
The GNU C++ Iostream Library

Reference Manual for libio Version 0.64

DOC 0472-00

Per Bothner bothner@cygnus.com

Cygnus Support doc@cygnus.com



Copyright c 1993 Free Software Foundation, Inc.

libio includes software developed by the University of California, Berkeley.

libio uses oating-point software written by David M. Gay, which includes the following
notice:

The author of this software is David M. Gay.

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any purpose
without fee is hereby granted, provided that this entire notice is included in
all copies of any software which is or includes a copy or modi�cation of this
software and in all copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EX-
PRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AU-
THORNORAT&TMAKESANY REPRESENTATIONORWARRANTY OF
ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFT-
WARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions.



Chapter 1: Introduction 1

1 Introduction

The iostream classes implement most of the features of AT&T version 2.0 iostream
library classes, and most of the features of the ANSI X3J16 library draft (which is based
on the AT&T design).

This manual is meant as a reference; for tutorial material on iostreams, see the corre-
sponding section of any recent popular introduction to C++.

1.1 Licensing terms for libio

Since the iostream classes are so fundamental to standard C++, the Free Software Foun-
dation has agreed to a special exception to its standard license, when you link programs
with libio.a:

As a special exception, if you link this library with �les compiled with a GNU
compiler to produce an executable, this does not cause the resulting executable
to be covered by the GNU General Public License. This exception does not
however invalidate any other reasons why the executable �le might be covered
by the GNU General Public License.

The code is under the gnu General Public License (version 2) for all other purposes
than linking with this library; that means that you can modify and redistribute the code
as usual, but remember that if you do, your modi�cations, and anything you link with the
modi�ed code, must be available to others on the same terms.

These functions are also available as part of the libg++ library; if you link with that
library instead of libio, the gnu Library General Public License applies.

1.2 Acknowledgements

Per Bothner wrote most of the iostream library, but some portions have their origins
elsewhere in the free software community. Heinz Seidl wrote the IO manipulators. The
oating-point conversion software is by David M. Gay of AT&T. Some code was derived
from parts of BSD 4.4, which was written at the University of California, Berkeley.

The iostream classes are found in the libio library. An early version was originally
distributed in libg++, and they are still included there as well, for convenience if you
need other libg++ classes. Doug Lea was the original author of libg++, and some of the
�le-management code still in libio is his.

Various people found bugs or o�ered suggestions. Hongjiu Lu worked hard to use the
library as the default stdio implementation for Linux, and has provided much stress-testing
of the library.



2 The GNU C++ Iostream Library



Chapter 2: Operators and Default Streams 3

2 Operators and Default Streams

The gnu iostream library, `libio', implements the standard input and output facilities
for C++. These facilities are roughly analogous (in their purpose and ubiquity, at least)
with those de�ned by the C `stdio' functions.

Although these de�nitions come from a library, rather than being part of the \core
language", they are suÆciently central to be speci�ed in the latest working papers for C++.

You can use two operators de�ned in this library for basic input and output operations.
They are familiar from any C++ introductory textbook: << for output, and >> for input.
(Think of data owing in the direction of the \arrows".)

These operators are often used in conjunction with three streams that are open by
default:

Variableostream cout
The standard output stream, analogous to the C stdout.

Variableistream cin
The standard input stream, analogous to the C stdin.

Variableostream cerr
An alternative output stream for errors, analogous to the C stderr.

For example, this bare-bones C++ version of the traditional \hello" program uses << and
cout:

#include <iostream.h>

int main(int argc, char **argv)
{
cout << "Well, hi there.\n";
return 0;

}

Casual use of these operators may be seductive, but|other than in writing throwaway
code for your own use|it is not necessarily simpler than managing input and output in
any other language. For example, robust code should check the state of the input and
output streams between operations (for example, using the method good). See Section 3.1.1
[Checking the state of a stream], page 5. You may also need to adjust maximum input or
output �eld widths, using manipulators like setw or setprecision.

Operator on ostream<<

Write output to an open output stream of class ostream. De�ned by this library
on any object of a C++ primitive type, and on other classes of the library. You can
overload the de�nition for any of your own applications' classes.

Returns a reference to the implied argument *this (the open stream it writes on),
permitting statements like

cout << "The value of i is " << i << "\n";



4 The GNU C++ Iostream Library

Operator on istream>>

Read input from an open input stream of class istream. De�ned by this library on
primitive numeric, pointer, and string types; you can extend the de�nition for any of
your own applications' classes.

Returns a reference to the implied argument *this (the open stream it reads), per-
mitting multiple inputs in one statement.



Chapter 3: Stream Classes 5

3 Stream Classes

The previous chapter referred in passing to the classes ostream and istream, for output
and input respectively. These classes share certain properties, captured in their base class
ios.

3.1 Shared properties: class ios

The base class ios provides methods to test and manage the state of input or output
streams.

ios delegates the job of actually reading and writing bytes to the abstract class
streambuf, which is designed to provide bu�ered streams (compatible with C, in the gnu
implementation). See Chapter 5 [Using the streambuf layer], page 23, for information on
the facilities available at the streambuf level.

Constructorios::ios ([streambuf* sb [, ostream* tie])
The ios constructor by default initializes a new ios, and if you supply a streambuf

sb to associate with it, sets the state good in the new ios object. It also sets the
default properties of the new object.

You can also supply an optional second argument tie to the constructor: if present, it
is an initial value for ios::tie, to associate the new ios object with another stream.

Destructorios::~ios ()
The ios destructor is virtual, permitting application-speci�c behavior when a stream
is closed|typically, the destructor frees any storage associated with the stream and
releases any other associated objects.

3.1.1 Checking the state of a stream

Use this collection of methods to test for (or signal) errors and other exceptional condi-
tions of streams:

Methodios::operator void* () const

You can do a quick check on the state of the most recent operation on a stream by
examining a pointer to the stream itself. The pointer is arbitrary except for its truth
value; it is true if no failures have occurred (ios::fail is not true). For example,
you might ask for input on cin only if all prior output operations succeeded:

if (cout)
{
// Everything OK so far
cin >> new_value;
...

}

Methodios::operator ! () const

In case it is more convenient to check whether something has failed, the operator !
returns true if ios::fail is true (an operation has failed). For example, you might
issue an error message if input failed:



6 The GNU C++ Iostream Library

if (!cin)
{
// Oops
cerr << "Eh?\n";

}

Methodiostate ios::rdstate () const
Return the state ags for this stream. The value is from the enumeration iostate.
You can test for any combination of

goodbit There are no indications of exceptional states on this stream.

eofbit End of �le.

failbit An operation has failed on this stream; this usually indicates bad format
of input.

badbit The stream is unusable.

Methodvoid ios::setstate (iostate state)
Set the state ag for this stream to state in addition to any state ags already set.
Synonym (for upward compatibility): ios::set.

See ios::clear to set the stream state without regard to existing state ags. See
ios::good, ios::eof, ios::fail, and ios::bad, to test the state.

Methodint ios::good () const
Test the state ags associated with this stream; true if no error indicators are set.

Methodint ios::bad () const
Test whether a stream is marked as unusable. (Whether ios::badbit is set.)

Methodint ios::eof () const
True if end of �le was reached on this stream. (If ios::eofbit is set.)

Methodint ios::fail () const
Test for any kind of failure on this stream: either some operation failed, or the stream
is marked as bad. (If either ios::failbit or ios::badbit is set.)

Methodvoid ios::clear (iostate state)
Set the state indication for this stream to the argument state. You may call
ios::clear with no argument, in which case the state is set to good (no errors
pending).

See ios::good, ios::eof, ios::fail, and ios::bad, to test the state; see ios::set
or ios::setstate for an alternative way of setting the state.



Chapter 3: Stream Classes 7

3.1.2 Choices in formatting

These methods control (or report on) settings for some details of controlling streams,
primarily to do with formatting output:

Methodchar ios::�ll () const
Report on the padding character in use.

Methodchar ios::�ll (char padding)
Set the padding character. You can also use the manipulator setfill. See Sec-
tion 3.1.3 [Changing stream properties in expressions], page 9.

Default: blank.

Methodint ios::precision () const
Report the number of signi�cant digits currently in use for output of oating point
numbers.

Default: 6.

Methodint ios::precision (int signif )
Set the number of signi�cant digits (for input and output numeric conversions) to
signif.

You can also use the manipulator setprecision for this purpose. See Section 3.1.3
[Changing stream properties using manipulators], page 9.

Methodint ios::width () const
Report the current output �eld width setting (the number of characters to write on
the next `<<' output operation).

Default: 0, which means to use as many characters as necessary.

Methodint ios::width (int num)
Set the input �eld width setting to num. Return the previous value for this stream.

This value resets to zero (the default) every time you use `<<'; it is essentially an
additional implicit argument to that operator. You can also use the manipulator setw
for this purpose. See Section 3.1.3 [Changing stream properties using manipulators],
page 9.

Methodfmtflags ios::ags () const
Return the current value of the complete collection of ags controlling the format
state. These are the ags and their meanings when set:

ios::dec

ios::oct

ios::hex What numeric base to use in converting integers from internal to display
representation, or vice versa: decimal, octal, or hexadecimal, respectively.
(You can change the base using the manipulator setbase, or any of the



8 The GNU C++ Iostream Library

manipulators dec, oct, or hex; see Section 3.1.3 [Changing stream prop-
erties in expressions], page 9.)

On input, if none of these ags is set, read numeric constants according
to the pre�x: decimal if no pre�x (or a `.' suÆx), octal if a `0' pre�x is
present, hexadecimal if a `0x' pre�x is present.

Default: dec.

ios::fixed

Avoid scienti�c notation, and always show a �xed number of digits af-
ter the decimal point, according to the output precision in e�ect. Use
ios::precision to set precision.

ios::left

ios::right

ios::internal

Where output is to appear in a �xed-width �eld; left-justi�ed, right-
justi�ed, or with padding in the middle (e.g. between a numeric sign and
the associated value), respectively.

ios::scientific

Use scienti�c (exponential) notation to display numbers.

ios::showbase

Display the conventional pre�x as a visual indicator of the conversion
base: no pre�x for decimal, `0' for octal, `0x' for hexadecimal.

ios::showpoint

Display a decimal point and trailing zeros after it to �ll out numeric �elds,
even when redundant.

ios::showpos

Display a positive sign on display of positive numbers.

ios::skipws

Skip white space. (On by default).

ios::stdio

Flush the C stdio streams stdout and stderr after each output opera-
tion (for programs that mix C and C++ output conventions).

ios::unitbuf

Flush after each output operation.

ios::uppercase

Use upper-case characters for the non-numeral elements in numeric dis-
plays; for instance, `0X7A' rather than `0x7a', or `3.14E+09' rather than
`3.14e+09'.

Methodfmtflags ios::ags (fmtflags value)
Set value as the complete collection of ags controlling the format state. The ag
values are described under `ios::flags ()'.

Use ios::setf or ios::unsetf to change one property at a time.



Chapter 3: Stream Classes 9

Methodfmtflags ios::setf (fmtflags ag)
Set one particular ag (of those described for `ios::flags ()'; return the complete
collection of ags previously in e�ect. (Use ios::unsetf to cancel.)

Methodfmtflags ios::setf (fmtflags ag, fmtflags mask)
Clear the ag values indicated by mask, then set any of them that are also in ag.
(Flag values are described for `ios::flags ()'.) Return the complete collection of
ags previously in e�ect. (See ios::unsetf for another way of clearing ags.)

Methodfmtflags ios::unsetf (fmtflags ag)
Make certain ag (a combination of ag values described for `ios::flags ()') is not
set for this stream; converse of ios::setf. Returns the old values of those ags.

3.1.3 Changing stream properties using manipulators

For convenience, manipulators provide a way to change certain properties of streams, or
otherwise a�ect them, in the middle of expressions involving `<<' or `>>'. For example, you
might write

cout << "|" << setfill('*') << setw(5) << 234 << "|";

to produce `|**234|' as output.

Manipulatorws
Skip whitespace.

Manipulatorush
Flush an output stream. For example, `cout << ... <<flush;' has the same e�ect
as `cout << ...; cout.flush();'.

Manipulatorendl
Write an end of line character `\n', then ushes the output stream.

Manipulatorends
Write `\0' (the string terminator character).

Manipulatorsetprecision (int signif )
You can change the value of ios::precision in `<<' expressions with the manipulator
`setprecision(signif)'; for example,

cout << setprecision(2) << 4.567;

prints `4.6'. Requires `#include <iomanip.h>'.

Manipulatorsetw (int n)
You can change the value of ios::width in `<<' expressions with the manipulator
`setw(n)'; for example,

cout << setw(5) << 234;

prints ` 234' with two leading blanks. Requires `#include <iomanip.h>'.



10 The GNU C++ Iostream Library

Manipulatorsetbase (int base)
Where base is one of 10 (decimal), 8 (octal), or 16 (hexadecimal), change the base
value for numeric representations. Requires `#include <iomanip.h>'.

Manipulatordec
Select decimal base; equivalent to `setbase(10)'.

Manipulatorhex
Select hexadecimal base; equivalent to `setbase(16)'.

Manipulatoroct
Select octal base; equivalent to `setbase(8)'.

Manipulatorset�ll (char padding)
Set the padding character, in the same way as ios::fill. Requires `#include
<iomanip.h>'.

3.1.4 Extended data �elds

A related collection of methods allows you to extend this collection of ags and param-
eters for your own applications, without risk of conict between them:

Methodstatic fmtflags ios::bitalloc ()
Reserve a bit (the single bit on in the result) to use as a ag. Using bitalloc guards
against conict between two packages that use ios objects for di�erent purposes.

This method is available for upward compatibility, but is not in the ansi working
paper. The number of bits available is limited; a return value of 0 means no bit is
available.

Methodstatic int ios::xalloc ()
Reserve space for a long integer or pointer parameter. The result is a unique non-
negative integer. You can use it as an index to ios::iword or ios::pword. Use
xalloc to arrange for arbitrary special-purpose data in your ios objects, without
risk of conict between packages designed for di�erent purposes.

Methodlong& ios::iword (int index)
Return a reference to arbitrary data, of long integer type, stored in an ios instance.
index, conventionally returned from ios::xalloc, identi�es what particular data you
need.

Methodlong ios::iword (int index) const
Return the actual value of a long integer stored in an ios.

Methodvoid*& ios::pword (int index)
Return a reference to an arbitrary pointer, stored in an ios instance. index, originally
returned from ios::xalloc, identi�es what particular pointer you need.

Methodvoid* ios::pword (int index) const
Return the actual value of a pointer stored in an ios.



Chapter 3: Stream Classes 11

3.1.5 Synchronizing related streams

You can use these methods to synchronize related streams with one another:

Methodostream* ios::tie () const
Report on what output stream, if any, is to be ushed before accessing this one. A
pointer value of 0 means no stream is tied.

Methodostream* ios::tie (ostream* assoc)
Declare that output stream assoc must be ushed before accessing this stream.

Methodint ios::sync with stdio ([int switch])
Unless iostreams and C stdio are designed to work together, you may have to choose
between eÆcient C++ streams output and output compatible with C stdio. Use
`ios::sync_with_stdio()' to select C compatibility.

The argument switch is a gnu extension; use 0 as the argument to choose output
that is not necessarily compatible with C stdio. The default value for switch is 1.

If you install the stdio implementation that comes with gnu libio, there are com-
patible input/output facilities for both C and C++. In that situation, this method is
unnecessary|but you may still want to write programs that call it, for portability.

3.1.6 Reaching the underlying streambuf

Finally, you can use this method to access the underlying object:

Methodstreambuf* ios::rdbuf () const
Return a pointer to the streambuf object that underlies this ios.

3.2 Managing output streams: class ostream

Objects of class ostream inherit the generic methods from ios, and in addition have the
following methods available. Declarations for this class come from `iostream.h'.

Constructorostream::ostream ()
The simplest form of the constructor for an ostream simply allocates a new ios

object.

Constructorostream::ostream (streambuf* sb [, ostream tie])
This alternative constructor requires a �rst argument sb of type streambuf*, to use
an existing open stream for output. It also accepts an optional second argument tie,
to specify a related ostream* as the initial value for ios::tie.

If you give the ostream a streambuf explicitly, using this constructor, the sb is not

destroyed (or deleted or closed) when the ostream is destroyed.



12 The GNU C++ Iostream Library

3.2.1 Writing on an ostream

These methods write on an ostream (you may also use the operator <<; see Chapter 2
[Operators and Default Streams], page 3).

Methodostream& ostream::put (char c)
Write the single character c.

Methodostream& ostream::write (string, int length)
Write length characters of a string to this ostream, beginning at the pointer string.

string may have any of these types: char*, unsigned char*, signed char*.

Methodostream& ostream::form (const char *format, ...)
A gnu extension, similar to fprintf(�le, format, ...).

format is a printf-style format control string, which is used to format the (variable
number of) arguments, printing the result on this ostream. See ostream::vform for
a version that uses an argument list rather than a variable number of arguments.

Methodostream& ostream::vform (const char *format, va_list args)
A gnu extension, similar to vfprintf(�le, format, args).

format is a printf-style format control string, which is used to format the argument
list args, printing the result on this ostream. See ostream::form for a version that
uses a variable number of arguments rather than an argument list.

3.2.2 Repositioning an ostream

You can control the output position (on output streams that actually support positions,
typically �les) with these methods:

Methodstreampos ostream::tellp ()
Return the current write position in the stream.

Methodostream& ostream::seekp (streampos loc)
Reset the output position to loc (which is usually the result of a previous call to
ostream::tellp). loc speci�es an absolute position in the output stream.

Methodostream& ostream::seekp (streamoff loc, rel)
Reset the output position to loc, relative to the beginning, end, or current output posi-
tion in the stream, as indicated by rel (a value from the enumeration ios::seekdir):

beg Interpret loc as an absolute o�set from the beginning of the �le.

cur Interpret loc as an o�set relative to the current output position.

end Interpret loc as an o�set from the current end of the output stream.



Chapter 3: Stream Classes 13

3.2.3 Miscellaneous ostream utilities

You may need to use these ostream methods for housekeeping:

Methodostream& ush ()
Deliver any pending bu�ered output for this ostream.

Methodint ostream::opfx ()
opfx is a pre�x method for operations on ostream objects; it is designed to be called
before any further processing. See ostream::osfx for the converse.

opfx tests that the stream is in state good, and if so ushes any stream tied to this
one.

The result is 1 when opfx succeeds; else (if the stream state is not good), the result
is 0.

Methodvoid ostream::osfx ()
osfx is a suÆx method for operations on ostream objects; it is designed to be called
at the conclusion of any processing. All the ostream methods end by calling osfx.
See ostream::opfx for the converse.

If the unitbuf ag is set for this stream, osfx ushes any bu�ered output for it.

If the stdio ag is set for this stream, osfx ushes any output bu�ered for the C
output streams `stdout' and `stderr'.

3.3 Managing input streams: class istream

Class istream objects are specialized for input; as for ostream, they are derived from
ios, so you can use any of the general-purpose methods from that base class. Declarations
for this class also come from `iostream.h'.

Constructoristream::istream ()
When used without arguments, the istream constructor simply allocates a new ios

object and initializes the input counter (the value reported by istream::gcount) to
0.

Constructoristream::istream (streambuf *sb [, ostream tie])
You can also call the constructor with one or two arguments. The �rst argument
sb is a streambuf*; if you supply this pointer, the constructor uses that streambuf
for input. You can use the second optional argument tie to specify a related output
stream as the initial value for ios::tie.

If you give the istream a streambuf explicitly, using this constructor, the sb is not

destroyed (or deleted or closed) when the ostream is destroyed.



14 The GNU C++ Iostream Library

3.3.1 Reading one character

Use these methods to read a single character from the input stream:

Methodint istream::get ()
Read a single character (or EOF) from the input stream, returning it (coerced to an
unsigned char) as the result.

Methodistream& istream::get (char& c)
Read a single character from the input stream, into &c.

Methodint istream::peek ()
Return the next available input character, but without changing the current input
position.

3.3.2 Reading strings

Use these methods to read strings (for example, a line at a time) from the input stream:

Methodistream& istream::get (char* c, int len [, char delim])
Read a string from the input stream, into the array at c.

The remaining arguments limit how much to read: up to `len-1' characters, or up to
(but not including) the �rst occurrence in the input of a particular delimiter character
delim|newline (\n) by default. (Naturally, if the stream reaches end of �le �rst, that
too will terminate reading.)

If delim was present in the input, it remains available as if unread; to discard it
instead, see iostream::getline.

get writes `\0' at the end of the string, regardless of which condition terminates the
read.

Methodistream& istream::get (streambuf& sb [, char delim])
Read characters from the input stream and copy them on the streambuf object sb.
Copying ends either just before the next instance of the delimiter character delim

(newline \n by default), or when either stream ends. If delim was present in the
input, it remains available as if unread.

Methodistream& istream::getline (charptr, int len [, char delim])
Read a line from the input stream, into the array at charptr. charptr may be any of
three kinds of pointer: char*, unsigned char*, or signed char*.

The remaining arguments limit how much to read: up to (but not including) the �rst
occurrence in the input of a line delimiter character delim|newline (\n) by default,
or up to `len-1' characters (or to end of �le, if that happens sooner).

If getline succeeds in reading a \full line", it also discards the trailing delimiter
character from the input stream. (To preserve it as available input, see the similar
form of iostream::get.)



Chapter 3: Stream Classes 15

If delim was not found before len characters or end of �le, getline sets the ios::fail
ag, as well as the ios::eof ag if appropriate.

getline writes a null character at the end of the string, regardless of which condition
terminates the read.

Methodistream& istream::read (pointer, int len)
Read len bytes into the location at pointer, unless the input ends �rst.

pointer may be of type char*, void*, unsigned char*, or signed char*.

If the istream ends before reading len bytes, read sets the ios::fail ag.

Methodistream& istream::gets (char **s [, char delim])
A gnu extension, to read an arbitrarily long string from the current input position
to the next instance of the delim character (newline \n by default).

To permit reading a string of arbitrary length, gets allocates whatever memory is
required. Notice that the �rst argument s is an address to record a character pointer,
rather than the pointer itself.

Methodistream& istream::scan (const char *format ...)
A gnu extension, similar to fscanf(�le, format, ...). The format is a scanf-style
format control string, which is used to read the variables in the remainder of the
argument list from the istream.

Methodistream& istream::vscan (const char *format, va_list args)
Like istream::scan, but takes a single va_list argument.

3.3.3 Repositioning an istream

Use these methods to control the current input position:

Methodstreampos istream::tellg ()
Return the current read position, so that you can save it and return to it later with
istream::seekg.

Methodistream& istream::seekg (streampos p)
Reset the input pointer (if the input device permits it) to p, usually the result of an
earlier call to istream::tellg.

Methodistream& istream::seekg (streamoff o�set, ios::seek_dir ref )
Reset the input pointer (if the input device permits it) to o�set characters from the
beginning of the input, the current position, or the end of input. Specify how to
interpret o�set with one of these values for the second argument:

ios::beg Interpret loc as an absolute o�set from the beginning of the �le.

ios::cur Interpret loc as an o�set relative to the current output position.

ios::end Interpret loc as an o�set from the current end of the output stream.



16 The GNU C++ Iostream Library

3.3.4 Miscellaneous istream utilities

Use these methods for housekeeping on istream objects:

Methodint istream::gcount ()
Report how many characters were read from this istream in the last unformatted
input operation.

Methodint istream::ipfx (int keepwhite)
Ensure that the istream object is ready for reading; check for errors and end of �le
and ush any tied stream. ipfx skips whitespace if you specify 0 as the keepwhite

argument, and ios::skipws is set for this stream.

To avoid skipping whitespace (regardless of the skipws setting on the stream), use 1
as the argument.

Call istream::ipfx to simplify writing your own methods for reading istream ob-
jects.

Methodvoid istream::isfx ()
A placeholder for compliance with the draft ansi standard; this method does nothing
whatever.

If you wish to write portable standard-conforming code on istream objects, call isfx
after any operation that reads from an istream; if istream::ipfx has any special
e�ects that must be cancelled when done, istream::isfx will cancel them.

Methodistream& istream::ignore ([int n] [, int delim])
Discard some number of characters pending input. The �rst optional argument n

speci�es how many characters to skip. The second optional argument delim speci�es
a \boundary" character: ignore returns immediately if this character appears in the
input.

By default, delim is EOF; that is, if you do not specify a second argument, only the
count n restricts how much to ignore (while input is still available).

If you do not specify how many characters to ignore, ignore returns after discarding
only one character.

Methodistream& istream::putback (char ch)
Attempts to back up one character, replacing the character backed-up over by ch.
Returns EOF if this is not allowed. Putting back the most recently read character is
always allowed. (This method corresponds to the C function ungetc.)

Methodistream& istream::unget ()
Attempt to back up one character.



Chapter 3: Stream Classes 17

3.4 Input and output together: class iostream

If you need to use the same stream for input and output, you can use an object of the
class iostream, which is derived from both istream and ostream.

The constructors for iostream behave just like the constructors for istream.

Constructoriostream::iostream ()
When used without arguments, the iostream constructor simply allocates a new ios

object, and initializes the input counter (the value reported by istream::gcount) to
0.

Constructoriostream::iostream (streambuf* sb [, ostream* tie])
You can also call a constructor with one or two arguments. The �rst argument sb
is a streambuf*; if you supply this pointer, the constructor uses that streambuf for
input and output.

You can use the optional second argument tie (an ostream*) to specify a related
output stream as the initial value for ios::tie.

As for ostream and istream, iostream simply uses the ios destructor. However, an
iostream is not deleted by its destructor.

You can use all the istream, ostream, and ios methods with an iostream object.



18 The GNU C++ Iostream Library



Chapter 4: Classes for Files and Strings 19

4 Classes for Files and Strings

There are two very common special cases of input and output: using �les, and using
strings in memory.

libio de�nes four specialized classes for these cases:

ifstream Methods for reading �les.

ofstream Methods for writing �les.

istrstream

Methods for reading strings from memory.

ostrstream

Methods for writing strings in memory.

4.1 Reading and writing �les

These methods are declared in `fstream.h'.

You can read data from class ifstream with any operation from class istream. There
are also a few specialized facilities:

Constructorifstream::ifstream ()
Make an ifstream associated with a new �le for input. (If you use this version of
the constructor, you need to call ifstream::open before actually reading anything)

Constructorifstream::ifstream (int fd)
Make an ifstream for reading from a �le that was already open, using �le descriptor
fd. (This constructor is compatible with other versions of iostreams for posix systems,
but is not part of the ansi working paper.)

Constructorifstream::ifstream (const char* fname [, int mode [, int prot]])
Open a �le *fname for this ifstream object.

By default, the �le is opened for input (with ios::in as mode). If you use this
constructor, the �le will be closed when the ifstream is destroyed.

You can use the optional argument mode to specify how to open the �le, by combining
these enumerated values (with `|' bitwise or). (These values are actually de�ned in
class ios, so that all �le-related streams may inherit them.) Only some of these
modes are de�ned in the latest draft ansi speci�cation; if portability is important,
you may wish to avoid the others.

ios::in Open for input. (Included in ansi draft.)

ios::out Open for output. (Included in ansi draft.)

ios::ate Set the initial input (or output) position to the end of the �le.

ios::app Seek to end of �le before each write. (Included in ansi draft.)



20 The GNU C++ Iostream Library

ios::trunc

Guarantee a fresh �le; discard any contents that were previously associ-
ated with it.

ios::nocreate

Guarantee an existing �le; fail if the speci�ed �le did not already exist.

ios::noreplace

Guarantee a new �le; fail if the speci�ed �le already existed.

ios::bin Open as a binary �le (on systems where binary and text �les have di�erent
properties, typically how `\n' is mapped; included in ansi draft).

The last optional argument prot is speci�c to Unix-like systems; it speci�es the �le
protection (by default `644').

Methodvoid ifstream::open (const char* fname [, int mode [, int prot]])
Open a �le explicitly after the associated ifstream object already exists (for instance,
after using the default constructor). The arguments, options and defaults all have
the same meanings as in the fully speci�ed ifstream constructor.

You can write data to class ofstream with any operation from class ostream. There are
also a few specialized facilities:

Constructorofstream::ofstream ()
Make an ofstream associated with a new �le for output.

Constructorofstream::ofstream (int fd)
Make an ofstream for writing to a �le that was already open, using �le descriptor fd.

Constructorofstream::ofstream (const char* fname [, int mode [, int

prot]])
Open a �le *fname for this ofstream object.

By default, the �le is opened for output (with ios::out as mode). You can use
the optional argument mode to specify how to open the �le, just as described for
ifstream::ifstream.

The last optional argument prot speci�es the �le protection (by default `644').

Destructorofstream::~ofstream ()
The �les associated with ofstream objects are closed when the corresponding object
is destroyed.

Methodvoid ofstream::open (const char* fname [, int mode [, int prot]])
Open a �le explicitly after the associated ofstream object already exists (for instance,
after using the default constructor). The arguments, options and defaults all have
the same meanings as in the fully speci�ed ofstream constructor.



Chapter 4: Classes for Files and Strings 21

The class fstream combines the facilities of ifstream and ofstream, just as iostream
combines istream and ostream.

The class fstreambase underlies both ifstream and ofstream. They both inherit this
additional method:

Methodvoid fstreambase::close ()
Close the �le associated with this object, and set ios::fail in this object to mark
the event.

4.2 Reading and writing in memory

The classes istrstream, ostrstream, and strstream provide some additional features
for reading and writing strings in memory|both static strings, and dynamically allocated
strings. The underlying class strstreambase provides some features common to all three;
strstreambuf underlies that in turn.

Constructoristrstream::istrstream (const char* str [, int size])
Associate the new input string class istrstream with an existing static string starting
at str, of size size. If you do not specify size, the string is treated as a NUL terminated
string.

Constructorostrstream::ostrstream ()
Create a new stream for output to a dynamically managed string, which will grow as
needed.

Constructorostrstream::ostrstream (char* str, int size [,int mode])
A new stream for output to a statically de�ned string of length size, starting at str.
You may optionally specify one of the modes described for ifstream::ifstream;
if you do not specify one, the new stream is simply open for output, with mode
ios::out.

Methodint ostrstream::pcount ()
Report the current length of the string associated with this ostrstream.

Methodchar* ostrstream::str ()
A pointer to the string managed by this ostrstream. Implies `ostrstream::freeze()'.

Note that if you want the string to be nul-terminated, you must do that yourself
(perhaps by writing ends to the stream).

Methodvoid ostrstream::freeze ([int n])
If n is nonzero (the default), declare that the string associated with this ostrstream
is not to change dynamically; while frozen, it will not be reallocated if it needs
more space, and it will not be deallocated when the ostrstream is destroyed. Use
`freeze(1)' if you refer to the string as a pointer after creating it via ostrstream

facilities.



22 The GNU C++ Iostream Library

`freeze(0)' cancels this declaration, allowing a dynamically allocated string to be
freed when its ostrstream is destroyed.

If this ostrstream is already static|that is, if it was created to manage an existing
statically allocated string|freeze is unnecessary, and has no e�ect.

Methodint ostrstream::frozen ()
Test whether freeze(1) is in e�ect for this string.

Methodstrstreambuf* strstreambase::rdbuf ()
A pointer to the underlying strstreambuf.



Chapter 5: Using the streambuf Layer 23

5 Using the streambuf Layer

The istream and ostream classes are meant to handle conversion between objects in
your program and their textual representation.

By contrast, the underlying streambuf class is for transferring raw bytes between your
program, and input sources or output sinks. Di�erent streambuf subclasses connect to
di�erent kinds of sources and sinks.

The gnu implementation of streambuf is still evolving; we describe only some of the
highlights.

5.1 Areas of a streambuf

Streambuf bu�er management is fairly sophisticated (this is a nice way to say \compli-
cated"). The standard protocol has the following \areas":

� The put area contains characters waiting for output.

� The get area contains characters available for reading.

The gnu streambuf design extends this, but the details are still evolving.

The following methods are used to manipulate these areas. These are all protected meth-
ods, which are intended to be used by virtual function in classes derived from streambuf.
They are also all ANSI/ISO-standard, and the ugly names are traditional. (Note that if
a pointer points to the 'end' of an area, it means that it points to the character after the
area.)

Methodchar* streambuf::pbase () const
Returns a pointer to the start of the put area.

Methodchar* streambuf::epptr () const
Returns a pointer to the end of the put area.

Methodchar* streambuf::pptr () const
If pptr() < epptr (), the pptr() returns a pointer to the current put position. (In
that case, the next write will overwrite *pptr(), and increment pptr().) Other-
wise, there is no put position available (and the next character written will cause
streambuf::overflow to be called).

Methodvoid streambuf::pbump (int N)
Add N to the current put pointer. No error checking is done.

Methodvoid streambuf::setp (char* P, char* E)
Sets the start of the put area to P, the end of the put area to E, and the current put
pointer to P (also).

Methodchar* streambuf::eback () const
Returns a pointer to the start of the get area.



24 The GNU C++ Iostream Library

Methodchar* streambuf::egptr () const
Returns a pointer to the end of the get area.

Methodchar* streambuf::gptr () const
If gptr() < egptr (), then gptr() returns a pointer to the current get position.
(In that case the next read will read *gptr(), and possibly increment gptr().)
Otherwise, there is no read position available (and the next read will cause
streambuf::underflow to be called).

Methodvoid streambuf:gbump (int N)
Add N to the current get pointer. No error checking is done.

Methodvoid streambuf::setg (char* B, char* P, char* E)
Sets the start of the get area to B, the end of the get area to E, and the current put
pointer to P.

5.2 Simple output re-direction by rede�ning overflow

Suppose you have a function write_to_window that writes characters to a window object.
If you want to use the ostream function to write to it, here is one (portable) way to do it.
This depends on the default bu�ering (if any).



Chapter 5: Using the streambuf Layer 25

� �

#include <iostream.h>
/* Returns number of characters successfully written to win. */
extern int write_to_window (window* win, char* text, int length);

class windowbuf : public streambuf {
window* win;

public:
windowbuf (window* w) { win = w; }
int sync ();
int overflow (int ch);
// Defining xsputn is an optional optimization.
// (streamsize was recently added to ANSI C++, not portable yet.)
streamsize xsputn (char* text, streamsize n);

};

int windowbuf::sync ()
{ streamsize n = pptr () - pbase ();

return (n && write_to_window (win, pbase (), n) != n) ? EOF : 0;
}

int windowbuf::overflow (int ch)
{ streamsize n = pptr () - pbase ();
if (n && sync ())
return EOF;

if (ch != EOF)
{
char cbuf[1];
cbuf[0] = ch;
if (write_to_window (win, cbuf, 1) != 1)
return EOF;

}
pbump (-n); // Reset pptr().
return 0;

}

streamsize windowbuf::xsputn (char* text, streamsize n)
{ return sync () == EOF ? 0 : write_to_window (win, text, n); }

int
main (int argc, char**argv)
{
window *win = ...;
windowbuf wbuf(win);
ostream wstr(&wbuf);
wstr << "Hello world!\n";

}

 	



26 The GNU C++ Iostream Library

5.3 C-style formatting for streambuf objects

The gnu streambuf class supports printf-like formatting and scanning.

Methodint streambuf::form (const char *format, ...)
Similar to fprintf(�le, format, ...). The format is a printf-style format control
string, which is used to format the (variable number of) arguments, printing the result
on the this streambuf. The result is the number of characters printed.

Methodint streambuf::vform (const char *format, va_list args)
Similar to vfprintf(�le, format, args). The format is a printf-style format control
string, which is used to format the argument list args, printing the result on the this
streambuf. The result is the number of characters printed.

Methodint streambuf::scan (const char *format, ...)
Similar to fscanf(�le, format, ...). The format is a scanf-style format control
string, which is used to read the (variable number of) arguments from the this

streambuf. The result is the number of items assigned, or EOF in case of input failure
before any conversion.

Methodint streambuf::vscan (const char *format, va_list args)
Like streambuf::scan, but takes a single va_list argument.

5.4 Wrappers for C stdio

A stdiobuf is a streambuf object that points to a FILE object (as de�ned by stdio.h).
All streambuf operations on the stdiobuf are forwarded to the FILE. Thus the stdiobuf
object provides a wrapper around a FILE, allowing use of streambuf operations on a FILE.
This can be useful when mixing C code with C++ code.

The pre-de�ned streams cin, cout, and cerr are normally implemented as stdiobuf

objects that point to respectively stdin, stdout, and stderr. This is convenient, but it
does cost some extra overhead.

If you set things up to use the implementation of stdio provided with this library, then
cin, cout, and cerr will be set up to use stdiobuf objects, since you get their bene�ts for
free. See Chapter 6 [C Input and Output], page 31.

5.5 Reading/writing from/to a pipe

The procbuf class is a gnu extension. It is derived from streambuf. A procbuf can
be closed (in which case it does nothing), or open (in which case it allows communicating
through a pipe with some other program).

Constructorprocbuf::procbuf ()
Creates a procbuf in a closed state.



Chapter 5: Using the streambuf Layer 27

Methodprocbuf* procbuf::open (const char *command, int mode)
Uses the shell (`/bin/sh') to run a program speci�ed by command.

If mode is `ios::in', standard output from the program is sent to a pipe;
you can read from the pipe by reading from the procbuf. (This is similar to
`popen(command, "r")'.)

Ifmode is `ios::out', output written to the procbuf is written to a pipe; the program
is set up to read its standard input from (the other end of) the pipe. (This is similar
to `popen(command, "w")'.)

The procbuf must start out in the closed state. Returns `*this' on success, and
`NULL' on failure.

Constructorprocbuf::procbuf (const char *command, int mode)
Calls `procbuf::open (command, mode)'.

Methodprocbuf* procbuf::close ()
Waits for the program to �nish executing, and then cleans up the resources used.
Returns `*this' on success, and `NULL' on failure.

Destructorprocbuf::~procbuf ()
Calls `procbuf::close'.

5.6 Backing up

The gnu iostream library allows you to ask a streambuf to remember the current
position. This allows you to go back to this position later, after reading further. You can
back up arbitrary amounts, even on unbu�ered �les or multiple bu�ers' worth, as long as
you tell the library in advance. This unbounded backup is very useful for scanning and
parsing applications. This example shows a typical scenario:



28 The GNU C++ Iostream Library

� �

// Read either "dog", "hound", or "hounddog".
// If "dog" is found, return 1.
// If "hound" is found, return 2.
// If "hounddog" is found, return 3.
// If none of these are found, return -1.
int my_scan(streambuf* sb)
{

streammarker fence(sb);
char buffer[20];
// Try reading "hounddog":
if (sb->sgetn(buffer, 8) == 8

&& strncmp(buffer, "hounddog", 8) == 0)
return 3;

// No, no "hounddog": Back up to 'fence'
sb->seekmark(fence); //
// ... and try reading "dog":
if (sb->sgetn(buffer, 3) == 3

&& strncmp(buffer, "dog", 3) == 0)
return 1;

// No, no "dog" either: Back up to 'fence'
sb->seekmark(fence); //
// ... and try reading "hound":
if (sb->sgetn(buffer, 5) == 5

&& strncmp(buffer, "hound", 5) == 0)
return 2;

// No, no "hound" either: Back up and signal failure.
sb->seekmark(fence); // Backup to 'fence'
return -1;

}

 	

Constructorstreammarker::streammarker (streambuf* sbuf )
Create a streammarker associated with sbuf that remembers the current position of
the get pointer.

Methodint streammarker::delta (streammarker& mark2)
Return the di�erence between the get positions corresponding to *this and mark2

(which must point into the same streambuffer as this).

Methodint streammarker::delta ()
Return the position relative to the streambu�er's current get position.

Methodint streambuf::seekmark (streammarker& mark)
Move the get pointer to where it (logically) was when mark was constructed.

5.7 Forwarding I/O activity

An indirectbuf is one that forwards all of its I/O requests to another streambuf.

An indirectbuf can be used to implement Common Lisp synonym-streams and two-
way-streams:



Chapter 5: Using the streambuf Layer 29

class synonymbuf : public indirectbuf {
Symbol *sym;
synonymbuf(Symbol *s) { sym = s; }
virtual streambuf *lookup_stream(int mode) {

return coerce_to_streambuf(lookup_value(sym)); }
};



30 The GNU C++ Iostream Library



Chapter 6: C Input and Output 31

6 C Input and Output

libio is distributed with a complete implementation of the ANSI C stdio facility. It is
implemented using streambuf objects. See Section 5.4 [Wrappers for C stdio], page 26.

The stdio package is intended as a replacement for the whatever stdio is in your C
library. Since stdio works best when you build libc to contain it, and that may be
inconvenient, it is not installed by default.

Extensions beyond ansi:

� A stdio FILE is identical to a streambuf. Hence there is no need to worry about
synchronizing C and C++ input/output|they are by de�nition always synchronized.

� If you create a new streambuf sub-class (in C++), you can use it as a FILE from C.
Thus the system is extensible using the standard streambuf protocol.

� You can arbitrarily mix reading and writing, without having to seek in between.

� Unbounded ungetc() bu�er.



32 The GNU C++ Iostream Library



Index 33

Index

(
() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

>

>> on istream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

<

<< on ostream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

B
badbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

beg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C
cerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

cin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

class fstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

class fstreambase . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

class ifstream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

class istrstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

class ostream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

class ostrstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

class strstream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

class strstreambase . . . . . . . . . . . . . . . . . . . . . . . . . 21

class strstreambuf . . . . . . . . . . . . . . . . . . . . . . . . . . 21

cout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

cur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

D
dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

destructor for iostream . . . . . . . . . . . . . . . . . . . . . . 17

E
end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

endl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

eofbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

F
failbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

flush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 13

fstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

fstreambase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

fstreambase::close . . . . . . . . . . . . . . . . . . . . . . . . . 21

G
get area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

goodbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

H
hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I
ifstream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ifstream::ifstream . . . . . . . . . . . . . . . . . . . . . . . . . 19

ifstream::open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ios::~ios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ios::app. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ios::ate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ios::bad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ios::beg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ios::bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ios::bitalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ios::clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ios::cur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ios::dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ios::end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ios::eof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ios::fail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ios::fill. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ios::fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 8

ios::good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ios::hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ios::in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ios::internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::ios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ios::iword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ios::left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::nocreate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ios::noreplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ios::oct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ios::out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



34 The GNU C++ Iostream Library

ios::precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ios::pword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ios::rdbuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ios::rdstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ios::right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::scientific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::seekdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ios::set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ios::setf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ios::setstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ios::showbase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::showpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::showpos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::skipws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::stdio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::sync_with_stdio. . . . . . . . . . . . . . . . . . . . . . . 11

ios::tie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ios::trunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ios::unitbuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::unsetf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ios::uppercase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ios::width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ios::xalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

iostream destructor . . . . . . . . . . . . . . . . . . . . . . . . . 17

iostream::iostream . . . . . . . . . . . . . . . . . . . . . . . . . 17

istream::gcount . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

istream::get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

istream::getline . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

istream::gets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

istream::ignore . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

istream::ipfx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

istream::isfx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

istream::istream . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

istream::peek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

istream::putback . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

istream::read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

istream::scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

istream::seekg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

istream::tellg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

istream::unget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

istream::vscan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

istrstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21

istrstream::istrstream . . . . . . . . . . . . . . . . . . . . 21

O
oct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ofstream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ofstream::~ofstream . . . . . . . . . . . . . . . . . . . . . . . . 20

ofstream::ofstream . . . . . . . . . . . . . . . . . . . . . . . . . 20

ofstream::open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ostream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ostream::form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ostream::opfx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ostream::osfx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ostream::ostream . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ostream::put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ostream::seekp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ostream::tellp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ostream::vform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ostream::write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ostrstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21

ostrstream::freeze . . . . . . . . . . . . . . . . . . . . . . . . . 21

ostrstream::frozen . . . . . . . . . . . . . . . . . . . . . . . . . 22

ostrstream::ostrstream . . . . . . . . . . . . . . . . . . . . 21

ostrstream::pcount . . . . . . . . . . . . . . . . . . . . . . . . . 21

ostrstream::str . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

P
procbuf::~procbuf . . . . . . . . . . . . . . . . . . . . . . . . . . 27

procbuf::close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

procbuf::open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

procbuf::procbuf . . . . . . . . . . . . . . . . . . . . . . . 26, 27

put area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

S
setbase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

setfill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

setprecision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9

setting ios::precision . . . . . . . . . . . . . . . . . . . . . . . 7

setting ios::width . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

setw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9

streambuf::eback . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

streambuf::egptr . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

streambuf::epptr . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

streambuf::form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

streambuf::gptr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

streambuf::pbase . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

streambuf::pbump . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

streambuf::pptr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

streambuf::scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

streambuf::seekmark . . . . . . . . . . . . . . . . . . . . . . . . 28

streambuf::setg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

streambuf::setp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



Index 35

streambuf::vform . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

streambuf::vscan . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

streambuf:gbump . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

streammarker::delta . . . . . . . . . . . . . . . . . . . . . . . . 28

streammarker::streammarker . . . . . . . . . . . . . . . . 28

strstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

strstreambase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

strstreambase::rdbuf. . . . . . . . . . . . . . . . . . . . . . . 22

strstreambuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

W

ws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



36 The GNU C++ Iostream Library



i

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Licensing terms for libio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Operators and Default Streams . . . . . . . . . . . . . 3

3 Stream Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Shared properties: class ios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Checking the state of a stream . . . . . . . . . . . . . . . . . . . 5
3.1.2 Choices in formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Changing stream properties using manipulators . . . 9
3.1.4 Extended data �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.5 Synchronizing related streams . . . . . . . . . . . . . . . . . . 11
3.1.6 Reaching the underlying streambuf . . . . . . . . . . . . . 11

3.2 Managing output streams: class ostream . . . . . . . . . . . . . . . . . 11
3.2.1 Writing on an ostream . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Repositioning an ostream . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Miscellaneous ostream utilities . . . . . . . . . . . . . . . . . 13

3.3 Managing input streams: class istream . . . . . . . . . . . . . . . . . . 13
3.3.1 Reading one character . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Reading strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Repositioning an istream . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 Miscellaneous istream utilities . . . . . . . . . . . . . . . . . 16

3.4 Input and output together: class iostream . . . . . . . . . . . . . . . 17

4 Classes for Files and Strings . . . . . . . . . . . . . . . 19
4.1 Reading and writing �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Reading and writing in memory . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Using the streambuf Layer . . . . . . . . . . . . . . . . . 23
5.1 Areas of a streambuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Simple output re-direction by rede�ning overflow . . . . . . . . 24
5.3 C-style formatting for streambuf objects. . . . . . . . . . . . . . . . . 26
5.4 Wrappers for C stdio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Reading/writing from/to a pipe . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 Backing up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.7 Forwarding I/O activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 C Input and Output . . . . . . . . . . . . . . . . . . . . . . 31

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



ii The GNU C++ Iostream Library


