
Product Information

Detailed information on the interaction of pat-
terns and timings of system activities is crucial
to understanding how well an application is per-
forming. SpyKer™, the first dynamically instru-
mented system trace analyzer, provides this
information so developers can:

● Comprehend what is going on in a system 
over time

● Track down elusive application bugs
● Fine-tune the performance of embedded 

systems

Fast, easy and non-intrusive
Traditional performance analysis tools require
pre-instrumenting an application with special
calls or running it under a specially instrumented
kernel. SpyKer, on the other hand, enables an
ordinary kernel to be auto-instrumented at run-
time by dynamically patching a LynxOS or BlueCat
Linux kernel binary with logging calls. No lengthy
instrumentation or kernel rebooting is neces-
sary, so development costs are minimized and
debugging processes proceed faster than ever.

Moreover, the overhead of a SpyKer trace patch
is exceedingly low, thus minimizing its impact on
the target system. This enables truly objective
measurements and eliminates any problem of
timing invasiveness standing in the way of find-
ing particularly evasive bugs. 

Visibility into program execution
SpyKer combines its powerful auto-instrumenting
facility with equally powerful front-end visuali-
zation capabilities. Developers are empowered
to gather, display and interact with data concerning
their application, making it easy to view nor-
mally difficult-to-understand relationships
within the application.

The front-end GUI displays event data in an easy-
to-comprehend fashion, including allowing
multiple windows with different visualization to
be displayed concurrently. A set of intuitive
visualization tools enable users to:

● Invoke “popup” boxes that display information
about curser-selected events 

● Zoom in or out around areas of interest in 
event data 

● Filter events and “jump” specific system 
calls or other events 

● Accurately measure times between different 
events

Target locally or remotely
The SpyKer front-end GUI is written in Java
and runs on any workstation equipped with a
Java Virtual Machine. Hence the front-end can
reside locally or remotely from the system to
be measured (which can be targeted over a
TCP/IP connection). This remote capability,
combined with SpyKer’s non-intrusiveness,
enables SpyKer's auto-instrumentation module
to be deployed in target systems for later use by
developers in search of bugs and/or perform-
ance data during “real-world” sessions.

Easy event capture
A pull down menu starts the capture process
on the SpyKer front-end GUI. Users can:

● Remotely configure the data collection 
buffers on the host system (saved to disk, 
network drive or ring buffer)

● Define events to be traced and time-
stamped

● Set up start and/or stop trigger points 
around specific events

SpyKer
Auto-instrumented tracing of system events for rapid time-to-market

● Decreased development costs —fast, 
automated and transparent collection 
of timing information

● Accelerated development and 
debugging —easy, any-time visibility 
into program execution

● Enhanced product quality and reliability
—accurate, actionable performance-
tuning information

SpyKer Advantages



Detailed level of understanding
Ordinarily, program operations are assessed
indirectly by running functional tests. The result-
ing metrics are then used to tune the application.
With SpyKer, developers gain a more detailed
level of understanding by observing low-level
systems operations. The resulting data can be
used to improve both the application and the
functional tests that are run against it. 

All events are displayed as aspects of the pro-
cesses that are running, and detailed information
about the processes themselves is also displayed.
The list of event types that can be traced by SpyKer
is both extensive and diverse. It includes system
calls, interrupts, context switches, processor
exceptions and many other events.

In addition to tracing the aforementioned events,
developers can use SpyKer to insert trace entry
points into their application or device driver
code and collect event data. 

Whatever the target, once data is collected, the
target system is returned to its original state. In
addition, SpyKer allows the users to select the
events of interest to trace and then only these
user-selected events are auto-instrumented to
further minimize the impact of trace collection
on a target system.

Options for managing trace buffers 
Developers can instruct SpyKer to save trace
buffers to disk, to a network mounted drive,
or to continually discard the oldest trace data
and use the buffer itself as the sole storage
mechanism. Developers can also save the
buffers in non-volatile memory if it exists in
the target system. Then they can capture valu-
able information on the last known state of a
system should it crash.

©2001 LynuxWorks, Inc., LynuxWorks and the LynuxWorks logo are trademarks and LynxOS and BlueCat Linux is a registered trademark of
LynuxWorks, Inc. Linux is a registered trademark of Linus Torvalds. All other trademarks are the trademarks and registered trademarks of their
respective owners. All rights reserved. Printed in the USA.

1.800.255.5969 LynuxWorks, Inc.
855 Branham Lane East
San Jose, CA 95138-1018
408.979.3900
408.979.3920 fax
www.lynuxworks.com

LynuxWorks Europe
2 Allee de la Fresnerie
78330 Fontenay Le Fleury 
France
+33 1 30 85 06 00
+33 1 30 85 06 06 fax


