
GNU gprof

The gnu Pro�ler
DOC 0466-00

Jay Fenlason and Richard Stallman

This manual describes the gnu pro�ler, gprof, and how you can use it to
determine which parts of a program are taking most of the execution time.
We assume that you know how to write, compile, and execute programs.
gnu gprof was written by Jay Fenlason.

Copyright c
 1988, 92, 97, 98, 99, 2000 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modi�ed versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the same conditions as for modi�ed versions.

Chapter 1: Introduction to Pro�ling 1

1 Introduction to Pro�ling

Pro�ling allows you to learn where your program spent its time and
which functions called which other functions while it was executing. This
information can show you which pieces of your program are slower than
you expected, and might be candidates for rewriting to make your program
execute faster. It can also tell you which functions are being called more
or less often than you expected. This may help you spot bugs that had
otherwise been unnoticed.

Since the pro�ler uses information collected during the actual execution of
your program, it can be used on programs that are too large or too complex
to analyze by reading the source. However, how your program is run will
a�ect the information that shows up in the pro�le data. If you don't use
some feature of your program while it is being pro�led, no pro�le information
will be generated for that feature.

Pro�ling has several steps:

� You must compile and link your program with pro�ling enabled. See
Chapter 2 [Compiling], page 3.

� You must execute your program to generate a pro�le data �le. See
Chapter 3 [Executing], page 5.

� You must run gprof to analyze the pro�le data. See Chapter 4 [Invok-
ing], page 7.

The next three chapters explain these steps in greater detail.

Several forms of output are available from the analysis.

The
at pro�le shows how much time your program spent in each func-
tion, and how many times that function was called. If you simply want to
know which functions burn most of the cycles, it is stated concisely here.
See Section 5.1 [Flat Pro�le], page 15.

The call graph shows, for each function, which functions called it, which
other functions it called, and how many times. There is also an estimate
of how much time was spent in the subroutines of each function. This can
suggest places where you might try to eliminate function calls that use a lot
of time. See Section 5.2 [Call Graph], page 17.

The annotated source listing is a copy of the program's source code,
labeled with the number of times each line of the program was executed.
See Section 5.4 [Annotated Source], page 25.

To better understand how pro�ling works, you may wish to read a de-
scription of its implementation. See Section 9.1 [Implementation], page 33.

2 GNU gprof

Chapter 2: Compiling a Program for Pro�ling 3

2 Compiling a Program for Pro�ling

The �rst step in generating pro�le information for your program is to
compile and link it with pro�ling enabled.

To compile a source �le for pro�ling, specify the `-pg' option when you
run the compiler. (This is in addition to the options you normally use.)

To link the program for pro�ling, if you use a compiler such as cc to do
the linking, simply specify `-pg' in addition to your usual options. The same
option, `-pg', alters either compilation or linking to do what is necessary for
pro�ling. Here are examples:

cc -g -c myprog.c utils.c -pg
cc -o myprog myprog.o utils.o -pg

The `-pg' option also works with a command that both compiles and
links:

cc -o myprog myprog.c utils.c -g -pg

If you run the linker ld directly instead of through a compiler such as cc,
you may have to specify a pro�ling startup �le `gcrt0.o' as the �rst input �le
instead of the usual startup �le `crt0.o'. In addition, you would probably
want to specify the pro�ling C library, `libc_p.a', by writing `-lc_p' instead
of the usual `-lc'. This is not absolutely necessary, but doing this gives you
number-of-calls information for standard library functions such as read and
open. For example:

ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p

If you compile only some of the modules of the program with `-pg', you
can still pro�le the program, but you won't get complete information about
the modules that were compiled without `-pg'. The only information you
get for the functions in those modules is the total time spent in them; there
is no record of how many times they were called, or from where. This will
not a�ect the
at pro�le (except that the calls �eld for the functions will
be blank), but will greatly reduce the usefulness of the call graph.

If you wish to perform line-by-line pro�ling, you will also need to specify
the `-g' option, instructing the compiler to insert debugging symbols into the
program that match program addresses to source code lines. See Section 5.3
[Line-by-line], page 23.

In addition to the `-pg' and `-g' options, you may also wish to specify the
`-a' option when compiling. This will instrument the program to perform
basic-block counting. As the program runs, it will count how many times it
executed each branch of each `if' statement, each iteration of each `do' loop,
etc. This will enable gprof to construct an annotated source code listing
showing how many times each line of code was executed.

4 GNU gprof

Chapter 3: Executing the Program 5

3 Executing the Program

Once the program is compiled for pro�ling, you must run it in order
to generate the information that gprof needs. Simply run the program as
usual, using the normal arguments, �le names, etc. The program should
run normally, producing the same output as usual. It will, however, run
somewhat slower than normal because of the time spent collecting and the
writing the pro�le data.

The way you run the program|the arguments and input that you give
it|may have a dramatic e�ect on what the pro�le information shows. The
pro�le data will describe the parts of the program that were activated for the
particular input you use. For example, if the �rst command you give to your
program is to quit, the pro�le data will show the time used in initialization
and in cleanup, but not much else.

Your program will write the pro�le data into a �le called `gmon.out' just
before exiting. If there is already a �le called `gmon.out', its contents are
overwritten. There is currently no way to tell the program to write the
pro�le data under a di�erent name, but you can rename the �le afterward if
you are concerned that it may be overwritten.

In order to write the `gmon.out' �le properly, your program must exit
normally: by returning from main or by calling exit. Calling the low-level
function _exit does not write the pro�le data, and neither does abnormal
termination due to an unhandled signal.

The `gmon.out' �le is written in the program's current working directory
at the time it exits. This means that if your program calls chdir, the
`gmon.out' �le will be left in the last directory your program chdir'd to. If
you don't have permission to write in this directory, the �le is not written,
and you will get an error message.

Older versions of the gnu pro�ling library may also write a �le called
`bb.out'. This �le, if present, contains an human-readable listing of the
basic-block execution counts. Unfortunately, the appearance of a human-
readable `bb.out' means the basic-block counts didn't get written into
`gmon.out'. The Perl script bbconv.pl, included with the gprof source
distribution, will convert a `bb.out' �le into a format readable by gprof.

6 GNU gprof

Chapter 4: gprof Command Summary 7

4 gprof Command Summary

After you have a pro�le data �le `gmon.out', you can run gprof to in-
terpret the information in it. The gprof program prints a
at pro�le and a
call graph on standard output. Typically you would redirect the output of
gprof into a �le with `>'.

You run gprof like this:

gprof options [executable-�le [pro�le-data-�les...]] [> out�le]

Here square-brackets indicate optional arguments.

If you omit the executable �le name, the �le `a.out' is used. If you give
no pro�le data �le name, the �le `gmon.out' is used. If any �le is not in the
proper format, or if the pro�le data �le does not appear to belong to the
executable �le, an error message is printed.

You can give more than one pro�le data �le by entering all their names
after the executable �le name; then the statistics in all the data �les are
summed together.

The order of these options does not matter.

4.1 Output Options

These options specify which of several output formats gprof should pro-
duce.

Many of these options take an optional symspec to specify functions to
be included or excluded. These options can be speci�ed multiple times, with
di�erent symspecs, to include or exclude sets of symbols. See Section 4.5
[Symspecs], page 13.

Specifying any of these options overrides the default (`-p -q'), which
prints a
at pro�le and call graph analysis for all functions.

-A[symspec]
--annotated-source[=symspec]

The `-A' option causes gprof to print annotated source code.
If symspec is speci�ed, print output only for matching symbols.
See Section 5.4 [Annotated Source], page 25.

-b
--brief If the `-b' option is given, gprof doesn't print the verbose blurbs

that try to explain the meaning of all of the �elds in the tables.
This is useful if you intend to print out the output, or are tired
of seeing the blurbs.

-C[symspec]
--exec-counts[=symspec]

The `-C' option causes gprof to print a tally of functions and
the number of times each was called. If symspec is speci�ed,
print tally only for matching symbols.

8 GNU gprof

If the pro�le data �le contains basic-block count records, spec-
ifying the `-l' option, along with `-C', will cause basic-block
execution counts to be tallied and displayed.

-i
--file-info

The `-i' option causes gprof to display summary information
about the pro�le data �le(s) and then exit. The number of
histogram, call graph, and basic-block count records is displayed.

-I dirs
--directory-path=dirs

The `-I' option speci�es a list of search directories in which to
�nd source �les. Environment variable GPROF PATH can also
be used to convey this information. Used mostly for annotated
source output.

-J[symspec]
--no-annotated-source[=symspec]

The `-J' option causes gprof not to print annotated source code.
If symspec is speci�ed, gprof prints annotated source, but ex-
cludes matching symbols.

-L
--print-path

Normally, source �lenames are printed with the path component
suppressed. The `-L' option causes gprof to print the full path-
name of source �lenames, which is determined from symbolic
debugging information in the image �le and is relative to the
directory in which the compiler was invoked.

-p[symspec]
--flat-profile[=symspec]

The `-p' option causes gprof to print a
at pro�le. If symspec
is speci�ed, print
at pro�le only for matching symbols. See
Section 5.1 [Flat Pro�le], page 15.

-P[symspec]
--no-flat-profile[=symspec]

The `-P' option causes gprof to suppress printing a
at pro�le.
If symspec is speci�ed, gprof prints a
at pro�le, but excludes
matching symbols.

-q[symspec]
--graph[=symspec]

The `-q' option causes gprof to print the call graph analysis. If
symspec is speci�ed, print call graph only for matching symbols
and their children. See Section 5.2 [Call Graph], page 17.

Chapter 4: gprof Command Summary 9

-Q[symspec]
--no-graph[=symspec]

The `-Q' option causes gprof to suppress printing the call graph.
If symspec is speci�ed, gprof prints a call graph, but excludes
matching symbols.

-y
--separate-files

This option a�ects annotated source output only. Normally,
gprof prints annotated source �les to standard-output. If
this option is speci�ed, annotated source for a �le named
`path/�lename' is generated in the �le `�lename-ann'. If the
underlying �lesystem would truncate `�lename-ann' so that it
overwrites the original `�lename', gprof generates annotated
source in the �le `�lename.ann' instead (if the original �le name
has an extension, that extension is replaced with `.ann').

-Z[symspec]
--no-exec-counts[=symspec]

The `-Z' option causes gprof not to print a tally of functions
and the number of times each was called. If symspec is speci�ed,
print tally, but exclude matching symbols.

--function-ordering
The `--function-ordering' option causes gprof to print a sug-
gested function ordering for the program based on pro�ling data.
This option suggests an ordering which may improve paging, tlb
and cache behavior for the program on systems which support
arbitrary ordering of functions in an executable.

The exact details of how to force the linker to place functions in
a particular order is system dependent and out of the scope of
this manual.

--file-ordering map �le
The `--file-ordering' option causes gprof to print a sug-
gested .o link line ordering for the program based on pro�ling
data. This option suggests an ordering which may improve pag-
ing, tlb and cache behavior for the program on systems which
do not support arbitrary ordering of functions in an executable.

Use of the `-a' argument is highly recommended with this op-
tion.

The map �le argument is a pathname to a �le which provides
function name to object �le mappings. The format of the �le is
similar to the output of the program nm.

10 GNU gprof

c-parse.o:00000000 T yyparse

c-parse.o:00000004 C yyerrflag

c-lang.o:00000000 T maybe_objc_method_name

c-lang.o:00000000 T print_lang_statistics

c-lang.o:00000000 T recognize_objc_keyword

c-decl.o:00000000 T print_lang_identifier

c-decl.o:00000000 T print_lang_type

...

To create a map �le with gnu nm, type a command like
nm --extern-only --defined-only -v --print-file-name

program-name.

-T
--traditional

The `-T' option causes gprof to print its output in \traditional"
BSD style.

-w width
--width=width

Sets width of output lines to width. Currently only used when
printing the function index at the bottom of the call graph.

-x
--all-lines

This option a�ects annotated source output only. By default,
only the lines at the beginning of a basic-block are annotated. If
this option is speci�ed, every line in a basic-block is annotated
by repeating the annotation for the �rst line. This behavior is
similar to tcov's `-a'.

--demangle
--no-demangle

These options control whether C++ symbol names should be
demangled when printing output. The default is to demangle
symbols. The --no-demangle option may be used to turn o�
demangling.

4.2 Analysis Options

-a
--no-static

The `-a' option causes gprof to suppress the printing of stat-
ically declared (private) functions. (These are functions whose
names are not listed as global, and which are not visible outside
the �le/function/block where they were de�ned.) Time spent in
these functions, calls to/from them, etc, will all be attributed to

Chapter 4: gprof Command Summary 11

the function that was loaded directly before it in the executable
�le. This option a�ects both the
at pro�le and the call graph.

-c
--static-call-graph

The `-c' option causes the call graph of the program to be aug-
mented by a heuristic which examines the text space of the ob-
ject �le and identi�es function calls in the binary machine code.
Since normal call graph records are only generated when func-
tions are entered, this option identi�es children that could have
been called, but never were. Calls to functions that were not
compiled with pro�ling enabled are also identi�ed, but only if
symbol table entries are present for them. Calls to dynamic li-
brary routines are typically not found by this option. Parents
or children identi�ed via this heuristic are indicated in the call
graph with call counts of `0'.

-D
--ignore-non-functions

The `-D' option causes gprof to ignore symbols which are not
known to be functions. This option will give more accurate
pro�le data on systems where it is supported (Solaris and HPUX
for example).

-k from/to
The `-k' option allows you to delete from the call graph any
arcs from symbols matching symspec from to those matching
symspec to.

-l
--line The `-l' option enables line-by-line pro�ling, which causes his-

togram hits to be charged to individual source code lines, in-
stead of functions. If the program was compiled with basic-block
counting enabled, this option will also identify how many times
each line of code was executed. While line-by-line pro�ling can
help isolate where in a large function a program is spending its
time, it also signi�cantly increases the running time of gprof,
and magni�es statistical inaccuracies. See Section 6.1 [Sampling
Error], page 27.

-m num
--min-count=num

This option a�ects execution count output only. Symbols that
are executed less than num times are suppressed.

-n[symspec]
--time[=symspec]

The `-n' option causes gprof, in its call graph analysis, to only
propagate times for symbols matching symspec.

12 GNU gprof

-N[symspec]
--no-time[=symspec]

The `-n' option causes gprof, in its call graph analysis, not to
propagate times for symbols matching symspec.

-z
--display-unused-functions

If you give the `-z' option, gprof will mention all functions in
the
at pro�le, even those that were never called, and that had
no time spent in them. This is useful in conjunction with the
`-c' option for discovering which routines were never called.

4.3 Miscellaneous Options

-d[num]
--debug[=num]

The `-d num' option speci�es debugging options. If num is not
speci�ed, enable all debugging. See Section 9.3.1 [Debugging],
page 39.

-Oname
--file-format=name

Selects the format of the pro�le data �les. Recognized formats
are `auto' (the default), `bsd', `4.4bsd', `magic', and `prof' (not
yet supported).

-s
--sum The `-s' option causes gprof to summarize the information in

the pro�le data �les it read in, and write out a pro�le data �le
called `gmon.sum', which contains all the information from the
pro�le data �les that gprof read in. The �le `gmon.sum' may be
one of the speci�ed input �les; the e�ect of this is to merge the
data in the other input �les into `gmon.sum'.

Eventually you can run gprof again without `-s' to analyze the
cumulative data in the �le `gmon.sum'.

-v
--version

The `-v'
ag causes gprof to print the current version number,
and then exit.

4.4 Deprecated Options

These options have been replaced with newer versions that use
symspecs.

Chapter 4: gprof Command Summary 13

-e function name
The `-e function' option tells gprof to not print information
about the function function name (and its children. . .) in the
call graph. The function will still be listed as a child of any
functions that call it, but its index number will be shown as
`[not printed]'. More than one `-e' option may be given; only
one function name may be indicated with each `-e' option.

-E function name
The -E function option works like the -e option, but time spent
in the function (and children who were not called from anywhere
else), will not be used to compute the percentages-of-time for the
call graph. More than one `-E' option may be given; only one
function name may be indicated with each `-E' option.

-f function name
The `-f function' option causes gprof to limit the call graph
to the function function name and its children (and their
children. . .). More than one `-f' option may be given; only
one function name may be indicated with each `-f' option.

-F function name
The `-F function' option works like the -f option, but only time
spent in the function and its children (and their children. . .)
will be used to determine total-time and percentages-of-time for
the call graph. More than one `-F' option may be given; only
one function name may be indicated with each `-F' option. The
`-F' option overrides the `-E' option.

Note that only one function can be speci�ed with each -e, -E, -f or
-F option. To specify more than one function, use multiple options. For
example, this command:

gprof -e boring -f foo -f bar myprogram > gprof.output

lists in the call graph all functions that were reached from either foo or bar
and were not reachable from boring.

4.5 Symspecs

Many of the output options allow functions to be included or excluded
using symspecs (symbol speci�cations), which observe the following syntax:

filename_containing_a_dot
| funcname_not_containing_a_dot
| linenumber
| ([any_filename] `:' (any_funcname | linenumber))

Here are some sample symspecs:

`main.c' Selects everything in �le `main.c'|the dot in the string tells
gprof to interpret the string as a �lename, rather than as a

14 GNU gprof

function name. To select a �le whose name does not contain a
dot, a trailing colon should be speci�ed. For example, `odd:' is
interpreted as the �le named `odd'.

`main' Selects all functions named `main'.

Note that there may be multiple instances of the same function
name because some of the de�nitions may be local (i.e., static).
Unless a function name is unique in a program, you must use
the colon notation explained below to specify a function from a
speci�c source �le.

Sometimes, function names contain dots. In such cases, it is
necessary to add a leading colon to the name. For example,
`:.mul' selects function `.mul'.

In some object �le formats, symbols have a leading underscore.
gprof will normally not print these underscores. When you
name a symbol in a symspec, you should type it exactly as gprof
prints it in its output. For example, if the compiler produces a
symbol `_main' from your main function, gprof still prints it as
`main' in its output, so you should use `main' in symspecs.

`main.c:main'
Selects function `main' in �le `main.c'.

`main.c:134'
Selects line 134 in �le `main.c'.

Chapter 5: Interpreting gprof's Output 15

5 Interpreting gprof's Output

gprof can produce several di�erent output styles, the most important of
which are described below. The simplest output styles (�le information, exe-
cution count, and function and �le ordering) are not described here, but are
documented with the respective options that trigger them. See Section 4.1
[Output Options], page 7.

5.1 The Flat Pro�le

The
at pro�le shows the total amount of time your program spent ex-
ecuting each function. Unless the `-z' option is given, functions with no
apparent time spent in them, and no apparent calls to them, are not men-
tioned. Note that if a function was not compiled for pro�ling, and didn't
run long enough to show up on the program counter histogram, it will be
indistinguishable from a function that was never called.

This is part of a
at pro�le for a small program:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

33.34 0.02 0.02 7208 0.00 0.00 open

16.67 0.03 0.01 244 0.04 0.12 offtime

16.67 0.04 0.01 8 1.25 1.25 memccpy

16.67 0.05 0.01 7 1.43 1.43 write

16.67 0.06 0.01 mcount

0.00 0.06 0.00 236 0.00 0.00 tzset

0.00 0.06 0.00 192 0.00 0.00 tolower

0.00 0.06 0.00 47 0.00 0.00 strlen

0.00 0.06 0.00 45 0.00 0.00 strchr

0.00 0.06 0.00 1 0.00 50.00 main

0.00 0.06 0.00 1 0.00 0.00 memcpy

0.00 0.06 0.00 1 0.00 10.11 print

0.00 0.06 0.00 1 0.00 0.00 profil

0.00 0.06 0.00 1 0.00 50.00 report

...

The functions are sorted by �rst by decreasing run-time spent in them, then
by decreasing number of calls, then alphabetically by name. The functions
`mcount' and `profil' are part of the pro�ling apparatus and appear in
every
at pro�le; their time gives a measure of the amount of overhead due
to pro�ling.

Just before the column headers, a statement appears indicating how much
time each sample counted as. This sampling period estimates the margin of

16 GNU gprof

error in each of the time �gures. A time �gure that is not much larger than
this is not reliable. In this example, each sample counted as 0.01 seconds,
suggesting a 100 Hz sampling rate. The program's total execution time was
0.06 seconds, as indicated by the `cumulative seconds' �eld. Since each
sample counted for 0.01 seconds, this means only six samples were taken
during the run. Two of the samples occurred while the program was in
the `open' function, as indicated by the `self seconds' �eld. Each of the
other four samples occurred one each in `offtime', `memccpy', `write', and
`mcount'. Since only six samples were taken, none of these values can be
regarded as particularly reliable. In another run, the `self seconds' �eld
for `mcount' might well be `0.00' or `0.02'. See Section 6.1 [Sampling Error],
page 27, for a complete discussion.

The remaining functions in the listing (those whose `self seconds' �eld
is `0.00') didn't appear in the histogram samples at all. However, the call
graph indicated that they were called, so therefore they are listed, sorted
in decreasing order by the `calls' �eld. Clearly some time was spent exe-
cuting these functions, but the paucity of histogram samples prevents any
determination of how much time each took.

Here is what the �elds in each line mean:

% time This is the percentage of the total execution time your program
spent in this function. These should all add up to 100%.

cumulative seconds
This is the cumulative total number of seconds the computer
spent executing this functions, plus the time spent in all the
functions above this one in this table.

self seconds
This is the number of seconds accounted for by this function
alone. The
at pro�le listing is sorted �rst by this number.

calls This is the total number of times the function was called. If the
function was never called, or the number of times it was called
cannot be determined (probably because the function was not
compiled with pro�ling enabled), the calls �eld is blank.

self ms/call
This represents the average number of milliseconds spent in this
function per call, if this function is pro�led. Otherwise, this �eld
is blank for this function.

total ms/call
This represents the average number of milliseconds spent in this
function and its descendants per call, if this function is pro�led.
Otherwise, this �eld is blank for this function. This is the only
�eld in the
at pro�le that uses call graph analysis.

Chapter 5: Interpreting gprof's Output 17

name This is the name of the function. The
at pro�le is sorted by
this �eld alphabetically after the self seconds and calls �elds are
sorted.

5.2 The Call Graph

The call graph shows how much time was spent in each function and
its children. From this information, you can �nd functions that, while they
themselves may not have used much time, called other functions that did
use unusual amounts of time.

Here is a sample call from a small program. This call came from the same
gprof run as the
at pro�le example in the previous chapter.

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time self children called name

<spontaneous>

[1] 100.0 0.00 0.05 start [1]

0.00 0.05 1/1 main [2]

0.00 0.00 1/2 on_exit [28]

0.00 0.00 1/1 exit [59]

0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]

0.00 0.05 1/1 report [3]

0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]

0.00 0.03 8/8 timelocal [6]

0.00 0.01 1/1 print [9]

0.00 0.01 9/9 fgets [12]

0.00 0.00 12/34 strncmp <cycle 1> [40]

0.00 0.00 8/8 lookup [20]

0.00 0.00 1/1 fopen [21]

0.00 0.00 8/8 chewtime [24]

0.00 0.00 8/16 skipspace [44]

[4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole> [4]

0.01 0.02 244+260 offtime <cycle 2> [7]

0.00 0.00 236+1 tzset <cycle 2> [26]

The lines full of dashes divide this table into entries, one for each function.
Each entry has one or more lines.

In each entry, the primary line is the one that starts with an index number
in square brackets. The end of this line says which function the entry is for.

18 GNU gprof

The preceding lines in the entry describe the callers of this function and the
following lines describe its subroutines (also called children when we speak
of the call graph).

The entries are sorted by time spent in the function and its subroutines.

The internal pro�ling function mcount (see Section 5.1 [Flat Pro�le],
page 15) is never mentioned in the call graph.

5.2.1 The Primary Line

The primary line in a call graph entry is the line that describes the
function which the entry is about and gives the overall statistics for this
function.

For reference, we repeat the primary line from the entry for function
report in our main example, together with the heading line that shows the
names of the �elds:

index % time self children called name

...

[3] 100.0 0.00 0.05 1 report [3]

Here is what the �elds in the primary line mean:

index Entries are numbered with consecutive integers. Each function
therefore has an index number, which appears at the beginning
of its primary line.

Each cross-reference to a function, as a caller or subroutine of
another, gives its index number as well as its name. The index
number guides you if you wish to look for the entry for that
function.

% time This is the percentage of the total time that was spent in this
function, including time spent in subroutines called from this
function.

The time spent in this function is counted again for the callers of
this function. Therefore, adding up these percentages is mean-
ingless.

self This is the total amount of time spent in this function. This
should be identical to the number printed in the seconds �eld
for this function in the
at pro�le.

children This is the total amount of time spent in the subroutine calls
made by this function. This should be equal to the sum of all the
self and children entries of the children listed directly below
this function.

called This is the number of times the function was called.

If the function called itself recursively, there are two numbers,
separated by a `+'. The �rst number counts non-recursive calls,
and the second counts recursive calls.

Chapter 5: Interpreting gprof's Output 19

In the example above, the function report was called once from
main.

name This is the name of the current function. The index number is
repeated after it.

If the function is part of a cycle of recursion, the cycle number is
printed between the function's name and the index number (see
Section 5.2.4 [Cycles], page 20). For example, if function gnurr
is part of cycle number one, and has index number twelve, its
primary line would be end like this:

gnurr <cycle 1> [12]

5.2.2 Lines for a Function's Callers

A function's entry has a line for each function it was called by. These
lines' �elds correspond to the �elds of the primary line, but their meanings
are di�erent because of the di�erence in context.

For reference, we repeat two lines from the entry for the function report,
the primary line and one caller-line preceding it, together with the heading
line that shows the names of the �elds:

index % time self children called name

...

0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]

Here are the meanings of the �elds in the caller-line for report called
from main:

self An estimate of the amount of time spent in report itself when
it was called from main.

children An estimate of the amount of time spent in subroutines of
report when report was called from main.

The sum of the self and children �elds is an estimate of the
amount of time spent within calls to report from main.

called Two numbers: the number of times report was called from
main, followed by the total number of non-recursive calls to
report from all its callers.

name and index number
The name of the caller of report to which this line applies,
followed by the caller's index number.

Not all functions have entries in the call graph; some options to
gprof request the omission of certain functions. When a caller
has no entry of its own, it still has caller-lines in the entries of
the functions it calls.

20 GNU gprof

If the caller is part of a recursion cycle, the cycle number is
printed between the name and the index number.

If the identity of the callers of a function cannot be determined, a dummy
caller-line is printed which has `<spontaneous>' as the \caller's name" and
all other �elds blank. This can happen for signal handlers.

5.2.3 Lines for a Function's Subroutines

A function's entry has a line for each of its subroutines|in other words,
a line for each other function that it called. These lines' �elds correspond
to the �elds of the primary line, but their meanings are di�erent because of
the di�erence in context.

For reference, we repeat two lines from the entry for the function main,
the primary line and a line for a subroutine, together with the heading line
that shows the names of the �elds:

index % time self children called name

...

[2] 100.0 0.00 0.05 1 main [2]

0.00 0.05 1/1 report [3]

Here are the meanings of the �elds in the subroutine-line for main calling
report:

self An estimate of the amount of time spent directly within report
when report was called from main.

children An estimate of the amount of time spent in subroutines of
report when report was called from main.

The sum of the self and children �elds is an estimate of the
total time spent in calls to report from main.

called Two numbers, the number of calls to report from main fol-
lowed by the total number of non-recursive calls to report.
This ratio is used to determine how much of report's self and
children time gets credited to main. See Section 6.2 [Assump-
tions], page 28.

name The name of the subroutine of main to which this line applies,
followed by the subroutine's index number.

If the caller is part of a recursion cycle, the cycle number is
printed between the name and the index number.

5.2.4 How Mutually Recursive Functions Are
Described

The graph may be complicated by the presence of cycles of recursion
in the call graph. A cycle exists if a function calls another function that

Chapter 5: Interpreting gprof's Output 21

(directly or indirectly) calls (or appears to call) the original function. For
example: if a calls b, and b calls a, then a and b form a cycle.

Whenever there are call paths both ways between a pair of functions,
they belong to the same cycle. If a and b call each other and b and c call
each other, all three make one cycle. Note that even if b only calls a if it
was not called from a, gprof cannot determine this, so a and b are still
considered a cycle.

The cycles are numbered with consecutive integers. When a function
belongs to a cycle, each time the function name appears in the call graph it
is followed by `<cycle number>'.

The reason cycles matter is that they make the time values in the call
graph paradoxical. The \time spent in children" of a should include the time
spent in its subroutine b and in b's subroutines|but one of b's subroutines
is a! How much of a's time should be included in the children of a, when a
is indirectly recursive?

The way gprof resolves this paradox is by creating a single entry for the
cycle as a whole. The primary line of this entry describes the total time
spent directly in the functions of the cycle. The \subroutines" of the cycle
are the individual functions of the cycle, and all other functions that were
called directly by them. The \callers" of the cycle are the functions, outside
the cycle, that called functions in the cycle.

Here is an example portion of a call graph which shows a cycle containing
functions a and b. The cycle was entered by a call to a from main; both a
and b called c.

index % time self children called name

--

1.77 0 1/1 main [2]

[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]

1.02 0 3 b <cycle 1> [4]

0.75 0 2 a <cycle 1> [5]

--

3 a <cycle 1> [5]

[4] 52.85 1.02 0 0 b <cycle 1> [4]

2 a <cycle 1> [5]

0 0 3/6 c [6]

--

1.77 0 1/1 main [2]

2 b <cycle 1> [4]

[5] 38.86 0.75 0 1 a <cycle 1> [5]

3 b <cycle 1> [4]

0 0 3/6 c [6]

--

(The entire call graph for this program contains in addition an entry for
main, which calls a, and an entry for c, with callers a and b.)

22 GNU gprof

index % time self children called name

<spontaneous>

[1] 100.00 0 1.93 0 start [1]

0.16 1.77 1/1 main [2]

--

0.16 1.77 1/1 start [1]

[2] 100.00 0.16 1.77 1 main [2]

1.77 0 1/1 a <cycle 1> [5]

--

1.77 0 1/1 main [2]

[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]

1.02 0 3 b <cycle 1> [4]

0.75 0 2 a <cycle 1> [5]

0 0 6/6 c [6]

--

3 a <cycle 1> [5]

[4] 52.85 1.02 0 0 b <cycle 1> [4]

2 a <cycle 1> [5]

0 0 3/6 c [6]

--

1.77 0 1/1 main [2]

2 b <cycle 1> [4]

[5] 38.86 0.75 0 1 a <cycle 1> [5]

3 b <cycle 1> [4]

0 0 3/6 c [6]

--

0 0 3/6 b <cycle 1> [4]

0 0 3/6 a <cycle 1> [5]

[6] 0.00 0 0 6 c [6]

--

The self �eld of the cycle's primary line is the total time spent in all the
functions of the cycle. It equals the sum of the self �elds for the individual
functions in the cycle, found in the entry in the subroutine lines for these
functions.

The children �elds of the cycle's primary line and subroutine lines count
only subroutines outside the cycle. Even though a calls b, the time spent
in those calls to b is not counted in a's children time. Thus, we do not
encounter the problem of what to do when the time in those calls to b
includes indirect recursive calls back to a.

The children �eld of a caller-line in the cycle's entry estimates the
amount of time spent in the whole cycle, and its other subroutines, on the
times when that caller called a function in the cycle.

The calls �eld in the primary line for the cycle has two numbers: �rst,
the number of times functions in the cycle were called by functions outside

Chapter 5: Interpreting gprof's Output 23

the cycle; second, the number of times they were called by functions in the
cycle (including times when a function in the cycle calls itself). This is a
generalization of the usual split into non-recursive and recursive calls.

The calls �eld of a subroutine-line for a cycle member in the cycle's
entry says how many time that function was called from functions in the
cycle. The total of all these is the second number in the primary line's
calls �eld.

In the individual entry for a function in a cycle, the other functions in
the same cycle can appear as subroutines and as callers. These lines show
how many times each function in the cycle called or was called from each
other function in the cycle. The self and children �elds in these lines are
blank because of the diÆculty of de�ning meanings for them when recursion
is going on.

5.3 Line-by-line Pro�ling

gprof's `-l' option causes the program to perform line-by-line pro�ling.
In this mode, histogram samples are assigned not to functions, but to indi-
vidual lines of source code. The program usually must be compiled with a
`-g' option, in addition to `-pg', in order to generate debugging symbols for
tracking source code lines.

The
at pro�le is the most useful output table in line-by-line mode. The
call graph isn't as useful as normal, since the current version of gprof does
not propagate call graph arcs from source code lines to the enclosing func-
tion. The call graph does, however, show each line of code that called each
function, along with a count.

Here is a section of gprof's output, without line-by-line pro�ling. Note
that ct_init accounted for four histogram hits, and 13327 calls to init_
block.

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

30.77 0.13 0.04 6335 6.31 6.31 ct_init

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds

index % time self children called name

24 GNU gprof

0.00 0.00 1/13496 name_too_long

0.00 0.00 40/13496 deflate

0.00 0.00 128/13496 deflate_fast

0.00 0.00 13327/13496 ct_init

[7] 0.0 0.00 0.00 13496 init_block

Now let's look at some of gprof's output from the same program run, this
time with line-by-line pro�ling enabled. Note that ct_init's four histogram
hits are broken down into four lines of source code - one hit occurred on each
of lines 349, 351, 382 and 385. In the call graph, note how ct_init's 13327
calls to init_block are broken down into one call from line 396, 3071 calls
from line 384, 3730 calls from line 385, and 6525 calls from 387.

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self

time seconds seconds calls name

7.69 0.10 0.01 ct_init (trees.c:349)

7.69 0.11 0.01 ct_init (trees.c:351)

7.69 0.12 0.01 ct_init (trees.c:382)

7.69 0.13 0.01 ct_init (trees.c:385)

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds

% time self children called name

0.00 0.00 1/13496 name_too_long (gzip.c:1440)

0.00 0.00 1/13496 deflate (deflate.c:763)

0.00 0.00 1/13496 ct_init (trees.c:396)

0.00 0.00 2/13496 deflate (deflate.c:727)

0.00 0.00 4/13496 deflate (deflate.c:686)

0.00 0.00 5/13496 deflate (deflate.c:675)

0.00 0.00 12/13496 deflate (deflate.c:679)

0.00 0.00 16/13496 deflate (deflate.c:730)

0.00 0.00 128/13496 deflate_fast (deflate.c:654)

0.00 0.00 3071/13496 ct_init (trees.c:384)

0.00 0.00 3730/13496 ct_init (trees.c:385)

0.00 0.00 6525/13496 ct_init (trees.c:387)

[6] 0.0 0.00 0.00 13496 init_block (trees.c:408)

Chapter 5: Interpreting gprof's Output 25

5.4 The Annotated Source Listing

gprof's `-A' option triggers an annotated source listing, which lists the
program's source code, each function labeled with the number of times it
was called. You may also need to specify the `-I' option, if gprof can't �nd
the source code �les.

Compiling with `gcc ... -g -pg -a' augments your program with basic-
block counting code, in addition to function counting code. This enables
gprof to determine how many times each line of code was executed. For
example, consider the following function, taken from gzip, with line numbers
added:

1 ulg updcrc(s, n)

2 uch *s;

3 unsigned n;

4 {

5 register ulg c;

6

7 static ulg crc = (ulg)0xffffffffL;

8

9 if (s == NULL) {

10 c = 0xffffffffL;

11 } else {

12 c = crc;

13 if (n) do {

14 c = crc_32_tab[...];

15 } while (--n);

16 }

17 crc = c;

18 return c ^ 0xffffffffL;

19 }

updcrc has at least �ve basic-blocks. One is the function itself. The if
statement on line 9 generates two more basic-blocks, one for each branch of
the if. A fourth basic-block results from the if on line 13, and the contents
of the do loop form the �fth basic-block. The compiler may also generate
additional basic-blocks to handle various special cases.

A program augmented for basic-block counting can be analyzed with
`gprof -l -A'. I also suggest use of the `-x' option, which ensures that each
line of code is labeled at least once. Here is updcrc's annotated source listing
for a sample gzip run:

ulg updcrc(s, n)

uch *s;

unsigned n;

2 ->{

26 GNU gprof

register ulg c;

static ulg crc = (ulg)0xffffffffL;

2 -> if (s == NULL) {

1 -> c = 0xffffffffL;

1 -> } else {

1 -> c = crc;

1 -> if (n) do {

26312 -> c = crc_32_tab[...];

26312,1,26311 -> } while (--n);

}

2 -> crc = c;

2 -> return c ^ 0xffffffffL;

2 ->}

In this example, the function was called twice, passing once through each
branch of the if statement. The body of the do loop was executed a total of
26312 times. Note how the while statement is annotated. It began execution
26312 times, once for each iteration through the loop. One of those times
(the last time) it exited, while it branched back to the beginning of the loop
26311 times.

Chapter 6: Inaccuracy of gprof Output 27

6 Inaccuracy of gprof Output

6.1 Statistical Sampling Error

The run-time �gures that gprof gives you are based on a sampling pro-
cess, so they are subject to statistical inaccuracy. If a function runs only a
small amount of time, so that on the average the sampling process ought to
catch that function in the act only once, there is a pretty good chance it will
actually �nd that function zero times, or twice.

By contrast, the number-of-calls and basic-block �gures are derived by
counting, not sampling. They are completely accurate and will not vary
from run to run if your program is deterministic.

The sampling period that is printed at the beginning of the
at pro�le
says how often samples are taken. The rule of thumb is that a run-time
�gure is accurate if it is considerably bigger than the sampling period.

The actual amount of error can be predicted. For n samples, the expected
error is the square-root of n. For example, if the sampling period is 0.01
seconds and foo's run-time is 1 second, n is 100 samples (1 second/0.01
seconds), sqrt(n) is 10 samples, so the expected error in foo's run-time is
0.1 seconds (10*0.01 seconds), or ten percent of the observed value. Again,
if the sampling period is 0.01 seconds and bar's run-time is 100 seconds,
n is 10000 samples, sqrt(n) is 100 samples, so the expected error in bar's
run-time is 1 second, or one percent of the observed value. It is likely to vary
this much on the average from one pro�ling run to the next. (Sometimes it
will vary more.)

This does not mean that a small run-time �gure is devoid of information.
If the program's total run-time is large, a small run-time for one function
does tell you that that function used an insigni�cant fraction of the whole
program's time. Usually this means it is not worth optimizing.

One way to get more accuracy is to give your program more (but similar)
input data so it will take longer. Another way is to combine the data from
several runs, using the `-s' option of gprof. Here is how:

1. Run your program once.

2. Issue the command `mv gmon.out gmon.sum'.

3. Run your program again, the same as before.

4. Merge the new data in `gmon.out' into `gmon.sum' with this command:

gprof -s executable-�le gmon.out gmon.sum

5. Repeat the last two steps as often as you wish.

6. Analyze the cumulative data using this command:

gprof executable-�le gmon.sum > output-�le

28 GNU gprof

6.2 Estimating children Times

Some of the �gures in the call graph are estimates|for example, the
children time values and all the the time �gures in caller and subroutine
lines.

There is no direct information about these measurements in the pro�le
data itself. Instead, gprof estimates them by making an assumption about
your program that might or might not be true.

The assumption made is that the average time spent in each call to any
function foo is not correlated with who called foo. If foo used 5 seconds in
all, and 2/5 of the calls to foo came from a, then foo contributes 2 seconds
to a's children time, by assumption.

This assumption is usually true enough, but for some programs it is far
from true. Suppose that foo returns very quickly when its argument is zero;
suppose that a always passes zero as an argument, while other callers of foo
pass other arguments. In this program, all the time spent in foo is in the
calls from callers other than a. But gprof has no way of knowing this; it
will blindly and incorrectly charge 2 seconds of time in foo to the children
of a.

We hope some day to put more complete data into `gmon.out', so that
this assumption is no longer needed, if we can �gure out how. For the nonce,
the estimated �gures are usually more useful than misleading.

Chapter 7: Answers to Common Questions 29

7 Answers to Common Questions

How do I �nd which lines in my program were executed the most times?
Compile your program with basic-block counting enabled, run
it, then use the following pipeline:

gprof -l -C obj�le | sort -k 3 -n -r

This listing will show you the lines in your code executed most
often, but not necessarily those that consumed the most time.

How do I �nd which lines in my program called a particular function?
Use `gprof -l' and lookup the function in the call graph. The
callers will be broken down by function and line number.

How do I analyze a program that runs for less than a second?
Try using a shell script like this one:

for i in `seq 1 100`; do
fastprog
mv gmon.out gmon.out.$i

done

gprof -s fastprog gmon.out.*

gprof fastprog gmon.sum

If your program is completely deterministic, all the call counts
will be simple multiples of 100 (i.e. a function called once in
each run will appear with a call count of 100).

30 GNU gprof

Chapter 8: Incompatibilities with Unix gprof 31

8 Incompatibilities with Unix gprof

gnu gprof and Berkeley Unix gprof use the same data �le `gmon.out',
and provide essentially the same information. But there are a few di�erences.

� gnu gprof uses a new, generalized �le format with support for basic-
block execution counts and non-realtime histograms. A magic cookie
and version number allows gprof to easily identify new style �les. Old
BSD-style �les can still be read. See Section 9.2 [File Format], page 35.

� For a recursive function, Unix gprof lists the function as a parent and
as a child, with a calls �eld that lists the number of recursive calls.
gnu gprof omits these lines and puts the number of recursive calls in
the primary line.

� When a function is suppressed from the call graph with `-e', gnu gprof
still lists it as a subroutine of functions that call it.

� gnu gprof accepts the `-k' with its argument in the form `from/to',
instead of `from to'.

� In the annotated source listing, if there are multiple basic blocks on the
same line, gnu gprof prints all of their counts, separated by commas.

� The blurbs, �eld widths, and output formats are di�erent. gnu gprof
prints blurbs after the tables, so that you can see the tables without
skipping the blurbs.

32 GNU gprof

Chapter 9: Details of Pro�ling 33

9 Details of Pro�ling

9.1 Implementation of Pro�ling

Pro�ling works by changing how every function in your program is com-
piled so that when it is called, it will stash away some information about
where it was called from. From this, the pro�ler can �gure out what function
called it, and can count how many times it was called. This change is made
by the compiler when your program is compiled with the `-pg' option, which
causes every function to call mcount (or _mcount, or __mcount, depending
on the OS and compiler) as one of its �rst operations.

The mcount routine, included in the pro�ling library, is responsible for
recording in an in-memory call graph table both its parent routine (the child)
and its parent's parent. This is typically done by examining the stack frame
to �nd both the address of the child, and the return address in the original
parent. Since this is a very machine-dependent operation, mcount itself is
typically a short assembly-language stub routine that extracts the required
information, and then calls __mcount_internal (a normal C function) with
two arguments - frompc and selfpc. __mcount_internal is responsible for
maintaining the in-memory call graph, which records frompc, selfpc, and
the number of times each of these call arcs was traversed.

GCC Version 2 provides a magical function (__builtin_return_
address), which allows a generic mcount function to extract the required
information from the stack frame. However, on some architectures, most
notably the SPARC, using this builtin can be very computationally
expensive, and an assembly language version of mcount is used for
performance reasons.

Number-of-calls information for library routines is collected by using a
special version of the C library. The programs in it are the same as in the
usual C library, but they were compiled with `-pg'. If you link your program
with `gcc ... -pg', it automatically uses the pro�ling version of the library.

Pro�ling also involves watching your program as it runs, and keeping a
histogram of where the program counter happens to be every now and then.
Typically the program counter is looked at around 100 times per second of
run time, but the exact frequency may vary from system to system.

This is done is one of two ways. Most UNIX-like operating systems pro-
vide a profil() system call, which registers a memory array with the kernel,
along with a scale factor that determines how the program's address space
maps into the array. Typical scaling values cause every 2 to 8 bytes of ad-
dress space to map into a single array slot. On every tick of the system
clock (assuming the pro�led program is running), the value of the program
counter is examined and the corresponding slot in the memory array is incre-
mented. Since this is done in the kernel, which had to interrupt the process

34 GNU gprof

anyway to handle the clock interrupt, very little additional system overhead
is required.

However, some operating systems, most notably Linux 2.0 (and earlier),
do not provide a profil() system call. On such a system, arrangements are
made for the kernel to periodically deliver a signal to the process (typically
via setitimer()), which then performs the same operation of examining the
program counter and incrementing a slot in the memory array. Since this
method requires a signal to be delivered to user space every time a sample is
taken, it uses considerably more overhead than kernel-based pro�ling. Also,
due to the added delay required to deliver the signal, this method is less
accurate as well.

A special startup routine allocates memory for the histogram and either
calls profil() or sets up a clock signal handler. This routine (monstartup)
can be invoked in several ways. On Linux systems, a special pro�ling startup
�le gcrt0.o, which invokes monstartup before main, is used instead of the
default crt0.o. Use of this special startup �le is one of the e�ects of using
`gcc ... -pg' to link. On SPARC systems, no special startup �les are used.
Rather, the mcount routine, when it is invoked for the �rst time (typically
when main is called), calls monstartup.

If the compiler's `-a' option was used, basic-block counting is also en-
abled. Each object �le is then compiled with a static array of counts, ini-
tially zero. In the executable code, every time a new basic-block begins (i.e.
when an if statement appears), an extra instruction is inserted to increment
the corresponding count in the array. At compile time, a paired array was
constructed that recorded the starting address of each basic-block. Taken
together, the two arrays record the starting address of every basic-block,
along with the number of times it was executed.

The pro�ling library also includes a function (mcleanup) which is typ-
ically registered using atexit() to be called as the program exits, and is
responsible for writing the �le `gmon.out'. Pro�ling is turned o�, various
headers are output, and the histogram is written, followed by the call-graph
arcs and the basic-block counts.

The output from gprof gives no indication of parts of your program
that are limited by I/O or swapping bandwidth. This is because samples of
the program counter are taken at �xed intervals of the program's run time.
Therefore, the time measurements in gprof output say nothing about time
that your program was not running. For example, a part of the program
that creates so much data that it cannot all �t in physical memory at once
may run very slowly due to thrashing, but gprof will say it uses little time.
On the other hand, sampling by run time has the advantage that the amount
of load due to other users won't directly a�ect the output you get.

Chapter 9: Details of Pro�ling 35

9.2 Pro�ling Data File Format

The old BSD-derived �le format used for pro�le data does not contain a
magic cookie that allows to check whether a data �le really is a gprof �le.
Furthermore, it does not provide a version number, thus rendering changes
to the �le format almost impossible. gnu gprof uses a new �le format that
provides these features. For backward compatibility, gnu gprof continues
to support the old BSD-derived format, but not all features are supported
with it. For example, basic-block execution counts cannot be accommodated
by the old �le format.

The new �le format is de�ned in header �le `gmon_out.h'. It consists of
a header containing the magic cookie and a version number, as well as some
spare bytes available for future extensions. All data in a pro�le data �le is in
the native format of the host on which the pro�le was collected. gnu gprof
adapts automatically to the byte-order in use.

In the new �le format, the header is followed by a sequence of records.
Currently, there are three di�erent record types: histogram records, call-
graph arc records, and basic-block execution count records. Each �le can
contain any number of each record type. When reading a �le, gnu gprof will
ensure records of the same type are compatible with each other and compute
the union of all records. For example, for basic-block execution counts, the
union is simply the sum of all execution counts for each basic-block.

9.2.1 Histogram Records

Histogram records consist of a header that is followed by an array of bins.
The header contains the text-segment range that the histogram spans, the
size of the histogram in bytes (unlike in the old BSD format, this does not in-
clude the size of the header), the rate of the pro�ling clock, and the physical
dimension that the bin counts represent after being scaled by the pro�ling
clock rate. The physical dimension is speci�ed in two parts: a long name of
up to 15 characters and a single character abbreviation. For example, a his-
togram representing real-time would specify the long name as "seconds" and
the abbreviation as "s". This feature is useful for architectures that support
performance monitor hardware (which, fortunately, is becoming increasingly
common). For example, under DEC OSF/1, the "upro�le" command can
be used to produce a histogram of, say, instruction cache misses. In this
case, the dimension in the histogram header could be set to "i-cache misses"
and the abbreviation could be set to "1" (because it is simply a count, not
a physical dimension). Also, the pro�ling rate would have to be set to 1 in
this case.

Histogram bins are 16-bit numbers and each bin represent an equal
amount of text-space. For example, if the text-segment is one thousand
bytes long and if there are ten bins in the histogram, each bin represents one
hundred bytes.

36 GNU gprof

9.2.2 Call-Graph Records

Call-graph records have a format that is identical to the one used in
the BSD-derived �le format. It consists of an arc in the call graph and a
count indicating the number of times the arc was traversed during program
execution. Arcs are speci�ed by a pair of addresses: the �rst must be within
caller's function and the second must be within the callee's function. When
performing pro�ling at the function level, these addresses can point anywhere
within the respective function. However, when pro�ling at the line-level, it
is better if the addresses are as close to the call-site/entry-point as possible.
This will ensure that the line-level call-graph is able to identify exactly which
line of source code performed calls to a function.

9.2.3 Basic-Block Execution Count Records

Basic-block execution count records consist of a header followed by a
sequence of address/count pairs. The header simply speci�es the length of
the sequence. In an address/count pair, the address identi�es a basic-block
and the count speci�es the number of times that basic-block was executed.
Any address within the basic-address can be used.

9.3 gprof's Internal Operation

Like most programs, gprof begins by processing its options. During
this stage, it may building its symspec list (sym_ids.c:sym_id_
add), if options are speci�ed which use symspecs. gprof maintains
a single linked list of symspecs, which will eventually get turned
into 12 symbol tables, organized into six include/exclude pairs -
one pair each for the
at pro�le (INCL FLAT/EXCL FLAT), the
call graph arcs (INCL ARCS/EXCL ARCS), printing in the call
graph (INCL GRAPH/EXCL GRAPH), timing propagation in the
call graph (INCL TIME/EXCL TIME), the annotated source list-
ing (INCL ANNO/EXCL ANNO), and the execution count listing
(INCL EXEC/EXCL EXEC).

After option processing, gprof �nishes building the symspec list by
adding all the symspecs in default_excluded_list to the exclude lists
EXCL TIME and EXCL GRAPH, and if line-by-line pro�ling is speci�ed,
EXCL FLAT as well. These default excludes are not added to EXCL ANNO,
EXCL ARCS, and EXCL EXEC.

Next, the BFD library is called to open the object �le, verify that it is
an object �le, and read its symbol table (core.c:core_init), using bfd_
canonicalize_symtab after mallocing an appropriately sized array of sym-
bols. At this point, function mappings are read (if the `--file-ordering'
option has been speci�ed), and the core text space is read into memory (if
the `-c' option was given).

Chapter 9: Details of Pro�ling 37

gprof's own symbol table, an array of Sym structures, is now built. This
is done in one of two ways, by one of two routines, depending on whether
line-by-line pro�ling (`-l' option) has been enabled. For normal pro�ling, the
BFD canonical symbol table is scanned. For line-by-line pro�ling, every text
space address is examined, and a new symbol table entry gets created every
time the line number changes. In either case, two passes are made through
the symbol table - one to count the size of the symbol table required, and the
other to actually read the symbols. In between the two passes, a single array
of type Sym is created of the appropriate length. Finally, symtab.c:symtab_
finalize is called to sort the symbol table and remove duplicate entries
(entries with the same memory address).

The symbol table must be a contiguous array for two reasons. First, the
qsort library function (which sorts an array) will be used to sort the symbol
table. Also, the symbol lookup routine (symtab.c:sym_lookup), which �nds
symbols based on memory address, uses a binary search algorithm which re-
quires the symbol table to be a sorted array. Function symbols are indicated
with an is_func
ag. Line number symbols have no special
ags set. Addi-
tionally, a symbol can have an is_static
ag to indicate that it is a local
symbol.

With the symbol table read, the symspecs can now be translated into
Syms (sym_ids.c:sym_id_parse). Remember that a single symspec can
match multiple symbols. An array of symbol tables (syms) is created, each
entry of which is a symbol table of Syms to be included or excluded from a
particular listing. The master symbol table and the symspecs are examined
by nested loops, and every symbol that matches a symspec is inserted into
the appropriate syms table. This is done twice, once to count the size of
each required symbol table, and again to build the tables, which have been
malloced between passes. From now on, to determine whether a symbol is
on an include or exclude symspec list, gprof simply uses its standard symbol
lookup routine on the appropriate table in the syms array.

Now the pro�le data �le(s) themselves are read (gmon_io.c:gmon_out_
read), �rst by checking for a new-style `gmon.out' header, then assuming
this is an old-style BSD `gmon.out' if the magic number test failed.

New-style histogram records are read by hist.c:hist_read_rec. For the
�rst histogram record, allocate a memory array to hold all the bins, and read
them in. When multiple pro�le data �les (or �les with multiple histogram
records) are read, the starting address, ending address, number of bins and
sampling rate must match between the various histograms, or a fatal error
will result. If everything matches, just sum the additional histograms into
the existing in-memory array.

As each call graph record is read (call_graph.c:cg_read_rec), the par-
ent and child addresses are matched to symbol table entries, and a call graph
arc is created by cg_arcs.c:arc_add, unless the arc fails a symspec check
against INCL ARCS/EXCL ARCS. As each arc is added, a linked list is
maintained of the parent's child arcs, and of the child's parent arcs. Both

38 GNU gprof

the child's call count and the arc's call count are incremented by the record's
call count.

Basic-block records are read (basic_blocks.c:bb_read_rec), but only if
line-by-line pro�ling has been selected. Each basic-block address is matched
to a corresponding line symbol in the symbol table, and an entry made in the
symbol's bb addr and bb calls arrays. Again, if multiple basic-block records
are present for the same address, the call counts are cumulative.

A gmon.sum �le is dumped, if requested (gmon_io.c:gmon_out_write).

If histograms were present in the data �les, assign them to symbols
(hist.c:hist_assign_samples) by iterating over all the sample bins and
assigning them to symbols. Since the symbol table is sorted in order of as-
cending memory addresses, we can simple follow along in the symbol table
as we make our pass over the sample bins. This step includes a symspec
check against INCL FLAT/EXCL FLAT. Depending on the histogram scale
factor, a sample bin may span multiple symbols, in which case a fraction
of the sample count is allocated to each symbol, proportional to the degree
of overlap. This e�ect is rare for normal pro�ling, but overlaps are more
common during line-by-line pro�ling, and can cause each of two adjacent
lines to be credited with half a hit, for example.

If call graph data is present, cg_arcs.c:cg_assemble is called. First, if
`-c' was speci�ed, a machine-dependent routine (find_call) scans through
each symbol's machine code, looking for subroutine call instructions, and
adding them to the call graph with a zero call count. A topological sort
is performed by depth-�rst numbering all the symbols (cg_dfn.c:cg_dfn),
so that children are always numbered less than their parents, then mak-
ing a array of pointers into the symbol table and sorting it into numeri-
cal order, which is reverse topological order (children appear before par-
ents). Cycles are also detected at this point, all members of which are
assigned the same topological number. Two passes are now made through
this sorted array of symbol pointers. The �rst pass, from end to beginning
(parents to children), computes the fraction of child time to propagate to
each parent and a print
ag. The print
ag re
ects symspec handling of
INCL GRAPH/EXCL GRAPH, with a parent's include or exclude (print or
no print) property being propagated to its children, unless they themselves
explicitly appear in INCL GRAPH or EXCL GRAPH. A second pass, from
beginning to end (children to parents) actually propagates the timings along
the call graph, subject to a check against INCL TIME/EXCL TIME. With
the print
ag, fractions, and timings now stored in the symbol structures,
the topological sort array is now discarded, and a new array of pointers is
assembled, this time sorted by propagated time.

Finally, print the various outputs the user requested, which is now fairly
straightforward. The call graph (cg_print.c:cg_print) and
at pro�le
(hist.c:hist_print) are regurgitations of values already computed. The
annotated source listing (basic_blocks.c:print_annotated_source) uses

Chapter 9: Details of Pro�ling 39

basic-block information, if present, to label each line of code with call counts,
otherwise only the function call counts are presented.

The function ordering code is marginally well documented in the source
code itself (cg_print.c). Basically, the functions with the most use and the
most parents are placed �rst, followed by other functions with the most use,
followed by lower use functions, followed by unused functions at the end.

9.3.1 Debugging gprof

If gprof was compiled with debugging enabled, the `-d' option triggers
debugging output (to stdout) which can be helpful in understanding its op-
eration. The debugging number speci�ed is interpreted as a sum of the
following options:

2 - Topological sort
Monitor depth-�rst numbering of symbols during call graph
analysis

4 - Cycles Shows symbols as they are identi�ed as cycle heads

16 - Tallying
As the call graph arcs are read, show each arc and how the total
calls to each function are tallied

32 - Call graph arc sorting
Details sorting individual parents/children within each call
graph entry

64 - Reading histogram and call graph records
Shows address ranges of histograms as they are read, and each
call graph arc

128 - Symbol table
Reading, classifying, and sorting the symbol table from the ob-
ject �le. For line-by-line pro�ling (`-l' option), also shows line
numbers being assigned to memory addresses.

256 - Static call graph
Trace operation of `-c' option

512 - Symbol table and arc table lookups
Detail operation of lookup routines

1024 - Call graph propagation
Shows how function times are propagated along the call graph

2048 - Basic-blocks
Shows basic-block records as they are read from pro�le data
(only meaningful with `-l' option)

4096 - Symspecs
Shows symspec-to-symbol pattern matching operation

40 GNU gprof

8192 - Annotate source
Tracks operation of `-A' option

i

Table of Contents

1 Introduction to Pro�ling 1

2 Compiling a Program for Pro�ling 3

3 Executing the Program . 5

4 gprof Command Summary 7
4.1 Output Options . 7
4.2 Analysis Options . 10
4.3 Miscellaneous Options . 12
4.4 Deprecated Options . 12
4.5 Symspecs . 13

5 Interpreting gprof's Output 15
5.1 The Flat Pro�le . 15
5.2 The Call Graph . 17

5.2.1 The Primary Line . 18
5.2.2 Lines for a Function's Callers 19
5.2.3 Lines for a Function's Subroutines 20
5.2.4 How Mutually Recursive Functions Are Described

. 20
5.3 Line-by-line Pro�ling . 23
5.4 The Annotated Source Listing . 25

6 Inaccuracy of gprof Output. 27
6.1 Statistical Sampling Error . 27
6.2 Estimating children Times . 28

7 Answers to Common Questions 29

8 Incompatibilities with Unix gprof 31

9 Details of Pro�ling . 33
9.1 Implementation of Pro�ling . 33
9.2 Pro�ling Data File Format . 35

9.2.1 Histogram Records . 35
9.2.2 Call-Graph Records . 36
9.2.3 Basic-Block Execution Count Records 36

9.3 gprof's Internal Operation . 36
9.3.1 Debugging gprof . 39

ii GNU gprof

