
Autoconf

Creating Automatic Con�guration Scripts
Edition 2.50, for Autoconf version 2.50

19 May 2001
DOC 0455-00

David MacKenzie and Ben Elliston



Copyright c 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001 Free Software Foundation,
Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions, except that this permission notice
may be stated in a translation approved by the Foundation.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The GNU build system . . . . . . . . . . . . . . . . . . . . 3
2.1 Automake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Libtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Making configure Scripts . . . . . . . . . . . . . . . . . . . 5
3.1 Writing `configure.ac' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 A Shell Script Compiler . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 The Autoconf Language . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Standard `configure.ac' Layout . . . . . . . . . . . . . . . . 8

3.2 Using autoscan to Create `configure.ac' . . . . . . . . . . . . . . . . 9
3.3 Using ifnames to List Conditionals . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Using autoconf to Create configure . . . . . . . . . . . . . . . . . . . . 10
3.5 Using autoreconf to Update configure Scripts . . . . . . . . . . 13

4 Initialization and Output Files . . . . . . . . . . . . . 15
4.1 Notices in configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Finding configure Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Outputting Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Taking Con�guration Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Creating Con�guration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 Substitutions in Make�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6.1 Preset Output Variables . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6.2 Installation Directory Variables . . . . . . . . . . . . . . . . . 20
4.6.3 Build Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6.4 Automatic Remaking . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 Con�guration Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7.1 Con�guration Header Templates . . . . . . . . . . . . . . . . 25
4.7.2 Using autoheader to Create `config.h.in' . . . . . . 25
4.7.3 Autoheader Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.8 Running Arbitrary Con�guration Commands . . . . . . . . . . . . . 28
4.9 Creating Con�guration Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.10 Con�guring Other Packages in Subdirectories . . . . . . . . . . . 29
4.11 Default Pre�x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



5 Existing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 Common Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Standard Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 Default Includes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Alternative Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Particular Program Checks . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Generic Program and File Checks . . . . . . . . . . . . . . . 34

5.3 Library Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.1 Particular Function Checks . . . . . . . . . . . . . . . . . . . . . 37
5.4.2 Generic Function Checks . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.1 Particular Header Checks . . . . . . . . . . . . . . . . . . . . . . 42
5.5.2 Generic Header Checks . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6.1 Particular Declaration Checks . . . . . . . . . . . . . . . . . . 46
5.6.2 Generic Declaration Checks . . . . . . . . . . . . . . . . . . . . 46

5.7 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7.1 Particular Structure Checks . . . . . . . . . . . . . . . . . . . . 47
5.7.2 Generic Structure Checks . . . . . . . . . . . . . . . . . . . . . . 48

5.8 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8.1 Particular Type Checks . . . . . . . . . . . . . . . . . . . . . . . . 49
5.8.2 Generic Type Checks . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.9 Compilers and Preprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10 C Compiler Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.11 Fortran 77 Compiler Characteristics . . . . . . . . . . . . . . . . . . . . 54
5.12 System Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.13 UNIX Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Writing Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1 Examining Declarations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Examining Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Examining Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 Checking Run Time Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.1 Running Test Programs . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.2 Guidelines for Test Programs . . . . . . . . . . . . . . . . . . . 62
6.4.3 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5 Systemology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.6 Portable Shell Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.6.1 Shellology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6.2 File Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6.3 File System Conventions . . . . . . . . . . . . . . . . . . . . . . . 66
6.6.4 Shell Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6.5 Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.6.6 Special Shell Variables . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6.7 Limitations of Shell Builtins . . . . . . . . . . . . . . . . . . . . 72
6.6.8 Limitations of Usual Tools . . . . . . . . . . . . . . . . . . . . . 77
6.6.9 Limitations of Make . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



6.7 Multiple Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.8 Language Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Results of Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1 De�ning C Preprocessor Symbols . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Setting Output Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3 Caching Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.1 Cache Variable Names . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.2 Cache Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.3 Cache Checkpointing. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 Printing Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Writing Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.1 Macro De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2 Macro Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3 Quoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3.1 Active Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3.2 One Macro Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3.3 Quotation and Nested Macros . . . . . . . . . . . . . . . . . . 96
8.3.4 Quotation Rule Of Thumb . . . . . . . . . . . . . . . . . . . . . 97

8.4 Reporting Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.5 Dependencies Between Macros . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.5.1 Prerequisite Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.5.2 Suggested Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.6 Obsoleting Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.7 Coding Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Manual Con�guration . . . . . . . . . . . . . . . . . . . . 105
9.1 Specifying the System Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.2 Getting the Canonical System Type . . . . . . . . . . . . . . . . . . . . 106
9.3 Using the System Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10 Site Con�guration . . . . . . . . . . . . . . . . . . . . . . 109
10.1 Working With External Software . . . . . . . . . . . . . . . . . . . . . . 109
10.2 Choosing Package Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.3 Making Your Help Strings Look Pretty . . . . . . . . . . . . . . . . 111
10.4 Con�guring Site Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.5 Transforming Program Names When Installing . . . . . . . . . 112

10.5.1 Transformation Options . . . . . . . . . . . . . . . . . . . . . . 112
10.5.2 Transformation Examples . . . . . . . . . . . . . . . . . . . . 112
10.5.3 Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . 113

10.6 Setting Site Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



11 Running configure Scripts . . . . . . . . . . . . . . 117
11.1 Basic Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.2 Compilers and Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
11.3 Compiling For Multiple Architectures . . . . . . . . . . . . . . . . . . 118
11.4 Installation Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
11.5 Optional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
11.6 Specifying the System Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.7 Sharing Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.8 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.9 configure Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

12 Recreating a Con�guration . . . . . . . . . . . . . . 121

13 Obsolete Constructs . . . . . . . . . . . . . . . . . . . . 123
13.1 Obsolete `config.status' Invocation . . . . . . . . . . . . . . . . . . 123
13.2 `acconfig.h' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.3 Using autoupdate to Modernize `configure.ac' . . . . . . . 124
13.4 Obsolete Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.5 Upgrading From Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

13.5.1 Changed File Names . . . . . . . . . . . . . . . . . . . . . . . . . 134
13.5.2 Changed Make�les . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.5.3 Changed Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.5.4 Changed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.5.5 Changed Macro Writing . . . . . . . . . . . . . . . . . . . . . . 136

14 Questions About Autoconf . . . . . . . . . . . . . . 139
14.1 Distributing configure Scripts . . . . . . . . . . . . . . . . . . . . . . . . 139
14.2 Why Require GNU M4? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
14.3 How Can I Bootstrap? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
14.4 Why Not Imake? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

15 History of Autoconf . . . . . . . . . . . . . . . . . . . . 143
15.1 Genesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
15.2 Exodus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
15.3 Leviticus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
15.4 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
15.5 Deuteronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Environment Variable Index . . . . . . . . . . . . . . . . . 147

Output Variable Index . . . . . . . . . . . . . . . . . . . . . . 149

Preprocessor Symbol Index . . . . . . . . . . . . . . . . . . 151

Macro Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



Concept Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157





Chapter 1: Introduction 1

1 Introduction

A physicist, an engineer, and a computer scientist were discussing the
nature of God. \Surely a Physicist," said the physicist, \because
early in the Creation, God made Light; and you know, Maxwell's

equations, the dual nature of electromagnetic waves, the relativistic
consequences. . . " \An Engineer!," said the engineer, \because

before making Light, God split the Chaos into Land and Water; it takes a
hell of an engineer to handle that big amount of mud, and orderly

separation of solids from liquids. . . " The computer scientist
shouted: \And the Chaos, where do you think it was coming from, hmm?"

|Anonymous

Autoconf is a tool for producing shell scripts that automatically con�gure software source
code packages to adapt to many kinds of unix-like systems. The con�guration scripts
produced by Autoconf are independent of Autoconf when they are run, so their users do
not need to have Autoconf.

The con�guration scripts produced by Autoconf require no manual user intervention
when run; they do not normally even need an argument specifying the system type. Instead,
they individually test for the presence of each feature that the software package they are
for might need. (Before each check, they print a one-line message stating what they are
checking for, so the user doesn't get too bored while waiting for the script to �nish.) As a
result, they deal well with systems that are hybrids or customized from the more common
unix variants. There is no need to maintain �les that list the features supported by each
release of each variant of unix.

For each software package that Autoconf is used with, it creates a con�guration script
from a template �le that lists the system features that the package needs or can use. After
the shell code to recognize and respond to a system feature has been written, Autoconf
allows it to be shared by many software packages that can use (or need) that feature. If it
later turns out that the shell code needs adjustment for some reason, it needs to be changed
in only one place; all of the con�guration scripts can be regenerated automatically to take
advantage of the updated code.

The Metacon�g package is similar in purpose to Autoconf, but the scripts it produces
require manual user intervention, which is quite inconvenient when con�guring large source
trees. Unlike Metacon�g scripts, Autoconf scripts can support cross-compiling, if some care
is taken in writing them.

Autoconf does not solve all problems related to making portable software packages|for
a more complete solution, it should be used in concert with other GNU build tools like
Automake and Libtool. These other tools take on jobs like the creation of a portable,
recursive `Makefile' with all of the standard targets, linking of shared libraries, and so on.
See Chapter 2 [The GNU build system], page 3, for more information.

Autoconf imposes some restrictions on the names of macros used with #if in C programs
(see [Preprocessor Symbol Index], page 151).

Autoconf requires gnu M4 in order to generate the scripts. It uses features that some
unix versions of M4, including gnu M4 1.3, do not have. You must use version 1.4 or later
of gnu M4.



2 Autoconf

See Section 13.5 [Autoconf 1], page 134, for information about upgrading from version 1.
See Chapter 15 [History], page 143, for the story of Autoconf's development. See Chapter 14
[Questions], page 139, for answers to some common questions about Autoconf.

See the Autoconf web page1 for up-to-date information, details on the mailing lists,
pointers to a list of known bugs, etc.

Mail suggestions to the Autoconf mailing list (autoconf@gnu.org).

Bug reports should be preferably submitted to the Autoconf Gnats database2, or sent
to the Autoconf Bugs mailing list (bug-autoconf@gnu.org). If possible, �rst check that
your bug is not already solved in current development versions, and that it has not been
reported yet. Be sure to include all the needed information and a short `configure.ac'
that demonstrates the problem.

Autoconf's development tree is accessible via cvs; see the Autoconf web page for details.
There is also a cvsweb interface to the Autoconf development tree3. Patches relative
to the current cvs version can be sent for review to the Autoconf Patches mailing list
(autoconf-patches@gnu.org).

Because of its mission, Autoconf includes only a set of often-used macros that have
already demonstrated their usefulness. Nevertheless, if you wish to share your macros, or
�nd existing ones, see the Autoconf Macro Repository4, which is kindly run by Peter Simons
(simons@computer.org).

1 Autoconf web page, http://www.gnu.org/software/autoconf/autoconf.html.
2 Autoconf Gnats database, http://sources.redhat.com/cgi-bin/gnatsweb.pl?database=autoconf.
3 cvsweb interface to the Autoconf development tree, http://subversions.gnu.org/cgi-

bin/cvsweb/autoconf/.
4 Autoconf Macro Repository, http://cryp.to/autoconf-archive/.



Chapter 2: The GNU build system 3

2 The GNU build system

Autoconf solves an important problem|reliable discovery of system-speci�c build and
runtime information|but this is only one piece of the puzzle for the development of portable
software. To this end, the GNU project has developed a suite of integrated utilities to �nish
the job Autoconf started: the GNU build system, whose most important components are
Autoconf, Automake, and Libtool. In this chapter, we introduce you to those tools, point
you to sources of more information, and try to convince you to use the entire GNU build
system for your software.

2.1 Automake

The ubiquity of make means that a Makefile is almost the only viable way to distribute
automatic build rules for software, but one quickly runs into make's numerous limitations.
Its lack of support for automatic dependency tracking, recursive builds in subdirectories,
reliable timestamps (e.g. for network �lesystems), and so on, mean that developers must
painfully (and often incorrectly) reinvent the wheel for each project. Portability is non-
trivial, thanks to the quirks of make on many systems. On top of all this is the manual
labor required to implement the many standard targets that users have come to expect
(make install, make distclean, make uninstall, etc.). Since you are, of course, using
Autoconf, you also have to insert repetitive code in your Makefile.in to recognize @CC@,
@CFLAGS@, and other substitutions provided by configure. Into this mess steps Automake.

Automake allows you to specify your build needs in a Makefile.am �le with a vastly
simpler and more powerful syntax than that of a plain Makefile, and then generates a
portable Makefile.in for use with Autoconf. For example, the Makefile.am to build and
install a simple \Hello world" program might look like:

bin_PROGRAMS = hello
hello_SOURCES = hello.c

The resulting Makefile.in (~400 lines) automatically supports all the standard targets,
the substitutions provided by Autoconf, automatic dependency tracking, VPATH build-
ing, and so on. make will build the hello program, and make install will install it in
`/usr/local/bin' (or whatever pre�x was given to configure, if not `/usr/local').

Automake may require that additional tools be present on the developer's machine. For
example, the Makefile.in that the developer works with may not be portable (e.g. it might
use special features of your compiler to automatically generate dependency information).
Running make dist, however, produces a `hello-1.0.tar.gz' package (or whatever the
program/version is) with a Makefile.in that will work on any system.

The bene�ts of Automake increase for larger packages (especially ones with subdirecto-
ries), but even for small programs the added convenience and portability can be substantial.
And that's not all. . .

2.2 Libtool

Very often, one wants to build not only programs, but libraries, so that other pro-
grams can bene�t from the fruits of your labor. Ideally, one would like to produce shared



4 Autoconf

(dynamically-linked) libraries, which can be used by multiple programs without duplication
on disk or in memory and can be updated independently of the linked programs. Produc-
ing shared libraries portably, however, is the stu� of nightmares|each system has its own
incompatible tools, compiler ags, and magic incantations. Fortunately, GNU provides a
solution: Libtool.

Libtool handles all the requirements of building shared libraries for you, and at this time
seems to be the only way to do so with any portability. It also handles many other headaches,
such as: the interaction of Makefile rules with the variable suÆxes of shared libraries,
linking reliably to shared libraries before they are installed by the superuser, and supplying
a consistent versioning system (so that di�erent versions of a library can be installed or
upgraded without breaking binary compatibility). Although Libtool, like Autoconf, can be
used on its own, it is most simply utilized in conjunction with Automake|there, Libtool is
used automatically whenever shared libraries are needed, and you need not know its syntax.

2.3 Pointers

Developers who are used to the simplicity of make for small projects on a single system
might be daunted at the prospect of learning to use Automake and Autoconf. As your
software is distributed to more and more users, however, you will otherwise quickly �nd
yourself putting lots of e�ort into reinventing the services that the GNU build tools provide,
and making the same mistakes that they once made and overcame. (Besides, since you're
already learning Autoconf, Automake will be a piece of cake.)

There are a number of places that you can go to for more information on the GNU build
tools.

� Web

The home pages for Autoconf (http://www.gnu.org/software/autoconf/),
Automake (http://www.gnu.org/software/automake/), and Libtool
(http://www.gnu.org/software/libtool/).

� Automake Manual (TeXinfo)

See section \Automake" in GNU Automake, for more information on Automake.

� Books

The book GNU Autoconf, Automake and Libtool, by G. V. Vaughan, B. Elliston, T.
Tromey, and I. L. Taylor (New Riders, 2000) (ISBN 1578701902) describes the complete
GNU build environment. You can also �nd the entire book on-line at \The Goat Book"
home page (http://sources.redhat.com/autobook/).

� Tutorials and Examples

The Autoconf Developer Page (http://sources.redhat.com/autoconf/) maintains
links to a number of Autoconf/Automake tutorials online, and also links to the Auto-
conf Macro Archive (http://cryp.to/autoconf-archive/).



Chapter 3: Making configure Scripts 5

3 Making configure Scripts

The con�guration scripts that Autoconf produces are by convention called configure.
When run, configure creates several �les, replacing con�guration parameters in them with
appropriate values. The �les that configure creates are:

� one or more `Makefile' �les, one in each subdirectory of the package (see Section 4.6
[Make�le Substitutions], page 18);

� optionally, a C header �le, the name of which is con�gurable, containing #define

directives (see Section 4.7 [Con�guration Headers], page 24);

� a shell script called `config.status' that, when run, will recreate the �les listed above
(see Chapter 12 [con�g.status Invocation], page 121);

� an optional shell script normally called `config.cache' (created when using `configure
--config-cache') that saves the results of running many of the tests (see Section 7.3.2
[Cache Files], page 88);

� a �le called `config.log' containing any messages produced by compilers, to help
debugging if configure makes a mistake.

To create a configure script with Autoconf, you need to write an Autoconf input
�le `configure.ac' (or `configure.in') and run autoconf on it. If you write your own
feature tests to supplement those that come with Autoconf, you might also write �les called
`aclocal.m4' and `acsite.m4'. If you use a C header �le to contain #define directives,
you might also run autoheader, and you will distribute the generated �le `config.h.in'
with the package.

Here is a diagram showing how the �les that can be used in con�guration are produced.
Programs that are executed are suÆxed by `*'. Optional �les are enclosed in square brackets
(`[]'). autoconf and autoheader also read the installed Autoconf macro �les (by reading
`autoconf.m4').

Files used in preparing a software package for distribution:

your source files --> [autoscan*] --> [configure.scan] --> configure.ac

configure.ac --.
| .------> autoconf* -----> configure

[aclocal.m4] --+---+
| `-----> [autoheader*] --> [config.h.in]

[acsite.m4] ---'

Makefile.in -------------------------------> Makefile.in

Files used in con�guring a software package:

.-------------> [config.cache]
configure* ------------+-------------> config.log

|
[config.h.in] -. v .-> [config.h] -.

+--> config.status* -+ +--> make*
Makefile.in ---' `-> Makefile ---'



6 Autoconf

3.1 Writing `configure.ac'

To produce a configure script for a software package, create a �le called `configure.ac'
that contains invocations of the Autoconf macros that test the system features your package
needs or can use. Autoconf macros already exist to check for many features; see Chapter 5
[Existing Tests], page 31, for their descriptions. For most other features, you can use
Autoconf template macros to produce custom checks; see Chapter 6 [Writing Tests], page 59,
for information about them. For especially tricky or specialized features, `configure.ac'
might need to contain some hand-crafted shell commands. The autoscan program can give
you a good start in writing `configure.ac' (see Section 3.2 [autoscan Invocation], page 9,
for more information).

Previous versions of Autoconf promoted the name `configure.in', which is somewhat
ambiguous (the tool needed to produce this �le is not described by its extension), and
introduces a slight confusion with `config.h.in' and so on (for which `.in' means \to be
processed by configure"). Using `configure.ac' is now preferred.

3.1.1 A Shell Script Compiler

Just as for any other computer language, in order to properly program `configure.ac'
in Autoconf you must understand what problem the language tries to address and how it
does so.

The problem Autoconf addresses is that the world is a mess. After all, you are using
Autoconf in order to have your package compile easily on all sorts of di�erent systems,
some of them being extremely hostile. Autoconf itself bears the price for these di�erences:
configure must run on all those systems, and thus configure must limit itself to their
lowest common denominator of features.

Naturally, you might then think of shell scripts; who needs autoconf? A set of properly
written shell functions is enough to make it easy to write configure scripts by hand. Sigh!
Unfortunately, shell functions do not belong to the least common denominator; therefore,
where you would like to de�ne a function and use it ten times, you would instead need to
copy its body ten times.

So, what is really needed is some kind of compiler, autoconf, that takes an Autoconf
program, `configure.ac', and transforms it into a portable shell script, configure.

How does autoconf perform this task?

There are two obvious possibilities: creating a brand new language or extending an
existing one. The former option is very attractive: all sorts of optimizations could easily be
implemented in the compiler and many rigorous checks could be performed on the Autoconf
program (e.g. rejecting any non-portable construct). Alternatively, you can extend an
existing language, such as the sh (Bourne shell) language.

Autoconf does the latter: it is a layer on top of sh. It was therefore most convenient
to implement autoconf as a macro expander: a program that repeatedly performs macro

expansions on text input, replacing macro calls with macro bodies and producing a pure
sh script in the end. Instead of implementing a dedicated Autoconf macro expander, it is
natural to use an existing general-purpose macro language, such as M4, and implement the
extensions as a set of M4 macros.



Chapter 3: Making configure Scripts 7

3.1.2 The Autoconf Language

The Autoconf language is very di�erent from many other computer languages because
it treats actual code the same as plain text. Whereas in C, for instance, data and in-
structions have very di�erent syntactic status, in Autoconf their status is rigorously the
same. Therefore, we need a means to distinguish literal strings from text to be expanded:
quotation.

When calling macros that take arguments, there must not be any blank space between
the macro name and the open parenthesis. Arguments should be enclosed within the M4
quote characters `[' and `]', and be separated by commas. Any leading spaces in arguments
are ignored, unless they are quoted. You may safely leave out the quotes when the argument
is simple text, but always quote complex arguments such as other macro calls. This rule
applies recursively for every macro call, including macros called from other macros.

For instance:

AC_CHECK_HEADER([stdio.h],
[AC_DEFINE([HAVE_STDIO_H])],
[AC_MSG_ERROR([Sorry, can't do anything for you])])

is quoted properly. You may safely simplify its quotation to:

AC_CHECK_HEADER(stdio.h,
[AC_DEFINE(HAVE_STDIO_H)],
[AC_MSG_ERROR([Sorry, can't do anything for you])])

Notice that the argument of AC_MSG_ERROR is still quoted; otherwise, its comma would have
been interpreted as an argument separator.

The following example is wrong and dangerous, as it is underquoted:

AC_CHECK_HEADER(stdio.h,
AC_DEFINE(HAVE_STDIO_H),
AC_MSG_ERROR([Sorry, can't do anything for you]))

In other cases, you may have to use text that also resembles a macro call. You must
quote that text even when it is not passed as a macro argument:

echo "Hard rock was here! --[AC_DC]"

which will result in

echo "Hard rock was here! --AC_DC"

When you use the same text in a macro argument, you must therefore have an extra
quotation level (since one is stripped away by the macro substitution). In general, then, it
is a good idea to use double quoting for all literal string arguments:

AC_MSG_WARN([[AC_DC stinks --Iron Maiden]])

You are now able to understand one of the constructs of Autoconf that has been contin-
ually misunderstood. . . The rule of thumb is that whenever you expect macro expansion,

expect quote expansion; i.e., expect one level of quotes to be lost. For instance:

AC_COMPILE_IFELSE([char b[10];],, [AC_MSG_ERROR([you lose])])

is incorrect: here, the �rst argument of AC_COMPILE_IFELSE is `char b[10];' and will be
expanded once, which results in `char b10;'. (There was an idiom common in Autoconf's
past to address this issue via the M4 changequote primitive, but do not use it!) Let's
take a closer look: the author meant the �rst argument to be understood as a literal, and
therefore it must be quoted twice:



8 Autoconf

AC_COMPILE_IFELSE([[char b[10];]],, [AC_MSG_ERROR([you lose])])

Voil�a, you actually produce `char b[10];' this time!

The careful reader will notice that, according to these guidelines, the \properly" quoted
AC_CHECK_HEADER example above is actually lacking three pairs of quotes! Nevertheless,
for the sake of readability, double quotation of literals is used only where needed in this
manual.

Some macros take optional arguments, which this documentation represents as [arg ] (not
to be confused with the quote characters). You may just leave them empty, or use `[]' to
make the emptiness of the argument explicit, or you may simply omit the trailing commas.
The three lines below are equivalent:

AC_CHECK_HEADERS(stdio.h, [], [])
AC_CHECK_HEADERS(stdio.h,,)
AC_CHECK_HEADERS(stdio.h)

It is best to put each macro call on its own line in `configure.ac'. Most of the macros
don't add extra newlines; they rely on the newline after the macro call to terminate the
commands. This approach makes the generated configure script a little easier to read by
not inserting lots of blank lines. It is generally safe to set shell variables on the same line
as a macro call, because the shell allows assignments without intervening newlines.

You can include comments in `configure.ac' �les by starting them with the `#'. For
example, it is helpful to begin `configure.ac' �les with a line like this:

# Process this file with autoconf to produce a configure script.

3.1.3 Standard `configure.ac' Layout

The order in which `configure.ac' calls the Autoconf macros is not important, with a
few exceptions. Every `configure.ac' must contain a call to AC_INIT before the checks,
and a call to AC_OUTPUT at the end (see Section 4.3 [Output], page 16). Additionally, some
macros rely on other macros having been called �rst, because they check previously set
values of some variables to decide what to do. These macros are noted in the individ-
ual descriptions (see Chapter 5 [Existing Tests], page 31), and they also warn you when
configure is created if they are called out of order.

To encourage consistency, here is a suggested order for calling the Autoconf macros.
Generally speaking, the things near the end of this list are those that could depend on
things earlier in it. For example, library functions could be a�ected by types and libraries.

Autoconf requirements
AC_INIT(package, version, bug-report-address)
information on the package
checks for programs
checks for libraries
checks for header �les
checks for types
checks for structures
checks for compiler characteristics
checks for library functions
checks for system services
AC_CONFIG_FILES([�le. . . ])
AC_OUTPUT



Chapter 3: Making configure Scripts 9

3.2 Using autoscan to Create `configure.ac'

The autoscan program can help you create a `configure.ac' �le for a software package.
autoscan examines source �les in the directory tree rooted at a directory given as a com-
mand line argument, or the current directory if none is given. It searches the source �les for
common portability problems and creates a �le `configure.scan' which is a preliminary
`configure.ac' for that package.

You should manually examine `configure.scan' before renaming it to `configure.ac';
it will probably need some adjustments. Occasionally, autoscan outputs a macro in the
wrong order relative to another macro, so that autoconf produces a warning; you need to
move such macros manually. Also, if you want the package to use a con�guration header
�le, you must add a call to AC_CONFIG_HEADERS (see Section 4.7 [Con�guration Headers],
page 24). You might also have to change or add some #if directives to your program
in order to make it work with Autoconf (see Section 3.3 [ifnames Invocation], page 9, for
information about a program that can help with that job).

autoscan uses several data �les (installed along with Autoconf) to determine which
macros to output when it �nds particular symbols in a package's source �les. These data
�les all have the same format: each line consists of a symbol, whitespace, and the Autoconf
macro to output if that symbol is encountered. Lines starting with `#' are comments.

autoscan is only installed if you already have Perl installed. autoscan accepts the
following options:

`--help'
`-h' Print a summary of the command line options and exit.

`--version'
`-V' Print the version number of Autoconf and exit.

`--verbose'
`-v' Print the names of the �les it examines and the potentially interesting symbols

it �nds in them. This output can be voluminous.

`--autoconf-dir=dir'
`-A dir' Override the location where the installed Autoconf data �les are looked for.

You can also set the AC_MACRODIR environment variable to a directory; this
option overrides the environment variable.

This option is rarely needed and dangerous; it is only used when one plays with
di�erent versions of Autoconf simultaneously.

3.3 Using ifnames to List Conditionals

ifnames can help you write `configure.ac' for a software package. It prints the iden-
ti�ers that the package already uses in C preprocessor conditionals. If a package has al-
ready been set up to have some portability, ifnames can thus help you �gure out what its
configure needs to check for. It may help �ll in some gaps in a `configure.ac' generated
by autoscan (see Section 3.2 [autoscan Invocation], page 9).

ifnames scans all of the C source �les named on the command line (or the standard
input, if none are given) and writes to the standard output a sorted list of all the identi�ers



10 Autoconf

that appear in those �les in #if, #elif, #ifdef, or #ifndef directives. It prints each
identi�er on a line, followed by a space-separated list of the �les in which that identi�er
occurs.

ifnames accepts the following options:

`--help'
`-h' Print a summary of the command line options and exit.

`--version'
`-V' Print the version number of Autoconf and exit.

3.4 Using autoconf to Create configure

To create configure from `configure.ac', run the autoconf program with no argu-
ments. autoconf processes `configure.ac' with the m4 macro processor, using the Auto-
conf macros. If you give autoconf an argument, it reads that �le instead of `configure.ac'
and writes the con�guration script to the standard output instead of to configure. If you
give autoconf the argument `-', it reads from the standard input instead of `configure.ac'
and writes the con�guration script to the standard output.

The Autoconf macros are de�ned in several �les. Some of the �les are distributed with
Autoconf; autoconf reads them �rst. Then it looks for the optional �le `acsite.m4' in
the directory that contains the distributed Autoconf macro �les, and for the optional �le
`aclocal.m4' in the current directory. Those �les can contain your site's or the package's
own Autoconf macro de�nitions (see Chapter 8 [Writing Macros], page 93, for more infor-
mation). If a macro is de�ned in more than one of the �les that autoconf reads, the last
de�nition it reads overrides the earlier ones.

autoconf accepts the following options:

`--help'
`-h' Print a summary of the command line options and exit.

`--version'
`-V' Print the version number of Autoconf and exit.

`--verbose'
`-v' Report processing steps.

`--debug'
`-d' Don't remove the temporary �les.

`--autoconf-dir=dir'
`-A dir' Override the location where the installed Autoconf data �les are looked for.

You can also set the AC_MACRODIR environment variable to a directory; this
option overrides the environment variable.

This option is rarely needed and dangerous; it is only used when one plays with
di�erent versions of Autoconf simultaneously.

`--localdir=dir'
`-l dir' Look for the package �le `aclocal.m4' in directory dir instead of in the current

directory.



Chapter 3: Making configure Scripts 11

`--output=�le'
`-o �le' Save output (script or trace) to �le. The �le `-' stands for the standard output.

`--warnings=category '
`-W category '

Report the warnings related to category (which can actually be a comma sepa-
rated list). See Section 8.4 [Reporting Messages], page 99, macro AC_DIAGNOSE,
for a comprehensive list of categories. Special values include:

`all' report all the warnings

`none' report none

`error' treats warnings as errors

`no-category '
disable warnings falling into category

Warnings about `syntax' are enabled by default, and the environment vari-
able WARNINGS, a comma separated list of categories, is honored. autoconf -W

category will actually behave as if you had run:

autoconf --warnings=syntax,$WARNINGS,category

If you want to disable autoconf's defaults and WARNINGS, but (for
example) enable the warnings about obsolete constructs, you would use `-W
none,obsolete'.

autoconf displays a back trace for errors, but not for warnings; if you want
them, just pass `-W error'. For instance, on this `configure.ac':

AC_DEFUN([INNER],
[AC_TRY_RUN([true])])

AC_DEFUN([OUTER],
[INNER])

AC_INIT
OUTER

you get:

$ autoconf -Wcross
configure.ac:8: warning: AC_TRY_RUN called without default \
to allow cross compiling
$ autoconf -Wcross,error
configure.ac:8: error: AC_TRY_RUN called without default \
to allow cross compiling
acgeneral.m4:3044: AC_TRY_RUN is expanded from...
configure.ac:2: INNER is expanded from...
configure.ac:5: OUTER is expanded from...
configure.ac:8: the top level

`--trace=macro[:format]'
`-t macro[:format]'

Do not create the configure script, but list the calls to macro according to
the format. Multiple `--trace' arguments can be used to list several macros.



12 Autoconf

Multiple `--trace' arguments for a single macro are not cumulative; instead,
you should just make format as long as needed.

The format is a regular string, with newlines if desired, and several special
escape codes. It defaults to `$f:$l:$n:$%'; see below for details on the format.

`--initialization'
`-i' By default, `--trace' does not trace the initialization of the Autoconf macros

(typically the AC_DEFUN de�nitions). This results in a noticeable speedup, but
can be disabled by this option.

It is often necessary to check the content of a `configure.ac' �le, but parsing it yourself
is extremely fragile and error-prone. It is suggested that you rely upon `--trace' to scan
`configure.ac'.

The format of `--trace' can use the following special escapes:

`$$' The character `$'.

`$f' The �lename from which macro is called.

`$l' The line number from which macro is called.

`$d' The depth of the macro call. This is an M4 technical detail that you probably
don't want to know about.

`$n' The name of the macro.

`$num' The numth argument of the call to macro.

`$@'
`$sep@'
`${separator}@'

All the arguments passed to macro, separated by the character sep or the string
separator (`,' by default). Each argument is quoted, i.e. enclosed in a pair of
square brackets.

`$*'
`$sep*'
`${separator}*'

As above, but the arguments are not quoted.

`$%'
`$sep%'
`${separator}%'

As above, but the arguments are not quoted, all new line characters in the
arguments are smashed, and the default separator is `:'.

The escape `$%' produces single-line trace outputs (unless you put newlines in
the `separator'), while `$@' and `$*' do not.

For instance, to �nd the list of variables that are substituted, use:

$ autoconf -t AC_SUBST
configure.ac:2:AC_SUBST:ECHO_C
configure.ac:2:AC_SUBST:ECHO_N
configure.ac:2:AC_SUBST:ECHO_T
More traces deleted



Chapter 3: Making configure Scripts 13

The example below highlights the di�erence between `$@', `$*', and $%.

$ cat configure.ac
AC_DEFINE(This, is, [an
[example]])
$ autoconf -t 'AC_DEFINE:@: $@
*: $*
$: $%'
@: [This],[is],[an
[example]]
*: This,is,an
[example]
$: This:is:an [example]

The format gives you a lot of freedom:

$ autoconf -t 'AC_SUBST:ac_subst{"$1"} = "$f:$l";'
ac_subst{"ECHO_C"} = "configure.ac:2";
ac_subst{"ECHO_N"} = "configure.ac:2";
ac_subst{"ECHO_T"} = "configure.ac:2";
More traces deleted

A long separator can be used to improve the readability of complex structures:

$ autoconf -t 'AM_MISSING_PROG:${|:::::|}*'
ACLOCAL|:::::|aclocal|:::::|$missing_dir
AUTOCONF|:::::|autoconf|:::::|$missing_dir
AUTOMAKE|:::::|automake|:::::|$missing_dir
More traces deleted

3.5 Using autoreconf to Update configure Scripts

If you have a lot of Autoconf-generated configure scripts, the autoreconf program can
save you some work. It runs autoconf (and autoheader, where appropriate) repeatedly to
remake the Autoconf configure scripts and con�guration header templates in the directory
tree rooted at the current directory. By default, it only remakes those �les that are older
than their `configure.ac' or (if present) `aclocal.m4'. Since autoheader does not change
the timestamp of its output �le if the �le wouldn't be changing, this is not necessarily
the minimum amount of work. If you install a new version of Autoconf, you can make
autoreconf remake all of the �les by giving it the `--force' option.

If you give autoreconf the `--autoconf-dir=dir' or `--localdir=dir' options, it passes
them down to autoconf and autoheader (with relative paths adjusted properly).

autoreconf does not support having, in the same directory tree, both directories that
are parts of a larger package (sharing `aclocal.m4' and `acconfig.h') and directories that
are independent packages (each with their own `aclocal.m4' and `acconfig.h'). It assumes
that they are all part of the same package if you use `--localdir', or that each directory
is a separate package if you don't use it. This restriction may be removed in the future.

See Section 4.6.4 [Automatic Remaking], page 23, for `Makefile' rules to automatically
remake configure scripts when their source �les change. That method handles the times-
tamps of con�guration header templates properly, but does not pass `--autoconf-dir=dir'
or `--localdir=dir'.



14 Autoconf

autoreconf accepts the following options:

`--help'
`-h' Print a summary of the command line options and exit.

`--version'
`-V' Print the version number of Autoconf and exit.

`--verbose'
Print the name of each directory where autoreconf runs autoconf (and
autoheader, if appropriate).

`--debug'
`-d' Don't remove the temporary �les.

`--force'
`-f' Remake even `configure' scripts and con�guration headers that are newer than

their input �les (`configure.ac' and, if present, `aclocal.m4').

`--install'
`-i' Copy missing auxiliary �les. This option is similar to the option --add-missing

in automake.

`--symlink'
`-s' Instead of copying missing auxiliary �les, install symbolic links.

`--localdir=dir'
`-l dir' Have autoconf and autoheader look for the package �les `aclocal.m4' and

(autoheader only) `acconfig.h' (but not `�le.top' and `�le.bot') in directory
dir instead of in the directory containing each `configure.ac'.

`--autoconf-dir=dir'
`-A dir' Override the location where the installed Autoconf data �les are looked for.

You can also set the AC_MACRODIR environment variable to a directory; this
option overrides the environment variable.

This option is rarely needed and dangerous; it is only used when one plays with
di�erent versions of Autoconf simultaneously.

`--m4dir=dir'
`-M dir' Specify location of additional macro �les (`m4' by default).

Additionally, the following options are recognized and passed to automake:

`--cygnus'
Assume program is part of Cygnus-style tree.

`--foreign'
Set strictness to foreign.

`--gnits' Set strictness to gnits.

`--gnu' Set strictness to gnu.

`--include-deps'
Include generated dependencies in `Makefile.in'.



Chapter 4: Initialization and Output Files 15

4 Initialization and Output Files

Autoconf-generated configure scripts need some information about how to initialize,
such as how to �nd the package's source �les; and about the output �les to produce. The
following sections describe initialization and the creation of output �les.

4.1 Notices in configure

The following macros manage version numbers for configure scripts. Using them is
optional.

MacroAC PREREQ (version)
Ensure that a recent enough version of Autoconf is being used. If the version of Au-
toconf being used to create configure is earlier than version, print an error message
to the standard error output and do not create configure. For example:

AC_PREREQ(2.50)

This macro is the only macro that may be used before AC_INIT, but for consistency,
you are invited not to do so.

MacroAC COPYRIGHT (copyright-notice)
State that, in addition to the Free Software Foundation's copyright on the Autoconf
macros, parts of your configure are covered by the copyright-notice.

The copyright-notice will show up in both the head of configure and in `configure
--version'.

MacroAC REVISION (revision-info)
Copy revision stamp revision-info into the configure script, with any dollar
signs or double-quotes removed. This macro lets you put a revision stamp from
`configure.ac' into configure without rcs or cvs changing it when you check in
configure. That way, you can determine easily which revision of `configure.ac' a
particular configure corresponds to.

For example, this line in `configure.ac':

AC_REVISION($Revision: 1.30 $)

produces this in configure:

#! /bin/sh
# From configure.ac Revision: 1.30

4.2 Finding configure Input

Every configure script must call AC_INIT before doing anything else. The only other
required macro is AC_OUTPUT (see Section 4.3 [Output], page 16).

MacroAC INIT (package, version, [bug-report-address])
Process any command-line arguments and perform various initializations and ver-
i�cations. Set the name of the package and its version. The optional argument
bug-report-address should be the email to which users should send bug reports.



16 Autoconf

MacroAC CONFIG SRCDIR (unique-�le-in-source-dir)
unique-�le-in-source-dir is some �le that is in the package's source directory;
configure checks for this �le's existence to make sure that the directory that it
is told contains the source code in fact does. Occasionally people accidentally
specify the wrong directory with `--srcdir'; this is a safety check. See Section 11.9
[con�gure Invocation], page 120, for more information.

Packages that do manual con�guration or use the install program might need to tell
configure where to �nd some other shell scripts by calling AC_CONFIG_AUX_DIR, though
the default places it looks are correct for most cases.

MacroAC CONFIG AUX DIR (dir)
Use the `install-sh', `config.sub', `config.guess', and Cygnus configure scripts
that are in directory dir. These are auxiliary �les used in con�guration. dir can
be either absolute or relative to `srcdir'. The default is `srcdir' or `srcdir/..' or
`srcdir/../..', whichever is the �rst that contains `install-sh'. The other �les
are not checked for, so that using AC_PROG_INSTALL does not automatically require
distributing the other auxiliary �les. It checks for `install.sh' also, but that name
is obsolete because some make programs have a rule that creates `install' from it if
there is no `Makefile'.

4.3 Outputting Files

Every Autoconf-generated configure script must �nish by calling AC_OUTPUT. It is the
macro that generates `config.status', which will create the `Makefile's and any other �les
resulting from con�guration. The only other required macro is AC_INIT (see Section 4.2
[Input], page 15).

MacroAC OUTPUT
Generate `config.status' and launch it. Call this macro once, at the end of
`configure.ac'.

`config.status' will take all the con�guration actions: all the output �les (see Sec-
tion 4.5 [Con�guration Files], page 18, macro AC_CONFIG_FILES), header �les (see
Section 4.7 [Con�guration Headers], page 24, macro AC_CONFIG_HEADERS), commands
(see Section 4.8 [Con�guration Commands], page 28, macro AC_CONFIG_COMMANDS),
links (see Section 4.9 [Con�guration Links], page 28, macro AC_CONFIG_LINKS), sub-
directories to con�gure (see Section 4.10 [Subdirectories], page 29, macro AC_CONFIG_
SUBDIRS) are honored.

Historically, the usage of AC_OUTPUT was somewhat di�erent. See Section 13.4 [Obsolete
Macros], page 125, for a description of the arguments that AC_OUTPUT used to support.

If you run make on subdirectories, you should run it using the make variable MAKE. Most
versions of make set MAKE to the name of the make program plus any options it was given.
(But many do not include in it the values of any variables set on the command line, so those
are not passed on automatically.) Some old versions of make do not set this variable. The
following macro allows you to use it even with those versions.



Chapter 4: Initialization and Output Files 17

MacroAC PROG MAKE SET
If make prede�nes the variable MAKE, de�ne output variable SET_MAKE to be empty.
Otherwise, de�ne SET_MAKE to contain `MAKE=make'. Calls AC_SUBST for SET_MAKE.

To use this macro, place a line like this in each `Makefile.in' that runs MAKE on other
directories:

@SET_MAKE@

4.4 Taking Con�guration Actions

`configure' is designed so that it appears to do everything itself, but there is actually a
hidden slave: `config.status'. `configure' is in charge of examining your system, but it is
`config.status' that actually takes the proper actions based on the results of `configure'.
The most typical task of `config.status' is to instantiate �les.

This section describes the common behavior of the four standard instantiating macros:
AC_CONFIG_FILES, AC_CONFIG_HEADERS, AC_CONFIG_COMMANDS and AC_CONFIG_LINKS.
They all have this prototype:

AC_CONFIG_FOOS(tag..., [commands], [init-cmds])

where the arguments are:

tag . . . A whitespace-separated list of tags, which are typically the names of the �les
to instantiate.

commands

Shell commands output literally into `config.status', and associated with a
tag that the user can use to tell `config.status' which the commands to run.
The commands are run each time a tag request is given to `config.status';
typically, each time the �le `tag ' is created.

init-cmds Shell commands output unquoted near the beginning of `config.status', and
executed each time `config.status' runs (regardless of the tag). Because they
are unquoted, for example, `$var' will be output as the value of var. init-cmds is
typically used by `configure' to give `config.status' some variables it needs
to run the commands.

All these macros can be called multiple times, with di�erent tags, of course!

You are encouraged to use literals as tags. In particular, you should avoid

... && my_foos="$my_foos fooo"

... && my_foos="$my_foos foooo"
AC_CONFIG_FOOS($my_foos)

and use this instead:

... && AC_CONFIG_FOOS(fooo)

... && AC_CONFIG_FOOS(foooo)

The macro AC_CONFIG_FILES and AC_CONFIG_HEADERS use specials tags: they may have
the form `output' or `output:inputs'. The �le output is instantiated from its templates,
inputs if speci�ed, defaulting to `output.in'.



18 Autoconf

For instance `AC_CONFIG_FILES(Makefile:boiler/top.mk:boiler/bot.mk)' asks for
the creation of `Makefile' that will be the expansion of the output variables in the con-
catenation of `boiler/top.mk' and `boiler/bot.mk'.

The special value `-' might be used to denote the standard output when used in output,
or the standard input when used in the inputs. You most probably don't need to use
this in `configure.ac', but it is convenient when using the command line interface of
`./config.status', see Chapter 12 [con�g.status Invocation], page 121, for more details.

The inputs may be absolute or relative �lenames. In the latter case they are �rst looked
for in the build tree, and then in the source tree.

4.5 Creating Con�guration Files

Be sure to read the previous section, Section 4.4 [Con�guration Actions], page 17.

MacroAC CONFIG FILES (�le . . . , [cmds], [init-cmds])
Make AC_OUTPUT create each `�le' by copying an input �le (by default `�le.in'), sub-
stituting the output variable values. This macro is one of the instantiating macros,
see Section 4.4 [Con�guration Actions], page 17. See Section 4.6 [Make�le Substi-
tutions], page 18, for more information on using output variables. See Section 7.2
[Setting Output Variables], page 86, for more information on creating them. This
macro creates the directory that the �le is in if it doesn't exist. Usually, `Makefile's
are created this way, but other �les, such as `.gdbinit', can be speci�ed as well.

Typical calls to AC_CONFIG_FILES look like this:

AC_CONFIG_FILES(Makefile src/Makefile man/Makefile X/Imakefile)
AC_CONFIG_FILES(autoconf, chmod +x autoconf)

You can override an input �le name by appending to �le a colon-separated list of
input �les. Examples:

AC_CONFIG_FILES(Makefile:boiler/top.mk:boiler/bot.mk
lib/Makefile:boiler/lib.mk)

Doing this allows you to keep your �le names acceptable to MS-DOS, or to prepend
and/or append boilerplate to the �le.

4.6 Substitutions in Make�les

Each subdirectory in a distribution that contains something to be compiled or installed
should come with a �le `Makefile.in', from which configure will create a `Makefile' in
that directory. To create a `Makefile', configure performs a simple variable substitution,
replacing occurrences of `@variable@' in `Makefile.in' with the value that configure has
determined for that variable. Variables that are substituted into output �les in this way
are called output variables. They are ordinary shell variables that are set in configure. To
make configure substitute a particular variable into the output �les, the macro AC_SUBST

must be called with that variable name as an argument. Any occurrences of `@variable@'
for other variables are left unchanged. See Section 7.2 [Setting Output Variables], page 86,
for more information on creating output variables with AC_SUBST.



Chapter 4: Initialization and Output Files 19

A software package that uses a configure script should be distributed with a �le
`Makefile.in', but no `Makefile'; that way, the user has to properly con�gure the package
for the local system before compiling it.

See section \Make�le Conventions" in The GNU Coding Standards, for more information
on what to put in `Makefile's.

4.6.1 Preset Output Variables

Some output variables are preset by the Autoconf macros. Some of the Autoconf macros
set additional output variables, which are mentioned in the descriptions for those macros.
See [Output Variable Index], page 149, for a complete list of output variables. See Sec-
tion 4.6.2 [Installation Directory Variables], page 20, for the list of the preset ones related
to installation directories. Below are listed the other preset ones.

VariableCFLAGS
Debugging and optimization options for the C compiler. If it is not set in the envi-
ronment when configure runs, the default value is set when you call AC_PROG_CC (or
empty if you don't). configure uses this variable when compiling programs to test
for C features.

Variablecon�gure input
A comment saying that the �le was generated automatically by configure and giving
the name of the input �le. AC_OUTPUT adds a comment line containing this variable
to the top of every `Makefile' it creates. For other �les, you should reference this
variable in a comment at the top of each input �le. For example, an input shell script
should begin like this:

#! /bin/sh
# @configure_input@

The presence of that line also reminds people editing the �le that it needs to be
processed by configure in order to be used.

VariableCPPFLAGS
Header �le search directory (`-Idir') and any other miscellaneous options for the
C and C++ preprocessors and compilers. If it is not set in the environment when
configure runs, the default value is empty. configure uses this variable when
compiling or preprocessing programs to test for C and C++ features.

VariableCXXFLAGS
Debugging and optimization options for the C++ compiler. If it is not set in the
environment when configure runs, the default value is set when you call AC_PROG_
CXX (or empty if you don't). configure uses this variable when compiling programs
to test for C++ features.

VariableDEFS
`-D' options to pass to the C compiler. If AC_CONFIG_HEADERS is called, configure
replaces `@DEFS@' with `-DHAVE_CONFIG_H' instead (see Section 4.7 [Con�guration



20 Autoconf

Headers], page 24). This variable is not de�ned while configure is performing its
tests, only when creating the output �les. See Section 7.2 [Setting Output Variables],
page 86, for how to check the results of previous tests.

VariableECHO C
VariableECHO N
VariableECHO T

How does one suppress the trailing newline from echo for question-answer message
pairs? These variables provide a way:

echo $ECHO_N "And the winner is... $ECHO_C"
sleep 100000000000
echo "${ECHO_T}dead."

Some old and uncommon echo implementations o�er no means to achieve this, in
which case ECHO_T is set to tab. You might not want to use it.

VariableFFLAGS
Debugging and optimization options for the Fortran 77 compiler. If it is not set in the
environment when configure runs, the default value is set when you call AC_PROG_
F77 (or empty if you don't). configure uses this variable when compiling programs
to test for Fortran 77 features.

VariableLDFLAGS
Stripping (`-s'), path (`-L'), and any other miscellaneous options for the linker. Don't
use this variable to pass library names (`-l') to the linker, use LIBS instead. If it is not
set in the environment when configure runs, the default value is empty. configure
uses this variable when linking programs to test for C, C++ and Fortran 77 features.

VariableLIBS
`-l' options to pass to the linker. The default value is empty, but some Autoconf
macros may prepend extra libraries to this variable if those libraries are found and
provide necessary functions, see Section 5.3 [Libraries], page 36. configure uses this
variable when linking programs to test for C, C++ and Fortran 77 features.

Variablesrcdir
The directory that contains the source code for that `Makefile'.

Variabletop srcdir
The top-level source code directory for the package. In the top-level directory, this is
the same as srcdir.

4.6.2 Installation Directory Variables

The following variables specify the directories where the package will be installed, see
section \Variables for Installation Directories" in The GNU Coding Standards, for more
information. See the end of this section for details on when and how to use these variables.



Chapter 4: Initialization and Output Files 21

Variablebindir
The directory for installing executables that users run.

Variabledatadir
The directory for installing read-only architecture-independent data.

Variableexec pre�x
The installation pre�x for architecture-dependent �les. By default it's the same as
pre�x. You should avoid installing anything directly to exec pre�x. However, the
default value for directories containing architecture-dependent �les should be relative
to exec pre�x.

Variableincludedir
The directory for installing C header �les.

Variableinfodir
The directory for installing documentation in Info format.

Variablelibdir
The directory for installing object code libraries.

Variablelibexecdir
The directory for installing executables that other programs run.

Variablelocalstatedir
The directory for installing modi�able single-machine data.

Variablemandir
The top-level directory for installing documentation in man format.

Variableoldincludedir
The directory for installing C header �les for non-gcc compilers.

Variablepre�x
The common installation pre�x for all �les. If exec pre�x is de�ned to a di�erent
value, pre�x is used only for architecture-independent �les.

Variablesbindir
The directory for installing executables that system administrators run.

Variablesharedstatedir
The directory for installing modi�able architecture-independent data.

Variablesysconfdir
The directory for installing read-only single-machine data.



22 Autoconf

Most of these variables have values that rely on prefix or exec_prefix. It is on purpose
that the directory output variables keep them unexpanded: typically `@datadir@' will be
replaced by `${prefix}/share', not `/usr/local/share'.

This behavior is mandated by the gnu coding standards, so that when the user runs:

`make' she can still specify a di�erent pre�x from the one speci�ed to configure, in
which case, if needed, the package shall hard code dependencies to her late
desires.

`make install'
she can specify a di�erent installation location, in which case the package must

still depend on the location which was compiled in (i.e., never recompile when
`make install' is run). This is an extremely important feature, as many people
may decide to install all the �les of a package grouped together, and then install
links from the �nal locations to there.

In order to support these features, it is essential that datadir remains being de�ned as
`${prefix}/share' to depend upon the current value of prefix.

A corollary is that you should not use these variables but in Make�les. For
instance, instead of trying to evaluate datadir in `configure' and hardcoding it in
Make�les using e.g. `AC_DEFINE_UNQUOTED(DATADIR, "$datadir")', you should add
`-DDATADIR="$(datadir)"' to your CFLAGS.

Similarly you should not rely on AC_OUTPUT_FILES to replace datadir and friends in your
shell scripts and other �les, rather let makemanage their replacement. For instance Autoconf
ships templates of its shell scripts ending with `.sh', and uses this Make�le snippet:

.sh:
rm -f $@ $@.tmp
sed 's,@datadir\@,$(pkgdatadir),g' $< >$@.tmp
chmod +x $@.tmp
mv $@.tmp $@

Three things are noteworthy:

`@datadir\@'
The backslash prevents configure from replacing `@datadir@' in the sed ex-
pression itself.

`$(pkgdatadir)'
Don't use `@pkgdatadir@'! Use the matching make�le variable instead.

`,' Don't use `/' in the sed expression(s) since most probably the variables you use,
such as `$(pkgdatadir)', will contain some.

4.6.3 Build Directories

You can support compiling a software package for several architectures simultaneously
from the same copy of the source code. The object �les for each architecture are kept in
their own directory.

To support doing this, make uses the VPATH variable to �nd the �les that are in the
source directory. gnu make and most other recent make programs can do this. Older make



Chapter 4: Initialization and Output Files 23

programs do not support VPATH; when using them, the source code must be in the same
directory as the object �les.

To support VPATH, each `Makefile.in' should contain two lines that look like:

srcdir = @srcdir@
VPATH = @srcdir@

Do not set VPATH to the value of another variable, for example `VPATH = $(srcdir)',
because some versions of make do not do variable substitutions on the value of VPATH.

configure substitutes in the correct value for srcdir when it produces `Makefile'.

Do not use the make variable $<, which expands to the �le name of the �le in the source
directory (found with VPATH), except in implicit rules. (An implicit rule is one such as
`.c.o', which tells how to create a `.o' �le from a `.c' �le.) Some versions of make do not
set $< in explicit rules; they expand it to an empty value.

Instead, `Makefile' command lines should always refer to source �les by pre�xing them
with `$(srcdir)/'. For example:

time.info: time.texinfo
$(MAKEINFO) $(srcdir)/time.texinfo

4.6.4 Automatic Remaking

You can put rules like the following in the top-level `Makefile.in' for a package to
automatically update the con�guration information when you change the con�guration
�les. This example includes all of the optional �les, such as `aclocal.m4' and those related
to con�guration header �les. Omit from the `Makefile.in' rules for any of these �les that
your package does not use.

The `$(srcdir)/' pre�x is included because of limitations in the VPATH mechanism.

The `stamp-' �les are necessary because the timestamps of `config.h.in' and
`config.h' will not be changed if remaking them does not change their contents. This
feature avoids unnecessary recompilation. You should include the �le `stamp-h.in' your
package's distribution, so make will consider `config.h.in' up to date. Don't use touch

(see Section 6.6.8 [Limitations of Usual Tools], page 77), rather use echo (using date

would cause needless di�erences, hence cvs conicts etc.).



24 Autoconf

$(srcdir)/configure: configure.ac aclocal.m4
cd $(srcdir) && autoconf

# autoheader might not change config.h.in, so touch a stamp file.
$(srcdir)/config.h.in: stamp-h.in
$(srcdir)/stamp-h.in: configure.ac aclocal.m4

cd $(srcdir) && autoheader
echo timestamp > $(srcdir)/stamp-h.in

config.h: stamp-h
stamp-h: config.h.in config.status

./config.status

Makefile: Makefile.in config.status
./config.status

config.status: configure
./config.status --recheck

(Be careful if you copy these lines directly into your Make�le, as you will need to convert
the indented lines to start with the tab character.)

In addition, you should use `AC_CONFIG_FILES(stamp-h, echo timestamp > stamp-h)'
so `config.status' will ensure that `config.h' is considered up to date. See Section 4.3
[Output], page 16, for more information about AC_OUTPUT.

See Chapter 12 [con�g.status Invocation], page 121, for more examples of handling
con�guration-related dependencies.

4.7 Con�guration Header Files

When a package tests more than a few C preprocessor symbols, the command lines to
pass `-D' options to the compiler can get quite long. This causes two problems. One is
that the make output is hard to visually scan for errors. More seriously, the command lines
can exceed the length limits of some operating systems. As an alternative to passing `-D'
options to the compiler, configure scripts can create a C header �le containing `#define'
directives. The AC_CONFIG_HEADERS macro selects this kind of output. It should be called
right after AC_INIT.

The package should `#include' the con�guration header �le before any other header
�les, to prevent inconsistencies in declarations (for example, if it rede�nes const). Use
`#include <config.h>' instead of `#include "config.h"', and pass the C compiler a `-I.'
option (or `-I..'; whichever directory contains `config.h'). That way, even if the source
directory is con�gured itself (perhaps to make a distribution), other build directories can
also be con�gured without �nding the `config.h' from the source directory.

MacroAC CONFIG HEADERS (header . . . , [cmds], [init-cmds])
This macro is one of the instantiating macros, see Section 4.4 [Con�guration Actions],
page 17. Make AC_OUTPUT create the �le(s) in the whitespace-separated list header
containing C preprocessor #define statements, and replace `@DEFS@' in generated �les



Chapter 4: Initialization and Output Files 25

with `-DHAVE_CONFIG_H' instead of the value of DEFS. The usual name for header is
`config.h'.

If header already exists and its contents are identical to what AC_OUTPUT would put in
it, it is left alone. Doing this allows some changes in con�guration without needlessly
causing object �les that depend on the header �le to be recompiled.

Usually the input �le is named `header.in'; however, you can override the input �le
name by appending to header, a colon-separated list of input �les. Examples:

AC_CONFIG_HEADERS(config.h:config.hin)
AC_CONFIG_HEADERS(defines.h:defs.pre:defines.h.in:defs.post)

Doing this allows you to keep your �le names acceptable to MS-DOS, or to prepend
and/or append boilerplate to the �le.

See Section 4.4 [Con�guration Actions], page 17, for more details on header.

4.7.1 Con�guration Header Templates

Your distribution should contain a template �le that looks as you want the �nal header
�le to look, including comments, with #undef statements which are used as hooks. For
example, suppose your `configure.ac' makes these calls:

AC_CONFIG_HEADERS(conf.h)
AC_CHECK_HEADERS(unistd.h)

Then you could have code like the following in `conf.h.in'. On systems that have
`unistd.h', configure will `#define' `HAVE_UNISTD_H' to 1. On other systems, the whole
line will be commented out (in case the system prede�nes that symbol).

/* Define as 1 if you have unistd.h. */
#undef HAVE_UNISTD_H

You can then decode the con�guration header using the preprocessor directives:

#include <conf.h>

#if HAVE_UNISTD_H
# include <unistd.h>
#else
/* We are in trouble. */
#endif

The use of old form templates, with `#define' instead of `#undef' is strongly discouraged.

Since it is a tedious task to keep a template header up to date, you may use autoheader
to generate it, see Section 4.7.2 [autoheader Invocation], page 25.

4.7.2 Using autoheader to Create `config.h.in'

The autoheader program can create a template �le of C `#define' statements for
configure to use. If `configure.ac' invokes AC_CONFIG_HEADERS(�le), autoheader

creates `�le.in'; if multiple �le arguments are given, the �rst one is used. Otherwise,
autoheader creates `config.h.in'.

In order to do its job, autoheader needs you to document all of the symbols that you
might use; i.e., there must be at least one AC_DEFINE or one AC_DEFINE_UNQUOTED using its



26 Autoconf

third argument for each symbol (see Section 7.1 [De�ning Symbols], page 85). An additional
constraint is that the �rst argument of AC_DEFINE must be a literal. Note that all symbols
de�ned by Autoconf's built-in tests are already documented properly; you only need to
document those that you de�ne yourself.

You might wonder why autoheader is needed: after all, why would configure need
to \patch" a `config.h.in' to produce a `config.h' instead of just creating `config.h'
from scratch? Well, when everything rocks, the answer is just that we are wasting our time
maintaining autoheader: generating `config.h' directly is all that is needed. When things
go wrong, however, you'll be thankful for the existence of autoheader.

The fact that the symbols are documented is important in order to check that `config.h'
makes sense. The fact that there is a well de�ned list of symbols that should be #define'd
(or not) is also important for people who are porting packages to environments where
configure cannot be run: they just have to �ll in the blanks.

But let's come back to the point: autoheader's invocation. . .

If you give autoheader an argument, it uses that �le instead of `configure.ac' and
writes the header �le to the standard output instead of to `config.h.in'. If you give
autoheader an argument of `-', it reads the standard input instead of `configure.ac' and
writes the header �le to the standard output.

autoheader accepts the following options:

`--help'
`-h' Print a summary of the command line options and exit.

`--version'
`-V' Print the version number of Autoconf and exit.

`--debug'
`-d' Don't remove the temporary �les.

`--verbose'
`-v' Report processing steps.

`--autoconf-dir=dir'
`-A dir' Override the location where the installed Autoconf data �les are looked for.

You can also set the AC_MACRODIR environment variable to a directory; this
option overrides the environment variable.

This option is rarely needed and dangerous; it is only used when one plays with
di�erent versions of Autoconf simultaneously.

`--localdir=dir'
`-l dir' Look for the package �les `aclocal.m4' and `acconfig.h' (but not `�le.top'

and `�le.bot') in directory dir instead of in the current directory.

`--warnings=category '
`-W category '

Report the warnings related to category (which can actually be a comma sep-
arated list). Current categories include:

`obsolete'
report the uses of obsolete constructs



Chapter 4: Initialization and Output Files 27

`all' report all the warnings

`none' report none

`error' treats warnings as errors

`no-category '
disable warnings falling into category

4.7.3 Autoheader Macros

autoheader scans `configure.ac' and �gures out which C preprocessor symbols it might
de�ne. It knows how to generate templates for symbols de�ned by AC_CHECK_HEADERS, AC_
CHECK_FUNCS etc., but if you AC_DEFINE any additional symbol, you must de�ne a template
for it. If there are missing templates, autoheader fails with an error message.

The simplest way to create a template for a symbol is to supply the description argument
to an `AC_DEFINE(symbol)'; see Section 7.1 [De�ning Symbols], page 85. You may also use
one of the following macros.

MacroAH VERBATIM (key, template)
Tell autoheader to include the template as-is in the header template �le. This
template is associated with the key, which is used to sort all the di�erent templates
and guarantee their uniqueness. It should be the symbol that can be AC_DEFINE'd.

For example:

AH_VERBATIM([_GNU_SOURCE],
[/* Enable GNU extensions on systems that have them. */
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif])

MacroAH TEMPLATE (key, description)
Tell autoheader to generate a template for key. This macro generates standard
templates just like AC_DEFINE when a description is given.

For example:

AH_TEMPLATE([CRAY_STACKSEG_END],
[Define to one of _getb67, GETB67, getb67
for Cray-2 and Cray-YMP systems. This
function is required for alloca.c support
on those systems.])

will generate the following template, with the description properly justi�ed.

/* Define to one of _getb67, GETB67, getb67 for Cray-2 and
Cray-YMP systems. This function is required for alloca.c
support on those systems. */

#undef CRAY_STACKSEG_END

MacroAH TOP (text)
Include text at the top of the header template �le.

MacroAH BOTTOM (text)
Include text at the bottom of the header template �le.



28 Autoconf

4.8 Running Arbitrary Con�guration Commands

You execute arbitrary commands either before, during and after `config.status' is
run. The three following macros accumulate the commands to run when they are called
multiple times. AC_CONFIG_COMMANDS replaces the obsolete macro AC_OUTPUT_COMMANDS,
see Section 13.4 [Obsolete Macros], page 125, for details.

MacroAC CONFIG COMMANDS (tag . . . , [cmds], [init-cmds])
Specify additional shell commands to run at the end of `config.status', and shell
commands to initialize any variables from configure. Associate the commands to
the tag. Since typically the cmds create a �le, tag should naturally be the name of
that �le. This macro is one of the instantiating macros, see Section 4.4 [Con�guration
Actions], page 17.

Here is an unrealistic example:

fubar=42
AC_CONFIG_COMMANDS(fubar,

[echo this is extra $fubar, and so on.],
[fubar=$fubar])

Here is a better one:

AC_CONFIG_COMMANDS(time-stamp, [date >time-stamp])

MacroAC CONFIG COMMANDS PRE (cmds)
Execute the cmds right before creating `config.status'. A typical use is computing
values derived from variables built during the execution of configure:

AC_CONFIG_COMMANDS_PRE(
[LTLIBOBJS=`echo $LIBOBJS | sed 's/\.o/\.lo/g'`
AC_SUBST(LTLIBOBJS)])

MacroAC CONFIG COMMANDS POST (cmds)
Execute the cmds right after creating `config.status'.

4.9 Creating Con�guration Links

You may �nd it convenient to create links whose destinations depend upon results of
tests. One can use AC_CONFIG_COMMANDS but the creation of relative symbolic links can be
delicate when the package is built in another directory than its sources.

MacroAC CONFIG LINKS (dest:source . . . , [cmds], [init-cmds])
Make AC_OUTPUT link each of the existing �les source to the corresponding link name
dest. Makes a symbolic link if possible, otherwise a hard link. The dest and source

names should be relative to the top level source or build directory. This macro is one
of the instantiating macros, see Section 4.4 [Con�guration Actions], page 17.

For example, this call:



Chapter 4: Initialization and Output Files 29

AC_CONFIG_LINKS(host.h:config/$machine.h
object.h:config/$obj_format.h)

creates in the current directory `host.h' as a link to `srcdir/config/$machine.h',
and `object.h' as a link to `srcdir/config/$obj_format.h'.

The tempting value `.' for dest is invalid: it makes it impossible for `config.status'
to guess the links to establish.

One can then run:

./config.status host.h object.h

to create the links.

4.10 Con�guring Other Packages in Subdirectories

In most situations, calling AC_OUTPUT is suÆcient to produce `Makefile's in subdirecto-
ries. However, configure scripts that control more than one independent package can use
AC_CONFIG_SUBDIRS to run configure scripts for other packages in subdirectories.

MacroAC CONFIG SUBDIRS (dir . . . )
Make AC_OUTPUT run configure in each subdirectory dir in the given whitespace-
separated list. Each dir should be a literal, i.e., please do not use:

if test "$package_foo_enabled" = yes; then
$my_subdirs="$my_subdirs foo"

fi
AC_CONFIG_SUBDIRS($my_subdirs)

because this prevents `./configure --help=recursive' from displaying the options
of the package foo. Rather, you should write:

if test "$package_foo_enabled" = yes then;
AC_CONFIG_SUBDIRS(foo)

fi

If a given dir is not found, no error is reported, so a configure script can con-
�gure whichever parts of a large source tree are present. If a given dir contains
configure.gnu, it is run instead of configure. This is for packages that might use a
non-autoconf script Configure, which can't be called through a wrapper configure
since it would be the same �le on case-insensitive �lesystems. Likewise, if a dir

contains `configure.ac' but no configure, the Cygnus configure script found by
AC_CONFIG_AUXDIR is used.

The subdirectory configure scripts are given the same command line options that
were given to this configure script, with minor changes if needed (e.g., to adjust a
relative path for the cache �le or source directory). This macro also sets the output
variable subdirs to the list of directories `dir ...'. `Makefile' rules can use this
variable to determine which subdirectories to recurse into. This macro may be called
multiple times.



30 Autoconf

4.11 Default Pre�x

By default, configure sets the pre�x for �les it installs to `/usr/local'. The user of
configure can select a di�erent pre�x using the `--prefix' and `--exec-prefix' options.
There are two ways to change the default: when creating configure, and when running it.

Some software packages might want to install in a directory besides `/usr/local' by
default. To accomplish that, use the AC_PREFIX_DEFAULT macro.

MacroAC PREFIX DEFAULT (pre�x)
Set the default installation pre�x to pre�x instead of `/usr/local'.

It may be convenient for users to have configure guess the installation pre�x from the
location of a related program that they have already installed. If you wish to do that, you
can call AC_PREFIX_PROGRAM.

MacroAC PREFIX PROGRAM (program)
If the user did not specify an installation pre�x (using the `--prefix' option), guess
a value for it by looking for program in PATH, the way the shell does. If program is
found, set the pre�x to the parent of the directory containing program; otherwise leave
the pre�x speci�ed in `Makefile.in' unchanged. For example, if program is gcc and
the PATH contains `/usr/local/gnu/bin/gcc', set the pre�x to `/usr/local/gnu'.



Chapter 5: Existing Tests 31

5 Existing Tests

These macros test for particular system features that packages might need or want to
use. If you need to test for a kind of feature that none of these macros check for, you can
probably do it by calling primitive test macros with appropriate arguments (see Chapter 6
[Writing Tests], page 59).

These tests print messages telling the user which feature they're checking for, and what
they �nd. They cache their results for future configure runs (see Section 7.3 [Caching
Results], page 87).

Some of these macros set output variables. See Section 4.6 [Make�le Substitutions],
page 18, for how to get their values. The phrase \de�ne name" is used below as a shorthand
to mean \de�ne C preprocessor symbol name to the value 1". See Section 7.1 [De�ning
Symbols], page 85, for how to get those symbol de�nitions into your program.

5.1 Common Behavior

Much e�ort has been expended to make Autoconf easy to learn. The most obvious way
to reach this goal is simply to enforce standard interfaces and behaviors, avoiding exceptions
as much as possible. Because of history and inertia, unfortunately, there are still too many
exceptions in Autoconf; nevertheless, this section describes some of the common rules.

5.1.1 Standard Symbols

All the generic macros that AC_DEFINE a symbol as a result of their test transform their
arguments to a standard alphabet. First, argument is converted to upper case and any
asterisks (`*') are each converted to `P'. Any remaining characters that are not alphanumeric
are converted to underscores.

For instance,

AC_CHECK_TYPES(struct $Expensive*)

will de�ne the symbol `HAVE_STRUCT__EXPENSIVEP' if the check succeeds.

5.1.2 Default Includes

Several tests depend upon a set of header �les. Since these headers are not universally
available, tests actually have to provide a set of protected includes, such as:

#if TIME_WITH_SYS_TIME
# include <sys/time.h>
# include <time.h>
#else
# if HAVE_SYS_TIME_H
# include <sys/time.h>
# else
# include <time.h>
# endif
#endif



32 Autoconf

Unless you know exactly what you are doing, you should avoid using unconditional includes,
and check the existence of the headers you include beforehand (see Section 5.5 [Header Files],
page 42).

Most generic macros provide the following default set of includes:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#if STDC_HEADERS
# include <stdlib.h>
# include <stddef.h>
#else
# if HAVE_STDLIB_H
# include <stdlib.h>
# endif
#endif
#if HAVE_STRING_H
# if !STDC_HEADERS && HAVE_MEMORY_H
# include <memory.h>
# endif
# include <string.h>
#else
# if HAVE_STRINGS_H
# include <strings.h>
# endif
#endif
#if HAVE_INTTYPES_H
# include <inttypes.h>
#endif
#if HAVE_UNISTD_H
# include <unistd.h>
#endif

If the default includes are used, then Autoconf will automatically check for the presence
of these headers, i.e., you don't need to run AC_HEADERS_STDC, nor check for `stdlib.h'
etc.

5.2 Alternative Programs

These macros check for the presence or behavior of particular programs. They are used
to choose between several alternative programs and to decide what to do once one has been
chosen. If there is no macro speci�cally de�ned to check for a program you need, and you
don't need to check for any special properties of it, then you can use one of the general
program-check macros.

5.2.1 Particular Program Checks

These macros check for particular programs|whether they exist, and in some cases
whether they support certain features.



Chapter 5: Existing Tests 33

MacroAC PROG AWK
Check for mawk, gawk, nawk, and awk, in that order, and set output variable AWK to
the �rst one that is found. It tries mawk �rst because that is reported to be the fastest
implementation.

MacroAC PROG INSTALL
Set output variable INSTALL to the path of a bsd compatible install program, if
one is found in the current PATH. Otherwise, set INSTALL to `dir/install-sh -c',
checking the directories speci�ed to AC_CONFIG_AUX_DIR (or its default directories)
to determine dir (see Section 4.3 [Output], page 16). Also set the variables INSTALL_
PROGRAM and INSTALL_SCRIPT to `${INSTALL}' and INSTALL_DATA to `${INSTALL}
-m 644'.

This macro screens out various instances of install known not to work. It prefers
to �nd a C program rather than a shell script, for speed. Instead of `install-sh',
it can also use `install.sh', but that name is obsolete because some make programs
have a rule that creates `install' from it if there is no `Makefile'.

Autoconf comes with a copy of `install-sh' that you can use. If you use AC_PROG_
INSTALL, you must include either `install-sh' or `install.sh' in your distribution,
or configure will produce an error message saying it can't �nd them|even if the
system you're on has a good install program. This check is a safety measure to
prevent you from accidentally leaving that �le out, which would prevent your package
from installing on systems that don't have a bsd-compatible install program.

If you need to use your own installation program because it has features not found
in standard install programs, there is no reason to use AC_PROG_INSTALL; just put
the �le name of your program into your `Makefile.in' �les.

MacroAC PROG LEX
If flex is found, set output variable LEX to `flex' and LEXLIB to `-lfl', if that library
is in a standard place. Otherwise set LEX to `lex' and LEXLIB to `-ll'.

De�ne YYTEXT_POINTER if yytext is a `char *' instead of a `char []'. Also set output
variable LEX_OUTPUT_ROOT to the base of the �le name that the lexer generates; usually
`lex.yy', but sometimes something else. These results vary according to whether lex
or flex is being used.

You are encouraged to use Flex in your sources, since it is both more pleasant to use
than plain Lex and the C source it produces is portable. In order to ensure portability,
however, you must either provide a function yywrap or, if you don't use it (e.g., your
scanner has no `#include'-like feature), simply include a `%noyywrap' statement in
the scanner's source. Once this done, the scanner is portable (unless you felt free to
use nonportable constructs) and does not depend on any library. In this case, and in
this case only, it is suggested that you use this Autoconf snippet:

AC_PROG_LEX
if test "$LEX" != flex; then
LEX="$SHELL $missing_dir/missing flex"
AC_SUBST(LEX_OUTPUT_ROOT, lex.yy)
AC_SUBST(LEXLIB, '')

fi



34 Autoconf

The shell script missing can be found in the Automake distribution.

To ensure backward compatibility, Automake's AM_PROG_LEX invokes (indirectly) this
macro twice, which will cause an annoying but benign \AC_PROG_LEX invoked multiple
times" warning. Future versions of Automake will �x this issue, meanwhile, just ignore
this message.

MacroAC PROG LN S
If `ln -s' works on the current �le system (the operating system and �le system
support symbolic links), set the output variable LN_S to `ln -s'; otherwise, if `ln'
works, set LN_S to `ln' and otherwise set it to `cp -p'.

If you make a link a directory other than the current directory, its meaning depends
on whether `ln' or `ln -s' is used. To safely create links using `$(LN_S)', either �nd
out which form is used and adjust the arguments, or always invoke ln in the directory
where the link is to be created.

In other words, it does not work to do:

$(LN_S) foo /x/bar

Instead, do:

(cd /x && $(LN_S) foo bar)

MacroAC PROG RANLIB
Set output variable RANLIB to `ranlib' if ranlib is found, and otherwise to `:' (do
nothing).

MacroAC PROG YACC
If bison is found, set output variable YACC to `bison -y'. Otherwise, if byacc is
found, set YACC to `byacc'. Otherwise set YACC to `yacc'.

5.2.2 Generic Program and File Checks

These macros are used to �nd programs not covered by the \particular" test macros. If
you need to check the behavior of a program as well as �nd out whether it is present, you
have to write your own test for it (see Chapter 6 [Writing Tests], page 59). By default,
these macros use the environment variable PATH. If you need to check for a program that
might not be in the user's PATH, you can pass a modi�ed path to use instead, like this:

AC_PATH_PROG(INETD, inetd, /usr/libexec/inetd,
$PATH:/usr/libexec:/usr/sbin:/usr/etc:etc)

MacroAC CHECK FILE (�le, [action-if-found], [action-if-not-found])
Check whether �le �le exists on the native system. If it is found, execute action-if-

found, otherwise do action-if-not-found, if given.

MacroAC CHECK FILES (�les, [action-if-found], [action-if-not-found])
Executes AC_CHECK_FILE once for each �le listed in �les. Additionally, de�nes
`HAVE_�le' (see Section 5.1.1 [Standard Symbols], page 31) for each �le found.



Chapter 5: Existing Tests 35

MacroAC CHECK PROG (variable, prog-to-check-for, value-if-found,
[value-if-not-found], [path], [reject])

Check whether program prog-to-check-for exists in PATH. If it is found, set variable
to value-if-found, otherwise to value-if-not-found, if given. Always pass over reject

(an absolute �le name) even if it is the �rst found in the search path; in that case, set
variable using the absolute �le name of the prog-to-check-for found that is not reject.
If variable was already set, do nothing. Calls AC_SUBST for variable.

MacroAC CHECK PROGS (variable, progs-to-check-for, [value-if-not-found],
[path])

Check for each program in the whitespace-separated list progs-to-check-for exists on
the PATH. If it is found, set variable to the name of that program. Otherwise, continue
checking the next program in the list. If none of the programs in the list are found,
set variable to value-if-not-found; if value-if-not-found is not speci�ed, the value of
variable is not changed. Calls AC_SUBST for variable.

MacroAC CHECK TOOL (variable, prog-to-check-for, [value-if-not-found],
[path])

Like AC_CHECK_PROG, but �rst looks for prog-to-check-for with a pre�x of the host type
as determined by AC_CANONICAL_HOST, followed by a dash (see Section 9.2 [Canon-
icalizing], page 106). For example, if the user runs `configure --host=i386-gnu',
then this call:

AC_CHECK_TOOL(RANLIB, ranlib, :)

sets RANLIB to `i386-gnu-ranlib' if that program exists in PATH, or otherwise to
`ranlib' if that program exists in PATH, or to `:' if neither program exists.

MacroAC CHECK TOOLS (variable, progs-to-check-for, [value-if-not-found],
[path])

Like AC_CHECK_TOOL, each of the tools in the list progs-to-check-for are checked with
a pre�x of the host type as determined by AC_CANONICAL_HOST, followed by a dash
(see Section 9.2 [Canonicalizing], page 106). If none of the tools can be found with a
pre�x, then the �rst one without a pre�x is used. If a tool is found, set variable to
the name of that program. If none of the tools in the list are found, set variable to
value-if-not-found; if value-if-not-found is not speci�ed, the value of variable is not
changed. Calls AC_SUBST for variable.

MacroAC PATH PROG (variable, prog-to-check-for, [value-if-not-found],
[path])

Like AC_CHECK_PROG, but set variable to the entire path of prog-to-check-for if found.

MacroAC PATH PROGS (variable, progs-to-check-for, [value-if-not-found],
[path])

Like AC_CHECK_PROGS, but if any of progs-to-check-for are found, set variable to the
entire path of the program found.

MacroAC PATH TOOL (variable, prog-to-check-for, [value-if-not-found],
[path])

Like AC_CHECK_TOOL, but set variable to the entire path of the program if it is found.



36 Autoconf

5.3 Library Files

The following macros check for the presence of certain C, C++ or Fortran 77 library
archive �les.

MacroAC CHECK LIB (library, function, [action-if-found],
[action-if-not-found], [other-libraries])

Depending on the current language(see Section 6.8 [Language Choice], page 83), try
to ensure that the C, C++, or Fortran 77 function function is available by checking
whether a test program can be linked with the library library to get the function.
library is the base name of the library; e.g., to check for `-lmp', use `mp' as the library
argument.

action-if-found is a list of shell commands to run if the link with the library succeeds;
action-if-not-found is a list of shell commands to run if the link fails. If action-if-
found is not speci�ed, the default action will prepend `-llibrary ' to LIBS and de�ne
`HAVE_LIBlibrary ' (in all capitals). This macro is intended to support building of
LIBS in a right-to-left (least-dependent to most-dependent) fashion such that library
dependencies are satis�ed as a natural side-e�ect of consecutive tests. Some linkers are
very sensitive to library ordering so the order in which LIBS is generated is important
to reliable detection of libraries.

If linking with library results in unresolved symbols that would be resolved by linking
with additional libraries, give those libraries as the other-libraries argument, separated
by spaces: e.g. `-lXt -lX11'. Otherwise, this macro will fail to detect that library
is present, because linking the test program will always fail with unresolved symbols.
The other-libraries argument should be limited to cases where it is desirable to test
for one library in the presence of another that is not already in LIBS.

MacroAC SEARCH LIBS (function, search-libs, [action-if-found],
[action-if-not-found], [other-libraries])

Search for a library de�ning function if it's not already available. This equates to
calling AC_TRY_LINK_FUNC �rst with no libraries, then for each library listed in search-
libs.

Add `-llibrary ' to LIBS for the �rst library found to contain function, and run action-
if-found. If the function is not found, run action-if-not-found.

If linking with library results in unresolved symbols that would be resolved by linking
with additional libraries, give those libraries as the other-libraries argument, separated
by spaces: e.g. `-lXt -lX11'. Otherwise, this macro will fail to detect that function
is present, because linking the test program will always fail with unresolved symbols.

5.4 Library Functions

The following macros check for particular C library functions. If there is no macro
speci�cally de�ned to check for a function you need, and you don't need to check for any
special properties of it, then you can use one of the general function-check macros.



Chapter 5: Existing Tests 37

5.4.1 Particular Function Checks

These macros check for particular C functions|whether they exist, and in some cases
how they respond when given certain arguments.

MacroAC FUNC ALLOCA
Check how to get alloca. Tries to get a builtin version by checking for `alloca.h'
or the prede�ned C preprocessor macros __GNUC__ and _AIX. If this macro �nds
`alloca.h', it de�nes HAVE_ALLOCA_H.

If those attempts fail, it looks for the function in the standard C library. If any
of those methods succeed, it de�nes HAVE_ALLOCA. Otherwise, it sets the output
variable ALLOCA to `alloca.o' and de�nes C_ALLOCA (so programs can periodically call
`alloca(0)' to garbage collect). This variable is separate from LIBOBJS so multiple
programs can share the value of ALLOCA without needing to create an actual library,
in case only some of them use the code in LIBOBJS.

This macro does not try to get alloca from the System V R3 `libPW' or the System
V R4 `libucb' because those libraries contain some incompatible functions that cause
trouble. Some versions do not even contain alloca or contain a buggy version. If
you still want to use their alloca, use ar to extract `alloca.o' from them instead of
compiling `alloca.c'.

Source �les that use alloca should start with a piece of code like the following, to
declare it properly. In some versions of AIX, the declaration of alloca must precede
everything else except for comments and preprocessor directives. The #pragma di-
rective is indented so that pre-ansi C compilers will ignore it, rather than choke on
it.

/* AIX requires this to be the first thing in the file. */
#ifndef __GNUC__
# if HAVE_ALLOCA_H
# include <alloca.h>
# else
# ifdef _AIX
#pragma alloca

# else
# ifndef alloca /* predefined by HP cc +Olibcalls */
char *alloca ();
# endif
# endif
# endif
#endif

MacroAC FUNC CHOWN
If the chown function is available and works (in particular, it should accept `-1' for
uid and gid), de�ne HAVE_CHOWN.

MacroAC FUNC CLOSEDIR VOID
If the closedir function does not return a meaningful value, de�ne CLOSEDIR_VOID.
Otherwise, callers ought to check its return value for an error indicator.



38 Autoconf

MacroAC FUNC ERROR AT LINE
If the error_at_line function is not found, require an AC_LIBOBJ replacement of
`error'.

MacroAC FUNC FNMATCH
If the fnmatch function is available and works (unlike the one on SunOS 5.4), de�ne
HAVE_FNMATCH.

MacroAC FUNC FSEEKO
If the fseeko function is available, de�ne HAVE_FSEEKO. De�ne _LARGEFILE_SOURCE
if necessary.

MacroAC FUNC GETGROUPS
If the getgroups function is available and works (unlike on Ultrix 4.3, where
`getgroups (0, 0)' always fails), de�ne HAVE_GETGROUPS. Set GETGROUPS_LIBS to
any libraries needed to get that function. This macro runs AC_TYPE_GETGROUPS.

MacroAC FUNC GETLOADAVG
Check how to get the system load averages. If the system has the getloadavg func-
tion, de�ne HAVE_GETLOADAVG, and set GETLOADAVG_LIBS to any libraries needed to
get that function. Also add GETLOADAVG_LIBS to LIBS.

Otherwise, require an AC_LIBOBJ replacement (`getloadavg.c') of `getloadavg', and
possibly de�ne several other C preprocessor macros and output variables:

1. De�ne C_GETLOADAVG.

2. De�ne SVR4, DGUX, UMAX, or UMAX4_3 if on those systems.

3. If `nlist.h' is found, de�ne NLIST_STRUCT.

4. If `struct nlist' has an `n_un.n_name' member, de�ne HAVE_STRUCT_NLIST_N_
UN_N_NAME. The obsolete symbol NLIST_NAME_UNION is still de�ned, but do not
depend upon it.

5. Programs may need to be installed setgid (or setuid) for getloadavg to work. In
this case, de�ne GETLOADAVG_PRIVILEGED, set the output variable NEED_SETGID
to `true' (and otherwise to `false'), and set KMEM_GROUP to the name of the
group that should own the installed program.

MacroAC FUNC GETMNTENT
Check for getmntent in the `sun', `seq', and `gen' libraries, for Irix 4, PTX, and
Unixware, respectively. Then, if getmntent is available, de�ne HAVE_GETMNTENT.

MacroAC FUNC GETPGRP
If getpgrp takes no argument (the posix.1 version), de�ne GETPGRP_VOID. Otherwise,
it is the bsd version, which takes a process ID as an argument. This macro does not
check whether getpgrp exists at all; if you need to work in that situation, �rst call
AC_CHECK_FUNC for getpgrp.



Chapter 5: Existing Tests 39

MacroAC FUNC LSTAT FOLLOWS SLASHED SYMLINK
If `link' is a symbolic link, then lstat should treat `link/' the same as `link/.'.
However, many older lstat implementations incorrectly ignore trailing slashes.

It is safe to assume that if lstat incorrectly ignores trailing slashes, then other
symbolic-link-aware functions like unlink and unlink also incorrectly ignore trailing
slashes.

If lstat behaves properly, de�ne LSTAT_FOLLOWS_SLASHED_SYMLINK, otherwise re-
quire an AC_LIBOBJ replacement of lstat.

MacroAC FUNC MALLOC
If the malloc works correctly (`malloc (0)' returns a valid pointer), de�ne HAVE_

MALLOC.

MacroAC FUNC MEMCMP
If the memcmp function is not available, or does not work on 8-bit data (like the one on
SunOS 4.1.3), or fails when comparing 16 bytes or more and with at least one bu�er
not starting on a 4-byte boundary (such as the one on NeXT x86 OpenStep), require
an AC_LIBOBJ replacement for `memcmp'.

MacroAC FUNC MKTIME
If the mktime function is not available, or does not work correctly, require an AC_

LIBOBJ replacement for `mktime'.

MacroAC FUNC MMAP
If the mmap function exists and works correctly, de�ne HAVE_MMAP. Only checks private
�xed mapping of already-mapped memory.

MacroAC FUNC OBSTACK
If the obstacks are found, de�ne HAVE_OBSTACK, else require an AC_LIBOBJ replace-
ment for `obstack'.

MacroAC FUNC SELECT ARGTYPES
Determines the correct type to be passed for each of the select function's arguments,
and de�nes those types in SELECT_TYPE_ARG1, SELECT_TYPE_ARG234, and SELECT_

TYPE_ARG5 respectively. SELECT_TYPE_ARG1 defaults to `int', SELECT_TYPE_ARG234
defaults to `int *', and SELECT_TYPE_ARG5 defaults to `struct timeval *'.

MacroAC FUNC SETPGRP
If setpgrp takes no argument (the posix.1 version), de�ne SETPGRP_VOID. Otherwise,
it is the bsd version, which takes two process IDs as arguments. This macro does not
check whether setpgrp exists at all; if you need to work in that situation, �rst call
AC_CHECK_FUNC for setpgrp.



40 Autoconf

MacroAC FUNC STAT
MacroAC FUNC LSTAT

Determine whether stat or lstat have the bug that it succeeds when given the zero-
length �le name argument. The stat and lstat from SunOS4.1.4 and the Hurd (as
of 1998-11-01) do this.

If it does, then de�ne HAVE_STAT_EMPTY_STRING_BUG (or HAVE_LSTAT_EMPTY_

STRING_BUG) and ask for an AC_LIBOBJ replacement of it.

MacroAC FUNC SETVBUF REVERSED
If setvbuf takes the bu�ering type as its second argument and the bu�er pointer as
the third, instead of the other way around, de�ne SETVBUF_REVERSED.

MacroAC FUNC STRCOLL
If the strcoll function exists and works correctly, de�ne HAVE_STRCOLL. This does
a bit more than `AC_CHECK_FUNCS(strcoll)', because some systems have incorrect
de�nitions of strcoll that should not be used.

MacroAC FUNC STRTOD
If the strtod function does not exist or doesn't work correctly, ask for an AC_LIBOBJ

replacement of `strtod'. In this case, because `strtod.c' is likely to need `pow', set
the output variable POW_LIB to the extra library needed.

MacroAC FUNC STRERROR R
If strerror_r is available, de�ne HAVE_STRERROR_R. If its implementation correctly
returns a char *, de�ne HAVE_WORKING_STRERROR_R. On at least DEC UNIX 4.0[A-
D] and HP-UX B.10.20, strerror_r returns int. Actually, this tests only whether it
returns a scalar or an array, but that should be enough. This is used by the common
`error.c'.

MacroAC FUNC STRFTIME
Check for strftime in the `intl' library, for SCO unix. Then, if strftime is avail-
able, de�ne HAVE_STRFTIME.

MacroAC FUNC UTIME NULL
If `utime(�le, NULL)' sets �le's timestamp to the present, de�ne HAVE_UTIME_NULL.

MacroAC FUNC VFORK
If `vfork.h' is found, de�ne HAVE_VFORK_H. If a working vfork is not found, de�ne
vfork to be fork. This macro checks for several known errors in implementations
of vfork and considers the system to not have a working vfork if it detects any of
them. It is not considered to be an implementation error if a child's invocation of
signal modi�es the parent's signal handler, since child processes rarely change their
signal handlers.

MacroAC FUNC VPRINTF
If vprintf is found, de�ne HAVE_VPRINTF. Otherwise, if _doprnt is found, de�ne
HAVE_DOPRNT. (If vprintf is available, you may assume that vfprintf and vsprintf

are also available.)



Chapter 5: Existing Tests 41

MacroAC FUNC WAIT3
If wait3 is found and �lls in the contents of its third argument (a `struct rusage

*'), which HP-UX does not do, de�ne HAVE_WAIT3.

5.4.2 Generic Function Checks

These macros are used to �nd functions not covered by the \particular" test macros. If
the functions might be in libraries other than the default C library, �rst call AC_CHECK_LIB
for those libraries. If you need to check the behavior of a function as well as �nd out whether
it is present, you have to write your own test for it (see Chapter 6 [Writing Tests], page 59).

MacroAC CHECK FUNC (function, [action-if-found], [action-if-not-found])
If C function function is available, run shell commands action-if-found, otherwise
action-if-not-found. If you just want to de�ne a symbol if the function is available,
consider using AC_CHECK_FUNCS instead. This macro checks for functions with C link-
age even when AC_LANG(C++) has been called, since C is more standardized than C++.
(see Section 6.8 [Language Choice], page 83, for more information about selecting the
language for checks.)

MacroAC CHECK FUNCS (function. . . , [action-if-found],
[action-if-not-found])

For each function in the whitespace-separated argument list, de�ne HAVE_function (in
all capitals) if it is available. If action-if-found is given, it is additional shell code
to execute when one of the functions is found. You can give it a value of `break' to
break out of the loop on the �rst match. If action-if-not-found is given, it is executed
when one of the functions is not found.

Autoconf follows a philosophy that was formed over the years by those who have strug-
gled for portability: isolate the portability issues in speci�c �les, and then program as if
you were in a posix environment. Some functions may be missing or un�xable, and your
package must be ready to replace them.

Use the �rst three of the following macros to specify a function to be replaced, and the
last one (AC_REPLACE_FUNCS) to check for and replace the function if needed.

MacroAC LIBOBJ (function)
Specify that `function.c' must be included in the executables to replace a missing or
broken implementation of function.

Technically, it adds `function.$ac_objext' to the output variable LIBOBJS and calls
AC_LIBSOURCE for `function.c'. You should not directly change LIBOBJS, since this
is not traceable.

MacroAC LIBSOURCE (�le)
Specify that �le might be needed to compile the project. If you need to know what
�les might be needed by a `configure.ac', you should trace AC_LIBSOURCE. �le must
be a literal.

This macro is called automatically from AC_LIBOBJ, but you must call it explicitly
if you pass a shell variable to AC_LIBOBJ. In that case, since shell variables cannot



42 Autoconf

be traced statically, you must pass to AC_LIBSOURCE any possible �les that the shell
variable might cause AC_LIBOBJ to need. For example, if you want to pass a variable
$foo_or_bar to AC_LIBOBJ that holds either "foo" or "bar", you should do:

AC_LIBSOURCE(foo.c)
AC_LIBSOURCE(bar.c)
AC_LIBOBJ($foo_or_bar)

There is usually a way to avoid this, however, and you are encouraged to simply call
AC_LIBOBJ with literal arguments.

Note that this macro replaces the obsolete AC_LIBOBJ_DECL, with slightly di�erent
semantics: the old macro took the function name, e.g. foo, as its argument rather
than the �le name.

MacroAC LIBSOURCES (�les)
Like AC_LIBSOURCE, but accepts one or more �les in a comma-separated M4 list.
Thus, the above example might be rewritten:

AC_LIBSOURCES([foo.c, bar.c])
AC_LIBOBJ($foo_or_bar)

MacroAC REPLACE FUNCS (function. . . )
Like AC_CHECK_FUNCS, but uses `AC_LIBOBJ(function)' as action-if-not-found.
You can declare your replacement function by enclosing the prototype in `#if
!HAVE_function'. If the system has the function, it probably declares it in a header
�le you should be including, so you shouldn't redeclare it lest your declaration
conict.

5.5 Header Files

The following macros check for the presence of certain C header �les. If there is no macro
speci�cally de�ned to check for a header �le you need, and you don't need to check for any
special properties of it, then you can use one of the general header-�le check macros.

5.5.1 Particular Header Checks

These macros check for particular system header �les|whether they exist, and in some
cases whether they declare certain symbols.

MacroAC HEADER DIRENT
Check for the following header �les. For the �rst one that is found and de�nes `DIR',
de�ne the listed C preprocessor macro:

`dirent.h' HAVE_DIRENT_H

`sys/ndir.h' HAVE_SYS_NDIR_H

`sys/dir.h' HAVE_SYS_DIR_H

`ndir.h' HAVE_NDIR_H

The directory-library declarations in your source code should look something like the
following:



Chapter 5: Existing Tests 43

#if HAVE_DIRENT_H
# include <dirent.h>
# define NAMLEN(dirent) strlen((dirent)->d_name)
#else
# define dirent direct
# define NAMLEN(dirent) (dirent)->d_namlen
# if HAVE_SYS_NDIR_H
# include <sys/ndir.h>
# endif
# if HAVE_SYS_DIR_H
# include <sys/dir.h>
# endif
# if HAVE_NDIR_H
# include <ndir.h>
# endif
#endif

Using the above declarations, the program would declare variables to be of type
struct dirent, not struct direct, and would access the length of a directory entry
name by passing a pointer to a struct dirent to the NAMLEN macro.

This macro also checks for the SCO Xenix `dir' and `x' libraries.

MacroAC HEADER MAJOR
If `sys/types.h' does not de�ne major, minor, and makedev, but `sys/mkdev.h'
does, de�ne MAJOR_IN_MKDEV; otherwise, if `sys/sysmacros.h' does, de�ne MAJOR_

IN_SYSMACROS.

MacroAC HEADER STAT
If the macros S_ISDIR, S_ISREG et al. de�ned in `sys/stat.h' do not work properly
(returning false positives), de�ne STAT_MACROS_BROKEN. This is the case on Tektronix
UTekV, Amdahl UTS and Motorola System V/88.

MacroAC HEADER STDC
De�ne STDC_HEADERS if the system has ansi C header �les. Speci�cally, this macro
checks for `stdlib.h', `stdarg.h', `string.h', and `float.h'; if the system has those,
it probably has the rest of the ansi C header �les. This macro also checks whether
`string.h' declares memchr (and thus presumably the other mem functions), whether
`stdlib.h' declare free (and thus presumably malloc and other related functions),
and whether the `ctype.h' macros work on characters with the high bit set, as ansi
C requires.

Use STDC_HEADERS instead of __STDC__ to determine whether the system has ansi-
compliant header �les (and probably C library functions) because many systems that
have GCC do not have ansi C header �les.

On systems without ansi C headers, there is so much variation that it is probably
easier to declare the functions you use than to �gure out exactly what the system
header �les declare. Some systems contain a mix of functions ansi and bsd; some are
mostly ansi but lack `memmove'; some de�ne the bsd functions as macros in `string.h'



44 Autoconf

or `strings.h'; some have only the bsd functions but `string.h'; some declare the
memory functions in `memory.h', some in `string.h'; etc. It is probably suÆcient to
check for one string function and one memory function; if the library has the ansi
versions of those then it probably has most of the others. If you put the following in
`configure.ac':

AC_HEADER_STDC
AC_CHECK_FUNCS(strchr memcpy)

then, in your code, you can put declarations like this:

#if STDC_HEADERS
# include <string.h>
#else
# if !HAVE_STRCHR
# define strchr index
# define strrchr rindex
# endif
char *strchr (), *strrchr ();
# if !HAVE_MEMCPY
# define memcpy(d, s, n) bcopy ((s), (d), (n))
# define memmove(d, s, n) bcopy ((s), (d), (n))
# endif
#endif

If you use a function like memchr, memset, strtok, or strspn, which have no bsd
equivalent, then macros won't suÆce; you must provide an implementation of each
function. An easy way to incorporate your implementations only when needed (since
the ones in system C libraries may be hand optimized) is to, taking memchr for
example, put it in `memchr.c' and use `AC_REPLACE_FUNCS(memchr)'.

MacroAC HEADER SYS WAIT
If `sys/wait.h' exists and is compatible with posix.1, de�ne HAVE_SYS_WAIT_H. In-
compatibility can occur if `sys/wait.h' does not exist, or if it uses the old bsd
union wait instead of int to store a status value. If `sys/wait.h' is not posix.1
compatible, then instead of including it, de�ne the posix.1 macros with their usual
interpretations. Here is an example:

#include <sys/types.h>
#if HAVE_SYS_WAIT_H
# include <sys/wait.h>
#endif
#ifndef WEXITSTATUS
# define WEXITSTATUS(stat_val) ((unsigned)(stat_val) >> 8)
#endif
#ifndef WIFEXITED
# define WIFEXITED(stat_val) (((stat_val) & 255) == 0)
#endif

_POSIX_VERSION is de�ned when `unistd.h' is included on posix.1 systems. If there is
no `unistd.h', it is de�nitely not a posix.1 system. However, some non-posix.1 systems
do have `unistd.h'.



Chapter 5: Existing Tests 45

The way to check if the system supports posix.1 is:

#if HAVE_UNISTD_H
# include <sys/types.h>
# include <unistd.h>
#endif

#ifdef _POSIX_VERSION
/* Code for POSIX.1 systems. */
#endif

MacroAC HEADER TIME
If a program may include both `time.h' and `sys/time.h', de�ne TIME_WITH_SYS_

TIME. On some older systems, `sys/time.h' includes `time.h', but `time.h' is not
protected against multiple inclusion, so programs should not explicitly include both
�les. This macro is useful in programs that use, for example, struct timeval or
struct timezone as well as struct tm. It is best used in conjunction with HAVE_

SYS_TIME_H, which can be checked for using AC_CHECK_HEADERS(sys/time.h).

#if TIME_WITH_SYS_TIME
# include <sys/time.h>
# include <time.h>
#else
# if HAVE_SYS_TIME_H
# include <sys/time.h>
# else
# include <time.h>
# endif
#endif

MacroAC HEADER TIOCGWINSZ
If the use of TIOCGWINSZ requires `<sys/ioctl.h>', then de�ne GWINSZ_IN_SYS_

IOCTL. Otherwise TIOCGWINSZ can be found in `<termios.h>'.

Use:

#if HAVE_TERMIOS_H
# include <termios.h>
#endif

#if GWINSZ_IN_SYS_IOCTL
# include <sys/ioctl.h>
#endif

5.5.2 Generic Header Checks

These macros are used to �nd system header �les not covered by the \particular" test
macros. If you need to check the contents of a header as well as �nd out whether it is
present, you have to write your own test for it (see Chapter 6 [Writing Tests], page 59).



46 Autoconf

MacroAC CHECK HEADER (header-�le, [action-if-found],
[action-if-not-found])

If the system header �le header-�le exists, execute shell commands action-if-found,
otherwise execute action-if-not-found. If you just want to de�ne a symbol if the header
�le is available, consider using AC_CHECK_HEADERS instead.

MacroAC CHECK HEADERS (header-�le . . . , [action-if-found],
[action-if-not-found])

For each given system header �le header-�le in the whitespace-separated argument
list that exists, de�ne HAVE_header-�le (in all capitals). If action-if-found is given, it
is additional shell code to execute when one of the header �les is found. You can give
it a value of `break' to break out of the loop on the �rst match. If action-if-not-found
is given, it is executed when one of the header �les is not found.

5.6 Declarations

The following macros check for the declaration of variables and functions. If there is
no macro speci�cally de�ned to check for a symbol you need, then you can use the general
macros (see Section 5.6.2 [Generic Declarations], page 46) or, for more complex tests, you
may use AC_TRY_COMPILE (see Section 6.2 [Examining Syntax], page 60).

5.6.1 Particular Declaration Checks

The following macros check for certain declarations.

MacroAC DECL SYS SIGLIST
De�ne SYS_SIGLIST_DECLARED if the variable sys_siglist is declared in a system
header �le, either `signal.h' or `unistd.h'.

5.6.2 Generic Declaration Checks

These macros are used to �nd declarations not covered by the \particular" test macros.

MacroAC CHECK DECL (symbol, [action-if-found], [action-if-not-found],
[includes])

If symbol (a function or a variable) is not declared in includes and a declaration
is needed, run the shell commands action-if-not-found, otherwise action-if-found. If
no includes are speci�ed, the default includes are used (see Section 5.1.2 [Default
Includes], page 31).

This macro actually tests whether it is valid to use symbol as an r-value, not if it is
really declared, because it is much safer to avoid introducing extra declarations when
they are not needed.

MacroAC CHECK DECLS (symbols, [action-if-found], [action-if-not-found],
[includes])

For each of the symbols (comma-separated list), de�ne HAVE_DECL_symbol (in all
capitals) to `1' if symbol is declared, otherwise to `0'. If action-if-not-found is given,



Chapter 5: Existing Tests 47

it is additional shell code to execute when one of the function declarations is needed,
otherwise action-if-found is executed.

This macro uses an m4 list as �rst argument:

AC_CHECK_DECLS(strdup)
AC_CHECK_DECLS([strlen])
AC_CHECK_DECLS([malloc, realloc, calloc, free])

Unlike the other `AC_CHECK_*S' macros, when a symbol is not declared, HAVE_DECL_
symbol is de�ned to `0' instead of leaving HAVE_DECL_symbol undeclared. When you
are sure that the check was performed, use HAVE_DECL_symbol just like any other
result of Autoconf:

#if !HAVE_DECL_SYMBOL
extern char *symbol;
#endif

If the test may have not been performed, however, because it is safer not to declare
a symbol than to use a declaration that conicts with the system's one, you should
use:

#if defined HAVE_DECL_MALLOC && !HAVE_DECL_MALLOC
char *malloc (size_t *s);
#endif

You fall into the second category only in extreme situations: either your �les may be
used without being con�gured, or they are used during the con�guration. In most
cases the traditional approach is enough.

5.7 Structures

The following macros check for the presence of certain members in C structures. If
there is no macro speci�cally de�ned to check for a member you need, then you can use
the general structure-member macro (see Section 5.7.2 [Generic Structures], page 48) or,
for more complex tests, you may use AC_TRY_COMPILE (see Section 6.2 [Examining Syntax],
page 60).

5.7.1 Particular Structure Checks

The following macros check for certain structures or structure members.

MacroAC STRUCT ST BLKSIZE
If struct stat contains an st_blksize member, de�ne HAVE_STRUCT_STAT_ST_

BLKSIZE. The former name, HAVE_ST_BLKSIZE is to be avoided, as its support will
cease in the future. This macro is obsoleted, and should be replaced by

AC_CHECK_MEMBERS([struct stat.st_blksize])

MacroAC STRUCT ST BLOCKS
If struct stat contains an st_blocks member, de�ne HAVE_STRUCT STAT_ST_

BLOCKS. Otherwise, require an AC_LIBOBJ replacement of `fileblocks'. The former
name, HAVE_ST_BLOCKS is to be avoided, as its support will cease in the future.



48 Autoconf

MacroAC STRUCT ST RDEV
If struct stat contains an st_rdev member, de�ne HAVE_STRUCT_STAT_ST_RDEV.
The former name for this macro, HAVE_ST_RDEV, is to be avoided as it will cease to
be supported in the future. Actually, even the new macro is obsolete, and should be
replaced by:

AC_CHECK_MEMBERS([struct stat.st_rdev])

MacroAC STRUCT TM
If `time.h' does not de�ne struct tm, de�ne TM_IN_SYS_TIME, which means that
including `sys/time.h' had better de�ne struct tm.

MacroAC STRUCT TIMEZONE
Figure out how to get the current timezone. If struct tm has a tm_zone member,
de�ne HAVE_STRUCT_TM_TM_ZONE (and the obsoleted HAVE_TM_ZONE). Otherwise, if
the external array tzname is found, de�ne HAVE_TZNAME.

5.7.2 Generic Structure Checks

These macros are used to �nd structure members not covered by the \particular" test
macros.

MacroAC CHECK MEMBER (aggregate.member, [action-if-found],
[action-if-not-found], [includes])

Check whether member is a member of the aggregate aggregate. If no includes are
speci�ed, the default includes are used (see Section 5.1.2 [Default Includes], page 31).

AC_CHECK_MEMBER(struct passwd.pw_gecos,,
[AC_MSG_ERROR([We need `passwd.pw_gecos'!])],
[#include <pwd.h>])

You can use this macro for sub-members:

AC_CHECK_MEMBER(struct top.middle.bot)

MacroAC CHECK MEMBERS (members, [action-if-found],
[action-if-not-found], [includes])

Check for the existence of each `aggregate.member' of members using the previous
macro. When member belongs to aggregate, de�ne HAVE_aggregate_member (in all
capitals, with spaces and dots replaced by underscores).

This macro uses m4 lists:

AC_CHECK_MEMBERS([struct stat.st_rdev, struct stat.st_blksize])

5.8 Types

The following macros check for C types, either builtin or typedefs. If there is no macro
speci�cally de�ned to check for a type you need, and you don't need to check for any special
properties of it, then you can use a general type-check macro.



Chapter 5: Existing Tests 49

5.8.1 Particular Type Checks

These macros check for particular C types in `sys/types.h', `stdlib.h' and others, if
they exist.

MacroAC TYPE GETGROUPS
De�ne GETGROUPS_T to be whichever of gid_t or int is the base type of the array
argument to getgroups.

MacroAC TYPE MODE T
Equivalent to `AC_CHECK_TYPE(mode_t, int)'.

MacroAC TYPE OFF T
Equivalent to `AC_CHECK_TYPE(off_t, long)'.

MacroAC TYPE PID T
Equivalent to `AC_CHECK_TYPE(pid_t, int)'.

MacroAC TYPE SIGNAL
If `signal.h' declares signal as returning a pointer to a function returning void,
de�ne RETSIGTYPE to be void; otherwise, de�ne it to be int.

De�ne signal handlers as returning type RETSIGTYPE:

RETSIGTYPE
hup_handler ()
{
...
}

MacroAC TYPE SIZE T
Equivalent to `AC_CHECK_TYPE(size_t, unsigned)'.

MacroAC TYPE UID T
If uid_t is not de�ned, de�ne uid_t to be int and gid_t to be int.

5.8.2 Generic Type Checks

These macros are used to check for types not covered by the \particular" test macros.

MacroAC CHECK TYPE (type, [action-if-found], [action-if-not-found],
[includes])

Check whether type is de�ned. It may be a compiler builtin type or de�ned by the
[includes] (see Section 5.1.2 [Default Includes], page 31).



50 Autoconf

MacroAC CHECK TYPES (types, [action-if-found], [action-if-not-found],
[includes])

For each type of the types that is de�ned, de�ne HAVE_type (in all capitals). If
no includes are speci�ed, the default includes are used (see Section 5.1.2 [Default
Includes], page 31). If action-if-found is given, it is additional shell code to execute
when one of the types is found. If action-if-not-found is given, it is executed when
one of the types is not found.

This macro uses m4 lists:

AC_CHECK_TYPES(ptrdiff_t)
AC_CHECK_TYPES([unsigned long long, uintmax_t])

Autoconf, up to 2.13, used to provide to another version of AC_CHECK_TYPE, broken by
design. In order to keep backward compatibility, a simple heuristics, quite safe but not
totally, is implemented. In case of doubt, read the documentation of the former AC_CHECK_
TYPE, see Section 13.4 [Obsolete Macros], page 125.

5.9 Compilers and Preprocessors

All the tests for compilers (AC_PROG_CC, AC_PROG_CXX, AC_PROG_F77) de�ne the output
variable EXEEXT based on the output of the compiler, typically to the empty string if Unix
and `.exe' if Win32 or OS/2.

They also de�ne the output variable OBJEXT based on the output of the compiler, after
.c �les have been excluded, typically to `o' if Unix, `obj' if Win32.

If the compiler being used does not produce executables, they fail. If the executables
can't be run, and cross-compilation is not enabled, they fail too. See Chapter 9 [Manual
Con�guration], page 105, for more on support for cross compiling.

MacroAC PROG CC ([compiler-search-list])
Determine a C compiler to use. If CC is not already set in the environment, check for
gcc and cc, then for other C compilers. Set output variable CC to the name of the
compiler found.

This macro may, however, be invoked with an optional �rst argument which, if spec-
i�ed, must be a space separated list of C compilers to search for. This just gives
the user an opportunity to specify an alternative search list for the C compiler. For
example, if you didn't like the default order, then you could invoke AC_PROG_CC like
this:

AC_PROG_CC(cl egcs gcc cc)

If using the gnu C compiler, set shell variable GCC to `yes'. If output variable CFLAGS
was not already set, set it to `-g -O2' for the gnu C compiler (`-O2' on systems where
GCC does not accept `-g'), or `-g' for other compilers.

MacroAC PROG CC C O
If the C compiler does not accept the `-c' and `-o' options simultaneously, de�ne
NO_MINUS_C_MINUS_O. This macro actually tests both the compiler found by AC_

PROG_CC, and, if di�erent, the �rst cc in the path. The test fails if one fails. This
macro was created for gnu Make to choose the default C compilation rule.



Chapter 5: Existing Tests 51

MacroAC PROG CC STDC
If the C compiler is not in ansi C mode by default, try to add an option to output
variable CC to make it so. This macro tries various options that select ansi C on
some system or another. It considers the compiler to be in ansi C mode if it handles
function prototypes correctly.

If you use this macro, you should check after calling it whether the C compiler has
been set to accept ansi C; if not, the shell variable ac_cv_prog_cc_stdc is set to
`no'. If you wrote your source code in ansi C, you can make an un-ansi�ed copy of
it by using the program ansi2knr, which comes with Automake.

MacroAC PROG CPP
Set output variable CPP to a command that runs the C preprocessor. If `$CC -E'
doesn't work, `/lib/cpp' is used. It is only portable to run CPP on �les with a `.c'
extension.

If the current language is C (see Section 6.8 [Language Choice], page 83), many of
the speci�c test macros use the value of CPP indirectly by calling AC_TRY_CPP, AC_
CHECK_HEADER, AC_EGREP_HEADER, or AC_EGREP_CPP.

Some preprocessors don't indicate missing include �les by the error status. For such
preprocessors an internal variable is set that causes other macros to check the standard
error from the preprocessor and consider the test failed if any warnings have been
reported.

MacroAC PROG CXX ([compiler-search-list])
Determine a C++ compiler to use. Check if the environment variable CXX or CCC (in
that order) is set; if so, then set output variable CXX to its value.

Otherwise, if the macro is invoked without an argument, then search for a C++ com-
piler under the likely names (�rst g++ and c++ then other names). If none of those
checks succeed, then as a last resort set CXX to gcc.

This macro may, however, be invoked with an optional �rst argument which, if spec-
i�ed, must be a space separated list of C++ compilers to search for. This just gives
the user an opportunity to specify an alternative search list for the C++ compiler. For
example, if you didn't like the default order, then you could invoke AC_PROG_CXX like
this:

AC_PROG_CXX(cl KCC CC cxx cc++ xlC aCC c++ g++ egcs gcc)

If using the gnu C++ compiler, set shell variable GXX to `yes'. If output variable
CXXFLAGS was not already set, set it to `-g -O2' for the gnu C++ compiler (`-O2' on
systems where G++ does not accept `-g'), or `-g' for other compilers.

MacroAC PROG CXXCPP
Set output variable CXXCPP to a command that runs the C++ preprocessor. If `$CXX
-E' doesn't work, `/lib/cpp' is used. It is only portable to run CXXCPP on �les with
a `.c', `.C', or `.cc' extension.

If the current language is C++ (see Section 6.8 [Language Choice], page 83), many
of the speci�c test macros use the value of CXXCPP indirectly by calling AC_TRY_CPP,
AC_CHECK_HEADER, AC_EGREP_HEADER, or AC_EGREP_CPP.



52 Autoconf

Some preprocessors don't indicate missing include �les by the error status. For such
preprocessors an internal variable is set that causes other macros to check the standard
error from the preprocessor and consider the test failed if any warnings have been
reported. However, it is not known whether such broken preprocessors exist for C++.

MacroAC PROG F77 ([compiler-search-list])
Determine a Fortran 77 compiler to use. If F77 is not already set in the environment,
then check for g77 and f77, and then some other names. Set the output variable F77
to the name of the compiler found.

This macro may, however, be invoked with an optional �rst argument which, if spec-
i�ed, must be a space separated list of Fortran 77 compilers to search for. This just
gives the user an opportunity to specify an alternative search list for the Fortran 77
compiler. For example, if you didn't like the default order, then you could invoke
AC_PROG_F77 like this:

AC_PROG_F77(fl32 f77 fort77 xlf cf77 g77 f90 xlf90)

If using g77 (the gnu Fortran 77 compiler), then AC_PROG_F77 will set the shell
variable G77 to `yes'. If the output variable FFLAGS was not already set in the
environment, then set it to `-g -02' for g77 (or `-O2' where g77 does not accept `-g').
Otherwise, set FFLAGS to `-g' for all other Fortran 77 compilers.

MacroAC PROG F77 C O
Test if the Fortran 77 compiler accepts the options `-c' and `-o' simultaneously, and
de�ne F77_NO_MINUS_C_MINUS_O if it does not.

MacroAC PROG GCC TRADITIONAL
Add `-traditional' to output variable CC if using the gnu C compiler and ioctl

does not work properly without `-traditional'. That usually happens when the
�xed header �les have not been installed on an old system. Since recent versions of
the gnu C compiler �x the header �les automatically when installed, this is becoming
a less prevalent problem.

5.10 C Compiler Characteristics

The following macros check for C compiler or machine architecture features. To check
for characteristics not listed here, use AC_TRY_COMPILE (see Section 6.2 [Examining Syntax],
page 60) or AC_TRY_RUN (see Section 6.4 [Run Time], page 61)

MacroAC C BIGENDIAN
If words are stored with the most signi�cant byte �rst (like Motorola and SPARC,
but not Intel and VAX, CPUs), de�ne WORDS_BIGENDIAN.

MacroAC C CONST
If the C compiler does not fully support the ansi C quali�er const, de�ne const

to be empty. Some C compilers that do not de�ne __STDC__ do support const;
some compilers that de�ne __STDC__ do not completely support const. Programs



Chapter 5: Existing Tests 53

can simply use const as if every C compiler supported it; for those that don't, the
`Makefile' or con�guration header �le will de�ne it as empty.

Occasionally installers use a C++ compiler to compile C code, typically because they
lack a C compiler. This causes problems with const, because C and C++ treat const
di�erently. For example:

const int foo;

is valid in C but not in C++. These di�erences unfortunately cannot be papered over
by de�ning const to be empty.

If autoconf detects this situation, it leaves const alone, as this generally yields
better results in practice. However, using a C++ compiler to compile C code is not
recommended or supported, and installers who run into trouble in this area should
get a C compiler like GCC to compile their C code.

MacroAC C VOLATILE
If the C compiler does not understand the keyword volatile, de�ne volatile to be
empty. Programs can simply use volatile as if every C compiler supported it; for
those that do not, the `Makefile' or con�guration header will de�ne it as empty.

If the correctness of your program depends on the semantics of volatile, simply
de�ning it to be empty does, in a sense, break your code. However, given that the
compiler does not support volatile, you are at its mercy anyway. At least your
program will compile, when it wouldn't before.

In general, the volatile keyword is a feature of ansi C, so you might expect that
volatile is available only when __STDC__ is de�ned. However, Ultrix 4.3's native
compiler does support volatile, but does not de�ned __STDC__.

MacroAC C INLINE
If the C compiler supports the keyword inline, do nothing. Otherwise de�ne inline
to __inline__ or __inline if it accepts one of those, otherwise de�ne inline to be
empty.

MacroAC C CHAR UNSIGNED
If the C type char is unsigned, de�ne __CHAR_UNSIGNED__, unless the C compiler
prede�nes it.

MacroAC C LONG DOUBLE
If the C compiler supports the long double type, de�ne HAVE_LONG_DOUBLE. Some
C compilers that do not de�ne __STDC__ do support the long double type; some
compilers that de�ne __STDC__ do not support long double.

MacroAC C STRINGIZE
If the C preprocessor supports the stringizing operator, de�ne HAVE_STRINGIZE. The
stringizing operator is `#' and is found in macros such as this:

#define x(y) #y



54 Autoconf

MacroAC C PROTOTYPES
Check to see if function prototypes are understood by the compiler. If so, de�ne
`PROTOTYPES'. In the case the compiler does not handle prototypes, you should use
ansi2knr, which comes with the Automake distribution, to unprotoize function de�-
nitions. For function prototypes, you should �rst de�ne PARAMS:

#ifndef PARAMS
# if PROTOTYPES
# define PARAMS(protos) protos
# else /* no PROTOTYPES */
# define PARAMS(protos) ()
# endif /* no PROTOTYPES */
#endif

then use it this way:

size_t my_strlen PARAMS ((const char *));

MacroAC CHECK SIZEOF (type, [unused], [includes])
De�ne SIZEOF_type (see Section 5.1.1 [Standard Symbols], page 31) to be the size in
bytes of type. If `type' is unknown, it gets a size of 0. If no includes are speci�ed,
the default includes are used (see Section 5.1.2 [Default Includes], page 31). If you
provide include, make sure to include `stdio.h' which is required for this macro to
run.

This macro now works even when cross-compiling. The unused argument was used
when cross-compiling.

For example, the call

AC_CHECK_SIZEOF(int *)

de�nes SIZEOF_INT_P to be 8 on DEC Alpha AXP systems.

5.11 Fortran 77 Compiler Characteristics

The following macros check for Fortran 77 compiler characteristics. To check for charac-
teristics not listed here, use AC_TRY_COMPILE (see Section 6.2 [Examining Syntax], page 60)
or AC_TRY_RUN (see Section 6.4 [Run Time], page 61), making sure to �rst set the current
language to Fortran 77 AC_LANG(Fortran 77) (see Section 6.8 [Language Choice], page 83).

MacroAC F77 LIBRARY LDFLAGS
Determine the linker ags (e.g. `-L' and `-l') for the Fortran 77 intrinsic and run-time

libraries that are required to successfully link a Fortran 77 program or shared library.
The output variable FLIBS is set to these ags.

This macro is intended to be used in those situations when it is necessary to mix, e.g.
C++ and Fortran 77 source code into a single program or shared library (see section
\Mixing Fortran 77 With C and C++" in GNU Automake).

For example, if object �les from a C++ and Fortran 77 compiler must be linked
together, then the C++ compiler/linker must be used for linking (since special C++-
ish things need to happen at link time like calling global constructors, instantiating
templates, enabling exception support, etc.).



Chapter 5: Existing Tests 55

However, the Fortran 77 intrinsic and run-time libraries must be linked in as well,
but the C++ compiler/linker doesn't know by default how to add these Fortran 77
libraries. Hence, the macro AC_F77_LIBRARY_LDFLAGSwas created to determine these
Fortran 77 libraries.

MacroAC F77 WRAPPERS
De�nes C macros F77_FUNC(name,NAME) and F77_FUNC_(name,NAME) to properly
mangle the names of C/C++ identi�ers, and identi�ers with underscores, respectively,
so that they match the name-mangling scheme used by the Fortran 77 compiler.

Fortran 77 is case-insensitive, and in order to achieve this the Fortran 77 compiler
converts all identi�ers into a canonical case and format. To call a Fortran 77 subrou-
tine from C or to write a C function that is callable from Fortran 77, the C program
must explicitly use identi�ers in the format expected by the Fortran 77 compiler. In
order to do this, one simply wraps all C identi�ers in one of the macros provided by
AC_F77_WRAPPERS. For example, suppose you have the following Fortran 77 subrou-
tine:

subroutine foobar(x,y)
double precision x, y
y = 3.14159 * x
return
end

You would then declare its prototype in C or C++ as:

#define FOOBAR_F77 F77_FUNC(foobar,FOOBAR)
#ifdef __cplusplus
extern "C" /* prevent C++ name mangling */
#endif
void FOOBAR_F77(double *x, double *y);

Note that we pass both the lowercase and uppercase versions of the function name to
F77_FUNC so that it can select the right one. Note also that all parameters to Fortran
77 routines are passed as pointers (see section \Mixing Fortran 77 With C and C++"
in GNU Automake).

Although Autoconf tries to be intelligent about detecting the name-mangling scheme
of the Fortran 77 compiler, there may be Fortran 77 compilers that it doesn't support
yet. In this case, the above code will generate a compile-time error, but some other
behavior (e.g. disabling Fortran-related features) can be induced by checking whether
the F77_FUNC macro is de�ned.

Now, to call that routine from a C program, we would do something like:

{
double x = 2.7183, y;
FOOBAR_F77(&x, &y);

}

If the Fortran 77 identi�er contains an underscore (e.g. foo_bar), you should use
F77_FUNC_ instead of F77_FUNC (with the same arguments). This is because some
Fortran 77 compilers mangle names di�erently if they contain an underscore.



56 Autoconf

MacroAC F77 FUNC (name, [shellvar])
Given an identi�er name, set the shell variable shellvar to hold the mangled version
name according to the rules of the Fortran 77 linker (see also AC_F77_WRAPPERS).
shellvar is optional; if it is not supplied, the shell variable will be simply name.
The purpose of this macro is to give the caller a way to access the name-mangling
information other than through the C preprocessor as above; for example, to call
Fortran routines from some language other than C/C++.

5.12 System Services

The following macros check for operating system services or capabilities.

MacroAC PATH X
Try to locate the X Window System include �les and libraries. If the user gave
the command line options `--x-includes=dir' and `--x-libraries=dir', use those
directories. If either or both were not given, get the missing values by running xmkmf
on a trivial `Imakefile' and examining the `Makefile' that it produces. If that fails
(such as if xmkmf is not present), look for them in several directories where they
often reside. If either method is successful, set the shell variables x_includes and
x_libraries to their locations, unless they are in directories the compiler searches
by default.

If both methods fail, or the user gave the command line option `--without-x', set
the shell variable no_x to `yes'; otherwise set it to the empty string.

MacroAC PATH XTRA
An enhanced version of AC_PATH_X. It adds the C compiler ags that X needs to
output variable X_CFLAGS, and the X linker ags to X_LIBS. De�ne X_DISPLAY_

MISSING if X is not available.

This macro also checks for special libraries that some systems need in order to compile
X programs. It adds any that the system needs to output variable X_EXTRA_LIBS.
And it checks for special X11R6 libraries that need to be linked with before `-lX11',
and adds any found to the output variable X_PRE_LIBS.

MacroAC SYS INTERPRETER
Check whether the system supports starting scripts with a line of the form `#!
/bin/csh' to select the interpreter to use for the script. After running this macro,
shell code in configure.ac can check the shell variable interpval; it will be set to
`yes' if the system supports `#!', `no' if not.

MacroAC SYS LARGEFILE
Arrange for large-�le support (http://www.sas.com/standards/large.file/x_
open.20Mar96.html). On some hosts, one must use special compiler options to
build programs that can access large �les. Append any such options to the output
variable CC. De�ne _FILE_OFFSET_BITS and _LARGE_FILES if necessary.

Large-�le support can be disabled by con�guring with the `--disable-largefile'
option.



Chapter 5: Existing Tests 57

If you use this macro, check that your program works even when off_t is longer than
long, since this is common when large-�le support is enabled. For example, it is not
correct to print an arbitrary off_t value X with printf ("%ld", (long) X).

MacroAC SYS LONG FILE NAMES
If the system supports �le names longer than 14 characters, de�ne HAVE_LONG_FILE_
NAMES.

MacroAC SYS POSIX TERMIOS
Check to see if POSIX termios headers and functions are available on the system. If
so, set the shell variable am_cv_sys_posix_termios to `yes'. If not, set the variable
to `no'.

MacroAC SYS RESTARTABLE SYSCALLS
If the system automatically restarts a system call that is interrupted by a signal,
de�ne HAVE_RESTARTABLE_SYSCALLS. This macro does not check if system calls are
restarted in general{it tests whether a signal handler installed with signal (but not
sigaction) causes system calls to be restarted. It does not test if system calls can
be restarted when interrupted by signals that have no handler.

5.13 UNIX Variants

The following macros check for certain operating systems that need special treatment for
some programs, due to exceptional oddities in their header �les or libraries. These macros
are warts; they will be replaced by a more systematic approach, based on the functions they
make available or the environments they provide.

MacroAC AIX
If on AIX, de�ne _ALL_SOURCE. Allows the use of some bsd functions. Should be
called before any macros that run the C compiler.

MacroAC ISC POSIX
If on a POSIXized ISC unix, de�ne _POSIX_SOURCE and add `-posix' (for the gnu
C compiler) or `-Xp' (for other C compilers) to output variable CC. This allows the
use of posix facilities. Must be called after AC_PROG_CC and before any other macros
that run the C compiler.

MacroAC MINIX
If on Minix, de�ne _MINIX and _POSIX_SOURCE and de�ne _POSIX_1_SOURCE to be 2.
This allows the use of posix facilities. Should be called before any macros that run
the C compiler.



58 Autoconf



Chapter 6: Writing Tests 59

6 Writing Tests

If the existing feature tests don't do something you need, you have to write new ones.
These macros are the building blocks. They provide ways for other macros to check whether
various kinds of features are available and report the results.

This chapter contains some suggestions and some of the reasons why the existing tests
are written the way they are. You can also learn a lot about how to write Autoconf tests
by looking at the existing ones. If something goes wrong in one or more of the Autoconf
tests, this information can help you understand the assumptions behind them, which might
help you �gure out how to best solve the problem.

These macros check the output of the C compiler system. They do not cache the results
of their tests for future use (see Section 7.3 [Caching Results], page 87), because they don't
know enough about the information they are checking for to generate a cache variable name.
They also do not print any messages, for the same reason. The checks for particular kinds
of C features call these macros and do cache their results and print messages about what
they're checking for.

When you write a feature test that could be applicable to more than one software
package, the best thing to do is encapsulate it in a new macro. See Chapter 8 [Writing
Macros], page 93, for how to do that.

6.1 Examining Declarations

The macro AC_TRY_CPP is used to check whether particular header �les exist. You can
check for one at a time, or more than one if you need several header �les to all exist for
some purpose.

MacroAC TRY CPP (includes, [action-if-true], [action-if-false])
includes is C or C++ #include statements and declarations, on which shell variable,
back quote, and backslash substitutions are performed. (Actually, it can be any C
program, but other statements are probably not useful.) If the preprocessor produces
no error messages while processing it, run shell commands action-if-true. Otherwise
run shell commands action-if-false.

This macro uses CPPFLAGS, but not CFLAGS, because `-g', `-O', etc. are not valid
options to many C preprocessors.

Here is how to �nd out whether a header �le contains a particular declaration, such as
a typedef, a structure, a structure member, or a function. Use AC_EGREP_HEADER instead
of running grep directly on the header �le; on some systems the symbol might be de�ned
in another header �le that the �le you are checking `#include's.

MacroAC EGREP HEADER (pattern, header-�le, action-if-found,
[action-if-not-found])

If the output of running the preprocessor on the system header �le header-�le matches
the egrep regular expression pattern, execute shell commands action-if-found, other-
wise execute action-if-not-found.



60 Autoconf

To check for C preprocessor symbols, either de�ned by header �les or prede�ned by the
C preprocessor, use AC_EGREP_CPP. Here is an example of the latter:

AC_EGREP_CPP(yes,
[#ifdef _AIX
yes

#endif
], is_aix=yes, is_aix=no)

MacroAC EGREP CPP (pattern, program, [action-if-found],
[action-if-not-found])

program is the text of a C or C++ program, on which shell variable, back quote,
and backslash substitutions are performed. If the output of running the preprocessor
on program matches the egrep regular expression pattern, execute shell commands
action-if-found, otherwise execute action-if-not-found.

This macro calls AC_PROG_CPP or AC_PROG_CXXCPP (depending on which language is
current, see Section 6.8 [Language Choice], page 83), if it hasn't been called already.

6.2 Examining Syntax

To check for a syntax feature of the C, C++ or Fortran 77 compiler, such as whether it
recognizes a certain keyword, use AC_TRY_COMPILE to try to compile a small program that
uses that feature. You can also use it to check for structures and structure members that
are not present on all systems.

MacroAC TRY COMPILE (includes, function-body, [action-if-found],
[action-if-not-found])

Create a C, C++ or Fortran 77 test program (depending on which language is current,
see Section 6.8 [Language Choice], page 83), to see whether a function whose body
consists of function-body can be compiled.

For C and C++, includes is any #include statements needed by the code in function-

body (includes will be ignored if the currently selected language is Fortran 77). This
macro also uses CFLAGS or CXXFLAGS if either C or C++ is the currently selected
language, as well as CPPFLAGS, when compiling. If Fortran 77 is the currently selected
language then FFLAGS will be used when compiling.

If the �le compiles successfully, run shell commands action-if-found, otherwise run
action-if-not-found.

This macro does not try to link; use AC_TRY_LINK if you need to do that (see Sec-
tion 6.3 [Examining Libraries], page 60).

6.3 Examining Libraries

To check for a library, a function, or a global variable, Autoconf configure scripts try to
compile and link a small program that uses it. This is unlike Metacon�g, which by default
uses nm or ar on the C library to try to �gure out which functions are available. Trying
to link with the function is usually a more reliable approach because it avoids dealing with
the variations in the options and output formats of nm and ar and in the location of the



Chapter 6: Writing Tests 61

standard libraries. It also allows con�guring for cross-compilation or checking a function's
runtime behavior if needed. On the other hand, it can be slower than scanning the libraries
once.

A few systems have linkers that do not return a failure exit status when there are unre-
solved functions in the link. This bug makes the con�guration scripts produced by Autoconf
unusable on those systems. However, some of them can be given options that make the exit
status correct. This is a problem that Autoconf does not currently handle automatically.
If users encounter this problem, they might be able to solve it by setting LDFLAGS in the
environment to pass whatever options the linker needs (for example, `-Wl,-dn' on mips
risc/os).

AC_TRY_LINK is used to compile test programs to test for functions and global variables.
It is also used by AC_CHECK_LIB to check for libraries (see Section 5.3 [Libraries], page 36),
by adding the library being checked for to LIBS temporarily and trying to link a small
program.

MacroAC TRY LINK (includes, function-body, [action-if-found],
[action-if-not-found])

Depending on the current language (see Section 6.8 [Language Choice], page 83),
create a test program to see whether a function whose body consists of function-body
can be compiled and linked.

For C and C++, includes is any #include statements needed by the code in function-

body (includes will be ignored if the currently selected language is Fortran 77). This
macro also uses CFLAGS or CXXFLAGS if either C or C++ is the currently selected
language, as well as CPPFLAGS, when compiling. If Fortran 77 is the currently selected
language then FFLAGS will be used when compiling. However, both LDFLAGS and LIBS

will be used during linking in all cases.

If the �le compiles and links successfully, run shell commands action-if-found, other-
wise run action-if-not-found.

MacroAC TRY LINK FUNC (function, [action-if-found],
[action-if-not-found])

Depending on the current language (see Section 6.8 [Language Choice], page 83),
create a test program to see whether a program whose body consists of a prototype
of and a call to function can be compiled and linked.

If the �le compiles and links successfully, run shell commands action-if-found, other-
wise run action-if-not-found.

6.4 Checking Run Time Behavior

Sometimes you need to �nd out how a system performs at run time, such as whether
a given function has a certain capability or bug. If you can, make such checks when your
program runs instead of when it is con�gured. You can check for things like the machine's
endianness when your program initializes itself.

If you really need to test for a run-time behavior while con�guring, you can write a test
program to determine the result, and compile and run it using AC_TRY_RUN. Avoid running



62 Autoconf

test programs if possible, because this prevents people from con�guring your package for
cross-compiling.

6.4.1 Running Test Programs

Use the following macro if you need to test run-time behavior of the system while con-
�guring.

MacroAC TRY RUN (program, [action-if-true], [action-if-false],
[action-if-cross-compiling ])

program is the text of a C program, on which shell variable and back quote substitu-
tions are performed. If it compiles and links successfully and returns an exit status of
0 when executed, run shell commands action-if-true. Otherwise, run shell commands
action-if-false; the exit status of the program is available in the shell variable `$?'.
This macro uses CFLAGS or CXXFLAGS, CPPFLAGS, LDFLAGS, and LIBS when compiling.

If the C compiler being used does not produce executables that run on the system
where configure is being run, then the test program is not run. If the optional
shell commands action-if-cross-compiling are given, they are run instead. Otherwise,
configure prints an error message and exits.

Try to provide a pessimistic default value to use when cross-compiling makes run-
time tests impossible. You do this by passing the optional last argument to AC_TRY_RUN.
autoconf prints a warning message when creating configure each time it encounters a
call to AC_TRY_RUN with no action-if-cross-compiling argument given. You may ignore the
warning, though users will not be able to con�gure your package for cross-compiling. A few
of the macros distributed with Autoconf produce this warning message.

To con�gure for cross-compiling you can also choose a value for those parameters based on
the canonical system name (see Chapter 9 [Manual Con�guration], page 105). Alternatively,
set up a test results cache �le with the correct values for the host system (see Section 7.3
[Caching Results], page 87).

To provide a default for calls of AC_TRY_RUN that are embedded in other macros, including
a few of the ones that come with Autoconf, you can call AC_PROG_CC before running them.
Then, if the shell variable cross_compiling is set to `yes', use an alternate method to get
the results instead of calling the macros.

6.4.2 Guidelines for Test Programs

Test programs should not write anything to the standard output. They should return
0 if the test succeeds, nonzero otherwise, so that success can be distinguished easily from
a core dump or other failure; segmentation violations and other failures produce a nonzero
exit status. Test programs should exit, not return, from main, because on some systems
(old Suns, at least) the argument to return in main is ignored.

Test programs can use #if or #ifdef to check the values of preprocessor macros de-
�ned by tests that have already run. For example, if you call AC_HEADER_STDC, then later
on in `configure.ac' you can have a test program that includes an ansi C header �le
conditionally:



Chapter 6: Writing Tests 63

#if STDC_HEADERS
# include <stdlib.h>
#endif

If a test program needs to use or create a data �le, give it a name that starts with
`conftest', such as `conftest.data'. The configure script cleans up by running `rm -rf

conftest*' after running test programs and if the script is interrupted.

6.4.3 Test Functions

Function declarations in test programs should have a prototype conditionalized for C++.
In practice, though, test programs rarely need functions that take arguments.

#ifdef __cplusplus
foo (int i)
#else
foo (i) int i;
#endif

Functions that test programs declare should also be conditionalized for C++, which
requires `extern "C"' prototypes. Make sure to not include any header �les containing
clashing prototypes.

#ifdef __cplusplus
extern "C" void *malloc (size_t);
#else
char *malloc ();
#endif

If a test program calls a function with invalid parameters (just to see whether it exists),
organize the program to ensure that it never invokes that function. You can do this by
calling it in another function that is never invoked. You can't do it by putting it after a
call to exit, because GCC version 2 knows that exit never returns and optimizes out any
code that follows it in the same block.

If you include any header �les, make sure to call the functions relevant to them with the
correct number of arguments, even if they are just 0, to avoid compilation errors due to pro-
totypes. GCC version 2 has internal prototypes for several functions that it automatically
inlines; for example, memcpy. To avoid errors when checking for them, either pass them the
correct number of arguments or redeclare them with a di�erent return type (such as char).

6.5 Systemology

This section aims at presenting some systems and pointers to documentation. It may
help you addressing particular problems reported by users.

qnx 4.25 qnx is a realtime operating system running on Intel architecture meant to
be scalable from the small embedded systems to hundred processor super-
computer. It claims to be posix certi�ed. More information is available on
the qnx home page1, including the qnx man pages2.

1
qnx home page, www.qnx.com.

2
qnx man pages, http://support.qnx.com/support/docs/qnx4/.



64 Autoconf

6.6 Portable Shell Programming

When writing your own checks, there are some shell-script programming techniques you
should avoid in order to make your code portable. The Bourne shell and upward-compatible
shells like the Korn shell and Bash have evolved over the years, but to prevent trouble, do
not take advantage of features that were added after unix version 7, circa 1977. You should
not use shell functions, aliases, negated character classes, or other features that are not
found in all Bourne-compatible shells; restrict yourself to the lowest common denominator.
Even unset is not supported by all shells! Also, include a space after the exclamation point
in interpreter speci�cations, like this:

#! /usr/bin/perl

If you omit the space before the path, then 4.2bsd based systems (such as Sequent DYNIX)
will ignore the line, because they interpret `#! /' as a 4-byte magic number.

The set of external programs you should run in a configure script is fairly small. See
section \Utilities in Make�les" in GNU Coding Standards, for the list. This restriction
allows users to start out with a fairly small set of programs and build the rest, avoiding too
many interdependencies between packages.

Some of these external utilities have a portable subset of features; see Section 6.6.8
[Limitations of Usual Tools], page 77.

6.6.1 Shellology

There are several families of shells, most prominently the Bourne family and the C shell
family which are deeply incompatible. If you want to write portable shell scripts, avoid
members of the C shell family.

Below we describe some of the members of the Bourne shell family.

Ash ash is often used on gnu/Linux and bsd systems as a light-weight Bourne-
compatible shell. Ash 0.2 has some bugs that are �xed in the 0.3.x series, but
portable shell scripts should workaround them, since version 0.2 is still shipped
with many gnu/Linux distributions.

To be compatible with Ash 0.2:

� don't use `$?' after expanding empty or unset variables:

foo=
false
$foo
echo "Don't use it: $?"

� don't use command substitution within variable expansion:

echo ${FOO=`bar`}

� beware that single builtin substitutions are not performed by a sub shell,
hence their e�ect applies to the current shell! See Section 6.6.4 [Shell
Substitutions], page 68, item \Command Substitution".

Bash To detect whether you are running bash, test if BASH_VERSION is set. To disable
its extensions and require posix compatibility, run `set -o posix'. See section
\Bash posix Mode" in The GNU Bash Reference Manual, for details.



Chapter 6: Writing Tests 65

/bin/sh on OpenBSD
`\"' expands to `"' in here-in documents with unquoted delimiter in the native
/bin/sh on OpenBSD 2.7. As a general rule, if `\\' expands to `\' use `\\' to
get `\'. Don't rely on `\' being preserved just because it has no special meaning
together with the next symbol.

/usr/xpg4/bin/sh on Solaris
The posix-compliant Bourne shell on a Solaris system is /usr/xpg4/bin/sh

and is part of an extra optional package. There is no extra charge for this
package, but it is also not part of a minimal OS install and therefore some folks
may not have it.

Zsh To detect whether you are running zsh, test if ZSH_VERSION is set. By default
zsh is not compatible with the Bourne shell: you have to run `emulate sh' and
set NULLCMD to `:'. See section \Compatibility" in The Z Shell Manual, for
details.

The following discussion between Russ Allbery and Robert Lipe is worth reading:

Russ Allbery:

The gnu assumption that /bin/sh is the one and only shell leads to a perma-
nent deadlock. Vendors don't want to break user's existant shell scripts, and
there are some corner cases in the Bourne shell that are not completely com-
patible with a posix shell. Thus, vendors who have taken this route will never
(OK. . .\never say never") replace the Bourne shell (as /bin/sh) with a posix
shell.

Robert Lipe:

This is exactly the problem. While most (at least most System V's) do have
a bourne shell that accepts shell functions most vendor /bin/sh programs are
not the posix shell.

So while most modern systems do have a shell somewhere that meets the
posix standard, the challenge is to �nd it.

6.6.2 File Descriptors

Some �le descriptors shall not be used, since some systems, admittedly arcane, use them
for special purpose:

3 some systems may open it to `/dev/tty'.

4 used on the Kubota Titan.

Don't redirect several times the same �le descriptor, as you are doomed to failure under
Ultrix.

ULTRIX V4.4 (Rev. 69) System #31: Thu Aug 10 19:42:23 GMT 1995
UWS V4.4 (Rev. 11)
$ eval 'echo matter >fullness' >void
illegal io
$ eval '(echo matter >fullness)' >void
illegal io
$ (eval '(echo matter >fullness)') >void



66 Autoconf

Ambiguous output redirect.

In each case the expected result is of course `fullness' containing `matter' and `void'
being empty.

Don't try to redirect the standard error of a command substitution: it must be done in-
side the command substitution: when running `echo `cd /zorglub` 2>/dev/null' expect
the error message to escape, while `echo `cd /zorglub 2>/dev/null`' works properly.

It is worth noting that Zsh (but not Ash nor Bash) makes it possible in assignments
though: `foo=`cd /zorglub` 2>/dev/null'.

Most shells, if not all (including Bash, Zsh, Ash), output traces on stderr, even for sub-
shells. This might result in undesired content if you meant to capture the standard-error
output of the inner command:

$ ash -x -c '(eval "echo foo >&2") 2>stderr'
$ cat stderr
+ eval echo foo >&2
+ echo foo
foo
$ bash -x -c '(eval "echo foo >&2") 2>stderr'
$ cat stderr
+ eval 'echo foo >&2'
++ echo foo
foo
$ zsh -x -c '(eval "echo foo >&2") 2>stderr'
# Traces on startup �les deleted here.
$ cat stderr
+zsh:1> eval echo foo >&2
+zsh:1> echo foo
foo

You'll appreciate the various levels of detail. . .

One workaround is to grep out uninteresting lines, hoping not to remove good ones. . .

6.6.3 File System Conventions

While autoconf and friends will usually be run on some Unix variety, it can and will
be used on other systems, most notably dos variants. This impacts several assumptions
regarding �le and path names.

For example, the following code:

case $foo_dir in
/*) # Absolute

;;
*)

foo_dir=$dots$foo_dir ;;
esac

will fail to properly detect absolute paths on those systems, because they can use a drivespec,
and will usually use a backslash as directory separator. The canonical way to check for
absolute paths is:



Chapter 6: Writing Tests 67

case $foo_dir in
[\\/]* | ?:[\\/]* ) # Absolute

;;
*)

foo_dir=$dots$foo_dir ;;
esac

Make sure you quote the brackets if appropriate and keep the backslash as �rst character
(see Section 6.6.7 [Limitations of Builtins], page 72).

Also, because the colon is used as part of a drivespec, these systems don't use it as
path separator. When creating or accessing paths, use $ac_path_separator instead (or
the PATH_SEPARATOR output variable). autoconf sets this to the appropriate value (`:' or
`;') when it starts up.

File names need extra care as well. While dos-based environments that are
Unixy enough to run autoconf (such as DJGPP) will usually be able to han-
dle long �le names properly, there are still limitations that can seriously break
packages. Several of these issues can be easily detected by the doschk package
(ftp://ftp.gnu.org/gnu/non-gnu/doschk/doschk-1.1.tar.gz).

A short overview follows; problems are marked with sfn/lfn to indicate where they
apply: sfnmeans the issues are only relevant to plain dos, not to dos boxes underWindows,
while lfn identi�es problems that exist even under Windows.

No multiple dots (sfn)
dos cannot handle multiple dots in �lenames. This is an especially important
thing to remember when building a portable con�gure script, as autoconf uses
a .in suÆx for template �les.

This is perfectly OK on Unices:

AC_CONFIG_HEADER(config.h)
AC_CONFIG_FILES([source.c foo.bar])
AC_OUTPUT

but it causes problems on dos, as it requires `config.h.in', `source.c.in' and
`foo.bar.in'. To make your package more portable to dos-based environments,
you should use this instead:

AC_CONFIG_HEADER(config.h:config.hin)
AC_CONFIG_FILES([source.c:source.cin foo.bar:foobar.in])
AC_OUTPUT

No leading dot (sfn)
dos cannot handle �lenames that start with a dot. This is usually not a very
important issue for autoconf.

Case insensitivity (lfn)
dos is case insensitive, so you cannot, for example, have both a �le called
`INSTALL' and a directory called `install'. This also a�ects make; if there's a
�le called `INSTALL' in the directory, make install will do nothing (unless the
`install' target is marked as PHONY).

The 8+3 limit (sfn)
Because the dos �le system only stores the �rst 8 characters of the �lename
and the �rst 3 of the extension, those must be unique. That means that



68 Autoconf

`foobar-part1.c', `foobar-part2.c' and `foobar-prettybird.c' all resolve
to the same �lename (`FOOBAR-P.C'). The same goes for `foo.bar' and
`foo.bartender'.

Note: This is not usually a problem under Windows, as it uses numeric tails in
the short version of �lenames to make them unique. However, a registry setting
can turn this behaviour o�. While this makes it possible to share �le trees
containing long �le names between sfn and lfn environments, it also means
the above problem applies there as well.

Invalid characters
Some characters are invalid in dos �lenames, and should therefore be avoided.
In a lfn environment, these are `/', `\', `?', `*', `:', `<', `>', `|' and `"'. In a
sfn environment, other characters are also invalid. These include `+', `,', `['
and `]'.

6.6.4 Shell Substitutions

Contrary to a persistent urban legend, the Bourne shell does not systematically split
variables and backquoted expressions, in particular on the right-hand side of assignments
and in the argument of case. For instance, the following code:

case "$given_srcdir" in
.) top_srcdir="`echo "$dots" | sed 's,/$,,'`"
*) top_srcdir="$dots$given_srcdir" ;;
esac

is more readable when written as:

case $given_srcdir in
.) top_srcdir=`echo "$dots" | sed 's,/$,,'`
*) top_srcdir=$dots$given_srcdir ;;
esac

and in fact it is even more portable: in the �rst case of the �rst attempt, the computation
of top_srcdir is not portable, since not all shells properly understand "`..."..."...`".
Worse yet, not all shells understand "`...\"...\"...`" the same way. There is just no
portable way to use double-quoted strings inside double-quoted backquoted expressions
(pfew!).

$@ One of the most famous shell-portability issues is related to `"$@"': when there
are no positional arguments, it is supposed to be equivalent to nothing. But
some shells, for instance under Digital Unix 4.0 and 5.0, will then replace it
with an empty argument. To be portable, use `${1+"$@"}'.

${var:-value}

Old bsd shells, including the Ultrix sh, don't accept the colon for any shell
substitution, and complain and die.

${var=literal}

Be sure to quote:

: ${var='Some words'}

otherwise some shells, such as on Digital Unix V 5.0, will die because of a \bad
substitution".



Chapter 6: Writing Tests 69

Solaris' /bin/sh has a frightening bug in its interpretation of this. Imagine
you need set a variable to a string containing `}'. This `}' character confuses
Solaris' /bin/sh when the a�ected variable was already set. This bug can be
exercised by running:

$ unset foo
$ foo=${foo='}'}
$ echo $foo
}
$ foo=${foo='}' # no error; this hints to what the bug is
$ echo $foo
}
$ foo=${foo='}'}
$ echo $foo
}}
^ ugh!

It seems that `}' is interpreted as matching `${', even though it is enclosed in
single quotes. The problem doesn't happen using double quotes.

${var=expanded-value}

On Ultrix, running

default="yu,yaa"
: ${var="$default"}

will set var to `M-yM-uM-,M-yM-aM-a', i.e., the 8th bit of each char will be set.
You won't observe the phenomenon using a simple `echo $var' since apparently
the shell resets the 8th bit when it expands $var. Here are two means to make
this shell confess its sins:

$ cat -v <<EOF
$var
EOF

and

$ set | grep '^var=' | cat -v

One classic incarnation of this bug is:

default="a b c"
: ${list="$default"}
for c in $list; do
echo $c

done

You'll get `a b c' on a single line. Why? Because there are no spaces in `$list':
there are `M- ', i.e., spaces with the 8th bit set, hence no IFS splitting is per-
formed!!!

One piece of good news is that Ultrix works �ne with `: ${list=$default}';
i.e., if you don't quote. The bad news is then that qnx 4.25 then sets list to
the last item of default!

The portable way out consists in using a double assignment, to switch the 8th
bit twice on Ultrix:

list=${list="$default"}



70 Autoconf

. . .but beware of the `}' bug from Solaris (see above). For safety, use:

test "${var+set}" = set || var={value}

`commands`

While in general it makes no sense, do not substitute a single builtin with side
e�ects as Ash 0.2, trying to optimize, does not fork a sub-shell to perform the
command.

For instance, if you wanted to check that cd is silent, do not use `test -z "`cd

/`"' because the following can happen:

$ pwd
/tmp
$ test -n "`cd /`" && pwd
/

The result of `foo=`exit 1`' is left as an exercise to the reader.

$(commands)

This construct is meant to replace ``commands`'; they can be nested while
this is impossible to do portably with back quotes. Unfortunately it is not yet
widely supported. Most notably, even recent releases of Solaris don't support
it:

$ uname -a
SunOS shelby 5.7 Generic_106541-10 sun4u sparc SUNW,Ultra-1
$ echo $(echo blah)
syntax error: `(' unexpected

nor does irix 6.5's Bourne shell:

$ uname -a
IRIX firebird-image 6.5 07151432 IP22
$ echo $(echo blah)
$(echo blah)

6.6.5 Assignments

When setting several variables in a row, be aware that the order of the evaluation is
unde�ned. For instance `foo=1 foo=2; echo $foo' gives `1' with sh on Solaris, but `2' with
Bash. You must use `;' to enforce the order: `foo=1; foo=2; echo $foo'.

Don't rely on the exit status of an assignment: Ash 0.2 does not change the status and
propagates that of the last statement:

$ false || foo=bar; echo $?
1
$ false || foo=`:`; echo $?
0

and to make things even worse, qnx 4.25 just sets the exit status to 0 in any case:

$ foo=`exit 1`; echo $?
0

To assign default values, follow this algorithm:

1. If the default value is a literal and does not contain any closing brace, use:



Chapter 6: Writing Tests 71

: ${var='my literal'}

2. If the default value contains no closing brace, has to be expanded, and the variable
being initialized will never be IFS-split (i.e., it's not a list), then use:

: ${var="$default"}

3. If the default value contains no closing brace, has to be expanded, and the variable
being initialized will be IFS-split (i.e., it's a list), then use:

var=${var="$default"}

4. If the default value contains a closing brace, then use:

test "${var+set}" = set || var='${indirection}'

In most cases `var=${var="$default"}' is �ne, but in case of doubt, just use the latter.
See Section 6.6.4 [Shell Substitutions], page 68, items `${var:-value}' and `${var=value}'
for the rationale.

6.6.6 Special Shell Variables

Some shell variables should not be used, since they can have a deep inuence on the
behavior of the shell. In order to recover a sane behavior from the shell, some variables
should be unset, but unset is not portable (see Section 6.6.7 [Limitations of Builtins],
page 72) and a fallback value is needed. We list these values below.

CDPATH When this variable is set cd is verbose, so idioms such as `abs=`cd $rel &&

pwd`' break because abs receives the path twice.

Setting CDPATH to the empty value is not enough for most shells. A simple colon
is enough except for zsh, which prefers a leading dot:

zsh-3.1.6 % mkdir foo && (CDPATH=: cd foo)
/tmp/foo
zsh-3.1.6 % (CDPATH=:. cd foo)
/tmp/foo
zsh-3.1.6 % (CDPATH=.: cd foo)
zsh-3.1.6 %

(of course we could just unset CDPATH, since it also behaves properly if set to
the empty string).

Life wouldn't be so much fun if bash and zsh had the same behavior:

bash-2.02 % (CDPATH=:. cd foo)
bash-2.02 % (CDPATH=.: cd foo)
/tmp/foo

Therefore, a portable solution to neutralize `CDPATH' is

CDPATH=${ZSH_VERSION+.}:

Note that since zsh supports unset, you may unset `CDPATH' using `:' as a
fallback, see Section 6.6.7 [Limitations of Builtins], page 72.

IFS Don't set the �rst character of IFS to backslash. Indeed, Bourne shells use
the �rst character (backslash) when joining the components in `"$@"' and some
shells then re-interpret (!) the backslash escapes, so you can end up with
backspace and other strange characters.



72 Autoconf

LANG

LC_ALL

LC_TIME

LC_CTYPE

LANGUAGE

LC_COLLATE

LC_NUMERIC

LC_MESSAGES

These must not be set unconditionally because not all systems understand e.g.
`LANG=C' (notably SCO). Fixing LC_MESSAGES prevents Solaris sh from translat-
ing var values in set! Non-C LC_CTYPE values break the ctype check. Fixing LC_
COLLATE makes scripts more portable in some cases. For example, it causes the
regular expression `[a-z]' to match only lower-case letters on ascii platforms.
However, `[a-z]' does not work in general even when LC_COLLATE is �xed; for
example, it does not work for ebcdic platforms. For maximum portability, you
should use regular expressions like `[abcdefghijklmnopqrstuvwxyz]' that list
characters explicitly instead of relying on ranges.

If one of these variables is set, you should try to unset it, using `C' as a fall
back value. see Section 6.6.7 [Limitations of Builtins], page 72, builtin unset,
for more details.

NULLCMD When executing the command `>foo', zsh executes `$NULLCMD >foo'. The
Bourne shell considers NULLCMD is `:', while zsh, even in Bourne shell com-
patibility mode, sets NULLCMD to `cat'. If you forgot to set NULLCMD, your script
might be suspended waiting for data on its standard input.

status This variable is an alias to `$?' for zsh (at least 3.1.6), hence read-only. Do not
use it.

PATH_SEPARATOR

On DJGPP systems, the PATH_SEPARATOR variable can be set to either `:' or `;'
to control the path separator bash uses to set up certain environment variables
(such as PATH). Since this only works inside bash, you want autoconf to detect
the regular dos path separator `;', so it can be safely substituted in �les that
may not support `;' as path separator. So either unset this variable or set it to
`;'.

RANDOM Many shells provide RANDOM, a variable that returns a di�erent integer when
used. Most of the time, its value does not change when it is not used, but on
irix 6.5 the value changes all the time. This can be observed by using set.

6.6.7 Limitations of Shell Builtins

No, no, we are serious: some shells do have limitations! :)

You should always keep in mind that any built-in or command may support options, and
therefore have a very di�erent behavior with arguments starting with a dash. For instance,
the innocent `echo "$word"' can give unexpected results when word starts with a dash. It
is often possible to avoid this problem using `echo "x$word"', taking the `x' into account
later in the pipe.



Chapter 6: Writing Tests 73

! You can't use !, you'll have to rewrite your code.

break The use of `break 2', etcetera, is safe.

case You don't need to quote the argument; no splitting is performed.

You don't need the �nal `;;', but you should use it.

Because of a bug in its fnmatch, bash fails to properly handle backslashes in
character classes:

bash-2.02$ case /tmp in [/\\]*) echo OK;; esac
bash-2.02$

This is extremely unfortunate, since you are likely to use this code to handle
unix or ms-dos absolute paths. To work around this bug, always put the
backslash �rst:

bash-2.02$ case '\TMP' in [\\/]*) echo OK;; esac
OK
bash-2.02$ case /tmp in [\\/]*) echo OK;; esac
OK

echo The simple echo is probably the most surprising source of portability troubles.

Don't expect any option. See Section 4.6.1 [Preset Output Variables], page 19,
ECHO_N etc. for a means to simulate `-c'.

Do not use backslashes in the arguments, as there is no consensus on their
handling. On `echo '\n' | wc -l', the sh of Digital Unix 4.0, mips risc/os
4.52, answer 2, but the Solaris' sh, Bash and Zsh (in sh emulation mode) report
1. Please note that the problem is truly echo: all the shells understand `'\n''
as the string composed of a backslash and an `n'.

exit The default value of exit is supposed to be $?; unfortunately, some shells, such
as the DJGPP port of Bash 2.04, just perform `exit 0'.

bash-2.04$ foo=`exit 1` || echo fail
fail
bash-2.04$ foo=`(exit 1)` || echo fail
fail
bash-2.04$ foo=`(exit 1); exit` || echo fail
bash-2.04$

Using `exit $?' restores the expected behavior.

Some shell scripts, such as those generated by autoconf, use a trap to clean
up before exiting. If the last shell command exited with nonzero status, the
trap also exits with nonzero status so that the invoker can tell that an error
occurred.

Unfortunately, in some shells, such as Solaris 8 sh, an exit trap ignores the
exit command's status. In these shells, a trap cannot determine whether it
was invoked by plain exit or by exit 1. Instead of calling exit directly, use
the AC_MSG_ERROR macro that has a workaround for this problem.

export The builtin export dubs environment variable a shell variable. Each update
of exported variables corresponds to an update of the environment variables.



74 Autoconf

Conversely, each environment variable received by the shell when it is launched
should be imported as a shell variable marked as exported.

Alas, many shells, such as Solaris 2.5, IRIX 6.3, IRIX 5.2, AIX 4.1.5 and DU
4.0, forget to export the environment variables they receive. As a result, two
variables are coexisting: the environment variable and the shell variable. The
following code demonstrates this failure:

#! /bin/sh
echo $FOO
FOO=bar
echo $FOO
exec /bin/sh $0

when run with `FOO=foo' in the environment, these shells will print alternately
`foo' and `bar', although it should only print `foo' and then a sequence of
`bar's.

Therefore you should export again each environment variable that you update.

false Don't expect false to exit with status 1: in the native Bourne shell of Solaris
2.8, it exits with status 255.

for To loop over positional arguments, use:

for arg
do
echo "$arg"

done

You may not leave the do on the same line as for, since some shells improperly
grok:

for arg; do
echo "$arg"

done

If you want to explicitly refer to the positional arguments, given the `$@' bug
(see Section 6.6.4 [Shell Substitutions], page 68), use:

for arg in ${1+"$@"}; do
echo "$arg"

done

if Using `!' is not portable. Instead of:

if ! cmp -s file file.new; then
mv file.new file

fi

use:

if cmp -s file file.new; then :; else
mv file.new file

fi

There are shells that do not reset the exit status from an if:

$ if (exit 42); then true; fi; echo $?
42



Chapter 6: Writing Tests 75

whereas a proper shell should have printed `0'. This is especially bad in Make-
�les since it produces false failures. This is why properly written Make�les,
such as Automake's, have such hairy constructs:

if test -f "$file"; then
install "$file" "$dest"

else
:

fi

set This builtin faces the usual problem with arguments starting with a dash. Mod-
ern shells such as Bash or Zsh understand `--' to specify the end of the options
(any argument after `--' is a parameters, even `-x' for instance), but most shells
simply stop the option processing as soon as a non-option argument is found.
Therefore, use `dummy' or simply `x' to end the option processing, and use shift
to pop it out:

set x $my_list; shift

shift Not only is shifting a bad idea when there is nothing left to shift, but in
addition it is not portable: the shell of mips risc/os 4.52 refuses to do it.

test The test program is the way to perform many �le and string tests. It is often
invoked by the alternate name `[', but using that name in Autoconf code is
asking for trouble since it is an M4 quote character.

If you need to make multiple checks using test, combine them with the shell
operators `&&' and `||' instead of using the test operators `-a' and `-o'. On
System V, the precedence of `-a' and `-o' is wrong relative to the unary opera-
tors; consequently, posix does not specify them, so using them is nonportable.
If you combine `&&' and `||' in the same statement, keep in mind that they
have equal precedence.

You may use `!' with test, but not with if: `test ! -r foo || exit 1'.

test (�les)
To enable configure scripts to support cross-compilation, they shouldn't do
anything that tests features of the build system instead of the host system.
But occasionally you may �nd it necessary to check whether some arbitrary �le
exists. To do so, use `test -f' or `test -r'. Do not use `test -x', because
4.3bsd does not have it. Do not use `test -e' either, because Solaris 2.5 does
not have it.

test (strings)
Avoid `test "string"', in particular if string might start with a dash, since
test might interpret its argument as an option (e.g., `string = "-n"').

Contrary to a common belief, `test -n string ' and `test -z string ' are

portable, nevertheless many shells (such as Solaris 2.5, AIX 3.2, UNICOS
10.0.0.6, Digital Unix 4 etc.) have bizarre precedence and may be confused if
string looks like an operator:

$ test -n =
test: argument expected

If there are risks, use `test "xstring" = x' or `test "xstring" != x' instead.



76 Autoconf

It is frequent to �nd variations of the following idiom:

test -n "`echo $ac_feature | sed 's/[-a-zA-Z0-9_]//g'`" &&
action

to take an action when a token matches a given pattern. Such constructs should
always be avoided by using:

echo "$ac_feature" | grep '[^-a-zA-Z0-9_]' >/dev/null 2>&1 &&
action

Use case where possible since it is faster, being a shell builtin:

case $ac_feature in
*[!-a-zA-Z0-9_]*) action;;

esac

Alas, negated character classes are probably not portable, although no shell is
known to not support the posix.2 syntax `[!...]' (when in interactive mode,
zsh is confused by the `[!...]' syntax and looks for an event in its history
because of `!'). Many shells do not support the alternative syntax `[^...]'
(Solaris, Digital Unix, etc.).

One solution can be:

expr "$ac_feature" : '.*[^-a-zA-Z0-9_]' >/dev/null &&
action

or better yet

expr "x$ac_feature" : '.*[^-a-zA-Z0-9_]' >/dev/null &&
action

`expr "Xfoo" : "Xbar"' is more robust than `echo "Xfoo" | grep "^Xbar"', be-
cause it avoids problems when `foo' contains backslashes.

trap It is safe to trap at least the signals 1, 2, 13 and 15. You can also trap 0, i.e.,
have the trap run when the script ends (either via an explicit exit, or the end
of the script).

Although posix is not absolutely clear on this point, it is widely admitted that
when entering the trap `$?' should be set to the exit status of the last command
run before the trap. The ambiguity can be summarized as: \when the trap is
launched by an exit, what is the last command run: that before exit, or exit
itself?"

Bash considers exit to be the last command, while Zsh and Solaris 8 sh consider
that when the trap is run it is still in the exit, hence it is the previous exit
status that the trap receives:

$ cat trap.sh
trap 'echo $?' 0
(exit 42); exit 0
$ zsh trap.sh
42
$ bash trap.sh
0

The portable solution is then simple: when you want to `exit 42', run `(exit
42); exit 42', the �rst exit being used to set the exit status to 42 for Zsh,
and the second to trigger the trap and pass 42 as exit status for Bash.



Chapter 6: Writing Tests 77

The shell in FreeBSD 4.0 has the following bug: `$?' is reset to 0 by empty lines
if the code is inside trap.

$ trap 'false

echo $?' 0
$ exit
0

Fortunately, this bug only a�ects trap.

true Don't worry: as far as we know true is portable. Nevertheless, it's not always a
builtin (e.g., Bash 1.x), and the portable shell community tends to prefer using
:. This has a funny side e�ect: when asked whether false is more portable
than true Alexandre Oliva answered:

In a sense, yes, because if it doesn't exist, the shell will produce an
exit status of failure, which is correct for false, but not for true.

unset You cannot assume the support of unset, nevertheless, because it is extremely
useful to disable embarrassing variables such as CDPATH or LANG, you can test
for its existence and use it provided you give a neutralizing value when unset

is not supported:

if (unset FOO) >/dev/null 2>&1; then
unset=unset

else
unset=false

fi
$unset CDPATH || CDPATH=:

See Section 6.6.6 [Special Shell Variables], page 71, for some neutralizing values.
Also, see Section 6.6.7 [Limitations of Builtins], page 72, documentation of
export, for the case of environment variables.

6.6.8 Limitations of Usual Tools

The small set of tools you can expect to �nd on any machine can still include some
limitations you should be aware of.

awk Don't leave white spaces before the parentheses in user functions calls, gnu
awk will reject it:

$ gawk 'function die () { print "Aaaaarg!" }
BEGIN { die () }'

gawk: cmd. line:2: BEGIN { die () }
gawk: cmd. line:2: ^ parse error
$ gawk 'function die () { print "Aaaaarg!" }

BEGIN { die() }'
Aaaaarg!

If you want your program to be deterministic, don't depend on for on arrays:

$ cat for.awk
END {
arr["foo"] = 1



78 Autoconf

arr["bar"] = 1
for (i in arr)

print i
}
$ gawk -f for.awk </dev/null
foo
bar
$ nawk -f for.awk </dev/null
bar
foo

cat Don't rely on any option. The option `-v', which displays non-printing charac-
ters, seems portable, though.

cmp cmp performs a raw data comparison of two �les, while diff compares two text
�les. Therefore, if you might compare DOS �les, even if only checking whether
two �les are di�erent, use diff to avoid spurious di�erences due to di�erences
of newline encoding.

cp SunOS cp does not support `-f', although its mv does. It's possible to deduce
why mv and cp are di�erent with respect to `-f'. mv prompts by default before
overwriting a read-only �le. cp does not. Therefore, mv requires a `-f' option,
but cp does not. mv and cp behave di�erently with respect to read-only �les be-
cause the simplest form of cp cannot overwrite a read-only �le, but the simplest
form of mv can. This is because cp opens the target for write access, whereas
mv simply calls link (or, in newer systems, rename).

diff Option `-u' is nonportable.

Some implementations, such as Tru64's, fail when comparing to `/dev/null'.
Use an empty �le instead.

dirname Not all hosts have dirname, but it is reasonably easy to emulate, e.g.:

dir=`expr "x$file" : 'x\(.*\)/[^/]*' \|
'.' : '.'

But there are a few subtilities, e.g., under UN*X, should `//1' give `/'? Paul
Eggert answers:

No, under some older avors of Unix, leading `//' is a special path
name: it refers to a \super-root" and is used to access other ma-
chines' �les. Leading `///', `////', etc. are equivalent to `/'; but
leading `//' is special. I think this tradition started with Apollo
Domain/OS, an OS that is still in use on some older hosts.

POSIX.2 allows but does not require the special treatment for `//'.
It says that the behavior of dirname on path names of the form
`//([^/]+/*)?' is implementation de�ned. In these cases, GNU
dirname returns `/', but it's more portable to return `//' as this
works even on those older avors of Unix.

I have heard rumors that this special treatment of `//' may be
dropped in future versions of POSIX, but for now it's still the stan-
dard.



Chapter 6: Writing Tests 79

egrep The empty alternative is not portable, use `?' instead. For instance with Digital
Unix v5.0:

> printf "foo\n|foo\n" | egrep '^(|foo|bar)$'
|foo
> printf "bar\nbar|\n" | egrep '^(foo|bar|)$'
bar|
> printf "foo\nfoo|\n|bar\nbar\n" | egrep '^(foo||bar)$'
foo
|bar

egrep also su�ers the limitations of grep.

expr No expr keyword starts with `x', so use `expr x"word" : 'xregex'' to keep
expr from misinterpreting word.

Don't use length, substr, match and index.

expr (`|') You can use `|'. Although posix does require that `expr ''' return the empty
string, it does not specify the result when you `|' together the empty string (or
zero) with the empty string. For example:

expr '' \| ''

gnu/Linux and posix.2-1992 return the empty string for this case, but tradi-
tional Unix returns `0' (Solaris is one such example). In the latest posix draft,
the speci�cation has been changed to match traditional Unix's behavior (which
is bizarre, but it's too late to �x this). Please note that the same problem does
arise when the empty string results from a computation, as in:

expr bar : foo \| foo : bar

Avoid this portability problem by avoiding the empty string.

expr (`:') Don't use `\?', `\+' and `\|' in patterns, they are not supported on Solaris.

The posix.2-1992 standard is ambiguous as to whether `expr a : b' (and `expr
'a' : '\(b\)'') output `0' or the empty string. In practice, it outputs the
empty string on most platforms, but portable scripts should not assume this.
For instance, the qnx 4.25 native expr returns `0'.

You may believe that one means to get a uniform behavior would be to use the
empty string as a default value:

expr a : b \| ''

unfortunately this behaves exactly as the original expression, see the `expr
(`:')' entry for more information.

Older expr implementations (e.g. SunOS 4 expr and Solaris 8 /usr/ucb/expr)
have a silly length limit that causes expr to fail if the matched substring is longer
than 120 bytes. In this case, you might want to fall back on `echo|sed' if expr
fails.

Don't leave, there is some more!

The qnx 4.25 expr, in addition of preferring `0' to the empty string, has a
funny behavior in its exit status: it's always 1 when parentheses are used!

$ val=`expr 'a' : 'a'`; echo "$?: $val"
0: 1



80 Autoconf

$ val=`expr 'a' : 'b'`; echo "$?: $val"
1: 0

$ val=`expr 'a' : '\(a\)'`; echo "?: $val"
1: a
$ val=`expr 'a' : '\(b\)'`; echo "?: $val"
1: 0

In practice this can be a big problem if you are ready to catch failures of expr
programs with some other method (such as using sed), since you may get twice
the result. For instance

$ expr 'a' : '\(a\)' || echo 'a' | sed 's/^\(a\)$/\1/'

will output `a' on most hosts, but `aa' on qnx 4.25. A simple work around
consists in testing expr and use a variable set to expr or to false according to
the result.

find The option `-maxdepth' seems to be GNU speci�c. Tru64 v5.1, NetBSD 1.5
and Solaris 2.5 find commands do not understand it.

grep Don't use `grep -s' to suppress output, because `grep -s' on System V does
not suppress output, only error messages. Instead, redirect the standard output
and standard error (in case the �le doesn't exist) of grep to `/dev/null'. Check
the exit status of grep to determine whether it found a match.

Don't use multiple regexps with `-e', as some grep will only honor the last
pattern (eg., IRIX 6.5 and Solaris 2.5.1). Anyway, Stardent Vistra SVR4 grep

lacks `-e'. . . Instead, use alternation and egrep.

ln Don't rely on ln having a `-f' option. Symbolic links are not available on old
systems, use `ln' as a fall back.

For versions of the DJGPP before 2.04, ln emulates soft links for executables by
generating a stub that in turn calls the real program. This feature also works
with nonexistent �les like in the Unix spec. So `ln -s file link' will generate
`link.exe', which will attempt to call `file.exe' if run. But this feature only
works for executables, so `cp -p' is used instead for these systems. DJGPP
versions 2.04 and later have full symlink support.

mv The only portable options are `-f' and `-i'.

Moving individual �les between �le systems is portable (it was in V6), but it
is not always atomic: when doing `mv new existing', there's a critical section
where neither the old nor the new version of `existing' actually exists.

Moving directories across mount points is not portable, use cp and rm.

sed Patterns should not include the separator (unless escaped), even as part
of a character class. In conformance with posix, the Cray sed will reject
`s/[^/]*$//': use `s,[^/]*$,,'.

Sed scripts should not use branch labels longer than 8 characters and should
not contain comments.

Input should have reasonably long lines, since some sed have an input bu�er
limited to 4000 bytes.



Chapter 6: Writing Tests 81

Alternation, `\|', is common but not portable. Anchors (`^' and `$') inside
groups are not portable.

Nested groups are extremely portable, but there is at least one sed (System
V/68 Base Operating System R3V7.1) that does not support it.

Of course the option `-e' is portable, but it is not needed. No valid Sed program
can start with a dash, so it does not help disambiguating. Its sole usefulness is
helping enforcing indenting as in:

sed -e instruction-1 \
-e instruction-2

as opposed to

sed instruction-1;instruction-2

Contrary to yet another urban legend, you may portably use `&' in the replace-
ment part of the s command to mean \what was matched".

sed (`t') Some old systems have sed that \forget" to reset their `t' ag when starting
a new cycle. For instance on mips risc/os, and on irix 5.3, if you run the
following sed script (the line numbers are not actual part of the texts):

s/keep me/kept/g # a
t end # b
s/.*/deleted/g # c
: end # d

on

delete me # 1
delete me # 2
keep me # 3
delete me # 4

you get

deleted
delete me
kept
deleted

instead of

deleted
deleted
kept
deleted

Why? When processing 1, a matches, therefore sets the t ag, b jumps to d,
and the output is produced. When processing line 2, the t ag is still set (this is
the bug). Line a fails to match, but sed is not supposed to clear the t ag when
a substitution fails. Line b sees that the ag is set, therefore it clears it, and
jumps to d, hence you get `delete me' instead of `deleted'. When processing
3 t is clear, a matches, so the ag is set, hence b clears the ags and jumps.
Finally, since the ag is clear, 4 is processed properly.

There are two things one should remind about `t' in sed. Firstly, always re-
member that `t' jumps if some substitution succeeded, not only the immediately



82 Autoconf

preceding substitution, therefore, always use a fake `t clear; : clear' to reset
the t ag where indeed.

Secondly, you cannot rely on sed to clear the ag at each new cycle.

One portable implementation of the script above is:

t clear
: clear
s/keep me/kept/g
t end
s/.*/deleted/g
: end

touch On some old bsd systems, touch or any command that results in an empty �le
does not update the timestamps, so use a command like echo as a workaround.

GNU touch 3.16r (and presumably all before that) fails to work on SunOS 4.1.3
when the empty �le is on an nfs-mounted 4.2 volume.

6.6.9 Limitations of Make

Make itself su�ers a great number of limitations, only a few of which being listed here.
First of all, remember that since commands are executed by the shell, all its weaknesses are
inherited. . .

VPATH Don't use it! For instance any assignment to VPATH causes Sun make to only
execute the �rst set of double-colon rules.

6.7 Multiple Cases

Some operations are accomplished in several possible ways, depending on the unix vari-
ant. Checking for them essentially requires a \case statement". Autoconf does not directly
provide one; however, it is easy to simulate by using a shell variable to keep track of whether
a way to perform the operation has been found yet.

Here is an example that uses the shell variable fstype to keep track of whether the
remaining cases need to be checked.



Chapter 6: Writing Tests 83

AC_MSG_CHECKING([how to get file system type])
fstype=no
# The order of these tests is important.
AC_TRY_CPP([#include <sys/statvfs.h>
#include <sys/fstyp.h>],

[AC_DEFINE(FSTYPE_STATVFS) fstype=SVR4])
if test $fstype = no; then
AC_TRY_CPP([#include <sys/statfs.h>

#include <sys/fstyp.h>],
[AC_DEFINE(FSTYPE_USG_STATFS) fstype=SVR3])

fi
if test $fstype = no; then
AC_TRY_CPP([#include <sys/statfs.h>

#include <sys/vmount.h>],
[AC_DEFINE(FSTYPE_AIX_STATFS) fstype=AIX])

fi
# (more cases omitted here)
AC_MSG_RESULT([$fstype])

6.8 Language Choice

Autoconf-generated configure scripts check for the C compiler and its features by de-
fault. Packages that use other programming languages (maybe more than one, e.g. C
and C++) need to test features of the compilers for the respective languages. The fol-
lowing macros determine which programming language is used in the subsequent tests in
`configure.ac'.

MacroAC LANG (language)
Do compilation tests using the compiler, preprocessor and �le extensions for the
speci�ed language.

Supported languages are:

`C' Do compilation tests using CC and CPP and use extension `.c' for test
programs.

`C++' Do compilation tests using CXX and CXXCPP and use extension `.C' for
test programs.

`Fortran 77'
Do compilation tests using F77 and use extension `.f' for test programs.

MacroAC LANG PUSH (language)
Remember the current language (as set by AC_LANG) on a stack, and then select the
language. Use this macro and AC_LANG_POP in macros that need to temporarily switch
to a particular language.

MacroAC LANG POP ([language])
Select the language that is saved on the top of the stack, as set by AC_LANG_PUSH,
and remove it from the stack.



84 Autoconf

If given, language speci�es the language we just quit. It is a good idea to specify it
when it's known (which should be the case. . . ), since Autoconf will detect inconsis-
tencies.

AC_LANG_PUSH(Fortran 77)
# Perform some tests on Fortran 77.
# ...
AC_LANG_POP(Fortran 77)

MacroAC REQUIRE CPP
Ensure that whichever preprocessor would currently be used for tests has been found.
Calls AC_REQUIRE (see Section 8.5.1 [Prerequisite Macros], page 99) with an argument
of either AC_PROG_CPP or AC_PROG_CXXCPP, depending on which language is current.



Chapter 7: Results of Tests 85

7 Results of Tests

Once configure has determined whether a feature exists, what can it do to record that
information? There are four sorts of things it can do: de�ne a C preprocessor symbol, set
a variable in the output �les, save the result in a cache �le for future configure runs, and
print a message letting the user know the result of the test.

7.1 De�ning C Preprocessor Symbols

A common action to take in response to a feature test is to de�ne a C preprocessor
symbol indicating the results of the test. That is done by calling AC_DEFINE or AC_DEFINE_
UNQUOTED.

By default, AC_OUTPUT places the symbols de�ned by these macros into the output
variable DEFS, which contains an option `-Dsymbol=value' for each symbol de�ned. Unlike
in Autoconf version 1, there is no variable DEFS de�ned while configure is running. To
check whether Autoconf macros have already de�ned a certain C preprocessor symbol, test
the value of the appropriate cache variable, as in this example:

AC_CHECK_FUNC(vprintf, [AC_DEFINE(HAVE_VPRINTF)])
if test "$ac_cv_func_vprintf" != yes; then
AC_CHECK_FUNC(_doprnt, [AC_DEFINE(HAVE_DOPRNT)])

fi

If AC_CONFIG_HEADERS has been called, then instead of creating DEFS, AC_OUTPUT creates
a header �le by substituting the correct values into #define statements in a template �le.
See Section 4.7 [Con�guration Headers], page 24, for more information about this kind of
output.

MacroAC DEFINE (variable, [value], [description])
De�ne C preprocessor variable variable. If value is given, set variable to that value
(verbatim), otherwise set it to 1. value should not contain literal newlines, and if
you are not using AC_CONFIG_HEADERS it should not contain any `#' characters, as
make tends to eat them. To use a shell variable (which you need to do in order to
de�ne a value containing the M4 quote characters `[' or `]'), use AC_DEFINE_UNQUOTED
instead. description is only useful if you are using AC_CONFIG_HEADERS. In this case,
description is put into the generated `config.h.in' as the comment before the macro
de�ne. The following example de�nes the C preprocessor variable EQUATION to be the
string constant `"$a > $b"':

AC_DEFINE(EQUATION, "$a > $b")

MacroAC DEFINE UNQUOTED (variable, [value], [description])
Like AC_DEFINE, but three shell expansions are performed|once|on variable and
value: variable expansion (`$'), command substitution (``'), and backslash escaping
(`\'). Single and double quote characters in the value have no special meaning. Use
this macro instead of AC_DEFINE when variable or value is a shell variable. Examples:

AC_DEFINE_UNQUOTED(config_machfile, "$machfile")
AC_DEFINE_UNQUOTED(GETGROUPS_T, $ac_cv_type_getgroups)
AC_DEFINE_UNQUOTED($ac_tr_hdr)



86 Autoconf

Due to the syntactical bizarreness of the Bourne shell, do not use semicolons to separate
AC_DEFINE or AC_DEFINE_UNQUOTED calls from other macro calls or shell code; that can
cause syntax errors in the resulting configure script. Use either spaces or newlines. That
is, do this:

AC_CHECK_HEADER(elf.h, [AC_DEFINE(SVR4) LIBS="$LIBS -lelf"])

or this:

AC_CHECK_HEADER(elf.h,
[AC_DEFINE(SVR4)
LIBS="$LIBS -lelf"])

instead of this:

AC_CHECK_HEADER(elf.h, [AC_DEFINE(SVR4); LIBS="$LIBS -lelf"])

7.2 Setting Output Variables

Another way to record the results of tests is to set output variables, which are shell
variables whose values are substituted into �les that configure outputs. The two macros
below create new output variables. See Section 4.6.1 [Preset Output Variables], page 19,
for a list of output variables that are always available.

MacroAC SUBST (variable, [value])
Create an output variable from a shell variable. Make AC_OUTPUT substitute the
variable variable into output �les (typically one or more `Makefile's). This means
that AC_OUTPUT will replace instances of `@variable@' in input �les with the value that
the shell variable variable has when AC_OUTPUT is called. This value of variable should
not contain literal newlines.

If value is given, in addition assign it to `variable'.

MacroAC SUBST FILE (variable)
Another way to create an output variable from a shell variable. Make AC_OUTPUT

insert (without substitutions) the contents of the �le named by shell variable variable
into output �les. This means that AC_OUTPUT will replace instances of `@variable@'
in output �les (such as `Makefile.in') with the contents of the �le that the shell
variable variable names when AC_OUTPUT is called. Set the variable to `/dev/null'
for cases that do not have a �le to insert.

This macro is useful for inserting `Makefile' fragments containing special dependen-
cies or other make directives for particular host or target types into `Makefile's. For
example, `configure.ac' could contain:

AC_SUBST_FILE(host_frag)
host_frag=$srcdir/conf/sun4.mh

and then a `Makefile.in' could contain:

@host_frag@



Chapter 7: Results of Tests 87

7.3 Caching Results

To avoid checking for the same features repeatedly in various configure scripts (or in
repeated runs of one script), configure can optionally save the results of many checks in a
cache �le (see Section 7.3.2 [Cache Files], page 88). If a configure script runs with caching
enabled and �nds a cache �le, it reads the results of previous runs from the cache and avoids
rerunning those checks. As a result, configure can then run much faster than if it had to
perform all of the checks every time.

MacroAC CACHE VAL (cache-id, commands-to-set-it)
Ensure that the results of the check identi�ed by cache-id are available. If the results
of the check were in the cache �le that was read, and configure was not given the
`--quiet' or `--silent' option, print a message saying that the result was cached;
otherwise, run the shell commands commands-to-set-it. If the shell commands are run
to determine the value, the value will be saved in the cache �le just before configure
creates its output �les. See Section 7.3.1 [Cache Variable Names], page 88, for how
to choose the name of the cache-id variable.

The commands-to-set-it must have no side e�ects except for setting the variable
cache-id, see below.

MacroAC CACHE CHECK (message, cache-id, commands-to-set-it)
A wrapper for AC_CACHE_VAL that takes care of printing the messages. This macro
provides a convenient shorthand for the most common way to use these macros.
It calls AC_MSG_CHECKING for message, then AC_CACHE_VAL with the cache-id and
commands arguments, and AC_MSG_RESULT with cache-id.

The commands-to-set-it must have no side e�ects except for setting the variable
cache-id, see below.

It is very common to �nd buggy macros using AC_CACHE_VAL or AC_CACHE_CHECK, be-
cause people are tempted to call AC_DEFINE in the commands-to-set-it. Instead, the code
that follows the call to AC_CACHE_VAL should call AC_DEFINE, by examining the value of
the cache variable. For instance, the following macro is broken:

AC_DEFUN([AC_SHELL_TRUE],
[AC_CACHE_CHECK([whether true(1) works], [ac_cv_shell_true_works],

[ac_cv_shell_true_works=no
true && ac_cv_shell_true_works=yes
if test $ac_cv_shell_true_works = yes; then
AC_DEFINE([TRUE_WORKS], 1

[Define if `true(1)' works properly.])
fi])

])

This fails if the cache is enabled: the second time this macro is run, TRUE_WORKS will not

be de�ned. The proper implementation is:



88 Autoconf

AC_DEFUN([AC_SHELL_TRUE],
[AC_CACHE_CHECK([whether true(1) works], [ac_cv_shell_true_works],

[ac_cv_shell_true_works=no
true && ac_cv_shell_true_works=yes])

if test $ac_cv_shell_true_works = yes; then
AC_DEFINE([TRUE_WORKS], 1

[Define if `true(1)' works properly.])
fi

])

Also, commands-to-set-it should not print any messages, for example with AC_MSG_

CHECKING; do that before calling AC_CACHE_VAL, so the messages are printed regardless of
whether the results of the check are retrieved from the cache or determined by running the
shell commands.

7.3.1 Cache Variable Names

The names of cache variables should have the following format:

package-pre�x_cv_value-type_speci�c-value_[ additional-options]

for example, `ac_cv_header_stat_broken' or `ac_cv_prog_gcc_traditional'. The parts
of the variable name are:

package-pre�x

An abbreviation for your package or organization; the same pre�x you begin
local Autoconf macros with, except lowercase by convention. For cache values
used by the distributed Autoconf macros, this value is `ac'.

_cv_ Indicates that this shell variable is a cache value. This string must be present
in the variable name, including the leading underscore.

value-type A convention for classifying cache values, to produce a rational naming system.
The values used in Autoconf are listed in Section 8.2 [Macro Names], page 93.

speci�c-value

Which member of the class of cache values this test applies to. For example,
which function (`alloca'), program (`gcc'), or output variable (`INSTALL').

additional-options

Any particular behavior of the speci�c member that this test applies to. For
example, `broken' or `set'. This part of the name may be omitted if it does
not apply.

The values assigned to cache variables may not contain newlines. Usually, their values
will be boolean (`yes' or `no') or the names of �les or functions; so this is not an important
restriction.

7.3.2 Cache Files

A cache �le is a shell script that caches the results of con�gure tests run on one system
so they can be shared between con�gure scripts and con�gure runs. It is not useful on other
systems. If its contents are invalid for some reason, the user may delete or edit it.



Chapter 7: Results of Tests 89

By default, configure uses no cache �le (technically, it uses `--cache-file=/dev/null'),
to avoid problems caused by accidental use of stale cache �les.

To enable caching, configure accepts `--config-cache' (or `-C') to cache results in the
�le `config.cache'. Alternatively, `--cache-file=�le' speci�es that �le be the cache �le.
The cache �le is created if it does not exist already. When configure calls configure scripts
in subdirectories, it uses the `--cache-file' argument so that they share the same cache.
See Section 4.10 [Subdirectories], page 29, for information on con�guring subdirectories
with the AC_CONFIG_SUBDIRS macro.

`config.status' only pays attention to the cache �le if it is given the `--recheck'
option, which makes it rerun configure.

It is wrong to try to distribute cache �les for particular system types. There is too
much room for error in doing that, and too much administrative overhead in maintaining
them. For any features that can't be guessed automatically, use the standard method of the
canonical system type and linking �les (see Chapter 9 [Manual Con�guration], page 105).

The site initialization script can specify a site-wide cache �le to use, instead of the
usual per-program cache. In this case, the cache �le will gradually accumulate information
whenever someone runs a new configure script. (Running configure merges the new
cache results with the existing cache �le.) This may cause problems, however, if the system
con�guration (e.g. the installed libraries or compilers) changes and the stale cache �le is
not deleted.

7.3.3 Cache Checkpointing

If your con�gure script, or a macro called from con�gure.ac, happens to abort the con-
�gure process, it may be useful to checkpoint the cache a few times at key points using
AC_CACHE_SAVE. Doing so will reduce the amount of time it takes to re-run the con�gure
script with (hopefully) the error that caused the previous abort corrected.

MacroAC CACHE LOAD
Loads values from existing cache �le, or creates a new cache �le if a cache �le is not
found. Called automatically from AC_INIT.

MacroAC CACHE SAVE
Flushes all cached values to the cache �le. Called automatically from AC_OUTPUT, but
it can be quite useful to call AC_CACHE_SAVE at key points in con�gure.ac.

For instance:

. . . AC INIT, etc. . . .
# Checks for programs.
AC_PROG_CC
AC_PROG_GCC_TRADITIONAL
. . . more program checks . . .
AC_CACHE_SAVE

# Checks for libraries.
AC_CHECK_LIB(nsl, gethostbyname)
AC_CHECK_LIB(socket, connect)
. . . more lib checks . . .
AC_CACHE_SAVE



90 Autoconf

# Might abort...
AM_PATH_GTK(1.0.2,, (exit 1); exit)
AM_PATH_GTKMM(0.9.5,, (exit 1); exit)
. . . AC OUTPUT, etc. . . .

7.4 Printing Messages

configure scripts need to give users running them several kinds of information. The
following macros print messages in ways appropriate for each kind. The arguments to all
of them get enclosed in shell double quotes, so the shell performs variable and back-quote
substitution on them.

These macros are all wrappers around the echo shell command. configure scripts
should rarely need to run echo directly to print messages for the user. Using these macros
makes it easy to change how and when each kind of message is printed; such changes need
only be made to the macro de�nitions and all of the callers will change automatically.

To diagnose static issues, i.e., when autoconf is run, see Section 8.4 [Reporting Mes-
sages], page 99.

MacroAC MSG CHECKING (feature-description)
Notify the user that configure is checking for a particular feature. This macro
prints a message that starts with `checking ' and ends with `...' and no newline.
It must be followed by a call to AC_MSG_RESULT to print the result of the check and
the newline. The feature-description should be something like `whether the Fortran

compiler accepts C++ comments' or `for c89'.

This macro prints nothing if configure is run with the `--quiet' or `--silent'
option.

MacroAC MSG RESULT (result-description)
Notify the user of the results of a check. result-description is almost always the value
of the cache variable for the check, typically `yes', `no', or a �le name. This macro
should follow a call to AC_MSG_CHECKING, and the result-description should be the
completion of the message printed by the call to AC_MSG_CHECKING.

This macro prints nothing if configure is run with the `--quiet' or `--silent'
option.

MacroAC MSG NOTICE (message)
Deliver the message to the user. It is useful mainly to print a general description of
the overall purpose of a group of feature checks, e.g.,

AC_MSG_NOTICE([checking if stack overflow is detectable])

This macro prints nothing if configure is run with the `--quiet' or `--silent'
option.



Chapter 7: Results of Tests 91

MacroAC MSG ERROR (error-description, [exit-status])
Notify the user of an error that prevents configure from completing. This macro
prints an error message to the standard error output and exits configure with exit-

status (1 by default). error-description should be something like `invalid value

$HOME for \$HOME'.

The error-description should start with a lower-case letter, and \cannot" is preferred
to \can't".

MacroAC MSG WARN (problem-description)
Notify the configure user of a possible problem. This macro prints the message
to the standard error output; configure continues running afterward, so macros
that call AC_MSG_WARN should provide a default (back-up) behavior for the situations
they warn about. problem-description should be something like `ln -s seems to make

hard links'.



92 Autoconf



Chapter 8: Writing Macros 93

8 Writing Macros

When you write a feature test that could be applicable to more than one software
package, the best thing to do is encapsulate it in a new macro. Here are some instructions
and guidelines for writing Autoconf macros.

8.1 Macro De�nitions

Autoconf macros are de�ned using the AC_DEFUN macro, which is similar to the M4
builtin define macro. In addition to de�ning a macro, AC_DEFUN adds to it some code that
is used to constrain the order in which macros are called (see Section 8.5.1 [Prerequisite
Macros], page 99).

An Autoconf macro de�nition looks like this:

AC_DEFUN(macro-name, macro-body)

You can refer to any arguments passed to the macro as `$1', `$2', etc. See section \How
to de�ne new macros" in GNU m4, for more complete information on writing M4 macros.

Be sure to properly quote both the macro-body and the macro-name to avoid any
problems if the macro happens to have been previously de�ned.

Each macro should have a header comment that gives its prototype, and a brief descrip-
tion. When arguments have default values, display them in the prototype. For example:

# AC_MSG_ERROR(ERROR, [EXIT-STATUS = 1])
# --------------------------------------
define([AC_MSG_ERROR],
[{ _AC_ECHO([configure: error: $1], 2); exit m4_default([$2], 1); }])

Comments about the macro should be left in the header comment. Most other comments
will make their way into `configure', so just keep using `#' to introduce comments.

If you have some very special comments about pure M4 code, comments that make no
sense in `configure' and in the header comment, then use the builtin dnl: it causes m4 to
discard the text through the next newline.

Keep in mind that dnl is rarely needed to introduce comments; dnl is more useful to
get rid of the newlines following macros that produce no output, such as AC_REQUIRE.

8.2 Macro Names

All of the Autoconf macros have all-uppercase names starting with `AC_' to prevent them
from accidentally conicting with other text. All shell variables that they use for internal
purposes have mostly-lowercase names starting with `ac_'. To ensure that your macros
don't conict with present or future Autoconf macros, you should pre�x your own macro
names and any shell variables they use with some other sequence. Possibilities include your
initials, or an abbreviation for the name of your organization or software package.

Most of the Autoconf macros' names follow a structured naming convention that indi-
cates the kind of feature check by the name. The macro names consist of several words,
separated by underscores, going from most general to most speci�c. The names of their
cache variables use the same convention (see Section 7.3.1 [Cache Variable Names], page 88,
for more information on them).



94 Autoconf

The �rst word of the name after `AC_' usually tells the category of feature being tested.
Here are the categories used in Autoconf for speci�c test macros, the kind of macro that
you are more likely to write. They are also used for cache variables, in all-lowercase. Use
them where applicable; where they're not, invent your own categories.

C C language builtin features.

DECL Declarations of C variables in header �les.

FUNC Functions in libraries.

GROUP unix group owners of �les.

HEADER Header �les.

LIB C libraries.

PATH The full path names to �les, including programs.

PROG The base names of programs.

MEMBER Members of aggregates.

SYS Operating system features.

TYPE C builtin or declared types.

VAR C variables in libraries.

After the category comes the name of the particular feature being tested. Any further
words in the macro name indicate particular aspects of the feature. For example, AC_FUNC_
UTIME_NULL checks the behavior of the utime function when called with a NULL pointer.

An internal macro should have a name that starts with an underscore; Autoconf internals
should therefore start with `_AC_'. Additionally, a macro that is an internal subroutine of
another macro should have a name that starts with an underscore and the name of that
other macro, followed by one or more words saying what the internal macro does. For
example, AC_PATH_X has internal macros _AC_PATH_X_XMKMF and _AC_PATH_X_DIRECT.

8.3 Quoting

The most common brokenness of existing macros is an improper quotation. This sec-
tion, which users of Autoconf can skip, but which macro writers must read, �rst justi�es
the quotation scheme that was chosen for Autoconf and then ends with a rule of thumb.
Understanding the former helps one to follow the latter.

8.3.1 Active Characters

To fully understand where proper quotation is important, you �rst need to know what
are the special characters in Autoconf: `#' introduces a comment inside which no macro
expansion is performed, `,' separates arguments, `[' and `]' are the quotes themselves, and
�nally `(' and `)' (which m4 tries to match by pairs).

In order to understand the delicate case of macro calls, we �rst have to present some
obvious failures. Below they are \obvious-i�ed", although you �nd them in real life, they
are usually in disguise.



Chapter 8: Writing Macros 95

Comments, introduced by a hash and running up to the newline, are opaque tokens to
the top level: active characters are turned o�, and there is no macro expansion:

# define([def], ine)
)# define([def], ine)

Each time there can be a macro expansion, there is a quotation expansion; i.e., one level
of quotes is stripped:

int tab[10];
)int tab10;
[int tab[10];]
)int tab[10];

Without this in mind, the reader will try hopelessly to use her macro array:

define([array], [int tab[10];])
array
)int tab10;
[array]
)array

How can you correctly output the intended results1?

8.3.2 One Macro Call

Let's proceed on the interaction between active characters and macros with this small
macro, which just returns its �rst argument:

define([car], [$1])

The two pairs of quotes above are not part of the arguments of define; rather, they are
understood by the top level when it tries to �nd the arguments of define. Therefore, it is
equivalent to write:

define(car, $1)

But, while it is acceptable for a `configure.ac' to avoid unneeded quotes, it is bad practice
for Autoconf macros which must both be more robust and also advocate perfect style.

At the top level, there are only two possible quotings: either you quote or you don't:

car(foo, bar, baz)
)foo
[car(foo, bar, baz)]
)car(foo, bar, baz)

Let's pay attention to the special characters:

car(#)
error EOF in argument list

The closing parenthesis is hidden in the comment; with a hypothetical quoting, the top
level understood it this way:

car([#)]

Proper quotation, of course, �xes the problem:

1 Using defn.



96 Autoconf

car([#])
)#

The reader will easily understand the following examples:

car(foo, bar)
)foo
car([foo, bar])
)foo, bar
car((foo, bar))
)(foo, bar)
car([(foo], [bar)])
)(foo
car([], [])
)

car([[]], [[]])
)[]

With this in mind, we can explore the cases where macros invoke macros. . .

8.3.3 Quotation and Nested Macros

The examples below use the following macros:

define([car], [$1])
define([active], [ACT, IVE])
define([array], [int tab[10]])

Each additional embedded macro call introduces other possible interesting quotations:

car(active)
)ACT
car([active])
)ACT, IVE
car([[active]])
)active

In the �rst case, the top level looks for the arguments of car, and �nds `active'. Because
m4 evaluates its arguments before applying the macro, `active' is expanded, which results
in:

car(ACT, IVE)
)ACT

In the second case, the top level gives `active' as �rst and only argument of car, which
results in:

active
)ACT, IVE

i.e., the argument is evaluated after the macro that invokes it. In the third case, car receives
`[active]', which results in:

[active]
)active

exactly as we already saw above.

The example above, applied to a more realistic example, gives:



Chapter 8: Writing Macros 97

car(int tab[10];)
)int tab10;
car([int tab[10];])
)int tab10;
car([[int tab[10];]])
)int tab[10];

Huh? The �rst case is easily understood, but why is the second wrong, and the third right?
To understand that, you must know that after m4 expands a macro, the resulting text is
immediately subjected to macro expansion and quote removal. This means that the quote
removal occurs twice|�rst before the argument is passed to the car macro, and second
after the car macro expands to the �rst argument.

As the author of the Autoconf macro car, you then consider it to be incorrect that your
users have to double-quote the arguments of car, so you \�x" your macro. Let's call it qar
for quoted car:

define([qar], [[$1]])

and check that qar is properly �xed:

qar([int tab[10];])
)int tab[10];

Ahhh! That's much better.

But note what you've done: now that the arguments are literal strings, if the user wants
to use the results of expansions as arguments, she has to use an unquoted macro call:

qar(active)
)ACT

where she wanted to reproduce what she used to do with car:

car([active])
)ACT, IVE

Worse yet: she wants to use a macro that produces a set of cpp macros:

define([my_includes], [#include <stdio.h>])
car([my_includes])
)#include <stdio.h>
qar(my_includes)

error EOF in argument list

This macro, qar, because it double quotes its arguments, forces its users to leave their
macro calls unquoted, which is dangerous. Commas and other active symbols are interpreted
by m4 before they are given to the macro, often not in the way the users expect. Also, because
qar behaves di�erently from the other macros, it's an exception that should be avoided in
Autoconf.

8.3.4 Quotation Rule Of Thumb

To conclude, the quotation rule of thumb is:
One pair of quotes per pair of parentheses.

Never over-quote, never under-quote, in particular in the de�nition of macros. In the
few places where the macros need to use brackets (usually in C program text or regular
expressions), properly quote the arguments!



98 Autoconf

It is common to read Autoconf programs with snippets like:

AC_TRY_LINK(
changequote(<<, >>)dnl
<<#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif>>,
changequote([, ])dnl
[atoi (*tzname);], ac_cv_var_tzname=yes, ac_cv_var_tzname=no)

which is incredibly useless since AC_TRY_LINK is already double quoting, so you just need:

AC_TRY_LINK(
[#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif],

[atoi (*tzname);],
[ac_cv_var_tzname=yes],
[ac_cv_var_tzname=no])

The M4-uent reader will note that these two examples are rigorously equivalent, since m4
swallows both the `changequote(<<, >>)' and `<<' `>>' when it collects the arguments:
these quotes are not part of the arguments!

Simpli�ed, the example above is just doing this:

changequote(<<, >>)dnl
<<[]>>
changequote([, ])dnl

instead of simply:

[[]]

With macros that do not double quote their arguments (which is the rule), double-quote
the (risky) literals:

AC_LINK_IFELSE([AC_LANG_PROGRAM(
[[#include <time.h>
#ifndef tzname /* For SGI. */
extern char *tzname[]; /* RS6000 and others reject char **tzname. */
#endif]],

[atoi (*tzname);])],
[ac_cv_var_tzname=yes],
[ac_cv_var_tzname=no])

When you create a configure script using newly written macros, examine it carefully
to check whether you need to add more quotes in your macros. If one or more words have
disappeared in the m4 output, you need more quotes. When in doubt, quote.

However, it's also possible to put on too many layers of quotes. If this happens, the
resulting configure script will contain unexpanded macros. The autoconf program checks
for this problem by doing `grep AC_ configure'.



Chapter 8: Writing Macros 99

8.4 Reporting Messages

When macros statically diagnose abnormal situations, benign or fatal, they should report
them using these macros. For dynamic issues, i.e., when configure is run, see Section 7.4
[Printing Messages], page 90.

MacroAC DIAGNOSE (category, message)
Report message as a warning (or as an error if requested by the user) if it falls into
the category. You are encouraged to use standard categories, which currently include:

`all' messages that don't fall into one of the following category. Use of an
empty category is equivalent.

`cross' related to cross compilation issues.

`obsolete'
use of an obsolete construct.

`syntax' dubious syntactic constructs, incorrectly ordered macro calls.

MacroAC WARNING (message)
Equivalent to `AC_DIAGNOSE([syntax], message)', but you are strongly encouraged
to use a �ner grained category.

MacroAC FATAL (message)
Report a severe error message, and have autoconf die.

When the user runs `autoconf -W error', warnings from AC_DIAGNOSE and AC_WARNING

are reported as error, see Section 3.4 [autoconf Invocation], page 10.

8.5 Dependencies Between Macros

Some Autoconf macros depend on other macros having been called �rst in order to work
correctly. Autoconf provides a way to ensure that certain macros are called if needed and a
way to warn the user if macros are called in an order that might cause incorrect operation.

8.5.1 Prerequisite Macros

A macro that you write might need to use values that have previously been computed
by other macros. For example, AC_DECL_YYTEXT examines the output of flex or lex, so it
depends on AC_PROG_LEX having been called �rst to set the shell variable LEX.

Rather than forcing the user of the macros to keep track of the dependencies between
them, you can use the AC_REQUIRE macro to do it automatically. AC_REQUIRE can ensure
that a macro is only called if it is needed, and only called once.

MacroAC REQUIRE (macro-name)
If the M4 macro macro-name has not already been called, call it (without any ar-
guments). Make sure to quote macro-name with square brackets. macro-name must
have been de�ned using AC_DEFUN or else contain a call to AC_PROVIDE to indicate
that it has been called.

AC_REQUIRE must be used inside an AC_DEFUN'd macro; it must not be called from
the top level.



100 Autoconf

AC_REQUIRE is often misunderstood. It really implements dependencies between macros
in the sense that if one macro depends upon another, the latter will be expanded before the
body of the former. In particular, `AC_REQUIRE(FOO)' is not replaced with the body of FOO.
For instance, this de�nition of macros:

AC_DEFUN([TRAVOLTA],
[test "$body_temparature_in_celsius" -gt "38" &&
dance_floor=occupied])

AC_DEFUN([NEWTON_JOHN],
[test "$hair_style" = "curly" &&
dance_floor=occupied])

AC_DEFUN([RESERVE_DANCE_FLOOR],
[if date | grep '^Sat.*pm' >/dev/null 2>&1; then
AC_REQUIRE([TRAVOLTA])
AC_REQUIRE([NEWTON_JOHN])

fi])

with this `configure.ac'

AC_INIT
RESERVE_DANCE_FLOOR
if test "$dance_floor" = occupied; then
AC_MSG_ERROR([cannot pick up here, let's move])

fi

will not leave you with a better chance to meet a kindred soul at other times than Saturday
night since it expands into:

test "$body_temperature_in_Celsius" -gt "38" &&
dance_floor=occupied

test "$hair_style" = "curly" &&
dance_floor=occupied

fi
if date | grep '^Sat.*pm' >/dev/null 2>&1; then

fi

This behavior was chosen on purpose: (i) it prevents messages in required macros from
interrupting the messages in the requiring macros; (ii) it avoids bad surprises when shell
conditionals are used, as in:

if ...; then
AC_REQUIRE([SOME_CHECK])

fi
...
SOME_CHECK

You are encouraged to put all AC_REQUIREs at the beginning of a macro. You can use
dnl to avoid the empty lines they leave.

8.5.2 Suggested Ordering

Some macros should be run before another macro if both are called, but neither requires
that the other be called. For example, a macro that changes the behavior of the C compiler



Chapter 8: Writing Macros 101

should be called before any macros that run the C compiler. Many of these dependencies
are noted in the documentation.

Autoconf provides the AC_BEFORE macro to warn users when macros with this kind of
dependency appear out of order in a `configure.ac' �le. The warning occurs when creating
configure from `configure.ac', not when running configure.

For example, AC_PROG_CPP checks whether the C compiler can run the C preprocessor
when given the `-E' option. It should therefore be called after any macros that change
which C compiler is being used, such as AC_PROG_CC. So AC_PROG_CC contains:

AC_BEFORE([$0], [AC_PROG_CPP])dnl

This warns the user if a call to AC_PROG_CPP has already occurred when AC_PROG_CC is
called.

MacroAC BEFORE (this-macro-name, called-macro-name)
Make m4 print a warning message to the standard error output if called-macro-name

has already been called. this-macro-name should be the name of the macro that
is calling AC_BEFORE. The macro called-macro-name must have been de�ned using
AC_DEFUN or else contain a call to AC_PROVIDE to indicate that it has been called.

8.6 Obsoleting Macros

Con�guration and portability technology has evolved over the years. Often better ways
of solving a particular problem are developed, or ad-hoc approaches are systematized. This
process has occurred in many parts of Autoconf. One result is that some of the macros
are now considered obsolete; they still work, but are no longer considered the best thing to
do, hence they should be replaced with more modern macros. Ideally, autoupdate should
substitute the old macro calls with their modern implementation.

Autoconf provides a simple means to obsolete a macro.

MacroAU DEFUN (old-macro, implementation, [message])
De�ne old-macro as implementation. The only di�erence with AC_DEFUN is that the
user will be warned that old-macro is now obsolete.

If she then uses autoupdate, the call to old-macro will be replaced by the modern
implementation. The additional message is then printed.

8.7 Coding Style

The Autoconf macros follow a strict coding style. You are encouraged to follow this style,
especially if you intend to distribute your macro, either by contributing it to Autoconf itself,
or via other means.

The �rst requirement is to pay great attention to the quotation, for more details, see
Section 3.1.2 [Autoconf Language], page 7, and Section 8.3 [Quoting], page 94.

Do not try to invent new interfaces. It is likely that there is a macro in Autoconf
that resembles the macro you are de�ning: try to stick to this existing interface (order of
arguments, default values, etc.). We are conscious that some of these interfaces are not
perfect; nevertheless, when harmless, homogeneity should be preferred over creativity.



102 Autoconf

Be careful about clashes both between M4 symbols and between shell variables.

If you stick to the suggested M4 naming scheme (see Section 8.2 [Macro Names], page 93),
you are unlikely to generate conicts. Nevertheless, when you need to set a special value,
avoid using a regular macro name; rather, use an \impossible" name. For instance, up
to version 2.13, the macro AC_SUBST used to remember what symbols were already de-
�ned by setting AC_SUBST_symbol, which is a regular macro name. But since there is
a macro named AC_SUBST_FILE, it was just impossible to `AC_SUBST(FILE)'! In this
case, AC_SUBST(symbol) or _AC_SUBST(symbol) should have been used (yes, with the
parentheses). . . or better yet, high-level macros such as AC_EXPAND_ONCE.

No Autoconf macro should ever enter the user-variable name space; i.e., except for the
variables that are the actual result of running the macro, all shell variables should start
with ac_. In addition, small macros or any macro that is likely to be embedded in other
macros should be careful not to use obvious names.

Do not use dnl to introduce comments: most of the comments you are likely to write
are either header comments which are not output anyway, or comments that should make
their way into `configure'. There are exceptional cases where you do want to comment
special M4 constructs, in which case dnl is right, but keep in mind that it is unlikely.

M4 ignores the leading spaces before each argument, use this feature to indent in such
a way that arguments are (more or less) aligned with the opening parenthesis of the macro
being called. For instance, instead of

AC_CACHE_CHECK(for EMX OS/2 environment,
ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, [return __EMX__;])],
[ac_cv_emxos2=yes], [ac_cv_emxos2=no])])

write

AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],

[ac_cv_emxos2=yes],
[ac_cv_emxos2=no])])

or even

AC_CACHE_CHECK([for EMX OS/2 environment],
[ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],

[return __EMX__;])],
[ac_cv_emxos2=yes],
[ac_cv_emxos2=no])])

When using AC_TRY_RUN or any macro that cannot work when cross-compiling, provide
a pessimistic value (typically `no').

Feel free to use various tricks to prevent auxiliary tools, such as syntax-highlighting
editors, from behaving improperly. For instance, instead of:

patsubst([$1], [$"])

use

patsubst([$1], [$""])

so that Emacsen do not open a endless \string" at the �rst quote. For the same reasons,
avoid:



Chapter 8: Writing Macros 103

test $[#] != 0

and use:

test $[@%:@] != 0

Otherwise, the closing bracket would be hidden inside a `#'-comment, breaking the bracket-
matching highlighting from Emacsen. Note the preferred style to escape from M4: `$[1]',
`$[@]', etc. Do not escape when it is unneeded. Common examples of useless quotation are
`[$]$1' (write `$$1'), `[$]var' (use `$var'), etc. If you add portability issues to the picture,
you'll prefer `${1+"$[@]"}' to `"[$]@"', and you'll prefer do something better than hacking
Autoconf :-).

When using sed, don't use `-e' except for indenting purpose. With the s command, the
preferred separator is `/' unless `/' itself is used in the command, in which case you should
use `,'.

See Section 8.1 [Macro De�nitions], page 93, for details on how to de�ne a macro. If a
macro doesn't use AC_REQUIRE and it is expected to never be the object of an AC_REQUIRE

directive, then use define. In case of doubt, use AC_DEFUN. All the AC_REQUIRE statements
should be at the beginning of the macro, dnl'ed.

You should not rely on the number of arguments: instead of checking whether an argu-
ment is missing, test that it is not empty. It provides both a simpler and a more predictable
interface to the user, and saves room for further arguments.

Unless the macro is short, try to leave the closing `])' at the beginning of a line, followed
by a comment that repeats the name of the macro being de�ned. This introduces an
additional newline in configure; normally, that is not a problem, but if you want to remove
it you can use `[]dnl' on the last line. You can similarly use `[]dnl' after a macro call to
remove its newline. `[]dnl' is recommended instead of `dnl' to ensure that M4 does not
interpret the `dnl' as being attached to the preceding text or macro output. For example,
instead of:

AC_DEFUN([AC_PATH_X],
[AC_MSG_CHECKING([for X])
AC_REQUIRE_CPP()
# . . .omitted. . .
AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])

fi])

you would write:

AC_DEFUN([AC_PATH_X],
[AC_REQUIRE_CPP()[]dnl
AC_MSG_CHECKING([for X])
# . . .omitted. . .
AC_MSG_RESULT([libraries $x_libraries, headers $x_includes])

fi[]dnl
])# AC_PATH_X

If the macro is long, try to split it into logical chunks. Typically, macros that check for
a bug in a function and prepare its AC_LIBOBJ replacement should have an auxiliary macro
to perform this setup. Do not hesitate to introduce auxiliary macros to factor your code.

In order to highlight the recommended coding style, here is a macro written the old way:



104 Autoconf

dnl Check for EMX on OS/2.
dnl _AC_EMXOS2
AC_DEFUN(_AC_EMXOS2,
[AC_CACHE_CHECK(for EMX OS/2 environment, ac_cv_emxos2,
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM(, return __EMX__;)],
ac_cv_emxos2=yes, ac_cv_emxos2=no)])
test "$ac_cv_emxos2" = yes && EMXOS2=yes])

and the new way:

# _AC_EMXOS2
# ----------
# Check for EMX on OS/2.
define([_AC_EMXOS2],
[AC_CACHE_CHECK([for EMX OS/2 environment], [ac_cv_emxos2],
[AC_COMPILE_IFELSE([AC_LANG_PROGRAM([], [return __EMX__;])],

[ac_cv_emxos2=yes],
[ac_cv_emxos2=no])])

test "$ac_cv_emxos2" = yes && EMXOS2=yes[]dnl
])# _AC_EMXOS2



Chapter 9: Manual Con�guration 105

9 Manual Con�guration

A few kinds of features can't be guessed automatically by running test programs. For
example, the details of the object-�le format, or special options that need to be passed
to the compiler or linker. You can check for such features using ad-hoc means, such as
having configure check the output of the uname program, or looking for libraries that are
unique to particular systems. However, Autoconf provides a uniform method for handling
unguessable features.

9.1 Specifying the System Type

Like other gnu configure scripts, Autoconf-generated configure scripts can make de-
cisions based on a canonical name for the system type, which has the form: `cpu-vendor-os',
where os can be `system' or `kernel-system'

configure can usually guess the canonical name for the type of system it's running
on. To do so it runs a script called config.guess, which infers the name using the uname
command or symbols prede�ned by the C preprocessor.

Alternately, the user can specify the system type with command line arguments to
configure. Doing so is necessary when cross-compiling. In the most complex case of
cross-compiling, three system types are involved. The options to specify them are1:

`--build=build-type'
the type of system on which the package is being con�gured and compiled.

`--host=host-type'
the type of system on which the package will run.

`--target=target-type'
the type of system for which any compiler tools in the package will produce
code (rarely needed). By default, it is the same as host.

They all default to the result of running config.guess, unless you specify either
`--build' or `--host'. In this case, the default becomes the system type you speci�ed. If
you specify both, and they're di�erent, configure will enter cross compilation mode, so it
won't run any tests that require execution.

Hint: if you mean to override the result of config.guess, prefer `--build' over `--host'.
In the future, `--host' will not override the name of the build system type. Also, if you
specify `--host', but not `--build', when configure performs the �rst compiler test it
will try to run an executable produced by the compiler. If the execution fails, it will enter
cross-compilation mode. Note, however, that it won't guess the build-system type, since this
may require running test programs. Moreover, by the time the compiler test is performed,
it may be too late to modify the build-system type: other tests may have already been
performed. Therefore, whenever you specify --host, be sure to specify --build too.

1 For backward compatibility, configure will accept a system type as an option by itself. Such an option
will override the defaults for build, host and target system types. The following con�gure statement
will con�gure a cross toolchain that will run on NetBSD/alpha but generate code for GNU Hurd/sparc,
which is also the build platform.

./configure --host=alpha-netbsd sparc-gnu



106 Autoconf

./configure --build=i686-pc-linux-gnu --host=m68k-coff

will enter cross-compilation mode, but configure will fail if it can't run the code generated
by the speci�ed compiler if you con�gure as follows:

./configure CC=m68k-coff-gcc

configure recognizes short aliases for many system types; for example, `decstation'
can be used instead of `mips-dec-ultrix4.2'. configure runs a script called config.sub

to canonicalize system type aliases.

9.2 Getting the Canonical System Type

The following macros make the system type available to configure scripts.

The variables `build_alias', `host_alias', and `target_alias' are always exactly the
arguments of `--build', `--host', and `--target'; in particular, they are left empty if
the user did not use them, even if the corresponding AC_CANONICAL macro was run. Any
con�gure script may use these variables anywhere. These are the variables that should be
used when in interaction with the user.

If you need to recognize some special environments based on their system type, run the
following macros to get canonical system names. These variables are not set before the
macro call.

If you use these macros, you must distribute config.guess and config.sub along with
your source code. See Section 4.3 [Output], page 16, for information about the AC_CONFIG_
AUX_DIR macro which you can use to control in which directory configure looks for those
scripts.

MacroAC CANONICAL BUILD
Compute the canonical build-system type variable, build, and its three individual
parts build_cpu, build_vendor, and build_os.

If `--build' was speci�ed, then build is the canonicalization of build_alias by
config.sub, otherwise it is determined by the shell script config.guess.

MacroAC CANONICAL HOST
Compute the canonical host-system type variable, host, and its three individual parts
host_cpu, host_vendor, and host_os.

If `--host' was speci�ed, then host is the canonicalization of host_alias by
config.sub, otherwise it defaults to build.

For temporary backward-compatibility, when `--host' is speci�ed by `--build' isn't,
the build system will be assumed to be the same as `--host', and `build_alias' will
be set to that value. Eventually, this historically incorrect behavior will go away.

MacroAC CANONICAL TARGET
Compute the canonical target-system type variable, target, and its three individual
parts target_cpu, target_vendor, and target_os.

If `--target' was speci�ed, then target is the canonicalization of target_alias by
config.sub, otherwise it defaults to host.



Chapter 9: Manual Con�guration 107

9.3 Using the System Type

How do you use a canonical system type? Usually, you use it in one or more case

statements in `configure.ac' to select system-speci�c C �les. Then, using AC_CONFIG_

LINKS, link those �les which have names based on the system name, to generic names,
such as `host.h' or `target.c' (see Section 4.9 [Con�guration Links], page 28). The case
statement patterns can use shell wild cards to group several cases together, like in this
fragment:

case "$target" in
i386-*-mach* | i386-*-gnu*)

obj_format=aout emulation=mach bfd_gas=yes ;;
i960-*-bout) obj_format=bout ;;
esac

and in `configure.ac', use:

AC_CONFIG_LINKS(host.h:config/$machine.h
object.h:config/$obj_format.h)

You can also use the host system type to �nd cross-compilation tools. See Section 5.2.2
[Generic Programs], page 34, for information about the AC_CHECK_TOOL macro which does
that.



108 Autoconf



Chapter 10: Site Con�guration 109

10 Site Con�guration

configure scripts support several kinds of local con�guration decisions. There are
ways for users to specify where external software packages are, include or exclude optional
features, install programs under modi�ed names, and set default values for configure

options.

10.1 Working With External Software

Some packages require, or can optionally use, other software packages that are already
installed. The user can give configure command line options to specify which such external
software to use. The options have one of these forms:

--with-package=[ arg ]

--without-package

For example, `--with-gnu-ld' means work with the gnu linker instead of some other
linker. `--with-x' means work with The X Window System.

The user can give an argument by following the package name with `=' and the argument.
Giving an argument of `no' is for packages that are used by default; it says to not use the
package. An argument that is neither `yes' nor `no' could include a name or number of a
version of the other package, to specify more precisely which other package this program is
supposed to work with. If no argument is given, it defaults to `yes'. `--without-package'
is equivalent to `--with-package=no'.

configure scripts do not complain about `--with-package' options that they do not
support. This behavior permits con�guring a source tree containing multiple packages with
a top-level configure script when the packages support di�erent options, without spurious
error messages about options that some of the packages support. An unfortunate side e�ect
is that option spelling errors are not diagnosed. No better approach to this problem has
been suggested so far.

For each external software package that may be used, `configure.ac' should call AC_
ARG_WITH to detect whether the configure user asked to use it. Whether each package is
used or not by default, and which arguments are valid, is up to you.

MacroAC ARG WITH (package, help-string, [action-if-given],
[action-if-not-given])

If the user gave configure the option `--with-package' or `--without-package',
run shell commands action-if-given. If neither option was given, run shell commands
action-if-not-given. The name package indicates another software package that this
program should work with. It should consist only of alphanumeric characters and
dashes.

The option's argument is available to the shell commands action-if-given in the shell
variable withval, which is actually just the value of the shell variable with_package,
with any `-' characters changed into `_'. You may use that variable instead, if you
wish.

The argument help-string is a description of the option that looks like this:



110 Autoconf

--with-readline support fancy command line editing

help-string may be more than one line long, if more detail is needed. Just make sure
the columns line up in `configure --help'. Avoid tabs in the help string. You'll
need to enclose it in `[' and `]' in order to produce the leading spaces.

You should format your help-string with the macro AC_HELP_STRING (see Section 10.3
[Pretty Help Strings], page 111).

MacroAC WITH (package, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_WITH that does not support providing a help
string.

10.2 Choosing Package Options

If a software package has optional compile-time features, the user can give configure

command line options to specify whether to compile them. The options have one of these
forms:

--enable-feature=[ arg ]

--disable-feature

These options allow users to choose which optional features to build and install.
`--enable-feature' options should never make a feature behave di�erently or cause one
feature to replace another. They should only cause parts of the program to be built rather
than left out.

The user can give an argument by following the feature name with `=' and the argument.
Giving an argument of `no' requests that the feature not be made available. A feature with
an argument looks like `--enable-debug=stabs'. If no argument is given, it defaults to
`yes'. `--disable-feature' is equivalent to `--enable-feature=no'.

configure scripts do not complain about `--enable-feature' options that they do not
support. This behavior permits con�guring a source tree containing multiple packages with
a top-level configure script when the packages support di�erent options, without spurious
error messages about options that some of the packages support. An unfortunate side e�ect
is that option spelling errors are not diagnosed. No better approach to this problem has
been suggested so far.

For each optional feature, `configure.ac' should call AC_ARG_ENABLE to detect whether
the configure user asked to include it. Whether each feature is included or not by default,
and which arguments are valid, is up to you.

MacroAC ARG ENABLE (feature, help-string, [action-if-given],
[action-if-not-given])

If the user gave configure the option `--enable-feature' or `--disable-feature',
run shell commands action-if-given. If neither option was given, run shell commands
action-if-not-given. The name feature indicates an optional user-level facility. It
should consist only of alphanumeric characters and dashes.

The option's argument is available to the shell commands action-if-given in the shell
variable enableval, which is actually just the value of the shell variable enable_

feature, with any `-' characters changed into `_'. You may use that variable instead,



Chapter 10: Site Con�guration 111

if you wish. The help-string argument is like that of AC_ARG_WITH (see Section 10.1
[External Software], page 109).

You should format your help-string with the macro AC_HELP_STRING (see Section 10.3
[Pretty Help Strings], page 111).

MacroAC ENABLE (feature, action-if-given, [action-if-not-given])
This is an obsolete version of AC_ARG_ENABLE that does not support providing a help
string.

10.3 Making Your Help Strings Look Pretty

Properly formatting the `help strings' which are used in AC_ARG_WITH (see Section 10.1
[External Software], page 109) and AC_ARG_ENABLE (see Section 10.2 [Package Options],
page 110) can be challenging. Speci�cally, you want your own `help strings' to line up
in the appropriate columns of `configure --help' just like the standard Autoconf `help
strings' do. This is the purpose of the AC_HELP_STRING macro.

MacroAC HELP STRING (left-hand-side, right-hand-side)
Expands into an help string that looks pretty when the user executes `configure
--help'. It is typically used in AC_ARG_WITH (see Section 10.1 [External Software],
page 109) or AC_ARG_ENABLE (see Section 10.2 [Package Options], page 110). The
following example will make this clearer.

AC_DEFUN(TEST_MACRO,
[AC_ARG_WITH(foo,

AC_HELP_STRING([--with-foo],
[use foo (default is NO)]),

ac_cv_use_foo=$withval, ac_cv_use_foo=no),
AC_CACHE_CHECK(whether to use foo,

ac_cv_use_foo, ac_cv_use_foo=no)])

Please note that the call to AC_HELP_STRING is unquoted. Then the last few lines of
`configure --help' will appear like this:

--enable and --with options recognized:
--with-foo use foo (default is NO)

The AC_HELP_STRING macro is particularly helpful when the left-hand-side and/or
right-hand-side are composed of macro arguments, as shown in the following example.

AC_DEFUN(MY_ARG_WITH,
[AC_ARG_WITH([$1],

AC_HELP_STRING([--with-$1], [use $1 (default is $2)]),
ac_cv_use_$1=$withval, ac_cv_use_$1=no),

AC_CACHE_CHECK(whether to use $1, ac_cv_use_$1, ac_cv_use_$1=$2)])

10.4 Con�guring Site Details

Some software packages require complex site-speci�c information. Some examples are
host names to use for certain services, company names, and email addresses to contact. Since
some con�guration scripts generated by Metacon�g ask for such information interactively,



112 Autoconf

people sometimes wonder how to get that information in Autoconf-generated con�guration
scripts, which aren't interactive.

Such site con�guration information should be put in a �le that is edited only by users,
not by programs. The location of the �le can either be based on the prefix variable,
or be a standard location such as the user's home directory. It could even be speci�ed
by an environment variable. The programs should examine that �le at run time, rather
than at compile time. Run time con�guration is more convenient for users and makes the
con�guration process simpler than getting the information while con�guring. See section
\Variables for Installation Directories" in GNU Coding Standards, for more information on
where to put data �les.

10.5 Transforming Program Names When Installing

Autoconf supports changing the names of programs when installing them. In order to
use these transformations, `configure.ac' must call the macro AC_ARG_PROGRAM.

MacroAC ARG PROGRAM
Place in output variable program_transform_name a sequence of sed commands for
changing the names of installed programs.

If any of the options described below are given to configure, program names are
transformed accordingly. Otherwise, if AC_CANONICAL_TARGET has been called and a
`--target' value is given that di�ers from the host type (speci�ed with `--host'),
the target type followed by a dash is used as a pre�x. Otherwise, no program name
transformation is done.

10.5.1 Transformation Options

You can specify name transformations by giving configure these command line options:

`--program-prefix=pre�x'
prepend pre�x to the names;

`--program-suffix=suÆx'
append suÆx to the names;

`--program-transform-name=expression'
perform sed substitution expression on the names.

10.5.2 Transformation Examples

These transformations are useful with programs that can be part of a cross-compilation
development environment. For example, a cross-assembler running on a Sun 4 con�gured
with `--target=i960-vxworks' is normally installed as `i960-vxworks-as', rather than
`as', which could be confused with a native Sun 4 assembler.

You can force a program name to begin with `g', if you don't want gnu programs
installed on your system to shadow other programs with the same name. For example, if
you con�gure gnu diff with `--program-prefix=g', then when you run `make install' it
is installed as `/usr/local/bin/gdiff'.

As a more sophisticated example, you could use



Chapter 10: Site Con�guration 113

--program-transform-name='s/^/g/; s/^gg/g/; s/^gless/less/'

to prepend `g' to most of the program names in a source tree, excepting those like gdb that
already have one and those like less and lesskey that aren't gnu programs. (That is
assuming that you have a source tree containing those programs that is set up to use this
feature.)

One way to install multiple versions of some programs simultaneously is to append a
version number to the name of one or both. For example, if you want to keep Autoconf ver-
sion 1 around for awhile, you can con�gure Autoconf version 2 using `--program-suffix=2'
to install the programs as `/usr/local/bin/autoconf2', `/usr/local/bin/autoheader2',
etc. Nevertheless, pay attention that only the binaries are renamed, therefore you'd have
problems with the library �les which might overlap.

10.5.3 Transformation Rules

Here is how to use the variable program_transform_name in a `Makefile.in':

transform = @program_transform_name@
install: all

$(INSTALL_PROGRAM) myprog $(bindir)/`echo myprog | \
sed '$(transform)'`

uninstall:
rm -f $(bindir)/`echo myprog | sed '$(transform)'`

If you have more than one program to install, you can do it in a loop:

PROGRAMS = cp ls rm
install:

for p in $(PROGRAMS); do \
$(INSTALL_PROGRAM) $$p $(bindir)/`echo $$p | \

sed '$(transform)'`; \
done

uninstall:
for p in $(PROGRAMS); do \
rm -f $(bindir)/`echo $$p | sed '$(transform)'`; \

done

Whether to do the transformations on documentation �les (Texinfo or man) is a tricky
question; there seems to be no perfect answer, due to the several reasons for name trans-
forming. Documentation is not usually particular to a speci�c architecture, and Texinfo
�les do not conict with system documentation. But they might conict with earlier ver-
sions of the same �les, and man pages sometimes do conict with system documentation.
As a compromise, it is probably best to do name transformations on man pages but not on
Texinfo manuals.

10.6 Setting Site Defaults

Autoconf-generated configure scripts allow your site to provide default values for some
con�guration values. You do this by creating site- and system-wide initialization �les.



114 Autoconf

If the environment variable CONFIG_SITE is set, configure uses its value as the name
of a shell script to read. Otherwise, it reads the shell script `pre�x/share/config.site' if
it exists, then `pre�x/etc/config.site' if it exists. Thus, settings in machine-speci�c �les
override those in machine-independent ones in case of conict.

Site �les can be arbitrary shell scripts, but only certain kinds of code are really appro-
priate to be in them. Because configure reads any cache �le after it has read any site
�les, a site �le can de�ne a default cache �le to be shared between all Autoconf-generated
configure scripts run on that system (see Section 7.3.2 [Cache Files], page 88). If you set
a default cache �le in a site �le, it is a good idea to also set the output variable CC in that
site �le, because the cache �le is only valid for a particular compiler, but many systems
have several available.

You can examine or override the value set by a command line option to configure in
a site �le; options set shell variables that have the same names as the options, with any
dashes turned into underscores. The exceptions are that `--without-' and `--disable-'
options are like giving the corresponding `--with-' or `--enable-' option and the value `no'.
Thus, `--cache-file=localcache' sets the variable cache_file to the value `localcache';
`--enable-warnings=no' or `--disable-warnings' sets the variable enable_warnings to
the value `no'; `--prefix=/usr' sets the variable prefix to the value `/usr'; etc.

Site �les are also good places to set default values for other output variables, such as
CFLAGS, if you need to give them non-default values: anything you would normally do,
repetitively, on the command line. If you use non-default values for pre�x or exec pre�x
(wherever you locate the site �le), you can set them in the site �le if you specify it with the
CONFIG_SITE environment variable.

You can set some cache values in the site �le itself. Doing this is useful if you are
cross-compiling, so it is impossible to check features that require running a test program.
You could \prime the cache" by setting those values correctly for that system in `pre-
�x/etc/config.site'. To �nd out the names of the cache variables you need to set, look
for shell variables with `_cv_' in their names in the a�ected configure scripts, or in the
Autoconf M4 source code for those macros.

The cache �le is careful to not override any variables set in the site �les. Similarly, you
should not override command-line options in the site �les. Your code should check that
variables such as prefix and cache_file have their default values (as set near the top of
configure) before changing them.

Here is a sample �le `/usr/share/local/gnu/share/config.site'. The command
`configure --prefix=/usr/share/local/gnu' would read this �le (if CONFIG_SITE is not
set to a di�erent �le).

# config.site for configure
#
# Change some defaults.
test "$prefix" = NONE && prefix=/usr/share/local/gnu
test "$exec_prefix" = NONE && exec_prefix=/usr/local/gnu
test "$sharedstatedir" = '$prefix/com' && sharedstatedir=/var
test "$localstatedir" = '$prefix/var' && localstatedir=/var

# Give Autoconf 2.x generated configure scripts a shared default
# cache file for feature test results, architecture-specific.



Chapter 10: Site Con�guration 115

if test "$cache_file" = /dev/null; then
cache_file="$prefix/var/config.cache"
# A cache file is only valid for one C compiler.
CC=gcc

fi



116 Autoconf



Chapter 11: Running configure Scripts 117

11 Running configure Scripts

Below are instructions on how to con�gure a package that uses a configure script,
suitable for inclusion as an `INSTALL' �le in the package. A plain-text version of `INSTALL'
which you may use comes with Autoconf.

11.1 Basic Installation

These are generic installation instructions.

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a `Makefile' in each
directory of the package. It may also create one or more `.h' �les containing system-
dependent de�nitions. Finally, it creates a shell script `config.status' that you can run in
the future to recreate the current con�guration, and a �le `config.log' containing compiler
output (useful mainly for debugging configure).

It can also use an optional �le (typically called `config.cache' and enabled with {cache-
�le=con�g.cache or simply -C) that saves the results of its tests to speed up recon�guring.
(Caching is disabled by default to prevent problems with accidental use of stale cache �les.)

If you need to do unusual things to compile the package, please try to �gure out how
configure could check whether to do them, and mail di�s or instructions to the address
given in the `README' so they can be considered for the next release. If you are using the
cache, and at some point `config.cache' contains results you don't want to keep, you may
remove or edit it.

The �le `configure.ac' (or `configure.in') is used to create `configure' by a program
called autoconf. You only need `configure.ac' if you want to change it or regenerate
`configure' using a newer version of autoconf.

The simplest way to compile this package is:

1. cd to the directory containing the package's source code and type `./configure' to
con�gure the package for your system. If you're using csh on an old version of System
V, you might need to type `sh ./configure' instead to prevent csh from trying to
execute configure itself.

Running configure takes awhile. While running, it prints some messages telling which
features it is checking for.

2. Type `make' to compile the package.

3. Optionally, type `make check' to run any self-tests that come with the package.

4. Type `make install' to install the programs and any data �les and documentation.

5. You can remove the program binaries and object �les from the source code directory
by typing `make clean'. To also remove the �les that configure created (so you can
compile the package for a di�erent kind of computer), type `make distclean'. There is
also a `make maintainer-clean' target, but that is intended mainly for the package's
developers. If you use it, you may have to get all sorts of other programs in order to
regenerate �les that came with the distribution.



118 Autoconf

11.2 Compilers and Options

Some systems require unusual options for compilation or linking that the configure

script does not know about. Run `./configure --help' for details on some of the pertinent
environment variables.

You can give configure initial values for variables by setting them in the environment.
You can do that on the command line like this:

./configure CC=c89 CFLAGS=-O2 LIBS=-lposix

See Section 11.8 [Environment Variables], page 119, for more details.

11.3 Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time,
by placing the object �les for each architecture in their own directory. To do this, you
must use a version of make that supports the VPATH variable, such as GNU make. cd to
the directory where you want the object �les and executables to go and run the configure
script. configure automatically checks for the source code in the directory that configure
is in and in `..'.

If you have to use a make that does not support the VPATH variable, you have to compile
the package for one architecture at a time in the source code directory. After you have
installed the package for one architecture, use `make distclean' before recon�guring for
another architecture.

11.4 Installation Names

By default, `make install' will install the package's �les in `/usr/local/bin',
`/usr/local/man', etc. You can specify an installation pre�x other than `/usr/local' by
giving configure the option {pre�x=path.

You can specify separate installation pre�xes for architecture-speci�c �les and
architecture-independent �les. If you give configure the option {exec-pre�x=path, the
package will use path as the pre�x for installing programs and libraries. Documentation
and other data �les will still use the regular pre�x.

In addition, if you use an unusual directory layout you can give options like {bindir=path
to specify di�erent values for particular kinds of �les. Run `configure --help' for a list of
the directories you can set and what kinds of �les go in them.

If the package supports it, you can cause programs to be installed with an extra pre�x
or suÆx on their names by giving configure the option {program-pre�x=PREFIX or
{program-suÆx=SUFFIX.

11.5 Optional Features

Some packages pay attention to {enable-feature options to configure, where feature

indicates an optional part of the package. They may also pay attention to {with-package
options, where package is something like `gnu-as' or `x' (for the X Window System). The
`README' should mention any {enable- and {with- options that the package recognizes.



Chapter 11: Running configure Scripts 119

For packages that use the X Window System, configure can usually �nd the X include
and library �les automatically, but if it doesn't, you can use the configure options {x-
includes=dir and {x-libraries=dir to specify their locations.

11.6 Specifying the System Type

There may be some features configure cannot �gure out automatically, but needs to
determine by the type of host the package will run on. Usually configure can �gure that
out, but if it prints a message saying it cannot guess the host type, give it the {build=type
option. type can either be a short name for the system type, such as `sun4', or a canonical
name which has the form:

cpu-company-system

where system can have one of these forms:

os
kernel-os

See the �le `config.sub' for the possible values of each �eld. If `config.sub' isn't
included in this package, then this package doesn't need to know the host type.

If you are building compiler tools for cross-compiling, you should use the {target=type
option to select the type of system they will produce code for.

If you want to use a cross compiler, that generates code for a platform di�erent from
the build platform, you should specify the host platform (i.e., that on which the generated
programs will eventually be run) with {host=type. In this case, you should also specify the
build platform with {build=type, because, in this case, it may not be possible to guess the
build platform (it sometimes involves compiling and running simple test programs, and this
can't be done if the compiler is a cross compiler).

11.7 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site
shell script called `config.site' that gives default values for variables like CC, cache_
file, and prefix. configure looks for `pre�x/share/config.site' if it exists, then `pre-
�x/etc/config.site' if it exists. Or, you can set the CONFIG_SITE environment variable
to the location of the site script. A warning: not all configure scripts look for a site script.

11.8 Environment Variables

Variables not de�ned in a site shell script can be set in the environment passed to
con�gure. However, some packages may run con�gure again during the build, and the
customized values of these variables may be lost. In order to avoid this problem, you should
set them in the configure command line, using `VAR=value'. For example:

./configure CC=/usr/local2/bin/gcc

will cause the speci�ed gcc to be used as the C compiler (unless it is overridden in the site
shell script).



120 Autoconf

11.9 configure Invocation

configure recognizes the following options to control how it operates.

`--help'
`-h' Print a summary of the options to configure, and exit.

`--version'
`-V' Print the version of Autoconf used to generate the configure script, and exit.

`--cache-file=�le'
Enable the cache: use and save the results of the tests in �le, traditionally
`config.cache'. �le defaults to `/dev/null' to disable caching.

`--config-cache'
`-C' Alias for {cache-�le=con�g.cache.

`--quiet'
`--silent'
`-q' Do not print messages saying which checks are being made. To suppress all nor-

mal output, redirect it to `/dev/null' (any error messages will still be shown).

`--srcdir=dir'
Look for the package's source code in directory dir. Usually configure can
determine that directory automatically.

configure also accepts some other, not widely useful, options. Run `configure --help'
for more details.



Chapter 12: Recreating a Con�guration 121

12 Recreating a Con�guration

The configure script creates a �le named `config.status', which actually con�gures,
instantiates, the template �les. It also records the con�guration options that were speci�ed
when the package was last con�gured in case recon�guring is needed.

Synopsis:

./config.status option... [�le...]

It con�gures the �les, if none are speci�ed, all the templates are instantiated. The �les
must be speci�ed without their dependencies, as in

./config.status foobar

not

./config.status foobar:foo.in:bar.in

The supported options are:

`--help'
`-h' Print a summary of the command line options, the list of the template �les and

exit.

`--version'
`-V' Print the version number of Autoconf and exit.

`--debug'
`-d' Don't remove the temporary �les.

`--file=�le[:template]'
Require that �le be instantiated as if `AC_CONFIG_FILES(�le:template)' was
used. Both �le and template may be `-' in which case the standard output
and/or standard input, respectively, is used. If a template �lename is relative,
it is �rst looked for in the build tree, and then in the source tree. See Section 4.4
[Con�guration Actions], page 17, for more details.

This option and the following ones provide one way for separately distributed
packages to share the values computed by configure. Doing so can be useful if
some of the packages need a superset of the features that one of them, perhaps
a common library, does. These options allow a `config.status' �le to create
�les other than the ones that its `configure.ac' speci�es, so it can be used for
a di�erent package.

`--header=�le[:template]'
Same as `--file' above, but with `AC_CONFIG_HEADERS'.

`--recheck'
Ask `config.status' to update itself and exit (no instantiation). This option
is useful if you change configure, so that the results of some tests might be dif-
ferent from the previous run. The `--recheck' option re-runs configure with
the same arguments you used before, plus the `--no-create' option, which pre-
vents configure from running `config.status' and creating `Makefile' and
other �les, and the `--no-recursion' option, which prevents configure from
running other configure scripts in subdirectories. (This is so other `Makefile'
rules can run `config.status' when it changes; see Section 4.6.4 [Automatic
Remaking], page 23, for an example).



122 Autoconf

`config.status' checks several optional environment variables that can alter its behav-
ior:

VariableCONFIG SHELL
The shell with which to run configure for the `--recheck' option. It must be
Bourne-compatible. The default is `/bin/sh'.

VariableCONFIG STATUS
The �le name to use for the shell script that records the con�guration. The default
is `./config.status'. This variable is useful when one package uses parts of an-
other and the configure scripts shouldn't be merged because they are maintained
separately.

You can use `./config.status' in your Make�les. For example, in the dependencies
given above (see Section 4.6.4 [Automatic Remaking], page 23), `config.status' is run
twice when `configure.ac' has changed. If that bothers you, you can make each run only
regenerate the �les for that rule:

config.h: stamp-h
stamp-h: config.h.in config.status

./config.status config.h
echo > stamp-h

Makefile: Makefile.in config.status
./config.status Makefile

The calling convention of `config.status' has changed, see Section 13.1 [Obsolete con-
�g.status Use], page 123, for details.



Chapter 13: Obsolete Constructs 123

13 Obsolete Constructs

Autoconf changes, and throughout the years some constructs are obsoleted. Most of
the changes involve the macros, but the tools themselves, or even some concepts, are now
considered obsolete.

You may completely skip this chapter if you are new to Autoconf, its intention is mainly
to help maintainers updating their packages by understanding how to move to more modern
constructs.

13.1 Obsolete `config.status' Invocation

`config.status' now supports arguments to specify the �les to instantiate, see Chap-
ter 12 [con�g.status Invocation], page 121, for more details. Before, environment variables
had to be used.

VariableCONFIG COMMANDS
The tags of the commands to execute. The default is the arguments given to AC_

OUTPUT and AC_CONFIG_COMMANDS in `configure.ac'.

VariableCONFIG FILES
The �les in which to perform `@variable@' substitutions. The default is the arguments
given to AC_OUTPUT and AC_CONFIG_FILES in `configure.ac'.

VariableCONFIG HEADERS
The �les in which to substitute C #define statements. The default is the arguments
given to AC_CONFIG_HEADERS; if that macro was not called, `config.status' ignores
this variable.

VariableCONFIG LINKS
The symbolic links to establish. The default is the arguments given to AC_CONFIG_

LINKS; if that macro was not called, `config.status' ignores this variable.

In Chapter 12 [con�g.status Invocation], page 121, using this old interface, the example
would be:

config.h: stamp-h
stamp-h: config.h.in config.status

CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_FILES= \
CONFIG_HEADERS=config.h ./config.status

echo > stamp-h

Makefile: Makefile.in config.status
CONFIG_COMMANDS= CONFIG_LINKS= CONFIG_HEADERS= \
CONFIG_FILES=Makefile ./config.status

(If `configure.ac' does not call AC_CONFIG_HEADERS, there is no need to set CONFIG_

HEADERS in the make rules, equally for CONFIG_COMMANDS etc.)



124 Autoconf

13.2 `acconfig.h'

In order to produce `config.h.in', autoheader needs to build or to �nd templates
for each symbol. Modern releases of Autoconf use AH_VERBATIM and AH_TEMPLATE (see
Section 4.7.3 [Autoheader Macros], page 27), but in older releases a �le, `acconfig.h',
contained the list of needed templates. autoheader copies comments and #define and
#undef statements from `acconfig.h' in the current directory, if present. This �le used to
be mandatory if you AC_DEFINE any additional symbols.

Modern releases of Autoconf also provide AH_TOP and AH_BOTTOM if you need to
prepend/append some information to `config.h.in'. Ancient versions of Autoconf had a
similar feature: if `./acconfig.h' contains the string `@TOP@', autoheader copies the lines
before the line containing `@TOP@' into the top of the �le that it generates. Similarly, if
`./acconfig.h' contains the string `@BOTTOM@', autoheader copies the lines after that line
to the end of the �le it generates. Either or both of those strings may be omitted. An even
older alternate way to produce the same e�ect in jurasik versions of Autoconf is to create
the �les `�le.top' (typically `config.h.top') and/or `�le.bot' in the current directory. If
they exist, autoheader copies them to the beginning and end, respectively, of its output.

In former versions of Autoconf, the �les used in preparing a software package for distri-
bution were:

configure.ac --. .------> autoconf* -----> configure
+---+

[aclocal.m4] --+ `---.
[acsite.m4] ---' |

+--> [autoheader*] -> [config.h.in]
[acconfig.h] ----. |

+-----'
[config.h.top] --+
[config.h.bot] --'

Use only the AH_ macros, `configure.ac' should be self-contained, and should not de-
pend upon `acconfig.h' etc.

13.3 Using autoupdate to Modernize `configure.ac'

The autoupdate program updates a `configure.ac' �le that calls Autoconf macros
by their old names to use the current macro names. In version 2 of Autoconf, most of the
macros were renamed to use a more uniform and descriptive naming scheme. See Section 8.2
[Macro Names], page 93, for a description of the new scheme. Although the old names still
work (see Section 13.4 [Obsolete Macros], page 125, for a list of the old macros and the
corresponding new names), you can make your `configure.ac' �les more readable and
make it easier to use the current Autoconf documentation if you update them to use the
new macro names.

If given no arguments, autoupdate updates `configure.ac', backing up the original ver-
sion with the suÆx `~' (or the value of the environment variable SIMPLE_BACKUP_SUFFIX, if
that is set). If you give autoupdate an argument, it reads that �le instead of `configure.ac'
and writes the updated �le to the standard output.

autoupdate accepts the following options:



Chapter 13: Obsolete Constructs 125

`--help'
`-h' Print a summary of the command line options and exit.

`--version'
`-V' Print the version number of Autoconf and exit.

`--verbose'
`-v' Report processing steps.

`--debug'
`-d' Don't remove the temporary �les.

`--autoconf-dir=dir'
`-A dir' Override the location where the installed Autoconf data �les are looked for.

You can also set the AC_MACRODIR environment variable to a directory; this
option overrides the environment variable.

This option is rarely needed and dangerous; it is only used when one plays with
di�erent versions of Autoconf simultaneously.

`--localdir=dir'
`-l dir' Look for the package �le `aclocal.m4' in directory dir instead of in the current

directory.

13.4 Obsolete Macros

Several macros are obsoleted in Autoconf, for various reasons (typically they failed to
quote properly, couldn't be extended for more recent issues etc.). They are still supported,
but deprecated: their use should be avoided.

During the jump from Autoconf version 1 to version 2, most of the macros were renamed
to use a more uniform and descriptive naming scheme, but their signature did not change.
See Section 8.2 [Macro Names], page 93, for a description of the new naming scheme.
Below, there is just the mapping from old names to new names for these macros, the reader
is invited to refer to the de�nition of the new macro for the signature and the description.

MacroAC ALLOCA
AC_FUNC_ALLOCA

MacroAC ARG ARRAY
removed because of limited usefulness

MacroAC C CROSS
This macro is obsolete; it does nothing.

MacroAC CANONICAL SYSTEM
Determine the system type and set output variables to the names of the canonical sys-
tem types. See Section 9.2 [Canonicalizing], page 106, for details about the variables
this macro sets.

The user is encouraged to use either AC_CANONICAL_BUILD, or AC_CANONICAL_HOST,
or AC_CANONICAL_TARGET, depending on the needs. Using AC_CANONICAL_TARGET is
enough to run the two other macros.



126 Autoconf

MacroAC CHAR UNSIGNED
AC_C_CHAR_UNSIGNED

MacroAC CHECK TYPE (type, default)
Autoconf, up to 2.13, used to provide this version of AC_CHECK_TYPE, deprecated
because of its aws. Firstly, although it is a member of the CHECK clan, singular sub-
family, it does more than just checking. Second, missing types are not typedef'd,
they are #define'd, which can lead to incompatible code in the case of pointer types.

This use of AC_CHECK_TYPE is obsolete and discouraged, see Section 5.8.2 [Generic
Types], page 49, for the description of the current macro.

If the type type is not de�ned, de�ne it to be the C (or C++) builtin type default;
e.g., `short' or `unsigned'.

This macro is equivalent to:

AC_CHECK_TYPE([type],
[AC_DEFINE([type], [default],

[Define to `default' if <sys/types.h>
does not define.])])

In order to keep backward compatibility, the two versions of AC_CHECK_TYPE are
implemented, selected by a simple heuristics:

1. If there are three or four arguments, the modern version is used.

2. If the second argument is a C or C++ builtin type, then the obsolete version
is used. Because many people have used `off_t' and `size_t' as replacement
types, they are recognized too.

3. If the second argument is spelled with the alphabet of valid C and C++ types,
the user is warned and the modern version is used.

4. Otherwise, the modern version is used.

You are encouraged either to use a valid builtin type, or to use the equivalent modern
code (see above), or better yet, to use AC_CHECK_TYPES together with

#if !HAVE_LOFF_T
typedef loff_t off_t;
#endif

MacroAC CHECKING (feature-description)
Same as `AC_MSG_NOTICE([checking feature-description...]'.

MacroAC COMPILE CHECK (echo-text, includes, function-body,
action-if-found, [action-if-not-found])

This is an obsolete version of AC_TRY_LINK (see Section 6.3 [Examining Libraries],
page 60), with the addition that it prints `checking for echo-text' to the standard
output �rst, if echo-text is non-empty. Use AC_MSG_CHECKING and AC_MSG_RESULT

instead to print messages (see Section 7.4 [Printing Messages], page 90).

MacroAC CONST
AC_C_CONST



Chapter 13: Obsolete Constructs 127

MacroAC CROSS CHECK
Same as AC_C_CROSS, which is obsolete too, and does nothing :-).

MacroAC CYGWIN
Check for the Cygwin environment in which case the shell variable CYGWIN is set to
`yes'. Don't use this macro, the digni�ed means to check the nature of the host is
using AC_CANONICAL_HOST. As a matter of fact this macro is de�ned as:

AC_REQUIRE([AC_CANONICAL_HOST])[]dnl
case $host_os in
*cygwin* ) CYGWIN=yes;;

* ) CYGWIN=no;;
esac

Beware that the variable CYGWIN has a very special meaning when running CygWin32,
and should not be changed. That's yet another reason not to use this macro.

MacroAC DECL YYTEXT
Does nothing, now integrated in AC_PROG_LEX.

MacroAC DIR HEADER
Like calling AC_FUNC_CLOSEDIR_VOID andAC_HEADER_DIRENT, but de�nes a di�erent
set of C preprocessor macros to indicate which header �le is found:

Header Old Symbol New Symbol
`dirent.h' DIRENT HAVE_DIRENT_H

`sys/ndir.h' SYSNDIR HAVE_SYS_NDIR_H

`sys/dir.h' SYSDIR HAVE_SYS_DIR_H

`ndir.h' NDIR HAVE_NDIR_H

MacroAC DYNIX SEQ
If on Dynix/PTX (Sequent unix), add `-lseq' to output variable LIBS. This macro
used to be de�ned as

AC_CHECK_LIB(seq, getmntent, LIBS="-lseq $LIBS")

now it is just AC_FUNC_GETMNTENT.

MacroAC EXEEXT
De�ned the output variable EXEEXT based on the output of the compiler, which is
now done automatically. Typically set to empty string if Unix and `.exe' if Win32
or OS/2.

MacroAC EMXOS2
Similar to AC_CYGWIN but checks for the EMX environment on OS/2 and sets EMXOS2.

MacroAC ERROR
AC_MSG_ERROR

MacroAC FIND X
AC_PATH_X



128 Autoconf

MacroAC FIND XTRA
AC_PATH_XTRA

MacroAC FUNC CHECK
AC_CHECK_FUNC

MacroAC GCC TRADITIONAL
AC_PROG_GCC_TRADITIONAL

MacroAC GETGROUPS T
AC_TYPE_GETGROUPS

MacroAC GETLOADAVG
AC_FUNC_GETLOADAVG

MacroAC HAVE FUNCS
AC_CHECK_FUNCS

MacroAC HAVE HEADERS
AC_CHECK_HEADERS

MacroAC HAVE LIBRARY (library, [action-if-found], [action-if-not-found],
[other-libraries])

This macro is equivalent to calling AC_CHECK_LIB with a function argument of main.
In addition, library can be written as any of `foo', `-lfoo', or `libfoo.a'. In all
of those cases, the compiler is passed `-lfoo'. However, library cannot be a shell
variable; it must be a literal name.

MacroAC HAVE POUNDBANG
AC_SYS_INTERPRETER (di�erent calling convention)

MacroAC HEADER CHECK
AC_CHECK_HEADER

MacroAC HEADER EGREP
AC_EGREP_HEADER

MacroAC INIT (unique-�le-in-source-dir)
Formerly AC_INIT used to have a single argument, and was equivalent to:

AC_INIT
AC_CONFIG_SRCDIR(unique-�le-in-source-dir)

MacroAC INLINE
AC_C_INLINE



Chapter 13: Obsolete Constructs 129

MacroAC INT 16 BITS
If the C type int is 16 bits wide, de�ne INT_16_BITS. Use `AC_CHECK_SIZEOF(int)'
instead.

MacroAC IRIX SUN
If on IRIX (Silicon Graphics unix), add `-lsun' to output LIBS. If you were using
it to get getmntent, use AC_FUNC_GETMNTENT instead. If you used it for the NIS
versions of the password and group functions, use `AC_CHECK_LIB(sun, getpwnam)'.
Up to Autoconf 2.13, it used to be

AC_CHECK_LIB(sun, getmntent, LIBS="-lsun $LIBS")

now it is de�ned as

AC_FUNC_GETMNTENT
AC_CHECK_LIB(sun, getpwnam)

MacroAC LANG C
Same as `AC_LANG(C)'.

MacroAC LANG CPLUSPLUS
Same as `AC_LANG(C++)'.

MacroAC LANG FORTRAN77
Same as `AC_LANG(Fortran 77)'.

MacroAC LANG RESTORE
Select the language that is saved on the top of the stack, as set by AC_LANG_SAVE,
remove it from the stack, and call AC_LANG(language).

MacroAC LANG SAVE
Remember the current language (as set by AC_LANG) on a stack. The current language
does not change. AC_LANG_PUSH is preferred.

MacroAC LINK FILES (source . . . , dest. . . )
This is an obsolete version of AC_CONFIG_LINKS. An updated version of:

AC_LINK_FILES(config/$machine.h config/$obj_format.h,
host.h object.h)

is:

AC_CONFIG_LINKS(host.h:config/$machine.h
object.h:config/$obj_format.h)

MacroAC LN S
AC_PROG_LN_S

MacroAC LONG 64 BITS
De�ne LONG_64_BITS if the C type long int is 64 bits wide. Use the generic macro
`AC_CHECK_SIZEOF([long int])' instead.



130 Autoconf

MacroAC LONG DOUBLE
AC_C_LONG_DOUBLE

MacroAC LONG FILE NAMES
AC_SYS_LONG_FILE_NAMES

MacroAC MAJOR HEADER
AC_HEADER_MAJOR

MacroAC MEMORY H
Used to de�ne NEED_MEMORY_H if the mem functions were de�ned in `memory.h'. Today
it is equivalent to `AC_CHECK_HEADERS(memory.h)'. Adjust your code to depend
upon HAVE_MEMORY_H, not NEED_MEMORY_H, see See Section 5.1.1 [Standard Symbols],
page 31.

MacroAC MINGW32
Similar to AC_CYGWIN but checks for the MingW32 compiler environment and sets
MINGW32.

MacroAC MINUS C MINUS O
AC_PROG_CC_C_O

MacroAC MMAP
AC_FUNC_MMAP

MacroAC MODE T
AC_TYPE_MODE_T

MacroAC OBJEXT
De�ned the output variable OBJEXT based on the output of the compiler, after .c �les
have been excluded. Typically set to `o' if Unix, `obj' if Win32. Now the compiler
checking macros handle this automatically.

MacroAC OBSOLETE (this-macro-name, [suggestion])
Make m4 print a message to the standard error output warning that this-macro-name

is obsolete, and giving the �le and line number where it was called. this-macro-name

should be the name of the macro that is calling AC_OBSOLETE. If suggestion is given,
it is printed at the end of the warning message; for example, it can be a suggestion
for what to use instead of this-macro-name.

For instance

AC_OBSOLETE([$0], [; use AC_CHECK_HEADERS(unistd.h) instead])dnl

You are encouraged to use AU_DEFUN instead, since it gives better services to the user.

MacroAC OFF T
AC_TYPE_OFF_T



Chapter 13: Obsolete Constructs 131

MacroAC OUTPUT ([�le]. . . , [extra-cmds], [init-cmds])
The use of AC_OUTPUT with argument is deprecated, this obsoleted interface is equiv-
alent to:

AC_CONFIG_FILES(�le...)
AC_CONFIG_COMMANDS([default],

extra-cmds, init-cmds)
AC_OUTPUT

MacroAC OUTPUT COMMANDS (extra-cmds, [init-cmds])
Specify additional shell commands to run at the end of `config.status', and shell
commands to initialize any variables from configure. This macro may be called
multiple times. It is obsolete, replaced by AC_CONFIG_COMMANDS.

Here is an unrealistic example:

fubar=27
AC_OUTPUT_COMMANDS([echo this is extra $fubar, and so on.],

fubar=$fubar)
AC_OUTPUT_COMMANDS([echo this is another, extra, bit],

[echo init bit])

Aside from the fact that AC_CONFIG_COMMANDS requires an additional key, an impor-
tant di�erence is that AC_OUTPUT_COMMANDS is quoting its arguments twice, while
AC_CONFIG_COMMANDS. This means that AC_CONFIG_COMMANDS can safely be given
macro calls as arguments:

AC_CONFIG_COMMANDS(foo, [my_FOO()])

conversely, where one level of quoting was enough for literal strings with AC_OUTPUT_

COMMANDS, you need two with AC_CONFIG_COMMANDS. The following lines are equiva-
lent:

AC_OUTPUT_COMMANDS([echo "Square brackets: []"])
AC_CONFIG_COMMANDS(default, [[echo "Square brackets: []"]])

MacroAC PID T
AC_TYPE_PID_T

MacroAC PREFIX
AC_PREFIX_PROGRAM

MacroAC PROGRAMS CHECK
AC_CHECK_PROGS

MacroAC PROGRAMS PATH
AC_PATH_PROGS

MacroAC PROGRAM CHECK
AC_CHECK_PROG

MacroAC PROGRAM EGREP
AC_EGREP_CPP



132 Autoconf

MacroAC PROGRAM PATH
AC_PATH_PROG

MacroAC REMOTE TAPE
removed because of limited usefulness

MacroAC RESTARTABLE SYSCALLS
AC_SYS_RESTARTABLE_SYSCALLS

MacroAC RETSIGTYPE
AC_TYPE_SIGNAL

MacroAC RSH
Removed because of limited usefulness.

MacroAC SCO INTL
If on SCO UNIX, add `-lintl' to output variable LIBS. This macro used to

AC_CHECK_LIB(intl, strftime, LIBS="-lintl $LIBS")

now it just calls AC_FUNC_STRFTIME instead.

MacroAC SETVBUF REVERSED
AC_FUNC_SETVBUF_REVERSED

MacroAC SET MAKE
AC_PROG_MAKE_SET

MacroAC SIZEOF TYPE
AC_CHECK_SIZEOF

MacroAC SIZE T
AC_TYPE_SIZE_T

MacroAC STAT MACROS BROKEN
AC_HEADER_STAT

MacroAC STDC HEADERS
AC_HEADER_STDC

MacroAC STRCOLL
AC_FUNC_STRCOLL

MacroAC ST BLKSIZE
AC_STRUCT_ST_BLKSIZE

MacroAC ST BLOCKS
AC_STRUCT_ST_BLOCKS



Chapter 13: Obsolete Constructs 133

MacroAC ST RDEV
AC_STRUCT_ST_RDEV

MacroAC SYS SIGLIST DECLARED
AC_DECL_SYS_SIGLIST

MacroAC TEST CPP
AC_TRY_CPP

MacroAC TEST PROGRAM
AC_TRY_RUN

MacroAC TIMEZONE
AC_STRUCT_TIMEZONE

MacroAC TIME WITH SYS TIME
AC_HEADER_TIME

MacroAC UID T
AC_TYPE_UID_T

MacroAC UNISTD H
Same as `AC_CHECK_HEADERS(unistd.h)'.

MacroAC USG
De�ne USG if the bsd string functions are de�ned in `strings.h'. You should no
longer depend upon USG, but on HAVE_STRING_H, see See Section 5.1.1 [Standard
Symbols], page 31.

MacroAC UTIME NULL
AC_FUNC_UTIME_NULL

MacroAC VALIDATE CACHED SYSTEM TUPLE ([cmd])
If the cache �le is inconsistent with the current host, target and build system types,
it used to execute cmd or print a default error message.

This is now handled by default.

MacroAC VERBOSE (result-description)
AC_MSG_RESULT.

MacroAC VFORK
AC_FUNC_VFORK

MacroAC VPRINTF
AC_FUNC_VPRINTF



134 Autoconf

MacroAC WAIT3
AC_FUNC_WAIT3

MacroAC WARN
AC_MSG_WARN

MacroAC WORDS BIGENDIAN
AC_C_BIGENDIAN

MacroAC XENIX DIR
This macro used to add `-lx' to output variable LIBS if on Xenix. Also, if `dirent.h'
is being checked for, added `-ldir' to LIBS. Now it is merely an alias of AC_HEADER_
DIRENT instead, plus some code to detect whether running xenix on which you should
not depend:

AC_MSG_CHECKING([for Xenix])
AC_EGREP_CPP(yes,
[#if defined M_XENIX && !defined M_UNIX
yes

#endif],
[AC_MSG_RESULT([yes]); XENIX=yes],
[AC_MSG_RESULT([no]); XENIX=])

MacroAC YYTEXT POINTER
AC_DECL_YYTEXT

13.5 Upgrading From Version 1

Autoconf version 2 is mostly backward compatible with version 1. However, it introduces
better ways to do some things, and doesn't support some of the ugly things in version 1.
So, depending on how sophisticated your `configure.ac' �les are, you might have to do
some manual work in order to upgrade to version 2. This chapter points out some problems
to watch for when upgrading. Also, perhaps your configure scripts could bene�t from
some of the new features in version 2; the changes are summarized in the �le `NEWS' in the
Autoconf distribution.

13.5.1 Changed File Names

If you have an `aclocal.m4' installed with Autoconf (as opposed to in a particular
package's source directory), you must rename it to `acsite.m4'. See Section 3.4 [autoconf
Invocation], page 10.

If you distribute `install.sh' with your package, rename it to `install-sh' so make

builtin rules won't inadvertently create a �le called `install' from it. AC_PROG_INSTALL

looks for the script under both names, but it is best to use the new name.

If you were using `config.h.top', `config.h.bot', or `acconfig.h', you still can, but
you will have less clutter if you use the AH_ macros. See Section 4.7.3 [Autoheader Macros],
page 27.



Chapter 13: Obsolete Constructs 135

13.5.2 Changed Make�les

Add `@CFLAGS@', `@CPPFLAGS@', and `@LDFLAGS@' in your `Makefile.in' �les, so they can
take advantage of the values of those variables in the environment when configure is run.
Doing this isn't necessary, but it's a convenience for users.

Also add `@configure_input@' in a comment to each input �le for AC_OUTPUT, so that
the output �les will contain a comment saying they were produced by configure. Au-
tomatically selecting the right comment syntax for all the kinds of �les that people call
AC_OUTPUT on became too much work.

Add `config.log' and `config.cache' to the list of �les you remove in distclean

targets.

If you have the following in `Makefile.in':

prefix = /usr/local
exec_prefix = $(prefix)

you must change it to:

prefix = @prefix@
exec_prefix = @exec_prefix@

The old behavior of replacing those variables without `@' characters around them has been
removed.

13.5.3 Changed Macros

Many of the macros were renamed in Autoconf version 2. You can still use the old
names, but the new ones are clearer, and it's easier to �nd the documentation for them.
See Section 13.4 [Obsolete Macros], page 125, for a table showing the new names for the
old macros. Use the autoupdate program to convert your `configure.ac' to using the new
macro names. See Section 13.3 [autoupdate Invocation], page 124.

Some macros have been superseded by similar ones that do the job better, but are not
call-compatible. If you get warnings about calling obsolete macros while running autoconf,
you may safely ignore them, but your configure script will generally work better if you
follow the advice it prints about what to replace the obsolete macros with. In particular,
the mechanism for reporting the results of tests has changed. If you were using echo or
AC_VERBOSE (perhaps via AC_COMPILE_CHECK), your configure script's output will look
better if you switch to AC_MSG_CHECKING and AC_MSG_RESULT. See Section 7.4 [Printing
Messages], page 90. Those macros work best in conjunction with cache variables. See
Section 7.3 [Caching Results], page 87.

13.5.4 Changed Results

If you were checking the results of previous tests by examining the shell variable DEFS,
you need to switch to checking the values of the cache variables for those tests. DEFS no
longer exists while configure is running; it is only created when generating output �les.
This di�erence from version 1 is because properly quoting the contents of that variable
turned out to be too cumbersome and ineÆcient to do every time AC_DEFINE is called. See
Section 7.3.1 [Cache Variable Names], page 88.

For example, here is a `configure.ac' fragment written for Autoconf version 1:



136 Autoconf

AC_HAVE_FUNCS(syslog)
case "$DEFS" in
*-DHAVE_SYSLOG*) ;;
*) # syslog is not in the default libraries. See if it's in some other.
saved_LIBS="$LIBS"
for lib in bsd socket inet; do
AC_CHECKING(for syslog in -l$lib)
LIBS="$saved_LIBS -l$lib"
AC_HAVE_FUNCS(syslog)
case "$DEFS" in
*-DHAVE_SYSLOG*) break ;;
*) ;;
esac
LIBS="$saved_LIBS"

done ;;
esac

Here is a way to write it for version 2:

AC_CHECK_FUNCS(syslog)
if test $ac_cv_func_syslog = no; then
# syslog is not in the default libraries. See if it's in some other.
for lib in bsd socket inet; do
AC_CHECK_LIB($lib, syslog, [AC_DEFINE(HAVE_SYSLOG)
LIBS="$LIBS -l$lib"; break])

done
fi

If you were working around bugs in AC_DEFINE_UNQUOTED by adding backslashes before
quotes, you need to remove them. It now works predictably, and does not treat quotes
(except back quotes) specially. See Section 7.2 [Setting Output Variables], page 86.

All of the boolean shell variables set by Autoconf macros now use `yes' for the true
value. Most of them use `no' for false, though for backward compatibility some use the
empty string instead. If you were relying on a shell variable being set to something like 1
or `t' for true, you need to change your tests.

13.5.5 Changed Macro Writing

When de�ning your own macros, you should now use AC_DEFUN instead of define.
AC_DEFUN automatically calls AC_PROVIDE and ensures that macros called via AC_REQUIRE

do not interrupt other macros, to prevent nested `checking...' messages on the screen.
There's no actual harm in continuing to use the older way, but it's less convenient and
attractive. See Section 8.1 [Macro De�nitions], page 93.

You probably looked at the macros that came with Autoconf as a guide for how to do
things. It would be a good idea to take a look at the new versions of them, as the style is
somewhat improved and they take advantage of some new features.

If you were doing tricky things with undocumented Autoconf internals (macros, variables,
diversions), check whether you need to change anything to account for changes that have
been made. Perhaps you can even use an oÆcially supported technique in version 2 instead
of kludging. Or perhaps not.



Chapter 13: Obsolete Constructs 137

To speed up your locally written feature tests, add caching to them. See whether any of
your tests are of general enough usefulness to encapsulate into macros that you can share.



138 Autoconf



Chapter 14: Questions About Autoconf 139

14 Questions About Autoconf

Several questions about Autoconf come up occasionally. Here some of them are ad-
dressed.

14.1 Distributing configure Scripts

What are the restrictions on distributing configure
scripts that Autoconf generates? How does that a�ect my
programs that use them?

There are no restrictions on how the con�guration scripts that Autoconf produces may
be distributed or used. In Autoconf version 1, they were covered by the gnu General Public
License. We still encourage software authors to distribute their work under terms like those
of the GPL, but doing so is not required to use Autoconf.

Of the other �les that might be used with configure, `config.h.in' is under whatever
copyright you use for your `configure.ac'. `config.sub' and `config.guess' have an
exception to the GPL when they are used with an Autoconf-generated configure script,
which permits you to distribute them under the same terms as the rest of your package.
`install-sh' is from the X Consortium and is not copyrighted.

14.2 Why Require GNU M4?

Why does Autoconf require gnu M4?

Many M4 implementations have hard-coded limitations on the size and number of macros
that Autoconf exceeds. They also lack several builtin macros that it would be diÆcult to
get along without in a sophisticated application like Autoconf, including:

builtin
indir
patsubst
__file__
__line__

Autoconf requires version 1.4 or above of gnu M4 because it uses frozen state �les.

Since only software maintainers need to use Autoconf, and since gnu M4 is simple to
con�gure and install, it seems reasonable to require gnu M4 to be installed also. Many
maintainers of gnu and other free software already have most of the gnu utilities installed,
since they prefer them.

14.3 How Can I Bootstrap?

If Autoconf requires gnu M4 and gnu M4 has an Autoconf
configure script, how do I bootstrap? It seems like a chicken
and egg problem!

This is a misunderstanding. Although gnu M4 does come with a configure script
produced by Autoconf, Autoconf is not required in order to run the script and install gnu
M4. Autoconf is only required if you want to change the M4 configure script, which few
people have to do (mainly its maintainer).



140 Autoconf

14.4 Why Not Imake?

Why not use Imake instead of configure scripts?

Several people have written addressing this question, so I include adaptations of their
explanations here.

The following answer is based on one written by Richard Pixley:

Autoconf generated scripts frequently work on machines that it has never been
set up to handle before. That is, it does a good job of inferring a con�guration
for a new system. Imake cannot do this.

Imake uses a common database of host speci�c data. For X11, this makes sense
because the distribution is made as a collection of tools, by one central authority
who has control over the database.

gnu tools are not released this way. Each gnu tool has a maintainer; these
maintainers are scattered across the world. Using a common database would be
a maintenance nightmare. Autoconf may appear to be this kind of database,
but in fact it is not. Instead of listing host dependencies, it lists program
requirements.

If you view the gnu suite as a collection of native tools, then the problems
are similar. But the gnu development tools can be con�gured as cross tools in
almost any host+target permutation. All of these con�gurations can be installed
concurrently. They can even be con�gured to share host independent �les across
hosts. Imake doesn't address these issues.

Imake templates are a form of standardization. The gnu coding standards
address the same issues without necessarily imposing the same restrictions.

Here is some further explanation, written by Per Bothner:

One of the advantages of Imake is that it easy to generate large Make�les using
cpp's `#include' and macro mechanisms. However, cpp is not programmable:
it has limited conditional facilities, and no looping. And cpp cannot inspect its
environment.

All of these problems are solved by using sh instead of cpp. The shell is fully pro-
grammable, has macro substitution, can execute (or source) other shell scripts,
and can inspect its environment.

Paul Eggert elaborates more:

With Autoconf, installers need not assume that Imake itself is already installed
and working well. This may not seem like much of an advantage to people
who are accustomed to Imake. But on many hosts Imake is not installed or the
default installation is not working well, and requiring Imake to install a package
hinders the acceptance of that package on those hosts. For example, the Imake
template and con�guration �les might not be installed properly on a host, or
the Imake build procedure might wrongly assume that all source �les are in
one big directory tree, or the Imake con�guration might assume one compiler
whereas the package or the installer needs to use another, or there might be a
version mismatch between the Imake expected by the package and the Imake
supported by the host. These problems are much rarer with Autoconf, where
each package comes with its own independent con�guration processor.



Chapter 14: Questions About Autoconf 141

Also, Imake often su�ers from unexpected interactions between make and the
installer's C preprocessor. The fundamental problem here is that the C pre-
processor was designed to preprocess C programs, not `Makefile's. This is
much less of a problem with Autoconf, which uses the general-purpose prepro-
cessor m4, and where the package's author (rather than the installer) does the
preprocessing in a standard way.

Finally, Mark Eichin notes:

Imake isn't all that extensible, either. In order to add new features to Imake,
you need to provide your own project template, and duplicate most of the
features of the existing one. This means that for a sophisticated project, using
the vendor-provided Imake templates fails to provide any leverage|since they
don't cover anything that your own project needs (unless it is an X11 program).

On the other side, though:

The one advantage that Imake has over configure: `Imakefile's tend to be
much shorter (likewise, less redundant) than `Makefile.in's. There is a �x to
this, however|at least for the Kerberos V5 tree, we've modi�ed things to call in
common `post.in' and `pre.in' `Makefile' fragments for the entire tree. This
means that a lot of common things don't have to be duplicated, even though
they normally are in configure setups.



142 Autoconf



Chapter 15: History of Autoconf 143

15 History of Autoconf

You may be wondering, Why was Autoconf originally written? How did it get into its
present form? (Why does it look like gorilla spit?) If you're not wondering, then this
chapter contains no information useful to you, and you might as well skip it. If you are

wondering, then let there be light. . .

15.1 Genesis

In June 1991 I was maintaining many of the gnu utilities for the Free Software Founda-
tion. As they were ported to more platforms and more programs were added, the number
of `-D' options that users had to select in the `Makefile' (around 20) became burdensome.
Especially for me|I had to test each new release on a bunch of di�erent systems. So I
wrote a little shell script to guess some of the correct settings for the �leutils package, and
released it as part of �leutils 2.0. That configure script worked well enough that the next
month I adapted it (by hand) to create similar configure scripts for several other gnu
utilities packages. Brian Berliner also adapted one of my scripts for his cvs revision control
system.

Later that summer, I learned that Richard Stallman and Richard Pixley were developing
similar scripts to use in the gnu compiler tools; so I adapted my configure scripts to
support their evolving interface: using the �le name `Makefile.in' as the templates; adding
`+srcdir', the �rst option (of many); and creating `config.status' �les.

15.2 Exodus

As I got feedback from users, I incorporated many improvements, using Emacs to search
and replace, cut and paste, similar changes in each of the scripts. As I adapted more gnu
utilities packages to use configure scripts, updating them all by hand became impractical.
Rich Murphey, the maintainer of the gnu graphics utilities, sent me mail saying that the
configure scripts were great, and asking if I had a tool for generating them that I could
send him. No, I thought, but I should! So I started to work out how to generate them.
And the journey from the slavery of hand-written configure scripts to the abundance and
ease of Autoconf began.

Cygnus configure, which was being developed at around that time, is table driven;
it is meant to deal mainly with a discrete number of system types with a small number
of mainly unguessable features (such as details of the object �le format). The automatic
con�guration system that Brian Fox had developed for Bash takes a similar approach. For
general use, it seems to me a hopeless cause to try to maintain an up-to-date database of
which features each variant of each operating system has. It's easier and more reliable to
check for most features on the y|especially on hybrid systems that people have hacked
on locally or that have patches from vendors installed.

I considered using an architecture similar to that of Cygnus configure, where there
is a single configure script that reads pieces of `configure.in' when run. But I didn't
want to have to distribute all of the feature tests with every package, so I settled on having
a di�erent configure made from each `configure.in' by a preprocessor. That approach
also o�ered more control and exibility.



144 Autoconf

I looked briey into using the Metacon�g package, by Larry Wall, Harlan Stenn, and
Raphael Manfredi, but I decided not to for several reasons. The Configure scripts it
produces are interactive, which I �nd quite inconvenient; I didn't like the ways it checked
for some features (such as library functions); I didn't know that it was still being maintained,
and the Configure scripts I had seen didn't work on many modern systems (such as System
V R4 and NeXT); it wasn't very exible in what it could do in response to a feature's
presence or absence; I found it confusing to learn; and it was too big and complex for my
needs (I didn't realize then how much Autoconf would eventually have to grow).

I considered using Perl to generate my style of configure scripts, but decided that
M4 was better suited to the job of simple textual substitutions: it gets in the way less,
because output is implicit. Plus, everyone already has it. (Initially I didn't rely on the gnu
extensions to M4.) Also, some of my friends at the University of Maryland had recently
been putting M4 front ends on several programs, including tvtwm, and I was interested in
trying out a new language.

15.3 Leviticus

Since my configure scripts determine the system's capabilities automatically, with no
interactive user intervention, I decided to call the program that generates them Autocon�g.
But with a version number tacked on, that name would be too long for old unix �le systems,
so I shortened it to Autoconf.

In the fall of 1991 I called together a group of fellow questers after the Holy Grail of
portability (er, that is, alpha testers) to give me feedback as I encapsulated pieces of my
handwritten scripts in M4 macros and continued to add features and improve the techniques
used in the checks. Prominent among the testers were Fran�cois Pinard, who came up with
the idea of making an `autoconf' shell script to run m4 and check for unresolved macro calls;
Richard Pixley, who suggested running the compiler instead of searching the �le system to
�nd include �les and symbols, for more accurate results; Karl Berry, who got Autoconf to
con�gure TEX and added the macro index to the documentation; and Ian Lance Taylor,
who added support for creating a C header �le as an alternative to putting `-D' options in
a `Makefile', so he could use Autoconf for his uucp package. The alpha testers cheerfully
adjusted their �les again and again as the names and calling conventions of the Autoconf
macros changed from release to release. They all contributed many speci�c checks, great
ideas, and bug �xes.

15.4 Numbers

In July 1992, after months of alpha testing, I released Autoconf 1.0, and converted
many gnu packages to use it. I was surprised by how positive the reaction to it was. More
people started using it than I could keep track of, including people working on software that
wasn't part of the gnu Project (such as TCL, FSP, and Kerberos V5). Autoconf continued
to improve rapidly, as many people using the configure scripts reported problems they
encountered.

Autoconf turned out to be a good torture test for M4 implementations. unix m4 started
to dump core because of the length of the macros that Autoconf de�ned, and several bugs
showed up in gnu m4 as well. Eventually, we realized that we needed to use some features



Chapter 15: History of Autoconf 145

that only gnu M4 has. 4.3bsd m4, in particular, has an impoverished set of builtin macros;
the System V version is better, but still doesn't provide everything we need.

More development occurred as people put Autoconf under more stresses (and to uses I
hadn't anticipated). Karl Berry added checks for X11. david zuhn contributed C++ support.
Fran�cois Pinard made it diagnose invalid arguments. Jim Blandy bravely coerced it into
con�guring gnu Emacs, laying the groundwork for several later improvements. Roland
McGrath got it to con�gure the gnu C Library, wrote the autoheader script to automate
the creation of C header �le templates, and added a `--verbose' option to configure. Noah
Friedman added the `--autoconf-dir' option and AC_MACRODIR environment variable. (He
also coined the term autocon�scate to mean \adapt a software package to use Autoconf".)
Roland and Noah improved the quoting protection in AC_DEFINE and �xed many bugs,
especially when I got sick of dealing with portability problems from February through
June, 1993.

15.5 Deuteronomy

A long wish list for major features had accumulated, and the e�ect of several years of
patching by various people had left some residual cruft. In April 1994, while working for
Cygnus Support, I began a major revision of Autoconf. I added most of the features of
the Cygnus configure that Autoconf had lacked, largely by adapting the relevant parts of
Cygnus configure with the help of david zuhn and Ken Raeburn. These features include
support for using `config.sub', `config.guess', `--host', and `--target'; making links
to �les; and running configure scripts in subdirectories. Adding these features enabled
Ken to convert gnu as, and Rob Savoye to convert DejaGNU, to using Autoconf.

I added more features in response to other peoples' requests. Many people had asked
for configure scripts to share the results of the checks between runs, because (particularly
when con�guring a large source tree, like Cygnus does) they were frustratingly slow. Mike
Haertel suggested adding site-speci�c initialization scripts. People distributing software
that had to unpack on MS-DOS asked for a way to override the `.in' extension on the �le
names, which produced �le names like `config.h.in' containing two dots. Jim Avera did
an extensive examination of the problems with quoting in AC_DEFINE and AC_SUBST; his
insights led to signi�cant improvements. Richard Stallman asked that compiler output be
sent to `config.log' instead of `/dev/null', to help people debug the Emacs configure
script.

I made some other changes because of my dissatisfaction with the quality of the program.
I made the messages showing results of the checks less ambiguous, always printing a result.
I regularized the names of the macros and cleaned up coding style inconsistencies. I added
some auxiliary utilities that I had developed to help convert source code packages to use
Autoconf. With the help of Fran�cois Pinard, I made the macros not interrupt each others'
messages. (That feature revealed some performance bottlenecks in gnu m4, which he hastily
corrected!) I reorganized the documentation around problems people want to solve. And I
began a test suite, because experience had shown that Autoconf has a pronounced tendency
to regress when we change it.

Again, several alpha testers gave invaluable feedback, especially Fran�cois Pinard, Jim
Meyering, Karl Berry, Rob Savoye, Ken Raeburn, and Mark Eichin.



146 Autoconf

Finally, version 2.0 was ready. And there was much rejoicing. (And I have free time
again. I think. Yeah, right.)



Environment Variable Index 147

Environment Variable Index

This is an alphabetical list of the environment variables that Autoconf checks.

A
AC_MACRODIR . . . . . . . . . . . . . . . . . . . 9, 10, 14, 26, 125

C
CDPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
CONFIG_COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
CONFIG_FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
CONFIG_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
CONFIG_LINKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
CONFIG_SHELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
CONFIG_SITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
CONFIG_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

I
IFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

L
LANG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LANGUAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LC_ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LC_COLLATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

LC_CTYPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LC_MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LC_NUMERIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LC_TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

N
NULLCMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

P
PATH_SEPARATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

R
RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

S
SIMPLE_BACKUP_SUFFIX. . . . . . . . . . . . . . . . . . . . . . 124
status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

W
WARNINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 26



148 Autoconf



Output Variable Index 149

Output Variable Index

This is an alphabetical list of the variables that Autoconf can substitute into �les that
it creates, typically one or more `Makefile's. See Section 7.2 [Setting Output Variables],
page 86, for more information on how this is done.

A
ALLOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
AWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B
bindir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
build_alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
build_cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
build_os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
build_vendor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 51, 52, 56, 57
CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 50
configure_input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CPPFLAGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
cross_compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
CXX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CXXCPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CXXFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 51

D
datadir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DEFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E
ECHO_C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ECHO_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ECHO_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
exec_prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
EXEEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 127

F
F77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
FFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 52
FLIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

G
GETGROUPS_LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
GETLOADAVG_LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

H
host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

host_alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

host_cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

host_os. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

host_vendor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

I
includedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

infodir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

INSTALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

INSTALL_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

INSTALL_PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

INSTALL_SCRIPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

K
KMEM_GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

L
LDFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

LEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

LEX_OUTPUT_ROOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

LEXLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

libdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

libexecdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

LIBOBJS . . . . . . . . . . . . . . . . . . . . . . . 38, 39, 41, 42, 47

LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 132, 134

LN_S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

localstatedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

M
mandir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

N
NEED_SETGID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

O
OBJEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 130

oldincludedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



150 Autoconf

P
POW_LIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

program_transform_name . . . . . . . . . . . . . . . . . . . 112

R
RANLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

S
sbindir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

SET_MAKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

sharedstatedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

srcdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

subdirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

sysconfdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

T
target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
target_alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
target_cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
target_os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
target_vendor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
top_srcdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

X
X_CFLAGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
X_EXTRA_LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
X_LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
X_PRE_LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Y
YACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



Preprocessor Symbol Index 151

Preprocessor Symbol Index

This is an alphabetical list of the C preprocessor symbols that the Autoconf macros
de�ne. To work with Autoconf, C source code needs to use these names in #if directives.

__CHAR_UNSIGNED__ . . . . . . . . . . . . . . . . . . . . . . . . . . 53
_ALL_SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
_FILE_OFFSET_BITS . . . . . . . . . . . . . . . . . . . . . . . . . . 56
_LARGE_FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
_LARGEFILE_SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . 38
_MINIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
_POSIX_1_SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
_POSIX_SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
_POSIX_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

C
C_ALLOCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
C_GETLOADAVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CLOSEDIR_VOID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
const . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

D
DGUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DIRENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

F
F77_FUNC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
F77_FUNC_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
F77_NO_MINUS_C_MINUS_O . . . . . . . . . . . . . . . . . . . . 52

G
GETGROUPS_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
GETLODAVG_PRIVILEGED. . . . . . . . . . . . . . . . . . . . . . . 38
GETPGRP_VOID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
gid_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
GWINSZ_IN_SYS_IOCTL . . . . . . . . . . . . . . . . . . . . . . . . 45

H
HAVE_ALLOCA_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
HAVE_CONFIG_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
HAVE_DECL_symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
HAVE_DIRENT_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
HAVE_DOPRNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
HAVE_function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
HAVE_GETMNTENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
HAVE_header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
HAVE_LONG_DOUBLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
HAVE_LONG_FILE_NAMES. . . . . . . . . . . . . . . . . . . . . . . 57

HAVE_LSTAT_EMPTY_STRING_BUG . . . . . . . . . . . . . . . 40
HAVE_MMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
HAVE_NDIR_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
HAVE_OBSTACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
HAVE_RESTARTABLE_SYSCALLS . . . . . . . . . . . . . . . . . 57
HAVE_ST_BLKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
HAVE_ST_BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
HAVE_ST_RDEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
HAVE_STAT_EMPTY_STRING_BUG . . . . . . . . . . . . . . . . 40
HAVE_STRCOLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
HAVE_STRERROR_R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
HAVE_STRFTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
HAVE_STRINGIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
HAVE_STRUCT_STAT_ST_BLKSIZE . . . . . . . . . . . . . . . 47
HAVE_STRUCT_STAT_ST_BLOCKS . . . . . . . . . . . . . . . . 47
HAVE_STRUCT_STAT_ST_RDEV . . . . . . . . . . . . . . . . . . 48
HAVE_SYS_DIR_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
HAVE_SYS_NDIR_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
HAVE_SYS_WAIT_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
HAVE_TM_ZONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
HAVE_TZNAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
HAVE_UTIME_NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
HAVE_VFORK_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
HAVE_VPRINTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
HAVE_WAIT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
HAVE_WORKING_STRERROR_R . . . . . . . . . . . . . . . . . . . 40

I
inline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_16_BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

L
LONG_64_BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
LSTAT_FOLLOWS_SLASHED_SYMLINK . . . . . . . . . . . . . 39

M
MAJOR_IN_MKDEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
MAJOR_IN_SYSMACROS . . . . . . . . . . . . . . . . . . . . . . . . . 43
mode_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

N
NDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
NEED_MEMORY_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
NEED_SETGID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
NLIST_NAME_UNION . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



152 Autoconf

NLIST_STRUCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
NO_MINUS_C_MINUS_O . . . . . . . . . . . . . . . . . . . . . . . . . 50

O
off_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

P
PARAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
pid_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
PROTOTYPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

R
RETSIGTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

S
SELECT_TYPE_ARG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SELECT_TYPE_ARG234 . . . . . . . . . . . . . . . . . . . . . . . . . 39
SELECT_TYPE_ARG5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SETPGRP_VOID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SETVBUF_REVERSED . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
size_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
STDC_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
SVR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SYS_SIGLIST_DECLARED. . . . . . . . . . . . . . . . . . . . . . . 46
SYSDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
SYSNDIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

T
TIME_WITH_SYS_TIME . . . . . . . . . . . . . . . . . . . . . . . . . 45

TM_IN_SYS_TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

U
uid_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

UMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

UMAX4_3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

USG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

V
vfork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

volatile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

W
WORDS_BIGENDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

X
X_DISPLAY_MISSING . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Y
YYTEXT_POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



Macro Index 153

Macro Index

This is an alphabetical list of the Autoconf macros. To make the list easier to use, the
macros are listed without their preceding `AC_'.

A
AH_BOTTOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AH_TEMPLATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AH_TOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AH_VERBATIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ALLOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
ARG_ARRAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
ARG_ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
ARG_PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ARG_WITH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
AU_DEFUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B
BEFORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
BOTTOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C
C_BIGENDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
C_CHAR_UNSIGNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C_CONST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
C_CROSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C_INLINE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C_LONG_DOUBLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C_PROTOTYPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
C_STRINGIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C_VOLATILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
CACHE_CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CACHE_LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
CACHE_SAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
CACHE_VAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CANONICAL_BUILD . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
CANONICAL_HOST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
CANONICAL_SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . 125
CANONICAL_TARGET . . . . . . . . . . . . . . . . . . . . . . . . . . 106
CHAR_UNSIGNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
CHECK_DECL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CHECK_DECLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CHECK_FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
CHECK_FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
CHECK_FUNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CHECK_FUNCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CHECK_HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CHECK_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CHECK_LIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CHECK_MEMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
CHECK_MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CHECK_PROG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CHECK_PROGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CHECK_SIZEOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CHECK_TOOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CHECK_TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CHECK_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 126
CHECK_TYPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CHECKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
COMPILE_CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
CONFIG_AUX_DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CONFIG_COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CONFIG_FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CONFIG_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
CONFIG_LINKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CONFIG_SRCDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CONFIG_SUBDIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
CONST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
COPYRIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
CROSS_CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
CYGWIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

D
DECL_SYS_SIGLIST . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
DECL_YYTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DEFINE_UNQUOTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DEFUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93, 101
DIAGNOSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
DIR_HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
DYNIX_SEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

E
EGREP_CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
EGREP_HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
EMXOS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
EXEEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

F
F77_FUNC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
F77_LIBRARY_LDFLAGS . . . . . . . . . . . . . . . . . . . . . . . . 54
F77_WRAPPERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
FATAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
FIND_X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
FIND_XTRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



154 Autoconf

FUNC_ALLOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

FUNC_CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

FUNC_CHOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

FUNC_CLOSEDIR_VOID . . . . . . . . . . . . . . . . . . . . . . . . . 37

FUNC_ERROR_AT_LINE . . . . . . . . . . . . . . . . . . . . . . . . . 38

FUNC_FNMATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

FUNC_FSEEKO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

FUNC_GETGROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

FUNC_GETLOADAVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

FUNC_GETMNTENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

FUNC_GETPGRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

FUNC_LSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

FUNC_LSTAT_FOLLOWS_SLASHED_SYMLINK . . . . . . . 39

FUNC_MALLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

FUNC_MEMCMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

FUNC_MKTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

FUNC_MMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

FUNC_OBSTACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

FUNC_SELECT_ARGTYPES. . . . . . . . . . . . . . . . . . . . . . . 39

FUNC_SETPGRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

FUNC_SETVBUF_REVERSED . . . . . . . . . . . . . . . . . . . . . 40

FUNC_STAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

FUNC_STRCOLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

FUNC_STRERROR_R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

FUNC_STRFTIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

FUNC_STRTOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

FUNC_UTIME_NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

FUNC_VFORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

FUNC_VPRINTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

FUNC_WAIT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

G
GCC_TRADITIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

GETGROUPS_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

GETLOADAVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

H
HAVE_FUNCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

HAVE_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

HAVE_LIBRARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

HAVE_POUNDBANG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

HEADER_CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

HEADER_DIRENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

HEADER_EGREP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

HEADER_MAJOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

HEADER_STAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

HEADER_STDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

HEADER_SYS_WAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

HEADER_TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

HEADER_TIOCGWINSZ . . . . . . . . . . . . . . . . . . . . . . . . . . 45

HELP_STRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

I
INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 128

INLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

INT_16_BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

IRIX_SUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ISC_POSIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

L
LANG_C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

LANG_CPLUSPLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

LANG_FORTRAN77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

LANG_POP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

LANG_PUSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

LANG_RESTORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

LANG_SAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

LIBOBJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

LIBSOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

LIBSOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

LINK_FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

LN_S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

LONG_64_BITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

LONG_DOUBLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

LONG_FILE_NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

M
MAJOR_HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

MEMORY_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

MINGW32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

MINIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

MINUS_C_MINUS_O . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

MMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

MODE_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

MSG_CHECKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

MSG_ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

MSG_NOTICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

MSG_RESULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

MSG_WARN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

O
OBJEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

OBSOLETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

OFF_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 131

OUTPUT_COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

OUTPUT_COMMANDS_POST. . . . . . . . . . . . . . . . . . . . . . . 28

OUTPUT_COMMANDS_PRE . . . . . . . . . . . . . . . . . . . . . . . . 28



Macro Index 155

P
PATH_PROG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
PATH_PROGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
PATH_TOOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
PATH_X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
PATH_XTRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
PID_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
PREFIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
PREFIX_DEFAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
PREFIX_PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
PREREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
PROG_AWK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
PROG_CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
PROG_CC_C_O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
PROG_CC_STDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
PROG_CPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
PROG_CXX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
PROG_CXXCPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
PROG_F77_C_O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
PROG_FORTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
PROG_GCC_TRADITIONAL. . . . . . . . . . . . . . . . . . . . . . . 52
PROG_INSTALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
PROG_LEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
PROG_LN_S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
PROG_MAKE_SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PROG_RANLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
PROG_YACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
PROGRAM_CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
PROGRAM_EGREP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
PROGRAM_PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
PROGRAMS_CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
PROGRAMS_PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

R
REMOTE_TAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
REPLACE_FUNCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
REQUIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
REQUIRE_CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
RESTARTABLE_SYSCALLS. . . . . . . . . . . . . . . . . . . . . . 132
RETSIGTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
REVISION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
RSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

S
SCO_INTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
SEARCH_LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
SET_MAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
SETVBUF_REVERSED . . . . . . . . . . . . . . . . . . . . . . . . . . 132
SIZE_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
SIZEOF_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
ST_BLKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
ST_BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
ST_RDEV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

STAT_MACROS_BROKEN . . . . . . . . . . . . . . . . . . . . 43, 132

STDC_HEADERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

STRCOLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

STRUCT_ST_BLKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . 47

STRUCT_ST_BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

STRUCT_ST_RDEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

STRUCT_TIMEZONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

STRUCT_TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

SUBST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

SUBST_FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

SYS_INTERPRETER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

SYS_LARGEFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

SYS_LONG_FILE_NAMES . . . . . . . . . . . . . . . . . . . . . . . . 57

SYS_POSIX_TERMIOS . . . . . . . . . . . . . . . . . . . . . . . . . . 57

SYS_RESTARTABLE_SYSCALLS . . . . . . . . . . . . . . . . . . 57

SYS_SIGLIST_DECLARED. . . . . . . . . . . . . . . . . . . . . . 133

T
TEMPLATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

TEST_CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

TEST_PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

TIME_WITH_SYS_TIME . . . . . . . . . . . . . . . . . . . . . . . . 133

TIMEZONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

TOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

TRY_COMPILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

TRY_CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

TRY_LINK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

TRY_LINK_FUNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

TRY_RUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

TYPE_GETGROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

TYPE_MODE_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

TYPE_OFF_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

TYPE_PID_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

TYPE_SIGNAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

TYPE_SIZE_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

TYPE_UID_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

U
UID_T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

UNISTD_H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

USG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

UTIME_NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

V
VALIDATE_CACHED_SYSTEM_TUPLE . . . . . . . . . . . . . 133

VERBATIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

VERBOSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

VFORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

VPRINTF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



156 Autoconf

W
WAIT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

WARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

WARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

WITH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

WORDS_BIGENDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

X
XENIX_DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Y
YYTEXT_POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



Concept Index 157

Concept Index

!
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

$
$(commands) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

${var:-value} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

${var=expanded-value} . . . . . . . . . . . . . . . . . . . . . . 69

${var=literal} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

/
/bin/sh on OpenBSD . . . . . . . . . . . . . . . . . . . . . . . . 65

/usr/xpg4/bin/sh on Solaris . . . . . . . . . . . . . . . . . 65

:
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

`
`commands` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

"

`"$@"' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A
`acconfig.h' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

`aclocal.m4' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Ash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

autoconf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

autoheader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Automake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

autoreconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

autoscan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

autoupdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B
Back trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Bash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C
Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Cache variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Cache, enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
cat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
cmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Command Substitution. . . . . . . . . . . . . . . . . . . . . . . 70
`config.h' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
`config.h.bot' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
`config.h.in' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
`config.h.top' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
config.status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Con�guration Header . . . . . . . . . . . . . . . . . . . . . . . . 24
Con�guration Header Template . . . . . . . . . . . . . . . 25
configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 117
`configure.ac' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
`configure.in' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Copyright Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D
Declaration, checking . . . . . . . . . . . . . . . . . . . . . . . . 46
diff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
dirname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
dnl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93, 102

E
echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
egrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Endianness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
expr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
expr (`|') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

F
false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Function, checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

G
grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

H
Header, checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



158 Autoconf

I
if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
ifnames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Includes, default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

L
Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Library, checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Libtool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
ln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

M
Macro invocation stack . . . . . . . . . . . . . . . . . . . . . . . 11
Messages, from autoconf . . . . . . . . . . . . . . . . . . . . . 99
Messages, from configure . . . . . . . . . . . . . . . . . . . . 90
mv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

O
obstack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

P
POSIX termios headers . . . . . . . . . . . . . . . . . . . . . . 57
Programs, checking . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Q
qnx 4.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
quotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 94

R
Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

S
sed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

sed (`t') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Structure, checking . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Symbolic links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

T
termios POSIX headers . . . . . . . . . . . . . . . . . . . . . . 57

test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

U
unset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

V
Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

VPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Z
Zsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65


