
3

POSIX.1c Migration Guide

LynxOS Release 4

DOC-0415-00

Product names mentioned in POSIX.1c Migration Guide are trademarks of their respective manufacturers and are used
here for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of POSIX.1c Migration Guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the
prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

 Contents
PREFACE .. VII

For More Information ..vii
Typographical Conventions ..viii
Special Notes .. ix
Technical Support ... ix

LynuxWorks U.S. Headquarters .. x
LynuxWorks Europe .. x
World Wide Web .. x

CHAPTER 1 INTRODUCTION.. 1

POSIX.1c Description ... 1
Overview of Major Changes .. 2
Library Structure & Compiler Option Changes .. 3

Library Routiness ... 3
Compiler Options Changes .. 3
Updating Applications .. 4

Other General Changes .. 5

CHAPTER 2 THREAD MANAGEMENT... 7

Thread Creation Attributes .. 7
Thread Management Functions ... 8
Thread Fork Handlers .. 9
Dynamic Package Initialization ... 9

CHAPTER 3 THREAD SCHEDULING.. 11

Thread Creation Scheduling Attributes ... 11
POSIX 1.c Migration Guide iii

Contents

POSIX.4a Code .. 13
Equivalent POSIX.1c Code .. 13
Non-Preemptible Scheduling Policy .. 13

Dynamic Thread Scheduling Parameters Access .. 15
POSIX.4a Code .. 15
POSIX.1c Code .. 16

Relinquishing the Processor .. 16

CHAPTER 4 THREAD-SPECIFIC DATA... 17

Version Variations ... 17

CHAPTER 5 THREAD CANCELLATION .. 19

Thread Cancellation Control ... 19
Cancellability Defaults .. 20
Cancellation Points .. 20
Elimination of Cancellation-Safe Interfaces ... 20
Cleanup Handler Restrictions .. 21

CHAPTER 6 SYNCHRONIZATION PRIMITIVES .. 23

Mutex Initialization Attributes .. 23
Mutex Initialization ... 24
Mutex Priority Ceiling Control ... 25
Condition Variable Initialization Attributes .. 26
Condition Variable Initialization ... 27

CHAPTER 7 SIGNALS ... 29

Controlling Blocked Signals .. 29
Synchronously Accepting Signals ... 29
Thread-Based Event Notification .. 30
Signal Delivery Semantics .. 31

CHAPTER 8 ERROR REPORTING .. 33

Pthread Function Errors ... 33
POSIX.4a Code .. 33
Equivalent POSIX.1c Code .. 33

Elimination of EINTR Return Code .. 34
iv POSIX 1.c Migration Guide

APPENDIX A MAPPING BETWEEN STANDARDS... 35

Mapping Standards .. 35

INDEX .. 37
POSIX 1.c Migration Guide v

Contents
vi POSIX 1.c Migration Guide

Preface
The POSIX 1.c Migration Guide is intended to help developers migrate code
developed under the POSIX.4a Draft 4 Pthreads extensions to the ISO/IEC 9945-
1:1996 (POSIX.1) Threads Options, also known as POSIX.1c. This guide is not
meant as instruction to write code directly to the POSIX.1c standard. This guide
also assumes that the reader is thoroughly familiar with POSIX.4a Draft 4. For
detailed information, consult the appropriate LynxOS man pages and the ISO/IEC
9945-1:1996 standard.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

� Release Notes

This printed document contains late-breaking information about the
current release.

� LynxOS Installation Guide

This manual supports the initial installation and configuration of LynxOS
and the X Windows System.

� LynxOS User�s Guide

This document contains information about basic system administration
and kernel-level specifics of LynxOS. It contains a �Quick Starting�
chapter and covers a range of topics, including tuning system
performance and creating kernel images for embedded applications.

� Online information

Information about commands and utilities is provided online in text
format through the man command. For example, a user wanting
POSIX 1.c Migration Guide vii

Preface

information about the GNU compiler would enter the following syntax,
where gcc is the argument for information about the GNU compiler:

man gcc

More recent versions of the documentation listed here may also be found online.

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should
be typed accurately.

Kind of Text Examples

Body text; italicized for emphasis, new
terms, and book titles

Refer to the LynxOS User�s Guide.

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data
Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bolded.

ls
-l
myprog.c
/dev/null
login: myname
cd /usr/home

Text that represents a variable, such as a file
name or a value that must be entered by the
user

cat filename
mv file1 file2
viii POSIX 1.c Migration Guide

Special Notes
Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products, Frequently Asked Questions (FAQs), and LynuxWorks news
groups.

Blocks of text that appear on the display
screen after entering instructions or
commands

Loading file /tftpboot/shell.kdi
into 0x4000
.....................
File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
All rights reserved.

LynxOS (ppc) created Mon Jul 17
17:50:22 GMT 2000
user name:

Keyboard options, button names, and menu
sequences

Enter, Ctrl-C

Kind of Text Examples

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.
POSIX 1.c Migration Guide ix

Preface

LynuxWorks U.S. Headquarters

Internet: support@lnxw.com

Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: tech_europe@lnxw.com

Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://www.lynuxworks.com
x POSIX 1.c Migration Guide

1c

CHAPTER 1 Introduction
POSIX.1c Description

The POSIX.1c standard encompasses the threads option to the POSIX.1standard.
POSIX.1c functionality includes thread management, scheduling, and cancellation,
thread-specific data, fork, signal handling, mutexes, and condition variables.

This guide describes the differences between compiler flags in POSIX.4a Draft 4
and POSIX.1c.

For a guide to POSIX.1c programming style with LynxOS, please refer to the
online example programs provided with the distribution and other documents.

The following definitions clarify how the various POSIX specifications interrelate.

POSIX.1 This is the basic operating system standard, also known as
POSIX 1003.1. The current version of POSIX.1 was
approved in 1996, and encompasses the 1988 version, as
well as the final versions of POSIX.1b and POSIX.1c.

POSIX.1b This contains amendments to POSIX.1 for real-time
systems. POSIX.1b was approved in 1993. It is also
known as POSIX.4 Draft 14.

POSIX.1c (previously POSIX.4a)

Contains amendments to POSIX.1 defining thread
primitives - thread creation, synchronization, scheduling,
etc. The POSIX.4 committee decided that keeping threads
in the POSIX.1b standard would delay approval, due to
the complexity of the threads issue. Also, a separate
POSIX specification for the threads interface allows
vendors the option to exclude the other real-time support
that POSIX.1b requires. POSIX.4a Draft 8 was approved
and renamed POSIX.1c.
POSIX 1.c Migration Guide 1

Chapter 1 - Introduction

LynxOS is compliant with the ISO/IEC 9945-1:1996
POSIX.1c standard.

In this guide, the term POSIX.1c refers to the Threads Option of the
POSIX.1 standard.

Overview of Major Changes

� The compilation environment now defaults to POSIX.1c, rather than
POSIX.4a. To invoke POSIX.4a functionality, you must specify the
option -mthreads-pre1c when compiling your application.

� Significant library structure changes have been made in this release of
LynxOS. Please see �Library Structure & Compiler Option Changes� on
page 3 for more detailed information.

� It is not possible to mix the POSIX.4a and POSIX.1c standards in the
same application. You must choose between the two with compile-time
options. LynuxWorks recommends using the POSIX.1c standard for all
future development.

� Not all POSIX.4a features have corresponding equivalents in POSIX.1c.
Some features have been discontinued.

� There are new facilities in POSIX.1c not contained in POSIX.4a. For
example, threads may be created in a detached state and can register fork
handlers; mutexes and condition variables now have attributes and may
be statically initialized.

� Error reporting has been significantly revised. In POSIX.4a, pthreads

library functions return 0 for success, or -1 to indicate an error and set
the errno global to the specific error number. In POSIX.1c, most
functions return 0 for success or the error number directly.

NOTE: Throughout the code examples in this document, error checking is not
performed; function calls for which error checking is not executed are assumed to
be successful. The reader should not accept this as a programming style. Error
checking is omitted in order to keep this document concise and emphasize
migration. In order to simplify the examples, obvious include files (e.g.,
<stdio.h>) have not been shown.
2 POSIX 1.c Migration Guide

Library Structure & Compiler Option Changes

Library Structure & Compiler Option Changes

In this release of LynxOS, both POSIX.1c and POSIX.4a are supported. However,
POSIX.1c is now the default compilation environment. This change has involved
modifying the library structure and compile time options in LynxOS.

Library Routiness

All POSIX.1 library routines, including those for POSIX.1c, are merged into the
library libc.a. This library exists in /lib and /lib/thread (for multithreads).

LynxOS includes a backward-compatibility library:

libposix-pre1c.a Contains support for POSIX.4a

Compiler Options Changes

POSIX.1c is the default for LynxOS. To compile an application with POSIX.4a
functionality, you must compile with the -mlegacy-threads option. This option
signals the compiler to define -D_THREADS_POSIX4ad4 and to link with the
libposix-pre1c.a library. Thus, you do not need to change POSIX.4a source
code, but you do need to recompile with the
-mlegacy-threads option.

Also, you cannot mix POSIX.4a functionality with POSIX.1c in a single
application. Your application may fail to link or may exhibit unpredictable results
at run-time.

The following table summarizes the changes to the compiler options.

Table 1-1: Compiler Option Changes in LynxOS 4.0

POSIX Specification
LynxOS

gcc

POSIX 1003.1 C Language Standard Default

POSIX 1003.1b Final version of 1003.4 Default

POSIX 1003.4a Draft 4 Thread Extensions -mlegacy-threads

POSIX.1c Final standard -mthreads
POSIX 1.c Migration Guide 3

Chapter 1 - Introduction
Updating Applications

If you previously used -mthreads to compile applications, there are two
alternatives for updating to the new structure:

1. Make code POSIX.1c-compliant.

2. If compiling POSIX.4a-compliant code, change all -mthreads

compilation switches to -mlegacy-threads.

Here are some simple shell scripts you can use to make these needed changes to
your environment. The scripts assume that bash is the current shell.

NOTE: If you specify the option -mposix when compiling an application with
either cc (x86 only) or gcc, the compiler displays an error message and aborts the
compile. You must change compiler directives to invoke the options as listed in the
table above.
4 POSIX 1.c Migration Guide

Other General Changes

To change -mthreads to -mlegacy-threads in all Makefiles
named Makefile:

bash$ for f in `find . -name Makefile -print`
> do
> cp $f $f.orig
> sed 's/-mthreads/-mlegacy-threads/' $f.orig > $f
> done

Other General Changes

Refer to the sysconf() man page for a list of new parameters that can be passed
to the sysconf() function. Also, refer to the pathconf() and fpathconf()
man pages for a list of new parameters that can be passed to these two functions.

The lists of run-time invariant values and compile-time symbolic constants have
changed. Due to their length, these lists are not included here. Refer to Table 2.5
and Table 2.10 of the POSIX.1 specification (ISO/IEC 9945-1:1996) for these lists.
POSIX 1.c Migration Guide 5

Chapter 1 - Introduction
6 POSIX 1.c Migration Guide

CHAPTER 2 Thread Management
Thread Creation Attributes

POSIX.1c changes to thread creation attributes are relatively minor. The following
table is a comparison of the revised interfaces and their corresponding
POSIX.4a versions:

Table 2-1: Thread Creation Attribute Function Changes

POSIX.1c POSIX.4a

int
pthread_attr_init(
pthread_attr_t *attr)

int
pthread_attr_create(
pthread_attr_t *attr)

int
pthread_attr_destroy(
pthread_attr_t *attr)

int
pthread_attr_delete(
pthread_attr_t *attr)

int
pthread_attr_setstacksize(
pthread_attr_t *attr,
size_t stacksize)

int
pthread_attr_setstacksize(
pthread_attr_t *attr,
long stacksize)

int
pthread_attr_getstacksize
(pthread_attr_t *attr,size_t

*stacksize)

unsigned long
pthread_attr_getstacksize
(pthread_attr_t *attr)
POSIX 1.c Migration Guide 7

Chapter 2 - Thread Management
In LynxOS, the POSIX.1c function pthread_attr_destroy() sets the
attribute object to an invalid value to prevent its subsequent use
without reinitialization.

POSIX.4a does not provide a facility to create a thread in anything other than a
joinable state, requiring a thread to be explicitly detached via
pthread_detach(). POSIX.1c allows a thread to be created in a detached state
by using pthread_attr_setdetachstate() to set the detachstate attribute
to PTHREAD_CREATE_DETACHED (the default is PTHREAD_CREATE_JOINABLE).

Thread Management Functions

POSIX.1c changes to thread management are also relatively minor. The following
table is a comparison of the revised interfaces and their corresponding
POSIX.4a versions:

int
pthread_attr_setdetachstate
(pthread_attr_t *attr,int

detachstate)

No equivalent

int
pthread_attr_getdetachstate
(pthread_attr_t *attr,int

*detachstate)

No equivalent

Table 2-1: Thread Creation Attribute Function Changes (Continued)

POSIX.1c POSIX.4a

Table 2-2: Thread Management Function Changes

POSIX.1c POSIX.4a

int
pthread_create
(pthread_t *thread,pthread_attr_t

*attr,void *(*start_routine)
void *), void *arg)

int
pthread_create
(pthread_t *thread, pthread_attr_t

attr, void *(*start_routine)
(void *), void *arg)

int
pthread_detach(
pthread_t thread)

int
pthread_detach
(pthread_t *thread)
8 POSIX 1.c Migration Guide

Thread Fork Handlers

Thread Fork Handlers

POSIX.1c defines the pthead_atfork() function to register handler functions to
be called before and after fork(), in the context of the thread that called fork().
POSIX.4a has no such facility.

Dynamic Package Initialization

In POSIX.4a the constant pthread_once_init (all lowercase letters) is defined
as the initializer for a once control object used with pthread_once(),
as follows:

pthread_once_t once_block = pthread_once_init;

POSIX.1c defines the constant PTHREAD_ONCE_INIT (all uppercase letters) for
this purpose:

pthread_once_t once_control = PTHREAD_ONCE_INIT;
POSIX 1.c Migration Guide 9

Chapter 2 - Thread Management
10 POSIX 1.c Migration Guide

CHAPTER 3 Thread Scheduling
Thread Creation Scheduling Attributes

The thread creation scheduling attributes functions and definitions have changed
considerably in POSIX.1c. The following table is a comparison of the revised
interfaces and their corresponding POSIX.4a versions:

Table 3-1: Thread Creation Scheduling Interface Changes

POSIX.1c POSIX.4a

int
pthread_attr_setscope
(pthread_attr_t *attr,

int contentionscope)

No equivalent

int
pthread_attr_getscope
(pthread_attr_t *attr,

int *contentionscope)

No equivalent

int
pthread_attr_setinheritsched
(pthread_attr_t *attr,
int inheritsched);

int
pthread_attr_setinheritsched
(pthread_attr_t attr)

int
pthread_attr_getinheritsched
(pthread_attr_t *attr,

int *inheritsched)

int
pthread_attr_getinheritsched
(pthread_attr_t attr)

int
pthread_attr_setschedpolicy
(pthread_attr_t *attr,int policy)

int
pthread_attr_setsched
(pthread_attr_t *attr,int

scheduler)
POSIX 1.c Migration Guide 11

Chapter 3 - Thread Scheduling
POSIX.4a does not directly support the concept of thread scheduling scope. This
facility is provided in POSIX.1c by the pthread_attr_setscope() and
pthread_attr_getscope() functions, and the associated
PTHREAD_SCOPE_SYSTEM and PTHREAD_SCOPE_PROCESS symbolic constants.

The scheduling policy values (SCHED_FIFO, SCHED_RR, SCHED_OTHER)
are unchanged.

In addition to these scheduling policies, LynxOS implements non-preemptible
scheduling policy SCHED_NONPREEMPT. See �Non-Preemptible Scheduling
Policy� on page 13 for a detailed description of this policy.

In POSIX.1c, a thread�s scheduling priority attribute is set or retrieved using a
sched_param structure, instead of specifying or retrieving it directly.

int
pthread_attr_getschedpolicy

(pthread_attr_t *attr,int
*policy)

int
pthread_attr_getsched

(pthread_attr_t attr)

int
pthread_attr_setschedparam
(pthread_attr_t *attr,const struct

sched_param *param)

int
pthread_attr_setprio
(pthread_attr_t *attr,

int priority)

int
pthread_attr_getschedparam
(pthread_attr_t *attr,

struct sched_param *param)

int
pthread_attr_getprio
(pthread_attr_t attr)

PTHREAD_SCOPE_SYSTEM No equivalent

PTHREAD_SCOPE_PROCESS No equivalent

PTHREAD_EXPLICIT_SCHED PTHREAD_DEFAULT_SCHED

sched_get_priority_min() PRIO_???_MIN macros

sched_get_priority_max() PRIO_???_MAX macros

Table 3-1: Thread Creation Scheduling Interface Changes (Continued)

POSIX.1c POSIX.4a

NOTE: LynxOS supports only the default system thread scheduling scope
(PTHREAD_SCOPE_SYSTEM). Attempts to set the scheduling scope to
PTHREAD_SCOPE_PROCESS returns an ENOTSUP error.
12 POSIX 1.c Migration Guide

POSIX.4a Code

POSIX.4a uses the POSIX.4 Draft 9 scheduling minimum and maximum priority
macros, such as PRIO_RR_MIN or PRIO_OTHER_MAX, for thread priority limits for
each scheduling policy. These are replaced in POSIX.1c with the use of the
POSIX.1b scheduling parameter limits retrieval functions as shown in the above
table (see ISO/IEC 9945-1 1996 Section 13.3.6).

The following code fragments illustrate the differences in manipulating thread
priority attributes between POSIX.4a and POSIX.1c:

POSIX.4a Code

main()
{

int rv;
int prio;
pthread_attr_t attr;
:
/* Set the initial priority for the new thread */
prio = PRIO_OTHER_MIN + 10;
rv = pthread_attr_setprio(&attr, prio);
:

}

Equivalent POSIX.1c Code

main()
{

int rv;
int prio;
struct sched_param param;
pthread_attr_t attr;
:
/* Set the initial priority for the new thread */
prio = sched_get_priority_min(SCHED_OTHER);
param.sched_priority = prio + 10;
rv = pthread_attr_setschedparam(&attr, ¶m);
:

}

Non-Preemptible Scheduling Policy

LynxOS implements a non-preemptible scheduling policy called
SCHED_NONPREEMPT. A process running under this policy cannot be preempted by
any other process until it voluntarily sleeps or blocks waiting for a semaphore or
mutex object. An example of this policy is a garbage collector running with low
POSIX 1.c Migration Guide 13

Chapter 3 - Thread Scheduling

priority and performing critical work so that it must not be interrupted. The sample
code of the application is as follows:

void garbage_collector(arg)
void *arg;
{

...
while (1) { /* endless loop */

if (waste_ratio() > max_waste_ratio) {
/* garbage collection, critical area
*/

...
}
sleep(GC_TIMEOUT);

} /* end of loop */
}

main()
{

pthread_attr_t attr;
struct sched_param prio;
pthread_t tid;
...
pthread_attr_create(&attr);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_NONPREEMPT);
prio.sched_priority = PRIO_NONPREEMPT_MIN;
pthread_attr_setschedparam(&attr, &prio);
pthread_create(&tid, &attr, garbage_collector, NULL);
...

}

LynxOS also defines 2 constants for the SCHED_NONPREEMPT policy designating
the maximum and minimum priorities for this policy. These constants are:

� PRIO_NONPREEMPT_MAX

� PRIO_NONPREEMPT_MIN

These priorities can also be obtained using the
sched_get_priority_max() and sched_get_priority_min()
functions.
14 POSIX 1.c Migration Guide

Dynamic Thread Scheduling Parameters Access

Dynamic Thread Scheduling Parameters Access

The POSIX.1c thread scheduling parameter access functions are not one-to-one
replacements for their POSIX.4a counterparts, as shown in the following table:

Each of the POSIX.1c functions combines the functionality of two corresponding
POSIX.4a functions. The following code fragments illustrate the usage differences:

POSIX.4a Code

main ()
{

int rc;
pthread_t thread;
int prio;
:
/* Set the policy and priority of the thread */
prio = PRIO_FIFO_MIN + 10;
rc = pthread_setscheduler(thread, SCHED_FIFO, prio);
:
/* Now change only the thread’s priority */
prio = pthread_getprio(thread);
rc = pthread_setprio(thread, prio + 5);
:

}

Table 3-2: Thread Scheduling Parameter Access Function Changes

POSIX.1c POSIX.4a

int
pthread_setschedparam
(pthread_t thread,int policy,const

struct sched_param *param)

int
pthread_setscheduler
(pthread_t thread, int alg,int

prio)

int
pthread_setprio

(pthread_t thread, int prio)

int
pthread_getschedparam
(pthread_t thread,int

*policy,struct sched_param
*param)

int
pthread_getscheduler
(pthread_t thread)

int
pthread_getprio pthread_t thread)
POSIX 1.c Migration Guide 15

Chapter 3 - Thread Scheduling

POSIX.1c Code

main()
{

int rc;
pthread_t thread;
int policy = SCHED_FIFO;
struct sched_param param;
:
/* Set the policy and priority of the thread */
prio = sched_get_priority_min(policy);
param.sched_priority = prio + 10;
rc = pthread_setschedparam(thread, policy, ¶m);
:
/* Now change only the thread’s priority */
rc = pthread_getschedparam(thread, &policy, ¶m);
param_sched_priority += 5;
rc = pthread_setschedparam(thread, policy, ¶m);
:

}

As in �Thread Creation Scheduling Attributes� on page 11, the use of the POSIX.4
Draft 9 scheduling minimum and maximum priority macros in POSIX.4a are
replaced by the POSIX.1b scheduling parameter limits retrieval functions
in POSIX.1c.

Relinquishing the Processor

The POSIX.4a pthread_yield() function has been replaced in POSIX.1c by the
POSIX.1b sched_yield() function.

Calls to sched_yield() on LynxOS always return 0.
16 POSIX 1.c Migration Guide

CHAPTER 4 Thread-Specific Data
Version Variations

POSIX.1c incorporates minor revisions to the thread-specific data-related
functions versus the POSIX.4a interfaces, as shown in the following table:

POSIX.4a does not provide a facility for deleting a thread-specific data key, which
is provided in POSIX.1c by the pthread_key_delete() function.

Table 4-1: Thread-Specific Data Function Changes

POSIX.1c POSIX.4a

int
pthread_key_create
(pthread_key_t *key,void

(*destructor)void *value))

int
pthread_keycreate
(pthread_key_t *key,void
(*destructor)(void *value))

int
pthread_key_delete
(pthread_key_t key)

No equivalent

int
pthread_setspecific
(pthread_key_t key,const void

*value)

int
pthread_setspecific
(pthread_key_t key,void *value)

void *
pthread_getspecific
(pthread_key_t key)

int
pthread_getspecific
(pthread_key_t key,void **value)

NOTE: The pthread_key_delete() function in LynxOS is currently a no-op.
Therefore, repeatedly deleting and recreating keys in a thread may cause the
per-thread key limit to be exceeded.
POSIX 1.c Migration Guide 17

Chapter 4 - Thread-Specific Data

In POSIX.1c, the pthread_getspecific() function cannot return an error. If
no thread-specific data value is associated with the specified key,
pthread_getspecific() returns NULL.

NOTE: This also means that setting the value associated with a key to NULL using
pthread_setspecific() results in an ambiguous return value from a
subsequent call to pthread_getspecific() for that key.
18 POSIX 1.c Migration Guide

CHAPTER 5 Thread Cancellation
Thread Cancellation Control

The thread cancellation control interfaces have undergone significant changes from
POSIX.4a to POSIX.1c. These are listed in the following table:

The POSIX.4a interfaces use the values CANCEL_ON (to enable) and
CANCEL_OFF (to disable) to control both the general cancellability state via
pthread_setcancel() and the asynchronous cancellability state via
pthread_setasynccancel(). POSIX.1c defines a distinct set of values for each
control interface: PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE

to control cancellability state via pthread_setcancelstate(), and
PTHREAD_CANCEL_DEFERRED and PTHREAD_CANCEL_ASYNCHRONOUS to
control cancellability type via pthread_setcanceltype().

The pthread_cleanup_push() and pthread_cleanup_pop() functions in
LynxOS versions prior to 3.1.0 returned an int instead of nothing (void) to

Table 5-1: Thread Cancellation Control Interface Changes

POSIX.1c POSIX.4a

int
pthread_setcancelstate
(int state, int *oldstate)

int
pthread_setcancel(int state)

int
pthread_setcanceltype
(int type, int *oldtype)

int
pthread_setasynccancel
(int state)

PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_ASYNCHRONOUS

CANCEL_ON

PTHREAD_CANCEL_DISABLE
PTHREAD_CANCEL_DEFERRED

CANCEL_OFF
POSIX 1.c Migration Guide 19

Chapter 5 - Thread Cancellation

allow handing cleanup stack management errors from the underlying
implementation. The LynxOS 4 versions of these functions have a void return
type in compliance with POSIX.1c and silently ignore errors that may occur in the
underlying implementation. This may result in one or more cleanup handlers not
being registered or run if cleanup stack management errors occur.

Cancellability Defaults

In LynxOS versions prior to 3.1.0, both general and asynchronous cancellability
were disabled by default in all newly created threads (this was not POSIX.4a
Draft 4-compatible).

LynxOS 4 is fully compliant with POSIX.1c, where the cancellability state and
type of any newly created threads, including the thread in which main() was
invoked, is cancellation enabled (PTHREAD_CANCEL_ENABLE) and asynchronous
cancellation disabled (PTHREAD_CANCEL_DEFERRED).

Cancellation Points

In POSIX.4a, cancellation points in blocking POSIX.1 and POSIX.4 (POSIX.1b)
are implementation defined. LynxOS versions prior to 3.1.0 implemented
cancellation points in the POSIX.1b blocking synchronization primitives, but not
in POSIX.1 functions.

POSIX.1c explicitly defines function lists for all mandatory and optional POSIX.1
and C Standard cancellation points (see ISO/IEC 9945-1 1996 Section 18.1.2).
LynxOS implements all listed optional as well as mandatory cancellation points.

Elimination of Cancellation-Safe Interfaces

POSIX.4a required a number of ANSI C Standard functions to be asynchronous-
cancel safe. POSIX.1c does not require any POSIX.1 or C Standard functions to be
asynchronous-cancel safe.
20 POSIX 1.c Migration Guide

Cleanup Handler Restrictions

Cleanup Handler Restrictions

In POSIX.4a, support for exiting a cancellation handler via longjmp() or
siglongjmp() was implementation defined, although not supported by LynxOS.
This behavior is explicitly disallowed in POSIX.1c.
POSIX 1.c Migration Guide 21

Chapter 5 - Thread Cancellation
22 POSIX 1.c Migration Guide

CHAPTER 6 Synchronization Primitives
Mutex Initialization Attributes

POSIX.4a defines no mutex attributes, whereas POSIX.1c defines process-shared
and priority-scheduling attributes. The following table contains a comparison of
the interfaces:

Table 6-1: Mutex Initialization Attributes Interface Changes

POSIX.1c POSIX.4a

int
pthread_mutexattr_init
(pthread_mutexattr_t *attr)

int
pthread_mutexattr_create
(pthread_mutexattr_t *attr)

int
pthread_mutexattr_destroy
(pthread_mutexattr_t *attr)

int
pthread_mutexattr_delete
(pthread_mutexattr_t *attr)

int
pthread_mutexattr_setpshared
(pthread_mutexattr_t *attr,

int pshared)

No equivalent

int
pthread_mutexattr_getpshared
(const pthread_mutexattr_t *attr,

int *pshared)

No equivalent

int
pthread_mutexattr_setprotocol
(pthread_mutex_attr *attr,

int protocol)

No equivalent
POSIX 1.c Migration Guide 23

Chapter 6 - Synchronization Primitives
In LynxOS, the POSIX.1c function pthread_mutexattr_destroy() sets the
attribute object to an invalid value to prevent its subsequent use
without reinitialization.

POSIX.1c defines the values PTHREAD_PROCESS_SHARED and
PTHREAD_PROCESS_PRIVATE for the process-shared attribute.

POSIX.1c defines the PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT, and
PTHREAD_PRIO_PROTECT values for the protocol attribute. LynxOS supports
all these values to provide normal, priority inheritance, and priority ceiling
mutexes.

Mutex Initialization

POSIX.4a allows only dynamic mutex initialization. POSIX.1c supports static
mutex initialization to default values using the PTHREAD_MUTEX_INITIALIZER

macro, as follows:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int
pthread_mutexattr_getprotocol
(const pthread_mutex_attr *attr,

int *protocol)

No equivalent

int
pthread_mutexattr_setprioceiling
(pthread_mutexattr_t *attr,int

prioceiling)

No equivalent

int
pthread_mutexattr_getprioceiling
(pthread_mutexattr_t *attr,int

*prioceiling)

No equivalent

Table 6-1: Mutex Initialization Attributes Interface Changes (Continued)

POSIX.1c POSIX.4a

NOTE: In LynxOS, the process-shared attribute can be set to either value but has no
effect when the mutex is created, because the actual interprocess shareability of a
mutex is determined by whether it is allocated in shared or process-private
memory.
24 POSIX 1.c Migration Guide

Mutex Priority Ceiling Control

This feature is useful in simplifying the initialization of libraries or other utility
function packages that use mutexes by avoiding the need to use pthread_once()
to ensure once-only initialization execution.

In POSIX.4a, the value pthread_mutexattr_default is used to dynamically
initialize a mutex with default attributes. POSIX.1c specifies the use of NULL for
this purpose.

Mutex Priority Ceiling Control

POSIX.1c provides interfaces for dynamically changing the priority ceiling of a
mutex. Because POSIX.4a does not support mutex attributes, it has no
corresponding interfaces, as shown in the following table:

Table 6-2: Mutex Priority Ceiling Control Interface Changes

POSIX.1c POSIX.4a

int
pthread_mutex_setprioceiling
(pthread_mutex_t *mutex,int

prioceiling,int *old_ceiling)

No equivalent

int
pthread_mutex_getprioceiling
(pthread_mutex_t *mutex,int

*prioceiling)

No equivalent
POSIX 1.c Migration Guide 25

Chapter 6 - Synchronization Primitives

Condition Variable Initialization Attributes

POSIX.4a defines no condition variable attributes, whereas POSIX.1c defines
process-shared attributes. The following table compares the
corresponding interfaces:

In LynxOS, the POSIX.1c function pthread_condattr_destroy() sets the
attribute object to an invalid value to prevent its subsequent use
without reinitialization.

POSIX.1c defines the values PTHREAD_PROCESS_SHARED and
PTHREAD_PROCESS_PRIVATE for the process-shared attribute.

Table 6-3: Condition Variable Initialization Attributes Interface Changes

POSIX.1c POSIX.4a

int
pthread_condattr_init
(pthread_condattr_t *attr)

int
pthread_condattr_create
(pthread_condattr_t *attr)

int
pthread_condattr_destroy
(pthread_condattr_t *attr)

int
pthread_condattr_delete
(pthread_condattr_t *attr)

int
pthread_condattr_setpshared
(pthread_condattr_t *attr,

int pshared)

No equivalent

int
pthread_condattr_getpshared
(const pthread_condattr_t *attr,

int *pshared)

No equivalent

NOTE: In LynxOS, the process-shared attribute can be set to either value but has no
effect when the condition variable is created, because the actual interprocess
shareability of a condition variable is determined by whether it is allocated in
shared or process-private memory.
26 POSIX 1.c Migration Guide

Condition Variable Initialization

Condition Variable Initialization

POSIX.4a allows only dynamic condition variable initialization. POSIX.1c
supports static condition variable initialization to default values using the
PTHREAD_COND_INITIALIZER macro, as follows:

pthread_cond_t condvar = PTHREAD_COND_INITIALIZER;

This feature is useful in simplifying the initialization of libraries or other utility
function packages that use condition variables by avoiding the need to use
pthread_once() to ensure once-only initialization execution.

In POSIX.4a, the value pthread_condattr_default is used to dynamically
initialize a condition variable with default attributes. POSIX.1c specifies the use of
NULL for this purpose.
POSIX 1.c Migration Guide 27

Chapter 6 - Synchronization Primitives
28 POSIX 1.c Migration Guide

CHAPTER 7 Signals
Controlling Blocked Signals

POSIX.4a defines the sigprocmask() function to examine and change blocked
signals in both single-threaded and multi-threaded processes. In POSIX.1c,
sigprocmask() must only be used in a single-threaded process; its behavior in a
multi-threaded process is unspecified.

POSIX.1c defines the pthread_sigmask() function to examine and change
blocked signals in either single-threaded or multi-threaded processes. Its behavior
in a single-threaded process is the same as sigprocmask().

Synchronously Accepting Signals

The sigwait() function is the mechanism by which a thread may wait for one or
more asynchronous signals. The differences between the various versions of this
function and the POSIX.1c version are shown in the following table:

LynxOS versions prior to 3.1.0 implemented a version of sigwait() based on
the POSIX.4 Draft 9 event interface, which permits the return of an arbitrary value
associated with the event causing the signal. POSIX.1c-compliant applications
should instead use the sigwaitinfo() function for this purpose.

Table 7-1: sigwait() Interface Changes

POSIX.1c POSIX.4a pre-LynxOS 3.1.0

int
sigwait
(sigset_t *set,int

*sig)

int
sigwait
(sigset_t *set)

int
sigwait
(sigset_t *set,void

**value)
POSIX 1.c Migration Guide 29

Chapter 7 - Signals

Thread-Based Event Notification

POSIX.1c defines a new mechanism for signal-based event notification: execution
of a specified notification function as an independent thread. This mechanism is
enabled by specifying the SIGEV_THREAD value for the sigev_notify member
of the sigevent structure. Two new sigevent structure members specify the
required thread information:

The sigev_notify_function is executed in an environment as if it were the
start_routine to pthread_create() with thread attributes specified by
sigev_notify_attributes. As with pthread_create(), the value NULL

can be used to specify default attributes. If the attributes are explicitly specified,
the detachstate attribute must be set to PTHREAD_CREATE_DETACHED,
otherwise the behavior is undefined.

The following code fragment demonstrates the usage of this capability to run a
high-priority thread associated with the expiration of a high-resolution
interval timer:

#include <pthread.h>
#include <signal.h>

void
timer_thread(union sigval value)
{

int event_data;

/* Retrieve the event data from the argument */
event_data = value.sival_int;
:
/* Some high-priority processing here ... */
:
pthread_exit((void *)0);

}

int
main(int argc, char *argv[])
{

int rv;
int prio;
pthread_attr_t attr;
struct sched_param param;
struct sigevent event;
timer_t timer;

Table 7-2: New sigevent Structure Members

Member Name Member Type

sigev_notify_function void (*)(union sigval)

sigev_notify_attributes pthread_attr_t *
30 POSIX 1.c Migration Guide

Signal Delivery Semantics

struct itimerspec timerspec;

:
/* Create and initialize the event thread */
/* attributes so that it will be run at a */
/* high, fixed priority */
rv = pthread_attr_init(&attr);
:
rv = pthread_setinheritsched(&attr,
PTHREAD_EXPLICIT_SCHED);
:
rv = pthread_setschedpolicy(&attr, SCHED_OTHER);
:
prio = sched_get_priority_max(SCHED_OTHER);
param.sched_priority = prio - 10;
rv = pthread_attr_setschedparam(&attr, ¶m);
:

rv = pthread_attr_setdetachstate(&attr,
PTHREAD_CREATE_DETACHED);
:
/* Initialize the event struct */
(void)memset(&event, 0, sizeof(event));
event.sigev_notify = SIGEV_THREAD;
event.sigev_notify_function = timer_thread;
event.sigev_value.sival_int = 0xdeadbeef;
event.sigev_notify_attributes = &attr;
:
/* Set up a 1 second periodic interval timer */
rv = timer_create(CLOCK_REALTIME, &event, &timer);
:
timerspec.it_interval.tv_sec = 1;
timerspec.it_interval.tv_nsec = 0;
timerspec.it_value.tv_sec = 1;
timerspec.it_value.tv_nsec = 0;
rv = timer_settime(timer, 0, &timerspec,
NULL);
:
/* Each time the interval timer expires,*/
/* the timer_thread will be run */
:
}

Signal Delivery Semantics

LynxOS versions prior to 3.1.0 could exhibit non-standard signal delivery behavior
in a multi-threaded application where a signal was pending, but there were no
threads blocked in sigwait() for that signal. In this case, the root thread would
have the signal made pending against it, even if the it had the signal blocked but
one or more of the other threads did not.

LynxOS 4 corrects the behavior for this case, ensuring that a pending signal is
delivered to the first thread eligible to run that has the signal unblocked.
Applications ported to LynxOS must not depend on the old behavior.
POSIX 1.c Migration Guide 31

Chapter 7 - Signals
32 POSIX 1.c Migration Guide

CHAPTER 8 Error Reporting
Pthread Function Errors

As noted in �Overview of Major Changes� on page 2, virtually all pthreads
functions defined by POSIX.1c return the error number as the return value of the
function instead of setting errno as in POSIX.4a, except where required by
existing practice. This requires that error detection and handling for these functions
be modified in a manner similar to the following code fragments:

POSIX.4a Code

:
if (pthread_create(&tid, &attr, thread1, NULL) == -1) {
perror(“pthread_create”);
exit(-1);
}
:

Equivalent POSIX.1c Code

:
int rv; // For function return value
:
rv = pthread_create(&tid, &attr, thread1, NULL);
if (rv != 0) {
fprintf(stderr,

“ERROR: pthread_create returned %d\n”, rv);
exit(-1);
}
:

Because such POSIX.1c functions do not set errno, the application cannot use
the C Standard function perror() to print the corresponding system error
message. An alternative, but non-portable, method of printing the system error
POSIX 1.c Migration Guide 33

Chapter 8 - Error Reporting

message corresponding to the function return value on LynxOS 4 is to use the
ERRMSG macro defined in errno.h to access the error message table:

rv = pthread_create(&tid, &attr, thread1, NULL);
if (rv != 0) {
fprintf(stderr,“pthread_create:%s\n”, ERRMSG(rv));
}

Elimination of EINTR Return Code

POSIX.4a allowed blocking pthreads functions to return an EINTR error if
interrupted by a signal handler in a manner consistent with many blocking
POSIX.1 or POSIX.1b interfaces. LynxOS versions prior to 3.1.0 exhibited this
behavior, requiring the application to handle these situations.

POSIX.1c disallows this behavior, requiring all blocking pthreads functions to
restart or complete after the execution of a signal handler transparently to the
application. POSIX.1 or POSIX.1b blocking function behavior is unchanged.

NOTE: Assigning the function return value to errno is strongly discouraged,
especially to return status from non-root threads using
pthread_exit((void *)&errno).
Although errno is implemented as a per-thread variable in LynxOS, the storage
for this per-thread data is persistent only during a thread�s lifetime. After the thread
terminates, this storage may be reused for other purposes at any time, rendering
any error information invalid.
34 POSIX 1.c Migration Guide

APPENDIX A Mapping Between Standards
Mapping Standards

This appendix correlates sections in the POSIX.4a Draft 4 and POSIX.1 1996
(ISO/IEC 9945-1:1996) specifications. Since POSIX.1c is included in the POSIX.1
1996 standard, the sections and some of their contents are organized differently
from those in POSIX.4a Draft 4.

Table A-1: POSIX 4a to POSIX.1 1996 Section Mapping

POSIX 4a Draft 4 Section/Topic POSIX.1 1996 Section/Topic

2.7 Primitive System Data Types 2.5 Primitive System Data Types

2.9 C Language Definitions 2.7 C Language Definitions

2.11 Symbolic Constants 2.9 Symbolic Constants

3. Thread Management 16. Thread Management
B.16 Thread Management Rationale

4. Thread Priority Scheduling 13.4 Thread Scheduling
B.13 Execution Scheduling Rationale

4.3.3 Thread Yield 13.3.5 Yield Processor

5. Synchronization Primitives 11.3 Mutexes
B.11.3 Mutex Rationale
11.4 Condition Variables
B.11.4 Condition Variable Rationale

6. Thread Cancellation 18. Thread Cancellation
B.18 Thread Cancellation Rationale

7. Thread-Specific Data 17. Thread-Specific Data
B.17 Thread-Specific Data Rationale
POSIX 1.c Migration Guide 35

Appendix A - Mapping Between Standards
36 POSIX 1.c Migration Guide

Index
A

asynchronous signals 29

B

backward-compatibility library 3
blocked signals 29

C

Cancellability Defaults 20
cancellability state 19

asynchronous 19, 20
general 19, 20

cancellability type 19, 20
cancellation points 20
Cancellation-Safe Interfaces 20
changes, general 5
changes, major 2
cleanup handler restrictions 21
cleanup handlers 20
cleanup stack management errors 20
compiler flag differences, POSIX.1c and

POSIX.4a Draft 4 1
Compiler Option Changes 3
compile-time symbolic constants 5
condition variables

dynamic initialization 27
initialization attributes 26
interprocess shareability 26
process-shared attribute 26

static initialization 2, 27
contacting LynuxWorks ix
control object 9

D

default compilation environment 2
definitions 1
documents, LynxOS vii
Dynamic Package Initialization 9
dynamic thread scheduling parameter access 15

E

EINTR error 34
error message table 34
error message, printing 33
Error Reporting 2, 33
event notification 30

F

fork handlers, registering 2
fork() 9
fpathconf(), new parameters 5

H

handler functions, registering 9
POSIX 1.c Migration Guide 37

Index

I

Introduction 1�5
ISO/IEC 9945-1

1996 (POSIX.1) Threads Options vii

L

libc.a 3
libposix-pre1c.a 3
libraries, initialization 25, 27
Library Structure Changes 3
LynuxWorks, contacting ix

M

Mapping Between Standards 35
-mlegacy-threads compilation switch 4
-mthreads-pre1c option 2
mutex

dynamic initialization 24
interprocess shareability 24
normal 24
priority ceiling 24
priority ceiling control 25
priority inheritance 24
priority-scheduling attributes 23
process-shared attribute 23, 24
static initialization 24

Mutex Initialization 24
Mutex Initialization Attributes 23

N

non-preemptible scheduling policy 13

P

pathconf(), new parameters 5
POSIX 1003.1 1
POSIX.1 (definition) 1

POSIX.1b (definition) 1
POSIX.1c (previously POSIX.4a) (definition) 1
POSIX.1c functionality 1
POSIX.4 Draft 14 1
POSIX.4a Draft 4 Pthreads extensions vii
POSIX.4a Draft 8 1
Preface vii
priority ceiling control, mutex 25
processor, relinquishing 16
pthead_atfork() function 9
Pthread Function Errors 33
pthread_attr_destroy() function 8
pthread_attr_getscope() function 12
pthread_attr_setdetachstate() 8
pthread_attr_setscope() function 12
pthread_cleanup_pop() function 19
pthread_cleanup_push() function 19
pthread_condattr_destroy() function 26
pthread_create() 30
pthread_detach() 8
pthread_getspecific() function 18
pthread_key_delete() function 17
pthread_once() 9
pthread_setcancelstate() function 19
pthread_setcanceltype() function 19
pthread_setspecific() 18
pthread_sigmask() function 29

R

Reference manuals vii
run-time invariant values 5

S

sched_param structure 12
sched_yield() function 16
scheduling

non-preemptible scheduling 13
scheduling minimum and maximum priority

macros 13, 16
scheduling parameter limits retrieval functions,

POSIX.1b 13, 16
scheduling policy values 12
scheduling priority attribute 12
sigev_notify member 30
38 POSIX 1.c Migration Guide

sigevent structure 30
Signal Delivery Semantics 31
signal-based event notification 30
Signals 29
signals

accepting synchronously 29
asynchronous 29
blocked, controlling 29
pending 31

sigwait() function 29
sigwaitinfo() function 29
Synchronization Primitives 23
sysconf(), new parameters 5

T

Technical Support ix
Thread Cancellation 19
thread creation

attributes 7
detached state 8
joinable state 8
scheduling attributes 11

thread creation, detached state 2
Thread Fork Handlers 9
Thread Management 7, 8
thread primitives 1
thread priority, manipulating 13
Thread Scheduling 11
thread scheduling scope 12
thread scheduling scope, default 12
threads blocked 31
Thread-Specific Data 17
thread-specific data key, deleting 17
Typographical Conventions viii

U

Updating Applications, changes in 4
POSIX 1.c Migration Guide 39

Index
40 POSIX 1.c Migration Guide

	POSIX.1c Migration Guide
	Contents
	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Introduction
	POSIX.1c Description
	Overview of Major Changes
	Library Structure & Compiler Option Changes
	Library Routiness
	Compiler Options Changes
	Updating Applications

	Other General Changes

	Chapter 2 Thread Management
	Thread Creation Attributes
	Thread Management Functions
	Thread Fork Handlers
	Dynamic Package Initialization

	Chapter 3 Thread Scheduling
	Thread Creation Scheduling Attributes
	POSIX.4a Code
	Equivalent POSIX.1c Code
	Non-Preemptible Scheduling Policy

	Dynamic Thread Scheduling Parameters Access
	POSIX.4a Code
	POSIX.1c Code

	Relinquishing the Processor

	Chapter 4 Thread-Specific Data
	Version Variations

	Chapter 5 Thread Cancellation
	Thread Cancellation Control
	Cancellability Defaults
	Cancellation Points
	Elimination of Cancellation-Safe Interfaces
	Cleanup Handler Restrictions

	Chapter 6 Synchronization Primitives
	Mutex Initialization Attributes
	Mutex Initialization
	Mutex Priority Ceiling Control
	Condition Variable Initialization Attributes
	Condition Variable Initialization

	Chapter 7 Signals
	Controlling Blocked Signals
	Synchronously Accepting Signals
	Thread-Based Event Notification
	Signal Delivery Semantics

	Chapter 8 Error Reporting
	Pthread Function Errors
	POSIX.4a Code
	Equivalent POSIX.1c Code

	Elimination of EINTR Return Code

	Appendix A Mapping Between Standards
	Mapping Standards

	Index

