
3

POSIX.1
Conformance Document

LynxOS Release 4

DOC-0414-00

Product names mentioned in POSIX.1 Conformance are trademarks of their respective manufacturers and are used here
for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of POSIX.1 Conformance may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the prior written
permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

 Contents
PREFACE .. VII

For More Information ..vii
Typographical Conventions ..viii
Special Notes .. ix
Technical Support ... ix

LynuxWorks U.S. Headquarters ... ix
LynuxWorks Europe ... ix
World Wide Web ... ix

POSIX.1 CONFORMANCE DOCUMENT... 1

Introduction ... 1
1. General ... 1

1.3 Conformance .. 1
1.3.1 Implementation Conformance .. 1
1.3.3 Language-Dependent Services for the C Programming
Language ... 2

2. Terminology and General Requirements ... 2
2.2 Definitions .. 2

2.2.2 General Terms .. 2
2.3 General Concepts ... 9

2.3.1 extended security controls .. 9
2.3.2 file access permissions ... 9

2.4 Error Numbers .. 9
2.5 Primitive System Data Types ... 10
2.6 Environment Description ... 11
2.7 C Language Definition ... 12

2.7.2 POSIX.1 Symbols .. 12
2.8 Numerical Limits .. 12
POSIX.1: 1996 Conformance iii

Contents

2.8.3 Run-Time Increasable Values .. 12
2.8.4 Run-Time Invariant Values (Possibly Indeterminate) 12
2.8.5 Path Name Variable Values ... 12

2.9 Symbolic Constants .. 13
2.9.3 Compile-Time Symbolic Constants for Portability
Specifications .. 13
2.9.4 Execution-Time Symbolic Constants for Portability
Specifications .. 13

3. Process Primitives ... 13
3.1 Process Creation and Execution ... 13

3.1.1 Process Creation ... 13
3.1.2 Execute a File ... 14

3.2 Process Termination ... 14
3.2.1 Wait for Process Termination .. 14
3.2.2 Terminate a Process ... 15

3.3 Signals .. 15
3.3.1 Signal Concepts .. 15
3.3.2 Send a Signal to a Process .. 16
3.3.3 Manipulate Signal Sets ... 17
3.3.6 Examine Pending Signals ... 17

4. Process Environment ... 17
4.2. User Identification ... 17

4.2.2 Set User and Group IDs ... 17
4.4 System Identification .. 18

4.4.1 Get System Name ... 18
4.5 Time ... 18

4.5.1 Get System Time .. 18
4.5.2 Get Process Times .. 19

4.6 Environment Variables ... 19
4.6.1 Environment Access .. 19

4.7 Terminal Identification ... 19
4.7.1 General Terminal Path Name ... 19
4.7.2 Determine Terminal Device Name .. 19

4.8 Configurable System Variables .. 20
4.8.1 Get Configurable System Variables 20

5. Files and Directories .. 20
5.1 Directories .. 20

5.1.1 Format of Directory Entries ... 20
5.1.2 Directory Operations .. 20

5.2 Working Directory ... 21
5.2.2 Get Working Directory Path Name .. 21
iv POSIX.1: 1996 Conformance

5.3 General File Creation ... 21

5.3.1 Open a File ... 21
5.3.3 Set File Creation Mask ... 22
5.3.4 Link to a File .. 22

5.4 Special File Creation .. 23
5.4.1 Make a Directory .. 23
5.4.2 Make a FIFO Special File .. 24

5.5 File Removal .. 24
5.5.1 Remove Directory Entries .. 24
5.5.2 Remove a Directory ... 25
5.5.3 Rename a File ... 25

5.6 File Characteristics ... 26
5.6.2 Get File Status .. 26
5.6.3 Check File Accessibility .. 26
5.6.4 Change File Modes .. 27
5.6.5 Change Owner and Group of a File 28

5.7 Configurable Path Name Variables .. 29
5.7.1 Get Configurable Path Name Variables 29

6. Input and Output Primitives .. 30
6.4 Input and Output ... 30

6.4.1 Read from a File ... 30
6.4.2 Write to a File ... 30

6.5 Control Operations on Files ... 31
6.5.2 File Control .. 31
6.5.3 Reposition Read/Write File Offset ... 32

6.7 Asynchronous I/O ... 32
7. Device- and Class-Specific Functions ... 32

7.1 General Terminal Interface .. 32
7.1.1 Interface Characteristics ... 33
7.1.2 Parameters That Can Be Set ... 34
7.1.3 Baud Rate Functions .. 37

7.2 General Terminal Interface Control Functions 38
7.2.1 Get and Set State .. 38
7.2.2 Line Control Functions .. 38

8. Language-Specific Services for the C Programming Language 39
8.1 Referenced C Language Routines .. 39

8.1.2 Extensions to setlocale() Function ... 39
8.2 C Language Input/Output Functions .. 39

8.2.1 Map a Stream Pointer to a File Descriptor 39
8.2.2 Open a Stream on a File Descriptor 40
8.2.3 Interactions of Other FILE-Type C Functions 40
POSIX.1: 1996 Conformance v

Contents

8.3 Other C Language Functions .. 40

8.3.2 Set Time Zone .. 40
9. System Databases .. 40

9.1 System Databases ... 40
10. Data Interchange Format ... 41

10.1 Archive/Interchange File Format ... 41
10.1.1 Extended tar Format ... 41
10.1.2 Extended cpio Format .. 41
10.1.3 Multiple Volumes .. 41

11. Synchronization ... 42
11.1 Semaphore Characteristics ... 42

11.2.3 Initialize/Open a Named Semaphore 42
11.3.1 Mutex Initialization Attributes ... 43
11.4.1 Condition Variable Initialization Attributes 43

12. Memory Management ... 44
12.1.1 Lock/Unlock the Address Space of a Process 44
12.1.2 Lock/Unlock a Range of Process Address Space 44
12.2.4 Memory Object Synchronization ... 44
12.3.1 Memory Mapped File Restrictions 44

13. Execution Scheduling .. 44
13.2.3 SCHED_OTHER ... 44
13.3.1 Set Scheduling Parameters ... 45
13.4.2 Scheduling Contention Scope .. 45
13.4.3 Scheduling Allocation Domain .. 45

14. Clocks and Timers ... 45
14.1.4 Manifest Constants ... 45
14.2.1 Clocks ... 45
14.2.4 Per-Process Timers .. 46

15. Message Passing .. 46
15.2.1 Open a Message Queue .. 46
15.2.7 Set Message Queue Attributes ... 46

16. Thread Management .. 46
16.2.1 Thread Creation Attributes ... 46

18. Thread Cancellation ... 47

INDEX .. 49
vi POSIX.1: 1996 Conformance

Preface
The POSIX.1 Conformance Document contains information about the
conformance of LynxOS 4 to POSIX 1003.1: 1996.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

� Release Notes

This printed document contains late-breaking information about the
release.

� LynxOS Installation Guide

This manual supports the initial installation and configuration of LynxOS
and the X Windows System.

� LynxOS User�s Guide

This document contains information about basic system administration
and kernel level specifics of LynxOS. It contains a �Quick Starting�
chapter and covers a range of topics, including tuning system
performance and creating kernel images for embedded applications.

� Online information

Information about commands and utilities is provided online in text
format through the man command. For example, a user wanting
information about the GNU compiler would enter the following syntax,
where gcc is the argument for information about the GNU compiler:

man gcc

More recent versions of the documentation listed here may also be found online.
POSIX.1 Conformance vii

Preface

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should
be typed accurately.

Kind of Text Examples

Body text; italicized for emphasis, new
terms, and book titles

Refer to the LynxOS User�s Guide.

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data
Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bolded.

ls
-l
myprog.c
/dev/null
login: myname
cd /usr/home

Text that represents a variable, such as a file
name or a value that must be entered by the
user

cat filename
mv file1 file2

Blocks of text that appear on the display
screen after entering instructions or
commands

Loading file /tftpboot/shell.kdi
into 0x4000
.....................
File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
All rights reserved.

LynxOS (ppc) created Mon Jul 17
17:50:22 GMT 2000
user name:

Keyboard options, button names, and menu
sequences

Enter, Ctrl-C
viii POSIX.1 Conformance

Special Notes

Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products, Frequently Asked Questions (FAQs), and LynuxWorks
news groups.

LynuxWorks U.S. Headquarters

Internet: support@lnxw.com

Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: tech_europe@lnxw.com

Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://www.lynuxworks.com

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.
POSIX.1 Conformance ix

Preface
x POSIX.1 Conformance

POSIX.1 Conformance
Document
Introduction

This document states the conformance of LynxOS 4 to POSIX 1003.1: 1996.

Throughout this document, the term POSIX.1 is used as an abbreviation for the
POSIX 1003.1:1996 specification.

All heading numbers in this document correspond to heading numbers in the
POSIX.1 specifications.

Certain areas of the FIPS 151-2 specification, which consists of the POSIX 1003.1
specification and a small set of modifications, allow implementation of additional
options to meet specification requirements. However, the specification requires
that all such optional behaviors be documented.

1. General

1.3 Conformance

1.3.1 Implementation Conformance
LynxOS systems must be configured as follows in order for an application to run
with the behavior specified by POSIX.1.

No special actions or configurations are necessary to allow POSIX.1 applications
to run with POSIX.1 semantics.
POSIX.1 Conformance 1

 POSIX.1 Conformance Document

1.3.3 Language-Dependent Services for the C
Programming Language
LynxOS meets the requirements of POSIX.1, Section 8 by reference to ISO/IEC
9989:1991, Information Technology-Programming Languages-C.

2. Terminology and General Requirements

2.2 Definitions

2.2.2 General Terms
The following terms are specific to the LynxOS implementation of POSIX.1. For
details, see the LynxOS system documentation.

2.2.2.3 address space

These are the memory locations that can be accessed by the threads of a process.

2.2.2.4 appropriate privileges

Appropriate privileges are associated with a process by the following means:
A process with an effective user ID of 0 has root privileges. A process without
such privileges acquires them by calling setuid(0) or seteuid(0). These calls
only work from a setuid program with owner ID equal to 0. An example of
such a program is the su utility.

2.2.2.8 asynchronous I/O operation

Asynchronous I/O operation is an operation that does not cause the thread
requesting the I/O to be blocked from further use of the processor.

This implies that the thread and the I/O operation may be running concurrently.

2.2.2.9 asynchronous I/O completion

Asynchronous read or write operations are complete when a corresponding status
field is updated.
2 POSIX.1 Conformance

2.2.2 General Terms

2.2.2.16 character special file

The following types of character special files are supported:

� Terminal device files

� Pseudo-terminal device files

� Raw SCSI device files

� Raw IDE device files

� Raw floppy device files

� Console device files

� Parallel port device files

� The kernel syslog device file

� The memory device file

� The null device file

� The controlling terminal file

� The NFS client device file

� The NFS server device file

2.2.2.14 blocked thread

A blocked thread is a thread that is waiting for some condition (other than the
availability of a processor) to be satisfied before it can continue execution.

2.2.2.18 clock

A clock is an object that measures the passage of time.

The current value of time measured by a clock can be queried and possibly, set to a
value within the legal range of the clock.

2.2.2.19 clock tick

A clock tick is an interval of time. A number of these occur each second. Clock
ticks are among the units that may be used to express a value found in
type clock_t.
POSIX.1 Conformance 3

 POSIX.1 Conformance Document

2.2.2.20 condition variable

A synchronization object that allows a thread to suspend execution, repeatedly,
until some associated predicate becomes true.

A thread whose execution is suspended on a condition variable is said to be
blocked on the condition variable.

2.2.2.39 file

LynxOS supports the following file types:

� Regular files

� Character special files

� Block special files

� FIFO special files

� Directory files

� Contiguous files

� Sockets

� Symbolic links

2.2.2.62 map

To map is to create an association between a page-aligned range of the address
space of a process and a range of physical memory or some memory object, such
that a reference to an address in that range of the address space results in a
reference to the associated physical memory or memory object.

The mapped memory or memory object is not necessarily memory resident.

2.2.2.63 memory object

A memory object is either a file or shared memory object.

When used in conjunction with mmap(), a memory object appears in the address
space of the calling process.

2.2.2.65 message

A message is information that can be transferred among processes or threads by
being added to and removed from a message queue. A message consists of a fixed
size message buffer.
4 POSIX.1 Conformance

2.2.2 General Terms

2.2.2.66 message queue

A message queue is an object to which messages can be added and removed.

Messages can be removed in the order they were sent or in priority order.

2.2.2.68 mutex

A mutex is a synchronization object used to allow multiple threads to serialize their
access to shared data

This term is derived from the functionality it provides, namely, mutual exclusion.
The thread that has locked a mutex becomes its owner and remains its owner until
that same thread unlocks the mutex.

A thread that attempts to lock a mutex that is presently locked is blocked until the
mutex is unlocked.

2.2.2.76 parent process ID

If a child process continues to exist after its creator process ceases to exist, a new
parent process ID is assigned and the init process (process ID 1) becomes the
new parent.

2.2.2.78 path name

A path name that begins with two slashes is interpreted as being in the root
directory. The double slash is resolved to a single slash.

2.2.2.80 persistence

This is a mode for semaphores,shared memory, and message queues requiring that
the object and its state (including data, if any) are preserved after the object is no
longer referenced by any process.

Persistence of an object does not imply that the state of the object is maintained
across a system crash or system reboot.

2.2.2.84 preempted thread

This is a running thread whose execution is suspended due to another thread
becoming runnable at a higher priority.
POSIX.1 Conformance 5

 POSIX.1 Conformance Document

2.2.2.95 read-only file system

Modifications to objects on read-only file systems are restricted so that nothing on
the file system can be modified, including access, update, and modification times
in the inode.

2.2.2.98 reentrant function

This is a function whose effect, when called by two or more threads, is guaranteed
to be as if each of the threads executed the function, one after the other in an
undefined order, even if the actual execution is interleaved.

2.2.2.105 runnable thread

This is a thread that is capable of being a running thread, but for which no
processor is available.

2.2.2.106 running thread

A running thread is one that is currently executing on a processor.

2.2.2.109 scheduling

Scheduling is the application of a policy to select a runnable thread to become a
running thread, or to alter one or more thread lists.

2.2.2.111 scheduling contention scope

This is the property of a thread that defines the set of threads against which the
given thread competes for resources.

For example, in a scheduling decision, threads sharing scheduling contention scope
compete for processor resources.

In POSIX.1, a thread has a scheduling contention scope of either
PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS.

2.2.2.112 scheduling policy

This is the set of rules that is used to determine the order of thread execution.

In the context of POSIX.1, a scheduling policy affects thread ordering:

1. When a thread is running and it becomes a blocked thread.

2. When a thread is running and it becomes a preempted thread.
6 POSIX.1 Conformance

2.2.2 General Terms

3. When a thread is a blocked thread and it becomes a runnable thread.

4. When a running thread calls a function that can change the priority or
scheduling policy of a thread.

2.2.2.120 shared memory object

A shared memory object represents memory that can be mapped concurrently into
the address space of more than one process.

2.2.2.121 signal

A signal is a mechanism by which a process may be notified of, or affected by, an
event occurring in the system.

Examples of such events are hardware exceptions and specific actions by processes
or threads. The term signal is also used to refer to the event itself.

2.2.2.123 supplementary group ID

A process�s effective group ID is omitted from its list of supplementary group IDs.

2.2.2.130 synchronously generated signal

This is a signal that is attributable to a specific thread.

For example, a thread executing an illegal instruction or touching invalid memory
causes a synchronously generated signal. Synchronicity is a property of how the
signal was generated, and not a property of the signal number.

2.2.2.131 system

This is an implementation of this part of ISO/IEC 9945.

2.2.2.132 system crash

This is an interval initiated by an unspecified circumstance that causes all
processes (possibly other than special system processes) to be terminated in an
undefined manner. After a crash, any changes to the state and contents of files
written to by a conforming POSIX.1 application prior to the interval are undefined,
except as required elsewhere in POSIX.1.
POSIX.1 Conformance 7

 POSIX.1 Conformance Document

2.2.2.133 system process

This is an object, other than a process executing an application, that is defined by
the system and has a process ID.

2.2.2.134 system reboot

This is an implementation defined sequence of events that may result in the loss of
transitory data, i.e. data that is not saved in permanent storage.

This includes message queues, shared memory, semaphores, and processes.

2.2.2.136 thread

A thread is a single flow of control within a process.

Each thread has its own thread ID, scheduling priority and policy, errno value,
thread-specific key/value bindings, and the required system resources to support a
flow of control. Anything whose address may be determined by a thread, including
but not limited to static variables, storage obtained by malloc(), directly
addressable storage obtained through implementation supplied functions, and
automatic variables are accessible to all threads in the same process.

2.2.2.137 thread ID

This is a unique value of type pthread_t that identifies each thread during its
lifetime in a process.

2.2.2.138 thread list

This is an ordered set of runnable threads that all have the same ordinal value for
their priority.

The ordering of threads on the list is determined by a scheduling policy or policies.
The set of thread lists includes all runnable threads in the system.

2.2.2.139 thread-safe

This defines a function that may be safely invoked concurrently by
multiple threads.

Each function in POSIX.1 is thread-safe unless explicitly stated otherwise. An
example is any �pure� function (a function that holds a mutex locked while it is
accessing static storage or objects shared among threads).
8 POSIX.1 Conformance

2.3 General Concepts

2.2.2.140 thread-specific data key

This is a process global handle of type pthread_key_t that is used for naming
thread-specific data.

Although the key value may be used by different threads, the values bound to the
key by pthread_setspecific() and accessed by pthread_getspecific()
are maintained on a per-thread basis and persist for the life of the calling thread.

2.2.2.141 timer

This is an object that can notify a process when the time measured by a particular
clock has reached or passed a specified value, or when a specified amount of time,
as measured by a particular clock, has elapsed.

2.2.2.142 timer overrun

This is a condition that occurs each time a timer, for which there already is an
expiration signal queued to the process, expires.

2.3 General Concepts

2.3.1 extended security controls
The LynxOS operating system does not implement any extended security controls.

2.3.2 file access permissions
LynxOS does not provide any additional or alternative file access
control mechanisms.

2.4 Error Numbers

In addition to the errors listed in this clause, LynxOS supports the following errors
under the stated conditions:

[ETXTBSY] Text file is busy. An attempt was made to write to (or
request write accessibility of) a file that is currently being
executed; or to execute a file that is currently
being written.
POSIX.1 Conformance 9

 POSIX.1 Conformance Document

The interfaces that may set off this error are documented in the sections of this
document corresponding to the descriptions of those interfaces in POSIX.1.

On LynxOS systems, the [EFBIG] error does not occur because there is no
maximum file size.

2.5 Primitive System Data Types

In addition to the primitive system data types listed in Table 2-1 in the standard, the
following types, whose names end with _t, are defined in headers specified
by POSIX.1.

Defined Type Header Description

__st_recovery_t stdio.h (via st.h) Thread cancellation

caddr_t sys/types.h C code address type

cc_t termios.h Type for termios.c_cc

clock_t sys/times.h & time.h ANSI C time type

clockid_t sys/types.h POSIX clock ID type

csem_t stdio.h (via sem.h) Counting semaphore

cv_t stdio.h (via sem.h) Condition variable

div_t stdlib.h ANSI C type for div()

fpos_t stdio.h ANSI C file position

int16_t sys/types.h 16-bit signed integer

int32_t sys/types.h 32-bit signed integer

int64_t sys/types.h 64-bit signed integer

int8_t sys/types.h 8-bit signed integer

key_t sys/types.h Type for ftok()

ldiv_t stdlib.h ANSI C type for ldiv()

mutex_t stdio.h (via sem.h) Mutex

ptrdiff_t stddef.h ANSI C pointer difference

sig_atomic_t signal.h ANSI C atomic type

sigaction_t signal.h Arguments to sigaction()
10 POSIX.1 Conformance

2.6 Environment Description
2.6 Environment Description

LynxOS permits the following characters, in addition to the portable file name
character set, in environment variable names:

!@#$%^&*()+{}[]:;'"<>,/?`~\|

siginfo_t
signal.h
(via signal.p4.h)

Signal information

sigset_t signal.h Signal set

sigwhdr_t signal.h sigwaiter linked list

sigwptr_t signal.h sigwaiter

sigwvec_t signal.h sigwhdr_t for 64 sigs

speed_t termios.h Terminal baud rate

st_attr_t stdio.h (via st.h) Thread attributes

synch_t stdio.h (via sem.h) Synchronization object

tcflag_t termios.h struct termios flags

threadspec_t stdio.h (via st.h) Thread-specific data

tid_t sys/types.h Thread ID

time_t sys/types.h & time.h ANSI C time type

timer_t sys/types.h POSIX timer ID type

u_int16_t sys/types.h 16-bit unsigned int

u_int32_t sys/types.h 32-bit unsigned int

u_int64_t sys/types.h 64-bit unsigned int

u_int8_t sys/types.h 8-bit unsigned int

ulong_t sys/types.h Unsigned long

ushort_t sys/types.h Unsigned short

usynch_chk_t stdio.h (via sem.h)

wchar_t stddef.h & stdlib.h ANSI C wide character

Defined Type Header Description
POSIX.1 Conformance 11

 POSIX.1 Conformance Document

2.7 C Language Definition

2.7.2 POSIX.1 Symbols
The following additional feature test macro is defined for LynxOS:

_POSIX_SOURCE

2.8 Numerical Limits

2.8.3 Run-Time Increasable Values
{NGROUPS_MAX} is set to 8 in <limits.h>.

2.8.4 Run-Time Invariant Values (Possibly Indeterminate)
The following magnitude limitations are contained in <limits.h>:

2.8.5 Path Name Variable Values
The values in the following table are constant from one path name to another:

Name Value Comments

ARG_MAX 65536 Depends on EXECARGLEN in <conf.h>

TZNAME_MAX 10

Name Value Comments

LINK_MAX 32767 Depends on LMAX_LINKS in <conf.h>

MAX_CANON 256 Depends on LINELEN in <ttymgr.h>

MAX_INPUT 512 Depends on LINELEN in <ttymgr.h>

NAME_MAX 255 Depends on MAXNAMLEN in <conf.h>

PATH_MAX 1024 Depends on MAXPATHLEN in <conf.h>

PIPE_BUF 512
12 POSIX.1 Conformance

2.9 Symbolic Constants

2.9 Symbolic Constants

2.9.3 Compile-Time Symbolic Constants for Portability
Specifications
<unistd.h> contains the following values:

2.9.4 Execution-Time Symbolic Constants for Portability
Specifications
<unistd.h> contains the following values:

3. Process Primitives

3.1 Process Creation and Execution

3.1.1 Process Creation

3.1.1.2 Description

Each open directory stream in the child process shares directory stream positioning
with the corresponding directory stream of the parent.

All inherited and non-inherited process characteristics are documented under fork
in Section 2 of the online man pages.

Symbolic Constant Value Comments

_POSIX_JOB_CONTROL 1

_POSIX_SAVED_IDS 1

Symbolic Constant Value Comments

_POSIX_CHOWN_RESTRICTED 1 Applies to all files

_POSIX_NO_TRUNC 1 Applies to all files

_POSIX_VDISABLE 0 Applies to all terminals
POSIX.1 Conformance 13

 POSIX.1 Conformance Document

3.1.1.4 Errors

If the fork() function fails, a value of -1 is returned to the parent process. No
child is created and an errno indicates the error:

� [EAGAIN]=The maximum number of processes that can be running on
the system (NPROC) is reached, or no thread enries are available to
create a new process.

� [ENOMEM]=Not enough memory on the system to copy the parent�s
memory.

3.1.2 Execute a File

3.1.2.2 Description

When constructing a path name that identifies a new process image file, if the file
argument does not contain a slash and the PATH environment variable is not
present, the results of a search for the file are defined as follows: Only the current
directory is searched.

All inherited and non-inherited process characteristics are documented under
execve in Section 2 of the online man pages.

3.1.2.4 Errors

LynxOS supports the execution of only regular files.

For the exec type functions, LynxOS detects the conditions and returns the
corresponding errno value for [ENOMEM].

� On LynxOS systems, the exec type functions return -1 and set errno
to [ETXTBSY] if the file is already open for writing.

3.2 Process Termination

3.2.1 Wait for Process Termination

3.2.1.2 Description

The wait() and waitpid() functions may report the status of any traced child
that is in the stopped state. A child process is traced if it has called ptrace() with
14 POSIX.1 Conformance

3.2.2 Terminate a Process

a first argument of PTRACE_TRACME, or if its parent process has called ptrace()

with a first argument of PTRACE_ATTACH and a second argument equal to the
child�s process ID.

3.2.2 Terminate a Process

3.2.2.2 Description

Children of a process terminated by _exit() are assigned the init process
(process ID 1) as their parent process.

3.3 Signals

3.3.1 Signal Concepts

3.3.1.1 Signal Names

The following additional signals beyond those required by POSIX.1 occur
in LynxOS:

Signal Name Description

SIGTRAP Trace trap - debugger trap

SIGCORE Kill with core dump (sent by the user)

SIGSYS Bad system call number

SIGURG Urgent condition (data) on socket

SIGIO I/O possible on descriptor (sent when I/O is possible (data has
arrived) on a file descriptor on which an
fcntl(..., FASYNC) was performed.)

SIGVTALRM Virtual time alarm-This signal is sent when a virtual timer (set
by setitimer (ITIMER_VIRTUAL)) expires.

SIGPROF Profiling alarm-This signal is sent when a profile timer (set by
setitimer(ITIMER_PROFILE)) expires.

SIGWINCH Window size change

SIGPRIO Sent to a process when its priority or process group is changed
POSIX.1 Conformance 15

 POSIX.1 Conformance Document

3.3.1.2 Signal Generation and Delivery

If a subsequent occurrence of a pending signal is generated, the signal is not
delivered more than once.

Signals are generated under the following conditions not specified in POSIX.1:

3.3.2 Send a Signal to a Process

3.3.2.2 Description

On LynxOS systems, kill(pid, sig) exhibits the following implementation-
specific behavior:

If pid is zero, sig is sent to all processes whose process group ID is equal
to the process group ID of the sender, and for which the process has
permission to send a signal, excluding the null process (process ID 0) and
the init process (process ID 1).

LynxOS does not provide extended security controls and does not impose any
restrictions on the sending of signals, including the null signal.

Signal Name Generation Condition

SIGTRAP Trace trap - debugger trap

SIGCORE Kill with core dump (sent by the user)

SIGBUS Bus error (user program access non-existent, or non-aligned memory

SIGSYS Bad system call number

SIGURG Urgent condition (data) on socket

SIGIO I/O possible on descriptor (sent when I/O is possible (data has
arrived) on a file descriptor on which an fcntl(..., FASYNC)
was performed.)

SIGVTALRM Virtual time alarm-This signal is sent when a virtual timer (set by
setitimer(ITIMER_VIRTUAL)) expires.

SIGPROF Profiling alarm-This signal is sent when a profile timer (set by
setitimer(ITIMER_PROFILE)) expires.

SIGWINCH Window size change

SIGPRIO Sent to a process when its priority or process group is changed
16 POSIX.1 Conformance

3.3.3 Manipulate Signal Sets

3.3.3 Manipulate Signal Sets

3.3.3.4 Errors

For sigaddset(), sigdelset(), and sigismember(), LynxOS detects the
conditions and returns the corresponding errno.

� [EINVAL]=The argument is not a valid signal number

3.3.6 Examine Pending Signals

3.3.6.4 Errors

On LynxOS systems, the following error condition is detected for
sigpending():

� [EFAULT]=The argument does not point to allocated memory in the
process� address space.

4. Process Environment

4.2. User Identification

4.2.2 Set User and Group IDs

4.2.2.2 Description

These are the ways in which a process obtains appropriate privileges are described
in Section 2.2.2.4 of this document.
POSIX.1 Conformance 17

 POSIX.1 Conformance Document

4.4 System Identification

4.4.1 Get System Name

4.4.1.2 Description

The utsname structure members and corresponding formats are listed in the
following table.

4.4.1.4 Errors

On LynxOS systems, the following error condition is detected for uname():

� [EFAULT]=The argument does not point to allocated memory in the
process� address space.

4.5 Time

4.5.1 Get System Time

4.5.1.4 Errors

On LynxOS systems, no error conditions are detected for time().

Member Name Format

sysname char[256]

nodenam char[256]

release char[9]

version char[9]

machine char[9]
18 POSIX.1 Conformance

4.5.2 Get Process Times

4.5.2 Get Process Times

4.5.2.4 Errors

The following error condition is detected for times():

[EFAULT] The argument does not point to allocated memory in the
process� address space.

4.6 Environment Variables

4.6.1 Environment Access

4.6.1.4 Errors

No error conditions are detected for getenv().

4.7 Terminal Identification

4.7.1 General Terminal Path Name

4.7.1.4 Errors

No error conditions are detected for ctermid().

4.7.2 Determine Terminal Device Name

4.7.2.4 Errors

No error conditions are detected for ttyname() or isatty().
POSIX.1 Conformance 19

 POSIX.1 Conformance Document

4.8 Configurable System Variables

4.8.1 Get Configurable System Variables

4.8.1.2 Description

LynxOS does not support any system variables for sysconf() beyond those listed
in Table 4-2 in the standard.

5. Files and Directories

5.1 Directories

5.1.1 Format of Directory Entries
A directory�s link count is incremented when a subdirectory is created.

5.1.2 Directory Operations

5.1.2.2 Description

If the dirp argument does not point to an open directory stream, readdir()
returns a NULL pointer and sets errno to [EBADF].

For opendir(), LynxOS detects the conditions and returns the corresponding
errno values for [EMFILE] and [ENFILE].

For closedir(), LynxOS detects the conditions and returns the corresponding
errno value for [EBADF].
20 POSIX.1 Conformance

5.2 Working Directory

5.2 Working Directory

5.2.2 Get Working Directory Path Name

5.2.2.4 Errors

For getcwd(), LynxOS detects the conditions and returns the corresponding
errno value:

� [EINVAL]=size is less than or equal to zero.

� [ERANGE]=size is greater than zero but smaller than the length of the
pathname plus one.

� [EACCESS]=A directory in the path denies read or search permission.

5.3 General File Creation

5.3.1 Open a File

5.3.1.2 Description

A newly-created file�s group ID is set to the group ID of the parent directory.

If O_TRUNC is set in oflag and PATH refers to a file type other than a regular
file, a FIFO special file, or a terminal device file, the effect of open(path,
oflag, mode) is as follows:

For contiguous files, the file size is set to 0 (ls -l shows a 0 size for the file),
but its block size (the number of blocks set aside for the contiguous file) is
unchanged. For all other file types, the O_TRUNC flag is ignored.

5.3.1.4 Errors

On LynxOS systems, the open() function returns -1 and sets errno.

� [EACCES]=Requested access for file denied according to the mode of the
file, or a directory in the path denied search permission.

� [EEXIST]=O_EXCL was requested, and the file exists.

� [EFAULT]=path does not point to allocated memory in the process's
address space.
POSIX.1 Conformance 21

 POSIX.1 Conformance Document

� [EINTR]=A signal interrupted the open call.

� [EISDIR]=The file is a directory, and write access was requested.

� [ELOOP]=Too many symbolic links were encountered when traversing
the path.

� [EMFILE]=The maximum number of files open per process has been
reached.

5.3.3 Set File Creation Mask

5.3.3.2 Description

When bits other than the file permission bits are set in the mask argument to
umask(), all bits other than the file permission bits are ignored.

5.3.3.3 Errors

No error conditions are detected by mask().

5.3.4 Link to a File

5.3.4.2 Description

link(existing,new) does not succeed when existing and new refer to
locations on different file systems.

link() is not supported on directories.

The calling process need not have permission to access the existing file when
linking files.

5.3.4.3 Errors

Link returns 0 if the link was made, or -1 if not. If the call fails, errno will contain
one of the following:

� [ENOTDIR] =An element of either path prefix is not a directory.

� [ENAMETOOLONG] =path1 or path2 is too long.

� [ENOENT] =An element of either path prefix does not exist.

� [ENOENT] =path1 does not exist.
22 POSIX.1 Conformance

5.4 Special File Creation

� [EEXIST] =path2 does exist.

� [EPERM] =path1 refers to a directory.

� [ELOOP] =Too many symbolic links were encountered when traversing
one of the paths.

� [EROFS] =Making the link requires writing to a directory on a read-only
file system.

� [EACCES] =Making the link requires writing to a directory that denies
write permission.

� [EFAULT]=path1 or path2 does not point to allocated memory in the
process' address space.

� [EXDEV]=path1 and path2 are on different file systems.

5.4 Special File Creation

5.4.1 Make a Directory

5.4.1.2 Description

When bits other than the file permission bits are set in the mode argument to
mkdir(), the mkdir() function ignores them.

A newly-created directory�s group ID is set to the group ID of the parent directory.

5.4.1.3 Errors

mkdir returns 0 if the directory was created, or -1 if not. If the call fails, errno
will contain one of the following:

� [ENOTDIR]=An element of the path prefix is not a directory.

� [ENAMETOOLONG]=The path name is too long.

� [ENOENT]= An element of the path prefix does not exist.

� [EEXIST]=The named file already exists.

� [ELOOP]=Too many symbolic links were encountered when traversing
the path.

� [EACCES]= A directory in the path denied search permission, or the
parent directory of the directory to be created denied write permission.
POSIX.1 Conformance 23

 POSIX.1 Conformance Document

� [EFAULT]=path does not point to allocated memory in the process'

address space.

� [EIO]= An I/O error occurred.

5.4.2 Make a FIFO Special File

5.4.2.2 Description

When bits other than the file permission bits are set in the mode argument to
mkfifo(), the mkfifo() function ignores them.

A newly-created FIFO�s group ID is set to the group ID of the parent directory.

5.4.2.3 Errors

If any of the following conditions occur, the mkfifo() function shall return -1 and
set errno to the corresponding value;

� [EACCES]= Search permission is denied for a component of the path
prefix or write permission is denied on the parent directory of the file to
be created

� [EEXIST]= The named file already exists.

� [ENAMETOOLONG]= The length of the path string exceeds PATH_MAX,
or a pathname component is longer than {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

� [ENOENT]= A component of the path prefix does not exist, or the path
argument points to an empty string.

� [ENOSPC]= The directory that would contain the new file cannot be
extended, or the file system is out of file allocation resources.

� [ENOTDIR]= A component of the path prefix is not a directory.

� [EROFS]=The named file resides on a read-only file system.

5.5 File Removal

5.5.1 Remove Directory Entries
LynxOS does not support the use of unlink() on directories.
24 POSIX.1 Conformance

5.5.2 Remove a Directory

5.5.2 Remove a Directory

5.5.2.2 Description

If the named directory is the root directory or the current working directory of any
process, rmdir() fails and sets errno to [EBUSY].

5.5.2.4 Errors

If the directory indicated in the call to rmdir() is being used by another process,
rmdir() succeeds.

rmdir returns 0 if successful, or -1 if not. If the call fails, errno will contain one of
the following:

� [ENOTDIR]= An element of the path is not a directory.

� [ENAMETOOLONG]= The path name is too long.

� [ENOENT]= The directory does not exist.

� [ELOOP]= Too many symbolic links were encountered when traversing
the path.

� [EACCES]= Write access for directory denied according to the mode of
the file, or a directory in the path denied search permission.

� [EFAULT]= path does not point to allocated memory in the process'
address space.

� [EBUSY]= The directory is the root of a mounted system.

� [EROFS]= The directory is on a read-only file system.

� [ENOTEMPTY]= The directory has entries other than just �.� and �..�

5.5.3 Rename a File

5.5.3.2 Description

In a call to rename(old, new), if the old argument points to the path name of
a directory, write access permission is required for the directory named by old,
and, if it exists, for the directory named by new.
POSIX.1 Conformance 25

 POSIX.1 Conformance Document

5.5.3.4 Errors

In a call to rename(path1, path2), if the old argument and, if it exists, the
new argument points to the path name of a directory and one of the directories
indicated in the call to rename() is in use by the system or by another process,
rename() fails.

5.6 File Characteristics

5.6.2 Get File Status

5.6.2.2 Description

LynxOS provides no additional or alternate file access control mechanisms that
cause stat() or fstat() to fail. Information included in the stat struct is defined
in /usr/include/sys/stat.h:

struct stat {
dev_t st_dev; /* block device inode is on */
ino_t st_ino; /* inode number */
int st_mode; /* protection and file type */
int st_nlink; /* hard link count */
int st_uid; /* user id */
int st_gid; /* group id */
dev_t st_rdev; /* the device number for a special file */
off_t st_size; /* number of bytes in a file */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modify */
time_t st_ctime; /* time of last status change */
long st_blksize; /* size of a block */
long st_blocks; /* number of blocks in the file */

};

5.6.3 Check File Accessibility

5.6.3.4 Errors

For access(), LynxOS detects the conditions and returns the corresponding
errno value for [EINVAL].

On LynxOS systems, the access() function returns -1 and sets errno to
[ETXTBSY] if write permission (W_OK) is being requested, and the file is currently
being executed.

If the call fails errno will contain one of the following:

� [ENOTDIR]= An element of the path prefix is not a directory.
26 POSIX.1 Conformance

5.6.4 Change File Modes

� [ENOENT]= The path name is too long, or the file does not exist.

� [EPERM]= The path name contains a non-ASCII character.

� [ELOOP]= Too many symbolic links were encountered when traversing
the path.

� [EROFS]= Write access is denied because file is on a read-only file
system.

� [ETXTBSY]= Write access is denied because the file is being executed.

� [EACCES]= Requested access for file denied according to the mode of
the file, or a directory in the path denied search permission.

� [EFAULT]= path does not point to allocated memory in the process'
address space.

5.6.4 Change File Modes

5.6.4.2 Description

chmod() has the following effect on file descriptors that refer to files that are open
at the time of the call:

The chmod() call takes effect immediately, but does not affect the availability of
data from a file descriptor or stream that is already open.

5.6.4.3 Errors

chmod returns 0 if successful, or -1 if not. If chmod fails, errno will contain one
of the following:

� [ENOTDIR]=An element of the path prefix is not a directory.

� [ENAMETOOLONG]=The path name is too long.

� [ENOENT]=The file does not exist.

� [ELOOP]= Too many symbolic links were encountered when traversing
the path.

� [EACCES]=A directory in the path denied search permission.

� [EFAULT]=path does not point to allocated memory in the process's
address space.

� [EROFS]=The file is on a read-only file system.
POSIX.1 Conformance 27

 POSIX.1 Conformance Document

5.6.5 Change Owner and Group of a File

5.6.5.2 Description

If the path argument to chown() refers to a regular file and if the call is made by
a process with appropriate privileges, the set-user-ID (S_ISUID) and set-group-ID
(S_ISGID) bits of the file mode are cleared upon successful return from chown().

5.6.5.4 Errors

For chown(), LynxOS does not detect the conditions and does not return the
corresponding errno value for [EINVAL].

chown and fchown return 0 if successful, -1 if not. If an error occurs errno will
contain one of the following values:

� [EPERM]= The effective user ID of the calling process is not 0, and either
the process's effective user ID is not equal to the file's user ID, uid is not
equal to the file's user ID, or gid is not equal to the process's group ID or
one of its supplementary groups IDs.

� [ENOTDIR]= An element of the path prefix is not a directory.

� [ENAMETOOLONG]= The path name is too long.

� [ENOENT]= The file does not exist.

� [ELOOP]= Too many symbolic links were encountered when traversing
the path.

� [EACCES]= A directory in the path denied search permission.

� [EFAULT]=path does not point to allocated memory in the process'
address space.

� [EROFS]= The file is on a read-only file system. If fchown fails, errno
will contain one of the following:

� [EBADF]= fd is not a valid file descriptor.

� [EINVAL]= fd refers to a pipe.

� [EROFS]= The file is on a read-only file system.

If fchown fails, errno will contain one of the following:

� [EBADF]=fd is not a valid file descriptor.
28 POSIX.1 Conformance

5.7 Configurable Path Name Variables

� [EINVAL]=fd refers to a pipe.

� [EROFS]=The file is on a read-only file system.

5.7 Configurable Path Name Variables

5.7.1 Get Configurable Path Name Variables

5.7.1.2 Description

LynxOS does not support any variables for pathconf() beyond those listed in
Table 5-2 in the standard.

5.7.1.4 Errors

For pathconf(), LynxOS detects the conditions and returns the corresponding
errno values for the following:

• [EINVAL]

• [EACCES]

• [ENAMETOOLONG]

• [ENOENT]

• [ENOTDIR]

For fpathconf(), LynxOS detects the conditions and returns the corresponding
errno values for the following:

� [EBADF]

� [EINVAL]
POSIX.1 Conformance 29

 POSIX.1 Conformance Document

6. Input and Output Primitives

6.4 Input and Output

6.4.1 Read from a File

6.4.1.2 Description

If read() is interrupted by a signal after it has successfully read some data, it
returns the number of bytes read.

If the fildes argument refers to a device special file, read() requests made
after an end-of-file indication has been returned have the following result: Nothing
is read, no error occurs, and a count of zero bytes is returned.

If the value of the count argument to read() is greater than {SSIZE_MAX}, no
error occurs, and zero is returned.

6.4.2 Write to a File

6.4.2.2 Description

If write() is interrupted by a signal after it successfully writes some data, it
returns the number of bytes written.

If the value of nbyte is greater than {SSIZE_MAX}, the result of a call to
write(fd, buff, count) is as follows: No error occurs, and zero
is returned.
30 POSIX.1 Conformance

6.5 Control Operations on Files

6.5 Control Operations on Files

6.5.2 File Control

6.5.2.2 Description

Advisory record locking is supported for the following types of files:

� Regular files

� Block special files

� Contiguous files

6.5.2.4 Errors

If fcntl() fails, errno will contain one of the following:

� [EBADF]= fd is not a valid open file descriptor.

� [EBADF]=cmd is F_SETLK or F_SETLKW and the process does not
have the appropriate read or write permissions on the file.

� [EMFILE]=There are no more free file descriptors.

� [EINVAL]=cmd is F_DUPFD and arg is not a valid file descriptor
number.

� [EINVAL]=cmd is F_GETLK, F_SETLK, or F_SETLKW and the flock
structure pointed to by arg is not valid.

� [EINVAL]=cmd is not one of the valid commands.

� [EFAULT]= cmd is F_GETLK, F_SETLK, or F_SETLKW and arg does
not point to allocated memory in the process address space.

� [EACCES]= cmd is F_SETLK, the lock type (l_type) is F_RDLCK
(shared lock), and the segment of the file to be locked already has an
exclusive lock held by another process, or the lock type is F_WRLCK
(exclusive lock) and the segment of the file to be locked already has
either a shared or exclusive lock held by another process.

� [ENOLCK]= cmd is F_SETLK or F_SETLKW, a lock is being created
(F_RDLCK or F_WRLCK), and there are no more file lock entries
available.
POSIX.1 Conformance 31

 POSIX.1 Conformance Document

� [EDEADLK]=cmd is F_SETLKW, the lock is blocked by another process'

lock, and suspending the calling process would cause a deadlock situation
to occur.

� [EDEADLK]=cmd is F_SETLK or F_SETLKW, a lock is being removed
(F_UNLCK), and there are no more file lock entries available.

6.5.3 Reposition Read/Write File Offset

6.5.3.2 Description

lseek() behaves as follows on devices incapable of seeking:

� For pipes, fifos, and UNIX domain sockets, lseek() returns -1 and
sets errno to [ESPIPE].

� For non-UNIX domain sockets, lseek() returns zero.

6.7 Asynchronous I/O

There are no circumstances under which the priority ordering of asynchronous I/O
requests is relaxed.

The relative priority of asynchronous I/O versus synchronous I/O is identical.

All asynchronous I/O operations are cancellable.

7. Device- and Class-Specific Functions

7.1 General Terminal Interface

LynxOS supports asynchronous ports, network connections, and synchronous ports
using the General Terminal Interface defined in POSIX.1.
32 POSIX.1 Conformance

7.1.1 Interface Characteristics

7.1.1 Interface Characteristics

7.1.1.3 The Controlling Terminal

If a session leader has no controlling terminal and opens a terminal device that is
not already associated with a session with O_NOCTTY clear, the terminal becomes
the controlling terminal of the session leader.

7.1.1.5 Input Processing and Reading Data

If a limit exists on the number of bytes that may be stored in the input queue, and
this limit is exceeded, additional bytes are discarded.

7.1.1.6 Canonical Mode Input Processing

When there are {MAX_CANON} characters in the input queue for a given terminal
device for which MAX_CANON is supported, each subsequent character is ignored
and the audible bell character (Ctrl-G) is echoed.

7.1.1.8 Writing Data and Output Processing

LynxOS provides a buffering mechanism for write()s to a terminal device. The
written bytes are added to a queue. A separate task, called a kernel thread, reads the
bytes from this queue and actually performs the transmission to the
terminal device.

7.1.1.9 Special Characters

The START and STOP characters may be changed.

7.1.1.10 Modem Disconnect

After a modem disconnect occurs for a controlling terminal (where CLOCAL is not
set in the c_cflag field for the terminal), if a process in a background process
group attempts to read from its controlling terminal, and either the process is
ignoring or blocking the SIGTTIN signal or the process group of the process is
orphaned, the read() call returns -1 and sets errno to [EIO].
POSIX.1 Conformance 33

 POSIX.1 Conformance Document

7.1.2 Parameters That Can Be Set

7.1.2.2 Input Modes

A break condition is not defined in any context other than asynchronous serial
data transmission.

STOP and START characters are transmitted under the following conditions:

� When tcflow() is called with action argument of TCIOFF, then STOP

is transmitted

� When ioctl() is called with a request value of TIOCIOFF, then STOP

is transmitted

� When a hangup condition is detected and CLOCAL is not set in
c_cflag, then a STOP followed by a START is transmitted

� When tcflow() is called with action equal to TCION, then START is
transmitted

� When ioctl() is called with request of TIOCION, then START is
transmitted

The initial input control value after open() is:

� BRKINT - set

� ICRNL - set

� IGNBRK - not set

� IGNCR - not set

� IGNPAR - set

� INLCR - not set

� INPCK - not set

� ISTRIP - not set

� IXOFF - not set

� IXON - set

� PARMRK - not set
34 POSIX.1 Conformance

7.1.2 Parameters That Can Be Set

7.1.2.3 Output Modes

Terminal output processing when OPOST is set in c_oflag is as follows:

� If ONLCR is set in c_oflag, then <newline> is mapped to
<carriage_return><newline> on output. Also, upon line
termination, <carriage_return><newline> is echoed.

� If ONLRET is set in c_oflag, then <newline> is echoed as
<carriage_return>.

� If the TABDLY bits in c_oflag are set to TAB3, then on output, tab
characters are replaced with the appropriate number of space characters
such that the tabs occur every 8 characters. Also, tabs are echoed in the
same fashion.

The initial output control value after open() is as follows:

� OPOST - set

� ONLCR - set

7.1.2.4 Control Modes

The initial hardware control values after open() are as follows:

� CLOCAL - not set

� CREAD - set

� CSIZE - CS8

� CSTOPB - not set

� HUPCL - not set

� PARENB - not set

� PARODD - not set

7.1.2.5 Local Modes

If IEXTEN is set, the following functions are recognized from the input data:

� Recognize reprint character

� Recognize word erase character

� Recognize BSD dsuspc character
POSIX.1 Conformance 35

 POSIX.1 Conformance Document

� Recognize literal character

� Allow the feature of restarting suspended input on any character
(DECCTLQ) to be enabled/disabled

When IEXTEN has been set it interacts with ICANON, ISIG, IXON, or IXOFF in the
following manner:

If ICANON is set (independent of ISIG), the following are enabled:

- Recognize reprint character

- Recognize word erase character

- Recognize BSD dsuspc character

- Echo control character as ^<char>

If ISIG is set and ICANON is not set:

- Echo control character as ^<char> is enabled

IXON and IXOFF do not affect IEXTEN

Regardless of the values of ICANON and ISIG, the ability to enable or
disable the �restart suspended input on any char (DECCTLQ)� facility is
possible using the IXANY bit of c_iflag.

The initial local control value after open() is:

� ECHO - set

� ECHOE - set

� ECHOK - set

� ECHONL - not set

� ICANON - set

� IEXTEN - set

� ISIG - set

� NOFLSH - not set

� TOSTOP - not set
36 POSIX.1 Conformance

7.1.3 Baud Rate Functions

7.1.2.6 Special Control Characters

The initial values of control characters are defined as follows:

7.1.3 Baud Rate Functions

7.1.3.2 Description

If an attempt is made to set an unsupported baud rate, cfsetospeed() and
cfsetispeed() perform no actions.

7.1.3.4 Errors

No error conditions are detected for the following:

� cfgetospeed()

� cfsetospeed()

� cfgetispeed()

� cfsetispeed()

Special Control Characters

Canonical Mode Non-Canonical Mode Initial Value

VEOF 4 (Ctrl-D)

VEOL -1

VERASE 8 (Ctrl-H)

VINTR VINTR 3 (Ctrl-C)

VKILL 21 (Ctrl-U)

VMIN 1

VQUIT VQUIT 28 (Ctrl-\)

VSUSP VSUSP 26 (Ctrl-Z)

VTIME 0

VSTART VSTART 17 (Ctrl-Q)

VSTOP VSTOP 19 (Ctrl-S)
POSIX.1 Conformance 37

 POSIX.1 Conformance Document

7.2 General Terminal Interface Control Functions

7.2.1 Get and Set State
LynxOS supports using tcsetattr() to set a terminal�s input and output baud
rates to different values.

7.2.2 Line Control Functions

7.2.2.2 Description

If the duration parameter to tcsendbreak() is not zero, zero-valued bits are sent
for 0.25 seconds.

7.2.2.3 Errors

Upon successful completion, a value of zero is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error. If any of the following conditions
occur, the tcsendbreak() function returns -1 and sets errno to the
corresponding value;

� [EBADF]= The fd argument is not a valid file descriptor.

� [ENOTTY]= The file associated with fd is not a terminal.

If any of the following conditions occur, the tcdrain() function returns -1 and
sets errno to the corresponding value:

� [EBADF]= The fd argument is not a valid file descriptor.

� [EINVAL]= The queue_selector argument is not a proper value.

� [ENOTTY]= The file associated with fd is not a terminal.

If any of the following conditions occur, the tcflow() function returns -1 and sets
errno to the corresponding value:

� [EBADF]= The fd argument is not a valid file descriptor.

� [EINVAL]= The action argument is not a proper value.

� [ENOTTY]= The file associated with fd is not a terminal.
38 POSIX.1 Conformance

8. Language-Specific Services for the C Programming Language

8. Language-Specific Services for the C Programming
Language

8.1 Referenced C Language Routines

8.1.2 Extensions to setlocale() Function

8.1.2.2 Description

Locale values recognized by setlocale() are �C� and �POSIX.1�

For setlocale(), the default value is �C� for the following required categories:

� LC_CTYPE

� LC_COLLATE

� LC_TIME

� LC_NUMERIC

� LC_MONETARY

If no non-null environment variable (LC_ALL, LANG, or the environment variable
corresponding to the category being set) is present to supply a value for locale,
setlocale(category, "") sets the specified locale category to �C.�

When the first character in the TZ environment variable is a colon, the characters
that follow the colon are interpreted as follows:

Characters beyond the colon are ignored.

A TZ environment variable that begins with a colon is treated the same as a null
TZ environment variable.

8.2 C Language Input/Output Functions

8.2.1 Map a Stream Pointer to a File Descriptor

8.2.1.4 Errors

No errors are detected for fileno().
POSIX.1 Conformance 39

 POSIX.1 Conformance Document

8.2.2 Open a Stream on a File Descriptor

8.2.2.4 Errors

If unsuccessful, fdopen() returns a NULL pointer.

8.2.3 Interactions of Other FILE-Type C Functions
For function calls involving two or more file handles, when the actions are
coordinated as described in section 8.2.3 of POSIX.1 the output is seen exactly
once under all conditions.

8.3 Other C Language Functions

8.3.2 Set Time Zone

8.3.2.2 Description

When the environment variable TZ is not set, the LynxOS kernel is queried (using
the gettimeofday() system call) to provide any time zone information it
may have.

9. System Databases

9.1 System Databases

If the initial working directory field is null, that field is interpreted as follows:

The root directory (/) is used as a default.

If the user program field is null, that field is interpreted as follows:

The shell program /bin/sh is used as a default.
40 POSIX.1 Conformance

10. Data Interchange Format

10. Data Interchange Format

10.1 Archive/Interchange File Format

The format-reading and format-creating utilities are named tar and cpio. See the
commands manual for a description of these utilities and the interfaces to them.

10.1.1 Extended tar Format
LynxOS supports the use of characters outside the portable filename character set
in names for files, users, and/or groups. The following encoding is provided for
interchange purposes:

The tar utility does not perform any encoding on the characters used for file
names, user names, and group names.

If a file name is found on the medium that would create an invalid file name on the
system, the data from the file is not stored on the file hierarchy and a warning
is issued.

10.1.2 Extended cpio Format

10.1.2.1 cpio Header

For character or block special files, c_rdev contains the device�s major and
minor numbers.

10.1.2.2 cpio File Name

If a file name is found on the medium that would create an invalid file name, the
data from the file is not stored on the file hierarchy and a warning is issued.

10.1.3 Multiple Volumes
The format-creating utilities for the ustar and cpio formats determine what
file to read or write for the next volume of a multivolume archive as follows:
POSIX.1 Conformance 41

 POSIX.1 Conformance Document

ustar Format

1. When the tar utility detects end-of-media, it closes the device and
prompts the user to change media and press the Enter key to continue.

2. After the user presses Enter, the tar utility opens the same device and
continues to read/write the archive where it left off.

cpio Format

1. When the cpio utility detects end-of-media, it closes the device and
prompts the user with one of two possible messages, depending on how
the cpio utility is accessing the archive.

2. If standard input (for extracting) or standard output (for creating) is being
used, the cpio utility asks the user to enter the name of a device on
which to continue the archive extraction/creation. Otherwise, if neither
standard input nor standard output is being used, the cpio utility simply
prompts the user to change media and press Return. The same device is
used to continue the archive.

11. Synchronization

LynxOS does not require the name of a semaphore to begin with a / character. No
special interpretation of / characters within the name is done.

sem_open() returns failure with an error code of EINVAL if O_CREAT was
specified in the flags argument and the initial value of the semaphore is greater
than SEM_VALUE_MAX.

11.1 Semaphore Characteristics

LynxOS supports the POSIX semaphores option.

11.2.3 Initialize/Open a Named Semaphore

11.2.3.2. Description

When a named semaphore is created, the group ID of the semaphore is set to the
effective group ID of the process.
42 POSIX.1 Conformance

11.3.1 Mutex Initialization Attributes

LynxOS does not place the POSIX semaphores in the file system, so all slashes are
not relevant to locating the named semaphore. It is a purely
string-compare operation.

11.3.1 Mutex Initialization Attributes
pthread_mutexattr_t

The default attributes for a mutex when it is statically declared or when it is
initialized via pthread_mutex_init() called with a NULL

pthread_mutexattr_t *, or with a pointer to a pthread_mutexattr_t that
has been initialized via pthread_mutexattr_init() is as follows:

� The protocol attribute is PTHREAD_PRIO_INHHERIT.

� The prioceiling attribute is irrelevant, since the protocol is not
PTHREAD_PRIO_PROTECT.

� The process-shared attribute is PTHREAD_PROCESS_PRIVATE.
However, this attribute is not considered when creating a mutex, since all
mutexes can be shared between processes under LynxOS.

Attempts to operate on a pthread_mutexattr_t that has either not been
initialized (statically or via pthread_mutexattr_init()) or uninitialized via
pthread_mutexattr_destroy() results in an error.

11.4.1 Condition Variable Initialization Attributes
pthread_condattr_t

The default attribute for a condition variable, whether it is statically initialized,
created via pthread_cond_init() with a NULL pthread_condattr_t *, or
with a pointer to a pthread_condattr_t that has been initialized via
pthread_condattr_init() is as follows:

The process-shared attribute is PTHREAD_PROCESS_PRIVATE, however, this
attribute is not considered when creating a condition variable, since all condition
variables can be shared between processes under LynxOS.

Attempts to operate on a pthread_condattr_t that has either not been
initialized (statically or via pthread_condattr_init()) or uninitialized via
pthread_condattr_destroy() results in an error.
POSIX.1 Conformance 43

 POSIX.1 Conformance Document

12. Memory Management

When a region of memory is locked, its virtual-to-physical mapping is fixed.

12.1.1 Lock/Unlock the Address Space of a Process
When a process calls mlockall with an argument of MCL_FUTURE, and the
amount of memory being attempted to lock exceeds the amount of physical
memory, the allocation request fails.

12.1.2 Lock/Unlock a Range of Process Address Space
There are no alignment restrictions on the address passed to mlock().

12.2.4 Memory Object Synchronization
There are no alignment restrictions on addresses passed to msync(), but the
current implementation does not support unmapped files.

12.3.1 Memory Mapped File Restrictions
The mmap interface does not support NFS mounted files.

13. Execution Scheduling

13.2.3 SCHED_OTHER
The SCHED_OTHER execution scheduling policy is a priority quantum scheduler.
44 POSIX.1 Conformance

13.3.1 Set Scheduling Parameters

13.3.1 Set Scheduling Parameters

13.3.1.2 Description

The conditions under which a process may change another process�s scheduling
parameters is if the calling process has appropriate privileges, or the effective UID
of the target is equal to that of the requesting process.

There are no restrictions on a thread setting its own scheduling policy.

13.4.2 Scheduling Contention Scope
Any scheduling contention scope value is treated as scheduling contention scope
PTHREAD_SCOPE_SYSTEM. That is, all threads compete for processors with all
other threads in the system.

13.4.3 Scheduling Allocation Domain
There is no real notion of a scheduling allocation domain, since all supported
platforms under LynxOS are uniprocessor systems.

14. Clocks and Timers

14.1.4 Manifest Constants
The resolution of nanosleep() is the same as that of the clock_gettime()
with a clock ID of CLOCK_REALTIME.

14.2.1 Clocks

14.2.1.2 Description

Supported clock IDs other than CLOCK_REALTIME is a configuration option.

There is no effect on armed per-process timers if a call to clock_settime()
is done.

The level of privilege to set a clock via clock_settime() is that of
appropriate privilege.
POSIX.1 Conformance 45

 POSIX.1 Conformance Document

14.2.4 Per-Process Timers

14.2.4.2 Description

The value of DELAYTIMER_MAX is INT_MAX.

15. Message Passing

15.2.1 Open a Message Queue

15.2.1.2 Description

There is no requirement for names passed to mq_open() to start with a /.
Furthermore, the conditions that mq_open() returns failure with an error code of
EINVAL is of the attr argument is invalid.

15.2.7 Set Message Queue Attributes

15.2.7.2 Description

When _POSIX_SOURCE is defined, the only flag that mq_setattr()

understands is O_NONBLOCK.

16. Thread Management

16.2.1 Thread Creation Attributes
pthread_attr_t

The default attributes for a created thread, when pthread_create() is called
with a pointer to an initialized pthread_attr_t (via pthread_attr_init())
is as follows:

� The stacksize attribute is 4 Mb.

� The stackaddr attribute is not supported since
{POSIX_THREAD_ATTR_STACKADDR} is not defined.
46 POSIX.1 Conformance

18. Thread Cancellation

� The inheritsched attribute is PTHREAD_INHERIT_SCHED.

� The priority attribute is irrelevant, since the priority is inherited from
the caller of pthread_create ().

� The schedpolicy attribute is SCHED_FIFO.

� The detachstate attribute is PTHREAD_CREATE_JOINABLE.

� The contentionscope attribute is PTHREAD_SCOPE_SYSTEM.
However, this attribute is not considered when creating a thread under
LynxOS, because all threads compete for resources on a
system-wide basis.

� The guardsize attribute (from P1003.1j Draft 7) is PAGESIZE.

Attempts to operate on a pthread_attr_t that has either not been initialized
(statically or via pthread_attr_init()) or uninitialized via
pthread_attr_destroy() results in an error.

18. Thread Cancellation

Previous releases of LynxOS used a special signal to implement thread
cancellation. This can lead to problems if an application blocks or ignores the
special signal. LynxOS 4.0 implements cancellation as a mechanism similar to, but
distinct from a special signal to avoid these potential problems.
POSIX.1 Conformance 47

 POSIX.1 Conformance Document
48 POSIX.1 Conformance

Index
A

access() 26
Accessibility, file 26
address space 2

locking and unlocking of a process 44
page-aligned range 4

appropriate privileges 2
archive 42

multivolume 41
Archive/Interchange file format 41
asynchronous I/O 32

completion 2
operation 2

attributes
condition variable 43
message passing 46
message queue 46
mutex initialization 43
thread creation 46

B

Baud Rate Functions 37
blocked thread 3

C

C Language Definition 12
C Language Input/Output Functions 39
C language routines, referenced 39
Canonical Mode Input Processing 33

cfsetispeed() 37
cfsetospeed() 37
character special files supported 3
child process 5, 14
chmod() 27
chown() 28
class-specific functions 32
clock 3
clock tick 3
clock_gettime() 45
clock_settime() 45
Clocks and Timers 45
closedir() 20
Compile-Time Symbolic Constants for

Portability Specifications 13
Concepts, General 9
condition variable 4
condition variable, initialization attributes 43
contacting LynuxWorks ix
control functions, general terminal interface 38
Control Operations on Files 31
Controlling Terminal 33
cpio utility 41, 42

File Name 41
Header 41

ctermid() 19

D

Data Interchange Format 41
data types 10
Databases, System 40
default directory 40
default shell program 40
Definitions 2
Device- and Class-Specific Functions 32
POSIX.1 Conformance 49

Index

Directories 20

default 40
entry format 20
making 23
operations 20
removing 25
removing entries 24
working 21

documents, LynxOS vii

E

Environment Access 19
Environment Description 11
environment variable names 11
Environment Variables 19
Error Numbers 9
Examine Pending Signals 17
Execution Scheduling 44
Execution-Time Symbolic Constants for

Portability Specifications 13
Extended cpio Format 41
extended security controls 9
Extended tar Format 41
Extensions to setlocale () Function 39

F

fcntl() 31
FIFO special file 24
file

accessibility 26
archive/interchange format 41
changing mode 27
creating special 23
creation 21
execution 14
group ID 21
linking to 22
opening 21
owner or group 28
removal 24
rename 25
size 21
status 26

file access permissions 9

file characteristics 26
file control 31
file creation mask 22
file descriptor 39, 40
file system, read-only 6
file types supported 4
fileno() 39
Files and Directories 20
FIPS I5I-2 specification 1
fork() 14
format, data interchange 41
format, directory entries 20
fpathconf() 29
fstat() 26
function

baud rate 37
device-specific/class-specific 32
others, C language 40
pure 8
reentrant 6

G

General Requirements 2
General Terminal Interface 32
general terminal interface control functions 38
getcwd() 21
getenv() 19
gettimeofday() 40
group ID, setting 17

H

hardware control values, initial 35

I

Implementation Conformance 1
information, transferred 4
init process 5, 15, 16
Initialize/Open a Named Semaphore 42
inode 6
input and output baud rate, terminal 38
Input and Output Primitives 30
Input Modes 34
50 POSIX.1 Conformance

input queue 33
Interactions of Other FILE-Type C Functions 40
ioctl() 34
isatty() 19

K

kill(pid, sig) 16

L

Language-Dependent Services for the C
Programming Language 2

Language-Specific Services for the C
Programming Language 39

line control functions, terminal 38
link count, directory 20
Link to a File 22
Lock/Unlock a Range of Process Address

Space 44
Lock/Unlock the Address Space of a Process 44
lseek() 32
LynuxWorks, contacting ix

M

malloc() 8
Manifest Constants 45
map 4
Map a Stream Pointer to a File Descriptor 39
Memory Management 44
memory mapped file restrictions 44
memory object 4
Memory Object Synchronization 44
message 4
message buffer 4
Message Passing 46
message queue 5, 46

opening 46
setting attributes 46

message removal, order 5
mkdir() 23
mkfifo() 24
mlock() 44
mmap() 4

mode, file 27
Modem Disconnect 33
mq_open() 46
msync() 44
multivolume archive 41
mutex 5

initialization attributes 43
mutual exclusion 5

N

nanosleep() 45
null process 16
Numerical Limits 12

O

open() 21, 34, 35, 36
opendir() 20
Opening a Stream on a File Descriptor 40
opening message queue 46
Other C Language Functions 40
owner or group, file 28

P

parameters, scheduling 45
parameters, serial data 34
parent process 15
parent process ID 5
path name 5
Path Name Variable Values 12
path name variables, configurable 29
pathconf() 29
permissions, file access 9
Per-Process Timers 46
persistence mode 5
physical memory, memory object 4
POSIX 1003.1, 1996 vii, 1
POSIX.1

definition 1
Symbols 12

preempted thread 5
Primitive System Data Types 10
primitives
POSIX.1 Conformance 51

Index

input and output 30
Read from a File 30
Write to a File 30

priority quantum scheduler 44
privileges 2
process

creation and execution 13
environment 17
getting time 19
lock/unlock range of address space 44
termination 14

process ID 0 16
process ID 1 15, 16
process primitives 13
pthread_cond_init() 43
pthread_create() 46
pthread_getspecific() 9
pthread_mutex_init() 43
pthread_mutexattr_destroy() 43
pthread_mutexattr_init() 43
pthread_setspecific() 9
ptrace() 14
pure function 8

R

read() 30
readdir() 20
read-only file system 6
record locking, files supported for 31
reentrant function 6
Reference manuals vii
Referenced C Language Routines 39
Rename a File 25
rename(old, new) 25
Reposition Read/Write File Offset 32
rmdir() 25
runnable thread 6
running thread 6
Run-Time Increasable Values 12
Run-Time Invariant Values 12

S

SCHED_OTHER 44
scheduling 6, 44

allocation domain 45
contention scope 6, 45
setting parameters 45

scheduling policy 6, 44
sem_open() 42
semaphore

characteristics 42
open a named semaphore 42

serialized data access 5
setlocale() function extensions 39
setting user and group IDs 17
shared memory object 7
shell program, default 40
sigaddset() 17
sigdelset() 17
sigismember() 17
signal 7

concepts 15
generation and delivery 16
pending, examining 17
sending to process 16
synchronously generated 7

signal names 15
signal number 7
signal sets, manipulating 17
Signals 15
sigpending() 17
Special Control Characters

canonical mode 37
non-canonical mode 37

Special File Creation 23
stat() 26
status, file 26
stream pointer 39
su utility 2
supplementary group ID 7
Symbolic Constants 13
Synchronization 42
synchronization object 4, 5
synchronous I/O 32
synchronously generated signal 7
sysconf() 20
system 7

configurable variables 20
getting name 18
getting time 18
identification 18

system crash 7
System Databases 40
system process 8
52 POSIX.1 Conformance

system reboot 8

T

tar utility 41
tcflow() 34
tcsendbreak() 38
tcsetattr() 38
Technical Support ix
terminal

device name 19
general interface 32
general interface control functions 38
getting and setting state 38
identification 19
line control functions 38
parameters that can be set 34
path name 19

terminal device file 21
terminal device, writes to 33
thread 8

attributes 46
blocked 3, 5
cancellation 47
errno value 8
list 8
management 46
preempted 5
runnable 6
running 6
scheduling priority 8
suspend execution 4

thread ID 8
thread-safe 8
thread-specific data key 9
Time 18
time zone (TZ) 39
time zone (TZ) setting 40
time() 18
timer 9

per-process 46
timer overrun 9
times() 19
ttyname() 19
Typographical Conventions viii

U

umask() 22
uname() 18
unlink() 24
user ID, setting 17
User Identification 17
ustar Format 42
utsname structure 18

V

variables, configurable, system 20
virtual-to-physical mapping 44

W

wait() 14
waitpid() 14
Working Directory 21
write() 30, 33
POSIX.1 Conformance 53

Index
54 POSIX.1 Conformance

	POSIX.1 Conformance Document
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	POSIX.1 Conformance Document
	Introduction
	1. General
	1.3 Conformance
	1.3.1 Implementation Conformance
	1.3.3 Language-Dependent Services for the C Programming Language

	2. Terminology and General Requirements
	2.2 Definitions
	2.2.2 General Terms

	2.3 General Concepts
	2.3.1 extended security controls
	2.3.2 file access permissions

	2.4 Error Numbers
	2.5 Primitive System Data Types
	2.6 Environment Description
	2.7 C Language Definition
	2.7.2 POSIX.1 Symbols

	2.8 Numerical Limits
	2.8.3 Run-Time Increasable Values
	2.8.4 Run-Time Invariant Values (Possibly Indeterminate)
	2.8.5 Path Name Variable Values

	2.9 Symbolic Constants
	2.9.3 Compile-Time Symbolic Constants for Portability Specifications
	2.9.4 Execution-Time Symbolic Constants for Portability Specifications

	3. Process Primitives
	3.1 Process Creation and Execution
	3.1.1 Process Creation
	3.1.2 Execute a File

	3.2 Process Termination
	3.2.1 Wait for Process Termination
	3.2.2 Terminate a Process

	3.3 Signals
	3.3.1 Signal Concepts
	3.3.2 Send a Signal to a Process
	3.3.3 Manipulate Signal Sets
	3.3.6 Examine Pending Signals

	4. Process Environment
	4.2. User Identification
	4.2.2 Set User and Group IDs

	4.4 System Identification
	4.4.1 Get System Name

	4.5 Time
	4.5.1 Get System Time
	4.5.2 Get Process Times

	4.6 Environment Variables
	4.6.1 Environment Access

	4.7 Terminal Identification
	4.7.1 General Terminal Path Name
	4.7.2 Determine Terminal Device Name

	4.8 Configurable System Variables
	4.8.1 Get Configurable System Variables

	5. Files and Directories
	5.1 Directories
	5.1.1 Format of Directory Entries
	5.1.2 Directory Operations

	5.2 Working Directory
	5.2.2 Get Working Directory Path Name

	5.3 General File Creation
	5.3.1 Open a File
	5.3.3 Set File Creation Mask
	5.3.4 Link to a File

	5.4 Special File Creation
	5.4.1 Make a Directory
	5.4.2 Make a FIFO Special File

	5.5 File Removal
	5.5.1 Remove Directory Entries
	5.5.2 Remove a Directory
	5.5.3 Rename a File

	5.6 File Characteristics
	5.6.2 Get File Status
	5.6.3 Check File Accessibility
	5.6.4 Change File Modes
	5.6.5 Change Owner and Group of a File

	5.7 Configurable Path Name Variables
	5.7.1 Get Configurable Path Name Variables

	6. Input and Output Primitives
	6.4 Input and Output
	6.4.1 Read from a File
	6.4.2 Write to a File

	6.5 Control Operations on Files
	6.5.2 File Control
	6.5.3 Reposition Read/Write File Offset

	6.7 Asynchronous I/O

	7. Device- and Class-Specific Functions
	7.1 General Terminal Interface
	7.1.1 Interface Characteristics
	7.1.2 Parameters That Can Be Set
	7.1.3 Baud Rate Functions

	7.2 General Terminal Interface Control Functions
	7.2.1 Get and Set State
	7.2.2 Line Control Functions

	8. Language-Specific Services for the C Programming Language
	8.1 Referenced C Language Routines
	8.1.2 Extensions to setlocale() Function

	8.2 C Language Input/Output Functions
	8.2.1 Map a Stream Pointer to a File Descriptor
	8.2.2 Open a Stream on a File Descriptor
	8.2.3 Interactions of Other FILE-Type C Functions

	8.3 Other C Language Functions
	8.3.2 Set Time Zone

	9. System Databases
	9.1 System Databases

	10. Data Interchange Format
	10.1 Archive/Interchange File Format
	10.1.1 Extended tar Format
	10.1.2 Extended cpio Format
	10.1.3 Multiple Volumes

	11. Synchronization
	11.1 Semaphore Characteristics
	11.2.3 Initialize/Open a Named Semaphore
	11.3.1 Mutex Initialization Attributes
	11.4.1 Condition Variable Initialization Attributes

	12. Memory Management
	12.1.1 Lock/Unlock the Address Space of a Process
	12.1.2 Lock/Unlock a Range of Process Address Space
	12.2.4 Memory Object Synchronization
	12.3.1 Memory Mapped File Restrictions

	13. Execution Scheduling
	13.2.3 SCHED_OTHER
	13.3.1 Set Scheduling Parameters
	13.4.2 Scheduling Contention Scope
	13.4.3 Scheduling Allocation Domain

	14. Clocks and Timers
	14.1.4 Manifest Constants
	14.2.1 Clocks
	14.2.4 Per-Process Timers

	15. Message Passing
	15.2.1 Open a Message Queue
	15.2.7 Set Message Queue Attributes

	16. Thread Management
	16.2.1 Thread Creation Attributes

	18. Thread Cancellation

	Index

