Total/db User’s Guide

LynxOS Release 4.0
DOC-0409-00

Product names mentioned in Total/db User’s Guide are trademarks of their respective manufacturers and are used here
for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of Total/db User’s Guide may be reproduced, stored in aretrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the prior written
permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; al such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in al cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

Contents

PREFACE oottt r et e e e ettt e e n e e e e e et e e e e e e e e e nn e Vil
FOr More INfOrmationcoveieineieee e e vii

Typographical CONVENLIONScccceieriererieseeieseeieeeseste e sre e seesesaeseeseenens viii

SPECIAl NOLES ...ttt bbbt e e iX

QL= g 0= S U oo o iX

LynuxWorks U.S. HEBdQUAIErSccceovveeeevereseneseseeseeesesesesseee s iX

LYNUXWOIKS EUFOPE ..ot iX

WOrId WIdE WED ... e iX

CHAPTER 1 TOTAL/DB OVERVIEWeuttttiiitiaaeaeeeas ettt e eeeeeaa e e e e aaebibeaeeeeeaaeaaeaasannneenaees 1
INncluded COMPONENEScccoiririirieieeie et e 1

BB . bbb et 1

GDBSEIVEN ..ottt sttt st sttt ettt e 1

INSIGNE oo bbb 2

SO bbb 2

SKDB ettt bbb 2

User Process Debugging vs. Kernel/Device Driver Debuggingcceevvveeene 2

Local Debugging versus Remote Debuggingcoeeeereereerererieresesese e 3

[0 To I DT o 10 To o 1 oo [4

REMOLE DEDUGGING .vvvevvereeerre et s 4

Total/db Configuration OPLiONScceeeereeinereseses e 7

SUPPOEd LBNQUAGESeoveeeeeriirieienie et see st see e s esse e ssesbe e e 8

o010/ =X oo L= T 9

CHAPTER 2 DEBUGGING WITH GDB.. ..ottt 11
The GNU Source Level DEDUGUETceevveverire e 11

GDB @S Free SOftWarecevveeerieiiriecrienesees e 11

LynxOS Total/db User’s Guide i

Contents

CONrolliNg GDBcviveieiiererieee st 12
PrOMIPE <. e e eae e b e ere e 12
ComMaNd EitiNgcoveeeeiirireeerereree e 12
ComMMANA HIiSLOMY ...t e 13
SCIEEN SIZE ..ottt 14
NUMDEFS ..t 15
Optional Warnings and MESSAJESccveerrrereererieenmeieseeeseeeseeesnenens 16

Getting In and Out Of GDBcccoieeeeecre e 17
INVOKING GDB ...ttt e 17
QUILEING GDB ...t s 21
Shell COMMENGSceevieiieeeeeee e 22

GDB COMMANGSecvieeieieeesieirieesie et sr e re e ene e 22
(@001 4 F>Ta 0 IS 1= R 22
Command COMPIELIONceeererirere e 23
(€7 11110 [= o O 25

Running Programs under GDB ..o 27
Compiling for DEDUGQINGcveeeereriereeenere e e 27
Starting Y our PrOgramccooeeereeineeeseee e e 28
Your Program’S ATQUIMENLSccceiveeeeneeeineeeieeseeeseeseesiessiesseeseesssassenns 30
Your Program’s ENVIFONMENEcoecerereneeieneseeesesie e e 30
Y our Program’s Working DIreCtoryccccoevereneeeeneeieeiees e 31
Y our Program’s Input and OUEPULcoeereereeieererienenene e 32
Debugging an Already-Running ProCESSccoeeerrerrnierieneeieseneneens 32
Killing the Child PrOCESSccoiuirerieierirere e 33
Debugging Programs with Multiple Threadscccocvvniiinincienennn. 34
Debugging Programs with Multiple Processescocooereveneneieenennns 35

Stopping anNd CONLINUINGecveiveeeireeeeeeere e e s e e srenees 36
Breakpoints, Watchpoints, and EXCEPLIONScccoeeeeirenineniencneiens 36
ContinUiNg and SEEPPING ...veeververuerierieriesieieseereeiee e sre e s see e 50
SIGNAIS e e et b e eee s 53
Stopping and Starting Multithread Programscccoeeveveneieiceccnenne 55

EXamining the SEACKcccoeiierieceees e 56
SEECK FIaMES ..ot 57
BBCKITACESovcveiiresreee e 58
SEleCtiNg @FTamMEeocvvveeee e 59
Information about @ FTaMEccovveiirreec e 60
MIPS Machines and the Function Stackccccovvreeinnnecennennes 61

EXamining SOUICE FIlES ..ot e e 62
Printing SOUrCE LINESccuiiviieieeeeeeeee st 62
Searching SOUICE FIIEScouiiiieeeeee s 65

ii LynxOS Total/db User’s Guide

Specifying SOUrce DIFeCLONESccvvveeereeeeereee e e 65

Source and Maching CoOE ..o s 66
EX@MINING D@LAcccoueiuiiieiiiiirie e e e 67
0= o] < S 68
Program VariablScccoveeeiiece s 69
F N 4) ot AN 4 T 70
L@ 011 01 e 1 7= K SRS 71
EXamining MEMOIYcocevvireeiereeecteeeeeseste s see e e e nesne s 72
P10 0 (ol DT o] - Y 74
Print SEINGS ..veoveveeiereeeee s e ene s 76
V2= [0 LC o TE o] Y/ 82
ConvenienCe Variables ... s 83
0 S T 84
Floating Point HardWarecccceveeevereeieeniese st sese e 86
Using GDB with Different Languagesccceererenerenieniene e 86
Switching between Source Languagescccverererereerieeenesesesiesees 87
Displaying the LangUageccocoeeerereeerenereesese e 89
Type and Range CheCKiNgcoceouerrierierere et 89
SUPPOEd LABNQUAGESeevereierierieniesie ettt e b e 92
Examining the Symbol Tablecccceveeiecrececece e 99
AREIING EXECULTON ...t s 102
Assignment to Variables ..o 103
Continuing at a Different Address ... veieveneneie e 103
Giving Your Program aSignalcccceeeerinini e 104
Returning from aFUNCLiONcccoceiiiiiiineee e 105
Calling Program FUNCLIONScooveiirereeeesenie e e 105
PatChing Programsccoeeriienire e 106
GDB FilES ..ttt 106
Commands to SPeCify FIlEScoooiieire e 106
Errors Reading Symbol Files ..o 110
Specifying aDebugging Targetcccoereerrieeie e 112
F o (N I 0 1= R 112
Commands for Managing Targetsccoovvverererereeeseerese e 113
RemMOote DEDUGING ..vvvverereireee e s 114
Stored ComMMANd SEQUENCESovvirieriereeiereereereeeeiesesie e s seeee s 116
User-Defined COMMEANGScoeieiieiiiinieieeeseee e 116
User-Defined Command HOOKScccoirerinene e 118
ComMMEN FIlES ... e 118
Commands for Controlled OULPULccoererererenee e 119

LynxOS Total/db User’s Guide iii

Contents

CHAPTER 3

Using GDB under GNU EMBEESccevveeeieeeireeesie s seesieeesaeeeeseesesressenns 120
Command Line EAITINGcocovirireiiee e 124
Introduction to Lin€ EAItiNgccceeveeeereresire e 124
Readling INtEractionoccceveirieninrinse e 124
Readline INIt FIlE ..o e 127
Using HisStory INteraCtivelycooeeeeirninninnreeseese s 134
HIStOry INtEraCtioncc.ooieueeieieeeeeee e e 135
LYNXOS GDB ENHANCEMENTSuuititieeerieeeeasaesiiirnreeeeeenesaes s s snnsnenneees 137
OVEIVIBIW ..ttt ettt e 137
Debugging POSIX Threadsccccceveeeereeeriie e see e s 138
Understanding Thread NUMDErS ..o 138
Browsing and Switching Threads ... 138
Setting aBreakpointcccieeeririre e 139
ResUMING TAr€AAScccoeiiiieieieeere e 140
Debugging Embedded Applications Remotelyccocveevvvicenivnievvnnniniens 140
Using the Target Commandccocueoereeenieeneenieere s 141
Debugging REMOLE TArGELSovevvevereeeriee e 142
Supported Protocols for Remote and Extended-Remote Targets.......... 142
Starting the ReMOte Targetcccoeeveerieeiee e 145
Target’ SENVIFONMENEcooiiiiirre e 148
Postmortem Debugging of Dynamically Linked Programscccccceeue... 148
Debugging Shared Libraries ... 148
Creating a Shared Library for Debugging PUrpOSESccccevveveveenenene 149
Loading Shared Library Symbol Informationccoceeveevevvvnininnnnns 149
Deferred BreakpointScoicceeeeeeeereneseseseseeseesie e seeseeese e s s s 150
Shared Library File Path Names ... 153
SYMBOI TADIE ..o 157
Single-Stepping into a Shared Library FUNCLIONccccooeiiniiiicicnene 157
Summary of Additional Commands for Shared Library Support 158
Debugging Kernel/Device DIIVELS ... 158
S0 (0T 1= 0] £ 158
Building aKernel for Debug PUrPOSESccocvvvvvrereeneierseee e 159
Debugging the KErNEl ... 159
Loading Device Drivers Dynamicallycccvvevvivvieneneserncecce s 163
Raw SKDB COMMAENGScoereriereerereee e 164
PrOXY SEIVEL .ottt et s e e b nne e ea 165
SYNEBX ettt ettt sttt se ettt b e eb e b e ae e e e anene e sneeneas 166

[101S = 1 o) o TSRS 166

v LynxOS Total/db User’s Guide

CHAPTER 4

CHAPTER 5

General Tips and Miscellan@ouS ISSUESc.ccoeveeeeereeneseseesieseeseeeeeesennns 168

Reading and Writing Large Memory BIOCKScccccvereieiieniciiciinen 168
Browsing Target Process' S ENVironmentcoccceceveeeeiniennenesicnienne 169
Executing Remote Shell Commandscococviienininenenencee e 169
Function Callsin a Multithreaded Processccccooevenereiecnrcscnine 170
Functions Calls after CLrl+C ..o 171
Resuming after a Blocking System Call ... 171
Debugging a Signal-INtensive ProCESSccocvererenienesenie s 172
DEBUGGING WITH TOTAL/DBevtiieiiiiiieesiiiteeeessiiiee et ee e s eenbee e s 173
SOUFCE WINUOW ...ttt st e 174
TOOIDEr BULLONS ...c.evieiiieicriecrie s 180
Special Display Pane FEaLUIEScccvvvreverereeeeeseee e e 182
Using the Mouse in the Display Paneccccoovivvevvniecenesceecesesennens 182
Below the Horizontal Scroll bar ... 186
Dialog boxes for the Source Windowccccvvvvenevvnecneneeneeeenenens 189
SEACK WINAOW ...ttt s e en s 197
REGISLEIS WINAOW ...ttt st s e 198
MEMOIY WINAOWeeeveeiiieiiisiesieseeie e sesre et s ettt en s snenseens 200
Memory Preferences Dial0g BOXccocoeereierrieeineescse e 201
Watch EXPressions WintOWccccceevereienesnneseeeseseesesesse e sseseesneseens 202
Add WatCh BUITON ..o 204
WatChing REGISLENSeiueeiriiiriirrerres e 204
Casting Pointers in the Watch Expressions Windowcccceeevevene. 204
Local VariableS WINCOWccccciririiiiierieee et 205
BreakpoiNtS WINAOWcccocveeiiiiisie et sseete s e 206
CONSOIE WINAOW ...ttt et s eb e 209
The Function Browser WindOWc.ccceeeriienenenienee e 210
HEIP WINCOW ..ottt s e 213
Tutorials for Debugging with INSIght ..o 215
Initializing a Target Executable File ... 215
Console Window with Initial Commandsccoeieveirinienienenene, 216
Setting Breakpoints and Viewing Local Variablesccccoceeeieenne. 218
SIMPLE KERNEL DEBUGGER - SKDB......coiiiiiiiiiiiiiiiie e 223
OVEIVIBIW <.ttt sttt et sttt b e bbb bbbt 223
Installing/ReEMOVING SKDBcccovviiiviiiesireerieeeese st 224
INStAliNG SKDBooviiiiiriiirieistee et 224

LynxOS Total/db User’s Guide v

Contents

REMOVING SKDBcviiicie et s 224
USING SKDB ...oviictiieeiisieiesieie sttt et ssesessesessenes 224
S N = o 1] o 224
Starting SKDB Automatically after aKernel Crash or Panic 225
Breaking into SKDB With HOt K&yccvvvevvvinesescsceee e 225
Kernel Status DiSPlayc.cccveerereiresieneerineesese e se s eseeseenesseeneeneens 226
Kernel Status RediSplayccccvvvveiveiriererieeerir e 227
Stack TraCe DiSPlay ...viveeverereereeerieeee s ee st e st s se e aere e s 227
Verbose TraCe MOUEcovevviiriirirere e 227
Process, Thread, and Other Displaysccccceevvverivnieveniere e 227
Resuming the KErEl ..o 227
Setting BreakpPointSocvvcveceiereeieeerereeese s seese e s ssaesesseesessessessesnens 228

S gTe (TSRS (= o o o S 228
DiSASSEMBIY ..o e 228
Setting WatChPOINESccvvvveieiieeeeeerereee s se e ene s 229
SKDB COMMEANGScooueeiiciieiieiie ettt e e et re e e sae e sae e e aesneens 231
GENEIAl NOLES ...ttt et st re e eesre e resaee e 234
Parameter Validation ... e 234
Symbol INfOrMELIONceeeeeeeeecee e eneas 234
AdAress EXPrESSIONScccoeeerereeierieresieseesieseesseseesseeessesesssssesesssssenses 234
Default Virtual Address SPaceccvcevevereerereerneeseseeesese s sesseesnens 235
Remote Debugger Interface Protocolcccovvvvvveneneierncecce s 235
APPENDIX A GNU SOFTWARE LICENSE AGREEMENToiitriiiieeeeeteesessssiirenneeeeeeaeens 237
GNU General PUDIIC LICENSEc.cvveviiiirirrerrere e 237
Preamble ... e e 237
Terms & Conditions for Copying, Distribution and Modification 238
How to Apply these Termsto Y our New Programsc.cccceeeeennene 243
ContribUtorst0 GNU CCoooiiieiiecieteccte sttt ettt s 245
Protect Y our Freedom; Fight “Look And Feel”cccoviiiiiiiiieinenen 248
IND EX oo ettt et et —e—e e b e b e ——— e e e e e e e e e e e e aaeaaeeeeeeeeeeaeanarare 253

Vi LynxOS Total/db User’s Guide

— Preface

This Total/db guide contains information about debugging LynxOS targets with
the Total/db debugger. This manual assumes that you have a basic understanding
of debugging high-level language program and isintended primarily for devel opers
of LynxOS. A few tasksin this manual may requirer oot privileges on the host
system or other information that typically falls in the system administration
domain.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

¢ LynxOS Release Notes

This printed document contains late-breaking information about the
current release.

¢ LynxOSlInstallation Guide

This manual supportstheinitial installation and configuration of LynxOS
and the X Windows System.

e LynxOSUser’s Guide

This document contains information about basic system administration
and kernel level specifics of LynxOS. It contains a* Quick Starting”
chapter and covers a range of topics, including tuning system
performance and creating kernel images for embedded applications.

¢ Onlineinformation

Information about commands and utilitiesis provided onlinein text
format through the man command. For example, a user wanting

LynxOS Total/db User’s Guide Vii

Preface

information about the GNU compiler would use the following syntax,
where gcc isthe argument for information about the GNU compiler:

man gcc

More recent versions of the documentation listed here may also be found online.

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All referencesto file names and commands are case sensitive and should

viii

be typed accurately.

Kind of Text

Body text; italicized for enphasis, new
terms, and book titles

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data

Commands that need to be highlighted
within body text, or commands that must be
typed asis by the user are bol ded.

Text that represents avariable, such asafile
name or avalue that must be entered by the
user

Blocks of text that appear on the display
screen after entering instructions or
commands

Keyboard options, button names, and menu
sequences

LynxOS Total/db User’s Guide

Examples

Refer to the LynxOS User’s Guide.

I's

-1

myprog.c

/ dev/ nul |

| ogi n: nynanme
cd /usr/honme

cat filenane
mv filel file2

Loading file /tftpboot/shell.kdi
i nto 0x4000

File | oaded. Size is 1314816
Copyri ght 2000 LynuxWorks, Inc.
Al rights reserved.

LynxCS (ppc) created Mon Jul 17

17:50: 22 GMr 2000
user name:

Enter, Ctrl-C

Special Notes

Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

NOTE: These callouts note important or useful pointsin the text.

CAauTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products and LynuxWorks news groups.

LynuxWorks U.S. Headquarters

Internet: support @ nxw. com
Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: t ech_eur ope@ nxw. com
Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://ww. | ynuxwor ks. com

LynxOS Total/db User’s Guide iX

Preface

X LynxOS Total/db User’s Guide

w1 Jotal/db Overview

Total/db is arobust and powerful debugger tool chain that supports debugging of
various LynxOS targets. Its modularity allows a variety of configurations suitable
for the needs of particular applications.

Included Components

Total/db consists of the following component programs. Each program runs as a
separate process:

GDB

GDB isthe GNU debugger and isthe “core” of Total/db. LynuxWorks has
improved and enhanced GDB in avariety of ways for better debugging LynxOS
targets. Readers are advised to read Chapter 2, “ Debugging with GDB” on page 11
to get general familiarity with GDB and then the following chapter Chapter 3,
“LynxOS GDB Enhancements’ on page 137 for the LynuxWorks GDB-specific
issues.

GDBServer

GDBServer isapart of the GDB package. GDBServer serves as the remote debug
target agent for remote user process debugging. For its details, refer to Chapter 3,
“LynxOS GDB Enhancements’ on page 137.

LynxOS Total/db User’s Guide 1

Chapter 1 - Total/db Overview

Insight

Insight isthe graphical user interface (GUI) front-end for GDB. It runs under the
X-Window system and provides GDB with an intuitive GUI particularly good at
displaying complex data.

Insight provides only the user interface using GDB asthe“ debug engine.” It knows
very little about the debug target, is independent from the debug targets, and is
usable with avariety of different debug targets, including LynxOS applications.

SSPP

SSPPisasimple proxy server program that extends the physical reach of serial line
remote debugging using GDB. Refer to Chapter 3, “LynxOS GDB Enhancements”
on page 137.

SKDB

SKDB isasimple machine-level symbolic kernel debugger. SKDB provides
interactive accessto the LynxOS kernel internalsincluding device drivers. It works
as the debug agent for remote kernel debugging with GDB. Refer to Chapter 5,
“Simple Kernel Debugger - SKDB” on page 223.

User Process Debugging vs. Kernel/Device Driver
Debugging
LynxOS distinguishes CPU execution modes between user and supervisor. A user
process runs in user mode with limited privileges. Supervisor mode controls all

kernel activities including system calls, devices drivers, interrupt handling, and so
forth.

2 LynxOS Total/db User’s Guide

Local Debugging versus Remote Debugging

Due to the differences in exception handling and other operations between the two
modes, appropriate consideration must be given before selecting a debugging tool.
Table 1-1 lists the options available for each CPU execution mode.

Table 1-1: User Process Debugging vs. Kernel/Device Driver Debugging

Source level
Target \ Use Stand-alone Source level w/ GUI
User Process cDB! GDB Insight+GDB
Kernel/Device SKDB GDB+SKDB?2 Insight+GDB+SKDB
Driver

1. Same as source level
2. Remote debug only

NoTE: Total/db can debug only asingle process per debug session for user process
debugging. To debug multiple processes, do as many Total/db sessions asthe
number of target processesinvolved. Thereis no synchronization mechanism
provided between those sessions.

For kernel debugging, a single Total/db session controls and debugs the entire
kernel. It is possible to mix user process debugging and kernel debugging by
invoking multiple Total/db sessions. Severe interference by the kernel debugging
session with the user process debugging is anticipated because the entire operating
system will freeze whileit is at a kernel breakpoint.

Local Debugging versus Remote Debugging

LynxOS can be configured from an embedded system to a full-featured
workstation with different levels of available resources including the user interface
and file systems. If the target system has enough resources, it is possible to set up
the debugger on the same machine; thisis called local debugging. If thetarget is
poor in resources or if amore powerful or different host workstation is preferred,
perform remote debugging over a communication channel.

LynxOS Total/db User’s Guide 3

Chapter 1 - Total/db Overview

4

Local Debugging

User Process Debugging

GDB can run locally on the target machine for full source level debugging. Insight
can also run on the same machine to provide GUI.

Kernel/Device Driver Debugging

SKDB provides stand-alone machine level local debugging on a seria terminal
port or avideo console. There isno source level or GUI kernel debugging (see
Table 1-2).

Table 1-2: Local Debugging

Target \ Insight GDB SKDB
Component
User Process Optional for GUI Character-based N/A

source level

debugging
Kernel/Device N/A N/A Character-based
Driver machine level

debugging

Remote Debugging

Remote debugging uses two machines, one running the LynxOS target application
is called the debug target, the other running the debugger is called the debug host.
The debugger program on the debug host communicates with the remote debug
agent program on the debug target using a remote debug protocol through the
communication channel. The debug agent, the remote debug protocol, and the
communication channel differ between user process debugging and kernel/device
driver debugging.

Symbol Files

In remote debugging, both the debug host and the debug target must have the same
compiled binary image files. The debug host uses the files for obtaining symbols
and other debug information while the debug target uses the files for actual

LynxOS Total/db User’s Guide

User Process Debugging

program execution. The debug target’s files may be stripped of symbolsin order to
reduce their size, but they must be synchronized with the host’s files; otherwise,
the debugger may behave incorrectly or unexpectedly.

User Process Debugging
There are two choices for the communication channel:

e TCP/IP providesreliable and fast communication, but it may not be
available on simple embedded targets

¢ A serid line such asthe RS-232 may be available on most targets for
remote debugging but it is usually slower and less reliable than TCP/IP
communication. A serial line also limits the distance between the host
and target (see SSPP below).

With either communication channel, GDBServer must run on the target as the
remote debug agent. GDBServer isamuch smaller program (~100K B) than GDB
and it trandates the remote debug protocol into debug system calls and vise versa.
Once aremote debug communication is established, thereis no difference between
seria line debugging and TCP/IP debugging.

One can optionally run Insight as a GUI (graphical user interface). Insight can run
on the same host as the GDBs, or yet another host machine, in which case Insight
communicates with GDB though a TCP/IP channel. Because Insight uses the X-
Window, the display server (user interface) can be run on another machine.

Kernel/Device Driver Debugging

With Total/db, remote debugging is the only way to perform source level
debugging optionally with GUI. The debug target is connected through a serial
communication line such as the RS-232 to the debug host. There are no Ethernet or
other types of communications available for remote kernel debugging (except
SSPP). Like remote user process debugging, one can optionally use Insight for an
intuitive GUI. SKDB works as the remote debug agent on the target.

Using sspp to Extend Serial Line Remote Debugging

In either remote user process or remote kernel/device driver debugging, if the
remote debug target machine has only a serial port for communication with the
debug host, this usually limits the physical distance between the two machines.
LynuxWorks provides a solution to this: athird computer called a proxy server

LynxOS Total/db User’s Guide 5

Chapter 1 - Total/db Overview

running a server program sspp between the debug target and debug host will
convert the seria line connection to TCP/IP communication so that the host
machine can be located anywhere as long as there's a TCP/I P communication
channel between the debug host and the proxy server.

Cross Debugging

In remote debugging, the debug host does not necessarily have to have the same
CPU architecture and/or run the same operating system as the debug target. If the
debug host has a different CPU architecture and/or runs a different operating
system from the target, it is called cross debugging, whereas debugging with the
same CPU architecture and operating system is called native debugging. Choose
the cross debug host from the combinations of debug targets and hosts LynxOS
supports.

Table 1-3: Remote Debugging

Component Debug Host Proxy Server LynxOS Target
Target Insight GDB sspp Agent
User Process Optional for GUI Yes Optional GDBserver
Kernel/Device Driver | Optional for GUI Yes Optional SKDB

6 LynxOS Total/db User’s Guide

Total/db Configuration Options

Total/db Configuration Options

Total/db allows awide rage of flexibility in configuration, from stand-alone
character based debugging to fully networked GUI based debugging. The
following diagrams represent typical Total/db configurations.

Kernel Debugging

Machine Level Local Kernel / Device Driver Debugging:

Terminal f-Sefal__. | SKDB el
Line Driver
Remote Kernel / Device Driver Debugging:
X Server Insight | — IPC — GDB | |
LynxOS / Cross Host i
Serial | Line
| skpB |— Ipc —| Kemell
! Driver !
LynxOS Target
Remote Kernel / Device Driver Debugging with SSPP:
X Server Insight — IPC — GDB | |
LynxOS / Cross Host % TCP/IP
| Serial GDB | | Kernell ||
SSPP | Lne Server IPC Driver !
" Proxy Server LynxOS Target

Figure 1-1: Kernel Debugging Configurations

LynxOS Total/db User’s Guide 7

Chapter 1 - Total/db Overview

User Process Debugging

Local User Process Debugging:

ffffff

Target User

X Server Insight GDB | — IPC — i
Process ;
Remote User Process Debugging:
X Server Insight — IPC — GDB | |
LynxOS / Cross Host i Serial Line
I or TCP/IP
i GDB Target User 3
| — IPC — |
| Server Process !

LynxOS Target

Remote User Process Debugging with SSPP:

X Server Insight — IPC — GDB | |

i
LynxOS / Cross Host ' TCP/IP
i
S R
|
| SSPP | Serial GbB | PC Target User
| Line Server Process
|
Proxy Server LynxOS Target

Figure 1-2: User Process Debugging Configurations

Supported Languages

Total/db currently supports the C and C++ programming languages plus the
target’s assembly language only.

8 LynxOS Total/db User’s Guide

Source Code

Source Code

Parts of Total/db, namely GDB and Insight, are derived from public domain
software. Though it is possible to obtain and build the source code for these
programs, it may not work properly. Any such build is not supported by
LynuxWorks.

LynxOS Total/db User’s Guide 9

Chapter 1 - Total/db Overview

10 LynxOS Total/db User’s Guide

w2 DEbUgging with GDB

This chapter is compiled from GNU’s GDB manual: Debugging with GDB.
Although GDB is flexible enough to support debugging of avariety of targets
including different languages, LynuxWorks supports GDB only for debugging
LynxOS target applications and drivers written in C, C++ or assembly languagesin
a LynxOS devel oped environment.

Additionally, see “LynxOS GDB Enhancements’ on page 137 for extensions and
enhancements made to the GDB.

The GNU Source Level Debugger

The purpose of a debugger such as GDB isto allow you to see what is going on
inside another program while it executes—or what another program was doing at
the moment it crashed.

GDB can do four main thingsto help you catch bugs.
e Start your program, specifying anything that might affect its behavior.
e Make your program stop on specified conditions.
e Examine what has happened, when your program has stopped.

e Change thingsin your program, so you can experiment with correcting
the effects of one bug and go on to learn about ancther.

You can use GDB to debug programs written in C and C++.

GDB as Free Software

GDB isfree software, protected by the GNU General Public License (GPL). The
GPL givesyou the freedom to copy or adapt alicensed program—~but every person

LynxOS Total/db User’s Guide 11

Chapter 2 - Debugging with GDB

getting a copy also getswith it the freedom to modify that copy (which means that
they must get access to the source code), and the freedom to distribute further
copies. Typical software companies use copyrightsto limit your freedoms; the Free
Software Foundation uses the GPL to preserve these freedoms. Fundamentally, the
General Public License is alicense which says that you have these freedoms and
that you cannot take these freedoms away from anyone else.

Controlling GDB

12

You can alter the way GDB interacts with you by using the set command. For
commands controlling how GDB displays data, see “Print Settings’ on page 76.

Prompt

GDB indicates its readiness to read a command by printing a string called the
prompt. Thisstring is normally (gdb). You can change the prompt string with the
set prompt command. For instance, when debugging GDB with GDB, it isuseful to
change the prompt in one of the GDB sessions so that you can always tell which
one you are talking to.

NOTE: set pronpt no longer adds a space for you after the prompt you set. This
allows you to set a prompt which ends in a space or a prompt that does not.

set pronpt newpr onpt

Directs GDB to use newpr onpt asits prompt string henceforth.
show pr onpt

Printsaline of theform: Gdb’ s pronpt is: your-pronpt.

Command Editing

GDB reads its input commands via the readline interface. This GNU library
provides consistent behavior for programs which provide acommand line interface
to the user. Advantages are GNU Emacs-style or vi -style inline editing of
commands, csh-like history substitution, and a storage and recall of command

LynxOS Total/db User’s Guide

Command History

history across debugging sessions. You may control the behavior of command line
editing in GDB with theset command.

set editing
set editing on Enablecommand line editing (enabled by default).
set editing off Disablecommand line editing.

show edi ti ng Show whether command line editing is enabled.

Command History

GDB can keep track of the commands you type during your debugging sessions, so
that you can be certain of precisely what happened. Use the following commands
to manage the GDB command history facility.

set history fil enanme fnane

Set the name of the GDB command history file to fname. Thisisthefile
where GDB reads an initial command history list, and where it writes the
command history from this session when it exits. You can access thislist
through history expansion or through the history command editing characters
listed in the following. Thisfile defaults to the value of the GDBHI STFI LE
environment variable, orto . /. gdb_hi st ory if thisvariableis not set.

set history save
set history save on

Record command history in afile, whose name may be specified with the
set history fil ename command. By default, this option is disabled.

set history save off
Stop recording command history in afile.
set history size size

Set the number of commands which GDB keepsin its history list. This
defaults to the value of the environment variable HI STSI ZE, or to 256 if this
variableis not set. History expansion assigns special meaning to the
exclamation point character (!). Because ! isalsothelogical not operator
in C, history expansion is off by default. If you decide to enable history
expansion with the set history expansi on on command, you may
sometimes need to follow ! (whenitisused aslogical not , inan
expression) with a space or atab to prevent it from being expanded. The
readline history facilities do not attempt substitution on the strings

LynxOS Total/db User’s Guide 13

Chapter 2 - Debugging with GDB

14

I'= and ! , evenwhen history expansion is enabled. The commandsto
control history expansion are the following.

set history expansi on on
set history expansion

Enable history expansion. History expansion is off by default.
set history expansion off
Disable history expansion.

The readline code comes with more complete documentation of editing and
history expansion features. Users unfamiliar with GNU Emacs or vi may
wish to read it.

show hi story

show hi story fil enane
show hi story save
show hi story size
show hi story expansi on

These commands display the state of the GDB history parameters. show
history by itself displaysall four states.

show comrands

Display the last ten commands in the command history.
show commands n

Print ten commands centered on command number, n.
show comrands +

Print 10 commands just after the commands last printed.

Screen Size

Certain commands to GDB may produce large amounts of information output to
the screen. To help you read al of it, GDB pauses and asks you for input at the end
of each page of output. Use Return when you want to continue the output, or type q
to discard the remaining output. Also, the screen width setting determines when to
wrap lines of output. Depending on what is being printed, GDB triesto break the
line at areadable place, rather than simply letting it overflow onto the following
line.

LynxOS Total/db User’s Guide

Numbers

Normally, GDB knows the size of the screen from the termcap data base together
with the value of the TERMenvironment variable and thestty rowsand st ty

col s settings. If thisis not correct, you can override it with theset hei ght and
set w dth commands:.

set height |pp
show hei ght

set width cpl
show wi dt h

These set commands specify a screen height of | pp lines and a screen width
of cpl characters. The associated show commands display the current
settings. If you specify a height of zero lines, GDB does hot pause during
output no matter how long the output is. Thisis useful if output isto afile or
to an editor buffer.

Likewise, you can specify set wi dt h 0 to prevent GDB from wrapping its
output.

Numbers

You can always enter numbersin octal, decimal, or hexadecimal in GDB by the
usual conventions. Octal numbers begin with 0, decimal numbers end with aperiod
(), and hexadecimal numbers begin with Ox.

Numbersthat begin with none of these are, by default, entered in base 10; likewise,
the default format for displaying numbersis base 10. You can change the default
base for both input and output with the set radix command.

set input-radix base

Sets the default base for numeric input. Supported choices for base are
decimal 8, 10, or 16. base must itself be specified either unambiguously or
using the current default radix; for example, any of set radi x 012, set
radi x 10, 0rset radix Oxa setthe baseto decimal. On the other hand,
set radi x 10 leavestheradix unchanged no matter what it was.

set output-radi x base

Sets the default base for numeric display. Supported choices for base are
decimal 8, 10, or 16. base must itself be specified either unambiguously or
using the current default radix.

show i nput - radi x

Display the current default base for numeric input.

LynxOS Total/db User’s Guide 15

Chapter 2 - Debugging with GDB

16

show out put - radi x

Display the current default base for numeric display.

Optional Warnings and Messages

By default, GDB is silent about its inner workings. If you are running on a slow
machine, you may want to use the set verbose command. This makes GDB tell you
when it does alengthy internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those which announce that
the symbol table for a source file is being read; see symbol-file in “Commands to
Specify Files” on page 106.

set verbose on

Enables GDB output of certain informational messages.
set verbose off

Disables GDB output of certain informational messages.
show ver bose

Displays whether set verboseis on or off. By default, if GDB encounters
bugsin the symbol table of an object file, it issilent; but if you are debugging
acompiler, you may find thisinformation useful (see “Errors Reading
Symbol Files’ on page 110).

set conplaints limt

Permits GDB to output | i mi t complaints about each type of unusual
symbols before becoming silent about the problem. Set 1 i i t to zeroto
suppress al complaints; set it to alarge number to prevent complaints from
being suppressed.

conmandshow conpl ai nts
Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks what sometimes seemsto be alot of stupid
questions to confirm certain commands. For example, if you try to run a program
which is already running and you had entered a run, command you would see the
following message on screen:

(gdb) run
The program bei ng debugged has been started al ready.
Start it fromthe begi nning? (y or n)

LynxOS Total/db User’s Guide

Getting In and Out of GDB

If you are willing to unflinchingly face the consequences of your own commands,
you can disable this “feature” with the following commands.

set confirm of f

Disables confirmation requests.
set confirmon

Enables confirmation requests (the default).
show confirm

Displays state of confirmation requests.

Getting In and Out of GDB

The following material discusses invoking the debugger, choosing files, choosing
modes, stopping the debugger and some essential shell commands.

The essentials are starting GDB and quitting GDB.

« Typegdb to start the debugger in a graphical interface mode or use the
command, gdb - nw; to start the debugger in a non-window interface
mode.

e Typequit or usethe keystroke sequence, Ctrl-d, to exit.

Invoking GDB

Invoke GDB by using the command, gdb. Once started, GDB reads commands
from the terminal until you tell it to quit.

You can also run GDB with avariety of arguments and options, to specify more of
your debugging environment at the outset.

The command-line options described in the following discussions are designed to
cover avariety of situations; in some environments, effectively, some of these
options may be unavailable.

The usual way to start GDB is with one argument, specifying an executable
program that you want to debug.

gdb program

LynxOS Total/db User’s Guide 17

Chapter 2 - Debugging with GDB

18

You can also start with both an executable program and a core file specified
as the following exampl€e's input and variables show.

gdb program core

You can, instead, specify a process ID as a second argument, if you want to
debug a running process, for instance, as the following exampl€e's input and
variables show.

gdb program 1234

Your machine hereby attaches GDB to process 1234 (unless you also have a
file named 1234; GDB does check for acor e filefirst).

Taking advantage of the second command-line argument requires afairly complete
operating system; when you use GDB as a remote debugger attached to a bare
board, there may not be any notion of process, and there is often no way to get a
core dump.

You can run GDB without printing the front material, which describes GDB'’s non-
warranty, by specifying - si | ent :

gdb -silent

You can further control how GDB starts up by using command-line options. GDB
itself can remind you of the options available.

To display all available options and briefly describe their use, use
gdb - hel p asinput (gdb - h isashorter equivalent).

All options and command line arguments you give are processed in sequential
order. The order makes a difference when using the - x option.

Choosing Files

When GDB starts, it reads any arguments other than options as specifying an
executable file and core file or (process ID). Thisis the same asif the arguments
were specified by the - se and - ¢ options, respectively. (GDB reads the first
argument that does not have an associated option flag as equivalent to the - se
option followed by that argument; and the second argument that does not have an
associated option flag, if any, as equivalent to the - ¢ option followed by that
argument.)

Many options have both long and short forms; both are shown in Table 2-1. GDB
also recognizes the long formsif you truncate them, so long as enough of the

LynxOS Total/db User’s Guide

Choosing Files

option is present to be unambiguous. (If you prefer, you can flag option arguments
with -- rather than - , though we illustrate the more usual convention.)

Table 2-1: Choosing Files

Long Entry Form

Short Entry Form

Command Definition

-synbols file

-s file

Read symbol table from file, fi | e.

-exec file

-e file

Usefile fi | e, asthe executablefileto
execute when appropriate, and for
examining pure datain conjunction with a
core dump.

-se file

Read symbol table from file, fi | e, and use
it as the executablefile.

-core file

-c file

Usefile fi | e, asacore dump to examine.

-C nunber

Connect to process |D number, as with the
attach command (unlessthereisafilein
coredump format named number, in which
case - ¢ specifiesthat file as a core dump to
read).

-command file

-x file

Execute GDB commands from file fil e
(see“Command Files’ on page 118).

-directory
directory

-d directory

Add di r ect ory to the path to search for
source files.

-r

- r eadnow

Read each symbol file's entire symbol table
immediately, rather than the default, which
istoread it incrementally asit is needed.
This makes startup slower, but makes future
operations faster.

LynxOS Total/db User’s Guide 19

Chapter 2 - Debugging with GDB

Choosing Modes

You can run GDB in various aternative modes—for example, in batch mode or
quiet mode. Table 2-2 shows other available options.

Table 2-2: Choosing Modes

Long Entry Form

Short Entry Form

Command Definition

- nX

-n

Do not execute commands from any
initialization files (normally called

. gdbi ni t). Normally, the commands
in these files are executed after all the
command options and arguments have
been processed (see “Command Files’ on
page 118.

- qui et

Quiet. Do not print the introductory and
copyright messages. These messages are
also suppressed in batch mode.

-batch

Run in batch mode.

Exit with status O after processing al the
command files specified with -x and all
commands from initialization files, if not
inhibited with -n.

Exit with nonzero statusif an error occursin
executing the GDB commands in the
command files.

Batch mode may be useful for running GDB
as afilter. For example, to download and run
aprogram on another computer, in order to
make this more useful, the following
message does not issue when running in
batch mode (ordinarily, the message issues
whenever a program running under GDB
control terminates).

Program exited normally.

-cd directory

Run GDB using directory asits working
directory, instead of the current directory.

20 LynxOS Total/db User’s Guide

Quitting GDB

Table 2-2: Choosing Modes (Continued)

Long Entry Form

Short Entry Form

Command Definition

-full name

-f

GNU Emacs sets this option when it
runs GDB as a subprocess. It tells GDB
to output the full file name and line
number in a standard, recognizable
fashion each time a stack frameis
displayed (which includes each time
your program stops). This recognizable
format looks like two \ 032 characters,
followed by the file name, line number,
and character position separated by
colons, and a newline. The Emacs-to-
GDB interface program uses the two

\ 032 charactersasasignal to display
the source code for the frame.

-b bps

Set the line speed (baud rate or bits per
second) of any serial interface used by GDB
for remote debugging.

-tty device

Run using devi ce for your program’s
standard input and output.

Quitting GDB
quit

To exit GDB, use the quit command (abbreviated), or use an end-of-file
character (usually ctrl-d). If you do not supply expression, GDB will
terminate normally; otherwise it will terminate using the result of expression

as the error code.

Aninterrupt (often, ctrl-c) does not exit from GDB, but rather terminates the action
of any GDB command that isin progress and returns to GDB command level. Itis
safe to use the interrupt character at any time because GDB does not allow it to

take effect until atime when it is safe.

If you have been using GDB to control an attached process or device, you can
release it with the det ach command (see “ Debugging an Already-Running

Process’ on page 32).

LynxOS Total/db User’s Guide 21

Chapter 2 - Debugging with GDB

Shell Commands

If you need to execute occasional shel | commands during your debugging
session, thereis no need to leave or suspend GDB. Usetheshel | command to do
this.

shell command string

Invoke the standard shel | to execute conmand st ri ng. If it exists, the
environment variable shel | determines which shell to run. Otherwise GDB
uses/ bi n/ sh.

The utility make is often needed in development environments. You do not have to
usetheshel I command for this purpose in GDB:

make make- args

Execute the nake program with the specified arguments. Thisis equivalent
toshel | nmake nake- args.

GDB Commands

22

The following material discusses the GDB commands.

You can abbreviate a GDB command to the first few | etters of the command name,
if that abbreviation is unambiguous; and you can repeat certain GDB commands by
using Return. You can also use the Tab key to get GDB to fill out the rest of aword
in acommand (or to show you the alternatives available, if there is more than one
possibility).

Command Syntax

A GDB command isasingle line of input. Thereisno limit on how long it can be.
It starts with a command name, which is followed by arguments whose meaning
depends on the command name. For example, the command, st ep, accepts an
argument which is the number of timesto step, asinst ep 5. You can aso usethe
st ep command with no arguments. Some command names do not allow any
arguments.

Straight brackets ([]) enclose optional parameters. Curly brackets ({ }) enclose
choices or selections to be made. Neither of these brackets are typed in, but are
inferred.

LynxOS Total/db User’s Guide

Command Completion

GDB command names may always be truncated if that abbreviation is
unambiguous. Other possible command abbreviations are listed in the
documentation for individual commands. In some cases, even ambiguous
abbreviations are allowed; for example, s is specially defined as equivalent to step
even though there are other commands whose names start with s. You can test
abbreviations by using them as arguments to the help command.

A blank line asinput to GDB (using Return just once) means to repeat the previous
command. Certain commands (for example, run) will not repeat this way; such
commands have unintentional repetition which might cause trouble and whichitis
unlikely you want to repeat.

Thel i st and x commands, when you repeat them with Return key actions,
construct new arguments rather than repeating exactly as generated. This permits
easy scanning of source or memory.

GDB can a'so use Return in another way': to partition lengthy output, in away
similar to the common utility (see“ Screen Size” on page 14). Because it is easy to
use Return one too many times in this situation, GDB disables command repetition
after any command that generates this sort of display.

Any text from a# to the end of the lineisacomment; it does nothing. Thisis useful
mainly in command files (see “Command Files’ on page 118).

Command Completion

GDB canfill in the rest of aword in acommand for you, if thereis only one
possibility; it can also show you, at any time, what the valid possibilities are for the
next word in acommand. This works for GDB commands, GDB subcommands,
and the names of symbolsin your program.

Use the Tab key whenever you want GDB to fill out the rest of aword. If thereis
only one possibility, GDB fillsin the word, and waits for you to finish the
command (or use Return to enter it). For example, if you type (gdb) info bre,
and use the Tab key, GDB fillsin the rest of the word br eakpoi nt s, because that
isthe only info subcommand beginning with br e.

You can either use Return at this point, to runthei nf o br eakpoi nt's command,
or use the Backspace key and enter something else, if br eakpoi nt s does not look
like the command you expected. (If you were sure you wanted i nf o

br eakpoi nt s inthefirst place, you might as well just use Return immediately
afteri nf o br e, to exploit command abbreviations rather than command
completion). If thereis more than one possihility for the next word when you use
the Tab key, GDB sounds a bell. You can either supply more characters and try

LynxOS Total/db User’s Guide 23

Chapter 2 - Debugging with GDB

24

again, or just use the Tab key a second time; GDB displays all the possible
completions for that word. For example, you might want to set a breakpoint on a
subroutine whose name begins with make_, but when you type b make_ and use
the Tab key, GDB just sounds the bell. Using the Tab key again displays all the
function namesin your program that begin with those characters. For example, you
type (gdb) make_b and then use the Tab key. GDB sounds the bell; you use the
Tab key again, to see the following display.

make_a_section_fromfile nmake_environ
make_abs_section meke_function_type

make_bl ockvect or nmake_poi nter _type

meke_cl eanup meke_ref erence_type
make_comand make_synbol _conpl etion_li st
(gdb) b nake_

After displaying the available possibilities, GDB copies your partial input (in the
example, b make_) so you can finish the command. If you just want to seethelist
of aternativesin thefirst place, you can get help by using the command key
sequence, M-? rather than using Tab twice.

NOTE: M-? means using the META key (if there is one, or else, use ESC)
and the 2 key. Thisis a command key sequence with which you may or
may not be familiar.

Sometimes the string you need, while logically aword, may contain parentheses or
other characters that GDB normally excludes from its notion of aword. To permit
word completion to work in this situation, you may enclose wordsin single quote
marksin GDB commands.

The most likely situation where you might need thisisin typing the name of a C++
function. Thisis because C++ allows function overloading (multiple definitions of
the same function, distinguished by argument type). For example, when you want
to set a breakpoint you may need to distinguish whether you mean the version of
nane that takes an int parameter, nane(i nt), or the version that takesaf | oat
parameter, name(f | oat) . To use the word-completion facilities in this situation,
type asingle quote, ', at the beginning of the function name. This alerts GDB that
it may need to consider more information than usual when you use the Tab key or
M-? to request word completion, as in the following example:

(gdb) b ’ bubbl e(

LynxOS Total/db User’s Guide

Getting Help

Use the M-? command key sequence this point.

bubbl e (doubl e, doubl €) bubbl e(int,int)
(gdb) b ’bubbl eg(

In some cases, GDB can tell that completing a name requires using quotes.
When this happens, GDB inserts the quote for you while (completing as
much asit can) if you do not type the quote in the first place:

(gdb) b bub

Use the Tab key at this point.GDB alters your input line to the following, and
rings a bell.

(gdb) b ' bubbl e(

In general, GDB can tell that a quoteis needed (and inserts) it if you have not
yet started typing the argument list when you ask for completion on an
overloaded symbol.

Getting Help

You can always ask GDB itself for information on its commands, using the
command help.

hel p
h

You can use hel p (abbreviated h) with no arguments to display a short list
of named classes of commands like the following output example:

(gdb) help

Li st of classes of commands:

running -- Running the program

stack -- Exam ning the stack

data -- Exanmining data

breakpoints -- Making stop at certain points

files -- Specifying and examining files

status -- Status inquiries

support -- Support facilities

user-defined -- User-defined commands

aliases -- Aliases of other commands

obscure -- Obscure features

Type hel p foll owed by a class nane for a list of commands in that class.
Type hel p foll owed by command nane for full documentati on. Command nane
abbrevi ations are allowed if unanbi guous.

hel p cl ass

Using one of the general help classes as an argument, you can get alist of the
individual commandsin that class. For example, here isthe help display for
the class, status:

LynxOS Total/db User’s Guide 25

Chapter 2 - Debugging with GDB

26

(gdb) hel p status Status inquiries.

Li st of commands:

show -- Generic command for showing things set with “set?”

info -- Generic conmand for printing status

Type “hel p” followed by command name for full docurnentation. Command
nanme abbreviations are allowed if unanbiguous. (gdb)

hel p command

With acommand name as help argument, GDB displays a short paragraph on
how to use that command.

conpl et e args

The complete ar gs command lists al the possible completions for the
beginning of a command. Use args to specify the beginning of the command
you want completed. For example: conpl et e i resultsin the following.
info
i nspect
i gnore
This command isintentionally for use by GNU Emacs.

In addition to help, you can use the GDB i nf o and show commands to inquire
about the state of your program, or the state of GDB itself. Each command
supports many topics of inquiry; this manual introduces each of were in the
appropriate context. The listings under i nf o and under showin the Index point to
all the subcommands.

info

This command (abbreviated i) isfor describing the state of your program.
For example, you can list the arguments given to your program with i nf o
ar gs, list theregisters currently in use withi nf o regi sters, orlist the
breakpoints you have set with i nf o br eakpoi nt s. You can get acomplete
list of thei nf o subcommandswith hel p i nfo.

set

You can assign the result of an expression to an environment variable with
set. For example, you can set the GDB prompt to $ with set pronpt $.

show

In contrast to info, show isfor describing the state of GDB itself. You can
change most of the things you can show, by using the related command, set;
for example, you can control what number system is used for displays with
set radix, or simply inquire which is currently in use with show radix.

LynxOS Total/db User’s Guide

Running Programs under GDB

To display al the settable parameters and their current values, you can use show
with no arguments; you may also use info set. Both commands produce the same

display.

The following are three miscellaneous s how subcommands which of no
corresponding set commands.

showver si on

Show what version of GDB is running. You should include this information
in GDB bug reports. If multiple versions of GDB arein use a your site, you
may occasionally want to determine which version of GDB you are running;
as GDB evolves, new commands are introduced, and old ones may wither
away. The version number is also announced when you start GDB.

showcopyi ng
Display information about permission for copying GDB.
showwarranty

Display the GNU “NO WARRANTY” statement.

Running Programs under GDB

The following material discusses running your programs with GDB.When you run
aprogram under GDB, you must first generate debugging information when you
compileit.

You may start GDB with its arguments, if any, in an environment of your choice.
You may redirect your program’s input and output, debug an aready running
process, or kill achild process.

Compiling for Debugging

In order to debug a program effectively, you need to generate debugging
information when you compile it. This debugging information is stored in the
object file; it describes the data type of each variable or function and the
correspondence between source line numbers and addresses in the executabl e code.

To request debugging information, specify the - g option when you run the
compiler. Many C compilers are unable to handle the - g and - O options together.
Using those compilers, you cannot generate opti mized executables containing

LynxOS Total/db User’s Guide 27

Chapter 2 - Debugging with GDB

28

debugging information. GCC, the GNU C compiler, supports
- g with or without - O making it possible to debug optimized code.

We recommend that you always use - g whenever you compile a program. You
may think your program is correct, but there is no sense in pushing your luck.

When you debug a program compiled with - g - O, remember that the optimizer is
rearranging your code; the debugger shows you what isreally there.

Do not be too surprised when the execution path does not exactly match your
source file! An extreme example: if you define avariable, but never useit, GDB
never sees that variable—because the compiler optimizesit out of existence.

Some things do not work aswell with - g - Oaswith just - g, particularly on
machines with instruction scheduling. If in doubt, recompile with - g alone, and if
this fixes the problem, please report it to us as a bug (including atest case!).

CauTIiOoN! The following discussions about your program’s arguments
environment, working directory and input/output apply only if you start
the debugged program locally from your GDB. If you attach GDB to an
aready running process, the parameters are already determined. If you
start the application program remotely from a GDB subserver, the
program arguments are given to GDB server’'s command line, and the
other parameters are inherited from the GDB server process

Starting Your Program

run
r

Use ther un command to start your program locally under GDB. You must
first specify the program name with an argument to GDB or by using thefile
or exec-file command (see “ Getting In and Out of GDB” on page 17 or
“Commands to Specify Files’ on page 106).

If you are running your program in an execution environment that supports
processes, r un creates an inferior process and makes that process run your
program. (In environments without processes, run jumps to the start of your
program.)

The execution of aprogram is affected by certain information it receives from its
superior. GDB provides ways to specify this information, which you must do
before starting your program. (You can change it after starting your program, but
such changes only affect your program the next time you start it.) Thisinformation
may be divided into the following four categories.

LynxOS Total/db User’s Guide

Starting Your Program

Ar gument s

Specify the arguments to give your program as the arguments of the run
command. If ashell is available on your target, the shell is used to pass the
arguments, so that you may use normal conventions (such as wildcard
expansion or variable substitution) in describing the arguments. In UNIX
systems, you can control which shell is used with the SHELL environment
variable.

Envi ronnent

Your program normally inherits its environment from GDB, but you can use
the GDB commandsset envi ronnent and unset envi ronnent to
change parts of the environment that affect your program (see “Your
Program’s Environment” on page 30).

Working directory

Your program inherits its working directory from GDB. You can set the GDB
working directory with the cd command in GDB (see*“ Your Program’s
Working Directory” on page 31).

Standard i nput and out put

Your program normally uses the same device for standard input and standard
output as GDB is using. You can redirect input and output in the run
command line, or you can use the tty command to set a different device for
your program (see “Your Program’s Input and Output” on page 32).

CAuUTION! Whileinput and output redirection work, you cannot use pipes
to pass the output of the program you are debugging to another program.
If you attempt this, GDB islikely to wind up debugging the wrong
program.

When you issue the r un command, your program begins to execute immediately.
See “ Stopping and Continuing” on page 36 for a discussion of how to arrange for
your program to stop. Once your program has stopped, you may call functionsin
your program, using the pri nt or cal | commandsin “Examining Data’” on

page 67.

If the modification time of your symbol file has changed since the last time GDB
read its symbols, GDB discards its symbol table, and reads it again. When it does
this, GDB tries to retain your current breakpoints.

LynxOS Total/db User’s Guide 29

Chapter 2 - Debugging with GDB

30

Your Program’s Arguments

The arguments to your program can be specified by the arguments of the run
command. They are passed to a shell, which expands wildcard characters and
performs redirection of 1/0, and thence to your program. Your SHELL environment
variable (if it exists) specifies what shell GDB uses. If you do not define SHELL,
GDB uses/ bi n/ sh.

run with no arguments uses the same arguments used by the previous run, or those
set by the set args command.

set args

Specify the arguments to be used the next time your program isrun. If set
ar gs hasno arguments, run executes your program with no arguments.
Once you have run your program with arguments, using set args before
the next run is the only way to run it again without arguments.

show ar gs

Show the arguments to give your program when it is started.

Your Program’s Environment

The environment consists of a set of environment variables and their values.
Environment variables conventionally record such things as your user name, your
home directory, your terminal type, and your search path for programsto run.

Usually you set up environment variables with the shell and they are inherited by
all the other programs you run.

When debugging, it can be useful to try running your program with a modified
environment without having to start GDB over again.

path directory

Adddi r ect ory to the front of the PATH environment variable (the search
path for executables), for both GDB and your program. You may specify
several directory names, separated by acolon (:) or awhitespace. If
directory is already in the path, it is moved to the front, so it is searched
sooner.

You can use the $cwd string to refer to whatever is the current working
directory at thetime GDB searchesthe path. If you use aperiod (.) instead, it
refersto the directory where you executed the path command. GDB replaces
the period (.) in the directory argument (with the current path) before adding
directory to the search path.

LynxOS Total/db User’s Guide

Your Program’s Working Directory

show pat hs

Display the list of search paths for executables (the PATH environment
variable).

show envi ronnent [varnane]

Print the value of environment variable var name to be given to your
program when it starts. If you do not supply var nane, print the names and
values of all environment variables to be given to your program. You can
abbreviate envi r onnent asenv.

set envi ronnent

Set environment variable var nane to val ue. The value changes for your
program only, not for GDB itself. val ue may be any string; the values of
environment variables are just strings, and any interpretation is supplied by
your program itself. The val ue parameter is optional; if it is eliminated, the
variableis set to anull value. For example, the command, set env USER =
f 0o, tellsa UNIX program, when run, that its user is named f oo. (The
spacesaround = are used for clarity here; they are not actually required.)

unset environnment varnane

Remove variable, var nane, from the environment to be passed to your
program. Thisisdifferent fromset env var name=; unset environnent
removes the variable from the environment, rather than assigning it an empty
value.

NoTE: GDB runs your program using the shell indicated by your SHELL
environment variableif it exists (or / bi n/ sh if not). If your SHELL
variable names a shell that runs an initialization file—such as. cshr c for
C-shdll, or . bashrc for BASH—any variables you set in that file affect
your program. You may wish to move setting of environment variablesto
filesthat are only run when you signon, suchas .1 oginor. profile.

Your Program’s Working Directory

Each time you start your program with r un, it inherits its working directory from
the current working directory of GDB. The GDB working directory isinitially
whatever it inherited from its parent process (typically the shell), but you can
specify anew working directory in GDB with the cd command.

The GDB working directory also serves as a default for the commands that specify
filesfor GDB to operate on, (see “Commands to Specify Files’ on page 106).

LynxOS Total/db User’s Guide 31

Chapter 2 - Debugging with GDB

32

cd directory

Set the GDB working directory to directory.
pwd

Print the GDB working directory.

Your Program’s Input and Output

By default, the program you run under GDB does input and output to the same
terminal that GDB uses. GDB switches the terminal to its own terminal modes to
interact with you, but it records the terminal modes your program was using and
switches back to them when you continue running your program.

info term nal

Displaysinformation recorded by GDB about the terminal modes your
program is using.

You can redirect your program’sinput and/or output using shell redirection with
ther un command. For example, run > outfil e startsyour program, diverting
its output to thefileout f i | e. Another way to specify where your program should
do input and output iswith the t t y command. This command accepts a file name
as argument, and causes this file to be the default for future r un commands.

It also resets the controlling terminal for the child process, for futurer un
commands. For example, tty /dev/ttyb directsthat processes started with
subsequent r un commands default to do input and output on the terminal

/ dev/ttyb and havethat astheir controlling terminal.

An explicit redirection inr un overridesthe tty command's effect no the
input/output device, but not its effect on the controlling terminal.

When you usethe tty command or redirect input in the r un command, only the
input for your program is affected. Theinput for GDB still comes from your
terminal.

Debugging an Already-Running Process

attach process-id

This command attaches to a running process—one that was started outside
GDB. (i nfo fil es showsyour active targets.) The command takes as
argument a process I D. The usual way to find out the pr ocess-i d of a
UNIX processiswith the ps utility, or withthe j obs -1 shel | command.

LynxOS Total/db User’s Guide

Killing the Child Process

at t ach does not repeat if you use Return a second time after executing the
command.

Touseat t ach, your program must be running in an environment which
supports processes; for example, at t ach does not work for programs on
bareboard targets that lack an operating system. You must also have
permission to send the process asignal.

When using at t ach, you should first usethef i | e command to specify the
program running in the process and load its symbol table (see “ Commandsto
Specify Files” on page 106).

Thefirst thing GDB does after arranging to debug the specified processisto
stop it. You can examine and modify an attached process with all the GDB
commands that are ordinarily available when you start processes with r un.
You can insert breakpoints; you can step and continue; you can modify
storage. If you would rather the process continue running, you may use the
cont i nue command after attaching GDB to the process.

det ach

When you have finished debugging the attached process, you can use the
det ach command to release it from GDB control. Detaching the process
continues its execution. After the det ach command, that process and GDB
become completely independent once more, and you are ready to attach
another process or start one with run. det ach does not repeat if you use
Return again after executing the command.

If you exit GDB or use ther un command while you have an attached process, you
kill that process. By default, GDB asks for confirmation if you try to do either of
these things; you can control whether or not you need to confirm by using the set
conf i rm command (see “Optional Warnings and Messages’ on page 16).

Killing the Child Process

kill

Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a
running process. GDB ignores any core dump files while your program is
running.

Theki I I command isalso useful if you wish to recompile and relink your
program, because on many systemsit isimpossible to modify an executable
filewhileit isrunning in aprocess. In this case, when you next use run, GDB

LynxOS Total/db User’s Guide 33

Chapter 2 - Debugging with GDB

34

notices that the file has changed, and reads the symbol table again (while
trying to preserve your current breakpoint settings).

Debugging Programs with Multiple Threads

In some operating systems, a single program may have more than one thread of
execution. The precise semantics of threads differ from one operating system to
another, but in general the threads of a single program are akin to multiple
processes—except that they share one address space (that is, they can all examine
and modify the same variables). On the other hand, each thread hasits own
registers and execution stack, and perhaps private memory. GDB provides these
facilities for debugging multithread programs:

» automatic notification of new threads
e threadthreadno, acommand to switch among threads
* info threads, acommand to inquire about existing threads

e thread apply [threadno][al |] ar gs, acommand to apply a
command to alist of threads

* thread-specific breakpoints

The GDB thread debugging facility allows you to observe all threads while your
program runs—but whenever GDB takes control, onethread in particular is always
the focus of debugging. Thisthread is called the current thread. Debugging
commands show program information from the perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays the target
system’sidentification for the thread with amessage in the [Newsyst ag]. syst ag
form is athread identifier whose form varies, depending on the particular system.
For example, on LynxOS, you might see [New process 35 thread 27] when
GDB notices a new thread. In contrast, on an SGI system, the systag is simply
something like pr ocess 368, with no further qualifier.

For debugging purposes, GDB associates its own thread number—always asingle
integer—with each thread in your program.

info threads

Display a summary of al threads currently in your program. GDB displays
for each thread (in the following order):

1. The thread number assigned by GDB
2. Thetarget system'sthread identifier (syst ag)

LynxOS Total/db User’s Guide

Debugging Programs with Multiple Processes

3. Thecurrent stack frame summary for that thread

An asterisk (*) to the left of the GDB thread number indicates the current thread.
Use the following example for clarity.

(gdb) info threads

3 process 35 thread 72 0x34e5 in sigpause ()

2 process 35 thread 23 0x34e5 in sigpause ()

*1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c: 68

thread threadno

Make thread number t hr eadno the current thread. The command argument
t hr eadno istheinternal GDB thread number, as shown in thefirst field of
thei nf o t hr eads display. GDB responds by displaying the system
identifier of the thread you selected, and its current stack frame summary:

(gdb) thread 2

[Switching to process 35 thread 23]

0x34e5 in sigpause ()
Aswiththe[New . ..] message, the form of the text after Switching to
depends on your system’s conventions for identifying threads.

thread apply [threadno][all] args

The thread apply command allows you to apply a command to one or more
threads. Specify the numbers of the threads that you want affected with the
command argument threadno. threadno is the internal GDB thread number,
as shown in thefirst field of the info threads display. To apply acommand to
all threads, use thread apply all args.

Whenever GDB stops your program, due to a breakpoint or asignal, it
automatically selects the thread where that breakpoint or signal happened. GDB
alerts you to the context switch with amessage of the[Swi t chi ng t o syst ag]
form to identify the thread.

Debugging Programs with Multiple Processes

GDB has no special support for debugging programs which create additional
processes using the f or k function. When a program forks, GDB will continue to
debug the parent process and the child process will run unimpeded.

However, if you want to debug the child process there is aworkaround whichisn’t
too painful. Put acall to sl eep in the code which the child process executes after
thef or k. It may be useful to sleep only if a certain environment variable is set, or
acertain file exists, so that the delay need not occur when you don’'t want to run
GDB on the child. While the child is sleeping, use the ps program to get its

LynxOS Total/db User’s Guide 35

Chapter 2 - Debugging with GDB

process|D. Thentell GDB (anew invocation of GDB if you are also debugging the
parent process) to attach to the child process (see “ Debugging an Already-Running
Process’ on page 32). From that point on you can debug the child process just like
any other process to which you attached.

Stopping and Continuing

36

The principal purposes of using a debugger are so that you can stop your program
before it terminates; or so that, if your program runs into trouble, you can
investigate and determine causes.

Inside GDB, your program may stop for any of several reasons, such asasignal, a
breakpoint, or reaching a new line after a GDB command such as st ep. You may
then examine and change variables, set new breakpoints or remove old ones, and
then continue execution. Usually, the messages shown by GDB provide ample
explanation of the status of your program—but you can also explicitly request this
information at any time.

info program

Display information about the status of your program: whether it is running
or not, what processit is, and why it stopped.

The following documentation provides more specific discussion on breakpoints,
watchpoints, exceptions, and other information regarding stopping and continuing
GDB.

Breakpoints, Watchpoints, and Exceptions

A breakpoint makes your program stop whenever a certain point in the program is
reached. For each breakpoint, you can add conditions to control in finer detail
whether your program stops. You can set breakpoints with the br eak command
and its variants (see “ Setting Breakpoints’ on page 37) to specify the place where
your program should stop by line, number function name or exact address in the
program.

In languages with exception handling (such as GNU C++), you can also set
Breakpoints where an exception is raised.

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. You must use a different command to set watchpoints, but
aside from that, you can manage a watchpoint like any other breakpoint: you

LynxOS Total/db User’s Guide

Setting Breakpoints

enable, disable, and delete both breakpoints and watchpoints using the same
commands.

You can arrange to have values from your program displayed automatically
whenever GDB stops at a breakpoint (see “ Automatic Display” on page 74).

GDB assigns a number to each breakpoint or watchpoint when you create it; these
numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints, you use the breakpoint number to say
which breakpoint you want to change. Each breakpoint may be ; if disabled, it has
no effect on your program until you enable it again.

Setting Breakpoints

Breakpoints are set with the br eak command (abbreviated b). The debugger
convenience variable $bpnum records the number of the breakpoints you have set
most recently; see “ Convenience Variables’ on page 83 for a discussion of what
you can do with convenience variables.

You have several ways to say where the breakpoint should go.
break function

Set a breakpoint at entry to function, f unct i on. When using source
languages that permit overloading of symbols, such as C++, f unct i on may
refer to more than one possible place to break.

break +offset
break -offset

Set a breakpoint some number of lines forward or back from the position at
which execution stopped in the currently selected frame.

break | i nenum

Set abreakpoint at linel i nenumin the current sourcefile. That fileisthe
last file whose source text saw printed. This breakpoint stops your program
just before it executes any of the code on that line.

break fil ename: | i nenum
Set abreakpoint at line, | i nenum in sourcefile, fi | enane.
break filenane: function

Set a breakpoint at entry to function, f uncti on, found in file, fi | enane.
Specifying afile name aswell as afunction name is superfluous except when
multiple files contain similarly named functions.

LynxOS Total/db User’s Guide 37

Chapter 2 - Debugging with GDB

38

break *address

Set a breakpoint at address, addr ess. You can use this to set breakpointsin
parts of your program which do not have debugging information or source
files.

br eak

When called without any arguments, break sets a breakpoint at the next
instruction to be executed in the sel ected stack frame (see “ Examining the
Stack” on page 56). In any selected frame but the innermost, this makes your
program stop as soon as control returnsto that frame.

Thisissimilar to the effect of af i ni sh command in the frame inside the
selected frame—except that f i ni sh does not leave an active breakpoint. If
you use br eak without an argument in the innermost frame, GDB stops the
next time it reaches the current location; this may be useful inside loops.
GDB normally ignores breakpoints when it resumes execution, until at least
one instruction has been executed. If it did not do this, you would be unable
to proceed past a breakpoint without first disabling the breakpoint.

This rule applies whether or not the breakpoint already existed when your
program stopped.

break...if cond

Set a breakpoint with condition, cond; evaluate the expression, cond, each
time the breakpoint is reached, and stop only if the valueis non-zero—that is,
if cond, evaluates astrue. ‘..." stands for one of the possible arguments
described previously (or no argument) specifying where to break.

tbreak args

Set a breakpoint enabled only for one stop. args are the same as for the

br eak command, and the breakpoint is set in the same way, but the
breakpoint is automatically deleted after the first time your program stops
there.

hbreak args

Set a hardware-assisted breakpoint. ar gs are the same as for the break
command and the breakpoint is set in the same way, but the breakpoint
requires hardware support and some target hardware may not have this
support. The main purpose of thisis EPROM/ROM code debugging, so you
can set abreakpoint at an instruction without changing the instruction. This
can be used with the new trap-generation provided by SPARClite DSU. DSU
will generate traps when a program accesses some date or instruction address

LynxOS Total/db User’s Guide

Setting Breakpoints

that is assigned to the debug registers. However, the hardware breakpoint
registers can only take two data breakpoints, and GDB will reject this
command if more than two are used. Delete or disable used hardware
breakpoints before setting new ones.

t hbreak args

Set a hardware-assisted breakpoint enabled only for one stop. ar gs are the
same as for the hbr eak command and the breakpoint is set in the same way.
However, likethet br eak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the hbr eak
command, the breakpoint requires hardware support and some target
hardware may not have this support.

CauTioN! The current release of LynxOS does not support hardware
assisted breakpoints, The above are provided only for information only.

rbreak r egex

Set breakpoints on all functions matching the regular expression, r egex.
This command sets an unconditional breakpoint on all matches, printing alist
of al breakpointsit set. Once these breakpoints are set, they are treated just
like the breakpoints set with the br eak command. You can delete them,
disable them, or make them conditional the same way as any other
breakpoint. When debugging C++ programs, r br eak is useful for setting
breakpoints on overloaded functions that are not members of any special
classes.

i nfo breakpoints [n]
info break [n]
i nfo wat chpoints [n]

Print atable of all breakpoints and watchpoints set and not deleted, with the
following columns for each breakpoint:

e Breakpoint Numbers

Type breakpoint or watchpoint.
« Disposition

Whether the breakpoint is marked to be disabled or deleted when hit.
e Enabled or Disabled

LynxOS Total/db User’s Guide 39

Chapter 2 - Debugging with GDB

40

Enabled breakpoints are marked with ‘y’. ‘n" marks breakpoints that are
not enabled.

* Address
Where the breakpoint is in your program, as a memory address.
e What

Where the breakpoint isin the source for your program, as afile and line
number.

If abreakpoint is conditional, i nf o break showsthe condition on theline
following the affected breakpoint; breakpoint commands, if any, follow.

i nf o break withabreakpoint number n as argument lists only that breakpoint.
The convenience variable $_ and the default examining-address for the x
command are set to the address of the last breakpoint listed (see “ Examining
Memory” on page 72).

i nf o break now displaysacount of the number of times the breakpoint has been
hit. Thisis especially useful in conjunction with thei gnor e command. You can
ignore alarge number of breakpoint hits, look at the breakpoint info to see how
many times the breakpoint was hit, and then run again, ignoring one less than that
number. Thiswill get you quickly to the last hit of that breakpoint.

GDB allows you to set any number of breakpoints at the same place in your
program. There is nothing silly or meaningless about this. When the breakpoints
are conditional thisis even useful. GDB itself sometimes sets breakpointsin your
program for special purposes, such as proper handling of | ongj np (inC
programs). Theseinternal breakpoints are assigned negative numbers, starting with
-1;info breakpoi nts doesnot display them. You can see these breakpoints
with the GDB maintenance command mai nt i nf o breakpoi nts.

mai nt i nfo breakpoints

Using the same format asi nf o br eakpoi nt s, display both the breakpoints
you have set explicitly, and those GDB is using for internal purposes.
Internal breakpoints are shown with negative breakpoint numbers. The type
column identifies what kind of breakpoint is shown:

* breakpoint
Normal, explicitly set breakpoint
* wat chpoi nt

Normal, explicitly set watchpoint

LynxOS Total/db User’s Guide

Setting Watchpoints

* longjnp

Internal breakpoint, used to handle correctly stepping through | ongj np
cals.

* |ongjnpresune

Internal breakpoint at the target of alongjmp.
e until

Temporary internal breakpoint used by the GDB until command.
e finish

Temporary internal breakpoint used by the GDB finish command.

Setting Watchpoints

You can use awatchpoint to stop execution whenever the value of an expression
changes, without having to predict a particular place where this may happen.

Watchpoints currently execute two orders of magnitude more slowly than other
breakpoints, but this can be well worth it to catch errors where you have on clue
what part of your program is the culprit.

wat ch expr

Set awatchpoint for an expression. GDB will break when expr iswritten
into by the program and its value changes. This can be used with the new
trap-generation provided by SPARCIite. DSU will generate traps when a
program accesses some date or instruction address that is assigned to the
debug registers. For the data addresses, DSU facilitates thewat ch command.
However the hardware breakpoint registers can only take two data
watchpoints, and both watchpoints must be the same kind. For example, you
can set two watchpoints with wat ch commands, two with commands, or two
with awatch commands, but you cannot set one watchpoint with one
command and the other with a different command. {No val ue for

“ GBDN' } will reject the command if you try to mix watchpoints. Delete or
disable unused watchpoint commands before setting new ones.

rwat ch expr

Set awatchpoint that will break when watch ar gs is read by the program. If
you use both watchpoints, both must be set with the r wat ch command.

awat ch expr

LynxOS Total/db User’s Guide 41

Chapter 2 - Debugging with GDB

42

Set awatchpoint that will break when ar gs isread and written into by the
program. If you use both watchpoints, both must be set with the awat ch
command.

i nfo wat chpoints

This command prints alist of watchpoints and breakpoints; it isthe same as
i nfo break.

CAUTION! In multithread programs, watchpoints have only limited
usefulness. With the current watchpoint implementation, GDB can only
watch the value of an expression in asingle thread. If you are confident
that the expression can only change due to the current thread’s activity
(and if you are also confident that no other thread can become current),
then you can use watchpoints as usual. However, GDB may not notice
when a non-current thread's activity changes the expression.

Hardware Watchpoints

Watchpoints can be implemented in Software or Hardware. Hardware watchpoints
execute quicker than software watchpoints and allows the debugger to report a
change in value at the extact instruction where the change occured. Software
watchpoints execute slower, and report a change in value in the statement
following the change in value.

When setting awatchpoint, GDB attemptsto set a hardware watchpoint first. If itis
not possible to set a hardware watchpoint, a software watchpoint is set instead.

When issuing the watch command, and hardware watchpoints are set, GDB
displays:

Har dwar e wat chpoi nt num expr

NoOTE: Hardware Watchpoint support is not included in the default LynxOS kernel.
To build the kernel for Hardware Watchpoint, Code Test, and Assertation support,
use the following rule when running make;

make all SYS_DEBUG=true

Breakpoints and Exceptions

Some languages, such as GNU C++, implement exception handling. You can use
GDB to examine what caused your program to raise an exception, and to list the
exceptions your program is prepared to handle at a given point in time.

LynxOS Total/db User’s Guide

Breakpoints and Exceptions

catch exceptions

You can set breakpoints at active exception handlers by using the cat ch
command. exceptionsis alist of names of exceptionsto catch.

Youcanuse i nfo catch tolist active exception handlers (see “Information
about a Frame” on page 60).

There are currently some limitations to exception handling in GDB:

If you call afunction interactively, GDB normally returns control to you when the
function has finished executing. If the call raises an exception, however, the call
may bypass the mechanism that returns control to you and cause your program to
simply continue running until it hits a breakpoint, catches asignal that GDB is
listening for, or exits.

You cannot raise an exception interactively.
You cannot install an exception handler interactively.

Sometimes cat ch is not the best way to debug exception handling: if you need to
know exactly where an exception israised, it is better to stop before the exception
handler is called, because that way you can see the stack before any unwinding
takes place. If you set a breakpoint in an exception handler instead, it may not be
easy to find out where the exception was raised.

To stop just before an exception handler is called, you need some knowledge of the
implementation. In the case of GNU , C++ exceptions are raised by calling a
library function named __cp_push_except i on which has the following ANSI
Cinterface:

/* addr is where the exception identifier is stored.

IDis the exception identifier. */

extern “c” void __cp_push_exception (void *val ue,

void *type,
void (*cleanup) (void *, int));

To make the debugger catch all exceptions before any stack unwinding takes place,
set abreakpointon __cp_push_except i on (see“Breakpoints, Watchpoints, and
Exceptions’ on page 36).

With a conditional breakpoint that depends on the value of i d, you can stop your
program when a specific exception is raised. You can use multiple conditional
breakpoints to spot your program when any of a number of exceptions are raised.

LynxOS Total/db User’s Guide 43

Chapter 2 - Debugging with GDB

44

Deleting Breakpoints

It isoften necessary to eliminate a breakpoint or watchpoint onceit has doneitsjob
and you no longer want your program to stop there. Thisis called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With the cl ear command you can del ete breakpoints according to where they are
inyour program. With thedel et e command you can deleteindividual breakpoints
or watchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically
ignores breakpoints on the first instruction to be executed when you continue
execution without changing the execution address.

cl ear

Delete any breakpoints at the next instruction to be executed in the selected
stacks frame (see “ Selecting a Frame” on page 59). When the innermost
frame is selected, thisis a good way to delete a breakpoint where your
program just stopped.

cl ear function
clear filenane: function

Delete any breakpoints set at entry to the function, f unct i on.

clear linenum
clear filenane: |inenum

Delete any breakpoints set at or within the code of the specified line.
del ete [breakpoi nts][bnuns...]

Delete the breakpoints or watchpoints of the numbers specified as arguments.
If no argument is specified, delete al breakpoints GDB (asks confirmation,
unless you have set confirm off). You can abbreviate this command as d.

Disabling Breakpoints

Rather than deleting a breakpoint or watchpoint you might prefer to disableit. This
makes the breakpoint inoperative asif it had been deleted, but remembers the
information no the breakpoint so that you can enable it again later. You disable and
enabl e breakpoints and watchpoints with the enabl e and di sabl e commands,
optionally specifying one or more breakpoint numbers as arguments. Use i nf o
break or i nfo watch toprintalist of breakpoints or watchpointsif you do not
know which numbersto use. A breakpoint or watchpoint can have any of four
different states of enablement:

LynxOS Total/db User’s Guide

Disabling Breakpoints

* Enabled

The breakpoint stops your program. A breakpoint set with the break
command starts out in this state.

* Disabled
The breakpoint has no effect on your program.
e Enabled once

The breakpoint stops your program, but then becomes disabled. A
breakpoint set with the tbreak command starts out in this state.

* Enabled for deletion

The breakpoint stops your program, but immediately after it doessoit is
deleted permanently.

You can use the following commands to enable or disable breakpoints and
watchpoints.

di sabl e [breakpoi nt s][bnuns ..]

Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the
breakpoint is enabled again later. You may abbreviate di sabl e asdi s.

enabl e [br eakpoi nt s][bnuns ..]

Enabl e the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enabl e [br eakpoi nt s] once bnuns. . .

Enabl e the specified breakpoints temporarily. GDB disables any of these
breakpoints immediately after stopping your program.

enabl e [breakpoi nts] del ete bnuns. ..

Enabl e the specified breakpoints to work once, then die. GDB deletes any of
these breakpoints as soon as your program stops there.

Except for a breakpoint set with t br eak (see“ Setting Breakpoints’ on page 37),
breakpoints that you set areinitialy enabled; subsequently, they become disabled
or enabled only when you use one of the previoudly discussed commands. (The
command unt i | can set and delete a breakpoint of its own, but it does not change
the state of your other breakpoints (see “ Continuing and Stepping” on page 50).

LynxOS Total/db User’s Guide 45

Chapter 2 - Debugging with GDB

46

Break Conditions

The simplest sort of breakpoint breaks every time your program reaches a specified
place. You can also specify a condition for a breakpoint. A conditionisjust a
Boolean expression in your programming language (see “ Expressions’ on

page 68). A breakpoint with a condition eval uates the expression each time your
program reaches it, and your program stops only if the condition istrue.

Thisisthe converse of using assertions for program validation; in that situation,
you want to stop when the assertion is violated—that is, when the condition is
false. In C, if you want to test an assertion expressed by the condition, assert,
you should set the condition ! assert on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, because a
watchpoint is inspecting the value of an expression anyhow—but it might be
simpler, say, to just set awatchpoint on a variable name, and specify a condition
that tests whether the new value is an interesting one.

Break conditions can have side effects, and may even call functionsin your
program. This can be useful, for example, to activate functions that log program
progress, or to use your own print functionsto format special data structures. The
effects are completely predictable unless there is another enabled breakpoint at the
same address. (In that case, GDB might see the other breakpoint first and stop your
program without checking the condition of this one.) Note that breakpoint
commands are usually more convenient and flexible for the purpose of performing
side effects when a breakpoint is reached (see “ Breakpoint Command Lists’ on

page 47).

Break conditions can be specified when a breakpoint is set, by using if in the
arguments to the br eak command (see “ Setting Breakpoints’ on page 37). They
can also be changed at any time with the condi t i on command. Thewat ch
command does not recognizethe i f keyword; condi ti on isthe only way to
impose a further condition on a watchpoint.

condi ti on bnum expressi on

Specify expr essi on asthe break condition for breakpoint or watchpoint
number, bnum After you set a condition, breakpoint bnum stops your
program only if the value of expr essi on istrue (non-zero, in C). When you
usecondi ti on, GDB checksexpr essi on immediately for syntactic
correctness, and to determine whether symbolsin it have referentsin the
context of your breakpoint. GDB does not actually evaluate expr essi on at
the time the condition command is given, however (see “ Expressions’ on

page 68).

condition bnum

LynxOS Total/db User’s Guide

Breakpoint Command Lists

Remove the condition from breakpoint number bnum It becomes an ordinary
unconditional breakpoint.

A special case of abreakpoint condition isto stop only when the breakpoint has
been reached a certain number of times. Thisis so useful that thereisaspecial way
todoit, usingthei gnor e count of the breakpoint. Every breakpoint has anignore
count, which is an integer. Most of the time, theignore count is zero, and therefore
has no effect. But if your program reaches a breakpoint whose ignore count is
positive, then instead of stopping, it just decrements the ignore count by one and
continues. As aresult, if the ignore count valueis n, the breakpoint does not stop
the next n times your program reachesiit.

i gnore bnum count

Set the ignore count of breakpoint number bnumto count . The next count
times the breakpoint is reached, your program’s execution does not stop;
other than to decrement the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use cont i nue to resume execution of your program from a breakpoint,
you can specify ani gnor e count directly asan argument to cont i nue, rather
than using ignore (see “ Continuing and Stepping” on page 50).

If a breakpoint has a positive ignore count and a condition, the condition is not
checked. Once the ignore count reaches zero, GDB resumes checking the
condition.

You could achieve the effect of the ignore count with a condition such as $f oo- -
<= 0 using adebugger convenience variable that is decremented each time (see
“Convenience Variables’ on page 83).

Breakpoint Command Lists

You can give any breakpoint or (watchpoint) a series of commands to execute
when your program stops due to that breakpoint. For example, you might want to
print the values of certain expressions, or enable other breakpoints.

comands [bnuni
...command-1list...
end

Specify alist of commands for breakpoint number, bnum The commands
themselves appear on the following lines.

LynxOS Total/db User’s Guide 47

Chapter 2 - Debugging with GDB

48

Type aline containing just end to terminate the commands. To remove all
commands from a breakpoint, type commands and follow it immediately
with end; that is, give no commands.

With no bnumargument, commands refers to the last breakpoint or watchpoint set
(not to the breakpoint most recently encountered).

Using Return as a means of repeating the last GDB command is disabled within a
command-list.

You can use breakpoint commands to start your program up again.

Simply usethe cont i nue command, or st ep, or any other command that resumes
execution.

Any other commandsin the command list are ignored, after acommand that
resumes execution. Thisis because any time you resume execution (even with a
simplenext or st ep), you may encounter another breakpoint— which could have
its own command list, leading to ambiguities about which list to execute.

If the first command you specify in acommand list issi | ent , the usual message
about stopping at a breakpoint is not printed. This may be desirable for breakpoints
that are to print a specific message and then continue.

If none of the remaining commands print anything, you see no sign that the
breakpoint was reached.

si | ent ismeaningful only at the beginning of a breakpoint command list.

The commandsecho, out put ,and pri nt f allow you to print precisely controlled
output, and are often useful in silent breakpoints (see “ Commands for Controlled
Output” on page 119.)

For exampl e, the following shows how to use breakpoint commands to print the
valueof x atentryto f oo whenever x is positive.

break foo if x>0
commands

sil ent

printf x" is % ", x
cont

end

One application for breakpoint commands isto compensate for one bug so you can
test for another. Put a breakpoint just after the erroneous line of code, giveit a

condition to detect the case in which something erroneous has been done, and give
it commands to assign correct values to any variables that need them. End with the

LynxOS Total/db User’s Guide

Breakpoint Menus

continue command so that your program does not stop, and start with the silent
command so that no output is produced. The following is an example.

break 403
conmmands
sil ent

set x=y +4
cont

end

Breakpoint Menus

Some programming languages notably (C++) permit a single function name to be
defined several times for application in different contexts. Thisis called
overloading. When a function name is overloaded, “break f unct i on” isnot
enough to tell GDB where you want a breakpoint. If you realize thisis a problem,
you can use something like “break f unct i on(t ypes) " to specify which
particular version of the function you want. Otherwise, GDB offers you a menu of
numbered choices for different possible breakpoints, and waits for your selection
with the > prompt . The first two options are always

[0] cancel and[1] al | . Typing 1 setsabreakpoint at each definition of
function, andtyping 0 abortsthe br eak command without setting any new
breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at
the overloaded symbol St ri ng: : af t er. The following shows three particular
definitions of that function name:

(gdb) b String::after

[0] cancel

[1] all

[2] file:String.cc; |ine nunber:867

[3] file:String.cc; line nunber: 860

[4] ;cc. String:file line nunber: 875

[5] file:String.cc; |ine nunber: 853

[6] file:String.cc; line nunber: 846

[7] file:String.cc; line nunber: 735

>2 46

Breakpoint 1 at Oxb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line .578
Breakpoint 3 at Oxafcc: file String.cc, |line 846.
Mil ti pl e breakpoints were set.

Use the ‘delete’ command to del ete unwant ed breakpoints.

(gdb)

LynxOS Total/db User’s Guide 49

Chapter 2 - Debugging with GDB

50

Continuing and Stepping

Continuing means resuming program execution until your program completes
normally. In contrast, stepping means executing just one more “ step” of your
program, where “step” may mean either one line of source code, or one machine
instruction (depending on what particular command you use). Either when
continuing or when stepping, your program may stop even sooner, dueto a
breakpoint or asignal. (If due to asignal, you may want to use hand! e, or use
si gnal 0 toresume execution; see“Signas’ on page 53.)

continue [ignore-count]
c [ignore-count]
fg [ignore-count]

Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassed. The optional argument, i gnor e-
count , allows you to specify afurther number of times to ignore a breakpoint at
thislocation; its effect is like that of ignore.

The argument, i gnor e- count , is meaningful only when your program stopped
due to a breakpoint. At other times, the argument to continue is ignored.

The synonyms, ¢ and f g areprovided purely for convenience, and have exactly
the same behavior ascont i nue.

To resume execution at adifferent place, you can use Return (see“ Returning from a
Function” on page 105) to go back to the calling function; or j unp. See
“Continuing at a Different Address’ on page 103. to go to an arbitrary location in
your program.

A typical technique for using stepping isto set a breakpoint at the beginning of the
function or the section of your program where a problem isbelieved tolie, run your
program until it stops at that breakpoint, and then step through the suspect area,
examining the variables that are interesting, until you see the problem happen.

step

LynxOS Total/db User’s Guide

Continuing and Stepping

Continue running your program until control reaches a different source line, then
stop it and return control to GDB. This command is abbreviated s.

CAUTION! If you use the st ep command while control iswithin a
function that was compiled without debugging information, execution
proceeds until control reaches afunction that does have debugging
information. Likewise, it will not step into a function which is compiled
without debugging information. To step through functions without
debugging information, use the st epi command, described in the
following.

The st ep command only stops at the first instruction of a sourceline. This
prevents multiple stops that used to occur in switch statements, for loops, etc. st ep
continues to stop if afunction that has debugging information is called within the
line.

Also, the st ep command now only enters a subroutine if there is line number
information for the subroutine. Otherwise it acts like the next command. This
avoids problemswhen using cc - gl on MIPS machines. Previoudly, st ep
entered subroutines if there saw any debugging information about the routine.

step count

Continue running asin step, but do so count times. If abreakpoint is reached,
or asignal not related to stepping occurs before count steps, stepping stops
right away.

next [count]

Continue to the next source line in the current (innermost) stack frame. This
issimilar to st ep, but function calls that appear within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the original stackslevel that was executing when you gave the
next command. This command is abbreviated n.

An argument count isarepeat count, asfor st ep.

The next command now only stops at the first instruction of a source line. This
prevents the multiple stops that used to occur in switch statements, for loops, etc.

finish
Continue running until just after function in the selected stack frame returns.

Print the returned value (if any). Contrast this with ther et ur n command
(see “Returning from a Function” on page 105).

LynxOS Total/db User’s Guide 51

Chapter 2 - Debugging with GDB

52

until

Continue running until asource line past the current line in the current stack
frame isreached. This command is used to avoid single stepping through a
loop more than once. It islike the next command, except that when unt i |
encounters ajump, it automatically continues execution until the program
counter is greater than the address of the jump.

This means that when you reach the end of aloop after single stepping through it,
unti | makesyour program continue execution until it exits the loop. In contrast,
a next command at the end of aloop simply steps back to the beginning of the
loop, which forces you to step through the next iteration.

unti | aways stops your program if it attempts to exit the current stack frame.

unti | may produce somewhat counter-intuitive resultsif the order of machine
code does not match the order of the source lines. For instance, in the following
example from a debugging session, the f (f r ame) command shows that execution
is stopped at line 206. Whenwe use unti | , weget to line 195:

(gdb) f

#0 main (argc=4, ar gv=0xf 7f ff ae8) at n#.c: 206
206 expand_i nput () ;

(gdb) until

195 for (; argc > 0; NEXTARG {

This happened because, for execution efficiency, the compiler had generated code
for the loop closure test at the end, rather than the start, of the loop—even though
the test in a C for-loop is written before the body of the loop.

The until command appeared to step back to the beginning of the loop when it
advanced to this expression; however, it has not really gone to an earlier
statement—not in terms of the actual machine code.

unti | with no argument works by means of single instruction stepping and,
hence, isslower than unti | with an argument.

until location
u location

LynxOS Total/db User’s Guide

Signals

Continue running your program until either the specified location is reached,
or the current stack framereturns. | ocat i on isany of the forms of argument
acceptable to break (see“ Setting Breakpoints’ on page 37).

This form of the command uses breakpoints and, hence, is quicker than until
without an argument.

st epi

Si

Execute one machine instruction, then stop and return to the debugger.

Itis often useful touse di spl ay/i $pc when stepping by machine
instructions. This makes GDB automatically display the next instruction to
be executed, each time your program stops. See “ Automatic Display” on

page 74.
An argument is arepeat count, asin st ep.

nexti
ni

Execute one machine instruction, but if it isafunction call, proceed until the
function returns.

An argument is arepeat count, asin next .

Signals

A signal isan synchronous event that can happen in a program.

The operating system defines the possible kinds of signals, and gives each kind a
name and a number. For example, in UNIX, SI G NT isthe signal a program gets
when you use an interrupt (often ctrl-c); SI GSEGV isthe signal a program gets from
referencing a place in memory away from al the areas in use; SI GALRMoccurs
when the alarm clock timer goes off (which happens only if your program has
reguested an alarm).

Some signals, including SI GALRM are anormal part of the functioning of your
program. Others, such as SI GSEGV, indicate errors; these signals are fatal (kill your
program immediately) if the program has not specified in advance some other way
to handle the signal. SI G NT does not indicate an error in your program, but it is
normally fatal so it can carry out the purpose of the interrupt: to kill the program.

GDB has the ahility to detect any occurrence of asignal in your program. You can
tell GDB in advance what to do for each kind of signal.

LynxOS Total/db User’s Guide 53

Chapter 2 - Debugging with GDB

Normally, GDB is set up to ignore non-erroneous signals like SI GALRMs0 as hot to
interfere with their rolein the functioning of your program, but to stop your
program immediately whenever an error signal happens. You can change these
settings with the handle command.

info signals

Print atable of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of al the defined types
of signals.

info handleisthe new aliasfori nf o si gnal s.
handl e signal keywords...

Change theway GDB handlessignal, si gnal . si gnal can be the number of
asignal or itsname (with or without the SI G at the beginning). The keywords
say what change to make.

The keywords allowed by the handl e command can be abbreviated. Their full
names are:

nost op

GDB should not stop your program when this signal happens. It may still
print a message telling you that the signal has comein.

stop

GDB should stop your program when this signal happens. Thisimplies the
print keyword aswell.

print
GDB should print a message when this signal happens.
nopri nt

GDB should not mention the occurrence of the signal at all. Thisimpliesthe
nost op keyword as well.

pass

GDB should allow your program to see this signal; your program can handle
the signal, or elseit may terminate if the signal isfatal and not handled.

nopass

GDB should not allow your program to see thissignal.

54 LynxOS Total/db User’s Guide

Stopping and Starting Multithread Programs

When asignal stops your program, the signal isnot visible until you continue. Your
program seesthe signal then, if pass isin effect for the signal in question at that
time. In other words, after GDB reports asignal, you can usethe handl e
command with pass or nopass to control whether your program sees that
signal when you continue.

You can also usethe si gnal command to prevent your program from seeing a
signal, or causeit to see asignal it normally would not see, or to give it any signal
at any time. For example, if your program stopped due to some sort of memory
reference error, you might store correct values into the erroneous variables and
continue, hoping to see more execution; but your program would probably
terminate immediately as aresult of the fatal signal once it wasthe signal. To
prevent this, you can continue with si gnal 0.

Stopping and Starting Multithread Programs

When your program has multiple threads (see “ Debugging Programs with Multiple
Threads’ on page 34), you can choose whether to set breakpoints on all threads, or
on aparticular thread.

break |inespec thread threadno
break |inespec thread threadno if...

| i nespec specifies sourcelines; there are several ways of writing them, but
the effect is aways to specify some source line.

Use the qualifier t hr ead t hr eadno with a breakpoint command to specify that
you only want GDB to stop the program when a particular thread reaches this
breakpoint. t hr eadno isone of the numeric thread identifiers assigned by GDB,
shown in thefirst column of the i nf o t hr eads display.

If you do not specify t hr ead t hr eadno when you set a breakpoint, the breakpoint
appliesto all threads of your program.

You can use thet hr ead qualifier on conditional breakpoints aswell; in this case,
placet hr ead t hr eadno before the breakpoint condition, as the following
exampl e shows.

(gdb) break frik.c:13 thread 28 if bartab > 1im

Whenever your program stops under GDB for any reason, all threads of execution
stop, not just the current thread. This allows you to examine the overall state of the
program, including switching between threads, without worrying that things may
change underfoot.

LynxOS Total/db User’s Guide 55

Chapter 2 - Debugging with GDB

Conversely, whenever you restart the program, all threads start executing. Thisis
true even when single-stepping with commands such as st ep or next .

In particular, GDB cannot single-step all threads in lockstep. Because thread
scheduling is up to your debugging target’s operating system (not controlled by
GDB), other threads may execute more than one statement while the current thread
completes asingle step. Moreover, in general other threads stop in the middle of a
statement, rather than at a clean statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or
even single-stepping. This happens whenever some other thread runsinto a
breakpoint, asignal, or an exception before thefirst thread compl etes whatever you
reguested.

Examining the Stack

56

The following documentation discusses GDB, stack frames and other related
topics.

When your program has stopped, the first thing you need to know iswhere it
stopped and how it got there.

Each time your program performs a function call, information about the call is
generated. That information includes the location of the call in your program, the
arguments of the call, and the local variables of the function being called. The
information is saved in ablock of data called a stack frame. The stack frames are
alocated in aregion of memory called the call stack. When your program stops,
the GDB commands for examining the stack allow you to see al of this
information.

One of the stack framesis selected by GDB and many GDB commands refer
implicitly to the selected frame. In particular, whenever you ask GDB for the value
of avariable in your program, the value is found in the selected frame. There are
special GDB commands to select whichever frame you areinterested in (see
“Selecting a Frame” on page 59).

When your program stops, GDB automatically selects the currently executing
frame and describes it briefly, similar to the frame command (see “ Information
about a Frame” on page 60).

LynxOS Total/db User’s Guide

Stack Frames

Stack Frames

The call stack is divided up into contiguous pieces called stack frames, or frames
for short; each frameisthe data associated with one call to one function. The frame
contains the arguments given to the function, the function’slocal variables, and the
address at which the function is executing.

When your program is started, the stack has only one frame, that of the function
main. Thisis called the initial frame or the outermost frame. Each time afunction
is called, a new frame is made. Each time afunction returns, the frame for that
function invocation is eliminated. If afunction is recursive, there can be many
frames for the same function. The frame for the function in which execution is
actually occurring is called the innermost frame. This is the most recently created
of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which hasits own address; each kind of computer
has a convention for choosing one byte whose address serves as the address of the
frame. Usually this addressis kept in aregister called the frame pointer register
while execution is going on in that frame.

GDB assigns numbersto all existing stack frames, starting with zero for the
innermost frame, one for the frame that called it, and so on upward.

These numbers do not really exist in your program; they are assigned by GDB to
give you away of designating stack framesin GDB commands.

Some compilers provide away to compile functions so that they operate without
stack frames. (For example, the - f omi t - f r ame- poi nt er gcc option generates
functions without aframe.) Thisis occasionally done with heavily used library
functions to save the frame setup time. GDB has limited facilities for dealing with
these function invocations. If theinnermost function invocation has no stack frame,
GDB nevertheless regards it as though it had a separate frame, which is numbered
zero as usual, allowing correct tracing of the function call chain. However, GDB
has no provision for framel ess functions elsewhere in the stack.

frame args

The frame command allows you to move from one stack frame to another,
and to print the stack frameyou select. ar gs may be either the address of
the frame of the stack frame number. Without an argument, f r ane printsthe
current stack frame.

sel ect-frane

The sel ect-frame command allowsyou to move from one stack frame to
another without printing the frame. Thisisthe silent version of frane.

LynxOS Total/db User’s Guide 57

Chapter 2 - Debugging with GDB

Backtraces

A backtrace is a summary of how your program got whereit is. It shows oneline
per frame, for many frames, starting with the currently executing frame (frame
zero), followed by its caller (frame one), and on up the stack.

backtrace
bt

Print a backtrace of the entire stack: one line per frame for all framesin the
stack. You can stop the backtrace at any time by using the system interrupt
character, normally ctri-c.

backtrace n
bt n

Similar, but print only theinnermost n frames.
backtrace -n
bt -n

Similar, but print only the outermost n frames.

The nameswher e and i nfo st ack (abbreviated i nf o s) are additional aliases
for backtrace.

Each line in the backtrace shows the frame number and the function name. The
program counter value is al'so shown—unlessyou use set print address

of f . The backtrace also shows the source file name and line number, as well asthe
arguments to the function. The program counter value is omitted if it is at the
beginning of the code for that line number. Here is an example of a backtrace. It
was made with the command bt 3, so it shows the innermost three frames.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)

at builtin.c:993

#1 0x6e38 in expand_macro (sym=0x2b600) at
macro. c: 242

#2 0x6840 in expand_token (obs=0x0, t=177664,
td=f f f b08)

at macro.c:71

(Mre stack frames to follow ..)

The display for frame zero does not begin with a program counter value, indicating
that your program has stopped at the beginning of the code for line 993 of
builtin.c.

58 LynxOS Total/db User’s Guide

Selecting a Frame

Selecting a Frame

Most commands for examining the stack and other datain your program work on
whichever stack frameis selected at the moment. Here are the commands for
selecting a stack frame; all of them finish by printing a brief description of the
stack frame just selected.

franme n
f n

Select frame number n. Recall that frame zero is the innermost (currently
executing) frame, frame oneis the frame that called the innermost one, and
so on. The highest-numbered frame is the one for mai n.

frame addr
f addr

Select the frame at address, addr . Thisis useful mainly if the chaining of
stack frames has been damaged by a bug, making it impossible for GDB to
assign numbers properly to al frames. In addition, this can be useful when
your program has multiple stacks and switches between them.

On the SPARC architecture, frame needstwo addressesto select an arbitrary
frame: aframe pointer and a stack pointer.

On the MIPS and Alpha architecture, it needs two addresses: a stack pointer and a
program counter.

On the 29k architecture, it needs three addresses: aregister stack pointer, a
program counter, and a memory stack pointer.

up n

Move n frames up the stack. For positive numbers n, this advances toward
the outermost frame, to higher frame numbers, to frames that have existed
longer. n defaultsto one.

down n

Moven framesdown the stack. For positive numbers n, this advances
toward the innermost frame, to lower frame numbers, to frames that were
created more recently. n defaultsto one. You may abbreviate down as do.

All of these commands end by printing two lines of output describing the frame.
The first line shows the frame number, the function name, the arguments, and the

LynxOS Total/db User’s Guide 59

Chapter 2 - Debugging with GDB

60

source file and line number of execution in that frame. The second line shows the
text of that source line. For instance, use the following as an example.

0x22f0 in main (argc=1, argv=0xf7fffbf4,
env=0xf 7fffbfc) at env.c: 10

= 3 el =R g oo N(oRan}

[y

read_i nput _file (argv[i]);

After such aprintout, the i st command with no arguments prints ten lines
centered on the point of execution in the frame (see “Printing Source Lines’ on

page 62).

up-silently n
down-silently n

Thesetwo commands are variantsof up and down, respectively; they differ
in that they do their work silently, without causing display of the new frame.
They are intended primarily for use in GDB command scripts, where the
output might be unnecessary and distracting.

Information about a Frame

There are severa other commands to print information about the selected stack
frame.

frame
f

When used without any argument, this command does not change which
frameis selected, but prints a brief description of the currently selected stack
frame. It can be abbreviated f . With an argument, this command is used to
select a stack frame (see “ Selecting a Frame” on page 59).

info frame
info f

This command prints a verbose description of the selected stack frame,
including:

» the address of the frame

LynxOS Total/db User’s Guide

MIPS Machines and the Function Stack

« the address of the next frame down (called by this frame)
« the address of the next frame up (caller of this frame)

< thelanguage in which the source code corresponding to this frameis
written

« the address of the frame's arguments

« the program counter saved in it (the address of execution in the caller
frame)

* which registers were saved in the frame

The verbose description is useful when something has gone wrong that has
made the stack format fail to fit the usual conventions.

info frame addr
infof addr

Print a verbose description of the frame at address addr , without selecting
that frame. The selected frame remains unchanged by this command. This
requires the same kind of address (more than one for some architectures) that
you specify in the f r ane command (see “ Selecting a Frame” on page 59).

info args
Print the arguments of the selected frame, each on a separate line.
info locals

Print the local variables of the selected frame, each on a separate line. These
are all variables (declared either static or automatic) accessible at the point of
execution of the selected frame.

info catch

Print alist of all the exception handlers that are active in the current stack
frame at the current point of execution. To see other exception handlers, visit
the associated frame (using the up, down, or f r ame commands); then type:

i nf o cat ch. See"Breakpoints, Watchpoints, and Exceptions’ on page 36.

MIPS Machines and the Function Stack

MIPS based computers use an unusua stack frame, which sometimes requires
GDB to search backward in the object code to find the beginning of a function.

LynxOS Total/db User’s Guide 61

Chapter 2 - Debugging with GDB

To improve response time (especially for embedded applications, where GDB may
be restricted to aslow serial line for this search) you may want to limit the size of
this search, using one of these commands:

set heuristic-fence-post limt

Restrict GDB to examining at most | i mi t bytesin its search for the
beginning of afunction.

A value of 0 (the default) means there is no limit. However, except for 0, the
larger the limit the more bytesheuri sti c- f ence- post must search and
therefore the longer it takes to run.

show heuri stic-fence- post
Display the current limit.

These commands are available only when GDB is configured for debugging
programs on MIPS processors.

Examining Source Files

62

GDB can print parts of your program’s source, because the debugging information
recorded in the program tells GDB what source files were used to build it. When
your program stops, GDB spontaneously printstheline whereit stopped. Likewise,
when you select a stack frame (see “ Selecting a Frame” on page 59). GDB prints
the line where execution in that frame has stopped. You can print other portions of
source files by explicit command.

See the following documentation for more specific discussion on source files and
GDB.

If you use GDB through its GNU Emacs interface, you may prefer to use Emacs
facilitiesto view source (see “Using GDB under GNU Emacs’ on page 120).

Printing Source Lines

To print lines from asourcefile, usethe | i st command (abbreviated |). By
default, 10 lines are printed. There are several ways to specify what part of the file
you want to print. The following are the forms of the i st command most
commonly used:

list linenum

LynxOS Total/db User’s Guide

Printing Source Lines

Print lines centered around line number, | i nenum in the current source file.
list function

Print lines centered around the beginning of function, f uncti on.
list

Print more lines. If the last lines printed were printed witha | i st
command, this prints lines following the last lines printed; however, if the
last line printed was a solitary line printed as part of displaying a stack frame
(see“ Examining the Stack” on page 56), this printslines centered around that
line.

list -
Print lines just before the lines last printed.

By default, GDB prints 10 source lines with any of these forms of thel i st
command. You can changethisusing set i stsi ze.

set |istsize count

Makethe 1i st commanddisplay count sourcelines (unlesstheli st
argument explicitly specifies some other number).

show | i stsize
Display the number of linesthat list prints.

Repeatingal i st command using Return discards the argument, so it isequivalent
totyping 1i st . Thisismore useful than listing the same lines again. An exception
is made for an argument of - ; that argument is preserved in repetition so that each
repetition moves up in the source file.

Ingenera, the 1i st command expects you to supply zero, one or two

I i nespecs which specify source lines. There are several ways of writing
linespecs, but the effect is always to specify some source line. Here is acomplete
description of the possible argumentsfor |i st:

listlinespec

Print lines centered around the line specified by | i nespec.
list first,|ast

Print linesfrom first tol ast . Both arguments are linespecs.
list, | ast

Print lines ending with | ast .

LynxOS Total/db User’s Guide 63

Chapter 2 - Debugging with GDB

64

list first,
Print lines starting with f i r st .
list +
Print lines just after the lines last printed.
list -
Print lines just before the lines last printed.
I'ist
Asdescribed for | i st in the previous descriptions.

The following are the ways of specifying a single source line—all the kinds of
linespec.
numnber

Specifies line nunber of the current source file. When alist command has
two linespecs, this refers to the same source file as the first linespec.

+of f set

Specifiestheline of f set lines after the last line printed. When used asthe
second linespec in alist command that has two, this specifies the line
of f set lines down from the first linespec.

-of f set

Specifiestheline of f set lines before the last line printed.
fil ename: nunber

Specifies line nunmber inthe sourcefile, fi | enane.
function

Specifies the line that begins the body of the function, f unct i on. For
instance, in C, thisisthe line with the open brace.

filenane: function

Specifies the line of the open-brace that begins the body of the function
function inthefile fil enane. You only need the file name with a
function name to avoid ambiguity when there are identically named
functionsin different sourcefiles.

*addr ess

LynxOS Total/db User’s Guide

Searching Source Files

Specifiesthe line containing the program address, addr ess. addr ess may
be any expression.

Searching Source Files

There are two commands for searching through the current source file for aregular
expression.

f orward- search regexp
search regexp

Thef orwar d- sear ch regexp command checks each line, starting with
the one following the last line listed, for amatch for r egexp. It liststhe line
that is found. You can use the synonym, sear ch r egexp, or abbreviate the
command name asf o.

reverse-search regexp

The rever se-search regexp command checks each line, starting with
the one before the last line listed and going backward, for a match for
regexp. It liststheline that is found. You can abbreviate this command as
rev.

Specifying Source Directories

Executable programs sometimes do not record the directories of the source files
from which they were compiled, just the names. Even when they do, the directories
could be moved between the compilation and your debugging session. GDB has a
list of directoriesto search for source files; thisis called the source path. Each time
GDB wants asourcefile, it tries all the directoriesin the list, in the order they are
present in thelist, until it finds a file with the desired name.

NOTE: The executable search path is not used for this purpose. Neither is
the current working directory, unless it happens to be in the source path.

If GDB cannot find a source file in the source path, and the object program records
adirectory, GDB triesthat directory too. If the source path is empty, and thereisno
record of the compilation directory, GDB looks in the current directory as alast
resort.

Whenever you reset or rearrange the source path, GDB clears out any information
it has cached about where source files are found and where each line isin thefile.

LynxOS Total/db User’s Guide 65

Chapter 2 - Debugging with GDB

66

When you start GDB, its source path is empty. To add other directories, use the
di rect ory command.

directory dirnane ...
dir dirnanme ...

Add directory, di r nane, to the front of the source path. Several directory
names may be given to this command, separated by acolon(:) or
whitespace. You may specify adirectory that is already in the source path;
this movesit forward, so GDB searches it sooner.

You can usethe $cdir string to refer to the compilation directory (if oneis
recorded), and $cwd to refer to the current working directory. $cwd is not the
same as a period (.) —the former tracks the current working directory asit
changes during your GDB session, while the latter isimmediately expanded to the
current directory at the time you add an entry to the source path.

directory

Reset the source path to empty again. This requires confirmation.
show directories

Print the source path; show which directories it contains.

If your source path is cluttered with directories that are no longer of interest,
GDB may sometimes cause confusion by finding the wrong versions of
source. You can correct the situation by the following methods.

» Usedirect ory with no argument to reset the source path to empty.

» Usedirect ory with suitable arguments to reinstall the directories you
want in the source path. You can add al the directories in one command.

Source and Machine Code

You can usethei nfo |ine command to map source lines to program addresses
(and viceversa), and the di sassenbl e command to display arange of addresses
as machine instructions.

When run under GNU Emacs mode, the i nfo | i ne command now causes the
arrow to point to the line specified. Also, i nfo i ne printsaddressesin
symbolic form aswell as hex.

info line |inespec

LynxOS Total/db User’s Guide

Examining Data

Print the starting and ending addresses of the compiled code for source line
linespec. Specify source linesin any of the ways understood by thel i st
command (see “Printing Source Lines’ on page 62).

For instance, we canuse i nfo |ine todiscover the location of the object code
for thefirst line of function, m_changequot e, asin the following example.

(gdb) info line mi_changecom

Line 895 of “builtin.c” starts at pc 0x634c and ends at 0x6350
We can also inquire (using * addr as, the form for | i nespec) what source line
covers aparticular address, asin the following example.

(gdb) info line *Ox63ff

Line 926 of “builtin.c” starts at pc 0x63e4 and ends at 0x6404
Afterinfo |ine, the default addressfor the x command is changed to the
starting address of theline, sothat x/i is sufficient to begin examining the
machine code (see “Examining Memory” on page 72). Also, this addressis saved
as the value of the convenience variable, $_ (see” Convenience Variables’ on

page 83).

di sassenbl e

This specialized command dumps a range of memory as machine
instructions. The default memory range is the function surrounding the
program counter of the selected frame. A single argument to thiscommand is
aprogram counter value; GDB dumps the function surrounding this value.
Two arguments specify arange of addresses (first inclusive, second
exclusive) to dump.

We can use di sassenbl e toinspect the object code range shown in the last info
line example (the example shows SPARC machine instructions):

(gdb) disas 0x63e4 0x6404

Dunp of assenbl er code from Ox63e4 to 0x6404

0x63e4 <builtin_init+5340>: ble 0x63f8<builtin_init+5360>
0x63e8 <builtin_init+5344>: sethi %i (0x4c00), %0
0x63ec <builtin_init+5348>: 1d [% 1+4], %0

0x63f0 <builtin_init+5352> 0x63fc <builtin_init+5364>
0x63f4 <builtin_init+5356>: 1d [%0+4], %0

0x63f8 <builtin_init+5360>: or %0, Oxla4, %0

0x63fc <builtin_init+5364> call 0x9288 <path_search>
0x6400 <builtin_init+5368>: nop

End of assenbl er dunp.

Examining Data
The following material relates to examining data using GDB.

LynxOS Total/db User’s Guide 67

Chapter 2 - Debugging with GDB

68

The usual way to examine datain your program iswith the pri nt command
(abbreviated p), or itssynonym, i nspect . It evaluates and prints the value of an
expression of the language your program is written in. See “Using GDB with
Different Languages’ on page 86.

print exp
print /f exp

exp isan expression (in the source language). By default the value of exp is
printed in aformat appropriate to its data type; you can choose a different
format by specifying / f, where f isaletter specifying the format (see
“Output Formats’ on page 71).

print /f

If you omit exp, GDB displays the last value again (from the val ue
hi st ory; see“Value History” on page 82). This alows you to conveniently
inspect the same value in an alternative format.

A morelow-level way of examining dataiswith the x command. It examinesdata
in memory at a specified address and printsit in a specified format. See
“Examining Memory” on page 72.

If you areinterested in information about types, or about how the fields of a struct
or class are declared, use the pt ype exp command rather than pri nt . See
“Examining the Symbol Table” on page 99.

Expressions

pri nt and many other GDB commands accept an expression and compute its
value. Any kind of constant, variable or operator defined by the programming
language you are using isvalid in an expression in GDB. Thisincludes conditional
expressions, function calls, casts and string constants. It unfortunately does not
include symbols defined by preprocessor #def i ne commands.

GDB now supports array constants in expressions input by the user. The syntax is
el ement, elenment For example, you can now use the command, pri nt
{1 2 3} tobuild up an array in memory that is memory allocated in the target
program.

NoOTE: Because C is so widespread, most of the expressions shown in
examplesin thismanual arein C. See “Using GDB with Different
Languages’ on page 86.

LynxOS Total/db User’s Guide

Program Variables

In this section, we discuss operators that you can use in GDB expressions
regardless of your programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that addressin memory.

GDB supports these operators, in addition to those common to programming
languages:

: - dlowsyou to specify avariable in terms of thefile or function whereitis
defined. See “Program Variables’ on page 69.

@
@is abinary operator for treating parts of memory as arrays. See “Artificial
Arrays’ on page 70.

{type}addr

Refersto an object of type, t ype, stored at address, addr , in memory. addr
may be any expression whose value is an integer or pointer (but parentheses
arerequired around binary operators, just asin a cast). This construct is
allowed regardless of what kind of datais normally supposed to reside at
addr.

Program Variables

The most common kind of expression to useis the name of avariablein your
program. Variablesin expressions are understood in the selected stack frame (see
“Selecting a Frame” on page 59); they must be either global (or static) or visible
according to the scope rules of the programming language from the point of
execution in that frame. Consider the following function example.

foo (a)
int a;

bar (a);

int b =test ();
bar (b);

}

}

This means that you can examine and use the variable, a, whenever your program
is executing within the function, f oo, but you can only use or examine the
variable, b, while your program is executing inside the block where b is declared.

LynxOS Total/db User’s Guide 69

Chapter 2 - Debugging with GDB

70

There is an exception: you can refer to a variable or function whose scopeisa
single source file even if the current execution point isnot in thisfile. But it is
possible to have more than one such variable or function with the same name (in
different sourcefiles). If that happens, referring to that name has unpredictable
effects. If you wish, you can specify astatic variablein a particular function or file,
using the colon-colon notation as in the following example.

file::variable
function::variable

Herefi |l e or f unct i on isthe name of the context for the staticvar i abl e.
In the case of file names, you can use quotes to make sure GDB parses the
file name as a single word—for example, to print aglobal value of x defined
inf2.c,use(gdb) p 'f2.¢c'::x.

Thisuseof : : isvery rarely in conflict with the very similar use of the same
notation in C++. GDB also supports use of the C++ scope resol ution operator
in GDB expressions.

CAUTION! Occasionally, alocal variable may appear to have the wrong
value at certain pointsin afunction—just after entry to a new scope, and
just before exit. You may see this problem when you are stepping by
machine instructions. Thisis because, on most machines, it takes more
than one instruction to set up a stack frame (including local variable
definitions); if you are stepping by machine instructions, variables may
appear to have the wrong values until the stack frame is completely built.
On exit, it usually takes more than one machine instruction to destroy a
stack frame; after you begin stepping through that group of instructions,
local variable definitions may be gone.

Artificial Arrays

It is often useful to print out several successive objects of the same typein
memory; a section of an array, or an array of dynamically determined size for
which only a pointer exists in the program.

You can do this by referring to a contiguous span of memory as an artificial array,
using the @binary operator. The left operand of @should be the first element of the
desired array and be an individual object. The right operand should be the desired
length of the array. The result is an array value whose elements are all of the type
of the left argument. The first element is actually the left argument; the second
element comes from bytes of memory immediately following those holding the
first element, and so on.

LynxOS Total/db User’s Guide

Output Formats

If aprogram says:
int *array = (int *) malloc (len * sizeof (int));
you can print the contents of ar r ay withp *array@ en.

The left operand of @ must reside in memory. Array values made with @ in this
way behave just like other arraysin terms of subscripting, and are coerced to
pointers when used in expressions. Artificial arrays most often appear in
expressions via the value history (see “Value History” on page 82), after printing
one oult.

Another way to create an artificial array isto use acast. Thisre-interprets avalue
asif it were an array. The value need not be in memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

Asaconvenience, if you leave the array length out, asin (t ype[]) val ue, GDB
calculates asizeto fill thevalue, assi zeof (val ue)/ si zeof (type) asthe
following example shows.

(gdb) p/x (short[])0x1234567
$2 = {0x1234, 0x5678}

Sometimes, the artificial array mechanismis not quite enough; in moderately
complex data structures, the elements of interest may not actually be adjacent—for
example, if you are interested in the values of pointersin an array. One useful
work-around in this situation is to use a convenience variable (see “ Convenience
Variables’ on page 83) as a counter in an expression that prints the first interesting
value, and then repeat that expression using Return. For instance, suppose you have
an array, dt ab, of pointersto structures, and you are interested in the values of a
field, fv, ineach structure. The following is an example of what you might type:

set $i =0
p dtab[$i++]-fv

(At this point, use Return twice.)

Output Formats

By default, GDB prints a value according to its data type. Sometimes thisis not
what you want. For example, you might want to print a number in hex, or a pointer
in decimal. Or you might want to view datain memory at a certain addressas a
character string or as an instruction. To do these things, specify an out put
format when you print avalue.

LynxOS Total/db User’s Guide 71

Chapter 2 - Debugging with GDB

The simplest use of output formatsisto say how to print avalue already computed.
Thisis done by starting the arguments of the print command with aslash and a
format letter. The format |etters supported are shown below.

Letter Definition
Value
X Regard the bits of the value as an integer, and print the integer in
hexadecimal.
d Print as integer in signed decimal.
u Print as integer in unsigned decimal .
o] Print as integer in octal.
Print asinteger in binary. The letter ‘t * stands for “two” (‘b’
¢ cannot be used because these format | etters are also used with the
X command, where ‘b’ stands for “byte” (see “ Examining
Memory” on page 72).
ggdb) p/a 0x54320
= 0x54320 <_initialize_vx+396
c Regard as an integer and print it as a character constant.
Regard the bits of the value as a floating point number and print
f ; . . .
using typical floating point syntax.

For example, to print the program counter in hex (see“ Registers’ on page 84), type
p/ x $pc. Nospaceisrequired before the slash because command namesin GDB
cannot contain a slash.

To reprint the last value in the value history with a different format, you can usethe
print command with just aformat and no expression. For example, p/ x reprints
the last value in hex.

Examining Memory

You can usethe x command (for “examing”) to examine memory in any of
several formats, independently of your program’s data types.

x/ nfuaddr
X addr

x Usethe x command to examine memory.

72 LynxOS Total/db User’s Guide

Examining Memory

n,f,and u areall optional parameters that specify how much memory to display
and how to format it; addr isan expression giving the address where you want to
start displaying memory. If you use defaults for nf u, you need not type the dlash,
‘/". Several commands set convenient defaults for addr .

n, the repeat count

The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by units, u) to display.

f , the display format

The display format is one of the formats used by pri nt , s (null-terminated
string), or i (machineinstruction). Thedefaultis x (hexadecimal) initially.
The default changes each time you use either x or pri nt.

u, the unit size

The unit size is shown in the following table.

Table 2-3: Unit Size

Type Unit
b Bytes
h Half words (two bytes)
w Words (four bytes); thisistheinitial default.
g Giant words (eight bytes)

Each time you specify a unit size with x, that size becomes the default unit the
next timeyou use x. (Forthe s and i formats, the unit sizeisignored and is
normally not written.)

addr, starting display address

addr isthe address where you want GDB to begin displaying memory. The
expression need not have a pointer value (though it may); it is always
interpreted as an integer address of a byte of memory. See “ Expressions’ on
page 68. The default for addr isusualy just after the last address
examined—Dbut several other commands also set the default address: i nf o
br eakpoi nt s (totheaddress of the last breakpoint listed), i nfo i ne (to
the starting address of aline), and print (if you useit to display avalue
from memory).

For example, x/ 3uh0x54320 is arequest to display three half words (h) of
memory, formatted as unsigned decimal integers (u), starting at address

LynxOS Total/db User’s Guide 73

Chapter 2 - Debugging with GDB

74

0x54320. x/ 4xw$sp prints the four words (w) of memory above the stack
pointer (here, $sp; (see “Registers’ on page 84) in hexadecimal (x).

Because the letters indicating unit sizes are all distinct from the letters specifying
output formats, you do not have to remember whether unit size or format comes

first; either order works. The output specifications 4xw and 4wx mean exactly
the same thing. (The count must come first; wx4 does not work.)

Even though the unit size u isignored for the formats s and i, you might still
want to use acount n. For example, 3i specifiesthat you want to see three
machine instructions, including any operands. The di sassenbl e command
gives an alternative way of inspecting machine instructions; see “ Source and
Machine Code” on page 66.

All the defaults for the argumentsto x are designed to make it easy to continue
scanning memory with minimal specifications each timeyou use x. For example,
after you have inspected three machine instructions with x/ 3i addr, you can
inspect the next seven with just x/ 7. If you use Return to repeat the x command,
the repeat count n is used again; the other arguments default as for successive
usesof x.

The addresses and contents printed by the x command are not saved in the value
history because there is often too much of them and they would get in the way.
Instead, GDB makes these values available for subsequent use in expressions as
values of the convenience variables $_ and $__. After an x command, the last
address examined is available for use in expressionsin the convenience variable
$_. The contents of that address, as examined, are available in the convenience
variable, $__.

If the x command has arepeat count, the address and contents saved are from the
last memory unit printed; thisis not the same as the last address printed if several
units were printed on the last line of output.

Automatic Display

If you find that you want to print the value of an expression frequently (to see how
it changes), you might want to add it to the automatic display list so that GDB
printsits value each time your program stops. Each expression added to thelist is
given anumber to identify it; to remove an expression from the list, you specify
that number. The automatic display looks like the following:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

LynxOS Total/db User’s Guide

Automatic Display

This display showsitem numbers, expressions and their current values. As with
displays you request manually, using x or pri nt, you can specify the output
format you prefer; in fact, di spl ay decideswhether touse print or x
depending on how elaborate your format specification is—it uses x if you specify
aunit size, or one of thetwo formats (i and s) that are only supported by x;
otherwiseit uses print.

di splay exp

Add the expression, exp, to the list of expressions to display each time your
program stops (see “Expressions’ on page 68).

di spl ay doesnot repeat if you press Return again after using it.
di splay/fnt exp

For f mt specifying only adisplay format and not a size or count, add the
expression exp to the auto-display list but arrange to display it eachtimein
the specified format, f nt (see “ Output Formats’ on page 71).

di splay/fm addr

Forfmt i or s, orincluding aunit-size or anumber of units, add the
expression, addr, as amemory address to be examined each time your
program stops. Examining means in effect doing

x/ fmt addr (see“Examining Memory” on page 72).

For example, di spl ay/i $pc can behelpful, to see the machine
instruction about to be executed each time execution stops ($pc isa
common name for the program counter; see “Registers’ on page 84).

undi spl ay dnums. ..
del ete di splay dnums. .

Remove item numbers dnums from the list of expressionsto di spl ay.

undi spl ay does not repeat if you use Return after using it. (Otherwise you
would just get the error, No di spl ay nunber. ...)

di sabl e di splay dnums ..

Disable the display of item numbers, dnuns. A disabled display item isnot
printed automatically, but is not forgotten. It may be enabled again | ater.

enabl e di spl ay dnuns. .

Enable display of item numbers, dnuns. It becomes effective once again in
auto display of its expression, until you specify otherwise.

di spl ay

LynxOS Total/db User’s Guide 75

Chapter 2 - Debugging with GDB

76

Display the current values of the expressions on thelist, just asis done when
your program stops.

i nfo display

Print the list of expressions previously set up to display automatically, each
one with itsitem number, but without showing the values. This includes
disabled expressions, which are marked as such. It also includes expressions
which would not be displayed right now because they refer to automatic
variables not currently available.

If adisplay expression refersto local variables, then it does not make sense outside
thelexical context for which it was set up. Such an expression is disabled when
execution enters a context where one of its variablesis not defined. For example, if
you give the command, di spl ay | ast _char, whileinside afunction with an
argument, | ast _char, GDB displays this argument while your program
continues to stop inside that function. When it stops el sewhere—where there isno
variable, | ast _char, the display is disabled automatically. The next time your
program stops where| ast _char is meaningful, you can enable the display
expression once again.

Print Settings

GDB provides the following ways to control how arrays, structures, and symbols
are printed. These settings are useful for debugging programs in any language:

set print address
set print address on

GDB prints memory addresses showing the location of stack traces, structure
values, pointer values, breakpoints, and so forth, even when it also displays
the contents of those addresses. The default is on.

For example, thefollowing iswhat astack frame display lookslike with set
print address on:

(gdb)f

#0set _quotes (1q=0x34c78 "<<", rg=0x34c88 "")

at input.c:530 530
530i f (lquote != def_I quote)

set print address off
Do not print addresses when displaying their contents. For example, the

following is the same stack frame displayed with set print address
of f:

LynxOS Total/db User’s Guide

Print Settings

(gdb) set print addr off

(gdb) f

#0set _quotes (lg="<<", rg="")at input.c:530
530i f (lquote != def_I| quote)

Youcanuse set print address off toeliminateall machine
dependent displays from the GDB interface. For example, with pri nt
addr ess of f, you should get the same text for backtraces on al
machines—whether or not they involve pointer arguments.

show print address
Displays whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol
plus an offset. If that symbol does not uniquely identify the address (for example, it
is a name whose scope is a single source file), you may need to clarify.

Oneway to do thisiswith i nfo |i ne, for example,
info |ine *0x4537.

Alternately, you can set GDB to print the source file and line number when it prints
asymbolic address:

set print synbol-fil enane on

Tell GDB to print the source file name and line number of a symbol in the
symbolic form of an address.

set print synbol-fil enane off

Do not print source file name and line number of a symbol. Thisisthe
default.

show print synbol -fil enane

Show whether or not GDB will print the source file name and line number of
asymbol in the symbolic form of an address.

Another situation whereit is helpful to show symbol filenames and line numbersis
when disassembling code; GDB shows you the line number and source file that
corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being printed is
reasonably close to the closest earlier symbol:

set print max-synbolic-offset nax-offset

Tell GDB to only display the symbolic form of an addressif the offset
between the closest earlier symbol and the addressislessthan max- of f set .

LynxOS Total/db User’s Guide 77

Chapter 2 - Debugging with GDB

The default is 0, which tells GDB to aways print the symbolic form of an
addressif any symbol precedesit.

show print max-synbolic-offset
Ask how large the maximum offset isthat GDB printsin a symbolic address.

If you have a pointer and you are not sure where it points, try

set print synbol-fil enanme on. Then, you can determine the name and
source file location of the variable where it points, using p/ a poi nt er. This
interprets the address in symbolic form. For instance, the following shows that a
variable, ptt, pointsat another variable, t, definedin hi 2. c:

(gdb) set print synbol-filenane on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c

CAuTION! For pointersthat point to alocal variable, p/ a doesnot show
the symbol name and filename of the referent, even with the appropriate
set print optionsturned on.

Other settings control how different kinds of objects are printed:

set print array
set print array on

Pretty print arrays. Thisformat is more convenient to read, but uses more
space. The default is off.

set print array off

Return to compressed format for arrays.
show print array

Show whether compressed or pretty format is selected for displaying arrays.
set print el enents nunber-of-elenents

Set alimit on how many elements of an array GDB will print. If GDB is
printing alarge array, it stops printing after it has printed the number of
elements set by the set print el ements command. Thislimit also
appliesto the display of strings. Setting nunber - of - el enent s to zero
means that the printing is unlimited.

show print elenments

Display the number of elements of alarge array that GDB will print. If the
number is 0, then the printing is unlimited.

78 LynxOS Total/db User’s Guide

Print Settings

set

set

set

print null-stop

Cause GDB to stop printing the characters of an array when the first null is
encountered. Thisis useful when large arrays actually contain only short
strings.
print pretty on
Cause GDB to print structuresin an indented format with one member per
ling, like the following example:
$1={

next = 0x0

flags = {

sweet = 1,

sour =1

b
530neat = 0x54 “Pork”
print pretty off
Cause GDB to print structures in a compact format, like the following
example:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
neat = 0x54 "Pork"}

Thisisthe default format.

show print pretty

set

set

Show which format GDB is using to print structures.
print sevenbit-strings on

Print using only seven-bit characters; if thisoption is set, GDB displays any
eight-bit characters (in strings or character values) using the notation, \ nnn.
This setting is best if you are working in English (ASCII) and you use the
high-order bit of characters asamarker or “meta’ bit.

print sevenbit-strings off

Print full eight-bit characters. This allows the use of more international
character sets, and is the default.

show print sevenbit-strings

set

Show whether or not GDB is printing only seven-bit characters.
print union on

Tell GDB to print unions which are contained in structures. Thisisthe
default setting.

LynxOS Total/db User’s Guide 79

Chapter 2 - Debugging with GDB

set print union off
Tell GDB not to print unions which are contained in structures.
show print union

Ask GDB whether or not it will print unions which are contained in

structures. For instance, consider the following example’s declarations.
typedef enum {Tree, Bug} Species; typedef enum {Big_tree, Acorn,
Seedl ing} Tree_forns; typedef enum {Caterpillar, Cocoon, Butterfly}
Bug_f or ns;
struct thing {
Species it; uni on { Tree_forns tree; Bug_forns bug;

} form

h

struct thing foo = {Tree, {Acorn}};

The example has set print union on in effect having
p foo printing the following result.

$1 = {it = Tree, form= {tree = Acorn, bug = Cocoon}}
With set print union off ineffect, it would print the following result.
$1 = {it = Tree, form={...}}
The following settings are of interest when debugging C++ programs.

set print demangl e
set print denmangle on

Print C++ namesin their source form rather than in the encoded (“mangled”)
form passed to the assembler and linker for type-safe linkage. The default is
on.

show print denangl e
Show whether C++ names are printed in mangled or demangled form.

set print asmdemangl e
set print asmdenangl e on

Print C++ namesin their source form rather than their mangled form, evenin
assembl er code printouts such as instruction disassemblies. The default is off.

show print asm denangl e

Show whether C++ names in assembly listings are printed in mangled or
demangled form.

set denangl e-style style

80 LynxOS Total/db User’s Guide

Print Settings

Choose among several encoding schemes used by different compilersto
represent C++ names. The choicesfor styl e arecurrently:

aut o
Allow GDB to choose a decoding style by inspecting your program.
gnu

Decode based on the GNU C++ compiler (g++) encoding algorithm. Thisis
the default.

lucid
Decode based on the Lucid C++ compiler (I cc) encoding algorithm.
arm

Decode using the algorithm in the C++ Annotated Reference Manual.

NOTE: This setting alone is not sufficient to allow debugging cfront-
generated executables. GDB would require further enhancement to permit
that functionality.

foo
Show the list of formats.
show demangl e-styl e
Display the encoding style currently in use for decoding C++ symbols.

set print object
set print object on

When displaying a pointer to an object, identify the actual (derived) type of
the object rather than the declared type, using the virtual function table.

set print object off

Display only the declared type of objects, without reference to the virtual
function table. Thisisthe default setting.

show print object
Show whether actual, or declared, object types are displayed.

set print vtbl
set print vtbl on

Pretty print C++ virtual function tables. The default is off.

LynxOS Total/db User’s Guide 81

Chapter 2 - Debugging with GDB

82

set print vthbl off
Do not pretty print C++ virtual function tables.
show print vtbl

Show whether C++ virtual function tables are pretty printed, or not.

Value History

Values printed by the print command are saved in the GDB value history. This
alows you to refer to them in other expressions. Values are kept until the symbol
tableisreread or discarded (for example withthe file orsynmbol -file
commands). When the symbol table changes, the value history is discarded,
becausebecause the values may contain pointers back to the types defined in the
symbol table.

The values printed are given history numbers by which you can refer to them.
These are successive integers starting with one. pri nt shows you the history
number assigned to avalue by printing $num= before the value; num is the history
number.

To refer to any previousvalue, use $ followed by the value's history number. The
way print labelsitsoutput isdesigned to remind you of this. Just $ referstothe
most recent value in the history, and $$ refersto the value before that. $$n
refers to the nth value from the end; $$2 isthe valuejust prior to $$, $$1 is
equivalent to $$, and $$0 isequivalent to $.

For example, suppose you have just printed a pointer to a structure and want to see
the contents of the structure. It sufficestotypep *$.

If you have a chain of structures where the component next points to the next one,
you can print the contents of the next onewith p *$. next . You can print
successive links in the chain by repeating this command— which you can do by
just using Return.

Note that the history records values, not expressions. Consider, for instance, if the
valueof x is 4 andyou type the following example’'s commands.

print x
set x=5

Then the value recorded in the value history by the pri nt command
remains 4 eventhough the value of x has changed.

show val ues

LynxOS Total/db User’s Guide

Convenience Variables

Print the last ten values in the value history, with their item numbers. Thisis
like p$$9 repeated ten times, except that
show val ues does not change the history.

show values n
Print ten history values centered on history item number n.
show val ues +

Print ten history valuesjust after the valueslast printed. If no morevaluesare
available, show values + produces no display.

Using Return to repeat show val ues n has exactly the same effect as
SHOW VALUES +.

Convenience Variables

GDB provides convenience variables that you can use within GDB to hold on to a
value and refer to it later. These variables exist entirely within GDB; they are not
part of your program, and setting a convenience variable has no direct effect on
further execution of your program. That iswhy you can use them freely.

Convenience variables are prefixed with $. Any name preceded by $ can be used
for a convenience variable, unlessit is one of the predefined machine-specific
register names (see “Registers’ on page 84). Value history references, in contrast,
are numbers preceded by $ (see”Vaue History” on page 82).

You can save avaluein a convenience variable with an assignment expression, just
asyou would set avariable in your program. For example, set $f oo =

*obj ect _pt r would savein $f oo thevalue contained in the object pointed to by
obj ect _ptr.

Using a convenience variable for the first time creates it, but itsvalue is voi d
until you assign a new value. You can alter the value with another assignment at
any time. Convenience variables have no fixed types. You can assign a
convenience variable any type of value, including structures and arrays, even if that
variable already has avalue of adifferent type. The convenience variable, when
used as an expression, has the type of its current value.

show conveni ence

Print alist of convenience variables used so far, and their values.
Abbreviated as show con.

One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced. For instance, to print afield from

LynxOS Total/db User’s Guide 83

Chapter 2 - Debugging with GDB

84

successive elements of an array of structures, use the following as an
example.

set $i =0
print bar[$i ++]-contents

Repeat that command by using Return.

Some convenience variables are created automatically by GDB and given values
likely to be useful.

$

The$_ variable isautomatically set by the x command to the last address
examined (see “ Examining Memory” on page 72). Other commands which
provide adefault addressfor x toexaminealsoset $_ to that address; these
commandsinclude i nfo |i ne andi nfo breakpoi nt.Thetypeof $_ is
voi d* except when set by the x command, in which caseit is a pointer to
thetypeof $_ .

The $__ variableisautomatically set by the x command to the value found
in the last address examined. Itstype is chosen to match the format in which
the data was printed.

$_exi tcode

The $_exi t code variableisautomatically set to the exit code when the
program being debugged terminates.

Registers

You can refer to machine register contents, in expressions, as variables with names
starting with $. The names of registers are different for each machine; use i nf o
regi st ers to seethe names used on your machine.

info registers

Print the names and values of all registers except floating-point registers (in
the selected stack frame).

info all-registers
Print the names and values of all registers, including floating-point registers.

info registers regnane...

LynxOS Total/db User’s Guide

Registers

Print the relativized value of each specified register, r egnane. As discussed
in the following, register values are normally relative to the selected stack
frame. r egnane may be any register name valid on the machine you are
using, with or without the initial $.

GDB hasfour “standard” register namesthat are availabl e (in expressions) on most
machines—whenever they do not conflict with an architecture’s canonical
mnemonics for registers. The register names $pc and $sp are used for the
program counter register and the stack pointer. $f p isused for aregister that
contains a pointer to the current stack frame, and $ps isused for aregister that
contains the processor status. For example, you could print the program counter in
hex with p/ x $pc, or print the instruction to be executed next with x/i $pc, or
add four to the stack pointer with

set $sp += 4. Thisisaway of removing one word from the stack, on machines
where stacks grow downward in memory (most machines, nowadays). This
assumes that the innermost stack frame is selected; setting $sp isnot allowed
when other stack frames are selected. To pop entire frames off the stack, regardless
of machine architecture, use Return (see “Returning from a Function” on

page 105).

Whenever possible, these four standard register names are available on your
machine even though the machine has different canonical mnemonics, so long as
thereisno conflict. The i nf o regi st er s command shows the canonical names.
For example, onthe SPARC, i nfo regi sters digplaysthe processor status
register as $psr but you can also refer to it as $ps.

GDB always considers the contents of an ordinary register as an integer when the
register is examined in this way. Some machines have special registers which can
hold nothing but floating point; these registers are considered to have floating point
values. There is no way to refer to the contents of an ordinary register as floating
point value (although you can print it as afloating point value with pri nt/f

$r egnane).

Some registers have distinct “raw” and “virtual” data formats. This means that the
dataformat in which the register contents are saved by the operating system is not
the same one that your program normally sees. For example, the registers of the

68881 floating point coprocessor are always saved in “extended” (raw) format, but
all C programs expect to work with “double” (virtual) format. In such cases, GDB
normally works with the virtual format only (the format that makes sense for your
program), but the i nf o regi st ers command prints the datain both formats.

Normally, register values are relative to the selected stack frame (see “ Selecting a
Frame” on page 59). This means that you get the value that the register would
contain if al stack frames farther in were exited and their saved registers restored.

LynxOS Total/db User’s Guide 85

Chapter 2 - Debugging with GDB

In order to see the true contents of hardware registers, you must select the
innermost frame (with frame 0).

However, GDB must deduce where registers are saved, from the machine code
generated by your compiler. If some registers are not saved, or if GDB isunableto
locate the saved registers, the sel ected stack frame makes no difference.

set rstack_hi gh_address address

On AMD 29000 family processors, registers are saved in a separate “register
stack”. Thereisno way for GDB to determine the extent of this stack.
Normally, GDB just assumes that the stack is“large enough”. This may
result in GDB referencing memory locations that do not exist. If necessary,
you can get around this problem by specifying the ending address of the
register stack withthe set rstack_hi gh_ address command. The
argument should be an address, which you probably want to precede with 0x
to specify in hexadecimal.

show rstack_high_address

Display the current limit of the register stack, on AMD 29000 family
processors.

Floating Point Hardware

Depending on the configuration, GDB may be able to give you more information
about the status of the floating point hardware.

info float

Display hardware-dependent information about the floating point unit. The
exact contents and layout vary depending on the floating point chip.
Currently, i nfo fl oat issupported onthe ARM and x86 machines.

Using GDB with Different Languages

86

Although programming languages generally have common aspects, they arerarely
expressed in the same manner. For instance, in ANSI C, dereferencing a pointer, p,
isaccomplished by *p, but in Modula-2, it isaccomplished by p». Values can also
be represented (and displayed) differently. Hex numbersin C appear as Ox1lae,
whilein Modula-2 they appear as 1AEH.

LynxOS Total/db User’s Guide

Switching between Source Languages

Language-specificinformation isbuilt into GDB for some languages, allowing you
to express operations like the previous in your program’s native language, and
allowing GDB to output values in a manner consistent with the syntax of your
program’s native language. The language you use to build expressionsis called the
working language.

See the following documentation for more specific discussion on languages that
GDB accommodates.

NoTEe: Although GDB is designed to support multiple languages,
LynuxWorks currently supports only GDB for C, C++, and assembly
languages.

Switching between Source Languages

There are two ways to control the working language—either have GDB set it
automatically, or select it manually yourself. You can usethe set | anguage
command for either purpose. On startup, GDB defaults to setting the language
automatically. The working language is used to determine how expressions you
type are interpreted, how values are printed, and so on.

In addition to the working language, every source file that GDB knows about has
its own working language. For some object file formats, the compiler might
indicate which language a particular source fileisin. However, most of the time
GDB infers the language from the name of the file. The language of a sourcefile
controls whether C++ names are demangled—thisway backt race can show
each frame appropriately for its own language. There is no way to set the language
of asource filefromwithin GDB. Thisis most commonly a problem when you use
aprogram, such as cfront orf2c, that generates C but iswritten in another
language. In that case, makethe program use #l1 i ne directivesinits C output; that
way GDB will know the correct language of the source code of the original
program, and will display that source code, not the generated C code.

List of Filename Extensions and Languages

If a source file name ends in one of the following extensions, then GDB infers that
its language is the one indicated.

C sourcefile
.C

C++ sourcefile

LynxOS Total/db User’s Guide 87

Chapter 2 - Debugging with GDB

88

.C
.CC

. CXX
. cpp

.cp
. C++

Assembler source file"

.S
.S

" Assembler source files behave aimost like C, but GDB does not ski p over function
prologues when stepping.

Setting the Working Language

If you allow GDB to set the language automatically, expressions are interpreted the
same way in your debugging session and your program. If you wish, you may set
the language manually. To do this, issuethe set | anguage | ang command,
where | ang isthe name of alanguage, such asc or nodul a- 2. For alist of the
supported languages, type set | anguage.

Setting the language manually prevents GDB from updating the working language
automatically. This can lead to confusion if you try to debug a program when the
working language is not the same as the source language, when an expression is
acceptable to both languages—but means different things. For instance, if the
current source file were written in C, and GDB was parsing Modula-2, acommand
suchasprint a =b +c might not have the effect you intended. In C, this means
toadd b and c and placetheresultin a. The result printed would be the value of
a. In Modula-2, thismeansto compare a totheresult of b+c, yieldinga Boolean
value.

Having GDB Infer the Source Language

To have GDB set the working language automatically, use set | anguage

| ocal or set |anguage auto. GDB theninferstheworking language. That is,
when your program stops in a frame (usually by encountering a breakpoint), GDB
sets the working language to the language recorded for the function in that frame.
If the language for aframe is unknown (that is, if the function or block
corresponding to the frame was defined in a source file that does not have a
recoghized extension), the current working language is not changed, and GDB
issues awarning.

LynxOS Total/db User’s Guide

Displaying the Language

This may not seem necessary for most programs, which are written entirely in one
source language. However, program modules and libraries written in one source
language can be used by a main program written in a different source language.
Usingset | anguage aut o inthiscasefreesyou from having to set the working
language manually.

Displaying the Language

The following commands help you find out which language is the working
language, and also what language in which source files were written.

show | anguage

Display the current working language. Thisis the language you can use with
commands such as print to build and compute expressions that may involve
variablesin your program.

info frane

Display the source language for this frame. This language becomes the
working language if you use an identifier from this frame. See “Information
about a Frame” on page 60 to identify the other information listed here.

i nfo source

Display the source language of this source file. See “ Examining the Symbol
Table” on page 99.

Type and Range Checking

CAuUTION! Inthisrelease, the GDB commands for type and range
checking are included, but they do not yet have any effect. This section
documents the intended facilities.

Some languages are designed to guard against you making seemingly common
errors through a series of compile and run-time checks. These include checking the
type of arguments to functions and operators, and making sure mathematical
overflows are caught at run time. Checks such as these help to ensure a program’s
correctness once it has been compiled by eliminating type mismatches, and
providing active checks for range errors when your program is running.

LynxOS Total/db User’s Guide 89

Chapter 2 - Debugging with GDB

90

GDB can check for conditions like the previousif you wish. Although GDB does
not check the statementsin your program, it can check expressions entered directly
into GDB for evaluation viathe pri nt command, for example. Aswith the
working language, GDB can also decide whether or not to check automatically
based on your program’s source language. See “ Supported Languages,” later inthis
chapter for the default settings of supported languages.

An Overview of Type Checking

Some languages, such as Modula-2, are strongly typed, meaning that the
arguments to operators and functions have to be of the correct type, otherwise an
error occurs. These checks prevent type mismatch errors from ever causing any
run-time problems. Consider the two following examples.

1+2 3
1+ 2.3

The second example fails because the CARDINAL 1 is not type-compatible with
the REAL 2.3.

For the expressions you usein GDB commands, you can tell the GDB type checker
to skip checking; to treat any mismatches as errors and abandon the expression; or
to only issue warnings when type mismatches occur, but evaluate the expression
anyway. When you choose the last of these, GDB evaluates expressions like the
second example, but also issues awarning.

Even if you turn type checking off, there may be other reasons related to type that
prevent GDB from evaluating an expression. For instance, GDB does not know
howtoaddan int and a struct foo. Theseparticular type errors have
nothing to do with the language in use, and usualy arise from expressions, such as
the one described which make little sense to evaluate anyway.

Each language defines to what degree it is strict about type. For instance, both
Modula-2 and C require the arguments to arithmetical operatorsto be numbers. In
C, enumerated types and pointers can be represented as numbers, so that they are
valid argumentsto mathematical operators. See “ Supported Languages’ for further
details on specific languages.

GDB providesthe following additional commandsfor controlling the type checker.
set check type auto

Set type checking on or off based on the current working language. See
“Supported Languages’ for the default settings for each language.

LynxOS Total/db User’s Guide

An Overview of Range Checking

set check type on
set check type off

Set type checking on or off, overriding the default setting for the current
working language. I1ssue awarning if the setting does not match the language
default. If any type mismatches occur in evaluating an expression while type
checking is on, GDB prints a message and aborts evaluation of the
expression.

set check type warn

Cause the type checker to issue warnings, but to always attempt to evaluate
the expression. Evaluating the expression may still be impossible for other
reasons. For example, GDB cannot add numbers and structures.

show type

Show the current setting of the type checker, and whether or not GDB is
setting it automatically.

An Overview of Range Checking

In somelanguages (such asModula-2), it is an error to exceed the bounds of atype;
thisis enforced with run-time checks. Such range checking is meant to ensure
program correctness by making sure computations do not overflow, or indices on
an array element access do not exceed the bounds of the array. For expressionsyou
use in GDB commands, you can tell GDB to treat range errorsin one of three
ways: ignore them, always treat them as errors and abandon the expression, or
issue warnings but evaluate the expression anyway. A range error can result from
numerical overflow, from exceeding an array index bound, or when you type a
congtant that is not a member of any type. Some languages, however, do not treat
overflows as an error. In many implementations of C, mathematical overflow
causes the result to “wrap around” to lower values—for example, if m isthe
largest integer value, and s isthe smallest, then

m+1 s

This, too, is specific to individual languages, and in some cases specific to
individual compilers or machines. See “ Supported Languages’ for further details
on specific languages. GDB provides some additional commands for controlling
the range checker:

set check range auto

Set range checking on or off based on the current working language. See
“Supported Languages’ for the default settings for each language.

LynxOS Total/db User’s Guide 91

Chapter 2 - Debugging with GDB

92

set check range on
set check range off

Set range checking on or off, overriding the default setting for the current
working language. A warning isissued if the setting does not match the
language default. If arange error occurs, then amessageis printed and
evaluation of the expression is aborted.

set check range warn

Output messages when the GDB range checker detects arange error, but
attempt to evaluate the expression anyway. Evaluating the expression may
gtill be impossible for other reasons, such as accessing memory that the
process does not own (atypical example from many UNIX systems).

show range

Show the current setting of the range checker, and whether or not it is being
set automatically by GDB.

Supported Languages

GDB 4 supports C, C++, and Modula-2. Some GDB features may be used in
expressions regardless of the language you use: the GDB @ and: : operators, and
the{t ype}addr construct (see“Expressions’ on page 68) can be used with the
constructs of any supported language. The following sections detail to what degree
each source language is supported by GDB. These sections are not meant to be
language tutorials or references, but serve only as areference guide to what the
GDB expression parser accepts, and what input and output formats should look
like for different languages. There are many good books written on each of these
languages; please look to these for alanguage reference or tutorial.

Cand C++

Since C and C++ are so closely related, many features of GDB apply to both
languages. Whenever thisis the case, we discuss those languages together.

The C++ debugging facilities are jointly implemented by the GNU C++ compiler
and GDB. Therefore, to debug your C++ code effectively, you must compile your
C++ programs with the GNU C++ compiler, g++.

For best results when debugging C++ programs, use the st abs debugging
format. You can select that format explicitly with the g++ command-line options -

LynxOS Total/db User’s Guide

C and C++

gst abs or -gstabs+. See“Options for Debugging Your Program or GNU CC”
in Using GNU CC in GNUPro Compiler Tools for more information.

C and C++ Operators

Operators must be defined on values of specific types. For instance, + is defined on
numbers and not on structures. Operators are often defined on groups of types. For
the purposes of C and C++, the following definitions hold:

« Integral typesincludei nt with any of its storage-class specifiers; char ;
and enum

* Floating-point typesinclude f1 oat and doubl e.
¢ Pointer typesinclude al typesdefined as (type*).
e Scalar typesinclude all of the previous types.

The following operators are supported, listed in order of increasing precedence:

, The comma or sequencing operator. Expressionsin a
comma-separated list are evaluated from | eft to right,
with the result of the entire expression being the last
expression evaluated.

= Assignment. The value of an assignment expression
isthe value assigned. Defined on scalar types.

op= Used in an expression of the forma op=b, and
trandatedto a= a opb. op= and = havethe same
precedence. op is any one of the operators| , », &,
<<, S>> 4, -, %

?: Theternary operator. a?b: ¢ can be thought of as; if
a, then b, else, c. a should be of an integral type.

[Logical OR. Defined on integral types.

&& Logical AND. Defined on integral types.

| Bitwise OR. Defined on integral types.

" Bitwise exclusive-OR. Defined on integral types.
& Bitwise AND . Defined on integral types.

LynxOS Total/db User’s Guide 93

Chapter 2 - Debugging with GDB

==, |I= Equality and inequality. Defined on scalar types. The
value of these expressionsis 0 for false and non-zero
for true.

<, >, <=, >= Lessthan, greater than, less than or equal, greater
than or equal. Defined on scalar types. The value of
these expressions is O for false and non-zero for true.

<<, >> L eft shift, and right shift. Defined on integral types.

@ The GDB “artificial array” operator (see
“Expressions’ earlier in this chapter).

+ - Addition and subtraction. Defined on integral types,
floating-point types and pointer types.

!, % Multiplication, division, and modulus. Multiplication
and division are defined on integral and floating-point
types. Modulus is defined on integral types.

++, -- Increment and decrement. When appearing before a
variable, the operation is performed before the
variable is used in an expression; when appearing
after it, the variable’s value is used before the
operation takes place.

* Pointer dereferencing. Defined on pointer types.
Same precedence as ++.

& Address operator. Defined on variables. Same
precedence as ++.

For debugging C++, GDB implements ause of & beyond what is allowed in the
C++ language itself: you can use &(&r ef) (or, if you prefer, &&r ef) to examine the
address where a C++ reference variable (declared with &r ef) is stored.

Negative. Defined on integral and floating-point
types. Same precedence as ++.

! Logical negation. Defined on integral types. Same
precedence as ++.

~ Bitwise complement operator. Defined on integral
types. Same precedence as ++.

94 LynxOS Total/db User’s Guide

C and C++

o= Structure member, and pointer-to-structure member.
For convenience, GDB regards the two as equivalent,
choosing whether to dereference a pointer based on
the stored type information. Defined on st ruct and
uni on data

[1 Array indexing. a[i] isdefined as * (a+i). Same
precedence as - >.

@) Function parameter list. Same precedence as - >.

C++ scope resol ution operator. Defined on struct,
union, and classtypes.

Doubled colons a so represent the GDB scope operator
(“Expressions’ on page 68). Same precedenceas : : .

C and C++ Constants
GDB allows you to express the constants of C and C++ in the following ways:

Integer constants are a sequence of digits. Octal constants are specified by a
leading 0 (i.e., zero), and hexadecimal constants by aleading Ox or OX.
Constants may also end with aletter, | , specifying that the constant should be
treated as along value.

Floating point constants are a sequence of digits, followed by adecimal point,
followed by a sequence of digits, and optionally followed by an exponent. An
exponent is of theform: e[[+] | -] nnn, where nnn is another sequence of digits.
The + isoptional for positive exponents.

Enumerated constants consist of enumerated identifiers, or their integral
equivalents.

Character constants are a single character surrounded by single quotes ('), or a
number—the ordinal value of the corresponding character (usually its ASCI|
value). Within quotes, the single character may be represented by aletter or by
escape sequences, which are of the form \ nnn, where nnn isthe octal
representation of the character’s ordinal value; or of the form \ x, where x isa
predefined special character—for example, \ n for newline.

String constants are a sequence of character constants surrounded by double quotes

¢).

Pointer constants are an integral value. You can also write pointers to constants
using the C operator, &.

LynxOS Total/db User’s Guide 95

Chapter 2 - Debugging with GDB

96

Array constants are comma-separated lists surrounded by braces { and }; for
example, {1, 2, 3} isathree-element array of integers, {{ 1, 2},{3, 4},{5, 6}}
isathree-by-two array, and { & hi ", & there”, &‘fred”} isathree-element
array of pointers.

C++ Expressions

GDB expression handling has a number of extensions to interpret a significant
subset of C++ expressions.

CAUTION! GDB can only debug C++ code if you compile with the GNU
C++ compiler. Moreover, C++ debugging depends on the use of
additional debugging information in the symbol table, and thus requires
special support. GDB has this support only with the stabs debug format.
In particular, if your compiler generates a. out , MIPS ECOFF, RS/6000
XCOFF, or ELF with st abs extensionsto the symbol table, these
facilitiesare all available. (With GNU CC, you can use the ‘- gst abs’
option to request st abs debugging extensions explicitly.) Where the
object code format is standard COFF or DWARF in ELF, on the other
hand, most of the C++ support in GDB does not work.

Member function calls are allowed; you can use expressions like
count = am ->GetOriginal (x, vy)

While amember function is active (in the selected stack frame), your expressions
have the same namespace available as the member function; that is, GDB alows
implicit references to the class instance pointer, t hi s, following the same rules as
C++.

You can call overloaded functions; GDB resolves the function call to the right
definition, with one restriction—you must use arguments of the type required by
the function that you want to call. GDB does not perform conversions requiring
constructors or user-defined type operators.

GDB understands variables declared as C++ references; you can use themin
expressions just as you do in C++ source—they are automatically dereferenced.

In the parameter list shown when GDB displays a frame, the values of reference
variables are not displayed (unlike other variables); this avoids clutter, since
references are often used for large structures. The address of areference variableis
aways shown, unless you have specified set print address off.

GDB supports the C++ name resolution operator : : —your expressions can use it
just as expressionsin your program do. Since one scope may be defined in another,

LynxOS Total/db User’s Guide

C and C++

youcanuse :: repeatedly if necessary, for example in an expression such as
scopel: : scope2: : name. GDB also allows resolving name scope by reference to
source files, in both C and C++ debugging (see “Program Variables’ earlier in this
chapter).

C and C++ Defaults

If you allow GDB to set type and range checking automatically, they both default
to of f whenever the working language changesto C or C++.

This happens regardless of whether you or GDB selects the working language.

If you allow GDB to set the language automatically, it recognizes source files
whose namesend with . c, . C, or. cc, and when GDB enters code compiled from
one of thesefiles, it sets the working language to C or C++. See “Having GDB
Infer the Source Language,” earlier in this chapter, for further details.

C and C++ Type and Range Checks

By default, when GDB parses C or C++ expressions, type checking is not used.
However, if you turn type checking on, GDB considers two variables type
equivalent if:

* Thetwo variables are structured and have the same structure, union, or
enumerated tag.

¢ Thetwo variables have the same type name, or types that have been
declared equivalent through t ypedef .

Range checking, if turned on, is done on mathematical operations. Array indices
are not checked, since they are often used to index a pointer that is not itself an

array.

GDBandC

The set print union and show print uni on commandsapply to the
uni on type. When setto on, any uni on thatisinsidea struct orclass is
also printed. Otherwise, it appearsas{. . .}.

The @ operator aidsin the debugging of dynamic arrays, formed with pointersand
amemory allocation function (see “ Expressions’ on page 68).

LynxOS Total/db User’s Guide 97

Chapter 2 - Debugging with GDB

98

GDB features for C++

Some GDB commands are particularly useful with C++, and some are designed
specificaly for use with C++. The following isa summary:

br eakpoi nt nenus

When you want a breakpoint in a function whose name is overloaded, GDB
breakpoint menus help you specify which function definition you want (see
“Breakpoint Menus,” earlier in this chapter).

r br eakr egex

Setting breakpoints using regular expressionsis helpful for setting
breakpoints on overloaded functions that are not members of any special
classes. See “ Setting Breakpoints’ on page 37.

cat chexcepti ons
info catch

Debug C++ exception handling using these commands. See “ Breakpoints
and Exceptions,” earlier in this chapter.

pt ypet ypename

Print inheritance relationships as well as other information for type
typename. See “Examining the Symbol Table” on page 99.

set print demangl e
show print denangl e

set print asmdemangl e
show print asm denangl e

Control whether C++ symbols display in their source form, both when
displaying code as C++ source and when displaying disassemblies. See
“Print Settings,” earlier in this chapter.

set print object
show print object

Choose whether to print derived (actual) or declared types of objects. See
“Print Settings,” earlier in this chapter.

set print vtbl
show print vtbl

Control the format for printing virtual function tables. See “Print Settings,”
earlier in this chapter.

LynxOS Total/db User’s Guide

Examining the Symbol Table

Overloaded Symbol Names

You can specify a particular definition of an overloaded symbol, using the
same notation that is used to declare such symbolsin C++: type

symbol (types) rather than just synbol . You can also use the GDB
command-line word compl etion facilities to list the available choices, or to
finish the type list for you. See “Command Completion,” earlier in this
chapter, for details on how to perform this function.

Examining the Symbol Table

The commands described in this section allow you to inquire about the symbols
(names of variables, functions and types) defined in your program. This
information isinherent in the text of your program and does not change as your
program executes. GDB findsit in your program’s symbol table, in the file
indicated when you started GDB (see“ Choosing Files,” earlier in this chapter), or
by one of the file-management commands (see “ Commandsto Specify Files,” later
in this chapter).

Occasionally, you may need to refer to symbols that contain unusual characters,
which GDB ordinarily treats as word delimiters. The most frequent caseisin
referring to static variablesin other sourcefiles (see“ Program Variables,” earlier in
this chapter). File names are recorded in object files as debugging symbols, but
GDB would ordinarily parse atypical file name, such asf oo. c, asthe three words
foo,. ,and c. Toallow GDB to recognize f oo. ¢ asasingle symbol, enclose it
in single quotes; for example, p * f oo. ¢’ : : x looksup thevalue of x inthe
scope of thefile* foo. c’ .

i nfo address synbol

Describe where the datafor synbol isstored. For aregister variable, this
says which register it is kept in. For a non-register local variable, this prints
the stack-frame offset at which the variable is always stored.

NOTE: The contrast with print & symbol does not work at all for aregister
variable, and for a stack local variable prints the exact address of the
current instantiation of the variable.

whatis exp

LynxOS Total/db User’s Guide 99

Chapter 2 - Debugging with GDB

Print the datatype of expressionexp. exp isnot actually evaluated, and any
side-effecting operations (such as assignments or function calls) inside it do
not take place (see “ Expressions’ on page 68).

whati s
Print the datatype of $, thelast valuein the value history.
ptype typenane

Print a description of datatypet ypenane. t ypenanme may be the name of a
type, or for C code it may have theformcl ass cl ass- nane, st ruct
struct-tag,uni on uni on-tagor enum enum

ptype exp
ptype

Print a description of the type of expression exp. pt ype differsfrom
what i s by printing a detailed description, instead of just the name of the
type. For instance, consider the following variable declaration example.

struct conplex {double real; double inag;} v;
The declaration’s two commands give the following output.

(gdb) whatis v
type = struct conpl ex

(gdb) ptype v

type = struct conplex {
doubl e real;

doubl e i mag

Aswith whati s, using pt ype without an argument refersto the type of $,
thelast value in the value history.

info types regexp
info types

Print a brief description of all types whose name matchesr egexp (or all
typesin your program, if you supply no argument). Each compl ete typename
is matched asthough it were acompleteling; thus,i type val ue gives
information on all typesin your program whose name includes the string
val ue, buti type ~val ue$ givesinformation only on typeswhose
complete nameis value.

This command differsfrom pt ype intwoways: first, like what i s, it does
not print a detailed description; second, it listsall sourcefileswhere atypeis
defined.

info source

100 LynxOS Total/db User’s Guide

Examining the Symbol Table

Show the name of the current source file—that is, the source file for the
function containing the current point of execution—and the language it was
writtenin.

i nfo sources

Print the names of all source filesin your program for which thereis
debugging information, organized into two lists: files whose symbols have
aready been read, and files whose symbols will be read when needed.

info functions
Print the names and data types of all defined functions.
info functions regexp

Print the names and data types of all defined functions whose names contain
amatch for regular expression, r egexp. Thus, i nfo fun step findsall
functionswhose namesinclude st ep;info fun ~step findsthose whose
names start with st ep.

info vari abl es

Print the names and data types of all variablesthat are declared outside of
functions (i.e., excluding local variables).

info vari abl es regexp

Print the names and data types of all variables (except for local variables)
whose names contain a match for regular expression r egexp.

Some systems allow individual object files that make up your program to be
replaced without stopping and restarting your program. If you are running on one
of these systems, you can allow GDB to reload the symbols for the following
automatically relinked modules:

set synbol -rel oadi ng on

Replace symbol definitions for the corresponding source file when an object
file with a particular name is seen again.

set synbol -rel oadi ng of f

Do not replace symbol definitions when re-encountering object files of the
same name. Thisisthe default state; if you are not running on a system that
permits automatically relinking modules, you should leave synbol -

rel oadi ng off, since otherwise GDB may discard symbols when linking
large programs, that may contain several modules (from different directories
or libraries) with the same name.

LynxOS Total/db User’s Guide 101

Chapter 2 - Debugging with GDB

show synbol -rel oadi ng
Show thecurrent on or of f setting.

mai nt print synbol sfil enane
mai nt print psynbol sfil enanme
mai nt print nsynbol sfil enane

Write a dump of debugging symbol datainto thefile, fi | ename. These
commands are used to debug the GDB symbol-reading code. Only symbols
with debugging data are included.

If youusemai nt print synbol s, GDB includesall the symbolsfor which
it has already collected full details: that is, f i | ename reflects symbols for
only those files whose symbols GDB has read.

You canusethe i nf o sources command to find out which filesthese are.
If youuse mai nt print psynbol s instead, the dump showsinformation
about symbolsthat GDB only knows partially—that is, symbols defined in
filesthat GDB has skimmed, but not yet read completely.

Finaly, mai nt print nsynbol s dumpsjust the minimal symbol
information required for each abject file from which GDB has read some
symbols. See “Commands to Specify Files,” later in this chapter for a
discussion of how GDB reads symbols (in the description of synbol -
file).

Altering Execution

102

Once you think you have found an error in your program, you might want to find
out for certain whether correcting the apparent error would lead to correct resultsin
therest of the run. You can find the answer by experiment, using the GDB features
for altering execution of the program.

For exampl e, you can store new values into variables or memory locations, give
your program asignal, restart it at a different address, or even return prematurely
from afunction.

See the following documentation for more details.

LynxOS Total/db User’s Guide

Assignment to Variables

Assignment to Variables

To alter the value of avariable, evaluate an assignment expression (see
“Expressions’ on page 68). For example, print x=4 storesthevalue4 into the
variable, x, and then printsthe value of the assignment expression (which is4). See
“Using GDB with Different Languages’ on page 86.

If you are not interested in seeing the value of the assignment, use the set command
instead of the pri nt command. set isreally thesameaspri nt except that the
expression’s value is not printed and is not put in the value history (see “Value
History” on page 82). The expression is evaluated only for its effects.

If the beginning of the argument string of the set command appearsidentical to a
set subcommand, usethe set variabl e command instead of only set. This
command isidentical to set except for itslack of subcommands.

For example, if your program hasavariable, wi dt h, you get an error if you try to
set anew value with just set wi dt h=13, because GDB has the command set
wi dt h:

(gdb) whatis width

type = double

(gdb) p width

$4 = 13

(gdb) set wi dth=47

Invalid syntax in expression.
Theinvalid expression, of course, is=47. In order to actually set the program’s

variable, wi dt h, use(gdb) set var width=47.

GDB allows moreimplicit conversions in assignments than C; you can freely store
an integer value into a pointer variable or vice versa, and you can convert any
structure to any other structure that is the same length or shorter. To store values
into arbitrary placesin memory, usethe {. ..} construct to generate a value of
specified type at a specified address (see “ Expressions’ on page 68). For example,
{i nt}0x83040 refersto memory location 0x83040 asan integer (which
impliesacertain size and representation in memory), and set {i nt}0x83040 =
4 storesthevalue 4 into that memory location.

Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place where it
stopped, with the cont i nue command. You can instead continue at an address of
your own choosing, with the following commands.

junp |l inespec

LynxOS Total/db User’s Guide 103

Chapter 2 - Debugging with GDB

Resume execution at ling, | i nespec. Execution stops again immediately if
there is a breakpoint there. See “Printing Source Lines’ on page 62 for a
description of the different formsof | i nespec.

The j unp command does not change the current stack frame, or the stack pointer,
or the contents of any memory location or any register other than the program
counter. If ling, | i nespec, isin adifferent function from the one currently
executing, the results may be bizarre if the two functions expect different patterns
of arguments or of local variables. For thisreason, thej unp command requests
confirmation if the specified lineis not in the function currently executing.
However, even bizarre results are predictable if you are well acquainted with the
machine-language code of your program.

jump *address
Resume execution at the instruction at address, addr ess.

You can get much the same effect asthe j unp command by storing a new value
into the register, $pc. The differenceisthat this does not start your program
running; it only changes the address of where it will run when you continue. For
example, set $pc = 0x485 makesthenext conti nue command or stepping
command execute at address, 0x485, rather than at the address where your
program stopped (see “ Continuing and Stepping” on page 50).

The most common occasion to usethe j unp command isto back up, perhapswith
more breakpoints set, over a portion of a program that has already executed, in
order to examine its execution in more detail.

Giving Your Program a Signal

signal signal

Resume execution where your program stopped, but immediately give it the
signal si gnal . si gnal can be the name or the number of asignal. For
example, on many systems si gnal 2 and signal SI G NT areboth
ways of sending an interrupt signal.

Alternatively, if si gnal is zero, continue execution without giving a signal.
Thisis useful when your program stopped on account of a signal and would
ordinarily see the signal when resumed with the cont i nue command;
signal 0 causesittoresume without asignal.

si gnal does not repeat when you use Return a second time after executing the
command.

104 LynxOS Total/db User’s Guide

Returning from a Function

Invoking the si gnal command isnot the same asinvokingthe ki | | utility from
the shell. Sending asignal with ki | | causes GDB to decide what to do with the
signal, depending on the signal handling tables (see “Signals’ on page 53). The

si gnal command passes the signal directly to your program.

Returning from a Function

return
return expr essi on

You can cancel execution of afunction call with ther et ur n command. If
you give an expression argument, its value is used as the function’s return
value.

When you use r et ur n, GDB discards the selected stack frame (and all
frames within it). You can think of this as making the discarded frame return
prematurely. If you wish to specify avalue to be returned, give that value as
the argument to r et ur n.

This pops the sel ected stack frame (see “ Selecting a Frame” on page 59), and
any other framesinside of it, leaving its caller as the innermost remaining
frame. That frame becomes selected. The specified valueis stored in the
registers used for returning values of functions.

The ret urn command does not resume execution; it leaves the program stopped
in the state that would exist if the function had just returned.

In contrast, the fi ni sh command (see “ Continuing and Stepping” on page 50)
resumes execution until the selected stack frame returns naturally.

Calling Program Functions
call expr
Evaluate the expression, expr , without displaying void returned values.

You can use thisvariant of the pri nt command if you want to execute a
function from your program, but without cluttering the output with voi d
returned values. If theresult isnot voi d, it is printed and saved in the value
history.

A new user-controlled variable, cal | _scrat ch_addr ess, specifiesthe location
of ascratch areato be used when GDB callsafunction in thetarget. Thisis
necessary because the usual method of putting the scratch area on the stack does
not work in systems that have separate instruction and data spaces.

LynxOS Total/db User’s Guide 105

Chapter 2 - Debugging with GDB

Patching Programs

By default, GDB opens the file containing your program’s executable code (or the
corefile) read-only. This prevents accidental alterationsto machine code; but it also
prevents you from intentionally patching your program’s binary.

If you'd like to be able to patch the binary, you can specify that explicitly with the
set write command. For example, you might want to turn on internal debugging
flags, or even to make emergency repairs.

set wite on
set wite off

If you specify set write on, GDB opens executable and core files for
both reading and writing; if you specify set write off (thedefault),
GDB opens them read-only. If you have already loaded afile, you must load
it again (usingthe exec-file orcore-file commands) after changing
set write, for your new setting to take effect.

show wite

Display whether executablefiles and corefiles are opened for writing as well
asreading.

GDB Files

106

GDB needs to know the file name of the program to be debugged, both in order to
read its symbol table and in order to start your program. To debug a core dump of a
previous run, you must also tell GDB the name of the core dump file.

The following provides more details on command specification and symbol files
with GDB.

Commands to Specify Files

You may want to specify executable and core dump file names. The usual way to
do thisisat start-up time, using the arguments to GDB'’s start-up commands (see
“Getting In and Out of GDB” on page 17).

Occasionally it is necessary to change to a different file during a GDB session. Or
you may run GDB and forget to specify afile you want to use. In these situations
the GDB commands to specify new files are useful.

file filenanme

LynxOS Total/db User’s Guide

Commands to Specify Files

Usefi | enane asthe program to be debugged. It is read for its symbols and
for the contents of pure memory. It is also the program executed when you
use the r un command. If you do not specify adirectory and the file is not
found in the GDB working directory, GDB uses the environment variable,
PATH, asalist of directoriesto search, just as the shell does when looking for
aprogram to run. You can change the value of this variable, for both GDB
and your program, using the pat h command.

file

fil e with no argument makes GDB discard any information it has on both
executable file and the symbol table.

exec-file [fil enanme]

Specify that the program to be run (but not the symbol table) isfound in

fi | ename. GDB searches the environment variable, PATH, if necessary to
locate your program. Omitting f i | ename means to discard information on
the executable file.

synmbol -file [fil enane]

Read synbol tabl e information from file, fi | ename. PATHis searched
when necessary. Usethefi | e command to get both symbol table and
program to run from the samefile.

synbol - fi | e with no argument clears out GDB information on your
program’s symbol table. The synbol -fi | e command causes GDB to
forget the contents of its convenience variables, the value history, and all
breakpoints and auto-display expressions. Thisis because they may contain
pointersto the internal datarecording symbols and data types, which are part
of the old symbol table data being discarded inside GDB.

symbol -fi | e doesnot repeat if you use Return again after executing it
once.

When GDB is configured for a particular environment, it understands debugging
information in whatever format is the standard generated for that environment; you
may use either a GNU compiler, or other compilers that adhere to the local
conventions. Best results are usually obtained from GNU compilers; for example,
using gcc you can generate debugging information for optimized code.

On some kinds of object files, the synbol - fi | e command does not normally
read the symbol tablein full right away. Instead, it scans the symbol table quickly
to find which source files and which symbols are present. The details are read later,
one sourcefile at atime, as they are needed.

LynxOS Total/db User’s Guide 107

Chapter 2 - Debugging with GDB

108

The purpose of this two-stage reading strategy is to make GDB start up faster. For
the most part, it isinvisible except for occasional pauses while the symbol table
details for a particular source file are being read. (The set ver bose command
can turn these pauses into messagesif desired, see “ Optional Warnings and
Messages’ on page 16.)

We have not implemented the two-stage strategy for COFF yet. When the symbol
tableis stored in COFF format, synbol -fil e readsthe symbol table datain full
right away.

synbol -file fil enanme[-readnow
file fil enane[-readnow

You can override the GDB two-stage strategy for reading symbol tables by
using the - r eadnow option with any of the commands that 1oad symbol table
information, if you want to be sure GDB has the entire symbol table
available.

You can use both options together, to make sure the auxiliary symbol file has
all the symbol information for your program. The auxiliary symbol file for a
program called mypr og iscalled mypr og. syns. Once thisfile exists (so
long asit is newer than the corresponding executable), GDB always attempts
to use it when you debug mypr og; no special options or commands are
needed.

The. syms fileis specific to the host machine where you run GDB. It holds
an exact image of the internal GDB symbol table. It cannot be shared across
multiple host platforms.

core-file [fil enane]

Specify the whereabouts of a core dump file to be used as the “ contents of
memory” . Traditionally, core files contain only some parts of the address
space of the process that generated them; GDB can access the executablefile
itself for other parts.

core-file withnoargument specifiesthat no corefileisto be used.

NoTE: The core fileisignored when your program is actually running
under GDB. So, if you have been running your program and you wish to
debug a core file instead, you must kill the subprocess in which the
program is running. To do this, use the kill command (see “Killing the
Child Process’ on page 33).

| oadfi | enane

LynxOS Total/db User’s Guide

Commands to Specify Files

Depending on what remote debugging facilities are configured into GDB, the
| oad command may be available. Where it exists, it is meant to make
filename (an executable) available for debugging on the remote system—by
downloading, or dynamic linking, e.g., | oad also recordsthefi | ename
symbol tablein GDB, like the

add- synbol -fil e command.

If your GDB does not have a | oad command, attempting to execute it gets the
error message “You can’t do that when your target is....”

Thefileisloaded at whatever address is specified in the executable. For some
object file formats, you can specify the load address when you link the program;
for other formats, like a.out, the object file format specifies a fixed address.

| oad doesnot repeat if you use Return again after using it.

add- synbol -fil efi | enane address
add- synbol -fil efi | enane address[-readnow [- mapped]

The add- synbol -fil e command reads additional symbol table
information from the file, f i | enane. You would use this command when

fi | ename has been dynamically loaded (by some other means) into the
program that is running. address should be the memory address at which the
file has been loaded; GDB cannot figure this out for itself. You can specify
addr ess asan expression.

The symbol table of thefile, f i | enane, is added to the symbol table
originaly read with the synbol -fil e command. You can use the
command add- synbol -fil e any number of times; the new symbol data
thus read keeps adding to the old. To discard all old symbol data instead, use
the synbol -fil e command.

add- synmbol - fi | e doesnot repeat if, after using it, you use Return.

You can use the - r eadnow option, just aswith the synbol -fil e command, to
change how GDB manages the symbol table information for f i | enane.

section

Thesect i on command changes the base address of section, SECTI ON, of
the exec file to ADDR. This can be used if the exec file does not contain
section addresses (such asin the a. out format), or when the addresses
specified in the fileitself are wrong. Each section must be changed
separately. The i nfo fil es command lists all the sections and their
addresses.

LynxOS Total/db User’s Guide 109

Chapter 2 - Debugging with GDB

info files
info target

info files and i nfo target aresynonymous; both print the current
target (see “ Specifying a Debugging Target” on page 112), including the
names of the executable and core dump files currently in use by GDB, and
the files from which symbols were loaded. The hel p target command
listsall possible targets rather than current ones.

All file-specifying commands allow both absolute and rel ative file names as
arguments. GDB aways converts the file name to an absolute file name and
remembers it that way.

info share
info sharedlibrary

Print the names of the shared libraries which are currently loaded.

shar edl i braryregex
shar er egex

Load shared object library symbols for files matching a UNIX regular
expression. Aswith filesloaded automatically, it only loads shared libraries
required by your program for a corefile or after using run. If r egex is
omitted, all shared libraries required by your program are loaded.

Errors Reading Symbol Files

While reading a symbol file, GDB occasionally encounters problems, such as
symbol types it does not recognize, or known bugs in compiler output. By default,
GDB does not notify you of such problems, since they are relatively common and
primarily of interest to people debugging compilers.

If you are interested in seeing information about ill-constructed symbol tables, you
can either ask GDB to print only one message about each such type of problem, no
matter how many times the problem occurs; or you can ask GDB to print more
messages, to see how many timesthe problems occur, withthe set conpl ai nts
command as shown in “ Optional Warnings and Messages’ on page 16.

The messages currently printed, and their meanings, include the following.
i nner block not inside outer block in synbol

The symbol information shows where symbol scopes begin and end (such as
at the start of afunction or ablock of statements). Thiserror indicatesthat an
inner scope block is not fully contained in its outer scope blocks.

110 LynxOS Total/db User’s Guide

Errors Reading Symbol Files

GDB circumvents the problem by treating the inner block asiif it had the
same scope as the outer block. In the error message, synbol may be shown
as“(don’t know) " if the outer block is not afunction.

bl ock at address out of order

The symbol information for symbol scope blocks should occur in order of
increasing addresses. This error indicates that it does not do so.

GDB does not circumvent this problem, and has trouble locating symbolsin
the source file whose symbols it is reading. (You can often determine what
source fileis affected by specifying set ver bose on. See“Optional
Warnings and Messages’ on page 16.

bad bl ock start address patched

The symbol information for a symbol scope block has a start address smaller
than the address of the preceding source line. Thisis known to occur in the
SunOS 4.1.1 (and earlier) C compiler.

GDB circumvents the problem by treating the symbol scope block as starting
on the previous source line.

bad string table offset in synbol n

Symbol number n contains a pointer into the string table which is larger
than the size of the string table. GDB circumvents the problem by
considering the symbol to have the name, f oo, which may cause other
problems if many symbols end up with this name.

unknown synbol type 0xnn

The symbol information contains new data types that GDB does not yet
know how to read. Oxnn isthe symbol type of the misunderstood
information, in hexadecimal.

GDB circumvents the error by ignoring this symbol information. This
usually allows you to debug your program, though certain symbols are not
accessible. If you encounter such a problem and feel like debugging it, you
can debug gdb with itself, breakpoint on conpl ai n, then go up to the
function read_dbx_synt ab and examine *buf p to seethe symbol.

stub type has NULL name
GDB could not find the full definition for a struct or class.

const/volatile indicator m ssing
ok if using g++ vl1l.x), got

LynxOS Total/db User’s Guide 111

Chapter 2 - Debugging with GDB

The symbol information for a C++ member function is missing some
information that recent versions of the compiler should have output for it.

info m smatch between conpil er and debugger

GDB could not parse a type specification output by the compiler.

Specifying a Debugging Target

112

A target isthe execution environment occupied by your program. Often, GDB runs
in the same host environment as your program; in that case, the debugging target is
specified asaside effect when you usethe fil e or core commands. When you
need more flexibility—for example, running GDB on a physically separate host, or
controlling a standalone system over a seria port or arealtime system over a
TCP/IP connection—you can usethet ar get command to specify one of the
target types configured for GDB.

The following material provides more details on GDB specification.

Active Targets
There are three classes of targets: processes, core files, and executable files.

GDB can work concurrently on up to three active targets, one in each class. This
alows you to (for example) start a process and inspect its activity without
abandoning your work on acorefile.

For example, if you execute gdb a. out , then the executablefile, a. out , isthe
only active target. If you designate a core file as well—presumably from a prior
run that crashed and coredumped—then GDB has two active targets and uses them
in tandem, looking first in the corefile target, then in the executable file, to satisfy
reguests for memory addresses. (Typically, these two classes of target are
complementary, since core files contain only a program’s read-write memory—
variables and so on—plus machine status, while executable files contain only the
program text and initialized data.)

When you typer un, your executable file becomes an active process target as well.
When a process target is active, all GDB commands requesting memory addresses
refer to that target; addresses in an active core file or executable file target are
obscured while the process target is active.

Usethe core-fileand exec-fil e commandsto select anew corefileor
executable target (see “Commands to Specify Files’ on page 106). To specify asa

LynxOS Total/db User’s Guide

Commands for Managing Targets

target a process that is already running, use the att ach command (see
“Debugging an Already-Running Process’ on page 32).

Commands for Managing Targets

target type paraneters

Connects the GDB host environment to atarget machine or process. A target
istypically aprotocol for talking to debugging facilities. You use the
argument, t ype, to specify the type or protocol of the target machine.

Further par arret er s are interpreted by the target protocol, but typically
include things like device names or host names to connect with, process
numbers, and baud rates.

The target command does not repeat if you use Return again after
executing the command.

hel p target

Displays the names of al targets available. To display targets currently
selected, use either info target or info files (see“Commandsto
Specify Files” on page 106).

hel p target nane
Describe a particular target, including any parameters necessary to select it.
set gnut arget args

GDB usesitsown library, BFD, to read your files. GDB knows whether it is
reading an executable, a core, or a.o file; however you can specify thefile
format withthe set gnut ar get command.

Unlikemost t ar get commands, with gnut ar get , the t ar get referstoa
program, not a machine.

CauTioN! To specify afile format with set gnut ar get , you must
know the actual BFD name. See “ Commands to Specify Files’ on
page 106.

show gnut ar get

Usetheshow gnut ar get command to display what file format
gnut ar get issettoread. If you have not set gnut ar get , GDB will

LynxOS Total/db User’s Guide 113

Chapter 2 - Debugging with GDB

114

determine the file format for each file automatically and show gnut ar get
displays this message:
The current BDF target is “auto”.

The following are some common targets (available, or not, depending on the GDB
configuration).

target exec program

Anexecutablefile, t ar get exec Substitute Text,isthesameas
exec-file program

target core fil enanme

A coredumpfile, target core fil enanme, isthesameas
core-file fil enamne.

target renote dev

Remote seria target in GDB-specific protocol. The argument, dev, specifies
what serial deviceto use for the connection (e.g.,/ dev/ t t ya); see “Remote
Debugging” on page 114.t ar get renot e now supportsthe | oad
command. Thisis only useful if you have some other way of getting the stub
to the target system, and you can put it somewherein memory whereit won't
get clobbered by the downl oad.

Different targets are available on different configurations of GDB; your
configuration may have more or fewer targets.

Remote Debugging

If you are trying to debug a program running on a machine that cannot run GDB in
the usual way, it is often useful to use remote debugging. For example, you might
use remote debugging on an operating system kernel, or on asmall system which
does not have a general purpose operating system powerful enough to run afull-
featured debugger.

Some configurations of GDB have special serial or TCP/IP interfaces to make this
work with particular debugging targets. In addition, GDB comes with a generic
serial protocol (specific to GDB, but not specific to any particular target system)
which you can use if you write the remote stubs—the code that runs on the remote
system to communicate with GDB.

Other remote targets may be available in your configuration of GDB; use hel p
t ar get tolist them.

LynxOS Total/db User’s Guide

Using the gdbserver program

Using the gdbserver program

gdbser ver isacontrol program for UNIX-like systems, which allows you to
connect your program with aremote GDB via t ar get r enot e—but without
linking in the usual debugging stub.

GDB and gdbserver communicate viaeither aserial line or a TCP connection,
using the standard GDB remote serial protocol.

On the Target Machine

You need to have a copy of the program you want to debug. gdbser ver doesnot
need your program’s symbol table, so you can strip the program if necessary to
save space. GDB on the host system does all the symbol handling. To use the
server, you must tell it how to communicate with GDB; the name of your program;
and the arguments for your program. The syntax is. t arget gdbserver comm
program[args...].

comm is either adevice name (to use a serial line) or a TCP hostname and
portnumber. For example, to debug Emacs with the argument, f oo. t xt , and
communicate with GDB over the serial port, / dev/ con, use the following:

target gdbserver /dev/coml emacs foo.txt.

gdbser ver waits passively for the host GDB to communicate with it. To use a
TCP connection instead of a serial line, use the following:

target gdbserver host: 2345 emacs foo.txt.

The only difference from the previous exampleis the first argument, specifying
that you are communicating with the host GDB via TCP. The host : 2345
argument meansthat gdbser ver isto expect a TCP connection from machine
host tolocal TCP port 2345. (Currently, the host part isignored.) You can
choose any number you want for the port number aslong asit does not conflict
with any TCP ports already in use on the target system. If you choose a port
number that conflicts with another service, gdbser ver printsan error message
and exits.

You must use the same port number with the host GDB t arget renote
command.

On the GDB Host Machine

You need an unstripped copy of your program, since GDB needs symbols and
debugging information.

LynxOS Total/db User’s Guide 115

Chapter 2 - Debugging with GDB

Start up GDB as usual, using the name of the local copy of your program asthe
first argument. (You may also need the - - baud option if the serial lineis running
at anything other than 9600 bps.)

After that, use t ar get renot e to establish communications with gdbser ver.

Itsargument is either adevice name (usually aserial devicelike / dev/ttyb) ora
TCP port descriptor in the form, host : port . For example, (gdb) target
remote /dev/ttyb communicateswith the server viaserial line, / dev/ttyb.

(gdb) target renotetarget: 2345 communicates viaa TCP connection to
port 2345 on hogt, t ar get . For TCP connections, you must start up gdbser ver
prior to using the t arget renote command. Otherwise you may get an error
whose text depends on the host system, but which usually looks something like
“connection refused.”

Stored Command Sequences

116

Aside from breakpoint commands (see “ Breakpoint Command Lists’ on page 47),
GDB provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files.

User-Defined Commands

A user-defined command is a sequence of GDB commands to which you assign a
new name as a command. Thisis done with the defi ne command. User
commands may accept up to 10 arguments separated by whitespace. Arguments are
accessed within the user command via

$argo ... $arg9. A trivia exampleisthe following:

defi ne adder
print $arg0 + $argl + $arg2

To execute the command use the following:
adder 1 2 3

This definesthe adder command, which prints the sum of its three arguments.

NOTE: The arguments are text substitutions, so they may reference
variables, use complex expressions, or even perform inferior function
cals.

LynxOS Total/db User’s Guide

User-Defined Commands

defi ne conmmandnane

Define acommand named commandnane. If thereis already a command by
that name, you are asked to confirm that you want to redefineiit.

The definition of the command is made up of other GDB command lines, which
aregivenfollowing the def i ne command. The end of these commandsis marked
by aline containing end.

i f
Takes a single argument, which is an expression to evaluate. It isfollowed by
a series of commands that are executed only if the expression istrue (non-
zero). There can then optionally bealineel se, followed by a series of

commands that are only executed if the expression was false. The end of the
listismarked by aline containing end.

whi | e

Thesyntax issimilarto i f: the command takes asingle argument, whichis
an expression to evaluate, and must be followed by the commands to
execute, one per line, terminated by an end. The commands are executed
repeatedly aslong as the expression evaluates to true.

docunent conmandnane

Document the user-defined cormandname command so that it can be
accessed by hel p. The commandnanme command must already be defined.
This command reads lines of documentation just asdef i ne readsthelines of
the command definition, ending with end. After the document command
isfinished, hel p on command, conmandnane, displays the documentation
you have written. You may usethe docunent command again to change the
documentation of a command. Redefining the command with def i ne does
not change the documentation.

hel p user-defi ned

List all user-defined commands, with the first line of the documentation (if
any) for each.

show user
show user commandnane

Display the GDB commands used to define commandnane (but not its
documentation). If no commandnane isgiven, display the definitions for all
user-defined commands.

LynxOS Total/db User’s Guide 117

Chapter 2 - Debugging with GDB

118

When user-defined commands are executed, the commands of the definition are
not printed. An error in any command stops execution of the user-defined
command. If used interactively, commands that would ask for confirmation
proceed without asking when used inside a user-defined command. Many GDB
commands that normally print messages to say what they are doing omit the
messages when used in a user-defined command.

User-Defined Command Hooks

You may define hooks, which are a special kind of user-defined command.
Whenever you run the f oo command, if the user-defined hook- f oo command
exigts, it is executed (with no arguments) before that command. In addition, a
pseudo-command, st op, exists. Defining hook- st op makes the associated
commands execute every time execution stops in your program: before breakpoint
commands are run, displays are printed, or the stack frameis printed. For example,
toignore SI GALRM signals while single-stepping, but treat them normally during
normal execution, you could define the following debugging input.

defi ne hook-stop
handl e SI GALRM nopass
end

define hook-run

handl e SI GALRM pass
end

defi ne hook-conti nue
handl e SI GLARM pass
end

You can define a hook for any single-word command in GDB, but not for
command aliases; you should define a hook for the basic command name, e.g.,
backtrace rather than bt . If an error occurs during the execution of your hook,
execution of GDB commands stops and GDB issues a prompt (before the
command that you actually used had a chance to run).

If you try to define a hook which does not match any known command, you get a
warning from the define command.

Command Files

A command file for GDB isafile of linesthat are GDB commands.

Comments (lines starting with #) may also beincluded. An empty linein a
command file does nothing; it does not mean to repeat the last command, asit
would from the terminal. When you start GDB, it automatically executes

LynxOS Total/db User’s Guide

Commands for Controlled Output

commands fromitsinit fil es. Thesearefilesnamed . gdbi ni t . GDB reads
the i nit file(if any) in your home directory, then processes command line
options and operands, and then reads the init file (if any) in the current working
directory. Thisissothei ni t filein your home directory can set options (such as
set conpl ai nt s) which affect the processing of the command line options and
operands. Thei ni t filesare not executed if you usethe - nx option; see
“Choosing Modes’ on page 20. You can also request the execution of acommand
filewith the source command:

source fil enane
Execute the command filef i | enane.

Thelinesin acommand file are executed sequentially. They are not printed
asthey are executed. An error in any command terminates execution of the
command file.

Commands that would ask for confirmation if used interactively proceed without
asking when used in acommand file. Many GDB commands that normally print
messages to say what they are doing omit the messages when called from
command files.

Commands for Controlled Output

During the execution of a command file or a user-defined command, normal GDB
output is suppressed; the only output that appears is what is explicitly printed by
the commands in the definition. The following documentation describes
commands useful for generating exactly the output you want.

echo text

Print t ext . Non-printing characters can be included int ext using C escape
sequences, suchas‘ ' to print anewline.

NoTE: No newlineis printed unless you specify one.

In addition to the standard C escape sequences, a backslash followed by a space
stands for a space. Thisis useful for displaying a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise trimmed from
all arguments. To print and foo =, usethe echo \ and foo =\ command.
A backslash at the end of text can be used, asin C, to continue the command on to
subsequent lines.

Consider the following example.

LynxOS Total/db User’s Guide 119

Chapter 2 - Debugging with GDB

echo This is sone text \
whi ch is continued \
onto several lines

The previous example shows input that produces the same output as the following.
echo This is sone text
echo which is continued
echo onto several lines
out put expression
Print the value of expr essi on and nothing but that value: no newlines, no

$ nn=. Thevalueisnot entered in the value history either. See
“Expressions’ on page 68 for more information on expressions.

out put/fm expression

Print the value of expr essi on informat, f nt . You can use the same
formatsasfor pri nt . See “Output Formats’ on page 71.

printf string, expressions ...

Print the values of the expr essi ons under the control of stri ng. The
expressions are separated by commas and may be either numbers or pointers.
Their values are printed as specified by st ri ng, exactly asif your program
were to execute the C subroutine, as in the following example.

printf (string,expressions...);

For example, you can print two valuesin hex like the following example
shows.

printf "foo, bar-foo = Ox%, Ox% ", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are the
simple ones that consist of backslash followed by a letter.

Using GDB under GNU Emacs

A specia interface allows you to use GNU Emacs to view (and edit) the source
filesfor the program you are debugging with GDB.

To use thisinterface, use the command M x gdb in Emacs. Give the executable
file you want to debug as an argument. This command starts GDB as a subprocess
of Emacs, with input and output through a newly created Emacs buffer.

Using GDB under Emacsisjust like using GDB normally, except all “terminal”
input and output goes through the Emacs buffer. This applies both to GDB

120 LynxOS Total/db User’s Guide

Using GDB under GNU Emacs

commands and their output, and to the input and output done by the program you
are debugging. Thisis useful because it means that you can copy the text of
previous commands and input them again; you can even use parts of the output in
thisway. All the facilities of Emacs Shell mode are available for interacting with
your program. In particular, you can send signals the usual way—for example,
Ctrl-c, Ctrl-c for an interrupt, Ctrl-c, Ctrl-z for a stop. GDB displays source code
through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds the source file
for that frame and puts an arrow (=>) at the left margin of the current line. Emacs
uses a separate buffer for source display, and splits the screen to show both your
GDB session and the source.

Explicit GDB i st or search commands still produce output as usual, but you
probably have no reason to use them from Emacs.

CAUTION! If thedirectory where your program residesis not your current
directory, it can be easy to confuse Emacs about the location of the source
files, in which case the auxiliary display buffer does not appear to show
your source.

GDB can find programs by searching your environment’s PATH variable, so the
GDB input and output session proceeds normally; but Emacs does not get enough
information back from GDB to locate the source files in this situation.

To avoid this problem, either start GDB mode from the directory where your
program resides, or specify an absolute file name when prompted for the M x gdb
argument.

A similar confusion can result if you use the GDB file command to switch to
debugging a program in some other location, from an existing GDB buffer in
Emacs.

By default, using the keystroke sequence, M x gdb callsthe program called gdb.
If you need to call GDB by a different name (for example, if you keep several
configurations around, with different names) you can set the Emacs variable

gdb- command- nane.

For example, (set g gdb- command- name “mygdb”) —which is preceded by
using the keystroke sequence, Esc, Esc, or typed inthe *scr at ch* buffer, or in
your . enacs file—makes Emacs call the “ nygdb” program instead.

LynxOS Total/db User’s Guide 121

Chapter 2 - Debugging with GDB

In the GDB 1/0O buffer, you can use these specia keystroke sequences of Emacs
commands in addition to the standard Shell mode commands in Table 2-4.

Table 2-4: Shell Mode Commands

Command

Description

C-h,m

Describe the features of Emacs GDB Mode.

Execute to another sourceline, likethe GDB st ep
command; also update the display window to show
the current file and location.

Execute to next source linein this function, skipping
all function calls, like the GDB next command.
Then update the display window to show the current
file and location.

M-i

Execute one instruction, like the GDB st epi
command; update display window accordingly.

M-x,
gdb- nexti

Execute to next instruction, using the GDB next i
command; update display window accordingly.

Ctrl-c, Ctrl-f

Execute until exit from the selected stack frame, like
the GDB fi ni sh command.

Continue execution of your program, like the GDB
cont i nue command.

Note: In Emacs version 19, this command uses the
Ctrl-c, Ctrl-p keystroke sequence.

Go up the number of frames indicated by the numeric
argument (see “Numeric Arguments’ in The GNU
Emacs Manual), like the GDB up command.

Note: In Emacs version 19, this command uses the
Ctrl-c, Ctrl-u keystroke sequence.

122 LynxOS Total/db User’s Guide

Using GDB under GNU Emacs

Table 2-4: Shell Mode Commands(Continued)

Command Description

Go down the number of framesindicated by the

numeric argument, like the GDB down command.
M-d
Note: In Emacs version 19, this command uses the

Ctrl-c, Ctrl-d keystroke sequence.

Read the number where the cursor is positioned, and
insert it at the end of the GDB 1/O buffer. For
example, if you wish to disassemble code around an
address that was displayed earlier, type

di sassenbl e; then move the cursor to the address
display, and pick up the argument for di sassenbl e
by using the ctrl-x, & keystroke sequence.

You can customize this further by defining elements
Ctrl-x, & of thelist gdb-print-command; onceit is defined, you
can format or otherwise process numbers picked up
by using the ctrl-x, & keystroke sequence before they
areinserted. A numeric argument to Ctrl-x, & indicates
that you wish special formatting, and also acts as an
index to pick an element of thelist. If the list element
isastring, the number to be inserted is formatted
using the Emacs function format; otherwise the
number is passed as an argument to the corresponding
list element.

In any sourcefile, the Emacs command using the C-x, Spacebar keystroke sequence
and typing (gdb- br eak) tells GDB to set a breakpoint on the source line point.

If you accidentally delete the source-display buffer, an easy way to get it back isto
type the command, f , in the GDB buffer, to request a frame display; when you run
under Emacs, this recreates the source buffer if necessary to show you the context
of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are
visiting the sourcefilesin the usual way. You can edit the files with these buffersif
you wish; but keep in mind that GDB communicates with Emacs in terms of line
numbers.

If you add or delete lines from the text, the line numbers that GDB knows cease to
correspond properly with the code.

LynxOS Total/db User’s Guide 123

Chapter 2 - Debugging with GDB

Command Line Editing

The following material describes GNU’s command line editing interface.

Introduction to Line Editing
The following paragraphs describe the notation we use to represent keystrokes.

NOTE: Thetext ctrl-k isread as“ Control K” and describes the command to produce when using
the control and the kK keys sequence. The text M-K isread as“MetaK” and describes the
command to produce when using the meta key (if you have one, it may be the key with a
diamond), and the K key. If you do not have ameta key, the identical keystroke can be generated
by using the Esc key and then K. Either processis known as “meta-fying the K key.” The text m-
ctrl-K isread as “Meta Control K” and describes the command to produce when asked to “meta-
fy CK.

NoTE: The hyphen characters and the comma characters are not a part of
the keystroke sequence to type.

All uppercase letters require using the shift key, of course, since all commands are
case sensitive.

In addition, severa keys have their own names. Specifically, Delete, Esc, LFD
(linefeed), Spacebar, Return, and Tab all stand for themselves when seen in this text
orinaninit file. See “Readline Init File” on page 127 for moreinformation.

Readline Interaction

Often during an interactive session you typein along line of text, only to notice
that the first word on the line is misspelled. The Readline library gives you a set of
commands for manipulating the text as you typeit in, allowing you to just fix your
typo, and not forcing you to retype the majority of the line. Using these editing
commands, you move the cursor to the place that needs correction, and delete or
insert the text of the corrections. Then, when you are satisfied with the line, you
simply use Return. You do not have to be at the end of the line to use Return; the
entire line is accepted regardless of the location of the cursor within the line.

124 LynxOS Total/db User’s Guide

Readline Bare Essentials

Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character
appears where the cursor was, and then the cursor moves one space to theright. If
you mistype a character, you can use Delete to back up, and delete the mistyped
character.

Sometimes you may misstyping a character that you wanted to type, and not notice
your error until you have typed several other characters. In that case, you can use
ctrl-B to move the cursor to the left, and then correct your mistake. Afterward, you
can move the cursor to the right with Ctrl-F.

When you add text in the middle of aline, you will notice that charactersto the
right of the cursor get “pushed over” to make room for the text that you have
inserted. Likewise, when you delete text behind the cursor, characters to the right
of the cursor get “pulled back” to fill in the blank space created by the removal of
thetext. A list of the basic essentials for editing the text of an input line are in the
following table.

Command Action
Ctrl-B Move back one character.
Ctrl-F Move forward one character.
Delete Delete the character to the | eft of the cursor.
Ctrl-D Delete the character underneath the cursor.
Printing Insert itself into the line at the cursor.
characters
ctri. Undo the last thing that_you did. You can undo all the
- way back to an empty line.

Readline Movement Commands

The previous commands are the most basic possible keystrokes that you need in
order to do editing of the input line. For your convenience, many other commands
have been added in addition to Ctrl-B, Ctrl-F, Ctrl-D, and Delete.

LynxOS Total/db User’s Guide 125

Chapter 2 - Debugging with GDB

Here are some commands for moving more rapidly about the line:

Command Action
Ctrl-A Move to the start of theline.
Ctrl-E Move to the end of theline.
M-F Move forward aword.
M-B Move backward aword.
Ctrl-L Clear the screen, reprinting the current line at the top.

Notice how ctrl-F moves forward a character, while M-F moves forward aword. It
isaloose convention that control keystrokes operate on characters while meta
keystrokes operate on words.

Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use,
usually by yanking it back into the line. If the description for acommand says that
it “kills’ text, then you can be sure that you can get the text back in a different (or
the same) place later. Table 2-8 isalist of commands for killing text.

Command Action

Kill the text from the current cursor position to the

ctriK end of theline.
M.D Kill from the cursor to the end of the current word, or
if between words, to the end of the next word.
M.Delete Kill from the cursor to the start of the previous word,
or if between words, to the start of the previous word.
Ctrl-w Kill from the cursor to the previous whitespace.

Clear the screen, reprinting the current line at the top.
Ctrl-L Thisis different than M-Delete because the word
boundaries differ.

126 LynxOS Total/db User’s Guide

Readline Arguments

The following table shows how to yank the text back into the line.

Command Action

Yank the most recently killed text back into the buffer

ctrl-y at the cursor.Yank the most recently killed text back
into the buffer at the cursor.
MY Rotate the kill-ring, and yank the new top. You can

only do thisif the prior command is Ctrl-Y or M-Y.

When you use akill command, the text is saved in akill-ring. Any number of
consecutive kills save al of the killed text together, so that when you yank it back,
you get it in one clean sweep. The kill ring is not line specific; the text that you
killed on a previoudly typed line is available to be yanked back |ater, when you are
typing another line.

Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the arguments
act as arepeat count, other timesit isthe si gn of theargument that is significant.
If you pass a negative argument to a command which normally actsin aforward
direction, that command will act in abackward direction. For example, to kill text
back to the start of the line, you might use M-- Ctrl-K.

The general way to pass numeric arguments to a command isto type meta digits
before the command. If the first digit you typeisaminus sign (-), then the sign of
the argument will be negative. Once you have typed one meta digit to get the
argument started, you can type the remainder of the digits, and then the command.
For example, to give the ctrl-D command an argument of 10, you could use the
keystroke sequence, M-1, 0, Ctrl-D.

Readline Init File

Although the Readline library comeswith a set of GNU Emacs-like keybindings, it
is possible that you would like to use a different set of keybindings. You can
customize programs that use Readline by putting commandsinani ni t fileinyour
home directory. The name of thisfileis™/ . i nputrc.

When a program which uses the Readline library startsup, the™/ . i nput r ¢ fileis
read, and the keybindings are set.

LynxOS Total/db User’s Guide 127

Chapter 2 - Debugging with GDB

128

In addition, the ctrl-X, Ctrl-R command re-reads thisinit file, thusincorporating any
changes that you might have made to it.

Readline Init Syntax
There are only four constructsallowed inthe ~/ . i nputrc file.

Variable Settings

You can change the state of afew variablesin Readline. You do this by using the
set command within theinit file. Here is how you would specify that you wish to
usevi line editing commands:

set editing-node vi

Right now, there are only afew variables which can be set; so few, in fact,
that we just iterate them here:

edi ti ng- node

The edi ti ng- node variable controls which editing mode you are using. By
default, GNU Readline starts up in Emacs editing mode, where the
keystrokes are most similar to Emacs. This variable can either be set to
emacs Orvi.

hori zont al -scrol | - node

Thisvariable can either besetto On or O f . Settingitto On meansthat the
text of the lines that you edit will scroll horizontally on asingle screen line
when they are larger than the width of the screen, instead of wrapping onto a
new screen line. By default, thisvariableissetto OF f .

mar k- nodi fi ed-1i nes

This variable when set to On, saysto display an asterisk, (*), at the starts of
history lines which have been modified. This variable is off by default.

pr ef er-vi si bl e-bel

If this O f variableissetto On it meansto useavisible bell if oneis
available, rather than simply ringing theterminal bell. By default, thevalueis
Of.

LynxOS Total/db User’s Guide

Readline Init Syntax

Key Bindings

The syntax for controlling keybindingsinthe™/ . i nput r ¢ fileissimple. First you
have to know the name of the command that you want to change. The following
pages contain tables of the command name, the default keybinding, and a short
description of what the command does.

Once you know the name of the command, simply place the name of the key you
wish to bind the command to, a colon, and then the name of the command on aline
inthe ~/.inputrc file. The name of the key can be expressed in different ways,
depending on which is most comfortable for you.

keynane: function-name Or nacro
keynamne isthe name of akey spelled out in English. For example:

Control -u: universal -argunent
Met a- Rubout : backwar d-ki | | -word
Control -o: "&output”

In the example, ctrl-u is bound to the function, uni ver sal - ar gunent , and
ctrl-0 is bound to run the macro expressed on the right hand side (that is, to
insert thetext “ &out put ” into theline).

“keyseq”: function-nane or macro

keyseq differsfrom keynane in that strings denoting an entire key
sequence can be specified. Simply place the key sequence in double quotes.

GNU Emacs style key escapes can be used, as in the following example:

“\C-u”: universal -argunent
“NCxX\Cr”: re-read-init-file
“\e[117": “Function Key 1”

In the example, ctrl-u is bound to the function uni ver sal - ar gument (just asit
was in the first example), ctrl-X, ctrl-R is bound to the functionr er ead- i ni t -
file,andEsc, 1, 1, " isbound toinsert the text Functi on Key 1.Seethe
following table for additional information.

Command Action
begi nni ng- of -1 i ne (Ctrl-A) Move to the start of the current line.
end-of -1i ne (Ctrl-E) Move to the end of theline.
f orwar d- char (Ctrl-F) Move forward a character.
backwar d- char (Ctrl-B) Move back a character.

LynxOS Total/db User’s Guide 129

Chapter 2 - Debugging with GDB

Command

Action

f or war d- wor d (M-F)

Move forward to end of the next
word.

backwar d- wor d (M-B)

Move back to the start of this, or the
previous, word.

cl ear-screen (Ctrl-L)

Clear the screen leaving the current
line at the top of the screen.

Command

Action

accept-line
(Newline, Return)

Accept the line regardless of where
the cursor is. If thislineis non-
empty, add it to the history list. If
thisline was a history line, then
restore the history lineto its
origina state.

pr evi ous- hi st ory (Ctrl-P)

Move ‘up’ through the history list.

next - hi story (Ctrl-N)

Move ‘down’ through the history
list.

begi nni ng- of - hi st ory (M-<)

Moveto the first line in the history.

end- of - hi story (M-)

Move to the end of the input
history, i.e., theline you are
entering.

reverse-search-history
(Ctrl-R)

Search backward starting at the
current line and moving ‘up’
through the history as necessary.
Thisisan incremental search.

f orwar d- search- hi story
(Ctrl-S)

Search forward starting at the
current line and moving ‘ down’
through the the history as
necessary.

130 LynxOS Total/db User’s Guide

Readline Init Syntax

Command

Action

del et e- char
(Ctrl-D)

Delete the character under the
cursor. If the cursor is at the
beginning of the line, and there are
no charactersin the line, and the
last character typed was not Ctrl-D,
then return EOF.

backwar d- del et e- char
(Rubout)

Delete the character behind the
cursor. A numeric argument saysto
kill the characters instead of
deleting them.

quot ed-i nsert
(Ctrl-Q, Ctrl-V)

Add the next character that you
typeto the line verbatim. Thisis
how to insert things like ctrl-Q, for
example

tab-insert (M-Tab)

Insert atab character.

Command

Action

self-insert (a, b,A1,!,..

)

Insert yourself.

transpose- char s (Ctrl-T)

Drag the character before point
forward over the character at point.
Point moves forward as well. If
point is at the end of the line, then
transpose the two characters before
point. Negative arguments don’t
work.

transpose-wor ds (M-T)

Drag the word behind the cursor
past the word in front of the cursor
moving the cursor over that word as
well.

upcase-word (M-U)

Uppercase all lettersin the current
(or following) word. With a
negative argument, do the previous
word, but do not move point.

LynxOS Total/db User’s Guide

131

Chapter 2 - Debugging with GDB

Command

Action

downcase- wor d (M-L)

Lowercase dl lettersin the current
(or following) word. With a
negative argument, do the previous
word, but do not move point.

capitalize-word (M-C)

Uppercase the first letter in the
current (or following) word. With a
negative argument, do the previous
word, but do not move point.

Kill-1ine(Ctrl-K) Kill the text from the current cursor
position to the end of the line.
backward-kill-line () Kill backward to the beginning of

theline. Thisis normally unbound.

kill-word (M-D)

Kill from the cursor to the end of
the current word, or if between
words, to the end of the next word.

backward- kil | -word
(M-Delete)

Kill the word behind the cursor.

uni x- 1 i ne-di scar d (Ctrl-U)

Kill the whole line the way ctrl-u
used to in UNIX lineinput. The
killed text is saved on the kill-ring.

uni x-wor d- r ubout (Ctrl-w)

Kill theword the way ctrl-w used to
in UNIX lineinput. The killed text
issaved on thekill-ring. Thisis
different than backward-kill-word
because the word boundaries differ.

yank (Ctrl-Y)

Yank the top of thekill ring into the
buffer at point.

yank- pop (M-Y)

Rotate the kill-ring, and yank the
new top. You can only do thisif the
prior command is yank or yank-

pop.

LynxOS Total/db User’s Guide

Readline Init Syntax

Command Action
di gi t - ar gument Add this digit to the argument
(M-0, M-1, ... M--) aready accumulating, or start a
new argument. M-- starts a negative
argument.
uni ver sal -argunent () Do what ctrl-u doesin GNU
Emacs. By default, thisis not
bound.
Command Action
conpl et e (Tab) Attempt to do completion on the

text before point. Thisis
implementation defined. Generally,
if you are typing a filename
argument, you can do filename
completion; if you are typing a
command, you can do command
completion, if you aretypingin a
symbol to GDB, you can do symbol
name completion, if you are typing
in avariable to Bash, you can do
variable name completion.

possi bl e-conpl eti ons (M-?) | List the possible completions of the
text before point.

LynxOS Total/db User’s Guide 133

Chapter 2 - Debugging with GDB

Command

Action

reread-init-file
(Ctrl-X, Ctrl-R)

Read in the contents of your
~/ . i nputrc file, and incorporate
any bindings found there.

abort (Ctrl-G)

Stop running the current editing
command.

prefi x- nmet a (Esc)

Make the next character that you
type be metafied. Thisisfor people
without ametakey. Typing ESCFis
equivalent to typing M-F.

undo (Ctrl-_)

Incremental undo, separately
remembered for each line.

revert-Iline (MR)

Undo all changes made to thisline.
Thisislike typing undo enough
times to get back to the beginning.

Readline vi Mode
While the Readline library does not have afull set of vi editing functions, it does

contain enough to allow simple editing of theline.

In order to switch interactively between GNU Emacs and vi editing modes, use
the command M-Ctrl-J (t oggl e- edi ti ng- node). When you enter alinein vi
mode, you are already placed ini nserti on mode, asif you had typed an i .
Using Esc switchesyou into edit mode, where you can edit the text of the line
with the standard vi movement keys, move to previous history lineswith k, and
following lineswith j , and so forth.

Using History Interactively
The following describes how to use the GNU History Library interactively, from a

user’s standpoint.

134 LynxOS Total/db User’s Guide

History Interaction

History Interaction

The History library provides a history expansion feature similar to the history
expansionin csh. The following text describes the syntax you use to manipulate
history information.

History expansion takes two parts. In the first part, determine which line from the
previous history will be used for substitution. Thislineis called the event. In the
second part, select portions of that line for inclusion into the current line. These
portions are called words. GDB breaks the line into words in the same way that the
Bash shell does, so that several English (or UNIX) words surrounded by quotes are
considered one word.

Event Designators
An event designator is areference to acommand line entry in the history list.

! Start a history substitution, except when followed by

aspace, tab, or theend of theline... = or (.

I Refer to the previous command. Thisis a synonym
fort!-1.

I'n Refer to command line n.

I-n Refer to the command line n lines back.

I'string Refer to the most recent command starting with
string.

I?2string[?] Refer to the most recent command containing
string.

Word Designators

A: separates the event designator from the word designator. It can be omitted if the
word designator beginswitha”, $, * or % Words are numbered from the
beginning of the line, with the first word being denoted by a 0 (zero).

0 (zero) The zero'th word. For many applications, thisis the
command word.
n The n’th word.

LynxOS Total/db User’s Guide 135

Chapter 2 - Debugging with GDB

Thefirst argument. that is, word 1.

T$ Thelast argument.

% The word matched by the most recent ?st ri ng?
search.

X-y A range of words; -y abbreviates 0-y.

* All of the words, excepting the zero'th. Thisisa

synonym for 1-$. Itisnot anerrortouse * if there
isjust oneword in the event. The empty string is
returned in that case.

Modifiers

After the optional word designator, you can add a sequence of one or more of the
following modifiers, each preceded by a: .

The entire command line typed so far. This means the
current command, not the previous command.

h Remove atrailing pathname component, leaving only
the head.

r Remove atrailing suffix of theform ‘.’ suf fi x,
leaving the basename.

e Remove all but the suffix.

t Remove al leading pathname components, leaving
the tail.

p Print the new command but do not executeit.

136 LynxOS Total/db User’s Guide

swms. LYNXOS GDB Enhancements

LynxOS GDB extends and enhances the functionality of the GNU debugger for
debugging various LynxOS targets. This chapter isintended to supplement the
previous chapter, See “ Debugging with GDB” on page 11. Readers are advised to
read the chapter prior to thisin order to familiarize themselves with GDB.

Overview

LynxOS GDB supports debugging of avariety of LynxOS targets including, but
not limited to, the following areas:

* POSIX threads
« Remote applications
» Shared libraries
e LynxOSkernel devicedrivers.
This chapter shows command prompts as follows:
A command entry to GDB prompt (on the host):
(gdb) exanpl e comand
A command entry to the host’s shell prompt:
nyhost $> exanpl e comand
A command entry to the target’s shell prompt:

nyt ar get $> exanpl e comand

LynxOS Total/db User’s Guide 137

Chapter 3 - LynxOS GDB Enhancements

Debugging POSIX Threads

138

LynxOS user threads fully conform to the POSIX/IEEE 1003.1c threads model. A
LynxOS process consists of one or more threads each of which is scheduled by the
kernel. LynxOS GDB provides full support of multiple thread debugging including

» Browsing threadsin a process
» Switching focus among threads

» Setting breakpoints either common to all threads in a process or specific
to a particular thread.

For more detailed information, see “ Debugging Programs with Multiple Threads”
on page 34 in the previous chapter.

NoTE: GDB can debug a single process per debug session. To debug more than
one process, start as many GDB sessions as the number of the processes. Each
GDB session works independently from the others and there is no mutual
synchronization mechanism available between GDB sessions.

Understanding Thread Numbers

Each debugged process may contain any number of threads. GDB manages these
threads with internal thread numbers that are unique within the process, and within
the GDB session. Note that these thread numbers are different from LynxOS thread
IDs that are assigned by the LynxOS kernel and are unique throughout the
operating system. GDB maintains the mapping between its thread numbers and
LynxOS thread I1Ds.

Browsing and Switching Threads
To browse al the threadsin the process, use thei nf o t hr ead command:
(gdb) info thread

* 1 process 8 thread 38 0x100029d4 in _trap_ ()
2 process 8 thread 32 0x10002dd0 in _trap_ ()

(gdb)

The first column of athread list isthe GDB thread number. The asterisk indicates
the current thread. The second and third numbers (8, 38, and 32 in this example)
are the LynxOS process | D and thread | Ds, respectively.

LynxOS Total/db User’s Guide

Current Thread

Current Thread

Whenever GDB stops and returns to its prompt, it maintains its concept of the
current thread. GDB can only focus on one thread at atime, which isreferred to as
the current thread. By default, any GDB command uses the current thread if it
implicitly uses thread-specific parameters such as

« Expressionsthat contain an automatic variable
e Browsing registers
« Browsing the call stack chain.

At the start-up of the debugged process, theinitial thread is the current thread.
When athread hits a breakpoint or watchpoint, that thread becomes the current
thread. When the target processis interrupted by GDB, then the interrupted thread
becomes the current thread.

Usethet hr ead command with the new thread number to switch the focus from
one thread to another:

(gdb) thread 2

Setting a Breakpoint

You can make a breakpoint common to all the threads, so that any thread in the
target process will stop at a hit on it, or specific to a particular thread, so that only
the specified thread will stop. The default is any thread.

To set athread-specific breakpoint, usethe br eak command with thet hr ead
modifier:

(gdb) break foo.c:123 thread 2

When athread stops because of a breakpoint or any other reason, al threadsin the
target process will stop immediately, not just the thread that encountered the stop
condition. Likewise, when athread isresumed, all threads in the debug process are
resumed. Whenever GBD is at its prompt, the entire processis stopped and all
variables can be determined statically.

NoTE: Thread-specific breakpoints are implemented via simulation: All
breakpoints are actually thread-insensitive to the operating system. When GDB
detects a hit at a thread-specific breakpoint by athread that is not specified for the
breakpoint, GDB immediately resumes the target without reporting it to the user.
So, the operation is transparent, but some speed penalty may be seen if there are
many uninteresting hits.

LynxOS Total/db User’s Guide 139

Chapter 3 - LynxOS GDB Enhancements

Resuming Threads

The conti nue command resumes the operation of the target process. If the target
process has more than one thread, all the threads are resumed, not just the current
thread.

Likewise, single-stepping actually resumesall thethreadsin the target process. The
step and stepi commands merely guarantee that the current thread executes at
most one line of code and one instruction respectively, while other threads with the
same or higher priorities than the current thread may execute any amount of code
before control returnsto GDB. It is even possible that the current thread may not
have a chance to complete single-stepping if some other thread runsfirst and hitsa
breakpoint or receives asignal.

To single-step the current thread, raise the thread’s priority to avalue higher than
any other thread in the target process by using the set pri o command at the shell
level.

Youcanrun set prio (process 8, thread 38) at the target’s shell prompt:
nyt arget $> setprio 20 8.38

or if the target is aremote machine:
(gdb) rshell setprio 20 8.38

The thread's original priority must be restored after completing the exclusive
single-stepping for normal operation of the application.

NoTE: When a multithreaded target process is resumed, the threads are actually
resumed one after another by the LynxOS kernel, not al at once. The order of
resumption and subseguent execution of threads is determined by the scheduling
algorithm of the LynxOS kernel based on priorities.

Debugging Embedded Applications Remotely

140

GDB can be used to debug embedded applications remotely in the following ways:

» Debugging user processes with full support of signal, process attach, and
soon

» Debugging device drivers (kernel) over aserial line

For more information, see* Commands for Managing Targets’ on
page 113 and “ Using the gdbserver program” on page 115.

LynxOS Total/db User’s Guide

Using the Target Command

In addition, LynxOS GDB supports the following features:
* Remote start of gdbserver from GDB

e Extension of serial line communication to TCP/IP using a proxy.

Using the Target Command

Usethe t arget command to choose the appropriate remote debug target and
protocol (communication channel). In the following syntax, the first argument
specifies the remote debug target and the second specifies the protocol.

(gdb) target debug-target protocol [args]
LynxOS GDB supports the remote debug targets shown in Table 3-1:

Table 3-1: Remote Debug Targets

Target Target name(s)
Remote user process renote and ext ended-renote
Kernel/device driver skdb

LynxOS GDB supports the remote debug protocols shown in Table 3-2.

Table 3-2: Remote Debug Protocols

Protocol Example

TCP/IP f 00: 12345

Serial line /dev/ttya

Remotely started gdbserver f oo: gdbser ver
Proxy server foo: sspp

The optional third argument ar gs to the t ar get command isonly used by the
remote gdbserver and proxy server protocols. Refer to the following sections
for the details of ar gs.

LynxOS Total/db User’s Guide 141

Chapter 3 - LynxOS GDB Enhancements

Debugging Remote Targets

Remote and Extended-Remote Targets

Both renot e and ext ended-r enot e targets select debugging of aremote user
process over a communication channel. There are small differences between
renpte and ext ended- r enot e targetsin the way gdbser ver handles
termination of a debug session as shown in Table 3-3.

Table 3-3: Remote and Extended-Remote Targets

Target Process Exits or Communication Error

Target Kill Command L . or New Target is
is Killed By Signal Selected
renote gdbser ver exits gdbser ver exits gdbser ver reopens
communication
ext ended-renot e | gdbserver gdbser ver respanns gdbserver exits
respawns target target process
process

renote and ext ended-renot e targets support afull range of GDB features
available in LynxOS GDB, including debugging of multithreaded processes,
sending asignal to the target process, and attaching to atarget process.

Device Driver/Kernel Target (skdb)

LynxOS GDB supports debugging of kernel code including device drivers over a
serial line communication. For more information, see “ Debugging Kernel/Device
Drivers’ on page 158.

Supported Protocols for Remote and Extended-Remote
Targets

TCP Port

If thereis TCP/IP communication available between the debugging host and the
remote debugging target, it can be used to get the best possible debugging speed
and reliability.

142 LynxOS Total/db User’s Guide

Using a Serial Line

To start remote debugging through a TCP port, the remote target must first start
gdbser ver with an unused TCP port number that is available for normal use.

The next example command lines are typed in to the target machine:
nyt ar get $> gdbserver junk: 12345 /test/prog arg
or
nyt ar get $> gdbserver foo: 23456

The first example starts the target program /t est/ prog with an argument ar g.
The second example does not start atarget program immediately but waits until it
istold by the host GDB to attach an already-running process. For more
information, see “ Debugging Kernel/Device Drivers’ on page 158.

In either case, the first argument to gdbser ver isthe TCP port specificationin
theform of host : port. Anunused TCP/IP port number must be specified for
gdb. Thisisusually alarge number between 1,024 and 65,534 inclusive; arange of
5,000 through 65,534 is recommended for better compatibility. The host name
string before : can be anything and isignored by gdbser ver.

At the host machine, give the host GDB prompt the same port number associated
with the target’s host name or |P address:

(gdb) target renote nytarget: 12345
or
(gdb) target extended-renote 198. 4.254.217: 23456

Using a Serial Line

A serial communication line can be used for GDB remote debugging with

gdbser ver provided that a serial port is available on both the host and target
machines. When using a serial port, make sure that no other processes are using the
port on either side. Neither GDB nor gdbser ver usesalock file, but they must
gain exclusive access to the ports; otherwise, GDB may report a communication
error.

To start gdbser ver with the target process on the target’s serial port
(/ dev/ cont):

nyt ar get $> gdbserver /dev/conml /test/prog arg

The following starts gdbser ver for later process attaching on the target’s serial
port (/ dev/ con®). The - b option is used to specify the serial port’s
communication speed explicitly.

LynxOS Total/db User’s Guide 143

Chapter 3 - LynxOS GDB Enhancements

144

nyt ar get $> gdbserver -b 19200 /dev/con®

In either case, / dev/ coml and / dev/ con? arethe devicefiles of the targets’
serial portsthat are connected to the GDB hosts.

At the host machine, you must give the GDB prompt the host’s serial port name
(/ dev/ tt ya inthis case) to which the target is connected:

(gdb) target renote /dev/ttya
If the GDB host is Windows, it resembles the following:
(gdb) target renote con®

To change the host’s serial line speed, usetheset renot ebaud command before
using the t ar get command:

(gdb) set renotebaud 19200

Starting gdbserver Remotely

With TCP/IP communication, you can start gdbser ver remotely in a couple of
different ways:

e Througha tel net sessionon the target from the GDB host
» From thetarget’s start-up script

* Withthe r sh command from the debug host

* From GDB.

The last method has an advantage that, for example, you can start a debug session
completely from GDB, but it, aswell asthe r sh method, requires that the remote
shell (rsh) and the . rhost s filefor your account on the target be set up so that

the GDB user can use remote shell commands on the target from the GDB host.

(gdb) target renote nytarget: /test/prog arg
or
(gdb) target renote nytarget: gdbserver

Thefirst example starts gdbser ver onthe remote target with the target program
/ t est/ pr og and an argument of ar g. The second startsgdbser ver for later
attachment of atarget process. The gdbser ver string after the colon “:” is
optional; if it is present, it must be in all lower-case and cannot be preceded by a
path prefix.

LynxOS Total/db User’s Guide

Using a Proxy Server

In both of the above cases, the host GDB process spawnsalocal r sh process to
ask theremoter shd processto start gdbser ver with appropriate arguments.
The communication TCP port number is automatically determined and you do not
need to specify it. The standard output and standard error paths of the remote target
process are redirected to those of the local GDB process, while the standard input
path of the remote target processis either closed or redirected to the local host’s

/ dev/ nul | . Therefore, an interactive program cannot be debugged in this way.

Using a Proxy Server

The serial line between the GDB host and the target usually limits the physical
distance between the two machines. It is, however, often desirable to be able to
debug atarget that has only a serial line for communication from a geographically
distant locale. LynxOS GDB provides a proxy server solution to this problem.

The proxy server program runs on athird computer that is actually connected to the
target viaaserial line. The proxy computer and the GDB host computer
communicate over TCP/IP and the proxy server program redirects all the messages
to and from the serial line to the TCP/IP connection. Thisway, one can debug the
target from alocal workstation placed anywhere on the globe aslong asthereisa
TCP/IP connection with the proxy server.

To enable remote debugging with a proxy, start gdbser ver on thetarget withthe
seria port name connected to the proxy computer first:

nyt ar get $> gdbserver /dev/conR /test/prog arg
Then specify the target sspp at the GDB prompt:
(gdb) target nyproxy:sspp /dev/ttya

Here, myproxy isthe proxy server’'s host name, which could be afully qualified
domain name (FQDN) such as nypr oxy. f 0o. com or an IP address such as

198. 4. 254. 47;and / dev/ tt ya istheserial port name of the proxy computer to
which the target machine is connected.

This proxy server is aso useful when the target’s serial port is connected to a
“serial terminal server” computer. The terminal server can be configured to run the
proxy for shared access to the target. For more details on the proxy server, see
“Proxy Server” on page 165.

Starting the Remote Target
There are two ways to start the remote target process:

LynxOS Total/db User’s Guide 145

Chapter 3 - LynxOS GDB Enhancements

146

e Start from gdbserver
» Attach to a Running Process

The next sections describe these ways of starting the remote target.

Starting from gdbserver

To start the remote target processfrom gdbser ver, give the target program name
with optional arguments at the gdbser ver command line:

nyt ar get $> gdbserver junk: 12345 /test/prog arg
(gdb) target renote nytarget: 12345

or
nyt ar get $> gdbserver /dev/conR /test/prog arg
(gdb) target renote /dev/ttya

or
(gdb) target renote nytarget: /test/prog arg

Thefirst and second examples start gdbser ver on the remote target then make a
connectionto the gdbser ver processfrom GDB. The third example starts
gdbserver remotely from GDB over a TCP/IP connection.

In any case, as soon as the communication is established, one will see something
similar to the following:

(gdb) target renote nytarget: /test/prog arg

Process /test/proc created; pid = 17

Connected to 198.4.254.217. ..

Renot e debuggi ng using 198.4.254.217: /test/prog arg

Kernel supports MID ptrace requests.

gdbserver: passed 0.0.0.0:3304 wusing addr:port=198. 4. 254. 131: 3304

0x10001000 in __start ()

(gdb)
At this point, the target process has started and is stopped at the very first user
instruction of the program, which isin thiscaselabeledas __start. Tolet the
target processrun, usethe conti nue command (after setting breakpoints or other
desired debugger commands), but do not usethe r un command which would start

alocal process.

LynxOS Total/db User’s Guide

Attaching to a Running Process

Attaching to a Running Process

In amultiprocess application where the target process is forked by another process
on the target, it isnot possible for gdbser ver to start the target process with the
target program specification given in the GDB command line. In such a case, GDB
cantell gdbserver to attach to an already-running process.

To start gdbserver for attaching to a process, give no target program
specification to it:
nyt ar get $> gdbserver junk: 12345
(gdb) target renote nytarget: 12345
or
nmyt ar get $> gdbserver /dev/con®
(gdb) target renpote /dev/ttya
or
(gdb) target renpote nytarget:

Thefirst and second examples start gdbser ver onthe remote target then make a
connection to the gdbser ver processfrom GDB. The third example starts
gdbser ver remotely from GDB over a TCP/IP connection.

To attach to aremote process, one needs to obtain the target process ID. To find out
the process ID, execute the ps command on the target. With LynxOS GDB, you
can run the ps command remotely from your GDB host with the r shel | GDB
command.

Then, use the GDB attach command with the process ID to attach the target
process:

(gdb) target renmpte nytarget:

Ready to attach to a process

gdbserver: passed 0.0.0.0: 1050 wusing addr:port=198. 4. 254. 47: 1050
Connected to nytarget. ..

Renot e debuggi ng usi ng nytarget:

(gdb) rshell ps

pid ppid grp pri text stk data tine dev user S nane
34 32 34 17 336 32 132 0.58 ttypO joe W /bin/bash
36 13 36 17 336* 32 132 0.46 ttypl joe W /bin/bash
44 34 44 17 28 8 8 0.01 ttyp0 joe W /test/prog
6596K/ OK free physical/virtual, 708K used (in this display)

(gdb) attach 44

Attaching to renote program “/usr/home/joe/test/prog’ (process 44)...
Kernel supports MID ptrace requests.

LynxOS Total/db User’s Guide 147

Chapter 3 - LynxOS GDB Enhancements

Process 44 has threads 39.
0x100029d4 in _trap_ ()

(gdb)

To resume the target, use the conti nue command (after setting breakpoints, if
necessary).

Target’s Environment

Although GDB supports set envi ronnent to set the debug target's
environment, currently this command has no effect on remote debugging. To set or
reset the remote target process's environment, do so on the parent process (usualy
the shell) of gdbser ver (if the application processis started by gdbserver) or
the application process (if one attaches to the process later).

Postmortem Debugging of Dynamically Linked Programs

When loading a partial core file without either the data or the heap section created
from adynamically linked program, GDB is unable to debug the shared libraries
used by the program. To obtain the shard libraries address for correct interpreting
of the libraries symbolic information, GDB uses the DT_DEBUG symbol. The
DT_DEBUG pointer maintained by the dynamic linker islocated in the program data
section of the core file and pointsto a special program heap area. This program
heap areais alocated by the dynamic linker and holds the structures conatining the
information on how the dynamic linker loads the libraries needed for the program
execution. In the case when the corefileis configured not to contain either the data
or the program heap section, GDB is unable to get the load information of the
library and analyze the functions located in the shared libraries.

Should debuging of the shared librariesin a core file be required, the user must
configure the core file to include the data and heap sections. Refer to the LynxOS
User’s Guide for details.

Debugging Shared Libraries

A shared library is a collection of library functions that are commonly used by
multiple application programs at the same time. Instead of linking alibrary to each
application program executable, asingle copy of the shared library isloaded into
memory and used by multiple programs. This sharing reduces the use of physical

148 LynxOS Total/db User’s Guide

Creating a Shared Library for Debugging Purposes

memory as well as disk storage requirements; therefore, it is especially useful for
embedded applications where memory istight.

LynxOS GDB can set breakpointsin, single-step, and trace shared library code just
like any application program. When a breakpoint is set in the text segment of a
shared library that is actually used by multiple processes, a copy of the page where
the breakpoint is being set is made for the debugged process so that the breakpoint
does not interfere with other processes that share the same shared library.

Creating a Shared Library for Debugging Purposes

To create a shared library for GDB debugging purposes, compile (gcc) the library
source file(s) with the- g option.

Loading Shared Library Symbol Information

GDB automatically loads the necessary symbol files (shared library files) when
one of the following GDB commands is executed:

* run
e attach
e target (extended-)renote

e target core (orthe -c optionoracorefileisgiveninthe GDB
command arguments—postmortem debugging)

The following add- synbol - fi | e command can be used to load a shared library
symbol file. This may be necessary if the file cannot be found in one of the
automatically searched directory paths, or if you are performing postmortem (core
file) debugging:

(gdb) add-symbol -file ./libmy.so O

The first argument for the add- synbol -fil e command isthe additional shared
library file path name on the debug host’s file system.

The second argument (0) isadummy argument, and GDB ignoresit.

Application-Loaded (dlopen’ed) Shared Libraries

GDB automatically loads the necessary symbol file (shared library file) when an
application-loaded shared library fileisfirst opened by the application (dl open())
and discards the symbol file when the shared library fileislast closed by the

LynxOS Total/db User’s Guide 149

Chapter 3 - LynxOS GDB Enhancements

150

application (dI cl ose()) for live debugging. The dl open anddl cl ose library
functions use specia signalsto notify GDB that a shared library has been opened
or closed.

GDB also searches for application-loaded shared libraries and |oads the necessary
symbol files when it attaches to a live target process or when it starts analyzing a
core file (postmortem debugging).

Thefollowing add- synbol -fil e command can be used to load a shared library
symbol file manually. This may be necessary if GDB cannot locate the file in any
of the automatically searched directory paths:

(gdb) add-synbol -file ./shlib2.so 0

Thefirst argument for the add- synmbol -fil e command isthe additional shared
library file path name on the debug host’s file system.

The second argument (0) is adummy argument, and GDB ignoresit.

If asymbol file has been loaded manually with add- synbol -fi | e, it must be
discarded manually with the del et e- synmbol - fi | e command after the shared
library has been last closed by the dI cl ose() library call. GDB will prompt the
user when this seems to be necessary.

The del et e-synbol -fil e command takes one argument for the deleted
symbol file name on the debug host’s file system. The i nfo synbol -file
command shows the list of currently loaded symboal files.

(gdb) info synbol-file

From To Synbol file

0x00400a20 0x00400elf /usr/lynx/3.1.0/ m ps/tnp/hello/hello
0x70000c20 0x7000450f /usr/lynx/3.1.0/ mps/lib/shlib/libdl.so
0x70027f 40 0x7005987f /usr/lynx/3.1.0/ mps/lib/shlib/libc.so
0x70452ec0 0x704649ff /usr/lynx/3.1.0/ mps/lib/shlib/libgcc.so
0x70475240 0x70480aef /usr/lynx/3.1.0/ mps/lib/shlib/libmso
(gdb) del ete-synbolfile \

fusr/lynx/3.1.0/mps/lib/shlib/libdl.so

Deferred Breakpoints

When setting a breakpoint with symbolic information such as a function name,
GDB hasto resolve the breakpoint specification into the target process's virtual
addressimmediately. Thisisimpossibleif the breakpoint being set will be found in
ashared library and the shared library symbol file has not been loaded to GDB
either because the target process has not yet started or because GDB has not yet
attached to the target process.

LynxOS Total/db User’s Guide

Deferred Breakpoint Commands

GDB for LynxOS supports deferred breakpoints that allow breakpoint addressesto
remain unresolved. When a deferred breakpoint is set, GDB immediately tries to
setitasa“real” breakpoint: If the breakpoint setting is successful, the breakpoint
will work as aregular breakpoint; if it fails, GDB does not print an error message
but will remember the breakpoint specification by keeping it in the deferred
breakpoint list. When the target process starts or is attached to GDB and a shared
library is detected and loaded, GDB will try to set the deferred breakpoints as real
breakpoints.

Deferred Breakpoint Commands
The following GDB commands are available for supporting deferred breakpoints:

(gdb) dbreak br eakpoi nt _spec

The dbreak command sets a deferred breakpoint. br eakpoi nt _spec isthe
specification of the breakpoint to be set; it can be any string that would be accepted
by the“real” br eak command, including an optional i f condition clause. If the
breakpoint is successfully set as areal breakpoint, the breakpoint will work just
like any other regular breakpoints, except that it is also registered in the deferred
breakpoint list; otherwise, br eakpoi nt _spec merely remains registered in the
deferred breakpoint list. An attempt will be madeto set the deferred breakpoint asa
real breakpoint when the target processis started or attached by one of the
following commands:

* run
e attach
e target (extended-)renote

If the attempt to convert a deferred breakpoint to areal breakpoint fails, the
deferred breakpoint will remain registered for another attempt in the future and you
will see no error message.

NoOTE: Thedbr eak command does hot parse or check the syntax of

br eakpoi nt _spec; it simply passes the whole string to the breakpoint command
executive. So, “failureto set as areal breakpoint” may indicate a syntactical error
inbr eakpoi nt _spec.

Optionally, you may givethe br eak command an unresolvable breakpoint
specification. If the br eak command finds it cannot resolve the breakpoint
specification to an addressimmediately, it will fall into the dbr eak command
function after confirmation.

LynxOS Total/db User’s Guide 151

Chapter 3 - LynxOS GDB Enhancements

152

(gdb) break dl func

Function “dl func” not defined. Make deferred? (y or n) Yy
Def erred breakpoint set for “dlfunc.”

(gdb) ddel ete [dbreak_num

The ddel et e command removes a deferred breakpoint from the deferred
breakpoint list. dbr eak_numisthe deferred breakpoint number shown by the

i nfo dbreak command. If dbr eak_numisnot given, ddel et e will remove all
deferred breakpoints after confirmation. If the deferred breakpoint being removed
iscurrently set asareal breakpoint, ddel et e will prompt for confirmation to
remove the real breakpoint aswell.

NoTE: The deferred breakpoint list uses separate numbering from “real
breakpoints.” Those two series of breakpoint numbers should not be confused.

(gdb) info dbreak [dbreak_nuni

The i nfo dbreak command displays the information about the deferred
breakpoint designated by dbr eak_numor all deferred breakpoints.

Deferred Breakpoints for Application-Loaded (dlopen’ed)
Shared Libraries

In addition to the above features of deferred breakpoints that are applicable to both
kernel-loaded and application-loaded shared libraries, application-loaded
(dI open’ed) shared libraries benefit some more from deferred breakpoints.

Automatic Promotion for dlopen

When anew application-loaded (dI open’ed) shared library isloaded by the target
process and its symbol fileisloaded to GDB, GDB will automatically try to set the
“pending” deferred breakpoints as real breakpoints. Those deferred breakpoints
that are successfully converted to real breakpoints are marked “busy,” while other
pending ones will remain pending for later attempts. GDB will not remove the
successfully converted deferred breakpoints from the list; they will remain
registered until explicitly removed by the ddel ete command. Thisis because
those breakpoints may need to be set again when the shared library is closed and
then reopened in the future.

LynxOS Total/db User’s Guide

Shared Library File Path Names

Automatic Demotion for dlclose

When an application-loaded shared library is last closed and its symbol fileis
removed from GDB, GDB automatically removes all breakpoints that were set for
the shared library. These breakpointsinclude both those that were automatically set
“real” when the shared library was loaded and those that were set manually by the
break command.

Itisimportant to know that a stale breakpoint is deleted but not disabled even if the
breakpoint belonged to an application-loaded shared library that may be reopened
in the future. Thisis because the breakpoint’s address value is no longer valid and
there is no guarantee that the same address will be used for the given deferred
breakpoint specification when the shared library is reopened. Therefore, the
corresponding real breakpoint number will becomeinvalid aswell, and a new
breakpoint number will be assigned when the shared library is reopened.

Shared Library File Path Names

In remote debugging, the debug host and the debug target may not necessarily have
the same directory layout; for example, one may be developing a shared library

f 0o. so inthe debug host's directory / hone/ j oe/ proj 1/ usr/li b/ shli b/,
but the library may be supposed to be loaded by the target process from
/usr/1ib/shlib/ onthedebug target’'sfile system. GDB hasto resolve this
directory path difference particularly for shared library symboal file loading
because:

e For automatic shared library symbol loading, the shared library file path
names are extracted from the application executable in the target’s
notation (/ usr/ 1'i b/ shl i b/ f oo. so inthe above example), while GDB
must load the symboal file from the debug host’s file system (for example:
/ home/ j oe/ proj 1/ usr/1ib/shlib/foo.so)

e For manual shared library symbol loading
(add- synbol - fi |), the shared library file names are given in the
debug host’s notation. GDB has to trandlate it into the debug target’s
notation in order to obtain the dynamic loading address information from
the target.

In general, it is recommended to have (a subset of) the target’s file system image
under a host file system directory pointed to by the ENV_PREFI X environment
variable, but this may not always be the case. LynxOS GDB handles this shared
library file path resolution issue in the following ways for convenience and
flexibility.

LynxOS Total/db User’s Guide 153

Chapter 3 - LynxOS GDB Enhancements

154

Automatic Shared Library Symbol File Loading

The . dynani ¢ section of the application’s executable file will contain the shared
library file names and optionally the directory information (on the target'sfile
system). GDB usesthe _host _shli b_dirs GDB variable and the debug host's
ENV_PREFI X environment variable to search for the shared library symbol files on
the debug host’s file system.

_host_shlib_dirs isacolon-separated list of host directory namesin which
the shared library file is expected to reside. GDB uses these directories to override
the following file name path composition rules. _host _shl i b_di rs can be set
by the set command asfollows:

(gdb) set _host_shlib dirs

/hone/joe/ proj 1/ usr/lib/shlib:/hone/joe/projl/testlib
The above example implies the shared library symbol files are supposed to be

foundin/home/joe/ proj 1/usr/lib/shlib or
[hore/ j oel/ proj 1/testlib.

Otherwiseif _host_shlib_dirs isnot set, GDB will resolve shared library
path names in two stages:

First, GDB emulates ELF's dynamic section rule;

e If the shared library file path contains at least one/ (slash), the path
represents either

- Anabsolutepathinthetarget’sfile system, or

- Arelative path to thetarget’scurrent directory (currently not
supported);

 If the shared library file path containsno / , use the following
components in order to find the file:

1. DT_RPATH inthe. dynani ¢ section
2. Thetarget process'sLD LI BRARY_PATH environment variable
3. Thedefault directories/ i b/ shlib and /usr/lib.

If GDB cannot find the library in the preceding steps, GDB will prefix the
composed file path with the ENV_PREFI X environment variable (if it exists). GDB
uses ENV_PREFI X as the “virtual mount point” of the target’s file system on the
debug host. ENV_PREFI X should point to adirectory on the debug host's file
system which contains a duplicate image of the target’s file system.

LynxOS Total/db User’s Guide

Automatic Shared Library Symbol File Loading

For example, if the target application uses ashared library f oo. so with the
following conditions:

Host GDB’s _host _shlib_dirsis
[hore/ j oe/ proj 1/ usr/1ib/shlib:/hone/joel \
projl/testlib

DT_RPATH is/test/shlib:/prod/shlib
Target processsLD LI BRARY_PATHIis/test2/shlib
Host’'s ENV_PREFI Xis/usr /I ynx/ 3. 1. 0/ i ps

GDB will ook for the corresponding symboal file on the debug host in the following
sequence:

1. GDB will firsttry / horre/ j oe/ proj 1/ usr/1i b/ shli b/ f oo. so and

/ hone/ j oe/ proj 1/ testlib/foo. so. If oneexistsand is readable,
GDB will load it.

If theabove _host _shli b_di r s schemefails, GDB will try composing
the following file paths using DT_RPATH, LD LI BRARY_PATH, the
default library paths, and ENV_PREFI X:

- Jusr/lynx/3.1.0/ mps/test/shlib/foo.so
- Jusr/lynx/3.1.0/ mps/prod/shlib/foo.so
- Jusr/lynx/3.1.0/ mps/test2/shlib/foo.so
- Jusr/lynx/3.1.0/ mps/lib/shlib/foo.so

- Jusr/lynx/3.1.0/ mps/usr/lib/foo.so

If the above still fails, GDB will assume the debug host has the same
directory layout as the target and will try the above file path names
without ENV_PREFI X (/ usr /| ynx/ 3. 1. 0/ mi ps) on the debug host.

CAuTION! Although the ELF specification allows arelative shared
library path name to the application process's current working directory
and LynxOS kernel-loaded shared library honors this, the current release
of LynxOS GDB does not support this for automatic symbol file loading.

Application-Loaded Shared (dlopen’ed) Libraries

The LynxOS dl open library resolves any application-loaded shared library path
name passed to the library as an argument into a“ clean” absolute path beginning
with forward slash (/). Here, “clean” means that the path contains no single-dot (.

LynxOS Total/db User’s Guide 155

Chapter 3 - LynxOS GDB Enhancements

) and double-dot (. .) elements representing the current and parent directories
respectively. GDB will try to locate the corresponding symbol file on the debug
host’s file system in the following sequence (for / pr od/ shl i b/ f 00. so):

1. If _host_shlib_dirs isset, for all of itsmembers GDB will check if a
file foo. so existsandisreadablein the directory. For example, if itis
[hone/joel/ proj 1/ usr/lib/shlib:/hone/joe\
/projl/testlib, /hone/joel/projl/usr/lib/shlib/foo.so
and/ hone/ j oe/ proj 1/ test | i b/ f oo. so will be checked. If one
exists and is readable, GDB will load it.

2. Iftheabove _host _shlib_dirs schemefalsandif ENV_PREFI Xis
set, GDB will try the given file path name prefixed by ENV_PREFI X (for
example: / usr/ 1 ynx/ 3. 1. 0/ mi ps/ prod/ shl i b/ f 0o. so).

3. If the above still fails, GDB will assume the debug host has the same
directory layout as the target and will try the original file path name
(/ prod/ shli b/ f oo. so) on the host’s file system.

Manual Shared Library Symbol Loading/Unloading
(add-symbol-file/delete-symbol-file)

For the add- synbol -fil e command, GDB accepts afile path name in the
debug host ' s notation. GDB will use the exact given file path name for loading
thefile. For the platforms that support dynamic shared library loading, GDB will
ask the target about the library’s run-time loading address with the following rule:

» If thegiven shared library file path name is an absolute path name (starts
with /) and it starts with the ENV_PREFI X directory path name, GDB
will use the path name with the ENV_PREFI X component stripped off for
theinquiry.

» If the given addressis an absolute path name but does not start with the
ENV_PREFI X directory name, GDB assumes that the host and the target
have the same directory layout and uses the original absolute path name
for theinquiry.

» If the given addressis arelative path name (does not start
with /), GDB will use only the file name portion (last element of the path
name) for the inquiry implying “this file name in any directory.”

NoTE: Path names are compared literally: GDB will not resolve traversesin the
directory hierarchy with the current and parent directory notations (“. ” and “. .).
For example, / usr/ ./ abc and/ usr/ abc will not match.

156 LynxOS Total/db User’s Guide

Symbol Table

If any of the aboveinquiriesfails, GDB considers that the shared library does not
have a dynamic loading address, but isloaded statically: That is, the loading
addressis 0 (zero).

For each manually loaded shared library file, GDB displays a message like the
following:

(gdb) add-synbol -file ./file.so O
add synbol table fromfile “./file.so” at text_addr = 0x0

(y or n)y
Loadi ng synbols for ./file.so with address offset 0x12345678. ..

If the target platform supports dynamic loading of shared libraries and the “ address
offset” is zero (0), it usually means GDB failed to determine the loading address.
Check thefile path for add- synbol -fil e.

Symbol Table

GDB loads and unloads symbol information by the symbol file, but it looks up the
symbol table for a symbol entry by using the source file name. If two shared
libraries have been built using the same source file or source files with the same
name containing the same function name, and if those shared libraries are loaded at
the same time, only one of the multiple functions (with the same name) isvisible to
GDB.

For example, if shared libraries x. so and y. so were built froma. ¢ and b. c,
and b.c and c.c respectively, areferenceto function f oo in b. c (b. c: f 00)
would find only one of the two functions, although there are two copies of function
f oo at different addresses. GDB currently has no way to specify the shared library
file name for a symbol lookup.

Single-Stepping into a Shared Library Function

Because of the symbol scope sensitivity, the st ep command for a shared library
function call may unexpectedly act like the next command; execution does not
stop at the entry of the shared library function but it stops after returning the
function call. This happens if the function belongs to a different symbol scope
(another shared library) from the current one. To step into the function with
stopping, set a breakpoint at the function before executing the st ep command.

LynxOS Total/db User’s Guide 157

Chapter 3 - LynxOS GDB Enhancements

Summary of Additional Commands for Shared Library
Support

Refer to “ Debugging with GDB” on page 11. for commands other than those listed

below:

dbr eak breakpoi nt _spec
Sets adeferred breakpoint

ddel et e [dbreakpoint_num]
Deletes deferred breakpoints

i nfo dbreak [dbreakpoint_nuni
Displays deferred breakpoints

add- synbol -file hostfile_name 0
Loads an additional symbol file manually

del ete-synbol -file hostfil e_nane
Unloads a manually loaded symbol file

info synbol -file
Displays symbol files currently loaded in GDB

info sharedlibraries

Displaysalist of shared libraries loaded to the target. Thisis useful only
if the target process has loaded any application-loaded (dI open’ed)
shared library.

Debugging Kernel/Device Drivers

158

GDB can be used to debug LynxOS custom device drivers. Although GDB can be
used as atool for porting the LynxOS kernel to anew platform, it may not be very
useful because LynxOS GDB kernel debugging requires afairly stable LynxOS
target kernel to operate.

Requirements
To use LynxOS GDB for kernel debug purposes, the following items are required:

Target LynxOS with SKDB (Simple Kernel Debugger) installed
LynxOS GDB host computer

LynxOS Total/db User’s Guide

Building a Kernel for Debug Purposes

e A serid line connection between the LynxOS target and the LynxOS
GDB host or proxy server. For more details, see “ Proxy Server” on
page 165.

Building a Kernel for Debug Purposes

To build a LynxOS kernel for debug purposes at the source level, compile the
devicedriver (or whatever code that will be debugged at the source level) with the
- g option. Edit your Makefil e toincludethe - g option for compiling (the
linker does not need - g).

LynuxWorksincludes a second set of kernel librariesto help debug the kernel even
more. These librariesinclude not only the symbols necessary for linking, but also
the full debug information. By linking the kernel image with these libraries, even
though the LynxOS kernel source code may not be available, one can browse some
useful source level information such as calling parametersin afunction call chain
(stack trace).

To build akernel image with libraries that can be debugged fully, run the make
utility in sys/ | ynx. os with SYS_DEBUG=t r ue:

nyhost $> make SYS DEBUG-=t rue a. out

The use of the libraries with full debug information, however, increases the size of
the resulting kernel image (fat image) as well as the run time memory requirement,
typically by several mega bytes. If the target’'s memory istight, it is possible to
strip the debug information off the fat image being loaded into the target, while still
using the fat image for referencing debug information by GDB on the host.

NoTE: A stripped kernel is not capable of dynamically loading device drivers
because it requires resolution of kernel symbols.To use dynamically loaded device
drivers on a system where the target’s memory is tight, use the traditional kernel
libraries. (Without SYS_DEBUG=t r ue, you can still include full debug information
for a specific device driver incurring a small to moderate increase of memory
reguirement.)

Debugging the Kernel
Virtually al the normal GDB features are available for kernel debugging purposes:
» Source level variable examination

e Source level singlestepping

LynxOS Total/db User’s Guide 159

Chapter 3 - LynxOS GDB Enhancements

160

e Cadl stack chain examination
e Thread support.

One big difference is that kernel debugging must always be performed in the form
of remote debugging. A separate host computer to run LynxOS GDB onisrequired
to debug the LynxOS target kernel. Thereisnosel f or | ocal kernel debugging.

Anocther differenceisthat itisimpossibleto st art andt er m nat e the target
kernel; GDB aways interrupts akernel that is already running to start a debug
session and releasesit to finish the session. Thisissimilartoat t ach and det ach
in user process debugging. To start and finish debug sessions, see “ Starting Kernel
Debugging” on page 161 and “Finishing Kernel Debugging” on page 163.

CAUTION! Since kernel debugging must stop the entire operating system,
the operating system will not respond when the kernel isat abreakpoint or
is stopped by the debugger. In some circumstances, even though one lets
the system “go,” the system may respond considerably slower or have no
response at all because the debugger internally keeps single-stepping the
kernel.

Simple Kernel Debugger—SKDB

LynxOS GDB on the debug host actually talksto SKDB, which is embedded in the
kernel of the target with a special protocol. SKDB works as an agent and performs
the following basic operations to requests made by GDB:

* Memory read
e Memory write
* Register examination
» Execution resumption
* Single-stepping.
Therefore, the target must have SKDB installed.

To build a LynxOS kernel with SKDB installed, usethe I nst al | . skdb utility
script with the optional SYS_DEBUG=t r ue flag asfollows:

nytarget $> Install.skdb SYS DEBUG-=true

For more detailed information on SKDB, see Chapter 5, “ Simple Kernel Debugger
- SKDB”.

LynxOS Total/db User’s Guide

Threads vs. Processes

Threads vs. Processes

In akernel debugging session, GDB is virtually unaware of processes at all.
Though it still reports the current process ID, every thread running on the target is
visible to GDB, unlike user process debugging in which only the target process's
threads are visible. Therefore, a non-thread-specific breakpoint can be hit by any
thread of any process on the target, including kernel threads. The i nfo t hread
command may display along list of threads.

Setting Up Serial Ports

Though it is possible to share the target serial port for both regular terminal use and
kernel debugging, a dedicated serial port for kernel debugging is strongly
recommended for reliable communication. The target serial port must have
matching parameters with the host’s, such as bit rate speed and parity bit. These
parameters are usually configured with the target’st t yi nf o. ¢ file, but you can
override the default values with the

stty command on the target. To change the communication speed of GDB, use
the set renotebaud command.

Starting Kernel Debugging

To start akernel debug session, usethe t ar get command with the target of
skdb and an appropriate protocol (serial port or sspp proxy).

(gdb) target skdb /dev/ttya

Kernel debuggi ng using /dev/ttya

Kernel supports MID ptrace requests.
0xdb006068 in null_loop () at nmmin.c:224
mai n. c:224: No such file or directory.

(gdb)

NoTe: For SKDB to accept a*“break-in" by GDB, the serial port must have been
opened by a process. This may be done by starting al ogi n process on the port by
editing/ et ¢/ t t ys or by running such aprogram as cat on the port. No user can
actually log in at the port because the port is connected to the debug host. Also, the
cat process should not output to the port. Keep the port open but quiet.

Once communication is established, GDB interrupts the target’s kernel and reports
the location where the kernel was interrupted, usually in the null process. In the

LynxOS Total/db User’s Guide 161

Chapter 3 - LynxOS GDB Enhancements

162

above example, an error message was displayed because GDB could not find the
sourcefile mai n. ¢ initsdefault source file search path while the null process
module was compiled with full debug information. If the source code file(s) are
available, usethe di r command to add the appropriate directory to the search
path list.

If GDB returns with the following message:
communi cation not established

or, aternatively:
communi cation error

try thet ar get command again. If the error persists, it may be due to wrong
communication parameters or wrong target configuration such as missing SKDB
or awrong port.

Now set breakpoints at desired kernel locations and usethe conti nue command
to resume the kernel. Once the kernel hits a breakpoint and stops, it is possible to
examine variables and the call stack chain, single-step, continue, and so forth as
one would do for user process debugging.

CauTioN! Although kernel mode debugging is powerful and GDB lets
the user manipulate any and all memory contents in the target system, not
only those in the kernel space but also those in user process spaces, it is
not advisable to set breakpoints in the user process space (user program).

The LynxOS kernel handles kernel-mode breakpoints completely
different from user-mode breakpoints; a user-mode breakpoint set by
kernel debugger (GDB) will not be captured by GDB running in kernel
debug mode, and thus it will cause an unexpected termination of the
process.

Interrupting the Kernel

To interrupt arunning kernel, press ctri+C at GDB, whileit iswaiting for the target
to stop as one would do for user process debugging. LynxOS GDB sends the break-
in character to stop the target kernel.

Single-Stepping the Kernel

The step and stepi command single-step the current thread in the kernel.
Unlike user process debugging, however, only the current thread can be single-

LynxOS Total/db User’s Guide

Finishing Kernel Debugging

/N

/N

stepped; the t hr ead command has no effect on single-stepping (you cannot
change the current thread for singlestepping).

CAUTION! It isnot recommended to attempt to trace (setting breakpoints
in and/or single-stepping) the “core” portions of the LynxOS kernel, such
asthose handling context switching and interrupt control, because such an
attempt may severely interfere with the LynxOS kernel operation.

Also, those instructions that manipul ate the processor’s status register
cannot be safely single-stepped. Though LynxOS GDB detects, warns
about, and prevents such an attempt, casual tracing of such critical code
may result in an unexpected system freeze.

Finishing Kernel Debugging

To finish adebug session and to let the target kernel resume freely, ki | | the target
at the GDB prompt or quit GDB. Despite the command name, the target’skernel is
not killed, but is resumed freely.

(gdb) Kill
Kill the program being debugged? (y or n) Y
Kernel is resumed. None is actually “killed.”
(gdb)

CauTioN! If akernel debugging session isaccidentally terminated dueto
a communication error or some other unexpected reason, GDB may not
have had a chance to remove breakpoints before the termination. If this
happens and a new kernel debug session is started, the kernel may be
trapped at a breakpoint forever until the original instruction at the
breakpoint location is restored by hand with acommand like pri nt or
until the kernel isreloaded (restarted). GDB currently provides no
convenient way to restore the original instructions.To reload the kernel
and restart LynxOS, use the R SKDB command. (*Raw SKDB
Commands’ on page 164.) or reset the target’s hardware with the reset
switch or a power-cycle.

Loading Device Drivers Dynamically

Device drivers can be dynamically loaded into memory at run-time, instead of
build-time, while the system is up and running. Device drivers can be also removed

LynxOS Total/db User’s Guide 163

Chapter 3 - LynxOS GDB Enhancements

from memory and reloaded later. This facility is very convenient for device driver
development.

To load adevice driver dynamically, usethe dri nstal I LynxOS command with
thedevicedriver's *. o file. To add symbol information for adynamically loaded
device driver, usethe add- synbol -fil e GDBcommand with thedriver's *. o
file name and its loading address as reported by the drinstal |l or drivers
LynxOS command.

nytarget$> drinstall -c drivers/nydriver.o
drivers/nmydriver.o 0xb2000300

(gdb) add-synbol -file mytarget/drivers/nydriver.o
0xb2000300

Raw SKDB Commands

GDB isageneric debugger. It knows little about the LynxOS kernel. To explore the
LynxOS kernel in more detail, such as the process table, thread structures, and so
on, you can pass ar aw SKDB command from LynxOS GDB using the skdb
command followed by the desired SKDB command string.

(gdb) skdb p 20

pid ppid prio pgroup signals mask sem state name
0 0 0 0 O ffffffff 0 current nul | pr
1 1 16 1 0 0 db168564 waiting /init
10 1 17 10 0 0 db1228bc waiting /bin/lpd
11 1 17 11 0 0 db17f 758 waiting /bin/login
12 1 17 12 0 0 db17b9e4 waiting /bin/bash
13 1 17 13 0 0 db17c674 waiting /bin/login
14 1 17 14 0 0 db17d304 waiting /bin/login
15 1 17 15 0 0 db17df94 waiting /bin/login
16 1 18 16 0 80000 dbl22abc waiting /bin/syncer
22 1 17 22 0 0 db1232bc waiting /' net/inetd
24 1 17 24 0 0 db0e9648 waiting /net/unfsio
27 1 17 27 0 0 db1236bc waiting /net/portnmap
29 1 17 29 0 0 db1238bc waiting / net/ mountd
31 1 17 31 0 0 dbl123abc waiting /net/nfsd
33 1 17 33 0 0 db123cbc waiting /net/rpc.statd
35 1 17 35 0 0 db123ebc waiting /' net/rpc. | ockd. svc
37 1 17 37 0 0 db0e93e8 waiting /net/rpc.|ockd.clnt
tid pid prio stklen signals mask sem state name
0 0 0 0 O ffffffff 0 current nul | pr
1 0 0 1096 0 0 db182314 waiting SIMSR
2 0 18 4168 0 0 db18d8b0 waiting DECchip
*
(gdb)

164 LynxOS Total/db User’s Guide

Proxy Server

See Chapter 5, “Simple Kernel Debugger—SKDB” for information on the SKDB
command.

CAuUTION! GDB does not keep track of any operation performed with the
skdb command. For example, if you set a breakpoint with the skdb
command, it would be unknown to GDB but still cause a break, and

therefore the breakpoint would confuse GDB and SKDB. It isgenerally
not advisable to use raw SKDB commands to alter the target’s state.

It is possible to change the target’s memory contents with araw SKDB
command (although it is not recommended). When doing so, it is
important to clear GDB’s internal data cache with the set

r enot ecache command after changing the memory contents.

Proxy Server

If GDB is set up for remote debugging over a serial line such as RS-232, the serial
line usually limits the physical distance between the target and the host running
GDB. LynxOS GDB extends this distance infinitely by using a proxy server—a
third computer—between the target and the host. The proxy server redirects the
serial line communication to a TCP/IP connection such as alocal area network
(LAN) or the Internet. Now you can use GDB from another room, ancther
building, or even another country to debug the target.

The proxy server program sspp isasimple and small program supplied in the
form of source code so that it can be ported to different platforms. The proxy server
computer is either adedicated or shared machine running a variant of UNIX
including LynxOS, or it can be aterminal server that multiplexes a number of serial
port connections.

The sspp program is transparent to the target, so it can be used for both user
process debugging (t ar get r enot e) and device driver/kernel debugging
(target skdb).

Torunthe sspp proxy server program, the following items are required on the
proxy server computer:

e A seria port connected to the LynxOS target
e TCP/IP connection to the GDB host
* BSD remote shell daemon (r shd)

LynxOS Total/db User’s Guide 165

Chapter 3 - LynxOS GDB Enhancements

166

e GDB user’s account capable of using r shd.

These should be available on most modern UNIX workstations including LynxOS
workstations.

sspp has been tested on LynxOS 3.1 and SunOS 4.1.x/5.x.

Syntax

The following example starts a user process debugging session (r enot e) using the
SSpp proxy server program (sspp) on the proxy server computer mypr oxy, whose
serial port / dev/ttya isconnected tothe LynxOS target:

(gdb) target renote nyproxy:sspp /dev/ttya

If the proxy program is not installed in the default search path on the server, passits
full path name to GDB. To specify the serial port communication speed, use
sspp’s- b option.

The next example shows a device driver/kernel debugging session (skdb) using
the sspp proxy server program loaded at / | ocal / bi n/ sspp on the proxy server
computer nmypr oxy, whose serial port / dev/ con® is connected to the LynxOS
target at 19,200 bps:

(gdb) target skdb myproxy:/local/bin/sspp -b \
19200 /dev/con®

Installation

sspp comesin source code for easy porting to a variety of platforms. To port
sspp, you need an ANSI-compliant C compiler (gcc preferred).

Compiling sspp.c
The associated Makefi | e issimple. Give its compile command line the desired
macro definitionsin the form of - DMACRO=1:

HAVE_TERM CS
HAVE_TERM O
HAVE_SGTTY

Define one and only one of these macros depending on the type of tty support
of the proxy server. Both LynxOS and SunOS use HAVE_TERM CS.

_Lynx__

LynxOS Total/db User’s Guide

Installing sspp

Define this macro if the proxy server runs LynxOS.
NO_LOCKI NG

Define this macro if no locking of the serial port is required.
LOCKF_DI R=di r

Define this macro to override the default lock file directory

(/ var/ spool / uucp).
M NI COM

Define this macro if the proxy server has the Minicom terminal server
installed.

Installing sspp

sspp must beinstalled as a set-uid executabl e to be able to access the serial port
devicefile and the lock file. This requires root (super user) privilege. The

Makef i | e usesthe set-uid user of uucp. If your site has a different user 1D for
this purpose, change it appropriately.

After installation, try starting sspp from aremote machine for testing. If the
results are similar to the following, the installation was successful:

nyhost $> rsh myproxy sspp

501 Usage: sspp [-b bps] [-c host:port] [-n] /dev/ttyname
520 Terminating connection.

nyhost $>

When modifying sspp’s source code for a custom environment, it can be
debugged by using double colons when starting a debug session from GDB. The
message transactions and some more useful information are displayed:

(gdb) target renote nyproxy::sspp /dev/ttya

The proxy protocol isfound in GDB’s source file ser-rsh. c.

Minicom Terminal Server

LynuxWorks uses dedicated terminal serversin its product test area. These
terminal servers run the Minicom terminal server program written by Miquel van
Smoorenburg on LynxOS, and multiplex serial port connectionsto a number of test
platforms. The Minicom terminal server program isusually installed asthe user’s
login shell and thusit isimpossible for the user to use remote shell for the sspp

LynxOS Total/db User’s Guide 167

Chapter 3 - LynxOS GDB Enhancements

proxy. The sspp. ar b script arbitrates between Minicom and sspp by checking
if aloginisinteractive (Minicom) or remote (sspp) with a simple time-out
mechanism.

To use this arbitrator script, first edit the script so that the function goni ni com
pointsto acorrect path for Minicom. Theninstall it asthe user’slogin shell (put the
script’s path into the login shell field of the user’spasswd entry).

General Tips and Miscellaneous Issues
The following sections provide you with general tips and other useful information:
» Reading and writing large memory blocks
e Executing remote shell commands
» Browsing target process's environment
» Function calsin a multithreaded process
* Function calls after ctrl+C
» Resuming off a blocking system call

» Debugging a signal-intensive process.

Reading and Writing Large Memory Blocks

The nmenget and menput commands let you transfer large blocks of memory
contents from and to, respectively, the target process’s address space very
efficiently. Table 3-4 shows the syntax for menget and menput commands.

168 LynxOS Total/db User’s Guide

Browsing Target Process’s Environment

Table 3-4: Reading and Writing Large Memory Blocks

Syntax

Description

menget | ocal file address

size

| ocal fil eisthe GDB host’slocal fileto which the
memory block is transferred.

addr ess isthe absolute address in the debugged process's
address space in either decimal, hexadecimal, or octal (no
symbolic address is alowed).

si ze isthe transferred memory size in number of bytesin
decimal.

menget “>l ocal fil e” address
si ze

Same as the first syntax except that the surrounding
guotation marks are mandatory.

nmenget “| | ocal command ar gs”
address size

Same as the first syntax except that it redirects the memory
bytesto| ocal comrand’ s standard input through pipe.
The surrounding quotation marks are mandatory.

menput | ocal file address

si ze

Same asthe first syntax except that | ocal fi | e isthe GDB
host’s local file from which the memory block is transferred.
si ze isoptiona and the default is| ocal fi |l e’ssize.

menput “<l ocal fil e” address
si ze

Same as the previous syntax. si ze isoptiona and the
defaultisl ocal fi | e’ssize. The surrounding quotation
marks are mandatory.

Browsing Target Process’s Environment

The i nfo environment command displays the debug target process's

environment.
(gdb)

info environnment

PATH

/fusr/local/bin:/usr/bin:/bin:.

If the debug target processis not availablethe i nfo envi ronment command
displays the debugger’sor gdbser ver 's environment, depending on the mode of
debugging (local or remote).

Executing Remote Shell Commands

The rshel |

command |ets one execute a shell command on the remote target

machine. It issimilar to the BSD r sh (remote shell) command, but r shel | works

LynxOS Total/db User’s Guide 169

Chapter 3 - LynxOS GDB Enhancements

170

even over aserial connection without TCP/IP. Therefore, it is useful for browsing
the embedded target’s directories, processes, and so forth.

(gdb) rshell Is -1F

total 80

-rwr--r-- 1 joe 34268 Jan 2 10:45 core
-rwr--r-- |1 joe 152 Cct 20 1999 getarc
drwxr-xr-x 8 joe 512 Nov 8 1997 src/

Thershel I command handles quotation marks and other shell meta characters
properly if the target has a shell program installed; otherwise, it does not.

CAauTION! Do not execute an interactive program or a program that reads
the standard input with ther shel | command. The standard input of the
remote program isredirected to / dev/ nul | .

In remote debugging, the rshel I command becomes effective only after a
connection with the target is established with the t ar get command. If the
rshel I command isused before aconnection is established or after connectionis
lost, it works for the local host because the default target isthe local host.

Function Calls in a Multithreaded Process

To manually execute a function call, such as a command line like
“print foo(1l)” atthe GDB prompt, GDB performs the following:

1. Allocates ablock of memory in the current thread's stack in the target
process (moves the thread's stack pointer value)

2. Writesapiece of “caller” code that makes a call to the target function
(“f 00” in the above example) with necessary argument handling and
ends with a breakpoint instruction in the target’s extended stack area

3. Substitutes the current thread’s program counter value temporarily to the
caller code’s entry address

4. Resumes the target process (including the current thread) and waits for
the target process to stop (hopefully by hitting the breakpoint instruction
in the caller code)

5. After control returnsto GDB, restores all the register values of the thread
(the extended stack areais discarded).

It should be noted that if afunction is called by hand in atarget process that has
more than one thread, not only the current thread but also all other sibling threads

LynxOS Total/db User’s Guide

Functions Calls after Ctrl+C

in the target process are subject to scheduling, as described in “ Resuming Threads”
on page 140. This usage may result in unexpected side effectsif some other thread
actually runs while the manual function call is running. To prevent this, raise the
current thread’s priority temporarily as described in “Resuming Threads’ on

page 140 provided that the function call does not involve a blocking system call.

Functions Calls after Ctrl+C

If the current thread isin ablocking system call and you type ctri+c from GDB to
interrupt the thread, the target process stops and control returnsto GDB. If you
then try to call afunction in the target program by hand with the pri nt command
or asimilar command, GDB appears to be hung and the function will not be
executed.

This is because the target process has to complete the blocking system call before
running the function. The hung function may be interrupted by entering another
ctrl+C. Then, the conti nue command resumes the target process to reenter the
system call.

Resuming after a Blocking System Call

If the current thread stops at a system call instruction due to a breakpoint and you
try to resume the application process with the conti nue command, GDB may
report the following warning:

S| GNONBLOCK, Wbul d deadl y bl ock

In this case, GDB regains control without executing the blocking system call. To
resume the process continuously, remove the cause of the blocking.

Thisisaresult of GDB’sinternal mechanism to resume athread from a breakpoint.
When GDB resumes a process that has stopped due to a breakpoint hit by one of its
threads, GDB:

1. Restorestheoriginal instruction at the breakpoint location
2. Letsthethread single-step the instruction

3. Reinstalls the breakpoint instruction there

4. Resumesthe thread freely, if needed.

In order to ensure an atomic operation, LynxOS GDB uses specia single-stepping
which guarantees that only the thread in the process runs while al other sibling
threadsin the same target process remain stopped. Otherwise, some other thread in

LynxOS Total/db User’s Guide 171

Chapter 3 - LynxOS GDB Enhancements

172

the same process may run while the original instruction at the breakpoint location
isrestored and that take-over thread may miss the breakpoint.

In this scenario, if the breakpoint were set at a system call instruction that waits for
aresource that islocked by another thread in the same target process (for example,
mutex) the system call would never complete because no other threads in the target
process can run, and thus this would cause a dead lock. The LynxOS kernel
prevents such a dead lock by detecting the situation and breaking the blocking with
aspecial internal signal (SI GNONBL OCK).

Debugging a Signal-Intensive Process

LynxOS relies on the UNIX/POSIX 1 synchronous signal mechanism for
debugging a process: Any signal to atraced (debugged) processis captured by the
kernel’s process trace code, causing the traced process to stop. The stop is then
reported to the debugger. A breakpoint or single-stepping merely generates and
sends aspecial signal to the traced process.

Although GDB can be configured with the handl e command to pass and not
print asignal when it is sent to the target (traced) process, GDB implements this
signal handling by software: Any signal sent the target process till causes the
process to stop; when GDB detects the target process's stop, it examines the signal
code that caused the stop; If the signal code is configured to pass, GDB silently
resumes the target process without reporting it to the user.

Obvioudy, the above processing involves software overhead in both the kernel and
GDB. If the target processis designed to receive signals frequently, its execution
speed may noticeably slow down under a debugger, even though the signals are not
explicitly reported by GDB. Remote debugging makes the situation even worse
because of the additional overhead for the remote communication transaction for
each signal reception.

LynxOS Total/db User’s Guide

wwema DebUgQINg with Total/db

Total/db is the LynuxWorks debugger which is based on the GNU GDB debugger
and Insight graphical user interface. LynuxWorks has added many customizations
and enhancements to the standard GDB debugger so that it may be used more
efficiently with the LynxOS operating system. Total/db is capable of remote
debugging of LynxOS kernels and applications as well as multithreaded
debugging.

This chapter discusses the Insight user interface. Cygnus Insight isagraphical user
interface for GDB, the GNUPro Debugger. Insight has the same look and feel on
both Windows and Unix operating systems. Insight offers the ease of a GUI and
accessto all the power of the GDB's command-line interface.

LynxOS Total/db User’s Guide 173

Chapter 4 - Debugging with Total/db

Source Window

174

When Insight first opens, it displays the Source Window (see Figure 4-1).

File Hun “iew Control Preferences Help

@ Source Window =] E3

<| I»

EFHPHO| Y | RS O M-HE = & =

IThe progran is not being run.

I 3T 3| [so0RCE 3

BN

Figure 4-1: Source Window

The Source Window menu bar has the following items: File, Run, View, Control,
Preferences and Help.

LynxOS Total/db User’s Guide

File Menu

File Menu

Figure 4-2 shows the File Menu.

Open... Ctrl+0

Fage Setup...
Frint Source... Ctrl+P

Target Settings. ..

E it

Figure 4-2: File Menu

The File Menu options are:

Open

Page Setup

Print Source

Target Settings

Exit

Brings up the Load New Executable dialog box. See “Load New

Executable Dialog Box” on page 189.

Brings up the Page Setup dialog box. See “Page Setup Dialog
Box” on page 191. (This option is currently not available on the
Unix version.)

Brings up the Print dialog box. See“Print Dialog Box” on
page 192. (This option is currently not available on the Unix
version.)

Brings up the Target Settings dialog box. See “ Target Selection
Dialog Box” on page 192.

Closes the Insight program.

LynxOS Total/db User’s Guide

175

Chapter 4 - Debugging with Total/db

Run Menu
Figure 4-3 shows the Run Menu.

Download Chl+D
Run R

Figure 4-3: Run Menu

The Run Menu options are:

Download Downloads a program to aboard (if connected).
Run Runs the executable program.
View Menu

Figure 4-4 shows the View Menu.

Stack Chrl+5
Reqizters Ctrl+R
M emory Ctrl+

‘watch Exprezsionz Chrl+haS
Local ‘fanables Chrl+L
EBreakpoints Ctrl+B
Cohzole Ctrl+M
Funchtion Broweser Chil+F

Figure 4-4: View Menu

176 LynxOS Total/db User’s Guide

Control Menu

The View Menu options are:

Stack

Registers

Memory

Watch Expressions

Local Variables

Breakpoints

Console

Function Browser

Control Menu

Displays Stack window. See “ Stack Window” on page 197.

Displays Registers window. See “ Registers Window” on
page 198.

Displays Memory window. See “Memory Window” on page 200.

Displays Watch Expressions window. See “Watch Expressions
Window” on page 202.

DisplaysLocal Variables window. See“Local Variables Window”
on page 205.

Displays Breakpoints window. See “Breakpoints Window” on
page 206.

Displays Console window. See “Console Window” on page 209.

Opens the Function Browser window. See “The Function
Browser Window” on page 210.

Figure 4-5 shows the Control Menu.

Step
et
Finizh

5
M
F
Lontinue C

Step dsm Inst 5
Meut dam lnst N

Figure 4-5: Control Menu

LynxOS Total/db User’s Guide 177

Chapter 4 - Debugging with Total/db

178

The Control Menu options are:

Step

Next

Finish

Continue

Step Asm Inst

Next Asm Inst

Steps to next executable line of source code. Stepsinto called
functions.

Steps to next executable line of source code in current file. Steps over
called functions.

Finishes execution of the current frame. If clicked while in afunction,
it finishes the function and returns to the line that called the function.

Continues execution until a breakpoint, watchpoint or other exception
is encountered; or execution is complete.

Steps to next assembler instruction. Steps into subroutines.

Steps to next assembler instruction. Executes subroutines and steps to
the subsequent instruction.

Preferences Menu

Figure 4-6 shows the Preferences Menu.

Global
Source

Figure 4-6: Preferences Menu

The Preferences Menu options are;

Global

Displays Global Preferences dialog box. See “Global Preferences Dialog

Box” on page 195.

Source

Displays Source Preferences dialog box. See “ Source Preferences Dialog

Box” on page 196.

LynxOS Total/db User’s Guide

Help Menu

Help Menu
Figure 4-7 shows the Help Menu.

Help Topics
Cygriz on the Web

About GDEB. ..

Figure 4-7: Help Menu

The Help Menu options are:

Help Topics Displays Help window.
Cygnus on the Web Linksto the GNUPro Tools web page.

About GDB... Displays About GDBTk window, containing product version
number, copyright and Cygnus contact information for Insight.

LynxOS Total/db User’s Guide 179

Chapter 4 - Debugging with Total/db

Toolbar Buttons

The toolbar provides quick access to various debugger functions. Table 4-1 list the
toolbar buttons.

Table 4-1: Toolbar Buttons

Icon Name Description
Run Runsthe executable. During execution the
button turnsinto the Stop button. If you
1 \ click on the Run button with no executable
loaded, you invoke the Target Selection

dialog box. See “ Target Selection Dialog
Box” on page 192.

Stop Interrupts the program, provided that the
underlying hardware and protocol support
@ | this functionality. Many monitors that are
connected to boards cannot interrupt

programs on those boards. In this case, the
Stop button has no functionality.

Step Steps to next executable line of source
@ code. Steps into called functions.
{"}
Next Steps to next executable line of source
code in the current file. Steps over called
'ﬁqf functions.
Finish Finishes execution of the current frame.
{l‘iq, If clicked while in afunction, it finishes
the function and returns to the line that
called the function.
Continue Continues execution until a breakpoaint,
& watchpoint or other exception is
{} encountered; or execution is complete.
Step Invokes step assembler instruction. Steps
Assembler into subroutines.
'ﬁ Instruction

180 LynxOS Total/db User’s Guide

Toolbar Buttons

Table 4-1: Toolbar Buttons (Continued)

Icon Name Description
Next Steps to next assembler instruction.
Assembler Executes subroutines and steps to the
'@ Instruction following instruction.
Register The Registers button brings up the
o Registers Window. See “Registers
h Window” on page 198
Memory The Memory button brings up the Memory
window. See “Memory Window” on
.f'i page 200.
Stack The Stack button brings up the Stack
window. See “ Stack Window” on
= page 197.
Watch The Watch Expressions button brings up the
Expressions Watch Expressions window. See “Watch
t‘_;a Expressions Window” on page 202.
Local The Local Variables button brings up the
Variables Local Variables window. See “Local
M Variables Window” on page 205.
Breakpoints | The Breakpoints button brings up the
- Breakpoints window. See “Breakpoints
*= Window” on page 206.
Console The Console button brings up the Console
window. See “Console Window” on
page 209.

LynxOS Total/db User’s Guide 181

Chapter 4 - Debugging with Total/db

Table 4-1: Toolbar Buttons (Continued)

Icon Name Description

Line Address | The left side displays the program counter
[oxwenizz] 16 | & of the current frame, while the program is
Line Number | running.

Display Theright side displays the line number,
which contains the program counter, while
the program is running.

Down Moves down the stack frame one |level.
,ﬁ' Stackframe
Up Moves up the stack frame one level.
¥ Stackframe
=
GotoBottom | Moves to the bottom of the stack frame.
of Stack
=

Special Display Pane Features

» When the executable is running, the location of the current program
counter is displayed as a line with a green background.

» When the executabl e has finished running, the background color changes
to violet (browsing mode).

» When looking at a stack backtrace, the background color changesto
golden yellow.

Using the Mouse in the Display Pane

There are various uses of the mouse within the main display pane of the Source
window. The display pane is divided into two columns (see Figure 4-8). The left
column extends from the left edge of the display paneto the last character of the
line number. The right column extends from the last character of the line number to

182 LynxOS Total/db User’s Guide

Right Display Column

the right edge of the display pane. Within each column, the mouse has a different
set of effects.

Left Display Column Right Display Column

@ main.c - Source Window
File | Bun “iew Control Preferences Help

g0 0|ve|lsdseardr T L4
1 /= The main program. %7 =
2

3| #include “structs.h”

Y|

Figure 4-8: Using the Mouse in the Window

Right Display Column

« By holding the cursor over aglobal or local variable, the current val ue of
that variable is displayed.

* By holding the cursor over a pointer to a structure or class, the type of
structure or classis displayed and the address of the structure or classis
displayed.

* By doubleclicking an expression, it is selected.

« By right clicking while an expression is selected, a pop-up menu appears
(see Figure 4-9). The selected expression appearsin both menu
selections.

Add lis bo Watch
Crurnp Memary at lis

Figure 4-9: Pop-up Window for Expressions

LynxOS Total/db User’s Guide 183

Chapter 4 - Debugging with Total/db

The pop-up menu options are;

The Add var to Brings up the Watch Expressions Window and adds a variable

Watch expression (thel i s variable, in thisinstance) to the list of
expressions in the window. See “Watch Expressions Window”
on page 202.

Dump Memory at Brings up the Memory Window, which displays a memory

var dump at an expression, inthisinstance, thel i s expression. See

“Memory Window” on page 200.

Left Display Column

When the cursor isin the left column and it is over an executable line (marked on
the far left by aminus sign), it changesinto a circle. When the cursor isin this
state, events have the following results:

» A left click setsabreakpoint at the current line. The breakpoint appears
asared sguare in place of the minus sign.

« A left click on any existing breakpoint or temporary breakpoint removes
that breakpoint.

« Arright click brings up another pop-up menu (see Figure 4-10) for setting
breakpoints.

Continue to Here
Set Breakpoint
Set Temporary Breakpoint

Figure 4-10: Pop-up Menu for Setting Breakpoints

The pop-up menu options are:

Continue to Here This causes the program to run up to thislocation, ignoring any
breakpoints. Like the temporary breakpoint, this menu selectionis
displayed as an orange square. This selection disables al other
breakpoints. When a breakpoint has been disabled, it turns from red
or orange to black.

184 LynxOS Total/db User’s Guide

Left Display Column

NoTE: The debugger might be expected to execute to a given location, stopping at
all encountered breakpoints. This menu item currently forces execution to this
location without stopping at any encountered breakpoints

Set Breakpoint

Set Temporary
Breakpoint

This sets a breakpoint on the current executable line. This has the
same action as left clicking on the minus sign.

This sets atemporary breakpoint on the current executable line. A
temporary breakpoint is displayed as an orange square. The
temporary breakpoint is automatically removed when it is hit.

Figure 4-11 shows the pop-up menu for deleting breakpoints.

Drelete Breakpoint

Continue to Here

Figure 4-11: Pop-up Menu for Deleting Breakpoints

The menu options are:

Delete Breakpoint

Continue to Here

This deletes the breakpoint on the current executableline. Thishas
the same action as left clicking on the red square.

This causes the program to run up to thislocation, ignoring any
breakpoints. Like the temporary breakpoint, this menu selectionis
displayed as an orange square. This selection disables al other
breakpoints. When a breakpoint has been disabled, it turns from
red or orange to black.

LynxOS Total/db User’s Guide 185

Chapter 4 - Debugging with Total/db

186

Below the Horizontal Scroll bar

There are four display and selection fields below the horizontal scroll bar: the
status text box, the drop-down list box, the function drop-down combo box and the
code display drop-down list box.

Status Text Box

At the top of horizontal scroll bar, atext box displays the current status of the
debugger (in the status box for the window depicted in Figure 4-12: Status text
box, the message reads "Program stopped at line 19" as current status for the
example program.)

< 2]
IProgram stopped at line 19

Imain.c j Imain j ISI]UR[:E j I 4

Figure 4-12: Status Text Box

Function List and Combo Boxes

Figure 4-13 shows the drop-down list box. The drop-down list box displays all the
source (. c) and header (. h) files associated with the executable. Files may be
selected by clicking in thelist box, or by typing into the text field above the list.
The drop-down list box displaysall the functionsin the currently selected source or
header file. A function may be selected by clicking in thelist box, or by typing into
the text field above.

LynxOS Total/db User’s Guide

Code Display List Box

main.d [~

makebuf .c

malloc.cc

malloc.h

mallocr.c

map .h

math.h =
mblen.c

mbstowcs.c

mbtowc .c

memchy .c

memcmp .c

memncpy.c

MEMMOVE . C

menset .c hd|

Figure 4-13: Drop-down List Box

For the function drop-down combo box, the mai n. ¢ file only contains the one
‘main’ function. Figure 4-14 function drop-down combo box.

. foo.c j foo F
bar I

Figure 4-14: Function Drop-down Combo Box

Code Display List Box
Figure 4-15 shows the code display drop-down list box.

SOURCE -

ASSEMBLY
HIXED
SRC+ASH

Figure 4-15: Code Display Drop-down List Box

LynxOS Total/db User’s Guide 187

Chapter 4 - Debugging with Total/db

188

Use the code display drop-down list to select how the codein the Source Window is
displayed. The options are;

SOURCE The source codeis displayed in the Source Window.
ASSEMBLY The assembly code is displayed in the Source Window.

MIXED The source code and the assembly code are both displayed, interspersed
in the Source Window.

SRC+ASM The source code and the assembly code are both displayed in a double
paned window. The source code is displayed in the Source Window
and, in a pane below the source code pane, the assembly codeis

displayed.

Search Text Box

Figure 4-16 shows the search text box. By typing into the search text box and
pressing Enter, aforward search is done on the sourcefile for the first instance of
the character string entered. By pressing the shift and Enter keys simultaneously, a
backward search is performed. Repeatedly hitting Enter or the shift and Enter keys
simultaneously, repeats the search forward or backward in the search window.

bar 4

Figure 4-16: Search Text Box

If you type"@" in the search text box and a number, the source display jumpsto
the line of the number specified. For instance, after having specified "@" and "6"
in the search text box, the example program shows ajump to line 6 in the search

text dialog box (see Figure 4-17).

LynxOS Total/db User’s Guide

Dialog boxes for the Source Window

@ foo.c - Source Window =] E3

File Hun “iew Control Preferences Help

CIURTEEE I WL B NG R 0x40100e 6 =

/= Subroutines. =/

|>M—

int
foo {int argi1, int arg2)
{

int a = argl, b = 2, ¢ = 3;

1
2
3
y
5
6
7
8

a *= 4 + arg2;

9 b += bar ();

18 return a + b + c;
1M1 3

12

13 int

14 [O

= 15 {

= 16 int i = 188, rslt = @;
17

18 while {i--)

19 rslt += i;

28 return rslt;

21 3

. Ll
IProgram stopped at line &
[foo.c = |foo > |sourceE ~] bar >

Figure 4-17: Using the Search Text Dialog Box

Dialog boxes for the Source Window
The section describes the Source window dialog boxes.

Load New Executable Dialog Box

The Load New Executable dialog box (see Figure 4-18) isinvoked by clicking open
from in the File Menu. This dialog box allows you to navigate through directories
and select an executable file to be opened in the Source Window.

LynxOS Total/db User’s Guide 189

Chapter 4 - Debugging with Total/db

Load Hew Executable EHE

Look jr: I A example j gl

E X amnple mairn.c
cygwin.dil @ example. zip sieve.c
dhry.h fact.c stucts.h

dhry_1.c floats.c
dhry_2.c foo.c
il R O lizts.c

File name: Iexample.exe Open I
Files of type: [l Fies (*) =l Cancel |

Figure 4-18: Load New Executable Dialog Box

190 LynxOS Total/db User’s Guide

Page Setup Dialog Box

Page Setup Dialog Box

The Page Setup dialog box (see Figure 4-19) isinvoked by clicking Page Setup
from the File Menu. This dialog box allows you to make page layout selections
before printing a source file.

Page Setup HE

-~ Paper
Size: US Letter j
Source:

— Orientation Marging [inches]

& Potrait Left: |1" Right: |1"
' Landscape Top I‘I" EBottom: I‘I"

QK I Cancel | Frinter. .. |

Figure 4-19: Page Setup Dialog Box

LynxOS Total/db User’s Guide 191

Chapter 4 - Debugging with Total/db

Print Dialog Box

The print dialog box (see Figure 4-20) isinvoked by clicking Print Source from the
File Menu. This dialog box allows you to select a printer and make other print
specific selections, before printing a source file.

Print 2] X]
— Prirter
Mame: Engineering Properties |

Status: Feady
Type: HF Lazerlet 4/4M PostScript
Where: \clericheng

Comment: Engineering printer on 2nd floor ™ Prirt ta file
— Print range Copie:
Lo Mumber of copies: |1 3:
" Pages [mm:l‘l LD:I‘I
Ijl I~ | Eallate
) Selestion
()8 I Cancel |

Figure 4-20: Print Dialog Box

Target Selection Dialog Box

The Target Selection dialog box (see Figure 4-21) isinvoked by clicking Target
Settings from the File Menu. This dialog box allows you to select the target you
wish to run the executable on, and make other run specific selections.

Connection
et Wﬂ ¥ Rur urtil 'mair
Baud Fate: |33400—ﬂ V' Set breakpoint at 'esit'
Part: Icom‘l—ﬂ ™ Display Download Dialog
[* More Options
’TI Cancel Help |

Figure 4-21: Target Selection Dialog Box

192 LynxOS Total/db User’s Guide

Target Selection Dialog Box

The basic set of optionsinclude:

Connection

Target

Baud Rate/
Hostname

Port

Run until 'main’

Set breakpoint at
‘exit’

Display Download
Dialog

The Connection group contains the target drop-down list box for
target selection and two other fields for setting target-specific
parameters.

The contents of thislist box depends upon the specific GDB
debugger configuration you have received. For anative
configuration, the list contains Exec (for native execution),
Remote/Serial (seria connection to aremote target) and
Remote/TCP (TCP connection to aremote target).

If GDB has been configured to include a specific hardware
simulator, the target Exec will be replaced by target sim. The
names of specific hardware targets may also be included in the
list, with serial, TCP or both methods of connection, depending
upon the hardware.

When a serial connection to aremote target is selected the baud
rate may be set. When a TCP connection to aremote target is
selected, thislist box turnsinto atext edit field, renamed
Hostname, allowing for specifying of a host name.

For both seria and TCP connections to remote targets, the port
must be designated. For serial connections, port specifiesthe
seria port on the host machine. For TCP connections, port
specifies the port number on the remote target.

Set a breakpoint at main and run until that breakpoint is reached.
Thisis checked by default.

Set abreakpoint at the call to the 'exit' routine. Thisis checked by
default.

In addition to using the status-bar, display more extensive
download status information in adialog box. Thisis particularly
useful when doing a serial download to aremote target. Thisis
unchecked by default.

LynxOS Total/db User’s Guide 193

Chapter 4 - Debugging with Total/db

More Options /Fewer Options

The More Options/Fewer Options Selection of the Target Selection dialog box toggles
to display or hide the Run Options at the bottom of the dialog box (see Figure 4-22).

@ Target Selection E
— Connection
¥ Rur urtil 'mair

Target: IF!emote.-"SeriaI ﬂ

Baud Bate |38400 ﬂ V' Set breakpoint at 'esit'

Port: Icom‘l ﬂ " Display Download Dialog
=~ Fewer Dptions
— Fun Option

V' Attach to Target ™ Run Frogram

™ Download Program [V Continue from Last Stop

()8 I Cancel

Help |

Figure 4-22: Run Options

The four check boxesin the Run Options group set-up the actions taken, when the
Run button is clicked. The run optionsinclude:

Attach to Target Connectsto a remote target.
Download Program Downloads an executable to a remote target.
Run Program Begins execution of an executable.

Continue from Last Stop Continues execution from wherever the executable, on a
remote target, left off.

194 LynxOS Total/db User’s Guide

Global Preferences Dialog Box

Global Preferences Dialog Box

The Global Preferences dialog box (see Figure 4-23) isinvoked by clicking Global
from the Preferences Menu. This dialog box allows you to select the font and the

type size for displaying text.

@ Global Freferences M= 3
lcons |W’ind0ws-style lcon Set ﬂ
Fant:
Fixed Font: IFixedsys ﬂ Size:ls_ﬂ ABCDEFabcdef 8123456789

Default Fort: IMS Sans Serif ﬂ Size:lﬁ_ﬂ ABCDEFabcdef0l23456789
Statusbar Font: IMS Sans Serif ﬂ Size:lﬁ_ﬂ ABCDEFabcdef0l23456789

Ok | Apply | Lancel

Figure 4-23: Global Preferences Dialog Box

This icons drop-down list box allows for choosing between the default Windows
styleicon set and the basic icon set. These icon sets are shown in Figure 4-24 and
Figure 4-25.

FOeE 0| e |dass e8I T Eed

Figure 4-24: Windows-style Icon Set

Mrvan|d |eaBoe-28| T &1t

Figure 4-25: Basic Icon Set

LynxOS Total/db User’s Guide 195

Chapter 4 - Debugging with Total/db

The Fonts group allows for custom selection of font family and size. The options

include;
Fixed Font This drop-down list box allows you to select the font for the source
code display panes.
Default Font This drop-down list box allows you to select the font for usein list

boxes, buttons and other controls.

Statusbar Font This drop-down list box allows you to select the font for the status bar.

Source Preferences Dialog Box

The Source Preferences dialog box (see Figure 4-26) isinvoked by clicking Source
from the Preferences Menu.

@ Source Preferences HE B3

Calar

FC _l Mormal Breakpaint .
Stack _l Temporary Breakpoint _l
Browse _l Dizabled Breakpoint .
Mixed Source . Tracepoint -

Debug Mode————— [~ Variable Balloons
€ Tracepoints & On
& EBreakpoints 0t
Ok | Apply | Lancel

Figure 4-26: Source Preferences Dialog Box

The source preferences options are:

Colors Single left-clicking any of the colored squares opens the Choose
color dialog box. The Choose color dialog box allows the display
colors to be modified by the user.

196 LynxOS Total/db User’s Guide

Stack Window

Debug Mode Unless GDB has been configured to enable the setting of trace
points, this radio button has no effect.

Variable Balloons If Variable Balloons is on, a balloon appears displaying the value
of avariable when the mouse is placed over the variable in the
Source Window. The default setting is On.

Stack Window

The stack window (see Figure 4-27) displays the current state of the call stack.
Each line represents a stack frame.

@Slack M=l B3
cyguwin_crte -
dll_crt@

d11l_crte_1

main

Figure 4-27: Stack Window

Clicking aframe selects that frame, indicated by the background of the frame
turning yellow. The Source Window automatically updates to display the line,
corresponding to the selected frame. If the frame pointsto an assembly instruction,
the Source Window changes to display assembly code. The background of the
corresponding line in the Source Window also changesto yellow.

LynxOS Total/db User’s Guide 197

Chapter 4 - Debugging with Total/db

Registers Window

The Registers window (see Figure 4-28) dynamically displays the registers and
their content.

Chegsos MR
Beqister

eax Bx45b2864|st 8x8
ecx Bx1358(st (1) ax8
edx Bx45b2874|st(2) 8x8
ebx Bx257F514|st(3) 8x8
esp Bx257 Fhec|stil) ax8
ebp Bx257F5808|st(5) Bx8
esi Bx5|st(6) axe
edi 8x108868ba93|st(7) 8x8
eip §x4818bb

ps Bx212

CS Bx14f

55 Bx157

ds Bx157

es Bx157

fs Bx43 87

qs 8x8

Figure 4-28: Registers Window

A double click on aregister allows the content of the register to be edited. Hitting
the escape key (Esc) will abort the editing.

Changing register propertiesis handled by way of the Register menu (see
Figure 4-29).

Edit
Format r
Rermaove from Dizplay

Digplay &ll Reqgisters

Figure 4-29: Register Menu

198 LynxOS Total/db User’s Guide

Registers Window

The Register menu options are:

Edit

Format

Remove from
Display

Display All
Registers

This menu item has the same effect as double clicking aregister. The
content of the selected register may be changed. This menu itemisonly
active when aregister has been selected.

This menu item calls another pop-up menu, as shown below, allowing
the content of the selected register to be displayed in hexadecimal,
decimal, natural, binary, octal, and raw formats. Hexadecimal (Hex)
isthe default display format.

v Hex
Decimal
Matural
Binary
Octal
Raw

This menu item removes the selected register from the window. All
registers are displayed if the window is closed and reopened. This
menu item is only active when aregister has been selected.

This menu item displays al the registers. Thismenu item is only active
when one or more registers have been removed from display.

LynxOS Total/db User’s Guide 199

Chapter 4 - Debugging with Total/db

Memory Window
The Memory window (see Figure 4-30) dynamically displays the state of memory.

CMemory _________________________________ mEH|

Addresses

Address|$pc

a 4 8 K ASCII

4818bb| 0x8%9ec458b| Bx45FFFO45| BxeB8d%ebfB| BxA@0861cd .E..E..E........
4818ch| Bx0000fBe8| Bx00c3c900) Bxe58955008) Bx8bBAcec83|......... Woccooo
4818db| Bx458908845 Bxf845c7fc| Bx 00008002 Bx@3Ff445c7E..E..E......E..
4818eb| 0x8bO0BBOA] BxcAB3BcA5| Bxfc558b04| Bx89dBafef ... E..... Wococo
4818fb| Bx1ae8fc55| BxB9000000) BxFBA501cH| Bx8bfciSBhjU. E..E..
48116b| Ox148df84d| BxF4558301| Bx01ebdB8?| BxB9c3c998/M..... Wocccoooos
48111b| 0xe58955f6| Bxc708ec83| BxAA6G4FcH5| BxA5c70068 . U......E.d....E
48112b| 0x000000Ff8 BxfchdffO8] BxFFFc7d83| Bx09ebB375 M..}..u...

Figure 4-30: Memory Window

A memory location can be selected by double clicking the left mouse button with
the cursor in the window. The contents of a selected memory |ocation can be
edited.

The Addresses menu is shown in Figure 4-31.

v Auto Update
Update Maw Chrl+L

Freferences. ..

Figure 4-31: Address Menu

200 LynxOS Total/db User’s Guide

Memory Preferences Dialog Box

The Addresses menu options are:

Auto Update The contents of the Memory window are automatically updated
whenever the state of target changes. Thisis the default setting.

Update Now Forces the immediate update of the Memory window's view of the
target's memory.

Preferences This menu item brings up the Memory Preferences dialog box.

Memory Preferences Dialog Box

The Memory Preferences dialog box (see Figure 4-32) makes it possible to set
memory options.

@ Memory Preferences M= 3 I
—Size
" Eyte & word " Float

¢ Halfwiord © Double'wiord € Double Float

— Format
' Binary ' Dotal & Hex

' Signed Decimal ¢ Unsigned Decimal

— Mumber of Eyte:
' Depends on window size

' Fiwed lﬁb}ltes

— Mizcellaneou:
Bytes Per Row I‘I E ﬂ ¥ Display ASCI
I._ Control Char
QK | Cancel Apply |

Figure 4-32: Memory Preferences Dialog Box

The memory preference options are:

Size Selection of the size of the individual cells displayed.
Format Selection of the format of the memory display.

LynxOS Total/db User’s Guide 201

Chapter 4 - Debugging with Total/db

Number of Bytes Sets the number of bytes displayed in the Memory window.

Bytes Per Row Sets the number of bytes displayed per row.
Display ASCII Choose to display a string representation of the memory.
Control Char Choose the character used to display non-ASCII characters. The

default character is the period.

Watch Expressions Window

The watch Expressions window (see Figure 4-33) displays the name and current
value of user-specified expressions.

@Walch Expressions M= 3

Wwatch

Hame Ualue "
avar 1

AddWwatch |

Figure 4-33: Watch Expressions Window

» Single clicking on an expression selects that expression.

202 LynxOS Total/db User’s Guide

Watch Expressions Window

Right clicking in the display pane, while an expression is selected, calls
an expression specific watch menu, as shown in Figure 4-34.

@Walch Expressions M= 3
Wwatch
Hame Ualue "
aavar 1
avar
Faormat L4
Remove
Edit

AddWwatch |

Figure 4-34: Expression Specific Watch Menu

The watch Expressions menu options are:

Edit Allowsthe value in the expression to be edited. Hitting the escape key

(Esc) will abort the editing.
Format This menu item brings up another pop-up menu, as shown below, allowing
the value of the selected expression to be displayed in hexadecimal,
decimal, binary, or octal formats. By default, pointers are displayed in
hexadecimal and all other expressions are displayed as decimal.

Hex

v [Decimal
Binary
Octal

Remove Removes the selected expression from the watch list.

LynxOS Total/db User’s Guide 203

Chapter 4 - Debugging with Total/db

204

Add Watch Button

An expression can be typed into the text edit field at the bottom of the dialog box,
as shown in the left screen of Figure 4-35. By pressing the Add Watch button or
hitting the Enter key, the expression is added to the list, as shown in the right screen
of Figure 4-35. Invalid expressions are ignored.

@Walch Expressions M= 3 I @Walch Expressions M= 3 I
Wwatch Wwatch
Hame Ualue | Hame Ualue |
avar 1 avar 1
bglob 1234

[bglop| Add watch | | Add watch |

Figure 4-35: Add Watch Button

Watching Registers

GDB allows registers to be added to the watch Expressions window, by typing
register convenience variablesinto the text edit field. Every register hasa
corresponding convenience variable. The register convenience variables consist of
adollar sign followed by the register name. The convenience variable for the

program counter is $pc, for example. The convenience variable for the frame
pointer is $f p.

Casting Pointers in the Watch Expressions Window

Pointer values may be cast to other types and watched, represented as the type to
which the pointer was cast. For example, by typing (struct _foo *) bar inthe
text edit field, the bar pointer iscast asast r uct _f oo pointer.

LynxOS Total/db User’s Guide

Local Variables Window

Local Variables Window

The Local Variables window displays the current value of all local variables (see
Figure 4-36).

@ Local ¥ariables M= B3 I
Wariable
Hame Ualue |
avar 1
i 8
Hlis (struct listelt =) Bx45h2864

Elisend
Eanelt

(struct listelt =) Bx45h2864
(struct listelt =) Bx45h2874

Figure 4-36: Local Variables Window

e Single clicking the mouse with the cursor over a variable selects the
variable.

< Double clicking the mouse with the cursor in the Local Variables window
puts the variable into edit mode.

< Single clicking the mouse with the cursor on the plus sign to the left of a
structure variabl e displays the elements of that structure. See Figure 4-37.

@ Local ¥ariables M= B3
Wariable
Hame Ualue "
avar 1
i 39319728
H1is (struct listelt =) 0x83782d68
H1lisend (struct listelt =) @x10019707
Hanelt (struct listelt =) B8x257F504
adat 268485590
bdat - i
dnext . (struct listelt =) B8x257f8afl
adat 39318884
bdat i}
Enext (struct listelt =) Bx675c3a63

LynxOS Total/db User’s Guide

Figure 4-37: Displaying the Elements of a Variable Structure

Chapter 4 - Debugging with Total/db

» Single clicking the mouse with the cursor on the minus sign to the left of
an open structure closes the display of the structure elements.

Variable Menu

The Vvariable menu of the Local Variables window has two options: Edit and Format.

Edit Allows the value of a selected variable to be edited. Hitting the escape key
(Esc) will abort the editing.

Format This menu item brings up another pop-up menu, as shown below, allowing
the value of the selected variable to be displayed in the hexadecimal,
decimal, binary and octal formats By default, pointers are displayed in
hexadecimal and all other expressions are displayed as decimal.

Hex

v [Decimal
Binary
Octal

Breakpoints Window

The Breakpoints window displays all breakpoints that are currently set (see
Figure 4-38).

@Bleakpoinls M=l E3
Breakpoint Global
fAddress | File |Line|Function|
[exuB16bb main.c 30 main
[V ex4818cé main.c 35 main

Figure 4-38: Breakpoints Window

206 LynxOS Total/db User’s Guide

Breakpoint Menu

e Single clicking with the mouse with the cursor over a check-box for the
information displayed for a breakpoint selects that breakpoint.

¢ Single clicking with the mouse with the cursor over a checked check box
of abreakpoint disables the breakpoint. The check disappears and the red
square in the Source Window turns black.

< Single clicking with the mouse with the cursor over an empty check box
of adisabled breakpoint re-enables the breakpoint. The check reappears
and the black square in the Source Window turns red.

Breakpoint Menu
Figure 4-39 shows the Breakpoint menu for the Breakpoints window.

v Marmal
Temporary

v Fnabled
Dizabled

Remove

Figure 4-39: Breakpoint Menu

The Breakpoint menu options are:

Normal/Temporary This pair of menu items toggles between the normal and
temporary setting of the selected breakpoint. A hormal
breakpoint remains valid no matter how many timesit is hit. A
temporary breskpoint isremoved automatically the first timeitis
hit. A single check mark for either setting shows the state of the
selected breakpoint. When a breakpoint is set to temporary, the
red check mark in the check box and the red squarein the Source
Window turn orange. (See Figure 4-40.)

LynxOS Total/db User’s Guide 207

Chapter 4 - Debugging with Total/db

@Bleakpoinls M=l E3
Breakpoint Global
fAddress | File |Line|Function|
[T exuB16bb main.c 30 main
[T ex4818cé main.c 35 main

Figure 4-40: Results of Setting Breakpoints

Enabled/Disabled This pair of menu items toggles the enabled or disabled state of
the selected breakpoint. The single check mark between them
shows the state of the selected breakpoint.

Remove This menu item removes the selected breakpoint.

Global Menu
Figure 4-41 shows the Global menu for the Breakpoints window.

Dizable All
Enable All

Remaove Al

Figure 4-41: Global Menu

The Global menu options are:

Disable All Disables all breakpoints.
Enable All Enables all breakpoints.
Remove All Removes all breakpoints.

208 LynxOS Total/db User’s Guide

Console Window

Console Window

The Console Window (see Figure 4-42) contains the command prompt for GDB, the
GNUPro debugger, allowing access to the debugger through the command line
interface. (gdb) isthe prompt for the debugger.

@ Console Window M= 3 I
(gdb) B
=1

Figure 4-42: Console Window

NOTE: The Console window is different from the console window for the Windows
operating system (which is known as the Command.com window).

LynxOS Total/db User’s Guide 209

Chapter 4 - Debugging with Total/db

The Function Browser Window

The Function Browser window isinvoked by clicking on the Function Browser menu
from the Source Window.

@ Function Browser [_ (O] %]
Search for: |f0"
™ Orly show functions declared 'static’ [T Use regular expression
—File: — Function

-

Select Mone | Toggle Breakpaint |

I Wiew Source

Search |

Figure 4-43: Function Browser Window

The Function Browser window options are:

Search for: Text edit field for entering a search expression.

Only show functions Limits listing to static functions.
declared 'static’

Use regular Makes search routines use regular expression matching. For
expression example, searching for my_f unc, without using regular

expressions, will matchmy_func_1,notthis_is_my_func,
while the regular expression, my_f unc, matches both
my_func_1andthis_is_ny_func regular expressions.

Files Limits the search to the highlighted files. If no filesare
highlighted, al files are searched. Clicking individual file names
selects or deselects that file.

210 LynxOS Total/db User’s Guide

The Function Browser Window

Select None/
Select All

Functions

Toggle Breakpoint

View Source/Hide
Source

Toggles between Select All and Select None, switching
whenever activated, for selecting all files or none. Useful when
searching all files except one or two specific files, or limiting
searches to a small group of individually selected files.

Matches functionsin the selected file(s). Right-click on afunction
to toggle a breakpoint on it.

Toggles a breakpoint at all listed functions.
Togglesto display or hide a source browser. See Figure 4-44.

LynxOS Total/db User’s Guide 211

Chapter 4 - Debugging with Total/db

@ Function Browser [_ (O] %]
Search for: |f0"
™ Orly show functions declared 'static’ [T Use regular expression
—File: — Function

Select Mone | Toggle Breakpaint |

< Hide Source

/= Subroutines. =/ -

int
foo {int argi1, int arg2)
{

int a = argl, b = 2, ¢ = 3;

a *= 4 + arg2;

b += bar (});

18 return a + b + c;

1M1 3

12

13 int

14 bar ()

= 15 {

= 16 int i = 188, rslt = @;

E=R--Rl - L B L R

= 18 while {i--)
= 19 rslt += i;
= 28 return rslt;
= 21 3

Figure 4-44: Source Browser

212 LynxOS Total/db User’s Guide

Help Window

Help Window

The Help window is invoked by clicking the Help Topics menu selection from the
Help menu of the Source Window. The Help window offers HTML based navigable
help by topic.

& Help I[=] B3

File Topics

el |

Help - Table of Contents

Source Window - The Source Window
Fieqgister ‘Window - The Register Window
Memory Window - The Memony Window
Locals Window - The Locals Window

“watch Window - The W atch Wwindow
Breakpoint “Window - The Breakpoint ‘Window
Conzole Window - The Console Window
Stack Window - The Stack Window

GPL - The GHU Public License

[S e e I e S e Y o o o |

Figure 4-45: Help Window

NOTE: Thereiscurrently no Help topic for the Function Browser window.

LynxOS Total/db User’s Guide 213

Chapter 4 - Debugging with Total/db

Figure 4-46 shows the File menu for the Help window.

Back
Fonward
Home

Cloze

Figure 4-46: Help Window File Menu

Its options are:

Back Moves back one HTML help page, relative to previous forward page
movements.

Forward Moves forward one HTML help page, relative to previous back page

movement.
Home Returns to the HTML help "Table of Contents' home page.
Close Closes the Help window.

Topics Menu
Figure 4-47 shows the Topics menu for the Help window

Source Window
Fiegister ‘Window
Memory Window
Locals Window

W atch Window
Breakpoint \Window
Console Window
Stack Window
GPL

Figure 4-47: Help Topics Menu

214 LynxOS Total/db User’s Guide

Tutorials for Debugging with Insight

Each menu item represents a help topic. When amenu item is selected, the content
of the Help window changes to reflect the listed topic.

Tutorials for Debugging with Insight

The section contains an example debugging session with step by step procedures
for using Insight.

Initializing a Target Executable File

Initializing a target executable file with Insight means opening a specific
executablefile.

There are two ways to open an executable filein Insight.

Using the open menu item in the File drop-down menu from the Source
Window.

Using the following initialization procedure, entering commands at the
(gdb) prompt in the Console window.

. Open the console window, either from the view menu, or with the Console

button (see “ Toolbar Buttons’ on page 180.).

With the Console window active, determineif the target fileisin the same
directory as Insight. If not, change to the target directory, using the cd
command.

In our example procedures, the syntax uses the forward slash as the path
delimiter on al platforms. Windows, though, requires using two forward
slashes after the drive designation.

NoTeE: If the source files are not in the same directory as the executable
file, usethe GDB di r command to add a path to them This was not
needed in our example.

3. Usethe command, file example, to specify the target executablefile.

See the following section, “ Console Window with Initial Commands’ for the
results of these procedures.

LynxOS Total/db User’s Guide 215

Chapter 4 - Debugging with Total/db

Console Window with Initial Commands

Figure 4-48 shows the Console window with initial commands.

@ Console Window M= 3
(gdb) cd /f/c/qdbtk/example

Working directory //c/gdbtk/example I~
(canonically fgdbtk/example).

(gdb) file example
(gdb)

Figure 4-48: Console Window with Initial Commands

Selecting a source file

To select a source file and specify a function within that file, use the following
procedure.

1. Selectthef oo. ¢ sourcefilein the file drop-down combo box, at the
bottom of the Source Window.

Source file and function selection (see Figure 4-49) represents the lower
left corner of the Source Window, showing the Source Window's File menu
drop-down combo box on the left and the function drop-down combo box

216 LynxOS Total/db User’s Guide

Selecting a source file

on the right of the window. (See “Below the Horizontal Scroll bar” on
page 186.)

IThe progran is not being run.

|fon.c ﬂ [fon *

bar

Figure 4-49: Source File and Function Selection

2. Select the function, f oo, in the function drop-down combo box, at the
bottom of the Source Window.

3. Now thef oo. ¢ sourcefileisdisplayed in the Source Window (see
Figure 4-50) with a colored bar, indicating the current position The
colored bar isviolet, indicating graphically that the program is not
running.

LynxOS Total/db User’s Guide 217

Chapter 4 - Debugging with Total/db

218

@ foo.c - Source Window =] E3

File Hun “iew Control Preferences Help

EFOHTHC BE | A8 8 M-

/= Subroutines. =/ —

int
foo {int argi1, int arg2)
{

int a = argl, b = 2, ¢ = 3;

I
E=R--Rl - L B L R

a *= 4 + arg2;

b += bar ();

18 return a + b + c;
1M1 3

12

13 int

14 bar ()

= 15 {

= 16 int i = 188, rslt = @;
17

18 while {i--)

19 rslt += i;

28 return rslt;

21 3

<| L

IProgram iz ready to run.

[fanc 2| oo | [eoumce | | P

Figure 4-50: Source Window with foo.c Source File

Setting Breakpoints and Viewing Local Variables

A breakpoint can be set at any executable line. Executable lines are marked by a
minus sign in the left margin of the Source window. When the cursor isin the left
column and it isover an executablelineg, it changesinto acircle. When the cursor is
in this state, a breakpoint can be set.

The following exercise steps you through setting four breakpointsin afunction, as
well asrunning the program and viewing the changing valuesin the local variables.

1. With the Source Window active, having opened the f oo. ¢ source file,
place the cursor over the minussign on line 6.

2. When the minus sign changes into a circle, click the left mouse button;
this sets the breakpoint, signified as ared square.

LynxOS Total/db User’s Guide

Setting Breakpoints and Viewing Local Variables

Note: A second single click on a breakpoint will remove the breakpoint.
Repeat the process to set breakpoints at lines 8, 9 and 10.

. Open the Breakpoints window (see Figure 4-51) by clicking the
Breakpoints button on the tool bar.

@Bleakpoinls M=l E3
Breakpoint Global
fAddress | File |Line|Function|
[@x4Bi@da foo.c 6 foo
[V exu4@18ee foo.c 8 foo
[exaB18fd foo.c 9 foo
[0x481187 foo.c 180 foo

Figure 4-51: Breakpoints Window

. Click the check box for line 6. The red check mark disappears and the red
square in the Source Window changes to black. This color change
indicates that the breakpoint has been disabled. Re-enable the breakpoint
at line 6 by clicking the check box.

. Click the Run button on the tool bar to start the executable (see “ Tool bar
Buttons’ on page 180). The program runs until it hits the first breakpoint

LynxOS Total/db User’s Guide 219

Chapter 4 - Debugging with Total/db

220

on line 6. The color bar on line 6 is green, indicating that the program is

running (see Figure 4-52 and Figure 4-53).

@[oo.c - Source Window
File Hun “iew Control Preferences Help

IS[=] E3

EFHPHO| Y | RS O M-HE

8x40818da [i]

4
=

=4

/= Subroutines. =/

int
foo {int argi1, int arg2)
{

int a = argl, b = 2, ¢

a *= 4 + arg2;

b += bar ();

18 return a + b + c;
1M1}

12

13 int

14 bar ()

- 15 ¢

- 16 int i = 188, rslt = @;
17

18 while {i--)

19 rslt += ij;

28 return rslt;

21 3

22

E=R--Rnl - B L R

<

I 3

\

I GDEB running on process -284745

|f00.c: ﬂ |f0d

3| [so0RCE

é

S

Figure 4-52: Results of Setting Breakpoints

LynxOS Total/db User’s Guide

Setting Breakpoints and Viewing Local Variables

@ Breakpoints M= 3 I

Breakpoint Global

L I B R

fAddress | File |Line|Function|

Bx4818da foo.c [i] foo
8x4618ee foo.c 8 foo
Bx4818fd foo.c 9 foo
8x481187 foo.c 18 foo

Figure 4-53: Breakpoints Window

7. Open the Local Variables window, by clicking the Local Variables button in
the tool bar. The window displays the initia values of the variables.

8. Click the continue button in the tool bar (see “Toolbar Buttons’ on
page 180), to move to the next breakpoint. The variables that have
changed value turn blue in the Local Variables window (see Figure 4-54).

@ Local ¥ariables M=l E3 @ Local ¥ariables M=l E3
Wariable Wariable
Hame Ualue | Hame Ualue |
argl 1 argl 1
argz2 1234 argz2 1234
a 39318804 a 1
b 4199132 b 2
[4199238 [3

Figure 4-54: Local Variables Window After Setting Breakpoints

9. Click the continue button two more times, to step through the next two
breakpoints and notice the changing values of the local variables.

LynxOS Total/db User’s Guide 221

Chapter 4 - Debugging with Total/db

222 LynxOS Total/db User’s Guide

wws. S Mple Kernel Debugger - SKDB

Overview

The Simple Kernel Debugger (SKDB) isamachine-level symbolic debugger. This
chapter provides an overview of SKDB, instructions on how to install and remove
it, and how to start it after akernel crash, and also lists details of SKDB commands.

SKDB is designed to support debugging of LynxOS kernel internals, primarily
device drivers. It allows you to perform the following operations interactively in
LynxOS kernel space:

e Setting breakpoints

e Examining memory and registers
¢ Changing memory contents

e Displaying kernel data structures.

In addition, you can use SKDB to determine the cause of akernel crash or akernel
panic. LynxOS GDB uses SKDB as the target agent for kernel/device driver
debugging.

To use SKDB, the user needs a solid understanding of LynxOS internals, including
its memory model, scheduling, interrupt handling, and so forth. SKDB is not
designed for user process debugging; use GDB for user process debugging instead.

SKDB has the following characteristics by design:

* SKDBisatool that you use to debug new device drivers and similar
components after the kernel has started and is running fairly stably. Itis
not intended to be used for porting the LynxOS kernel to a new platform;
although SKDB may be still useful for LynxOS kernel porting, it requires
afairly stable kernel and it is not effective in the early stages of the
kernel’s start-up until the kernel internally installs and initializes SKDB.

LynxOS Total/db User’s Guide 223

Chapter 5 - Simple Kernel Debugger - SKDB

» While SKDB isin operation (at its prompt) the entire operating system s
paused and no kernel services are available.

Installing/Removing SKDB

In order to use SKDB, install the SKDB module into the kernel. It is possible
install and/or remove SKDB support after initial installation of LynxOS.

Installing SKDB
To install, execute the following:
/usr/bin/Install.skdb

Theinstallation script will prompt to choose the default SKDB port for SKDB to
use when it starts automatically in case of akernel crash or akernel panic. SKDB
uses this port to break in to SKDB with the hot key. The video console, if one
exists, aways accepts break-ins with the hot key. For more information about
starting SKDB automatically, see “Using SKDB” on page 224.

After installation, reboot the system to make SKDB effective.

Removing SKDB

To remove SKDB, execute the following:
/usr/bi n/ Uninstal | . skdb

Reboot the target system after removal of SKDB.

Using SKDB

224

SKDB Prompt

Whenever the operating system isin SKDB, it shows an asterisk (*) as its prompt.
The entire operating system is paused and no kernel services are available whilein
SKDB.

LynxOS Total/db User’s Guide

Starting SKDB Automatically after a Kernel Crash or Panic

Starting SKDB Automatically after a Kernel Crash or Panic

If installed, SKDB isautomatically started by akernel crash, such as kernel
memory access fault or a panic situation. In this case, the kernel is usually unable
to resume operation, but it is possible to determine the cause and the location of the
kernel fault or the panic. For example, the following commands may be useful for
analyzing the cause;

* p - process/thread table display
e t - stacktracedisplay
e r - register contents display

* m - memory contents display.

Breaking into SKDB with Hot Key

Once SKDB has been installed, it can invoked by pressing shift-Ctrl-Minus (the
“hot key") on the keyboard of an SKDB-ready port while the operating system is
up and running. Some keyboards (mostly video consoles) may use Ctrl-Minus
instead.

NoTE: To break into SKDB with a hot key from a serial port, the port must have
been explicitly opened by aprocess. Havinga | ogi n process or adummy process
such ascat running on the port will suffice for this.

The default hot key combination for SKDB can be changed by using the z
command within SKDB.

1. Atthe SKDB prompt, enter the following command:
*z
SKDB will prompt for anew key combination.
2. Pressthe desired key combination.
SKDB will prompt for the same key combination for confirmation.
3. Pressthe same key combination again.
4. To cancel the change, press something else.

The hot key combination is set per port, therefore different key combinations can
be set for different ports.

LynxOS Total/db User’s Guide 225

Chapter 5 - Simple Kernel Debugger - SKDB

226

The new hot key combination is not preserved across operating system reboots; it
returns to the default combination after each reboot and it needs to be again.

NoTE: To use SKDB for remote kernel debugging with GDB or Total View, do not
change the hot key combination on the serial port. These debuggers have the hot
key combination hardcoded.

Kernel Status Display
At each invocation, SKBD prints aline like the following:
DELOK: pid.ti d@rapcode, slevel, econtext, PSW PC

checksum
DEL The ASCII Delete character (usualy invisible)
X Theliteral string
pi d Current process | D
tid Current thread | D

trapcode Trap code; trap code is the same as the architecture’s
exception code with the addition of -1 for invocation from
keyboard and -2 for a panic situation

sl evel Last devel; slevel isthe kernel preemption level (0: user,
1: kernel, 2: no context switching, 3: no interrupts)

econt ext Econtext address; econtext is the per-thread register stack
into which the kernel saves registers

PSW Processor status word (PSW); called flags or status
register in some architectures

PC Last program counter
checksum String checksum.

For example, breaking into SKDB with the “hot key” would display something
similar to the following:

OK: 0. 0@1, 1, DBOAB19C, 000199A0, 00000207 C961

The aboveisinterpreted that the operating system was running the null process
code (process 0) at address 0x207 with context switching enabled when the break-
in occurred.

LynxOS Total/db User’s Guide

Kernel Status Redisplay

Kernel Status Redisplay

To redisplay the above information, press ctrl-B then 2 and Return. Thisoptioniis
currently available on serial terminals only, not on video consoles.

Stack Trace Display

The t command displays atraceback or the “history” of nested function calls of a
thread within the kernel. One can determine the “ path” to the current breakpoint,
panic location, or kernel fault location where the kernel entered SKDB. Tracing
stops as soon as the stack frame appears to be out of the valid kernel address range.

Givethet command the process ID to determine the process's main thread, or the
thread ID with a preceding - (minus sign). The default is the current thread.

Verbose Trace Mode

Turning on the verbose trace mode with the v command makes the
t command display the contents of each stack frame aswell as the offset values
from the frame pointer (or the stack pointer in the case of the PowerPC).

Process, Thread, and Other Displays

The p command displays the contents of the kernel’s process table and thread
table. The s command with options displays the contents of a variety of the
kernel’sinternal data structures.

Resuming the Kernel

To exit SKDB and resume the operating system, press the Esc key; the kernel will
continue running until the following occurs:

« Hitting akernel breakpoint
« Beinginterrupted by a hot key
e Getting akernel crash or panic.

Asdiscussed, it may not be possible to resume the kernel if the kernel wasin
SKDB due to akernel crash or akernel panic.

LynxOS Total/db User’s Guide 227

Chapter 5 - Simple Kernel Debugger - SKDB

228

Setting Breakpoints

SKDB can set up to 10 breakpoints in the kernel including device drivers. When
the CPU reaches the instruction at a breakpoint, the control is trapped into SKDB.
The breakpoints remain set until explicitly unset by the

u command.

SKDB may refuse to set a breakpoint on some instructions that are critical to its
operation. These instructions include those handling the processor status word

(PSW) register.

CAauTION! Do not set abreakpoint in the user process space from SKDB.
Such a breakpoint will not be recognized by SKDB and thuswill cause an
unexpected termination of the user process.

Single-Stepping
Pressing x and Return single-steps the current thread (the thread that caused to enter
SKDB.) It is not, however, possible to single-step the following:

» Thethread “broken-in" with the hot key

» Some machine instructions that are critical for SKDB'’s operation
(generally those handling the processor status word (PSW) register)

» A crashed or panicked kernel.

CAauTION! It isnot recommended to attempt to trace (setting breakpoints
in and/or single-stepping) the “core” portions of the LynxOS kernel, such
asthose handling context switching and interrupt control, because such an
attempt may severely interfere with the LynxOS kernel operation. Also,
the instructions that manipul ate the processor’s status register cannot be
safely single-stepped. Though SKDB detects, warns about, and prevents
such an attempt, casual tracing of such critical code may result in an
unexpected system freeze.

Disassembly

The d command disassembles 10 instructions from the specified address or the
current address. The current address is updated to the next text location after each

LynxOS Total/db User’s Guide

Setting Watchpoints

disassembly. The current address is also updated to the breakpoint or the fault
location whenever the kernel stops and reenters SKDB.

NoOTE: The current x86 version of SKDB uses the Intel-style syntax of
disassembly, not the GNU (AT&T) style.

Setting Watchpoints

Some CPU architectures support hardware debug registers to implement
watchpoints. The following LynxOS ports support SKDB watchpoints:

e Xx86 - up to 4 watchpoints
* PowerPC - up to 1 watchpoint

NoTE: The availability of watchpoint operation for the PowerPC depends on the
type of the CPU.

The B command can set as many watchpoints as the target CPU architecture
allows. The B command takes two mandatory arguments—the watchpoint
number and the watchpoint location address—plus the following optional
arguments:

« Accessmode-r forread accessand w for write access; the default is w

e Ignore PC addresses - up to 10 text addresses after “! ” for the program
counter to be ignored for watchpoints hit. Thisis useful to avoid stopping
at know kernel locations where the watchpoint is accessed.

LynxOS Total/db User’s Guide 229

Chapter 5 - Simple Kernel Debugger - SKDB

230

For example, if one wantsto catch all write accessesto currt ptr but does not
want to stop at r esched+0x24 which is considered a normal access:

* B 1 currtptr w! resched+0x24

CAUTION! “Ignore PC addresses’ isimplemented by software; all
accesses to a watchpoint memory location actually cause CPU exception
handling that is captured by SKDB. SKDB examines the cause of the
exception and the program counter value to determine whether to resume
the kernel silently or to stop and report the hit to the user. This may result
in asignificant speed penalty if the watchpoint is frequently accessed but
ignored.

SKDB uses the virtual address for setting the debug register. Depending
on the CPU (MMU) architecture, this may result in watchpoint misses if
the pageis aliased (mapped at different address |ocations) and the alias
addresses are accessed.

To remove awatchpoint, usethe U command with the watchpoint number.

LynxOS Total/db User’s Guide

SKDB Commands

SKDB Commands

Table 5-1: SKDB Commands

Command Format

Example

Description

Examine Memory

hex-addr [size] * 0xdb100000 Examines (displays) the 4 or size bytes
at the location of addr
SfisyrriL [size] * $currpid 10 Examinesthe 4 or si ze bytesat the

location of sym

m addr [size]

m currpid 256

Examinessi ze or 64 bytesat addr

T addr [pid] * T Oxdb100000 9 Trandates virtual addressaddr to
physical using pi d or current process
mapping

+ [size] * o4 Examinesthe next 32 or si ze bytes of
memory

- [size] * - 10 Examinesthelast 32 or si ze bytes of
memory

Change Memory
c addr data * ¢ Oxdbl100000 0x200 | Storesdat a asalongword (4 bytes) at

addr

Find Symbol
f addr * f Oxdb100000 Displays closest symbol with offset to
addr
&sym * &currpid Displays the address of sym

Display Data Structure

s st [addr2|tid] * s st 5 Displays contents of st_entry structure
forthread ID t i d, addressaddr, or
current thread

s proc [addr2| pid] * s proc Displays contents of pentry structure at

address addr , for process ID pi d, or
for the current process

LynxOS Total/db User’s Guide 231

Chapter 5 - Simple Kernel Debugger - SKDB

Table 5-1: SKDB Commands(Continued)

Command Format

Example

Description

s pss [addr?| pid]

* s pss 0xdbl100000

Displays contents of pssentry structure
at address addr , for process D pi d,
or for the current process

s i node {addr2| nuni * s inode 45 Displays contentsof i node_entry
structure at addressaddr or at index
num

s bl ock {addr2| nuni * s bl ock 0xdb100000 | Displayscontentsof buf _entry
structure at addressaddr or at index
num

s i head {addr2| nuni * s ihead 30 Displays contentsof i head_entry

structure at addressaddr or at index
num

s file {addr?| nuni

* s file 0xdbl100000

Displays contentsof fi | e structure at
addressaddr or at index num

s fifo {addr?| nuni

* s fifo 49

Displays contents of fi f o structure at
addressaddr or at index num

s cdev {addr?| nuni

* s cdev 0xdb100000

Displays contents of cdevsw_ent ry
structure at addressaddr or at index
num

s bdev {addr 2| num}

bdev 0

Displays contents of bdevsw_entry
structure at addressaddr or at index
num

s fdentry addr

* s fdentry

Displays contentsof f dent ry

0xdb100000 structure at addressaddr
s {+-} * s + Displays contents of the next or the last
(in memory) data structure of the type
being displayed
s {next| prev} * s next Displays contents of the data structure

pointed to by the next or pr ev (or
equivalent) field of the currently-
displayed data structure

Stack Trace

t [pid]-tid]

*t -5

Symbolic stack trace of process pi d,
thread t i d, or the current thread

232 LynxOS Total/db User’s Guide

SKDB Commands

Table 5-1: SKDB Commands(Continued)

Command Format Example Description
v Y Toggles verbose mode for trace
Display Registers, Processes & Set Priority
r [pid]|-tid] *or Displays CPU registers of process
pi d’smain thread, thread t i d, or the
current thread®
p [count] * p 20 Displays processtable (all or count
lines worth)
P priotid * P15 8 Changes priority of thread t i d to
pri o divided by 2
Breakpoints
b * b Shows all breakpoints set
b num addr * b 1 0xdb100000 Sets breakpoint numat the memory
location addr
u num *ub Unsets breakpoint num
Watchpoints
B * B Shows all watchpoints set
B num addr [r|wrw * B1currtptr w Sets watchpoint numat the memory
[V iaddr .] location addr for read, write or
read/write accesses but ignores
accesses by theinstruction at i addr
U num *Ub Unsets watchpoint num
Single-Stepping
X * X Single-steps current thread
Disassembly
d [addr] * d resched+10 Disassembles at addr or the current
PC

Miscellaneous

LynxOS Total/db User’s Guide 233

Chapter 5 - Simple Kernel Debugger - SKDB

Table 5-1: SKDB Commands(Continued)

Command Format Example Description

R * R Restarts the operating system

h * h Displays a description of all available
commands

? * *x 9 Sameas h

PowerPC Specific

S * S Sees segment register

1. Onthe PowerPC, atext symbol ispreceded by a“.” (dot). A symbol without the preceding dot refersto the
corresponding TOC entry.

2. The address value must point to avalid table entry.

3. Some architecture may not save all registers upon context switching.

General Notes

Parameter Validation

SKDB performslittle validation for command arguments. Although SKDB catches
most memory access faults resulting from SKDB commands, improper arguments
may result in a system freeze.

Symbol Information

SKDB uses the kernel symbol table that is loaded at the start-up time for symbol
lookup. SKDB cannt do interactive symbolic debugging with a stripped kernel.

Address Expressions

SKDB accepts simple address expressions with symbolic notations for most
commands that accept memory address parameters. The syntax is as follows:

* Number - hexadecimal if starting with “0x”; octal if starting with “0”; or
otherwise decimal

234 LynxOS Total/db User’s Guide

Default Virtual Address Space

« Symboal - the symbol’s absolute virtual address value (note the PowerPC
requires a preceding dot for text symbols)

* Register - the CPU register of the current thread. The following
mnemonics work as common aliases for all architectures: %pc, % p, ¥%sp.
Other register mnemonics depend on the CPU architecture

e Operator - + and - represent addition and subtraction respectively.
Operations are performed | eft to right without precedence or
associatively.

For example, the following sets a breakpoint at the current PC address plus 20
bytes:

* b 1 %c+0x14

Default Virtual Address Space

The LynxOS memory model assigns a separate virtual address space to each
process (kernel threads belong to process 0 <zero>). Although all processes share
the same kernel text, kernel data, and kernel heap in the kernel, each supervisor
stack till belongs to its respective process's virtual address space. To access a
memory location of a non-current process, usethe T command to get the memory
location’s PHYSBASE address.

The PHYSBASE address is the region of kernel address space where amirror image
of the system’s physical memory is mapped (aliased). Since any page that the
kernel may accessisfound in this region and the page is visible to all processes at
the same virtual address, SKDB uses PHYSBASE for quick memory referencein a
non-current process's virtual address space.

Remote Debugger Interface Protocol

SKDB supports a communication protocol for interfacing with aremote kernel
debugger such as LynxOS GDB. For more information on how to debug the
LynxOS kernel at the source level, see Chapter 3, See “LynxOS GDB
Enhancements” on page 137.

LynxOS Total/db User’s Guide 235

Chapter 5 - Simple Kernel Debugger - SKDB

236 LynxOS Total/db User’s Guide

~=oa GNU Software License
Agreement

GNU General Public License

LynuxWorks, Inc. has derived Development Support Tools - VOLUME ONE from
the Cygnus Solutions version of the Free Software Foundation GNU
documentation. Because thisisawork derived from the GNU documentation it
falls under the conditions of the GNU public License, and is subject to all the
limitations and conditions expressed in that license.

Version 2, June 1991

Copyright® 1989, 1991 - Free Software Foundation, Inc.
59 Temple Place / Suite 330, Boston, MA-- 02111-1307 - USA

Everyone is permitted to copy and distribute verbatim copies of the following
documentation of the GNU General Public License, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licenseisintended to
guarantee your freedom to share and change free software- to make sure the
softwareisfreefor all its users. This General Public License appliesto most of the
Free Software Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this serviceif you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

LynxOS Total/db User’s Guide 237

Appendix A - GNU Software License Agreement

238

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such aprogram, whether gratis or for afee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
thislicense which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the softwareis
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone's free use or not
licensed at all. The precise terms and conditions for copying, distribution and
modification follow.

Terms & Conditions for Copying, Distribution and
Modification

This License appliesto any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refersto any such program or work, and a
“work based on the Program” means either the Program or any derivative work
under copyright law: that isto say, awork containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation isincluded without limitation in the term “modification.”)
Each licensee is addressed as “you.”

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

LynxOS Total/db User’s Guide

Terms & Conditions for Copying, Distribution and Modification

1. You may copy and distribute verbatim copies of the Program’s source
code as you receiveit, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the noticesthat refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge afee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for afee.

2. 'You may modify your copy or copies of the Program or any portion of it,
thus forming awork based on the Program, and copy and distribute such
maodifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

You must cause any work that you distribute or publish, that in whole or

in part contains or is derived from the Program or any part thereof, to be

licensed asawhole at no chargeto al third parties under the terms of this
License.

If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide awarranty) and that users may redistribute
the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself isinteractive but
does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These reguirements apply to the modified work as awhole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same
sections as part of awhole which is awork based on the Program, the
distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardliess of who wroteit.

Thus, it is not the intent of this section to claim rights or contest your
rightsto work written entirely by you; rather, the intent is to exercise the

LynxOS Total/db User’s Guide 239

Appendix A - GNU Software License Agreement

240

right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with awork based on the Program) on avolume of a
storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or awork based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for non-commercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work
for making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as
a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as

LynxOS Total/db User’s Guide

Terms & Conditions for Copying, Distribution and Modification

distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full
compliance.

. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all itsterms and conditions for
copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives alicense from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients- exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to this
License.

. If, asaconseguence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute
so asto satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not
permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as awhole isintended to apply in other circumstances.

LynxOS Total/db User’s Guide 241

Appendix A - GNU Software License Agreement

242

10.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which isimplemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide
if he or sheiswilling to distribute software through any other system and
alicensee cannot impose that choice.

This section isintended to make thoroughly clear what isbelieved to be a
conseguence of the rest of thisLicense.

If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the origina
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which appliesto it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version nhumber
of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of al derivatives of our free software and of
promoting the sharing and reuse of software generally.

LynxOS Total/db User’s Guide

How to Apply these Terms to Your New Programs

No Warranty

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE ISNO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “ASIS’
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THEENTIRERISK ASTO THE QUALITY
AND PERFORMANCE OF THE PROGRAM ISWITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12.IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATEWITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

End of Terms and Conditions

How to Apply these Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve thisis to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the
full noticeisfound.

LynxOS Total/db User’s Guide 243

Appendix A - GNU Software License Agreement

244

one line: the program's name and a brief idea of what it does.-
Copyright© 19yy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to:

Free Software Foundation, Inc.,
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA.
Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like the following
example when it starts in an interactive mode:

Gnonovi si on version 69, Copyright© 19yy name of author
Gnonovi si on cones with ABSOLUTELY NO WARRANTY; for
details type 'showw . This is free software, and you are
wel come to redistribute it under certain conditions; type
"show c' for details.

The show wand show ¢ hypothetical commands should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than show wand show c; they can be mouse-clicks or
menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a“ copyright disclaimer” for the program, if necessary. The following
isasample (when copying, alter the names).

Yoyodyne, Inc., hereby disclains all copyright interest
in the program' Gnonovi sion' (which nakes passes at
conpilers) witten by Janes Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

LynxOS Total/db User’s Guide

Contributors to GNU CC

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If thisis
what you want to do, use the GNU Library General Public License instead of this
License.

Contributors to GNU CC
In addition to Richard Stallman, several people have written parts of GNU CC.

e Theideaof using RTL and some of the optimization ideas came from the
program PO written at the University of Arizona by Jack Davidson and
Christopher Fraser. See “Register Allocation and Exhaustive Peephole
Optimization,” Software Practice and Experience 14 (9), Sept. 1984,
pages 857-866.

¢ Paul Rubin wrote most of the preprocessor.

e Leonard Tower wrote parts of the parser, RTL generator, and RTL
definitions, and the VAX machine description.

e Ted Lemon wrote parts of the RTL reader and printer.

e Jim Wilson implemented loop strength reduction and some other loop
optimizations.

« Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed
the support for the Sony NEWS machine.

e Charles LaBrec contributed the support for the Integrated Solutions
68020 system.

e Michael Tiemann of Cygnus Solutions wrote the front end for C++, as
well as the support for inline functions and instruction scheduling. Also
the descriptions of the National Semiconductor 32000 series CPU, the
SPARC CPU and part of the Motorola 88000 CPU.

e Gerald Baumgartner added the signature extension to the C++ front-end.

e Jan Stein of the Chalmers Computer Society provided support for
GENIX, aswell as part of the 32000 machine description.

« Randy Smith finished the Sun™ FPA support.
« Robert Brown implemented the support for Encore 32000 systems.

LynxOS Total/db User’s Guide 245

Appendix A - GNU Software License Agreement

246

David Kashtan of SRI adapted GNU CC to VMS.
Alex Crain provided changes for the 3bl.

Greg Satz and Chris Hanson assisted in making GNU CC work on HP-
UX for the 9000 series 300.

William Schelter did most of the work on the Intel 80386 support.
Christopher Smith did the port for Convex machines.
Paul Petersen wrote the machine description for the Alliant FX/8.

Dario Dariol contributed the four varieties of sample programs that print
acopy of their source.

Alain Lichnewsky ported GNU CC to the MIPS CPU.

Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the
Tahoe.

Jonathan Stone wrote the machine description for the Pyramid computer.
Gary Miller ported GNU CC to Charles River Data Systems machines.

Richard Kenner of the New York University Ultracomputer Research

L aboratory wrote the machine descriptions for the AMD 29000, the DEC
Alpha, the IBM RT PC, and the IBM RS/6000 as well as the support for
instruction attributes. He also made changes to better support RISC
processors including changes to common subexpression elimination,
strength reduction, function calling sequence handling, and condition
code support, in addition to generalizing the code for frame pointer
elimination.

Richard Kenner and Michael Tiemann jointly developed r eor g. c, the
delay dot scheduler.

Mike Meissner and Tom Wood of Data General finished the port to the
Motorola 88000.

Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).

NeXT, Inc. donated the front end that supports the Objective C language.

James |van Artsdalen wrote the code that makes efficient use of the Intel
80387 register stack.

LynxOS Total/db User’s Guide

Contributors to GNU CC

« Mike Meissner at the Open Software Foundation finished the port to the
MIPS CPU, including adding ECOFF debug support, and worked on the
Intel port for the Intel 80386 CPU.

« Ron Guilmette implemented the pr ot oi ze and unpr ot oi ze tools, the
support for Dwarf symbolic debugging information, and much of the
support for System V Release 4. He has also worked heavily on the Intel
386 and 860 support.

e Torbjorn Granlund implemented multiply- and divide-by-constant
optimization, improved long long support, and improved leaf function
register allocation.

¢ Mike Stump implemented the support for Elxsi 64 bit CPU.

« John Wehle added the machine description for the Western Electric
32000 processor used in several 3b series machines (no relation to the
National Semiconductor 32000 processor).

» Holger Teutsch provided the support for the Clipper CPU.

* Kresten Krab Thorup wrote the run time support for the Objective C
language.

« Stephen Moshier contributed the floating point emulator that assistsin
cross-compilation and permits support for floating point numbers wider
than 64 bits.

« David Edelsohn contributed the changes to RS/6000 port to make it
support the PowerPC and POWER?2 architectures.

* Steve Chamberlain wrote the support for the Hitachi SH processor.
» Peter Schauer wrote the code to allow debugging to work on the Alpha.

* Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
MIL-STD-1750A.

e Michael K Gschwind contributed the port to the PDP-11.

Funding Free Software

If you want to have more free software a few years from now, it makes sense for
you to help encourage people to contribute funds for its development. The most
effective approach known is to encourage commercial redistributors to donate.

LynxOS Total/db User’s Guide 247

Appendix A - GNU Software License Agreement

Users of free software systems can boost the pace of development by encouraging
for-a-fee distributors to donate part of their selling price to free software
devel opers—the Free Software Foundation, and others.

The way to convince distributors to do thisisto demand it and expect it from them.
So when you compare distributors, judge them partly by how much they give to
free software development. Show distributors they must compete to be the onewho
givesthe most.

To make this approach work, you must insist on numbers that you can compare,
such as, “We will donate ten dollars to the Frobnitz project for each disk sold.”
Don't be satisfied with a vague promise, such as“A portion of the profits are
donated,” since it doesn’t give a basis for comparison.

Even a precise fraction “ of the profits from this disk” is not very meaningful, since
creative accounting and unrel ated business decisions can greatly alter what fraction
of the sales price counts as profit. If the price you pay is $50, ten percent of the
profit is probably less than a dollar; it might be afew cents, or nothing at all.

Some redistributors do development work themselves. Thisis useful too; but to
keep everyone honest, you need to inquire how much they do, and what kind.
Some kinds of development make much more long-term difference than others.
For example, maintaining a separate version of a program contributes very little;
maintaining the standard version of a program for the whole community
contributes much. Easy new ports contribute little, since someone else would
surely do them; difficult ports such as adding a new CPU to the GNU C compiler
contribute more; major new features or packages contribute the most.

By establishing the ideathat supporting further development is“the proper thing to
do” when distributing free software for a fee, we can assure a steady flow of
resources into making more free software.

Copyright© 1994 Free Software Foundation, Inc.

Verbatim copying and redistribution of this section is permitted without royalty;
ateration is not permitted.

Protect Your Freedom; Fight “Look And Feel”

248

This section is a political message from the League for Programming Freedom to
the users of GNU CC.

We have included it here because the issue of interface copyright isimportant to
the GNU project.

LynxOS Total/db User’s Guide

Protect Your Freedom; Fight “Look And Feel”

Apple, Lotus, and now CDC have tried to create anew form of legal monopoly: a
copyright on a user interface.

Aninterfaceisakind of language—a set of conventions for communication
between two entities, human or machine. Until afew years ago, the law seemed
clear: interfaces were outside the domain of copyright, so programmers could
program freely and implement whatever interface the users demanded. Imitating de
facto standard interfaces, sometimes with improvements, was standard practice in
the computer field. These improvements, if accepted by the users, caught on and
became the norm; in this way, much progress took place.

Computer users, and most software devel opers, were happy with this state of
affairs. However, large companies such as Apple and Lotus would prefer a
different system, one in which they can own interfaces and thereby rid themselves
of al serious competitors. They hope that interface copyright will give them, in
effect, monopolies on major classes of software.

Other large companies such as IBM and Digital also favor interface monopolies,
for the same reason: if languages become property, they expect to own many

de facto standard languages. But Apple and L otus are the ones who have actually
sued. Apple'slawsuit was defeated, for reasons only partly related to the general
issue of interface copyright.

L otus won lawsuits against two small companies, which were thus put out of
business. Then they sued Borland; they won in the trial court (no surprise, since it
was the same court that had ruled for Lotus twice before), but the decision was
reversed by the court of appeals, with help from the League for Programming
Freedom in the form of afriend-of-the-court brief. We are now waiting to seeif the
Supreme Court will hear the case. If it does, the League for Programming Freedom
will again submit a brief.

The battle is not over. A company that produced a simulator for a CDC computer
was shut down by a copyright lawsuit by CDC, which charged that the simulator
infringed the copyright on the manuals for the computer.

If the monopolists get their way, they will hobble the software field:

« Gratuitousincompatibilities will burden users. Imagine if each car
manufacturer had to design a different way to start, stop, and steer acar.

e Userswill be“lockedin” to whichever interface they learn; then they will
be prisoners of one supplier, who will charge a monopolistic price.

* Large companies have an unfair advantage wherever lawsuits become
commonplace. Since they can afford to sue, they can intimidate smaller
developers with threats even when they don’t really have a case.

LynxOS Total/db User’s Guide 249

Appendix A - GNU Software License Agreement

250

» Interface improvements will come slower, since incremental evolution
through creative partial imitation will no longer occur.

If interface monopolies are accepted, other large companies are waiting to grab
theirs:

» Adobeisexpected to claim a monopoly on the interfaces of various
popul ar application programs, if Lotus ultimately wins the case against
Borland.

» Open Computing magazine reported a Microsoft vice president as
threatening to sue people who imitate the interface of Windows.

Usersinvest agreat deal of time and money in learning to use computer interfaces.
Far more, in fact, than software developers invest in developing and even
implementing theinterfaces. Whoever can own an interface, has madeits usersinto
captives, and misappropriated their investment.

To protect our freedom from monopolies like these, a group of programmers and
users have formed a grass-roots political organization, the League for
Programming Freedom.

The purpose of the League is to oppose monopolistic practices such as interface
copyright and software patents. The League callsfor areturn to the legal policies
of the recent past, in which programmers could program freely. The League is not
concerned with free software as an issue, and is not affiliated with the Free
Software Foundation.

The League's activities include publicizing the issues, asis being done here, and
filing friend-of-the-court briefs on behalf of defendants sued by monopolists.

The League’'s membership rolls include Donald Knuth, the foremost authority on
algorithms, John McCarthy, inventor of Lisp, Marvin Minsky, founder of the MIT
Artificial Intelligence lab, Guy L. Steele, Jr., author of well known books on Lisp
and C, aswell as Richard Stallman, the devel oper of GNU CC. Please join and add
your name to the list. Membership dues in the League are $42 per year for
programmers, managers and professionals; $10.50 for students; $21 for cthers.

Activist members are especially important, but members who have no time to give
are also important. Surveys at major ACM conferences have indicated a vast
majority of attendees agree with the L eague on both issues (interface copyrights
and software patents). If just ten percent of the programmers who agree with the
League join the League, we will probably triumph.

To join, or for more information, phone (617) 243-4091 or write to the League at
the following address.

LynxOS Total/db User’s Guide

Protect Your Freedom; Fight “Look And Feel”

League for Programming Freedom
1 Kendall Square #143

PO. Box 9171

Cambridge, MA 02139

You can also send electronic mail to: |pf@uunet.uu.net.

In addition to joining the League, here are some suggestions from the L eague for
other things you can do to protect your freedom to write programs:

Tell your friends and colleagues about thisissue and how it threatens to
ruin the computer industry.

Mention that you are a League member inyour ‘. si gnat ur e,” and
mention the League’s e-mail address for inquiries.

Ask the companies you consider working for or working with to make
statements against software monopolies, and give preference to those that
do.

When employers ask you to sign contracts giving them copyright on your
work, insist on a clause saying they will not claim the copyright covers
imitating the interface.

When employers ask you to sign contracts giving them patent rights,
insist on clauses saying they can use these rights only defensively. Don't
rely on company policy, since policies can change at any time; don’t rely
on an individual executive's private word, since that person may be
replaced. Get acommitment just as binding as the commitment they get
from you.

Write to Congress to explain the importance of these issues.

House Subcommittee on Intellectual Property

2137 Rayburn Building

Washington, DC-- 20515

Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate

Washington, DC-- 20510

(These committees have received lots of mail aready; let’s give them even more.)

Democracy means nothing if you don’t use it. Stand up and be counted!

LynxOS Total/db User’s Guide 251

Appendix A - GNU Software License Agreement

252 LynxOS Total/db User’s Guide

— |ndex

Symbols

#line directives 87

$ variable 84

$ variable 84

$ exitcode variable 84
$bpnum 37

$cdir string 66

$ewd string 30
$num= 82

& (&ref) 94

*address 64

+offset 64
...command-list... 47
@ binary operator 70
@ operator 97
__cp_push_exception library function 43
{type}addr 69

‘$ prefix 82,83

Numerics

29k architecture 59

A

astruct foo 90

aborting break command 49
Active Targets 112

adder command 116

addr, starting display address 73
add-symbol-file Command 164

add-symbol-file command 109
Alphaarchitecture 59

Altering Execution 102

altering value variable 103

AMD 29000 family processors 86
Applying terms to new programs 243
argument, for starting GDB 17
Arguments 29

arm 81

Artificial Arrays 70

assert condition 46

Assignment to Variables 103
attach 33

attach process-id 32

auto 81

Automatic Display 74

B
-b bps mode 21
backing up over program 104
Backspace key 23
backtrace 87
backtrace command 58
Backtraces 58
-batch mode 20
--baud option 116
BFD name 113
binary, patching 106
block messages 110
commands 47
break 37, 38
..if cond 38
filename
function 37
linenum 37

LynxOS Total/db User’s Guide

253

Index

254

function 37
-offset 37
break *address 38
break +offset 37
break command 139
aborting 49
Break Conditions 46
breakpoint 40
command lists 47
conditional 43
hardware-assisted 39
menus 49, 98
setting 24, 37, 139
settings 34
breakpoints 23
and exceptions 42
deleting 44
disabling 44
enabling 45
setting 55
Breakpoints window 206
bubble command 25
bubble option 25

C

C and C++ Constants 95
C and C++ Defaults 97
C and C++ Operators 93
C and C++ Type and Range Checks 97
-cfile 19
C language 87, 91, 92
-c number 19
-coption 18
C++ 24, 49, 87
code, debugging 96
exceptions 43
expressions 96
language 92
program debugging 80
references, declared asvariables 96
call expr command 105
call stack 56
call_scratch_address variable 105
calling overloaded functions 96
Calling Program Functions 105
canceling execution of function call 105
cast, useof 71

LynxOS Total/db User’s Guide

catch command 43
catch exceptions 43
catchexceptions 98
cd directory 32
-cd directory mode 20
changing text commands 129
Character constants 95
child process 35
Choosing Files 18
Choosing Modes 20
class class-name 100
clear 44
clear filename
function 44
linenum 44
clear function 44
clear linenum 44
COFF format 108
comm 115
command
adder 116
add-symbol-file 109
backtrace 58
break 139
catch 43
commandname 117
complete args 26
completion 23
continue 48, 103
core-file 106, 112
define 116
detach 33
echo 48
editing 12
exec-file 106, 107, 112
f 123
file 19, 106
filename 119
files 118
finish 38, 51
frame 57
handle 54

handle signal keywords... 54

help 25, 26

help target 113

history 13

hook-foo 118

hooks, user-defined 118
if 117

info 26

info frame 89

info signals 54

info source 89

info sources 102
jobs -l shell 32

jump 104

jump *address 104
jump linespec 103
kill 33

line editing 124

list 63

list last 63

list first 63

list function 63

list linenum 62

list linespec 63

load 109

maint info breakpoints 40
maint print 102

M-x 120

next 51

nexti 53

ni 53

nopass 54

nostop 54

output 48

pass 54

print 54, 82, 90, 103
printf 48

quit 21

return 105

return expression 105
run 28, 29, 32
section 109
select-frame 57

set 26, 103

set args 30

set check range 91
set check type 90

set complaints 16, 110
set confirm 17

set editing 13

set history expansion 14
set history filename 13
set history save 13
set history size 13
set input-radix 15
set language auto 88
set language local 88
set listsizecount 63

set print union 97
set symbol-reloading 101
set variable 103

set verbose 16, 108
set width 103

set write 106

show 26

show args 30

show confirm 17
show input-radix 15
show language 89
show listsize 63
show output-radix 16
show print 98
show print union 97
show range 92
show type 91

show verbose 16
show write 106

s 53

signal 104

silent 48

source 119

step 50, 51

stepi 53

stop 54
symbol-file 107
syntax 22

target 113

target remote 116
thread threadno 55
tty 32

u 52

u location 52

until 52

until location 52
while 117

X 72,84

command lists

breakpoint 47

command-list 48
commands

file management 99

for changing text 129

for managing targets 113

for moving 129

GDB 22
remotebaud 161
target 161

GDB add-symbol-file 164

LynxOS Total/db User’s Guide

255

Index

256

killing text 126

list 64

shell 22

SKDB 231

user-defined 116
Commands for manipulating the history 129
commands, show history 14
compile checks 89
Compiling for Debugging 27
compiling functions 57
complete args command 26
condition 46
condition bnum expression 46
condition, assert 46
condition, false 46
condition, true 46
conditional breakpoint 43
configure Options 12
confirmation requests, disabling/enabling 17
confirmation requests, setting 17
Console Window 209
contacting LynuxWorks ix
Contents i
continue argument 47
continue command 48, 103
Continuing and Stepping 50
Contributorsto GNU CC 245
Controlling GDB 12
controlling type checker commands 90
convenience variable 40, 74
copy permission 27
copying terms and conditions 238
Copyright Information ii
corefiles 18, 19, 108, 112

selecting new 112
core-filecommand 106, 112
correcting typos 124
correctness, ensuring program 89, 91
next 51
counter value 58
Creating a shared library for debugging 149
Ctrl-A 126
Ctrl-B 125
Ctrl-c system interrupt 58
Ctrl-D 125
Ctrl-E 126
Ctrl-F 125
Ctrl-L 126
Ctrl-X, Ctrl-R command 128
current on or off setting, showing 102

LynxOS Total/db User’s Guide

current source file, showing name of 101

D

data
addresses 41
Debug flag, SKDB 160
debugger
GNU source-level 11
Debugging
ashared library 140
embedded applications remotely 140
LynxOS kernels 223
POSIX Threads 138
Programs with Multiple Processes 35
Programs with Multiple Threads 34
remote 114
Remote Targets 142
target, specifying 112
with GDB 11
Debugging with Insight 215
default examining-address 40
define command 116
Delete 125
delete 44
delete display dnums... 75
Deletekey 124
Deleting
Breakpoints 44
detach command 33
dev argument 114
Device Drivers
debugging
with GDB 142
loading dynamically from GDB 163
directory command 66
dirname, 66
disable display dnums... 75
Disabling Breakpoints 44
disassemble command 66, 67
display
current values of expressions 75
display/fmt addr 75
display/fmt exp 75
display/i $pc 53
displayexp 75
displaying
corefiles 106

current limit 62
executable files 106
the Language 89
distribution terms and conditions 238
documents, LynxOS vii
documents, online vii
double (virtual) format 85
downn 59
down-silently n command 60
DSU 38,41

E

-efile 19
echo command 48
editing

command 12
Emacs command keystroke sequences 122
Embedded applications

debugging 140
empty line, significance of 118
enable display dnums... 75
enabling breakpoints 45
encoding agorithm 81
end 47
ensuring program correctness 89, 91
enum enum-tag 100
Enumerated constants 95
Environment 29
environment variable 31
environment, program 30
EPROM/ROM code debugging 38
equivalent variables 97
error correction 102
error message, for absent load command 109
ESC key 24
Esc key 124
Event Designators 135
examine command (x command) 72
examining

data 67

memory 72

sourcefiles 62

the stack 56
exception handlers 61
exception handling 98
exceptions 42
exec-filecommand 106, 107, 112

executablefile 18
executablefiles 112
execution stack, thread 34
execution, altering 102
expression 21, 100, 120
expressions 96
expressions, use of regular 98
extended (raw) format 85
Extended Remote Targets
supported protocols 142

F

f command 60, 123
-f mode 21
f, the display format 73
false condition 46
file commands 106
file-management commands 99
filename 102
function 64
number 64
filename command 119
files, choosing 18
finish 41
finish command 38, 51
fixed address 109
float parameter 24
floating point constants 95
Floating Point Hardware 86
Floating-point types 93
foo 48, 81
format letters supported in output format 72
forward-searchregexp command 65
frame
addr 59
args 57
command 57
n 59
pointer register 57
selecting 59
frames
stack 57
free software, funding 247
-fullname mode 21
function 44, 64
Function Browser window 210
function call 56

LynxOS Total/db User’s Guide

257

Index

Function Call in a Multithread Process 170 after ablocking system call 171
function invocations 57 threads 140

function stack, and MIPS machines 61 starting

Funding Free Software 247 gdbserver remotely 144

the remote target 145
target command 161

TCP Port 142
G understanding thread numbers 138
Using a Serial Line 143
g++ command 92 gdb program 17
GDB 173 gdbserver 115
andC 97 Giving Your Program a Signal 104
as free software 11 GNU 173
attaching to arunning process 147 C++ compiler 92
browsing and switching threads 138 Emacs 26
building akernel for debugging 159 General Public License 237
calling ashared library function by hand History Library 134
(PowerPC) 140 Software License Agreement 237
commands 22 source-level debugger 11
add-symbol-file 164 gnu 81
compiling sspp.c 166 -gstabs option 92
creating -gstabst+ option 93
ashared library for debugging 149
current thread 139
debugging
device driver/kernel target 142 H
the kernel 159
with threads versus processes 161 handle command 54
deleting handle signal keywords... command 54
breakpointsin shared libraries 152 hardware breakpoint registers 39
description 11 hardware-assisted breakpoint 39
executing aremote shell from the Having GDB Infer the Source Language 88
target 169 hbreak args 38
featuresfor C++ 98 help command 25, 26
files 106 help target commands 113
host machine 115 hex numbers 86
installing 12 hex, printing number in 71
installing, sspp 167 History Interaction 135
interrupting history numbers 82
the kernel 162 hook-foo command 118
thethread 171 hook-stop 118
loading
ashared library symbol table 149
overview 137
proxy server 165 I
Reading and Writing Large Memory
Blocks 168 id, value of 43
Remote and Extended-remote Targets 142 identifier, thread 34
requirements 158 if argument 46
resuming if command 117

258 LynxOS Total/db User’s Guide

ignore bnum count 47 Insight 173

ignore count 47 inspect 68

ignore count, positive 47 Install.skdb script 160

ignore-count argument 50 Installation 166

info Installing GDB 12
address symbol 99 int 90
all-registers 84 int parameter 24
args 61 integer constants 95
break 40 integer value, storing 103
catch 61, 98 Integral types 93
command 26 interrupt 21
f 60 Introduction to Line Editing 124
f addr command 61 invocations, function 57
files 32, 110 Invoking GDB 17
float 86

frame addr command 61
frame command 60

functions 101 J

functionsregexp 101

line 77 jobs -1 shell command 32

line command 66 jump *address command 104
line linespec 66 jump command 104

locals 61 jump linespec command 103
program 36

registers 84

registersregname... 84

share 110 K

sharedlibrary 110

signals command 54 Kernel o

source 100 debugging with GDB 159
source command 89 interrupting

sources 101 at GDB prompt 162
sources command 102 single-stepping 162
target 110 Key Bindings 129

terminal 32 keyname 129

thread 161 keystroke notations 124
threads 34 keystroke sequences, Emacs commands 122
threads display 35, 55 kill command 33

types 100 Killing and Yanking 131
typesregexp 100 killing text 126

watchpoints 42 killing text commands 126

info frame command 89

info line command 66

info variables 101

info variables regexp 101
inheritance relationships, printing 98
init files 119

initial frame 57

innermost frame 57, 86

L

Language-specific information 87
LFD (linefeed) key 124

library for debugging 149
license 237

LynxOS Total/db User’s Guide 259

Index

260

limit 62
limitations to exception handling 43
linespec 64
list ,last command 63
list command 63
list commands 64
list first command 63
list function command 63
list linenum command 62
list linespec command 63
List of Filename Extensions and Languages 87
load address, specifying 109
load command 109, 114
loading
device drivers dynamicaly 163
Local Variableswindow 205
longjmp 40
longjmp resume 41
lucid 81
LynuxWorks, contacting ix
LynuxWorks, Inc. ii

M

maint info breakpoints command 40
maint print commands 102
maint print msymbols 102
maint print psymbols 102
make make-args 22
Makefile
sspp 166
manipulating history commands 129
manually setting working language 88
M-B 126
Memory window 200
metabit 79
metadigits 127
META key 24
M-F 126
Minicom Terminal Server 167
MIPS architecture 59
MIPS Machines and the Function Stack 61
modes, choosing 20
modification terms and conditions 238
Modifiers 136
moving commands 129
multiple process debugging 35
multiple threads 55

LynxOS Total/db User’s Guide

multiple threads, debugging programs with 34
multi-thread programs 42
M-x command 120

N

-n 20

info break 39

info breakpoints 39
info watchpoints 39
n, the repeat count 73
newprompt 12

next command 51
nexti command 53

ni command 53

nn 79
NO WARRANTY statement, showing 27
nopass command 54
noprint command 54
nostop command 54
number 64
Numbers 15
thread, understanding GDB 138
numeric arguments, passing to readline
commands 127
-nx mode 20
-nx option 119

O

object files, replacing 101
octal constants 95

off default 97

-offset 64

on or off setting, showing 102
online documentation vii
openlink gdblnvoking_GDB.fm 17
optimizer 28

option, -c 18

option, -se 18

optional parameters 73
options, configure 12
outermost frame 57

output 120

output command 48

overloaded functions, calling 96
Overloaded symbol names 99
overloading 49, 98
Overview

GDB 137

SKDB 223
Overview of Range Checking 91
Overview of Type Checking 90

P

p/apointer 78
parent process 35
pass command 54
Patching Programs 106
path directory 30
PATH variable 121
pauses, converting to messages 108
permission for copying 27
pointer in decimal, printing 71
Pointer types 93
pointer variable, storing 103
positive ignore count 47
PowerPC
calling a shared library function by
hand 140
print command 54, 82, 90, 103
print x 82
printexp command 68
printf 120
printf command 48
printing
declared types of objects 98
derived types of objects 98
names and data types 101
source file names 101
sourcelines 62
variable names and data types 101
processID 18
process ID, getting 36
processes 112
program counter 59
program functions, calling 105
Program Variables 69
programs, patching 106
prompt string 12
Protocols
proxy 167

Proxy Server

running 165

ssp 165
ps program 35
pseudo-command 118
ptt 78
ptype 100
ptype exp command 68
ptype exp ptype 100
ptype typename 98, 100
pwd 32

Q

-qg mode 20
-quiet mode 20
quit command 21
Quitting GDB 21

R

range checking overview 91
range checks, C and C++ 97
raw dataformat 85
rbreak regex 39
rbreakregex 98
Readline
Arguments 127
Bare Essentials 125
Init File 127
Init Syntax 128
Interaction 124
Killing Commands 126
Movement Commands 125
vi Mode 134
-readnow option 108, 109
Reference manuals vii
regex 39
Registers window 198
registers, thread 34
regular expressions 98
Remote
shell
executing from the GDB remote
target 169
target process, starting from gdbserver 146

LynxOS Total/db User’s Guide 261

Index

Remote Debugging 114 check type commands 90
remote serial target 114 command 26, 103
Remote Targets complaints command 16

supported protocols 142 confirm command 17
repeating list command 63 demangle-stylestyle 80
replacing symbol definitions 101 editing command 13
Requirements environment 31

for GDB 158 heuristic-fence-post limit command 62
restart, program 56 history expansion command 14
resuming program execution 50 history filename command 13
Return 22, 23, 33, 63, 71, 74, 75, 82, 83, 84, 85, history save command 13

104, 107, 109, 113, 124 history size command 13
return command 105 input-radix command 15
return expression command 105 language 87
Return key 23, 33, 48, 124 language auto command 88
Returning from a Function 105 language local command 88
reverse-search regexp command 65 listsizecount command 63
run command 28, 29, 32 output-radix command, command, set
Running Programs Under GDB 27 output-radix 15
run-time checks 89 prompt 12

remotebaud command 161
rstack_high_address address 86
symbol-reloading commands 101

S variable command 103
verbose 16
-sfile 19 verbose command 108
Scalar types 93 width command 103
Scripts write command 106
Install.skdb 160 x=5 82
-sefile 19 set command 103
-seoption 18 set complaints command 110
Searching Source Files 65 set language 88
section command 109 set print
select-frame 57 address off 76
select-frame command 57 addresson 76
Selecting a Frame 59 array 78
semantics, thread 34 asm-demangle 80
Semaphores 137 demangle 80, 98
Seria Line max-symbolic-offsetmax-offset 77
using for GDB 143 null-stop 79
Serial Ports object 81
setting up GDB 161 pretty on/off 79
Server sevenbit-strings 79
GDB proxy 165 symbol-filename 78
Minicom Terminal 167 symbol-filename on/off 77
Servers union 79
starting gdbserver, remotely 144 union command 97
set vtbl 81
args command 30 set print elements number-of -elements 78
check range commands 91 setprint addressoff 96

262 LynxOS Total/db User’s Guide

setting
breakpoint 24, 37, 139
multiple thread breakpoints 55
watchpoints 41
working language 88
Setting Up
GDB serial ports 161
Shared Libraries
setting GDB breakpoints 152
Shared Library
debugging 140
loading for GDB 149
shared object library symboals, loading 110
shell command string 22
Shell Commands 22
SHELL environment variable 30
show
args command 30
command 26
confirm command 17
convenience 83
demangle-style 81
directories 66
environment 31
heuristic-fence-post 62
history commands 14
input-radix command 15
language command 89
listsize command 63
output-radix command 16
paths 31
prompt 12
range command 92
rstack_high_address 86
symbol-reloading 102
type command 91
values 82
verbose command 16
write command 106
show print
address 77
array 78
asm-demangle 80
commands 98
demangle 80
elements 78
max-symbolic-offset 78
object 81
pretty 79
sevenbit-strings 79

symbol-filename 77
union 80
union command 97
vtbl 82
si 53
s command 53
side effects, break conditions 46
signal 35
signal command 104
silent command 48
silent version of frame 57
Single-stepping
into a shared library function 157
theKernel 162
SKDB
commands 231
installing 224
overview 223
removing 224
setting the debug flag 160
seep 35
Source and Machine Code 66
source command 119
source directories, specifying 65
sourcefiles, listing 100
source files, printing names of 101
source files, searching 65
source languages, switching between 87
Source Window 174
Spacebar key 124
SPARC architecture 59
SPARC machine instructions 67
SPARClite 41
SPARCIlite DSU 38
Specia Note formats ix
Specifying a Debugging Target 112
specifying single source line 64
Specifying Source Directories 65
Sspp
installing 167
makefile 166
proxy server 165
Sspp.c
compiling 166
stack frame 52, 56, 61, 69
Stack Frames 57
stack frames 85
stack pointer 59
stack unwinding 43
Stack window 197

LynxOS Total/db User’s Guide

263

Index

264

stack-frame offset, printing 99
Standard input and output 29
Starting
gdbserver remotely 144
Starting Your Program 28
static variable 70
step command 50, 51
step count 51
stepi command 53
stepping 50
stop command 54
stop, program 55, 56
Stopping and Continuing 36
Stopping and Starting Multi-Thread
Programs 55

stopping, before exception handler iscalled 43

storing sequences of commands 116
string table message 111

struct struct-tag 100

structure conversion 103

style key escapes 129

Supported Languages 92
suppressing complaints 16

Switching Between Source Languages 87

symbol definitions, replacing 101
symbol information 111

Symbol Scopes (All Platforms) 157
symbol (types) 99

symbol-file command 107
-symbolsfile 19

symbols, unusual charactersin 99
Syntax 166

syntax 87

syntax, command 22

systag thread identifier 34

T

tvariable 78

Tab key 22,23, 24, 25, 124

target command 161

target commands 113

target machine 115

target remote command 116

target, definition for 112

targets, commands for managing 113
tbreak args 38

TCP connections 116

LynxOS Total/db User’s Guide

Technical Support ix

Terms & conditions, copying, distribution,

modification 238
terms, applying 243
thbreak args 39
this, class instance pointer 96
thread apply 35
thread number 35
thread threadno command 55
Threads
current, GDB 139
GDB 138
resuming GDB 140
Total/db 173
trap-generation 41
true condition 46
tty command 32
-tty device mode 21
Type and Range Checking 89

type checker, commands for controlling 90

type checking 97

type checking overview 90
type checks, C and C++ 97
type typename 98

typedef 97

Typographical Conventions viii
typos, correcting 124

U

u command 52
u location command 52
u, the unit size 73
undisplay dnums... 75
union type 97
union union-tag 100
unset environment 31
until 41
until command 52
until location command 52
upn 59
up-silently n command 60
User-Defined Command Hooks 118
User-Defined Commands 116
user-defined commands 118
Using
acast 71
GDB Under GNU Emacs 120

history interactively 134

target command 141
Using a Proxy Server 145
Utilities

Install.skdb 160

\

Variable Settings 128
variable, atering value of 103
variable, static 70
Variables
Title
BookTitle i
Legal ii
PartNumber i

variables, declared by C++ references 96

variables, equivaent 97
variables, program 69
varname 31

version, showing current running 27

virtual dataformat 85

virtual function tables, print format 98

void value 83

w

watch expr 41

Watch Expressions 202
Watching Registers 204
watchpoint 40
watchpoints, setting 41
whatis 100

whatisexp 99

while command 117
width variable 103
word delimiters 99
Word Designators 135
Working directory 29
working language 87

writing, dump of debugging symbol data 102

X

x addr 72

x command 40, 68, 72, 84
-x file 19
x/ nfuaddr 72
x/3iaddr 74
x86
creating ashared library for debugging 148

Y

Your Program’s Environment 30

LynxOS Total/db User’s Guide 265

Index

266 LynxOS Total/db User’s Guide

	Total/db User’s Guide
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Total/db Overview
	Included Components
	GDB
	GDBServer
	Insight
	SSPP
	SKDB

	User Process Debugging vs. Kernel/Device Driver Debugging
	Local Debugging versus Remote Debugging
	Local Debugging
	User Process Debugging
	Kernel/Device Driver Debugging

	Remote Debugging
	Symbol Files
	User Process Debugging
	Kernel/Device Driver Debugging
	Using sspp to Extend Serial Line Remote Debugging
	Cross Debugging

	Total/db Configuration Options
	Supported Languages
	Source Code

	Chapter 2 Debugging with GDB
	The GNU Source Level Debugger
	GDB as Free Software

	Controlling GDB
	Prompt
	Command Editing
	Command History
	Screen Size
	Numbers
	Optional Warnings and Messages

	Getting In and Out of GDB
	Invoking GDB
	Choosing Files
	Choosing Modes

	Quitting GDB
	Shell Commands

	GDB Commands
	Command Syntax
	Command Completion
	Getting Help

	Running Programs under GDB
	Compiling for Debugging
	Starting Your Program
	Your Program’s Arguments
	Your Program’s Environment
	Your Program’s Working Directory
	Your Program’s Input and Output
	Debugging an Already-Running Process
	Killing the Child Process
	Debugging Programs with Multiple Threads
	Debugging Programs with Multiple Processes

	Stopping and Continuing
	Breakpoints, Watchpoints, and Exceptions
	Setting Breakpoints
	Setting Watchpoints
	Breakpoints and Exceptions
	Deleting Breakpoints
	Disabling Breakpoints
	Break Conditions
	Breakpoint Command Lists
	Breakpoint Menus

	Continuing and Stepping
	Signals
	Stopping and Starting Multithread Programs

	Examining the Stack
	Stack Frames
	Backtraces
	Selecting a Frame
	Information about a Frame
	MIPS Machines and the Function Stack

	Examining Source Files
	Printing Source Lines
	Searching Source Files
	Specifying Source Directories
	Source and Machine Code

	Examining Data
	Expressions
	Program Variables
	Artificial Arrays
	Output Formats
	Examining Memory
	Automatic Display
	Print Settings
	Value History
	Convenience Variables
	Registers
	Floating Point Hardware

	Using GDB with Different Languages
	Switching between Source Languages
	List of Filename Extensions and Languages
	Setting the Working Language
	Having GDB Infer the Source Language

	Displaying the Language
	Type and Range Checking
	An Overview of Type Checking
	An Overview of Range Checking

	Supported Languages
	C and C++

	Examining the Symbol Table
	Altering Execution
	Assignment to Variables
	Continuing at a Different Address
	Giving Your Program a Signal
	Returning from a Function
	Calling Program Functions
	Patching Programs

	GDB Files
	Commands to Specify Files
	Errors Reading Symbol Files

	Specifying a Debugging Target
	Active Targets
	Commands for Managing Targets
	Remote Debugging
	Using the gdbserver program

	Stored Command Sequences
	User-Defined Commands
	User-Defined Command Hooks
	Command Files
	Commands for Controlled Output

	Using GDB under GNU Emacs
	Command Line Editing
	Introduction to Line Editing
	Readline Interaction
	Readline Bare Essentials
	Readline Movement Commands
	Readline Killing Commands
	Readline Arguments

	Readline Init File
	Readline Init Syntax
	Readline vi Mode

	Using History Interactively
	History Interaction
	Event Designators
	Word Designators
	Modifiers

	Chapter 3 LynxOS GDB Enhancements
	Overview
	Debugging POSIX Threads
	Understanding Thread Numbers
	Browsing and Switching Threads
	Current Thread

	Setting a Breakpoint
	Resuming Threads

	Debugging Embedded Applications Remotely
	Using the Target Command
	Debugging Remote Targets
	Remote and Extended-Remote Targets
	Device Driver/Kernel Target (skdb)

	Supported Protocols for Remote and Extended�Remote Targets
	TCP Port
	Using a Serial Line
	Starting gdbserver Remotely
	Using a Proxy Server

	Starting the Remote Target
	Starting from gdbserver
	Attaching to a Running Process

	Target’s Environment

	Postmortem Debugging of Dynamically Linked Programs
	Debugging Shared Libraries
	Creating a Shared Library for Debugging Purposes
	Loading Shared Library Symbol Information
	Deferred Breakpoints
	Deferred Breakpoint Commands
	Deferred Breakpoints for Application-Loaded (dlopen’ed) Shared Libraries

	Shared Library File Path Names
	Automatic Shared Library Symbol File Loading
	Manual Shared Library Symbol Loading/Unloading (add-symbol-file/delete-symbol-file)

	Symbol Table
	Single-Stepping into a Shared Library Function
	Summary of Additional Commands for Shared Library Support

	Debugging Kernel/Device Drivers
	Requirements
	Building a Kernel for Debug Purposes
	Debugging�the�Kernel
	Simple Kernel Debugger—SKDB
	Threads vs. Processes
	Setting Up Serial Ports
	Starting Kernel Debugging
	Interrupting the Kernel
	Single-Stepping the Kernel
	Finishing Kernel Debugging

	Loading Device Drivers Dynamically
	Raw SKDB Commands

	Proxy Server
	Syntax
	Installation
	Compiling sspp.c
	Installing sspp
	Minicom Terminal Server

	General Tips and Miscellaneous Issues
	Reading and Writing Large Memory Blocks
	Browsing Target Process’s Environment
	Executing Remote Shell Commands
	Function Calls in a Multithreaded Process
	Functions Calls after Ctrl+C
	Resuming after a Blocking System Call
	Debugging a Signal-Intensive Process

	Chapter 4 Debugging with Total/db
	Source Window
	File Menu
	Run Menu
	View Menu
	Control Menu
	Preferences Menu
	Help Menu
	Toolbar Buttons
	Special Display Pane Features
	Using the Mouse in the Display Pane
	Right Display Column
	Left Display Column

	Below the Horizontal Scroll bar
	Status Text Box
	Function List and Combo Boxes
	Code Display List Box
	Search Text Box

	Dialog boxes for the Source Window
	Load New Executable Dialog Box
	Page Setup Dialog Box
	Print Dialog Box
	Target Selection Dialog Box
	Global Preferences Dialog Box
	Source Preferences Dialog Box

	Stack Window
	Registers Window
	Memory Window
	Memory Preferences Dialog Box

	Watch Expressions Window
	Add Watch Button
	Watching Registers
	Casting Pointers in the Watch Expressions Window

	Local Variables Window
	Variable Menu

	Breakpoints Window
	Breakpoint Menu
	Global Menu

	Console Window
	The Function Browser Window
	Help Window
	Topics Menu

	Tutorials for Debugging with Insight
	Initializing a Target Executable File
	Console Window with Initial Commands
	Selecting a source file

	Setting Breakpoints and Viewing Local Variables

	Chapter 5 Simple Kernel Debugger - SKDB
	Overview
	Installing/Removing SKDB
	Installing SKDB
	Removing SKDB

	Using SKDB
	SKDB Prompt
	Starting SKDB Automatically after a Kernel Crash or Panic
	Breaking into SKDB with Hot Key
	Kernel Status Display
	Kernel Status Redisplay
	Stack Trace Display
	Verbose Trace Mode
	Process, Thread, and Other Displays
	Resuming the Kernel
	Setting Breakpoints
	Single-Stepping
	Disassembly
	Setting Watchpoints

	SKDB Commands
	General Notes
	Parameter Validation
	Symbol Information
	Address Expressions
	Default Virtual Address Space
	Remote Debugger Interface Protocol

	Appendix A GNU Software License Agreement
	GNU General Public License
	Preamble
	Terms & Conditions for Copying, Distribution and Modification
	How to Apply these Terms to Your New Programs

	Contributors to GNU CC
	Protect Your Freedom; Fight “Look And Feel”

	Index

