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SimOS Tutorial Part 1

SimOS Introduction and Overview
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What is SImOS?

* A bad name
— Simulation including OS behavior
— Does not actually simulate an operating system
* A complete computer system simulator
— Models machine hardware to run OS & Apps
— High speed simulation/emulation techniques
* A powerful tool for studying computer systems
— Exploits visablity afforded by simulation
— Flexible data collection and classification
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SimOS: Compete Machine Simulation

Target OS (IRIX version 5.3)

Workloads

[_Disks | Console | (Memory System|
| RAM | [ Ethernet |[ CPU/MMU |

SImOS

Host UNI X workstation
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Using SImOS

1) Select workload
(S/base) ( Client pr ograms)

Target OS (IRIX version 5.3)

2) Configure machine & stats collection

[_Disks ][ Console | (Memory System|
| RAM |[ Ethernet |[ CPU/MMU |

Cpu: #&ISA
Memory: Size
Devices: # Disks

I Collect: Mem stall by PC I

3) Run & study behavior of interest
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SimOS Advantages

* Realistic workloads
— SimOS can study almost any workload
— Develop workloads on real machine
— Copy workloads on to SimOS'’s disks
e Great visibility
— Observe all behavior: application, OS, hardware
* Non-intrusive
— Observation does not perturb system
* Consider alternatives
— Hardware/software instrumentation
— Application-level simulation
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SimOS Uses

e Computer Architectural Investigations
— How does hardware behave under full workload?
— Example: FLASH design

* Operating System Study & Development
— How does OS behave with hardware & workload?
— Example: Hive debugging & performance tuning

* Application Studies
— How does app behave with hardware and OS?
— Example: Relational database server tuning

7
|
©1996 Mendel Rosenblum and Steve Herrod

|
Tutorial Overview

* Complete machine simulation
— Simulating the hardware of modern computers
— Exploitation of the speed/detail tradeoff

* Statistic collection and reporting

— Map low-level machine behavior to higher-level
abstractions

— Tcl scripting language interpreter
* Experiences with SimOS

— Case studies

— Future plans
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Complete Machine Simulation

* Hardware of modern computer systems
— CPUs, MMU/TLB, caches
— Memory controller, busses, DRAM
— 1/O Devices
—Disks
—Console
— Networks
—Timers
— Framebuffers
—eftc.
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Challenge for Machine Simulators

* Modern computers are highly complex machines

— A cycle-accurate model of the entire machine
would take millions of lines of code.

— Too slow to be useful
—Unable to even boot operating system
* Much of a machine’s execution is uninteresting
— Booting the machine, OS idle loop
— Don’t waste simulation time on these sections
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Simulation Speed/Detail Tradeoff

Speed
Fast

Slow

Less More

Detail

* Can build:
— Very fast simulators

— Very detailed, accurate simulators
e Can not build:

— Very fast and detailed simulators
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SimOS Approach

* Exploit trade-off between speed and detail

— Support multiple simulation models with different
speed and detailed tradeoffs

—Ranging from fast to detailed.
— All detailed enough to run software
* Provide dynamic switching ability
— Switch between models in middle of simulation

— Provide flexibility in exploiting this trade-off
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SimOS Speed/Detail Tradeoff Modes

* Emulation mode
— Run workload as fast as possible
—No concern for timing accuracy
— Simulation slowdown < 10x
* Rough Characterization mode
— Keep speed of emulation but add timing model
— Capture first-order effects
— Instruction execution, memory stall, 1/O, etc.
— Simulation slowdown < 25x
* Detailed Characterization mode
— Arbitrary accuracy and simulation slowdown
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Use of Different Modes

Use speed to setup detailed simulators for study

* Emulation mode

— Positioning a workload

— Example: Boot OS and startup database system

Rough characterization mode

— Examine workload quickly

— Locate targets for detailed mode

e Sampling

— Switch between modes to get statistical coverage
of a workload’s execution
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Emulation Mode

* Only requires a functional model of execution
— Instruction execution must be simulated
— CPU caches/memory system timings unneeded
— 1/O devices only need to “work”
* Requires no accurate timing model
— Tracking execution time slows down a simulator
* SimOS solution
— Embra CPU simulator
— Functional device model ﬁ

V.
\/§:
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Embra CPU Simulator

* Uses on-the-fly binary translation (Like Shade)

Translated Code

load t1, simRegs[1]
load t2, 16(t1)

Binary Code store t2, simRegs|[3]

load r3, 16(rl1) .
add 4, 13, r2 load t1, S|.mRegs[2]
load r2, simRegs[3]

jump 0x48071 add t3, t1, t2
store t3, simRegs[4]
store 0x48074, simPC

jump dispatch_loop

Need MMU relocation on all data and instruction accesses
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Embra: Techniques for Speed

Caching of basic block translations
— Avoids translation overlead
* Chaining translations
— Connect basic-blocks likely to follow each other
* MP on an MP
— Interleaving tradeoff
* Speed
— SPEC benchmarks: 4x-8x slowdown
— Database system: ~10x slowdown
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Rough Characterization Mode

* Add atiming model to emulation mode
— Keep speed
— Extend Embra with simple timing model
— Track instructions execution, cache misses
— Add /O device timing
* Speed
— SPEC benchmarks: 15x-20x
— Database system: ~25x
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Embra: Flexible Code Augmentation

e Customize translations for desired detail
Customized Translations

Minimal Translation MMU Data Address
Translations
. load t1, simReisb/ (8 instr on hit)
Binary Code
y load t2, 16(t1) > MMU Instr Address
store t2, simRegs[3] (Ir_anflatioE_s;)
Instr on ni
load 13, 16(r1) 4% “= ————
i ache simulation
add r4, r3, r2 load 1, SI.mRegS[Z] (2 instr on hit)
load r2, simRegs[3]
add t3, t1, t2 Inst Cycle Counter
store t3, simRegs|[4] (2 instructions)

- Simulation slowdown proportional to desired detail

- Detall is chosen dynamically
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Detailed Characterization Mode

* Incorporate accurate timing modes
— Multiple different models
— Vary in detail down to gate-level models
* Value software engineering over speed
— Clean, modular interfaces for different:
— CPU, cache, memory system simulators
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Mipsy CPU Simulator

e Easier to understand and extend than Embra
* MIPS instruction set
* Simple MIPS R4000-like pipeline
* Flexible caches
— Multiple levels
— Instruction, data, unified
— Can attach to any memory system
* Cycle-by-cycle multiprocessor interleaving
e 200 times slowdown
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MXS CPU Simulator

* MIPS R10000-like

— Complete pipeline and cache contention
* Dynamically-scheduled

— Register renaming

— Branch prediction

— Speculative execution
* Over 10,000 times slowdown
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Memory System Simulators

* BusUMA
— Bus contention
— Snoopy caches
— Writeback buffers
— Out-of-order split transaction bus.
* NUMA
— Like BusUMA, but with non-uniform access time
* FlashLite
— Accurate model of the FLASH memory system
— Verilog components can be “plugged-in”
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I/O Device Simulators

* Less critical to simulator performance
* Important issues
— Functionality
— Timing accuracy
— Usability
* Allow SimOS to get to the “outside” world
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I/O Devices - Disks

* Implement as a file accessed by SimOS
— Generate via mkfs
— Create a root disk from existing installation
* Timing models
— HP disk model with seek time
— Fixed latency model
e Copy-on-write
— Allows many users to share same disks
— Saves much disk space
Remote disk servers
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I/O Devices - Ethernet

* Implement with SimEther

— SimEther supports communication between
SimOS simulations

— Acts as IP gateway between real and simulated
networks

* Easy way to copy files into simulated world

— ftp files from existing machine

— Mount on local machine from SimOS NFS server
* Allows NFS, web server studies

— Server/clients can be on either real or simulated
machines
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I/O Devices - Other

* Console

— Provides interactive SImOS session

— Supports “expect’-like session scripting
* Hardware timer & real time clocks

— Need for proper kernel execution
* Framebuffer

— Permits studies of X-based applications
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Checkpoints

* Contain the entire state of the machine
— Registers, memory
— Device status
— Extensible - include Tcl, cache status, etc.
e Save at any time during execution
* Reload to start simulation at point in execution
e Useful in hardware studies
— Run same workload on multiple platforms
* Allows speed and determinism for bug tracking
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Gdb Interface

* Modified gdb to talk to SImOS

* Permits source-level debugging of kernel
— Including “difficult” sections

* Deterministic execution
— Essential for some bugs
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SimOS Tutorial Part 2

Data Collection and Classification
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SimOS Data Challenges

* Too much statistic data
— SimOS detailed models heavily instrumented
— Counters, timings, histograms, etc.

— Many megabytes of data, too much to write out
frequently.

e Data at too low of level

— Application and OS investigators want data
mapped back to their abstractions.

— Computer architects want to attribute behavior to
OS or application behavior. (e.g. Idle loop)
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SimOS data collection framework

User-defined

Data
Collection
Buckets
Events
Mapping . .
SimOS Models > Function BN
State . .

<L -

@Iizaﬂon an@

Key challenge: Fast and flexible implementation
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SimOS data mapping

* Need application-specific knowledge of execution
in SimOS to control:

— Classification - who to “charge” for events
— Reporting - what information to output
* Implementation: Embed Tcl interpret in SimOS
— Tcl scripts have full access to machine state
— Control stats collection and classification
— Powerful mechanism for controlling simulation
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SIimOS data collection mechanisms

* Buckets: Places where events can be stored
— Defined by the user of SImOS

* Annotations: Tcl scripts that run on events
— Allows user to control the processing of events

e Selectors & Detail Tables: Control event
recording into Buckets

— Supports efficient and flexible recording of events
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Mechanism: Annotations

e Tcl scripts triggered by events:
— PC virtual address
— Data reference virtual address
— Traps or interrupts
— Instruction opcodes (e.g. eret, rfe)
— Cache misses
— Cycle count
* Annotations have:

— Complete, non-intrusive access to machine state

— Access to symbols from object files
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Simple Annotation Examples

* Print a message & count every TLB read miss:

annotation set exc rmiss {
log “TLB m ss at $epc on address $badvaddr\n”
inc tlbRm ssCount

}

* Track barrier latencies in radix program:

synbol | oad /usr/local/bin/radix
annot ation set pc radix: barrier: START {
set barStart($CPU) $CYCLES

}

annot ation set pc radix:barrier: END {
log “Barrier: [expr $CYCLES- $barStart($CPU)]\n"

}
36
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Higher-level Annotations

* Annotations can trigger new annotations
— New annotations can represent higher level events
— Allows building upon packages of annotations

e Example: Tracking process scheduling
# Define a new annotation for process events
annot ati on type process enum {sw tchQut swi tchln}

annot ati on set pc kernel::resune: END {

# Execute higher-1evel annotation

annot ati on exec process switchQut

# Update pid

set PID [synbol read kernel: u.u_procp->pid]
annot ati on exec process switchln
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Event Classification - Selectors

e Too efficient and inconvenient to record all
events using annotations

e Selectors for event classification: _
User-defined

Selector Buckets
Events .

SimOS Models |

/ 2 []

Annotation scripts ]
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Simple Selector Example

e Breakdown execution into user, kernel, and idle
sel ector create nodes

annot ati on set exc {
sel ector set nodes “kernel”

}

annotation set inst rfe {
sel ector set nodes “user”

}

annot ation set pc kernel:idle: START {
sel ector set nodes “idle”

}
—Note: Doesn’'t handle nested exceptions

39
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- &&/&/W/////00/0000U97
Event Classification - Detail Tables

e Detail tables: Like selectors except bucket is
computed using PC or data virtual address

— Allows mapping back to address
Addr Range

Detail table Buckets
Events .

SimOS Models |

/ 2 []

Event PC or data address ]
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The Tcl-SImOS Interface

* init.simos is read at SImOS startup
— Specifies machine configuration
— Simulation parameters

* Libraries of common annotations
— Sourced from init.simos
— Example: Track OS behavior

41
|

©1996 Mendel Rosenblum and Steve Herrod

|
Tcl Parameterization

e Describe machine

set MACHI NE( CACHE. Mbdel ) 2Level
set MACHI NE( CACHE. 2Level .1 size) 32k

e Describe simulator

set PARAM STATS. Fal seShari ng) yes
set PARAM FI LES. Cpt Conpress) yes
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Tcl Simulator Control

* expect/type - interface with console
expect {SimOS (1)\# } {
type “gcc -2 -c foo.c\n”
}
* Switch between models
annotation set |oad kernel::Rung.do_affinity {
cpuEnter M PSY

}
* Take checkpoints
annot ation set cycle 1000000 {
doCheckpoi nt

}

.
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SimOS Tutorial Part 3

Experiences and Case Studies

44
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Case Study: Hive Development

* Goal: Create a fault-containing operating system
for shared-memory multiprocessors

e Simulation needs
— Help with debugging
— Simulation of faults
— Performance information
* SimOS satisfies all of these needs

45
|
©1996 Mendel Rosenblum and Steve Herrod

Case Study: Hive Development

* Debugging
— Gdb provides source-level debugging of all code
— Deterministic execution
— Checkpoints

* Simulation of faults
— Hardware failure, network packet corruption, etc.
— Add randomness to stress design

* Performance information
— Target tuning on time-critical sections
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Case Study - Effect of Arch. Trends

* Question: How will current operating systems
behave on future architectures?

e Simulation needs
— Model computers that do not exist yet
— Run realistic workloads
— Speed, speed, speed!
— Complete and flexible data collection
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Hardware Configurations

e 1994 Model

— 200 MHz MIPS R4600 (200 MIPS)
— single-issue, statically scheduled
— 16K on-chip caches, 1M off-chip cache

e 1998 Model
— 500 MHz MIPS R10000+ (2,000 MIPS)
— superscalar, dynamically scheduled
— 64K on-chip caches, 4M off-chip cache
* Impossible without simulation

48
|
©1996 Mendel Rosenblum and Steve Herrod

11/7/96



Stanford University

Realistic Workloads

* In order to understand OS behavior, we must
drive it in “realistic” ways.
— Program development
— Compile phase of Modified Andrew Benchmark
— Database transaction processing
— Sybase running TPC-B
— Engineering
—Verilog and FlashLite (self-hosting!)
* Methodology
— Develop and fine-tune on SGI workstation
— Copy onto SimOS disk
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Speed, Speed, Speed!

* Use emulation mode on uninteresting sections
— Booting OS
— Initializing workloads

Initially use “rough characterization” mode
— Quickly see if workload is well-configured
— Find good starting point for investigation

Take a checkpoint
— Provide all configurations with same workload
— Don’t have to boot and initialize again

Detailed characterization starts with checkpoint
— Remote server allows use of several machines
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Rough Characterization

* Program development workload
— Use selectors to separate out modes

100
80
60
Idle (8%)
40 W User (77%)
W Kernel (15%)
20
0
0 1 2 3 4 5 6 7 8

Time (seconds)

% of Execution Time
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Data Collection Needs

* Detailed characterization modes provide
— Instruction counts
— Cache miss counts
— Device behavior

* Need to map these low-level events into higher
level abstractions

— What OS service was running?
— What type of cache misses are occurring?
— What data structures experience the misses?

a1
N
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Data Classification

* Annotations in context switch code
— Track which process is executing
— Track how much time is spent descheduled
* Annotations at the start and end of services
— Control a selector that charges events
e Cache miss classification
— Charge misses to data structures
— Charge misses to OS service
A higher level of abstraction would help...
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SimOS’s “Timing” Mechanism

* Uses Tcl to create a higher level of abstraction
— Indicate start and end points of a “phase”
— Timing maintains a tree of nested phases
— Selector charges events to nodes of the tree
— Latencies, including descheduled time
— Cache misses
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SimOS’s “Timing” Mechanism

Events—>

(Csyne ) (et INT) [ Deschea | (* DISK )
l l
Desched

sync
fork
gcc
Phase All events are currently charged to the
Annotations —> . synchronization phase of the fork

operating system service

©1996 Mendel Rosenblum and Steve Herrod

SimOS’s “Timing” Mechanism

* Flexibility in parsing of the timing tree
— How many cache misses in gcc’s use of bcopy?
— Is there more synchronization time in fork or wait?

— What is the average time gcc spends descheduled
as a result of disk requests?

* Easy to apply to applications
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Results of Study

* SOSP ‘95 paper
— Indicates which services will cause performance
problems in the future
— Reports why these services perform poorly
— Suggests operating system modifications

— Establishes complete machine simulation as an
effective platform for operating system
investigations
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SimOS Tutorial Part 4

Extending SImOS
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Extending SImOS

* Collaborative effort!

— periodic releases with latest additions
* Current SimOS status
* Porting operating systems to SimOS
* Adding new hardware to SimOS
* Conclusions
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SimOS Status (Oct. ‘97)

* Operating systems
— IRIX 5.x
— Linux-MIPS is close

e Hardware

— MIPS R3000, R4000, and R10000 families
— Moving to 64 bits
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Porting Operating Systems to SIimOS

* Most code just works
— only 7 files change in Linux-MIPS
* Device-specific code must be connected
— Boot PROM
— Console input and output (UART)
— Disks (SCSI)
— Hardware timer
* SimOS registry eases this effort

— Loads or stores to registered addresses invoke a
SimOS procedure

e Future plans - Windows NT
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Adding New Hardware to SImOS

* New CPU models
— Annotation calls must be inserted
— At simulator entry and exit
— After each instruction completion
— At loads and stores
— At exceptions/interrupts
— Incorporate cache-access interface
* New caches and memory systems
— We provide standard interfaces
e Future plans - Intel, Alpha
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Conclusions

* Large effort to build SImOS, but worth it
— Necessary infrastructure for systems research
* Changed the way that we evaluate ideas:
— Workloads are more representative
— Visibility into previously invisible areas
* Public distribution of SimOS available now.
http://www-flash.Stanford. EDU/SimOS
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