
Using the GNU Compiler Collection

Richard M. Stallman

Last updated 28 July 1999

for gcc-2.95

(DOC-0464-00)

Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1998, 1999 Free Software Foundation,
Inc.

For GCC Version 2.95

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
Last printed April, 1998.
Printed copies are available for $50 each.
ISBN 1-882114-37-X

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled \GNU General
Public License" and \Funding for Free Software" are included exactly as in the original,
and provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions, except that the sections entitled
\GNU General Public License" and \Funding for Free Software", and this permission no-
tice, may be included in translations approved by the Free Software Foundation instead of
in the original English.

Chapter 1: Compile C, C++, Objective C, or Fortran 1

1 Compile C, C++, Objective C, or Fortran

The C, C++, and Objective C, and Fortran versions of the compiler are integrated; this is
why we use the name \GNU Compiler Collection". GCC can compile programs written in
C, C++, Objective C, or Fortran. The Fortran compiler is described in a separate manual.

\GCC" is a common shorthand term for the GNU Compiler Collection. This is both the
most general name for the compiler, and the name used when the emphasis is on compiling
C programs (as the abbreviation formerly stood for \GNU C Compiler").

When referring to C++ compilation, it is usual to call the compiler \G++". Since there is
only one compiler, it is also accurate to call it \GCC" no matter what the language context;
however, the term \G++" is more useful when the emphasis is on compiling C++ programs.

We use the name \GCC" to refer to the compilation system as a whole, and more
speci�cally to the language-independent part of the compiler. For example, we refer to the
optimization options as a�ecting the behavior of \GCC" or sometimes just \the compiler".

Front ends for other languages, such as Ada 9X, Fortran, Modula-3, and Pascal, are
under development. These front-ends, like that for C++, are built in subdirectories of GCC
and link to it. The result is an integrated compiler that can compile programs written in
C, C++, Objective C, or any of the languages for which you have installed front ends.

In this manual, we only discuss the options for the C, Objective-C, and C++ compilers
and those of the GCC core. Consult the documentation of the other front ends for the
options to use when compiling programs written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code directly from your
C++ program source. There is no intermediate C version of the program. (By contrast,
for example, some other implementations use a program that generates a C program from
your C++ source.) Avoiding an intermediate C representation of the program means that
you get better object code, and better debugging information. The GNU debugger, GDB,
works with this information in the object code to give you comprehensive C++ source-level
editing capabilities (see section \C and C++" in Debugging with GDB).

2 Using the GNU Compiler Collection

Chapter 2: GCC Command Options 3

2 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and link-
ing. The \overall options" allow you to stop this process at an intermediate stage. For
example, the `-c' option says not to run the linker. Then the output consists of object �les
output by the assembler.

Other options are passed on to one stage of processing. Some options control the pre-
processor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 2.3 [Compiling C++ Programs], page 11, for a summary of special options
for compiling C++ programs.

The gcc program accepts options and �le names as operands. Many options have mul-
tiletter names; therefore multiple single-letter options may not be grouped: `-dr' is very
di�erent from `-d -r'.

You can mix options and other arguments. For the most part, the order you use doesn't
matter. Order does matter when you use several options of the same kind; for example, if
you specify `-L' more than once, the directories are searched in the order speci�ed.

Many options have long names starting with `-f' or with `-W'|for example, `-fforce-mem',
`-fstrength-reduce', `-Wformat' and so on. Most of these have both positive and negative
forms; the negative form of `-ffoo' would be `-fno-foo'. This manual documents only one
of these two forms, whichever one is not the default.

2.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 2.2 [Options Controlling the Kind of Output], page 10.

-c -S -E -o �le -pipe -v --help -x language

C Language Options
See Section 2.4 [Options Controlling C Dialect], page 12.

-ansi -fstd -fallow-single-precision -fcond-mismatch -fno-asm
-fno-builtin -ffreestanding -fhosted -fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char -fwritable-strings
-traditional -traditional-cpp -trigraphs

C++ Language Options
See Section 2.5 [Options Controlling C++ Dialect], page 16.

-fno-access-control -fcheck-new -fconserve-space -fdollars-in-identifiers
-fno-elide-constructors -fexternal-templates -ffor-scope
-fno-for-scope -fno-gnu-keywords -fguiding-decls -fhandle-signatures

4 Using the GNU Compiler Collection

-fhonor-std -fhuge-objects -fno-implicit-templates -finit-priority
-fno-implement-inlines -fname-mangling-version-n -fno-default-inline
-foperator-names -fno-optional-diags -fpermissive -frepo -fstrict-prototy
-fsquangle -ftemplate-depth-n -fthis-is-variable -fvtable-thunks
-nostdinc++ -Wctor-dtor-privacy -Wno-deprecated -Weffc++
-Wno-non-template-friend
-Wnon-virtual-dtor -Wold-style-cast -Woverloaded-virtual
-Wno-pmf-conversions -Wreorder -Wsign-promo -Wsynth

Warning Options
See Section 2.6 [Options to Request or Suppress Warnings], page 22.

-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return -Wbad-function-cast
-Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment
-Wconversion -Werror -Wformat
-Wid-clash-len -Wimplicit -Wimplicit-int
-Wimplicit-function-declaration -Wimport
-Werror-implicit-function-declaration -Winline
-Wlarger-than-len -Wlong-long
-Wmain -Wmissing-declarations -Wmissing-noreturn
-Wmissing-prototypes -Wmultichar -Wnested-externs -Wno-import
-Wparentheses -Wpointer-arith -Wredundant-decls
-Wreturn-type -Wshadow -Wsign-compare -Wstrict-prototypes
-Wswitch -Wtraditional
-Wtrigraphs -Wundef -Wuninitialized -Wunused -Wwrite-strings
-Wunknown-pragmas

Debugging Options
See Section 2.7 [Options for Debugging Your Program or GCC], page 29.

-a -ax -dletters -fdump-unnumbered -fpretend-float
-fprofile-arcs -ftest-coverage
-g -glevel -gcoff -gdwarf -gdwarf-1 -gdwarf-1+ -gdwarf-2
-ggdb -gstabs -gstabs+ -gxcoff -gxcoff+
-p -pg -print-file-name=library -print-libgcc-file-name
-print-prog-name=program -print-search-dirs -save-temps

Optimization Options
See Section 2.8 [Options that Control Optimization], page 35.

-fbranch-probabilities -foptimize-register-moves
-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
-fdelayed-branch -fexpensive-optimizations
-ffast-math -ffloat-store -fforce-addr -fforce-mem
-fdata-sections -ffunction-sections -fgcse
-finline-functions -finline-limit-n -fkeep-inline-functions
-fno-default-inline -fno-defer-pop -fno-function-cse
-fno-inline -fno-peephole -fomit-frame-pointer -fregmove
-frerun-cse-after-loop -frerun-loop-opt -fschedule-insns
-fschedule-insns2 -fstrength-reduce -fthread-jumps
-funroll-all-loops -funroll-loops
-fmove-all-movables -freduce-all-givs -fstrict-aliasing

Chapter 2: GCC Command Options 5

-O -O0 -O1 -O2 -O3 -Os

Preprocessor Options
See Section 2.9 [Options Controlling the Preprocessor], page 41.

-Aquestion(answer) -C -dD -dM -dN
-Dmacro[=defn] -E -H
-idirafter dir
-include �le -imacros �le
-iprefix �le -iwithprefix dir
-iwithprefixbefore dir -isystem dir -isystem-c++ dir
-M -MD -MM -MMD -MG -nostdinc -P -trigraphs
-undef -Umacro -Wp,option

Assembler Option
See Section 2.10 [Passing Options to the Assembler], page 44.

-Wa,option

Linker Options
See Section 2.11 [Options for Linking], page 44.

object-�le-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib
-s -static -shared -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 2.12 [Options for Directory Search], page 46.

-Bpre�x -Idir -I- -Ldir -specs=�le

Target Options
See Section 2.13 [Target Options], page 47.

-b machine -V version

Machine Dependent Options
See Section 2.14 [Hardware Models and Con�gurations], page 48.

M680x0 Options
-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
-m68060 -mcpu32 -m5200 -m68881 -mbitfield -mc68000 -mc68020
-mfpa -mnobitfield -mrtd -mshort -msoft-float
-malign-int

VAX Options
-mg -mgnu -munix

SPARC Options
-mcpu=cpu type
-mtune=cpu type
-mcmodel=code model
-malign-jumps=num -malign-loops=num
-malign-functions=num
-m32 -m64

6 Using the GNU Compiler Collection

-mapp-regs -mbroken-saverestore -mcypress -mepilogue
-mflat -mfpu -mhard-float -mhard-quad-float
-mimpure-text -mlive-g0 -mno-app-regs -mno-epilogue
-mno-flat -mno-fpu -mno-impure-text
-mno-stack-bias -mno-unaligned-doubles
-msoft-float -msoft-quad-float -msparclite -mstack-bias
-msupersparc -munaligned-doubles -mv8

Convex Options
-mc1 -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount
-mlong32 -mlong64
-mvolatile-cache -mvolatile-nocache

AMD29K Options
-m29000 -m29050 -mbw -mnbw -mdw -mndw
-mlarge -mnormal -msmall
-mkernel-registers -mno-reuse-arg-regs
-mno-stack-check -mno-storem-bug
-mreuse-arg-regs -msoft-float -mstack-check
-mstorem-bug -muser-registers

ARM Options
-mapcs-frame -mno-apcs-frame
-mapcs-26 -mapcs-32
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mshort-load-bytes -mno-short-load-bytes -mshort-load-words -mno-short-load-
-msoft-float -mhard-float -mfpe
-mthumb-interwork -mno-thumb-interwork
-mcpu= -march= -mfpe=
-mstructure-size-boundary=
-mbsd -mxopen -mno-symrename
-mabort-on-noreturn
-mno-sched-prolog

Thumb Options
-mtpcs-frame -mno-tpcs-frame
-mtpcs-leaf-frame -mno-tpcs-leaf-frame
-mlittle-endian -mbig-endian
-mthumb-interwork -mno-thumb-interwork
-mstructure-size-boundary=

MN10200 Options
-mrelax

Chapter 2: GCC Command Options 7

MN10300 Options
-mmult-bug
-mno-mult-bug
-mrelax

M32R/D Options
-mcode-model=model type -msdata=sdata type
-G num

M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options
-mcpu=cpu type
-mtune=cpu type
-mpower -mno-power -mpower2 -mno-power2
-mpowerpc -mno-powerpc
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mnew-mnemonics -mno-new-mnemonics
-mfull-toc -mminimal-toc -mno-fop-in-toc -mno-sum-in-toc
-maix64 -maix32 -mxl-call -mno-xl-call -mthreads -mpe
-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mupdate -mno-update
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mcall-aix -mcall-sysv -mprototype -mno-prototype
-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=opt -G num

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options
-mabicalls -mcpu=cpu type -membedded-data
-membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64

8 Using the GNU Compiler Collection

-mgpopt -mhalf-pic -mhard-float -mint64 -mips1
-mips2 -mips3 -mips4 -mlong64 -mlong32 -mlong-calls -mmemcpy
-mmips-as -mmips-tfile -mno-abicalls
-mno-embedded-data -mno-embedded-pic
-mno-gpopt -mno-long-calls
-mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats
-mrnames -msoft-float
-m4650 -msingle-float -mmad
-mstats -EL -EB -G num -nocpp
-mabi=32 -mabi=n32 -mabi=64 -mabi=eabi

i386 Options
-mcpu=cpu type
-march=cpu type
-mieee-fp -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mreg-alloc=list -mregparm=num
-malign-jumps=num -malign-loops=num
-malign-functions=num -mpreferred-stack-boundary=num

HPPA Options
-march=architecture type
-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mjump-in-delay
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float -mno-space
-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu type -mspace -mspace-regs

Intel 960 Options
-mcpu type -masm-compat -mclean-linkage
-mcode-align -mcomplex-addr -mleaf-procedures
-mic-compat -mic2.0-compat -mic3.0-compat
-mintel-asm -mno-clean-linkage -mno-code-align
-mno-complex-addr -mno-leaf-procedures
-mno-old-align -mno-strict-align -mno-tail-call
-mnumerics -mold-align -msoft-float -mstrict-align
-mtail-call

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float -msoft-float
-malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants

Chapter 2: GCC Command Options 9

-mcpu=cpu type
-mbwx -mno-bwx -mcix -mno-cix -mmax -mno-max
-mmemory-latency=time

Clipper Options
-mc300 -mc400

H8/300 Options
-mrelax -mh -ms -mint32 -malign-300

SH Options
-m1 -m2 -m3 -m3e -mb -ml -mdalign -mrelax

System V Options
-Qy -Qn -YP,paths -Ym,dir

ARC Options
-EB -EL
-mmangle-cpu -mcpu=cpu -mtext=text section
-mdata=data section -mrodata=readonly data section

TMS320C3x/C4x Options
-mcpu=cpu -mbig -msmall -mregparm -mmemparm
-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload
-mrpts=count -mrptb -mdb -mloop-unsigned
-mparallel-insns -mparallel-mpy -mpreserve-float

V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mv850 -mbig-switch

NS32K Options
-m32032 -m32332 -m32532 -m32081 -m32381 -mmult-add -mnomult-add
-msoft-float -mrtd -mnortd -mregparam -mnoregparam -msb -mnosb
-mbitfield -mnobitfield -mhimem -mnohimem

Code Generation Options
See Section 2.15 [Options for Code Generation Conventions], page 92.

-fcall-saved-reg -fcall-used-reg
-fexceptions -ffixed-reg -finhibit-size-directive
-fcheck-memory-usage -fprefix-function-name
-fno-common -fno-ident -fno-gnu-linker
-fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fvolatile -fvolatile-global -fvolatile-static
-fverbose-asm -fpack-struct -fstack-check
-fargument-alias -fargument-noalias

10 Using the GNU Compiler Collection

-fargument-noalias-global
-fleading-underscore

2.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. The �rst three stages apply to an individual source
�le, and end by producing an object �le; linking combines all the object �les (those newly
compiled, and those speci�ed as input) into an executable �le.

For any given input �le, the �le name suÆx determines what kind of compilation is done:

�le.c C source code which must be preprocessed.

�le.i C source code which should not be preprocessed.

�le.ii C++ source code which should not be preprocessed.

�le.m Objective-C source code. Note that you must link with the library `libobjc.a'
to make an Objective-C program work.

�le.h C header �le (not to be compiled or linked).

�le.cc
�le.cxx
�le.cpp
�le.C C++ source code which must be preprocessed. Note that in `.cxx', the last two

letters must both be literally `x'. Likewise, `.C' refers to a literal capital C.

�le.s Assembler code.

�le.S Assembler code which must be preprocessed.

other An object �le to be fed straight into linking. Any �le name with no recognized
suÆx is treated this way.

You can specify the input language explicitly with the `-x' option:

-x language
Specify explicitly the language for the following input �les (rather than letting
the compiler choose a default based on the �le name suÆx). This option applies
to all following input �les until the next `-x' option. Possible values for language
are:

c objective-c c++
c-header cpp-output c++-cpp-output
assembler assembler-with-cpp

-x none Turn o� any speci�cation of a language, so that subsequent �les are handled
according to their �le name suÆxes (as they are if `-x' has not been used at
all).

If you only want some of the stages of compilation, you can use `-x' (or �lename suÆxes)
to tell gcc where to start, and one of the options `-c', `-S', or `-E' to say where gcc is to
stop. Note that some combinations (for example, `-x cpp-output -E' instruct gcc to do
nothing at all.

Chapter 2: GCC Command Options 11

-c Compile or assemble the source �les, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object �le for each source
�le.

By default, the object �le name for a source �le is made by replacing the suÆx
`.c', `.i', `.s', etc., with `.o'.

Unrecognized input �les, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code �le for each non-assembler input �le speci�ed.

By default, the assembler �le name for a source �le is made by replacing the
suÆx `.c', `.i', etc., with `.s'.

Input �les that don't require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input �les which don't require preprocessing are ignored.

-o �le Place output in �le �le. This applies regardless to whatever sort of output is
being produced, whether it be an executable �le, an object �le, an assembler
�le or preprocessed C code.

Since only one output �le can be speci�ed, it does not make sense to use `-o'
when compiling more than one input �le, unless you are producing an executable
�le as output.

If `-o' is not speci�ed, the default is to put an executable �le in `a.out', the
object �le for `source.suÆx' in `source.o', its assembler �le in `source.s', and
all preprocessed C source on standard output.

-v Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

-pipe Use pipes rather than temporary �les for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

--help Print (on the standard output) a description of the command line options un-
derstood by gcc. If the -v option is also speci�ed then --help will also be
passed on to the various processes invoked by gcc, so that they can display
the command line options they accept. If the -W option is also speci�ed then
command line options which have no documentation associated with them will
also be displayed.

2.3 Compiling C++ Programs

C++ source �les conventionally use one of the suÆxes `.C', `.cc', `.cpp', `.c++', `.cp', or
`.cxx'; preprocessed C++ �les use the suÆx `.ii'. GCC recognizes �les with these names
and compiles them as C++ programs even if you call the compiler the same way as for
compiling C programs (usually with the name gcc).

12 Using the GNU Compiler Collection

However, C++ programs often require class libraries as well as a compiler that under-
stands the C++ language|and under some circumstances, you might want to compile pro-
grams from standard input, or otherwise without a suÆx that ags them as C++ programs.
g++ is a program that calls GCC with the default language set to C++, and automatically
speci�es linking against the C++ library. On many systems, the script g++ is also installed
with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 2.4 [Options Controlling C Dialect], page 12, for explanations of options
for languages related to C. See Section 2.5 [Options Controlling C++ Dialect], page 16, for
explanations of options that are meaningful only for C++ programs.

2.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++
and Objective C) that the compiler accepts:

-ansi In C mode, support all ANSI standard C programs. In C++ mode, remove GNU
extensions that conict with ANSI C++.

This turns o� certain features of GCC that are incompatible with ANSI C
(when compiling C code), or of ANSI standard C++ (when compiling C++ code),
such as the asm and typeof keywords, and prede�ned macros such as unix

and vax that identify the type of system you are using. It also enables the
undesirable and rarely used ANSI trigraph feature. For the C compiler, it
disables recognition of C++ style `//' comments as well as the inline keyword.
For the C++ compiler, `-foperator-names' is enabled as well.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_

_ continue to work despite `-ansi'. You would not want to use them in an ANSI
C program, of course, but it is useful to put them in header �les that might be
included in compilations done with `-ansi'. Alternate prede�ned macros such
as __unix__ and __vax__ are also available, with or without `-ansi'.

The `-ansi' option does not cause non-ANSI programs to be rejected gratu-
itously. For that, `-pedantic' is required in addition to `-ansi'. See Section 2.6
[Warning Options], page 22.

The macro __STRICT_ANSI__ is prede�ned when the `-ansi' option is used.
Some header �les may notice this macro and refrain from declaring certain
functions or de�ning certain macros that the ANSI standard doesn't call for;
this is to avoid interfering with any programs that might use these names for
other things.

The functions alloca, abort, exit, and _exit are not builtin functions when
`-ansi' is used.

-fstd= Determine the language standard. A value for this option must be provided;
possible values are

� iso9899:1990 Same as -ansi

Chapter 2: GCC Command Options 13

� iso9899:199409 ISO C as modi�ed in amend. 1

� iso9899:199x ISO C 9x

� c89 same as -std=iso9899:1990

� c9x same as -std=iso9899:199x

� gnu89 default, iso9899:1990 + gnu extensions

� gnu9x iso9899:199x + gnu extensions

Even when this option is not speci�ed, you can still use some of the features
of newer standards in so far as they do not conict with previous C standards.
For example, you may use __restrict__ even when -fstd=c9x is not speci�ed.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identi�ers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. `-ansi' implies `-fno-asm'.

In C++, this switch only a�ects the typeof keyword, since asm and inline

are standard keywords. You may want to use the `-fno-gnu-keywords' ag
instead, as it also disables the other, C++-speci�c, extension keywords such as
headof.

-fno-builtin

Don't recognize builtin functions that do not begin with `__builtin_' as pre�x.
Currently, the functions a�ected include abort, abs, alloca, cos, exit, fabs,
ffs, labs, memcmp, memcpy, sin, sqrt, strcmp, strcpy, and strlen.

GCC normally generates special code to handle certain builtin functions more
eÆciently; for instance, calls to alloca may become single instructions that
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function calls
no longer appear as such, you cannot set a breakpoint on those calls, nor can
you change the behavior of the functions by linking with a di�erent library.

The `-ansi' option prevents alloca and ffs from being builtin functions, since
these functions do not have an ANSI standard meaning.

-fhosted

Assert that compilation takes place in a hosted environment. This implies
`-fbuiltin'. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to `-fno-freestanding'.

-ffreestanding

Assert that compilation takes place in a freestanding environment. This implies
`-fno-builtin'. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to `-fno-hosted'.

-trigraphs

Support ANSI C trigraphs. You don't want to know about this brain-damage.
The `-ansi' option implies `-trigraphs'.

-traditional

Attempt to support some aspects of traditional C compilers. Speci�cally:

14 Using the GNU Compiler Collection

� All extern declarations take e�ect globally even if they are written inside
of a function de�nition. This includes implicit declarations of functions.

� The newer keywords typeof, inline, signed, const and volatile are not
recognized. (You can still use the alternative keywords such as __typeof_
_, __inline__, and so on.)

� Comparisons between pointers and integers are always allowed.

� Integer types unsigned short and unsigned char promote to unsigned

int.

� Out-of-range oating point literals are not an error.

� Certain constructs which ANSI regards as a single invalid preprocessing
number, such as `0xe-0xd', are treated as expressions instead.

� String \constants" are not necessarily constant; they are stored in writable
space, and identical looking constants are allocated separately. (This is the
same as the e�ect of `-fwritable-strings'.)

� All automatic variables not declared register are preserved by longjmp.
Ordinarily, GNU C follows ANSI C: automatic variables not declared
volatile may be clobbered.

� The character escape sequences `\x' and `\a' evaluate as the literal char-
acters `x' and `a' respectively. Without `-traditional', `\x' is a pre�x for
the hexadecimal representation of a character, and `\a' produces a bell.

You may wish to use `-fno-builtin' as well as `-traditional' if your program
uses names that are normally GNU C builtin functions for other purposes of
its own.

You cannot use `-traditional' if you include any header �les that rely on
ANSI C features. Some vendors are starting to ship systems with ANSI C
header �les and you cannot use `-traditional' on such systems to compile
�les that include any system headers.

The `-traditional' option also enables `-traditional-cpp', which is de-
scribed next.

-traditional-cpp

Attempt to support some aspects of traditional C preprocessors. Speci�cally:

� Comments convert to nothing at all, rather than to a space. This allows
traditional token concatenation.

� In a preprocessing directive, the `#' symbol must appear as the �rst char-
acter of a line.

� Macro arguments are recognized within string constants in a macro def-
inition (and their values are stringi�ed, though without additional quote
marks, when they appear in such a context). The preprocessor always
considers a string constant to end at a newline.

� The prede�nedmacro __STDC__ is not de�ned when you use `-traditional',
but __GNUC__ is (since the GNU extensions which __GNUC__ indicates are
not a�ected by `-traditional'). If you need to write header �les that

Chapter 2: GCC Command Options 15

work di�erently depending on whether `-traditional' is in use, by test-
ing both of these prede�ned macros you can distinguish four situations:
GNU C, traditional GNU C, other ANSI C compilers, and other old C
compilers. The prede�ned macro __STDC_VERSION__ is also not de�ned
when you use `-traditional'. See section \Standard Prede�ned Macros"
in The C Preprocessor, for more discussion of these and other prede�ned
macros.

� The preprocessor considers a string constant to end at a newline (unless the
newline is escaped with `\'). (Without `-traditional', string constants
can contain the newline character as typed.)

-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void.

-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char

when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char

Let the type char be signed, like signed char.

Note that this is equivalent to `-fno-unsigned-char', which is the negative
form of `-funsigned-char'. Likewise, the option `-fno-signed-char' is equiv-
alent to `-funsigned-char'.

You may wish to use `-fno-builtin' as well as `-traditional' if your program
uses names that are normally GNU C builtin functions for other purposes of
its own.

You cannot use `-traditional' if you include any header �les that rely on
ANSI C features. Some vendors are starting to ship systems with ANSI C
header �les and you cannot use `-traditional' on such systems to compile
�les that include any system headers.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields

These options control whether a bit�eld is signed or unsigned, when the decla-
ration does not use either signed or unsigned. By default, such a bit�eld is
signed, because this is consistent: the basic integer types such as int are signed
types.

16 Using the GNU Compiler Collection

However, when `-traditional' is used, bit�elds are all unsigned no matter
what.

-fwritable-strings

Store string constants in the writable data segment and don't uniquize them.
This is for compatibility with old programs which assume they can write into
string constants. The option `-traditional' also has this e�ect.

Writing into string constants is a very bad idea; \constants" should be constant.

-fallow-single-precision

Do not promote single precision math operations to double precision, even when
compiling with `-traditional'.

Traditional K&R C promotes all oating point operations to double precision,
regardless of the sizes of the operands. On the architecture for which you are
compiling, single precision may be faster than double precision. If you must use
`-traditional', but want to use single precision operations when the operands
are single precision, use this option. This option has no e�ect when compiling
with ANSI or GNU C conventions (the default).

2.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ pro-
grams; but you can also use most of the GNU compiler options regardless of what language
your program is in. For example, you might compile a �le firstClass.C like this:

g++ -g -frepo -O -c firstClass.C

In this example, only `-frepo' is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fno-access-control

Turn o� all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. The current Working Paper requires that
operator new never return a null pointer, so this check is normally unnecessary.

An alternative to using this option is to specify that your operator new does
not throw any exceptions; if you declare it `throw()', g++ will check the return
value. See also `new (nothrow)'.

-fconserve-space

Put uninitialized or runtime-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate de�nitions. If you compile with this ag and your program mysteri-
ously crashes after main() has completed, you may have an object that is being
destroyed twice because two de�nitions were merged.

This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

Chapter 2: GCC Command Options 17

-fdollars-in-identifiers

Accept `$' in identi�ers. You can also explicitly prohibit use of `$' with the
option `-fno-dollars-in-identifiers'. (GNU C allows `$' by default on
most target systems, but there are a few exceptions.) Traditional C allowed the
character `$' to form part of identi�ers. However, ANSI C and C++ forbid `$'
in identi�ers.

-fno-elide-constructors

The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces g++ to call the copy constructor in all
cases.

-fexternal-templates

Cause template instantiations to obey `#pragma interface' and `implementation';
template instances are emitted or not according to the location of the tem-
plate de�nition. See Section 5.5 [Template Instantiation], page 180, for more
information.

This option is deprecated.

-falt-external-templates

Similar to -fexternal-templates, but template instances are emitted or not ac-
cording to the place where they are �rst instantiated. See Section 5.5 [Template
Instantiation], page 180, for more information.

This option is deprecated.

-ffor-scope

-fno-for-scope

If -�or-scope is speci�ed, the scope of variables declared in a for-init-statement
is limited to the `for' loop itself, as speci�ed by the draft C++ standard. If -
fno-for-scope is speci�ed, the scope of variables declared in a for-init-statement
extends to the end of the enclosing scope, as was the case in old versions of gcc,
and other (traditional) implementations of C++.

The default if neither ag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have di�erent
behavior.

-fno-gnu-keywords

Do not recognize classof, headof, signature, sigof or typeof as a keyword,
so that code can use these words as identi�ers. You can use the keywords __
classof__, __headof__, __signature__, __sigof__, and __typeof__ instead.
`-ansi' implies `-fno-gnu-keywords'.

-fguiding-decls

Treat a function declaration with the same type as a potential function template
instantiation as though it declares that instantiation, not a normal function. If
a de�nition is given for the function later in the translation unit (or another
translation unit if the target supports weak symbols), that de�nition will be
used; otherwise the template will be instantiated. This behavior reects the C++
language prior to September 1996, when guiding declarations were removed.

18 Using the GNU Compiler Collection

This option implies `-fname-mangling-version-0', and will not work with
other name mangling versions. Like all options that change the ABI, all C++
code, including libgcc.a must be built with the same setting of this option.

-fhandle-signatures

Recognize the signature and sigof keywords for specifying abstract types.
The default (`-fno-handle-signatures') is not to recognize them. See Sec-
tion 5.7 [C++ Signatures], page 183.

-fhonor-std

Treat the namespace std as a namespace, instead of ignoring it. For com-
patibility with earlier versions of g++, the compiler will, by default, ignore
namespace-declarations, using-declarations, using-directives, and
namespace-names, if they involve std.

-fhuge-objects

Support virtual function calls for objects that exceed the size representable by
a `short int'. Users should not use this ag by default; if you need to use it,
the compiler will tell you so.

This ag is not useful when compiling with -fvtable-thunks.

Like all options that change the ABI, all C++ code, including libgcc must be
built with the same setting of this option.

-fno-implicit-templates

Never emit code for non-inline templates which are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 5.5 [Template
Instantiation], page 180, for more information.

-fno-implicit-inline-templates

Don't emit code for implicit instantiations of inline templates, either. The
default is to handle inlines di�erently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-finit-priority

Support `__attribute__ ((init_priority (n)))' for controlling the order of
initialization of �le-scope objects. On ELF targets, this requires GNU ld 2.10
or later.

-fno-implement-inlines

To save space, do not emit out-of-line copies of inline functions controlled by
`#pragma implementation'. This will cause linker errors if these functions are
not inlined everywhere they are called.

-fname-mangling-version-n
Control the way in which names are mangled. Version 0 is compatible with
versions of g++ before 2.8. Version 1 is the default. Version 1 will allow correct
mangling of function templates. For example, version 0 mangling does not
mangle foo<int, double> and foo<int, char> given this declaration:

template <class T, class U> void foo(T t);

Like all options that change the ABI, all C++ code, including libgcc must be
built with the same setting of this option.

Chapter 2: GCC Command Options 19

-foperator-names

Recognize the operator name keywords and, bitand, bitor, compl, not,
or and xor as synonyms for the symbols they refer to. `-ansi' implies
`-foperator-names'.

-fno-optional-diags

Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by g++ is the one for a name having
multiple meanings within a class.

-fpermissive

Downgrade messages about nonconformant code from errors to warnings.
By default, g++ e�ectively sets `-pedantic-errors' without `-pedantic';
this option reverses that. This behavior and this option are superceded by
`-pedantic', which works as it does for GNU C.

-frepo Enable automatic template instantiation. This option also implies `-fno-implicit-templates'.
See Section 5.5 [Template Instantiation], page 180, for more information.

-fno-rtti

Disable generation of the information used by C++ runtime type identi�cation
features (`dynamic_cast' and `typeid'). If you don't use those parts of the
language (or exception handling, which uses `dynamic_cast' internally), you
can save some space by using this ag.

-fstrict-prototype

Within an `extern "C"' linkage speci�cation, treat a function declaration with
no arguments, such as `int foo ();', as declaring the function to take no argu-
ments. Normally, such a declaration means that the function foo can take any
combination of arguments, as in C. `-pedantic' implies `-fstrict-prototype'
unless overridden with `-fno-strict-prototype'.

Specifying this option will also suppress implicit declarations of functions.

This ag no longer a�ects declarations with C++ linkage.

-fsquangle

-fno-squangle

`-fsquangle' will enable a compressed form of name mangling for identi�ers.
In particular, it helps to shorten very long names by recognizing types and
class names which occur more than once, replacing them with special short ID
codes. This option also requires any C++ libraries being used to be compiled
with this option as well. The compiler has this disabled (the equivalent of
`-fno-squangle') by default.

Like all options that change the ABI, all C++ code, including libgcc.a must be
built with the same setting of this option.

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17.

20 Using the GNU Compiler Collection

-fthis-is-variable

Permit assignment to this. The incorporation of user-de�ned free store man-
agement into C++ has made assignment to `this' an anachronism. Therefore,
by default it is invalid to assign to this within a class member function; that
is, GNU C++ treats `this' in a member function of class X as a non-lvalue of
type `X *'. However, for backwards compatibility, you can make it valid with
`-fthis-is-variable'.

-fvtable-thunks=thunks-version
Use `thunks' to implement the virtual function dispatch table (`vtable'). The
traditional (cfront-style) approach to implementing vtables was to store a
pointer to the function and two o�sets for adjusting the `this' pointer at the
call site. Newer implementations store a single pointer to a `thunk' function
which does any necessary adjustment and then calls the target function.

The original implementation of thunks (version 1) had a bug regarding virtual
base classes; this bug is �xed with version 2 of the thunks implementation.
With setting the version to 2, compatibility to the version 1 thunks is provided,
at the cost of extra machine code. Version 3 does not include this compatibility.

This option also enables a heuristic for controlling emission of vtables; if a class
has any non-inline virtual functions, the vtable will be emitted in the translation
unit containing the �rst one of those.

Like all options that change the ABI, all C++ code, including libgcc.a must be
built with the same setting of this option. Since version 1 and version 2 are
also incompatible (for classes with virtual bases de�ning virtual functions), all
code must also be compiled with the same version.

In this version of gcc, there are no targets for which version 2 thunks are the
default. On all targets, not giving the option will use the traditional implemen-
tation, and -fvtable-thunks will produce version 2 thunks.

-nostdinc++

Do not search for header �les in the standard directories speci�c to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings
only for C++ programs:

-fno-default-inline

Do not assume `inline' for functions de�ned inside a class scope. See Sec-
tion 2.8 [Options That Control Optimization], page 35. Note that these func-
tions will have linkage like inline functions; they just won't be inlined by default.

-Wctor-dtor-privacy (C++ only)

Warn when a class seems unusable, because all the constructors or destructors
in a class are private and the class has no friends or public static member
functions.

-Wnon-virtual-dtor (C++ only)

Warn when a class declares a non-virtual destructor that should probably be
virtual, because it looks like the class will be used polymorphically.

Chapter 2: GCC Command Options 21

-Wreorder (C++ only)

Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {
int i;
int j;
A(): j (0), i (1) { }

};

Here the compiler will warn that the member initializers for `i' and `j' will be
rearranged to match the declaration order of the members.

The following `-W...' options are not a�ected by `-Wall'.

-Weffc++ (C++ only)

Warn about violations of various style guidelines from Scott Meyers' E�ective
C++ books. If you use this option, you should be aware that the standard
library headers do not obey all of these guidelines; you can use `grep -v' to
�lter out those warnings.

-Wno-deprecated (C++ only)

Do not warn about usage of deprecated features. See Section 4.40 [Deprecated
Features], page 176.

-Wno-non-template-friend (C++ only)

Disable warnings when non-templatized friend functions are declared within
a template. With the advent of explicit template speci�cation support in
g++, if the name of the friend is an unquali�ed-id (ie, `friend foo(int)'),
the C++ language speci�cation demands that the friend declare or de�ne an
ordinary, nontemplate function. (Section 14.5.3). Before g++ implemented ex-
plicit speci�cation, unquali�ed-ids could be interpreted as a particular spe-
cialization of a templatized function. Because this non-conforming behavior
is no longer the default behavior for g++, `-Wnon-template-friend' allows
the compiler to check existing code for potential trouble spots, and is on by
default. This new compiler behavior can also be turned o� with the ag
`-fguiding-decls', which activates the older, non-speci�cation compiler code,
or with `-Wno-non-template-friend' which keeps the conformant compiler
code but disables the helpful warning.

-Wold-style-cast (C++ only)

Warn if an old-style (C-style) cast is used within a C++ program. The new-
style casts (`static_cast', `reinterpret_cast', and `const_cast') are less
vulnerable to unintended e�ects.

-Woverloaded-virtual (C++ only)

Warn when a derived class function declaration may be an error in de�ning a
virtual function. In a derived class, the de�nitions of virtual functions must
match the type signature of a virtual function declared in the base class. With
this option, the compiler warns when you de�ne a function with the same
name as a virtual function, but with a type signature that does not match any
declarations from the base class.

22 Using the GNU Compiler Collection

-Wno-pmf-conversions (C++ only)

Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ only)

Warn when overload resolution chooses a promotion from unsigned or enumeral
type to a signed type over a conversion to an unsigned type of the same size.
Previous versions of g++ would try to preserve unsignedness, but the standard
mandates the current behavior.

-Wsynth (C++ only)

Warn when g++'s synthesis behavior does not match that of cfront. For instance:

struct A {
operator int ();
A& operator = (int);

};

main ()
{
A a,b;
a = b;

}

In this example, g++ will synthesize a default `A& operator = (const A&);',
while cfront will use the user-de�ned `operator ='.

2.6 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there may have been an error.

You can request many speci�c warnings with options beginning `-W', for example
`-Wimplicit' to request warnings on implicit declarations. Each of these speci�c warning
options also has a negative form beginning `-Wno-' to turn o� warnings; for example,
`-Wno-implicit'. This manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by GCC:

-fsyntax-only

Check the code for syntax errors, but don't do anything beyond that.

-pedantic

Issue all the warnings demanded by strict ANSI C and ISO C++; reject all
programs that use forbidden extensions.

Valid ANSI C and ISO C++ programs should compile properly with or without
this option (though a rare few will require `-ansi'). However, without this op-
tion, certain GNU extensions and traditional C and C++ features are supported
as well. With this option, they are rejected.

`-pedantic' does not cause warning messages for use of the alternate keywords
whose names begin and end with `__'. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header �les

Chapter 2: GCC Command Options 23

should use these escape routes; application programs should avoid them. See
Section 4.35 [Alternate Keywords], page 173.

This option is not intended to be useful; it exists only to satisfy pedants who
would otherwise claim that GCC fails to support the ANSI standard.

Some users try to use `-pedantic' to check programs for strict ANSI C con-
formance. They soon �nd that it does not do quite what they want: it �nds
some non-ANSI practices, but not all|only those for which ANSI C requires a
diagnostic.

A feature to report any failure to conform to ANSI C might be useful in some
instances, but would require considerable additional work and would be quite
di�erent from `-pedantic'. We don't have plans to support such a feature in
the near future.

-pedantic-errors

Like `-pedantic', except that errors are produced rather than warnings.

-w Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of `#import'.

-Wchar-subscripts

Warn if an array subscript has type char. This is a common cause of error, as
programmers often forget that this type is signed on some machines.

-Wcomment

Warn whenever a comment-start sequence `/*' appears in a `/*' comment, or
whenever a Backslash-Newline appears in a `//' comment.

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string speci�ed.

-Wimplicit-int

Warn when a declaration does not specify a type.

-Wimplicit-function-declaration

-Werror-implicit-function-declaration

Give a warning (or error) whenever a function is used before being declared.

-Wimplicit

Same as `-Wimplicit-int' and `-Wimplicit-function-'
`declaration'.

-Wmain Warn if the type of `main' is suspicious. `main' should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types.

-Wmultichar

Warn if a multicharacter constant (`'FOOF'') is used. Usually they indicate a
typo in the user's code, as they have implementation-de�ned values, and should
not be used in portable code.

24 Using the GNU Compiler Collection

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:

{
if (a)

if (b)
foo ();

else
bar ();

}

In C, every else branch belongs to the innermost possible if statement, which
in this example is if (b). This is often not what the programmer expected, as
illustrated in the above example by indentation the programmer chose. When
there is the potential for this confusion, GNU C will issue a warning when
this ag is speci�ed. To eliminate the warning, add explicit braces around
the innermost if statement so there is no way the else could belong to the
enclosing if. The resulting code would look like this:

{
if (a)

{
if (b)
foo ();

else
bar ();

}
}

-Wreturn-type

Warn whenever a function is de�ned with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void.

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a
case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wtrigraphs

Warn if any trigraphs are encountered (assuming they are enabled).

-Wunused Warn whenever a variable is unused aside from its declaration, whenever a
function is declared static but never de�ned, whenever a label is declared but
not used, and whenever a statement computes a result that is explicitly not
used.

In order to get a warning about an unused function parameter, you must specify
both `-W' and `-Wunused'.

Chapter 2: GCC Command Options 25

To suppress this warning for an expression, simply cast it to void. For unused
variables, parameters and labels, use the `unused' attribute (see Section 4.29
[Variable Attributes], page 158).

-Wuninitialized

An automatic variable is used without �rst being initialized.

These warnings are possible only in optimizing compilation, because they re-
quire data ow information that is computed only when optimizing. If you
don't specify `-O', you simply won't get these warnings.

These warnings occur only for variables that are candidates for register alloca-
tion. Therefore, they do not occur for a variable that is declared volatile, or
whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they
do not occur for structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data ow analysis before the warnings are printed.

These warnings are made optional because GCC is not smart enough to see all
the reasons why the code might be correct despite appearing to have an error.
Here is one example of how this can happen:

{
int x;
switch (y)
{
case 1: x = 1;
break;

case 2: x = 4;
break;

case 3: x = 5;
}

foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn't
know this. Here is another common case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 4.23 [Function Attributes],
page 151.

-Wunknown-pragmas

Warn when a #pragma directive is encountered which is not understood by
GCC. If this command line option is used, warnings will even be issued for

26 Using the GNU Compiler Collection

unknown pragmas in system header �les. This is not the case if the warnings
were only enabled by the `-Wall' command line option.

-Wall All of the above `-W' options combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid
(or modify to prevent the warning), even in conjunction with macros.

The following `-W...' options are not implied by `-Wall'. Some of them warn about
constructions that users generally do not consider questionable, but which occasionally you
might wish to check for; others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the warning.

-W Print extra warning messages for these events:

� A nonvolatile automatic variable might be changed by a call to longjmp.
These warnings as well are possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp
will be called; in fact, a signal handler could call it at any point in the code.
As a result, you may get a warning even when there is in fact no problem
because longjmp cannot in fact be called at the place which would cause
a problem.

� A function can return either with or without a value. (Falling o� the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

foo (a)
{
if (a > 0)

return a;
}

� An expression-statement or the left-hand side of a comma expression con-
tains no side e�ects. To suppress the warning, cast the unused expression
to void. For example, an expression such as `x[i,j]' will cause a warning,
but `x[(void)i,j]' will not.

� An unsigned value is compared against zero with `<' or `<='.

� A comparison like `x<=y<=z' appears; this is equivalent to `(x<=y ? 1 : 0)

<= z', which is a di�erent interpretation from that of ordinary mathemat-
ical notation.

� Storage-class speci�ers like static are not the �rst things in a declaration.
According to the C Standard, this usage is obsolescent.

� If `-Wall' or `-Wunused' is also speci�ed, warn about unused arguments.

� A comparison between signed and unsigned values could produce an in-
correct result when the signed value is converted to unsigned. (But don't
warn if `-Wno-sign-compare' is also speci�ed.)

� An aggregate has a partly bracketed initializer. For example, the following
code would evoke such a warning, because braces are missing around the
initializer for x.h:

struct s { int f, g; };

Chapter 2: GCC Command Options 27

struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

� An aggregate has an initializer which does not initialize all members. For
example, the following code would cause such a warning, because x.h would
be implicitly initialized to zero:

struct s { int f, g, h; };
struct s x = { 3, 4 };

-Wtraditional

Warn about certain constructs that behave di�erently in traditional and ANSI
C.

� Macro arguments occurring within string constants in the macro body.
These would substitute the argument in traditional C, but are part of the
constant in ANSI C.

� A function declared external in one block and then used after the end of
the block.

� A switch statement has an operand of type long.

� A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

-Wundef Warn if an unde�ned identi�er is evaluated in an `#if' directive.

-Wshadow Warn whenever a local variable shadows another local variable.

-Wid-clash-len
Warn whenever two distinct identi�ers match in the �rst len characters. This
may help you prepare a program that will compile with certain obsolete, brain-
damaged compilers.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is de�ned.

-Wpointer-arith

Warn about anything that depends on the \size of" a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void

* pointers and pointers to functions.

-Wbad-function-cast

Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-Wcast-qual

Warn whenever a pointer is cast so as to remove a type quali�er from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align

Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

28 Using the GNU Compiler Collection

-Wwrite-strings

Give string constants the type const char[length] so that copying the address
of one into a non-const char * pointer will get a warning. These warnings will
help you �nd at compile time code that can try to write into a string constant,
but only if you have been very careful about using const in declarations and
prototypes. Otherwise, it will just be a nuisance; this is why we did not make
`-Wall' request these warnings.

-Wconversion

Warn if a prototype causes a type conversion that is di�erent from what would
happen to the same argument in the absence of a prototype. This includes
conversions of �xed point to oating and vice versa, and conversions changing
the width or signedness of a �xed point argument except when the same as the
default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare

Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by `-W'; to get the other warnings of `-W' without this warning,
use `-W -Wno-sign-compare'.

-Waggregate-return

Warn if any functions that return structures or unions are de�ned or called. (In
languages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes

Warn if a function is declared or de�ned without specifying the argument types.
(An old-style function de�nition is permitted without a warning if preceded by
a declaration which speci�es the argument types.)

-Wmissing-prototypes

Warn if a global function is de�ned without a previous prototype declaration.
This warning is issued even if the de�nition itself provides a prototype. The
aim is to detect global functions that fail to be declared in header �les.

-Wmissing-declarations

Warn if a global function is de�ned without a previous declaration. Do so even
if the de�nition itself provides a prototype. Use this option to detect global
functions that are not declared in header �les.

-Wmissing-noreturn

Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken
to manually verify functions actually do not ever return before adding the
noreturn attribute, otherwise subtle code generation bugs could be introduced.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

Chapter 2: GCC Command Options 29

-Wnested-externs

Warn if an extern declaration is encountered within an function.

-Winline Warn if a function can not be inlined, and either it was declared as inline, or
else the `-finline-functions' option was given.

-Wlong-long

Warn if `long long' type is used. This is default. To inhibit the warning
messages, use `-Wno-long-long'. Flags `-Wlong-long' and `-Wno-long-long'
are taken into account only when `-pedantic' ag is used.

-Werror Make all warnings into errors.

2.7 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or
GCC:

-g Produce debugging information in the operating system's native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, `-g' enables use of extra debugging in-
formation that only GDB can use; this extra information makes debugging work
better in GDB but will probably make other debuggers crash or refuse to read
the program. If you want to control for certain whether to generate the extra
information, use `-gstabs+', `-gstabs', `-gxcoff+', `-gxcoff', `-gdwarf-1+',
or `-gdwarf-1' (see below).

Unlike most other C compilers, GCC allows you to use `-g' with `-O'. The
shortcuts taken by optimized code may occasionally produce surprising results:
some variables you declared may not exist at all; ow of control may brieymove
where you did not expect it; some statements may not be executed because they
compute constant results or their values were already at hand; some statements
may execute in di�erent places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

-ggdb Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output which is not understood by DBX or SDB. On System V
Release 4 systems this option requires the GNU assembler.

-gstabs+ Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

30 Using the GNU Compiler Collection

-gcoff Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf Produce debugging information in DWARF version 1 format (if that is sup-
ported). This is the format used by SDB on most System V Release 4 systems.

-gdwarf+ Produce debugging information in DWARF version 1 format (if that is sup-
ported), using GNU extensions understood only by the GNU debugger (GDB).
The use of these extensions is likely to make other debuggers crash or refuse to
read the program.

-gdwarf-2

Produce debugging information in DWARF version 2 format (if that is sup-
ported). This is the format used by DBX on IRIX 6.

-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gdwarflevel
-gdwarf-2level

Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don't plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.

Level 3 includes extra information, such as all the macro de�nitions present in
the program. Some debuggers support macro expansion when you use `-g3'.

-p Generate extra code to write pro�le information suitable for the analysis pro-
gram prof. You must use this option when compiling the source �les you want
data about, and you must also use it when linking.

-pg Generate extra code to write pro�le information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source �les you want
data about, and you must also use it when linking.

-a Generate extra code to write pro�le information for basic blocks, which will
record the number of times each basic block is executed, the basic block start

Chapter 2: GCC Command Options 31

address, and the function name containing the basic block. If `-g' is used, the
line number and �lename of the start of the basic block will also be recorded.
If not overridden by the machine description, the default action is to append
to the text �le `bb.out'.

This data could be analyzed by a program like tcov. Note, however, that the
format of the data is not what tcov expects. Eventually GNU gprof should
be extended to process this data.

-Q Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it �nishes.

-ax Generate extra code to pro�le basic blocks. Your executable will produce output
that is a superset of that produced when `-a' is used. Additional output is the
source and target address of the basic blocks where a jump takes place, the
number of times a jump is executed, and (optionally) the complete sequence of
basic blocks being executed. The output is appended to �le `bb.out'.

You can examine di�erent pro�ling aspects without recompilation. Your ex-
ecutable will read a list of function names from �le `bb.in'. Pro�ling starts
when a function on the list is entered and stops when that invocation is ex-
ited. To exclude a function from pro�ling, pre�x its name with `-'. If a func-
tion name is not unique, you can disambiguate it by writing it in the form
`/path/filename.d:functionname'. Your executable will write the available
paths and �lenames in �le `bb.out'.

Several function names have a special meaning:

__bb_jumps__

Write source, target and frequency of jumps to �le `bb.out'.

__bb_hidecall__

Exclude function calls from frequency count.

__bb_showret__

Include function returns in frequency count.

__bb_trace__

Write the sequence of basic blocks executed to �le `bbtrace.gz'.
The �le will be compressed using the program `gzip', which must
exist in your PATH. On systems without the `popen' function, the
�le will be named `bbtrace' and will not be compressed. Pro�ling
for even a few seconds on these systems will produce a very large
�le. Note: __bb_hidecall__ and __bb_showret__ will not a�ect
the sequence written to `bbtrace.gz'.

Here's a short example using di�erent pro�ling parameters in �le `bb.in'. As-
sume function foo consists of basic blocks 1 and 2 and is called twice from block
3 of function main. After the calls, block 3 transfers control to block 4 of main.

With __bb_trace__ and main contained in �le `bb.in', the following sequence
of blocks is written to �le `bbtrace.gz': 0 3 1 2 1 2 4. The return from block 2
to block 3 is not shown, because the return is to a point inside the block and not
to the top. The block address 0 always indicates, that control is transferred to

32 Using the GNU Compiler Collection

the trace from somewhere outside the observed functions. With `-foo' added
to `bb.in', the blocks of function foo are removed from the trace, so only 0 3
4 remains.

With __bb_jumps__ and main contained in �le `bb.in', jump frequencies will
be written to �le `bb.out'. The frequencies are obtained by constructing a trace
of blocks and incrementing a counter for every neighbouring pair of blocks in
the trace. The trace 0 3 1 2 1 2 4 displays the following frequencies:

Jump from block 0x0 to block 0x3 executed 1 time(s)
Jump from block 0x3 to block 0x1 executed 1 time(s)
Jump from block 0x1 to block 0x2 executed 2 time(s)
Jump from block 0x2 to block 0x1 executed 1 time(s)
Jump from block 0x2 to block 0x4 executed 1 time(s)

With __bb_hidecall__, control transfer due to call instructions is removed
from the trace, that is the trace is cut into three parts: 0 3 4, 0 1 2 and 0 1 2.
With __bb_showret__, control transfer due to return instructions is added to
the trace. The trace becomes: 0 3 1 2 3 1 2 3 4. Note, that this trace is not the
same, as the sequence written to `bbtrace.gz'. It is solely used for counting
jump frequencies.

-fprofile-arcs

Instrument arcs during compilation. For each function of your program, GCC
creates a program ow graph, then �nds a spanning tree for the graph. Only
arcs that are not on the spanning tree have to be instrumented: the compiler
adds code to count the number of times that these arcs are executed. When an
arc is the only exit or only entrance to a block, the instrumentation code can
be added to the block; otherwise, a new basic block must be created to hold
the instrumentation code.

Since not every arc in the program must be instrumented, programs compiled
with this option run faster than programs compiled with `-a', which adds in-
strumentation code to every basic block in the program. The tradeo�: since
gcov does not have execution counts for all branches, it must start with the
execution counts for the instrumented branches, and then iterate over the pro-
gram ow graph until the entire graph has been solved. Hence, gcov runs a
little more slowly than a program which uses information from `-a'.

`-fprofile-arcs' also makes it possible to estimate branch probabilities, and
to calculate basic block execution counts. In general, basic block execution
counts do not give enough information to estimate all branch probabilities.
When the compiled program exits, it saves the arc execution counts to a �le
called `sourcename.da'. Use the compiler option `-fbranch-probabilities'
(see Section 2.8 [Options that Control Optimization], page 35) when recompil-
ing, to optimize using estimated branch probabilities.

Chapter 2: GCC Command Options 33

-ftest-coverage

Create data �les for the gcov code-coverage utility (see Chapter 6 [gcov: a
GCC Test Coverage Program], page 187). The data �le names begin with the
name of your source �le:

sourcename.bb
A mapping from basic blocks to line numbers, which gcov uses to
associate basic block execution counts with line numbers.

sourcename.bbg
A list of all arcs in the program ow graph. This allows gcov to
reconstruct the program ow graph, so that it can compute all
basic block and arc execution counts from the information in the
sourcename.da �le (this last �le is the output from `-fprofile-arcs').

-Q Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it �nishes.

-dletters Says to make debugging dumps during compilation at times speci�ed by letters.
This is used for debugging the compiler. The �le names for most of the dumps
are made by appending a word to the source �le name (e.g. `foo.c.rtl' or
`foo.c.jump'). Here are the possible letters for use in letters, and their mean-
ings:

`b' Dump after computing branch probabilities, to `�le.bp'.

`c' Dump after instruction combination, to the �le `�le.combine'.

`d' Dump after delayed branch scheduling, to `�le.dbr'.

`D' Dump all macro de�nitions, at the end of preprocessing, in addition
to normal output.

`r' Dump after RTL generation, to `�le.rtl'.

`j' Dump after �rst jump optimization, to `�le.jump'.

`F' Dump after purging ADDRESSOF, to `�le.addressof'.

`f' Dump after ow analysis, to `�le.flow'.

`g' Dump after global register allocation, to `�le.greg'.

`G' Dump after GCSE, to `�le.gcse'.

`j' Dump after �rst jump optimization, to `�le.jump'.

`J' Dump after last jump optimization, to `�le.jump2'.

`k' Dump after conversion from registers to stack, to `�le.stack'.

`l' Dump after local register allocation, to `�le.lreg'.

`L' Dump after loop optimization, to `�le.loop'.

`M' Dump after performing the machine dependent reorganisation pass,
to `�le.mach'.

34 Using the GNU Compiler Collection

`N' Dump after the register move pass, to `�le.regmove'.

`r' Dump after RTL generation, to `�le.rtl'.

`R' Dump after the second instruction scheduling pass, to `�le.sched2'.

`s' Dump after CSE (including the jump optimization that sometimes
follows CSE), to `�le.cse'.

`S' Dump after the �rst instruction scheduling pass, to `�le.sched'.

`t' Dump after the second CSE pass (including the jump optimization
that sometimes follows CSE), to `�le.cse2'.

`a' Produce all the dumps listed above.

`m' Print statistics on memory usage, at the end of the run, to standard
error.

`p' Annotate the assembler output with a comment indicating which
pattern and alternative was used. The length of each instruction is
also printed.

`x' Just generate RTL for a function instead of compiling it. Usually
used with `r'.

`y' Dump debugging information during parsing, to standard error.

`A' Annotate the assembler output with miscellaneous debugging in-
formation.

-fdump-unnumbered

When doing debugging dumps (see -d option above), suppress instruction num-
bers and line number note output. This makes it more feasible to use di� on
debugging dumps for compiler invokations with di�erent options, in particular
with and without -g.

-fpretend-float

When running a cross-compiler, pretend that the target machine uses the same
oating point format as the host machine. This causes incorrect output of the
actual oating constants, but the actual instruction sequence will probably be
the same as GCC would make when running on the target machine.

-save-temps

Store the usual \temporary" intermediate �les permanently; place them in the
current directory and name them based on the source �le. Thus, compiling
`foo.c' with `-c -save-temps' would produce �les `foo.i' and `foo.s', as well
as `foo.o'.

-print-file-name=library
Print the full absolute name of the library �le library that would be used when
linking|and don't do anything else. With this option, GCC does not compile
or link anything; it just prints the �le name.

-print-prog-name=program
Like `-print-file-name', but searches for a program such as `cpp'.

Chapter 2: GCC Command Options 35

-print-libgcc-file-name

Same as `-print-file-name=libgcc.a'.

This is useful when you use `-nostdlib' or `-nodefaultlibs' but you do want
to link with `libgcc.a'. You can do

gcc -nostdlib �les... `gcc -print-libgcc-file-name`

-print-search-dirs

Print the name of the con�gured installation directory and a list of program
and library directories gcc will search|and don't do anything else.

This is useful when gcc prints the error message `installation problem,

cannot exec cpp: No such file or directory'. To resolve this you either
need to put `cpp' and the other compiler components where gcc expects to �nd
them, or you can set the environment variable GCC_EXEC_PREFIX to the direc-
tory where you installed them. Don't forget the trailing '/'. See Section 2.16
[Environment Variables], page 97.

2.8 Options That Control Optimization

These options control various sorts of optimizations:

-O

-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

Without `-O', the compiler's goal is to reduce the cost of compilation and to
make debugging produce the expected results. Statements are independent:
if you stop the program with a breakpoint between statements, you can then
assign a new value to any variable or change the program counter to any other
statement in the function and get exactly the results you would expect from
the source code.

Without `-O', the compiler only allocates variables declared register in reg-
isters. The resulting compiled code is a little worse than produced by PCC
without `-O'.

With `-O', the compiler tries to reduce code size and execution time.

When you specify `-O', the compiler turns on `-fthread-jumps' and `-fdefer-pop'
on all machines. The compiler turns on `-fdelayed-branch' on machines that
have delay slots, and `-fomit-frame-pointer' on machines that can support
debugging even without a frame pointer. On some machines the compiler also
turns on other ags.

-O2 Optimize even more. GCC performs nearly all supported optimizations that
do not involve a space-speed tradeo�. The compiler does not perform loop
unrolling or function inlining when you specify `-O2'. As compared to `-O', this
option increases both compilation time and the performance of the generated
code.

`-O2' turns on all optional optimizations except for loop unrolling, function
inlining, and strict aliasing optimizations. It also turns on the `-fforce-mem'

36 Using the GNU Compiler Collection

option on all machines and frame pointer elimination on machines where doing
so does not interfere with debugging.

-O3 Optimize yet more. `-O3' turns on all optimizations speci�ed by `-O2' and also
turns on the `inline-functions' option.

-O0 Do not optimize.

-Os Optimize for size. `-Os' enables all `-O2' optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

If you use multiple `-O' options, with or without level numbers, the last such
option is the one that is e�ective.

Options of the form `-fag ' specify machine-independent ags. Most ags have both
positive and negative forms; the negative form of `-ffoo' would be `-fno-foo'. In the table
below, only one of the forms is listed|the one which is not the default. You can �gure out
the other form by either removing `no-' or adding it.

-ffloat-store

Do not store oating point variables in registers, and inhibit other options that
might change whether a oating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the oating registers (of the 68881) keep more precision than a double

is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
de�nition of IEEE oating point. Use `-ffloat-store' for such programs, after
modifying them to store all pertinent intermediate computations into variables.

-fno-default-inline

Do not make member functions inline by default merely because they are de�ned
inside the class scope (C++ only). Otherwise, when you specify `-O', member
functions de�ned inside class scope are compiled inline by default; i.e., you don't
need to add `inline' in front of the member function name.

-fno-defer-pop

Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

-fforce-mem

Force memory operands to be copied into registers before doing arithmetic on
them. This produces better code by making all memory references potential
common subexpressions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load. The `-O2' option
turns on this option.

-fforce-addr

Force memory address constants to be copied into registers before doing arith-
metic on them. This may produce better code just as `-fforce-mem' may.

Chapter 2: GCC Command Options 37

-fomit-frame-pointer

Don't keep the frame pointer in a register for functions that don't need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the Vax, this ag has no e�ect, because the standard
calling sequence automatically handles the frame pointer and nothing is saved
by pretending it doesn't exist. The machine-description macro FRAME_POINTER_
REQUIRED controls whether a target machine supports this ag. See section
\Register Usage" in Using and Porting GCC .

-fno-inline

Don't pay attention to the inline keyword. Normally this option is used to
keep the compiler from expanding any functions inline. Note that if you are
not optimizing, no functions can be expanded inline.

-finline-functions

Integrate all simple functions into their callers. The compiler heuristically de-
cides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

-finline-limit-n
By default, gcc limits the size of functions that can be inlined. This ag allows
the control of this limit for functions that are explicitly marked as inline (ie
marked with the inline keyword or de�ned within the class de�nition in c++).
n is the size of functions that can be inlined in number of pseudo instructions
(not counting parameter handling). The default value of n is 10000. Increasing
this value can result in more inlined code at the cost of compilation time and
memory consumption. Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower programs). This option
is particularly useful for programs that use inlining heavily such as those based
on recursive templates with c++.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function's size. In no way, it represents a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the function is declared
static, nevertheless output a separate run-time callable version of the function.
This switch does not a�ect extern inline functions.

-fkeep-static-consts

Emit variables declared static const when optimization isn't turned on, even
if the variables aren't referenced.

38 Using the GNU Compiler Collection

GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned
on, use the `-fno-keep-static-consts' option.

-fno-function-cse

Do not put function addresses in registers; make each instruction that calls a
constant function contain the function's address explicitly.

This option results in less eÆcient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

-ffast-math

This option allows GCC to violate some ANSI or IEEE rules and/or speci�ca-
tions in the interest of optimizing code for speed. For example, it allows the
compiler to assume arguments to the sqrt function are non-negative numbers
and that no oating-point values are NaNs.

This option should never be turned on by any `-O' option since it can result
in incorrect output for programs which depend on an exact implementation of
IEEE or ANSI rules/speci�cations for math functions.

The following options control speci�c optimizations. The `-O2' option turns on all of
these optimizations except `-funroll-loops' `-funroll-all-loops', and `-fstrict-aliasing'.
On most machines, the `-O' option turns on the `-fthread-jumps' and `-fdelayed-branch'
options, but speci�c machines may handle it di�erently.

You can use the following ags in the rare cases when \�ne-tuning" of optimizations to
be performed is desired.

-fstrength-reduce

Perform the optimizations of loop strength reduction and elimination of itera-
tion variables.

-fthread-jumps

Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the �rst is found. If so, the �rst branch
is redirected to either the destination of the second branch or a point immedi-
ately following it, depending on whether the condition is known to be true or
false.

-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions when
the target of the jump is not reached by any other path. For example, when
CSE encounters an if statement with an else clause, CSE will follow the jump
when the condition tested is false.

-fcse-skip-blocks

This is similar to `-fcse-follow-jumps', but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, `-fcse-skip-blocks' causes CSE to follow the jump around
the body of the if.

Chapter 2: GCC Command Options 39

-frerun-cse-after-loop

Re-run common subexpression elimination after loop optimizations has been
performed.

-frerun-loop-opt

Run the loop optimizer twice.

-fgcse Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

-fexpensive-optimizations

Perform a number of minor optimizations that are relatively expensive.

-foptimize-register-moves

-fregmove

Attempt to reassign register numbers in move instructions and as operands of
other simple instructions in order to maximize the amount of register tying.
This is especially helpful on machines with two-operand instructions. GCC
enables this optimization by default with `-O2' or higher.

Note -fregmove and -foptimize-register-moves are the same optimization.

-fdelayed-branch

If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

-fschedule-insns

If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow oating point or memory load instructions by allowing other
instructions to be issued until the result of the load or oating point instruction
is required.

-fschedule-insns2

Similar to `-fschedule-insns', but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

-ffunction-sections

-fdata-sections

Place each function or data item into its own section in the output �le if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section's name in the output �le.

Use these options on systems where the linker can perform optimizations to im-
prove locality of reference in the instruction space. HPPA processors running
HP-UX and Sparc processors running Solaris 2 have linkers with such optimiza-
tions. Other systems using the ELF object format as well as AIX may have
these optimizations in the future.

Only use these options when there are signi�cant bene�ts from doing so. When
you specify these options, the assembler and linker will create larger object and
executable �les and will also be slower. You will not be able to use gprof on all

40 Using the GNU Compiler Collection

systems if you specify this option and you may have problems with debugging
if you specify both this option and `-g'.

-fcaller-saves

Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

For all machines, optimization level 2 and higher enables this ag by default.

-funroll-loops

Perform the optimization of loop unrolling. This is only done for loops
whose number of iterations can be determined at compile time or run time.
`-funroll-loops' implies both `-fstrength-reduce' and `-frerun-cse-after-loop'.

-funroll-all-loops

Perform the optimization of loop unrolling. This is done for all loops and
usually makes programs run more slowly. `-funroll-all-loops' implies
`-fstrength-reduce' as well as `-frerun-cse-after-loop'.

-fmove-all-movables

Forces all invariant computations in loops to be moved outside the loop.

-freduce-all-givs

Forces all general-induction variables in loops to be strength-reduced.

Note: When compiling programs written in Fortran, `-fmove-all-movables'
and `-freduce-all-givs' are enabled by default when you use the optimizer.

These options may generate better or worse code; results are highly dependent
on the structure of loops within the source code.

These two options are intended to be removed someday, once they have helped
determine the eÆcacy of various approaches to improving loop optimizations.

Please let us (gcc@gcc.gnu.org and fortran@gnu.org) know how use of these
options a�ects the performance of your production code. We're very interested
in code that runs slower when these options are enabled.

-fno-peephole

Disable any machine-speci�c peephole optimizations.

-fbranch-probabilities

After running a program compiled with `-fprofile-arcs' (see Section 2.7 [Op-
tions for Debugging Your Program or gcc], page 29), you can compile it a sec-
ond time using `-fbranch-probabilities', to improve optimizations based on
guessing the path a branch might take.

-fstrict-aliasing

Allows the compiler to assume the strictest aliasing rules applicable to the
language being compiled. For C (and C++), this activates optimizations based
on the type of expressions. In particular, an object of one type is assumed never

Chapter 2: GCC Command Options 41

to reside at the same address as an object of a di�erent type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.

Pay special attention to code like this:

union a_union {
int i;
double d;

};

int f() {
a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a di�erent union member than the one most re-
cently written to (called \type-punning") is common. Even with `-fstrict-aliasing',
type-punning is allowed, provided the memory is accessed through the union
type. So, the code above will work as expected. However, this code might not:

int f() {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;

}

2.9 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source �le before actual
compilation.

If you use the `-E' option, nothing is done except preprocessing. Some of these op-
tions make sense only together with `-E' because they cause the preprocessor output to be
unsuitable for actual compilation.

-include �le
Process �le as input before processing the regular input �le. In e�ect, the
contents of �le are compiled �rst. Any `-D' and `-U' options on the command
line are always processed before `-include �le', regardless of the order in which
they are written. All the `-include' and `-imacros' options are processed in
the order in which they are written.

-imacros �le
Process �le as input, discarding the resulting output, before processing the
regular input �le. Because the output generated from �le is discarded, the only
e�ect of `-imacros �le' is to make the macros de�ned in �le available for use
in the main input.

Any `-D' and `-U' options on the command line are always processed before
`-imacros �le', regardless of the order in which they are written. All the

42 Using the GNU Compiler Collection

`-include' and `-imacros' options are processed in the order in which they
are written.

-idirafter dir
Add the directory dir to the second include path. The directories on the second
include path are searched when a header �le is not found in any of the directories
in the main include path (the one that `-I' adds to).

-iprefix pre�x
Specify pre�x as the pre�x for subsequent `-iwithprefix' options.

-iwithprefix dir
Add a directory to the second include path. The directory's name is made
by concatenating pre�x and dir, where pre�x was speci�ed previously with
`-iprefix'. If you have not speci�ed a pre�x yet, the directory containing the
installed passes of the compiler is used as the default.

-iwithprefixbefore dir
Add a directory to the main include path. The directory's name is made by
concatenating pre�x and dir, as in the case of `-iwithprefix'.

-isystem dir
Add a directory to the beginning of the second include path, marking it as a
system directory, so that it gets the same special treatment as is applied to the
standard system directories.

-nostdinc

Do not search the standard system directories for header �les. Only the di-
rectories you have speci�ed with `-I' options (and the current directory, if
appropriate) are searched. See Section 2.12 [Directory Options], page 46, for
information on `-I'.

By using both `-nostdinc' and `-I-', you can limit the include-�le search path
to only those directories you specify explicitly.

-undef Do not prede�ne any nonstandard macros. (Including architecture ags).

-E Run only the C preprocessor. Preprocess all the C source �les speci�ed and
output the results to standard output or to the speci�ed output �le.

-C Tell the preprocessor not to discard comments. Used with the `-E' option.

-P Tell the preprocessor not to generate `#line' directives. Used with the `-E'
option.

-M Tell the preprocessor to output a rule suitable for make describing the depen-
dencies of each object �le. For each source �le, the preprocessor outputs one
make-rule whose target is the object �le name for that source �le and whose
dependencies are all the #include header �les it uses. This rule may be a single
line or may be continued with `\'-newline if it is long. The list of rules is printed
on standard output instead of the preprocessed C program.

`-M' implies `-E'.

Another way to specify output of a make rule is by setting the environment
variable DEPENDENCIES_OUTPUT (see Section 2.16 [Environment Variables],
page 97).

Chapter 2: GCC Command Options 43

-MM Like `-M' but the output mentions only the user header �les included with
`#include "�le"'. System header �les included with `#include <�le>' are omit-
ted.

-MD Like `-M' but the dependency information is written to a �le made by replacing
".c" with ".d" at the end of the input �le names. This is in addition to compiling
the �le as speci�ed|`-MD' does not inhibit ordinary compilation the way `-M'
does.

In Mach, you can use the utility md to merge multiple dependency �les into a
single dependency �le suitable for using with the `make' command.

-MMD Like `-MD' except mention only user header �les, not system header �les.

-MG Treat missing header �les as generated �les and assume they live in the same
directory as the source �le. If you specify `-MG', you must also specify either
`-M' or `-MM'. `-MG' is not supported with `-MD' or `-MMD'.

-H Print the name of each header �le used, in addition to other normal activities.

-Aquestion(answer)
Assert the answer answer for question, in case it is tested with a preprocess-
ing conditional such as `#if #question(answer)'. `-A-' disables the standard
assertions that normally describe the target machine.

-Dmacro De�ne macro macro with the string `1' as its de�nition.

-Dmacro=defn
De�ne macro macro as defn. All instances of `-D' on the command line are
processed before any `-U' options.

-Umacro Unde�ne macro macro. `-U' options are evaluated after all `-D' options, but
before any `-include' and `-imacros' options.

-dM Tell the preprocessor to output only a list of the macro de�nitions that are in
e�ect at the end of preprocessing. Used with the `-E' option.

-dD Tell the preprocessing to pass all macro de�nitions into the output, in their
proper sequence in the rest of the output.

-dN Like `-dD' except that the macro arguments and contents are omitted. Only
`#define name' is included in the output.

-trigraphs

Support ANSI C trigraphs. The `-ansi' option also has this e�ect.

-Wp,option
Pass option as an option to the preprocessor. If option contains commas, it is
split into multiple options at the commas.

2.10 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

44 Using the GNU Compiler Collection

2.11 Options for Linking

These options come into play when the compiler links object �les into an executable
output �le. They are meaningless if the compiler is not doing a link step.

object-�le-name
A �le name that does not end in a special recognized suÆx is considered to
name an object �le or library. (Object �les are distinguished from libraries by
the linker according to the �le contents.) If linking is done, these object �les
are used as input to the linker.

-c

-S

-E If any of these options is used, then the linker is not run, and object �le names
should not be used as arguments. See Section 2.2 [Overall Options], page 10.

-llibrary Search the library named library when linking.

It makes a di�erence where in the command you write this option; the linker
searches processes libraries and object �les in the order they are speci�ed. Thus,
`foo.o -lz bar.o' searches library `z' after �le `foo.o' but before `bar.o'. If
`bar.o' refers to functions in `z', those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually
a �le named `liblibrary.a'. The linker then uses this �le as if it had been
speci�ed precisely by name.

The directories searched include several standard system directories plus any
that you specify with `-L'.

Normally the �les found this way are library �les|archive �les whose members
are object �les. The linker handles an archive �le by scanning through it for
members which de�ne symbols that have so far been referenced but not de�ned.
But if the �le that is found is an ordinary object �le, it is linked in the usual
fashion. The only di�erence between using an `-l' option and specifying a �le
name is that `-l' surrounds library with `lib' and `.a' and searches several
directories.

-lobjc You need this special case of the `-l' option in order to link an Objective C
program.

-nostartfiles

Do not use the standard system startup �les when linking. The standard system
libraries are used normally, unless -nostdlib or -nodefaultlibs is used.

-nodefaultlibs

Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker. The standard startup �les are used normally,
unless -nostartfiles is used. The compiler may generate calls to memcmp,
memset, and memcpy for System V (and ANSI C) environments or to bcopy
and bzero for BSD environments. These entries are usually resolved by entries
in libc. These entry points should be supplied through some other mechanism
when this option is speci�ed.

Chapter 2: GCC Command Options 45

-nostdlib

Do not use the standard system startup �les or libraries when linking. No
startup �les and only the libraries you specify will be passed to the linker.
The compiler may generate calls to memcmp, memset, and memcpy for System
V (and ANSI C) environments or to bcopy and bzero for BSD environments.
These entries are usually resolved by entries in libc. These entry points should
be supplied through some other mechanism when this option is speci�ed.

One of the standard libraries bypassed by `-nostdlib' and `-nodefaultlibs'
is `libgcc.a', a library of internal subroutines that GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
section \Interfacing to GCC Output" in Porting GCC , for more discussion
of `libgcc.a'.) In most cases, you need `libgcc.a' even when you want to
avoid other standard libraries. In other words, when you specify `-nostdlib'
or `-nodefaultlibs' you should usually specify `-lgcc' as well. This ensures
that you have no unresolved references to internal GCC library subroutines.
(For example, `__main', used to ensure C++ constructors will be called; see
Section 3.7 [collect2], page 134.)

-s Remove all symbol table and relocation information from the executable.

-static On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no e�ect.

-shared Produce a shared object which can then be linked with other objects to form an
executable. Not all systems support this option. You must also specify `-fpic'
or `-fPIC' on some systems when you specify this option.

-symbolic

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option `-Xlinker
-z -Xlinker defs'). Only a few systems support this option.

-Xlinker option
Pass option as an option to the linker. You can use this to supply system-speci�c
linker options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use `-Xlinker'
twice, once for the option and once for the argument. For example, to
pass `-assert definitions', you must write `-Xlinker -assert -Xlinker

definitions'. It does not work to write `-Xlinker "-assert definitions"',
because this passes the entire string as a single argument, which is not what
the linker expects.

-Wl,option
Pass option as an option to the linker. If option contains commas, it is split
into multiple options at the commas.

-u symbol Pretend the symbol symbol is unde�ned, to force linking of library modules
to de�ne it. You can use `-u' multiple times with di�erent symbols to force
loading of additional library modules.

46 Using the GNU Compiler Collection

2.12 Options for Directory Search

These options specify directories to search for header �les, for libraries and for parts of
the compiler:

-Idir Add the directory dir to the head of the list of directories to be searched for
header �les. This can be used to override a system header �le, substituting your
own version, since these directories are searched before the system header �le
directories. If you use more than one `-I' option, the directories are scanned in
left-to-right order; the standard system directories come after.

-I- Any directories you specify with `-I' options before the `-I-' option are searched
only for the case of `#include "�le"'; they are not searched for `#include
<�le>'.

If additional directories are speci�ed with `-I' options after the `-I-', these
directories are searched for all `#include' directives. (Ordinarily all `-I' direc-
tories are used this way.)

In addition, the `-I-' option inhibits the use of the current directory (where the
current input �le came from) as the �rst search directory for `#include "�le"'.
There is no way to override this e�ect of `-I-'. With `-I.' you can specify
searching the directory which was current when the compiler was invoked. That
is not exactly the same as what the preprocessor does by default, but it is often
satisfactory.

`-I-' does not inhibit the use of the standard system directories for header �les.
Thus, `-I-' and `-nostdinc' are independent.

-Ldir Add directory dir to the list of directories to be searched for `-l'.

-Bpre�x This option speci�es where to �nd the executables, libraries, include �les, and
data �les of the compiler itself.

The compiler driver program runs one or more of the subprograms `cpp', `cc1',
`as' and `ld'. It tries pre�x as a pre�x for each program it tries to run, both with
and without `machine/version/' (see Section 2.13 [Target Options], page 47).

For each subprogram to be run, the compiler driver �rst tries the `-B' pre�x,
if any. If that name is not found, or if `-B' was not speci�ed, the driver tries two
standard pre�xes, which are `/usr/lib/gcc/' and `/usr/local/lib/gcc-lib/'.
If neither of those results in a �le name that is found, the unmodi�ed program
name is searched for using the directories speci�ed in your `PATH' environment
variable.

`-B' pre�xes that e�ectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into `-L' options for
the linker. They also apply to includes �les in the preprocessor, because the
compiler translates these options into `-isystem' options for the preprocessor.
In this case, the compiler appends `include' to the pre�x.

The run-time support �le `libgcc.a' can also be searched for using the `-B'
pre�x, if needed. If it is not found there, the two standard pre�xes above are
tried, and that is all. The �le is left out of the link if it is not found by those
means.

Chapter 2: GCC Command Options 47

Another way to specify a pre�x much like the `-B' pre�x is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 2.16 [Environment Variables],
page 97.

-specs=�le
Process �le after the compiler reads in the standard `specs' �le, in order to
override the defaults that the `gcc' driver program uses when determining what
switches to pass to `cc1', `cc1plus', `as', `ld', etc. More than one `-specs='�le
can be speci�ed on the command line, and they are processed in order, from
left to right.

2.13 Specifying Target Machine and Compiler Version

By default, GCC compiles code for the same type of machine that you are using. How-
ever, it can also be installed as a cross-compiler, to compile for some other type of machine.
In fact, several di�erent con�gurations of GCC, for di�erent target machines, can be in-
stalled side by side. Then you specify which one to use with the `-b' option.

In addition, older and newer versions of GCC can be installed side by side. One of them
(probably the newest) will be the default, but you may sometimes wish to use another.

-b machine
The argument machine speci�es the target machine for compilation. This is
useful when you have installed GCC as a cross-compiler.

The value to use for machine is the same as was speci�ed as the machine type
when con�guring GCC as a cross-compiler. For example, if a cross-compiler was
con�gured with `configure i386v', meaning to compile for an 80386 running
System V, then you would specify `-b i386v' to run that cross compiler.

When you do not specify `-b', it normally means to compile for the same type
of machine that you are using.

-V version The argument version speci�es which version of GCC to run. This is useful
when multiple versions are installed. For example, version might be `2.0',
meaning to run GCC version 2.0.

The default version, when you do not specify `-V', is the last version of GCC
that you installed.

The `-b' and `-V' options actually work by controlling part of the �le name used for the
executable �les and libraries used for compilation. A given version of GCC, for a given target
machine, is normally kept in the directory `/usr/local/lib/gcc-lib/machine/version'.

Thus, sites can customize the e�ect of `-b' or `-V' either by changing the names of these
directories or adding alternate names (or symbolic links). If in directory `/usr/local/lib/gcc-lib/'
the �le `80386' is a link to the �le `i386v', then `-b 80386' becomes an alias for `-b i386v'.

In one respect, the `-b' or `-V' do not completely change to a di�erent compiler: the
top-level driver program gcc that you originally invoked continues to run and invoke the
other executables (preprocessor, compiler per se, assembler and linker) that do the real
work. However, since no real work is done in the driver program, it usually does not matter
that the driver program in use is not the one for the speci�ed target and version.

48 Using the GNU Compiler Collection

The only way that the driver program depends on the target machine is in the parsing
and handling of special machine-speci�c options. However, this is controlled by a �le which
is found, along with the other executables, in the directory for the speci�ed version and
target machine. As a result, a single installed driver program adapts to any speci�ed target
machine and compiler version.

The driver program executable does control one signi�cant thing, however: the default
version and target machine. Therefore, you can install di�erent instances of the driver
program, compiled for di�erent targets or versions, under di�erent names.

For example, if the driver for version 2.0 is installed as ogcc and that for version 2.1 is
installed as gcc, then the command gcc will use version 2.1 by default, while ogcc will use
2.0 by default. However, you can choose either version with either command with the `-V'
option.

2.14 Hardware Models and Con�gurations

Earlier we discussed the standard option `-b' which chooses among di�erent installed
compilers for completely di�erent target machines, such as Vax vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting
with `-m', to choose among various hardware models or con�gurations|for example, 68010
vs 68020, oating coprocessor or none. A single installed version of the compiler can compile
for any model or con�guration, according to the options speci�ed.

Some con�gurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

2.14.1 M680x0 Options

These are the `-m' options de�ned for the 68000 series. The default values for these
options depends on which style of 68000 was selected when the compiler was con�gured;
the defaults for the most common choices are given below.

-m68000

-mc68000 Generate output for a 68000. This is the default when the compiler is con�gured
for 68000-based systems.

Use this option for microcontrollers with a 68000 or EC000 core, including the
68008, 68302, 68306, 68307, 68322, 68328 and 68356.

-m68020

-mc68020 Generate output for a 68020. This is the default when the compiler is con�gured
for 68020-based systems.

-m68881 Generate output containing 68881 instructions for oating point. This is the
default for most 68020 systems unless `-nfp' was speci�ed when the compiler
was con�gured.

-m68030 Generate output for a 68030. This is the default when the compiler is con�gured
for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is con�gured
for 68040-based systems.

Chapter 2: GCC Command Options 49

This option inhibits the use of 68881/68882 instructions that have to be em-
ulated by software on the 68040. Use this option if your 68040 does not have
code to emulate those instructions.

-m68060 Generate output for a 68060. This is the default when the compiler is con�gured
for 68060-based systems.

This option inhibits the use of 68020 and 68881/68882 instructions that have
to be emulated by software on the 68060. Use this option if your 68060 does
not have code to emulate those instructions.

-mcpu32 Generate output for a CPU32. This is the default when the compiler is con�g-
ured for CPU32-based systems.

Use this option for microcontrollers with a CPU32 or CPU32+ core, including
the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

-m5200 Generate output for a 520X "cold�re" family cpu. This is the default when the
compiler is con�gured for 520X-based systems.

Use this option for microcontroller with a 5200 core, including the MCF5202,
MCF5203, MCF5204 and MCF5202.

-m68020-40

Generate output for a 68040, without using any of the new instructions. This
results in code which can run relatively eÆciently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68040.

-m68020-60

Generate output for a 68060, without using any of the new instructions. This
results in code which can run relatively eÆciently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68060.

-mfpa Generate output containing Sun FPA instructions for oating point.

-msoft-float

Generate output containing library calls for oating point. Warning: the req-
uisite libraries are not available for all m68k targets. Normally the facilities
of the machine's usual C compiler are used, but this can't be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets `m68k-*-aout'
and `m68k-*-coff' do provide software oating point support.

-mshort Consider type int to be 16 bits wide, like short int.

-mnobitfield

Do not use the bit-�eld instructions. The `-m68000', `-mcpu32' and `-m5200'
options imply `-mnobitfield'.

-mbitfield

Do use the bit-�eld instructions. The `-m68020' option implies `-mbitfield'.
This is the default if you use a con�guration designed for a 68020.

50 Using the GNU Compiler Collection

-mrtd Use a di�erent function-calling convention, in which functions that take a �xed
number of arguments return with the rtd instruction, which pops their argu-
ments while returning. This saves one instruction in the caller since there is no
need to pop the arguments there.

This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and
CPU32 processors, but not by the 68000 or 5200.

-malign-int

-mno-align-int

Control whether GCC aligns int, long, long long, float, double, and long

double variables on a 32-bit boundary (`-malign-int') or a 16-bit boundary
(`-mno-align-int'). Aligning variables on 32-bit boundaries produces code
that runs somewhat faster on processors with 32-bit busses at the expense of
more memory.

Warning: if you use the `-malign-int' switch, GCC will align structures con-
taining the above types di�erently than most published application binary in-
terface speci�cations for the m68k.

2.14.2 VAX Options

These `-m' options are de�ned for the Vax:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix
assembler for the Vax cannot handle across long ranges.

-mgnu Do output those jump instructions, on the assumption that you will assemble
with the GNU assembler.

-mg Output code for g-format oating point numbers instead of d-format.

2.14.3 SPARC Options

These `-m' switches are supported on the SPARC:

-mno-app-regs

-mapp-regs

Specify `-mapp-regs' to generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify
`-mno-app-regs'. You should compile libraries and system software with this
option.

Chapter 2: GCC Command Options 51

-mfpu

-mhard-float

Generate output containing oating point instructions. This is the default.

-mno-fpu

-msoft-float

Generate output containing library calls for oating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine's usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets `sparc-*-aout'
and `sparclite-*-*' do provide software oating point support.

`-msoft-float' changes the calling convention in the output �le; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile `libgcc.a', the library that comes with GCC, with
`-msoft-float' in order for this to work.

-mhard-quad-float

Generate output containing quad-word (long double) oating point instructions.

-msoft-quad-float

Generate output containing library calls for quad-word (long double) oating
point instructions. The functions called are those speci�ed in the SPARC ABI.
This is the default.

As of this writing, there are no sparc implementations that have hardware
support for the quad-word oating point instructions. They all invoke a trap
handler for one of these instructions, and then the trap handler emulates the
e�ect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus the `-msoft-quad-float'
option is the default.

-mno-epilogue

-mepilogue

With `-mepilogue' (the default), the compiler always emits code for function
exit at the end of each function. Any function exit in the middle of the function
(such as a return statement in C) will generate a jump to the exit code at the
end of the function.

With `-mno-epilogue', the compiler tries to emit exit code inline at every
function exit.

-mno-flat

-mflat With `-mflat', the compiler does not generate save/restore instructions and
will use a "at" or single register window calling convention. This model uses
%i7 as the frame pointer and is compatible with the normal register window
model. Code from either may be intermixed. The local registers and the input
registers (0-5) are still treated as "call saved" registers and will be saved on the
stack as necessary.

With `-mno-flat' (the default), the compiler emits save/restore instructions
(except for leaf functions) and is the normal mode of operation.

52 Using the GNU Compiler Collection

-mno-unaligned-doubles

-munaligned-doubles

Assume that doubles have 8 byte alignment. This is the default.

With `-munaligned-doubles', GCC assumes that doubles have 8 byte align-
ment only if they are contained in another type, or if they have an absolute
address. Otherwise, it assumes they have 4 byte alignment. Specifying this
option avoids some rare compatibility problems with code generated by other
compilers. It is not the default because it results in a performance loss, espe-
cially for oating point code.

-mv8

-msparclite

These two options select variations on the SPARC architecture.

By default (unless speci�cally con�gured for the Fujitsu SPARClite), GCC gen-
erates code for the v7 variant of the SPARC architecture.

`-mv8' will give you SPARC v8 code. The only di�erence from v7 code is that
the compiler emits the integer multiply and integer divide instructions which
exist in SPARC v8 but not in SPARC v7.

`-msparclite' will give you SPARClite code. This adds the integer multiply,
integer divide step and scan (ffs) instructions which exist in SPARClite but
not in SPARC v7.

These options are deprecated and will be deleted in a future GCC release. They
have been replaced with `-mcpu=xxx'.

-mcypress

-msupersparc

These two options select the processor for which the code is optimised.

With `-mcypress' (the default), the compiler optimizes code for the Cypress
CY7C602 chip, as used in the SparcStation/SparcServer 3xx series. This is also
appropriate for the older SparcStation 1, 2, IPX etc.

With `-msupersparc' the compiler optimizes code for the SuperSparc cpu, as
used in the SparcStation 10, 1000 and 2000 series. This ag also enables use of
the full SPARC v8 instruction set.

These options are deprecated and will be deleted in a future GCC release. They
have been replaced with `-mcpu=xxx'.

-mcpu=cpu type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. Supported values for cpu type are `v7', `cypress',
`v8', `supersparc', `sparclite', `hypersparc', `sparclite86x', `f930', `f934',
`sparclet', `tsc701', `v9', and `ultrasparc'.

Default instruction scheduling parameters are used for values that select an
architecture and not an implementation. These are `v7', `v8', `sparclite',
`sparclet', `v9'.

Here is a list of each supported architecture and their supported implementa-
tions.

Chapter 2: GCC Command Options 53

v7: cypress
v8: supersparc, hypersparc
sparclite: f930, f934, sparclite86x
sparclet: tsc701
v9: ultrasparc

-mtune=cpu type
Set the instruction scheduling parameters for machine type cpu type, but do not
set the instruction set or register set that the option `-mcpu='cpu type would.

The same values for `-mcpu='cpu type are used for `-mtune='
cpu type, though the only useful values are those that select a particular
cpu implementation: `cypress', `supersparc', `hypersparc', `f930', `f934',
`sparclite86x', `tsc701', `ultrasparc'.

-malign-loops=num
Align loops to a 2 raised to a num byte boundary. If `-malign-loops' is not
speci�ed, the default is 2.

-malign-jumps=num
Align instructions that are only jumped to to a 2 raised to a num byte boundary.
If `-malign-jumps' is not speci�ed, the default is 2.

-malign-functions=num
Align the start of functions to a 2 raised to num byte boundary. If `-malign-functions'
is not speci�ed, the default is 2 if compiling for 32 bit sparc, and 5 if compiling
for 64 bit sparc.

These `-m' switches are supported in addition to the above on the SPARCLET processor.

-mlittle-endian

Generate code for a processor running in little-endian mode.

-mlive-g0

Treat register %g0 as a normal register. GCC will continue to clobber it as
necessary but will not assume it always reads as 0.

-mbroken-saverestore

Generate code that does not use non-trivial forms of the save and restore in-
structions. Early versions of the SPARCLET processor do not correctly handle
save and restore instructions used with arguments. They correctly handle
them used without arguments. A save instruction used without arguments in-
crements the current window pointer but does not allocate a new stack frame.
It is assumed that the window overow trap handler will properly handle this
case as will interrupt handlers.

These `-m' switches are supported in addition to the above on SPARC V9 processors in
64 bit environments.

-mlittle-endian

Generate code for a processor running in little-endian mode.

54 Using the GNU Compiler Collection

-m32

-m64 Generate code for a 32 bit or 64 bit environment. The 32 bit environment sets
int, long and pointer to 32 bits. The 64 bit environment sets int to 32 bits and
long and pointer to 64 bits.

-mcmodel=medlow

Generate code for the Medium/Low code model: the program must be linked
in the low 32 bits of the address space. Pointers are 64 bits. Programs can be
statically or dynamically linked.

-mcmodel=medmid

Generate code for the Medium/Middle code model: the program must be linked
in the low 44 bits of the address space, the text segment must be less than 2G
bytes, and data segment must be within 2G of the text segment. Pointers are
64 bits.

-mcmodel=medany

Generate code for the Medium/Anywhere code model: the program may be
linked anywhere in the address space, the text segment must be less than 2G
bytes, and data segment must be within 2G of the text segment. Pointers are
64 bits.

-mcmodel=embmedany

Generate code for the Medium/Anywhere code model for embedded systems:
assume a 32 bit text and a 32 bit data segment, both starting anywhere (de-
termined at link time). Register %g4 points to the base of the data segment.
Pointers still 64 bits. Programs are statically linked, PIC is not supported.

-mstack-bias

-mno-stack-bias

With `-mstack-bias', GCC assumes that the stack pointer, and frame pointer
if present, are o�set by -2047 which must be added back when making stack
frame references. Otherwise, assume no such o�set is present.

2.14.4 Convex Options

These `-m' options are de�ned for Convex:

-mc1 Generate output for C1. The code will run on any Convex machine. The
preprocessor symbol __convex__c1__ is de�ned.

-mc2 Generate output for C2. Uses instructions not available on C1. Scheduling and
other optimizations are chosen for max performance on C2. The preprocessor
symbol __convex_c2__ is de�ned.

-mc32 Generate output for C32xx. Uses instructions not available on C1. Scheduling
and other optimizations are chosen for max performance on C32. The prepro-
cessor symbol __convex_c32__ is de�ned.

-mc34 Generate output for C34xx. Uses instructions not available on C1. Scheduling
and other optimizations are chosen for max performance on C34. The prepro-
cessor symbol __convex_c34__ is de�ned.

Chapter 2: GCC Command Options 55

-mc38 Generate output for C38xx. Uses instructions not available on C1. Scheduling
and other optimizations are chosen for max performance on C38. The prepro-
cessor symbol __convex_c38__ is de�ned.

-margcount

Generate code which puts an argument count in the word preceding each argu-
ment list. This is compatible with regular CC, and a few programs may need
the argument count word. GDB and other source-level debuggers do not need
it; this info is in the symbol table.

-mnoargcount

Omit the argument count word. This is the default.

-mvolatile-cache

Allow volatile references to be cached. This is the default.

-mvolatile-nocache

Volatile references bypass the data cache, going all the way to memory. This is
only needed for multi-processor code that does not use standard synchroniza-
tion instructions. Making non-volatile references to volatile locations will not
necessarily work.

-mlong32 Type long is 32 bits, the same as type int. This is the default.

-mlong64 Type long is 64 bits, the same as type long long. This option is useless, because
no library support exists for it.

2.14.5 AMD29K Options

These `-m' options are de�ned for the AMD Am29000:

-mdw Generate code that assumes the DW bit is set, i.e., that byte and halfword
operations are directly supported by the hardware. This is the default.

-mndw Generate code that assumes the DW bit is not set.

-mbw Generate code that assumes the system supports byte and halfword write op-
erations. This is the default.

-mnbw Generate code that assumes the systems does not support byte and halfword
write operations. `-mnbw' implies `-mndw'.

-msmall Use a small memory model that assumes that all function addresses are either
within a single 256 KB segment or at an absolute address of less than 256k.
This allows the call instruction to be used instead of a const, consth, calli
sequence.

-mnormal Use the normal memory model: Generate call instructions only when calling
functions in the same �le and calli instructions otherwise. This works if each
�le occupies less than 256 KB but allows the entire executable to be larger than
256 KB. This is the default.

-mlarge Always use calli instructions. Specify this option if you expect a single �le to
compile into more than 256 KB of code.

56 Using the GNU Compiler Collection

-m29050 Generate code for the Am29050.

-m29000 Generate code for the Am29000. This is the default.

-mkernel-registers

Generate references to registers gr64-gr95 instead of to registers gr96-gr127.
This option can be used when compiling kernel code that wants a set of global
registers disjoint from that used by user-mode code.

Note that when this option is used, register names in `-f' ags must use the
normal, user-mode, names.

-muser-registers

Use the normal set of global registers, gr96-gr127. This is the default.

-mstack-check

-mno-stack-check

Insert (or do not insert) a call to __msp_check after each stack adjustment.
This is often used for kernel code.

-mstorem-bug

-mno-storem-bug

`-mstorem-bug' handles 29k processors which cannot handle the separation of
a mtsrim insn and a storem instruction (most 29000 chips to date, but not the
29050).

-mno-reuse-arg-regs

-mreuse-arg-regs

`-mno-reuse-arg-regs' tells the compiler to only use incoming argument reg-
isters for copying out arguments. This helps detect calling a function with fewer
arguments than it was declared with.

-mno-impure-text

-mimpure-text

`-mimpure-text', used in addition to `-shared', tells the compiler to not pass
`-assert pure-text' to the linker when linking a shared object.

-msoft-float

Generate output containing library calls for oating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine's
usual C compiler are used, but this can't be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

-mno-multm

Do not generate multm or multmu instructions. This is useful for some embed-
ded systems which do not have trap handlers for these instructions.

2.14.6 ARM Options

These `-m' options are de�ned for Advanced RISC Machines (ARM) architectures:

Chapter 2: GCC Command Options 57

-mapcs-frame

Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execu-
tion of the code. Specifying `-fomit-frame-pointer' with this option will
cause the stack frames not to be generated for leaf functions. The default is
`-mno-apcs-frame'.

-mapcs This is a synonym for `-mapcs-frame'.

-mapcs-26

Generate code for a processor running with a 26-bit program counter, and
conforming to the function calling standards for the APCS 26-bit option. This
option replaces the `-m2' and `-m3' options of previous releases of the compiler.

-mapcs-32

Generate code for a processor running with a 32-bit program counter, and
conforming to the function calling standards for the APCS 32-bit option. This
option replaces the `-m6' option of previous releases of the compiler.

-mapcs-stack-check

Generate code to check the amount of stack space available upon entry to
every function (that actually uses some stack space). If there is insuÆ-
cient space available then either the function `__rt_stkovf_split_small'
or `__rt_stkovf_split_big' will be called, depending upon the amount of
stack space required. The run time system is required to provide these func-
tions. The default is `-mno-apcs-stack-check', since this produces smaller
code.

-mapcs-float

Pass oating point arguments using the oat point registers. This is one of
the variants of the APCS. This option is reccommended if the target hardware
has a oating point unit or if a lot of oating point arithmetic is going to be
performed by the code. The default is `-mno-apcs-float', since integer only
code is slightly increased in size if `-mapcs-float' is used.

-mapcs-reentrant

Generate reentrant, position independent code. This is the equivalent to spec-
ifying the `-fpic' option. The default is `-mno-apcs-reentrant'.

-mthumb-interwork

Generate code which supports calling between the ARM and THUMB instruc-
tion sets. Without this option the two instruction sets cannot be reliably used
inside one program. The default is `-mno-thumb-interwork', since slightly
larger code is generated when `-mthumb-interwork' is speci�ed.

-mno-sched-prolog

Prevent the reordering of instructions in the function prolog, or the merging of
those instruction with the instructions in the function's body. This means that
all functions will start with a recognisable set of instructions (or in fact one of
a chioce from a small set of di�erent function prologues), and this information
can be used to locate the start if functions inside an executable piece of code.
The default is `-msched-prolog'.

58 Using the GNU Compiler Collection

-mhard-float

Generate output containing oating point instructions. This is the default.

-msoft-float

Generate output containing library calls for oating point. Warning: the req-
uisite libraries are not available for all ARM targets. Normally the facilities of
the machine's usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.

`-msoft-float' changes the calling convention in the output �le; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile `libgcc.a', the library that comes with GCC, with
`-msoft-float' in order for this to work.

-mlittle-endian

Generate code for a processor running in little-endian mode. This is the default
for all standard con�gurations.

-mbig-endian

Generate code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor.

-mwords-little-endian

This option only applies when generating code for big-endian processors. Gen-
erate code for a little-endian word order but a big-endian byte order. That is,
a byte order of the form `32107654'. Note: this option should only be used if
you require compatibility with code for big-endian ARM processors generated
by versions of the compiler prior to 2.8.

-mshort-load-bytes

Do not try to load half-words (eg `short's) by loading a word from an unaligned
address. For some targets the MMU is con�gured to trap unaligned loads; use
this option to generate code that is safe in these environments.

-mno-short-load-bytes

Use unaligned word loads to load half-words (eg `short's). This option pro-
duces more eÆcient code, but the MMU is sometimes con�gured to trap these
instructions.

-mshort-load-words

This is a synonym for the `-mno-short-load-bytes'.

-mno-short-load-words

This is a synonym for the `-mshort-load-bytes'.

-mbsd This option only applies to RISC iX. Emulate the native BSD-mode compiler.
This is the default if `-ansi' is not speci�ed.

-mxopen This option only applies to RISC iX. Emulate the native X/Open-mode com-
piler.

-mno-symrename

This option only applies to RISC iX. Do not run the assembler post-processor,
`symrename', after code has been assembled. Normally it is necessary to modify

Chapter 2: GCC Command Options 59

some of the standard symbols in preparation for linking with the RISC iX C
library; this option suppresses this pass. The post-processor is never run when
the compiler is built for cross-compilation.

-mcpu=<name>

-mtune=<name>

This speci�es the name of the target ARM processor. GCC uses this name to
determine what kind of instructions it can use when generating assembly code.
Permissable names are: arm2, arm250, arm3, arm6, arm60, arm600, arm610,
arm620, arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
arm700i, arm710, arm710c, arm7100, arm7500, arm7500fe, arm7tdmi, arm8,
strongarm, strongarm110, strongarm1100, arm8, arm810, arm9, arm9tdmi.
`-mtune=' is a synonym for `-mcpue=' to support older versions of GCC.

-march=<name>

This speci�es the name of the target ARM architecture. GCC uses this name to
determine what kind of instructions it can use when generating assembly code.
This option can be used in conjunction with or instead of the `-mcpu=' option.
Permissable names are: armv2, armv2a, armv3, armv3m, armv4, armv4t

-mfpe=<number>

-mfp=<number>

This specifes the version of the oating point emulation available on the target.
Permissable values are 2 and 3. `-mfp=' is a synonym for `-mfpe=' to support
older versions of GCC.

-mstructure-size-boundary=<n>

The size of all structures and unions will be rounded up to a multiple of the
number of bits set by this option. Permissable values are 8 and 32. The
default value varies for di�erent toolchains. For the COFF targeted toolchain
the default value is 8. Specifying the larger number can produced faster, more
eÆcient code, but can also increase the size of the program. The two values
are potentially incompatible. Code compiled with one value cannot necessarily
expect to work with code or libraries compiled with the other value, if they
exchange information using structures or unions. Programmers are encouraged
to use the 32 value as future versions of the toolchain may default to this value.

-mabort-on-noreturn

Generate a call to the function abort at the end of a noreturn function. It will
be executed if the function tries to return.

2.14.7 Thumb Options

-mthumb-interwork

Generate code which supports calling between the THUMB and ARM instruc-
tion sets. Without this option the two instruction sets cannot be reliably used
inside one program. The default is `-mno-thumb-interwork', since slightly
smaller code is generated with this option.

60 Using the GNU Compiler Collection

-mtpcs-frame

Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all non-leaf functions. (A leaf function is one that does not call any
other functions). The default is `-mno-apcs-frame'.

-mtpcs-leaf-frame

Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all leaf functions. (A leaf function is one that does not call any other
functions). The default is `-mno-apcs-leaf-frame'.

-mlittle-endian

Generate code for a processor running in little-endian mode. This is the default
for all standard con�gurations.

-mbig-endian

Generate code for a processor running in big-endian mode.

-mstructure-size-boundary=<n>

The size of all structures and unions will be rounded up to a multiple of the
number of bits set by this option. Permissable values are 8 and 32. The
default value varies for di�erent toolchains. For the COFF targeted toolchain
the default value is 8. Specifying the larger number can produced faster, more
eÆcient code, but can also increase the size of the program. The two values
are potentially incompatible. Code compiled with one value cannot necessarily
expect to work with code or libraries compiled with the other value, if they
exchange information using structures or unions. Programmers are encouraged
to use the 32 value as future versions of the toolchain may default to this value.

2.14.8 MN10200 Options

These `-m' options are de�ned for Matsushita MN10200 architectures:

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to
shorten branches, calls and absolute memory addresses. This option only has
an e�ect when used on the command line for the �nal link step.

This option makes symbolic debugging impossible.

2.14.9 MN10300 Options

These `-m' options are de�ned for Matsushita MN10300 architectures:

-mmult-bug

Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.

-mno-mult-bug

Do not generate code to avoid bugs in the multiply instructions for the MN10300
processors.

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to
shorten branches, calls and absolute memory addresses. This option only has
an e�ect when used on the command line for the �nal link step.

This option makes symbolic debugging impossible.

Chapter 2: GCC Command Options 61

2.14.10 M32R/D Options

These `-m' options are de�ned for Mitsubishi M32R/D architectures:

-mcode-model=small

Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction), and assume all subroutines are reach-
able with the bl instruction. This is the default.

The addressability of a particular object can be set with the model attribute.

-mcode-model=medium

Assume objects may be anywhere in the 32 bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and assume all
subroutines are reachable with the bl instruction.

-mcode-model=large

Assume objects may be anywhere in the 32 bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume subrou-
tines may not be reachable with the bl instruction (the compiler will generate
the much slower seth/add3/jl instruction sequence).

-msdata=none

Disable use of the small data area. Variables will be put into one of `.data',
`bss', or `.rodata' (unless the section attribute has been speci�ed). This is
the default.

The small data area consists of sections `.sdata' and `.sbss'. Objects may be
explicitly put in the small data area with the section attribute using one of
these sections.

-msdata=sdata

Put small global and static data in the small data area, but do not generate
special code to reference them.

-msdata=use

Put small global and static data in the small data area, and generate special
instructions to reference them.

-G num Put global and static objects less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss sections. The default
value of num is 8. The `-msdata' option must be set to one of `sdata' or `use'
for this option to have any e�ect.

All modules should be compiled with the same `-G num' value. Compiling with
di�erent values of num may or may not work; if it doesn't the linker will give
an error message - incorrect code will not be generated.

2.14.11 M88K Options

These `-m' options are de�ned for Motorola 88k architectures:

-m88000 Generate code that works well on both the m88100 and the m88110.

62 Using the GNU Compiler Collection

-m88100 Generate code that works best for the m88100, but that also runs on the
m88110.

-m88110 Generate code that works best for the m88110, and may not run on the m88100.

-mbig-pic

Obsolete option to be removed from the next revision. Use `-fPIC'.

-midentify-revision

Include an ident directive in the assembler output recording the source �le
name, compiler name and version, timestamp, and compilation ags used.

-mno-underscores

In assembler output, emit symbol names without adding an underscore charac-
ter at the beginning of each name. The default is to use an underscore as pre�x
on each name.

-mocs-debug-info

-mno-ocs-debug-info

Include (or omit) additional debugging information (about registers used in each
stack frame) as speci�ed in the 88open Object Compatibility Standard, \OCS".
This extra information allows debugging of code that has had the frame pointer
eliminated. The default for DG/UX, SVr4, and Delta 88 SVr3.2 is to include
this information; other 88k con�gurations omit this information by default.

-mocs-frame-position

When emitting COFF debugging information for automatic variables and pa-
rameters stored on the stack, use the o�set from the canonical frame address,
which is the stack pointer (register 31) on entry to the function. The DG/UX,
SVr4, Delta88 SVr3.2, and BCS con�gurations use `-mocs-frame-position';
other 88k con�gurations have the default `-mno-ocs-frame-position'.

-mno-ocs-frame-position

When emitting COFF debugging information for automatic variables and pa-
rameters stored on the stack, use the o�set from the frame pointer register
(register 30). When this option is in e�ect, the frame pointer is not eliminated
when debugging information is selected by the -g switch.

-moptimize-arg-area

-mno-optimize-arg-area

Control how function arguments are stored in stack frames. `-moptimize-arg-area'
saves space by optimizing them, but this conicts with the 88open speci�-
cations. The opposite alternative, `-mno-optimize-arg-area', agrees with
88open standards. By default GCC does not optimize the argument area.

-mshort-data-num
Generate smaller data references by making them relative to r0, which allows
loading a value using a single instruction (rather than the usual two). You con-
trol which data references are a�ected by specifying num with this option. For
example, if you specify `-mshort-data-512', then the data references a�ected
are those involving displacements of less than 512 bytes. `-mshort-data-num'
is not e�ective for num greater than 64k.

Chapter 2: GCC Command Options 63

-mserialize-volatile

-mno-serialize-volatile

Do, or don't, generate code to guarantee sequential consistency of volatile mem-
ory references. By default, consistency is guaranteed.

The order of memory references made by the MC88110 processor does not al-
ways match the order of the instructions requesting those references. In partic-
ular, a load instruction may execute before a preceding store instruction. Such
reordering violates sequential consistency of volatile memory references, when
there are multiple processors. When consistency must be guaranteed, GNU C
generates special instructions, as needed, to force execution in the proper order.

The MC88100 processor does not reorder memory references and so always pro-
vides sequential consistency. However, by default, GNU C generates the special
instructions to guarantee consistency even when you use `-m88100', so that the
code may be run on an MC88110 processor. If you intend to run your code
only on the MC88100 processor, you may use `-mno-serialize-volatile'.

The extra code generated to guarantee consistency may a�ect the performance
of your application. If you know that you can safely forgo this guarantee, you
may use `-mno-serialize-volatile'.

-msvr4

-msvr3 Turn on (`-msvr4') or o� (`-msvr3') compiler extensions related to System V
release 4 (SVr4). This controls the following:

1. Which variant of the assembler syntax to emit.

2. `-msvr4' makes the C preprocessor recognize `#pragma weak' that is used
on System V release 4.

3. `-msvr4' makes GCC issue additional declaration directives used in SVr4.

`-msvr4' is the default for the m88k-motorola-sysv4 and m88k-dg-dgux m88k
con�gurations. `-msvr3' is the default for all other m88k con�gurations.

-mversion-03.00

This option is obsolete, and is ignored.

-mno-check-zero-division

-mcheck-zero-division

Do, or don't, generate code to guarantee that integer division by zero will be
detected. By default, detection is guaranteed.

Some models of the MC88100 processor fail to trap upon integer division by
zero under certain conditions. By default, when compiling code that might be
run on such a processor, GNU C generates code that explicitly checks for zero-
valued divisors and traps with exception number 503 when one is detected. Use
of mno-check-zero-division suppresses such checking for code generated to run
on an MC88100 processor.

GNU C assumes that the MC88110 processor correctly detects all instances of
integer division by zero. When `-m88110' is speci�ed, both `-mcheck-zero-division'
and `-mno-check-zero-division' are ignored, and no explicit checks for zero-
valued divisors are generated.

64 Using the GNU Compiler Collection

-muse-div-instruction

Use the div instruction for signed integer division on the MC88100 processor.
By default, the div instruction is not used.

On the MC88100 processor the signed integer division instruction div) traps
to the operating system on a negative operand. The operating system trans-
parently completes the operation, but at a large cost in execution time. By
default, when compiling code that might be run on an MC88100 processor,
GNU C emulates signed integer division using the unsigned integer division in-
struction divu), thereby avoiding the large penalty of a trap to the operating
system. Such emulation has its own, smaller, execution cost in both time and
space. To the extent that your code's important signed integer division oper-
ations are performed on two nonnegative operands, it may be desirable to use
the div instruction directly.

On the MC88110 processor the div instruction (also known as the divs instruc-
tion) processes negative operands without trapping to the operating system.
When `-m88110' is speci�ed, `-muse-div-instruction' is ignored, and the div
instruction is used for signed integer division.

Note that the result of dividing INT MIN by -1 is unde�ned. In particular, the
behavior of such a division with and without `-muse-div-instruction' may
di�er.

-mtrap-large-shift

-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits; respectively, trap such
shifts or emit code to handle them properly. By default GCC makes no special
provision for large bit shifts.

-mwarn-passed-structs

Warn when a function passes a struct as an argument or result. Structure-
passing conventions have changed during the evolution of the C language, and
are often the source of portability problems. By default, GCC issues no such
warning.

2.14.12 IBM RS/6000 and PowerPC Options

These `-m' options are de�ned for the IBM RS/6000 and PowerPC:

Chapter 2: GCC Command Options 65

-mpower

-mno-power

-mpower2

-mno-power2

-mpowerpc

-mno-powerpc

-mpowerpc-gpopt

-mno-powerpc-gpopt

-mpowerpc-gfxopt

-mno-powerpc-gfxopt

-mpowerpc64

-mno-powerpc64

GCC supports two related instruction set architectures for the RS/6000 and
PowerPC. The POWER instruction set are those instructions supported by
the `rios' chip set used in the original RS/6000 systems and the PowerPC
instruction set is the architecture of the Motorola MPC5xx, MPC6xx, MPC8xx
microprocessors, and the IBM 4xx microprocessors.

Neither architecture is a subset of the other. However there is a large com-
mon subset of instructions supported by both. An MQ register is included in
processors supporting the POWER architecture.

You use these options to specify which instructions are available on the pro-
cessor you are using. The default value of these options is determined when
con�guring GCC. Specifying the `-mcpu=cpu type' overrides the speci�cation
of these options. We recommend you use the `-mcpu=cpu type' option rather
than the options listed above.

The `-mpower' option allows GCC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifying `-mpower2'
implies `-power' and also allows GCC to generate instructions that are present
in the POWER2 architecture but not the original POWER architecture.

The `-mpowerpc' option allows GCC to generate instructions that are found only
in the 32-bit subset of the PowerPC architecture. Specifying `-mpowerpc-gpopt'
implies `-mpowerpc' and also allows GCC to use the optional PowerPC architec-
ture instructions in the General Purpose group, including oating-point square
root. Specifying `-mpowerpc-gfxopt' implies `-mpowerpc' and also allows GCC
to use the optional PowerPC architecture instructions in the Graphics group,
including oating-point select.

The `-mpowerpc64' option allows GCC to generate the additional 64-bit instruc-
tions that are found in the full PowerPC64 architecture and to treat GPRs as
64-bit, doubleword quantities. GCC defaults to `-mno-powerpc64'.

If you specify both `-mno-power' and `-mno-powerpc', GCC will use only the
instructions in the common subset of both architectures plus some special
AIX common-mode calls, and will not use the MQ register. Specifying both
`-mpower' and `-mpowerpc' permits GCC to use any instruction from either
architecture and to allow use of the MQ register; specify this for the Motorola
MPC601.

66 Using the GNU Compiler Collection

-mnew-mnemonics

-mold-mnemonics

Select which mnemonics to use in the generated assembler code. `-mnew-mnemonics'
requests output that uses the assembler mnemonics de�ned for the PowerPC ar-
chitecture, while `-mold-mnemonics' requests the assembler mnemonics de�ned
for the POWER architecture. Instructions de�ned in only one architecture have
only one mnemonic; GCC uses that mnemonic irrespective of which of these
options is speci�ed.

GCC defaults to the mnemonics appropriate for the architecture in use. Spec-
ifying `-mcpu=cpu type' sometimes overrides the value of these option. Un-
less you are building a cross-compiler, you should normally not specify either
`-mnew-mnemonics' or `-mold-mnemonics', but should instead accept the de-
fault.

-mcpu=cpu type
Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cpu type. Supported values for
cpu type are `rs6000', `rios1', `rios2', `rsc', `601', `602', `603', `603e',
`604', `604e', `620', `740', `750', `power', `power2', `powerpc', `403', `505',
`801', `821', `823', and `860' and `common'. `-mcpu=power', `-mcpu=power2',
and `-mcpu=powerpc' specify generic POWER, POWER2 and pure PowerPC
(i.e., not MPC601) architecture machine types, with an appropriate, generic
processor model assumed for scheduling purposes.

Specifying any of the following options: `-mcpu=rios1', `-mcpu=rios2', `-mcpu=rsc',
`-mcpu=power', or `-mcpu=power2' enables the `-mpower' option and dis-
ables the `-mpowerpc' option; `-mcpu=601' enables both the `-mpower' and
`-mpowerpc' options. All of `-mcpu=602', `-mcpu=603', `-mcpu=603e', `-mcpu=604',
`-mcpu=620', enable the `-mpowerpc' option and disable the `-mpower' option.
Exactly similarly, all of `-mcpu=403', `-mcpu=505', `-mcpu=821', `-mcpu=860'
and `-mcpu=powerpc' enable the `-mpowerpc' option and disable the `-mpower'
option. `-mcpu=common' disables both the `-mpower' and `-mpowerpc' options.

AIX versions 4 or greater selects `-mcpu=common' by default, so that code will
operate on all members of the RS/6000 and PowerPC families. In that case,
GCC will use only the instructions in the common subset of both architectures
plus some special AIX common-mode calls, and will not use the MQ register.
GCC assumes a generic processor model for scheduling purposes.

Specifying any of the options `-mcpu=rios1', `-mcpu=rios2', `-mcpu=rsc',
`-mcpu=power', or `-mcpu=power2' also disables the `new-mnemonics' option.
Specifying `-mcpu=601', `-mcpu=602', `-mcpu=603', `-mcpu=603e', `-mcpu=604',
`620', `403', or `-mcpu=powerpc' also enables the `new-mnemonics' option.

Specifying `-mcpu=403', `-mcpu=821', or `-mcpu=860' also enables the `-msoft-float'
option.

-mtune=cpu type
Set the instruction scheduling parameters for machine type cpu type, but
do not set the architecture type, register usage, choice of mnemonics like
`-mcpu='cpu type would. The same values for cpu type are used for `-mtune='cpu type

Chapter 2: GCC Command Options 67

as for `-mcpu='cpu type. The `-mtune='cpu type option overrides the `-mcpu='cpu type
option in terms of instruction scheduling parameters.

-mfull-toc

-mno-fp-in-toc

-mno-sum-in-toc

-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created for every
executable �le. The `-mfull-toc' option is selected by default. In that case,
GCC will allocate at least one TOC entry for each unique non-automatic vari-
able reference in your program. GCC will also place oating-point constants in
the TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overowed the avail-
able TOC space, you can reduce the amount of TOC space used with the
`-mno-fp-in-toc' and `-mno-sum-in-toc' options. `-mno-fp-in-toc' prevents
GCC from putting oating-point constants in the TOC and `-mno-sum-in-toc'
forces GCC to generate code to calculate the sum of an address and a constant
at run-time instead of putting that sum into the TOC. You may specify one or
both of these options. Each causes GCC to produce very slightly slower and
larger code at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these
options, specify `-mminimal-toc' instead. This option causes GCC to make
only one TOC entry for every �le. When you specify this option, GCC will
produce code that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on �les that contain less frequently
executed code.

-maix64

-maix32 Enable AIX 64-bit ABI and calling convention: 64-bit pointers, 64-bit long

type, and the infrastructure needed to support them. Specifying `-maix64'
implies `-mpowerpc64' and `-mpowerpc', while `-maix32' disables the 64-bit
ABI and implies `-mno-powerpc64'. GCC defaults to `-maix32'.

-mxl-call

-mno-xl-call

On AIX, pass oating-point arguments to prototyped functions beyond the reg-
ister save area (RSA) on the stack in addition to argument FPRs. The AIX
calling convention was extended but not initially documented to handle an ob-
scure K&R C case of calling a function that takes the address of its arguments
with fewer arguments than declared. AIX XL compilers access oating point
arguments which do not �t in the RSA from the stack when a subroutine is com-
piled without optimization. Because always storing oating-point arguments on
the stack is ineÆcient and rarely needed, this option is not enabled by default
and only is necessary when calling subroutines compiled by AIX XL compilers
without optimization.

-mthreads

Support AIX Threads. Link an application written to use pthreads with special
libraries and startup code to enable the application to run.

68 Using the GNU Compiler Collection

-mpe Support IBM RS/6000 SP Parallel Environment (PE). Link an application
written to use message passing with special startup code to enable the ap-
plication to run. The system must have PE installed in the standard loca-
tion (`/usr/lpp/ppe.poe/'), or the `specs' �le must be overridden with the
`-specs=' option to specify the appropriate directory location. The Parallel En-
vironment does not support threads, so the `-mpe' option and the `-mthreads'
option are incompatible.

-msoft-float

-mhard-float

Generate code that does not use (uses) the oating-point register set. Software
oating point emulation is provided if you use the `-msoft-float' option, and
pass the option to GCC when linking.

-mmultiple

-mno-multiple

Generate code that uses (does not use) the load multiple word instructions
and the store multiple word instructions. These instructions are generated by
default on POWER systems, and not generated on PowerPC systems. Do not
use `-mmultiple' on little endian PowerPC systems, since those instructions
do not work when the processor is in little endian mode. The exceptions are
PPC740 and PPC750 which permit the instructions usage in little endian mode.

-mstring

-mno-string

Generate code that uses (does not use) the load string instructions and the
store string word instructions to save multiple registers and do small block
moves. These instructions are generated by default on POWER systems, and
not generated on PowerPC systems. Do not use `-mstring' on little endian
PowerPC systems, since those instructions do not work when the processor is
in little endian mode. The exceptions are PPC740 and PPC750 which permit
the instructions usage in little endian mode.

-mupdate

-mno-update

Generate code that uses (does not use) the load or store instructions that update
the base register to the address of the calculated memory location. These
instructions are generated by default. If you use `-mno-update', there is a small
window between the time that the stack pointer is updated and the address of
the previous frame is stored, which means code that walks the stack frame
across interrupts or signals may get corrupted data.

-mfused-madd

-mno-fused-madd

Generate code that uses (does not use) the oating point multiply and accu-
mulate instructions. These instructions are generated by default if hardware
oating is used.

Chapter 2: GCC Command Options 69

-mno-bit-align

-mbit-align

On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit �elds to be aligned to the base type of the bit �eld.

For example, by default a structure containing nothing but 8 unsigned bit�elds
of length 1 would be aligned to a 4 byte boundary and have a size of 4 bytes. By
using `-mno-bit-align', the structure would be aligned to a 1 byte boundary
and be one byte in size.

-mno-strict-align

-mstrict-align

On System V.4 and embedded PowerPC systems do not (do) assume that un-
aligned memory references will be handled by the system.

-mrelocatable

-mno-relocatable

On embedded PowerPC systems generate code that allows (does not allow)
the program to be relocated to a di�erent address at runtime. If you use
`-mrelocatable' on any module, all objects linked together must be compiled
with `-mrelocatable' or `-mrelocatable-lib'.

-mrelocatable-lib

-mno-relocatable-lib

On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a di�erent address at runtime. Modules compiled
with `-mrelocatable-lib' can be linked with either modules compiled without
`-mrelocatable' and `-mrelocatable-lib' or with modules compiled with the
`-mrelocatable' options.

-mno-toc

-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that reg-
ister 2 contains a pointer to a global area pointing to the addresses used in the
program.

-mlittle

-mlittle-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in little endian mode. The `-mlittle-endian' option is the same as `-mlittle'.

-mbig

-mbig-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in big endian mode. The `-mbig-endian' option is the same as `-mbig'.

-mcall-sysv

On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless
you con�gured GCC using `powerpc-*-eabiaix'.

-mcall-sysv-eabi

Specify both `-mcall-sysv' and `-meabi' options.

70 Using the GNU Compiler Collection

-mcall-sysv-noeabi

Specify both `-mcall-sysv' and `-mno-eabi' options.

-mcall-aix

On System V.4 and embedded PowerPC systems compile code using calling
conventions that are similar to those used on AIX. This is the default if you
con�gured GCC using `powerpc-*-eabiaix'.

-mcall-solaris

On System V.4 and embedded PowerPC systems compile code for the Solaris
operating system.

-mcall-linux

On System V.4 and embedded PowerPC systems compile code for the Linux-
based GNU system.

-mprototype

-mno-prototype

On System V.4 and embedded PowerPC systems assume that all calls to vari-
able argument functions are properly prototyped. Otherwise, the compiler must
insert an instruction before every non prototyped call to set or clear bit 6
of the condition code register (CR) to indicate whether oating point values
were passed in the oating point registers in case the function takes a variable
arguments. With `-mprototype', only calls to prototyped variable argument
functions will set or clear the bit.

-msim On embedded PowerPC systems, assume that the startup module is called
`sim-crt0.o' and that the standard C libraries are `libsim.a' and `libc.a'.
This is the default for `powerpc-*-eabisim'. con�gurations.

-mmvme On embedded PowerPC systems, assume that the startup module is called
`crt0.o' and the standard C libraries are `libmvme.a' and `libc.a'.

-mads On embedded PowerPC systems, assume that the startup module is called
`crt0.o' and the standard C libraries are `libads.a' and `libc.a'.

-myellowknife

On embedded PowerPC systems, assume that the startup module is called
`crt0.o' and the standard C libraries are `libyk.a' and `libc.a'.

-memb On embedded PowerPC systems, set the PPC EMB bit in the ELF ags header
to indicate that `eabi' extended relocations are used.

-meabi

-mno-eabi

On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (eabi) which is a set of modi�cations
to the System V.4 speci�cations. Selecting -meabi means that the stack is
aligned to an 8 byte boundary, a function __eabi is called to from main to set
up the eabi environment, and the `-msdata' option can use both r2 and r13

to point to two separate small data areas. Selecting -mno-eabi means that the
stack is aligned to a 16 byte boundary, do not call an initialization function

Chapter 2: GCC Command Options 71

from main, and the `-msdata' option will only use r13 to point to a single small
data area. The `-meabi' option is on by default if you con�gured GCC using
one of the `powerpc*-*-eabi*' options.

-msdata=eabi

On System V.4 and embedded PowerPC systems, put small initialized const

global and static data in the `.sdata2' section, which is pointed to by register
r2. Put small initialized non-const global and static data in the `.sdata'
section, which is pointed to by register r13. Put small uninitialized global and
static data in the `.sbss' section, which is adjacent to the `.sdata' section.
The `-msdata=eabi' option is incompatible with the `-mrelocatable' option.
The `-msdata=eabi' option also sets the `-memb' option.

-msdata=sysv

On System V.4 and embedded PowerPC systems, put small global and static
data in the `.sdata' section, which is pointed to by register r13. Put small
uninitialized global and static data in the `.sbss' section, which is adjacent
to the `.sdata' section. The `-msdata=sysv' option is incompatible with the
`-mrelocatable' option.

-msdata=default

-msdata On System V.4 and embedded PowerPC systems, if `-meabi' is used, com-
pile code the same as `-msdata=eabi', otherwise compile code the same as
`-msdata=sysv'.

-msdata-data

On System V.4 and embedded PowerPC systems, put small global and static
data in the `.sdata' section. Put small uninitialized global and static data in
the `.sbss' section. Do not use register r13 to address small data however.
This is the default behavior unless other `-msdata' options are used.

-msdata=none

-mno-sdata

On embedded PowerPC systems, put all initialized global and static data in
the `.data' section, and all uninitialized data in the `.bss' section.

-G num On embedded PowerPC systems, put global and static items less than or equal
to num bytes into the small data or bss sections instead of the normal data or
bss section. By default, num is 8. The `-G num' switch is also passed to the
linker. All modules should be compiled with the same `-G num' value.

-mregnames

-mno-regnames

On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.

2.14.13 IBM RT Options

These `-m' options are de�ned for the IBM RT PC:

-min-line-mul

Use an in-line code sequence for integer multiplies. This is the default.

72 Using the GNU Compiler Collection

-mcall-lib-mul

Call lmul$$ for integer multiples.

-mfull-fp-blocks

Generate full-size oating point data blocks, including the minimum amount of
scratch space recommended by IBM. This is the default.

-mminimum-fp-blocks

Do not include extra scratch space in oating point data blocks. This results
in smaller code, but slower execution, since scratch space must be allocated
dynamically.

-mfp-arg-in-fpregs

Use a calling sequence incompatible with the IBM calling convention in which
oating point arguments are passed in oating point registers. Note that
varargs.h and stdargs.h will not work with oating point operands if this
option is speci�ed.

-mfp-arg-in-gregs

Use the normal calling convention for oating point arguments. This is the
default.

-mhc-struct-return

Return structures of more than one word in memory, rather than in a register.
This provides compatibility with the MetaWare HighC (hc) compiler. Use the
option `-fpcc-struct-return' for compatibility with the Portable C Compiler
(pcc).

-mnohc-struct-return

Return some structures of more than one word in registers, when convenient.
This is the default. For compatibility with the IBM-supplied compilers, use the
option `-fpcc-struct-return' or the option `-mhc-struct-return'.

2.14.14 MIPS Options

These `-m' options are de�ned for the MIPS family of computers:

-mcpu=cpu type
Assume the defaults for the machine type cpu type when scheduling instruc-
tions. The choices for cpu type are `r2000', `r3000', `r3900', `r4000', `r4100',
`r4300', `r4400', `r4600', `r4650', `r5000', `r6000', `r8000', and `orion'. Addi-
tionally, the `r2000', `r3000', `r4000', `r5000', and `r6000' can be abbreviated
as `r2k' (or `r2K'), `r3k', etc. While picking a speci�c cpu type will schedule
things appropriately for that particular chip, the compiler will not generate any
code that does not meet level 1 of the MIPS ISA (instruction set architecture)
without a `-mipsX' or `-mabi' switch being used.

-mips1 Issue instructions from level 1 of the MIPS ISA. This is the default. `r3000' is
the default cpu type at this ISA level.

-mips2 Issue instructions from level 2 of the MIPS ISA (branch likely, square root
instructions). `r6000' is the default cpu type at this ISA level.

Chapter 2: GCC Command Options 73

-mips3 Issue instructions from level 3 of the MIPS ISA (64 bit instructions). `r4000'
is the default cpu type at this ISA level.

-mips4 Issue instructions from level 4 of the MIPS ISA (conditional move, prefetch,
enhanced FPU instructions). `r8000' is the default cpu type at this ISA level.

-mfp32 Assume that 32 32-bit oating point registers are available. This is the default.

-mfp64 Assume that 32 64-bit oating point registers are available. This is the default
when the `-mips3' option is used.

-mgp32 Assume that 32 32-bit general purpose registers are available. This is the de-
fault.

-mgp64 Assume that 32 64-bit general purpose registers are available. This is the default
when the `-mips3' option is used.

-mint64 Force int and long types to be 64 bits wide. See `-mlong32' for an explanation
of the default, and the width of pointers.

-mlong64 Force long types to be 64 bits wide. See `-mlong32' for an explanation of the
default, and the width of pointers.

-mlong32 Force long, int, and pointer types to be 32 bits wide.

If none of `-mlong32', `-mlong64', or `-mint64' are set, the size of ints, longs,
and pointers depends on the ABI and ISA choosen. For `-mabi=32', and
`-mabi=n32', ints and longs are 32 bits wide. For `-mabi=64', ints are 32 bits,
and longs are 64 bits wide. For `-mabi=eabi' and either `-mips1' or `-mips2',
ints and longs are 32 bits wide. For `-mabi=eabi' and higher ISAs, ints are
32 bits, and longs are 64 bits wide. The width of pointer types is the smaller
of the width of longs or the width of general purpose registers (which in turn
depends on the ISA).

-mabi=32

-mabi=o64

-mabi=n32

-mabi=64

-mabi=eabi

Generate code for the indicated ABI. The default instruction level is `-mips1'
for `32', `-mips3' for `n32', and `-mips4' otherwise. Conversely, with `-mips1'
or `-mips2', the default ABI is `32'; otherwise, the default ABI is `64'.

-mmips-as

Generate code for the MIPS assembler, and invoke `mips-tfile' to add nor-
mal debug information. This is the default for all platforms except for the
OSF/1 reference platform, using the OSF/rose object format. If the either of
the `-gstabs' or `-gstabs+' switches are used, the `mips-tfile' program will
encapsulate the stabs within MIPS ECOFF.

-mgas Generate code for the GNU assembler. This is the default on the OSF/1 ref-
erence platform, using the OSF/rose object format. Also, this is the default if
the con�gure option `--with-gnu-as' is used.

74 Using the GNU Compiler Collection

-msplit-addresses

-mno-split-addresses

Generate code to load the high and low parts of address constants separately.
This allows gcc to optimize away redundant loads of the high order bits of
addresses. This optimization requires GNU as and GNU ld. This optimization
is enabled by default for some embedded targets where GNU as and GNU ld
are standard.

-mrnames

-mno-rnames

The `-mrnames' switch says to output code using the MIPS software names for
the registers, instead of the hardware names (ie, a0 instead of $4). The only
known assembler that supports this option is the Algorithmics assembler.

-mgpopt

-mno-gpopt

The `-mgpopt' switch says to write all of the data declarations before the in-
structions in the text section, this allows the MIPS assembler to generate one
word memory references instead of using two words for short global or static
data items. This is on by default if optimization is selected.

-mstats

-mno-stats

For each non-inline function processed, the `-mstats' switch causes the compiler
to emit one line to the standard error �le to print statistics about the program
(number of registers saved, stack size, etc.).

-mmemcpy

-mno-memcpy

The `-mmemcpy' switch makes all block moves call the appropriate string func-
tion (`memcpy' or `bcopy') instead of possibly generating inline code.

-mmips-tfile

-mno-mips-tfile

The `-mno-mips-tfile' switch causes the compiler not postprocess the object
�le with the `mips-tfile' program, after the MIPS assembler has generated it
to add debug support. If `mips-tfile' is not run, then no local variables will be
available to the debugger. In addition, `stage2' and `stage3' objects will have
the temporary �le names passed to the assembler embedded in the object �le,
which means the objects will not compare the same. The `-mno-mips-tfile'
switch should only be used when there are bugs in the `mips-tfile' program
that prevents compilation.

-msoft-float

Generate output containing library calls for oating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine's
usual C compiler are used, but this can't be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

Chapter 2: GCC Command Options 75

-mhard-float

Generate output containing oating point instructions. This is the default if
you use the unmodi�ed sources.

-mabicalls

-mno-abicalls

Emit (or do not emit) the pseudo operations `.abicalls', `.cpload', and
`.cprestore' that some System V.4 ports use for position independent code.

-mlong-calls

-mno-long-calls

Do all calls with the `JALR' instruction, which requires loading up a function's
address into a register before the call. You need to use this switch, if you call
outside of the current 512 megabyte segment to functions that are not through
pointers.

-mhalf-pic

-mno-half-pic

Put pointers to extern references into the data section and load them up, rather
than put the references in the text section.

-membedded-pic

-mno-embedded-pic

Generate PIC code suitable for some embedded systems. All calls are made
using PC relative address, and all data is addressed using the $gp register. No
more than 65536 bytes of global data may be used. This requires GNU as and
GNU ld which do most of the work. This currently only works on targets which
use ECOFF; it does not work with ELF.

-membedded-data

-mno-embedded-data

Allocate variables to the read-only data section �rst if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing,
and thus may be preferred for some embedded systems.

-msingle-float

-mdouble-float

The `-msingle-float' switch tells gcc to assume that the oating point copro-
cessor only supports single precision operations, as on the `r4650' chip. The
`-mdouble-float' switch permits gcc to use double precision operations. This
is the default.

-mmad

-mno-mad Permit use of the `mad', `madu' and `mul' instructions, as on the `r4650' chip.

-m4650 Turns on `-msingle-float', `-mmad', and, at least for now, `-mcpu=r4650'.

-mips16

-mno-mips16

Enable 16-bit instructions.

-mentry Use the entry and exit pseudo ops. This option can only be used with `-mips16'.

76 Using the GNU Compiler Collection

-EL Compile code for the processor in little endian mode. The requisite libraries
are assumed to exist.

-EB Compile code for the processor in big endian mode. The requisite libraries are
assumed to exist.

-G num Put global and static items less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss section. This allows the
assembler to emit one word memory reference instructions based on the global
pointer (gp or $28), instead of the normal two words used. By default, num is
8 when the MIPS assembler is used, and 0 when the GNU assembler is used.
The `-G num' switch is also passed to the assembler and linker. All modules
should be compiled with the same `-G num' value.

-nocpp Tell the MIPS assembler to not run its preprocessor over user assembler �les
(with a `.s' suÆx) when assembling them.

2.14.15 Intel 386 Options

These `-m' options are de�ned for the i386 family of computers:

-mcpu=cpu type
Assume the defaults for the machine type cpu type when scheduling instruc-
tions. The choices for cpu type are:

`i386' `i486' `i586' `i686'
`pentium' `pentiumpro' `k6'

While picking a speci�c cpu type will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not run on
the i386 without the `-march=cpu type' option being used. `i586' is equivalent
to `pentium' and `i686' is equivalent to `pentiumpro'. `k6' is the AMD chip as
opposed to the Intel ones.

-march=cpu type
Generate instructions for the machine type cpu type. The choices for cpu type
are the same as for `-mcpu'. Moreover, specifying `-march=cpu type' implies
`-mcpu=cpu type'.

-m386

-m486

-mpentium

-mpentiumpro

Synonyms for -mcpu=i386, -mcpu=i486, -mcpu=pentium, and -mcpu=pentiumpro
respectively. These synonyms are deprecated.

-mieee-fp

-mno-ieee-fp

Control whether or not the compiler uses IEEE oating point comparisons.
These handle correctly the case where the result of a comparison is unordered.

-msoft-float

Generate output containing library calls for oating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine's

Chapter 2: GCC Command Options 77

usual C compiler are used, but this can't be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

On machines where a function returns oating point results in the 80387 register
stack, some oating point opcodes may be emitted even if `-msoft-float' is
used.

-mno-fp-ret-in-387

Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and
double in an FPU register, even if there is no FPU. The idea is that the
operating system should emulate an FPU.

The option `-mno-fp-ret-in-387' causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387

Some 387 emulators do not support the sin, cos and sqrt instructions for
the 387. Specify this option to avoid generating those instructions. This op-
tion is the default on FreeBSD. As of revision 2.6.1, these instructions are not
generated unless you also use the `-ffast-math' switch.

-malign-double

-mno-align-double

Control whether GCC aligns double, long double, and long long variables on
a two word boundary or a one word boundary. Aligning double variables on a
two word boundary will produce code that runs somewhat faster on a `Pentium'
at the expense of more memory.

Warning: if you use the `-malign-double' switch, structures containing the
above types will be aligned di�erently than the published application binary
interface speci�cations for the 386.

-msvr3-shlib

-mno-svr3-shlib

Control whether GCC places uninitialized locals into bss or data. `-msvr3-shlib'
places these locals into bss. These options are meaningful only on System V
Release 3.

-mno-wide-multiply

-mwide-multiply

Control whether GCC uses the mul and imul that produce 64 bit results in
eax:edx from 32 bit operands to do long long multiplies and 32-bit division
by constants.

-mrtd Use a di�erent function-calling convention, in which functions that take a �xed
number of arguments return with the ret num instruction, which pops their
arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.

You can specify that an individual function is called with this calling sequence
with the function attribute `stdcall'. You can also override the `-mrtd' option

78 Using the GNU Compiler Collection

by using the function attribute `cdecl'. See Section 4.23 [Function Attributes],
page 151.

Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

-mreg-alloc=regs
Control the default allocation order of integer registers. The string regs is a
series of letters specifying a register. The supported letters are: a allocate EAX;
b allocate EBX; c allocate ECX; d allocate EDX; S allocate ESI; D allocate EDI;
B allocate EBP.

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a speci�c function by using the function attribute
`regparm'. See Section 4.23 [Function Attributes], page 151.

Warning: if you use this switch, and num is nonzero, then you must build all
modules with the same value, including any libraries. This includes the system
libraries and startup modules.

-malign-loops=num
Align loops to a 2 raised to a num byte boundary. If `-malign-loops' is not
speci�ed, the default is 2 unless gas 2.8 (or later) is being used in which case
the default is to align the loop on a 16 byte boundary if it is less than 8 bytes
away.

-malign-jumps=num
Align instructions that are only jumped to to a 2 raised to a num byte boundary.
If `-malign-jumps' is not speci�ed, the default is 2 if optimizing for a 386, and
4 if optimizing for a 486 unless gas 2.8 (or later) is being used in which case
the default is to align the instruction on a 16 byte boundary if it is less than 8
bytes away.

-malign-functions=num
Align the start of functions to a 2 raised to num byte boundary. If `-malign-functions'
is not speci�ed, the default is 2 if optimizing for a 386, and 4 if optimizing for
a 486.

-mpreferred-stack-boundary=num
Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.
If `-mpreferred-stack-boundary' is not speci�ed, the default is 4 (16 bytes or
128 bits).

The stack is required to be aligned on a 4 byte boundary. On Pentium and
PentiumPro, double and long double values should be aligned to an 8 byte

Chapter 2: GCC Command Options 79

boundary (see `-malign-double') or su�er signi�cant run time performance
penalties. On Pentium III, the Streaming SIMD Extention (SSE) data type
__m128 su�ers similar penalties if it is not 16 byte aligned.

To ensure proper alignment of this values on the stack, the stack boundary must
be as aligned as that required by any value stored on the stack. Further, every
function must be generated such that it keeps the stack aligned. Thus calling
a function compiled with a higher preferred stack boundary from a function
compiled with a lower preferred stack boundary will most likely misalign the
stack. It is recommended that libraries that use callbacks always use the default
setting.

This extra alignment does consume extra stack space. Code that is sensitive to
stack space usage, such as embedded systems and operating system kernels, may
want to reduce the preferred alignment to `-mpreferred-stack-boundary=2'.

2.14.16 HPPA Options

These `-m' options are de�ned for the HPPA family of computers:

-march=architecture type
Generate code for the speci�ed architecture. The choices for architecture type
are `1.0' for PA 1.0, `1.1' for PA 1.1, and `2.0' for PA 2.0 processors. Refer
to `/usr/lib/sched.models' on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered ar-
chitectures will run on higher numbered architectures, but not the other way
around.

PA 2.0 support currently requires gas snapshot 19990413 or later. The next
release of binutils (current is 2.9.1) will probably contain PA 2.0 support.

-mpa-risc-1-0

-mpa-risc-1-1

-mpa-risc-2-0

Synonyms for -march=1.0, -march=1.1, and -march=2.0 respectively.

-mbig-switch

Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mjump-in-delay

Fill delay slots of function calls with unconditional jump instructions by modi-
fying the return pointer for the function call to be the target of the conditional
jump.

-mdisable-fpregs

Prevent oating point registers from being used in any manner. This is nec-
essary for compiling kernels which perform lazy context switching of oating
point registers. If you use this option and attempt to perform oating point
operations, the compiler will abort.

-mdisable-indexing

Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

80 Using the GNU Compiler Collection

-mno-space-regs

Generate code that assumes the target has no space registers. This allows GCC
to generate faster indirect calls and use unscaled index address modes.

Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls

Generate code that assumes calls never cross space boundaries. This allows
GCC to emit code which performs faster indirect calls.

This option will not work in the presense of shared libraries or nested functions.

-mspace Optimize for space rather than execution time. Currently this only enables out
of line function prologues and epilogues. This option is incompatible with PIC
code generation and pro�ling.

-mlong-load-store

Generate 3-instruction load and store sequences as sometimes required by the
HP-UX 10 linker. This is equivalent to the `+k' option to the HP compilers.

-mportable-runtime

Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu type
Schedule code according to the constraints for the machine type cpu type.
The choices for cpu type are `700' `7100', `7100LC', `7200', and `8000'. Refer
to `/usr/lib/sched.models' on an HP-UX system to determine the proper
scheduling option for your machine.

-mlinker-opt

Enable the optimization pass in the HPUX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HPUX 8 and HPUX 9 linkers
in which they give bogus error messages when linking some programs.

-msoft-float

Generate output containing library calls for oating point. Warning: the req-
uisite libraries are not available for all HPPA targets. Normally the facilities of
the machine's usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded target `hppa1.1-*-pro'
does provide software oating point support.

`-msoft-float' changes the calling convention in the output �le; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile `libgcc.a', the library that comes with GCC, with
`-msoft-float' in order for this to work.

2.14.17 Intel 960 Options

These `-m' options are de�ned for the Intel 960 implementations:

Chapter 2: GCC Command Options 81

-mcpu type
Assume the defaults for the machine type cpu type for some of the other options,
including instruction scheduling, oating point support, and addressing modes.
The choices for cpu type are `ka', `kb', `mc', `ca', `cf', `sa', and `sb'. The
default is `kb'.

-mnumerics

-msoft-float

The `-mnumerics' option indicates that the processor does support oating-
point instructions. The `-msoft-float' option indicates that oating-point
support should not be assumed.

-mleaf-procedures

-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable with the bal

instruction as well as call. This will result in more eÆcient code for explicit
calls when the bal instruction can be substituted by the assembler or linker,
but less eÆcient code in other cases, such as calls via function pointers, or using
a linker that doesn't support this optimization.

-mtail-call

-mno-tail-call

Do (or do not) make additional attempts (beyond those of the machine-
independent portions of the compiler) to optimize tail-recursive calls into
branches. You may not want to do this because the detection of cases where
this is not valid is not totally complete. The default is `-mno-tail-call'.

-mcomplex-addr

-mno-complex-addr

Assume (or do not assume) that the use of a complex addressing mode is a win
on this implementation of the i960. Complex addressing modes may not be
worthwhile on the K-series, but they de�nitely are on the C-series. The default
is currently `-mcomplex-addr' for all processors except the CB and CC.

-mcode-align

-mno-code-align

Align code to 8-byte boundaries for faster fetching (or don't bother). Currently
turned on by default for C-series implementations only.

-mic-compat

-mic2.0-compat

-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat

-mintel-asm

Enable compatibility with the iC960 assembler.

-mstrict-align

-mno-strict-align

Do not permit (do permit) unaligned accesses.

82 Using the GNU Compiler Collection

-mold-align

Enable structure-alignment compatibility with Intel's gcc release version 1.3
(based on gcc 1.37). This option implies `-mstrict-align'.

-mlong-double-64

Implement type `long double' as 64-bit oating point numbers. Without the
option `long double' is implemented by 80-bit oating point numbers. The
only reason we have it because there is no 128-bit `long double' support in
`fp-bit.c' yet. So it is only useful for people using soft-oat targets. Otherwise,
we should recommend against use of it.

2.14.18 DEC Alpha Options

These `-m' options are de�ned for the DEC Alpha implementations:

-mno-soft-float

-msoft-float

Use (do not use) the hardware oating-point instructions for oating-point op-
erations. When -msoft-float is speci�ed, functions in `libgcc1.c' will be
used to perform oating-point operations. Unless they are replaced by routines
that emulate the oating-point operations, or compiled in such a way as to call
such emulations routines, these routines will issue oating-point operations. If
you are compiling for an Alpha without oating-point operations, you must
ensure that the library is built so as not to call them.

Note that Alpha implementations without oating-point operations are required
to have oating-point registers.

-mfp-reg

-mno-fp-regs

Generate code that uses (does not use) the oating-point register set. -mno-

fp-regs implies -msoft-float. If the oating-point register set is not used,
oating point operands are passed in integer registers as if they were integers
and oating-point results are passed in $0 instead of $f0. This is a non-standard
calling sequence, so any function with a oating-point argument or return value
called by code compiled with -mno-fp-regs must also be compiled with that
option.

A typical use of this option is building a kernel that does not use, and hence
need not save and restore, any oating-point registers.

-mieee The Alpha architecture implements oating-point hardware optimized for max-
imum performance. It is mostly compliant with the IEEE oating point stan-
dard. However, for full compliance, software assistance is required. This option
generates code fully IEEE compliant code except that the inexact ag is not
maintained (see below). If this option is turned on, the CPP macro _IEEE_

FP is de�ned during compilation. The option is a shorthand for: `-D_IEEE_FP
-mfp-trap-mode=su -mtrap-precision=i -mieee-conformant'. The result-
ing code is less eÆcient but is able to correctly support denormalized numbers
and exceptional IEEE values such as not-a-number and plus/minus in�nity.
Other Alpha compilers call this option -ieee_with_no_inexact.

Chapter 2: GCC Command Options 83

-mieee-with-inexact

This is like `-mieee' except the generated code also maintains the IEEE in-
exact ag. Turning on this option causes the generated code to implement
fully-compliant IEEE math. The option is a shorthand for `-D_IEEE_FP
-D_IEEE_FP_INEXACT' plus the three following: `-mieee-conformant', `-mfp-trap-mode=sui',
and `-mtrap-precision=i'. On some Alpha implementations the resulting
code may execute signi�cantly slower than the code generated by default.
Since there is very little code that depends on the inexact ag, you should
normally not specify this option. Other Alpha compilers call this option
`-ieee_with_inexact'.

-mfp-trap-mode=trap mode
This option controls what oating-point related traps are enabled. Other Alpha
compilers call this option `-fptm 'trap mode. The trap mode can be set to one
of four values:

`n' This is the default (normal) setting. The only traps that are en-
abled are the ones that cannot be disabled in software (e.g., division
by zero trap).

`u' In addition to the traps enabled by `n', underow traps are enabled
as well.

`su' Like `su', but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).

`sui' Like `su', but inexact traps are enabled as well.

-mfp-rounding-mode=rounding mode
Selects the IEEE rounding mode. Other Alpha compilers call this option `-fprm
'rounding mode. The rounding mode can be one of:

`n' Normal IEEE rounding mode. Floating point numbers are rounded
towards the nearest machine number or towards the even machine
number in case of a tie.

`m' Round towards minus in�nity.

`c' Chopped rounding mode. Floating point numbers are rounded to-
wards zero.

`d' Dynamic rounding mode. A �eld in the oating point control reg-
ister (fpcr, see Alpha architecture reference manual) controls the
rounding mode in e�ect. The C library initializes this register for
rounding towards plus in�nity. Thus, unless your program modi�es
the fpcr, `d' corresponds to round towards plus in�nity.

-mtrap-precision=trap precision
In the Alpha architecture, oating point traps are imprecise. This means with-
out software assistance it is impossible to recover from a oating trap and
program execution normally needs to be terminated. GCC can generate code
that can assist operating system trap handlers in determining the exact loca-
tion that caused a oating point trap. Depending on the requirements of an
application, di�erent levels of precisions can be selected:

84 Using the GNU Compiler Collection

`p' Program precision. This option is the default and means a trap
handler can only identify which program caused a oating point
exception.

`f' Function precision. The trap handler can determine the function
that caused a oating point exception.

`i' Instruction precision. The trap handler can determine the exact
instruction that caused a oating point exception.

Other Alpha compilers provide the equivalent options called `-scope_safe' and
`-resumption_safe'.

-mieee-conformant

This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify `-mtrap-precision=i' and either
`-mfp-trap-mode=su' or `-mfp-trap-mode=sui'. Its only e�ect is to emit
the line `.eflag 48' in the function prologue of the generated assembly �le.
Under DEC Unix, this has the e�ect that IEEE-conformant math library
routines will be linked in.

-mbuild-constants

Normally GCC examines a 32- or 64-bit integer constant to see if it can construct
it from smaller constants in two or three instructions. If it cannot, it will output
the constant as a literal and generate code to load it from the data segment at
runtime.

Use this option to require GCC to construct all integer constants using code,
even if it takes more instructions (the maximum is six).

You would typically use this option to build a shared library dynamic loader.
Itself a shared library, it must relocate itself in memory before it can �nd the
variables and constants in its own data segment.

-malpha-as

-mgas Select whether to generate code to be assembled by the vendor-supplied assem-
bler (`-malpha-as') or by the GNU assembler `-mgas'.

-mbwx

-mno-bwx

-mcix

-mno-cix

-mmax

-mno-max Indicate whether GCC should generate code to use the optional BWX, CIX,
and MAX instruction sets. The default is to use the instruction sets supported
by the CPU type speci�ed via `-mcpu=' option or that of the CPU on which
GCC was built if none was speci�ed.

-mcpu=cpu type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. You can specify either the `EV' style name or the corre-
sponding chip number. GCC supports scheduling parameters for the EV4 and
EV5 family of processors and will choose the default values for the instruction

Chapter 2: GCC Command Options 85

set from the processor you specify. If you do not specify a processor type, GCC
will default to the processor on which the compiler was built.

Supported values for cpu type are

`ev4'
`21064' Schedules as an EV4 and has no instruction set extensions.

`ev5'
`21164' Schedules as an EV5 and has no instruction set extensions.

`ev56'
`21164a' Schedules as an EV5 and supports the BWX extension.

`pca56'
`21164pc'
`21164PC' Schedules as an EV5 and supports the BWX and MAX extensions.

`ev6'
`21264' Schedules as an EV5 (until Digital releases the scheduling param-

eters for the EV6) and supports the BWX, CIX, and MAX exten-
sions.

-mmemory-latency=time
Sets the latency the scheduler should assume for typical memory references
as seen by the application. This number is highly dependant on the memory
access patterns used by the application and the size of the external cache on
the machine.

Valid options for time are

`number' A decimal number representing clock cycles.

`L1'
`L2'
`L3'
`main' The compiler contains estimates of the number of clock cycles for

\typical" EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also
called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.

2.14.19 Clipper Options

These `-m' options are de�ned for the Clipper implementations:

-mc300 Produce code for a C300 Clipper processor. This is the default.

-mc400 Produce code for a C400 Clipper processor i.e. use oating point registers
f8..f15.

2.14.20 H8/300 Options

These `-m' options are de�ned for the H8/300 implementations:

86 Using the GNU Compiler Collection

-mrelax Shorten some address references at link time, when possible; uses the linker
option `-relax'. See section \ld and the H8/300" in Using ld, for a fuller
description.

-mh Generate code for the H8/300H.

-ms Generate code for the H8/S.

-mint32 Make int data 32 bits by default.

-malign-300

On the h8/300h, use the same alignment rules as for the h8/300. The default
for the h8/300h is to align longs and oats on 4 byte boundaries. `-malign-300'
causes them to be aligned on 2 byte boundaries. This option has no e�ect on
the h8/300.

2.14.21 SH Options

These `-m' options are de�ned for the SH implementations:

-m1 Generate code for the SH1.

-m2 Generate code for the SH2.

-m3 Generate code for the SH3.

-m3e Generate code for the SH3e.

-mb Compile code for the processor in big endian mode.

-ml Compile code for the processor in little endian mode.

-mdalign Align doubles at 64 bit boundaries. Note that this changes the calling conven-
tions, and thus some functions from the standard C library will not work unless
you recompile it �rst with -mdalign.

-mrelax Shorten some address references at link time, when possible; uses the linker
option `-relax'.

2.14.22 Options for System V

These additional options are available on System V Release 4 for compatibility with
other compilers on those systems:

-G Create a shared object. It is recommended that `-symbolic' or `-shared' be
used instead.

-Qy Identify the versions of each tool used by the compiler, in a .ident assembler
directive in the output.

-Qn Refrain from adding .ident directives to the output �le (this is the default).

-YP,dirs Search the directories dirs, and no others, for libraries speci�ed with `-l'.

-Ym,dir Look in the directory dir to �nd the M4 preprocessor. The assembler uses this
option.

Chapter 2: GCC Command Options 87

2.14.23 TMS320C3x/C4x Options

These `-m' options are de�ned for TMS320C3x/C4x implementations:

-mcpu=cpu type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. Supported values for cpu type are `c30', `c31', `c32',
`c40', and `c44'. The default is `c40' to generate code for the TMS320C40.

-mbig-memory

-mbig

-msmall-memory

-msmall Generates code for the big or small memory model. The small memory model
assumed that all data �ts into one 64K word page. At run-time the data page
(DP) register must be set to point to the 64K page containing the .bss and .data
program sections. The big memory model is the default and requires reloading
of the DP register for every direct memory access.

-mbk

-mno-bk Allow (disallow) allocation of general integer operands into the block count
register BK.

-mdb

-mno-db Enable (disable) generation of code using decrement and branch, DBcond(D),
instructions. This is enabled by default for the C4x. To be on the safe side,
this is disabled for the C3x, since the maximum iteration count on the C3x is
2^23 + 1 (but who iterates loops more than 2^23 times on the C3x?). Note that
GCC will try to reverse a loop so that it can utilise the decrement and branch
instruction, but will give up if there is more than one memory reference in the
loop. Thus a loop where the loop counter is decremented can generate slightly
more eÆcient code, in cases where the RPTB instruction cannot be utilised.

-mdp-isr-reload

-mparanoid

Force the DP register to be saved on entry to an interrupt service routine (ISR),
reloaded to point to the data section, and restored on exit from the ISR. This
should not be required unless someone has violated the small memory model
by modifying the DP register, say within an object library.

-mmpyi

-mno-mpyi

For the C3x use the 24-bit MPYI instruction for integer multiplies instead of
a library call to guarantee 32-bit results. Note that if one of the operands is
a constant, then the multiplication will be performed using shifts and adds. If
the -mmpyi option is not speci�ed for the C3x, then squaring operations are
performed inline instead of a library call.

-mfast-fix

-mno-fast-fix

The C3x/C4x FIX instruction to convert a oating point value to an integer
value chooses the nearest integer less than or equal to the oating point value

88 Using the GNU Compiler Collection

rather than to the nearest integer. Thus if the oating point number is negative,
the result will be incorrectly truncated an additional code is necessary to detect
and correct this case. This option can be used to disable generation of the
additional code required to correct the result.

-mrptb

-mno-rptb

Enable (disable) generation of repeat block sequences using the RPTB instruc-
tion for zero overhead looping. The RPTB construct is only used for innermost
loops that do not call functions or jump across the loop boundaries. There is
no advantage having nested RPTB loops due to the overhead required to save
and restore the RC, RS, and RE registers. This is enabled by default with -O2.

-mrpts=count
-mno-rpts

Enable (disable) the use of the single instruction repeat instruction RPTS. If a
repeat block contains a single instruction, and the loop count can be guaranteed
to be less than the value count, GCC will emit a RPTS instruction instead of
a RPTB. If no value is speci�ed, then a RPTS will be emitted even if the loop
count cannot be determined at compile time. Note that the repeated instruction
following RPTS does not have to be reloaded from memory each iteration, thus
freeing up the CPU buses for oeprands. However, since interrupts are blocked
by this instruction, it is disabled by default.

-mloop-unsigned

-mno-loop-unsigned

The maximum iteration count when using RPTS and RPTB (and DB on the
C40) is 2^31 + 1 since these instructions test if the iteration count is negative to
terminate the loop. If the iteration count is unsigned there is a possibility than
the 2^31 + 1 maximum iteration count may be exceeded. This switch allows an
unsigned iteration count.

-mti Try to emit an assembler syntax that the TI assembler (asm30) is happy with.
This also enforces compatibility with the API employed by the TI C3x C com-
piler. For example, long doubles are passed as structures rather than in oating
point registers.

-mregparm

-mmemparm

Generate code that uses registers (stack) for passing arguments to functions.
By default, arguments are passed in registers where possible rather than by
pushing arguments on to the stack.

-mparallel-insns

-mno-parallel-insns

Allow the generation of parallel instructions. This is enabled by default with
-O2.

Chapter 2: GCC Command Options 89

-mparallel-mpy

-mno-parallel-mpy

Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
provided -mparallel-insns is also speci�ed. These instructions have tight register
constraints which can pessimize the code generation of large functions.

2.14.24 V850 Options

These `-m' options are de�ned for V850 implementations:

-mlong-calls

-mno-long-calls

Treat all calls as being far away (near). If calls are assumed to be far away,
the compiler will always load the functions address up into a register, and call
indirect through the pointer.

-mno-ep

-mep Do not optimize (do optimize) basic blocks that use the same index pointer 4
or more times to copy pointer into the ep register, and use the shorter sld and
sst instructions. The `-mep' option is on by default if you optimize.

-mno-prolog-function

-mprolog-function

Do not use (do use) external functions to save and restore registers at the
prolog and epilog of a function. The external functions are slower, but use less
code space if more than one function saves the same number of registers. The
`-mprolog-function' option is on by default if you optimize.

-mspace Try to make the code as small as possible. At present, this just turns on the
`-mep' and `-mprolog-function' options.

-mtda=n Put static or global variables whose size is n bytes or less into the tiny data
area that register ep points to. The tiny data area can hold up to 256 bytes in
total (128 bytes for byte references).

-msda=n Put static or global variables whose size is n bytes or less into the small data
area that register gp points to. The small data area can hold up to 64 kilobytes.

-mzda=n Put static or global variables whose size is n bytes or less into the �rst 32
kilobytes of memory.

-mv850 Specify that the target processor is the V850.

-mbig-switch

Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

2.14.25 ARC Options

These options are de�ned for ARC implementations:

-EL Compile code for little endian mode. This is the default.

-EB Compile code for big endian mode.

90 Using the GNU Compiler Collection

-mmangle-cpu

Prepend the name of the cpu to all public symbol names. In multiple-processor
systems, there are many ARC variants with di�erent instruction and register
set characteristics. This ag prevents code compiled for one cpu to be linked
with code compiled for another. No facility exists for handling variants that
are "almost identical". This is an all or nothing option.

-mcpu=cpu
Compile code for ARC variant cpu. Which variants are supported depend on
the con�guration. All variants support `-mcpu=base', this is the default.

-mtext=text section
-mdata=data section
-mrodata=readonly data section

Put functions, data, and readonly data in text section, data section, and read-
only data section respectively by default. This can be overridden with the
section attribute. See Section 4.29 [Variable Attributes], page 158.

2.14.26 NS32K Options

These are the `-m' options de�ned for the 32000 series. The default values for these
options depends on which style of 32000 was selected when the compiler was con�gured;
the defaults for the most common choices are given below.

-m32032

-m32032 Generate output for a 32032. This is the default when the compiler is con�gured
for 32032 and 32016 based systems.

-m32332

-m32332 Generate output for a 32332. This is the default when the compiler is con�gured
for 32332-based systems.

-m32532

-m32532 Generate output for a 32532. This is the default when the compiler is con�gured
for 32532-based systems.

-m32081 Generate output containing 32081 instructions for oating point. This is the
default for all systems.

-m32381 Generate output containing 32381 instructions for oating point. This also
implies `-m32081'. The 32381 is only compatible with the 32332 and 32532
cpus. This is the default for the pc532-netbsd con�guration.

-mmulti-add

Try and generate multiply-add oating point instructions polyF and dotF. This
option is only available if the `-m32381' option is in e�ect. Using these instruc-
tions requires changes to to register allocation which generally has a negative
impact on performance. This option should only be enabled when compiling
code particularly likely to make heavy use of multiply-add instructions.

-mnomulti-add

Do not try and generate multiply-add oating point instructions polyF and
dotF. This is the default on all platforms.

Chapter 2: GCC Command Options 91

-msoft-float

Generate output containing library calls for oating point. Warning: the req-
uisite libraries may not be available.

-mnobitfield

Do not use the bit-�eld instructions. On some machines it is faster to use
shifting and masking operations. This is the default for the pc532.

-mbitfield

Do use the bit-�eld instructions. This is the default for all platforms except the
pc532.

-mrtd Use a di�erent function-calling convention, in which functions that take a �xed
number of arguments return pop their arguments on return with the ret in-
struction.

This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

This option takes its name from the 680x0 rtd instruction.

-mregparam

Use a di�erent function-calling convention where the �rst two arguments are
passed in registers.

This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.

-mnoregparam

Do not pass any arguments in registers. This is the default for all targets.

-msb It is OK to use the sb as an index register which is always loaded with zero.
This is the default for the pc532-netbsd target.

-mnosb The sb register is not available for use or has not been initialized to zero by the
run time system. This is the default for all targets except the pc532-netbsd. It
is also implied whenever `-mhimem' or `-fpic' is set.

-mhimem Many ns32000 series addressing modes use displacements of up to 512MB. If an
address is above 512MB then displacements from zero can not be used. This
option causes code to be generated which can be loaded above 512MB. This
may be useful for operating systems or ROM code.

-mnohimem

Assume code will be loaded in the �rst 512MB of virtual address space. This
is the default for all platforms.

92 Using the GNU Compiler Collection

2.15 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code gen-
eration.

Most of them have both positive and negative forms; the negative form of `-ffoo' would
be `-fno-foo'. In the table below, only one of the forms is listed|the one which is not the
default. You can �gure out the other form by either removing `no-' or adding it.

-fexceptions

Enable exception handling. Generates extra code needed to propagate excep-
tions. For some targets, this implies generation of frame unwind information
for all functions. This can produce signi�cant data size overhead, although it
does not a�ect execution. If you do not specify this option, it is enabled by
default for languages like C++ which normally require exception handling, and
disabled for languages like C that do not normally require it. However, when
compiling C code that needs to interoperate properly with exception handlers
written in C++, you may need to enable this option. You may also wish to
disable this option is you are compiling older C++ programs that don't use
exception handling.

-fpcc-struct-return

Return \short" struct and union values in memory like longer ones, rather
than in registers. This convention is less eÆcient, but it has the advantage
of allowing intercallability between GCC-compiled �les and �les compiled with
other compilers.

The precise convention for returning structures in memory depends on the tar-
get con�guration macros.

Short structures and unions are those whose size and alignment match that of
some integer type.

-freg-struct-return

Use the convention that struct and union values are returned in registers when
possible. This is more eÆcient for small structures than `-fpcc-struct-return'.

If you specify neither `-fpcc-struct-return' nor its contrary `-freg-struct-return',
GCC defaults to whichever convention is standard for the target. If there is
no standard convention, GCC defaults to `-fpcc-struct-return', except on
targets where GCC is the principal compiler. In those cases, we can choose the
standard, and we chose the more eÆcient register return alternative.

-fshort-enums

Allocate to an enum type only as many bytes as it needs for the declared range
of possible values. Speci�cally, the enum type will be equivalent to the smallest
integer type which has enough room.

-fshort-double

Use the same size for double as for float.

-fshared-data

Requests that the data and non-const variables of this compilation be shared
data rather than private data. The distinction makes sense only on certain

Chapter 2: GCC Command Options 93

operating systems, where shared data is shared between processes running the
same program, while private data exists in one copy per process.

-fno-common

Allocate even uninitialized global variables in the bss section of the object �le,
rather than generating them as common blocks. This has the e�ect that if the
same variable is declared (without extern) in two di�erent compilations, you
will get an error when you link them. The only reason this might be useful is
if you wish to verify that the program will work on other systems which always
work this way.

-fno-ident

Ignore the `#ident' directive.

-fno-gnu-linker

Do not output global initializations (such as C++ constructors and destructors)
in the form used by the GNU linker (on systems where the GNU linker is the
standard method of handling them). Use this option when you want to use a
non-GNU linker, which also requires using the collect2 program to make sure
the system linker includes constructors and destructors. (collect2 is included
in the GCC distribution.) For systems which must use collect2, the compiler
driver gcc is con�gured to do this automatically.

-finhibit-size-directive

Don't output a .size assembler directive, or anything else that would cause
trouble if the function is split in the middle, and the two halves are placed at lo-
cations far apart in memory. This option is used when compiling `crtstuff.c';
you should not need to use it for anything else.

-fverbose-asm

Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually need
to read the generated assembly code (perhaps while debugging the compiler
itself).

`-fno-verbose-asm', the default, causes the extra information to be omitted
and is useful when comparing two assembler �les.

-fvolatile

Consider all memory references through pointers to be volatile.

-fvolatile-global

Consider all memory references to extern and global data items to be volatile.
GCC does not consider static data items to be volatile because of this switch.

-fvolatile-static

Consider all memory references to static data to be volatile.

-fpic Generate position-independent code (PIC) suitable for use in a shared library,
if supported for the target machine. Such code accesses all constant addresses
through a global o�set table (GOT). The dynamic loader resolves the GOT
entries when the program starts (the dynamic loader is not part of GCC; it
is part of the operating system). If the GOT size for the linked executable

94 Using the GNU Compiler Collection

exceeds a machine-speci�c maximum size, you get an error message from the
linker indicating that `-fpic' does not work; in that case, recompile with `-fPIC'
instead. (These maximums are 16k on the m88k, 8k on the Sparc, and 32k on
the m68k and RS/6000. The 386 has no such limit.)

Position-independent code requires special support, and therefore works only on
certain machines. For the 386, GCC supports PIC for System V but not for the
Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

-fPIC If supported for the target machine, emit position-independent code, suitable
for dynamic linking and avoiding any limit on the size of the global o�set table.
This option makes a di�erence on the m68k, m88k, and the Sparc.

Position-independent code requires special support, and therefore works only
on certain machines.

-ffixed-reg
Treat the register named reg as a �xed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other
�xed role).

reg must be the name of a register. The register names accepted are machine-
speci�c and are de�ned in the REGISTER_NAMES macro in the machine descrip-
tion macro �le.

This ag does not have a negative form, because it speci�es a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocable register that is clobbered by func-
tion calls. It may be allocated for temporaries or variables that do not live
across a call. Functions compiled this way will not save and restore the register
reg.

It is an error to used this ag with the frame pointer or stack pointer. Use
of this ag for other registers that have �xed pervasive roles in the machine's
execution model will produce disastrous results.

This ag does not have a negative form, because it speci�es a three-way choice.

-fcall-saved-reg
Treat the register named reg as an allocable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it.

It is an error to used this ag with the frame pointer or stack pointer. Use
of this ag for other registers that have �xed pervasive roles in the machine's
execution model will produce disastrous results.

A di�erent sort of disaster will result from the use of this ag for a register in
which function values may be returned.

This ag does not have a negative form, because it speci�es a three-way choice.

-fpack-struct

Pack all structure members together without holes. Usually you would not
want to use this option, since it makes the code suboptimal, and the o�sets of
structure members won't agree with system libraries.

Chapter 2: GCC Command Options 95

-fcheck-memory-usage

Generate extra code to check each memory access. GCC will generate code
that is suitable for a detector of bad memory accesses such as `Checker'.

Normally, you should compile all, or none, of your code with this option.

If you do mix code compiled with and without this option, you must ensure
that all code that has side e�ects and that is called by code compiled with
this option is, itself, compiled with this option. If you do not, you might get
erroneous messages from the detector.

If you use functions from a library that have side-e�ects (such as read), you
might not be able to recompile the library and specify this option. In that case,
you can enable the `-fprefix-function-name' option, which requests GCC
to encapsulate your code and make other functions look as if they were com-
piled with `-fcheck-memory-usage'. This is done by calling \stubs", which
are provided by the detector. If you cannot �nd or build stubs for every
function you call, you might have to specify `-fcheck-memory-usage' without
`-fprefix-function-name'.

If you specify this option, you can not use the asm or __asm__ keywords in
functions with memory checking enabled. The compiler cannot understand
what the asm statement will do, and therefore cannot generate the appropriate
code, so it is rejected. However, the function attribute no_check_memory_

usage will disable memory checking within a function, and asm statements can
be put inside such functions. Inline expansion of a non-checked function within
a checked function is permitted; the inline function's memory accesses won't be
checked, but the rest will.

If you move your asm statements to non-checked inline functions, but they do
access memory, you can add calls to the support code in your inline function,
to indicate any reads, writes, or copies being done. These calls would be similar
to those done in the stubs described above.

-fprefix-function-name

Request GCC to add a pre�x to the symbols generated for function names.
GCC adds a pre�x to the names of functions de�ned as well as functions called.
Code compiled with this option and code compiled without the option can't be
linked together, unless stubs are used.

If you compile the following code with `-fprefix-function-name'

extern void bar (int);
void
foo (int a)
{
return bar (a + 5);

}

GCC will compile the code as if it was written:

extern void prefix_bar (int);
void
prefix_foo (int a)
{

96 Using the GNU Compiler Collection

return prefix_bar (a + 5);
}

This option is designed to be used with `-fcheck-memory-usage'.

-finstrument-functions

Generate instrumentation calls for entry and exit to functions. Just after func-
tion entry and just before function exit, the following pro�ling functions will
be called with the address of the current function and its call site. (On some
platforms, __builtin_return_addressdoes not work beyond the current func-
tion, so the call site information may not be available to the pro�ling functions
otherwise.)

void __cyg_profile_func_enter (void *this_fn, void *call_site);
void __cyg_profile_func_exit (void *this_fn, void *call_site);

The �rst argument is the address of the start of the current function, which
may be looked up exactly in the symbol table.

This instrumentation is also done for functions expanded inline in other func-
tions. The pro�ling calls will indicate where, conceptually, the inline function
is entered and exited. This means that addressable versions of such functions
must be available. If all your uses of a function are expanded inline, this may
mean an additional expansion of code size. If you use `extern inline' in your
C code, an addressable version of such functions must be provided. (This is
normally the case anyways, but if you get lucky and the optimizer always ex-
pands the functions inline, you might have gotten away without providing static
copies.)

A function may be given the attribute no_instrument_function, in which
case this instrumentation will not be done. This can be used, for example, for
the pro�ling functions listed above, high-priority interrupt routines, and any
functions from which the pro�ling functions cannot safely be called (perhaps
signal handlers, if the pro�ling routines generate output or allocate memory).

-fstack-check

Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this ag if you are running in an environment with multiple
threads, but only rarely need to specify it in a single-threaded environment
since stack overow is automatically detected on nearly all systems if there is
only one stack.

-fargument-alias

-fargument-noalias

-fargument-noalias-global

Specify the possible relationships among parameters and between parameters
and global data.

`-fargument-alias' speci�es that arguments (parameters) may alias each other
and may alias global storage. `-fargument-noalias' speci�es that arguments
do not alias each other, but may alias global storage. `-fargument-noalias-global'
speci�es that arguments do not alias each other and do not alias global storage.

Each language will automatically use whatever option is required by the lan-
guage standard. You should not need to use these options yourself.

Chapter 2: GCC Command Options 97

-fleading-underscore

This option and its counterpart, -fno-leading-underscore, forcibly change the
way C symbols are represented in the object �le. One use is to help link with
legacy assembly code.

Be warned that you should know what you are doing when invoking this option,
and that not all targets provide complete support for it.

2.16 Environment Variables A�ecting GCC

This section describes several environment variables that a�ect how GCC operates. Some
of them work by specifying directories or pre�xes to use when searching for various kinds
of �les. Some are used to specify other aspects of the compilation environment.

Note that you can also specify places to search using options such as `-B', `-I' and `-L'
(see Section 2.12 [Directory Options], page 46). These take precedence over places speci�ed
using environment variables, which in turn take precedence over those speci�ed by the
con�guration of GCC.

LANG

LC_CTYPE

LC_MESSAGES

LC_ALL These environment variables control the way that GCC uses localization in-
formation that allow GCC to work with di�erent national conventions. GCC
inspects the locale categories LC_CTYPE and LC_MESSAGES if it has been con�g-
ured to do so. These locale categories can be set to any value supported by
your installation. A typical value is `en_UK' for English in the United Kingdom.

The LC_CTYPE environment variable speci�es character classi�cation. GCC uses
it to determine the character boundaries in a string; this is needed for some
multibyte encodings that contain quote and escape characters that would oth-
erwise be interpreted as a string end or escape.

The LC_MESSAGES environment variable speci�es the language to use in diag-
nostic messages.

If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and
LC_MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the
LANG environment variable. If none of these variables are set, GCC defaults to
traditional C English behavior.

TMPDIR If TMPDIR is set, it speci�es the directory to use for temporary �les. GCC uses
temporary �les to hold the output of one stage of compilation which is to be
used as input to the next stage: for example, the output of the preprocessor,
which is the input to the compiler proper.

GCC_EXEC_PREFIX

If GCC_EXEC_PREFIX is set, it speci�es a pre�x to use in the names of the
subprograms executed by the compiler. No slash is added when this pre�x is
combined with the name of a subprogram, but you can specify a pre�x that
ends with a slash if you wish.

If GCC cannot �nd the subprogram using the speci�ed pre�x, it tries looking
in the usual places for the subprogram.

98 Using the GNU Compiler Collection

The default value of GCC_EXEC_PREFIX is `pre�x/lib/gcc-lib/' where pre�x
is the value of prefix when you ran the `configure' script.

Other pre�xes speci�ed with `-B' take precedence over this pre�x.

This pre�x is also used for �nding �les such as `crt0.o' that are used for linking.

In addition, the pre�x is used in an unusual way in �nding the directories to
search for header �les. For each of the standard directories whose name nor-
mally begins with `/usr/local/lib/gcc-lib' (more precisely, with the value
of GCC_INCLUDE_DIR), GCC tries replacing that beginning with the speci�ed
pre�x to produce an alternate directory name. Thus, with `-Bfoo/', GCC will
search `foo/bar' where it would normally search `/usr/local/lib/bar'. These
alternate directories are searched �rst; the standard directories come next.

COMPILER_PATH

The value of COMPILER_PATH is a colon-separated list of directories, much like
PATH. GCC tries the directories thus speci�ed when searching for subprograms,
if it can't �nd the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH

The value of LIBRARY_PATH is a colon-separated list of directories, much like
PATH. When con�gured as a native compiler, GCC tries the directories thus
speci�ed when searching for special linker �les, if it can't �nd them using GCC_
EXEC_PREFIX. Linking using GCC also uses these directories when searching for
ordinary libraries for the `-l' option (but directories speci�ed with `-L' come
�rst).

C_INCLUDE_PATH

CPLUS_INCLUDE_PATH

OBJC_INCLUDE_PATH

These environment variables pertain to particular languages. Each variable's
value is a colon-separated list of directories, much like PATH. When GCC
searches for header �les, it tries the directories listed in the variable for the
language you are using, after the directories speci�ed with `-I' but before the
standard header �le directories.

DEPENDENCIES_OUTPUT

If this variable is set, its value speci�es how to output dependencies for Make
based on the header �les processed by the compiler. This output looks much
like the output from the `-M' option (see Section 2.9 [Preprocessor Options],
page 41), but it goes to a separate �le, and is in addition to the usual results
of compilation.

The value of DEPENDENCIES_OUTPUT can be just a �le name, in which case the
Make rules are written to that �le, guessing the target name from the source
�le name. Or the value can have the form `�le target', in which case the rules
are written to �le �le using target as the target name.

LANG This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used when
character literals, string literals and comments are parsed in C and C++. When

Chapter 2: GCC Command Options 99

the compiler is con�gured to allow multibyte characters, the following values
for LANG are recognized:

C-JIS Recognize JIS characters.

C-SJIS Recognize SJIS characters.

C-EUCJP Recognize EUCJP characters.

If LANG is not de�ned, or if it has some other value, then the compiler will use
mblen and mbtowc as de�ned by the default locale to recognize and translate
multibyte characters.

2.17 Running Protoize

The program protoize is an optional part of GNU C. You can use it to add prototypes
to a program, thus converting the program to ANSI C in one respect. The companion
program unprotoize does the reverse: it removes argument types from any prototypes
that are found.

When you run these programs, you must specify a set of source �les as command line
arguments. The conversion programs start out by compiling these �les to see what functions
they de�ne. The information gathered about a �le foo is saved in a �le named `foo.X'.

After scanning comes actual conversion. The speci�ed �les are all eligible to be converted;
any �les they include (whether sources or just headers) are eligible as well.

But not all the eligible �les are converted. By default, protoize and unprotoize convert
only source and header �les in the current directory. You can specify additional directories
whose �les should be converted with the `-d directory ' option. You can also specify partic-
ular �les to exclude with the `-x �le' option. A �le is converted if it is eligible, its directory
name matches one of the speci�ed directory names, and its name within the directory has
not been excluded.

Basic conversion with protoize consists of rewriting most function de�nitions and func-
tion declarations to specify the types of the arguments. The only ones not rewritten are
those for varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source �le,
to make them available for any calls that precede the function's de�nition. Or it can insert
prototype declarations with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function declarations to
remove any argument types, and rewriting function de�nitions to the old-style pre-ANSI
form.

Both conversion programs print a warning for any function declaration or de�nition that
they can't convert. You can suppress these warnings with `-q'.

The output from protoize or unprotoize replaces the original source �le. The original
�le is renamed to a name ending with `.save'. If the `.save' �le already exists, then the
source �le is simply discarded.

protoize and unprotoize both depend on GCC itself to scan the program and collect
information about the functions it uses. So neither of these programs will work until GCC
is installed.

100 Using the GNU Compiler Collection

Here is a table of the options you can use with protoize and unprotoize. Each option
works with both programs unless otherwise stated.

-B directory
Look for the �le `SYSCALLS.c.X' in directory, instead of the usual directory
(normally `/usr/local/lib'). This �le contains prototype information about
standard system functions. This option applies only to protoize.

-c compilation-options
Use compilation-options as the options when running gcc to produce the `.X'
�les. The special option `-aux-info' is always passed in addition, to tell gcc
to write a `.X' �le.

Note that the compilation options must be given as a single argument to
protoize or unprotoize. If you want to specify several gcc options, you must
quote the entire set of compilation options to make them a single word in the
shell.

There are certain gcc arguments that you cannot use, because they would
produce the wrong kind of output. These include `-g', `-O', `-c', `-S', and `-o'
If you include these in the compilation-options, they are ignored.

-C Rename �les to end in `.C' instead of `.c'. This is convenient if you are con-
verting a C program to C++. This option applies only to protoize.

-g Add explicit global declarations. This means inserting explicit declarations at
the beginning of each source �le for each function that is called in the �le and
was not declared. These declarations precede the �rst function de�nition that
contains a call to an undeclared function. This option applies only to protoize.

-i string Indent old-style parameter declarations with the string string. This option
applies only to protoize.

unprotoize converts prototyped function de�nitions to old-style function def-
initions, where the arguments are declared between the argument list and the
initial `{'. By default, unprotoize uses �ve spaces as the indentation. If you
want to indent with just one space instead, use `-i " "'.

-k Keep the `.X' �les. Normally, they are deleted after conversion is �nished.

-l Add explicit local declarations. protoize with `-l' inserts a prototype dec-
laration for each function in each block which calls the function without any
declaration. This option applies only to protoize.

-n Make no real changes. This mode just prints information about the conversions
that would have been done without `-n'.

-N Make no `.save' �les. The original �les are simply deleted. Use this option
with caution.

-p program
Use the program program as the compiler. Normally, the name `gcc' is used.

-q Work quietly. Most warnings are suppressed.

-v Print the version number, just like `-v' for gcc.

Chapter 2: GCC Command Options 101

If you need special compiler options to compile one of your program's source �les, then
you should generate that �le's `.X' �le specially, by running gcc on that source �le with the
appropriate options and the option `-aux-info'. Then run protoize on the entire set of
�les. protoize will use the existing `.X' �le because it is newer than the source �le. For
example:

gcc -Dfoo=bar file1.c -aux-info
protoize *.c

You need to include the special �les along with the rest in the protoize command, even
though their `.X' �les already exist, because otherwise they won't get converted.

See Section 7.11 [Protoize Caveats], page 211, for more information on how to use
protoize successfully.

Note most of this information is out of date and superceded by the EGCS install proce-
dures. It is provided for historical reference only.

102 Using the GNU Compiler Collection

Chapter 3: Installing GNU CC 103

3 Installing GNU CC

Here is the procedure for installing GNU CC on a GNU or Unix system. See Section 3.6
[VMS Install], page 131, for VMS systems. In this section we assume you compile in the
same directory that contains the source �les; see Section 3.3 [Other Dir], page 126, to �nd
out how to compile in a separate directory on Unix systems.

You cannot install GNU C by itself on MSDOS; it will not compile under any MSDOS
compiler except itself. You need to get the complete compilation package DJGPP, which
includes binaries as well as sources, and includes all the necessary compilation tools and
libraries.

1. If you have built GNU CC previously in the same directory for a di�erent target
machine, do `make distclean' to delete all �les that might be invalid. One of the
�les this deletes is `Makefile'; if `make distclean' complains that `Makefile' does not
exist, it probably means that the directory is already suitably clean.

2. On a System V release 4 system, make sure `/usr/bin' precedes `/usr/ucb' in PATH.
The cc command in `/usr/ucb' uses libraries which have bugs.

3. Make sure the Bison parser generator is installed. (This is unnecessary if the Bison
output �les `c-parse.c' and `cexp.c' are more recent than `c-parse.y' and `cexp.y'
and you do not plan to change the `.y' �les.)

Bison versions older than Sept 8, 1988 will produce incorrect output for `c-parse.c'.

4. If you have chosen a con�guration for GNU CC which requires other GNU tools (such
as GAS or the GNU linker) instead of the standard system tools, install the required
tools in the build directory under the names `as', `ld' or whatever is appropriate.
This will enable the compiler to �nd the proper tools for compilation of the program
`enquire'.

Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

5. Specify the host, build and target machine con�gurations. You do this when you run
the `configure' script.

The build machine is the system which you are using, the host machine is the system
where you want to run the resulting compiler (normally the build machine), and the
target machine is the system for which you want the compiler to generate code.

If you are building a compiler to produce code for the machine it runs on (a native
compiler), you normally do not need to specify any operands to `configure'; it will
try to guess the type of machine you are on and use that as the build, host and target
machines. So you don't need to specify a con�guration when building a native compiler
unless `configure' cannot �gure out what your con�guration is or guesses wrong.

In those cases, specify the build machine's con�guration name with the `--host' option;
the host and target will default to be the same as the host machine. (If you are building
a cross-compiler, see Section 3.4 [Cross-Compiler], page 126.)

Here is an example:

./configure --host=sparc-sun-sunos4.1

A con�guration name may be canonical or it may be more or less abbreviated.

104 Using the GNU Compiler Collection

A canonical con�guration name has three parts, separated by dashes. It looks like this:
`cpu-company-system'. (The three parts may themselves contain dashes; `configure'
can �gure out which dashes serve which purpose.) For example, `m68k-sun-sunos4.1'
speci�es a Sun 3.

You can also replace parts of the con�guration by nicknames or aliases. For example,
`sun3' stands for `m68k-sun', so `sun3-sunos4.1' is another way to specify a Sun 3.
You can also use simply `sun3-sunos', since the version of SunOS is assumed by default
to be version 4.

You can specify a version number after any of the system types, and some of the CPU
types. In most cases, the version is irrelevant, and will be ignored. So you might as
well specify the version if you know it.

See Section 3.2 [Con�gurations], page 111, for a list of supported con�guration names
and notes on many of the con�gurations. You should check the notes in that section
before proceeding any further with the installation of GNU CC.

6. When running configure, you may also need to specify certain additional options that
describe variant hardware and software con�gurations. These are `--with-gnu-as',
`--with-gnu-ld', `--with-stabs' and `--nfp'.

`--with-gnu-as'
If you will use GNU CC with the GNU assembler (GAS), you should declare
this by using the `--with-gnu-as' option when you run `configure'.

Using this option does not install GAS. It only modi�es the output of GNU
CC to work with GAS. Building and installing GAS is up to you.

Conversely, if you do not wish to use GAS and do not specify `--with-gnu-as'
when building GNU CC, it is up to you to make sure that GAS is not
installed. GNU CC searches for a program named as in various directories;
if the program it �nds is GAS, then it runs GAS. If you are not sure where
GNU CC �nds the assembler it is using, try specifying `-v' when you run
it.

The systems where it makes a di�erence whether you use GAS are
`hppa1.0-any-any ', `hppa1.1-any-any ', `i386-any-sysv', `i386-any-isc',

`i860-any-bsd', `m68k-bull-sysv',
`m68k-hp-hpux', `m68k-sony-bsd',
`m68k-altos-sysv', `m68000-hp-hpux',
`m68000-att-sysv', `any-lynx-lynxos', and `mips-any '). On any other
system, `--with-gnu-as' has no e�ect.

On the systems listed above (except for the HP-PA, for ISC on the 386, and
for `mips-sgi-irix5.*'), if you use GAS, you should also use the GNU
linker (and specify `--with-gnu-ld').

`--with-gnu-ld'
Specify the option `--with-gnu-ld' if you plan to use the GNU linker with
GNU CC.

This option does not cause the GNU linker to be installed; it just modi�es
the behavior of GNU CC to work with the GNU linker.

Chapter 3: Installing GNU CC 105

`--with-stabs'
On MIPS based systems and on Alphas, you must specify whether you
want GNU CC to create the normal ECOFF debugging format, or to use
BSD-style stabs passed through the ECOFF symbol table. The normal
ECOFF debug format cannot fully handle languages other than C. BSD
stabs format can handle other languages, but it only works with the GNU
debugger GDB.

Normally, GNU CC uses the ECOFF debugging format by default; if you
prefer BSD stabs, specify `--with-stabs' when you con�gure GNU CC.

No matter which default you choose when you con�gure GNU CC, the user
can use the `-gcoff' and `-gstabs+' options to specify explicitly the debug
format for a particular compilation.

`--with-stabs' is meaningful on the ISC system on the 386, also, if
`--with-gas' is used. It selects use of stabs debugging information embed-
ded in COFF output. This kind of debugging information supports C++
well; ordinary COFF debugging information does not.

`--with-stabs' is also meaningful on 386 systems running SVR4. It se-
lects use of stabs debugging information embedded in ELF output. The
C++ compiler currently (2.6.0) does not support the DWARF debugging
information normally used on 386 SVR4 platforms; stabs provide a work-
able alternative. This requires gas and gdb, as the normal SVR4 tools can
not generate or interpret stabs.

`--nfp' On certain systems, you must specify whether the machine has a oating
point unit. These systems include `m68k-sun-sunosn' and `m68k-isi-bsd'.
On any other system, `--nfp' currently has no e�ect, though perhaps there
are other systems where it could usefully make a di�erence.

`--enable-haifa'
`--disable-haifa'

Use `--enable-haifa' to enable use of an experimental instruction sched-
uler (from IBM Haifa). This may or may not produce better code.
Some targets on which it is known to be a win enable it by default;
use `--disable-haifa' to disable it in these cases. configure will print
out whether the Haifa scheduler is enabled when it is run.

`--enable-threads=type'
Certain systems, notably Linux-based GNU systems, can't be relied on to
supply a threads facility for the Objective C runtime and so will default
to single-threaded runtime. They may, however, have a library threads
implementation available, in which case threads can be enabled with this
option by supplying a suitable type, probably `posix'. The possibilities for
type are `single', `posix', `win32', `solaris', `irix' and `mach'.

`--enable-checking'
When you specify this option, the compiler is built to perform checking of
tree node types when referencing �elds of that node. This does not change
the generated code, but adds error checking within the compiler. This will

106 Using the GNU Compiler Collection

slow down the compiler and may only work properly if you are building
the compiler with GNU C.

The `configure' script searches subdirectories of the source directory for
other compilers that are to be integrated into GNU CC. The GNU compiler
for C++, called G++ is in a subdirectory named `cp'. `configure' inserts
rules into `Makefile' to build all of those compilers.

Here we spell out what �les will be set up by configure. Normally you
need not be concerned with these �les.

� A �le named `config.h' is created that contains a `#include' of the
top-level con�g �le for the machine you will run the compiler on (see
section \The Con�guration File" in Using and Porting GCC). This
�le is responsible for de�ning information about the host machine. It
includes `tm.h'.

The top-level con�g �le is located in the subdirectory `config'. Its
name is always `xm-something.h'; usually `xm-machine.h', but there
are some exceptions.

If your system does not support symbolic links, you might want to set
up `config.h' to contain a `#include' command which refers to the
appropriate �le.

� A �le named `tconfig.h' is created which includes the top-level con-
�g �le for your target machine. This is used for compiling certain
programs to run on that machine.

� A �le named `tm.h' is created which includes the machine-description
macro �le for your target machine. It should be in the subdirectory
`config' and its name is often `machine.h'.

`--enable-nls'
`--disable-nls'

The `--enable-nls' option enables Native Language Support (NLS),
which lets GCC output diagnostics in languages other than American En-
glish. No translations are available yet, so the main users of this option
now are those translating GCC's diagnostics who want to test their work.
Once translations become available, Native Language Support will become
enabled by default. The `--disable-nls' option disables NLS.

`--with-included-gettext'
If NLS is enabled, the GCC build procedure normally attempts to use the
host's gettext libraries, and falls back on GCC's copy of the GNU gettext

library only if the host libraries do not suÆce. The `--with-included-gettext'
option causes the build procedure to prefer its copy of GNU gettext.

`--with-catgets'
If NLS is enabled, and if the host lacks gettext but has the inferior
catgets interface, the GCC build procedure normally ignores catgets and
instead uses GCC's copy of the GNU gettext library. The `--with-catgets'
option causes the build procedure to use the host's catgets in this situa-
tion.

Chapter 3: Installing GNU CC 107

7. In certain cases, you should specify certain other options when you run configure.

� The standard directory for installing GNU CC is `/usr/local/lib'. If you want to
install its �les somewhere else, specify `--prefix=dir' when you run `configure'.
Here dir is a directory name to use instead of `/usr/local' for all purposes with
one exception: the directory `/usr/local/include' is searched for header �les no
matter where you install the compiler. To override this name, use the --with-

local-prefix option below. The directory you specify need not exist, but its
parent directory must exist.

� Specify `--with-local-prefix=dir' if you want the compiler to search directory
`dir/include' for locally installed header �les instead of `/usr/local/include'.

You should specify `--with-local-prefix' only if your site has a di�erent con-
vention (not `/usr/local') for where to put site-speci�c �les.

The default value for `--with-local-prefix' is `/usr/local' regardless of the
value of `--prefix'. Specifying `--prefix' has no e�ect on which directory GNU
CC searches for local header �les. This may seem counterintuitive, but actually it
is logical.

The purpose of `--prefix' is to specify where to install GNU CC. The local header
�les in `/usr/local/include'|if you put any in that directory|are not part of
GNU CC. They are part of other programs|perhaps many others. (GNU CC
installs its own header �les in another directory which is based on the `--prefix'
value.)

Do not specify `/usr' as the `--with-local-prefix'! The directory you use for
`--with-local-prefix'must not contain any of the system's standard header �les.
If it did contain them, certain programs would be miscompiled (including GNU
Emacs, on certain targets), because this would override and nullify the header �le
corrections made by the fixincludes script.

Indications are that people who use this option use it based on mistaken ideas
of what it is for. People use it as if it speci�ed where to install part of GNU
CC. Perhaps they make this assumption because installing GNU CC creates the
directory.

8. Build the compiler. Just type `make LANGUAGES=c' in the compiler directory.

`LANGUAGES=c' speci�es that only the C compiler should be compiled. The make�le
normally builds compilers for all the supported languages; currently, C, C++ and Ob-
jective C. However, C is the only language that is sure to work when you build with
other non-GNU C compilers. In addition, building anything but C at this stage is a
waste of time.

In general, you can specify the languages to build by typing the argument `LANGUAGES="list"',
where list is one or more words from the list `c', `c++', and `objective-c'. If you have
any additional GNU compilers as subdirectories of the GNU CC source directory, you
may also specify their names in this list.

Ignore any warnings you may see about \statement not reached" in `insn-emit.c';
they are normal. Also, warnings about \unknown escape sequence" are normal in
`genopinit.c' and perhaps some other �les. Likewise, you should ignore warnings
about \constant is so large that it is unsigned" in `insn-emit.c' and `insn-recog.c', a
warning about a comparison always being zero in `enquire.o', and warnings about shift

108 Using the GNU Compiler Collection

counts exceeding type widths in `cexp.y'. Any other compilation errors may represent
bugs in the port to your machine or operating system, and should be investigated and
reported (see Chapter 8 [Bugs], page 217).

Some compilers fail to compile GNU CC because they have bugs or limitations. For
example, the Microsoft compiler is said to run out of macro space. Some Ultrix com-
pilers run out of expression space; then you need to break up the statement where the
problem happens.

9. If you are building a cross-compiler, stop here. See Section 3.4 [Cross-Compiler],
page 126.

10. Move the �rst-stage object �les and executables into a subdirectory with this command:

make stage1

The �les are moved into a subdirectory named `stage1'. Once installation is complete,
you may wish to delete these �les with rm -r stage1.

11. If you have chosen a con�guration for GNU CC which requires other GNU tools (such
as GAS or the GNU linker) instead of the standard system tools, install the required
tools in the `stage1' subdirectory under the names `as', `ld' or whatever is appropriate.
This will enable the stage 1 compiler to �nd the proper tools in the following stage.

Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

12. Recompile the compiler with itself, with this command:

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2"

This is called making the stage 2 compiler.

The command shown above builds compilers for all the supported languages. If you
don't want them all, you can specify the languages to build by typing the argument
`LANGUAGES="list"'. list should contain one or more words from the list `c', `c++',
`objective-c', and `proto'. Separate the words with spaces. `proto' stands for the
programs protoize and unprotoize; they are not a separate language, but you use
LANGUAGES to enable or disable their installation.

If you are going to build the stage 3 compiler, then you might want to build only the
C language in stage 2.

Once you have built the stage 2 compiler, if you are short of disk space, you can delete
the subdirectory `stage1'.

On a 68000 or 68020 system lacking oating point hardware, unless you have selected
a `tm.h' �le that expects by default that there is no such hardware, do this instead:

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2 -msoft-float"

13. If you wish to test the compiler by compiling it with itself one more time, install
any other necessary GNU tools (such as GAS or the GNU linker) in the `stage2'
subdirectory as you did in the `stage1' subdirectory, then do this:

make stage2
make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2"

This is called making the stage 3 compiler. Aside from the `-B' option, the compiler
options should be the same as when you made the stage 2 compiler. But the LANGUAGES
option need not be the same. The command shown above builds compilers for all the

Chapter 3: Installing GNU CC 109

supported languages; if you don't want them all, you can specify the languages to build
by typing the argument `LANGUAGES="list"', as described above.

If you do not have to install any additional GNU tools, you may use the command

make bootstrap LANGUAGES=language-list BOOT_CFLAGS=option-list

instead of making `stage1', `stage2', and performing the two compiler builds.

14. Compare the latest object �les with the stage 2 object �les|they ought to be identical,
aside from time stamps (if any).

On some systems, meaningful comparison of object �les is impossible; they always ap-
pear \di�erent." This is currently true on Solaris and some systems that use ELF object
�le format. On some versions of Irix on SGI machines and DEC Unix (OSF/1) on Alpha
systems, you will not be able to compare the �les without specifying `-save-temps';
see the description of individual systems above to see if you get comparison failures.
You may have similar problems on other systems.

Use this command to compare the �les:

make compare

This will mention any object �les that di�er between stage 2 and stage 3. Any di�er-
ence, no matter how innocuous, indicates that the stage 2 compiler has compiled GNU
CC incorrectly, and is therefore a potentially serious bug which you should investigate
and report (see Chapter 8 [Bugs], page 217).

If your system does not put time stamps in the object �les, then this is a faster way to
compare them (using the Bourne shell):

for file in *.o; do
cmp $file stage2/$file
done

If you have built the compiler with the `-mno-mips-tfile' option on MIPS machines,
you will not be able to compare the �les.

15. Install the compiler driver, the compiler's passes and run-time support with `make
install'. Use the same value for CC, CFLAGS and LANGUAGES that you used when
compiling the �les that are being installed. One reason this is necessary is that some
versions of Make have bugs and recompile �les gratuitously when you do this step. If
you use the same variable values, those �les will be recompiled properly.

For example, if you have built the stage 2 compiler, you can use the following command:

make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="list"

This copies the �les `cc1', `cpp' and `libgcc.a' to �les `cc1', `cpp' and `libgcc.a' in
the directory `/usr/local/lib/gcc-lib/target/version', which is where the compiler
driver program looks for them. Here target is the canonicalized form of target machine
type speci�ed when you ran `configure', and version is the version number of GNU
CC. This naming scheme permits various versions and/or cross-compilers to coexist. It
also copies the executables for compilers for other languages (e.g., `cc1plus' for C++)
to the same directory.

This also copies the driver program `xgcc' into `/usr/local/bin/gcc', so that it ap-
pears in typical execution search paths. It also copies `gcc.1' into `/usr/local/man/man1'
and info pages into `/usr/local/info'.

110 Using the GNU Compiler Collection

On some systems, this command causes recompilation of some �les. This is usually
due to bugs in make. You should either ignore this problem, or use GNU Make.

Warning: there is a bug in alloca in the Sun library. To avoid this bug, be sure to
install the executables of GNU CC that were compiled by GNU CC. (That is, the
executables from stage 2 or 3, not stage 1.) They use alloca as a built-in function
and never the one in the library.

(It is usually better to install GNU CC executables from stage 2 or 3, since they usually
run faster than the ones compiled with some other compiler.)

16. If you're going to use C++, you need to install the C++ runtime library. This includes
all I/O functionality, special class libraries, etc.

The standard C++ runtime library for GNU CC is called `libstdc++'. An obsolescent
library `libg++' may also be available, but it's necessary only for older software that
hasn't been converted yet; if you don't know whether you need `libg++' then you
probably don't need it.

Here's one way to build and install `libstdc++' for GNU CC:

� Build and install GNU CC, so that invoking `gcc' obtains the GNU CC that was
just built.

� Obtain a copy of a compatible `libstdc++' distribution. For example, the
`libstdc++-2.8.0.tar.gz' distribution should be compatible with GCC 2.8.0.
GCC distributors normally distribute `libstdc++' as well.

� Set the `CXX' environment variable to `gcc' while running the `libstdc++' distri-
bution's `configure' command. Use the same `configure' options that you used
when you invoked GCC's `configure' command.

� Invoke `make' to build the C++ runtime.

� Invoke `make install' to install the C++ runtime.

To summarize, after building and installing GNU CC, invoke the following shell com-
mands in the topmost directory of the C++ library distribution. For con�gure-options,
use the same options that you used to con�gure GNU CC.

$ CXX=gcc ./configure con�gure-options
$ make
$ make install

17. GNU CC includes a runtime library for Objective-C because it is an integral part of
the language. You can �nd the �les associated with the library in the subdirectory
`objc'. The GNU Objective-C Runtime Library requires header �les for the target's C
library in order to be compiled,and also requires the header �les for the target's thread
library if you want thread support. See Section 3.4.5 [Cross-Compilers and Header
Files], page 129, for discussion about header �les issues for cross-compilation.

When you run `configure', it picks the appropriate Objective-C thread implemen-
tation �le for the target platform. In some situations, you may wish to choose a
di�erent back-end as some platforms support multiple thread implementations or you
may wish to disable thread support completely. You do this by specifying a value for
the OBJC THREAD FILE make�le variable on the command line when you run make,
for example:

Chapter 3: Installing GNU CC 111

make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2" OBJC_THREAD_FILE=thr-single

Below is a list of the currently available back-ends.

� thr-single Disable thread support, should work for all platforms.

� thr-decosf1 DEC OSF/1 thread support.

� thr-irix SGI IRIX thread support.

� thr-mach Generic MACH thread support, known to work on NEXTSTEP.

� thr-os2 IBM OS/2 thread support.

� thr-posix Generix POSIX thread support.

� thr-pthreads PCThreads on Linux-based GNU systems.

� thr-solaris SUN Solaris thread support.

� thr-win32 Microsoft Win32 API thread support.

3.1 Files Created by configure

Here we spell out what �les will be set up by configure. Normally you need not be
concerned with these �les.

� A �le named `config.h' is created that contains a `#include' of the top-level con�g
�le for the machine you will run the compiler on (see section \The Con�guration File"
in Using and Porting GCC). This �le is responsible for de�ning information about the
host machine. It includes `tm.h'.

The top-level con�g �le is located in the subdirectory `config'. Its name is always
`xm-something.h'; usually `xm-machine.h', but there are some exceptions.

If your system does not support symbolic links, you might want to set up `config.h'
to contain a `#include' command which refers to the appropriate �le.

� A �le named `tconfig.h' is created which includes the top-level con�g �le for your
target machine. This is used for compiling certain programs to run on that machine.

� A �le named `tm.h' is created which includes the machine-description macro �le for
your target machine. It should be in the subdirectory `config' and its name is often
`machine.h'.

� The command �le `configure' also constructs the �le `Makefile' by adding some text
to the template �le `Makefile.in'. The additional text comes from �les in the `config'
directory, named `t-target' and `x-host'. If these �les do not exist, it means nothing
needs to be added for a given target or host.

3.2 Con�gurations Supported by GNU CC

Here are the possible CPU types:

1750a, a29k, alpha, arm, cn, clipper, dsp16xx, elxsi, h8300, hppa1.0, hppa1.1,
i370, i386, i486, i586, i860, i960, m32r, m68000, m68k, m88k, mips, mipsel,
mips64, mips64el, ns32k, powerpc, powerpcle, pyramid, romp, rs6000, sh, sparc,
sparclite, sparc64, vax, we32k.

Here are the recognized company names. As you can see, customary abbreviations are
used rather than the longer oÆcial names.

112 Using the GNU Compiler Collection

acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds,
dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips,
motorola, ncr, next, ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom, wrs.

The company name is meaningful only to disambiguate when the rest of the information
supplied is insuÆcient. You can omit it, writing just `cpu-system', if it is not needed. For
example, `vax-ultrix4.2' is equivalent to `vax-dec-ultrix4.2'.

Here is a list of system types:

386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, co�, ctix, cxux, dgux,
dynix, ebmon, eco�, elf, esix, freebsd, hms, genix, gnu, linux-gnu, hiux, hpux,
iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy,
ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi,
ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix.

You can omit the system type; then `configure' guesses the operating system from the
CPU and company.

You can add a version number to the system type; this may or may not make a dif-
ference. For example, you can write `bsd4.3' or `bsd4.4' to distinguish versions of BSD.
In practice, the version number is most needed for `sysv3' and `sysv4', which are often
treated di�erently.

If you specify an impossible combination such as `i860-dg-vms', then you may get an
error message from `configure', or it may ignore part of the information and do the best
it can with the rest. `configure' always prints the canonical name for the alternative that
it used. GNU CC does not support all possible alternatives.

Often a particular model of machine has a name. Many machine names are recognized as
aliases for CPU/company combinations. Thus, the machine name `sun3', mentioned above,
is an alias for `m68k-sun'. Sometimes we accept a company name as a machine name, when
the name is popularly used for a particular machine. Here is a table of the known machine
names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn,
crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7nn, hp8nn,
hp9k2nn, hp9k3nn, hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, mer-
lin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax,
powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4,
symmetry, tower-32, tower.

Remember that a machine name speci�es both the cpu type and the company name. If you
want to install your own homemade con�guration �les, you can use `local' as the company
name to access them. If you use con�guration `cpu-local', the con�guration name without
the cpu pre�x is used to form the con�guration �le names.

Thus, if you specify `m68k-local', con�guration uses �les `m68k.md', `local.h', `m68k.c',
`xm-local.h', `t-local', and `x-local', all in the directory `config/m68k'.

Here is a list of con�gurations that have special treatment or special things you must
know:

`1750a-*-*'
MIL-STD-1750A processors.

The MIL-STD-1750A cross con�guration produces output for as1750, an as-
sembler/linker available under the GNU Public License for the 1750A. as1750

Chapter 3: Installing GNU CC 113

can be obtained at ftp://ftp.fta-berlin.de/pub/crossgcc/1750gals/. A similarly
licensed simulator for the 1750A is available from same address.

You should ignore a fatal error during the building of libgcc (libgcc is not yet
implemented for the 1750A.)

The as1750 assembler requires the �le `ms1750.inc', which is found in the
directory `config/1750a'.

GNU CC produced the same sections as the Fairchild F9450 C Compiler,
namely:

Normal The program code section.

Static The read/write (RAM) data section.

Konst The read-only (ROM) constants section.

Init Initialization section (code to copy KREL to SREL).

The smallest addressable unit is 16 bits (BITS PER UNIT is 16). This means
that type `char' is represented with a 16-bit word per character. The 1750A's
"Load/Store Upper/Lower Byte" instructions are not used by GNU CC.

`alpha-*-osf1'
Systems using processors that implement the DEC Alpha architecture and are
running the DEC Unix (OSF/1) operating system, for example the DEC Alpha
AXP systems.CC.)

GNU CC writes a `.verstamp' directive to the assembler output �le unless it
is built as a cross-compiler. It gets the version to use from the system header
�le `/usr/include/stamp.h'. If you install a new version of DEC Unix, you
should rebuild GCC to pick up the new version stamp.

Note that since the Alpha is a 64-bit architecture, cross-compilers from 32-bit
machines will not generate code as eÆcient as that generated when the compiler
is running on a 64-bit machine because many optimizations that depend on
being able to represent a word on the target in an integral value on the host
cannot be performed. Building cross-compilers on the Alpha for 32-bit machines
has only been tested in a few cases and may not work properly.

make comparemay fail on old versions of DEC Unix unless you add `-save-temps'
to CFLAGS. On these systems, the name of the assembler input �le is stored in
the object �le, and that makes comparison fail if it di�ers between the stage1
and stage2 compilations. The option `-save-temps' forces a �xed name to be
used for the assembler input �le, instead of a randomly chosen name in `/tmp'.
Do not add `-save-temps' unless the comparisons fail without that option. If
you add `-save-temps', you will have to manually delete the `.i' and `.s' �les
after each series of compilations.

GNU CC now supports both the native (ECOFF) debugging format used by
DBX and GDB and an encapsulated STABS format for use only with GDB.
See the discussion of the `--with-stabs' option of `configure' above for more
information on these formats and how to select them.

There is a bug in DEC's assembler that produces incorrect line numbers for
ECOFF format when the `.align' directive is used. To work around this prob-

114 Using the GNU Compiler Collection

lem, GNU CC will not emit such alignment directives while writing ECOFF
format debugging information even if optimization is being performed. Unfor-
tunately, this has the very undesirable side-e�ect that code addresses when `-O'
is speci�ed are di�erent depending on whether or not `-g' is also speci�ed.

To avoid this behavior, specify `-gstabs+' and use GDB instead of DBX. DEC
is now aware of this problem with the assembler and hopes to provide a �x
shortly.

`arc-*-elf'
Argonaut ARC processor. This con�guration is intended for embedded systems.

`arm-*-aout'
Advanced RISC Machines ARM-family processors. These are often used in em-
bedded applications. There are no standard Unix con�gurations. This con�gu-
ration corresponds to the basic instruction sequences and will produce `a.out'
format object modules.

You may need to make a variant of the �le `arm.h' for your particular con�gu-
ration.

`arm-*-linuxaout'
Any of the ARM family processors running the Linux-based GNU system with
the `a.out' binary format (ELF is not yet supported). You must use version
2.8.1.0.7 or later of the GNU/Linux binutils, which you can download from
`sunsite.unc.edu:/pub/Linux/GCC' and other mirror sites for Linux-based
GNU systems.

`arm-*-riscix'
The ARM2 or ARM3 processor running RISC iX, Acorn's port of BSD Unix.
If you are running a version of RISC iX prior to 1.2 then you must specify the
version number during con�guration. Note that the assembler shipped with
RISC iX does not support stabs debugging information; a new version of the
assembler, with stabs support included, is now available from Acorn and via ftp
`ftp.acorn.com:/pub/riscix/as+xterm.tar.Z'. To enable stabs debugging,
pass `--with-gnu-as' to con�gure.

You will need to install GNU `sed' before you can run con�gure.

`a29k' AMD Am29k-family processors. These are normally used in embedded ap-
plications. There are no standard Unix con�gurations. This con�guration
corresponds to AMD's standard calling sequence and binary interface and is
compatible with other 29k tools.

You may need to make a variant of the �le `a29k.h' for your particular con�g-
uration.

`a29k-*-bsd'
AMD Am29050 used in a system running a variant of BSD Unix.

`decstation-*'
MIPS-based DECstations can support three di�erent personalities: Ultrix, DEC
OSF/1, and OSF/rose. (Alpha-based DECstation products have a con�gura-
tion name beginning with `alpha-dec'.) To con�gure GCC for these platforms
use the following con�gurations:

Chapter 3: Installing GNU CC 115

`decstation-ultrix'
Ultrix con�guration.

`decstation-osf1'
Dec's version of OSF/1.

`decstation-osfrose'
Open Software Foundation reference port of OSF/1 which uses
the OSF/rose object �le format instead of ECOFF. Normally, you
would not select this con�guration.

The MIPS C compiler needs to be told to increase its table size for switch
statements with the `-Wf,-XNg1500' option in order to compile `cp/parse.c'.
If you use the `-O2' optimization option, you also need to use `-Olimit 3000'.
Both of these options are automatically generated in the `Makefile' that the
shell script `configure' builds. If you override the CC make variable and use
the MIPS compilers, you may need to add `-Wf,-XNg1500 -Olimit 3000'.

`elxsi-elxsi-bsd'
The Elxsi's C compiler has known limitations that prevent it from compiling
GNU C. Please contact mrs@cygnus.com for more details.

`dsp16xx' A port to the AT&T DSP1610 family of processors.

`h8300-*-*'
Hitachi H8/300 series of processors.

The calling convention and structure layout has changed in release 2.6. All
code must be recompiled. The calling convention now passes the �rst three
arguments in function calls in registers. Structures are no longer a multiple of
2 bytes.

`hppa*-*-*'
There are several variants of the HP-PA processor which run a variety of oper-
ating systems. GNU CC must be con�gured to use the correct processor type
and operating system, or GNU CC will not function correctly. The easiest way
to handle this problem is to not specify a target when con�guring GNU CC,
the `configure' script will try to automatically determine the right processor
type and operating system.

`-g' does not work on HP-UX, since that system uses a peculiar debugging
format which GNU CC does not know about. However, `-g' will work if you
also use GAS and GDB in conjunction with GCC. We highly recommend using
GAS for all HP-PA con�gurations.

You should be using GAS-2.6 (or later) along with GDB-4.16 (or later). These
can be retrieved from all the traditional GNU ftp archive sites.

On some versions of HP-UX, you will need to install GNU `sed'.

You will need to be install GAS into a directory before /bin, /usr/bin, and
/usr/ccs/bin in your search path. You should install GAS before you build
GNU CC.

To enable debugging, you must con�gure GNU CC with the `--with-gnu-as'
option before building.

116 Using the GNU Compiler Collection

`i370-*-*'
This port is very preliminary and has many known bugs. We hope to have a
higher-quality port for this machine soon.

`i386-*-linux-gnuoldld'
Use this con�guration to generate `a.out' binaries on Linux-based GNU systems
if you do not have gas/binutils version 2.5.2 or later installed. This is an obsolete
con�guration.

`i386-*-linux-gnuaout'
Use this con�guration to generate `a.out' binaries on Linux-based GNU sys-
tems. This con�guration is being superseded. You must use gas/binutils version
2.5.2 or later.

`i386-*-linux-gnu'
Use this con�guration to generate ELF binaries on Linux-based GNU systems.
You must use gas/binutils version 2.5.2 or later.

`i386-*-sco'
Compilation with RCC is recommended. Also, it may be a good idea to link
with GNU malloc instead of the malloc that comes with the system.

`i386-*-sco3.2v4'
Use this con�guration for SCO release 3.2 version 4.

`i386-*-sco3.2v5*'
Use this for the SCO OpenServer Release family including 5.0.0, 5.0.2, 5.0.4,
5.0.5, Internet FastStart 1.0, and Internet FastStart 1.1.

GNU CC can generate COFF binaries if you specify `-mcoff' or ELF binaries,
the default. A full `make bootstrap' is recommended so that an ELF compiler
that builds ELF is generated.

You must have TLS597 from ftp://ftp.sco.com/TLS installed for ELF C++
binaries to work correctly on releases before 5.0.4.

The native SCO assembler that is provided with the OS at no charge is normally
required. If, however, you must be able to use the GNU assembler (perhaps
you have complex asms) you must con�gure this package `--with-gnu-as'. To
do this, install (cp or symlink) gcc/as to your copy of the GNU assembler. You
must use a recent version of GNU binutils; version 2.9.1 seems to work well.
If you select this option, you will be unable to build COFF images. Trying to
do so will result in non-obvious failures. In general, the "{with-gnu-as" option
isn't as well tested as the native assembler.

NOTE: If you are building C++, you must follow the instructions about in-
voking `make bootstrap' because the native OpenServer compiler may build a
`cc1plus' that will not correctly parse many valid C++ programs. You must do
a `make bootstrap' if you are building with the native compiler.

`i386-*-isc'
It may be a good idea to link with GNU malloc instead of the malloc that
comes with the system.

In ISC version 4.1, `sed' core dumps when building `deduced.h'. Use the version
of `sed' from version 4.0.

Chapter 3: Installing GNU CC 117

`i386-*-esix'
It may be good idea to link with GNU malloc instead of the malloc that comes
with the system.

`i386-ibm-aix'
You need to use GAS version 2.1 or later, and LD from GNU binutils version
2.2 or later.

`i386-sequent-bsd'
Go to the Berkeley universe before compiling.

`i386-sequent-ptx1*'
`i386-sequent-ptx2*'

You must install GNU `sed' before running `configure'.

`i386-sun-sunos4'
You may �nd that you need another version of GNU CC to begin bootstrapping
with, since the current version when built with the system's own compiler seems
to get an in�nite loop compiling part of `libgcc2.c'. GNU CC version 2
compiled with GNU CC (any version) seems not to have this problem.

See Section 3.5 [Sun Install], page 131, for information on installing GNU CC
on Sun systems.

`i[345]86-*-winnt3.5'
This version requires a GAS that has not yet been released. Until it is, you can
get a prebuilt binary version via anonymous ftp from `cs.washington.edu:pub/gnat'
or `cs.nyu.edu:pub/gnat'. You must also use the Microsoft header �les from
the Windows NT 3.5 SDK. Find these on the CDROM in the `/mstools/h'
directory dated 9/4/94. You must use a �xed version of Microsoft linker made
especially for NT 3.5, which is also is available on the NT 3.5 SDK CDROM.
If you do not have this linker, can you also use the linker from Visual C/C++
1.0 or 2.0.

Installing GNU CC for NT builds a wrapper linker, called `ld.exe', which
mimics the behaviour of Unix `ld' in the speci�cation of libraries (`-L' and `-l').
`ld.exe' looks for both Unix and Microsoft named libraries. For example, if you
specify `-lfoo', `ld.exe' will look �rst for `libfoo.a' and then for `foo.lib'.

You may install GNU CC for Windows NT in one of two ways, depending on
whether or not you have a Unix-like shell and various Unix-like utilities.

1. If you do not have a Unix-like shell and few Unix-like utilities, you will use
a DOS style batch script called `configure.bat'. Invoke it as configure
winnt from an MSDOS console window or from the program manager
dialog box. `configure.bat' assumes you have already installed and have
in your path a Unix-like `sed' program which is used to create a working
`Makefile' from `Makefile.in'.

`Makefile' uses the Microsoft Nmake program maintenance utility and
the Visual C/C++ V8.00 compiler to build GNU CC. You need only have
the utilities `sed' and `touch' to use this installation method, which only
automatically builds the compiler itself. You must then examine what

118 Using the GNU Compiler Collection

`fixinc.winnt' does, edit the header �les by hand and build `libgcc.a'
manually.

2. The second type of installation assumes you are running a Unix-like shell,
have a complete suite of Unix-like utilities in your path, and have a previous
version of GNU CC already installed, either through building it via the
above installation method or acquiring a pre-built binary. In this case, use
the `configure' script in the normal fashion.

`i860-intel-osf1'
This is the Paragon. If you have version 1.0 of the operating system, see Sec-
tion 7.2 [Installation Problems], page 193, for special things you need to do to
compensate for peculiarities in the system.

`*-lynx-lynxos'
LynxOS 2.2 and earlier comes with GNU CC 1.x already installed as `/bin/gcc'.
You should compile with this instead of `/bin/cc'. You can tell GNU CC to use
the GNU assembler and linker, by specifying `--with-gnu-as --with-gnu-ld'
when con�guring. These will produce COFF format object �les and executa-
bles; otherwise GNU CC will use the installed tools, which produce `a.out'
format executables.

`m32r-*-elf'
Mitsubishi M32R processor. This con�guration is intended for embedded sys-
tems.

`m68000-hp-bsd'
HP 9000 series 200 running BSD. Note that the C compiler that comes with
this system cannot compile GNU CC; contact law@cygnus.com to get binaries
of GNU CC for bootstrapping.

`m68k-altos'
Altos 3068. You must use the GNU assembler, linker and debugger. Also, you
must �x a kernel bug. Details in the �le `README.ALTOS'.

`m68k-apple-aux'
Apple Macintosh running A/UX. You may con�gure GCC to use either the sys-
tem assembler and linker or the GNU assembler and linker. You should use the
GNU con�guration if you can, especially if you also want to use GNU C++. You
enabled that con�guration with + the `--with-gnu-as' and `--with-gnu-ld'
options to configure.

Note the C compiler that comes with this system cannot compile GNU CC. You
can �nd binaries of GNU CC for bootstrapping on jagubox.gsfc.nasa.gov.
You will also a patched version of `/bin/ld' there that raises some of the arbi-
trary limits found in the original.

`m68k-att-sysv'
AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to compile GNU CC
with this machine's standard C compiler, due to bugs in that compiler. You can
bootstrap it more easily with previous versions of GNU CC if you have them.

Chapter 3: Installing GNU CC 119

Installing GNU CC on the 3b1 is diÆcult if you do not already have GNU
CC running, due to bugs in the installed C compiler. However, the following
procedure might work. We are unable to test it.

1. Comment out the `#include "config.h"' line near the start of `cccp.c'
and do `make cpp'. This makes a preliminary version of GNU cpp.

2. Save the old `/lib/cpp' and copy the preliminary GNU cpp to that �le
name.

3. Undo your change in `cccp.c', or reinstall the original version, and do
`make cpp' again.

4. Copy this �nal version of GNU cpp into `/lib/cpp'.

5. Replace every occurrence of obstack_free in the �le `tree.c' with _

obstack_free.

6. Run make to get the �rst-stage GNU CC.

7. Reinstall the original version of `/lib/cpp'.

8. Now you can compile GNU CC with itself and install it in the normal
fashion.

`m68k-bull-sysv'
Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-2.01. GNU CC
works either with native assembler or GNU assembler. You can use GNU as-
sembler with native co� generation by providing `--with-gnu-as' to the con-
�gure script or use GNU assembler with dbx-in-co� encapsulation by providing
`--with-gnu-as --stabs'. For any problem with native assembler or for avail-
ability of the DPX/2 port of GAS, contact F.Pierresteguy@frcl.bull.fr.

`m68k-crds-unox'
Use `configure unos' for building on Unos.

The Unos assembler is named casm instead of as. For some strange reason
linking `/bin/as' to `/bin/casm' changes the behavior, and does not work. So,
when installing GNU CC, you should install the following script as `as' in the
subdirectory where the passes of GCC are installed:

#!/bin/sh
casm $*

The default Unos library is named `libunos.a' instead of `libc.a'. To allow
GNU CC to function, either change all references to `-lc' in `gcc.c' to `-lunos'
or link `/lib/libc.a' to `/lib/libunos.a'.

When compiling GNU CC with the standard compiler, to overcome bugs in the
support of alloca, do not use `-O' when making stage 2. Then use the stage
2 compiler with `-O' to make the stage 3 compiler. This compiler will have
the same characteristics as the usual stage 2 compiler on other systems. Use
it to make a stage 4 compiler and compare that with stage 3 to verify proper
compilation.

(Perhaps simply de�ning ALLOCA in `x-crds' as described in the comments there
will make the above paragraph superuous. Please inform us of whether this
works.)

120 Using the GNU Compiler Collection

Unos uses memory segmentation instead of demand paging, so you will need
a lot of memory. 5 Mb is barely enough if no other tasks are running. If
linking `cc1' fails, try putting the object �les into a library and linking from
that library.

`m68k-hp-hpux'
HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0 has a bug
in the assembler that prevents compilation of GNU CC. To �x it, get patch
PHCO 4484 from HP.

In addition, if you wish to use gas `--with-gnu-as' you must use gas version
2.1 or later, and you must use the GNU linker version 2.1 or later. Earlier
versions of gas relied upon a program which converted the gas output into the
native HP-UX format, but that program has not been kept up to date. gdb
does not understand that native HP-UX format, so you must use gas if you
wish to use gdb.

`m68k-sun'
Sun 3. We do not provide a con�guration �le to use the Sun FPA by default, be-
cause programs that establish signal handlers for oating point traps inherently
cannot work with the FPA.

See Section 3.5 [Sun Install], page 131, for information on installing GNU CC
on Sun systems.

`m88k-*-svr3'
Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference port. These
systems tend to use the Green Hills C, revision 1.8.5, as the standard C compiler.
There are apparently bugs in this compiler that result in object �les di�erences
between stage 2 and stage 3. If this happens, make the stage 4 compiler and
compare it to the stage 3 compiler. If the stage 3 and stage 4 object �les
are identical, this suggests you encountered a problem with the standard C
compiler; the stage 3 and 4 compilers may be usable.

It is best, however, to use an older version of GNU CC for bootstrapping if you
have one.

`m88k-*-dgux'
Motorola m88k running DG/UX. To build 88open BCS native or cross com-
pilers on DG/UX, specify the con�guration name as `m88k-*-dguxbcs' and
build in the 88open BCS software development environment. To build ELF
native or cross compilers on DG/UX, specify `m88k-*-dgux' and build in the
DG/UX ELF development environment. You set the software development en-
vironment by issuing `sde-target' command and specifying either `m88kbcs'
or `m88kdguxelf' as the operand.

If you do not specify a con�guration name, `configure' guesses the con�gura-
tion based on the current software development environment.

`m88k-tektronix-sysv3'
Tektronix XD88 running UTekV 3.2e. Do not turn on optimization while build-
ing stage1 if you bootstrap with the buggy Green Hills compiler. Also, The

Chapter 3: Installing GNU CC 121

bundled LAI System V NFS is buggy so if you build in an NFS mounted direc-
tory, start from a fresh reboot, or avoid NFS all together. Otherwise you may
have trouble getting clean comparisons between stages.

`mips-mips-bsd'
MIPS machines running the MIPS operating system in BSD mode. It's possible
that some old versions of the system lack the functions memcpy, memcmp, and
memset. If your system lacks these, you must remove or undo the de�nition of
TARGET_MEM_FUNCTIONS in `mips-bsd.h'.

The MIPS C compiler needs to be told to increase its table size for switch
statements with the `-Wf,-XNg1500' option in order to compile `cp/parse.c'.
If you use the `-O2' optimization option, you also need to use `-Olimit 3000'.
Both of these options are automatically generated in the `Makefile' that the
shell script `configure' builds. If you override the CC make variable and use
the MIPS compilers, you may need to add `-Wf,-XNg1500 -Olimit 3000'.

`mips-mips-riscos*'
The MIPS C compiler needs to be told to increase its table size for switch
statements with the `-Wf,-XNg1500' option in order to compile `cp/parse.c'.
If you use the `-O2' optimization option, you also need to use `-Olimit 3000'.
Both of these options are automatically generated in the `Makefile' that the
shell script `configure' builds. If you override the CC make variable and use
the MIPS compilers, you may need to add `-Wf,-XNg1500 -Olimit 3000'.

MIPS computers running RISC-OS can support four di�erent personalities:
default, BSD 4.3, System V.3, and System V.4 (older versions of RISC-OS
don't support V.4). To con�gure GCC for these platforms use the following
con�gurations:

`mips-mips-riscosrev'
Default con�guration for RISC-OS, revision rev.

`mips-mips-riscosrevbsd'
BSD 4.3 con�guration for RISC-OS, revision rev.

`mips-mips-riscosrevsysv4'
System V.4 con�guration for RISC-OS, revision rev.

`mips-mips-riscosrevsysv'
System V.3 con�guration for RISC-OS, revision rev.

The revision rev mentioned above is the revision of RISC-OS to use. You must
recon�gure GCC when going from a RISC-OS revision 4 to RISC-OS revision
5. This has the e�ect of avoiding a linker bug (see Section 7.2 [Installation
Problems], page 193, for more details).

`mips-sgi-*'
In order to compile GCC on an SGI running IRIX 4, the "c.hdr.lib" option
must be installed from the CD-ROM supplied from Silicon Graphics. This is
found on the 2nd CD in release 4.0.1.

In order to compile GCC on an SGI running IRIX 5, the "compiler dev.hdr"
subsystem must be installed from the IDO CD-ROM supplied by Silicon Graph-
ics.

122 Using the GNU Compiler Collection

make compare may fail on version 5 of IRIX unless you add `-save-temps' to
CFLAGS. On these systems, the name of the assembler input �le is stored in the
object �le, and that makes comparison fail if it di�ers between the stage1 and
stage2 compilations. The option `-save-temps' forces a �xed name to be used
for the assembler input �le, instead of a randomly chosen name in `/tmp'. Do
not add `-save-temps' unless the comparisons fail without that option. If you
do you `-save-temps', you will have to manually delete the `.i' and `.s' �les
after each series of compilations.

The MIPS C compiler needs to be told to increase its table size for switch
statements with the `-Wf,-XNg1500' option in order to compile `cp/parse.c'.
If you use the `-O2' optimization option, you also need to use `-Olimit 3000'.
Both of these options are automatically generated in the `Makefile' that the
shell script `configure' builds. If you override the CC make variable and use
the MIPS compilers, you may need to add `-Wf,-XNg1500 -Olimit 3000'.

On Irix version 4.0.5F, and perhaps on some other versions as well, there is an
assembler bug that reorders instructions incorrectly. To work around it, specify
the target con�guration `mips-sgi-irix4loser'. This con�guration inhibits
assembler optimization.

In a compiler con�gured with target `mips-sgi-irix4', you can turn o� as-
sembler optimization by using the `-noasmopt' option. This compiler option
passes the option `-O0' to the assembler, to inhibit reordering.

The `-noasmopt' option can be useful for testing whether a problem is due
to erroneous assembler reordering. Even if a problem does not go away with
`-noasmopt', it may still be due to assembler reordering|perhaps GNU CC
itself was miscompiled as a result.

To enable debugging under Irix 5, you must use GNU as 2.5 or later, and use the
`--with-gnu-as' con�gure option when con�guring gcc. GNU as is distributed
as part of the binutils package.

`mips-sony-sysv'
Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in 5.0.2 (which uses
ELF instead of COFF). Support for 5.0.2 will probably be provided soon by
volunteers. In particular, the linker does not like the code generated by GCC
when shared libraries are linked in.

`ns32k-encore'
Encore ns32000 system. Encore systems are supported only under BSD.

`ns32k-*-genix'
National Semiconductor ns32000 system. Genix has bugs in alloca and
malloc; you must get the compiled versions of these from GNU Emacs.

`ns32k-sequent'
Go to the Berkeley universe before compiling.

`ns32k-utek'
UTEK ns32000 system (\merlin"). The C compiler that comes with this system
cannot compile GNU CC; contact `tektronix!reed!mason' to get binaries of
GNU CC for bootstrapping.

Chapter 3: Installing GNU CC 123

`romp-*-aos'
`romp-*-mach'

The only operating systems supported for the IBM RT PC are AOS and MACH.
GNU CC does not support AIX running on the RT. We recommend you compile
GNU CC with an earlier version of itself; if you compile GNU CC with hc, the
Metaware compiler, it will work, but you will get mismatches between the stage
2 and stage 3 compilers in various �les. These errors are minor di�erences in
some oating-point constants and can be safely ignored; the stage 3 compiler
is correct.

`rs6000-*-aix'
`powerpc-*-aix'

Various early versions of each release of the IBM XLC compiler will not boot-
strap GNU CC. Symptoms include di�erences between the stage2 and stage3
object �les, and errors when compiling `libgcc.a' or `enquire'. Known prob-
lematic releases include: xlc-1.2.1.8, xlc-1.3.0.0 (distributed with AIX 3.2.5),
and xlc-1.3.0.19. Both xlc-1.2.1.28 and xlc-1.3.0.24 (PTF 432238) are known to
produce working versions of GNU CC, but most other recent releases correctly
bootstrap GNU CC.

Release 4.3.0 of AIX and ones prior to AIX 3.2.4 include a version of the IBM
assembler which does not accept debugging directives: assembler updates are
available as PTFs. Also, if you are using AIX 3.2.5 or greater and the GNU
assembler, you must have a version modi�ed after October 16th, 1995 in order
for the GNU C compiler to build. See the �le `README.RS6000' for more details
on any of these problems.

GNU CC does not yet support the 64-bit PowerPC instructions.

Objective C does not work on this architecture because it makes assumptions
that are incompatible with the calling conventions.

AIX on the RS/6000 provides support (NLS) for environments outside of the
United States. Compilers and assemblers use NLS to support locale-speci�c
representations of various objects including oating-point numbers ("." vs ","
for separating decimal fractions). There have been problems reported where
the library linked with GNU CC does not produce the same oating-point
formats that the assembler accepts. If you have this problem, set the LANG
environment variable to "C" or "En US".

Due to changes in the way that GNU CC invokes the binder (linker) for AIX
4.1, you may now receive warnings of duplicate symbols from the link step that
were not reported before. The assembly �les generated by GNU CC for AIX
have always included multiple symbol de�nitions for certain global variable and
function declarations in the original program. The warnings should not prevent
the linker from producing a correct library or runnable executable.

By default, AIX 4.1 produces code that can be used on either Power or PowerPC
processors.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type.

124 Using the GNU Compiler Collection

`powerpc-*-elf'
`powerpc-*-sysv4'

PowerPC system in big endian mode, running System V.4.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type.

`powerpc-*-linux-gnu'
PowerPC system in big endian mode, running the Linux-based GNU system.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type.

`powerpc-*-eabiaix'
Embedded PowerPC system in big endian mode with -mcall-aix selected as the
default.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type.

`powerpc-*-eabisim'
Embedded PowerPC system in big endian mode for use in running under the
PSIM simulator.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type.

`powerpc-*-eabi'
Embedded PowerPC system in big endian mode.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type.

`powerpcle-*-elf'
`powerpcle-*-sysv4'

PowerPC system in little endian mode, running System V.4.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type.

`powerpcle-*-solaris2*'
PowerPC system in little endian mode, running Solaris 2.5.1 or higher.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type. Beta versions of the Sun 4.0 compiler
do not seem to be able to build GNU CC correctly. There are also problems
with the host assembler and linker that are �xed by using the GNU versions of
these tools.

`powerpcle-*-eabisim'
Embedded PowerPC system in little endian mode for use in running under the
PSIM simulator.

`powerpcle-*-eabi'
Embedded PowerPC system in little endian mode.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type.

Chapter 3: Installing GNU CC 125

`powerpcle-*-winnt'
`powerpcle-*-pe'

PowerPC system in little endian mode running Windows NT.

You can specify a default version for the `-mcpu='cpu type switch by using the
con�gure option `--with-cpu-'cpu type.

`vax-dec-ultrix'
Don't try compiling with Vax C (vcc). It produces incorrect code in some cases
(for example, when alloca is used).

Meanwhile, compiling `cp/parse.c' with pcc does not work because of an inter-
nal table size limitation in that compiler. To avoid this problem, compile just
the GNU C compiler �rst, and use it to recompile building all the languages
that you want to run.

`sparc-sun-*'
See Section 3.5 [Sun Install], page 131, for information on installing GNU CC
on Sun systems.

`vax-dec-vms'
See Section 3.6 [VMS Install], page 131, for details on how to install GNU CC
on VMS.

`we32k-*-*'
These computers are also known as the 3b2, 3b5, 3b20 and other similar
names. (However, the 3b1 is actually a 68000; see Section 3.2 [Con�gurations],
page 111.)

Don't use `-g' when compiling with the system's compiler. The system's linker
seems to be unable to handle such a large program with debugging information.

The system's compiler runs out of capacity when compiling `stmt.c' in GNU
CC. You can work around this by building `cpp' in GNU CC �rst, then use that
instead of the system's preprocessor with the system's C compiler to compile
`stmt.c'. Here is how:

mv /lib/cpp /lib/cpp.att
cp cpp /lib/cpp.gnu
echo '/lib/cpp.gnu -traditional ${1+"$@"}' > /lib/cpp
chmod +x /lib/cpp

The system's compiler produces bad code for some of the GNU CC optimization
�les. So you must build the stage 2 compiler without optimization. Then build
a stage 3 compiler with optimization. That executable should work. Here are
the necessary commands:

make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
make stage2
make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"

You may need to raise the ULIMIT setting to build a C++ compiler, as the �le
`cc1plus' is larger than one megabyte.

126 Using the GNU Compiler Collection

3.3 Compilation in a Separate Directory

If you wish to build the object �les and executables in a directory other than the one
containing the source �les, here is what you must do di�erently:

1. Make sure you have a version of Make that supports the VPATH feature. (GNU Make
supports it, as do Make versions on most BSD systems.)

2. If you have ever run `configure' in the source directory, you must undo the con�gu-
ration. Do this by running:

make distclean

3. Go to the directory in which you want to build the compiler before running `configure':

mkdir gcc-sun3
cd gcc-sun3

On systems that do not support symbolic links, this directory must be on the same �le
system as the source code directory.

4. Specify where to �nd `configure' when you run it:

../gcc/configure ...

This also tells configure where to �nd the compiler sources; configure takes the
directory from the �le name that was used to invoke it. But if you want to be sure,
you can specify the source directory with the `--srcdir' option, like this:

../gcc/configure --srcdir=../gcc other options

The directory you specify with `--srcdir' need not be the same as the one that
configure is found in.

Now, you can run make in that directory. You need not repeat the con�guration steps
shown above, when ordinary source �les change. You must, however, run configure again
when the con�guration �les change, if your system does not support symbolic links.

3.4 Building and Installing a Cross-Compiler

GNU CC can function as a cross-compiler for many machines, but not all.

� Cross-compilers for the Mips as target using the Mips assembler currently do not work,
because the auxiliary programs `mips-tdump.c' and `mips-tfile.c' can't be compiled
on anything but a Mips. It does work to cross compile for a Mips if you use the GNU
assembler and linker.

� Cross-compilers between machines with di�erent oating point formats have not all
been made to work. GNU CC now has a oating point emulator with which these can
work, but each target machine description needs to be updated to take advantage of it.

� Cross-compilation between machines of di�erent word sizes is somewhat problematic
and sometimes does not work.

Since GNU CC generates assembler code, you probably need a cross-assembler that GNU
CC can run, in order to produce object �les. If you want to link on other than the target
machine, you need a cross-linker as well. You also need header �les and libraries suitable
for the target machine that you can install on the host machine.

Chapter 3: Installing GNU CC 127

3.4.1 Steps of Cross-Compilation

To compile and run a program using a cross-compiler involves several steps:

� Run the cross-compiler on the host machine to produce assembler �les for the target
machine. This requires header �les for the target machine.

� Assemble the �les produced by the cross-compiler. You can do this either with an
assembler on the target machine, or with a cross-assembler on the host machine.

� Link those �les to make an executable. You can do this either with a linker on the
target machine, or with a cross-linker on the host machine. Whichever machine you
use, you need libraries and certain startup �les (typically `crt....o') for the target
machine.

It is most convenient to do all of these steps on the same host machine, since then you
can do it all with a single invocation of GNU CC. This requires a suitable cross-assembler
and cross-linker. For some targets, the GNU assembler and linker are available.

3.4.2 Con�guring a Cross-Compiler

To build GNU CC as a cross-compiler, you start out by running `configure'. Use the
`--target=target' to specify the target type. If `configure' was unable to correctly identify
the system you are running on, also specify the `--build=build' option. For example, here
is how to con�gure for a cross-compiler that produces code for an HP 68030 system running
BSD on a system that `configure' can correctly identify:

./configure --target=m68k-hp-bsd4.3

3.4.3 Tools and Libraries for a Cross-Compiler

If you have a cross-assembler and cross-linker available, you should install them now.
Put them in the directory `/usr/local/target/bin'. Here is a table of the tools you should
put in this directory:

`as' This should be the cross-assembler.

`ld' This should be the cross-linker.

`ar' This should be the cross-archiver: a program which can manipulate archive �les
(linker libraries) in the target machine's format.

`ranlib' This should be a program to construct a symbol table in an archive �le.

The installation of GNU CC will �nd these programs in that directory, and copy or link
them to the proper place to for the cross-compiler to �nd them when run later.

The easiest way to provide these �les is to build the Binutils package and GAS. Con�gure
them with the same `--host' and `--target' options that you use for con�guring GNU CC,
then build and install them. They install their executables automatically into the proper
directory. Alas, they do not support all the targets that GNU CC supports.

If you want to install libraries to use with the cross-compiler, such as a standard C
library, put them in the directory `/usr/local/target/lib'; installation of GNU CC copies
all the �les in that subdirectory into the proper place for GNU CC to �nd them and link
with them. Here's an example of copying some libraries from a target machine:

128 Using the GNU Compiler Collection

ftp target-machine
lcd /usr/local/target/lib
cd /lib
get libc.a
cd /usr/lib
get libg.a
get libm.a
quit

The precise set of libraries you'll need, and their locations on the target machine, vary
depending on its operating system.

Many targets require \start �les" such as `crt0.o' and `crtn.o' which are linked into
each executable; these too should be placed in `/usr/local/target/lib'. There may be
several alternatives for `crt0.o', for use with pro�ling or other compilation options. Check
your target's de�nition of STARTFILE_SPEC to �nd out what start �les it uses. Here's an
example of copying these �les from a target machine:

ftp target-machine
lcd /usr/local/target/lib
prompt
cd /lib
mget *crt*.o
cd /usr/lib
mget *crt*.o
quit

3.4.4 `libgcc.a' and Cross-Compilers

Code compiled by GNU CC uses certain runtime support functions implicitly. Some
of these functions can be compiled successfully with GNU CC itself, but a few cannot be.
These problem functions are in the source �le `libgcc1.c'; the library made from them is
called `libgcc1.a'.

When you build a native compiler, these functions are compiled with some other
compiler{the one that you use for bootstrapping GNU CC. Presumably it knows how to
open code these operations, or else knows how to call the run-time emulation facilities that
the machine comes with. But this approach doesn't work for building a cross-compiler.
The compiler that you use for building knows about the host system, not the target system.

So, when you build a cross-compiler you have to supply a suitable library `libgcc1.a'
that does the job it is expected to do.

To compile `libgcc1.c' with the cross-compiler itself does not work. The functions in
this �le are supposed to implement arithmetic operations that GNU CC does not know how
to open code for your target machine. If these functions are compiled with GNU CC itself,
they will compile into in�nite recursion.

On any given target, most of these functions are not needed. If GNU CC can open
code an arithmetic operation, it will not call these functions to perform the operation. It
is possible that on your target machine, none of these functions is needed. If so, you can
supply an empty library as `libgcc1.a'.

Many targets need library support only for multiplication and division. If you are linking
with a library that contains functions for multiplication and division, you can tell GNU CC

Chapter 3: Installing GNU CC 129

to call them directly by de�ning the macros MULSI3_LIBCALL, and the like. These macros
need to be de�ned in the target description macro �le. For some targets, they are de�ned
already. This may be suÆcient to avoid the need for libgcc1.a; if so, you can supply an
empty library.

Some targets do not have oating point instructions; they need other functions in
`libgcc1.a', which do oating arithmetic. Recent versions of GNU CC have a �le which
emulates oating point. With a certain amount of work, you should be able to construct
a oating point emulator that can be used as `libgcc1.a'. Perhaps future versions will
contain code to do this automatically and conveniently. That depends on whether someone
wants to implement it.

Some embedded targets come with all the necessary `libgcc1.a' routines written in C
or assembler. These targets build `libgcc1.a' automatically and you do not need to do
anything special for them. Other embedded targets do not need any `libgcc1.a' routines
since all the necessary operations are supported by the hardware.

If your target system has another C compiler, you can con�gure GNU CC as a native
compiler on that machine, build just `libgcc1.a' with `make libgcc1.a' on that machine,
and use the resulting �le with the cross-compiler. To do this, execute the following on the
target machine:

cd target-build-dir
./configure --host=sparc --target=sun3
make libgcc1.a

And then this on the host machine:

ftp target-machine
binary
cd target-build-dir
get libgcc1.a
quit

Another way to provide the functions you need in `libgcc1.a' is to de�ne the appropriate
perform_... macros for those functions. If these de�nitions do not use the C arithmetic
operators that they are meant to implement, you should be able to compile them with the
cross-compiler you are building. (If these de�nitions already exist for your target �le, then
you are all set.)

To build `libgcc1.a' using the performmacros, use `LIBGCC1=libgcc1.a OLDCC=./xgcc'
when building the compiler. Otherwise, you should place your replacement library under
the name `libgcc1.a' in the directory in which you will build the cross-compiler, before
you run make.

3.4.5 Cross-Compilers and Header Files

If you are cross-compiling a standalone program or a program for an embedded system,
then you may not need any header �les except the few that are part of GNU CC (and those
of your program). However, if you intend to link your program with a standard C library
such as `libc.a', then you probably need to compile with the header �les that go with the
library you use.

The GNU C compiler does not come with these �les, because (1) they are system-speci�c,
and (2) they belong in a C library, not in a compiler.

130 Using the GNU Compiler Collection

If the GNU C library supports your target machine, then you can get the header �les
from there (assuming you actually use the GNU library when you link your program).

If your target machine comes with a C compiler, it probably comes with suitable header
�les also. If you make these �les accessible from the host machine, the cross-compiler can
use them also.

Otherwise, you're on your own in �nding header �les to use when cross-compiling.

When you have found suitable header �les, put them in the directory `/usr/local/target/include',
before building the cross compiler. Then installation will run �xincludes properly and install
the corrected versions of the header �les where the compiler will use them.

Provide the header �les before you build the cross-compiler, because the build stage
actually runs the cross-compiler to produce parts of `libgcc.a'. (These are the parts that
can be compiled with GNU CC.) Some of them need suitable header �les.

Here's an example showing how to copy the header �les from a target machine. On the
target machine, do this:

(cd /usr/include; tar cf - .) > tarfile

Then, on the host machine, do this:

ftp target-machine
lcd /usr/local/target/include
get tarfile
quit
tar xf tarfile

3.4.6 Actually Building the Cross-Compiler

Now you can proceed just as for compiling a single-machine compiler through the step
of building stage 1. If you have not provided some sort of `libgcc1.a', then compilation
will give up at the point where it needs that �le, printing a suitable error message. If you
do provide `libgcc1.a', then building the compiler will automatically compile and link a
test program called `libgcc1-test'; if you get errors in the linking, it means that not all
of the necessary routines in `libgcc1.a' are available.

You must provide the header �le `float.h'. One way to do this is to compile `enquire'
and run it on your target machine. The job of `enquire' is to run on the target machine and
�gure out by experiment the nature of its oating point representation. `enquire' records
its �ndings in the header �le `float.h'. If you can't produce this �le by running `enquire'
on the target machine, then you will need to come up with a suitable `float.h' in some
other way (or else, avoid using it in your programs).

Do not try to build stage 2 for a cross-compiler. It doesn't work to rebuild GNU CC as
a cross-compiler using the cross-compiler, because that would produce a program that runs
on the target machine, not on the host. For example, if you compile a 386-to-68030 cross-
compiler with itself, the result will not be right either for the 386 (because it was compiled
into 68030 code) or for the 68030 (because it was con�gured for a 386 as the host). If you
want to compile GNU CC into 68030 code, whether you compile it on a 68030 or with a
cross-compiler on a 386, you must specify a 68030 as the host when you con�gure it.

To install the cross-compiler, use `make install', as usual.

Chapter 3: Installing GNU CC 131

3.5 Installing GNU CC on the Sun

On Solaris, do not use the linker or other tools in `/usr/ucb' to build GNU CC. Use
/usr/ccs/bin.

If the assembler reports `Error: misaligned data' when bootstrapping, you are proba-
bly using an obsolete version of the GNU assembler. Upgrade to the latest version of GNU
binutils, or use the Solaris assembler.

Make sure the environment variable FLOAT_OPTION is not set when you compile
`libgcc.a'. If this option were set to f68881 when `libgcc.a' is compiled, the result-
ing code would demand to be linked with a special startup �le and would not link properly
without special pains.

There is a bug in alloca in certain versions of the Sun library. To avoid this bug, install
the binaries of GNU CC that were compiled by GNU CC. They use alloca as a built-in
function and never the one in the library.

Some versions of the Sun compiler crash when compiling GNU CC. The problem is
a segmentation fault in cpp. This problem seems to be due to the bulk of data in the
environment variables. You may be able to avoid it by using the following command to
compile GNU CC with Sun CC:

make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"

SunOS 4.1.3 and 4.1.3 U1 have bugs that can cause intermittent core dumps when com-
piling GNU CC. A common symptom is an internal compiler error which does not recur if
you run it again. To �x the problem, install Sun recommended patch 100726 (for SunOS
4.1.3) or 101508 (for SunOS 4.1.3 U1), or upgrade to a later SunOS release.

3.6 Installing GNU CC on VMS

The VMS version of GNU CC is distributed in a backup saveset containing both source
code and precompiled binaries.

To install the `gcc' command so you can use the compiler easily, in the same manner as
you use the VMS C compiler, you must install the VMS CLD �le for GNU CC as follows:

1. De�ne the VMS logical names `GNU_CC' and `GNU_CC_INCLUDE' to point to the directo-
ries where the GNU CC executables (`gcc-cpp.exe', `gcc-cc1.exe', etc.) and the C
include �les are kept respectively. This should be done with the commands:

$ assign /system /translation=concealed -
disk:[gcc.] gnu_cc

$ assign /system /translation=concealed -
disk:[gcc.include.] gnu_cc_include

with the appropriate disk and directory names. These commands can be placed in your
system startup �le so they will be executed whenever the machine is rebooted. You
may, if you choose, do this via the `GCC_INSTALL.COM' script in the `[GCC]' directory.

2. Install the `GCC' command with the command line:

$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc

$ install replace sys$common:[syslib]dcltables

3. To install the help �le, do the following:

132 Using the GNU Compiler Collection

$ library/help sys$library:helplib.hlb gcc.hlp

Now you can invoke the compiler with a command like `gcc /verbose file.c', which
is equivalent to the command `gcc -v -c file.c' in Unix.

If you wish to use GNU C++ you must �rst install GNU CC, and then perform the
following steps:

1. De�ne the VMS logical name `GNU_GXX_INCLUDE' to point to the directory where the
preprocessor will search for the C++ header �les. This can be done with the command:

$ assign /system /translation=concealed -
disk:[gcc.gxx_include.] gnu_gxx_include

with the appropriate disk and directory name. If you are going to be using a C++
runtime library, this is where its install procedure will install its header �les.

2. Obtain the �le `gcc-cc1plus.exe', and place this in the same directory that `gcc-cc1.exe'
is kept.

The GNU C++ compiler can be invoked with a command like `gcc /plus /verbose

file.cc', which is equivalent to the command `g++ -v -c file.cc' in Unix.

We try to put corresponding binaries and sources on the VMS distribution tape. But
sometimes the binaries will be from an older version than the sources, because we don't
always have time to update them. (Use the `/version' option to determine the version
number of the binaries and compare it with the source �le `version.c' to tell whether this
is so.) In this case, you should use the binaries you get to recompile the sources. If you
must recompile, here is how:

1. Execute the command procedure `vmsconfig.com' to set up the �les `tm.h', `config.h',
`aux-output.c', and `md.', and to create �les `tconfig.h' and `hconfig.h'. This
procedure also creates several linker option �les used by `make-cc1.com' and a data
�le used by `make-l2.com'.

$ @vmsconfig.com

2. Setup the logical names and command tables as de�ned above. In addition, de�ne
the VMS logical name `GNU_BISON' to point at the to the directories where the Bison
executable is kept. This should be done with the command:

$ assign /system /translation=concealed -
disk:[bison.] gnu_bison

You may, if you choose, use the `INSTALL_BISON.COM' script in the `[BISON]' directory.

3. Install the `BISON' command with the command line:

$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables -
gnu_bison:[000000]bison

$ install replace sys$common:[syslib]dcltables

4. Type `@make-gcc' to recompile everything (alternatively, submit the �le `make-gcc.com'
to a batch queue). If you wish to build the GNU C++ compiler as well as the GNU CC
compiler, you must �rst edit `make-gcc.com' and follow the instructions that appear
in the comments.

5. In order to use GCC, you need a library of functions which GCC compiled code will
call to perform certain tasks, and these functions are de�ned in the �le `libgcc2.c'.

Chapter 3: Installing GNU CC 133

To compile this you should use the command procedure `make-l2.com', which will
generate the library `libgcc2.olb'. `libgcc2.olb' should be built using the compiler
built from the same distribution that `libgcc2.c' came from, and `make-gcc.com' will
automatically do all of this for you.

To install the library, use the following commands:

$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
$ library gnu_cc:[000000]gcclib/delete=L_*
$ library libgcc2/extract=*/output=libgcc2.obj
$ library gnu_cc:[000000]gcclib libgcc2.obj

The �rst command simply removes old modules that will be replaced with modules
from `libgcc2' under di�erent module names. The modules new and eprintf may not
actually be present in your `gcclib.olb'|if the VMS librarian complains about those
modules not being present, simply ignore the message and continue on with the next
command. The second command removes the modules that came from the previous
version of the library `libgcc2.c'.

Whenever you update the compiler on your system, you should also update the library
with the above procedure.

6. You may wish to build GCC in such a way that no �les are written to the directory
where the source �les reside. An example would be the when the source �les are on
a read-only disk. In these cases, execute the following DCL commands (substituting
your actual path names):

$ assign dua0:[gcc.build_dir.]/translation=concealed, -
dua1:[gcc.source_dir.]/translation=concealed gcc_build

$ set default gcc_build:[000000]

where the directory `dua1:[gcc.source_dir]' contains the source code, and the di-
rectory `dua0:[gcc.build_dir]' is meant to contain all of the generated object �les
and executables. Once you have done this, you can proceed building GCC as described
above. (Keep in mind that `gcc_build' is a rooted logical name, and thus the device
names in each element of the search list must be an actual physical device name rather
than another rooted logical name).

7. If you are building GNU CC with a previous version of GNU CC, you also should
check to see that you have the newest version of the assembler. In particular, GNU
CC version 2 treats global constant variables slightly di�erently from GNU CC version
1, and GAS version 1.38.1 does not have the patches required to work with GCC version
2. If you use GAS 1.38.1, then extern const variables will not have the read-only bit
set, and the linker will generate warning messages about mismatched psect attributes
for these variables. These warning messages are merely a nuisance, and can safely be
ignored.

If you are compiling with a version of GNU CC older than 1.33, specify `/DEFINE=("inline=")'
as an option in all the compilations. This requires editing all the gcc commands in
`make-cc1.com'. (The older versions had problems supporting inline.) Once you
have a working 1.33 or newer GNU CC, you can change this �le back.

8. If you want to build GNU CC with the VAX C compiler, you will need to make
minor changes in `make-cccp.com' and `make-cc1.com' to choose alternate de�ni-
tions of CC, CFLAGS, and LIBS. See comments in those �les. However, you must also

134 Using the GNU Compiler Collection

have a working version of the GNU assembler (GNU as, aka GAS) as it is used as
the back-end for GNU CC to produce binary object modules and is not included in
the GNU CC sources. GAS is also needed to compile `libgcc2' in order to build
`gcclib' (see above); `make-l2.com' expects to be able to �nd it operational in
`gnu_cc:[000000]gnu-as.exe'.

To use GNU CC on VMS, you need the VMS driver programs `gcc.exe', `gcc.com',
and `gcc.cld'. They are distributed with the VMS binaries (`gcc-vms') rather than
the GNU CC sources. GAS is also included in `gcc-vms', as is Bison.

Once you have successfully built GNU CC with VAX C, you should use the resulting
compiler to rebuild itself. Before doing this, be sure to restore the CC, CFLAGS, and LIBS

de�nitions in `make-cccp.com' and `make-cc1.com'. The second generation compiler
will be able to take advantage of many optimizations that must be suppressed when
building with other compilers.

Under previous versions of GNU CC, the generated code would occasionally give strange
results when linked with the sharable `VAXCRTL' library. Now this should work.

Even with this version, however, GNU CC itself should not be linked with the sharable
`VAXCRTL'. The version of qsort in `VAXCRTL' has a bug (known to be present in VMS
versions V4.6 through V5.5) which causes the compiler to fail.

The executables are generated by `make-cc1.com' and `make-cccp.com' use the object
library version of `VAXCRTL' in order to make use of the qsort routine in `gcclib.olb'. If
you wish to link the compiler executables with the shareable image version of `VAXCRTL',
you should edit the �le `tm.h' (created by `vmsconfig.com') to de�ne the macro QSORT_

WORKAROUND.

QSORT_WORKAROUND is always de�ned when GNU CC is compiled with VAX C, to avoid
a problem in case `gcclib.olb' is not yet available.

3.7 collect2

GNU CC uses a utility called collect2 on nearly all systems to arrange to call various
initialization functions at start time.

The program collect2works by linking the program once and looking through the linker
output �le for symbols with particular names indicating they are constructor functions. If
it �nds any, it creates a new temporary `.c' �le containing a table of them, compiles it, and
links the program a second time including that �le.

The actual calls to the constructors are carried out by a subroutine called __main, which
is called (automatically) at the beginning of the body of main (provided main was compiled
with GNU CC). Calling __main is necessary, even when compiling C code, to allow linking
C and C++ object code together. (If you use `-nostdlib', you get an unresolved reference
to __main, since it's de�ned in the standard GCC library. Include `-lgcc' at the end of
your compiler command line to resolve this reference.)

The program collect2 is installed as ld in the directory where the passes of the compiler
are installed. When collect2 needs to �nd the real ld, it tries the following �le names:

� `real-ld' in the directories listed in the compiler's search directories.

� `real-ld' in the directories listed in the environment variable PATH.

Chapter 3: Installing GNU CC 135

� The �le speci�ed in the REAL_LD_FILE_NAME con�guration macro, if speci�ed.

� `ld' in the compiler's search directories, except that collect2 will not execute itself
recursively.

� `ld' in PATH.

\The compiler's search directories" means all the directories where gcc searches for
passes of the compiler. This includes directories that you specify with `-B'.

Cross-compilers search a little di�erently:

� `real-ld' in the compiler's search directories.

� `target-real-ld' in PATH.

� The �le speci�ed in the REAL_LD_FILE_NAME con�guration macro, if speci�ed.

� `ld' in the compiler's search directories.

� `target-ld' in PATH.

collect2 explicitly avoids running ld using the �le name under which collect2 itself
was invoked. In fact, it remembers up a list of such names|in case one copy of collect2
�nds another copy (or version) of collect2 installed as ld in a second place in the search
path.

collect2 searches for the utilities nm and strip using the same algorithm as above for
ld.

3.8 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GNU CC
stores its private include �les, and also where GNU CC stores the �xed include �les. A
cross compiled GNU CC runs fixincludes on the header �les in `$(tooldir)/include'.
(If the cross compilation header �les need to be �xed, they must be installed before GNU
CC is built. If the cross compilation header �les are already suitable for ANSI C and GNU
CC, nothing special need be done).

GPLUSPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++

looks �rst for header �les. The C++ library installs only target independent header �les in
that directory.

LOCAL_INCLUDE_DIR is used only for a native compiler. It is normally `/usr/local/include'.
GNU CC searches this directory so that users can install header �les in `/usr/local/include'.

CROSS_INCLUDE_DIR is used only for a cross compiler. GNU CC doesn't install anything
there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other
packages to install header �les that GNU CC will use. For a cross-compiler, this is the
equivalent of `/usr/include'. When you build a cross-compiler, fixincludes processes
any header �les in this directory.

136 Using the GNU Compiler Collection

Chapter 4: Extensions to the C Language Family 137

4 Extensions to the C Language Family

GNU C provides several language features not found in ANSI standard C. (The
`-pedantic' option directs GNU CC to print a warning message if any of these features is
used.) To test for the availability of these features in conditional compilation, check for a
prede�ned macro __GNUC__, which is always de�ned under GNU CC.

These extensions are available in C and Objective C. Most of them are also available in
C++. See Chapter 5 [Extensions to the C++ Language], page 177, for extensions that apply
only to C++.

4.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C.
This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in
this construct, parentheses go around the braces. For example:

({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for the absolute value
of foo ().

The last thing in the compound statement should be an expression followed by a semi-
colon; the value of this subexpression serves as the value of the entire construct. (If you use
some other kind of statement last within the braces, the construct has type void, and thus
e�ectively no value.)

This feature is especially useful in making macro de�nitions \safe" (so that they evaluate
each operand exactly once). For example, the \maximum" function is commonly de�ned
as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this de�nition computes either a or b twice, with bad results if the operand has side
e�ects. In GNU C, if you know the type of the operands (here let's assume int), you can
de�ne the macro safely as follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the value of an
enumeration constant, the width of a bit �eld, or the initial value of a static variable.

If you don't know the type of the operand, you can still do this, but you must use
typeof (see Section 4.7 [Typeof], page 142) or type naming (see Section 4.6 [Naming Types],
page 142).

138 Using the GNU Compiler Collection

4.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be declared. A local label
is simply an identi�er; you can jump to it with an ordinary goto statement, but only from
within the statement expression it belongs to.

A local label declaration looks like this:

__label__ label;

or

__label__ label1, label2, ...;

Local label declarations must come at the beginning of the statement expression, right
after the `({', before any ordinary declarations.

The label declaration de�nes the label name, but does not de�ne the label itself. You
must do this in the usual way, with label:, within the statements of the statement expres-
sion.

The local label feature is useful because statement expressions are often used in macros.
If the macro contains nested loops, a goto can be useful for breaking out of them. However,
an ordinary label whose scope is the whole function cannot be used: if the macro can be
expanded several times in one function, the label will be multiply de�ned in that function.
A local label avoids this problem. For example:

#define SEARCH(array, target) \
({ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \
value = -1; \
found: \
value; \

})

4.3 Labels as Values

You can get the address of a label de�ned in the current function (or a containing
function) with the unary operator `&&'. The value has type void *. This value is a constant
and can be used wherever a constant of that type is valid. For example:

void *ptr;
...

ptr = &&foo;

Chapter 4: Extensions to the C Language Family 139

To use these values, you need to be able to jump to one. This is done with the computed
goto statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds|array indexing in C never
does that.

Such an array of label values serves a purpose much like that of the switch statement.
The switch statement is cleaner, so use that rather than an array unless the problem does
not �t a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You can use this mechanism to jump to code in a di�erent function. If you do that,
totally unpredictable things will happen. The best way to avoid this is to store the label
address only in automatic variables and never pass it as an argument.

4.4 Nested Functions

A nested function is a function de�ned inside another function. (Nested functions are
not supported for GNU C++.) The nested function's name is local to the block where it is
de�ned. For example, here we de�ne a nested function named square, and call it twice:

foo (double a, double b)
{
double square (double z) { return z * z; }

return square (a) + square (b);
}

The nested function can access all the variables of the containing function that are visible
at the point of its de�nition. This is called lexical scoping. For example, here we show a
nested function which uses an inherited variable named offset:

bar (int *array, int offset, int size)
{
int access (int *array, int index)

{ return array[index + offset]; }
int i;
...
for (i = 0; i < size; i++)

1 The analogous feature in Fortran is called an assigned goto, but that name seems in-
appropriate in C, where one can do more than simply store label addresses in label
variables.

140 Using the GNU Compiler Collection

... access (array, i) ...
}

Nested function de�nitions are permitted within functions in the places where variable
de�nitions are allowed; that is, in any block, before the �rst statement in the block.

It is possible to call the nested function from outside the scope of its name by storing
its address or passing the address to another function:

hack (int *array, int size)
{
void store (int index, int value)
{ array[index] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an argument. If
intermediate calls store, the arguments given to store are used to store into array. But
this technique works only so long as the containing function (hack, in this example) does
not exit.

If you try to call the nested function through its address after the containing function
has exited, all hell will break loose. If you try to call it after a containing scope level has
exited, and if it refers to some of the variables that are no longer in scope, you may be
lucky, but it's not wise to take the risk. If, however, the nested function does not refer to
anything that has gone out of scope, you should be safe.

GNU CC implements taking the address of a nested function using a technique called
trampolines. A paper describing them is available as `http://master.debian.org/~karlheg/Usenix88-lexic

A nested function can jump to a label inherited from a containing function, provided
the label was explicitly declared in the containing function (see Section 4.2 [Local Labels],
page 138). Such a jump returns instantly to the containing function, exiting the nested
function which did the goto and any intermediate functions as well. Here is an example:

Chapter 4: Extensions to the C Language Family 141

bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)

{
if (index > size)

goto failure;
return array[index + offset];

}
int i;
...
for (i = 0; i < size; i++)

... access (array, i) ...
...
return 0;

/* Control comes here from access
if it detects an error. */

failure:
return -1;

}

A nested function always has internal linkage. Declaring one with extern is erroneous.
If you need to declare the nested function before its de�nition, use auto (which is otherwise
meaningless for function declarations).

bar (int *array, int offset, int size)
{
__label__ failure;
auto int access (int *, int);
...
int access (int *array, int index)

{
if (index > size)

goto failure;
return array[index + offset];

}
...

}

4.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function
received, and call another function with the same arguments, without knowing the number
or types of the arguments.

You can also record the return value of that function call, and later return that value,
without knowing what data type the function tried to return (as long as your caller expects
that data type).

142 Using the GNU Compiler Collection

__builtin_apply_args ()

This built-in function returns a pointer of type void * to data describing how to
perform a call with the same arguments as were passed to the current function.

The function saves the arg pointer register, structure value address, and all
registers that might be used to pass arguments to a function into a block of
memory allocated on the stack. Then it returns the address of that block.

__builtin_apply (function, arguments, size)
This built-in function invokes function (type void (*)()) with a copy of the
parameters described by arguments (type void *) and size (type int).

The value of arguments should be the value returned by __builtin_apply_

args. The argument size speci�es the size of the stack argument data, in bytes.

This function returns a pointer of type void * to data describing how to return
whatever value was returned by function. The data is saved in a block of
memory allocated on the stack.

It is not always simple to compute the proper value for size. The value is used
by __builtin_apply to compute the amount of data that should be pushed on
the stack and copied from the incoming argument area.

__builtin_return (result)
This built-in function returns the value described by result from the containing
function. You should specify, for result, a value returned by __builtin_apply.

4.6 Naming an Expression's Type

You can give a name to the type of an expression using a typedef declaration with an
initializer. Here is how to de�ne name as a type name for the type of exp:

typedef name = exp;

This is useful in conjunction with the statements-within-expressions feature. Here is
how the two together can be used to de�ne a safe \maximum" macro that operates on any
arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local variables is to avoid
conicts with variable names that occur within the expressions that are substituted for a
and b. Eventually we hope to design a new form of declaration syntax that allows you to
declare variables whose scopes start only after their initializers; this will be a more reliable
way to prevent such conicts.

4.7 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using
of this keyword looks like sizeof, but the construct acts semantically like a type name
de�ned with typedef.

Chapter 4: Extensions to the C Language Family 143

There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the values of the
functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header �le that must work when included in ANSI C programs, write
__typeof__ instead of typeof. See Section 4.35 [Alternate Keywords], page 173.

A typeof-construct can be used anywhere a typedef name could be used. For example,
you can use it in a declaration, in a cast, or inside of sizeof or typeof.

� This declares y with the type of what x points to.

typeof (*x) y;

� This declares y as an array of such values.

typeof (*x) y[4];

� This declares y as an array of pointers to characters:

typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way
to write, let's rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

4.8 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lvalues provided
their operands are lvalues. This means that you can take their addresses or store values
into them.

Standard C++ allows compound expressions and conditional expressions as lvalues, and
permits casts to reference type, so use of this extension is deprecated for C++ code.

For example, a compound expression can be assigned, provided the last expression in
the sequence is an lvalue. These two expressions are equivalent:

(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken. These two expressions
are equivalent:

144 Using the GNU Compiler Collection

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void and the true and false
branches are both valid lvalues. For example, these two expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-hand
side is a cast works by converting the right-hand side �rst to the speci�ed type, then to the
type of the inner left-hand side expression. After this is stored, the value is converted back
to the speci�ed type to become the value of the assignment. Thus, if a has type char *,
the following two expressions are equivalent:

(int)a = 5
(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as `+=' applied to a cast performs the
arithmetic using the type resulting from the cast, and then continues as in the previous
case. Therefore, these two expressions are equivalent:

(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its address would not
work out coherently. Suppose that &(int)f were permitted, where f has type float. Then
the following statement would try to store an integer bit-pattern where a oating point
number belongs:

*&(int)f = 1;

This is quite di�erent from what (int)f = 1 would do|that would convert 1 to oating
point and store it. Rather than cause this inconsistency, we think it is better to prohibit
use of `&' on a cast.

If you really do want an int * pointer with the address of f, you can simply write (int
*)&f.

4.9 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the �rst operand
is nonzero, its value is the value of the conditional expression.

Therefore, the expression

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the �rst operand does, or may (if it is a macro argument), contain a
side e�ect. Then repeating the operand in the middle would perform the side e�ect twice.
Omitting the middle operand uses the value already computed without the undesirable
e�ects of recomputing it.

Chapter 4: Extensions to the C Language Family 145

4.10 Double-Word Integers

GNU C supports data types for integers that are twice as long as int. Simply write
long long int for a signed integer, or unsigned long long int for an unsigned integer. To
make an integer constant of type long long int, add the suÆx LL to the integer. To make
an integer constant of type unsigned long long int, add the suÆx ULL to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction,
and bitwise boolean operations on these types are open-coded on all types of machines.
Multiplication is open-coded if the machine supports fullword-to-doubleword a widening
multiply instruction. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special library routines that
come with GNU CC.

There may be pitfalls when you use long long types for function arguments, unless you
declare function prototypes. If a function expects type int for its argument, and you pass
a value of type long long int, confusion will result because the caller and the subroutine
will disagree about the number of bytes for the argument. Likewise, if the function expects
long long int and you pass int. The best way to avoid such problems is to use prototypes.

4.11 Complex Numbers

GNU C supports complex data types. You can declare both complex integer types and
complex oating types, using the keyword __complex__.

For example, `__complex__ double x;' declares x as a variable whose real part and
imaginary part are both of type double. `__complex__ short int y;' declares y to have
real and imaginary parts of type short int; this is not likely to be useful, but it shows that
the set of complex types is complete.

To write a constant with a complex data type, use the suÆx `i' or `j' (either one;
they are equivalent). For example, 2.5fi has type __complex__ float and 3i has type
__complex__ int. Such a constant always has a pure imaginary value, but you can form
any complex value you like by adding one to a real constant.

To extract the real part of a complex-valued expression exp, write __real__ exp. Like-
wise, use __imag__ to extract the imaginary part.

The operator `~' performs complex conjugation when used on a value with a complex
type.

GNU CC can allocate complex automatic variables in a noncontiguous fashion; it's even
possible for the real part to be in a register while the imaginary part is on the stack (or vice-
versa). None of the supported debugging info formats has a way to represent noncontiguous
allocation like this, so GNU CC describes a noncontiguous complex variable as if it were
two separate variables of noncomplex type. If the variable's actual name is foo, the two
�ctitious variables are named foo$real and foo$imag. You can examine and set these two
�ctitious variables with your debugger.

A future version of GDB will know how to recognize such pairs and treat them as a
single variable with a complex type.

146 Using the GNU Compiler Collection

4.12 Hex Floats

GNU CC recognizes oating-point numbers written not only in the usual decimal no-
tation, such as 1.55e1, but also numbers such as 0x1.fp3 written in hexadecimal format.
In that format the 0x hex introducer and the p or P exponent �eld are mandatory. The
exponent is a decimal number that indicates the power of 2 by which the signi�cand part
will be multiplied. Thus 0x1.f is 1 15/16, p3 multiplies it by 8, and the value of 0x1.fp3
is the same as 1.55e1.

Unlike for oating-point numbers in the decimal notation the exponent is always required
in the hexadecimal notation. Otherwise the compiler would not be able to resolve the
ambiguity of, e.g., 0x1.f. This could mean 1.0f or 1.9375 since f is also the extension for
oating-point constants of type float.

4.13 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a
structure which is really a header for a variable-length object:

struct line {
int length;
char contents[0];

};

{
struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);

thisline->length = this_length;
}

In standard C, you would have to give contents a length of 1, which means either you
waste space or complicate the argument to malloc.

4.14 Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays are declared like
any other automatic arrays, but with a length that is not a constant expression. The storage
is allocated at the point of declaration and deallocated when the brace-level is exited. For
example:

FILE *
concat_fopen (char *s1, char *s2, char *mode)
{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping
into the scope is not allowed; you get an error message for it.

Chapter 4: Extensions to the C Language Family 147

You can use the function alloca to get an e�ect much like variable-length arrays. The
function alloca is available in many other C implementations (but not in all). On the
other hand, variable-length arrays are more elegant.

There are other di�erences between these two methods. Space allocated with alloca

exists until the containing function returns. The space for a variable-length array is deal-
located as soon as the array name's scope ends. (If you use both variable-length arrays
and alloca in the same function, deallocation of a variable-length array will also deallocate
anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len][len])
{
...

}

The length of an array is computed once when the storage is allocated and is remembered
for the scope of the array in case you access it with sizeof.

If you want to pass the array �rst and the length afterward, you can use a forward
declaration in the parameter list|another GNU extension.

struct entry
tester (int len; char data[len][len], int len)
{
...

}

The `int len' before the semicolon is a parameter forward declaration, and it serves the
purpose of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter
list. They can be separated by commas or semicolons, but the last one must end with a
semicolon, which is followed by the \real" parameter declarations. Each forward declaration
must match a \real" declaration in parameter name and data type.

4.15 Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much as a function
can. The syntax for de�ning the macro looks much like that used for a function. Here is
an example:

#define eprintf(format, args...) \
fprintf (stderr, format , ## args)

Here args is a rest argument: it takes in zero or more arguments, as many as the call
contains. All of them plus the commas between them form the value of args, which is
substituted into the macro body where args is used. Thus, we have this expansion:

eprintf ("%s:%d: ", input_file_name, line_number)
7!

fprintf (stderr, "%s:%d: " , input_file_name, line_number)

Note that the comma after the string constant comes from the de�nition of eprintf, whereas
the last comma comes from the value of args.

148 Using the GNU Compiler Collection

The reason for using `##' is to handle the case when args matches no arguments at all.
In this case, args has an empty value. In this case, the second comma in the de�nition
becomes an embarrassment: if it got through to the expansion of the macro, we would get
something like this:

fprintf (stderr, "success!\n" ,)

which is invalid C syntax. `##' gets rid of the comma, so we get the following instead:

fprintf (stderr, "success!\n")

This is a special feature of the GNU C preprocessor: `##' before a rest argument that
is empty discards the preceding sequence of non-whitespace characters from the macro
de�nition. (If another macro argument precedes, none of it is discarded.)

It might be better to discard the last preprocessor token instead of the last preceding
sequence of non-whitespace characters; in fact, we may someday change this feature to do
so. We advise you to write the macro de�nition so that the preceding sequence of non-
whitespace characters is just a single token, so that the meaning will not change if we
change the de�nition of this feature.

4.16 Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the unary `&' operator
is not. For example, this is valid in GNU C though not valid in other C dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)
{
return f().a[index];

}

4.17 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and
on pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and
returns 1.

The option `-Wpointer-arith' requests a warning if these extensions are used.

4.18 Non-Constant Initializers

As in standard C++, the elements of an aggregate initializer for an automatic variable
are not required to be constant expressions in GNU C. Here is an example of an initializer
with run-time varying elements:

foo (float f, float g)
{
float beat_freqs[2] = { f-g, f+g };
...

}

Chapter 4: Extensions to the C Language Family 149

4.19 Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a cast containing an
initializer. Its value is an object of the type speci�ed in the cast, containing the elements
speci�ed in the initializer.

Usually, the speci�ed type is a structure. Assume that struct foo and structure are
declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:

structure = ((struct foo) {x + y, 'a', 0});

This is equivalent to writing the following:

{
struct foo temp = {x + y, 'a', 0};
structure = temp;

}

You can also construct an array. If all the elements of the constructor are (made up of)
simple constant expressions, suitable for use in initializers, then the constructor is an lvalue
and can be coerced to a pointer to its �rst element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Array constructors whose elements are not simple constants are not very useful, because
the constructor is not an lvalue. There are only two valid ways to use it: to subscript it, or
initialize an array variable with it. The former is probably slower than a switch statement,
while the latter does the same thing an ordinary C initializer would do. Here is an example
of subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also allowed, but then
the constructor expression is equivalent to a cast.

4.20 Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a �xed order, the same
as the order of the elements in the array or structure being initialized.

In GNU C you can give the elements in any order, specifying the array indices or structure
�eld names they apply to. This extension is not implemented in GNU C++.

To specify an array index, write `[index]' or `[index] =' before the element value. For
example,

int a[6] = { [4] 29, [2] = 15 };

is equivalent to

int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being initialized is auto-
matic.

To initialize a range of elements to the same value, write `[�rst ... last] = value'. For
example,

150 Using the GNU Compiler Collection

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

Note that the length of the array is the highest value speci�ed plus one.

In a structure initializer, specify the name of a �eld to initialize with `�eldname:' before
the element value. For example, given the following structure,

struct point { int x, y; };

the following initialization

struct point p = { y: yvalue, x: xvalue };

is equivalent to

struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is `.�eldname ='., as shown here:

struct point p = { .y = yvalue, .x = xvalue };

You can also use an element label (with either the colon syntax or the period-equal
syntax) when initializing a union, to specify which element of the union should be used.
For example,

union foo { int i; double d; };

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second element. By contrast,
casting 4 to type union foo would store it into the union as the integer i, since it is an
integer. (See Section 4.22 [Cast to Union], page 151.)

You can combine this technique of naming elements with ordinary C initialization of
successive elements. Each initializer element that does not have a label applies to the next
consecutive element of the array or structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to

int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are
characters or belong to an enum type. For example:

int whitespace[256]
= { [' '] = 1, ['\t'] = 1, ['\h'] = 1,

['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };

4.21 Case Ranges

You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same e�ect as the proper number of individual case labels, one for each integer
value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case 'A' ... 'Z':

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when
you use it with integer values. For example, write this:

Chapter 4: Extensions to the C Language Family 151

case 1 ... 5:

rather than this:

case 1...5:

4.22 Cast to a Union Type

A cast to union type is similar to other casts, except that the type speci�ed is a union
type. You can specify the type either with union tag or with a typedef name. A cast to
union is actually a constructor though, not a cast, and hence does not yield an lvalue like
normal casts. (See Section 4.19 [Constructors], page 149.)

The types that may be cast to the union type are those of the members of the union.
Thus, given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable of union type is
equivalent to storing in a member of the union:

union foo u;
...

u = (union foo) x � u.i = x
u = (union foo) y � u.d = y

You can also use the union cast as a function argument:

void hack (union foo);
...

hack ((union foo) x);

4.23 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help
the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a
declaration. This keyword is followed by an attribute speci�cation inside double paren-
theses. Nine attributes, noreturn, const, format, no_instrument_function, section,
constructor, destructor, unused and weak are currently de�ned for functions. Other
attributes, including section are supported for variables declarations (see Section 4.29
[Variable Attributes], page 158) and for types (see Section 4.30 [Type Attributes], page 161).

You may also specify attributes with `__' preceding and following each keyword. This
allows you to use them in header �les without being concerned about a possible macro of
the same name. For example, you may use __noreturn__ instead of noreturn.

noreturn A few standard library functions, such as abort and exit, cannot return. GNU
CC knows this automatically. Some programs de�ne their own functions that

152 Using the GNU Compiler Collection

never return. You can declare them noreturn to tell the compiler this fact. For
example,

void fatal () __attribute__ ((noreturn));

void
fatal (...)
{
... /* Print error message. */ ...
exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot return.
It can then optimize without regard to what would happen if fatal ever did
return. This makes slightly better code. More importantly, it helps avoid
spurious warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored before
calling the noreturn function.

It does not make sense for a noreturn function to have a return type other
than void.

The attribute noreturn is not implemented in GNU C versions earlier than 2.5.
An alternative way to declare that a function does not return, which works in
the current version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

const Many functions do not examine any values except their arguments, and have
no e�ects except the return value. Such a function can be subject to common
subexpression elimination and loop optimization just as an arithmetic operator
would be. These functions should be declared with the attribute const. For
example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call fewer times than the
program says.

The attribute const is not implemented in GNU C versions earlier than 2.5.
An alternative way to declare that a function has no side e�ects, which works
in the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language
speci�es that the `const' must be attached to the return value.

Note that a function that has pointer arguments and examines the data pointed
to must not be declared const. Likewise, a function that calls a non-const
function usually must not be const. It does not make sense for a const function
to return void.

Chapter 4: Extensions to the C Language Family 153

format (archetype, string-index, �rst-to-check)
The format attribute speci�es that a function takes printf, scanf, or
strftime style arguments which should be type-checked against a format
string. For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency
with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and
should be either printf, scanf, or strftime. The parameter string-index
speci�es which argument is the format string argument (starting from 1), while
�rst-to-check is the number of the �rst argument to check against the format
string. For functions where the arguments are not available to be checked (such
as vprintf), specify the third parameter as zero. In this case the compiler only
checks the format string for consistency.

In the example above, the format string (my_format) is the second argument
of the function my_print, and the arguments to check start with the third
argument, so the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take
format strings as arguments, so that GNU CC can check the calls to these
functions for errors. The compiler always checks formats for the ANSI li-
brary functions printf, fprintf, sprintf, scanf, fscanf, sscanf, strftime,
vprintf, vfprintf and vsprintf whenever such warnings are requested (using
`-Wformat'), so there is no need to modify the header �le `stdio.h'.

format_arg (string-index)
The format_arg attribute speci�es that a function takes printf or scanf style
arguments, modi�es it (for example, to translate it into another language), and
passes it to a printf or scanf style function. For example, the declaration:

extern char *
my_dgettext (char *my_domain, const char *my_format)

__attribute__ ((format_arg (2)));

causes the compiler to check the arguments in calls to my_dgettextwhose result
is passed to a printf, scanf, or strftime type function for consistency with
the printf style format string argument my_format.

The parameter string-index speci�es which argument is the format string ar-
gument (starting from 1).

The format-arg attribute allows you to identify your own functions which
modify format strings, so that GNU CC can check the calls to printf, scanf,
or strftime function whose operands are a call to one of your own function.
The compiler always treats gettext, dgettext, and dcgettext in this manner.

no_instrument_function

If `-finstrument-functions' is given, pro�ling function calls will be generated
at entry and exit of most user-compiled functions. Functions with this attribute
will not be so instrumented.

154 Using the GNU Compiler Collection

section ("section-name")

Normally, the compiler places the code it generates in the text section. Some-
times, however, you need additional sections, or you need certain particular
functions to appear in special sections. The section attribute speci�es that a
function lives in a particular section. For example, the declaration:

extern void foobar (void) __attribute__ ((section ("bar")));

puts the function foobar in the bar section.

Some �le formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

constructor

destructor

The constructor attribute causes the function to be called automatically be-
fore execution enters main (). Similarly, the destructor attribute causes the
function to be called automatically after main () has completed or exit () has
been called. Functions with these attributes are useful for initializing data that
will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective C.

unused This attribute, attached to a function, means that the function is meant to be
possibly unused. GNU CC will not produce a warning for this function. GNU
C++ does not currently support this attribute as de�nitions without parameters
are valid in C++.

weak The weak attribute causes the declaration to be emitted as a weak symbol
rather than a global. This is primarily useful in de�ning library functions which
can be overridden in user code, though it can also be used with non-function
declarations. Weak symbols are supported for ELF targets, and also for a.out
targets when using the GNU assembler and linker.

alias ("target")

The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be speci�ed. For instance,

void __f () { /* do something */; }
void f () __attribute__ ((weak, alias ("__f")));

declares `f' to be a weak alias for `__f'. In C++, the mangled name for the
target must be used.

Not all target machines support this attribute.

no_check_memory_usage

If `-fcheck-memory-usage' is given, calls to support routines will be generated
before most memory accesses, to permit support code to record usage and detect
uses of uninitialized or unallocated storage. Since the compiler cannot handle
them properly, asm statements are not allowed. Declaring a function with this
attribute disables the memory checking code for that function, permitting the
use of asm statements without requiring separate compilation with di�erent
options, and allowing you to write support routines of your own if you wish,
without getting in�nite recursion if they get compiled with this option.

Chapter 4: Extensions to the C Language Family 155

regparm (number)
On the Intel 386, the regparm attribute causes the compiler to pass up to
number integer arguments in registers EAX, EDX, and ECX instead of on the
stack. Functions that take a variable number of arguments will continue to be
passed all of their arguments on the stack.

stdcall On the Intel 386, the stdcall attribute causes the compiler to assume that the
called function will pop o� the stack space used to pass arguments, unless it
takes a variable number of arguments.

The PowerPC compiler for Windows NT currently ignores the stdcall at-
tribute.

cdecl On the Intel 386, the cdecl attribute causes the compiler to assume that the
calling function will pop o� the stack space used to pass arguments. This is
useful to override the e�ects of the `-mrtd' switch.

The PowerPC compiler for Windows NT currently ignores the cdecl attribute.

longcall On the RS/6000 and PowerPC, the longcall attribute causes the compiler to
always call the function via a pointer, so that functions which reside further
than 64 megabytes (67,108,864 bytes) from the current location can be called.

dllimport

On the PowerPC running Windows NT, the dllimport attribute causes the
compiler to call the function via a global pointer to the function pointer that is
set up by the Windows NT dll library. The pointer name is formed by combining
__imp_ and the function name.

dllexport

On the PowerPC running Windows NT, the dllexport attribute causes the
compiler to provide a global pointer to the function pointer, so that it can be
called with the dllimport attribute. The pointer name is formed by combining
__imp_ and the function name.

exception (except-func [, except-arg])
On the PowerPC running Windows NT, the exception attribute causes the
compiler to modify the structured exception table entry it emits for the declared
function. The string or identi�er except-func is placed in the third entry of the
structured exception table. It represents a function, which is called by the
exception handling mechanism if an exception occurs. If it was speci�ed, the
string or identi�er except-arg is placed in the fourth entry of the structured
exception table.

function_vector

Use this option on the H8/300 and H8/300H to indicate that the speci�ed func-
tion should be called through the function vector. Calling a function through
the function vector will reduce code size, however; the function vector has a lim-
ited size (maximum 128 entries on the H8/300 and 64 entries on the H8/300H)
and shares space with the interrupt vector.

You must use GAS and GLD from GNU binutils version 2.7 or later for this
option to work correctly.

156 Using the GNU Compiler Collection

interrupt_handler

Use this option on the H8/300 and H8/300H to indicate that the speci�ed
function is an interrupt handler. The compiler will generate function entry and
exit sequences suitable for use in an interrupt handler when this attribute is
present.

eightbit_data

Use this option on the H8/300 and H8/300H to indicate that the speci�ed
variable should be placed into the eight bit data section. The compiler will
generate more eÆcient code for certain operations on data in the eight bit data
area. Note the eight bit data area is limited to 256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for this
option to work correctly.

tiny_data

Use this option on the H8/300H to indicate that the speci�ed variable should
be placed into the tiny data section. The compiler will generate more eÆcient
code for loads and stores on data in the tiny data section. Note the tiny data
area is limited to slightly under 32kbytes of data.

interrupt

Use this option on the M32R/D to indicate that the speci�ed function is an
interrupt handler. The compiler will generate function entry and exit sequences
suitable for use in an interrupt handler when this attribute is present.

model (model-name)
Use this attribute on the M32R/D to set the addressability of an object, and
the code generated for a function. The identi�er model-name is one of small,
medium, or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction), and are callable with the bl instruc-
tion.

Medium model objects may live anywhere in the 32 bit address space (the
compiler will generate seth/add3 instructions to load their addresses), and are
callable with the bl instruction.

Large model objects may live anywhere in the 32 bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and may not be
reachable with the bl instruction (the compiler will generate the much slower
seth/add3/jl instruction sequence).

You can specify multiple attributes in a declaration by separating them by commas
within the double parentheses or by immediately following an attribute declaration with
another attribute declaration.

Some people object to the __attribute__ feature, suggesting that ANSI C's #pragma
should be used instead. There are two reasons for not doing this.

1. It is impossible to generate #pragma commands from a macro.

2. There is no telling what the same #pragma might mean in another compiler.

These two reasons apply to almost any application that might be proposed for #pragma.
It is basically a mistake to use #pragma for anything.

Chapter 4: Extensions to the C Language Family 157

4.24 Prototypes and Old-Style Function De�nitions

GNU C extends ANSI C to allow a function prototype to override a later old-style
non-prototype de�nition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#ifdef __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function de�nition. */
int
isroot (x) /* ??? lossage here ??? */

uid_t x;
{
return x == 0;

}

Suppose the type uid_t happens to be short. ANSI C does not allow this example,
because subword arguments in old-style non-prototype de�nitions are promoted. Therefore
in this example the function de�nition's argument is really an int, which does not match
the prototype argument type of short.

This restriction of ANSI C makes it hard to write code that is portable to traditional C
compilers, because the programmer does not know whether the uid_t type is short, int,
or long. Therefore, in cases like these GNU C allows a prototype to override a later old-
style de�nition. More precisely, in GNU C, a function prototype argument type overrides
the argument type speci�ed by a later old-style de�nition if the former type is the same as
the latter type before promotion. Thus in GNU C the above example is equivalent to the
following:

int isroot (uid_t);

int
isroot (uid_t x)
{
return x == 0;

}

GNU C++ does not support old-style function de�nitions, so this extension is irrelevant.

4.25 C++ Style Comments

In GNU C, you may use C++ style comments, which start with `//' and continue until
the end of the line. Many other C implementations allow such comments, and they are
likely to be in a future C standard. However, C++ style comments are not recognized if you
specify `-ansi' or `-traditional', since they are incompatible with traditional constructs
like dividend//*comment*/divisor.

158 Using the GNU Compiler Collection

4.26 Dollar Signs in Identi�er Names

In GNU C, you may normally use dollar signs in identi�er names. This is because many
traditional C implementations allow such identi�ers. However, dollar signs in identi�ers are
not supported on a few target machines, typically because the target assembler does not
allow them.

4.27 The Character hESCi in Constants

You can use the sequence `\e' in a string or character constant to stand for the ASCII
character hESCi.

4.28 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the
minimum alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte
boundary, then __alignof__ (double) is 8. This is true on many RISC machines. On
more traditional machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type
even at an odd addresses. For these machines, __alignof__ reports the recommended
alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type, the value is the
largest alignment that the lvalue is known to have. It may have this alignment as a result of
its data type, or because it is part of a structure and inherits alignment from that structure.
For example, after this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is probably 2 or 4, the same as __alignof__ (int),
even though the data type of foo1.y does not itself demand any alignment.

A related feature which lets you specify the alignment of an object is __attribute__
((aligned (alignment))); see the following section.

4.29 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or
structure �elds. This keyword is followed by an attribute speci�cation inside double paren-
theses. Eight attributes are currently de�ned for variables: aligned, mode, nocommon,
packed, section, transparent_union, unused, and weak. Other attributes are available
for functions (see Section 4.23 [Function Attributes], page 151) and for types (see Sec-
tion 4.30 [Type Attributes], page 161).

You may also specify attributes with `__' preceding and following each keyword. This
allows you to use them in header �les without being concerned about a possible macro of
the same name. For example, you may use __aligned__ instead of aligned.

Chapter 4: Extensions to the C Language Family 159

aligned (alignment)
This attribute speci�es a minimum alignment for the variable or structure �eld,
measured in bytes. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On
a 68040, this could be used in conjunction with an asm expression to access the
move16 instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure �elds. For example, to create a
double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces
the union to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment of func-
tions is determined by the machine's requirements and cannot be changed. You
cannot specify alignment for a typedef name because such a name is just an
alias, not a distinct type.

As in the preceding examples, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given variable or structure �eld. Alter-
natively, you can leave out the alignment factor and just ask the compiler to
align a variable or �eld to the maximum useful alignment for the target machine
you are compiling for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute speci�ca-
tion, the compiler automatically sets the alignment for the declared variable or
�eld to the largest alignment which is ever used for any data type on the target
machine you are compiling for. Doing this can often make copy operations more
eÆcient, because the compiler can use whatever instructions copy the biggest
chunks of memory when performing copies to or from the variables or �elds
that you have aligned this way.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the e�ectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

mode (mode)
This attribute speci�es the data type for the declaration|whichever type cor-
responds to the modemode. This in e�ect lets you request an integer or oating
point type according to its width.

You may also specify a mode of `byte' or `__byte__' to indicate the mode
corresponding to a one-byte integer, `word' or `__word__' for the mode of a one-

160 Using the GNU Compiler Collection

word integer, and `pointer' or `__pointer__' for the mode used to represent
pointers.

nocommon This attribute speci�es requests GNU CC not to place a variable \common"
but instead to allocate space for it directly. If you specify the `-fno-common'
ag, GNU CC will do this for all variables.

Specifying the nocommon attribute for a variable provides an initialization of
zeros. A variable may only be initialized in one source �le.

packed The packed attribute speci�es that a variable or structure �eld should have the
smallest possible alignment|one byte for a variable, and one bit for a �eld,
unless you specify a larger value with the aligned attribute.

Here is a structure in which the �eld x is packed, so that it immediately follows
a:

struct foo
{
char a;
int x[2] __attribute__ ((packed));

};

section ("section-name")

Normally, the compiler places the objects it generates in sections like data and
bss. Sometimes, however, you need additional sections, or you need certain
particular variables to appear in special sections, for example to map to special
hardware. The section attribute speci�es that a variable (or function) lives
in a particular section. For example, this small program uses several speci�c
section names:

struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
int init_data __attribute__ ((section ("INITDATA"))) = 0;

main()
{
/* Initialize stack pointer */
init_sp (stack + sizeof (stack));

/* Initialize initialized data */
memcpy (&init_data, &data, &edata - &data);

/* Turn on the serial ports */
init_duart (&a);
init_duart (&b);

}

Use the section attribute with an initialized de�nition of a global variable, as
shown in the example. GNU CC issues a warning and otherwise ignores the
section attribute in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global de�nition
because of the way linkers work. The linker requires each object be de�ned once,

Chapter 4: Extensions to the C Language Family 161

with the exception that uninitialized variables tentatively go in the common (or
bss) section and can be multiply "de�ned". You can force a variable to be
initialized with the `-fno-common' ag or the nocommon attribute.

Some �le formats do not support arbitrary sections so the section attribute
is not available on all platforms. If you need to map the entire contents of a
module to a particular section, consider using the facilities of the linker instead.

transparent_union

This attribute, attached to a function parameter which is a union, means that
the corresponding argument may have the type of any union member, but the
argument is passed as if its type were that of the �rst union member. For more
details see See Section 4.30 [Type Attributes], page 161. You can also use this
attribute on a typedef for a union data type; then it applies to all function
parameters with that type.

unused This attribute, attached to a variable, means that the variable is meant to be
possibly unused. GNU CC will not produce a warning for this variable.

weak The weak attribute is described in See Section 4.23 [Function Attributes],
page 151.

model (model-name)
Use this attribute on the M32R/D to set the addressability of an object. The
identi�er model-name is one of small, medium, or large, representing each of
the code models.

Small model objects live in the lower 16MB of memory (so that their addresses
can be loaded with the ld24 instruction).

Medium and large model objects may live anywhere in the 32 bit address space
(the compiler will generate seth/add3 instructions to load their addresses).

To specify multiple attributes, separate them by commas within the double parentheses:
for example, `__attribute__ ((aligned (16), packed))'.

4.30 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and
union types when you de�ne such types. This keyword is followed by an attribute speci�ca-
tion inside double parentheses. Three attributes are currently de�ned for types: aligned,
packed, and transparent_union. Other attributes are de�ned for functions (see Sec-
tion 4.23 [Function Attributes], page 151) and for variables (see Section 4.29 [Variable
Attributes], page 158).

You may also specify any one of these attributes with `__' preceding and following its
keyword. This allows you to use these attributes in header �les without being concerned
about a possible macro of the same name. For example, you may use __aligned__ instead
of aligned.

You may specify the aligned and transparent_union attributes either in a typedef

declaration or just past the closing curly brace of a complete enum, struct or union type
de�nition and the packed attribute only past the closing brace of a de�nition.

162 Using the GNU Compiler Collection

You may also specify attributes between the enum, struct or union tag and the name of
the type rather than after the closing brace.

aligned (alignment)
This attribute speci�es a minimum alignment (in bytes) for variables of the
speci�ed type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8)));
typedef int more_aligned_int __attribute__ ((aligned (8)));

force the compiler to insure (as far as it can) that each variable whose type
is struct S or more_aligned_int will be allocated and aligned at least on a
8-byte boundary. On a Sparc, having all variables of type struct S aligned to
8-byte boundaries allows the compiler to use the ldd and std (doubleword load
and store) instructions when copying one variable of type struct S to another,
thus improving run-time eÆciency.

Note that the alignment of any given struct or union type is required by the
ANSI C standard to be at least a perfect multiple of the lowest common multiple
of the alignments of all of the members of the struct or union in question. This
means that you can e�ectively adjust the alignment of a struct or union type
by attaching an aligned attribute to any one of the members of such a type,
but the notation illustrated in the example above is a more obvious, intuitive,
and readable way to request the compiler to adjust the alignment of an entire
struct or union type.

As in the preceding example, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given struct or union type. Alterna-
tively, you can leave out the alignment factor and just ask the compiler to
align a type to the maximum useful alignment for the target machine you are
compiling for. For example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute speci�ca-
tion, the compiler automatically sets the alignment for the type to the largest
alignment which is ever used for any data type on the target machine you are
compiling for. Doing this can often make copy operations more eÆcient, be-
cause the compiler can use whatever instructions copy the biggest chunks of
memory when performing copies to or from the variables which have types that
you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size of the
entire struct S type is 6 bytes. The smallest power of two which is greater
than or equal to that is 8, so the compiler sets the alignment for the entire
struct S type to 8 bytes.

Note that although you can ask the compiler to select a time-eÆcient alignment
for a given type and then declare only individual stand-alone objects of that
type, the compiler's ability to select a time-eÆcient alignment is primarily useful
only when you plan to create arrays of variables having the relevant (eÆciently
aligned) type. If you declare or use arrays of variables of an eÆciently-aligned
type, then it is likely that your program will also be doing pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the relevant type,

Chapter 4: Extensions to the C Language Family 163

and the code that the compiler generates for these pointer arithmetic operations
will often be more eÆcient for eÆciently-aligned types than for other types.

The aligned attribute can only increase the alignment; but you can decrease
it by specifying packed as well. See below.

Note that the e�ectiveness of aligned attributes may be limited by inherent
limitations in your linker. On many systems, the linker is only able to arrange
for variables to be aligned up to a certain maximum alignment. (For some
linkers, the maximum supported alignment may be very very small.) If your
linker is only able to align variables up to a maximum of 8 byte alignment, then
specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your linker documentation for further information.

packed This attribute, attached to an enum, struct, or union type de�nition, speci�ed
that the minimum required memory be used to represent the type.

Specifying this attribute for struct and union types is equivalent to specifying
the packed attribute on each of the structure or union members. Specifying
the `-fshort-enums' ag on the line is equivalent to specifying the packed

attribute on all enum de�nitions.

You may only specify this attribute after a closing curly brace on an enum

de�nition, not in a typedef declaration, unless that declaration also contains
the de�nition of the enum.

transparent_union

This attribute, attached to a union type de�nition, indicates that any function
parameter having that union type causes calls to that function to be treated in
a special way.

First, the argument corresponding to a transparent union type can be of any
type in the union; no cast is required. Also, if the union contains a pointer type,
the corresponding argument can be a null pointer constant or a void pointer
expression; and if the union contains a void pointer type, the corresponding
argument can be any pointer expression. If the union member type is a pointer,
quali�ers like const on the referenced type must be respected, just as with
normal pointer conversions.

Second, the argument is passed to the function using the calling conventions of
�rst member of the transparent union, not the calling conventions of the union
itself. All members of the union must have the same machine representation;
this is necessary for this argument passing to work properly.

Transparent unions are designed for library functions that have multiple inter-
faces for compatibility reasons. For example, suppose the wait function must
accept either a value of type int * to comply with Posix, or a value of type
union wait * to comply with the 4.1BSD interface. If wait's parameter were
void *, wait would accept both kinds of arguments, but it would also accept
any other pointer type and this would make argument type checking less useful.
Instead, <sys/wait.h> might de�ne the interface as follows:

typedef union
{

164 Using the GNU Compiler Collection

int *__ip;
union wait *__up;

} wait_status_ptr_t __attribute__ ((__transparent_union__));

pid_t wait (wait_status_ptr_t);

This interface allows either int * or union wait * arguments to be passed,
using the int * calling convention. The program can call wait with arguments
of either type:

int w1 () { int w; return wait (&w); }
int w2 () { union wait w; return wait (&w); }

With this interface, wait's implementation might look like this:

pid_t wait (wait_status_ptr_t p)
{
return waitpid (-1, p.__ip, 0);

}

unused When attached to a type (including a union or a struct), this attribute means
that variables of that type are meant to appear possibly unused. GNU CC
will not produce a warning for any variables of that type, even if the variable
appears to do nothing. This is often the case with lock or thread classes,
which are usually de�ned and then not referenced, but contain constructors
and destructors that have nontrivial bookkeeping functions.

To specify multiple attributes, separate them by commas within the double parentheses:
for example, `__attribute__ ((aligned (16), packed))'.

4.31 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate that function's
code into the code for its callers. This makes execution faster by eliminating the function-
call overhead; in addition, if any of the actual argument values are constant, their known
values may permit simpli�cations at compile time so that not all of the inline function's
code needs to be included. The e�ect on code size is less predictable; object code may
be larger or smaller with function inlining, depending on the particular case. Inlining of
functions is an optimization and it really \works" only in optimizing compilation. If you
don't use `-O', no function is really inline.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)
{
(*a)++;

}

(If you are writing a header �le to be included in ANSI C programs, write __inline__
instead of inline. See Section 4.35 [Alternate Keywords], page 173.) You can also make
all \simple enough" functions inline with the option `-finline-functions'.

Note that certain usages in a function de�nition can make it unsuitable for inline sub-
stitution. Among these usages are: use of varargs, use of alloca, use of variable sized data

Chapter 4: Extensions to the C Language Family 165

types (see Section 4.14 [Variable Length], page 146), use of computed goto (see Section 4.3
[Labels as Values], page 138), use of nonlocal goto, and nested functions (see Section 4.4
[Nested Functions], page 139). Using `-Winline' will warn when a function marked inline

could not be substituted, and will give the reason for the failure.

Note that in C and Objective C, unlike C++, the inline keyword does not a�ect the
linkage of the function.

GNU CC automatically inlines member functions de�ned within the class body of C++
programs even if they are not explicitly declared inline. (You can override this with
`-fno-default-inline'; see Section 2.5 [Options Controlling C++ Dialect], page 16.)

When a function is both inline and static, if all calls to the function are integrated
into the caller, and the function's address is never used, then the function's own assembler
code is never referenced. In this case, GNU CC does not actually output assembler code for
the function, unless you specify the option `-fkeep-inline-functions'. Some calls cannot
be integrated for various reasons (in particular, calls that precede the function's de�nition
cannot be integrated, and neither can recursive calls within the de�nition). If there is a
nonintegrated call, then the function is compiled to assembler code as usual. The function
must also be compiled as usual if the program refers to its address, because that can't be
inlined.

When an inline function is not static, then the compiler must assume that there may be
calls from other source �les; since a global symbol can be de�ned only once in any program,
the function must not be de�ned in the other source �les, so the calls therein cannot be
integrated. Therefore, a non-static inline function is always compiled on its own in the
usual fashion.

If you specify both inline and extern in the function de�nition, then the de�nition is
used only for inlining. In no case is the function compiled on its own, not even if you refer
to its address explicitly. Such an address becomes an external reference, as if you had only
declared the function, and had not de�ned it.

This combination of inline and extern has almost the e�ect of a macro. The way to
use it is to put a function de�nition in a header �le with these keywords, and put another
copy of the de�nition (lacking inline and extern) in a library �le. The de�nition in the
header �le will cause most calls to the function to be inlined. If any uses of the function
remain, they will refer to the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not clear whether it is
better to inline or not, in this case, but we found that a correct implementation when not
optimizing was diÆcult. So we did the easy thing, and turned it o�.

4.32 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can specify the operands of the instruction
using C expressions. This means you need not guess which registers or memory locations
will contain the data you want to use.

You must specify an assembler instruction template much like what appears in a machine
description, plus an operand constraint string for each operand.

For example, here is how to use the 68881's fsinx instruction:

166 Using the GNU Compiler Collection

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output
operand. Each has `"f"' as its operand constraint, saying that a oating point register
is required. The `=' in `=f' indicates that the operand is an output; all output operands'
constraints must use `='. The constraints use the same language used in the machine
description (see Section 16.6 [Constraints], page 293).

Each operand is described by an operand-constraint string followed by the C expression
in parentheses. A colon separates the assembler template from the �rst output operand and
another separates the last output operand from the �rst input, if any. Commas separate
the operands within each group. The total number of operands is limited to ten or to
the maximum number of operands in any instruction pattern in the machine description,
whichever is greater.

If there are no output operands but there are input operands, you must place two
consecutive colons surrounding the place where the output operands would go.

Output operand expressions must be lvalues; the compiler can check this. The input
operands need not be lvalues. The compiler cannot check whether the operands have data
types that are reasonable for the instruction being executed. It does not parse the assembler
instruction template and does not know what it means or even whether it is valid assembler
input. The extended asm feature is most often used for machine instructions the compiler
itself does not know exist. If the output expression cannot be directly addressed (for exam-
ple, it is a bit �eld), your constraint must allow a register. In that case, GNU CC will use
the register as the output of the asm, and then store that register into the output.

The ordinary output operands must be write-only; GNU CC will assume that the values
in these operands before the instruction are dead and need not be generated. Extended asm
supports input-output or read-write operands. Use the constraint character `+' to indicate
such an operand and list it with the output operands.

When the constraints for the read-write operand (or the operand in which only some of
the bits are to be changed) allows a register, you may, as an alternative, logically split its
function into two separate operands, one input operand and one write-only output operand.
The connection between them is expressed by constraints which say they need to be in the
same location when the instruction executes. You can use the same C expression for both
operands, or di�erent expressions. For example, here we write the (�ctitious) `combine'
instruction with bar as its read-only source operand and foo as its read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint `"0"' for operand 1 says that it must occupy the same location as operand
0. A digit in constraint is allowed only in an input operand and it must refer to an output
operand.

Only a digit in the constraint can guarantee that one operand will be in the same place
as another. The mere fact that foo is the value of both operands is not enough to guarantee
that they will be in the same place in the generated assembler code. The following would
not work reliably:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in di�erent regis-
ters; GNU CC knows no reason not to do so. For example, the compiler might �nd a copy

Chapter 4: Extensions to the C Language Family 167

of the value of foo in one register and use it for operand 1, but generate the output operand
0 in a di�erent register (copying it afterward to foo's own address). Of course, since the
register for operand 1 is not even mentioned in the assembler code, the result will not work,
but GNU CC can't tell that.

Some instructions clobber speci�c hard registers. To describe this, write a third colon
after the input operands, followed by the names of the clobbered hard registers (given as
strings). Here is a realistic example for the VAX:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

It is an error for a clobber description to overlap an input or output operand (for example,
an operand describing a register class with one member, mentioned in the clobber list). Most
notably, it is invalid to describe that an input operand is modi�ed, but unused as output.
It has to be speci�ed as an input and output operand anyway. Note that if there are only
unused output operands, you will then also need to specify volatile for the asm construct,
as described below.

If you refer to a particular hardware register from the assembler code, you will probably
have to list the register after the third colon to tell the compiler the register's value is
modi�ed. In some assemblers, the register names begin with `%'; to produce one `%' in the
assembler code, you must write `%%' in the input.

If your assembler instruction can alter the condition code register, add `cc' to the list of
clobbered registers. GNU CC on some machines represents the condition codes as a speci�c
hardware register; `cc' serves to name this register. On other machines, the condition code
is handled di�erently, and specifying `cc' has no e�ect. But it is valid no matter what the
machine.

If your assembler instruction modi�es memory in an unpredictable fashion, add `memory'
to the list of clobbered registers. This will cause GNU CC to not keep memory values cached
in registers across the assembler instruction.

You can put multiple assembler instructions together in a single asm template, separated
either with newlines (written as `\n') or with semicolons if the assembler allows such semi-
colons. The GNU assembler allows semicolons and most Unix assemblers seem to do so.
The input operands are guaranteed not to use any of the clobbered registers, and neither
will the output operands' addresses, so you can read and write the clobbered registers as
many times as you like. Here is an example of multiple instructions in a template; it assumes
the subroutine _foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9;movl %1,r10;call _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");

Unless an output operand has the `&' constraint modi�er, GNU CC may allocate it in the
same register as an unrelated input operand, on the assumption the inputs are consumed
before the outputs are produced. This assumption may be false if the assembler code
actually consists of more than one instruction. In such a case, use `&' for each output
operand that may not overlap an input. See Section 16.6.4 [Modi�ers], page 298.

168 Using the GNU Compiler Collection

If you want to test the condition code produced by an assembler instruction, you must
include a branch and a label in the asm construct, as follows:

asm ("clr %0;frob %1;beq 0f;mov #1,%0;0:"
: "g" (result)
: "g" (input));

This assumes your assembler supports local labels, as the GNU assembler and most Unix
assemblers do.

Speaking of labels, jumps from one asm to another are not supported. The compiler's
optimizers do not know about these jumps, and therefore they cannot take account of them
when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate them in
macros that look like functions. For example,

#define sin(x) \
({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })

Here the variable __arg is used to make sure that the instruction operates on a proper
double value, and to accept only those arguments x which can convert automatically to a
double.

Another way to make sure the instruction operates on the correct data type is to use
a cast in the asm. This is di�erent from using a variable __arg in that it converts more
di�erent types. For example, if the desired type were int, casting the argument to int

would accept a pointer with no complaint, while assigning the argument to an int variable
named __arg would warn about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GNU CC assumes for optimization purposes the in-
struction has no side e�ects except to change the output operands. This does not mean
instructions with a side e�ect cannot be used, but you must be careful, because the com-
piler may eliminate them if the output operands aren't used, or move them out of loops, or
replace two with one if they constitute a common subexpression. Also, if your instruction
does have a side e�ect on a variable that otherwise appears not to change, the old value of
the variable may be reused later if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved signi�cantly, or combined,
by writing the keyword volatile after the asm. For example:

#define get_and_set_priority(new) \
({ int __old; \

asm volatile ("get_and_set_priority %0, %1": "=g" (__old) : "g" (new)); \
__old; })

If you write an asm instruction with no outputs, GNU CC will know the instruction has
side-e�ects and will not delete the instruction or move it outside of loops. If the side-e�ects
of your instruction are not purely external, but will a�ect variables in your program in
ways other than reading the inputs and clobbering the speci�ed registers or memory, you
should write the volatile keyword to prevent future versions of GNU CC from moving the
instruction around within a core region.

Chapter 4: Extensions to the C Language Family 169

An asm instruction without any operands or clobbers (and \old style" asm) will not be
deleted or moved signi�cantly, regardless, unless it is unreachable, the same wasy as if you
had written a volatile keyword.

Note that even a volatile asm instruction can be moved in ways that appear insigni�cant
to the compiler, such as across jump instructions. You can't expect a sequence of volatile
asm instructions to remain perfectly consecutive. If you want consecutive output, use a
single asm.

It is a natural idea to look for a way to give access to the condition code left by the
assembler instruction. However, when we attempted to implement this, we found no way
to make it work reliably. The problem is that output operands might need reloading,
which would result in additional following \store" instructions. On most machines, these
instructions would alter the condition code before there was time to test it. This problem
doesn't arise for ordinary \test" and \compare" instructions because they don't have any
output operands.

If you are writing a header �le that should be includable in ANSI C programs, write
__asm__ instead of asm. See Section 4.35 [Alternate Keywords], page 173.

4.32.1 i386 oating point asm operands

There are several rules on the usage of stack-like regs in asm operands insns. These rules
apply only to the operands that are stack-like regs:

1. Given a set of input regs that die in an asm operands, it is necessary to know which
are implicitly popped by the asm, and which must be explicitly popped by gcc.

An input reg that is implicitly popped by the asm must be explicitly clobbered, unless
it is constrained to match an output operand.

2. For any input reg that is implicitly popped by an asm, it is necessary to know how to
adjust the stack to compensate for the pop. If any non-popped input is closer to the
top of the reg-stack than the implicitly popped reg, it would not be possible to know
what the stack looked like | it's not clear how the rest of the stack \slides up".

All implicitly popped input regs must be closer to the top of the reg-stack than any
input that is not implicitly popped.

It is possible that if an input dies in an insn, reload might use the input reg for an
output reload. Consider this example:

asm ("foo" : "=t" (a) : "f" (b));

This asm says that input B is not popped by the asm, and that the asm pushes a result
onto the reg-stack, ie, the stack is one deeper after the asm than it was before. But, it
is possible that reload will think that it can use the same reg for both the input and
the output, if input B dies in this insn.

If any input operand uses the f constraint, all output reg constraints must use the &

earlyclobber.

The asm above would be written as

asm ("foo" : "=&t" (a) : "f" (b));

3. Some operands need to be in particular places on the stack. All output operands fall
in this category | there is no other way to know which regs the outputs appear in
unless the user indicates this in the constraints.

170 Using the GNU Compiler Collection

Output operands must speci�cally indicate which reg an output appears in after an
asm. =f is not allowed: the operand constraints must select a class with a single reg.

4. Output operands may not be \inserted" between existing stack regs. Since no 387 op-
code uses a read/write operand, all output operands are dead before the asm operands,
and are pushed by the asm operands. It makes no sense to push anywhere but the top
of the reg-stack.

Output operands must start at the top of the reg-stack: output operands may not
\skip" a reg.

5. Some asm statements may need extra stack space for internal calculations. This can
be guaranteed by clobbering stack registers unrelated to the inputs and outputs.

Here are a couple of reasonable asms to want to write. This asm takes one input, which
is internally popped, and produces two outputs.

asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));

This asm takes two inputs, which are popped by the fyl2xp1 opcode, and replaces
them with one output. The user must code the st(1) clobber for reg-stack.c to know that
fyl2xp1 pops both inputs.

asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");

4.33 Constraints for asm Operands

Here are speci�c details on what constraint letters you can use with asm operands.
Constraints can say whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may have. Constraints
can also require two operands to match.

4.33.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one
kind of operand that is permitted. Here are the letters that are allowed:

`m' A memory operand is allowed, with any kind of address that the machine sup-
ports in general.

`o' A memory operand is allowed, but only if the address is o�settable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.

For example, an address which is constant is o�settable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-o�sets supported by the machine); but an
autoincrement or autodecrement address is not o�settable. More complicated
indirect/indexed addresses may or may not be o�settable depending on the
other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand,
the constraint letter `o' is valid only when accompanied by both `<' (if the

Chapter 4: Extensions to the C Language Family 171

target machine has predecrement addressing) and `>' (if the target machine has
preincrement addressing).

`V' A memory operand that is not o�settable. In other words, anything that would
�t the `m' constraint but not the `o' constraint.

`<' A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.

`>' A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.

`r' A register operand is allowed provided that it is in a general register.

`d', `a', `f', . . .
Other letters can be de�ned in machine-dependent fashion to stand for partic-
ular classes of registers. `d', `a' and `f' are de�ned on the 68000/68020 to stand
for data, address and oating point registers.

`i' An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time.

`n' An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use `n' rather than `i'.

`I', `J', `K', . . . `P'
Other letters in the range `I' through `P' may be de�ned in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
speci�ed ranges. For example, on the 68000, `I' is de�ned to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

`E' An immediate oating operand (expression code const_double) is allowed, but
only if the target oating point format is the same as that of the host machine
(on which the compiler is running).

`F' An immediate oating operand (expression code const_double) is allowed.

`G', `H' `G' and `H' may be de�ned in a machine-dependent fashion to permit immediate
oating operands in particular ranges of values.

`s' An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use `s' instead of `i'? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between -128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a `moveq' instruction. We
arrange for this to happen by de�ning the letter `K' to mean \any integer outside
the range -128 to 127", and then specifying `Ks' in the operand constraints.

172 Using the GNU Compiler Collection

`g' Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

`X' Any operand whatsoever is allowed.

`0', `1', `2', . . . `9'
An operand that matches the speci�ed operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.

This is called a matching constraint and what it really means is that the assem-
bler has only a single operand that �lls two roles which asm distinguishes. For
example, an add instruction uses two input operands and an output operand,
but on most CISC machines an add instruction really has only two operands,
one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.

`p' An operand that is a valid memory address is allowed. This is for \load address"
and \push address" instructions.

`p' in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode speci�ed in the
match_operand as the mode of the memory reference for which the address
would be valid.

`Q', `R', `S', . . . `U'
Letters in the range `Q' through `U' may be de�ned in a machine-dependent
fashion to stand for arbitrary operand types.

4.33.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For
example, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the �rst alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative.

If all the operands �t any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes �rst is chosen. These
choices can be altered with the `?' and `!' characters:

Chapter 4: Extensions to the C Language Family 173

? Disparage slightly the alternative that the `?' appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each `?' that appears in it.

! Disparage severely the alternative that the `!' appears in. This alternative can
still be used if it �ts without reloading, but if reloading is needed, some other
alternative will be used.

4.33.3 Constraint Modi�er Characters

Here are constraint modi�er characters.

`=' Means that this operand is write-only for this instruction: the previous value
is discarded and replaced by output data.

`+' Means that this operand is both read and written by the instruction.

When the compiler �xes up the operands to satisfy the constraints, it needs
to know which operands are inputs to the instruction and which are outputs
from it. `=' identi�es an output; `+' identi�es an operand that is both input and
output; all other operands are assumed to be input only.

`&' Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modi�ed before the instruction is �nished using the input operands.
Therefore, this operand may not lie in a register that is used as an input operand
or as part of any memory address.

`&' applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires `&' while others do
not. See, for example, the `movdf' insn of the 68000.

An input operand can be tied to an earlyclobber operand if its only use as an
input occurs before the early result is written. Adding alternatives of this form
often allows GCC to produce better code when only some of the inputs can be
a�ected by the earlyclobber. See, for example, the `mulsi3' insn of the ARM.

`&' does not obviate the need to write `='.

`%' Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands �t the constraints.

`#' Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are signi�cant only for choosing register preferences.

4.33.4 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm argu-
ments, since they will convey meaning more readily to people reading your code. Failing
that, use the constraint letters that usually have very similar meanings across architectures.
The most commonly used constraints are `m' and `r' (for memory and general-purpose reg-
isters respectively; see Section 16.6.1 [Simple Constraints], page 293), and `I', usually the
letter indicating the most common immediate-constant format.

174 Using the GNU Compiler Collection

For each machine architecture, the `config/machine.h' �le de�nes additional con-
straints. These constraints are used by the compiler itself for instruction generation, as well
as for asm statements; therefore, some of the constraints are not particularly interesting for
asm. The constraints are de�ned through these macros:

REG_CLASS_FROM_LETTER

Register class constraints (usually lower case).

CONST_OK_FOR_LETTER_P

Immediate constant constraints, for non-oating point constants of word size
or smaller precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P

Immediate constant constraints, for all oating point constants and for con-
stants of greater than word size precision (usually upper case).

EXTRA_CONSTRAINT

Special cases of registers or memory. This macro is not required, and is only
de�ned for some machines.

Inspecting these macro de�nitions in the compiler source for your machine is the best
way to be certain you have the right constraints. However, here is a summary of the
machine-dependent constraints available on some particular machines.

ARM family|`arm.h'

f Floating-point register

F One of the oating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or
10.0

G Floating-point constant that would satisfy the constraint `F' if it
were negated

I Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2

J Integer in the range -4095 to 4095

K Integer that satis�es constraint `I' when inverted (ones comple-
ment)

L Integer that satis�es constraint `I' when negated (twos comple-
ment)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register
(\m'' is preferable for asm statements)

R An item in the constant pool

S A symbol in the text segment of the current �le

AMD 29000 family|`a29k.h'

l Local register 0

Chapter 4: Extensions to the C Language Family 175

b Byte Pointer (`BP') register

q `Q' register

h Special purpose register

A First accumulator register

a Other accumulator register

f Floating point register

I Constant greater than 0, less than 0x100

J Constant greater than 0, less than 0x10000

K Constant whose high 24 bits are on (1)

L 16 bit constant whose high 8 bits are on (1)

M 32 bit constant whose high 16 bits are on (1)

N 32 bit negative constant that �ts in 8 bits

O The constant 0x80000000 or, on the 29050, any 32 bit constant
whose low 16 bits are 0.

P 16 bit negative constant that �ts in 8 bits

G

H A oating point constant (in asm statements, use the machine in-
dependent `E' or `F' instead)

IBM RS6000|`rs6000.h'

b Address base register

f Floating point register

h `MQ', `CTR', or `LINK' register

q `MQ' register

c `CTR' register

l `LINK' register

x `CR' register (condition register) number 0

y `CR' register (condition register)

z `FPMEM' stack memory for FPR-GPR transfers

I Signed 16 bit constant

J Constant whose low 16 bits are 0

K Constant whose high 16 bits are 0

L Constant suitable as a mask operand

M Constant larger than 31

N Exact power of 2

176 Using the GNU Compiler Collection

O Zero

P Constant whose negation is a signed 16 bit constant

G Floating point constant that can be loaded into a register with one
instruction per word

Q Memory operand that is an o�set from a register (`m' is preferable
for asm statements)

R AIX TOC entry

S Constant suitable as a 64-bit mask operand

U System V Release 4 small data area reference

Intel 386|`i386.h'

q `a', b, c, or d register

A `a', or d register (for 64-bit ints)

f Floating point register

t First (top of stack) oating point register

u Second oating point register

a `a' register

b `b' register

c `c' register

d `d' register

D `di' register

S `si' register

I Constant in range 0 to 31 (for 32 bit shifts)

J Constant in range 0 to 63 (for 64 bit shifts)

K `0xff'

L `0xffff'

M 0, 1, 2, or 3 (shifts for lea instruction)

N Constant in range 0 to 255 (for out instruction)

G Standard 80387 oating point constant

Intel 960|`i960.h'

f Floating point register (fp0 to fp3)

l Local register (r0 to r15)

b Global register (g0 to g15)

d Any local or global register

I Integers from 0 to 31

Chapter 4: Extensions to the C Language Family 177

J 0

K Integers from -31 to 0

G Floating point 0

H Floating point 1

MIPS|`mips.h'

d General-purpose integer register

f Floating-point register (if available)

h `Hi' register

l `Lo' register

x `Hi' or `Lo' register

y General-purpose integer register

z Floating-point status register

I Signed 16 bit constant (for arithmetic instructions)

J Zero

K Zero-extended 16-bit constant (for logic instructions)

L Constant with low 16 bits zero (can be loaded with lui)

M 32 bit constant which requires two instructions to load (a constant
which is not `I', `K', or `L')

N Negative 16 bit constant

O Exact power of two

P Positive 16 bit constant

G Floating point zero

Q Memory reference that can be loaded with more than one instruc-
tion (`m' is preferable for asm statements)

R Memory reference that can be loaded with one instruction (`m' is
preferable for asm statements)

S Memory reference in external OSF/rose PIC format (`m' is prefer-
able for asm statements)

Motorola 680x0|`m68k.h'

a Address register

d Data register

f 68881 oating-point register, if available

x Sun FPA (oating-point) register, if available

y First 16 Sun FPA registers, if available

178 Using the GNU Compiler Collection

I Integer in the range 1 to 8

J 16 bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range -8 to -1

M Signed number whose magnitude is greater than 0x100

G Floating point constant that is not a 68881 constant

H Floating point constant that can be used by Sun FPA

SPARC|`sparc.h'

f Floating-point register that can hold 32 or 64 bit values.

e Floating-point register that can hold 64 or 128 bit values.

I Signed 13 bit constant

J Zero

K 32 bit constant with the low 12 bits clear (a constant that can be
loaded with the sethi instruction)

G Floating-point zero

H Signed 13 bit constant, sign-extended to 32 or 64 bits

Q Memory reference that can be loaded with one instruction (`m' is
more appropriate for asm statements)

S Constant, or memory address

T Memory address aligned to an 8-byte boundary

U Even register

4.34 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable
by writing the asm (or __asm__) keyword after the declarator as follows:

int foo asm ("myfoo") = 2;

This speci�es that the name to be used for the variable foo in the assembler code should
be `myfoo' rather than the usual `_foo'.

On systems where an underscore is normally prepended to the name of a C function or
variable, this feature allows you to de�ne names for the linker that do not start with an
underscore.

You cannot use asm in this way in a function de�nition; but you can get the same e�ect
by writing a declaration for the function before its de�nition and putting asm there, like
this:

Chapter 4: Extensions to the C Language Family 179

extern func () asm ("FUNC");

func (x, y)
int x, y;

...

It is up to you to make sure that the assembler names you choose do not conict with
any other assembler symbols. Also, you must not use a register name; that would produce
completely invalid assembler code. GNU CC does not as yet have the ability to store static
variables in registers. Perhaps that will be added.

4.35 Variables in Speci�ed Registers

GNU C allows you to put a few global variables into speci�ed hardware registers. You
can also specify the register in which an ordinary register variable should be allocated.

� Global register variables reserve registers throughout the program. This may be useful
in programs such as programming language interpreters which have a couple of global
variables that are accessed very often.

� Local register variables in speci�c registers do not reserve the registers. The compiler's
data ow analysis is capable of determining where the speci�ed registers contain live
values, and where they are available for other uses. Stores into local register variables
may be deleted when they appear to be dead according to dataow analysis. References
to local register variables may be deleted or moved or simpli�ed.

These local variables are sometimes convenient for use with the extended asm feature
(see Section 4.32 [Extended Asm], page 165), if you want to write one output of the
assembler instruction directly into a particular register. (This will work provided the
register you specify �ts the constraints speci�ed for that operand in the asm.)

4.35.1 De�ning Global Register Variables

You can de�ne a global register variable in GNU C like this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a register which is
normally saved and restored by function calls on your machine, so that library routines will
not clobber it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your
program according to cpu type. The register a5 would be a good choice on a 68000 for a
variable of pointer type. On machines with register windows, be sure to choose a \global"
register that is not a�ected magically by the function call mechanism.

In addition, operating systems on one type of cpu may di�er in how they name the
registers; then you would need additional conditionals. For example, some 68000 operating
systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically,
but �rst we need to �gure out how it should choose and how to enable you to guide the
choice. No solution is evident.

180 Using the GNU Compiler Collection

De�ning a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register will not be allocated for any
other purpose in the functions in the current compilation. The register will not be saved
and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted or moved or simpli�ed.

It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
function foo by way of a third function lose that was compiled without knowledge of this
variable (i.e. in a di�erent source �le in which the variable wasn't declared). This is because
lose might save the register and put some other value there. For example, you can't expect
a global register variable to be available in the comparison-function that you pass to qsort,
since qsortmight have put something else in that register. (If you are prepared to recompile
qsort with the same global register variable, you can solve this problem.)

If you want to recompile qsort or other source �les which do not actually use your
global register variable, so that they will not use that register for any other purpose, then
it suÆces to specify the compiler option `-ffixed-reg '. You need not actually add a global
register declaration to their source code.

A function which can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the caller
expects to �nd there on return. Therefore, the function which is the entry point into the
part of the program that uses the global register variable must explicitly save and restore
the value which belongs to its caller.

On most machines, longjmp will restore to each global register variable the value it had
at the time of the setjmp. On some machines, however, longjmp will not change the value
of global register variables. To be portable, the function that called setjmp should make
other arrangements to save the values of the global register variables, and to restore them
in a longjmp. This way, the same thing will happen regardless of what longjmp does.

All global register variable declarations must precede all function de�nitions. If such
a declaration could appear after function de�nitions, the declaration would be too late to
prevent the register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable �le has no
means to supply initial contents for a register.

On the Sparc, there are reports that g3 . . . g7 are suitable registers, but certain library
functions, such as getwd, as well as the subroutines for division and remainder, modify g3
and g4. g1 and g2 are local temporaries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of course, it will not
do to use more than a few of those.

4.35.2 Specifying Registers for Local Variables

You can de�ne a local register variable with a speci�ed register like this:

register int *foo asm ("a5");

Chapter 4: Extensions to the C Language Family 181

Here a5 is the name of the register which should be used. Note that this is the same syntax
used for de�ning global register variables, but for a local variable it would appear within a
function.

Naturally the register name is cpu-dependent, but this is not a problem, since speci�c
registers are most often useful with explicit assembler instructions (see Section 4.32 [Ex-
tended Asm], page 165). Both of these things generally require that you conditionalize your
program according to cpu type.

In addition, operating systems on one type of cpu may di�er in how they name the
registers; then you would need additional conditionals. For example, some 68000 operating
systems call this register %a5.

De�ning such a register variable does not reserve the register; it remains available for
other uses in places where ow control determines the variable's value is not live. However,
these registers are made unavailable for use in the reload pass; excessive use of this feature
leaves the compiler too few available registers to compile certain functions.

This option does not guarantee that GNU CC will generate code that has this variable in
the register you specify at all times. You may not code an explicit reference to this register
in an asm statement and assume it will always refer to this variable.

Stores into local register variables may be deleted when they appear to be dead according
to dataow analysis. References to local register variables may be deleted or moved or
simpli�ed.

4.36 Alternate Keywords

The option `-traditional' disables certain keywords; `-ansi' disables certain others.
This causes trouble when you want to use GNU C extensions, or ANSI C features, in
a general-purpose header �le that should be usable by all programs, including ANSI C
programs and traditional ones. The keywords asm, typeof and inline cannot be used since
they won't work in a program compiled with `-ansi', while the keywords const, volatile,
signed, typeof and inline won't work in a program compiled with `-traditional'.

The way to solve these problems is to put `__' at the beginning and end of each prob-
lematical keyword. For example, use __asm__ instead of asm, __const__ instead of const,
and __inline__ instead of inline.

Other C compilers won't accept these alternative keywords; if you want to compile with
another compiler, you can de�ne the alternate keywords as macros to replace them with
the customary keywords. It looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

`-pedantic' causes warnings for many GNU C extensions. You can prevent such warn-
ings within one expression by writing __extension__ before the expression. __extension__
has no e�ect aside from this.

182 Using the GNU Compiler Collection

4.37 Incomplete enum Types

You can de�ne an enum tag without specifying its possible values. This results in an
incomplete type, much like what you get if you write struct foo without describing the
elements. A later declaration which does specify the possible values completes the type.

You can't allocate variables or storage using the type while it is incomplete. However,
you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enummore consistent
with the way struct and union are handled.

This extension is not supported by GNU C++.

4.38 Function Names as Strings

GNU CC prede�nes two string variables to be the name of the current function. The
variable __FUNCTION__ is the name of the function as it appears in the source. The variable
__PRETTY_FUNCTION__ is the name of the function pretty printed in a language speci�c
fashion.

These names are always the same in a C function, but in a C++ function they may be
di�erent. For example, this program:

extern "C" {
extern int printf (char *, ...);
}

class a {
public:
sub (int i)
{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

}
};

int
main (void)
{
a ax;
ax.sub (0);
return 0;

}

gives this output:

__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int a::sub (int)

These names are not macros: they are prede�ned string variables. For example, `#ifdef
__FUNCTION__' does not have any special meaning inside a function, since the preprocessor
does not do anything special with the identi�er __FUNCTION__.

Chapter 4: Extensions to the C Language Family 183

4.39 Getting the Return or Frame Address of a Function

These functions may be used to get information about the callers of a function.

__builtin_return_address (level)
This function returns the return address of the current function, or of one of
its callers. The level argument is number of frames to scan up the call stack. A
value of 0 yields the return address of the current function, a value of 1 yields
the return address of the caller of the current function, and so forth.

The level argument must be a constant integer.

On some machines it may be impossible to determine the return address of any
function other than the current one; in such cases, or when the top of the stack
has been reached, this function will return 0.

This function should only be used with a non-zero argument for debugging
purposes.

__builtin_frame_address (level)
This function is similar to __builtin_return_address, but it returns the ad-
dress of the function frame rather than the return address of the function.
Calling __builtin_frame_address with a value of 0 yields the frame address
of the current function, a value of 1 yields the frame address of the caller of the
current function, and so forth.

The frame is the area on the stack which holds local variables and saved reg-
isters. The frame address is normally the address of the �rst word pushed on
to the stack by the function. However, the exact de�nition depends upon the
processor and the calling convention. If the processor has a dedicated frame
pointer register, and the function has a frame, then __builtin_frame_address

will return the value of the frame pointer register.

The caveats that apply to __builtin_return_address apply to this function
as well.

4.40 Other built-in functions provided by GNU CC

GNU CC provides a large number of built-in functions other than the ones mentioned
above. Some of these are for internal use in the processing of exceptions or variable-length
argument lists and will not be documented here because they may change from time to
time; we do not recommend general use of these functions.

The remaining functions are provided for optimization purposes.

GNU CC includes builtin versions of many of the functions in the standard C library.
These will always be treated as having the same meaning as the C library function even if
you specify the `-fno-builtin' (see Section 2.4 [C Dialect Options], page 12) option. These
functions correspond to the C library functions alloca, ffs, abs, fabsf, fabs, fabsl, labs,
memcpy, memcmp, strcmp, strcpy, strlen, sqrtf, sqrt, sqrtl, sinf, sin, sinl, cosf, cos,
and cosl.

You can use the builtin function __builtin_constant_p to determine if a value is known
to be constant at compile-time and hence that GNU CC can perform constant-folding on

184 Using the GNU Compiler Collection

expressions involving that value. The argument of the function is the value to test. The
function returns the integer 1 if the argument is known to be a compile-time constant and
0 if it is not known to be a compile-time constant. A return of 0 does not indicate that the
value is not a constant, but merely that GNU CC cannot prove it is a constant with the
speci�ed value of the `-O' option.

You would typically use this function in an embedded application where memory was a
critical resource. If you have some complex calculation, you may want it to be folded if it
involves constants, but need to call a function if it does not. For example:

#define Scale_Value(X) \
(__builtin_constant_p (X) ? ((X) * SCALE + OFFSET) : Scale (X))

You may use this builtin function in either a macro or an inline function. However, if
you use it in an inlined function and pass an argument of the function as the argument to
the builtin, GNU CC will never return 1 when you call the inline function with a string
constant or constructor expression (see Section 4.19 [Constructors], page 149) and will not
return 1 when you pass a constant numeric value to the inline function unless you specify
the `-O' option.

4.41 Deprecated Features

In the past, the GNU C++ compiler was extended to experiment with new features, at
a time when the C++ language was still evolving. Now that the C++ standard is complete,
some of those features are superceded by superior alternatives. Using the old features might
cause a warning in some cases that the feature will be dropped in the future. In other cases,
the feature might be gone already.

While the list below is not exhaustive, it documents some of the options that are now
deprecated:

-fthis-is-variable

In early versions of C++, assignment to this could be used to implement
application-de�ned memory allocation. Now, allocation functions (`operator
new') are the standard-conforming way to achieve the same e�ect.

-fexternal-templates

-falt-external-templates

These are two of the many ways for g++ to implement template instantiation.
See Section 5.5 [Template Instantiation], page 180. The C++ standard clearly
de�nes how template de�nitions have to be organized across implementation
units. g++ has an implicit instantiation mechanism that should work just �ne
for standard-conforming code.

Chapter 5: Extensions to the C++ Language 185

5 Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also
use most of the C language extensions in your C++ programs). If you want to write code
that checks whether these features are available, you can test for the GNU compiler the
same way as for C programs: check for a prede�ned macro __GNUC__. You can also use
__GNUG__ to test speci�cally for GNU C++ (see section \Standard Prede�ned Macros" in
The C Preprocessor).

5.1 Named Return Values in C++

GNU C++ extends the function-de�nition syntax to allow you to specify a name for the
result of a function outside the body of the de�nition, in C++ programs:

type
functionname (args) return resultname;
{
...
body
...

}

You can use this feature to avoid an extra constructor call when a function result has a
class type. For example, consider a function m, declared as `X v = m ();', whose result is of
class X:

X
m ()
{
X b;
b.a = 23;
return b;

}

Although m appears to have no arguments, in fact it has one implicit argument: the
address of the return value. At invocation, the address of enough space to hold v is sent
in as the implicit argument. Then b is constructed and its a �eld is set to the value 23.
Finally, a copy constructor (a constructor of the form `X(X&)') is applied to b, with the
(implicit) return value location as the target, so that v is now bound to the return value.

But this is wasteful. The local b is declared just to hold something that will be copied
right out. While a compiler that combined an \elision" algorithm with interprocedural data
ow analysis could conceivably eliminate all of this, it is much more practical to allow you to
assist the compiler in generating eÆcient code by manipulating the return value explicitly,
thus avoiding the local variable and copy constructor altogether.

Using the extended GNU C++ function-de�nition syntax, you can avoid the temporary
allocation and copying by naming r as your return value at the outset, and assigning to its
a �eld directly:

X
m () return r;
{

186 Using the GNU Compiler Collection

r.a = 23;
}

The declaration of r is a standard, proper declaration, whose e�ects are executed before
any of the body of m.

Functions of this type impose no additional restrictions; in particular, you can execute
return statements, or return implicitly by reaching the end of the function body (\falling
o� the edge"). Cases like

X
m () return r (23);
{
return;

}

(or even `X m () return r (23); { }') are unambiguous, since the return value r has been
initialized in either case. The following code may be hard to read, but also works predictably:

X
m () return r;
{
X b;
return b;

}

The return value slot denoted by r is initialized at the outset, but the statement `return
b;' overrides this value. The compiler deals with this by destroying r (calling the destructor
if there is one, or doing nothing if there is not), and then reinitializing r with b.

This extension is provided primarily to help people who use overloaded operators, where
there is a great need to control not just the arguments, but the return values of functions.
For classes where the copy constructor incurs a heavy performance penalty (especially in
the common case where there is a quick default constructor), this is a major savings. The
disadvantage of this extension is that you do not control when the default constructor for
the return value is called: it is always called at the beginning.

5.2 Minimum and Maximum Operators in C++

It is very convenient to have operators which return the \minimum" or the \maximum"
of two arguments. In GNU C++ (but not in GNU C),

a <? b is the minimum, returning the smaller of the numeric values a and b;

a >? b is the maximum, returning the larger of the numeric values a and b.

These operations are not primitive in ordinary C++, since you can use a macro to return
the minimum of two things in C++, as in the following example.

#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

You might then use `int min = MIN (i, j);' to set min to the minimum value of variables
i and j.

However, side e�ects in X or Y may cause unintended behavior. For example, MIN (i++,

j++) will fail, incrementing the smaller counter twice. A GNU C extension allows you to
write safe macros that avoid this kind of problem (see Section 4.6 [Naming an Expression's

Chapter 5: Extensions to the C++ Language 187

Type], page 142). However, writing MIN and MAX as macros also forces you to use function-
call notation for a fundamental arithmetic operation. Using GNU C++ extensions, you can
write `int min = i <? j;' instead.

Since <? and >? are built into the compiler, they properly handle expressions with side-
e�ects; `int min = i++ <? j++;' works correctly.

5.3 goto and Destructors in GNU C++

In C++ programs, you can safely use the goto statement. When you use it to exit a
block which contains aggregates requiring destructors, the destructors will run before the
goto transfers control.

The compiler still forbids using goto to enter a scope that requires constructors.

5.4 Declarations and De�nitions in One Header

C++ object de�nitions can be quite complex. In principle, your source code will need
two kinds of things for each object that you use across more than one source �le. First, you
need an interface speci�cation, describing its structure with type declarations and function
prototypes. Second, you need the implementation itself. It can be tedious to maintain a
separate interface description in a header �le, in parallel to the actual implementation. It
is also dangerous, since separate interface and implementation de�nitions may not remain
parallel.

With GNU C++, you can use a single header �le for both purposes.

Warning: The mechanism to specify this is in transition. For the nonce, you
must use one of two #pragma commands; in a future release of GNU C++, an
alternative mechanism will make these #pragma commands unnecessary.

The header �le contains the full de�nitions, but is marked with `#pragma interface'
in the source code. This allows the compiler to use the header �le only as an interface
speci�cation when ordinary source �les incorporate it with #include. In the single source
�le where the full implementation belongs, you can use either a naming convention or
`#pragma implementation' to indicate this alternate use of the header �le.

#pragma interface

#pragma interface "subdir/objects.h"
Use this directive in header �les that de�ne object classes, to save space in
most of the object �les that use those classes. Normally, local copies of certain
information (backup copies of inline member functions, debugging information,
and the internal tables that implement virtual functions) must be kept in each
object �le that includes class de�nitions. You can use this pragma to avoid such
duplication. When a header �le containing `#pragma interface' is included in
a compilation, this auxiliary information will not be generated (unless the main
input source �le itself uses `#pragma implementation'). Instead, the object
�les will contain references to be resolved at link time.

The second form of this directive is useful for the case where you have multiple
headers with the same name in di�erent directories. If you use this form, you
must specify the same string to `#pragma implementation'.

188 Using the GNU Compiler Collection

#pragma implementation

#pragma implementation "objects.h"
Use this pragma in a main input �le, when you want full output from included
header �les to be generated (and made globally visible). The included header
�le, in turn, should use `#pragma interface'. Backup copies of inline member
functions, debugging information, and the internal tables used to implement
virtual functions are all generated in implementation �les.

If you use `#pragma implementation' with no argument, it applies to an
include �le with the same basename1 as your source �le. For example, in
`allclass.cc', giving just `#pragma implementation' by itself is equivalent to
`#pragma implementation "allclass.h"'.

In versions of GNU C++ prior to 2.6.0 `allclass.h' was treated as an im-
plementation �le whenever you would include it from `allclass.cc' even if
you never speci�ed `#pragma implementation'. This was deemed to be more
trouble than it was worth, however, and disabled.

If you use an explicit `#pragma implementation', it must appear in your source
�le before you include the a�ected header �les.

Use the string argument if you want a single implementation �le to include code
from multiple header �les. (You must also use `#include' to include the header
�le; `#pragma implementation' only speci�es how to use the �le|it doesn't
actually include it.)

There is no way to split up the contents of a single header �le into multiple
implementation �les.

`#pragma implementation' and `#pragma interface' also have an e�ect on function
inlining.

If you de�ne a class in a header �le marked with `#pragma interface', the e�ect on
a function de�ned in that class is similar to an explicit extern declaration|the compiler
emits no code at all to de�ne an independent version of the function. Its de�nition is used
only for inlining with its callers.

Conversely, when you include the same header �le in a main source �le that declares it
as `#pragma implementation', the compiler emits code for the function itself; this de�nes
a version of the function that can be found via pointers (or by callers compiled without
inlining). If all calls to the function can be inlined, you can avoid emitting the function
by compiling with `-fno-implement-inlines'. If any calls were not inlined, you will get
linker errors.

5.5 Where's the Template?

C++ templates are the �rst language feature to require more intelligence from the en-
vironment than one usually �nds on a UNIX system. Somehow the compiler and linker
have to make sure that each template instance occurs exactly once in the executable if it is
needed, and not at all otherwise. There are two basic approaches to this problem, which I
will refer to as the Borland model and the Cfront model.

1 A �le's basename was the name stripped of all leading path information and of trailing
suÆxes, such as `.h' or `.C' or `.cc'.

Chapter 5: Extensions to the C++ Language 189

Borland model
Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template in-
stances in each translation unit that uses them, and the linker collapses them
together. The advantage of this model is that the linker only has to consider the
object �les themselves; there is no external complexity to worry about. This
disadvantage is that compilation time is increased because the template code
is being compiled repeatedly. Code written for this model tends to include
de�nitions of all templates in the header �le, since they must be seen to be
instantiated.

Cfront model
The AT&T C++ translator, Cfront, solved the template instantiation problem
by creating the notion of a template repository, an automatically maintained
place where template instances are stored. A more modern version of the repos-
itory works as follows: As individual object �les are built, the compiler places
any template de�nitions and instantiations encountered in the repository. At
link time, the link wrapper adds in the objects in the repository and compiles
any needed instances that were not previously emitted. The advantages of this
model are more optimal compilation speed and the ability to use the system
linker; to implement the Borland model a compiler vendor also needs to replace
the linker. The disadvantages are vastly increased complexity, and thus poten-
tial for error; for some code this can be just as transparent, but in practice
it can been very diÆcult to build multiple programs in one directory and one
program in multiple directories. Code written for this model tends to separate
de�nitions of non-inline member templates into a separate �le, which should be
compiled separately.

When used with GNU ld version 2.8 or later on an ELF system such as Linux/GNU or
Solaris 2, or on Microsoft Windows, g++ supports the Borland model. On other systems,
g++ implements neither automatic model.

A future version of g++ will support a hybrid model whereby the compiler will emit
any instantiations for which the template de�nition is included in the compile, and store
template de�nitions and instantiation context information into the object �le for the rest.
The link wrapper will extract that information as necessary and invoke the compiler to
produce the remaining instantiations. The linker will then combine duplicate instantiations.

In the mean time, you have the following options for dealing with template instantiations:

1. Compile your template-using code with `-frepo'. The compiler will generate �les with
the extension `.rpo' listing all of the template instantiations used in the corresponding
object �les which could be instantiated there; the link wrapper, `collect2', will then
update the `.rpo' �les to tell the compiler where to place those instantiations and
rebuild any a�ected object �les. The link-time overhead is negligible after the �rst
pass, as the compiler will continue to place the instantiations in the same �les.

This is your best option for application code written for the Borland model, as it will
just work. Code written for the Cfront model will need to be modi�ed so that the
template de�nitions are available at one or more points of instantiation; usually this is
as simple as adding #include <tmethods.cc> to the end of each template header.

190 Using the GNU Compiler Collection

For library code, if you want the library to provide all of the template instantiations
it needs, just try to link all of its object �les together; the link will fail, but cause
the instantiations to be generated as a side e�ect. Be warned, however, that this may
cause conicts if multiple libraries try to provide the same instantiations. For greater
control, use explicit instantiation as described in the next option.

2. Compile your code with `-fno-implicit-templates' to disable the implicit generation
of template instances, and explicitly instantiate all the ones you use. This approach
requires more knowledge of exactly which instances you need than do the others, but it's
less mysterious and allows greater control. You can scatter the explicit instantiations
throughout your program, perhaps putting them in the translation units where the
instances are used or the translation units that de�ne the templates themselves; you
can put all of the explicit instantiations you need into one big �le; or you can create
small �les like

#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;
template ostream& operator <<

(ostream&, const Foo<int>&);

for each of the instances you need, and create a template instantiation library from
those.

If you are using Cfront-model code, you can probably get away with not using
`-fno-implicit-templates' when compiling �les that don't `#include' the mem-
ber template de�nitions.

If you use one big �le to do the instantiations, you may want to compile it without
`-fno-implicit-templates' so you get all of the instances required by your explicit
instantiations (but not by any other �les) without having to specify them as well.

g++ has extended the template instantiation syntax outlined in the Working Paper to
allow forward declaration of explicit instantiations and instantiation of the compiler
support data for a template class (i.e. the vtable) without instantiating any of its
members:

extern template int max (int, int);
inline template class Foo<int>;

3. Do nothing. Pretend g++ does implement automatic instantiation management. Code
written for the Borland model will work �ne, but each translation unit will contain
instances of each of the templates it uses. In a large program, this can lead to an
unacceptable amount of code duplication.

4. Add `#pragma interface' to all �les containing template de�nitions. For each of these
�les, add `#pragma implementation "�lename"' to the top of some `.C' �le which
`#include's it. Then compile everything with `-fexternal-templates'. The tem-
plates will then only be expanded in the translation unit which implements them (i.e.
has a `#pragma implementation' line for the �le where they live); all other �les will
use external references. If you're lucky, everything should work properly. If you get
unde�ned symbol errors, you need to make sure that each template instance which is
used in the program is used in the �le which implements that template. If you don't

Chapter 5: Extensions to the C++ Language 191

have any use for a particular instance in that �le, you can just instantiate it explicitly,
using the syntax from the latest C++ working paper:

template class A<int>;
template ostream& operator << (ostream&, const A<int>&);

This strategy will work with code written for either model. If you are using code
written for the Cfront model, the �le containing a class template and the �le containing
its member templates should be implemented in the same translation unit.

A slight variation on this approach is to instead use the ag `-falt-external-templates';
this ag causes template instances to be emitted in the translation unit that implements
the header where they are �rst instantiated, rather than the one which implements the
�le where the templates are de�ned. This header must be the same in all translation
units, or things are likely to break.

See Section 5.4 [Declarations and De�nitions in One Header], page 179, for more dis-
cussion of these pragmas.

5.6 Extracting the function pointer from a bound pointer to
member function

In C++, pointer to member functions (PMFs) are implemented using a wide pointer of
sorts to handle all the possible call mechanisms; the PMF needs to store information about
how to adjust the `this' pointer, and if the function pointed to is virtual, where to �nd the
vtable, and where in the vtable to look for the member function. If you are using PMFs in
an inner loop, you should really reconsider that decision. If that is not an option, you can
extract the pointer to the function that would be called for a given object/PMF pair and
call it directly inside the inner loop, to save a bit of time.

Note that you will still be paying the penalty for the call through a function pointer; on
most modern architectures, such a call defeats the branch prediction features of the CPU.
This is also true of normal virtual function calls.

The syntax for this extension is

extern A a;
extern int (A::*fp)();
typedef int (*fptr)(A *);

fptr p = (fptr)(a.*fp);

You must specify `-Wno-pmf-conversions' to use this extension.

5.7 Type Abstraction using Signatures

In GNU C++, you can use the keyword signature to de�ne a completely abstract
class interface as a datatype. You can connect this abstraction with actual classes us-
ing signature pointers. If you want to use signatures, run the GNU compiler with the
`-fhandle-signatures' command-line option. (With this option, the compiler reserves a
second keyword sigof as well, for a future extension.)

Roughly, signatures are type abstractions or interfaces of classes. Some other languages
have similar facilities. C++ signatures are related to ML's signatures, Haskell's type classes,

192 Using the GNU Compiler Collection

de�nition modules in Modula-2, interface modules in Modula-3, abstract types in Emerald,
type modules in Trellis/Owl, categories in Scratchpad II, and types in POOL-I. For a more
detailed discussion of signatures, see Signatures: A Language Extension for Improving
Type Abstraction and Subtype Polymorphism in C++ by Gerald Baumgartner and Vincent
F. Russo (Tech report CSD{TR{95{051, Dept. of Computer Sciences, Purdue University,
August 1995, a slightly improved version appeared in Software|Practice & Experience,
25(8), pp. 863{889, August 1995). You can get the tech report by anonymous FTP from
ftp.cs.purdue.edu in `pub/gb/Signature-design.ps.gz'.

Syntactically, a signature declaration is a collection of member function declarations and
nested type declarations. For example, this signature declaration de�nes a new abstract
type S with member functions `int foo ()' and `int bar (int)':

signature S
{
int foo ();
int bar (int);

};

Since signature types do not include implementation de�nitions, you cannot write an
instance of a signature directly. Instead, you can de�ne a pointer to any class that contains
the required interfaces as a signature pointer. Such a class implements the signature type.

To use a class as an implementation of S, you must ensure that the class has public
member functions `int foo ()' and `int bar (int)'. The class can have other member
functions as well, public or not; as long as it o�ers what's declared in the signature, it is
suitable as an implementation of that signature type.

For example, suppose that C is a class that meets the requirements of signature S (C
conforms to S). Then

C obj;
S * p = &obj;

de�nes a signature pointer p and initializes it to point to an object of type C. The member
function call `int i = p->foo ();' executes `obj.foo ()'.

Abstract virtual classes provide somewhat similar facilities in standard C++. There are
two main advantages to using signatures instead:

1. Subtyping becomes independent from inheritance. A class or signature type T is a sub-
type of a signature type S independent of any inheritance hierarchy as long as all the
member functions declared in S are also found in T. So you can de�ne a subtype hier-
archy that is completely independent from any inheritance (implementation) hierarchy,
instead of being forced to use types that mirror the class inheritance hierarchy.

2. Signatures allow you to work with existing class hierarchies as implementations of a
signature type. If those class hierarchies are only available in compiled form, you're out
of luck with abstract virtual classes, since an abstract virtual class cannot be retro�tted
on top of existing class hierarchies. So you would be required to write interface classes
as subtypes of the abstract virtual class.

There is one more detail about signatures. A signature declaration can contain member
function de�nitions as well as member function declarations. A signature member function
with a full de�nition is called a default implementation; classes need not contain that
particular interface in order to conform. For example, a class C can conform to the signature

Chapter 5: Extensions to the C++ Language 193

signature T
{
int f (int);
int f0 () { return f (0); };

};

whether or not C implements the member function `int f0 ()'. If you de�ne C::f0, that
de�nition takes precedence; otherwise, the default implementation S::f0 applies.

194 Using the GNU Compiler Collection

Chapter 6: gcov: a Test Coverage Program 195

6 gcov: a Test Coverage Program

gcov is a tool you can use in conjunction with gnu CC to test code coverage in your
programs.

This chapter describes version 1.5 of gcov.

6.1 Introduction to gcov

gcov is a test coverage program. Use it in concert with gnu CC to analyze your programs
to help create more eÆcient, faster running code. You can use gcov as a pro�ling tool to
help discover where your optimization e�orts will best a�ect your code. You can also use
gcov along with the other pro�ling tool, gprof, to assess which parts of your code use the
greatest amount of computing time.

Pro�ling tools help you analyze your code's performance. Using a pro�ler such as gcov
or gprof, you can �nd out some basic performance statistics, such as:

� how often each line of code executes

� what lines of code are actually executed

� how much computing time each section of code uses

Once you know these things about how your code works when compiled, you can look at
each module to see which modules should be optimized. gcov helps you determine where
to work on optimization.

Software developers also use coverage testing in concert with testsuites, to make sure
software is actually good enough for a release. Testsuites can verify that a program works
as expected; a coverage program tests to see how much of the program is exercised by the
testsuite. Developers can then determine what kinds of test cases need to be added to the
testsuites to create both better testing and a better �nal product.

You should compile your code without optimization if you plan to use gcov because
the optimization, by combining some lines of code into one function, may not give you
as much information as you need to look for `hot spots' where the code is using a great
deal of computer time. Likewise, because gcov accumulates statistics by line (at the lowest
resolution), it works best with a programming style that places only one statement on each
line. If you use complicated macros that expand to loops or to other control structures,
the statistics are less helpful|they only report on the line where the macro call appears.
If your complex macros behave like functions, you can replace them with inline functions
to solve this problem.

gcov creates a log�le called `source�le.gcov' which indicates how many times each line
of a source �le `source�le.c' has executed. You can use these log�les along with gprof to
aid in �ne-tuning the performance of your programs. gprof gives timing information you
can use along with the information you get from gcov.

gcov works only on code compiled with gnu CC. It is not compatible with any other
pro�ling or test coverage mechanism.

196 Using the GNU Compiler Collection

6.2 Invoking gcov

gcov [-b] [-v] [-n] [-l] [-f] [-o directory] source�le

-b Write branch frequencies to the output �le, and write branch summary info to
the standard output. This option allows you to see how often each branch in
your program was taken.

-v Display the gcov version number (on the standard error stream).

-n Do not create the gcov output �le.

-l Create long �le names for included source �les. For example, if the header
�le `x.h' contains code, and was included in the �le `a.c', then running gcov

on the �le `a.c' will produce an output �le called `a.c.x.h.gcov' instead of
`x.h.gcov'. This can be useful if `x.h' is included in multiple source �les.

-f Output summaries for each function in addition to the �le level summary.

-o The directory where the object �les live. Gcov will search for .bb, .bbg, and
.da �les in this directory.

When using gcov, you must �rst compile your program with two special gnu CC op-
tions: `-fprofile-arcs -ftest-coverage'. This tells the compiler to generate additional
information needed by gcov (basically a ow graph of the program) and also includes addi-
tional code in the object �les for generating the extra pro�ling information needed by gcov.
These additional �les are placed in the directory where the source code is located.

Running the program will cause pro�le output to be generated. For each source �le
compiled with -fpro�le-arcs, an accompanying .da �le will be placed in the source directory.

Running gcov with your program's source �le names as arguments will now produce a
listing of the code along with frequency of execution for each line. For example, if your
program is called `tmp.c', this is what you see when you use the basic gcov facility:

$ gcc -fprofile-arcs -ftest-coverage tmp.c
$ a.out
$ gcov tmp.c
87.50% of 8 source lines executed in file tmp.c
Creating tmp.c.gcov.

The �le `tmp.c.gcov' contains output from gcov. Here is a sample:

main()
{

1 int i, total;

1 total = 0;

11 for (i = 0; i < 10; i++)
10 total += i;

1 if (total != 45)
printf ("Failure\n");

else
1 printf ("Success\n");

Chapter 6: gcov: a Test Coverage Program 197

1 }
When you use the `-b' option, your output looks like this:

$ gcov -b tmp.c
87.50% of 8 source lines executed in file tmp.c
80.00% of 5 branches executed in file tmp.c
80.00% of 5 branches taken at least once in file tmp.c
50.00% of 2 calls executed in file tmp.c

Creating tmp.c.gcov.

Here is a sample of a resulting `tmp.c.gcov' �le:

main()
{

1 int i, total;

1 total = 0;

11 for (i = 0; i < 10; i++)
branch 0 taken = 91%
branch 1 taken = 100%
branch 2 taken = 100%

10 total += i;

1 if (total != 45)
branch 0 taken = 100%

printf ("Failure\n");
call 0 never executed
branch 1 never executed

else
1 printf ("Success\n");

call 0 returns = 100%
1 }

For each basic block, a line is printed after the last line of the basic block describing the
branch or call that ends the basic block. There can be multiple branches and calls listed for
a single source line if there are multiple basic blocks that end on that line. In this case, the
branches and calls are each given a number. There is no simple way to map these branches
and calls back to source constructs. In general, though, the lowest numbered branch or call
will correspond to the leftmost construct on the source line.

For a branch, if it was executed at least once, then a percentage indicating the number
of times the branch was taken divided by the number of times the branch was executed will
be printed. Otherwise, the message \never executed" is printed.

For a call, if it was executed at least once, then a percentage indicating the number of
times the call returned divided by the number of times the call was executed will be printed.
This will usually be 100%, but may be less for functions call exit or longjmp, and thus
may not return everytime they are called.

The execution counts are cumulative. If the example program were executed again
without removing the .da �le, the count for the number of times each line in the source was
executed would be added to the results of the previous run(s). This is potentially useful in
several ways. For example, it could be used to accumulate data over a number of program

198 Using the GNU Compiler Collection

runs as part of a test veri�cation suite, or to provide more accurate long-term information
over a large number of program runs.

The data in the .da �les is saved immediately before the program exits. For each source
�le compiled with -fpro�le-arcs, the pro�ling code �rst attempts to read in an existing .da

�le; if the �le doesn't match the executable (di�ering number of basic block counts) it will
ignore the contents of the �le. It then adds in the new execution counts and �nally writes
the data to the �le.

6.3 Using gcov with GCC Optimization

If you plan to use gcov to help optimize your code, you must �rst compile your program
with two special gnu CC options: `-fprofile-arcs -ftest-coverage'. Aside from that,
you can use any other gnu CC options; but if you want to prove that every single line in
your program was executed, you should not compile with optimization at the same time.
On some machines the optimizer can eliminate some simple code lines by combining them
with other lines. For example, code like this:

if (a != b)
c = 1;

else
c = 0;

can be compiled into one instruction on some machines. In this case, there is no way for
gcov to calculate separate execution counts for each line because there isn't separate code
for each line. Hence the gcov output looks like this if you compiled the program with
optimization:

100 if (a != b)
100 c = 1;
100 else
100 c = 0;

The output shows that this block of code, combined by optimization, executed 100 times.
In one sense this result is correct, because there was only one instruction representing all
four of these lines. However, the output does not indicate how many times the result was
0 and how many times the result was 1.

6.4 Brief description of gcov data �les

gcov uses three �les for doing pro�ling. The names of these �les are derived from the
original source �le by substituting the �le suÆx with either .bb, .bbg, or .da. All of
these �les are placed in the same directory as the source �le, and contain data stored in a
platform-independent method.

The .bb and .bbg �les are generated when the source �le is compiled with the gnu CC
`-ftest-coverage' option. The .bb �le contains a list of source �les (including headers),
functions within those �les, and line numbers corresponding to each basic block in the source
�le.

The .bb �le format consists of several lists of 4-byte integers which correspond to the
line numbers of each basic block in the �le. Each list is terminated by a line number of

Chapter 6: gcov: a Test Coverage Program 199

0. A line number of -1 is used to designate that the source �le name (padded to a 4-byte
boundary and followed by another -1) follows. In addition, a line number of -2 is used to
designate that the name of a function (also padded to a 4-byte boundary and followed by
a -2) follows.

The .bbg �le is used to reconstruct the program ow graph for the source �le. It contains
a list of the program ow arcs (possible branches taken from one basic block to another)
for each function which, in combination with the .bb �le, enables gcov to reconstruct the
program ow.

In the .bbg �le, the format is:

number of basic blocks for function #0 (4-byte number)
total number of arcs for function #0 (4-byte number)
count of arcs in basic block #0 (4-byte number)
destination basic block of arc #0 (4-byte number)
flag bits (4-byte number)
destination basic block of arc #1 (4-byte number)
flag bits (4-byte number)
...
destination basic block of arc #N (4-byte number)
flag bits (4-byte number)
count of arcs in basic block #1 (4-byte number)
destination basic block of arc #0 (4-byte number)
flag bits (4-byte number)
...

A -1 (stored as a 4-byte number) is used to separate each function's list of basic blocks,
and to verify that the �le has been read correctly.

The .da �le is generated when a program containing object �les built with the gnu
CC `-fprofile-arcs' option is executed. A separate .da �le is created for each source �le
compiled with this option, and the name of the .da �le is stored as an absolute pathname in
the resulting object �le. This path name is derived from the source �le name by substituting
a .da suÆx.

The format of the .da �le is fairly simple. The �rst 8-byte number is the number of
counts in the �le, followed by the counts (stored as 8-byte numbers). Each count corresponds
to the number of times each arc in the program is executed. The counts are cumulative;
each time the program is executed, it attemps to combine the existing .da �les with the new
counts for this invocation of the program. It ignores the contents of any .da �les whose
number of arcs doesn't correspond to the current program, and merely overwrites them
instead.

All three of these �les use the functions in gcov-io.h to store integers; the functions in
this header provide a machine-independent mechanism for storing and retrieving data from
a stream.

200 Using the GNU Compiler Collection

Chapter 7: Known Causes of Trouble with GCC 201

7 Known Causes of Trouble with GCC

This section describes known problems that a�ect users of GCC. Most of these are not
GCC bugs per se|if they were, we would �x them. But the result for a user may be like
the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that
are too much work to add, and some are places where people's opinions di�er as to what is
best.

7.1 Actual Bugs We Haven't Fixed Yet

� The fixincludes script interacts badly with automounters; if the directory of system
header �les is automounted, it tends to be unmounted while fixincludes is running.
This would seem to be a bug in the automounter. We don't know any good way to
work around it.

� The fixproto script will sometimes add prototypes for the sigsetjmp and siglongjmp

functions that reference the jmp_buf type before that type is de�ned. To work around
this, edit the o�ending �le and place the typedef in front of the prototypes.

� There are several obscure case of mis-using struct, union, and enum tags that are not
detected as errors by the compiler.

� When `-pedantic-errors' is speci�ed, GCC will incorrectly give an error message
when a function name is speci�ed in an expression involving the comma operator.

� Loop unrolling doesn't work properly for certain C++ programs. This is a bug in the
C++ front end. It sometimes emits incorrect debug info, and the loop unrolling code is
unable to recover from this error.

7.2 Installation Problems

This is a list of problems (and some apparent problems which don't really mean anything
is wrong) that show up during installation of GNU CC.

� On certain systems, de�ning certain environment variables such as CC can interfere
with the functioning of make.

� If you encounter seemingly strange errors when trying to build the compiler in a direc-
tory other than the source directory, it could be because you have previously con�gured
the compiler in the source directory. Make sure you have done all the necessary prepa-
rations. See Section 3.3 [Other Dir], page 126.

� If you build GCC on a BSD system using a directory stored in a System V �le system,
problems may occur in running fixincludes if the System V �le system doesn't sup-
port symbolic links. These problems result in a failure to �x the declaration of size_t
in `sys/types.h'. If you �nd that size_t is a signed type and that type mismatches
occur, this could be the cause.

The solution is not to use such a directory for building GCC.

� In previous versions of GCC, the gcc driver program looked for as and ld in various
places; for example, in �les beginning with `/usr/local/lib/gcc-'. GCC version 2
looks for them in the directory `/usr/local/lib/gcc-lib/target/version'.

202 Using the GNU Compiler Collection

Thus, to use a version of as or ld that is not the system default, for example gas

or GNU ld, you must put them in that directory (or make links to them from that
directory).

� Some commands executed when making the compiler may fail (return a non-zero status)
and be ignored by make. These failures, which are often due to �les that were not found,
are expected, and can safely be ignored.

� It is normal to have warnings in compiling certain �les about unreachable code and
about enumeration type clashes. These �les' names begin with `insn-'. Also, `real.c'
may get some warnings that you can ignore.

� Sometimes make recompiles parts of the compiler when installing the compiler. In one
case, this was traced down to a bug in make. Either ignore the problem or switch to
GNU Make.

� If you have installed a program known as purify, you may �nd that it causes errors
while linking enquire, which is part of building GCC. The �x is to get rid of the �le
real-ld which purify installs|so that GCC won't try to use it.

� On GNU/Linux SLS 1.01, there is a problem with `libc.a': it does not contain the
obstack functions. However, GCC assumes that the obstack functions are in `libc.a'
when it is the GNU C library. To work around this problem, change the __GNU_

LIBRARY__ conditional around line 31 to `#if 1'.

� On some 386 systems, building the compiler never �nishes because enquire hangs due
to a hardware problem in the motherboard|it reports oating point exceptions to
the kernel incorrectly. You can install GCC except for `float.h' by patching out the
command to run enquire. You may also be able to �x the problem for real by getting a
replacement motherboard. This problem was observed in Revision E of the Micronics
motherboard, and is �xed in Revision F. It has also been observed in the MYLEX
MXA-33 motherboard.

If you encounter this problem, you may also want to consider removing the FPU from
the socket during the compilation. Alternatively, if you are running SCO Unix, you
can reboot and force the FPU to be ignored. To do this, type `hd(40)unix auto

ignorefpu'.

� On some 386 systems, GCC crashes trying to compile `enquire.c'. This happens on
machines that don't have a 387 FPU chip. On 386 machines, the system kernel is
supposed to emulate the 387 when you don't have one. The crash is due to a bug in
the emulator.

One of these systems is the Unix from Interactive Systems: 386/ix. On this system, an
alternate emulator is provided, and it does work. To use it, execute this command as
super-user:

ln /etc/emulator.rel1 /etc/emulator

and then reboot the system. (The default emulator �le remains present under the name
`emulator.dflt'.)

Try using `/etc/emulator.att', if you have such a problem on the SCO system.

Another system which has this problem is Esix. We don't know whether it has an
alternate emulator that works.

On NetBSD 0.8, a similar problem manifests itself as these error messages:

Chapter 7: Known Causes of Trouble with GCC 203

enquire.c: In function `fprop':
enquire.c:2328: floating overflow

� On SCO systems, when compiling GCC with the system's compiler, do not use `-O'.
Some versions of the system's compiler miscompile GCC with `-O'.

� Sometimes on a Sun 4 you may observe a crash in the program genflags or genoutput
while building GCC. This is said to be due to a bug in sh. You can probably get around
it by running genflags or genoutput manually and then retrying the make.

� On Solaris 2, executables of GCC version 2.0.2 are commonly available, but they have
a bug that shows up when compiling current versions of GCC: unde�ned symbol errors
occur during assembly if you use `-g'.

The solution is to compile the current version of GCC without `-g'. That makes a
working compiler which you can use to recompile with `-g'.

� Solaris 2 comes with a number of optional OS packages. Some of these packages are
needed to use GCC fully. If you did not install all optional packages when installing
Solaris, you will need to verify that the packages that GCC needs are installed.

To check whether an optional package is installed, use the pkginfo command. To add
an optional package, use the pkgadd command. For further details, see the Solaris
documentation.

For Solaris 2.0 and 2.1, GCC needs six packages: `SUNWarc', `SUNWbtool', `SUNWesu',
`SUNWhea', `SUNWlibm', and `SUNWtoo'.

For Solaris 2.2, GCC needs an additional seventh package: `SUNWsprot'.

� On Solaris 2, trying to use the linker and other tools in `/usr/ucb' to install GCC has
been observed to cause trouble. For example, the linker may hang inde�nitely. The �x
is to remove `/usr/ucb' from your PATH.

� If you use the 1.31 version of the MIPS assembler (such as was shipped with Ultrix
3.1), you will need to use the -fno-delayed-branch switch when optimizing oating point
code. Otherwise, the assembler will complain when the GCC compiler �lls a branch
delay slot with a oating point instruction, such as add.d.

� If on a MIPS system you get an error message saying \does not have gp sections for
all it's [sic] sectons [sic]", don't worry about it. This happens whenever you use GAS
with the MIPS linker, but there is not really anything wrong, and it is okay to use the
output �le. You can stop such warnings by installing the GNU linker.

It would be nice to extend GAS to produce the gp tables, but they are optional, and
there should not be a warning about their absence.

� In Ultrix 4.0 on the MIPS machine, `stdio.h' does not work with GNU CC at all
unless it has been �xed with fixincludes. This causes problems in building GCC.
Once GCC is installed, the problems go away.

To work around this problem, when making the stage 1 compiler, specify this option
to Make:

GCC_FOR_TARGET="./xgcc -B./ -I./include"

When making stage 2 and stage 3, specify this option:

CFLAGS="-g -I./include"

204 Using the GNU Compiler Collection

� Users have reported some problems with version 2.0 of the MIPS compiler tools that
were shipped with Ultrix 4.1. Version 2.10 which came with Ultrix 4.2 seems to work
�ne.

Users have also reported some problems with version 2.20 of the MIPS compiler tools
that were shipped with RISC/os 4.x. The earlier version 2.11 seems to work �ne.

� Some versions of the MIPS linker will issue an assertion failure when linking code that
uses alloca against shared libraries on RISC-OS 5.0, and DEC's OSF/1 systems. This
is a bug in the linker, that is supposed to be �xed in future revisions. To protect against
this, GCC passes `-non_shared' to the linker unless you pass an explicit `-shared' or
`-call_shared' switch.

� On System V release 3, you may get this error message while linking:

ld fatal: failed to write symbol name something
in strings table for file whatever

This probably indicates that the disk is full or your ULIMIT won't allow the �le to be
as large as it needs to be.

This problem can also result because the kernel parameter MAXUMEM is too small. If so,
you must regenerate the kernel and make the value much larger. The default value is
reported to be 1024; a value of 32768 is said to work. Smaller values may also work.

� On System V, if you get an error like this,

/usr/local/lib/bison.simple: In function `yyparse':
/usr/local/lib/bison.simple:625: virtual memory exhausted

that too indicates a problem with disk space, ULIMIT, or MAXUMEM.

� Current GCC versions probably do not work on version 2 of the NeXT operating
system.

� On NeXTStep 3.0, the Objective C compiler does not work, due, apparently, to a kernel
bug that it happens to trigger. This problem does not happen on 3.1.

� On the Tower models 4n0 and 6n0, by default a process is not allowed to have more
than one megabyte of memory. GCC cannot compile itself (or many other programs)
with `-O' in that much memory.

To solve this problem, recon�gure the kernel adding the following line to the con�gu-
ration �le:

MAXUMEM = 4096

� On HP 9000 series 300 or 400 running HP-UX release 8.0, there is a bug in the assembler
that must be �xed before GCC can be built. This bug manifests itself during the �rst
stage of compilation, while building `libgcc2.a':

_floatdisf
cc1: warning: `-g' option not supported on this version of GCC
cc1: warning: `-g1' option not supported on this version of GCC
./xgcc: Internal compiler error: program as got fatal signal 11

A patched version of the assembler is available by anonymous ftp from altdorf.ai.mit.edu

as the �le `archive/cph/hpux-8.0-assembler'. If you have HP software support, the
patch can also be obtained directly from HP, as described in the following note:

This is the patched assembler, to patch SR#1653-010439, where the as-
sembler aborts on oating point constants.

Chapter 7: Known Causes of Trouble with GCC 205

The bug is not really in the assembler, but in the shared library version
of the function \cvtnum(3c)". The bug on \cvtnum(3c)" is SR#4701-
078451. Anyway, the attached assembler uses the archive library version
of \cvtnum(3c)" and thus does not exhibit the bug.

This patch is also known as PHCO 4484.

� On HP-UX version 8.05, but not on 8.07 or more recent versions, the fixproto shell
script triggers a bug in the system shell. If you encounter this problem, upgrade your
operating system or use BASH (the GNU shell) to run fixproto.

� Some versions of the Pyramid C compiler are reported to be unable to compile GCC.
You must use an older version of GCC for bootstrapping. One indication of this problem
is if you get a crash when GCC compiles the function muldi3 in �le `libgcc2.c'.

You may be able to succeed by getting GCC version 1, installing it, and using it to
compile GCC version 2. The bug in the Pyramid C compiler does not seem to a�ect
GCC version 1.

� There may be similar problems on System V Release 3.1 on 386 systems.

� On the Intel Paragon (an i860 machine), if you are using operating system version 1.0,
you will get warnings or errors about rede�nition of va_arg when you build GCC.

If this happens, then you need to link most programs with the library `iclib.a'. You
must also modify `stdio.h' as follows: before the lines

#if defined(__i860__) && !defined(_VA_LIST)
#include <va_list.h>

insert the line

#if __PGC__

and after the lines

extern int vprintf(const char *, va_list);
extern int vsprintf(char *, const char *, va_list);
#endif

insert the line

#endif /* __PGC__ */

These problems don't exist in operating system version 1.1.

� On the Altos 3068, programs compiled with GCC won't work unless you �x a kernel
bug. This happens using system versions V.2.2 1.0gT1 and V.2.2 1.0e and perhaps
later versions as well. See the �le `README.ALTOS'.

� You will get several sorts of compilation and linking errors on the we32k if you don't
follow the special instructions. See Section 3.2 [Con�gurations], page 111.

� A bug in the HP-UX 8.05 (and earlier) shell will cause the �xproto program to report
an error of the form:

./fixproto: sh internal 1K buffer overflow

To �x this, change the �rst line of the �xproto script to look like:

#!/bin/ksh

206 Using the GNU Compiler Collection

7.3 Cross-Compiler Problems

You may run into problems with cross compilation on certain machines, for several
reasons.

� Cross compilation can run into trouble for certain machines because some target ma-
chines' assemblers require oating point numbers to be written as integer constants in
certain contexts.

The compiler writes these integer constants by examining the oating point value as
an integer and printing that integer, because this is simple to write and independent of
the details of the oating point representation. But this does not work if the compiler
is running on a di�erent machine with an incompatible oating point format, or even
a di�erent byte-ordering.

In addition, correct constant folding of oating point values requires representing them
in the target machine's format. (The C standard does not quite require this, but in
practice it is the only way to win.)

It is now possible to overcome these problems by de�ning macros such as REAL_VALUE_
TYPE. But doing so is a substantial amount of work for each target machine. See section
\Cross Compilation and Floating Point Format" in Using and Porting GCC .

� At present, the program `mips-tfile' which adds debug support to object �les on
MIPS systems does not work in a cross compile environment.

7.4 Interoperation

This section lists various diÆculties encountered in using GNU C or GNU C++ together
with other compilers or with the assemblers, linkers, libraries and debuggers on certain
systems.

� Objective C does not work on the RS/6000.

� GNU C++ does not do name mangling in the same way as other C++ compilers. This
means that object �les compiled with one compiler cannot be used with another.

This e�ect is intentional, to protect you from more subtle problems. Compilers di�er
as to many internal details of C++ implementation, including: how class instances are
laid out, how multiple inheritance is implemented, and how virtual function calls are
handled. If the name encoding were made the same, your programs would link against
libraries provided from other compilers|but the programs would then crash when run.
Incompatible libraries are then detected at link time, rather than at run time.

� Older GDB versions sometimes fail to read the output of GCC version 2. If you have
trouble, get GDB version 4.4 or later.

� DBX rejects some �les produced by GCC, though it accepts similar constructs in output
from PCC. Until someone can supply a coherent description of what is valid DBX input
and what is not, there is nothing I can do about these problems. You are on your own.

� The GNU assembler (GAS) does not support PIC. To generate PIC code, you must
use some other assembler, such as `/bin/as'.

� On some BSD systems, including some versions of Ultrix, use of pro�ling causes static
variable destructors (currently used only in C++) not to be run.

Chapter 7: Known Causes of Trouble with GCC 207

� Use of `-I/usr/include' may cause trouble.

Many systems come with header �les that won't work with GCC unless corrected
by fixincludes. The corrected header �les go in a new directory; GCC searches this
directory before `/usr/include'. If you use `-I/usr/include', this tells GCC to search
`/usr/include' earlier on, before the corrected headers. The result is that you get the
uncorrected header �les.

Instead, you should use these options (when compiling C programs):

-I/usr/local/lib/gcc-lib/target/version/include -I/usr/include

For C++ programs, GCC also uses a special directory that de�nes C++ interfaces to
standard C subroutines. This directory is meant to be searched before other standard
include directories, so that it takes precedence. If you are compiling C++ programs
and specifying include directories explicitly, use this option �rst, then the two options
above:

-I/usr/local/lib/g++-include

� On some SGI systems, when you use `-lgl_s' as an option, it gets translated magically
to `-lgl_s -lX11_s -lc_s'. Naturally, this does not happen when you use GCC. You
must specify all three options explicitly.

� On a Sparc, GCC aligns all values of type double on an 8-byte boundary, and it expects
every double to be so aligned. The Sun compiler usually gives double values 8-byte
alignment, with one exception: function arguments of type double may not be aligned.

As a result, if a function compiled with Sun CC takes the address of an argument
of type double and passes this pointer of type double * to a function compiled with
GCC, dereferencing the pointer may cause a fatal signal.

One way to solve this problem is to compile your entire program with GNU CC. Another
solution is to modify the function that is compiled with Sun CC to copy the argument
into a local variable; local variables are always properly aligned. A third solution is to
modify the function that uses the pointer to dereference it via the following function
access_double instead of directly with `*':

inline double
access_double (double *unaligned_ptr)
{
union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;

u.i[0] = p->i[0];
u.i[1] = p->i[1];

return u.d;
}

Storing into the pointer can be done likewise with the same union.

� On Solaris, the malloc function in the `libmalloc.a' library may allocate memory
that is only 4 byte aligned. Since GCC on the Sparc assumes that doubles are 8 byte

208 Using the GNU Compiler Collection

aligned, this may result in a fatal signal if doubles are stored in memory allocated by
the `libmalloc.a' library.

The solution is to not use the `libmalloc.a' library. Use instead malloc and related
functions from `libc.a'; they do not have this problem.

� Sun forgot to include a static version of `libdl.a' with some versions of SunOS (mainly
4.1). This results in unde�ned symbols when linking static binaries (that is, if you use
`-static'). If you see unde�ned symbols _dlclose, _dlsym or _dlopen when linking,
compile and link against the �le `mit/util/misc/dlsym.c' from the MIT version of X
windows.

� The 128-bit long double format that the Sparc port supports currently works by using
the architecturally de�ned quad-word oating point instructions. Since there is no
hardware that supports these instructions they must be emulated by the operating
system. Long doubles do not work in Sun OS versions 4.0.3 and earlier, because the
kernel emulator uses an obsolete and incompatible format. Long doubles do not work
in Sun OS version 4.1.1 due to a problem in a Sun library. Long doubles do work on
Sun OS versions 4.1.2 and higher, but GCC does not enable them by default. Long
doubles appear to work in Sun OS 5.x (Solaris 2.x).

� On HP-UX version 9.01 on the HP PA, the HP compiler cc does not compile GCC
correctly. We do not yet know why. However, GCC compiled on earlier HP-UX versions
works properly on HP-UX 9.01 and can compile itself properly on 9.01.

� On the HP PA machine, ADB sometimes fails to work on functions compiled with
GCC. Speci�cally, it fails to work on functions that use alloca or variable-size arrays.
This is because GCC doesn't generate HP-UX unwind descriptors for such functions.
It may even be impossible to generate them.

� Debugging (`-g') is not supported on the HP PA machine, unless you use the prelimi-
nary GNU tools (see Chapter 3 [Installation], page 103).

� Taking the address of a label may generate errors from the HP-UX PA assembler. GAS
for the PA does not have this problem.

� Using oating point parameters for indirect calls to static functions will not work when
using the HP assembler. There simply is no way for GCC to specify what registers hold
arguments for static functions when using the HP assembler. GAS for the PA does not
have this problem.

� In extremely rare cases involving some very large functions you may receive errors from
the HP linker complaining about an out of bounds unconditional branch o�set. This
used to occur more often in previous versions of GCC, but is now exceptionally rare.
If you should run into it, you can work around by making your function smaller.

� GCC compiled code sometimes emits warnings from the HP-UX assembler of the form:

(warning) Use of GR3 when
frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.

� The current version of the assembler (`/bin/as') for the RS/6000 has certain problems
that prevent the `-g' option in GCC from working. Note that `Makefile.in' uses `-g'
by default when compiling `libgcc2.c'.

Chapter 7: Known Causes of Trouble with GCC 209

IBM has produced a �xed version of the assembler. The upgraded assembler unfortu-
nately was not included in any of the AIX 3.2 update PTF releases (3.2.2, 3.2.3, or
3.2.3e). Users of AIX 3.1 should request PTF U403044 from IBM and users of AIX 3.2
should request PTF U416277. See the �le `README.RS6000' for more details on these
updates.

You can test for the presense of a �xed assembler by using the command

as -u < /dev/null

If the command exits normally, the assembler �x already is installed. If the assembler
complains that "-u" is an unknown ag, you need to order the �x.

� On the IBM RS/6000, compiling code of the form

extern int foo;

...
foo ...

static int foo;

will cause the linker to report an unde�ned symbol foo. Although this behavior di�ers
from most other systems, it is not a bug because rede�ning an extern variable as
static is unde�ned in ANSI C.

� AIX on the RS/6000 provides support (NLS) for environments outside of the United
States. Compilers and assemblers use NLS to support locale-speci�c representations
of various objects including oating-point numbers ("." vs "," for separating decimal
fractions). There have been problems reported where the library linked with GCC does
not produce the same oating-point formats that the assembler accepts. If you have
this problem, set the LANG environment variable to "C" or "En US".

� Even if you specify `-fdollars-in-identifiers', you cannot successfully use `$' in
identi�ers on the RS/6000 due to a restriction in the IBM assembler. GAS supports
these identi�ers.

� On the RS/6000, XLC version 1.3.0.0 will miscompile `jump.c'. XLC version 1.3.0.1 or
later �xes this problem. You can obtain XLC-1.3.0.2 by requesting PTF 421749 from
IBM.

� There is an assembler bug in versions of DG/UX prior to 5.4.2.01 that occurs when
the `fldcr' instruction is used. GCC uses `fldcr' on the 88100 to serialize volatile
memory references. Use the option `-mno-serialize-volatile' if your version of the
assembler has this bug.

� On VMS, GAS versions 1.38.1 and earlier may cause spurious warning messages from
the linker. These warning messages complain of mismatched psect attributes. You can
ignore them. See Section 3.6 [VMS Install], page 131.

� On NewsOS version 3, if you include both of the �les `stddef.h' and `sys/types.h',
you get an error because there are two typedefs of size_t. You should change
`sys/types.h' by adding these lines around the de�nition of size_t:

#ifndef _SIZE_T
#define _SIZE_T
actual typedef here
#endif

210 Using the GNU Compiler Collection

� On the Alliant, the system's own convention for returning structures and unions is
unusual, and is not compatible with GCC no matter what options are used.

� On the IBM RT PC, the MetaWare HighC compiler (hc) uses a di�erent convention
for structure and union returning. Use the option `-mhc-struct-return' to tell GCC
to use a convention compatible with it.

� On Ultrix, the Fortran compiler expects registers 2 through 5 to be saved by function
calls. However, the C compiler uses conventions compatible with BSD Unix: registers
2 through 5 may be clobbered by function calls.

GCC uses the same convention as the Ultrix C compiler. You can use these options to
produce code compatible with the Fortran compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

� On the WE32k, you may �nd that programs compiled with GCC do not work with the
standard shared C library. You may need to link with the ordinary C compiler. If you
do so, you must specify the following options:

-L/usr/local/lib/gcc-lib/we32k-att-sysv/2.8.1 -lgcc -lc_s

The �rst speci�es where to �nd the library `libgcc.a' speci�ed with the `-lgcc' option.

GCC does linking by invoking ld, just as cc does, and there is no reason why it should
matter which compilation program you use to invoke ld. If someone tracks this problem
down, it can probably be �xed easily.

� On the Alpha, you may get assembler errors about invalid syntax as a result of oating
point constants. This is due to a bug in the C library functions ecvt, fcvt and gcvt.
Given valid oating point numbers, they sometimes print `NaN'.

� On Irix 4.0.5F (and perhaps in some other versions), an assembler bug sometimes
reorders instructions incorrectly when optimization is turned on. If you think this may
be happening to you, try using the GNU assembler; GAS version 2.1 supports ECOFF
on Irix.

Or use the `-noasmopt' option when you compile GCC with itself, and then again
when you compile your program. (This is a temporary kludge to turn o� assembler
optimization on Irix.) If this proves to be what you need, edit the assembler spec in the
�le `specs' so that it unconditionally passes `-O0' to the assembler, and never passes
`-O2' or `-O3'.

7.5 Problems Compiling Certain Programs

Certain programs have problems compiling.

� Parse errors may occur compiling X11 on a Decstation running Ultrix 4.2 because of
problems in DEC's versions of the X11 header �les `X11/Xlib.h' and `X11/Xutil.h'.
People recommend adding `-I/usr/include/mit' to use the MIT versions of the header
�les, using the `-traditional' switch to turn o� ANSI C, or �xing the header �les by
adding this:

#ifdef __STDC__
#define NeedFunctionPrototypes 0
#endif

� If you have trouble compiling Perl on a SunOS 4 system, it may be because Perl speci�es
`-I/usr/ucbinclude'. This accesses the un�xed header �les. Perl speci�es the options

Chapter 7: Known Causes of Trouble with GCC 211

-traditional -Dvolatile=__volatile__
-I/usr/include/sun -I/usr/ucbinclude
-fpcc-struct-return

most of which are unnecessary with GCC 2.4.5 and newer versions. You can make a
properly working Perl by setting ccflags to `-fwritable-strings' (implied by the
`-traditional' in the original options) and cppflags to empty in `config.sh', then
typing `./doSH; make depend; make'.

� On various 386 Unix systems derived from System V, including SCO, ISC, and ESIX,
you may get error messages about running out of virtual memory while compiling
certain programs.

You can prevent this problem by linking GCC with the GNU malloc (which thus
replaces the malloc that comes with the system). GNU malloc is available as a separate
package, and also in the �le `src/gmalloc.c' in the GNU Emacs 19 distribution.

If you have installed GNU malloc as a separate library package, use this option when
you relink GCC:

MALLOC=/usr/local/lib/libgmalloc.a

Alternatively, if you have compiled `gmalloc.c' from Emacs 19, copy the object �le to
`gmalloc.o' and use this option when you relink GCC:

MALLOC=gmalloc.o

7.6 Incompatibilities of GCC

There are several noteworthy incompatibilities between GNU C and most existing (non-
ANSI) versions of C. The `-traditional' option eliminates many of these incompatibilities,
but not all, by telling GNU C to behave like the other C compilers.

� GCC normally makes string constants read-only. If several identical-looking string
constants are used, GCC stores only one copy of the string.

One consequence is that you cannot call mktemp with a string constant argument. The
function mktemp always alters the string its argument points to.

Another consequence is that sscanf does not work on some systems when passed a
string constant as its format control string or input. This is because sscanf incorrectly
tries to write into the string constant. Likewise fscanf and scanf.

The best solution to these problems is to change the program to use char-array variables
with initialization strings for these purposes instead of string constants. But if this is
not possible, you can use the `-fwritable-strings' ag, which directs GCC to handle
string constants the same way most C compilers do. `-traditional' also has this
e�ect, among others.

� -2147483648 is positive.

This is because 2147483648 cannot �t in the type int, so (following the ANSI C rules)
its data type is unsigned long int. Negating this value yields 2147483648 again.

� GCC does not substitute macro arguments when they appear inside of string constants.
For example, the following macro in GCC

#define foo(a) "a"

212 Using the GNU Compiler Collection

will produce output "a" regardless of what the argument a is.

The `-traditional' option directs GCC to handle such cases (among others) in the
old-fashioned (non-ANSI) fashion.

� When you use setjmp and longjmp, the only automatic variables guaranteed to re-
main valid are those declared volatile. This is a consequence of automatic register
allocation. Consider this function:

jmp_buf j;

foo ()
{
int a, b;

a = fun1 ();
if (setjmp (j))

return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

Here a may or may not be restored to its �rst value when the longjmp occurs. If a is
allocated in a register, then its �rst value is restored; otherwise, it keeps the last value
stored in it.

If you use the `-W' option with the `-O' option, you will get a warning when GCC thinks
such a problem might be possible.

The `-traditional' option directs GNU C to put variables in the stack by default,
rather than in registers, in functions that call setjmp. This results in the behavior
found in traditional C compilers.

� Programs that use preprocessing directives in the middle of macro arguments do not
work with GCC. For example, a program like this will not work:

foobar (
#define luser

hack)

ANSI C does not permit such a construct. It would make sense to support it when
`-traditional' is used, but it is too much work to implement.

� Declarations of external variables and functions within a block apply only to the block
containing the declaration. In other words, they have the same scope as any other
declaration in the same place.

In some other C compilers, a extern declaration a�ects all the rest of the �le even if
it happens within a block.

The `-traditional' option directs GNU C to treat all extern declarations as global,
like traditional compilers.

� In traditional C, you can combine long, etc., with a typedef name, as shown here:

typedef int foo;
typedef long foo bar;

Chapter 7: Known Causes of Trouble with GCC 213

In ANSI C, this is not allowed: long and other type modi�ers require an explicit int.
Because this criterion is expressed by Bison grammar rules rather than C code, the
`-traditional' ag cannot alter it.

� PCC allows typedef names to be used as function parameters. The diÆculty described
immediately above applies here too.

� PCC allows whitespace in the middle of compound assignment operators such as `+='.
GCC, following the ANSI standard, does not allow this. The diÆculty described im-
mediately above applies here too.

� GCC complains about unterminated character constants inside of preprocessing con-
ditionals that fail. Some programs have English comments enclosed in conditionals
that are guaranteed to fail; if these comments contain apostrophes, GCC will probably
report an error. For example, this code would produce an error:

#if 0
You can't expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C comment
delimited by `/*...*/'. However, `-traditional' suppresses these error messages.

� Many user programs contain the declaration `long time ();'. In the past, the system
header �les on many systems did not actually declare time, so it did not matter what
type your program declared it to return. But in systems with ANSI C headers, time is
declared to return time_t, and if that is not the same as long, then `long time ();'
is erroneous.

The solution is to change your program to use time_t as the return type of time.

� When compiling functions that return float, PCC converts it to a double. GCC
actually returns a float. If you are concerned with PCC compatibility, you should
declare your functions to return double; you might as well say what you mean.

� When compiling functions that return structures or unions, GCC output code normally
uses a method di�erent from that used on most versions of Unix. As a result, code
compiled with GCC cannot call a structure-returning function compiled with PCC,
and vice versa.

The method used by GCC is as follows: a structure or union which is 1, 2, 4 or 8
bytes long is returned like a scalar. A structure or union with any other size is stored
into an address supplied by the caller (usually in a special, �xed register, but on some
machines it is passed on the stack). The machine-description macros STRUCT_VALUE

and STRUCT_INCOMING_VALUE tell GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of
that storage as if it were a pointer value. The caller must copy the data from that
memory area to the place where the value is wanted. GCC does not use this method
because it is slower and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all structure and union
returning. GCC on most of these machines uses a compatible convention when return-
ing structures and unions in memory, but still returns small structures and unions in
registers.

214 Using the GNU Compiler Collection

You can tell GCC to use a compatible convention for all structure and union returning
with the option `-fpcc-struct-return'.

� GNU C complains about program fragments such as `0x74ae-0x4000' which appear to
be two hexadecimal constants separated by the minus operator. Actually, this string
is a single preprocessing token. Each such token must correspond to one token in C.
Since this does not, GNU C prints an error message. Although it may appear obvious
that what is meant is an operator and two values, the ANSI C standard speci�cally
requires that this be treated as erroneous.

A preprocessing token is a preprocessing number if it begins with a digit and is followed
by letters, underscores, digits, periods and `e+', `e-', `E+', or `E-' character sequences.

To make the above program fragment valid, place whitespace in front of the minus
sign. This whitespace will end the preprocessing number.

7.7 Fixed Header Files

GCC needs to install corrected versions of some system header �les. This is because most
target systems have some header �les that won't work with GCC unless they are changed.
Some have bugs, some are incompatible with ANSI C, and some depend on special features
of other compilers.

Installing GCC automatically creates and installs the �xed header �les, by running a
program called fixincludes (or for certain targets an alternative such as fixinc.svr4).
Normally, you don't need to pay attention to this. But there are cases where it doesn't do
the right thing automatically.

� If you update the system's header �les, such as by installing a new system version, the
�xed header �les of GCC are not automatically updated. The easiest way to update
them is to reinstall GCC. (If you want to be clever, look in the make�le and you can
�nd a shortcut.)

� On some systems, in particular SunOS 4, header �le directories contain machine-speci�c
symbolic links in certain places. This makes it possible to share most of the header
�les among hosts running the same version of SunOS 4 on di�erent machine models.

The programs that �x the header �les do not understand this special way of using
symbolic links; therefore, the directory of �xed header �les is good only for the machine
model used to build it.

In SunOS 4, only programs that look inside the kernel will notice the di�erence between
machine models. Therefore, for most purposes, you need not be concerned about this.

It is possible to make separate sets of �xed header �les for the di�erent machine models,
and arrange a structure of symbolic links so as to use the proper set, but you'll have
to do this by hand.

� On Lynxos, GCC by default does not �x the header �les. This is because bugs in the
shell cause the fixincludes script to fail.

This means you will encounter problems due to bugs in the system header �les. It may
be no comfort that they aren't GCC's fault, but it does mean that there's nothing for
us to do about them.

Chapter 7: Known Causes of Trouble with GCC 215

7.8 Standard Libraries

GCC by itself attempts to be what the ISO/ANSI C standard calls a conforming free-
standing implementation. This means all ANSI C language features are available, as well
as the contents of `float.h', `limits.h', `stdarg.h', and `stddef.h'. The rest of the C
library is supplied by the vendor of the operating system. If that C library doesn't conform
to the C standards, then your programs might get warnings (especially when using `-Wall')
that you don't expect.

For example, the sprintf function on SunOS 4.1.3 returns char * while the C standard
says that sprintf returns an int. The fixincludes program could make the prototype
for this function match the Standard, but that would be wrong, since the function will still
return char *.

If you need a Standard compliant library, then you need to �nd one, as GCC does not
provide one. The GNU C library (called glibc) has been ported to a number of operating
systems, and provides ANSI/ISO, POSIX, BSD and SystemV compatibility. You could also
ask your operating system vendor if newer libraries are available.

7.9 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don't know any practical way around
them.

� Certain local variables aren't recognized by debuggers when you compile with opti-
mization.

This occurs because sometimes GCC optimizes the variable out of existence. There
is no way to tell the debugger how to compute the value such a variable \would have
had", and it is not clear that would be desirable anyway. So GCC simply does not
mention the eliminated variable when it writes debugging information.

You have to expect a certain amount of disagreement between the executable and your
source code, when you use optimization.

� Users often think it is a bug when GCC reports an error for code like this:

int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)
{ ... }

This code really is erroneous, because the scope of struct mumble in the prototype
is limited to the argument list containing it. It does not refer to the struct mumble

de�ned with �le scope immediately below|they are two unrelated types with similar
names in di�erent scopes.

But in the de�nition of foo, the �le-scope type is used because that is available to be
inherited. Thus, the de�nition and the prototype do not match, and you get an error.

This behavior may seem silly, but it's what the ANSI standard speci�es. It is easy
enough for you to make your code work by moving the de�nition of struct mumble

above the prototype. It's not worth being incompatible with ANSI C just to avoid an
error for the example shown above.

216 Using the GNU Compiler Collection

� Accesses to bit�elds even in volatile objects works by accessing larger objects, such as
a byte or a word. You cannot rely on what size of object is accessed in order to read or
write the bit�eld; it may even vary for a given bit�eld according to the precise usage.

If you care about controlling the amount of memory that is accessed, use volatile but
do not use bit�elds.

� GCC comes with shell scripts to �x certain known problems in system header �les.
They install corrected copies of various header �les in a special directory where only
GCC will normally look for them. The scripts adapt to various systems by searching
all the system header �les for the problem cases that we know about.

If new system header �les are installed, nothing automatically arranges to update the
corrected header �les. You will have to reinstall GCC to �x the new header �les.
More speci�cally, go to the build directory and delete the �les `stmp-fixinc' and
`stmp-headers', and the subdirectory include; then do `make install' again.

� On 68000 and x86 systems, for instance, you can get paradoxical results if you test
the precise values of oating point numbers. For example, you can �nd that a oating
point value which is not a NaN is not equal to itself. This results from the fact that
the oating point registers hold a few more bits of precision than �t in a double in
memory. Compiled code moves values between memory and oating point registers at
its convenience, and moving them into memory truncates them.

You can partially avoid this problem by using the `-ffloat-store' option (see Sec-
tion 2.8 [Optimize Options], page 35).

� On the MIPS, variable argument functions using `varargs.h' cannot have a oating
point value for the �rst argument. The reason for this is that in the absence of a
prototype in scope, if the �rst argument is a oating point, it is passed in a oating
point register, rather than an integer register.

If the code is rewritten to use the ANSI standard `stdarg.h' method of variable ar-
guments, and the prototype is in scope at the time of the call, everything will work
�ne.

� On the H8/300 and H8/300H, variable argument functions must be implemented using
the ANSI standard `stdarg.h' method of variable arguments. Furthermore, calls to
functions using `stdarg.h' variable arguments must have a prototype for the called
function in scope at the time of the call.

7.10 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard de�nition (the ISO C++
standard) was only recently completed. As a result, your C++ compiler may occasionally
surprise you, even when its behavior is correct. This section discusses some areas that
frequently give rise to questions of this sort.

7.10.1 Declare and De�ne Static Members

When a class has static data members, it is not enough to declare the static member;
you must also de�ne it. For example:

class Foo

Chapter 7: Known Causes of Trouble with GCC 217

{
...
void method();
static int bar;

};

This declaration only establishes that the class Foo has an int named Foo::bar, and a
member function named Foo::method. But you still need to de�ne both method and bar

elsewhere. According to the draft ANSI standard, you must supply an initializer in one
(and only one) source �le, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a result,
when you switch to g++ from one of these compilers, you may discover that a program
that appeared to work correctly in fact does not conform to the standard: g++ reports as
unde�ned symbols any static data members that lack de�nitions.

7.10.2 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary object. The
compiler may very well delete the object before you expect it to, leaving a pointer to
garbage. The most common place where this problem crops up is in classes like string
classes, especially ones that de�ne a conversion function to type char * or const char * {
which is one reason why the standard string class requires you to call the c_str member
function. However, any class that returns a pointer to some internal structure is potentially
subject to this problem.

For example, a program may use a function strfunc that returns string objects, and
another function charfunc that operates on pointers to char:

string strfunc ();
void charfunc (const char *);

void
f ()
{
const char *p = strfunc().c_str();
...
charfunc (p);
...
charfunc (p);

}

In this situation, it may seem reasonable to save a pointer to the C string returned by
the c_str member function and use that rather than call c_str repeatedly. However, the
temporary string created by the call to strfunc is destroyed after p is initialized, at which
point p is left pointing to freed memory.

Code like this may run successfully under some other compilers, particularly obsolete
cfront-based compilers that delete temporaries along with normal local variables. How-
ever, the GNU C++ behavior is standard-conforming, so if your program depends on late
destruction of temporaries it is not portable.

218 Using the GNU Compiler Collection

The safe way to write such code is to give the temporary a name, which forces it to
remain until the end of the scope of the name. For example:

string& tmp = strfunc ();
charfunc (tmp.c_str ());

7.10.3 Implicit Copy-Assignment for Virtual Bases

When a base class is virtual, only one subobject of the base class belongs to each full
object. Also, the constructors and destructors are invoked only once, and called from the
most-derived class. However, such objects behave unspeci�ed when being assigned. For
example:

struct Base{
char *name;
Base(char *n) : name(strdup(n)){}
Base& operator= (const Base& other){
free (name);
name = strdup (other.name);
}

};

struct A:virtual Base{
int val;
A():Base("A"){}

};

struct B:virtual Base{
int bval;
B():Base("B"){}

};

struct Derived:public A, public B{
Derived():Base("Derived"){}

};

void func(Derived &d1, Derived &d2)
{
d1 = d2;

}

The C++ standard speci�es that `Base::Base' is only called once when constructing or
copy-constructing a Derived object. It is unspeci�ed whether `Base::operator=' is called
more than once when the implicit copy-assignment for Derived objects is invoked (as it is
inside `func' in the example).

g++ implements the "intuitive" algorithm for copy-assignment: assign all direct bases,
then assign all members. In that algorithm, the virtual base subobject can be encountered
many times. In the example, copying proceeds in the following order: `val', `name' (via
strdup), `bval', and `name' again.

Chapter 7: Known Causes of Trouble with GCC 219

If application code relies on copy-assignment, a user-de�ned copy-assignment operator
removes any uncertainties. With such an operator, the application can de�ne whether and
how the virtual base subobject is assigned.

7.11 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes change a source �le
in a way that won't work unless you rearrange it.

� protoize can insert references to a type name or type tag before the de�nition, or in
a �le where they are not de�ned.

If this happens, compiler error messages should show you where the new references are,
so �xing the �le by hand is straightforward.

� There are some C constructs which protoize cannot �gure out. For example, it can't
determine argument types for declaring a pointer-to-function variable; this you must
do by hand. protoize inserts a comment containing `???' each time it �nds such a
variable; so you can �nd all such variables by searching for this string. ANSI C does
not require declaring the argument types of pointer-to-function types.

� Using unprotoize can easily introduce bugs. If the program relied on prototypes
to bring about conversion of arguments, these conversions will not take place in the
program without prototypes. One case in which you can be sure unprotoize is safe
is when you are removing prototypes that were made with protoize; if the program
worked before without any prototypes, it will work again without them.

You can �nd all the places where this problem might occur by compiling the pro-
gram with the `-Wconversion' option. It prints a warning whenever an argument is
converted.

� Both conversion programs can be confused if there are macro calls in and around the
text to be converted. In other words, the standard syntax for a declaration or de�nition
must not result from expanding a macro. This problem is inherent in the design of C
and cannot be �xed. If only a few functions have confusing macro calls, you can easily
convert them manually.

� protoize cannot get the argument types for a function whose de�nition was not actu-
ally compiled due to preprocessing conditionals. When this happens, protoize changes
nothing in regard to such a function. protoize tries to detect such instances and warn
about them.

You can generally work around this problem by using protoize step by step, each
time specifying a di�erent set of `-D' options for compilation, until all of the functions
have been converted. There is no automatic way to verify that you have got them all,
however.

� Confusion may result if there is an occasion to convert a function declaration or def-
inition in a region of source code where there is more than one formal parameter list
present. Thus, attempts to convert code containing multiple (conditionally compiled)
versions of a single function header (in the same vicinity) may not produce the desired
(or expected) results.

If you plan on converting source �les which contain such code, it is recommended
that you �rst make sure that each conditionally compiled region of source code which

220 Using the GNU Compiler Collection

contains an alternative function header also contains at least one additional follower
token (past the �nal right parenthesis of the function header). This should circumvent
the problem.

� unprotoize can become confused when trying to convert a function de�nition or dec-
laration which contains a declaration for a pointer-to-function formal argument which
has the same name as the function being de�ned or declared. We recommand you avoid
such choices of formal parameter names.

� You might also want to correct some of the indentation by hand and break long lines.
(The conversion programs don't write lines longer than eighty characters in any case.)

7.12 Certain Changes We Don't Want to Make

This section lists changes that people frequently request, but which we do not make
because we think GCC is better without them.

� Checking the number and type of arguments to a function which has an old-fashioned
de�nition and no prototype.

Such a feature would work only occasionally|only for calls that appear in the same
�le as the called function, following the de�nition. The only way to check all calls
reliably is to add a prototype for the function. But adding a prototype eliminates the
motivation for this feature. So the feature is not worthwhile.

� Warning about using an expression whose type is signed as a shift count.

Shift count operands are probably signed more often than unsigned. Warning about
this would cause far more annoyance than good.

� Warning about assigning a signed value to an unsigned variable.

Such assignments must be very common; warning about them would cause more an-
noyance than good.

� Warning about unreachable code.

It's very common to have unreachable code in machine-generated programs. For ex-
ample, this happens normally in some �les of GNU C itself.

� Warning when a non-void function value is ignored.

Coming as I do from a Lisp background, I balk at the idea that there is something
dangerous about discarding a value. There are functions that return values which
some callers may �nd useful; it makes no sense to clutter the program with a cast to
void whenever the value isn't useful.

� Assuming (for optimization) that the address of an external symbol is never zero.

This assumption is false on certain systems when `#pragma weak' is used.

� Making `-fshort-enums' the default.

This would cause storage layout to be incompatible with most other C compilers. And
it doesn't seem very important, given that you can get the same result in other ways.
The case where it matters most is when the enumeration-valued object is inside a
structure, and in that case you can specify a �eld width explicitly.

� Making bit�elds unsigned by default on particular machines where \the ABI standard"
says to do so.

Chapter 7: Known Causes of Trouble with GCC 221

The ANSI C standard leaves it up to the implementation whether a bit�eld declared
plain int is signed or not. This in e�ect creates two alternative dialects of C.

The GNU C compiler supports both dialects; you can specify the signed dialect with
`-fsigned-bitfields' and the unsigned dialect with `-funsigned-bitfields'. How-
ever, this leaves open the question of which dialect to use by default.

Currently, the preferred dialect makes plain bit�elds signed, because this is simplest.
Since int is the same as signed int in every other context, it is cleanest for them to
be the same in bit�elds as well.

Some computer manufacturers have published Application Binary Interface standards
which specify that plain bit�elds should be unsigned. It is a mistake, however, to say
anything about this issue in an ABI. This is because the handling of plain bit�elds
distinguishes two dialects of C. Both dialects are meaningful on every type of machine.
Whether a particular object �le was compiled using signed bit�elds or unsigned is of
no concern to other object �les, even if they access the same bit�elds in the same data
structures.

A given program is written in one or the other of these two dialects. The program
stands a chance to work on most any machine if it is compiled with the proper dialect.
It is unlikely to work at all if compiled with the wrong dialect.

Many users appreciate the GNU C compiler because it provides an environment that is
uniform across machines. These users would be inconvenienced if the compiler treated
plain bit�elds di�erently on certain machines.

Occasionally users write programs intended only for a particular machine type. On
these occasions, the users would bene�t if the GNU C compiler were to support by
default the same dialect as the other compilers on that machine. But such applications
are rare. And users writing a program to run on more than one type of machine cannot
possibly bene�t from this kind of compatibility.

This is why GCC does and will treat plain bit�elds in the same fashion on all types of
machines (by default).

There are some arguments for making bit�elds unsigned by default on all machines. If,
for example, this becomes a universal de facto standard, it would make sense for GCC
to go along with it. This is something to be considered in the future.

(Of course, users strongly concerned about portability should indicate explicitly in each
bit�eld whether it is signed or not. In this way, they write programs which have the
same meaning in both C dialects.)

� Unde�ning __STDC__ when `-ansi' is not used.

Currently, GCC de�nes __STDC__ as long as you don't use `-traditional'. This
provides good results in practice.

Programmers normally use conditionals on __STDC__ to ask whether it is safe to use
certain features of ANSI C, such as function prototypes or ANSI token concatenation.
Since plain `gcc' supports all the features of ANSI C, the correct answer to these
questions is \yes".

Some users try to use __STDC__ to check for the availability of certain library facil-
ities. This is actually incorrect usage in an ANSI C program, because the ANSI C
standard says that a conforming freestanding implementation should de�ne __STDC__

222 Using the GNU Compiler Collection

even though it does not have the library facilities. `gcc -ansi -pedantic' is a con-
forming freestanding implementation, and it is therefore required to de�ne __STDC__,
even though it does not come with an ANSI C library.

Sometimes people say that de�ning __STDC__ in a compiler that does not completely
conform to the ANSI C standard somehow violates the standard. This is illogical.
The standard is a standard for compilers that claim to support ANSI C, such as `gcc
-ansi'|not for other compilers such as plain `gcc'. Whatever the ANSI C standard
says is relevant to the design of plain `gcc' without `-ansi' only for pragmatic reasons,
not as a requirement.

GCC normally de�nes __STDC__ to be 1, and in addition de�nes __STRICT_ANSI__ if
you specify the `-ansi' option. On some hosts, system include �les use a di�erent con-
vention, where __STDC__ is normally 0, but is 1 if the user speci�es strict conformance
to the C Standard. GCC follows the host convention when processing system include
�les, but when processing user �les it follows the usual GNU C convention.

� Unde�ning __STDC__ in C++.

Programs written to compile with C++-to-C translators get the value of __STDC__ that
goes with the C compiler that is subsequently used. These programs must test __STDC_
_ to determine what kind of C preprocessor that compiler uses: whether they should
concatenate tokens in the ANSI C fashion or in the traditional fashion.

These programs work properly with GNU C++ if __STDC__ is de�ned. They would not
work otherwise.

In addition, many header �les are written to provide prototypes in ANSI C but not
in traditional C. Many of these header �les can work without change in C++ provided
__STDC__ is de�ned. If __STDC__ is not de�ned, they will all fail, and will all need to
be changed to test explicitly for C++ as well.

� Deleting \empty" loops.

Historically, GCC has not deleted \empty" loops under the assumption that the most
likely reason you would put one in a program is to have a delay, so deleting them will
not make real programs run any faster.

However, the rationale here is that optimization of a nonempty loop cannot produce
an empty one, which holds for C but is not always the case for C++.

Moreover, with `-funroll-loops' small \empty" loops are already removed, so the
current behavior is both sub-optimal and inconsistent and will change in the future.

� Making side e�ects happen in the same order as in some other compiler.

It is never safe to depend on the order of evaluation of side e�ects. For example, a
function call like this may very well behave di�erently from one compiler to another:

void func (int, int);

int i = 2;
func (i++, i++);

There is no guarantee (in either the C or the C++ standard language de�nitions) that the
increments will be evaluated in any particular order. Either increment might happen
�rst. func might get the arguments `2, 3', or it might get `3, 2', or even `2, 2'.

Chapter 7: Known Causes of Trouble with GCC 223

� Not allowing structures with volatile �elds in registers.

Strictly speaking, there is no prohibition in the ANSI C standard against allowing
structures with volatile �elds in registers, but it does not seem to make any sense and
is probably not what you wanted to do. So the compiler will give an error message in
this case.

7.13 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each
kind has a di�erent purpose:

Errors report problems that make it impossible to compile your program. GCC reports
errors with the source �le name and line number where the problem is apparent.

Warnings report other unusual conditions in your code that may indicate a problem,
although compilation can (and does) proceed. Warning messages also report the source
�le name and line number, but include the text `warning:' to distinguish them from
error messages.

Warnings may indicate danger points where you should check to make sure that your
program really does what you intend; or the use of obsolete features; or the use of nonstan-
dard features of GNU C or C++. Many warnings are issued only if you ask for them, with
one of the `-W' options (for instance, `-Wall' requests a variety of useful warnings).

GCC always tries to compile your program if possible; it never gratuitously rejects a
program whose meaning is clear merely because (for instance) it fails to conform to a
standard. In some cases, however, the C and C++ standards specify that certain extensions
are forbidden, and a diagnostic must be issued by a conforming compiler. The `-pedantic'
option tells GCC to issue warnings in such cases; `-pedantic-errors' says to make them
errors instead. This does not mean that all non-ANSI constructs get warnings or errors.

See Section 2.6 [Options to Request or Suppress Warnings], page 22, for more detail on
these and related command-line options.

224 Using the GNU Compiler Collection

Chapter 8: Reporting Bugs 225

8 Reporting Bugs

Your bug reports play an essential role in making GCC reliable.

When you encounter a problem, the �rst thing to do is to see if it is already known. See
Chapter 7 [Trouble], page 193. If it isn't known, then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
(If it does not, look in the service directory; see Chapter 9 [Service], page 225.) In any
case, the principal function of a bug report is to help the entire community by making the
next version of GCC work better. Bug reports are your contribution to the maintenance of
GCC.

Since the maintainers are very overloaded, we cannot respond to every bug report. How-
ever, if the bug has not been �xed, we are likely to send you a patch and ask you to tell us
whether it works.

In order for a bug report to serve its purpose, you must include the information that
makes for �xing the bug.

8.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

� If the compiler gets a fatal signal, for any input whatever, that is a compiler bug.
Reliable compilers never crash.

� If the compiler produces invalid assembly code, for any input whatever (except an
asm statement), that is a compiler bug, unless the compiler reports errors (not just
warnings) which would ordinarily prevent the assembler from being run.

� If the compiler produces valid assembly code that does not correctly execute the input
source code, that is a compiler bug.

However, you must double-check to make sure, because you may have run into an
incompatibility between GNU C and traditional C (see Section 7.6 [Incompatibilities],
page 203). These incompatibilities might be considered bugs, but they are inescapable
consequences of valuable features.

Or you may have a program whose behavior is unde�ned, which happened by chance
to give the desired results with another C or C++ compiler.

For example, in many nonoptimizing compilers, you can write `x;' at the end of a
function instead of `return x;', with the same results. But the value of the function
is unde�ned if return is omitted; it is not a bug when GCC produces di�erent results.

Problems often result from expressions with two increment operators, as in f (*p++,

*p++). Your previous compiler might have interpreted that expression the way you
intended; GCC might interpret it another way. Neither compiler is wrong. The bug is
in your code.

After you have localized the error to a single source line, it should be easy to check for
these things. If your program is correct and well de�ned, you have found a compiler
bug.

� If the compiler produces an error message for valid input, that is a compiler bug.

226 Using the GNU Compiler Collection

� If the compiler does not produce an error message for invalid input, that is a compiler
bug. However, you should note that your idea of \invalid input" might be my idea of
\an extension" or \support for traditional practice".

� If you are an experienced user of C or C++ (or Fortran or Objective-C) compilers, your
suggestions for improvement of GCC are welcome in any case.

8.2 Where to Report Bugs

Send bug reports for the GNU Compiler Collection to `gcc-bugs@gcc.gnu.org'. In
accordance with the GNU-wide convention, in which bug reports for tool \foo" are sent to
`bug-foo@gnu.org', the address `bug-gcc@gnu.org' may also be used; it will forward to
the address given above.

Please read `<URL:http://www.gnu.org/software/gcc/bugs.html>' for bug reporting
instructions before you post a bug report.

Often people think of posting bug reports to the newsgroup instead of mailing them. This
appears to work, but it has one problem which can be crucial: a newsgroup posting does
not contain a mail path back to the sender. Thus, if maintainers need more information,
they may be unable to reach you. For this reason, you should always send bug reports by
mail to the proper mailing list.

As a last resort, send bug reports on paper to:

GNU Compiler Bugs
Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

8.3 How to Report Bugs

You may �nd additional and/or more up-to-date instructions at `<URL:http://www.gnu.org/software/gcc

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
they conclude that some details don't matter. Thus, you might assume that the name of
the variable you use in an example does not matter. Well, probably it doesn't, but one
cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch from
the location where that name is stored in memory; perhaps, if the name were di�erent, the
contents of that location would fool the compiler into doing the right thing despite the bug.
Play it safe and give a speci�c, complete example. That is the easiest thing for you to do,
and the most helpful.

Keep in mind that the purpose of a bug report is to enable someone to �x the bug if it
is not known. It isn't very important what happens if the bug is already known. Therefore,
always write your bug reports on the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, \Does this ring a bell?" This cannot
help us �x a bug, so it is basically useless. We respond by asking for enough details to
enable us to investigate. You might as well expedite matters by sending them to begin
with.

Chapter 8: Reporting Bugs 227

Try to make your bug report self-contained. If we have to ask you for more information, it
is best if you include all the previous information in your response, as well as the information
that was missing.

Please report each bug in a separate message. This makes it easier for us to track which
bugs have been �xed and to forward your bugs reports to the appropriate maintainer.

To enable someone to investigate the bug, you should include all these things:

� The version of GCC. You can get this by running it with the `-v' option.

Without this, we won't know whether there is any point in looking for the bug in the
current version of GCC.

� A complete input �le that will reproduce the bug. If the bug is in the C preprocessor,
send a source �le and any header �les that it requires. If the bug is in the compiler
proper (`cc1'), send the preprocessor output generated by adding `-save-temps' to the
compilation command (see Section 2.7 [Debugging Options], page 29). When you do
this, use the same `-I', `-D' or `-U' options that you used in actual compilation. Then
send the input.i or input.ii �les generated.

A single statement is not enough of an example. In order to compile it, it must be
embedded in a complete �le of compiler input; and the bug might depend on the details
of how this is done.

Without a real example one can compile, all anyone can do about your bug report is
wish you luck. It would be futile to try to guess how to provoke the bug. For example,
bugs in register allocation and reloading frequently depend on every little detail of the
function they happen in.

Even if the input �le that fails comes from a GNU program, you should still send the
complete test case. Don't ask the GCC maintainers to do the extra work of obtaining
the program in question|they are all overworked as it is. Also, the problem may
depend on what is in the header �les on your system; it is unreliable for the GCC
maintainers to try the problem with the header �les available to them. By sending CPP
output, you can eliminate this source of uncertainty and save us a certain percentage
of wild goose chases.

� The command arguments you gave GCC to compile that example and observe the bug.
For example, did you use `-O'? To guarantee you won't omit something important, list
all the options.

If we were to try to guess the arguments, we would probably guess wrong and then we
would not encounter the bug.

� The type of machine you are using, and the operating system name and version number.

� The operands you gave to the configure command when you installed the compiler.

� A complete list of any modi�cations you have made to the compiler source. (We don't
promise to investigate the bug unless it happens in an unmodi�ed compiler. But if
you've made modi�cations and don't tell us, then you are sending us on a wild goose
chase.)

Be precise about these changes. A description in English is not enough|send a context
di� for them.

Adding �les of your own (such as a machine description for a machine we don't support)
is a modi�cation of the compiler source.

228 Using the GNU Compiler Collection

� Details of any other deviations from the standard procedure for installing GCC.

� A description of what behavior you observe that you believe is incorrect. For example,
\The compiler gets a fatal signal," or, \The assembler instruction at line 208 in the
output is incorrect."

Of course, if the bug is that the compiler gets a fatal signal, then one can't miss it.
But if the bug is incorrect output, the maintainer might not notice unless it is glaringly
wrong. None of us has time to study all the assembler code from a 50-line C program
just on the chance that one instruction might be wrong. We need you to do this part!

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of the compiler is out of
synch, or you have encountered a bug in the C library on your system. (This has
happened!) Your copy might crash and the copy here would not. If you said to expect
a crash, then when the compiler here fails to crash, we would know that the bug was not
happening. If you don't say to expect a crash, then we would not know whether the bug
was happening. We would not be able to draw any conclusion from our observations.

If the problem is a diagnostic when compiling GCC with some other compiler, say
whether it is a warning or an error.

Often the observed symptom is incorrect output when your program is run. Sad to say,
this is not enough information unless the program is short and simple. None of us has
time to study a large program to �gure out how it would work if compiled correctly,
much less which line of it was compiled wrong. So you will have to do that. Tell us
which source line it is, and what incorrect result happens when that line is executed.
A person who understands the program can �nd this as easily as �nding a bug in the
program itself.

� If you send examples of assembler code output from GCC, please use `-g' when you
make them. The debugging information includes source line numbers which are essen-
tial for correlating the output with the input.

� If you wish to mention something in the GCC source, refer to it by context, not by line
number.

The line numbers in the development sources don't match those in your sources. Your
line numbers would convey no useful information to the maintainers.

� Additional information from a debugger might enable someone to �nd a problem on
a machine which he does not have available. However, you need to think when you
collect this information if you want it to have any chance of being useful.

For example, many people send just a backtrace, but that is never useful by itself.
A simple backtrace with arguments conveys little about GCC because the compiler is
largely data-driven; the same functions are called over and over for di�erent RTL insns,
doing di�erent things depending on the details of the insn.

Most of the arguments listed in the backtrace are useless because they are pointers to
RTL list structure. The numeric values of the pointers, which the debugger prints in
the backtrace, have no signi�cance whatever; all that matters is the contents of the
objects they point to (and most of the contents are other such pointers).

In addition, most compiler passes consist of one or more loops that scan the RTL insn
sequence. The most vital piece of information about such a loop|which insn it has
reached|is usually in a local variable, not in an argument.

Chapter 8: Reporting Bugs 229

What you need to provide in addition to a backtrace are the values of the local variables
for several stack frames up. When a local variable or an argument is an RTX, �rst
print its value and then use the GDB command pr to print the RTL expression that it
points to. (If GDB doesn't run on your machine, use your debugger to call the function
debug_rtx with the RTX as an argument.) In general, whenever a variable is a pointer,
its value is no use without the data it points to.

Here are some things that are not necessary:

� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input �le will make the bug go away and which changes will not a�ect it.

This is often time consuming and not very useful, because the way we will �nd the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. You might as well save your time for something
else.

Of course, if you can �nd a simpler example to report instead of the original one, that
is a convenience. Errors in the output will be easier to spot, running under the de-
bugger will take less time, etc. Most GCC bugs involve just one function, so the most
straightforward way to simplify an example is to delete all the function de�nitions ex-
cept the one where the bug occurs. Those earlier in the �le may be replaced by external
declarations if the crucial function depends on them. (Exception: inline functions may
a�ect compilation of functions de�ned later in the �le.)

However, simpli�cation is not vital; if you don't want to do this, report the bug anyway
and send the entire test case you used.

� In particular, some people insert conditionals `#ifdef BUG' around a statement which,
if removed, makes the bug not happen. These are just clutter; we won't pay any
attention to them anyway. Besides, you should send us cpp output, and that can't
have conditionals.

� A patch for the bug.

A patch for the bug is useful if it is a good one. But don't omit the necessary informa-
tion, such as the test case, on the assumption that a patch is all we need. We might
see problems with your patch and decide to �x the problem another way, or we might
not understand it at all.

Sometimes with a program as complicated as GCC it is very hard to construct an
example that will make the program follow a certain path through the code. If you
don't send the example, we won't be able to construct one, so we won't be able to
verify that the bug is �xed.

And if we can't understand what bug you are trying to �x, or why your patch should
be an improvement, we won't install it. A test case will help us to understand.

See Section 8.4 [Sending Patches], page 222, for guidelines on how to make it easy for
us to understand and install your patches.

� A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even I can't guess right about such things without
�rst using the debugger to �nd the facts.

230 Using the GNU Compiler Collection

� A core dump �le.

We have no way of examining a core dump for your type of machine unless we have
an identical system|and if we do have one, we should be able to reproduce the crash
ourselves.

8.4 Sending Patches for GCC

If you would like to write bug �xes or improvements for the GNU C compiler, that is
very helpful. Send suggested �xes to the patches mailing list, gcc-patches@gcc.gnu.org.

Please follow these guidelines so we can study your patches eÆciently. If you don't follow
these guidelines, your information might still be useful, but using it will take extra work.
Maintaining GNU C is a lot of work in the best of circumstances, and we can't keep up
unless you do your best to help.

� Send an explanation with your changes of what problem they �x or what improvement
they bring about. For a bug �x, just include a copy of the bug report, and explain why
the change �xes the bug.

(Referring to a bug report is not as good as including it, because then we will have to
look it up, and we have probably already deleted it if we've already �xed the bug.)

� Always include a proper bug report for the problem you think you have �xed. We need
to convince ourselves that the change is right before installing it. Even if it is right, we
might have trouble judging it if we don't have a way to reproduce the problem.

� Include all the comments that are appropriate to help people reading the source in the
future understand why this change was needed.

� Don't mix together changes made for di�erent reasons. Send them individually.

If you make two changes for separate reasons, then we might not want to install them
both. We might want to install just one. If you send them all jumbled together in a
single set of di�s, we have to do extra work to disentangle them|to �gure out which
parts of the change serve which purpose. If we don't have time for this, we might have
to ignore your changes entirely.

If you send each change as soon as you have written it, with its own explanation, then
the two changes never get tangled up, and we can consider each one properly without
any extra work to disentangle them.

Ideally, each change you send should be impossible to subdivide into parts that we
might want to consider separately, because each of its parts gets its motivation from
the other parts.

� Send each change as soon as that change is �nished. Sometimes people think they are
helping us by accumulating many changes to send them all together. As explained
above, this is absolutely the worst thing you could do.

Since you should send each change separately, you might as well send it right away.
That gives us the option of installing it immediately if it is important.

� Use `diff -c' to make your di�s. Di�s without context are hard for us to install
reliably. More than that, they make it hard for us to study the di�s to decide whether
we want to install them. Unidi� format is better than contextless di�s, but not as easy
to read as `-c' format.

Chapter 8: Reporting Bugs 231

If you have GNU di�, use `diff -cp', which shows the name of the function that each
change occurs in.

� Write the change log entries for your changes. We get lots of changes, and we don't
have time to do all the change log writing ourselves.

Read the `ChangeLog' �le to see what sorts of information to put in, and to learn the
style that we use. The purpose of the change log is to show people where to �nd what
was changed. So you need to be speci�c about what functions you changed; in large
functions, it's often helpful to indicate where within the function the change was.

On the other hand, once you have shown people where to �nd the change, you need
not explain its purpose. Thus, if you add a new function, all you need to say about it
is that it is new. If you feel that the purpose needs explaining, it probably does|but
the explanation will be much more useful if you put it in comments in the code.

If you would like your name to appear in the header line for who made the change,
send us the header line.

� When you write the �x, keep in mind that we can't install a change that would break
other systems.

People often suggest �xing a problem by changing machine-independent �les such as
`toplev.c' to do something special that a particular system needs. Sometimes it is
totally obvious that such changes would break GCC for almost all users. We can't
possibly make a change like that. At best it might tell us how to write another patch
that would solve the problem acceptably.

Sometimes people send �xes that might be an improvement in general|but it is hard
to be sure of this. It's hard to install such changes because we have to study them very
carefully. Of course, a good explanation of the reasoning by which you concluded the
change was correct can help convince us.

The safest changes are changes to the con�guration �les for a particular machine. These
are safe because they can't create new bugs on other machines.

Please help us keep up with the workload by designing the patch in a form that is good
to install.

232 Using the GNU Compiler Collection

Chapter 9: How To Get Help with GCC 233

9 How To Get Help with GCC

If you need help installing, using or changing GCC, there are two ways to �nd it:

� Send a message to a suitable network mailing list. First try gcc-bugs@gcc.gnu.org

or bug-gcc@gnu.org, and if that brings no response, try gcc@gcc.gnu.org.

� Look in the service directory for someone who might help you for a fee. The service
directory is found in the �le named `SERVICE' in the GCC distribution.

234 Using the GNU Compiler Collection

Chapter 10: Contributing to GCC Development 235

10 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, or if you would
like to work on improving GCC, please contact the maintainers at gcc@gcc.gnu.org. A
pretester should be willing to try to investigate bugs as well as report them.

If you'd like to work on improvements, please ask for suggested projects or suggest your
own ideas. If you have already written an improvement, please tell us about it. If you
have not yet started work, it is useful to contact gcc@gcc.gnu.org before you start; the
maintainers may be able to suggest ways to make your extension �t in better with the rest
of GCC and with other development plans.

236 Using the GNU Compiler Collection

Chapter 11: Using GCC on VMS 237

11 Using GCC on VMS

Here is how to use GCC on VMS.

11.1 Include Files and VMS

Due to the di�erences between the �lesystems of Unix and VMS, GCC attempts to
translate �le names in `#include' into names that VMS will understand. The basic strategy
is to prepend a pre�x to the speci�cation of the include �le, convert the whole �lename to
a VMS �lename, and then try to open the �le. GCC tries various pre�xes one by one until
one of them succeeds:

1. The �rst pre�x is the `GNU_CC_INCLUDE:' logical name: this is where GNU C header
�les are traditionally stored. If you wish to store header �les in non-standard locations,
then you can assign the logical `GNU_CC_INCLUDE' to be a search list, where each element
of the list is suitable for use with a rooted logical.

2. The next pre�x tried is `SYS$SYSROOT:[SYSLIB.]'. This is where VAX-C header �les
are traditionally stored.

3. If the include �le speci�cation by itself is a valid VMS �lename, the preprocessor then
uses this name with no pre�x in an attempt to open the include �le.

4. If the �le speci�cation is not a valid VMS �lename (i.e. does not contain a device or
a directory speci�er, and contains a `/' character), the preprocessor tries to convert it
from Unix syntax to VMS syntax.

Conversion works like this: the �rst directory name becomes a device, and the rest
of the directories are converted into VMS-format directory names. For example, the
name `X11/foobar.h' is translated to `X11:[000000]foobar.h' or `X11:foobar.h',
whichever one can be opened. This strategy allows you to assign a logical name to
point to the actual location of the header �les.

5. If none of these strategies succeeds, the `#include' fails.

Include directives of the form:

#include foobar

are a common source of incompatibility between VAX-C and GCC. VAX-C treats this
much like a standard #include <foobar.h> directive. That is incompatible with the ANSI
C behavior implemented by GCC: to expand the name foobar as a macro. Macro expansion
should eventually yield one of the two standard formats for #include:

#include "�le"
#include <�le>

If you have this problem, the best solution is to modify the source to convert the
#include directives to one of the two standard forms. That will work with either com-
piler. If you want a quick and dirty �x, de�ne the �le names as macros with the proper
expansion, like this:

#define stdio <stdio.h>

This will work, as long as the name doesn't conict with anything else in the program.

Another source of incompatibility is that VAX-C assumes that:

238 Using the GNU Compiler Collection

#include "foobar"

is actually asking for the �le `foobar.h'. GCC does not make this assumption, and instead
takes what you ask for literally; it tries to read the �le `foobar'. The best way to avoid
this problem is to always specify the desired �le extension in your include directives.

GCC for VMS is distributed with a set of include �les that is suÆcient to compile most
general purpose programs. Even though the GCC distribution does not contain header
�les to de�ne constants and structures for some VMS system-speci�c functions, there is
no reason why you cannot use GCC with any of these functions. You �rst may have to
generate or create header �les, either by using the public domain utility UNSDL (which can
be found on a DECUS tape), or by extracting the relevant modules from one of the system
macro libraries, and using an editor to construct a C header �le.

A #include �le name cannot contain a DECNET node name. The preprocessor reports
an I/O error if you attempt to use a node name, whether explicitly, or implicitly via a
logical name.

11.2 Global Declarations and VMS

GCC does not provide the globalref, globaldef and globalvalue keywords of VAX-
C. You can get the same e�ect with an obscure feature of GAS, the GNU assembler. (This
requires GAS version 1.39 or later.) The following macros allow you to use this feature in
a fairly natural way:

#ifdef __GNUC__
#define GLOBALREF(TYPE,NAME) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)

#define GLOBALDEF(TYPE,NAME,VALUE) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME) \
= VALUE

#define GLOBALVALUEREF(TYPE,NAME) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME) \
= {VALUE}

#else
#define GLOBALREF(TYPE,NAME) \
globalref TYPE NAME

#define GLOBALDEF(TYPE,NAME,VALUE) \
globaldef TYPE NAME = VALUE

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
globalvalue TYPE NAME = VALUE

#define GLOBALVALUEREF(TYPE,NAME) \
globalvalue TYPE NAME

#endif

Chapter 11: Using GCC on VMS 239

(The _$$PsectAttributes_GLOBALSYMBOL pre�x at the start of the name is removed by the
assembler, after it has modi�ed the attributes of the symbol). These macros are provided
in the VMS binaries distribution in a header �le `GNU_HACKS.H'. An example of the usage
is:

GLOBALREF (int, ijk);
GLOBALDEF (int, jkl, 0);

The macros GLOBALREF and GLOBALDEF cannot be used straightforwardly for arrays,
since there is no way to insert the array dimension into the declaration at the right place.
However, you can declare an array with these macros if you �rst de�ne a typedef for the
array type, like this:

typedef int intvector[10];
GLOBALREF (intvector, foo);

Array and structure initializers will also break the macros; you can de�ne the initializer
to be a macro of its own, or you can expand the GLOBALDEF macro by hand. You may �nd
a case where you wish to use the GLOBALDEF macro with a large array, but you are not
interested in explicitly initializing each element of the array. In such cases you can use an
initializer like: {0,}, which will initialize the entire array to 0.

A shortcoming of this implementation is that a variable declared with GLOBALVALUEREF

or GLOBALVALUEDEF is always an array. For example, the declaration:

GLOBALVALUEREF(int, ijk);

declares the variable ijk as an array of type int [1]. This is done because a globalvalue
is actually a constant; its \value" is what the linker would normally consider an address.
That is not how an integer value works in C, but it is how an array works. So treating the
symbol as an array name gives consistent results|with the exception that the value seems
to have the wrong type. Don't try to access an element of the array. It doesn't have any
elements. The array \address" may not be the address of actual storage.

The fact that the symbol is an array may lead to warnings where the variable is used.
Insert type casts to avoid the warnings. Here is an example; it takes advantage of the ANSI
C feature allowing macros that expand to use the same name as the macro itself.

GLOBALVALUEREF (int, ss$_normal);
GLOBALVALUEDEF (int, xyzzy,123);
#ifdef __GNUC__
#define ss$_normal ((int) ss$_normal)
#define xyzzy ((int) xyzzy)
#endif

Don't use globaldef or globalref with a variable whose type is an enumeration type;
this is not implemented. Instead, make the variable an integer, and use a globalvaluedef

for each of the enumeration values. An example of this would be:

#ifdef __GNUC__
GLOBALDEF (int, color, 0);
GLOBALVALUEDEF (int, RED, 0);
GLOBALVALUEDEF (int, BLUE, 1);
GLOBALVALUEDEF (int, GREEN, 3);
#else
enum globaldef color {RED, BLUE, GREEN = 3};
#endif

240 Using the GNU Compiler Collection

11.3 Other VMS Issues

GCC automatically arranges for main to return 1 by default if you fail to specify an
explicit return value. This will be interpreted by VMS as a status code indicating a normal
successful completion. Version 1 of GCC did not provide this default.

GCC on VMS works only with the GNU assembler, GAS. You need version 1.37 or later
of GAS in order to produce value debugging information for the VMS debugger. Use the
ordinary VMS linker with the object �les produced by GAS.

Under previous versions of GCC, the generated code would occasionally give strange
results when linked to the sharable `VAXCRTL' library. Now this should work.

A caveat for use of const global variables: the const modi�er must be speci�ed in every
external declaration of the variable in all of the source �les that use that variable. Otherwise
the linker will issue warnings about conicting attributes for the variable. Your program
will still work despite the warnings, but the variable will be placed in writable storage.

Although the VMS linker does distinguish between upper and lower case letters in global
symbols, most VMS compilers convert all such symbols into upper case and most run-time
library routines also have upper case names. To be able to reliably call such routines, GCC
(by means of the assembler GAS) converts global symbols into upper case like other VMS
compilers. However, since the usual practice in C is to distinguish case, GCC (via GAS)
tries to preserve usual C behavior by augmenting each name that is not all lower case. This
means truncating the name to at most 23 characters and then adding more characters at
the end which encode the case pattern of those 23. Names which contain at least one dollar
sign are an exception; they are converted directly into upper case without augmentation.

Name augmentation yields bad results for programs that use precompiled libraries (such
as Xlib) which were generated by another compiler. You can use the compiler option
`/NOCASE_HACK' to inhibit augmentation; it makes external C functions and variables case-
independent as is usual on VMS. Alternatively, you could write all references to the functions
and variables in such libraries using lower case; this will work on VMS, but is not portable
to other systems. The compiler option `/NAMES' also provides control over global name
handling.

Function and variable names are handled somewhat di�erently with GNU C++. The
GNU C++ compiler performs name mangling on function names, which means that it adds
information to the function name to describe the data types of the arguments that the
function takes. One result of this is that the name of a function can become very long.
Since the VMS linker only recognizes the �rst 31 characters in a name, special action is
taken to ensure that each function and variable has a unique name that can be represented
in 31 characters.

If the name (plus a name augmentation, if required) is less than 32 characters in length,
then no special action is performed. If the name is longer than 31 characters, the assembler
(GAS) will generate a hash string based upon the function name, truncate the function
name to 23 characters, and append the hash string to the truncated name. If the `/VERBOSE'
compiler option is used, the assembler will print both the full and truncated names of each
symbol that is truncated.

The `/NOCASE_HACK' compiler option should not be used when you are compiling pro-
grams that use libg++. libg++ has several instances of objects (i.e. Filebuf and filebuf)

Chapter 11: Using GCC on VMS 241

which become indistinguishable in a case-insensitive environment. This leads to cases where
you need to inhibit augmentation selectively (if you were using libg++ and Xlib in the same
program, for example). There is no special feature for doing this, but you can get the result
by de�ning a macro for each mixed case symbol for which you wish to inhibit augmentation.
The macro should expand into the lower case equivalent of itself. For example:

#define StuDlyCapS studlycaps

These macro de�nitions can be placed in a header �le to minimize the number of changes
to your source code.

242 Using the GNU Compiler Collection

Index 243

Index

!
`!' in constraint . 298

#
`#' in constraint . 299

in template . 291

#pragma . 445, 446

#pragma implementation, implied 180

#pragma, reason for not using 156

$
$. 158

%
`%' in constraint . 299

`%' in template. 291

&
`&' in constraint . 299

'
' . 205

(
(nil) . 246

*
`*' in constraint . 299

* in template . 292

-
-lgcc, use with -nodefaultlibs 45

-lgcc, use with -nostdlib . 45

-nodefaultlibs and unresolved references 45

-nostdlib and unresolved references 45

.

.sdata/.sdata2 references (PowerPC) 72

/
// . 157

`/f' in RTL dump . 249

`/i' in RTL dump . 249

`/s' in RTL dump . 248, 250

`/u' in RTL dump . 249

`/v' in RTL dump . 248

=
`=' in constraint . 298

?
`?' in constraint . 298

?: extensions . 143, 144

?: side e�ect . 144

`_' in variables in macros . 142

__bb . 391

__bb_init_func . 390

__bb_init_trace_func 390, 391, 392

__bb_trace_func . 391, 392

__bb_trace_ret . 391, 392

__builtin_apply . 142

__builtin_apply_args . 141

__builtin_args_info . 392

__builtin_classify_type 393

__builtin_constant_p . 175

__builtin_frame_address 175

__builtin_next_arg . 393

__builtin_return . 142

__builtin_return_address 174

__builtin_saveregs . 392

__CTOR_LIST__ . 423

__DTOR_LIST__ . 423

__extension__ . 173

__main . 134

+
`+' in constraint . 298

>
`>' in constraint . 294

>? . 178

\
\ . 291

<
`<' in constraint . 294

<? . 178

0
`0' in constraint . 295

244 Using the GNU Compiler Collection

A
abort . 13, 235

abs . 13, 263

abs and attributes . 331

absm2 instruction pattern . 308

absolute value . 263

access to operands . 247

accessors . 247

ACCUMULATE_OUTGOING_ARGS 378

ACCUMULATE_OUTGOING_ARGS and stack frames

. 387

ADDITIONAL_REGISTER_NAMES 426

addm3 instruction pattern . 307

addr_diff_vec . 271

addr_diff_vec, length of . 335

addr_vec . 271

addr_vec, length of . 335

address . 290

address constraints . 295

address of a label . 138

ADDRESS_COST . 406

address_operand . 295

addressing modes . 400

addressof . 261

ADJUST_COST . 409

ADJUST_FIELD_ALIGN . 352

ADJUST_INSN_LENGTH . 335

ADJUST_PRIORITY . 409

aggregates as return values 384

alias attribute . 154

aliasing of parameters . 97

aligned attribute . 158, 162

alignment . 158

ALL_REGS . 365

Alliant . 201

alloca . 13

alloca and SunOS . 109

alloca vs variable-length arrays 146

alloca, for SunOS . 131

alloca, for Unos . 119

allocate_stack instruction pattern 315

ALLOCATE_TRAMPOLINE . 395

ALTER_HARD_SUBREG . 361

alternate keywords . 173

AMD29K options . 56

analysis, data ow . 241

and . 263

and and attributes . 331

and, canonicalization of . 321

andm3 instruction pattern . 307

ANSI support . 12

apostrophes . 205

APPLY_RESULT_SIZE . 384

ARC Options . 90

ARG_POINTER_CFA_OFFSET . 373

ARG_POINTER_REGNUM . 375

ARG_POINTER_REGNUM and virtual registers 258

arg_pointer_rtx . 375

ARGS_GROW_DOWNWARD . 371

argument passing . 237

arguments in frame (88k) . 63

arguments in registers . 379

arguments on stack . 377

arithmetic libraries . 238

arithmetic shift . 263

arithmetic simpli�cations . 239

arithmetic, in RTL . 261

ARM options . 57

arrays of length zero . 146

arrays of variable length . 146

arrays, non-lvalue . 148

ashift . 263

ashift and attributes . 331

ashiftrt . 263

ashiftrt and attributes . 331

ashlm3 instruction pattern 308

ashrm3 instruction pattern 308

asm expressions . 165

ASM_APP_OFF . 413

ASM_APP_ON . 413

ASM_BYTE_OP . 415

ASM_CLOSE_PAREN . 417

ASM_COMMENT_START . 413

ASM_DECLARE_FUNCTION_NAME 419

ASM_DECLARE_FUNCTION_SIZE 419

ASM_DECLARE_OBJECT_NAME 419

ASM_FILE_END . 413

ASM_FILE_START . 413

ASM_FINAL_SPEC . 342

ASM_FINISH_DECLARE_OBJECT 420

ASM_FORMAT_PRIVATE_NAME 422

asm_fprintf . 428

ASM_GENERATE_INTERNAL_LABEL 421

ASM_GLOBALIZE_LABEL . 420

ASM_IDENTIFY_GCC . 413

asm_input . 270

ASM_NO_SKIP_IN_TEXT . 432

asm_noperands . 276

ASM_OPEN_PAREN . 417

asm_operands, RTL sharing 282

asm_operands, usage . 272

ASM_OUTPUT_ADDR_DIFF_ELT 429

Index 245

ASM_OUTPUT_ADDR_VEC_ELT 429

ASM_OUTPUT_ALIGN . 432

ASM_OUTPUT_ALIGNED_BSS . 418

ASM_OUTPUT_ALIGNED_COMMON 417

ASM_OUTPUT_ALIGNED_DECL_COMMON 418

ASM_OUTPUT_ALIGNED_DECL_LOCAL 419

ASM_OUTPUT_ALIGNED_LOCAL 419

ASM_OUTPUT_ASCII . 415

ASM_OUTPUT_BSS . 418

ASM_OUTPUT_BYTE . 415

ASM_OUTPUT_CASE_END . 430

ASM_OUTPUT_CASE_LABEL . 430

ASM_OUTPUT_CHAR . 415

ASM_OUTPUT_COMMON . 417

ASM_OUTPUT_CONSTRUCTOR . 425

ASM_OUTPUT_DEF . 422

ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL

. 422

ASM_OUTPUT_DESTRUCTOR . 425

ASM_OUTPUT_DOUBLE . 415

ASM_OUTPUT_DOUBLE_INT . 415

ASM_OUTPUT_EH_REGION_BEG 430

ASM_OUTPUT_EH_REGION_END 430

ASM_OUTPUT_EXTERNAL . 421

ASM_OUTPUT_EXTERNAL_LIBCALL 421

ASM_OUTPUT_FLOAT . 415

ASM_OUTPUT_IDENT . 414

ASM_OUTPUT_INT . 415

ASM_OUTPUT_INTERNAL_LABEL 421

ASM_OUTPUT_LABEL . 419

ASM_OUTPUT_LABELREF . 421

ASM_OUTPUT_LOCAL . 418

ASM_OUTPUT_LONG_DOUBLE . 415

ASM_OUTPUT_MAX_SKIP_ALIGN 432

ASM_OUTPUT_MI_THUNK . 389

ASM_OUTPUT_OPCODE . 427

ASM_OUTPUT_POOL_EPILOGUE 416

ASM_OUTPUT_POOL_PROLOGUE 416

ASM_OUTPUT_QUADRUPLE_INT 415

ASM_OUTPUT_REG_POP . 429

ASM_OUTPUT_REG_PUSH . 429

ASM_OUTPUT_SECTION_NAME 414

ASM_OUTPUT_SHARED_BSS . 418

ASM_OUTPUT_SHARED_COMMON 418

ASM_OUTPUT_SHARED_LOCAL 419

ASM_OUTPUT_SHORT . 415

ASM_OUTPUT_SKIP . 431

ASM_OUTPUT_SOURCE_FILENAME 414

ASM_OUTPUT_SOURCE_LINE . 414

ASM_OUTPUT_SPECIAL_POOL_ENTRY 416

ASM_OUTPUT_WEAK_ALIAS . 422

ASM_SPEC . 342

ASM_STABD_OP . 433

ASM_STABN_OP . 434

ASM_STABS_OP . 433

ASM_WEAKEN_LABEL . 420

assemble_name . 419

assembler format . 413

assembler instructions . 165

assembler instructions in RTL 272

assembler names for identi�ers 170

assembler syntax, 88k . 63

ASSEMBLER_DIALECT . 428

assembly code, invalid . 217

assigning attribute values to insns 333

asterisk in template . 292

atof . 438

attr . 332, 333

attr_flag . 332

attribute expressions . 330

attribute of types . 161

attribute of variables . 158

attribute speci�cations . 334

attribute speci�cations example 334

attributes, de�ning . 329

autoincrement addressing, availability 235

autoincrement/decrement addressing 293

autoincrement/decrement analysis 241

automatic inline for C++ member fns 165

AVOID_CCMODE_COPIES . 362

B
backslash . 291

backtrace for bug reports . 220

barrier . 275

BASE_REG_CLASS . 366

basic blocks . 241

bcmp . 453

bcond instruction pattern . 311

bcopy, implicit usage . 398

BIGGEST_ALIGNMENT . 351

BIGGEST_FIELD_ALIGNMENT 352

Bison parser generator . 103

bit �elds . 265

bit shift overow (88k). 65

BITFIELD_NBYTES_LIMITED 354

BITS_BIG_ENDIAN . 349

BITS_BIG_ENDIAN, e�ect on sign_extract 265

BITS_PER_UNIT . 350

BITS_PER_WORD . 350

bitwise complement . 263

bitwise exclusive-or . 263

246 Using the GNU Compiler Collection

bitwise inclusive-or . 263

bitwise logical-and . 263

BLKmode . 253

BLKmode, and function return values 281

BLOCK_PROFILER . 390

BLOCK_PROFILER_CODE . 392

bound pointer to member function 183

BRANCH_COST . 407

break_out_memory_refs . 402

BSS_SECTION_ASM_OP . 410

bug criteria . 217

bug report mailing lists . 218

bugs . 217

bugs, known . 193

builtin functions . 13

builtin_longjmp instruction pattern 316

BUILTIN_SETJMP_FRAME_VALUE 372

builtin_setjmp_receiver instruction pattern

. 316

builtin_setjmp_setup instruction pattern 316

byte writes (29k) . 56

byte_mode . 255

BYTES_BIG_ENDIAN . 349

bzero . 453

bzero, implicit usage . 398

C
C compilation options . 3

C intermediate output, nonexistent 1

C language extensions . 137

C language, traditional . 13

C statements for assembler output 292

C_INCLUDE_PATH . 99

c++ . 11

C++ . 1

C++ comments . 157

C++ compilation options . 3

C++ interface and implementation headers 179

C++ language extensions . 177

C++ member fns, automatically inline 165

C++ misunderstandings . 208

C++ named return value . 177

C++ options, command line . 16

C++ pragmas, e�ect on inlining 180

C++ runtime library . 110

C++ signatures . 183

C++ source �le suÆxes . 11

C++ static data, declaring and de�ning 208

C++ subtype polymorphism 183

C++ type abstraction . 183

call . 268

call instruction pattern . 311

call usage . 281

call-clobbered register . 359

call-saved register . 359

call-used register . 359

call_insn . 274

call_insn and `/u' . 250

CALL_INSN_FUNCTION_USAGE 274

call_pop instruction pattern 312

CALL_USED_REGISTERS . 359

call_used_regs . 359

call_value instruction pattern 312

call_value_pop instruction pattern 312

CALLER_SAVE_PROFITABLE . 386

calling conventions . 371

calling functions in RTL . 281

calling functions through the function vector on

the H8/300 processors 155

CAN_DEBUG_WITHOUT_FP . 349

CAN_ELIMINATE . 377

canonicalization of instructions 320

CANONICALIZE_COMPARISON 405

canonicalize_funcptr_for_compare instruction

pattern . 314

case labels in initializers . 149

case ranges . 150

case sensitivity and VMS . 232

CASE_DROPS_THROUGH . 441

CASE_VALUES_THRESHOLD . 442

CASE_VECTOR_MODE . 441

CASE_VECTOR_PC_RELATIVE 441

CASE_VECTOR_SHORTEN_MODE 441

casesi instruction pattern . 313

cast to a union . 151

casts as lvalues . 143

catgets . 106

CC . 456

cc_status . 403

CC_STATUS_MDEP . 403

CC_STATUS_MDEP_INIT . 403

cc0 . 260

cc0, RTL sharing . 282

cc0_rtx . 260

CC1_SPEC . 342

CC1PLUS_SPEC . 342

CCmode . 253

CDImode . 253

change_address . 305

CHAR_TYPE_SIZE . 356

CHECK_FLOAT_VALUE . 355

check_stack instruction pattern 315

Index 247

CHImode . 253

class de�nitions, register . 364

class preference constraints 298

CLASS_LIKELY_SPILLED_P . 369

CLASS_MAX_NREGS . 370

classes of RTX codes . 246

CLEAR_INSN_CACHE . 396

CLIB . 456

clobber . 268

clrstrm instruction pattern 309

cmpm instruction pattern . 308

cmpstrm instruction pattern 309

code generation conventions 92

code generation RTL sequences 324

code motion . 241

code_label . 274

code_label and `/i' . 250

CODE_LABEL_NUMBER . 274

codes, RTL expression . 245

COImode . 253

COLLECT_EXPORT_LIST . 453

combiner pass . 259

command options . 3

comments, C++ style . 157

common subexpression elimination 241

COMP_TYPE_ATTRIBUTES . 446

compare . 261

compare, canonicalization of 321

comparison of signed and unsigned values, warning

. 28

compilation in a separate directory 126

compiler bugs, reporting . 218

compiler compared to C++ preprocessor 1

compiler options, C++ . 16

compiler passes and �les . 239

compiler version, specifying . 47

COMPILER_PATH . 98

complement, bitwise . 263

complex numbers . 145

compound expressions as lvalues 143

computed gotos . 138

computing the length of an insn 335

cond . 265

cond and attributes . 331

condition code register . 260

condition code status . 403

condition codes . 264

conditional expressions as lvalues 143

conditional expressions, extensions 144

CONDITIONAL_REGISTER_USAGE 359

conditions, in patterns . 285

con�guration �le . 451

con�gurations supported by GNU CC 111

conicting types . 207

const applied to function . 151

const function attribute . 152

CONST_CALL_P . 250

CONST_COSTS . 405

const_double . 255

const_double, RTL sharing 282

CONST_DOUBLE_CHAIN . 256

CONST_DOUBLE_LOW . 256

CONST_DOUBLE_MEM . 256

CONST_DOUBLE_OK_FOR_LETTER_P 370

const_int . 255

const_int and attribute tests 331

const_int and attributes . 330

const_int, RTL sharing . 282

CONST_OK_FOR_LETTER_P . 370

const_string . 256

const_string and attributes 330

const_true_rtx . 255

const0_rtx . 255

CONST0_RTX . 256

const1_rtx . 255

CONST1_RTX . 256

const2_rtx . 255

CONST2_RTX . 256

constant attributes . 336

constant folding . 239

constant folding and oating point 440

constant propagation . 241

CONSTANT_ADDRESS_P . 400

CONSTANT_AFTER_FUNCTION_P 416

CONSTANT_ALIGNMENT . 352

CONSTANT_P . 400

CONSTANT_POOL_ADDRESS_P 250

CONSTANT_POOL_BEFORE_FUNCTION 415

constants in constraints . 294

constm1_rtx . 255

constraint modi�er characters 298

constraint, matching . 295

constraints . 293

constraints, machine speci�c 300

constructing calls . 141

constructor expressions . 149

constructor function attribute 154

constructors vs goto . 179

constructors, automatic calls 134

constructors, output of . 423

contributors . 469

controlling register usage . 360

248 Using the GNU Compiler Collection

controlling the compilation driver 341

conventions, run-time . 237

conversions . 265

Convex options . 55

copy propagation . 241

copy_rtx . 402

copy_rtx_if_shared . 282

core dump . 217

cos . 13

costs of instructions . 405

COSTS_N_INSNS . 405

CPLUS_INCLUDE_PATH . 99

CPP_PREDEFINES . 347

CPP_SPEC . 341

CQImode . 253

cross compilation and oating point. 438

cross compiling . 47

cross-compiler, installation . 126

cross-jumping . 243

CROSS_LIBGCC1 . 455

CRTSTUFF_T_CFLAGS . 455

CRTSTUFF_T_CFLAGS_S . 455

CSImode . 253

CTImode . 253

CUMULATIVE_ARGS . 381

current_function_epilogue_delay_list 389

current_function_is_leaf 363

current_function_outgoing_args_size 378

current_function_pops_args 388

current_function_pretend_args_size 387

current_function_uses_only_leaf_regs 363

D
`d' in constraint . 294

data ow analysis . 241

DATA_ALIGNMENT . 352

data_section . 410

DATA_SECTION_ASM_OP . 410

DBR_OUTPUT_SEQEND . 428

dbr_sequence_length . 428

DBX . 198

DBX_BLOCKS_FUNCTION_RELATIVE 435

DBX_CONTIN_CHAR . 434

DBX_CONTIN_LENGTH . 434

DBX_DEBUGGING_INFO . 433

DBX_FUNCTION_FIRST . 435

DBX_LBRAC_FIRST . 435

DBX_MEMPARM_STABS_LETTER 434

DBX_NO_XREFS . 434

DBX_OUTPUT_ENUM . 435

DBX_OUTPUT_FUNCTION_END 435

DBX_OUTPUT_LBRAC . 435

DBX_OUTPUT_MAIN_SOURCE_DIRECTORY 437

DBX_OUTPUT_MAIN_SOURCE_FILE_END 437

DBX_OUTPUT_MAIN_SOURCE_FILENAME 437

DBX_OUTPUT_RBRAC . 435

DBX_OUTPUT_SOURCE_FILENAME 437

DBX_OUTPUT_STANDARD_TYPES 435

DBX_REGISTER_NUMBER . 432

DBX_REGPARM_STABS_CODE . 434

DBX_REGPARM_STABS_LETTER 434

DBX_STATIC_CONST_VAR_CODE 434

DBX_STATIC_STAB_DATA_SECTION 434

DBX_TYPE_DECL_STABS_CODE 434

DBX_USE_BINCL . 435

DBX_WORKING_DIRECTORY . 437

DCmode . 253

De Morgan's law . 321

dead code . 240

dead_or_set_p . 322

deallocating variable length arrays 146

debug_rtx . 220

DEBUG_SYMS_TEXT . 433

DEBUGGER_ARG_OFFSET . 433

DEBUGGER_AUTO_OFFSET . 432

debugging information generation 243

debugging information options 29

debugging, 88k OCS . 62

declaration scope . 204

declarations inside expressions 137

declarations, RTL . 267

declaring attributes of functions 151

declaring static data in C++ 208

default implementation, signature member

function . 184

DEFAULT_CALLER_SAVES . 385

DEFAULT_GDB_EXTENSIONS . 433

DEFAULT_MAIN_RETURN . 447

DEFAULT_PCC_STRUCT_RETURN 385

DEFAULT_RTX_COSTS . 406

DEFAULT_SHORT_ENUMS . 357

DEFAULT_SIGNED_CHAR . 357

DEFAULT_VTABLE_THUNKS . 355

define_asm_attributes . 334

define_attr . 329

define_delay . 337

define_expand . 324

define_function_unit . 338

define_insn . 285

define_insn example . 286

define_peephole . 324

de�ne split . 327

Index 249

de�ning attributes and their values 329

de�ning jump instruction patterns 319

de�ning peephole optimizers 322

de�ning RTL sequences for code generation . . . 324

de�ning static data in C++ . 208

delay slots, de�ning. 337

DELAY_SLOTS_FOR_EPILOGUE 388

delayed branch scheduling . 243

dependencies for make as output 99

dependencies, make . 43

DEPENDENCIES_OUTPUT . 99

Dependent Patterns . 318

destructor function attribute 154

destructors vs goto . 179

destructors, output of . 423

detecting `-traditional' . 14

DFmode . 253

dialect options . 12

digits in constraint . 295

DImode . 252

DIR_SEPARATOR . 453

directory options . 46

disabling certain registers . 360

dispatch table . 429

div . 262

div and attributes . 331

DIVDI3_LIBCALL . 397

divide instruction, 88k . 64

division . 262

divm3 instruction pattern . 307

divmodm4 instruction pattern 307

DIVSI3_LIBCALL . 397

DOESNT_NEED_UNWINDER . 431

dollar signs in identi�er names 158

DOLLARS_IN_IDENTIFIERS . 447

DONE . 325

DONT_REDUCE_ADDR . 408

double-word arithmetic . 145

DOUBLE_TYPE_SIZE . 357

downward funargs . 139

driver . 341

DW bit (29k) . 56

DWARF_DEBUGGING_INFO . 437

DWARF2_DEBUGGING_INFO . 437

DWARF2_FRAME_INFO . 438

DWARF2_UNWIND_INFO . 431

DYNAMIC_CHAIN_ADDRESS . 372

E
`E' in constraint . 294

earlyclobber operand . 299

EASY_DIV_EXPR . 442

EDOM, implicit usage . 398

eh_epilogue instruction pattern 316

EH_FRAME_SECTION_ASM_OP 430

EH_TABLE_LOOKUP . 431

eight bit data on the H8/300 and H8/300H . . . 156

ELIGIBLE_FOR_EPILOGUE_DELAY 388

ELIMINABLE_REGS . 376

empty constraints . 304

EMPTY_FIELD_BOUNDARY . 353

ENCODE_SECTION_INFO . 411

ENCODE_SECTION_INFO and address validation

. 401

ENCODE_SECTION_INFO usage 428

ENDFILE_SPEC . 343

endianness . 235

enum machine_mode . 252

enum reg_class . 365

environment variables. 97

epilogue . 386

epilogue instruction pattern 317

EPILOGUE_USES . 387

eq . 264

eq and attributes . 331

eq_attr . 331

equal . 264

errno, implicit usage . 398

error messages . 215

escape sequences, traditional 14

exception_receiver instruction pattern 316

EXCEPTION_SECTION . 430

exclamation point . 298

exclusive-or, bitwise . 263

EXECUTABLE_SUFFIX . 453

exit . 13

exit status and VMS . 232

EXIT_BODY . 447

EXIT_IGNORE_STACK . 387

EXPAND_BUILTIN_SAVEREGS 393

expander de�nitions . 324

explicit register variables . 171

expr_list . 281

expression codes . 245

expressions containing statements 137

expressions, compound, as lvalues 143

expressions, conditional, as lvalues 143

expressions, constructor . 149

extended asm . 165

extendmn2 instruction pattern 310

extensible constraints . 295

extensions, ?: . 143, 144

250 Using the GNU Compiler Collection

extensions, C language . 137

extensions, C++ language . 177

extern int target_flags . 347

external declaration scope . 204

EXTRA_CC_MODES . 404

EXTRA_CC_NAMES . 404

EXTRA_CONSTRAINT . 370

EXTRA_SECTION_FUNCTIONS 410

EXTRA_SECTIONS . 410

EXTRA_SPECS . 343

extv instruction pattern . 310

extzv instruction pattern . 310

F
`F' in constraint . 294

fabs . 13

FAIL . 325

fatal signal . 217

FATAL_EXIT_CODE . 451

features, optional, in system conventions 347

ffs . 13, 263

ffsm2 instruction pattern . 308

�le name suÆx . 10

�le names . 44

�les and passes of the compiler 239

�nal pass . 243

FINAL_PRESCAN_INSN . 427

FINAL_PRESCAN_LABEL . 427

FINAL_REG_PARM_STACK_SPACE 378

final_scan_insn . 389

final_sequence . 428

FINALIZE_PIC . 412

FIRST_INSN_ADDRESS . 335

FIRST_PARM_OFFSET . 371

FIRST_PARM_OFFSET and virtual registers 258

FIRST_PSEUDO_REGISTER . 359

FIRST_STACK_REG . 364

FIRST_VIRTUAL_REGISTER . 258

fix . 266

fix_truncmn2 instruction pattern 310

�xed register . 359

FIXED_REGISTERS . 359

fixed_regs . 359

fixmn2 instruction pattern 309

FIXUNS_TRUNC_LIKE_FIX_TRUNC 442

fixuns_truncmn2 instruction pattern 310

fixunsmn2 instruction pattern 309

ags in RTL expression . 248

float . 266

float as function value type 205

FLOAT_ARG_TYPE . 398

float_extend . 266

FLOAT_STORE_FLAG_VALUE . 444

float_truncate . 266

FLOAT_TYPE_SIZE . 357

FLOAT_VALUE_TYPE . 399

FLOAT_WORDS_BIG_ENDIAN . 350

FLOAT_WORDS_BIG_ENDIAN, (lack of) e�ect on

subreg. 259

FLOATIFY . 399

oating point and cross compilation. 438

oating point precision . 36, 208

floatmn2 instruction pattern. 309

floatunsmn2 instruction pattern 309

force_reg . 305

format function attribute . 153

format_arg function attribute 153

forwarding calls . 141

frame layout . 371

FRAME_GROWS_DOWNWARD . 371

FRAME_GROWS_DOWNWARD and virtual registers . . 258

frame_pointer_needed . 386

FRAME_POINTER_REGNUM . 374

FRAME_POINTER_REGNUM and virtual registers . . 258

FRAME_POINTER_REQUIRED . 376

frame_pointer_rtx . 375

frame_related, inmem . 249

fscanf, and constant strings 203

ftruncm2 instruction pattern 309

function addressability on the M32R/D 156

function attributes . 151

function call conventions . 237

function entry and exit . 386

function pointers, arithmetic 148

function prototype declarations 157

function units, for scheduling 338

function, size of pointer to . 148

function-call insns . 281

FUNCTION_ARG . 379

FUNCTION_ARG_ADVANCE . 382

FUNCTION_ARG_BOUNDARY . 382

FUNCTION_ARG_CALLEE_COPIES 381

FUNCTION_ARG_PADDING . 382

FUNCTION_ARG_PARTIAL_NREGS 380

FUNCTION_ARG_PASS_BY_REFERENCE 381

FUNCTION_ARG_REGNO_P . 382

FUNCTION_BLOCK_PROFILER 390

FUNCTION_BLOCK_PROFILER_EXIT 391

FUNCTION_BOUNDARY . 351

FUNCTION_CONVERSION_BUG 452

FUNCTION_EPILOGUE . 388

FUNCTION_EPILOGUE and trampolines 395

Index 251

FUNCTION_INCOMING_ARG . 380

FUNCTION_MODE . 445

FUNCTION_OUTGOING_VALUE 383

FUNCTION_PROFILER . 389

FUNCTION_PROLOGUE . 386

FUNCTION_PROLOGUE and trampolines 395

FUNCTION_VALUE . 383

FUNCTION_VALUE_REGNO_P . 384

functions called via pointer on the RS/6000 and

PowerPC . 155

functions in arbitrary sections 151

functions that are passed arguments in registers on

the 386 . 151, 155

functions that do not pop the argument stack on

the 386 . 151

functions that do pop the argument stack on the

386 . 155

functions that have no side e�ects 151

functions that never return 151

functions that pop the argument stack on the 386

. 151, 155

functions which are exported from a dll on

PowerPC Windows NT 155

functions which are imported from a dll on

PowerPC Windows NT 155

functions which specify exception handling on

PowerPC Windows NT 155

functions with printf, scanf or strftime style

arguments . 151

functions, leaf . 363

G
`g' in constraint . 295

`G' in constraint . 294

g++ . 11

G++ . 1

GCC . 1

GCC and portability . 235

GCC command options . 3

GCC_EXEC_PREFIX . 98

ge . 264

ge and attributes . 331

GEN_ERRNO_RTX . 398

gencodes . 240

genconfig . 243

general_operand . 287

GENERAL_REGS . 365

generalized lvalues . 143

generating assembler output 292

generating insns . 286

genflags . 240

genflags, crash on Sun 4 . 195

get_attr . 331

get_attr_length . 336

GET_CLASS_NARROWEST_MODE 255

GET_CODE . 245

get_frame_size . 376

get_insns . 273

get_last_insn . 273

GET_MODE . 254

GET_MODE_ALIGNMENT . 255

GET_MODE_BITSIZE . 255

GET_MODE_CLASS . 254

GET_MODE_MASK . 255

GET_MODE_NAME . 254

GET_MODE_NUNITS . 255

GET_MODE_SIZE . 254

GET_MODE_UNIT_SIZE . 255

GET_MODE_WIDER_MODE . 254

GET_RTX_CLASS . 246

GET_RTX_FORMAT . 247

GET_RTX_LENGTH . 247

gettext . 106

geu . 264

geu and attributes . 331

global common subexpression elimination 241

global o�set table . 94

global register after longjmp 172

global register allocation . 242

global register variables . 171

GLOBALDEF . 230

GLOBALREF . 230

GLOBALVALUEDEF . 230

GLOBALVALUEREF . 230

GO_IF_LEGITIMATE_ADDRESS 400

GO_IF_MODE_DEPENDENT_ADDRESS 403

goto in C++ . 179

goto with computed label . 138

gp-relative references (MIPS) 76

gprof . 30

greater than . 264

grouping options . 3

gt . 264

gt and attributes . 331

gtu . 264

gtu and attributes . 331

H
`H' in constraint . 294

Haifa scheduler . 105

HANDLE_PRAGMA . 445

HANDLE_PRAGMA_PACK_PUSH_POP 446

252 Using the GNU Compiler Collection

HANDLE_SYSV_PRAGMA . 446

hard registers. 257

HARD_FRAME_POINTER_REGNUM 374

HARD_REGNO_CALL_PART_CLOBBERED 359

HARD_REGNO_CALLER_SAVE_MODE 386

HARD_REGNO_MODE_OK . 361

HARD_REGNO_NREGS . 361

hardware models and con�gurations, specifying

. 48

HAS_INIT_SECTION . 425

HAVE_ATEXIT . 447

HAVE_POST_DECREMENT . 400

HAVE_POST_INCREMENT . 400

HAVE_PRE_DECREMENT . 400

HAVE_PRE_INCREMENT . 400

header �les and VMS . 229

hex oats . 146

high . 257

HImode . 252

HImode, in insn . 276

host make�le fragment. 456

HOST_BITS_PER_CHAR . 451

HOST_BITS_PER_INT . 451

HOST_BITS_PER_LONG . 451

HOST_BITS_PER_SHORT . 451

HOST_FLOAT_FORMAT . 451

HOST_FLOAT_WORDS_BIG_ENDIAN 451

HOST_WORDS_BIG_ENDIAN . 451

hosted environment . 13

HPPA Options . 79

I
`i' in constraint . 294

`I' in constraint . 294

i386 Options . 76

IBM RS/6000 and PowerPC Options 65

IBM RT options . 72

IBM RT PC . 202

identi�er names, dollar signs in 158

identi�ers, names in assembler code 170

identifying source, compiler (88k) 62

IEEE_FLOAT_FORMAT . 355

if_then_else . 265

if_then_else and attributes 330

if_then_else usage . 267

immediate_operand . 287

IMMEDIATE_PREFIX . 428

implicit argument: return value 177

IMPLICIT_FIX_EXPR . 442

implied #pragma implementation 180

in_data . 410

in_struct . 251

in_struct, in code_label . 250

in_struct, in insn . 250, 251

in_struct, in label_ref . 250

in_struct, in mem . 248

in_struct, in reg . 249

in_struct, in subreg . 249

in_text . 410

include �les and VMS . 229

INCLUDE_DEFAULTS . 346

inclusive-or, bitwise . 263

INCOMING_FRAME_SP_OFFSET 372

INCOMING_REGNO . 360

INCOMING_RETURN_ADDR_RTX 372

incompatibilities of GCC . 203

increment operators . 217

INDEX_REG_CLASS . 366

indirect_jump instruction pattern 313

INIT_CUMULATIVE_ARGS . 381

INIT_CUMULATIVE_INCOMING_ARGS 382

INIT_ENVIRONMENT . 345

INIT_SECTION_ASM_OP 410, 425

INIT_TARGET_OPTABS . 398

INITIAL_ELIMINATION_OFFSET 377

INITIAL_FRAME_POINTER_OFFSET 376

initialization routines . 423

initializations in expressions 149

INITIALIZE_TRAMPOLINE . 395

initializers with labeled elements 149

initializers, non-constant . 148

inline automatic for C++ member fns 165

inline functions . 164

inline functions, omission of. 165

inline, automatic . 240

inlining and C++ pragmas . 180

INSERT_ATTRIBUTES . 447

insn . 274

insn and `/i' . 251

insn and `/s' . 250

insn and `/u' . 250

insn attributes. 329

insn canonicalization . 320

insn lengths, computing . 335

insn splitting . 327

insn-attr.h . 330

INSN_ANNULLED_BRANCH_P . 250

INSN_CACHE_DEPTH . 396

INSN_CACHE_LINE_WIDTH . 396

INSN_CACHE_SIZE . 396

INSN_CLOBBERS_REGNO_P . 364

INSN_CODE . 276

Index 253

INSN_DELETED_P . 250

INSN_FROM_TARGET_P . 250

insn_list . 281

INSN_REFERENCES_ARE_DELAYED 448

INSN_SETS_ARE_DELAYED . 447

INSN_UID . 273

insns . 273

insns, generating . 286

insns, recognizing . 286

INSTALL . 456

installation trouble . 193

installing GNU CC . 103

installing GNU CC on the Sun. 131

installing GNU CC on VMS 131

instruction attributes . 329

instruction combination . 241

instruction patterns . 285

instruction recognizer . 243

instruction scheduling . 242

instruction splitting . 327

insv instruction pattern . 310

INT_TYPE_SIZE . 356

INTEGRATE_THRESHOLD . 445

integrated . 252

integrated, in insn . 250

integrated, in reg . 249

integrating function code . 164

Intel 386 Options . 76

Interdependence of Patterns 318

interface and implementation headers, C++ 179

interfacing to GCC output . 237

intermediate C version, nonexistent 1

Internal Compiler Checking 105

interrupt handler functions on the H8/300

processors . 156

interrupt handlers on the M32R/D. 156

INTIFY . 399

invalid assembly code . 217

invalid input . 217

INVOKE__main . 425

invoking g++ . 12

ior . 263

ior and attributes . 331

ior, canonicalization of . 321

iorm3 instruction pattern . 307

IS_ASM_LOGICAL_LINE_SEPARATOR 416

isinf . 440

isnan . 440

ISSUE_RATE . 448

J
jump instruction patterns . 319

jump instructions and set . 267

jump optimization . 240

jump threading . 241

jump_insn . 274

JUMP_LABEL . 274

JUMP_TABLES_IN_TEXT_SECTION 411

K
kernel and user registers (29k) 56

keywords, alternate . 173

known causes of trouble . 193

L
LABEL_ALIGN . 431

LABEL_ALIGN_AFTER_BARRIER 431

LABEL_NUSES . 275

LABEL_OUTSIDE_LOOP_P . 250

LABEL_PRESERVE_P . 250

label_ref . 256

label_ref and `/s' . 250

label_ref, RTL sharing . 282

labeled elements in initializers 149

labels as values . 138

labs . 13

LANG . 97, 99

language dialect options . 12

large bit shifts (88k) . 65

large return values . 384

LAST_STACK_REG . 364

LAST_VIRTUAL_REGISTER . 258

LC_ALL . 97

LC_CTYPE . 97

LC_MESSAGES . 97

LD_FINI_SWITCH . 425

LD_INIT_SWITCH . 425

LDD_SUFFIX . 426

ldexp . 439

le . 264

le and attributes . 331

leaf functions . 363

leaf_function_p . 312

LEAF_REG_REMAP . 363

LEAF_REGISTERS . 363

left rotate . 263

left shift . 263

LEGITIMATE_CONSTANT_P . 403

LEGITIMATE_PIC_OPERAND_P 412

LEGITIMIZE_ADDRESS . 402

LEGITIMIZE_RELOAD_ADDRESS 402

254 Using the GNU Compiler Collection

length-zero arrays . 146

less than . 264

less than or equal . 264

leu . 264

leu and attributes . 331

LIB_SPEC . 343

LIB2FUNCS_EXTRA . 455

LIBCALL_VALUE . 383

`libgcc.a' . 397

LIBGCC_NEEDS_DOUBLE . 398

LIBGCC_SPEC . 343

LIBGCC1 . 455

LIBGCC2_CFLAGS . 455

LIBGCC2_WORDS_BIG_ENDIAN 349

Libraries . 44

library subroutine names . 397

LIBRARY_PATH . 98

libstdc++ . 110

LIMIT_RELOAD_CLASS . 367

link options . 44

LINK_COMMAND_SPEC . 344

LINK_LIBGCC_SPECIAL . 344

LINK_LIBGCC_SPECIAL_1 . 344

LINK_SPEC . 342

LINKER_DOES_NOT_WORK_WITH_DWARF2 438

lo_sum . 261

load address instruction . 295

LOAD_ARGS_REVERSED . 382

LOAD_EXTEND_OP . 442

load_multiple instruction pattern 306

local labels . 138

local register allocation . 242

local variables in macros . 142

local variables, specifying registers 172

LOCAL_ALIGNMENT . 352

LOCAL_INCLUDE_DIR . 345

LOCAL_LABEL_PREFIX . 428

locale . 97

locale de�nition . 99

LOG_LINKS . 276

logical-and, bitwise . 263

long long data types . 145

LONG_DOUBLE_TYPE_SIZE . 357

LONG_LONG_TYPE_SIZE . 356

LONG_TYPE_SIZE . 356

longjmp . 172

longjmp and automatic variables 14, 237

longjmp incompatibilities . 204

longjmp warnings . 26

LONGJMP_RESTORE_FROM_STACK 377

loop optimization . 241

LOOP_ALIGN . 431

lshiftrt . 263

lshiftrt and attributes . 331

lshrm3 instruction pattern 308

lt . 264

lt and attributes . 331

ltu . 264

lvalues, generalized . 143

M
`m' in constraint . 293

M32R/D options . 61

M680x0 options . 49

M88k options . 62

machine dependent options . 48

machine description macros 341

machine descriptions . 285

machine mode conversions . 265

machine modes . 252

machine speci�c constraints 300

MACHINE_DEPENDENT_REORG 448

MACHINE_STATE_RESTORE . 392

MACHINE_STATE_SAVE . 391

macro with variable arguments 147

macros containing asm . 168

macros, inline alternative . 164

macros, local labels . 138

macros, local variables in . 142

macros, statements in expressions 137

macros, target description . 341

macros, types of arguments 142

main and the exit status . 232

make . 43

MAKE_DECL_ONE_ONLY (decl) 420

make_safe_from . 326

make�le fragment . 455

MASK_RETURN_ADDR . 431

match_dup . 287

match_dup and attributes . 335

match_insn . 290

match_insn2 . 290

match_op_dup . 289

match_operand . 286

match_operand and attributes 331

match_operator . 288

match_par_dup . 290

match_parallel . 289

match_scratch . 287

matching constraint . 295

matching operands . 291

math libraries . 238

Index 255

math, in RTL . 261

MATH_LIBRARY . 449

MAX_BITS_PER_WORD . 350

MAX_CHAR_TYPE_SIZE . 357

MAX_FIXED_MODE_SIZE . 354

MAX_INT_TYPE_SIZE . 356

MAX_INTEGER_COMPUTATION_MODE 449

MAX_LONG_TYPE_SIZE . 356

MAX_MOVE_MAX . 442

MAX_OFILE_ALIGNMENT . 352

MAX_REGS_PER_ADDRESS . 400

MAX_WCHAR_TYPE_SIZE . 358

maximum operator . 178

MAYBE_REG_PARM_STACK_SPACE 378

mcount . 389

MD_CALL_PROTOTYPES . 453

MD_EXEC_PREFIX . 345

MD_SCHED_INIT . 448

MD_SCHED_REORDER . 448

MD_SCHED_VARIABLE_ISSUE 448

MD_STARTFILE_PREFIX . 345

MD_STARTFILE_PREFIX_1 . 345

mem . 261

mem and `/f' . 249

mem and `/s' . 248

mem and `/u' . 249

mem and `/v' . 248

mem, RTL sharing . 282

MEM_ALIAS_SET . 249

MEM_IN_STRUCT_P . 248

MEM_SCALAR_P . 249

MEM_VOLATILE_P . 248

member fns, automatically inline 165

memcmp . 13

memcpy . 13

memcpy, implicit usage . 398

memory model (29k) . 56

memory reference, nono�settable 297

memory references in constraints 293

MEMORY_MOVE_COST . 407

memset, implicit usage . 398

MERGE_MACHINE_DECL_ATTRIBUTES 446

MERGE_MACHINE_TYPE_ATTRIBUTES 446

messages, warning . 22

messages, warning and error 215

middle-operands, omitted . 144

MIN_UNITS_PER_WORD . 350

minimum operator . 178

MINIMUM_ATOMIC_ALIGNMENT 352

minus . 261

minus and attributes . 331

minus, canonicalization of . 321

MIPS options. 73

misunderstandings in C++ . 208

mktemp, and constant strings 203

MN10200 options . 61

MN10300 options . 61

mod . 262

mod and attributes . 331

MODDI3_LIBCALL . 397

mode attribute . 159

mode classes . 253

MODE_CC . 254

MODE_COMPLEX_FLOAT . 254

MODE_COMPLEX_INT . 254

MODE_FLOAT . 254

MODE_FUNCTION . 254

MODE_INT . 254

MODE_PARTIAL_INT . 254

MODE_RANDOM . 254

MODES_TIEABLE_P . 362

modi�ers in constraints . 298

modm3 instruction pattern . 307

MODSI3_LIBCALL . 397

MOVE_BY_PIECES_P . 408

MOVE_MAX . 442

MOVE_MAX_PIECES . 408

MOVE_RATIO . 408

movm instruction pattern . 305

movmodecc instruction pattern 310

movstrictm instruction pattern 306

movstrm instruction pattern 308

MULDI3_LIBCALL . 397

mulhisi3 instruction pattern 307

mulm3 instruction pattern . 307

mulqihi3 instruction pattern 307

MULSI3_LIBCALL . 397

mulsidi3 instruction pattern 307

mult . 262

mult and attributes . 331

mult, canonicalization of . 321

MULTIBYTE_CHARS . 452

MULTILIB_DEFAULTS . 344

MULTILIB_DIRNAMES . 456

MULTILIB_EXCEPTIONS . 456

MULTILIB_EXTRA_OPTS . 456

MULTILIB_MATCHES . 456

MULTILIB_OPTIONS . 455

multiple alternative constraints 297

MULTIPLE_SYMBOL_SPACES . 448

multiplication . 262

multiprecision arithmetic . 145

256 Using the GNU Compiler Collection

MUST_PASS_IN_STACK . 380

MUST_PASS_IN_STACK, and FUNCTION_ARG 380

N
`n' in constraint . 294

N_REG_CLASSES . 365

name augmentation . 232

named patterns and conditions 285

named return value in C++ 177

names used in assembler code 170

names, pattern . 305

naming convention, implementation headers . . . 180

naming types . 142

Native Language Support . 106

ne . 264

ne and attributes . 331

neg . 262

neg and attributes . 331

neg, canonicalization of . 321

negm2 instruction pattern . 308

nested functions . 139

nested functions, trampolines for 394

newline vs string constants . 15

next_cc0_user . 319

NEXT_INSN . 273

NEXT_OBJC_RUNTIME . 399

nil . 246

NLS . 106

no constraints . 304

no-op move instructions . 243

NO_BUILTIN_PTRDIFF_TYPE 342

NO_BUILTIN_SIZE_TYPE . 342

no_check_memory_usage function attribute . . . 154

NO_DBX_FUNCTION_END . 436

NO_DOLLAR_IN_LABEL . 447

NO_DOT_IN_LABEL . 447

NO_FUNCTION_CSE . 409

NO_IMPLICIT_EXTERN_C . 445

no_instrument_function function attribute . . 153

NO_MD_PROTOTYPES . 452

no_new_pseudos . 306

NO_RECURSIVE_FUNCTION_CSE 409

NO_REGS . 365

NO_SYS_SIGLIST . 452

nocommon attribute . 160

non-constant initializers . 148

non-static inline function . 165

NON_SAVING_SETJMP . 360

nongcc_SI_type . 399

nongcc_word_type . 399

nonlocal_goto instruction pattern 315

nonlocal_goto_receiver instruction pattern

. 316

nono�settable memory reference 297

nop instruction pattern . 313

noreturn function attribute 151

not . 263

not and attributes . 331

not equal . 264

not using constraints . 304

not, canonicalization of . 321

note . 275

NOTE_INSN_BLOCK_BEG . 275

NOTE_INSN_BLOCK_END . 275

NOTE_INSN_DELETED . 275

NOTE_INSN_EH_REGION_BEG 275

NOTE_INSN_EH_REGION_END 275

NOTE_INSN_FUNCTION_END . 276

NOTE_INSN_LOOP_BEG . 275

NOTE_INSN_LOOP_CONT . 275

NOTE_INSN_LOOP_END . 275

NOTE_INSN_LOOP_VTOP . 275

NOTE_INSN_SETJMP . 276

NOTE_LINE_NUMBER . 275

NOTE_SOURCE_FILE . 275

NOTICE_UPDATE_CC . 403

NS32K options . 90

NUM_MACHINE_MODES . 254

O
`o' in constraint . 293

OBJC_GEN_METHOD_LABEL . 422

OBJC_INCLUDE_PATH. 99

OBJC_INT_SELECTORS . 358

OBJC_PROLOGUE . 414

OBJC_SELECTORS_WITHOUT_LABELS 358

OBJECT_FORMAT_COFF . 426

OBJECT_FORMAT_ROSE . 426

OBJECT_SUFFIX . 453

Objective C . 1

Objective C threads . 105

OBSTACK_CHUNK_ALLOC . 451

OBSTACK_CHUNK_FREE . 452

OBSTACK_CHUNK_SIZE . 451

obstack_free . 119

OCS (88k) . 62

o�settable address . 293

old-style function de�nitions 157

OLDAR . 456

OLDCC . 456

OMIT_EH_TABLE . 430

omitted middle-operands . 144

Index 257

one_cmplm2 instruction pattern 308

ONLY_INT_FIELDS . 451

open coding . 164

operand access . 247

operand constraints. 293

operand substitution . 291

operands . 285

OPTIMIZATION_OPTIONS . 349

optimize options . 35

optional hardware or system features 347

options to control warnings . 22

options, C++ . 16

options, code generation . 92

options, debugging . 29

options, dialect . 12

options, directory search . 46

options, GCC command . 3

options, grouping . 3

options, linking . 44

options, optimization . 35

options, order. 3

options, preprocessor . 41

order of evaluation, side e�ects 214

order of options . 3

order of register allocation . 360

ORDER_REGS_FOR_LOCAL_ALLOC 361

Ordering of Patterns . 317

other directory, compilation in 126

OUTGOING_REG_PARM_STACK_SPACE 378

OUTGOING_REGNO . 360

output �le option . 11

output of assembler code . 413

output statements . 292

output templates . 291

output_addr_const . 415

output_asm_insn . 292

OUTPUT_QUOTED_STRING . 414

overow while constant folding. 440

OVERLAPPING_REGNO_P . 364

overloaded virtual fn, warning 21

OVERRIDE_OPTIONS . 348

P
`p' in constraint . 295

packed attribute. 160

parallel . 269

parameter forward declaration 147

parameters, aliased . 97

parameters, miscellaneous . 441

PARM_BOUNDARY . 351

PARSE_LDD_OUTPUT . 426

parser generator, Bison . 103

parsing pass . 239

passes and �les of the compiler 239

passing arguments . 237

PATH_SEPARATOR . 453

PATTERN . 276

pattern conditions . 285

pattern names . 305

Pattern Ordering . 317

patterns . 285

pc . 260

pc and attributes . 335

pc, RTL sharing . 282

pc_rtx . 261

PCC_BITFIELD_TYPE_MATTERS 353

PCC_STATIC_STRUCT_RETURN 385

PDImode . 252

peephole optimization . 243

peephole optimization, RTL representation 270

peephole optimizer de�nitions 322

percent sign . 291

perform_... 399

PIC . 94, 412

PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 412

PIC_OFFSET_TABLE_REGNUM 412

plus . 261

plus and attributes . 331

plus, canonicalization of . 321

pmf . 183

Pmode . 445

pointer arguments . 152

pointer to member function 183

POINTER_SIZE . 350

POINTERS_EXTEND_UNSIGNED 350

portability . 235

portions of temporary objects, pointers to 209

position independent code . 412

POSIX . 452

post_dec . 271

post_inc . 271

post_modify . 271, 272

pragma . 445, 446

pragma, reason for not using 156

pragmas in C++, e�ect on inlining 180

pragmas, interface and implementation 179

pragmas, warning of unknown 25

pre_dec . 271

pre_inc . 271

prede�ned macros . 347

PREDICATE_CODES . 441

PREFERRED_DEBUGGING_TYPE 433

258 Using the GNU Compiler Collection

PREFERRED_OUTPUT_RELOAD_CLASS 367

PREFERRED_RELOAD_CLASS . 367

PREFERRED_STACK_BOUNDARY 351

preprocessing numbers . 206

preprocessing tokens . 206

preprocessor options . 41

PRETEND_OUTGOING_VARARGS_NAMED 394

prev_active_insn . 322

prev_cc0_setter . 319

PREV_INSN . 273

PRINT_OPERAND . 427

PRINT_OPERAND_ADDRESS . 428

PRINT_OPERAND_PUNCT_VALID_P 428

probe instruction pattern . 315

processor selection (29k) . 56

product . 262

prof . 30

PROFILE_BEFORE_PROLOGUE 390

profile_block_flag . 390, 391

pro�ling, code generation . 389

program counter . 261

prologue . 386

prologue instruction pattern 317

PROMOTE_FOR_CALL_ONLY . 351

PROMOTE_FUNCTION_ARGS . 351

PROMOTE_FUNCTION_RETURN 351

PROMOTE_MODE . 350

PROMOTE_PROTOTYPES . 377

promotion of formal parameters. 157

pseudo registers . 257

PSImode . 252

PTRDIFF_TYPE . 357

push address instruction . 295

push_reload . 402

PUSH_ROUNDING . 377

PUSH_ROUNDING, interaction with

PREFERRED_STACK_BOUNDARY 351

PUT_CODE . 245

PUT_MODE . 254

PUT_REG_NOTE_KIND . 277

PUT_SDB_... 438

Q
`Q', in constraint . 295

QImode . 252

QImode, in insn . 276

qsort, and global register variables 171

question mark . 298

quotient . 262

R
`r' in constraint . 294

r0-relative references (88k) . 63

ranges in case statements . 150

read-only strings . 203

READONLY_DATA_SECTION . 410

REAL_ARITHMETIC . 440

REAL_INFINITY . 440

REAL_NM_FILE_NAME . 426

REAL_VALUE_ATOF . 439

REAL_VALUE_FIX . 439

REAL_VALUE_FROM_INT . 441

REAL_VALUE_ISINF . 440

REAL_VALUE_ISNAN . 440

REAL_VALUE_LDEXP . 439

REAL_VALUE_NEGATE . 440

REAL_VALUE_RNDZINT . 439

REAL_VALUE_TO_DECIMAL . 417

REAL_VALUE_TO_INT . 440

REAL_VALUE_TO_TARGET_DOUBLE 417

REAL_VALUE_TO_TARGET_LONG_DOUBLE 417

REAL_VALUE_TO_TARGET_SINGLE 417

REAL_VALUE_TRUNCATE . 440

REAL_VALUE_TYPE . 439

REAL_VALUE_UNSIGNED_FIX 439

REAL_VALUE_UNSIGNED_RNDZINT 439

REAL_VALUES_EQUAL . 439

REAL_VALUES_LESS . 439

recog_operand . 427

recognizing insns . 286

reg . 257

reg and `/i' . 249

reg and `/s' . 249

reg and `/u' . 249

reg and `/v' . 249

reg, RTL sharing . 282

REG_ALLOC_ORDER . 360

REG_BR_PRED . 280

REG_BR_PROB . 280

REG_CC_SETTER . 280

REG_CC_USER . 280

REG_CLASS_CONTENTS . 366

REG_CLASS_FROM_LETTER . 366

REG_CLASS_NAMES . 366

REG_DEAD . 277

REG_DEP_ANTI . 280

REG_DEP_OUTPUT . 280

REG_EQUAL . 278

REG_EQUIV . 278

REG_EXEC_COUNT . 280

REG_FRAME_RELATED_EXPR . 280

Index 259

REG_FUNCTION_VALUE_P . 249

REG_INC . 277

REG_LABEL . 278

REG_LIBCALL . 280

REG_LOOP_TEST_P . 249

REG_MODE_OK_FOR_BASE_P . 401

reg_names . 428

REG_NO_CONFLICT . 278

REG_NONNEG . 277

REG_NOTE_KIND . 277

REG_NOTES . 277

REG_OK_FOR_BASE_P . 401

REG_OK_FOR_INDEX_P . 401

REG_OK_STRICT . 400

REG_PARM_STACK_SPACE . 378

REG_PARM_STACK_SPACE, and FUNCTION_ARG . . . 380

REG_RETVAL . 279

REG_UNUSED . 279

REG_USERVAR_P . 249

REG_WAS_0 . 279

register allocation . 242

register allocation order . 360

register allocation, stupid . 241

register class de�nitions . 364

register class preference constraints 298

register class preference pass 242

register movement . 242

register pairs . 361

register positions in frame (88k) 62, 63

Register Transfer Language (RTL) 245

register usage. 359

register use analysis . 240

register variable after longjmp 172

register-to-stack conversion 243

REGISTER_MOVE_COST . 407

REGISTER_NAMES . 426

register_operand . 287

REGISTER_PREFIX . 428

registers . 165

registers arguments . 379

registers for local variables . 172

registers in constraints . 294

registers, global allocation . 171

registers, global variables in 171

REGNO_MODE_OK_FOR_BASE_P 366

REGNO_OK_FOR_BASE_P . 366

REGNO_OK_FOR_INDEX_P . 366

REGNO_REG_CLASS . 366

regs_ever_live . 386

relative costs . 405

RELATIVE_PREFIX_NOT_LINKDIR 344

reload pass . 259

reload_completed . 312

reload_in instruction pattern 306

reload_in_progress . 305

reload_out instruction pattern 306

reloading . 242

remainder . 262

reordering, warning . 21

reporting bugs . 217

representation of RTL . 245

rest argument (in macro) . 147

rest_of_compilation . 239

rest_of_decl_compilation 239

restore_stack_block instruction pattern 314

restore_stack_function instruction pattern

. 314

restore_stack_nonlocal instruction pattern

. 314

return . 268

return instruction pattern . 312

return value of main . 232

return value, named, in C++ 177

return values in registers . 383

return, in C++ function header 177

RETURN_ADDR_IN_PREVIOUS_FRAME 372

RETURN_ADDR_RTX . 372

RETURN_ADDRESS_POINTER_REGNUM 375

RETURN_IN_MEMORY . 384

RETURN_POPS_ARGS . 379

returning aggregate values . 384

returning structures and unions 237

REVERSIBLE_CC_MODE . 405

right rotate . 263

right shift . 263

rotate . 263

rotatert . 263

rotlm3 instruction pattern 308

rotrm3 instruction pattern 308

ROUND_TYPE_ALIGN . 354

ROUND_TYPE_SIZE . 354

RS/6000 and PowerPC Options 65

RT options . 72

RT PC . 202

RTL addition . 261

RTL classes . 246

RTL comparison . 261

RTL comparison operations 263

RTL constant expression types 255

RTL constants . 255

RTL declarations . 267

RTL di�erence . 261

260 Using the GNU Compiler Collection

RTL expression . 245

RTL expressions for arithmetic 261

RTL format . 246

RTL format characters . 246

RTL function-call insns . 281

RTL generation . 239

RTL insn template . 286

RTL integers . 245

RTL memory expressions . 257

RTL object types . 245

RTL postdecrement . 271

RTL postincrement . 271

RTL predecrement . 271

RTL preincrement . 271

RTL register expressions . 257

RTL representation . 245

RTL side e�ect expressions 267

RTL strings . 245

RTL structure sharing assumptions 282

RTL subtraction . 261

RTL sum . 261

RTL vectors . 245

RTX (See RTL) . 245

RTX codes, classes of . 246

RTX_COSTS . 405

RTX_FRAME_RELATED_P . 250

RTX_INTEGRATED_P . 250

RTX_UNCHANGING_P . 249

run-time conventions . 237

run-time options . 92

run-time target speci�cation 347

S
`s' in constraint . 294

save_stack_block instruction pattern 314

save_stack_function instruction pattern 314

save_stack_nonlocal instruction pattern 314

saveable_obstack . 401

scalars, returned as values . 383

scanf, and constant strings 203

SCCS_DIRECTIVE . 445

SCHED_GROUP_P . 251

scheduler, experimental . 105

scheduling, delayed branch . 243

scheduling, instruction . 242

SCmode . 253

scond instruction pattern . 311

scope of a variable length array 146

scope of declaration . 207

scope of external declarations 204

scratch . 259

scratch operands . 259

scratch, RTL sharing . 282

SDB_ALLOW_FORWARD_REFERENCES 438

SDB_ALLOW_UNKNOWN_REFERENCES 438

SDB_DEBUGGING_INFO . 437

SDB_DELIM . 438

SDB_GENERATE_FAKE . 438

search path . 46

second include path . 42

SECONDARY_INPUT_RELOAD_CLASS 367

SECONDARY_MEMORY_NEEDED 368

SECONDARY_MEMORY_NEEDED_MODE 369

SECONDARY_MEMORY_NEEDED_RTX 369

SECONDARY_OUTPUT_RELOAD_CLASS 367

SECONDARY_RELOAD_CLASS . 367

section function attribute . 154

section variable attribute . 160

SELECT_CC_MODE . 404

SELECT_RTX_SECTION . 411

SELECT_SECTION . 411

separate directory, compilation in 126

sequence . 270

sequential consistency on 88k 63

set . 267

set_attr . 333

set_attr_alternative . 333

SET_DEFAULT_DECL_ATTRIBUTES 447

SET_DEFAULT_TYPE_ATTRIBUTES 446

SET_DEST . 268

SET_SRC . 268

setjmp . 172

setjmp incompatibilities . 204

SETUP_FRAME_ADDRESSES . 372

SETUP_INCOMING_VARARGS . 393

SFmode . 253

shared strings . 203

shared VMS run time system 232

SHARED_BSS_SECTION_ASM_OP 410

SHARED_SECTION_ASM_OP . 410

sharing of RTL components 282

shift . 263

SHIFT_COUNT_TRUNCATED . 443

SHORT_IMMEDIATES_SIGN_EXTEND 442

SHORT_TYPE_SIZE . 356

sibcall_epilogue instruction pattern 317

side e�ect in ?: . 144

side e�ects, macro argument 137

side e�ects, order of evaluation 214

sign_extend . 266

sign_extract . 265

sign_extract, canonicalization of 321

Index 261

signature . 183

signature in C++, advantages 184

signature member function default implementation

. 184

signatures, C++ . 183

signed and unsigned values, comparison warning

. 28

signed division . 262

signed maximum . 262

signed minimum . 262

SIGNED_CHAR_SPEC . 342

SImode . 252

simple constraints . 293

simpli�cations, arithmetic . 239

sin . 13

SIZE_TYPE . 357

sizeof . 142

SLOW_BYTE_ACCESS . 407

SLOW_UNALIGNED_ACCESS . 408

SLOW_ZERO_EXTEND . 408

SMALL_REGISTER_CLASSES . 369

smaller data references . 62

smaller data references (88k) 63

smaller data references (MIPS) 76

smaller data references (PowerPC) 72

smax . 262

smaxm3 instruction pattern 307

smin . 262

sminm3 instruction pattern 307

smulm3_highpart instruction pattern 307

SPARC options . 51

speci�ed registers . 171

specifying compiler version and target machine

. 47

specifying hardware con�g . 48

specifying machine version . 47

specifying registers for local variables 172

speed of instructions . 405

splitting instructions. 327

sqrt . 13, 263

sqrtm2 instruction pattern 308

square root . 263

sscanf, and constant strings 203

stack arguments . 377

stack checks (29k) . 56

stack frame layout . 371

STACK_BOUNDARY . 351

STACK_CHECK_BUILTIN . 373

STACK_CHECK_FIXED_FRAME_SIZE 374

STACK_CHECK_MAX_FRAME_SIZE 374

STACK_CHECK_MAX_VAR_SIZE 374

STACK_CHECK_PROBE_INTERVAL 373

STACK_CHECK_PROBE_LOAD . 373

STACK_CHECK_PROTECT . 374

STACK_DYNAMIC_OFFSET . 372

STACK_DYNAMIC_OFFSET and virtual registers . . 258

STACK_GROWS_DOWNWARD . 371

STACK_PARMS_IN_REG_PARM_AREA 378

STACK_POINTER_OFFSET . 371

STACK_POINTER_OFFSET and virtual registers . . 258

STACK_POINTER_REGNUM . 374

STACK_POINTER_REGNUM and virtual registers . . 258

stack_pointer_rtx . 375

STACK_REGS . 364

STACK_SAVEAREA_MODE . 354

STACK_SIZE_MODE . 355

stage1 . 108

standard pattern names . 305

STANDARD_EXEC_PREFIX . 344

STANDARD_INCLUDE_COMPONENT 345

STANDARD_INCLUDE_DIR . 345

STANDARD_STARTFILE_PREFIX 345

start �les . 128

STARTFILE_SPEC . 343

STARTING_FRAME_OFFSET . 371

STARTING_FRAME_OFFSET and virtual registers

. 258

statements inside expressions 137

static data in C++, declaring and de�ning 208

STATIC_CHAIN . 375

STATIC_CHAIN_INCOMING . 375

STATIC_CHAIN_INCOMING_REGNUM 375

STATIC_CHAIN_REGNUM . 375

`stdarg.h' and register arguments 380

`stdarg.h' and RT PC . 72

storage layout . 349

STORE_FLAG_VALUE . 443

`store_multiple' instruction pattern 307

storem bug (29k) . 56

strcmp . 13

strcpy . 13, 352

strength-reduction . 241

STRICT_ALIGNMENT . 353

STRICT_ARGUMENT_NAMING . 394

strict_low_part . 267

strict_memory_address_p 402

string constants . 203

string constants vs newline . 15

STRIP_NAME_ENCODING . 411

strlen . 13

strlenm instruction pattern 309

STRUCT_VALUE . 385

262 Using the GNU Compiler Collection

STRUCT_VALUE_INCOMING . 385

STRUCT_VALUE_INCOMING_REGNUM 385

STRUCT_VALUE_REGNUM . 385

structure passing (88k) . 65

structure value address . 384

STRUCTURE_SIZE_BOUNDARY 353

structures . 205

structures, constructor expression 149

structures, returning . 237

stupid register allocation . 241

subm3 instruction pattern . 307

submodel options . 48

subreg . 258

subreg and `/s' . 249

subreg and `/u' . 249

subreg, in strict_low_part 267

subreg, special reload handling 259

SUBREG_PROMOTED_UNSIGNED_P 249

SUBREG_PROMOTED_VAR_P . 249

SUBREG_REG . 259

SUBREG_WORD . 259

subscripting . 148

subscripting and function values 148

subtype polymorphism, C++ 183

SUCCESS_EXIT_CODE . 451

suÆxes for C++ source . 11

Sun installation . 131

SUPPORTS_ONE_ONLY . 420

SUPPORTS_WEAK . 420

suppressing warnings . 22

surprises in C++ . 208

SVr4 . 63

SWITCH_CURTAILS_COMPILATION 341

SWITCH_TAKES_ARG . 341

SWITCHES_NEED_SPACES . 341

symbol_ref . 256

symbol_ref and `/u' . 250

symbol_ref and `/v' . 250

symbol_ref, RTL sharing . 282

SYMBOL_REF_FLAG . 250

SYMBOL_REF_FLAG, in ENCODE_SECTION_INFO . . . 411

SYMBOL_REF_USED . 250

symbolic label . 282

syntax checking . 22

synthesized methods, warning 22

sys_siglist . 452

SYSTEM_INCLUDE_DIR . 345

T
`t-target' . 455

tablejump instruction pattern 313

tagging insns . 333

tail recursion optimization . 240

target description macros . 341

target machine, specifying . 47

target make�le fragment . 455

target options . 47

target speci�cations . 347

target-parameter-dependent code 240

TARGET_BELL . 358

TARGET_BS . 358

TARGET_CR . 358

TARGET_EDOM . 398

TARGET_FF . 358

TARGET_FLOAT_FORMAT . 355

TARGET_MEM_FUNCTIONS . 398

TARGET_NEWLINE . 358

TARGET_OPTIONS . 348

TARGET_SWITCHES . 347

TARGET_TAB . 358

TARGET_VERSION . 348

TARGET_VT . 358

TCmode . 253

tcov . 30

template instantiation . 180

temporaries, lifetime of . 209

termination routines . 423

text_section . 410

TEXT_SECTION_ASM_OP . 410

TFmode . 253

threads, Objective C . 105

Thumb Options . 60

thunks . 139

TImode . 253

TImode, in insn . 276

tiny data section on the H8/300H 156

`tm.h' macros . 341

TMPDIR . 98

TMS320C3x/C4x Options . 87

top level of compiler . 239

traditional C language . 13

TRADITIONAL_RETURN_FLOAT 383

TRAMPOLINE_ALIGNMENT . 395

TRAMPOLINE_SECTION . 395

TRAMPOLINE_SIZE . 395

TRAMPOLINE_TEMPLATE . 395

trampolines for nested functions 394

TRANSFER_FROM_TRAMPOLINE 396

TRULY_NOOP_TRUNCATION . 443

truncate . 266

truncmn2 instruction pattern. 310

tstm instruction pattern . 308

Index 263

type abstraction, C++ . 183

type alignment . 158

type attributes . 161

typedef names as function parameters 205

typeof . 142

U
udiv . 262

UDIVDI3_LIBCALL . 397

udivm3 instruction pattern 307

udivmodm4 instruction pattern 308

UDIVSI3_LIBCALL . 397

Ultrix calling convention . 202

umax . 262

umaxm3 instruction pattern 307

umin . 262

uminm3 instruction pattern 307

umod . 262

UMODDI3_LIBCALL . 398

umodm3 instruction pattern 307

UMODSI3_LIBCALL . 397

umulhisi3 instruction pattern 307

umulm3_highpart instruction pattern 307

umulqihi3 instruction pattern 307

umulsidi3 instruction pattern 307

unchanging . 252

unchanging, in call_insn . 250

unchanging, in insn . 250

unchanging, in reg and mem 249

unchanging, in subreg . 249

unchanging, in symbol_ref 250

unde�ned behavior . 217

unde�ned function value . 217

underscores in variables in macros 142

underscores, avoiding (88k) . 62

union, casting to a . 151

unions . 205

unions, returning . 237

UNIQUE_SECTION . 411

UNIQUE_SECTION_P . 411

UNITS_PER_WORD . 350

unknown pragmas, warning . 25

UNKNOWN_FLOAT_FORMAT . 355

unreachable code . 240

unresolved references and -nodefaultlibs 45

unresolved references and -nostdlib 45

unshare_all_rtl . 282

unsigned division . 262

unsigned greater than . 264

unsigned less than . 264

unsigned minimum and maximum 262

unsigned_fix . 266

unsigned_float . 266

unspec . 271

unspec_volatile . 271

untyped_call instruction pattern 312

untyped_return instruction pattern 313

use . 269

USE_C_ALLOCA . 452

USE_LOAD_POST_DECREMENT 408

USE_LOAD_POST_INCREMENT 408

USE_LOAD_PRE_DECREMENT . 409

USE_LOAD_PRE_INCREMENT . 409

USE_PROTOTYPES . 452

USE_STORE_POST_DECREMENT 409

USE_STORE_POST_INCREMENT 409

USE_STORE_PRE_DECREMENT 409

USE_STORE_PRE_INCREMENT 409

used . 251

used, in symbol_ref . 250

USER_LABEL_PREFIX . 428

USG . 451

V
`V' in constraint . 294

V850 Options . 89

VALID_MACHINE_DECL_ATTRIBUTE 446

VALID_MACHINE_TYPE_ATTRIBUTE 446

value after longjmp . 172

values, returned by functions 383

varargs implementation . 392

`varargs.h' and RT PC . 72

variable addressability on the M32R/D 161

variable alignment . 158

variable attributes . 158

variable number of arguments. 147

variable-length array scope 146

variable-length arrays . 146

variables in speci�ed registers 171

variables, local, in macros. 142

Vax calling convention . 202

VAX options . 51

VAX_FLOAT_FORMAT . 355

`VAXCRTL' . 232

VIRTUAL_INCOMING_ARGS_REGNUM 258

VIRTUAL_OUTGOING_ARGS_REGNUM 258

VIRTUAL_STACK_DYNAMIC_REGNUM 258

VIRTUAL_STACK_VARS_REGNUM 258

VMS . 451

VMS and case sensitivity . 232

VMS and include �les . 229

VMS installation . 131

264 Using the GNU Compiler Collection

void pointers, arithmetic . 148

void, size of pointer to . 148

VOIDmode . 253

volatil . 251

volatil, in insn . 250

volatil, in mem . 248

volatil, in reg . 249

volatil, in symbol_ref . 250

volatile applied to function 151

volatile memory references . 251

voting between constraint alternatives 298

W
warning for comparison of signed and unsigned

values . 28

warning for overloaded virtual fn 21

warning for reordering of member initializers . . . 21

warning for synthesized methods 22

warning for unknown pragmas 25

warning messages . 22

warnings vs errors . 215

WCHAR_TYPE . 358

WCHAR_TYPE_SIZE . 358

weak attribute . 154

which_alternative . 292

whitespace . 205

WIDEST_HARDWARE_FP_SIZE 357

word_mode . 255

WORD_REGISTER_OPERATIONS 442

WORD_SWITCH_TAKES_ARG . 341

WORDS_BIG_ENDIAN . 349

WORDS_BIG_ENDIAN, e�ect on subreg 259

X
`X' in constraint . 295

`x-host' . 456

XCmode . 253

XCOFF_DEBUGGING_INFO . 433

XEXP . 247

XFmode . 253

XINT . 247

`xm-machine.h' . 451

xor . 263

xor, canonicalization of . 321

xorm3 instruction pattern . 307

XSTR . 247

XVEC . 248

XVECEXP . 248

XVECLEN . 248

XWINT . 247

Z
zero division on 88k . 64

zero-length arrays . 146

zero_extend . 266

zero_extendmn2 instruction pattern 310

zero_extract . 265

zero_extract, canonicalization of 321

i

Short Contents

1 Compile C, C++, Objective C, or Fortran 1

2 GCC Command Options . 3

3 Installing GNU CC . 103

4 Extensions to the C Language Family. 137

5 Extensions to the C++ Language 185

6 gcov: a Test Coverage Program 195

7 Known Causes of Trouble with GCC 201

8 Reporting Bugs . 225

9 How To Get Help with GCC . 233

10 Contributing to GCC Development 235

11 Using GCC on VMS . 237

Index . 243

ii Using the GNU Compiler Collection

iii

Table of Contents

1 Compile C, C++, Objective C, or Fortran 1

2 GCC Command Options 3
2.1 Option Summary . 3
2.2 Options Controlling the Kind of Output 10
2.3 Compiling C++ Programs . 11
2.4 Options Controlling C Dialect . 12
2.5 Options Controlling C++ Dialect . 16
2.6 Options to Request or Suppress Warnings 22
2.7 Options for Debugging Your Program or GCC 29
2.8 Options That Control Optimization . 35
2.9 Options Controlling the Preprocessor . 41
2.10 Passing Options to the Assembler . 43
2.11 Options for Linking . 44
2.12 Options for Directory Search . 46
2.13 Specifying Target Machine and Compiler Version 47
2.14 Hardware Models and Con�gurations 48

2.14.1 M680x0 Options . 48
2.14.2 VAX Options . 50
2.14.3 SPARC Options . 50
2.14.4 Convex Options . 54
2.14.5 AMD29K Options . 55
2.14.6 ARM Options . 56
2.14.7 Thumb Options . 59
2.14.8 MN10200 Options . 60
2.14.9 MN10300 Options . 60
2.14.10 M32R/D Options . 61
2.14.11 M88K Options . 61
2.14.12 IBM RS/6000 and PowerPC Options 64
2.14.13 IBM RT Options . 71
2.14.14 MIPS Options . 72
2.14.15 Intel 386 Options . 76
2.14.16 HPPA Options . 79
2.14.17 Intel 960 Options . 80
2.14.18 DEC Alpha Options . 82
2.14.19 Clipper Options . 85
2.14.20 H8/300 Options . 85
2.14.21 SH Options . 86
2.14.22 Options for System V . 86
2.14.23 TMS320C3x/C4x Options . 87
2.14.24 V850 Options . 89
2.14.25 ARC Options . 89
2.14.26 NS32K Options . 90

iv Using the GNU Compiler Collection

2.15 Options for Code Generation Conventions 92
2.16 Environment Variables A�ecting GCC 97
2.17 Running Protoize . 99

3 Installing GNU CC . 103
3.1 Files Created by configure . 111
3.2 Con�gurations Supported by GNU CC 111
3.3 Compilation in a Separate Directory . 126
3.4 Building and Installing a Cross-Compiler 126

3.4.1 Steps of Cross-Compilation . 127
3.4.2 Con�guring a Cross-Compiler 127
3.4.3 Tools and Libraries for a Cross-Compiler 127
3.4.4 `libgcc.a' and Cross-Compilers 128
3.4.5 Cross-Compilers and Header Files 129
3.4.6 Actually Building the Cross-Compiler 130

3.5 Installing GNU CC on the Sun . 131
3.6 Installing GNU CC on VMS . 131
3.7 collect2 . 134
3.8 Standard Header File Directories . 135

4 Extensions to the C Language Family 137
4.1 Statements and Declarations in Expressions 137
4.2 Locally Declared Labels . 138
4.3 Labels as Values . 138
4.4 Nested Functions . 139
4.5 Constructing Function Calls . 141
4.6 Naming an Expression's Type . 142
4.7 Referring to a Type with typeof . 142
4.8 Generalized Lvalues . 143
4.9 Conditionals with Omitted Operands 144
4.10 Double-Word Integers . 145
4.11 Complex Numbers . 145
4.12 Hex Floats . 146
4.13 Arrays of Length Zero . 146
4.14 Arrays of Variable Length . 146
4.15 Macros with Variable Numbers of Arguments. 147
4.16 Non-Lvalue Arrays May Have Subscripts 148
4.17 Arithmetic on void- and Function-Pointers. 148
4.18 Non-Constant Initializers . 148
4.19 Constructor Expressions . 149
4.20 Labeled Elements in Initializers . 149
4.21 Case Ranges . 150
4.22 Cast to a Union Type . 151
4.23 Declaring Attributes of Functions . 151
4.24 Prototypes and Old-Style Function De�nitions 157
4.25 C++ Style Comments . 157
4.26 Dollar Signs in Identi�er Names . 158
4.27 The Character hESCi in Constants . 158

v

4.28 Inquiring on Alignment of Types or Variables 158
4.29 Specifying Attributes of Variables . 158
4.30 Specifying Attributes of Types . 161
4.31 An Inline Function is As Fast As a Macro 164
4.32 Assembler Instructions with C Expression Operands 165

4.32.1 i386 oating point asm operands 169
4.33 Constraints for asm Operands . 170

4.33.1 Simple Constraints . 170
4.33.2 Multiple Alternative Constraints 172
4.33.3 Constraint Modi�er Characters 173
4.33.4 Constraints for Particular Machines 173

4.34 Controlling Names Used in Assembler Code 178
4.35 Variables in Speci�ed Registers . 179

4.35.1 De�ning Global Register Variables 179
4.35.2 Specifying Registers for Local Variables 180

4.36 Alternate Keywords . 181
4.37 Incomplete enum Types . 182
4.38 Function Names as Strings . 182
4.39 Getting the Return or Frame Address of a Function 183
4.40 Other built-in functions provided by GNU CC 183
4.41 Deprecated Features . 184

5 Extensions to the C++ Language 185
5.1 Named Return Values in C++ . 185
5.2 Minimum and Maximum Operators in C++ 186
5.3 goto and Destructors in GNU C++ . 187
5.4 Declarations and De�nitions in One Header 187
5.5 Where's the Template? . 188
5.6 Extracting the function pointer from a bound pointer to

member function . 191
5.7 Type Abstraction using Signatures . 191

6 gcov: a Test Coverage Program 195
6.1 Introduction to gcov . 195
6.2 Invoking gcov . 196
6.3 Using gcov with GCC Optimization . 198
6.4 Brief description of gcov data �les . 198

vi Using the GNU Compiler Collection

7 Known Causes of Trouble with GCC 201
7.1 Actual Bugs We Haven't Fixed Yet . 201
7.2 Installation Problems . 201
7.3 Cross-Compiler Problems . 206
7.4 Interoperation . 206
7.5 Problems Compiling Certain Programs 210
7.6 Incompatibilities of GCC . 211
7.7 Fixed Header Files . 214
7.8 Standard Libraries . 215
7.9 Disappointments and Misunderstandings 215
7.10 Common Misunderstandings with GNU C++ 216

7.10.1 Declare and De�ne Static Members 216
7.10.2 Temporaries May Vanish Before You Expect . . . 217
7.10.3 Implicit Copy-Assignment for Virtual Bases . . . 218

7.11 Caveats of using protoize . 219
7.12 Certain Changes We Don't Want to Make 220
7.13 Warning Messages and Error Messages 223

8 Reporting Bugs . 225
8.1 Have You Found a Bug? . 225
8.2 Where to Report Bugs . 226
8.3 How to Report Bugs . 226
8.4 Sending Patches for GCC . 230

9 How To Get Help with GCC 233

10 Contributing to GCC Development 235

11 Using GCC on VMS . 237
11.1 Include Files and VMS . 237
11.2 Global Declarations and VMS . 238
11.3 Other VMS Issues . 240

Index . 243

