the ampersand results in:
w i l low
peach
p i ne
oak
poplar

Asterisk (*)
[• • • 1

& : /home/&
& : /home/&
& : /home/&
& : /home/&
& : /home/&

Notice that all of the above entries have the same format.
This permits you to use the catch-all substitute character, the
asterisk (*). The asterisk reduces the whole thing to:

* & : /home/&

where each ampersand is substituted by the value of any given
key. Notice that once the automounter reads the catch-all

192 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

key, it does not continue reading the map, so that the follow
ing map would be viable:

oak
poplar
*

&. : / export/&.
&. : /export/&.
&. : /home/&.

but in the next map the last two entries would always be
ignored:

*
oak
popl ar

&. : /home/&.
&. : /export/&.
&. : /export/&.

You could also use key substitutions in a direct map, in situa
tions like the following:

/usr/man w i l low , cedar , poplar : /usr/man

which is a good candidate to be written as:
/usr/man wi l l ow , c edar , poplar : &.

Notice that the ampersand substitution uses the whole key
string, so if the key in a direct map starts with a I (as it
should) , that slash is carried over, and you could not do some
thing like:

/progs &. 1 , &.2 , &. 3 : /export/src /progs

because the automounter would interpret it as:
/progs /progs 1 , /progs 2 , /prog s 3 : / export/ s r c /progs

Backslash (\)

Under certain circumstances you may have to mount direc
tories whose names may confuse the automounter's map
parser. This is a concern only with non-UNIX System servers.
An example might be a directory called r c 0 : dk 1 ; this could
result in an entry like:

/ j unk -ro vms s erver : rc O : dk 1

The presence of the two colons in the l o c a t i on field will
confuse the automounter's parser. To avoid this confusion,
use a backslash to escape the second colon and remove its spe
cial meaning of separator:

/ j unk -ro

Double quotes (")

vms s e rver : rc 0 \ : dk 1

You can also use double quotes, as in the following example,
where they are used to hide the blank space in the name:

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 193

/ s m i l e dent i s t : / ' front teeth ' / sm i l e

8.2. 1 . 1 0 Environment Variables. Environmental variables can be
used by prefixing a dollar sign ($) to the name of the variable.
Braces are used to delimit the name of the environmental variable
from appended letters or digits. These variables can be used any
where in an entry line, except as a key.

Environmental variables can either be inherited from the environ
ment or can be defined explicitly with the - D command line option.
For instance, if you want each client to mount client-specific files in
the network in a replicated format, you could create a specific map
for each client according to its name, so that the relevant line for
host oak would be:

/mys tuff cypr e s s , i vy , ba l s a : /export/ho s t f i l e s /oak

and for w i l l ow it would be:
/mys tuf f cypr e s s , ivy , ba l s a : /export/hostf i l e s /wi l low

This scheme is viable within a small network, but maintaining this
kind of host-specific map across a large network would soon become
unfeasible. The solution in this case would be to start the auto-

� mounter with a command line similar to the following:
automount -D HOST= ' hos tname ' . . .

and have the entry in the direct map read:
/mystuff cypre s s , i vy , ba l s a : /export/ho s t f i l e s / S HOST

Now each host would find its own files in the mys tu f f directory,
and the task of centrally administering and distributing the maps
becomes easier.

8.2. 1. 1 1 Including Other Maps. A line of the form, +mapname,
causes the automounter to consult the mentioned map as if it were
included in the current map. If mapname is a relative path name
(no slashes), the automounter assumes it is an NIS map. If the path
name is an absolute path name, the automounter looks for a local
map of that name. If the mapname starts with a dash (-), the
automounter consults the appropriate built-in map.

For instance, you can have a few entries in your local auto . home
map for the most commonly accessed home directories and follow
them with the included NIS map:

194 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

i vy -rw
oak - rw
+ auto . home

& : /home/&
& : / export/home

After consulting the included map, the automounter continues scan
ning the current map if no match is found, so you can add more
entries. For example:

i vy
oak

-rw
-rw

& : /home/&
& : / export/home

+ a u t o . home
- r w & : /home/&

Finally, as mentioned before, the map included can be a local file or
even a built-in map:

+ a u t o . home . f i nance
+ a u t o . home . s a l e s
+ auto . home . eng i ne e r ing
+ / e t c / au t o . my s t u f f
+ au t o . home

NIS map
NIS map
NIS map
l o c a l map
NIS map

+ - h o s t s
& : / e xport/&

bui l t - i n ho s t s map
w i l d card

8.2.2 Starting Automount

Once the maps are written, you should make sure that there are no
equivalent entries in / e t c / f s t a b and that all the entries in the
maps refer to NFS exported files.

The syntax to invoke the automounter is:
automount [-rnnTv] [- D name = value] [-f master-file] [- M mount-directory]
[- t l duration] [- tm interval] [-tw interval] [directory map [-mount-options l l

The aut amount(1 M) manual entry contains a complete description
of all options. The mount options that you can specify on the com
mand line or in the maps are the same as those for a standard NFS
mount, excluding bg (background) and f g (foreground), which
do not apply.

By default, if the / e t c / auto . ma s t e r file exists, the NFS
startup script, / e t c / r c 3 . d/ s 7 2 n f s , starts the automounter at
boot time through the lines:

echo " automount \ c "
automount - m - f / e t c /auto . rna s ter

The - m option instructs the automounter not to
map; the - f option instructs it to use
/ e t c / a u t o . m a s t e r, as the master map.

look for the NIS
the local file,

In order to use the NIS auto . ma s t e r map, automount
should be started without the - m option:

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 195

automount

If the map is found, the automounter follows the directives con
tained within. If NIS is not running or the map is not found, the
automounter exists silently.

It is atso possible to specify master map information, that is, mount
points, map names, and mount options on the autornount com
mand line itself:

automount /net -hosts /home /etc/auto . home -rw /- /etc/auto . d i re c t -ro

This is equivalent to starting au to mount with no options and the
following / e t c / auto . ma s t e r map:

/ n e t - ho s t s
/home . / e t c /auto . home - rw
1 - / e t c /auto . d i r e c t - r o

Other combinations of aut ornoun t arguments can be used to
change the name of the master map and add, nullify, or override
master map entries. Again, see the automount(1 M) manual entry
for more details.

8.2.2. 1 The Mount Table. Every time the automounter mounts or
unmounts a file system, it modifies / e t c / rnn t t a b to reflect the
current situation. The automounter keeps an image in memory of
/ e t c /rnnt t a b and refreshes this image every time it performs a
mounting or an automatic unmounting. If you use the urnoun t
command to unmount one of the automounted file systems (a direc
tory under / trnp rnn t) , the automounter should be forced to re
read the / e t c /mn t t a b file. To do that, enter the following
command:

p s - e f : g r e p automount : egrep -v grep

This gives you the process ID of the automounter. The automounter
is designed so that on receiving a SIGHUP signal it re-reads
/ e t c / rnn t t a b. In order to send it that signal, enter:

k i l l - 1 PID

where PID stands for the process ID you obtained from the previous
p s command.

8.2.2.2 Modifying the Maps. You can modify the automounter
maps at any time, but that does not guarantee that all of your
modifications will take effect the next time the automounter mounts
a file system. It depends on what map you modify and what kind of
modification you introduce. You may have to reboot the machine.

196 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

This is generally the simplest way of restarting the automounter,
although, if it is used sparingly, you could theoretically kill it and
restart it from the command line.

8.2.2.3 Modifying the Master Map. The automounter consults the
master map only at startup time. A modification to the master map
will only take effect the next time you reboot the machine.

8.2.2.4 Modifying Indirect Maps. Entries can be modified, deleted,
or added to indirect maps, and the change will take effect the next
time the map is used, which is the next time a mount has to be
done.

8. 2.2. 5 Modifying Direct Maps. Each entry in a direct map is an
automount mount point and it only mounts itself at these mount
points at startup. Therefore, adding or deleting an entry in a direct
map will only take effect the next time you reboot the machine.
However, existing entries can be modified (mount options or server
names can be changed, for example, but not the names of mount
points) while the automounter is running and will take effect when
the entry is next mounted because the automounter consults the
direct maps whenever a mount has to be done.

For example, if you modify the file / e t c / auto . d i r e c t so that
the directory / u s r / s r c is now mounted from a different server,
the new entry takes effect immediately (if I u s r I s r c is not
mounted at this time) when you try to access it. If it is mounted at
this time, you can wait until the auto unmounting takes place and
then access it. If this is not satisfactory, you can unmount with the
umount command, notify automount that the mount table has
changed (see section 8 .2 .2. 1 , "The Mount Table"), and then access
it. The mounting should now be done from the new server. Note,
however, that if you wanted to delete the entry, you would have to
reboot the machine for the deletion to take effect.

For this reason and because they do not clutter the mount table like
direct maps do, indirect maps are preferable and should be used
whenever possible.

8. 2.2.6 Mount Point Conflicts. If you have a home partition on a
local disk that is mounted on /home and you also want to use the
automounter to mount other home directories, you may find that if
you specify the mount point /home, the automounter will hide the
local home partition whenever you try to reach it.

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 197

The solution is to mount the partition somewhere else, for example,
on / e x p o r t /home. You would then need, for example, an entry
in / e t c / f s ta b that specifies:

ldevlxx#z /export /home

(where xx#z stands for the name of the partition) . The master file
must contain a line similar to this:

/home / e t c / au to . home

and there must be an entry in auto . home that specifies:
t e r r a t e r r a : /export/home

where t e r r a is the name of the machine.

If the partition is set up such that home directories are to be found
in /home/ma c h i n e / u s e r , move all the directories at the
u s e r level one level up to eliminate the rna c h i n e level:

cd /home
mv machine/* •

rmd i r machine

There is no need to change the / e t c /p a s s w d en try for the user.
The user's home directory will still be accessible through
/home/ma ch i ne / u s e r , as before. Instead of doing a mount,
the automounter will recognize that the file system is on the same
machine and will establish a symbolic link from
/home /ma c h i ne to / e xpo r t /hom e .

8.3 Error Messages

The following paragraphs are error messages you are likely to see if
the automounter fails, and an indication of what the problem may
be. Note that all automounter error messages are prefixed by the
string "automount : ".

8. 3. 1 Error Messages Generated by the Verbose Option

no mount m a p s s pe c i f i e d
The automounter was invoked with no maps to serve, and it
cannot find the NIS auto . ma s t e r map. It exits. Recheck
the command, or restart NIS if that was the intention.

mapname: n o t f ound
The required map cannot be located. This message is pro
duced only when the - v option is given. Check the spelling
and path name of the map name.

198 INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5

l e a d i ng s pa c e i n map entry entry text
i n mapname

The automounter has discovered an entry in an automount
map that contains leading spaces. This is usually an indica
tion of an improperly continued map entry, for example:

f oo
/bar frobz : /usr/frotz

In the example above, the warning is generated when the
automounter encounters the second line, because the first line
should be terminated with a backslash (\).

b a d k e y 'key' i n i nd i r e c t map mapname
While scanning an indirect map, the automounter has found
an entry key containing a /. Indirect map keys must be sim
ple names, not path names.

b a d k e y 'key' i n d i r e c t map mapname
While scanning a direct map the automounter has found an
entry key without a prepended I. Keys in direct maps must
be full path names.

N I S b i nd f a i l e d
The automounter was unable to communicate with the
ypb i nd daemon. This is information only; the automounter
will continue to function correctly provided it requires no
explicit NIS support. If you need NIS, check to see whether
there is a ypb i nd daemon running.

c ou l dn ' t c r e a t e mntpnt 'mountpoint' : reason
The automounter was unable to create a mountpoint required
for a mount. This usually happens when attempting to
hierarchically mount all of a server's exported file systems. A
required mountpoint may exist only in a file system that can
not be mounted (it may not be exported), and it cannot be
created because the exported parent file system is exported
r e ad on ly.

WARN I N G : mountpoint a l r e ady mounted on
The automounter is attempting to mount over an ex1stmg
mountpoint. This is indicative of an internal error in the auto
mounter (a bug).

server:pathname a l r e ady mount e d on mountpoint
The automounter is attempting to mount over a previous
mount of the same file system. This could happen if an entry

INTERACTIVE NFS Protocol SpecsjUser's Guide - Release 3.2.5 199

appears both in / e t c / f s t a b and in an automounter map
(either by accident or because the output of mount - p was
redirected to f s t ab) . Delete one of the redundant entries.

c an ' t mountserver:pathname: reason
The mount daemon on the server refuses to provide a file han
dle for server:pathname. Check the export table on server.

r e mount server:pathname on mountpoint :
s e r v e r not r e s pond i ng

The automounter has failed to remount a file system it previ
ously unmounted. This message may appear at intervals until
the file system is successfully remounted.

WARN I NG : mountpoint not empty !
The mount point is not an empty directory. The directory
mountpoint contains entries that will be hidden while the
automounter is mounted there. This is advisory only.

8.3.2 General Error Messages

p a thok : c ou l dn ' t f i nd d ev i d device id
An internal automounter error (bug).

WAR N I N G : d e f a u l t opt i on 'option'
i gn o r e d f o r map mapname

Where option is an unrecognized default mount option for the
map mapname.

WAR N I NG : option i gno r e d f o r key in mapname
The automounter has detected an unknown mount option.
This is advisory only. Correct the entry in the appropriate
map.

b a d e n t r y i n map mapname key
map mapname, key key : bad

The map entry is malformed and the automounter cannot
interpret it. Recheck the entry; there may be characters in it
that must be escaped.

c an ' t g e t my addr e s s
The automounter cannot find an entry for its host m

/ e t c /h o s t s (or ho s t s . byname) .

c a nnot c r e a t e U D P s e rv i c e
The automounter cannot establish a UDP connection.

200 INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5

s v c r e g i s t e r f a i l e d
-Automounter cannot register itself as an NFS server. Check
the kernel configuration file.

c ou l dn 1 t c r e a t e pathname: reason
Where pathname is / tmp mnt or the argument to the - M
command line option. -

c a n 1 t mount mountpoint: reason
nmount may n e e d i n c r e a s i ng

The automounter couldn't mount its daemon at mountpoint.

e x i t i ng
This is an advisory message only. The automounter has
received a SIGTERM (has been killed) and is exiting.

server:pathname no l ong e r mounted
The automounter i s acknowledging that server:pathname
which it mounted earlier has been unmounted by the umoun t
command. The automounter will notice this within 1 minute
of the unmount or immediately if it receives a SIGHUP.

t r ymany : s e rve r s not r e s pond i ng : reason
No server in a replicated list is responding. This may indicate
a network problem.

h o s t server not r e s pond i ng
The automounter attempted to contact server but received no
response.

mount o f server:pathname on mountpoint: reason
The automounter failed to do a mount. This may indicate a
server or network problem.

h i e r a r ch i c a l mountpo i nt s : pathnamel
and pathname2

The automounter does not allow its mount points to have a
hierarchical relationship, that is, an automounter mount point
must not be contained within another automounted file system.

mountpoint: Not a d i r e ct ory
The automounter cannot mount itself on mountpoint because
it is not a directory. Check the spelling and path name of the
mount point.

INTERACTIVE NFS Protocol Specs/User's Guide - Release 3.2.5 201

d i r mountpoint mu s t s t a r t w i th ' I '
The automounter mount point must be given as a full path
name. Check the spelling and path name of the mount point.

mapname: yp_err
Error in looking up an entry in an NIS map. This may indi
cate NIS problems.

hostname: expor t s : rpc_err
Error getting export list from hostname. This indicates a
server or network problem.

n f s c a s t : C annot s e nd p a c k e t : reason
The automounter cannot send a query packet to a server in a
list of replicated file system locations.

nf s c a s t : c annot r e c e i ve r e p ly : reason
The automounter cannot receive replies from any of the
servers in a list of replicated file system locations.

n f s c a s t : s e l e c t : reason
C a nnot c r e a t e s o c k e t for n f s : rpc_err

These error messages indicate problems attempting to p i ng
servers for a replicated file system. This may indicate a net
work problem.

intro.nfs(1)
on(l)
rpcgen(l)

INTERACTIVE NFS

User's Reference Manual

CONTENTS

intro.nfs (1) intro.nfs (1)

NAME
intro - introduction to Open Network Computing (ONC) commands

DESCRIPTION
This section describes publicly accessible ONC utilities in alphabetical

.� order.

SEE ALSO
"INTERACTIVE NFS Administrator's Reference Manual" (the Section
I M manual entries) for ONC administration commands.
exit(2), wait(2) in the INTERACTIVE SDS Guide and Programmer's
Reference Manual .

DIAGNOSTICS
Upon termination, each command returns 2 bytes of status data: one
supplied by the system giving the cause for termination and (in the
case of "normal" termination) one supplied by the program (see
wait (2) and exit (2)). The former byte is 0 for normal termination.
The latter is customarily 0 for successful execution; a nonzero value
indicates troubles such as erroneous parameters, bad or inaccessible
data, or some other inability to cope with the task at hand. This
datum is called variously "exit code," "exit status," or "return code";
it is described only where special conventions are involved.

INTERACTIVE NFS - 1 - Version 2.2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.I
I
I
I
I

on (I) on (I)

NAME
on - execute a command remotely

SYNOPSIS
on [-i] [-n] [-d] host command [argument] . . .

fi1"""' DESCRIPTION
The on program is used to execute commands on another system in an
environment similar to that invoking the program. All environment
variables are passed, and the current working directory is preserved.
To preserve the working directory, the working file system must be
either already mounted on the host or exported to it. Relative path
names will only work if they are within the current file system; abso
lute path names may cause problems.

Standard input is connected to standard input of the remote command,
and standard output and standard error from the remote command are
sent to the corresponding files for the on command.

The on command has the following options:

-i Interactive mode. Use remote echoing and special character
processing. This option is needed for programs that expect to
be talking to a terminal. All terminal modes and window size
changes are propagated.

-n No input. This option causes the remote program to get end
of-file when it reads from standard input instead of passing
standard input from the standard input of the on program.
For example, -n is necessary when running commands in the
background with job control.

-d Debug mode. Print out some messages as work is being done.

SEE ALSO
rexd(I M), exports(4) .

DIAGNOSTICS
unknown host Host name not found
cannot connect to server Host down or not running the server
can't find • Problem finding the working directory
can't locate mount point Problem finding current file system

Other error messages may be passed back from the server.

INTERACTIVE NFS - 1 - Version 2.2

� -

rpcgen (l) rpcgen(1)

NAME
rpcgen - an RPC protocol compiler

SYNOPSIS
rpcgen infile
rpcgen -h [-o outfile] [inputfile]
rpcgen -c [-o outfile] [infile]
rpcgen [-s transport]* [-o outfile] [infile]
rpcgen -1 [-o outfile] [infile]
rpcgen -m [-o outfile] [infile]

DESCRIPTION
The rpcgen compiler is a tool that generates C code to implement an
RPC protocol. The input to rpcgen is a language similar to C, known
as RPC Language (Remote Procedure Call Language) .
The rpcgen command is normally used as shown in the first synopsis,
where it takes an input file and generates four output files. If the infile
is named proto.x, then rpcgen generates a header file in proto.h, XDR
routines in proto_xdr.c, server-side stubs in proto_svc.c, and client
side stubs in proto_c/nt.c.

The other synopses shown above are used when one wants to generate
a particular output file rather than all the files.

Since the C preprocessor, cpp(1), is run on all input files before they
are actually interpreted by rpcgen, all the cpp directives are legal
within an rpcgen input file. For each type of output file, rpcgen defines
a special cpp symbol for use by the rpcgen programmer:

RPC_HDR Defined when compiling into header files
RPC_){DR Defined when compiling into XDR routines

RPC_8VC Defined when compiling into server-side stubs

RPC_CLNT Defined when compiling into client-side stubs

In addition, rpcgen does a little preprocessing of its own. Any line
beginning with "%" is passed directly into the output file, uninter
preted by rpcgen.

You can customize some of your XDR routines by leaving those data
types undefined. For every data type that is undefined, rpcgen assumes
that there exists a routine with the name xdr_prepended to the name
of the undefined type.

The following options are available:
-c Compile XDR routines.
-b Compile into C data definitions (a header file) .
-I Compile into client-side stubs.

-s transport
Compile server-side stubs using the given transport. The sup
ported transports are udp and tcp. This option may be invoked
more than once so as to compile a server that serves multiple
transports.

INTERACTIVE NFS - 1 - Version 2.2

rpcgen (l) rpcgen(l)

-m Compile into server-side stubs, but do not produce a main()
routine. This option is useful if you want to supply your own
main().

-o outflle
Specify the name of the output file. If none is specified, stan
dard output is used (-c, -h, -1, and -s modes only).

SEE ALSO

BUGS

The section "RPCGEN PROTOCOL COMPILER" in the "INTER
ACTIVE NFS Protocol Specifications and User's Guide."

Nesting is not supported. As a workaround, structures can be declared
at top level and the name of each used inside other structures in order
to achieve the same effect.

Name clashes can occur when using program definitions, since the
apparent scoping does not really apply. Most of these can be avoided
by giving unique names to programs, versions, procedures, and types.

INTERACTIVE NFS - 2 - Version 2.2

INTERACTIVE NFS

Programmer's Reference Manual

intro.nfs(2)
getdomainname(2)
mount(2)

intro. nfs(3)
bindresvport(3N)
dbm(3X)
getrpcent(3N)
getrpcport(3N)
rex(3)
rpc(3N)
rwall(3N)
xdr(3N)
intro.nfs(4)
exports(4)
netgroup(4)
nfsd(4)
rmtab(4)
rpc(4)
statmon(4)

CONTENTS

intro.nfs (2) intro.nfs(2)

NAME

intro - introduction to NFS system calls and error numbers

SYNOPSIS
#include < sys/ ermo.h>

� DESCRIPTION
This section describes all of the socket system calls used in System V
NFS. Some of these system call are accessible from the RPC library,
librpc. The rest of the system calls were designed for specific purposes
for specific programs. The system call interfaces are generally built
into these programs. There are no new error numbers added for the
support of the NFS system calls. Some of these system calls were not
designed to return during normal operation. They were designed to
give the kernel a user context to run in or to provide the kernel with a
resource that is more easily allocated from the user level. Most of
these calls have one or more error returns. An error condition is indi
cated by an otherwise impossible return value. This is almost always
- 1 ; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions
are of type integer unless noted otherwise. An error number is also
made available in the external variable errno, which is not cleared on
successful calls. Thus, errno should be tested only after an error has
occurred.

See intro(2) for the standard error codes.

List of Functions
Name

getdomainname
setdomainname

Appears on Entry Description
getdomainname(2) return the NIS domain name
getdomainname(2) set the NIS domain name

FILES
fusr /lib /librpc.a

SEE ALSO
intro(2), perror(3C) in the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE NFS - 1 - Version 2.2

. :; . -

· . · . \. ·, -

getdomainname(2) getdomainname (2)

NAME

getdomainname, setdomainname - getfset name of current domain

SYNOPSIS
getdomainname(name, namelen)
char *name;
int namelen;

setdomainname(name, namelen)
char *name;
int namelen;

DESCRIPTION
The getdomainname call returns the name of the domain for the
current processor, as previously set by setdomainname . The parameter
name/en specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.

The setdomainname call sets the domain of the host machine to be
name, which has length name/en . This call is restricted to the
superuser and is normally used only when the system is bootstrapped.

The purpose of domains is to enable two distinct networks that may
have host names in common to be merged. Each network would be
distinguished by having a different domain name. At the current time,
only the network information service makes use of domains.

RETURN VALUES

r-. If the call succeeds, a value of 0 is returned. If the call fails, a value
of -1 is returned, and an error code is placed in the global location
errno.

ERRORS

BUGS

The following errors may be returned by these calls:

[EFAULT] The name parameter gave an invalid address.

[EPERM] The caller was not the superuser. This error only
applies to setdomainname.

Domain names are limited to 64 characters.

INTERACfiVE NFS - l - Version 2.2

. !

mount (2) mount(2)

NAME
mount - mount a file system

SYNOPSIS
#include < sysjtypes.h >
#include < sysjmount.h >

int mount (spec, dir, mftag, fstyp, dataptr, datalen)
char -spec, "ttir;
int mftag, fstyp;
caddr_t dataptr;
int datalen;

DESCRIPTION
The mount command requests that a removable file system contained
on the block special file identified by spec be mounted on the directory
identified by dir. spec and dir are pointers to path names. fstyp is
the file system type number. The sysfs(2) system call can be used to
determine the file system type number. If the MS_FSS flag bit of
mjlag is off, the file system type defaults to root file system type. If
the bit is on, then fstyp is used to indicate the file system type. Addi
tionally, if the MS_DATA flag is on in mjlag , then dataptr and
data/en are used to pass mount parameters to the system. If
MS_DATA is off or if either dataptr or data/en is zero, it means that
there is no additional data. In the normal case of a local mount,
dataptr should be NULL. When mounting an NFS file system, dataptr
should point to a structure that describes the NFS mount options.

Upon successful completion, references to the file dir refer to the root
directory on the mounted file system.

The low-order bit of mjlag is used to control write permission on the
mounted file system. If 1, writing is forbidden; otherwise writing is
permitted according to individual file accessibility.

The mount command may be invoked only by the superuser. It is
intended for use only by the mount (l M) utility.

The mount command will fail if one or more of the following is true:

[EPERM] The effective user ID is not superuser.

[ENOENT] Any of the named files does not exist.

[ENOTDIR]

[EREMOTE]

[ENOLINK]

[EMULTIHOP]

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EFAULT]

INTERACTIVE NFS

A component of a path prefix is not a directory.

The spec argument is remote and cannot be mounted.

The path argument points to a remote machine and
the link to that machine is no longer active.

Components of path require hopping to multiple
remote machines.

The spec argument is not a block special device.

The device associated with spec does not exist.

dir is not a directory.

The spec or dir arguments point outside the allocated
address space of the process.

- 1 - Version 2.2

mount(2)

[EBUSY]

[EBUSY]

[EBUSY]

[EROFS]

[ENOSPC]

[EINVAL]

SEE ALSO

mount (2)

The dir argument is currently mounted on, is
someone's current working directory, or is otherwise
busy.

The device associated with spec is currently mounted.

There are no more mount table entries. �
The spec argument is write-protected and mftag
requests write permission.

The file system state in the superblock is not
FsOKA Y and mftag requests write permission.

The superblock has a bad magic number, the fstyp is
invalid, or mftag is not valid.

sysfs(2), umount(2), fs(4) in the INTERACTWE SDS Guide and
Programmer's Reference Manual.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

INTERACTIVE NFS - 2 - Version 2.2

intro.nfs(3) intro.nfs(3)

NAME
intro - introduction to RPC library functions

DESCRIPTION
This section describes functions that may be found in various libraries.
The library functions implement the RPC and XDR primitives. All of
these functions are accessible from either the RPC library, librpc, the
RPC services library, librpcsvc, or the database manager library,
libdbm . The link editor /d{ l) and the C compiler cc(l) search these
libraries under the -1/ibname option. The RPC library also includes
some of the functions described in Section 2.

List of Functions
Name Appears on Entry

bindresvport bindresvport(3N)
dbminit dbm(3X)
fetch dbm(3X)
store dbm(3X)
delete dbm(3X)
firstkey dbm(3X)
nextkey dbm(3X)
getrpcent getrpcent(3N)
getrpcbynumber getrpcent(3N)
getrpcbyname getrpcent(3N)
setrpcent getrpcent(3N)
endrpcent getrpcent(3N)
getrpcport getrpcport(3N)
xdr_re:x_start rex(3)
xdr_rex_result rex(3)
xdr_rex..._ttymode rex(3)
xdr_rex..._ttysize rex(3)
auth_destroy rpc(3N)
authnone_create rpc(3N)
authunix..._create rpc(3N)
authunix..._create_default rpc(3N)
callrpc rpc(3N)
clnLbroadcast rpc(3N)
clnLcall rpc(3N)
clnLdestroy rpc(3N)
clnLcreate rpc(3N)
clnLcontrol rpc(3N)
clnLfreeres rpc(3N)
clnLgeterr rpc(3N)
clnLpcreateerror rpc(3N)
clnLperrno rpc(3N)
clnLperror rpc(3N)
clnLspcreateerror rpc(3N)
clnLsperrno rpc(3N)
clnLsperror rpc(3N)
clntraw_create rpc(3N)
clnttcp_create rpc(3N)
clntudp_create rpc(3N)
geLmyaddress rpc(3N)
pmap_getmaps rpc(3N)

Description
bind to a reserved port
open database
retrieve datum under key
store datum under key
delete datum and key
find first key
find next key
get RPC entry
get RPC entry by number
get RPC entry by name
rewind the rpc file
close the rpc file
get RPC port number
XDR a REX start message
XDR a REX result message
XDR a REX tty modes message
XDR a REX tty size message
destroy authentication handle
create authentication handle
create authentication handle
invoke authunix..._create
call a remote procedure
broadcast remote procedure call
call a remote procedure
destroy client handle
generic client handle creation
control client handle
free data allocated by RPC/XDR
get error information
print error information
print error information
print error information
string print error information
string print error information
string print error information
client handle creation
client handle creation
client handle creation
return the local IP address
return current RPC program-to-port maps

INTERACTIVE NFS - 1 - Version 2.2

intro.nfs (3) intro.nfs(3)

pmap_getport rpc(3N) return port number for RPC service
pmap_rmtcall rpc(3N) indirect remote procedure call
pmap__set rpc(3N) establish a program-to-port mapping
pmap_unset rpc(3N) destroy a program-to-port mapping
registerrpc rpc(3N) register procedure with RPC

� rwall rwall(3N) print string to all users on a host
svc_destroy rpc(3N) destroy a service handle
svcJreeargs rpc(3N) free data allocated by RPC/XDR
svc_getargs rpc. 3N) decode the arguments to an RPC
svc_getcaller rpc(3N) get the network of the caller
svc_getreqset rpc(3N) get RPC request
svc_getreq rpc(3N) get RPC request
svc_register rpc(3N) register an RPC service procedure
svc_run rpc(3N) get RPC requests
svc__sendreply rpc(3N) send replies to an RPC
svc_unregister rpc(3N) unregister an RPC service procedure
svcerr_auth rpc(3N) return service error
svcerr_decode rpc(3N) return service error
svcerr__noproc rpc(3N) return service error
svcerr__noprog rpc(3N) return service error
svcerr_progvers rpc(3N) return service error
svcerr__systemerr rpc(3N) return service error
svcerr_weakauth rpc(3N) return service error
svcraw_create rpc(3N) create service handle
svctcp_create rpc(3N) create service handle
svcfd_create rpc(3N) create service handle �
svcudp_create rpc(3N) create service handle
xdr_accepLreply rpc(3N) XDR an accepted reply
xdr_authunix_parms rpc(3N) XDR UNIX System credentials
xdr_callhdr rpc(3N) XDR the RPC call header
xdr_callmsg rpc(3N) XDR an RPC call message
xdr_opaque_auth rpc(3N) XDR opaque authentication parameters
xdr_pmap rpc(3N) XDR parameters to portmapper procedures
xdr_pmaplist rpc(3N) XDR a list of port mappings
xdr_rejecte<Lreply rpc(3N) XDR a rejected reply
xdr_replymsg rpc(3N) XDR an RPC reply message
xprt_register rpc(3N) register an RPC service transport handle
xprLunregister rpc(3N) unregister an RPC service transport handle
xdr_array xdr(3N) XDR an C array of objects
xdr_bool xdr(3N) XDR an boolean
xdr_bytes xdr(3N) XDR a counted byte string
xdr_char xdr(3N) XDR a C character
xdr_destroy xdr(3N) destroy an XDR stream
xdr_double xdr(3N) XDR a C double
xdr_enum xdr(3N) XDR a C enum

� xdr_ftoat xdr(3N) XDR a C float
xdrJree xdr(3N) generic XDR free routine
xdr_getpos xdr(3N) get current postion of XDR stream
xdr_inline xdr(3N) allocate space for inline XDR operation
xdr_int xdr(3N) XDR a C integer
xdr_Jong xdr(3N) XDR a C long
xdrmem_create xdr(3N) create an XDR stream
xdr_opaque xdr(3N) XDR an opaque object

INTERACTIVE NFS - 2 - Version 2.2

intro.nfs (3)

xdr_pointer
xdrrec_create
xdrrec_endofrecord
xdrrec_eof
xdrrec_skiprecord
xdr__reference
xdr_setpos
xdr_short
xdrstdio_create
xdr_string
xdr_u_char
xdr_u_int
xdr_u_long
xdr_u_short
xdr_union
xdr_vector
xdr_void
xdr_wrapstring

FILES

xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)
xdr(3N)

XDR a C pointer
create an XDR stream

intro.nfs(3)

mark end of record on XDR stream
mark end of file on XDR stream
skip rest of XDR record
XDR a C pointer
set current position on XDR stream
XDR a C short
create an XDR stream
XDR a C string
XDR a C unsigned character
XDR a C unsigned integer
XDR a C unsigned long
XDR a C unsigned short
XDR a discriminated union of choices
XDR a C fixed length array
XDR nothing
XDR a C string

/ usr /lib flibrpc.a the RPC library
fusr /lib jlibrpcsvc.a the RPC services library
fusrjlibflibdbm.a the DBM library

SEE ALSO
cc(l), ld(l), nm(l), intro(2) in the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

INTERACTIVE NFS - 3 - Version 2.2

bindresvport(3N)

NAME

bindresvport - bind a socket to a privileged IP port

SYNOPSIS
#include < sysjtypes.h>

� #include < netinetjin.h >

bindresvport(sd, sin)
int sd;
struct sockaddr_in *sin;

DESCRIPTION

bindresvport(3N)

The bindresvport routine is used to bind a socket descriptor to a
privileged IP port, that is, a port number in the range 0- 1 023.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise a
value of -1 is returned, and errno is set to indicate the error.

Only root can bind to a privileged port; this call will fail for all other
users.

INTERACTIVE NFS - 1 - Version 2.2

-I
I
I
I
I
I
I
I
I
I
I � I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

� I
I

� I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

�
I
I

,� · I
I
I
I
I
I
I
I
I
I

dbm (3X) dbm(3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey - database subroutines

SYNOPSIS
#include < rpcsvc/ dbm.h>

1,__ dbminit(file)
char *file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkeyO

datum nextkey(key)
datum key;

dbmclose()

DESCRIPTION
These functions maintain key fcontent pairs in a database. The func
tions will handle very large (a billion blocks) databases and will access
a keyed item in one or two file system accesses. The functions are
obtained with the loader option -ldbm.

keys and contents are described by the datum typedef. A datum
specifies a string of dsize bytes pointed to by dptr. Arbitrary binary
data, as well as normal ASCII strings, are allowed. The database is
stored in two files. One file is a directory containing a bit map and has
.dir as its suffix. The second file contains all data and has .pag as its
suffix.

Before a database can be accessed, it must be opened by dbminit. At
the time of this call, the files file .dir and file .pag must exist. (An
empty database is created by creating zero-length .dir and .pag files.)

Once open, the data stored under a key i s accessed by fetch and data
is placed under a key by store . A key (and its associated contents) is
deleted by delete . A linear pass through all keys in a database may be
made, in an (apparently) random order, by use of firstkey and next
key . firstkey will return the first key in the database. With any key,
nextkey will return the next key in the database. This code will
traverse the database:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key))

A database may be closed by calling dbmclose. You must close a data
base before opening a new one.

DIAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A
zero return indicates "OK." Routines that return a datum indicate
errors with a null (O) dptr.

The .pag file will contain holes so that its apparent size is about four
times its actual content. Older UNIX Systems may create real file

INTERACTIVE NFS - I - Version 2.2

dbm (3X) dbm (3X)

blocks for these holes when touched. These files cannot be copied by
normal means (cp, cat , tp , tar, or ar) without filling in the holes.

dptr pointers returned by these subroutines point into static storage
that is changed by subsequent calls.

The sum of the sizes of a key f content pair must not exceed the inter- """'
nal block size (currently 1024 bytes). Moreover, all keyfcontent pairs
that hash together must fit on a single block. store will return an error
in the event that a disk block fills with inseparable data.

delete does not physically reclaim file space, although it does make it
available for reuse.

The order of keys presented by firstkey and nextkey depends on a
hashing function, not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent
updating and reading is risky.

INTERACTIVE NFS - 2 - Version 2.2

getrpcent(3) getrpcent(3)

NAME

getrpcent, getrpcbyname, getrpcbynumber - get rpc entry

SYNOPSIS
#include < rpcfnetdb.h>

� struct rpcent *getrpcentO

struct rpcent *getrpcbyname(name)
char *name;

struct rpcent *getrpcbynumber(number)
int number;

setrpcent(stayopen)
int stayopen

endrpcentO

DESCRIPTION

� FILES

The getrpcent , getrpcbyname, and getrpcbynumber commands each
return a pointer to an object with the following structure containing
the broken-out fields of a line in the RPC program number database,
fetcfrpc.

struct

} ;

rpcent {
char *r_name;

char **r_aliases;
long r_number;

The members of this structure are:

f* name of server for this *I
/* rpc program * I
/* alias list *I
f* rpc program number * I

r_name The name of the server for this RPC program.

r_aliases A zero-terminated list of alternate names for the RPC
program.

r_number The RPC program number for this service.

The getrpcent command reads the next line of the file, opening the file
if necessary.

The setrpcent command opens and rewinds the file. If the stayopen
flag is nonzero, the net database will not be closed after each call to
getrpcent (either directly, or indirectly through one of the other getrpc
calls).

The endrpcent command closes the file.

The getrpcbyname and getrpcbynumber commands sequentially search
from the beginning of the file until a matching RPC program name or
program number is found, or until EOF is encountered.

letclrpc

SEE ALSO
rpcinfo(l M), rpc(4).

INTERACl'IVE NFS - 1 - Version 2.2

getrpcent(3) getrpcent(3)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is
to be saved.

INTERACTIVE NFS - 2 - Version 2.2

getrpcport (3N) getrpcport (3N)

NAME
getrpcport - get RPC port number

SYNOPSIS
int getrpcport(host, prognum, versnum, proto)
char *host;
int prognum, versnum, proto;

DESCRIPTION
The getrpcport routine returns the port number for version versnum of
the RPC program prognum running on host and using protocol proto .
It returns 0 if it cannot contact the portmapper or if prognum is not
registered. If prognum is registered but not with version versnum, it
will still return a port number (for some version of the program) indi
cating that the program is indeed registered. The version mismatch
will be detected upon the first call to the service.

INTERACTIVE NFS - l - Version 2.2

rex(3) rex(3)

NAME

rex - remote execution protocol

SYNOPSIS
#include < rpcsvcfrex.h>

� DESCRIPTION
This server executes commands remotely. The working directory and
environment of the command can be specified, and the standard input
and output of the command can be arbitrarily redirected. An option is
provided for interactive 1/0 for programs that expect to be running on
terminals. Note that this service is only provided with the TCP
transport.

RPC Information
program number:

REXPROG

xdr routines:
int xdr_re�tart(xdrs, start);

XDR *xdrs·
struct re�tart *start;

int xdr_rex_result(xdrs, result);
XDR *xdrs·
struct re�esult *result;

int xdr_rex_ttymode(xdrs, mode);
XDR *xdrs;

� struct rex_ttymode *mode;
int xdr_rex_ttysize(xdrs, size);

XDR *xdrs;
struct ttysize *size;

procs:
REXPROc_...START

Takes rex__start structure, starts a command executing,
and returns a rex_result structure.

versions:

REXPROC_ WAIT
Takes no arguments, waits for a command to finish
executing, and returns a rex_result structure.

REXPROC_MODES
Takes a rex_ttymode structure and sends the tty modes.

REXPRQC_WINCH
Takes a ttysize structure and sends window size
information.

REXVERS_ORIG
Original version

structures:

struct Rsgttyb {

} ;

char bsg_ispeed;
char bsg._ospeed;
char bsg._erase;
char bsg._kill;
short bsg_ftags;

INTERACI'IVE NFS - 1 -

/* input speed *I
/* output speed *I
J* erase character *I
I* kill character *I

Version 2.2

rex(3)

struct tchars {
char
char
char
char
char
char

Lintrc;
Lquitc;
Lstartc;
Lstopc;
Leofc;
Lbrkc;

} ;

struct ltchars {

} ;

char Lsuspc;
char Ldsuspc;
char Lrprntc;
char t_ftushc;
char Lwerasc;
char Llnextc;

#define RE:lLINTERACTIVE
struct rex_start {

} ;

char * *rsLcmd·
char *rsLhost;

'

char *rsLfsname;

char *rsLdirwithin;

char
ushort
ushort
ushort
ulong

**rsLenv;
rsLportO;
rsLport l ;
rsLport2;
rst_ftags;

struct rex_result {
int rlLstat;
char *rlLrnessage;

} ;

struct rex_ttymode {

} ;

struct B_sgttyb basic;
struct tchars more;
struct ltchars yetmore;
ulong andmore;

struct ttysize {
int ts_Iines;

} ;
int ts_cols;

SEE ALSO
on(1), rexd(1 M).

INTERACTIVE NFS - 2 -

I* interrupt * I
1* quit * 1
I* start output * I
/* stop output * I
I * end-of-file * I
I* input delimiter (like nl) * I

rex(3)

I * stop process signal * I
I * delayed stop process signal * I
I* reprint line * I
I * flush output (toggles) * I
I* word erase * I
I* literal next character * I

I* Interactive mode * I

I* list of command and args * /
/* working directory host name I
I* working directory file system *I
I* name *I
I* working directory within file * I
I* system *I
/* list of environment ; I
I* port for stdin I
I* port for stdin *I
/* port for stdin * I
I * options - see #defines above *I

/* integer status code *I
I* string message for human * I
/ * consumption *I

/* Berkeley unix tty flags * I
I* interrupt, kill characters, etc. * I
I* special Berkeley characters * I
I* and Berkeley modes *I

I* number of lines on terminal * I
I * number of columns on terminal * I

Version 2.2

rpc(3N) rpc(3N)

NAME
rpc - library routines for remote procedure calls

DESCRIPTION AND SYNOPSIS
These routines allow C programs to make procedure calls on other
machines across the network. First, the client calls a procedure to
send a data packet to the server. Upon receipt of the packet, the
server calls a dispatch routine to perform the requested service and
then sends back a reply. Finally, the procedure call returns to the
client.

#include < rpc/rpc.h>

void
auth_destroy(auth)
AUTH *auth;

A macro that destroys the authentication information associ
ated with auth . Destruction usually involves deallocation of
private data structures. The use of auth is undefined after
calling auth_destroy.

AUTH *
authnone_create()

AUTH *

Creates and returns an RPC authentication handle that passes
nonusable authentication information with each remote pro
cedure call. This is the default authentication used by RPC.

authunix_create(host, uid, gid, len, aup_gids)
char *host;
int uid, gid, len, *aup_gids;

Creates and returns an RPC authentication handle that con
tains authentication information. The parameter host is the
name of the machine on which the information was created;
uid is the user ID; gid is the user's current group ID; len and
aup_gids refer to a counted array of groups to which the user
belongs. It is easy to impersonate a user.

AUTH *
authunix_create_default()

Calls authunix_create with the appropriate parameters.

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;
ulong prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;

Calls the remote procedure associated with prognum, vers
num , and procnum on the machine, host . The parameter in is
the address of the procedure's argument(s), and out is the
address of where to place the result(s). The inproc call is used
to encode the procedure's parameters, and outproc is used to
decode the procedure's results. This routine returns 0 if it
succeeds or the value of enum clnLstat cast to an integer if it

INTERACTIVE NFS - 1 - Version 2.2

rpc(3N) rpc(3N)

fails. The routine cloLperrno is handy for translating failure
statuses into messages.

WARNING: Calling remote procedures with this routine uses
UDP fiP as a transport; see clotudp_create for restrictions.
You do not have control of timeouts or authentication using
this routine.

enum clnLstat
cloLbroadcast(prognum, versnum, procnum, inproc, in, outproc, out,
eachresult)
ulong prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
resultproc_t eachresult;

like cal/rpc, except the call message is broadcast to all locally
connected broadcast nets. Each time it receives a response, this
routine calls eachresult , whose form is:

eachresult(out, addr)
char *out;
struct sockaddr_in *addr;

where out is the same as out passed to cloLbroadcast, except
that the remote procedure's output is decoded there; addr
points to the address of the machine that sent the results. If
eachresult• returns 0, cloLbroadcast waits for more replies;
otherwise, it returns with appropriate status.

WARNING: Broadcast sockets are limited in size to the max
imum transfer unit of the data link. For Ethernet this value is
1 500 bytes.

enum cloLstat
cloLcaU(clot, procnum, inproc, in, outproc, out, tout)
CLIENT *clot; ulong procnum;
xdrproc_t inproc, outproc;
char *in, *out;
struct timeval tout;

A macro that calls the remote procedure procnum associated
with the client handle, clnt , which is obtained with an RPC
client creation routine such as cloLcreate. The parameter in
is the address of the procedure's argument(s), and out is the
address of where to place the result(s) . The inproc call is used
to encode the procedure's parameters, and outproc is used to
decode the procedure's results. The tout call is the time
allowed for results to come back.

cloLdestroy(clot)
CLIENT *clot;

A macro that destroys the client's RPC handle. Destruction
usually involves deallocation of private data structures, includ
ing clnt itself. Use of clnt is undefined after calling
cloLdestroy. If the RPC library opened the associated socket,
it will close it also. Otherwise, the socket remains open.

INTERACTIVE NFS - 2 - Version 2.2

�-

rpc (3N) rpc(3N)

CLIENT *
clnLcreate (host, prog, vers, proto)
char *host;
ulong prog, vers;
char *proto;

booLt

Generic client creation routine. host identifies the name of the
remote host where the server is located. proto indicates which
kind of transport protocol to use. The currently supported
values for this field are udp and tcp . Default timeouts are set,
but they can be modified using clnLcontrol.

WARNING: Using UDP has its shortcomings. Since UDP
based RPC messages can only hold up to 8 KB of encoded
data, this transport cannot be used for procedures that take
large arguments or return huge results.

clnLcontrol(cl, req, info)
CLIENT *cl;
char *info;

A macro used to change or retrieve various information about
a client object. req indicates the type of operation, and info is
a pointer to the information. For both UDP and TCP, the sup
ported values of req and their argument types and what they
do are:

CLSET_TIMEOUT

CLGET_TIMEOUT

struct timeval

struct timeval

set total timeout

get total timeout

Note that if you set the timeout using clnLcontrol, the
timeout parameter passed to clnLcall will be ignored in all
future calls.

CLGET-SERVER-ADDR struct sockaddr get server's
address

The following operations are valid for UDP only:

CLSET_RETRY _TIMEOUT struct timeval set the retry
timeout

CLGET_RETRY_TIMEOUT struct timeval get the retry
timeout

The retry timeout is the time that UDP RPC waits for the
server to reply before retransmitting the request.

INTERACTIVE NFS - 3 - Version 2.2

rpc(3N) rpc(3N)

clnLfreeres(clnt, outproc, out)
CLIENT *clot;
xdrproc_t outproc;
char *out;

void

A macro that frees any data allocated by the RPC/XDR sys
tem when it decoded the results of an RPC call. The parame
ter out is the address of the results, and outproc is the XDR
routine describing the results in simple primitives. This rou
tine returns 1 if the results were successfully freed, and 0
otherwise.

clnLgeterr(clot, errp)
CLIENT *clot;
struct rpc_err *errp;

A macro that copies the error structure out of the client han
dle to the structure at address errp .

void
clnLpcreateerror(s)
char *s;

Prints a message to standard error indicating why a client
RPC handle could not be created. The message is prepended
with the string s and a colon. This is used when a clnLcreate,
clntraw_create, clnttcp_create, or clntudp_create call fails.

void
clnLperrno(stat)
eoum cloLstat stat;

Prints a message to standard error corresponding to the condi
tion indicated by stat . Used after callrpc .

clnLperror(clot, s)
CLIENT *clot;
char *s;

Prints a message to standard error indicating why an RPC call
failed; clnt is the handle used to do the call. The message is
prepended with string s and a colon. Used after clnLcall.

char *
cloLspcreateerror
char *s;

Like clnLpcreateerror, except that it returns a string instead
of printing to the standard error.

Bugs: Returns a pointer to static data that is overwritten on
each call. �

INTERACTIVE NFS - 4 - Version 2.2

rpc(3N) rpc(3N)

char *
clnL.spermo(stat)
enum clnL.stat stat;

Takes the same arguments as clnt_perrno, but instead of send
ing a message to the standard error indicating why an RPC
call failed, it returns a pointer to a string that contains the
message. The string ends with a new-line character.

clnL.sperrno is used instead of clnt_perrno if the program
does not have a standard error (as a program running as a
server quite likely does not), if the programmer does not want
the message to be output with printf, or if a message format
different than that supported by clnLpermo is to be used.
Note that unlike clnL.sperror and clnL.spcreaterror,
clnL.sperrno does not return pointer to static data, so the
result will not get overwritten on each call.

char *
clnL.sperror(rpch, s)
CLIENT *rpch;
char *s;

Like clnt_perror, except that (like clnL.sperrno) it returns a
string instead of printing to standard error.

Bugs: Returns a pointer to static data that is overwritten on
each call.

CLIENT *
clntraw_create(prognum, versnum)
ulong prognum, versnum;

This routine creates a toy RPC client for the remote program
prognum , version versnum . Since the transport used to pass
messages to the service is actually a buffer within the process's
address space, the corresponding RPC server should live in the
same address space (see svcraw_create). This allows simula
tion of RPC and acquisition of RPC overheads, such as round
trip times, without any kernel interference. This routine
returns NULL if it fails.

CLIENT *
clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in *addr;
ulong prognum, versnum;
int *sockp;
uint sendsz, recvsz;

This routine creates an RPC client for the remote program
prognum, version versnum; the client uses TCP/IP as a trans
port. The remote program is located at Internet address
*addr. If addr-> sin_port is 0, then it is set to the actual port
that the remote program is listening on (the remote portmap
service is consulted for this information). The parameter sockp
is a socket; if it is RPC-ANYSOCK, then this routine opens a
new one and sets sockp . Since TCP-based RPC uses buffered
1/0, the user may specify the size of the send and receive

INTERACTIVE NFS - 5 - Version 2.2

rpc{ 3N) rpc{ 3N)

buffers with the parameters sendsz and recvsz; values of 0
choose suitable defaults. This routine returns NULL if it fails.

CLIENT *
clntudp_create(addr, pronum, versnum, wait, sockp)
struct sockaddr_in *addr;
ulong prognum, versnum;
struct timeval wait;
int *sockp;

void

This routine creates an RPC client for the remote program
prognum, version versnum ; the client uses the UDP /IP as a
transport. The remote program is located at Internet address
addr. If addr- > si1Lport is 0, then it is set to the actual port
that the remote program is listening on (the remote portmap
service is consulted for this information). The parameter sockp
is a socket; if it is RPC....ANYSOCK, then this routine opens a
new one and sets sockp. The UDP transport resends the call
message in intervals of wait time until a response is received
or until the call times out. The total time for the call to time
out is specified by clnLcall.

WARNING: Since UDP-based RPC messages can only hold up
to 8 KB of encoded data, this transport cannot be used for pro
cedures that take large arguments or return huge results.

geLmyaddress(addr)
struct sockaddr_in *addr;

Stuffs the machine's IP address into *addr, without consulting
the library routines that deal with jete/hosts. The port
number is always set to htons(PMAPPORT) .

struct pmaplist *
pmap_getmaps(addr)
struct sockaddr_in *addr;

ushort

A user interface to the portmap service, which returns a list of
the current RPC program-to-port mappings on the host located
at IP address *addr. This routine can return NULL. The
command rpcinfo -p uses this routine.

pmap_getport(addr, prognum, versnum, protocol)
struct sockaddr_in *addr;
ulong prognum, versnum, protocol;

A user interface to the portmap service, which returns the port
number on which waits a service that supports program
number prognum, version versnum, and speaks the transport
protocol associated with protocol. The value of protocol is
most likely IPPROTO_UDP or IPPROTO_TCP. A return value
of 0 means that the mapping does not exist or that the RPC
system failed to contact the remote portmap service. In the
latter case, the global variable rpc_createerr contains the RPC
status.

INTERACTIVE NFS - 6 - Version 2 .2

rpc(3N) rpc(3N)

enum clnLstat
pmap_rmtcaU(addr, prognum, versnum, procnum, inproc, in, outproc,
out, tout, portp) struct sockaddr_ln *addr;
ulong prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
struct timeval tout;
ulong *portp;

A user interface to the portrnap service, which instructs
portrnap on the host at IP address *addr to make an RPC call
on your behalf to a procedure on that host. The parameter
*portp is modified to the program's port number if the pro
cedure succeeds. The definitions of other parameters are dis
cussed in ca/lrpc and clnLcaU. This procedure should be used
for a "ping" and nothing else. See also clnLbroadcast.

pmap_set(prognum, versnum, protocol, port)
ulong prognum, versnum, protocol;
ushort port;

A user interface to the portrnap service, which establishes a
mapping between the triple [prognurn, versnurn, protocol 1 and
port on the machine's portrnap service. The value of protocol
is most likely IPPROTO_UDP or IPPROTO_TCP. This routine
returns 1 if it succeeds, 0 otherwise. This is automatically
done by svc_register.

pmap_unset(prognum, versnum)
ulong prognum, versnum;

A user interface to the portrnap service, which destroys all
mapping between the triple [prognurn, versnurn, * 1 and ports
on the machine's portrnap service. This routine returns 1 if it
succeeds, 0 otherwise.

registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
ulong prognum, versnum, procnum;
char *(*procname) 0 ;
xdrproc_t inproc, outproc;

Registers procedure procnarne with the RPC service package.
If a request arrives for program prognurn, version versnum ,
and procedure procnurn, procnarne is called with a pointer to
its parameter(s). The prognarne command should return a
pointer to its static result(s). The inproc command is used to
decode the parameters, while outproc is used to encode the
results. This routine returns 0 if the registration succeeded,
- 1 otherwise.

WARNING: Remote procedures registered in this form are
accessed using the UDP /IP transport; see svcudp_create for
restrictions.

INTERACTIVE NFS - 7 - Version 2.2

rpc(3N) rpc(3N)

struct rpc_createerr
rpc_createerr;

A global variable whose value is set by any RPC client crea
tion routine that does not succeed. Use the routine
clnLpcreateerror to print the reason why.

svc_destroy(xprt)
SVCXPRT * xprt;

A macro that destroys the RPC service transport handle xprt .
Destruction usually involves deallocation of private data struc
tures, including xprt itself. Use of xprt is undefined after call
ing this routine.

fcL..set svc_fdset;

A global variable reflecting the RPC service side's read file
descriptor bit mask; it is suitable as a parameter to the select
system call. This is only of interest if a service implementor
does not call svc_run, but instead implements custom asyn
chronous event processing. This variable is read-only (do not
pass its address to select !), yet it may change after calls to
svc_getreqset or any creation routines.

int svc_fds;

Similar to svc_fedset, but limited to 32 descriptors. This inter
face is made obsolete by svc_fdset.

svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

A macro that frees any data allocated by the RPC/XDR sys
tem when it decoded the arguments to a service procedure
using svc_getargs. This routine returns 1 if the results were
successfully freed, 0 otherwise.

svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

A macro that decodes the arguments of an RPC request asso
ciated with the RPC service transport handle xprt . The
parameter in is the address where the arguments will be
placed. The XDR routine inproc is used to decode the argu
ments. This routine returns 1 if decoding succeeds, 0
otherwise.

INTERACTIVE NFS - 8 - Version 2.2

rpc{ 3N) rpc(3N)

struct sockaddr _in
svc_getcaller(xprt)
SVCXPRT *xprt;

The approved way of getting the network address of the caller
of a procedure associated with the RPC service transport han
dle xprt .

svc_getreqset(rdfds)
fd__set *rdfds;

This routine is only of interest if a service implementor does
not call svc_run, but instead implements custom asynchronous
event processing. It is called when the select system call has
determined that an RPC request has arrived on some RPC
socket(s); rdfds is the resultant read file descriptor bit mask.
The routine returns when all sockets associated with the value
of rdfds have been serviced.

svc_getreq(rdfds)
int rdfds;

Similar to svc_getreqset, but limited to 32 descriptors. This
interface is made obsolete by svc_getreqset.

svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
ulong prognum, versnum;
void (*dispatch) ();
ulong protocol;

Associates prognum and versnum with the service dispatch
procedure dispatch . If protocol is 0, the service is not
registered with the portmap service. If protocol is not 0, a
mapping of the triple [prognum, versnum, protocol] to
xprt-> xp_port is established with the local portmap service
(generally protocol is 0, IPPROTO_UDP or IPPROTO_TCP).
The procedure dispatch has the following form:

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

The svc_register routine returns 1 if it succeeds, 0 otherwise.

svc_run()

This routine never returns. It waits for RPC requests to arrive
and calls the appropriate service procedure using svc_getreq
when one does. This procedure is usually waiting for a select
system call to return.

INTERACTIVE NFS - 9 - Version 2.2

rpc (3N) rpc(3N)

svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

void

Called by an RPC service's dispatch routine to send the results
of a remote procedure call. The parameter xprt is the
request's associated transport handle, outproc is the XDR rou
tine that is used to encode the results, and out is the address
of the results. This routine returns 1 if it succeeds, 0
otherwise.

svc_unregister(prognum, versnum)
ulong prognum, versnum;

void

Removes all mapping of the double [prognum, versnum] to
dispatch routines and of the triple [prognum, versnum, *] to
port number.

svcerr_ . ..auth(xprt, why)
SVCXPRT *xprt;
enum auth_stat why;

void

Called by a service dispatch routine that refuses to perform a
remote procedure call due to an authentication error.

svcerr _decode(xprt)
SVCXPRT *xprt;

void

Called by a service dispatch routine that cannot successfully
decode its parameters. See also svc_getargs.

svcerr _____noproc(xprt)
SVCXPRT *xprt;

void

Called by a service dispatch routine that does not implement
the procedure number that the caller requests.

svcerr _____noprog(xprt)
SVCXPRT *xprt;

void

Called when the desired program is not registered with the
RPC package. Service implementors usually do not need this
routine.

svcerr _progvers(xprt)
SVCXPRT *xprt;

Called when the desired version of a program is not registered
with the RPC package. Service implementors usually do not
need this routine.

INTERACTIVE NFS - 1 0 - Version 2 .2

rpc(3N) rpc(3N)

void
svcerr _systemerr(xprt)
SVCXPRT *xprt;

void

Called by a service dispatch routine when it detects a system
error not covered by a particular protocol. For example, if a
service can no longer allocate storage, it may call this routine.

svcerr _weakaoth(xprt)
SVCXPRT *xprt;

Called by a service dispatch routine that refuses to perform a
remote procedure call due to insufficient (but correct) authen
tication parameters. The routine calls svcerr_ . .aoth(xprt,
AUTILTOOWEAK).

SVCXPRT *
svcraw_create()

This routine creates a toy RPC service transport to which it
returns a pointer. Since the transport is really a buffer within
the process's address space, the corresponding RPC client
should live in the same address space; see clntraw_create.
This routine allows simulation of RPC and acquisition of RPC
overheads (such as round trip times), without any kernel
interference. This routine returns NULL if it fails.

SVCXPRT *
svctcp_create(sock, send_bof_size, recv_bof_size)
int sock;
oint send_bof_size, recv _bof_size;

void

This routine creates a TCP /IP-based RPC service transport to
which it returns a pointer. The transport is associated with
the socket sock, which may be RPC-.ANYSOCK, in which case
a new socket is created. If the socket is not bound to a local
TCP port, this routine binds it to an arbitrary port. Upon com
pletion, xprt-> xp_sock is the transport's socket number, and
xprt-> xp_port is the transport's port number. This routine
returns NULL if it fails. Since TCP-based RPC uses buffered
I/0, users may specify the size of buffers; values of 0 choose
suitable defaults.

svcfd_create(fd, sensize, recvsize)
int fd;
oint sendsize;
oint recvsize;

Creates a service on top of any open descriptor. Typically, this
descriptor is a connected socket for a stream protocol such as
TCP. sendsize and recvsize indicate sizes for the send and
receive buffers. If they are 0, a reasonable default is chosen.

INTERACTIVE NFS - 1 1 - Version 2.2

rpc(3N) rpc(3N)

SVCXPRT *
svcudp_create(sock)
int sock;

This routine creates a UDP /IP-based RPC service transport to
which it returns a pointer. The transport is associated with
the socket sock, which may be RPC_ANYSOCK, in which case
a new socket is created. If the socket is not bound to a local
UDP port, this routine binds it to an arbitrary port. Upon
completion, xprt-> xp_sock is the transport's socket number,
and xprt-> xp_port is the transport's port number. This rou
tine returns NULL if it fails.

WARNING: Since UDP-based RPC messages can only hold up
to 8 KB of encoded data, this transport cannot be used for pro
cedures that take large arguments or return huge results.

xdr__accepte«Lreply(xdrs, ar)
XDR *xdrs;
struct accepte«Lreply *ar;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-style messages
without using the RPC package.

xdr __authunix._parms(xdrs, aupp)
XDR *xdrs;
struct authunix._parms *aupp;

void

Used for describing UNIX System credentials externally. This
routine is helpful for users who wish to generate these creden
tials without using the RPC authentication package.

xdr_callhdr(xdrs, chdr)
XDR *xdrs;
struct rpc__msg *chdr;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-style messages
without using the RPC package.

xdr_callmsg(xdrs, cmsg)
XDR *xdrs;
struct rpc__msg *cmsg;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-style messages
without using the RPC package.

xdr _opaque__auth(xdrs, ap)
XDR *xdrs;
struct opaque__auth *ap;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-style messages
without using the RPC package.

INTERACTIVE NFS - 1 2 - Version 2.2

rpc (3N)

xdr_pmap(xdrs, regs)
XDR *xdrs;
struct pmap *regs;

rpc(3N)

Used for describing parameters to various portmap procedures
externally. This routine is helpful for users who wish to gen
erate these parameters without using the pmap interface.

xdr_pmaplist(xdrs, rp)
XDR *xdrs;
struct pmaplist * *rp;

Used for describing a list of port mappings externally. This
routine is helpful for users who wish to generate these parame
ters without using the pmap interface.

xdr__rejectecL..reply(xdrs, rr)
XDR *xdrs;
struct rejectecL..reply *rr;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC-style messages
without using the RPC package.

xdr__replymsg(xdrs, rmsg)
XDR *xdrs;
struct rpc___msg *rmsg;

Used for describing RPC messages externally. This routine is
helpful for users who wish to generate RPC style messages
without using the RPC package.

void
xprt__register(xprt)
SVCXPRT *xprt;

After RPC service transport handles are created, they should
register themselves with the RPC service package. This rou
tine modifies the global variable svc__fds. Service implemen
tors usually do not need this routine.

void
xprLunregister(xprt)
SVCXPRT *xprt;

Before an RPC service transport handle is destroyed, it should
unregister itself with the RPC service package. This routine
modifies the global variable svc__fds. Service implementors
usually do not need this routine.

SEE ALSO
xdr(3N).
"INTERACTIVE NFS Protocol Specifications and User's Guide."

INTERACTIVE NFS - 13 - Version 2.2

rwall (3N)

NAME
rwall - write to specified remote machines

SYNOPSIS
#include < rpcsvc jrwall.h >

rwall(host, msg);
char *host, *msg;

DESCRIPTION

rwall(3N)

host prints the string msg to all its users. I t returns 0 if successful.

RPC Information
program number:

WALLPROG

procs:
W ALLPROC_ WALL

Takes string as argument (wrapstring), returns no arguments.
Executes wall on remote host with string.

versions:
RSTATVERS_ORIG

SEE ALSO
rwall(1 M), rwalld(1 M).

INTERACTIVE NFS - 1 - Version 2.2

.�

xdr(3N) xdr(3N)

NAME
xdr - library routines for external data representation

DESCRIPTION AND SYNOPSIS
These routines allow C programmers to describe arbitrary data struc
tures in a machine-independent fashion. Data for remote procedure
calls are transmitted using these routines.

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char * *arrp;
oint *sizep, maxsize, elsize;
xdrproc_t elproc;

A filter primitive that translates between variable-length
arrays and their corresponding external representations. The
parameter arrp is the address of the pointer to the array, while
sizep is the address of the element count of the array. This
element count cannot exceed maxsize . The parameter elsize
is the sizeof each of the array's elements, and elproc is an
XDR filter that translates between the array elements' C form
and the external representation. This routine returns 1 if it
succeeds, 0 otherwise.

xdr_bool(xdrs, bp)
XDR *xdrs;
booLt *bp;

A filter primitive that translates between boo leans (C integers)
and their external representations. When encoding data, this
filter produces values of either 1 or 0. This routine returns 1
if it succeeds, 0 otherwise.

xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
oint *sizep, maxsize;

A filter primitive that translates between counted byte strings
and their external representations. The parameter sp is the
address of the string pointer. The length of the string is
located at address sizep; strings cannot be longer than
maxsize. This routine returns 1 if it succeeds, 0 otherwise.

xdr_char(xdrs, cp)
XDR *xdrs;
char *cp;

A filter primitive that translates between C characters and
their external representations. This routine returns 1 if it
succeeds, 0 otherwise. Note that encoded characters are not
packed and occupy 4 bytes each. For arrays of characters, it is
worthwhile to consider xdr_bytes, xdr_opaque, or xdr_string.

INTERACTIVE NFS - 1 - Version 2.2

xdr (3N) xdr (3N)

void
xdr _destroy(xdrs)
XDR *xdrs;

A macro that invokes the destroy routine associated with the
XDR stream xdrs . Destruction usually involves freeing private
data structures associated with the stream. Using xdrs after
invoking xdr_destroy is undefined.

xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

A filter primitive that translates between C double precision
numbers and their external representations. This routine
returns 1 if it succeeds, 0 otherwise.

xdr_enum(xdrs, ep)
XDR *xdrs;
enum__t *ep;

A filter primitive that translates between C enums (actually
integers) and their external representations. This routine
returns 1 if it succeeds, 0 otherwise.

xdr_ftoat(xdrs, fp)
XDR *xdrs;
float *fp;

void

A filter primitive that translates between C floats and their
external representations. This routine returns 1 if it succeeds,
0 otherwise.

xdr_free(proc, objp)
xdrproc_t proc;
char *objp;

oint

Generic freeing routine. The first argument is the XDR routine
for the object being freed. The second argument is a pointer to
the object itself. Note that the pointer passed to this routine is
not freed, but what it points to is freed (recursively).

xdr _getpos(xdrs)
XDR *xdrs;

A macro that invokes the get-position routine associated with
the XDR stream xdrs. The routine returns an unsigned
integer, which indicates the position of the XDR byte stream.
A desirable feature of XDR streams is that simple arithmetic
works with this number, although the XDR stream instances
need not guarantee this.

long *
xdr__inline(xdrs, len)
XDR *xdrs;
int len;

A macro that invokes the in-line routine associated with the
XDR stream xdrs . The routine returns a pointer to a

INTERACTIVE NFS - 2 - Version 2.2

xdr(3N) xdr (3N)

contiguous piece of the stream's buffer; len is the byte length
of the desired buffer. Note that pointer is cast to long * .

WARNING: xdr_inline may return NULL (0) if it cannot allo
cate a contiguous piece of a buffer. Therefore the behavior
may vary among stream instances; it exists for the sake of
efficiency.

xdr_jnt(xdrs, ip)
XDR *xdrs;
int *ip;

A filter primitive that translates between C integers and their
external representations. This routine returns 1 if it succeeds,
0 otherwise.

xdr_long(xdrs, lp)
XDR *xdrs;
long *lp;

void

A filter primitive that translates between C long integers and
their external representations. This routine returns 1 if it
succeeds, 0 otherwise.

xdrmem__create(xdrs, addr, size, op)
XDR *xdrs;
char *addr;
uint size;
en urn xdr _op op;

This routine initializes the XDR stream object pointed to by
xdrs. The stream's data is written to, or read from, a chunk
of memory at location addr whose length is no more than size
bytes long. The op determines the direction of the XDR
stream (either XDR._ENCODE, XDR..._DECODE, or
XDILFREE).

xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
uint cnt;

A filter pnm1t1ve that translates between fixed-size opaque
data and its external representation. The parameter cp is the
address of the opaque object, and cnt is its size in bytes. This
routine returns I if it succeeds, 0 otherwise.

xdr_pointer(xdrs, objpp, objsize, xdrobj)
XDR *xdrs;
char **objpp;
uint objsize;
xdrproc_t xdrobj;

Like xdr__reference m that it uses XDR's pointers, but the
difference is that xdr_pointer serializes NULL pointers,
whereas xdr__reference does not. Thus xdr_pointer can XDR
recursive data structures, such as binary trees or linked lists,
correctly, whereas xdr__reference will fail.

INTERACTIVE NFS - 3 - Version 2.2

xdr (3N) xdr (3N)

void
xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;
uint sendsize, recvsize;
char *handle;
int (*readitX), (*writeitX);

This routine initializes the XDR stream object pointed to by
xdrs. The stream's data is written to a buffer of size sendsize;
a value of 0 indicates the system should use a suitable default.
The stream's data is read from a buffer of size recvsize; it,
too, can be set to a suitable default by passing a 0 value.
When a stream's output buffer is full, writeit is called. Simi
larly, when a stream's input buffer is empty, readit is called.
The behavior of these two routines is similar to the UNIX Sys
tem calls read and write, except that handle is passed to the
former routines as the first parameter. Note that the XDR
stream's op field must be set by the caller.

WARNING: This XDR stream implements an intermediate
record stream. Therefore, there are additional bytes in the
stream to provide record boundary information.

xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
int sendnow;

This routine can be invoked only on streams created by
xdrrec_create. The data in the output buffer is marked as a
completed record, and the output buffer is optionally written
out if sendnow is not 0. This routine returns 1 if it succeeds, 0
otherwise.

xdrrec_eof(xdrs)
XDR *xdrs;
int empty;

This routine can be invoked only on streams created by
xdrrec_create. After consuming the rest of the current record
in the stream, this routine returns 1 if the stream has no more
input, 0 otherwise.

xdrrec__skiprecord(xdrs)
XDR *xdrs;

This routine can be invoked only on streams created by
xdrrec_create. It tells the XDR implementation that the rest
of the current record in the stream's input buffer should be
discarded. This routine returns 1 if it succeeds, 0 otherwise.

INTERACTIVE NFS - 4 - Version 2.2

xdr(3N) xdr(3N)

xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
oint size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures.
The parameter pp is the address of the pointer, size is the
sizeof the structure that *pp points to, and proc is an XDR
procedure that filters the structure between its C form and its
external representation. This routine returns 1 if it succeeds, 0
otherwise.

WARNING: This routine does not understand NULL pointers.
Use xdr_pointer instead.

xdr_setpos(xdrs, pos)
XDR *xdrs;
oint pos;

A macro that invokes the set position routine associated with
the XDR stream xdrs . The parameter pos is a position value
obtained from xdr_getpos. This routine returns 1 if the XDR
stream could be repositioned, 0 otherwise.

WARNING: Since it is difficult to reposition some types of
XDR streams, this routine may fail with one type of stream
and succeed with another.

xdr_short(xdrs, sp)
XDR *xdrs;
short *sp;

void

A filter primitive that translates between C short integers and
their external representations. This routine returns 1 if it
succeeds, 0 otherwise.

xdrstdio_create(xdrs, file, op)
XDR *xdrs;
FILE *file;
enum xdr_op op;

This routine initializes the XDR stream object pointed to by
xdrs . The XDR stream data is written to, or read from, the
standard 1/0 stream file . The parameter op determines the
direction of the XDR stream (either XDR......ENCODE,
XDR......DECODE, or XDILFREE).

WARNING: The destroy routine associated with such XDR
streams calls fflush on the file stream, but never fclose .

INTERACTIVE NFS - 5 - Version 2.2

xdr(3N)

xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
oint maxsize;

xdr (3N)

A filter primitive that translates between C strings and their
corresponding external representations. Strings cannot be
longer than maxsize . Note that sp is the address of the
string's pointer. This routine returns 1 if it succeeds, 0
otherwise.

xdr_u.._char(xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

A filter primitive that translates between unsigned C charac
ters and their external representations. This routine returns 1
if it succeeds, 0 otherwise.

xdr_u.._int(xdrs, up)
XDR *xdrs;
unsigned *up;

A filter primitive that translates between C unsigned integers
and their external representations. This routine returns 1 if it
succeeds, 0 otherwise.

xdr_u_Iong(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

A filter primitive that translates between C unsigned long
integers and their external representations. This routine
returns 1 if it succeeds, 0 otherwise.

xdr_u_short(xdrs, usp)
XDR *xdrs;
unsigned short *usp;

A filter primitive that translates between C unsigned short
integers and their external representations. This routine
returns 1 if it succeeds, 0 otherwise.

INTERACTIVE NFS - 6 - Version 2.2

xdr (3N) xdr (3N)

xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
int *dscmp;
char *unp;
struct xdr_discrim *choices;
booLt (*defaultarmX); /* may equal NULL *I

A filter primitive that translates between a discriminated C
union and its corresponding external representation. It first
translates the discriminant of the union located at dscmp .
This discriminant is always an enum_t. Next the union
located at unp is translated. The parameter choices is a
pointer to an array of xdr_discrim structures. Each structure
contains an ordered pair of [value, proc]. If the union's
discriminant is equal to the associated value, the proc is called
to translate the union. The end of the xdr_discrim structure
array is denoted by a routine of value NULL. If the discrim
inant is not found in the choices array, then the defaultarm
procedure is called (if it is not NULL). Returns 1 if it
succeeds, 0 otherwise.

xdr_vector(xdrs, arrp, size, elsize, elproc)
XDR *xdrs;
char *arrp;
oint size, elsize;
xdrproc_t elproc;

A filter primitive that translates between fixed-length arrays
and their corresponding external representations. The parame
ter arrp is the address of the pointer to the array, while size is
is the element count of the array. The parameter elsize is the
sizeof each of the array's elements, and elproc is an XDR filter
that translates between the array elements' C form and their
external representation. This routine returns 1 if it succeeds, 0
otherwise.

xdr_void()

This routine always returns 1 . It may be passed to RPC rou
tines that require a function parameter, where nothing is to be
done.

xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

A primitive that calls xdr__string(xdrs, sp, LASTUNSIGNED)
where LASTUNSIGNED is the maximum value of an unsigned
integer. xdr_wrapstring is handy because the RPC package
passes a maximum of two XDR routines as parameters, and
xdr__string, one of the most frequently used primitives,
requires three. Returns 1 if it succeeds, 0 otherwise.

INTERACTIVE NFS - 7 - Version 2.2

xdr(3N)

SEE ALSO
rpc(3N).

xdr(3N)

The section "XDR PROTOCOL SPECIFICATION" in the "INTER
ACTIVE NFS Protocol Specifications and User's Guide."
eXternal Data Representation: Sun Technical Notes .
XDR: External Data Representation Standard, RFC 1 0 1 4, Sun
Microsystems, Inc. , USC-lSI.

INTERACTIVE NFS - 8 - Version 2.2

intro.nfs (4) intro.nfs(4)

NAME
intro - introduction to formats of files used by Open Network Com
puting (ONC) commands

DESCRIPTION
This section outlines the formats of various files. The C struct declara
tions for the file formats are given where applicable. Usually, these
structures can be found in header files under the directories
jusr /include/rpc, jusr /include/rpcsvc, or jusr /includejsys/fs/nfs.

References of the form name(l M) refer to entries found in Section
1 M of the "INTERACTIVE NFS Administrator's Reference Manual."

INTERACTIVE NFS - 1 - Version 2.2

exports(4) exports(4)

NAME
exports, xtab - directories to export to NFS clients

SYNOPSIS
/etc/ exports

jetcjxtab

DESCRIPTION
The jete/exports file contains entries for directories that can be
exported to NFS clients. This file is read automatically by the
exportfs (l M) command. If you change this file, you must run
exportfs for the changes to affect the mount daemon's operation.

Only when this file is present at boot time does the NFS startup script
execute exportfs and start the NFS file system daemon, nfsd(l M), and
the mount daemon, mountd(l M).

The jetcjxtab file contains entries for directories that are currently
exported. This file should only be accessed by programs using
getexportent. (Use the -u option of exportfs to remove entries from
this file.)

An entry for a directory consists of a line of the following form:

directory [-option [, option 11 . . .

where:

directory

option

INTERACTIVE NFS

is the path name of a directory (or file).

is one of

ro Export the directory read-only. If not
specified, the directory is exported read
write.

rw-hostnames [:host name] . . •

Export the directory read-mostly. Read
mostly means read-only to most machines,
but read-write to those specified. If not
specified, the directory is exported read
write to all.

anon-uid
If a request comes from an unknown user,
use uid as the effective user ID. Note: root
users (uid 0) are always considered
"unknown" by the NFS server, unless they
are included in the "root" option below.
The default value for this option is -2.
Setting anon to -1 disables anonymous
access. Note: By default NFS will accept
insecure requests as anonymous; users who
want extra security can disable this feature
by setting anon to - 1 .

root-hostnames [:host name] . . .
Give root access only to the root users from
a specified hostname. The default is for no
hosts to be granted root access.

- 1 - Version 2.2

exports{ 4) exports{ 4)

access-client [:client] . . .
Give mount access to each client listed. A
client can either be a host name or a net
group (see net group(4)). Each client in the
list is first checked for in the netgroup data
base, and then the hosts database. The
default value allows any machine to mount
the given directory.

A "#" {pound-sign) anywhere
extends to the end of the line.

in the file indicates a comment that

EXAMPLES

FILES

jusr
jusrjlocal
jusr2
jusrjsun
jusrjnew
jusrjbin
jusrjstuff

I etc I exports
jetcjxtab

-access=clients # export to my clients
export to the world

-access=hermes:zip:tutorial # export to only these machines
-root=hermes:zip # give root access only to these
-anon=O # give all machines root access
-ro # export read-only to everyone
-access=zip,anon=-3,ro # several options on one line

static export information
current state of exported directories

SEE ALSO
exportfs(1 M), mountd(1 M), net group(4) .

WARNINGS
You cannot export either a parent directory or a subdirectory of an
exported directory that is within the same file system . It would be
illegal, for instance, to export both jusr and jusr /local if both direc
tories resided on the same disk partition.

INTERACTIVE NFS - 2 - Version 2 .2

netgroup (4) netgroup(4)

NAME
netgroup - list of network groups

DESCRIPTION

FILES

BUGS

netgroup defines network-wide groups, used for permiSSion checking
when doing remote mounts, remote logins, and remote shells. For
remote mounts, the information in netgroup is used to classify
machines; for remote logins and remote shells, it is used to classify
users. Each line of the netgroup file defines a group and has the
format:

groupname member l member2

where membern is either another group name or a triple:

(hostname, username, domainname)

Any of three fields can be empty, in which case it signifies a "wild
card." Thus:

universal (,)

defines a group to which everyone belongs. Field names that begin
with something other than a letter, digit, or underscore (such as "-")
work in exactly the opposite fashion. For example, consider the fol
lowing entries:

justmachines
justpeople

(analytic,-,sun)
(-, babbage,sun)

The machine, analytic, belongs to the group, justmachines , in the
domain, sun, but no users belong to it. Similarly, the user, babbage,
belongs to the group, justpeople, in the domain, sun, but no machines
belong to it.

Network groups are contained in the network information service and
are accessed through these files:

I etc IYP I domainname I netgroup.dir
I etc I yp I domainname I netgroup. pag
I etc I yp I domainname I netgrp. usr.dir
I etc I yp I domainname I netgrp. usr. pag
I etc I yp I domainname I netgrp. hst.dir
I etc I yp I domainname I netgrp.hst. pag

These files can be created from letclnetgroup using makedbm (l M).

I etc I netgroup
letclypldomainnamelnetgroup.dir
I etc I yp I domainname I netgroup. pag
I etc I yp I domain name I netgrp. usr.dir
I etc I yp I domainname I netgrp. usr. pag
letclypldomainnamelnetgrp.hst.dir
I etc I yp I domainname I netgrp.hst. pag

This file is dependent on the network transport mechanism used.

SEE ALSO
makedbm(l M), ypserv(l M), ypmapxlate(4) in the INTERACTIVE
Network Information Service Guide .

INTERACTIVE NFS - 1 - Version 2.2

nfsd(4) nfsd(4)

NAME
nfsd - NFS special file

SYNOPSIS
#include < sys /fs I nfs /nfs_ioctl.h >

/devjnfsd

DESCRIPTION
The nfsd daemon currently handles the following ioct/ services for the
NFS client and server processes.

NIOCNFSD Starts an NFS daemon listening on the transport end
point. This call returns only if the process is killed.

NIOCGETFH
Returns a file handle for an open file. It is only used by
the NFS mount daemon and should not be used by users.

NIOCASYNCD
Implements the NFS daemon that handles asynchronous
1/0 for an NFS client. This call returns only if the pro
cess is killed.

NIOCSETDOMN AM
Sets the NIS domain name of the host machine.

NIOCGETDOMNAM
Returns the name of the domain for the current proces
sor, as previously set by NIOCSETDOMNAM.

NIOCCLNTHAND
Is used to create client handles for kernel RPC clients to
use. Currently, there are two kernel RPC clients: NFS
and the Jock manager.

NIOCEXPORTFS

SEE ALSO

Is used to add and delete export entries for file systems.
exportfs exports the directory tree described by fname.
If uex is null, the directory tree described by fname is
unexported. It is only used by the NFS exportfs com
mand and should not be utilized by users.

Jckclnt(l M), mount(l M), nfsd(l M).

INTERACTIVE NFS - 1 - Version 2.2

rmtab (4) rmtab(4)

NAME
rmtab - remotely mounted file system table

DESCRIPTION

FILES

The rmtab file resides in directory f etc and contains a record of all
clients that have done remote mounts of file systems from this
machine. Whenever a remote mount is done, an entry is made in the
rmtab file of the machine serving up that file system. The umount
command removes entries of a remotely mounted file system. The
table is a series of lines of the form:

hostname:directory

This table is used only to preserve information between crashes and is
read only by mountd(lM) when it starts up. The mountd command
keeps an in-core table, which it uses to handle requests from programs
like showmount (l M) and shutdown(l M).

fetcfrmtab

SEE ALSO

BUGS

mount(l M), mountd(l M), showmount(l M).
shutdown(lM) in the INTERACTIVE UNIX System User'sfSystem
Administrator's Reference Manual.
umount(2) in the INTERACTIVE SDS Guide and Programmer's Refer
ence Manual.

Although the rmtab table is informative, it is not always 1 00 percent
accurate.

INTERACTIVE NFS - l - Version 2.2

'-

rpc(4) rpc(4)

NAME
rpc - rpc program number database

SYNOPSIS
jetc/rpc

DESCRIPTION

FILES

The rpc file contains user readable names that can be used in place of
RPC program numbers. Each line has the following information:

name of server for the RPC program
RPC program number
aliases

Items are separated by any number of blanks and/or tab characters.
A "#" indicates the beginning of a comment; characters up to the end
of the line are not interpreted by routines that search the file.

Here is an example of an jetcjrpc file.

rpc file

portmapper 100000 portmap sunrpc
rstat_svc 10000 1 rstatd rstat rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 1 00004 ypprog
mountd 1 00005 mount showmount
ypbind 1 00007
walld 1 00008 rwall shutdown
yppasswdd 1 00009 yppasswd
etherstatd 1000 10 etherstat
rquotad 1000 1 1 rquotaprog quota rquota
sprayd 1 000 1 2 spray
3270_mapper 1 000 1 3
rje_mapper 1 000 1 4
selection_svc 1 000 1 5 selnsvc
database_svc 1 000 1 6
rexd 1 000 1 7 rex
a lis 1 000 1 8
sched 1 000 1 9
llockmgr 1 00020
nlockmgr 1 0002 1
x25.inr 1 00022
statmon 1 00023
status 1 00024
bootparam 1 00026
ypupdated 100028 ypupdate
keyserv 1 00029 keyserver

jetcjrpc

SEE ALSO
getrpcent(3N).

INTERACTIVE NFS - 1 - Version 2.2

statmon (4) statmon(4)

NAME
sm, record, recover, state - statd directory and file structures

SYNOPSIS
I etc Ism I record
letclsmlrecover
I etc Ism I state

DESCRIPTION
The letclsmlrecord and letclsmlrecover plain text files are generated
by the statd daemon. Each host name in letclsmlrecord represents
the name of the machine to be monitored by the statd daemon. Each
host name in letclsmlrecover represents the name of the machine to
be notified by the statd daemon upon its recovery.

The letclsmlstate plain text file is generated by the statd daemon and
records its current version number. This version number is incre
mented each time a crash or recovery takes place.

SEE ALSO
lockd(1 M), statd(1 M).

INTERACTIVE NFS - 1 - Version 2 .2

INTERACTIVE NFS

Administrator's Reference Manual

intro.nfs(1 M)
automount(1 M)
exportfs(1 M)
fsirand(l M)
lckclnt(1 M)
lockd(l M)
mount(1 M)
mountd(l M)
nfs(l M)
nfsclnt(I M)
nfsd(l M)
nfsstat(l M)
nmountall(1 M)
pcnfsd(l M)
portmap(l M)
rexd(l M)
rpcinf o(1 M)
rwall(l M)
rwalld(1 M)
showmount(1 M)
statd(1 M)

CONTENTS

intro.nfs(1 M) intro.nfs (1 M)

NAME
intro - introduction to Open Network Computing (ONC) maintenance
and operation commands

DESCRIPTION
This section contains information related to ONC operation and
maintenance. It describes the commands used to start and stop NFS,
to mount and unmount NFS file systems, and to "ping" RPC-based ser
vices (see ping(l M)). The various NFS/ONC daemons and utilities
are also detailed. The commands used to manipulate the Network
Information Service (NIS) are available in the optional Network Infor
mation Service subset.

SEE ALSO
"Introduction to the INTERACTIVE NFS Extension."
ping(1M) in the INTERACTIVE TCP/IP Guide.

INTERACTIVE NFS - 1 - Version 2.2

automount(1 M) automount(1 M)

NAME
automount - automatically mount NFS file systems

SYNOPSIS
automount [-mnTv] [-D envar-value] [-f master-file]
[-M mount-directory] [-tl duration] [-tm interval]
[-tw interval] [directory map [-mount-options]] . . .

DESCRIPTION
automount is a daemon that automatically and transparently mounts
an NFS file system as needed. It monitors attempts to access direc
tories that are associated with an automount map, along with any
directories or files that reside under them. When a file is to be
accessed, the daemon mounts the appropriate NFS file system. You
can assign a map to a directory using an entry in a direct automount
map or by specifying an indirect map on the command line.

The automount daemon appears to be an NFS server to the kernel.
automount uses the map to locate an appropriate NFS file server,
exported file system, and mount options. It then mounts the file sys
tem in a temporary location and replaces the file system entry for the
directory or subdirectory with a symbolic link to the temporary loca
tion. If the file system is not accessed within an appropriate interval
(5 minutes by default), the daemon unmounts the file system and
removes the symbolic link. If the indicated directory has not already
been created, the daemon creates it, and then removes it upon exiting.

Since the name-to-location binding is dynamic, updates to an auto
mount map are transparent to the user. This obviates the need to
"pre-mount" shared file systems for applications that have "hard
coded" references to files.

If you specify the dummy directory "/-," automount treats the map
argument that follows as the name of a direct map. In a direct map,
each entry associates the full path name of a mount point with a
remote file system to mount.

If the directory argument is a path name, the map argument points to
an indirect map. An indirect map contains a list of the subdirectories
contained within the indicated directory . With an indirect map, it is
these subdirectories that are mounted automatically.

A map can be a file or a Network Information Service (NIS) map; if a
file, the map argument must be a full path name.

The -mount-options argument, when supplied, is a comma-separated
list of NFS mount (! M) options, preceded by a "-." If mount options
are specified in the indicated map, however, those in the map take
precedence.

The following options are available:

-m Suppress initialization of directory-map pairs listed in the
auto.master NIS database.

-n Disable dynamic mounts. With this option, references through
the automount daemon only succeed when the target file sys
tem has been previously mounted. This can be used to prevent
NFS servers from cross-mounting each other.

INTERACTIVE NFS - 1 - Version 2.2

automount(I M) automount(I M)

-T Trace. Expand each NFS call and display it on the standard
output.

-v Verbose. Log status messages to the console.

-D envar-value
Assign value to the indicated automount (environment)
variable.

-f master-file
Read a local file for initialization before the auto.master NIS
map.

-M mount-directory
Mount temporary file systems in the named directory, instead
of jtmp_mnt.

-tl duration
Specify a duration , in seconds, that a file system is to remain
mounted when not in use. The default is 5 minutes (300
seconds).

-tm interval
Specify an interval, in seconds, between attempts to mount a
file system. The default is 30 seconds.

-tw interval
Specify an interval, in seconds, between attempts to unmount
file systems that have exceeded their cached times. The
default is 1 minute (60 seconds).

ENVIRONMENT
Environment variables can be used within an automount map. For
example, if $HOME appeared within a map, automount would expand
it to its current value for the HOME variable.

If a reference needs to be protected from affixed characters, you can
surround the variable name with curly braces.

USAGE
Map Entry Format

A simple map entry (mapping) takes the form:

directory [-mount-options] location . . .

where directory is the full path name of the directory to mount when
used in a direct map, or the basename of a subdirectory in an indirect
map. mount-options is a comma-separated list of NFS mount options,
and location specifies a remote file system from which the directory
may be mounted. In the simple case, location takes the form:

host :pat hname

Multiple location fields can be specified, in which case automount
sends multiple mount requests; automount mounts the file system from
the first host that replies to the mount request. This request is first
made to the local net or subnet. If there is no response, any connected
server may respond.

If location is specified in the form:

INTERACTIVE NFS - 2 - Version 2.2

automount(1 M) automount(1 M)

host :path :subdir

host is the name of the host from which to mount the file system, path
is the path name of the directory to mount, and subdir, when supplied,
is the name of a subdirectory to which the symbolic link is made. This
can be used to prevent duplicate mounts when multiple directories in
the same remote file system may be accessed. With a map for /home
such as:

able
baker

homeboy: /home /homeboy: able
homeboy: /home /homeboy: baker

and a user attempting to access a file in /homejable, automount
mounts homeboy:jhomejhomeboy, but creates a symbolic link called
/home/able to the able subdirectory in the temporarily-mounted file
system. If a user immediately tries to access a file in /home/baker,
automount needs only to create a symbolic link that points to the
baker subdirectory; /home/homeboy is already mounted. With the fol
lowing map:

able
baker

homeboy: /home /homeboy/ able
homeboy: /home /homeboy /baker

automount would have to mount the file system twice.

A mapping can be continued across input lines by escaping the new
line with a backslash (\). Comments begin with a # and end at the
subsequent new-line.

Directory Pattern Matching
The " & " character is expanded to the value of the directory field for
the entry in which it occurs. In this case:

able homeboy: /home /homeboy: &

the & expands to able.

The "*" character, when supplied as the directory field, is recognized
as the catch-all entry. Such an entry resolves to any entry not previ
ously matched. For example, if the following entry appeared in the
indirect map for /home:

* &:jhomej&

this would allow automatic mounts in /home of any remote file system
whose location could be specified as:

hostname :/home/ hostname

Hierarchical Mappings
A hierarchical mapping takes the form:

directory [I [subdirectory [-mount-options] location . . .] . . .

The initial / within the "/ [subdirectory]" is required; the optional
subdirectory is taken as a file name relative to the directory. If sub
directory is omitted in the first occurrence, the j refers to the directory
itself.

Given the direct map entry:

INTERACTIVE NFS - 3 - Version 2 .2

automount (1 M) automount (1 M)

fusr / local \
/ -ro,intr loco:fusrflocal alt:fusrflocal \
/bin -ro,intr alt:jusrjlocal/bin loco:fusrjlocal/bin \
/man -ro,intr loco:fusr flocalfman alt:fusr flocaljman

automount would automatically mount fusr /local, fusr /local/bin, and
fusr /local/man, as needed, from either loco or alt, whichever host
responded first.

Direct Maps
A direct map contains mappings for any number of directories. Each
directory listed in the map is automatically mounted as needed. The
direct map as a whole is not associated with any single directory.

Indirect Maps
An indirect map allows you to specify mappings for the subdirectories
you want to mount under the directory indicated on the command line.
It also obscures local subdirectories for which no mapping is specified.
In an indirect map, each directory field consists of the basename of a
subdirectory to be mounted as needed.

Included Maps
The contents of another map can be included within a map with an
entry of the form:

+map name

mapname can either be a file name, or the name of an NIS map, or
one of the special maps described below.

Special Maps
There are three special maps currently available: -hosts, -passwd,
and -null. The -hosts map uses the hostname resolution facilities
available on the system to locate a remote host when the hostname is
specified. This map specifies mounts of all exported file systems from
any host. For instance, if the following automount command is
already in effect:

automount /net -hosts

then a reference to /net/hermesfusr would initiate an automatic mount
of all file systems from hermes that automount can mount; references
to a directory under /net/hermes will refer to the corresponding direc
tory on hermes. The -passwd map uses the passwd(4) database to
attempt to locate the home directory of a user. For example, if the
following automount command is already in effect:

automount /homes -passwd

then if the home directory for a user has the form
I dir I server fusername, and server matches the host system on which
that directory resides, automount will mount the user's home directory
as: fhomesjusername.

For this map, the tilde character .. -, is recognized as a synonym for
the username.

The -null map, when indicated on the command line, cancels a previ
ous map for the directory indicated. It can be used to cancel a map
given in auto.master.

INTERACTIVE NFS - 4 - Version 2.2

automount (1 M) automount(1 M)

Configuration and the auto.master Map

FILES

automount normally consults the auto.master NIS configuration map
for a list of initial automount maps and sets up automatic mounts for
them in addition to those given on the command line. If there are
duplications, the command-line arguments take precedence. This
configuration database contains arguments to the automount com
mand, rather than mappings; unless the -f option is in effect, auto
mount does not look for an auto.master file on the local host.

Maps given on the command line or in a local auto.master file specified
with the -f option override those in the NIS auto.master map. For
example, given the command:

automount -f jetcjauto.master /home -null /- jetcjauto.direct

and a file named /etcjauto.master that contains:

/homes -passwd

automount would mount home directories under /homes instead of
/home, as well as mount the various directories specified in the
/etc I auto.direct file.

jtmp_mnt

jetcjauto.master
/etc/ auto. direct
/etc/ auto.indirect

directory under which file systems are dynami
cally mounted
list of master NIS configuration maps
list of direct automounter maps
list of indirect automounter maps

SEE ALSO

NOTES

BUGS

mount(1 M).
df(l M) in the INTERACTIVE UNIX System User'sjSystem
Administrator's Reference Manual.
passwd(4) in the INTERACTIVE SDS Guide and Programmer's Refer
ence Manual.

When it receives signal number 1 , SIGHUP, automount rereads the
jetcjmnttab file to update its internal record of currently mounted file
systems. If a file system mounted with automount is unmounted by a
umount command (see mount(l M)), automount should be forced to
reread the file.

Shell file name expansion does not apply to objects not currently
mounted.

Because automount is single-threaded, any request that is delayed by a
slow or non-responding NFS server will delay all subsequent automatic
mount requests until it completes.

Programs that read jetcjmnttab and then touch files that reside under
automatic mount points will introduce further entries to the file.

INTERACTIVE NFS - 5 - Version 2.2

exportfs(1 M) exportfs(1 M)

NAME
exportfs - export and unexport directories to NFS clients

SYNOPSIS
jetcjexportfs [-avu] [-o options] [directory]

DESCRIPTION
exportfs makes a local directory (or file name) available for mounting
over the network by NFS clients. It is normally invoked at boot time
by the NFS startup script jetcjrc3.d/S72nfs, and uses information
contained in the jete/exports file to export directories (which must be
specified as full path names). The superuser can run exportfs at any
time to alter the list or characteristics of exported directories. Direc
tories that are currently exported are listed in the file jetcjxtab.

With no options or arguments, exportfs prints out the list of directories
currently exported.

The following options are available:

-a All. Export all directories listed in J etc J exports, or if -u is
also specified, unexport all of the currently exported
directories.

-v Verbose. Print each directory as it is exported or unexported.

-u Unexport the indicated directories.

-i Ignore the options in jete/exports. Normally, exportfs will
consult jete/exports for the options associated with the
exported directory.

-o options
Specify a comma-separated list of optional characteristics for
the directory being exported. options can be selected from
among:

ro Export the directory read-only. If not specified, the
directory is exported read-write.

rw-hostname[:hostname] . . .
Export the directory read-mostly. Read-mostly means
exported read-only to most machines, but read-write
to those specified. If not specified, the directory is
exported read-write to all.

anon-uid
If a request comes from an unknown user, use uid as
the effective user ID. Note: root users (uid O) are
always considered "unknown" by the NFS server,
unless they are included in the "root" option below.
The default value for this option is -2. Setting the
value of anon to - 1 disables anonymous access. Note
that by default NFS accepts insecure requests as
anonymous, but users who want extra security can
disable this feature by setting anon to - 1 .

root-hostname[:hostname] . . .

INTERACTIVE NFS

Give root access only to the root users from a
specified host name. The default is for no hosts to be
granted root access.

- 1 - Version 2.2

exportfs (1 M) exportfs(1 M)

FILES

access-client [:client] . . .
Give mount access to each client listed. A client can
either be a host name or a netgroup (see
net group(4)) . Each client in the list is first checked
for in the jetcjnetgroup database and then in the
/etc/hosts database. The default value allows any
machine to mount the given directory.

/etc/ exports
jetcjxtab
jetcjnetgroup
jetcjrc3.d/S72nfs

static export information
current state of exported directories
list of network wide groups
NFS startup script

SEE ALSO
exports(4), netgroup(4) .

WARNING
You cannot export a directory that is either a parent or a subdirectory
of one that is currently exported and within the same file system . It
would be illegal, for example, to export both jusr and /u!!r /local if
both directories resided in the same disk partition.

INTERACTIVE NFS - 2 - Version 2.2

fsirand (1 M) fsirand (1 M)

NAME
fsirand - install random inode generation numbers

SYNOPSIS
fsirand [-p] special

DESCRIPTION
The fsirand command installs random inode generation numbers on all
the inodes on device special. This helps increase the security of file
systems exported by NFS.

The fsirand command must be used only on an unmounted file system
that has been checked with fsck (1 M) . The only exception is that it
can be used on the root file system in single-user mode if the system is
immediately rebooted.

The following option is available:

-p Print out the generation numbers for all the inodes, but do not
change the generation numbers.

SEE ALSO
fsck(l M) in the INTERACTIVE UNIX System User'sjSystem
Administrator's Reference Manual.

INTERACTIVE NFS - 1 - Version 2.2

lckclnt (1 M) lckclnt (1 M)

NAME
lckclnt - create lock manager client handles

SYNOPSIS
lckclnt [nclienthandles 1

DESCRIPTION

FILES

The lckc/nt command allocates connectionless transport endpoints that
are used to create client handles. The lock manager client programs
obtain a client handle for the duration of an RPC operation.

The nc/ienthandles option is the number of client handles allocated.
This number limits the number of lock manager client operations that
can be run concurrently and should be based on the load expected on
the client. If additional client handles are required, more lckc/nt
processes may be started. The number of client handles available to
lock manager client programs is the sum of the number of client han
dles allocated by each lckc/nt program. Killing an lckc/nt process
reduces the available number of client handles by the amount that was
initially allocated by that process.

jdevjudp

SEE ALSO
nfsd(4).

UDP device node

INTERACTIVE NFS - 1 - Version 2.2

lockd (1 M) lockd(1 M)

NAME
lockd - network lock daemon

SYNOPSIS
{etcjlockd [-t timeout] [-d debuglevel]] -g graceperiod]

-h hashsize] [-1 k2utimeout]

DESCRIPTION
The /ockd daemon processes lock requests that are either sent locally
by the kernel or remotely by another lock daemon. The /ockd daemon
forwards lock requests for remote data to the server site's lock daemon
through the RPC/XDR(3N) package. The lockd daemon then requests
the status monitor daemon, statd(l M), for monitor service. The reply
to the lock request will not be sent to the kernel until the status dae
mon and the server site's lock daemon have replied.

If either the status monitor or server site's lock daemon is unavailable,
the reply to a lock request for remote data is delayed until all daemons
become available.

When a server recovers, it waits for a grace period for all client site
/ockds to submit reclaim requests. Client site /ockds, on the other
hand, are notified by the statd of the server recovery and promptly
resubmit previously granted lock requests. If a lockd fails to secure a
previously granted lock at the server site, the lockd sends SIGUSR2 to
a process.

The following options are available:

-t timeout
The lockd daemon uses timeout (seconds) as the interval
instead of the default value (1 5 seconds) to retransmit lock
request to the remote server.

-d debug/eve/
The /ockd daemon has extensive internal reporting capabil
ities. A level of 2 reports significant events. A level of 4
reports internal state and all lock requests traffic; verbose.

-g graceperiod
The lockd daemon uses graceperiod (seconds) as the grace
period duration instead of the default value (45 seconds).

-h hashsize
The lockd daemon uses hashsize hash buckets internally
instead of the default of 29.

-1 k2utimeout

SEE ALSO
statd(l M).

The /ockd daemon uses k2utimeout (seconds) as the inter
val instead of the default value (2 seconds) to retransmit
kernel lock manager requests. This is the timeout value
used for local lock requests.

fcntl(2), signal(2), lockf(3C) in the INTERACTIVE SDS Guide and
Programmer's Reference M anua/.

INTERACTIVE NFS - 1 - Version 2.2

� I

mount(1 M) mount(1 M)

NAME
mount, umount - mount and unmount file systems and remote
resources

SYNOPSIS
fete/mount [-r] [-r fstyp] special directory
fete/mount [-r] [-e] -d resource directory
fete/mount
fetefumount special
fetefumount directory
fetefumount -d resource

DESCRIPTION
File systems other than root (/) are considered removable in the sense
that they can be either available or unavailable to users. The mount
command announces to the system that special, a block special device,
or resource, a remote resource , is available to users from the mount
point directory. The directory must exist already; it becomes the name
of the root of the newly mounted special or resource. A unique
resource may be mounted only once (no multiple mounts).

The mount command, when entered with arguments, adds an entry to
the table of mounted devices, fetefmnttab. The umount command
removes the entry. If invoked with no arguments, mount prints the
entire mount table. If invoked with any of the following partial argu
ment list, mount searches fetejfstab to fill in the missing arguments:
special, -d resource, directory , or -d directory.

The following options are available:

-r

-d

-e

-ffstyp

INTERACTIVE NFS

Indicates that special or resource is to be mounted read
only. If special or resource is write-protected or read-only
advertised, this flag must be used.

Indicates that resource is a remote resource that is to be
mounted or unmounted on directory. To mount a remote
resource, Remote File Sharing must be up and running and
the resource must be advertised by a remote computer.

Indicates that remote reads and writes should not be
cached in the local buffer pool. The -e option is used in
conjunction with -d.

Indicates that fstype is the file system type to be mounted.
If this argument is omitted, it defaults to the root fstyp. If
fstyp is NFS, then NFS options may be added after the
fstyp separated by commas. The available NFS options
are:

soft Return error if the server does not respond.

nosuid Ignore setuid and setgid bits during exec.

bg Background this mount; this is recommended for
automatic mounts done during system startup.

rsize-n Set the read buffer size to n bytes.
wsize-n

Set the write buffer size to n bytes.

- 1 - Version 2.2

mount(I M) mount(I M)

FILES

timeo-n
Set the initial NFS timeout to n tenths of a second.

retrans-n
Set the number of NFS retransmissions to n.

port-n Set the server IP port number to n.

noac Don't cache attributes. This is necessary when
close synchronization with the server is required.
NOTE: Use of this option will drastically cut per
formance on the file system being mounted.

special Indicates the block special device that is to be mounted on
directory. If fstyp is NFS, then special should be of the
form hostname: fpathname.

resource Indicates the remote resource name that is to be mounted
on a directory .

directory Indicates the directory mount point for special or resource.
(The directory must already exist.)

The umount command announces to the system that the file system
previously mounted special or resource is to be made unavailable. If
invoked with special or -d directory, umount will search fetcjfstab to
fill in the missing argument(s).

The mount command can be used by any user to list mounted file sys
tems and resources. Only a superuser can mount and umount file
systems.

fetcfmnttab
fetcjfstab

mount table
file system table

SEE ALSO
mountd(l M), nfsd(l M), showmount(l M), mount(2).
fuser(l M) , setmnt(l M) in the INTERACTIVE UNIX System
User'sfSystem Administrator's Reference Manual.
umount(2), fstab(4), mnttab(4) in the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

DIAGNOSTICS
If the mount (2) system call fails, mount prints an appropriate diagnos
tic. The mount command issues a warning if the file system to be
mounted is currently labeled under another name. A remote resource
mount will fail if the resource is not available, if Remote File Sharing
is not running, or if it is advertised read-only and not mounted with
-r.

The umount command fails if special or resource is not mounted or if
it is busy. The special or resource command is busy if it contains an �
open file or some user's working directory. In such a case, you can use
fuser(l M) to list and kill processes that are using special or resource.

WARNING
Physically removing a mounted file system diskette from the diskette
drive before issuing the umount command damages the file system.

INTERACTIVE NFS - 2 - Version 2.2

mountd(1 M)

NAME
mountd - NFS mount request server

SYNOPSIS
jetcjmountd

� DESCRIPTION

mountd(1 M)

The mountd daemon is an RPC server that responds to file system
mount requests. It reads the file jetcjxtab, described in exports(4), to
determine which file systems are available to which machines and
users. It also provides information as to which clients have file systems
mounted. This information can be printed using the showmount(I M)
command.

SEE ALSO
exportfs(1 M), showmount(1 M), exports(4), nfsd(4).
services(5) in the INTERACTIVE TCP/IP Guide .

INTERACTIVE NFS - 1 - Version 2.2

. ; -.

�--

nfs (l M) nfs(1 M)

NAME
fetcfinit.d/nfs - NFS start/stop script

SYNOPSIS
jetcjinit.djnfs start
jetcjinit.djnfs stop

DESCRIPTION
jetcjinit.djnfs is used to start or stop the NFS software. NFS starts
automatically at system startup if jetc/init.d/nfs is linked to
jetcjrcJ.djSname (name is installed as 72nfs by default). Similarly,
NFS stops automatically at system shutdown if jetcjinit.djnfs is linked
to jetcjrcO.djKname (name is installed as 66nfs by default). See
rcO(l M) and rc2 (1 M) for additional information. NFS will also be
shut down when leaving networking mode (run level 3) if
jetcjinit.djnfs is linked to jetcjrc2.d/Kname (where name is 5J nfs by
default).

jetcjinit.djnfs may be customized for a particular installation before it
is used. The following items may need to be edited:

PATH The supplied path may require modification if com
mands run by jetcjinit.djnfs are in other directories.

PROC 1 and PROC 2
The PROC 1 and PROC 2 variables contain space
separated lists of names of processes to kill when exe
cuting the stop function. If additional daemons are

,� used, their names can be added to this list.

FILES

Daemons The standard NFS daemons are started at this point.
Any additional daemons or other commands may be
included in this section. Any of the standard dae
mons that are not desired may be removed or com
mented out.

Networking services used as a transport for NFS must be initialized
before NFS is started.

jetcfrc3.djS72nfs
jetcjrc2.djK5 1nfs
jetcjrcO.djK66nfs

SEE ALSO
lckclnt(l M), lockd(l M), mountd(l M), nfsclnt(l M), nfsd(l M),
nmountall(l M), pcnfsd(l M), portmap(l M), rexd(l M), statd(l M),
exports(4).
rcO(l M), rc2(1 M), sh(l) in the INTERACTIVE UNIX System
User'sjSystem Administrator's Reference Manual.

INTERACTIVE NFS - 1 - Version 2.2

�- -. .

nfsclnt(1 M) nfsclnt(1 M)

NAME
nfsclnt - create NFS client handles

SYNOPSIS
nfsclnt [ncHentbandles]

DESCRIPTION

FILES

The nfsclnt command allocates connectionless transport endpoints
which are used to create client handles. NFS client programs obtain a
client handle for the duration of an RPC operation.

The nclienthandles command is the number of client handles allocated.
This number limits the number of NFS client operations that can be
run concurrently, and should be based on the load expected on the
client. If additional client handles are required, more nfsclnt processes
may be started. The number of client handles available to NFS client
programs is the sum of the number of client handles allocated by each
nfsclnt program. Killing an nfsclnt process will reduce the available
number of client handles by the amount that was initially allocated by
that process.

fdevfudp

SEE ALSO
nfsd(4) .

UDP device node

INTERACTIVE NFS - l - Version 2.2

nfsd (l M) nfsd(I M)

NAME
nfsd, biod - NFS daemons

SYNOPSIS
jetc/nfsd [nservers]
jetcjbiod [nservers]

DESCRIPTION
The nfsd daemon starts the NFS server daemons that handle client file
system requests. nservers is the number of file system request daemons
to start. This number should be based on the load expected on this
server.

The biod, run on an NFS client, starts nservers asynchronous block IJO
daemons, which do read-ahead and write-behind of blocks from the
client's buffer cache.

SEE ALSO
mountd(1 M), exports(4), nfsd(4).

INTERACTIVE NFS - 1 - Version 2.2

nfsstat (l M) nfsstat(1 M)

NAME
nfsstat - Network File System statistics

SYNOPSIS
nfsstat [-csnrz]

.� DESCRIPTION

FILES

The nfsstat command displays statistical information about the Net
work File System (NFS) and Remote Procedure Call (RPC) interfaces
to the kernel. It can also be used to reinitialize this information. If no
options are given, the default is:

nfsstat -csnr

That is, print everything and reinitialize nothing.

The following options are available:

-c Display client information. Only the client side NFS and RPC
information will be printed. Can be combined with the -n
and -r options to print client NFS or client RPC information
only.

-s Display server information. Works like the -c option above.
-n Display NFS information. NFS information for both the client

and server side will be printed. Can be combined with the -c
and -s options to print client or server NFS information only.

-r Display RPC information. Works like the -n option above.

-z Zero (reinitialize) statistics. Can be combined with any of the
above options to zero particular sets of statistics after printing
them. The user must have write permission on fdev /kmem for
this option to work.

/unix
/devfkmem

system namelist
kernel memory

INTERACTIVE NFS - l - Version 2.2

nmountall (I M) nmountall (I M)

NAME
nmountall, numountall - mount, unmount multiple file systems

SYNOPSIS
I etc I nmountall
I etc I numountall

DESCRIPTION

FILES

The nmountall command is used to mount NFS file systems according
to entries in letclfstab. It is strongly recommended that the NFS
mount option, bg, be used for file systems that are automatically
mounted during startup. This prevents startup processing from hang
ing while trying to mount a file system from a very slow or dead
server.

The numountall command causes all NFS mounted file systems to be
unmounted. Processes that hold open files or have current directories
on these file systems are killed by being sent a series of signals. The
first signal sent is SIGHUP. One second later, SIGTERM is sent.
Finally, one second later, SIGKILL is sent.

These commands may be executed only by the superuser.

File system table format:

column 1
column 2
column 3
column 4
column 5+

remote file system name to be mounted
mount point directory
-r if to be mounted read-only
file system type string
ignored

White space separates columns. Lines beginning with "#" are com
ments. Empty lines are ignored.

A typical file system table entry might read:

srcmachine:Jusrjsrc Jusrjsrc -r NFS,soft,bg

SEE ALSO
mount(1 M).
fuser(lM) in the INTERACTIVE UNIX System User'sjSystem
Administrator's Reference Manual.
umount(2), signal(2), fstab(4) in the INTERACTIVE SDS Guide and
Programmer's Reference Manual.

DIAGNOSTICS

NOTES

The nmountall command prints the mount commands that it will run
before it runs them.

The numountall command prints the list of process IDs to which it sent
signals. The list of file systems that are being unmounted is also
printed.

The information displayed in Column 3 only appears if the file system
was mounted as read-only.

INTERACTIVE NFS - 1 - Version 2.2

pcnfsd(1 M) pcnfsd(I M)

NAME
pcnfsd - pc-nfs authentication and print spooling daemon

SYNOPSIS
/etcjpcnfsd [-d] [-s spooldir]

� DESCRIPTION
The pcnfsd daemon processes authentication and print spool requests
from MS-DOS clients running Sun Microsystem's PC-NFS. Requests
and their responses are forwarded through the RPC/XDR(3N) pack
age. Upon receipt of an authentication request, pcnfsd consults the
server's password file and verifies that the password sent from the MS
DOS client matches that on the local machine. An acceptance or
rejection message is then sent back to the client. The account's
uidfgid pair is also returned if authentication succeeds. If the account
in question does not exist, then authentication fails.

Print spooling consists of two services: spooling initialization and start
print. When the server receives an initialization request, a path name
for the print spool directory is assembled from spooldir and the client
machine's name. This path is returned to the client. The client then
NFS mounts this directory. When a spool file is ready to print, the
start print request is sent to the server. The server then sends the file
to the print spooling subsystem.

If the host handling pcnfsd service crashes, RPC timeout messages are
returned to the user when the above requests are generated.

� The following options are available:

-d Turn on debuging mode. Status messages are returned to
the console terminal.

-s spooldir

SEE ALSO

The pcnfsd daemon uses spooldir instead of
jusrjspool/lp/pcnfsd as the base spooling directory. This
option is only available when pcnfsd is run as a daemon.

lp(l), passwd(l) in the INTERACTIVE UNIX System User's/System
Administrator's Reference Manual.
getpwent(3C) in the INTERACTIVE SDS Guide and Programmer's
Reference Manual.
lpr(1) in the INTERACTIVE TCP/IP Guide .

INTERACTIVE NFS - 1 - Version 2.2

portmap(I M) portmap(I M)

NAME

portmap - DARPA port to RPC program number mapper

SYNOPSIS
I etc jportmap

-� DESCRIPTION
The portmap server converts RPC program numbers into DARPA pro
tocol port numbers. It must be running in order to make RPC calls.

When an RPC server is started, it will tell portmap what port number
it is listening to and what RPC program numbers it is prepared to
serve. When a client wishes to make an RPC call to a given program
number, it will first contact portmap on the server machine to deter
mine the port number where RPC packets should be sent.

SEE ALSO
rpcinfo(1 M).

BUGS
If portmap crashes, all servers must be restarted.

INTERACTIVE NFS - I - Version 2.2

. � · = .

.�
. 7 ·� '--·

�·· ·...__

rexd(1 M) rexd(l M)

NAME
rexd - RPC-based remote execution server

SYNOPSIS
fetcfrexd

� DESCRIPTION

FILES

The rexd daemon is the Sun RPC server for remote program execution.
For noninteractive programs, standard file descriptors are connected
directly to TCP connections. Interactive programs involve pseudo
terminals, similar to the login sessions provided by rlogin(1). This
daemon may use the NFS to mount file systems specified in the remote
execution request.

fdev fttypn pseudo-terminals used for interactive mode

fetcfpasswd authorized users

/tmpfrexd.log if it exists, logs errors and events

SEE ALSO
mount(I M), on(l), rex(3), exports(4).

DIAGNOSTICS

BUGS

Diagnostic messages are normally printed on the console and returned
to the requester.

Should be better access control.

INTERACTIVE NFS - l - Version 2.2

'i

� - � '-- - I

I

rpcinfo(1 M) rpcinfo(1 M)

NAM E

rpcinfo - report RPC information

SYNOPSIS
rpcinfo -p [host]
rpcinfo -u host program [version]
rpcinfo -t host program [version]
rpcinfo -b program version

DESCRIPTION
The rpcinfo command makes an RPC call to an RPC server and reports
what it finds.

The following options are available:

-p Probe the portmapper on host and print a list of all registered
RPC programs. If host is not specified, it defaults to the value
returned by hostname(1).

-u Make an RPC call to procedure 0 of program on the specified
host using UDP and report whether a response was received.

-t Make an RPC call to procedure 0 of program on the specified
host using TCP and report whether a response was received.

-b Make an RCP broadcast to procedure 0 of the specified
program and version using UDP and report all hosts that
respond.

,� The program argument can be either a name or a number.

If a version is specified, rpcinfo attempts to call that version of the
specified program. Otherwise, rpcinfo attempts to find all the
registered version numbers for the specified program by calling version
0 (which is presumed not to exist; if it does exist, rpcinfo attempts to
obtain this information by calling an extremely high version number
instead) and attempts to call each registered version. Note that the
version number is required for the -b option.

EXAMPLES
To show all of the RCP services registered on the local machine, use:

example$ rpcinfo -p

To show all of the RCP services registered on the machine named
klaxon, use:

example$ rpcinfo -p klaxon

To show all machines on the local network that are running the
Network Information Service (NIS) (formerly known as the Yellow
Pages) use:

example$ rpcinfo -b ypse" 'version' I uniq

where 'version' is the current NIS version obtained from the results of
the -p switch above.

INTERACTIVE NFS - 1 - Version 2.2

rpcinfo(1 M) rpcinfo(l M)

SEE ALSO

BUGS

portmap{ l M), rpc(4).
"INTERACTIVE NFS Protocol Specifications and User's Guide."

In releases prior to SunOS 3.0, the Network File System did not regis- � ter itself with the portmapper; rpcinfo cannot be used to make RPC
calls to the NFS server on hosts running such releases.

INTERACTIVE NFS - 2 - Version 2 .2

rwall (1 M) rwall(l M)

NAME
rwall - write to all users over a network

SYNOPSIS
rwaU hostname . . .

� rwaU -n netgroup . . .
rwaU -h host -n netgroup

DESCRIPTION
rwa/1 reads a message from standard input until end-of-file. It then
sends this message, preceded by the line:

Broadcast Message . . .

to all users logged in on the specified host machines. With the -n
option, it sends to the specified network groups, which are defined in
netgroup(4).

A machine can only receive such a message if it is running
rwalld(l M), which is normally started up by the daemon inetd(l M).

SEE ALSO

BUGS

rwalld(1 M), netgroup(4).
wall(l) in the INTERACTIVE UNIX System User'sfSystem
Administrator's Reference Manual.
inetd(lM) in the INTERACTIVE TCPfiP Guide .

The timeout is fairly short in order to be able to send to a large group
of machines (some of which may be down) in a reasonable amount of
time. Thus, the message may not get through to a heavily loaded
machine.

INTERACTIVE NFS - 1 - Version 2.2

��
· . .__

rwalld (I M) .

NAME
rwalld - network rwall server

SYNOPSIS
fetcfrwalld

� DESCRIPTION

rwalld(1 M)

rwalld is a server that handles rwall(IM) and shutdown (4. 3BSD)
requests. The rwalld daemon is normally invoked by inetd(I M).

SEE ALSO
rwall(I M).
inetd(I M), services(5) in the INTERACTIVE TCPf/P Guide .

INTERACTIVE NFS - 1 - Version 2.2

-� '-- ·

·�

.·.

I

showmount (1 M)

NAME
showmount - show all remote mounts

SYNOPSIS
jetcjshowmount [-a] [-d] [-e] [host]

showmount(1 M)

.� DESCRIPTION

,.,-.

The showmount command lists all the clients that have remotely
mounted a file system from host . This information is maintained by
the mountd(l M) server on host and is saved across crashes in the file
fetcfrmtab. The default value for host is the node name returned by
uname(l).

The following options are available:

-d List directories that have been remotely mounted by clients.

-a Print all remote mounts in the format

-e

hostname:directory

where hostname is the name of the client and directory is the
root of the file system that has been mounted.

Print the list of exported file systems.

SEE ALSO

BUGS

mountd(I M), exports(4), rmtab(4).
uname(I) in the INTERACTIVE
Administrator's Reference Manual .

UNIX System User'sfSystem

If a client crashes, its entry is not removed from the list until it reboots
and actually umounts the file system (see mount (l M)).

INTERACTIVE NFS - 1 - Version 2.2

. . . �
. , .

�
�.!

'

statd (l M) statd(1 M)

NAME
statd - network status monitor

SYNOPSIS
fetcfsmtd [-d debuglevel]

DESCRIPTION

FILES

The statd daemon is an intermediate version of the status monitor. It
interacts with lockd(1 M) to provide the crash and recovery functions
for the locking services on NFS.

The statd daemon preserves crash/recovery state in the fetcfsm direc
tory. The record file records the host name of all currently monitored
systems, the recover file records the host name of all systems that have
as yet not been notified of statd's failure, and the state file records the
statd's current version number.

The following option is available:

-d debug/eve/
The statd daemon has extensive reporting internal reporting
capabilities. A level of 2 reports significant events. A level of
4 reports internal state and all status monitor requests.

j etc/ smjrecord
jetcjsmjrecover
jetcjsmjstate

SEE ALSO
lockd(1 M), statmon(4) .

BUGS
The crash of a site is only detected upon its recovery.

INTERACTIVE NFS - l - Version 2.2

4).

DC00220-3Z

