POSIX 1.b Migration Guide

LynxOS Release 4
DOC-0416-00

Product names mentioned in POSLX 1.b Migration Guide are trademarks of their respective manufacturers and are used
here for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of POSIX 1.b Migration Guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the
prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

Contents

= 7Y o =3 I1X
For More INformationccocoeeererieiiiniinciienieneese e ix

Typographical CONVENIONScc.eervieriieeiieeriieniieiee ettt eseeeieenireereesreeeeeenenennns X

SPECIAL NOTES ..c.veueiiieiieiiriietinienteetet ettt st sttt eae e xi

TechniCal SUPPOTL ..ccuvieeieiiieiecieeiee ettt esreeebeeene e Xi

LynuxWorks U.S. Headquartersccocceeeveecieenieeniiienieeiee e eseeniiens xi

LynuxWorks EUTOPEcoovieiiiiiieieciieeece ettt Xi

World Wide WEDccoiiiiiiiiiiiiicieceeccccee e Xi

CHAPTER 1 [3T0] 010 T 1 o] N SR 1
POSIX. 1D DESCIIPLION ...euvuiiuiiiiiiniirieniineeieneeecteitere sttt enereeaenaeas 1

Overview of Major Changesc.cecceerveriienieeiieesieeieeiee e esieesveseeenaneeenees 3

Library Structure and Compiler Option Changesccccceevveeeereereeseenenenn 4

Library Structure Changescccccceveeeereriineneninencneeeeeeeeeeeeeenaens 4

Compiler Option ChANGEScccoerueeerieieninieineecnieeenie et seeseeneenens 4

New Library Structure ISSUESccceeiererieiieieie e 5

Name Conflicts Between liblynx.a and libc.accccecveveirereennee. 5

Identifying Function Usage in Applicationsccceceververeneenneenene 8

Other Functions in liblynX.accoocveeiiriiieniieeeeeee e 8

Using Parts of liblynx.a in an Applicationcceceevvevvreerernennen. 8

Other General Changesccocvevvieieriieieiecieseeee et ae e essesees 9

CHAPTER 2 SCHEDULINGc.cuuuueuuieieieeesesssessesssseseeeeeseer e s snsssssssssssssssssssssssssssseseenennnn 11
SChedUler PLiOTILYccvvovieieciieieiieie ettt ettt sae e s esaeeaeas 11

Draft 9 CoAe ...ooiuieieiiee e e e 11

Equivalent POSIX. 1D COA@eeiuiiiiiieieiieeieeee e 11

Changes t0 IMACTOSccuevieviriierieriierieeeieieseesesreessesseessesssessesseesseeseessesseeseas 12

POSIX 1.b Migration Guide iii

Contents

CHAPTER 3

CHAPTER 4

Draft 9 Codeoooiiiiiiiiie e 12
Equivalent POSIX.1b codecccooiriieiiiiiiiiiieiieneeceee e 12
MacCTos VS. FUNCHONSoovieieiieieiiieie ettt see e 13
VICLA () ettt ettt bttt ettt eneene 13
SCHED OTHERoouiiiiiiiiiieeee ettt e 13
Non-Preemptible Scheduling POIiCYccccevoieiiirieniirienieiee e 14
G317 (0] oo 21 o1 LSRR 15
REAL-TIME SIGNALSceuuuiiiiiiieneirrirernnsssrrersrssssssreesrssssserrenssserresnsnnnns 17
Normal Signals Versus EVENtScccccccevvieriieiiieiiiereenie e 17
Events Versus Real-Time Signalscccocovoeviiieienieiiieeseeeeceee e 18
The SIZACLION SIIUCTUTE ..c.veiiviieiieiieeiierieerieeseeeieeeeeaeesteesbeeseeeaeenseenaneenns 18
sigaction Structure CONLENLScccveervverieeiieeniieerieerienieeieeeeeeeeenenenenees 19

The EVent StrUCTUIEcccviiiiiiiieeiieciie ettt et eve e e 19
event StruCture CONTENLScceeveveerueerrieerieerieeteeneeereeereseeeereeseeeeseeens 19
signal and event Handler SyNnopsesccoceeveeviieevieneenieseeieeeereeveenn, 21
SIZINTO t STIUCTUTE ...oevviieiiieiiciie et e 21
Data SIIUCTUIES ..coveevierieiieriieiieieeeetcet ettt ettt ebee e 23
Signal HandIersocceevcuieiiieiiieniieie it 25

Use of the sigqueue FUNCHONcccocveiiiiiiieiciiee e 25
Sending a Real-Time Signal to @ Processccceevveveerueeveeniesienieeranenns 27
DIaft 9 Code ...c.ooueeviiiiriiiiieeeee e 27
Equivalent POSIX. 1D Codeccceeveeviviieiieeeieeieeieeeeeee e 27

Polling for a Real-Time Signalc.cccoecveviieieniinienieieeie e 28
DIaft 9 Codeooueriiiiiiiiiiieieeee e 28
Equivalent POSIX. 1D Codeccceoveeiiiiieiieeeieeiieeeeeeee e 29
Equivalence for Other Draft 9 Event Functionsccccccoevevvveeenreenenns 29
Timers, Message Queues, and Asynchronous /Occccceevvvveiennn, 29
Changes from Draft 9 t0 POSIX 1D ...oooieiiiiiieieeeeeeeeee e 30
Data StrUCLUTESc.eeeeiiieeeiie et e ee e e seee e 31
Indefinite/Timed Waitccccceevieiiiiii e 34
Ability to Send Arbitrary Dataccooceeiiiiniiiieee e 34
Drafts 9 and 10 Event FUNCHIONSccooceevieiiieiieciieceeeieeeere e 35
INteroperabilitycceeoieiieieieie e 35
IVIESSAGE QUEUESccccuuuiiiieiieneeireereennssssrersssssssssresssssssssseesensssssssesnsnnnns 37
Creating Message QUEUEScceevueeriieeiieenieerieenteeieeseeesteesetesseeseesaseeneennne 38
DIaft 9 Codeoueeuieiiiiriieiiieee et 38

iv POSIX 1.b Migration Guide

Equivalent POSIX. 1D COdeoovcvveriieiieeiieiieeieeeee et 38

Data Structure Changesc.cccceceeerrererineneninenieeeteeeeere et naens 39
Getting and Setting Message Queue Atributesccceevvevevierieeieeneenveeieenne 39
Draft 9 Codec.ooiiiiiiiiieeee e 39
Equivalent POSTX. 1D COdEooecveeniieiiieiieiieeieecee et 40
Sending and Receiving MESSAZEScccververrerieerieniieieeeeeeeeeesieseeeseeseesesnees 41
Draft 9 Codec.ooiiniiiiiiieeee e 41
Equivalent POSIX. 1D Codecccooviiiiriiiiiiiniienceieeceenceee e 41
Notification of Message Availabilityc.cccoevimeiinnieinininiecncneneee 42
Changes from Draft 9 t0 POSIX. 1D ..cc.oovviiiieieieeeeeeeeee e 44
Interface Chan@esc..ccceeevieeiienieerieesieeeeiee ettt e sbe e 44
Data SIUCTUIESooveiuiiiieiieniieie ettt 45
ATTIDULES ..ottt st 46
IMESSAZES .evevveenvreeureeiieenieeteensreesseesseesseesseessseesseesssessssesssesseesssesnseenssenns 47
MeSSaZE PTIOTITIES ...vevvveeieeiieiiieeie ettt ete ettt sre e 47
SelectiVe RECEIVEc.evieiiriiiiiriieniiienenteeeeceeeee e 47

Process PrIOTIIES ...c..cocvevieiiniiinieniieiieiietesc et 47
Synchronization Controlccccceevevieeierieeieieeeeee e 47

Buffer Managementccccoeceevviienieeiienieeeie e 47

Sending and Receiving EVentsccccceevveviieiiencieeneciecieeeee e, 48

Purging, Data Buffer Allocation/Freeingc.ccceeveeveevenveevennenne. 48

Sender ID ..o 48

QUEUE WIAD eeiiiieiiieiieeiie ettt ettt ettt e sebeeaeesnbesnbeenanesane 48
TIME-STAMPINEG .ovvveevieiiiiiienieeie et et e ete e e e st e e e seeeesbeesbeeneeens 48
Truncation CONtIOlcccooirererierieieie ettt 49

A Pointer-Worth of Datacccoovvevveviiiinieiieiecieeeeeeee e 49
Notification of Message Availabilityccccccoevivvieviineecenieeeenens 49

€XEC() BERAVIOT ..viviiiiiiieiicieiece e 49

NEW ULIIEIES ouveneeneeiieiieiieiesieeee ettt e 49
INtErOPErabIlityc.cccvevvieieriiiieerie ettt ettt et ere e 49
SHARED IMIEMORYoiiiiiiiiininie s ssss s s sss s s s s ssanne s 51
INErOAUCTION .eiiiiiiiiieiiciie ettt e beebe et e eebeesaee et s 51
Creating and Deleting Shared Memorycoceoeviriinieninieneeee e 51
DIaft 9 Code ..ccooveieieieiiieec e 52
Equivalent POSIX. 1D Codecooieuviiieieiieieciieieeeeeeere e 52
Mapping and Unmapping Shared Memoryc.ccooceevereeienieienieeeeeene 53
Draft 9 Code ...cvvieuiiiiiecieeeeee ettt e 53
Equivalent POSIX. 1D COA@eevuiriiiieieiieeieeee e 53

POSIX 1.b Migration Guide v

Contents

Changes from Draft 9 t0 POSIX.1D ..ooccveviiiiiieiiiieeeece e 54
PEISISTEIICE ...ovvieeieiiiieie ettt ettt eneesnaenneas 54
Size of Shared Memory ODJECtccevveeeereieiienieieceeie e 54
Shared/Private Changescocceceererenenienenienieieneeeeeneee e 55
fOrk() BEhaVIOroovvieiieiieie ettt 55
PrOtECHION ...eieiiieieiieeiee ettt et naenne s 55
msync() and mprotect() FUNCioNSccccoveveneneneieiiceeicencnencnenne 55
REtUIN VAIUCS ..ottt 55
INEW ULIIEIES .oveeeieieiieiiesieeieie ettt e 56
Inter-Operabilitycoceceevirieiiniieriireerereeee e 56

CHAPTER 6 CLOCKS AND TIMERS......cciettteuuirrrerennsssrsermesssssseresnnssssseesssssssssreesnsnsnnnes 57

INErOAUCTION ..ottt e 57

Resolution of @ ClOCKcc.eeiiviiiiiiiiiiiecee e 57
Draft 9 Codeoouveiiiee et 57
Equivalent POSIX.1D Codeccoceruirinineniniienccececceeeeneneeee e 58

Creation and Deletion of @ TIMerc..coceveiiiniiienieieniiececsceeceee e 58
DIaft 9 Codeoeeuieiiiiriieiiieee et 58
Equivalent POSIX. 1D Codeccceevuirvieiieieiieeeieeeerie et 59

Setting @ TIMETcc.ceiruiririiieiceeieee ettt 60
DIaft 9 Codeoueeuieiiiiiieiie e 60
Equivalent POSIX. 1D Codecccoevvievieiieieiieieeieseeree e 60

Determining Timer Overrun Count(s)cceeveerverueeneeenieesienveeneeseeesieennns 61
Draft 9 Codeoouveiieiee et 61
Equivalent POSIX.1b Codeccccvirineneniniicnciciecceeee e 62

Changes from Draft 9 t0 POSIX.1IDccooeoieiiiiieiieiicieeceee e 63
OVETTUN COUNL vttt ettt e 63
Signal/Event Associated with @ TIMerccecceveenenieriiriereeees 64
Signal NUMDEToooveiiiiieiieieie et 64
Relative and Absolute Timesccccceeeerieieiieeeeeereeee e 64
RESOIULIONS ...ttt et ene e eeenee s 64
Get TImer ValUeocooieiiiieeee e 64
Create TIMET ...eeieiieeieeieeee ettt ettt ettt se et e seeeneeneeens 64
Clock ReSOIULION ...c.veiieiiieieiieiiee e 65
NANOSIEEP() -veveeeernieeeee ettt ettt sttt ettt neenee s 65
Pending SignalS/EVENtsccooceeviiiieiiiieieeiieeeeeee e 65
INteroperabilitycccoeoieiieieeri e 65

Vi POSIX 1.b Migration Guide

CHAPTER 7 SEMAPHORES.cceuuuiriirienassrrirerrsssssssererrnssss s 67

INErOAUCTION ..ottt et s 67
Unnamed SemapROTesc.coceevieiiieniieiee et sreeeste e siaeenae e 68
Creating a Named Semaphoreccccceironiriininienincneneeceeeeeeeeeresene 69
Draft 9 Codec.ooiiriiiiiiiieee e 69
Equivalent POSTX. 1D COdEooecverviieiieeiieiieeieeeee et eie e 69
Posting and Waiting on SEmaphoresccceecveeriiiiieenieeniieienie e eve e 70
Draft 9 Codeoovieieiiie e e 70
Equivalent POSIX.1b Codeccocireiririnininiincicneccncceeeee e 70
Conditional Posting to SEmMaphoresccceeveerieeeiienieniieseeeee e 71
Draft 9 Codeco.ooiiiiiiiiieee e 71
Equivalent POSIX. 1D COAEeevveeiieiiieiieiiecieecee ettt 71
Changes from Draft 9 to POSIX 1D ...ccooeiiiiiiiiiiiircncneccseeccccene, 72
Conditional POSHINGc.ccovievieiieiieiiiieeiicie ettt ee v e saee v eenens 73
Permission CheCKiNgc.ooererenienieieneeeei et 73
NEW UHIIEIES ..eovieiiiiiiniiiieiececeeeee e 73
INtErOPErabIlityc.eccvevviiieiiiieiecieete ettt ereennn 73
CHAPTER 8 IVIEMORY LOCKINGuiiiiiieuuiiirerrrnnsissereenssssssseresssssssssersssssssssreessnsssnses 75
Locking the Specific Address SPaceccovveveeieiinieiineeeseeee e 75
Draft 9 Code ...cvveeuiiiiieeieeeee et e 75
Equivalent POSIX.1b Codeccoovriririnininiinicicnciceneeceeee e 76
Locking Future GrOWthcccccviiiienieiiieiiieie ettt s 76
Draft 9 Codecouooiiniiiiiiiicee e 76
Equivalent POSIX.1D Codecoveuieiiiiiniiieieeeeeeeee e 77
Changes from Draft 9 t0 POSIX. 1D ..cooouieiiiiiiicieeeeeeeee e 77
LOCKING FIAGS ..ovvieviitieiiicieeieeeettette sttt esae e 77
MUILIPIE LOCKS ettt 78
Locking/Unlocking the Entire Processccevveveeiieniesienieeieerieseennns 78
Current/Future LOCKINGcooieiieriiieiiiecee e 78
INtErOPErabIlityc.cccveviiiieiiiieerie ettt st ereennens 78
CHAPTER 9 ASYNCHRONOUS I/cceeviiieiieeecii s sereeies e s sesasas s s e e s ranas e esenn s s s e e nennnnn 79
Data Structure Changesccceveevverieerieeieieeienieereesiesee e eneseesesseessessens 79
Asynchronous Read and WIitecccooiieiiinieninieneee e 81
DIaft 9 Codeooveieieieiiieeee e 81
Equivalent POSIX.1D Codecoueuiiiiiiiiniieniieeeeeeeeee e 82

POSIX 1.b Migration Guide vii

Contents

List DIrected I/O ..couoiuieiiiieiieieieeeee et 83

Draft 9 Codeoouieiiiieie et 83

Equivalent POSIX.1D Codeccccvuiriniineniniienicicececceeeenene e 85

Changes from Draft 9 t0 POSIX.1D ...oociiiiiiiieiiiieeeeece e 87

Data SHUCTUIESoouiveiieiiiieieieeeeteet ettt 87

Timed SUSPENSIONeevriieiieeiieiieeieeeee et eree et etee e e ae e eaeesebeenaeeenne 89

Cancellation NOtIfiCationcccocerieriiniininiieniniesceeee e 89

listio Signal DElIVETYc.ccouvuiririereriiieieeeteteere st 89

Q10 TSYNC() werviviiiiieietitetet et 90

INteTOPErabilityccceviriiriiriirieiciei e 90

APPENDIX A FUNCTIONS CALLABLE FROM SIGNAL HANDLERS...........ccevvveeeeeeeeeeeeennnnnnes 91
APPENDIX B IMAPPING BETWEEN DRAFTS.......ccceuuiiiiiirieniissrrrresses s e sresasss s s s s ennnsssssessees 93
10 =5 95

viii POSIX 1.b Migration Guide

— Preface

The POSIX 1.b Migration Guide is intended to help developers to migrate code
developed under POSIX.4 Draft 9 to POSIX.4 Draft 14 (POSIX.1b); it does not
provide enough information to write code directly to the POSIX.1b standard. This
Guide also assumes that the reader is thoroughly familiar with POSIX.4 Draft 9.
For detailed information, consult the appropriate LynxOS man pages and the
POSIX.1b standard.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

Release Notes

This printed document contains late-breaking information about the
current release.

LynxOS Installation Guide

This manual supports the initial installation and configuration of LynxOS
and the X Windows System.

LynxOS User's Guide

This document contains information about basic system administration
and kernel level specifics of LynxOS. It contains a “Quick Starting”
chapter and covers a range of topics, including tuning system
performance and creating kernel images for embedded applications.

Online information

Information about commands and utilities is provided online in text
format through the man command. For example, a user wanting

POSIX 1.b Migration Guide ix

Preface

information about the GNU compiler would enter the following syntax,
where gcc is the argument for information about the GNU compiler:

man gcc

More recent versions of the documentation listed here may also be found online.

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should

X

be typed accurately.

Kind of Text

Body text; italicized for emphasis, new
terms, and book titles

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data

Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bol ded.

Text that represents a variable, such as a file
name or a value that must be entered by
the user

Blocks of text that appear on the display
screen after entering instructions
or commands

Keyboard options, button names, and
menu sequences

POSIX 1.b Migration Guide

Examples

Refer to the LynxOS User s Guide.

I's

-

nyprog. c

/ dev/ nul |

| ogi n: nynane
cd /usr/honme

cat fil enane
m/ filel file2

Loading file /tftpboot/shell.kdi
into 0x4000

File | oaded. Size is 1314816
Copyri ght 2000 LynuxWorks, Inc.
Al rights reserved.

LynxCS (ppc) created Mon Jul 17

17:50: 22 GMr 2000
user nane:

Enter, Ctr-C

Special Notes

Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products, Frequently Asked Questions (FAQs), and LynuxWorks news
groups.

LynuxWorks U.S. Headquarters

Internet: support @ nxw. com
Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: t ech_eur ope@ nxw. com
Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://ww. | ynuxwor ks. com

POSIX 1.b Migration Guide Xi

Preface

xii POSIX 1.b Migration Guide

w1 Introduction

POSIX.1b Description

The POSIX.1b standard encompasses real-time extensions to the POSIX.1
standard. POSIX.1b functionality includes shared memory, messages, real-time
signals, clocks and timers, scheduling, semaphores, memory locking, synchronized
/O, and asynchronous 1/0.

This Guide acts as a tutorial and describes the differences in compiler flags
between POSIX.4 Draft 9 and POSIX.1b.

NOTE: Throughout the example code, error checking is not performed; function
calls for which error checking is not executed are assumed to be successful. The
reader should not accept this as a programming style. Error checking is omitted in
order to keep this document at a reasonable size and to place emphasis on the
migration—the purpose of this document. In order to simplify the examples,
obvious include files (i.e., <st di 0. h>) have not been shown.

For a guide to POSIX.1b programming style with LynxOS, please refer to the
on-line example programs provided with the distribution and to other
related documents.

The following definitions clarify how the various POSIX specifications interrelate:

POSIX.1 The basic operating system standard, also known as
POSIX 1003.1 - POSIX.1 was approved in 1988.

POSIX.1b Amendments to POSIX.1 for real-time systems -
POSIX.1b was approved in 1993. Also known as POSIX.4
Draft 14.

POSIX 1.b Migration Guide 1

Chapter 1 - Introduction

2

POSIX.4a (now POSIX.1c)Amendments to POSIX.1 defining thread

Draft 9

Draft 10

primitives - thread creation, synchronization, destruction,
etc. The POSIX.4 committee decided that keeping threads
in the POSIX.1b standard would delay approval, due to
the complexity of the threads issue. Also, a separate
POSIX specification for the threads interface allows
vendors the option to exclude the other real-time support,
which POSIX.1b requires. POSIX.4a Draft 8 was
approved and renamed POSIX.1c. LynxOS supports
POSIX.4a Draft 4.

In this Guide, “Draft 9” refers to Draft 9 of the POSIX
1003.4 standard. Draft 9 is an intermediate draft leading
to POSIX.1b. Draft 9 has been the target for LynxOS since
version 2.0. However, LynxOS event handling is based on
Draft 10.

The next intermediate draft after Draft 9, which, among
other things, made some important and useful changes to
event handling

The POSIX support in LynxOS has been targeted (mostly) for Draft 9 of the then-
evolving POSIX.4 standard, and for the approved POSIX.1 standard. POSIX.4
changed significantly between Draft 9 and Draft 14; Draft 14 is the version which
was approved as the POSIX.1b standard.

The POSIX.1 standard, when amended by POSIX.4, became the POSIX.1b
standard, and included all of the facilities specified in both documents. LynxOS
meets the POSIX.1b standard, and also supports Draft 4 of the POSIX.4a standard.

In this Guide, “POSIX.1b,” means the POSIX.1b standard as approved by the
IEEE. “Draft num” refers to the num draft of the POSIX.4 standard.

POSIX 1.b Migration Guide

Overview of Major Changes

Overview of Major Changes

The compilation environment now defaults to POSIX. 1b, rather than
POSIX.4 Draft 9 (referred to as “Draft 9” or “P4D9”). To invoke Draft 9
functionality, you must specify the option - nposi x4d9 when compiling
an application. For more information, see the LynxOS Release Notes.

Significant library structure changes have been made in this release of
LynxOS. Please see “Library Structure and Compiler Option Changes”
on page 4 in this chapter for more information.

It is not possible to mix the Draft 9 and POSIX.1b standard versions in
the same application. Users must choose between the two with compile-
time options. LynuxWorks recommends using the POSIX.1b standard for
all future development.

Not all Draft 9 features have corresponding equivalents in POSIX.1b.
Some features have been discontinued.

POSIX.1b does not include real-time files. Draft 9 programs using this
facility have no migration equivalent in POSIX.1b. Draft 9 real-time file
support still exists, and LynuxWorks will continue to support this
interface as a proprietary feature in future releases.

Message queues have changed significantly from Draft 9 to POSIX.1b.
Some facilities, such as determining the ID of the sender of a message,
and buffer management, are no longer available. The new message queue
support is streamlined, with better performance.

The events facility from Draft 9 has been abandoned. The equivalent to
this interface is the real-time signals facility.

Semaphores have changed from binary semaphores in Draft 9 to counting
semaphores in POSIX.1b.

Draft 9 support for named semaphores, shared memory, and message
queues makes use of a file system. LynxOS’s POSIX.1b support uses
simple strings as names for these objects. There is no

file system involvement.

There are new facilities in POSIX.1b which do not exist in Draft 9. The
mrep facility (which allows files, devices, and shared memory objects to
be mapped into memory) is new. The nmap facility works only for
shared memory objects in the first release.

POSIX 1.b Migration Guide 3

Chapter 1 - Introduction

Library Structure and Compiler Option Changes

4

In this release of LynxOS, both POSIX.1b and POSIX.4 Draft 9 (referred to as
“4D9”) are supported. However, POSIX.1b is now the default compilation
environment. This change that involved modifying the library structure and
compile time options from previous LynxOS releases.

Library Structure Changes

To use the POSIX library routine calls, compiler command line instructions had to
contain the - nposi x switch (for gcc) or the - X switch (for cc). These options
instructed the linker to link with - | c_p.

The POSIX library routines for POSIX.1a and POSIX.1b have been merged into
the library | i bc. a. The libc.a library exists in/ i b and/ i b/t hr ead (for
multithreads). Two new libraries have also been added:

e liblynx.a
Contains some LynxOS-specific library calls (not conforming to any
standard)

e |ibposix4d9. a
Contains support for POSIX.4 Draft 9

Compiler Option Changes

In this new structure, to compile an application with 4D9 functionality, you must
compile with the - nposi x4d9 option. This option signals the compiler to define
-D__POCSI X4_D9__ and to link with the | i bposi x4d9. a library. Thus, you do
not need to change 4D9 source code with the new library structure, but you will
need to recompile with the - nposi x4d9 option. Also, you cannot mix 4D9
functionality with POSIX.1b in a single application. Your application may fail to
link or may exhibit unpredictable results at run-time.

POSIX 1.b Migration Guide

New Library Structure Issues

The following table summarizes the changes to the compiler command
line options.

Table 1-1: Compiler Option Changes in LynxOS

LynxOS
POSIX Specification ce
(x86) gee
POSIX 1003.1 Default Default
C Language Standard
POSIX 1003.1b Default Default
Final version of 1003.4
POSIX 1003.4a Draft 4 -m - nt hr eads
Thread Extensions
POSIX 1003.4 Draft 9 - nposi x4d9 - nposi x4d9
Real-Time Extensions

New Library Structure Issues

Name Conflicts Between liblynx.a and libc.a

With the library reorganization, it has been necessary to remove from the library
l'i bc. a some non-POSIX functions that have the same names as POSIX
functions. These functions are now contained in the | i bl ynx. a library and each
has an interface that is either LynxOS-specific or is BSD-compatible.

The following is a description of each of these functions and how its interface
differs from the POSIX interface:

1. getgroups()

This function differs in its arguments. The POSIX version (now in
|'i bc. a) has the following prototype:

int getgroups(int, gid_t *);
The LynxOS version (now in | i bl ynx. a) is BSD-compatible:
int getgroups(int *, gid_t *);

POSIX 1.b Migration Guide 5

Chapter 1 - Introduction

2.

get pgrp()

This function differs in its arguments. The POSIX version (now in
I'i bc. a) has the following prototype:

pid_t getpgrp(void);
The LynxOS version (now in | i bl ynx. a) is BSD-compatible:

pid_t getpgrp(pid_t);
LynxOS semaphore functions

These functions include sem count (), sem del ete(), sem get (),
sem nsi gnal (), semreset (), semsignal (),and semwait ().
Only one of these functions, sem wai t (), has a name conflict with
POSIX, but because the functions are expected to be used as a group, the
whole set has been moved to | i bl ynx. a. The POSIX version of
semwait() (nowin |ibc. a)has the following prototype:

int semwait(semt *);

The LynxOS version (now in | i bl ynx. a) is LynxOS-specific:
int semwait(int);

si gaction()

This function differs in its functionality. When the POSIX version (in

l'i bc. a) is used to set up a signal handler for a particular signal, and that
signal subsequently interrupts a system call in progress, then after
returning from the handler, the system call aborts and errno sets

to El NTR

When the LynxOS version (now in | i bl ynx. a) is used in the same
fashion, and the signal subsequently interrupts a system call in progress
(as above), then after returning from the handler, the system call is
resumed where it has been left off.

Either version can be made to mimic the behavior of the other with the
appropriate flag. The POSIX version can be made to behave like the
LynxOS version by using the SA__NOABORT flag. The LynxOS version can
be made to behave like the POSIX version by using the SA_ABORT flag.

6 POSIX 1.b Migration Guide

Name Conflicts Between liblynx.a and libc.a

BSD behavior is not supported by LynxOS. BSD differs from both
POSIX and LynxOS in that under BSD, a system call is restarted after it
is interrupted by a signal.

NOTE: Please see Appendix A, “Functions Callable from Signal Handlers” for a
list of functions, including si gacti on(), required in POSIX.1b to be callable by
signal handlers. This is to prevent corruption of the state of a library or any other
subtle failure.

5. signal ()

POSIX does not specify the si gnal () function, and strictly adhering
POSIX applications should not use it. However, LynxOS does provide a
“POSIX-like” signal () in libc. a that can be used if necessary.

The LynxOS version of si gnal () (nowin /lib/1iblynx. a) differs
in its functionality the same way that si gact i on() does (see Item 4,
above). Unlike si gacti on(), however, there are no flags passed to

si gnal (), so there is no way to make the “POSIX-like” version mimic
LynxOS behavior or vice-versa.

6. sleep(), susleep(), usleep()

LynxOS provides two versions of these functions. One is LynxOS-
specific and is similar to BSD sl eep() . (For more information about
this version, see the man page for sl eep().)

The other version complies with the POSIX.1 standard. The functions
susl eep() and usl eep() are not specified in the POSIX.1 standard,
but because they are closely related to sl eep(), LynxOS provides two
separate versions of them as well, found in |i bc.a and |i bl ynx. a.

Of the above functions, the ones users need to be most concerned about are
get groups(), get pgr p(), and the LynxOS semaphore functions, because using
unintended versions of these functions always produces incorrect results.

For get gr oups(), the POSIX version provides the same level of functionality as
the LynxOS version, so it may be easier to convert the source code to the POSIX
version. For get pgr p(), the LynxOS version provides more functionality than
the POSIX version, because it allows the user to obtain the process group of a
given process ID. If this usage is not needed, however, then users may consider
converting the code to the POSIX version.

For sigaction() and signal (), the differences are less noticeable, and in
many cases do not matter. When converting to the POSIX version, be aware that

POSIX 1.b Migration Guide 7

Chapter 1 - Introduction

8

using the POSIX version usually requires more error checking around system calls
to handle the case when they are interrupted by a signal handler.

For sl eep(), the differences between the LynxOS and POSIX versions often do
not matter. Converting from LynxOS sl eep() to POSIX sl eep() dependson
how a given application uses this function.

Identifying Function Usage in Applications

To identify the usage of these functions in executables or object files, use the nm
and gr ep utilities as follows:

$ nmfile | grep -w function

For an executable, the output line from the command above should show a T,
meaning external text symbol. For an object file, it should show a U, meaning
unresolved symbol.

To identify the function usage in source files, use the grep utility.

Other Functions in liblynx.a
The following functions are temporarily included in | i bl ynx. a as well:
I sbrk()
nkconti g()
smem create()
snmem get ()
snmem renove()

vt opny()

Users may need to link with the |i bl ynx. a library if their applications use these
functions, even though this has not been necessary in previous releases.

Using Parts of liblynx.a in an Application

Sometimes an application needs to use a mixture of the LynxOS and POSIX
versions of functions discussed in this section (for example, needs LynxOS

get pgr p() , but needs POSIX sem wai t ()). To achieve this, users must extract
the object files that contain the needed LynxOS functions from | i bl ynx. a and
link with these objects directly instead of |i bl ynx. a. Alternatively, users may

POSIX 1.b Migration Guide

Other General Changes

put the extracted objects into their own smaller library. Users should then link the
application with this smaller library instead of |i bl ynx. a.

NOTE: Some of the objects in | i bl ynx. a contain more than one function (for
example sl eep(), susl eep(),and usl eep() are combined into one object),
so it is not possible to use the LynxOS version of one such function and the POSIX
version of another.

Other General Changes

Refer to the sysconf () man pages for a list of new parameters which can be
passed to the sysconf () function. Also, refer to the pat hconf () and

f pat hconf () man pages for a list of new parameters that can be passed to these
two functions.

The lists of run-time invariant values and compile-time symbolic constants have
changed. Due to their length, these lists are not reproduced here. Refer to Table 2.5
and Table 2.10 of the POSIX.1b specification (IEEE 1003.1b) for these lists.

Table 1-2: Changes in Errno Values

Draft 9 POSIX.1b
El NPROG El NPROCGRESS
EFTYPE El NVAL
No Equivalent EBADMSG
No Equivalent EMSGSI ZE
EFAI L No Equivalent
ENVAI T No Equivalent

Table 1-3: Change in Compile Time Symbolic Constant

Draft 9 POSIX.1b

_POSI X_BI NARY_SEMAPHORES _POSI X_SEMAPHORES

POSIX 1.b Migration Guide 9

Chapter 1 - Introduction

10 POSIX 1.b Migration Guide

onemnz. SCheduling

Scheduler Priority

The main difference in scheduling functionality is the way scheduling priorities are

handled. In Draft 9, scheduling priorities are defined as type i nt . However,
POSIX.1b defines a new structure, sched_par am which encloses the priority

field as type sched_pri ori ty. A pointer to the structure sched_par am must be

passed to all scheduling functions. An example of these changes is shown below.

Draft 9 code

#i ncl ude <sys/sched. h>
mai n()

int prio;
pid_t pid;

brio = getprio(pid);

Equivalent POSIX.1b code
#i ncl ude <sched. h>
mai n()
int prio;
struct sched_param paraneter;
pid_t pid;

;sched_get paran(pid, ¶neter);
prio = paraneter.sched_priority;

POSIX 1.b Migration Guide

1"

Chapter 2 - Scheduling

Changes to Macros

Another minor change is that a number of Draft 9 macros are replaced by functions

in POSIX.1b as explained in the table below.

Table 2-1: Scheduling Interface Changes

Draft 9

POSIX.1b

<sys/ sched. h>

<sched. h>

No Equivalent

struct sched_param

set schedul er ()

sched_set schedul er ()

get schedul er ()

sched_get schedul er ()

setprio() sched_set paranm()
getprio() sched_get paran()
yi el d() sched_yi el d()

PRI O ??_ MAX macr os

sched_get _priority_max()

PRI O ?? M N macr os

sched_get _priority_mn()

RR I NTERVAL nacro

sched_rr_get _interval ()

The following examples illustrates these changes:

Draft 9 code

#i ncl ude <sys/sched. h>

mai n()

{

printf("FIFOmn prio = %d\n", PRROFIFOMN);

}

Equivalent POSIX.1b code

#i ncl ude <sched. h>

mai n()

{

printf("FIFOmn prio = %\ n",
sched_get _priority_m n(SCHED FI FO));

POSIX 1.b Migration Guide

Macros vs. Functions

Macros vs. Functions

Draft 9 defines a number of macros for certain scheduler parameters. Six of these
macros defined the minimum and maximum scheduler priorities for the three
scheduling policies:

PRI O FIFO M N
PRIO RR M N

PRI O OTHER M N
PRI O_FI FO_MAX
PRI O RR_MAX
PRI O OTHER MAX

These were replaced by two functions in POSIX.1b. The function

sched_get _priority_m n() takes a scheduling policy as input and returns the
minimum priority for it. The function sched_get _priority_max() takesa
scheduling policy as input and returns the maximum priority for it.

Draft 9 defines the macro RR_| NTERVAL for the interval for the SCHED RR policy.
This is replaced by a new function sched_rr_get _i nt erval () in POSIX.1b.

yield ()

The Draft 9 yi el d() function does not return anything, and sets no error numbers.
The equivalent sched_yi el d() function in POSIX.1b returns an i nt and sets
an error number on failure.

SCHED_OTHER

The behavior for the SCHED OTHER scheduling policy has not changed. This is the
same as SCHED DEFAULT, which is the LynxOS proprietary scheduling policy.

POSIX 1.b Migration Guide 13

Chapter 2 - Scheduling

Non-Preemptible Scheduling Policy

14

LynxOS implements a non-preemptible scheduling policy called
SCHED_NONPREEMPT. A process running under this policy cannot be preempted by
any other process until it voluntarily sleeps or blocks waiting for a semaphore or
mutex object. An example of this policy is a garbage collector running with low
priority and performing critical work so that it must not be interrupted. The sample
code of the application is as follows:

voi d garbage_col | ector(arg)

void *arg;

{

while (1) { /* endless |oop */
if (waste_ratio() > max_waste_ratio) {
/* garbage collection, critical area
*/

}
sl eep(GC_TI MEQUT) ;
} /* end of loop */
}

mai n()

pthread_attr_t attr;
struct sched_param prio;
pthread_t tid;

pthread_attr_create(&attr);
pthread_attr_setinheritsched(&ttr, PTHREAD EXPLI Cl T_SCHED);
pthread_attr_set schedpolicy(&attr, SCHED NONPREEMPT);
prio.sched_priority = PRI O NONPREEMPT_M N,

pthread_attr_set schedparan(&attr, &prio);
pthread_create(&tid, &ttr, garbage_collector, NULL);

}

LynxOS also defines 2 constants for the SCHED NONPREEMPT policy designating
the maximum and minimum priorities for this policy. These constants are:

* PRI O NONPREEMPT_MAX
* PRI O NONPREEMPT_M N

These priorities can also be obtained using the sched_get _priority_max()
and sched_get _priority_m n() functions.

POSIX 1.b Migration Guide

Interoperability

Interoperability

There have been no changes in the standard scheduling facilities, and, therefore,
interoperability is preserved. Two processes, one using Draft 9 scheduling and
another using POSIX.1b scheduling would get the CPU slices as if they used the
same version of scheduling.

POSIX 1.b Migration Guide 15

Chapter 2 - Scheduling

16 POSIX 1.b Migration Guide

owmns Real-Time Signals

There are three basic types of signal functions available under LynxOS:
* Normal signals (as defined in POSIX.1)
* Events (Drafts 9 and 10)
* Real-time signals (POSIX.1b)

It is important to note that real-time signals may be thought of as an inter-process
communication (IPC) tool. Real-time signals are only one possible IPC mechanism
made available in POSIX.1b (e.g., messages, semaphores, and shared memory are
also considered IPC mechanisms). Different IPC functions vary in functionality
and performance.

Real-time signals are often not the best choice for IPC.

Normal Signals Versus Events

From one point of view, signals and events are slightly different user interfaces
layered on top of the same underlying LynxOS support. In both cases,

si gacti on() notifies the operating system that the process is using a signal/event
handler. A difference is that the signal handler and the event handler do not have
the same calling sequence. The words “signal” and “event” are used almost
interchangeably because the two interfaces are nearly identical.

There are a couple of key differences between events and signals. The default
action for a signal is specified on the si gnal () man page. Most of the signals have
already-defined names and functionality, such as SI GKI LL and SI GCORE. Only a
few user-defined signals are available. The events facility adds more “signals” to
the list of possible signals, and all of these new signals are available for user-
defined functions.

POSIX 1.b Migration Guide 17

Chapter 3 - Real-Time Signals

Events can also carry data; the event handler receives the event number and a small
amount of data. The signal handler and event handler have different parameters.
The main difference between Draft 9 and Draft 10 events is the handling function’s
calling sequence. Thus, signals, Draft 9 events, and Draft 10 events all have
different-looking handlers.

Events are queued. Normal signals are not queued under LynxOS; the POSIX.1b
standard does not define any particular queueing behavior for normal signals.

Events Versus Real-Time Signals

Events and real-time signals differ primarily in their default functionality. For
Drafts 9 and 10, the default action for an event is for the process to ignore them.
For POSIX.1b, the default action is to terminate the process.

Once again, the handler’s calling sequence has changed. And as with all POSIX.1b
functions, the functions and compile-time constants have new names. There are
minor changes in the data structures, as well.

For real-time signals, users must call si gacti on() to notify the operating
system that a signal handler is being used. Events implementation requires a call to
si gacti on() ; LynxOS users with applications coded under Drafts 9 and 10
already call sigaction().

Both events and real-time signals are queued in FIFO order, and are delivered in
that order.

The sigaction Structure

18

In order to add real-time signal handling to the pre-existing POSIX.1 si gacti on
structure, a new flag, SA_SI G NFQ, is defined by POSIX.1b. This flag is in the
sa_f | ags member of the si gacti on structure.

The SA_SI G NFO flag specifies the signal handler that is desired. If

SA_SI G NFO is set, it is possible to pass a small amount of data to the signal
handler (see signal handler synopses below). If SA_SI G NFO is not set, then the
signal handler does not receive data.

A new member, sa_si gact i on, has been added to the si gacti on structure. At
signal delivery time, the sa_si gacti on member is called if the SA SI G NFO
flag is set in sa_f | ags, otherwise sa_handl er is called.

POSIX 1.b Migration Guide

sigaction Structure Contents

sigaction Structure Contents

The si gacti on POSIX.1 structure contains at least the following members:
void (*sa_handler)();
sigset_t sa_mask;

int sa_flags;

The si gacti on POSIX.1b structure now contains at least the
following members:

void (*sa_sigaction)(); /*
SA_SI G NFO set */
void (*sa_handler)(); /*

SA_SI G NFO NOT set */

sigset_t sa_mask;

int sa_flags;
/* NEW set SA SIGNFO flag if */
/* you want signals to have the */
/* data queued and retrieved */

NOTE: LynxOS does not implement the Draft 9 and 10 specification for the event
handler. Instead, users are required to call si gacti on to set up the event handler.
LynxOS customers with existing Drafts 9 and 10 applications need not add the

si gacti on call; it should be in the application where needed.

NOTE: The default functionality for LynxOS is Draft 10 events. To use Draft 9
events, the user needs to set the SA DIEV flag in the sa_fl ags member of the
si gacti on structure. When the SA DOEV flag is set, be sure to remove it when
porting an application to POSIX.1b.

The Event Structure

The new name of the event structure is now si gevent . The fields are similar. In
both cases, a signal’s value is an application-defined value, which is passed to the
signal-catching function at the time of signal delivery (allowing the signal to pass a
small amount of data).

event Structure Contents
The Drafts 9 and 10 event structure must include at least the following members:

evt_class_t evt_class; /*
si gnal nunber */

POSIX 1.b Migration Guide 19

Chapter 3 - Real-Time Signals

20

voi d *evt _val ue; /*
signal value */
void *evt_handler (); /*

signal handler; not used by LynxCs*/
evtset_t evt_classmask; /* signal handler; not used by LynxOS*/

NOTE: evt _handl er and evt _cl assmask are not used by LynxOS; the user is
required to call si gaction.

The si gevent POSIX.1b structure must include at least the following members:

int sigev_signo; I*
signal nunber */

uni on sigval sigev_val ue; /*
signal value */

int sigev_notify; /*

notification type*/

The si gval union must contain at least the following members:

int sival _int; /*
integer signal value */
void *sival _ptr; /*

poi nter signal value */

The si gval union allows the user more flexibility in using the value passed by
the signal sending code, because it is guaranteed to be large enough for an integer
or a pointer, whichever is larger. The Draft 9 and 10 event handlers do not allow an
integer, if it happens to be larger than a pointer on a given implementation.

The values for the si gev_not i f y member in the si gval union above are
as follows:

S| GEV_NONE no signal will be sent
S| GEV_SI GNAL signal will be sent

This member has been added to the si gevent structure by POSIX.1b to allow
different implementation-defined notification mechanisms.

NOTE: If the value in this field is not set to SI GEV_SI GNAL, the process does not
receive a signal.

POSIX 1.b Migration Guide

signal and event Handler Synopses

signal and event Handler Synopses

For reference, the following POSIX versions have the signal and event handler
calling sequences listed below:

* The POSIX.1 signal handler calling sequence is as follows:
si gnal _handl er (i nt signo);
* The Draft 9 event handler sequence is as follows:
event _handl er(void *sigdata, int signo);
* The Draft 10 event handler sequence is as follows:
event _handl er(int signo, void *sigdata);
(Please note the reversal of the si gno and si gdat a arguments.)
* The POSIX.1b signal handler sequence is as follows:
- If SA_SI A NFO isnotsetin sa_f | ags
si gnal _handl er (i nt signo);
- If SA SIA NFOissetin sa_fl ags

si gnal _handl er (int signo, siginfo_t *info, void *context);

siginfo_t Structure

The si gi nf o_t structure must include at least these members:

int si_signo; 1*
si gnal nunber */
int si_code; /*
cause of signal */
uni on sigval si_val ue; /*
si gnal val ue */

For both events and real-time signals, it is possible to pass a small amount of data
along with the signal to the handler.

For Drafts 9 and 10, the data was put into the event structure as
voi d *evt_val ue and received by the event handler as voi d *si gdat a.

In POSIX.1b, the data is put into the si gevent structure as si gev_val ue. This
value is received by the signal handler via the new si gi nfo_t structure.

The sigaction flag SA SI G NFO must be set to access the data, because the
signal handler used if SA_SI G NFO is not set, does not include siginfo_t.

POSIX 1.b Migration Guide 21

Chapter 3 - Real-Time Signals

Additionally, si _si gno has the same value as the first argument, si gno, in the
si gnal _handl er structure does.

Table 3-1: si gi nfo_t. si _code

Value Meaning
SI _USER Dueto kill () function
SI _QUEUE Due to si gqueue() function
SI_TI MER Due to timer expiration

SI _ASYNCI O Due to completion of asynchronous I/O

SI _MESGQ Due to arrival of message on an empty message queue

The signal handler parameter, cont ext , is not used in the
LynxOS implementation.

e If SA SIA@ NFO issetin sa_fl ags, usethe sa_si gacti on member
of si gaction structure, taking the following information into
consideration:

- The signal number must be in the range of SI GRTM N through
SI GRTVAX.

- Areal-time signal is sent.

Queued data is passed to the signal handler if the cause of the signal
(passed in si _code) is due to one of any of the following members
being called: SI_QUEUE, SI_TIMER S| _ASYNCI O,or Sl _MESGQ

The signal handler is the function specified in sa_si gacti on.

The signal handler calling sequence is as follows:
signal _handl er (int signo, siginfo_t *info, void *context);

e If SA_SI A NFO isnotsetin sa_fl ags, use the sa_handl er member
of the sigaction structure, taking into consideration that:

- Anormal style signal is sent

- Nodata is passed to the signal handler.

- The signal handler is the function specified in sa_handl er
The signal handler calling sequence is as follows:

si gnal _handl er (i nt signo);

22 POSIX 1.b Migration Guide

Data Structures

NOTE: If si gqueue() is called to send a signal that is not within the range of
SI GRTM N to SI GRTMAX, the data is discarded, and the signal posts to the
receiving process. If the signal is already pending, the process does not necessarily
receive it more than once.

The events facility from Draft 9 (and Draft 10, which LynxOS also supports) is
replaced by real-time signals in POSIX.1b. Draft 9 events and real-time signals are
distinctly different. Real-time signals are integrated with user (non-real-time)
signals. The primary distinction between Draft 9 events and real-time signals is the
default behavior; events are ignored while real-time signals terminate the process.

Data Structures

The event structure from Drafts 9 and 10 is replaced by the si gevent structure
in POSIX.1b with the following members:

Table 3-2: si gevent Structure

Type Name Description

int

si gev_si gno

Signal number

uni on si gval

si gev_val ue

Signal value

int

sigev_notify

Notification type

The si gev_si gno member specifies the signal to be generated. The

si gev_val ue member is the application-defined value, which is passed to the
signal-catching function at the time of signal delivery. This is a part of the

si gi nf o_t structure in the signal-catching function, which is described

in the table entitled “si gi nfo_t .

Table 3-3: si gval Union

Type Name Description
i nt sival _int Integer signal value
void * sival _ptr Pointer signal value

Either an application-defined value of the type i nt or a pointer can be passed
through the si gval union. The si gev_notify member can have either of two

POSIX 1.b Migration Guide 23

Chapter 3 - Real-Time Signals

values: S| GEV_SI GNAL or SI GEV_NONE. S| GEV_SI GNAL queues a signal when
the event occurs. S| GEV_NONE delivers no asynchronous notification when the
event occurs.

For the si gaction structure defined by POSIX.1, a new flag, SA_SI G NFQ is
defined by POSIX.1b for the sa_f| ags member. This flag must be used when
setting up a handler to queue a real-time signal from POSIX.1b.

Also, under POSIX.1b, a new member, sa_si gact i on, is defined for the
si gaction structure. This new member must be used for the signal handler
instead of sa_handl er whenever the SA _SI G NFO flag is set.

sa_handl er and sa_si gacti on should not be set simultaneously.

The following table shows the various cases of the sa_f | ags members and the
features associated with them; the SA_NOCLDSTOP flag does not affect the flags in
this table.

Table 3-4: sa_si gacti on. sa_fl ags

Flag Feature
None (with a valid POSIX.1 signal value) POSIX.1 signal
SA DOEV set Draft 9 event
None (with signal number between Draft 10 event
EVTCLASS_M N and EVTCLASS_MAX)
SA_SI A NFO POSIX.1b real-time signal

POSIX.1b defines another structure, si gi nf o_t, which is used to contain code
that identifies the cause of a signal. The address of this structure is used as an
argument to the signal-catching function.

Table 3-5: si gi nfo_t

Type Name Description
i nt si _signo Signal number
i nt si _code Cause of signal
uni on si gval si _val ue Signal value

The si _si gno member contains the signal number. It is the same as the signal
number argument of the signal-catching function. The si _code member encodes
the cause of the signal.

24 POSIX 1.b Migration Guide

Signal Handlers

The si _val ue member is the same as the application-specified signal value when
the si _code member is one of SI _QUEUE, SI _TI MER, SI _ASYNCI O, or
S| _MESGQ see the table entitled “si gi nfo_t . si _code”.

Signal Handlers
The signal handler synopsis for POSIX.1b is different from what it was in Draft 9.

Table 3-6: Signal Handlers

Draft Handler Synopses
Draft 9 event _handl er(void *sigdata, int signo)
Draft 10 event _handl er (i nt signo, void *sigdata)
POSIX.1b signal _handl er (i nt signo)

if SA _SI G NFO notsetin sa_fl ags for signo

si gnal _handl er (int signo, siginfo_t *info, void
*cont ext)
if SA_SI A NFO setin sa_fl ags for signo

Table 3-7: POSIX.1b Signal Handlers

Argument Meaning
int signo Signal number of the signal being delivered
siginfo_t *info Pointer to a Si gi nf o_t structure that encodes the

signal number, the cause of the signal, and an application-
specified signal value. This data structure is
explained above.

voi d *cont ext Unused in the LynxOS implementation

Use of the sigqueue Function

Under Drafts 9 and 10, there is no explicit mechanism to send an event to a
process. Events were generated as a result of a timer expiration, completion of
asynchronous 1/0, etc.

POSIX 1.b Migration Guide 25

Chapter 3 - Real-Time Signals

LynxOS provides a proprietary eki | | () function to explicitly send an event to a
process. POSIX.1b provides a si gqueue() function to explicitly queue a real-
time signal to a specific process.

The following program illustrates the use of this function and signal handlers from
POSIX.1b; the use of the si gi nfo_t structure in the signal handler informs the
process of the cause of the signal:

#i ncl ude <signal . h>
voi d signal _handl er(int signo, siginfo_t *info, void *context);
mai n()

struct sigaction sa;
uni on sigval sig_val ue;

sa.sa_sigaction = signal _handler;
si genpt yset (&sa. sa_mask) ;
sa.sa_flags = SA_SI G NFQ

/* SIGRTM N is chosen nore or |ess randonly,
but it’s in the required range */
sigaction(SIGRTM N, &sa, NULL);

sig_val ue.sival _int = 1000;
si gqueue(getpid(), SIGRTMN, sig_value);

}

voi d signal _handl er(signo, info, context)
int signo;

siginfo_t *info;

voi d *cont ext;

{

printf("In signal handler!!\n");
printf("Signal nunber = %\ n", signo);
printf("Signal value (int) = %l\n",

i nfo->si _val ue. sival _int);

swi tch(info->si_code) {

case SI_USER
printf("Here due
br eak;

case SI_QUEUE:
printf("Here due
br eak;

case SI_TIMER:
printf("Here due
br eak;

case S| _ASYNCI O
printf("Here due
br eak;

case S| _MESGQ
printf("Here due
br eak;

—

o a kill() function!'\n");

-

o a sigqueue() function!'\n");

—-

o a timer expiration!\n");

—-

o conpletion of asynch 1/0O\n");

—-

o arrival of a message!\n");

26 POSIX 1.b Migration Guide

Sending a Real-Time Signal to a Process

defaul t:

printf("No idea why here!!\n");
}

Sending a Real-Time Signal to a Process

Drafts 9 and 10 provide an evt r ai se() function to generate an event for a
process. This can be migrated to POSIX.1b with the si gqueue() function:

Draft 9 Code
#i ncl ude <sys/events. h>

voi d event _handl er(voi d *evt_val ue,
evt_class_t evt_class, evtset_t evt_nask);

mai n()
struct event ev;

ev. evt_handl er = event_handl er;
ev. evt_val ue = NULL;
ev.evt_class = EVICLASS M N,
evtenpt yset (&ev. evt _cl assnask) ;

evtraise(&ev);
}

voi d event _handl er (evt _val ue, evt_class, evt_mask)
voi d *evt_val ue;

evt_class_t evt_class;

evtset _t evt_mask;

{

Equivalent POSIX.1b Code

#i ncl ude <signal . h>

voi d signal _handler(int signo, siginfo_t *info,
void *context);

mai n()

{ N
struct sigaction sa;
uni on sigval val ue;

.sa. sa_si gaction = signal _handler;
sa.sa_flags = SA SI G NFQ
si genpt yset (&sa. sa_nask);

POSIX 1.b Migration Guide

27

Chapter 3 - Real-Time Signals

sigaction(SIGRTM N, &sa, NULL);

val ue. sival _ptr = NULL;
si gqueue(getpid(), SIGRTMN, val ue);

}

voi d signal _handl er(signo, info, context)
int signo;

siginfo_t *info;

voi d *context;

{

Polling for a Real-Time Signal

The evt pol | () function from Drafts 9 and 10 is superseded by the
sigwai tinfo() andsi gti medwai t () functions. The following example
illustrates a conversion of the evt pol | () facility to POSIX.1b:

Draft 9 Code

#i ncl ude <sys/events. h>
#i ncl ude <sys/tiners. h>

mai n()

evtset_t set;

struct tinmespec tinmeout;
voi d *val ue;

evt _class_t class;

évt enpt yset (&set);
evt addset (&set, EVICLASS M N);
evt addset (&set, EVTCLASS MAX);

tinmeout.tv_sec = 2;
tineout.tv_nsec = O;

if (evtpoll (&set, & inmeout, &al ue, &class) !'= -1) {
printf("Received event no. %\ n", *class);
printf("Pointer to value = %\ n",
(int *) *value);
}
evtpol | (&set, NULL, &value, &class);

printf("Received event no. %\ n", *class);
printf("Pointer to value = %d\n", (int *) *value);

28 POSIX 1.b Migration Guide

Equivalent POSIX.1b Code

Equivalent POSIX.1b Code

#i ncl ude <signal . h>

mai n()

sigset_t set;

siginfo_t info;

struct tinmespec tineout;

si genpt yset (&set) ;

si gaddset (&set, SIGRTMN);

si gaddset (&set, SI GRTMAX);

timeout.tv_sec = 2;

tinmeout.tv_nsec = O;

if (sigtimedwait(&set, & nfo, &ineout) !'= -1) {
printf("Dequeued signal no. %\n",\

i nfo->si_signo);
printf("Pointer to value = %\n",
(int *) *info->si_value.sival _ptr);

}

sigwaitinfo(&set, & nfo);

printf("Dequeued signal no. %\n",\
i nfo->si _signo);

printf("Pointer to value = %\ n",
(int *) *info->si_value.sival _ptr);

}

Equivalence for Other Draft 9 Event Functions

There is no equivalent to the evt si gcl ass() function from Drafts 9 and 10 in
POSIX.1b because there is no longer a need for it. Most of the other event-related
functions have no specific equivalents in POSIX.1b. However, their functionality
is provided by the appropriate signal functions from POSIX.1; refer to “Changes
from Draft 9 to POSIX.1b” on page 30,” for more information, including
differences between evt suspend() of Drafts 9 and 10 and si gsuspend()

of POSIX.1.

Timers, Message Queues, and Asynchronous 1/0

With Drafts 9 and 10, it is possible to send events after a timer has expired, and
when asynchronous 1/0 is completed. In POSIX.1b, real-time signals can be sent to
a process without explicitly queuing them with a si gqueue() call. This can
happen when a timer expires (see Chapter 6, “Clocks and Timers” on page 57), a
message arrives on an empty message queue (see Chapter 4, “Message Queues” on
page 37), or asynchronous I/O completion (see Chapter 9, “Asynchronous I/0” on
page 79).

POSIX 1.b Migration Guide 29

Chapter 3 - Real-Time Signals

To use POSIX.1b real-time signals, the si gevent structure must be used, and the
handlers must be set up according to POSIX.1b specification. The sa_fl ags for
the si gaction structure must be set to SA_SI G NFQ, and the si gev_notify
member for the si gevent structure must be set to S| GEV_SI GNAL.

Changes from Draft 9 to POSIX.1b

The final interface for real-time extended signals differs from the events facility in
Draft 9 (and Draft 10, which LynxOS also supports) as follows:

Table 3-8: Extended Signal Interface

Drafts 9 & 10 POSIX.1b

Default action: Ignore the event Default action: Terminate the process

<sys/events. h> <signal . h>

EVTCLASS_M N SI GRTM N

EVTCLASS_MAX SI GRTMVAX

struct event struct si gevent

No Equivalent struct siginfo_t

32 event values RTSI G_MAX signals

No Equivalent si gqueue()

evtraise() si gqueue(getpid(),....)

evtpol I () sigwai tinfo(),
sigtimedwait ()

evt si gcl ass() No Equivalent

The following are important points about POSIX.1b interface:

» There is a class of signals in the SI GRTM N to SI GRTMAX range which
are treated as “real-time signals.” The default action for a real-time signal

is to terminate the process, as opposed to ignoring an event in Drafts 9
and 10.

» It is possible to have multiple occurrences of the same signal queued in
FIFO order to a process.

30 POSIX 1.b Migration Guide

Data Structures

* There is no explicit mechanism under Drafts 9 and 10 to send an event to
a given pi d. LynxOS provides a proprietary eki | | () function for this
purpose. In POSIX.1b, a new function, si gqueue(), is used to queue a
signal with a specified value to a process. Signals can also be queued as a
result of asynchronous I/O completion, timer expirations, etc.

* Queuing is not supported for signals generated by the kil | () function
or by events such as timer expiration, hardware fault detection, etc. Such
signals have no effect on signals already queued for the same
signal number.

* When multiple, unblocked signals in the range of SI GRTM N to
SI GRTMAX are pending, the unblocked signal with the lowest signal
number in that range is delivered. No other ordering of signal delivery
is specified.

» The cause for signal generation can be communicated to the
signaled process.

Data Structures

The event structure from Drafts 9 and 10 is replaced by one of the following
si gevent POSIX.1b structures:

Table 3-9: si gevent Structures

Type Name Description

i nt si gev_si gno

Signal number

uni on si gval

si gev_val ue

Signal value

int

sigev_notify

Notification type

The si gev_si gno member specifies the signal to be generated. The

si gev_val ue member is the application-defined value to be passed to the
signal-catching function at the time of signal delivery. This is a part of the
si gi nf o_t structure in the signal-catching function detailed in the table
“si gi nf o_t Structure”.

POSIX 1.b Migration Guide 31

Chapter 3 - Real-Time Signals

32

Table 3-10: si gval Union

Type Name Description
i nt sival _int Integer signal value
void * sival _ptr Pointer signal value

Either an application-defined value of type i nt or a pointer can be passed
through the si gval union. The si gev_notify member can have either of two
values: SI GEV_SI GNAL or Sl GEV_NONE. S| GEV_SI GNAL queues a signal
when the event occurs. S| GEV_NONE delivers no asynchronous notification when
the event occurs.

For the si gaction structure (from POSIX.1), a new flag, SA_SI G NFQ, is
defined by POSIX.1b for the sa_f| ags member. This flag must be used when
setting up a handler to queue a real-time signal from POSIX.1b.

Also, under POSIX.1b, a new member, sa_si gact i on, is defined for the
si gacti on structure. This new member must be used for the signal handler
instead of sa_handl er whenever the SA_SI A NFO flag is set.

sa_handl er and sa_si gacti on should not be set simultaneously

Table 3-11: sa_si gacti on. sa_fl ags

Flag Feature
None (and signal no. with a valid value) POSIX.1 signal
SA DOEV set Draft 9 event

None (and signal no. between EVTCLASS M N and | Draft 10 event
EVTCLASS_MAX)

SA_SI A NFO POSIX.1b real-time signal

The table above does not consider the SA NOCLDSTOP flag. It may or may not be
set; but that does not affect this table.

POSIX 1.b Migration Guide

Data Structures

Under POSIX.1b sigi nfo_t (anew structure) contains the code identifying the
cause of the signal. The address of this structure is used as an argument to the
signal-catching function.

Table 3-12: si gi nf o_t Structure

Type Name Description
i nt si _signo Signal number
i nt si _code Cause of signal
uni on si gval si _val ue Signal value

The si _si gno member contains the signal number. It is the same as the signal
number argument of the signal-catching function. The si _code member encodes
the cause of the signal.

Table 3-13: si gi nfo_t. si _code

Value Meaning
S| _USER Dueto kill () function
SI _QUEUE Due to si gqueue() function
SI _TI MER Due to timer expiration
SI _ASYNCI O Due to completion of asynchronous 1/0
SI _MESGQ Due to arrival of message on an empty message queue

The si _val ue member is the same as the application-specified signal value,
when the si _code member is one of SI _QUEUE, S| _TI MER, SI _ASYNCI Q
or SI_MESGQ

NOTE: The signal handler synopsis for POSIX.1b is different than Draft 9. LynxOS
supports Draft 10 event handlers by default.

POSIX 1.b Migration Guide 33

Chapter 3 - Real-Time Signals

Table 3-14: Signal Handlers

Draft Handler Synopses
Draft 9 event _handl er(void *sigdata, int signo)
Draft 10 event _handl er (i nt signo, void *sigdata)
POSIX.1b si gnal _handl er (i nt si gno)

if SA_SI G NFO notsetin sa_fl ags for si gno. This is the same
as POSIX.1 signal handler

si gnal _handl er (int signo, siginfo_t *info, void
*cont ext)
if SA_SI A NFO setin sa_fl ags for signo

Table 3-15: POSIX.1b Signal Handlers

Arguments POSIX.1b Meanings
int signo Signal number of the signal being delivered
siginfo_t *info Pointer toa Si gi nfo_t structure that encodes the
signal number, cause of the signal and an application-
specified signal value
voi d *cont ext Unused in the LynxOS implementation
Indefinite/Timed Wait

In Drafts 9 and 10 one function, evt pol | (), waits for events with and without a
timeout. POSIX.1b provides a separate interface for these two operations —
sigwaitinfo() and sigtimedwait().

Ability to Send Arbitrary Data

The si gevent structure from POSIX.1b contains a si gev_val ue entry, which
is a union. With this entry, it is possible to send either an integer value or a pointer
to arbitrary data along with the signal.

34 POSIX 1.b Migration Guide

Drafts 9 and 10 Event Functions

Drafts 9 and 10 Event Functions

Functions evtenptyset (), evtfillset(), evtaddset(), evtdel set(),
evti smenber (), evt procmask(), evtsuspend(), evtsetjnp(),and

evt | ongj np() have no equivalents in POSIX.1b. The POSIX.1 signal functions
(si genptyset (), sigfillset(),etc.)provide corresponding functionality.
However, there are slight differences. Drafts 9 and 10 evt suspend() takes two
arguments. The second argument is a ti nespec structure, which allows a timed
wait. The POSIX.1 si gsuspend() takes only one argument; a timed wait is not
possible. The effect of an evt suspend() with a timed wait can be simulated
with the new si gti medwai t () function from POSIX.1b. However, this is not a
true equivalence. It is not possible to invoke a signal handler with

si gti medwai t () ; it can only return values.

Interoperability

Events and real-time signals are not inter-operable between Drafts 9, 10, and
POSIX.1b. Users should not try to catch a Draft 9 or 10 event with a signal handler
from POSIX.1b, or vice versa. The effects of such behavior are undefined.

POSIX 1.b Migration Guide 35

Chapter 3 - Real-Time Signals

36 POSIX 1.b Migration Guide

cwrera Message Queues

The message queue interface has changed extensively. A number of Draft 9
features are completely eliminated in favor of performance improvements and ease
of use in POSIX.1b. The following is a list of Draft 9 functions with no equivalent
in POSIX.1b; applications that depend on these functions may not migrate easily to
POSIX.1b:

* nsgall oc()
* nsgfree()
* ngpurge()
* nmget pi d()
* nygetevt ()
* nyputevt ()

Some of the functions above may be partially simulated by other functions in
POSIX.1b. For example, ngget pi d() can be simulated by encoding the pi d of
the process in the message itself. The ngpur ge() function can be simulated with
ng_r ecei ve() in awhi | e loop until it fails. The myput evt () and ngget evt ()
functions can be simulated with the si gqueue() and si gwai ti nf o() functions
from POSIX.1b, respectively. The nsgal | oc() and msgf ree() functions have
no corresponding functionality.

Three other features are no longer supported: asynchronous message sending and
receiving; using the MSG_MOVE and MSG_USE flags; and selective removing
messages from somewhere other than the head of the queue.

There are other important changes; Draft 9 and POSIX.1b differ with respect to
persistence and how the names for message queues are implemented. This is
similar to the differences for named semaphores as described in Chapter 7,
“Semaphores” on page 67.

POSIX 1.b Migration Guide 37

Chapter 4 - Message Queues

A comparison of the various message queue features is provided later in
this chapter.

Creating Message Queues

POSIX.1b message queues are created with the ng_open() function and the
O_CREAT flag as opposed to the mkng() function from Draft 9, as per the
following example:

Draft 9 Code

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#include <fcntl. h>

#i ncl ude <sys/ngueue. h>

nmai n()
{ .
int ng;
ﬁknq(" nessage_queue", MQ PERSI ST | 0666);
ng = open("nessage_queue”, O RDWR | O NONBLOCK,
MQ_PERSI ST | 0666);
;:I ose(nm);
unl i nk(" nessage_queue");
}

Equivalent POSIX.1b Code

#i ncl ude <nmgueue. h>
mai n()
{

md_t no;

my = ng_open("nessage_queue", O CREAT | O RDVR |
O_NONBLOCK, 0666, NULL);

m_cl ose()
mg_unl i nk(" nessage_queue") ;

38 POSIX 1.b Migration Guide

Data Structure Changes

Data Structure Changes

The two data structures, nsgcb and ngst at us, from Draft 9 were combined into a
single data structure, ng_at t r, in POSIX.1b. Also, a number of entries from both
of these structures were eliminated. For example, the time stamp and event fields
from nsgcb have no equivalent in POSIX.1b.

The message length and message data fields from nsgcb are now separate
arguments for the message sending and receiving functions. A comparison of data
structures is provided later in this chapter in “Data Structures” on page 45.

Getting and Setting Message Queue Attributes

The following example illustrates the comparison of the interfaces to get and set
message queue attributes. The ng_nmaxnsg and ng_nsgsi ze attributes for a
POSIX.1b message queue may only be set at creation time. “Changes from Draft 9
to POSIX.1b” on page 44 tabulates the restrictions on setting attributes for a
POSIX.1b message queue.

The default Message Queue attributes are as follows:
e ny_flags =0
* ng_maxnsg = 35
* ny_nsgsi ze = 120

Draft 9 Code

#i ncl ude <sys/nmgueue. h>
#define SIZE 1024
mai n()

int nmg;
struct ngstatus ngstat;

.nknq(" message_queue", MQ PERSI ST | 0666);
ng = open("nessage_queue”, O RDWR | O NONBLOCK,
MQ PERSI ST | 0666);

nmgst at . ngmexnsg = 200;
nmgst at . mgrsvnsg = 200;
ngst at . ngnaxbyt es = SI ZE;
nyst at . ngr svbytes = SI ZE;
ngst at. mgwr ap = MONOARAP;
ngst at . ngnaxarcv = 20;

POSIX 1.b Migration Guide 39

Chapter 4 - Message Queues

40

ngsetattr(ng, &mstat);

nggetattr(ng, &nmstat);
printf("mmaxmsg: %\ n", ngstat.nmmaxmsg);
printf("mgrsvnsg: %\ n", ngstat.ngrsvnsg);
printf("ngnmaxbytes: %\ n", ngystat.ngnaxbytes);
printf("mgrsvbytes: %\ n", ngstat.ngrsvbytes);
printf("mcurnsgs : %\ n", ngstat.ngcurnsgs);
printf("ngsendwait: %\ n", ngstat.ngsendwait);
printf("mgrcvwait : %\ n", mgstat.ngrcvwait);
printf("mmaxarcv : %\ n", ngstat.ngnmaxarcv);
printf("nmgw ap: %\n",

(mgst at . ngwr ap==MARAP) ?" MOARAP" : " MONOARAP") ;

;:I ose(nm);
unl i nk(" nessage_queue");

Equivalent POSIX.1b Code

#i ncl ude <mgueue. h>

#define SIZE 1024

mai n()

nmsg_t no;
struct mg_attr ngattr;

nmgattr. ng_maxnsg = 200;

mgattr. ng_nsgsi ze = Sl ZE;

my = ng_open("nessage_queue”, O CREAT | O RDWR
0666, &mattr);

ﬁqat tr.nmg_flags = O NONBLOCK;
my_setattr(ng, &mattr, NULL);

ng_getattr(ng, &mattr);
printf("my_flags : %\n",
(mgattr.ng_flags & O NONBLOCK == O_NONBLOCK)

? "Non- Bl ocki ng" : "Bl ocking");
printf("my_maxmsg : %d\n", ngattr.ng_nmaxmsg);
printf("ng_nsgsize : %d\n", ngattr.ng_nsgsize);
printf("ng_curnsegs : %d\n", ngattr.ng_curnsgs);
printf("nmg_sendwait: % d\n", ngattr.ng_sendwait);
printf("ng_rcvwait : %d\n", ngattr.ng_rcvwait);

ﬁq_cl ose(nm);
mg_unl i nk(" nessage_queue") ;

POSIX 1.b Migration Guide

Sending and Receiving Messages

Sending and Receiving Messages

The following example compares the sending and receiving of messages between
message queue facilities. The for k() call is only relevant to illustrate how
messages may be sent and received between two processes.

Draft 9 Code

#i ncl ude <sys/ nmgueue. h>

#define SIZE 1024

mai n()

int ng;

char buffer[SlIZE];

struct msgchb nmsgchp;

ﬁknq(" nessage_queue", MQ PERSI ST | 0666);

ng = open("nessage_queue", O RDWR MQ PERSI ST | 0666);

switch(fork()) {

case 0:
ﬁsgcbp. meg_flags = 0;
nsgcbp. neg_buf si ze = SI ZE;
nmsgcbp. neg_data = buffer;
nmsgcbp. neg_type = 0;
ngr ecei ve(ng, &nsgcbhp);

defaul t: .
ﬁsgcbp. meg_flags = MSG_COPY;
nmsgcbp. neg_| ength = Sl ZE;
nsgcbp. neg_buf si ze = SI ZE;
nmegcbp. neg_data = buffer;
nmsgcbp. neg_type = 0;
ngsend(ng, &rsgcbp);

}

;:I ose(ng);

unl i nk(" message_queue");

}

Equivalent POSIX.1b Code
#i ncl ude <ngueue. h>
#define SIZE 1024
mai n()

msg_t ny;

POSIX 1.b Migration Guide 41

Chapter 4 - Message Queues

char buffer[SlIZE];
ﬁq = ng_open(" message_queue", O CREAT | O RDWR 0666, NULL);

switch(fork()) {
case 0:

ﬁq_recei ve(ny, buffer, SIZE, NULL);
defaul t: '
ﬁq_send(ng, buffer, SIZE, MQ PRI O MAX-1);
} :

ﬁq_cl ose(m);
mg_unl i nk(" nessage_queue") ;

Notification of Message Availability

42

The new ng_not i fy() function in POSIX.1b is used to notify a process that a
message is available on a message queue. This is done by sending a signal to the
process when the message queue changes from empty to non-empty as illustrated
in the following example.

When a notification request is attached to a message queue, another process may
be blocked in n_r ecei ve() waiting to receive a message. If a message arrives at
the queue, ny_recei ve() is completed and the notification request remains
pending. If there is no process blocked in ny_r ecei ve(), the specified signal
handler is called.

The next example uses the flag no_nsg to ensure that the notification request is
satisfied, and that the same message is received with an ny_r ecei ve() call: The
sa_flags flagissetto SA Sl G NFO and the si gev_notify field is set to
Sl GEV_SI GNAL to ensure the use of a real-time signal:

#i ncl ude <nmgueue. h>
#i ncl ude <signal . h>

#define SIZE 1024

voi d signal _handler(int signo, siginfo_t *info, void *context);
vol atile int no_nsg;

mai n()

mod_t no;

char buffer[SlZE];

struct ng_attr ngattr;

struct sigevent notification;
struct sigaction sa;

POSIX 1.b Migration Guide

Notification of Message Availability

mgattr.mg_flags = O;

ngat tr. ng_maxnmsg = 200;

ngat tr. ng_nsgsi ze = Sl ZE;

ng = ng_open(" message_queue", O CREAT | O RDWR
0666, &mattr);

switch(fork()) {
case O:

notification.sigev_signo = SIGRTMN,

notification.sigev_value.sival _int = 0;

notification.sigev_value.sigev_notify =
SI GEV_SI GNAL;

sa. sa_sigaction = signal _handler;

sa.sa_flags = SA _SI G NFQ

si genpt yset (&sa. sa_nask);

sigaction(SIGRTM N, &sa, NULL);

ng_noti fy(ng, ¬ification);

ﬁo_msg =1
while (no_nsg) {

sched_yi el d();
}
ny_recei ve(ny, buffer, size, NULL);

br eak;
defaul t:

ﬁq_send(ng, buffer, size, MQ PRI O MAX-1);

}

my_cl ose()

ng_unl i nk("nessage_queue") ;
}
voi d si gnal _handl er(signo, info, context)
int signo;

siginfo_t *info;
void *context;

{

no_nsg = O;

POSIX 1.b Migration Guide 43

Chapter 4 - Message Queues

Interface Changes

Message queues have changed in a fairly major way. A number of facilities from

Changes from Draft 9 to POSIX.1b

Draft 9 are no longer available; however, POSIX.1b offers a new facility for
notification of message availability. The new implementation offers better
performance. Speeds comparable to raw memory copy are attainable using the

new, simple POSIX.1b functions

Table 4-1: Message Queue Interface

Draft 9

POSIX.1b

Message queue = special file

Independent of file system

Persistent as well as non-persistent message
queues with the MQ _PERSI ST flag

Persistent message queues

Queue wrapping with MOWRAP

No queue wrapping

Buffer management with MSG_COPY,
MSG_USE, M5G_MOVE

All messages copied

Message transfer synchronization control
with MSG_WAI T, M5G_ASYNC,
MSG_NOWMAI T

No message synchronization

Truncation control with MSG_TRUNC

Overlong messages rejected at the time
of sending

Ability to send an event via a
message queue

No event sending

Selective message receive order

No equivalent1

<sys/ mgueue. h>

<mgueue. h>

sender _t ngd_t

open() ng_open()

cl ose() ng_cl ose()

nkmg() Done with ng_open()
unl i nk() nmg_unl i nk()

POSIX 1.b Migration Guide

Data Structures

Table 4-1: Message Queue Interface (Continued)

Draft 9 POSIX.1b

ngsend() ng_send()

ngr ecei ve() no_recei ve()

ngsetattr() ng_setattr()

nmggetattr() nmg_getattr()

nmsgal | oc() No Equivalent

msgf ree() No Equivalent

ngpur ge() No Equivalent

ngget pi d() No Equivalent

ngput evt () No Equivalent

ngget evt () No Equivalent

No Equivalent mg_noti fy()
Notify process that a message is available
on a queue.

struct msgch struct ny_attr

struct ngstatus Combines the flags of msgcb and

nyst at us.

1. LynxOS provides the ng_sel ecti ve_recei ve() function to support this
behavior, even though it is not in the POSIX.1b standard.

Data Structures

The nsgcb and nyst at us structures are combined into the single n_attr

structure in POSIX.1b.

Table 4-2: Data Structure Equivalence

Draft 9

POSIX.1b

nmsgch. nsg_f Il ags

mg_attr. mg_fl ags

nmsgch. nsg_type

Message Priorities

nmsgch. nsg_Il ength

No Equivalent

nmsgch. nsg_buf si ze

No Equivalent

POSIX 1.b Migration Guide 45

Chapter 4 - Message Queues

Table 4-2: Data Structure Equivalence (Continued)

Draft 9 POSIX.1b
nsgch. nsg_dat a No Equivalent
nsgch. nsg_event No Equivalent
nsgch. nsg_errno No Equivalent
nmsgch. meg_ti mesent No Equivalent
nsgch. meg_sender No Equivalent
ngst at us. ngr svnsg No Equivalent
ngst at us. ngr svbyt es No Equivalent
ngst at us. ngmaxnsg mg_attr. ng_maxnsg
ngyst at us. ngmaxbyt es ng_attr.ng_nsgsi ze
ngst at us. nogw ap No Equivalent
ngst at us. ngmaxar cv No Equivalent
ngst at us. ngcur Nnsgs nmg_attr. ng_cur nsgs
ngst at us. ngsendwai t No Equivalent
ngst at us. ngr cvwai t No Equivalent
Attributes

There are various restrictions on setting attributes for message queues from
POSIX.1b. The table below shows the attributes that may be set, and when. All
attributes may be queried at any time.

Table 4-3: Message Queue Attributes

Attribute Set
ng_fl ags Yes, any time after creation
ng_nmaxnsg Yes, only at creation
nY_nsgsi ze Yes, only at creation
mg_cur nsgs No

46 POSIX 1.b Migration Guide

Messages

Messages

Message Priorities

POSIX.1b provides a new concept of message priorities. A message is inserted into
the queue, and received from the queue according to message priority. This priority
is independent of the process priority.

Selective Receive

Draft 9 message queues allow the application to selectively remove queued
messages by type. This facility has been replaced by the message priority facility
described above. Note that priorities are somewhat less flexible than message
typing, because only the highest priority message is retrievable. LynuxWorks has
provided a proprietary extension, n_sel ecti ve_r ecei ve, to retain

this functionality.

Process Priorities

Process priorities come into the picture when sending and receiving messages. If
more than one process is blocked while sending to a full message queue (or
receiving from an empty message queue) with priority scheduling, the highest-
priority process, which has been waiting the longest, is unblocked first.

Synchronization Control

With Draft 9 message queues, it is possible to control how processes waited for
each other by specifying the MSG WAI T, MSG_ASYNC, and MSG_NOWAI T flags on
a per-message basis. Such options are not available with POSIX.1b message
queues. All messages in POSIX.1b are sent and received with behavior equivalent
to the Draft 9 MSG_NOWAI T.

Buffer Management

With Draft 9 message queues, it is possible to control the use of buffers to achieve
higher performance with the MSG_MOVE, MSG_USE, and MSG_COPY flags on a
per-message basis. This feature is discontinued in POSIX.1b. All POSIX.1b
message queues have behavior equivalent to the MSG_COPY flag from Draft 9.

POSIX 1.b Migration Guide 47

Chapter 4 - Message Queues

48

Sending and Receiving Events

Draft 9 allows events to be sent along message queues. POSIX.1b does not provide
this capability.

Purging, Data Buffer Allocation/Freeing
Draft 9 provides the following functions:
ngpur ge() purge a message queue
msgal | oc() allocate a message data buffer
nmsgfree() free a message data buffer

The mgpur ge() function can be simulated with ng_r ecei ve() in a whi | e loop
until it fails. The msgal | oc() and nsgf ree() functions have no
corresponding functionality.

SenderID

The nmgget pi d() function from Draft 9 allowed a process to determine the pi d of
the sender process. There is no equivalent function for this feature in POSIX.1b.
However, the user can work around this by encoding the pi d in the

message itself.

Queue Wrap

With Draft 9 message queues, it is possible to specify the queue wrap behavior, so
that older messages could be overwritten by newer ones as messages were sent to a
full queue. This behavior was requested with the MOARAP flag at message queue
creation time. POSIX.1b does not support this capability.

Time-Stamping

It is possible to time-stamp Draft 9 messages. This feature is not supported by
POSIX.1b. An application writer can work around this by encoding the time-stamp
in the message.

POSIX 1.b Migration Guide

Truncation Control

Truncation Control

Draft 9 provides a MSG_TRUNC flag to truncate a message when receiving, if it is
larger than the buffer. POSIX.1b does not allow a message to be sent if its length
exceeds the message size of the queue, and does not allow ng_r ecei ve to be
called with a buffer size smaller than the message size.

A Pointer-Worth of Data

Draft 9 provides a MSG_OVERRI DE flag to indicate receipt of a pointer-worth of
data. POSIX.1b does not provide special support for such functionality, although
4-byte-long messages are supported.

Notification of Message Availability

POSIX.1b provides the new function, mgy_noti f y(), to notify a process when a
message queue changes from empty to non-empty.

exec() Behavior

With Draft 9, message queue file descriptors of a process remain open after
exec(), except if the FD_CLOEXEC flag was set. With POSIX.1b, open message
queue descriptors of a calling process are closed upon exec() .

New Utilities

LynxOS provides two new utilities, | i pcs and | i pcr m to list and remove
message queues (and other POSIX.1b IPC facilities), respectively; refer to the
i pcs and |i pcr m man pages for more information.

Interoperability

Draft 9 message queues and POSIX.1b message queues are distinct. There is no
interoperability. For example, it is not possible to send a message on a Draft 9
queue and receive it on a POSIX.1b message queue.

POSIX 1.b Migration Guide 49

Chapter 4 - Message Queues

50 POSIX 1.b Migration Guide

cwerens. Ohared Memory

Introduction

The mmap() function is fundamental to the POSIX.1b changes in the shared
memory system. Additional changes affect the way shared memory object sizes are
specified upon creation. The mmap() function from POSIX.1b is not specific to
shared memory objects. With its full features, it is a powerful function allowing
files and devices to be mapped into process address space.

Also, there are persistence-related differences between the Draft 9 and POSIX.1b
specification of shared memory. Draft 9 provides persistent and non-persistent
shared memory; persistent shared memory had to be requested explicitly with the
SHM PERSI ST flag. In contrast, POSIX.1b only provides persistent shared
memory and does not require an explicit flag.

Persistence of an object implies that the object and its state (for example, the value
of a semaphore, data in a message queue, data for a shared memory object) are
preserved once the object is no longer referenced by a process. If the user
absolutely needs to migrate non-persistent behavior from Draft 9 to POSIX.1b,
here is an alternative method: After all of the processes that wish to use
non-persistent shared memory have opened the shared memory, shm unl i nk the
shared memory. The shared memory will be deleted when all references to it are
removed, simulating non-persistent shared memory.

Creating and Deleting Shared Memory

The interface to create a shared memory object differs between Draft 9 and
POSIX.1b. Draft 9 provides a nkshn() function which used a si ze argument to
specify the size of the shared memory object. POSIX.1b shared memory is created
with the shm open() function with the O CREAT flag. This function does not
take a si ze argument; all shared memory objects are of zero size when created.

POSIX 1.b Migration Guide 51

Chapter 5 - Shared Memory

To specify size, a new POSIX.1b function, f t r uncat e() , which is not specific to
shared memory, must be used. This function truncates a file to a specified size. If a
file is expanded with ftruncat e(), the expanded part is initialized to zero.
When ftruncate() isusedtoexpand a shared memory object, the expanded
part is initialized to zero. The following example demonstrates the comparison.

NOTE: To delete a shared memory object under POSIX.1b, call shm unl i nk() .
The object is actually destroyed after the last process unmaps the object.

Draft 9 Code

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <sys/shmap. h>
#define SIZE 1024

mai n()

int shm
of f _t size = SIZE;

nkshn(" shrent, SHM PERSI ST | 0666, size):
shm = open("shnent, O RDWR, SHM PERSI ST | 0666);

;:I ose(shm;
unl i nk("shment') ;

Equivalent POSIX.1b Code
#i ncl ude <sys/ mman. h>
#define SIZE 1024
mai n()
int shm

§hm = shm open("shment, O CREAT | O RDWR, 0666);
ftruncate(shm SIZE);

é:l ose(shm;
shm unl i nk("shnment') ;

52 POSIX 1.b Migration Guide

Mapping and Unmapping Shared Memory

Mapping and Unmapping Shared Memory

This code compares mapping and unmapping a shared memory object between
Draft 9 and POSIX.1b code; refer to “Changes from Draft 9 to POSIX.1b” on
page 54 for flags specific to shared memory.

Draft 9 Code

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <sys/shmrap. h>
#define SIZE 1024

mai n()

int shm
void *memptr;

ﬁkshn("shnem')
shm = open("shment',);

mem ptr = shmap(shm NULL, SIZE, O,
SHM READ | SHM WRI TE) ;

§hmmnap(mem_ptr, 0);

;:I ose(shn;
unl i nk("shmen') ;

Equivalent POSIX.1b code

#i ncl ude <sys/mran. h>
#define SIZE 1024
mai n()

int shm
char *memptr;

.shm = shmopen("shment',)
ftruncate(shm.....);

mem ptr = mmap(NULL, SIZE, PROT_READ |
PROT_WRI TE, MAP_SHARED, shm 0);

ﬁunmip(memptr, SIZE);

.cl ose(shm;
shm_unl i nk("shment') ;

POSIX 1.b Migration Guide 53

Chapter 5 - Shared Memory

Changes from Draft 9 to POSIX.1b

The following table summarizes the shared memory interface changes:

54

Table 5-1: Shared Memory Interface

Draft 9

POSIX.1b

Shared memory object = Special file

Independent of file system

<sys/ shmmap. h>

<sys/ nman. h>

SHM_READ PROT_READ
SHM VRl TE PROT_WRI TE
SHM EXEC PROT_EXEC

No Equivalent PROT_NONE
SHM_EXACT MAP_FI XED
shmmrap() Done by map()

shmunmap()

Done by munmap()

nkshm() Done by shm open()
open() shm open()

cl ose() cl ose()

unl i nk() shm_unl i nk()

No Equivalent

ftruncate()
Truncates a file to specified length

Persistence

Draft 9 supports persistent and non-persistent shared memory. POSIX.1b shared

memory is persistent.

Size of Shared Memory Object

The interface changed to specify shared memory object size (when it is created). In
Draft 9, si ze was specified as an argument to the nkshn{() function. In
POSIX.1b, a shared memory object is created with shm open() , which does not
take a si ze argument. All shared memory objects are of zero size when created.

POSIX 1.b Migration Guide

Shared/Private Changes

The size is specified with anew ftruncate() function. This function is not
specific to shared memory, and can be used to truncate any file to a specified size.
When ftruncate() isusedtoexpand a shared memory object, the expanded
part is initialized to zero.

Shared/Private Changes

Currently, LynxOS does not support the MAP_PRI VATE flag. The MAP_SHARED
flag can be used, and changes to a shared memory object change the underlying
object. With the MAP_PRI VATE flag (which will be supported in a subsequent
release), changes to a shared memory object change the private copy of that object
for that process but not the underlying object.

fork() Behavior

In the absence of MAP_PRI VATE, there are no changes to the f or k() behavior
with respect to shared memory. Memory mappings created by the parent are
retained by the child process. With the MAP_PRI VATE flag (when it is supported),
mappings before fork() inthe parent also appear in the child. After fork(),
the parent and the child are independent with respect to private mappings. The
semantics are copy-on-write.

Protection

POSIX.1b supports all protections supported by Draft 9 (read, write, execute). In
addition a new PROT_NONE flag is provided to suppress the ability to access data.

msync() and mprotect() Functions

In addition to nmap(), POSIX.1b provides msync() and npr ot ect () , which are
unrelated to shared memory. These functions correspond to the

_POSI X_MAPPED FI LES and _POSI X_MEMORY_PROTECTI ON feature test
macros. These functions are only relevant to map files and devices with the
mvep() function.

Return Values

A notable difference exists between the return values of shmrap() in Draft 9 and
mrap() in POSIX.1b. shmmap() returns NULL upon failure, while mmap()

POSIX 1.b Migration Guide 55

Chapter 5 - Shared Memory

returns MAP_FAI LED. All successful mmap() returns are guaranteed not to return
MAP_FAI LED.

New Utilities

Lynx provides two new utilities, | i pcs and | i pcr m to list and remove shared
memory objects, respectively; refer to the | i pcs and |i pcr m man pages for
more information.

Inter-Operability

There is no inter-operability between Draft 9 and POSIX.1b shared memory. Two
processes, one using Draft 9 shared memory, and the other using POSIX.1b shared
memory, cannot access the same underlying object.

56 POSIX 1.b Migration Guide

cawrme Clocks and Timers

Introduction

The most important change in the clock and timer interface is that the following
Draft 9 functions have no equivalent in POSIX.1b:

* resrel ()
* resabs()
* ressleep()

With non-trivial changes to the code, programs using the above functions can be
migrated to POSIX.1b. Also, timer overrun counts are handled with a new
function, t i mer _get over run(), instead of through the Draft 9

i timercb structure.

Refer to “Changes from Draft 9 to POSIX.1b” on page 63 for equivalence between
function names from Draft 9 and POSIX.1b.

Resolution of a Clock

The Draft 9 r escl ock() function obtains the maximum value of a clock. The
equivalent cl ock_get res() function from POSIX.1b does not allow this. The
following code is a comparison:

Draft 9 Code

#i ncl ude <sys/tinmers. h>
mai n()

struct timespec res, maxval;

POSIX 1.b Migration Guide 57

Chapter 6 - Clocks and Timers

rescl ock(TI MEOFDAY, &res, &maxval);

printf("Resolution: %d sec %d nsec\n",
res.tv_sec, res.tv_nsec);

printf("Max. val.: %d sec %d nsec\n",
maxval . tv_sec, maxval.tv_nsec);

Equivalent POSIX.1b Code

#i ncl ude <tine. h>

mai n()
{

struct tinmespec res;

cl ock_getres(CLOCK_REALTI ME, &res);
printf("Resolution: %d sec %d nsec\n",
res.tv_sec, res.tv_nsec);

Creation and Deletion of a Timer

The timer creation interface has changed from Draft 9 to POSIX.1b. In Draft 9, the
function nkti mer () returned ti mer _t . In POSIX.1b, the function
timer_create() returns an i nt with a result argument of the type ti mer_t.

Also, there are differences in how notification type is specified. In POSIX.1b code,
the sa_f | ags flagis setto SA Sl G NFQ and the si gev_noti fy field is set to
S| GEV_SI GNAL to ensure the use of a real-time signal. In addition, the

sa_si gacti on member is used to set the signal handler.

Timers are deleted with the t i mer _del et e() function, instead of with
rmtimer().

Draft 9 Code

#i ncl ude <sys/tiners. h>
#i ncl ude <sys/events. h>

voi d event_handl er (voi d *evt_val ue,
evt_class_t evt_class, evtset_t evt_mask);

mai n()

tinmer_t timerl, tinmer2;
struct itimerchb itimerchp;

timerl = nktimer(TI MEOFDAY, DELIVERY_SIGNALS, NULL);

58 POSIX 1.b Migration Guide

Equivalent POSIX.1b Code

}

.rmimar(tinerl);

itinmercbp.itcb_event.evt_handl er = event_handl er;
itinmercbp.itcb_event.evt_value = NULL;
itimerchp.itcb_event.evt_class = EVICLASS M N,
evtenptyset (& tinmercbp.itcb_event.evt_cl assmask);
itimercbp.itcb_count = 0;

timer2 = nktimer(TI MEOFDAY, DELI VERY_EVENTS,
& tinerchp);

rotimer(tiner2);

voi d event _handl er (evt _val ue, evt_class, evt_mask)
void *evt_val ue;

evt_class_t evt_class;

evtset_t evt_mask;

{

Equivalent POSIX.1b Code

#incl ude <tinme. h>
#i ncl ude <signal . h>

voi d signal _handler(int signo, siginfo_t *info,

mai n()

}

void *context);

timer_t timerl, tinmer2;

struct sigevent se;

struct sigaction sa;

timer_create(CLOCK_REALTI ME, NULL, &tinerl);
timer_delete(timerl);

se.sigev_signo = SIGRTM N,

se. si gev_val ue. sival _ptr = NULL;
se.sigev_notify = SICGEV_SI GNAL;

sa. sa_sigaction = signal _handl er;

si genpt yset (&sa. sa_nask) ;

sa.sa_flags = SA_SI G NFQ

sigaction(SIGRTM N, &sa, NULL);

timer_create(CLOCK_REALTI ME, &se, &tiner2);

timer_del ete(tinmer2);

voi d si gnal _handl er (signo, info, context)

POSIX 1.b Migration Guide

59

Chapter 6 - Clocks and Timers

int signo;
siginfo_t *info;
voi d *context;

{

Setting a Timer

Draft 9 provides two functions, absti mer () andrel ti mer (), to set the value of
a timer. These are used to set the absolute and the relative value, respectively.
POSIX.1b provides only one function, ti mer _setti me(), and requires an extra
flag argument to choose between absolute and relative countdowns.

Draft 9 Code

#i ncl ude <sys/tinmers. h>

mai n()
timer_t tinmer;
struct itinmerspec val ue, oval ue;
struct tinmespec now,
tinmer = nktinmer(TI MEOFDAY, DELIVERY_SI GNALS, NULL);
val ue.it_value.tv_sec = 2;
val ue.it_value.tv_nsec = 0;

value.it_interval .tv_sec = 0
value.it_interval.tv_nsec =

reltimer(tiner, &alue, &oval ue);

get cl ock(TI MEOFDAY, &now);

val ue.it_value.tv_sec = now tv_sec + 5;
val ue.it_value.tv_nsec = 0;

value.it_interval .tv_sec = 0
value.it_interval .tv_nsec =

abstimer(timer, &value, &ovalue);

Equivalent POSIX.1b Code

#i ncl ude <tine. h>
mai n()

tinmer_t tiner;

60 POSIX 1.b Migration Guide

Determining Timer Overrun Count(s)

struct itinmerspec value, oval ue;
struct tinmespec now,

timer_create(CLOCK_REALTI ME, NULL, &tiner);

value.it_value.tv_sec = 2;

val ue.it_value.tv_nsec = 0;
value.it_interval.tv_sec = O;
value.it_interval.tv_nsec = 0;

timer_settime(timer, 0, &value, &ovalue);
cl ock_getti me(CLOCK_REALTI ME, &now);
value.it_value.tv_sec = now.tv_sec + 5;
val ue.it_value.tv_nsec = 0;
value.it_interval .tv_sec = 0;

value.it_interval.tv_nsec = 0;

timer_settime(timer, TIMER_ABSTIME, &val ue,
&oval ue) ;

Determining Timer Overrun Count(s)

The following example shows how Draft 9 code, which determines the timer
overrun count(s), can be migrated to the POSIX.1b:

Draft 9 Code

#incl ude <sys/tiners. h>
#i ncl ude <sys/events. h>

voi d event _handl er(voi d *evt_val ue,
evt_class_t evt_class, evtset_t evt_nask);

mai n()

timer_t tinmer;
struct itimerch itimerchp;

itinmercbp.itcb_event.evt_handl er = event_handler;
itimerchp.itchb_event.evt_value = NULL;
itimerchp.itch_event.evt_class = EVICLASS M N,
evtenptyset (& ti merchp.itcbh_event. evt_cl assmask) ;
itimerchp.itcb_count = 0;

timer = nktimer(TI MEOFDAY, DELI VERY_EVENTS,
& timerchp);

printf("Overrun count = %\ n",
itimerchp.itcb_count);

POSIX 1.b Migration Guide 61

Chapter 6 - Clocks and Timers

voi d event _handl er (evt_val ue, evt_class, evt_nask)
voi d *evt_val ue;

evt _class_t evt_class;

evtset_t evt_nask;

{

Equivalent POSIX.1b Code

#i ncl ude <tinme. h>

voi d signal _handl er(int signo, siginfo_t *info,
void *context);

int overrun;
timer_t tinmer;

mai n()

struct sigevent se;
struct sigaction sa;

se.sigev_signo = SIGRTM N,

se. si gev_val ue.sival _ptr = NULL;
se.sigev_notify = S| GEV_SI GNAL;
sa.sa_sigaction = signal _handler;

si genpt yset (&sa. sa_nask) ;

sa.sa_flags = SA_SI G NFQ
sigaction(SIGRTM N, &sa, NULL);
tinmer_create(CLOCK_REALTI ME, &se, &tinmer);

printf("Overrun count = %\ n", overrun);

}

voi d si gnal _handl er(signo, info, context)
int signo;

siginfo_t *info;

voi d *cont ext;

{

overrun = timer_getoverrun(tinmner);

62 POSIX 1.b Migration Guide

Changes from Draft 9 to POSIX.1b

Changes from Draft 9 to POSIX.1b

Almost all Draft 9 timer functionality has an equivalent in POSIX.1b. Where there
is no equivalent function, it can be emulated with a series of other functions. There
are some notable differences between the two interfaces.

Table 6-1: Clock And Timer Interface

Draft 9

POSIX.1b

<sys/tiners. h>

<tine. h>

TI MECFDAY CLOCK_REALTI ME

get cl ock() cl ock_gettime()

set cl ock() cl ock_settime()

rescl ock() cl ock_getres()

nkti mer () timer_create()

rmtimer() timer_del ete()

gettiner() timer_gettime()

reltimer() timer_settime(tinerid,0,...)
abstiner () timer_settime(tinerid,

TI MER_ABSTI ME, . .)

itinmerch.itcb_count

timer_getoverrun()

resabs() Documentation
resrel () Documentation
ressl eep() Documentation

Overrun Count

The overrun count is handled differently in the Draft 9 and POSIX.1b interfaces. In
Draft 9, the structure i t i mer cb encloses the overrun count for the timer. In
POSIX.1b, no separate structure item is used. The overrun count is accessed
through the new t i mer _get overrun() function.

POSIX 1.b Migration Guide 63

Chapter 6 - Clocks and Timers

64

Signal/Event Associated with a Timer

In Draft 9, the structure i ti mercb encloses an event associated with a timer. In
POSIX.1b, this structure no longer exists. Instead, a si gevent structure for a
real-time signal is used as an argument toti mer _create().

Signal Number

In Draft 9, the flag DELI VERY_SI GNALS for notify_type in nkti mer ()
delivers the S| GALRM signal. If the flag is DELI VERY_EVENTS, an event is
associated with the timer. In POSIX.1b if the si gevent structure passed to
timer_create() is NULL, the default signal is used (which is S| GALRM for
CLOCK_REALTI ME). Ifthe si gevent structure for ti mer_create() specifies
SI GEV_SI GNAL and if the SA_SI G NFO bit is set for any real-time signal
between S| GRTM N and SI GRTMAX, then that signal is queued.

Relative and Absolute Times

Draft 9 provides two functions, rel timer() and abstimer (), to set a timer
either with a relative offset or the absolute value, respectively. In POSIX.1b, the
timer_settime() function does both jobs. The new TI MER_ABSTI ME flag
specifies the choice of an absolute timer instead of a relative timer.

Resolutions

With non-trivial changes to the code, programs using r esrel (), resabs(),and
ressl eep() can be migrated to POSIX.1b.

Get Timer Value

The gettimer() function from Draft 9 always returns the it _i nterval last
setby reltimer() or abstiner().On the other hand, the
timer_gettinme() function from POSIX.1b always returns how much time
remains on the timer.

Create Timer

The nktiner() function from Draft 9 returnsa ti mer_t, and has a
notify_type argument. The ti mer_create() function from POSIX.1b hasa
timer_t asaresult argument, and returns an i nt . The notification type is

POSIX 1.b Migration Guide

Clock Resolution

handled through the si gev_notify entry in the si gevent structure, which is
an argument.

Clock Resolution

The rescl ock() function from Draft 9 provides an extra argument to obtain
maximum possible time value for a clock. The ti ner_getres() function from
POSIX.1b does not provide such an argument.

nanosleep()

In Draft 9, the second argument to the nanosl eep() function is updated to
contain the unslept time. In POSIX.1b, this is done only if that argument is
non-NULL.

Pending Signals/Events

Draft 9 specifies that deleting a timer would cancel any pending events for that
timer. However for POSIX.1b, even after deleting a timer, signals queued from it
continue to be queued. Also with POSIX.1b, signals queued from a timer continue
to be queued, even after disarming or resetting a timer.

Interoperability

There is no inter-operability between the Draft 9 and final standard versions of
clocks and timers. These are distinct and separate features. However, the system-
wide time-of-day clock is the same for all processes. Two processes, one a Draft 9
process using Tl MEOFDAY, and another POSIX.1b process using

CLOCK_REALTI ME can access the same clock.

POSIX 1.b Migration Guide 65

Chapter 6 - Clocks and Timers

66 POSIX 1.b Migration Guide

cueeny Semaphores

Introduction

Most of the old functionality of semaphores has an equivalent under the new
standard. The most important change is that Draft 9 provides binary semaphores,
whereas POSIX.1b provides counting semaphores. Also, Draft 9 provides only
named semaphores, whereas POSIX.1b provides named as well as unnamed
semaphores. Two new functions, sem i ni t () and sem destroy(), were
introduced for unnamed semaphores.

Draft 9 semaphores were special files and relied on the underlying file system.
POSIX.1b semaphores are independent of the file system. Names for POSIX.1b
named semaphores are implemented as simple strings without file system
involvement. These strings are processed with a new, efficient name service. This
difference between Draft 9 and POSIX.1b may be experienced in other ways. For
example, the | s and r mutilities could access the Draft 9 semaphores. This cannot
be done for POSIX.1b named semaphores.

LynxOS provides two new utilities, | i pcs and | i pcr m to list and remove named
IPC objects — semaphores, shared memory objects, and message queues. Refer to
the |ipcs and |i pcr m man pages for more information.

Also, there are persistence-related differences between the Draft 9 and POSIX.1b
semaphores. Draft 9 provides persistent and non-persistent semaphores. Persistent
semaphores were requested explicitly with the SEM PERSI ST flag. POSIX.1b, on
the other hand, only provides persistent semaphores.

Persistence of an object implies that the object and its state (e.g., value of a
semaphore, data in a message queue, data for a shared memory object) are
preserved once the object is no longer referenced by a process. If the user
absolutely needs to migrate non-persistent behavior from Draft 9 to POSIX.1b,
here is an alternative method: After all the processes that wish to use a non-
persistent semaphore have opened the semaphore, sem unl i nk the semaphore.

POSIX 1.b Migration Guide 67

Chapter 7 - Semaphores

The semaphore is deleted when all references to it are removed, simulating a non-
persistent semaphore.

Unnamed Semaphores

The following example illustrates the use of POSIX.1b unnamed semaphores.
Notice that for two processes to use an unnamed semaphore, it must reside in
shared memory.

#i ncl ude <sys/man. h>
#i ncl ude <semaphore. h>

mai n()

struct shared_info *sp;

fd = shm open(shmane, ofl ags, node);

ép = mmap(0, SHVSI ZE, PROT_READ| PROT_WRI TE,
MAP_SHARED, fd, 0);

close(fd);

shm_unl i nk(shmane) ;

éem_i nit(&sp->sem TRUE, 0);

pid = fork():

if (pid) {
/* Parent */

éem_post (&sp->sen);

}
el se {
/* Child */

sem wai t (&sp->sen);

68 POSIX 1.b Migration Guide

Creating a Named Semaphore

Creating a Named Semaphore

Named semaphores for POSIX.1b are created using the function sem open()
with the O_CREAT flag, instead of the mksen() function from Draft 9.

The following example compares the creation of a named semaphore. Note the use
of the SEM PERSI ST flag in Draft 9 code to request creation of a persistent
semaphore. For POSIX.1b, no special flag is necessary, because POSIX.1b only
provides persistent semaphores.

Draft 9 Code

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

mai n()

<sys/types. h>
<sys/stat.h>
<fentl. h>
<sys/sem h>

int sem

ﬁksen("senaphore", SEM PERSI ST | 0666

STATE_LOCKED) ;

sem = open("semaphore", O RDWR, SEM PERSI ST| 0666)

élose(sem;
unl i nk("semaphore");

Equivalent POSIX.1b Code

#i ncl ude <semaphore. h>

mai n()

semt *sem

sem = sem open("semaphore", O CREAT, 0666, O0);

sem cl ose(sen);
sem unl i nk("semaphore");

POSIX 1.b Migration Guide 69

Chapter 7 - Semaphores

Posting and Waiting on Semaphores

Refer to “Changes from Draft 9 to POSIX.1b” on page 72 later in this chapter, for
equivalence of function names to post to and wait on semaphores. The following
example compares Draft 9 and POSIX.1b for this functionality.

Draft 9 Code

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i nclude <fcntl. h>
#i ncl ude <sys/sem h>
mai n()

int sem

nksen(" semaphore",);
sem = open("senaphore”,);

)* this could also be semmait() */
seni fwai t (sen);

senpost (sem ;

Equivalent POSIX.1b Code
#i ncl ude <semaphore. h>
mai n()
semt *sem
:sem = sem open("semaphore",.....)

)* this could al so be semwait() */
sem trywait(sen);

sem post (sen);

70 POSIX 1.b Migration Guide

Conditional Posting to Semaphores

Conditional Posting to Semaphores

The Draft 9 facility for conditional posting to a semaphore with the semi f post ()
function (only if a process is waiting for it), was removed. However, POSIX.1b
offers a new function, sem get val ue(), to allow the user to obtain the value of a
semaphore at any time.

If the semaphore is locked, sem get val ue() returns a zero or a negative
number. The absolute value of this number indicates the number of processes
waiting for the semaphore. This value is sampled at an unspecified time inside the
sem get val ue() call. The following example illustrates the use of

sem get val ue() and sem post () to simulate the effect of seni f post ()
from Draft 9. As explained below, the equivalence in this example does not
always hold.

Draft 9 Code

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i nclude <fcntl. h>

#i ncl ude <sys/sem h>

mai n()
int sem
ﬁksen("semaphor e",. ...)
sem = open("semaphore",);
;sem' f post (sem ;

) :

Equivalent POSIX.1b Code

#i ncl ude <semaphore. h>

mai n()
semt *sem
int val ue;
sem = sem open("semaphore",......)
sem get val ue(sem &val ue);
if (value < 0)
sem post (sem;
}

POSIX 1.b Migration Guide 71

Chapter 7 - Semaphores

The seni f post () function from Draft 9 has an inherent race condition. If a
process is about to sleep on the semaphore, semi f post () would never wake
that process up. Therefore, programs that use semi f post () have a race
condition upon wake-up. (For more details on why sem i f post () has been
removed from POSIX.1b, refer to the rationales of the POSIX.1b standard.)

Also note that sem get val ue() samples the value of the semaphore, and
(because there is no locking built into semaphores) does not give a reliable value
for heavily-used semaphores. POSIX.1b semaphores are not POSIX.1c
condition variables.

Changes from Draft 9 to POSIX.1b

Semaphores changed, although not in a major way. The most important change is
that Draft 9 provides binary semaphores, while POSIX.1b provides counting
semaphores. Also, Draft 9 provides only named semaphores and they are special
files. POSIX.1b provides named and unnamed semaphores; the interface is
independent of any file system.

Table 7-1: Semaphore Interface

Draft 9

POSIX.1b

Binary semaphores

Counting semaphores

Semaphores = Special files

Independent of file system

Only named semaphores

Named and unnamed semaphores

Persistent as well as non-persistent
semaphores with the flag
SEM PERSI ST

Persistent semaphores

<sys/sem h>

<semaphore. h>

No Equivalent

seminit()
Initializes unnamed semaphore

No Equivalent

sem destroy()
Destroys unnamed semaphore

nksem() Done by sem open()
open() sem open()
cl ose() sem cl ose()

POSIX 1.b Migration Guide

Conditional Posting

Table 7-1: Semaphore Interface (Continued)

Draft 9 POSIX.1b

unl i nk() sem.unl i nk()

semiai t () semwai t ()

senm fwait() semtrywait()

senpost () sem post ()

seni f post () No Equivalent

No Equivalent sem get val ue()
Get semaphore value

Conditional Posting

Draft 9 provides a semi f post () function to do a conditional post to a
semaphore if a process is waiting for it. This functionality is discontinued in
POSIX.1b. It can be simulated with a combination of sem get val ue() and
sem post (), but is not an atomic operation.

Permission Checking

Since Draft 9 semaphores are special files, there is the overhead of complete file
permission checking. In POSIX.1b, this is replaced by an efficient name service for
the named semaphores. The new service does not need to do directory traversals or
complicated permission checking. User ID and standard POSIX.1 permission
checking is performed on a per-object-name basis.

New Utilities

LynxOS provides two new utilities, | i pcs and | i pcr m to respectively list and
remove named semaphores. Refer to the 1i pcs and |i pcr m man pages for
more information.

Interoperability
There is no semaphore interoperability between Draft 9 and POSIX.1b.

POSIX 1.b Migration Guide 73

Chapter 7 - Semaphores

74 POSIX 1.b Migration Guide

ewns. Memory Locking

The memory locking interface has changed from Draft 9 to POSIX.1b. Some Draft
9 facilities have been discontinued (see below), while a new feature has been
introduced to restrict memory locks to the current address space.

For additional information, refer to “Changes from Draft 9 to POSIX.1b” on
page 77 later in this chapter.

Locking the Specific Address Space

The ability to restrict memory locking for data, text, or stack segments of a process
under Draft 9 (DATALOCK, TXTLOCK, STKLOCK flags) no longer exists. The only
behavior supported is the ability to lock a specified address range (REGLOCK flag
in Draft 9) and the entire process address space (PROLOCK flag in Draft 9).

Two new functions have been introduced to lock and unlock the entire address
space, instead of using the PROLOCK flag. The following example illustrates their
use and comparison to Draft 9 code.

Draft 9 Code

#i ncl ude <sys/mem k. h>
#define SIZE 1024
mai n()

voi d *addr;

addr = mal | oc(SI ZE) ;
mem k(REGLOCK, addr, SIZE);

memunl k(REGLOCK, addr, SIZE):

POSIX 1.b Migration Guide 75

Chapter 8 - Memory Locking

Equivalent POSIX.1b Code
#i ncl ude <sys/mman. h>
#define SIZE 1024
nmai n()
{
voi d *addr;

addr = mal | oc(SI ZE) ;
m ock(addr, SIZE);

nunl ock(addr, SIZE):

Locking Future Growth

76

When locking the entire address space, Draft 9 guaranteed that subsequent growth

would also be locked. POSIX.1b provides two flags, MCL_CURRENT and
MCL_FUTURE. These flags request locking current pages or future pages,

respectively. Under LynxOS, MCL_CURRENT locks current as well as future pages.
The MCL_FUTURE flag by itself locks only future pages, not current ones. It would

be unusual for an application writer to request this flag by itself.

Table 8-1: Memory Locking Flags

Flag LynxOS Semantics

MCL_ CURRENT Lock current as well as future pages

MCL_CURRENT | MCL_FUTURE Same as MCL_ CURRENT

MCL_FUTURE Locks only future pages, not current
Draft 9 Code

#i ncl ude <sys/meni k. h>

mai n()

ment k(PROLOCK, NULL, 0);

menunl k(PROLOCK, NULL, 0);

POSIX 1.b Migration Guide

Equivalent POSIX.1b Code

Equivalent POSIX.1b Code

#i ncl ude <sys/ mran. h>

mai n()

m ockal | (MCL_CURRENT | MCL_FUTURE) ;

munl ockal 1 ()

Changes from Draft 9 to POSIX.1b

Table 8-2: Memory-Locking Interface

Draft 9 POSIX.1b

<sys/ mem k. h> <sys/ mman. h>

MEMLK_BOUNDSI ZE PAGESI ZE

mem k(REGLOCK, addr, si ze) M ock(addr, si ze)

menmunl k(REGLOCK, addr, size) munl ock(addr, si ze)

mem k(TXTLOCK| DATALOCK] No Equivalent

STKLOCK, . .)

menmunl k (TXTLOCK| DATALOCK| No Equivalent

STKLOCK, . .)

mem k(PROLOCK, NULL, 0) m ockal | (MCL_CURRENT| MCL_FUTURE} or

m ockal | (MCL_CURRENT)

menmunl k(PROLOCK, NULL, 0) munl ockal | ()

No Equivalent m ockal | (MCL_FUTURE)
Locking Flags

Draft 9 allows processes to lock their data, text, or stack segments. There is no
support for such functionality in POSIX.1b. The flags used are:

* TXTLOCK
* DATALOCK
* STKLOCK

POSIX 1.b Migration Guide 77

Chapter 8 - Memory Locking

Multiple Locks

Multiple memory locks can be set for a given region under Draft 9. There are no
semantics for multiple locking in POSIX.1b. Memory locking functions can be
invoked multiple times for a given address range, but still act as a single lock and
are removed by a single unlock.

Locking/Unlocking the Entire Process

In Draft 9, the PROLOCK flag was used with mem k() and merunl k() to
specify the entire process address space. In POSIX.1b, there are two new functions,
m ockal I () and munl ockal | (), for this purpose.

Current/Future Locking

In Draft 9, future memory growth was automatically locked with the PROLOCK
flag. POSIX.1b provides a flag to request whether current or future pages be
locked, with the MCL_CURRENT and MCL_FUTURE values, respectively. Under
the LynxOS implementation, the MCL_CURRENT flag locks current as well as
future pages. The following table shows the meaning of these flags.

Table 8-3: Memory Locking Flags

Flag LynxOS Semantics

MCL_ CURRENT Lock current as well as future pages

MCL_CURRENT | MCL_FUTURE Same as MCL_ CURRENT

MCL_FUTURE Lock only future pages, not current
Interoperability

The memory locking facilities for both Draft 9 and POSIX.1b are based on the
same code in LynxOS.

78 POSIX 1.b Migration Guide

e Asynchronous 1/0

Changes in asynchronous 1/O features center primarily around reordered data
structure entries and function parameters. In addition, POSIX.1b introduces a new
idea of asynchronous I/O priority. The priority of an asynchronous I/O operation
can be lowered, but not raised, with respect to the process scheduling priority.

Refer to “Changes from Draft 9 to POSIX.1b” on page 87 for a comparison of data
structures and flags specific to asynchronous 1/O.

Data Structure Changes

The ai ocb data structure changed has significantly. Because of these changes, the
| i ocb data structure has been eliminated. The following is a comparison of the
ai och data structures for Draft 9 and POSIX.1b.

Table 9-1: ai ocb Structure

Draft 9 POSIX.1b

ai o_of f set ai o_of f set

ai o_event ai o_si gevent

aio_prio aio_reqprio

ai o_whence No Equivalent (always SEEK_SET)
aio_flag No Equivalent

ai o_errno No Equivalent

ai o_nobytes No Equivalent

No Equivalent ai o_nbytes

No Equivalent aio_fildes

POSIX 1.b Migration Guide 79

Chapter 9 - Asynchronous I/0

80

Table 9-1: ai ocb Structure (Continued)

Draft 9 POSIX.1b

No Equivalent ai o_buf

No Equivalent aio_lio_opcode

POSIX.1b structure includes the file descriptor, buffer, and | i sti o opcode
fields. The new ai o_nbyt es field has the same semantics as defined by the
read() andwite() synopses.

As a result, the synopses for the asynchronous I/O functions have changed
as follows:

» File descriptor, buffer, and number of bytes are not passed as separate
arguments to ai o_read() and aio_wite().

e The listio opcode isnotpassed as a separate argument to
lio_listio().

* The ai o_whence field has been eliminated. The ai o_of f set
argument is treated as offset from the beginning of the file. The effect is
as if ai o_whence is always SEEK_SET.

e The ai o_errno field has been eliminated. Instead, a new function,
ai o_error (), with the ai ocb argument does the same job.

* The aio_flag field has been eliminated. It is superseded by the
ai o_si gevent field.

e The afsync() function has been renamedto ai o_fsync().

e The ai o_nobyt es field has been eliminated. The new ai o_r et urn()
function retrieves the return status from an ai ocb structure.
ai o_return() can be called exactly once per structure; this structure
may not be passed to ai o_error() or aio_return() again.

There is no relation between the new ai o_nbyt es field and the old ai o_nobyt es
field. The ai o_return() function may be used on the same ai ocb structure
more than once, as a proprietary extension from LynuxWorks. This can be disabled
by a new proprietary library call ai o_set par an() . Refer to the

ai o_set param) man page for more information.

The ai o_prio field from Draft 9 was unused and has been replaced with the
ai o_reqpri o field. With this field, POSIX.1b asynchronous I/O can be queued in
a priority order.

POSIX 1.b Migration Guide

Asynchronous Read and Write

The priority of an asynchronous process is the process priority minus the

ai o_regpri o value. Priority of asynchronous I/O can be lowered, but not raised,
with respect to the process priority. However, as a proprietary feature from
LynuxWorks, the priority of an asynchronous I/O operation can be raised with
respect to the process priority. This is achieved by the ai o_set par am() library
call, which is specific to LynxOS. Refer to the ai o_set paran() man page for
more information.

Asynchronous Read and Write

The following example shows a code comparison for an asynchronous write
operation. Also, it shows the use of two new functions for POSIX.1b; namely,
aio_return() and aio_error().

In POSIX.1b code the sa_fl ags flagissetto SA Sl G NFOQ, and the
sigev_notify fieldissetto S| GEV_SI GNAL to ensure the use of a
real-time signal.

Draft 9 Code

#i ncl ude <errno. h>
#i ncl ude <sys/aio. h>

#define SIZE 256

voi d event _handl er(voi d *evt_val ue,
evt_class_t evt_class, evtset_t evt_nask);

mai n()

{
int fd;
char buf[Sl ZE] ;
struct aioch cb;
struct sigaction sa;

fd =open(.......)

.sa. sa_handl er = event_handl er;
sa.sa_flags = SA D9EV,
si genpt yset (&sa. sa_nask) ;

si gacti on(EVTICLASS M N, &sa, NULL);

ch. ai o_event. evt_handl er = event _handl er;
ch. ai o_event. evt_val ue = NULL;

cb. ai o_event.evt_class = EVTICLASS M N,
evt enpt yset (&ch. ai o_event . evt _cl assnask) ;
ch.aio_flag = Al O EVENT;

ch. ai o_of f set 0;

ch. ai o_whence 0;

POSIX 1.b Migration Guide 81

Chapter 9 - Asynchronous I/0

cb.aio_prio = 0;
awite(fd, buf, SIZE, &cbh);

while (cb.aio_errno == EI NPROG {

}

printf("Errno = %, No. of bytes = %\n",
cb.aio_errno, cb.aio_nobytes);

}

voi d event _handl er (evt _val ue, evt_class, evt_mask)
voi d *evt _val ue;

evt_class_t evt_class;

evtset_t evt_mask;

{

Equivalent POSIX.1b Code

#i ncl ude <ai 0. h>
#i ncl ude <errno. h>

#define Sl ZE 256

voi d signal _handl er(int signo, siginfo_t *info, void *context);

mai n()

int fd;

char buf[Sl ZE] ;
struct aiocb cb;
struct sigaction sa;
int err, ret;

sa.sa_sigaction = signal _handler;
sa.sa_flags = SA_SI G NFQ
si genptyset (&sa. sa_mask) ;

sigaction(SIGRTM N, &sa, NULL);

ch. ai o_si gevent. sigev_signo = SIGRTM N;

ch. ai o_si gevent. si gev_val ue. sival _ptr = NULL;
ch. ai o_sigevent.sigev_notify = SI GEV_SI GNAL;
ch.aio_offset = 0;

ch.aio_regprio = 0;

ch.aio_fildes = fd;

ch. ai o_buf = buf;

ch. ai o_nbytes = Sl ZE;

aio_wite(&h);

whil e (aio_error(&cb) == EI NPROGRESS) {

82 POSIX 1.b Migration Guide

List Directed 1/0

}

err=aio_err (&ch);
ret=aio_return (&ch);

}

voi d si gnal _handl er(signo, info, context)
int signo;

siginfo_t *info;

voi d *context;

{

List Directed 1/0

The following example illustrates how a Draft 9 program doing list-directed I/O
can be migrated to POSIX.1b. In Draft 9, LI O NOMI T ignores the final event
argument while LI O ASYNC ensures a final event delivery. In POSIX.1b,

LI O_NOWAI T ensures a final signal delivery on completion of the last | i sti o job.
If, however, the final signal argument is NULL, no signal is sent.

Draft 9 Code

#i ncl ude <sys/aio. h>
#define SIZE 1024

voi d evt_handl er1(void *evt_val ue,

evt_class_t evt_class, evtset_t evt_nask);
voi d evt_handl er2(voi d *evt_val ue,

evt_class_t evt_class, evtset_t evt_nask);
void evt_final _handl er(void *evt_val ue,

evt_class_t evt_class, evtset_t evt_nask);

mai n()

int fdi, fdz;

char buf 1[SI ZE], buf 2[S| ZE] ;

struct liocb listl, list2, *lcb[2];
struct sigaction sa;

struct event final _evt;

fdl
fd2

.sa. sa_handl er = evt_handl er1;
sa.sa_flags = SA D9EV,
si genpt yset (&sa. sa_nask) ;

si gacti on(EVTICLASS_ M N, &sa, NULL);

POSIX 1.b Migration Guide 83

Chapter 9 - Asynchronous I/0

sa. sa_handl er = evt_handl er2;
sa.sa_flags = SA DOEV;
si genptyset (&sa. sa_nask) ;

si gacti on(EVTICLASS M N+1, &sa, NULL);

listl.lio_opcode = LI O WRI TE;

listl.lio_fildes = fdi,

listl.lio_buf = bufli;

listl.lio_nbytes = SIZE;

listl.lio_aioch.aio_event.evt_data = NULL;

listl.lio_aioch.aio_event.evt_class = EVTCLASS M N;

listl.lio_aioch.aio_event.evt_handler =
evt _handl er1;

evtenptyset (& istl.lio_aioch.aio_event.
evt _cl assmask) ;

listl.lio_aioch.aio_flag = Al O EVENT;

listl.lio_aioch.aio_offset = 0;
listl.]lio_aioch.aio_whence = 0;
listl.lio_aioch.aio_prio = 0;

list2.1io_opcode = LI O READ,

list2.lio_fildes = fd2;

list2.1io_buf = buf2;

list2.1io_nbytes = SIZE;

list2.1io_aioch.aio_event.evt_data = NULL;

list2.1io_aioch.aio_event.evt_class =
EVTCLASS_M N+1;

list2.1io_aioch.aio_event.evt_handler =
evt _handl er 2;

evtenptyset (& ist2.1io0_aioch.aio_event.
evt _cl assmask) ;

list2.1io_aioch.aio_flag = Al O EVENT;

list2.1io_aioch.aio_offset = 0;
list2.1io_aioch.aio_whence = 0;
list2.1io_aioch.aio_prio = 0;
lcb[0] = & istl;

lcb[1] = & ist2;

sa.sa_handl er = evt_final_handler;
sa.sa_flags = SA DOEV;
si genpt yset (&sa. sa_mask) ;

sigacti on(EVTICLASS M N+2, &sa, NULL);

final _evt.evt_value = NULL;

final _evt.evt_class = EVICLASS_M N+2;
final _evt.evt_handler = evt_final _handler;
evtenptyset (& i nal _evt. evt_cl assmask);

listio(LIO ASYNC, Ich, 2, &final_evt);
}
voi d evt_handl er1(evt_val ue, evt_class, evt_nask)
voi d *evt_val ue;
evt_class_t evt_class;
evtset_t evt_mask;

{

84 POSIX 1.b Migration Guide

Equivalent POSIX.1b Code

}

voi d evt_handl er2(evt_val ue, evt_class, evt_mask)
voi d *evt_val ue;

evt_class_t evt_class;

evtset _t evt_mask;

{

}

void evt_final _handl er(evt_val ue, evt_class, evt_mask)
voi d *evt_val ue;

evt_class_t evt_class;

evtset _t evt_mask;

{

Equivalent POSIX.1b Code

#i ncl ude <ai o. h>
#define SIZE 1024

voi d signal _handl er1(int signo, siginfo_t *info,
void *context);

voi d signal _handl er2(int signo, siginfo_t *info,
void *context);

voi d signal _final _handler(int signo, siginfo_t *info,
void *context);

mai n()

int fdi, fdz;

char buf 1[SI ZE], buf2[S| ZE];
struct aiochb cbhl, ch2, *cbs[2];
struct sigaction sa;

struct sigevent final_se;

fdl =
fd2 = open(......);
sa.sa_sigaction = signal _handler1;
sa.sa_flags = SA SI G NFQ

si genpt yset (&sa. sa_nask);

sigacti on(SIGRTM N, &sa, NULL);

sa. sa_sigaction = signal _handl er2;

sa.sa_flags = SA SI G NFQ

si genpt yset (&sa. sa_nask);

si gacti on(SI GRTM N+1, &sa, NULL);

;:bl. ai 0_si gevent. sigev_signo = SIGRTM N,

cbl. ai o_si gevent. si gev_val ue.sival _ptr = NULL;

chl. ai o_sigevent.sigev_notify = SIGEV_SI GNAL;
chl.aio_offset = 0;

POSIX 1.b Migration Guide 85

Chapter 9 - Asynchronous I/0

cbl.aio_reqprio = 0;
chl.aio_fildes = fdi;

cbl. ai o_buf = bufil;

cbl. ai o_nbytes = S| ZE;
cbl.aio_lio_opcode = LI O WRITE;

cb2. ai o_si gevent. si gev_signo = S| GRTM N+1;
ch2. ai o_si gevent. si gev_val ue. sival _ptr = NULL;
ch2. ai o_sigevent.sigev_notify = SI GEV_SI GNAL;
ch2.aio_offset = 0;

ch2.aio_reqgprio = 0;

ch2.aio_fildes = fd2;

cb2. ai o_buf = buf2;

cb2. ai o_nbytes = SlIZE;

ch2.aio_lio_opcode = LI O READ;

&cbl;
&ch2;

cbs[0]
cbs[1]

sa.sa_sigaction = signal _final_handler;
sa.sa_flags = SA_SI G NFQ
si genpt yset (&sa. sa_nask) ;

sigaction(SI GRTM N+2, &sa, NULL);
final _se.sigev_signo = SI GRTM N+2;
final _se.sigev_val ue.sival _ptr = NULL;
final _se.sigev_value.sigev_notify = Sl GEV_SI GNAL;
lio_listio(LIONOMIT, cbs, 2, &inal_se);
}
voi d signal _handl er1(signo, info, context)
int signo;

siginfo_t *info;
voi d *context;

{

}

voi d signal _handl er2(signo, info, context);
int signo;

siginfo_t *info;
voi d *context;

{

}

voi d signal _final _handl er(signo, info, context)
int signo;

siginfo_t *info;
voi d *context;

{

86 POSIX 1.b Migration Guide

Changes from Draft 9 to POSIX.1b

Changes from Draft 9 to POSIX.1b

All Draft 9 functionality has an equivalent in POSIX.1b, but there are differences
in the data structure entries and the way parameters are passed to functions.

Table 9-2: Asynchronous /0 Interface

Draft 9 POSIX.1b
<sys/ ai 0. h> <ai 0. h>
struct lioch Provided by structure ai ocb
Al O_EVENT No Equivalent
LI O_ASYNC No Equivalent
Al O PRI O_DFL No Equivalent
Al O_PRI O_MAX No Equivalent
AlO PRRO_M N No Equivalent
Al O LI STI O MAX No Equivalent
No Equivalent Al O PRI O DELTA MAX
aread() ai o_read()
awite() aio_wite()
listio() lio_listio()
acancel () ai o_cancel ()
i osuspend() ai o_suspend()
af sync() ai o_fsync()
No Equivalent aio_error()
Retrieves the error status from an ai ocb structure
No Equivalent aio_return()
Retrieves the return status from an ai ocb structure

Data Structures

The data structure ai ocb changed a lot from Draft 9 to POSIX.1b. Also, the
| i ocb data structure has been eliminated because of the changes to ai ochb.

POSIX 1.b Migration Guide 87

Chapter 9 - Asynchronous I/0

The following is a comparison of the ai ocb data structures for Draft 9
and POSIX.1b.

Table 9-3: ai ocbh Structure

Draft 9 POSIX.1b
ai o_of fset ai o_of f set
ai o_event ai o_si gevent
aio_prio aio_reqprio
ai o_whence No Equivalent
aio_flag No Equivalent
aio_errno No Equivalent
ai o_nobytes No Equivalent
No Equivalent ai o_nbytes
No Equivalent aio_fildes
No Equivalent ai o_buf
No Equivalent aio_lio_opcode

POSIX.1b structure includes the file descriptor, buffer, and | i sti o opcode
fields. The new ai o_nbyt es field has the same semantics as defined by the
read() andwrite() synopses. Therefore, the synopses for the ai o functions
have changed as follows:

» File descriptor, buffer, and number of bytes are not passed as separate
arguments to ai o_read() and aio_wite().

* listio opcode isnot passed as a separate argument to
lio_listio().

The ai o_whence field has been eliminated. The ai o_of f set argument is
treated as an offset from the beginning of the file. The effect is as if ai o_whence
is always SEEK_SET.

The ai o_errno field has been eliminated. Instead, a new function,
ai o_error () withthe ai ocb argument does the same job.

The ai o_flag field has been eliminated. It is superseded by the
ai o_si gevent field.

88 POSIX 1.b Migration Guide

Timed Suspension

The ai o_nobyt es ficld has been eliminated. The new ai o_r et urn() function
retrieves the return status from an ai ocb structure. ai o_return() canbe
called only once per structure; this structure may not be passed to ai o_error ()
or ai o_return() again.

There is no relation between the new ai o_nbyt es field and the old

ai o_nobyt es field. The ai o_return() function may be used on the same

ai ocb structure more than once, as a proprietary extension from LynuxWorks.
This can be disabled by a new proprietary library call ai o_set par an() . Refer to
the ai o_set paran() man page for more information.

Priority of asynchronous I/O can be lowered, but not raised, with respect to the
process priority. However, a proprietary feature of LynxOS allows the priority of
an asynchronous I/O operation to be raised with respect to the process priority.
This is done by the ai o_set paran() library call. Refer to the

ai o_set paran() man page for more information.

Timed Suspension

The Draft 9 i osuspend() function suspends the process until the completion
of I/O. The ai o_suspend() function from POSIX.1b adds an option for timed
suspension. It takes an extra ti mespec argument for ti meout . If this argument
is NULL, the behavior is the same as suspension until the completion of I/O.

Cancellation Notification

With the acancel () function from Draft 9, no event notification is given when
an asynchronous I/O function is successfully cancelled. However, with the

ai o_cancel () function from POSIX.1b, normal signal delivery occurs for all
asynchronous I/O functions that are cancelled.

listio Signal Delivery

POSIX.1b provides only two mode values as opposed to the three values from
Draft 9. The LI O ASYNC value has been removed. The LI O NOWAI T argument
ensures a final signal delivery, and is equivalent to LI O ASYNC from Draft 9. If
the final signal parameter passedto | i o_|istio() is NULL, a final signal is not
sent. This is equivalent to the LI O NOMI T behavior from Draft 9.

POSIX 1.b Migration Guide 89

Chapter 9 - Asynchronous I/0

aio_fsync()

The POSIX.1b ai o_fsync() function (equivalent to the Draft 9 af sync()
function) provides f sync() behavior withthe O_SYNC flag, and f dat async()
behavior with the O DSYNC flag. The difference is that for synchronized I/O file
integrity completion, the O _FSYNC flag is used in Draft 9, while the O_SYNC flag
is used in POSIX.1b. Refer to the synchronous I/O section for the semantics of
these functions.

Interoperability

Asynchronous 1/0O is fully inter-operable. A process using Draft 9 asynchronous
I/O is compatible with a process performing POSIX.1b asynchronous I/O to the
same file.

NOTE: Due to a rare condition in the Draft 9 specification, multiple processes
accessing a file during asynchronous I/O can produce unexpected results. Avoid
using Draft 9 asynchronous I/O if the file will be accessed by multiple processes.

90 POSIX 1.b Migration Guide

meoxa Functions Callable from Signal
Handlers

Because of their asynchronous nature, signals can interrupt any library function,
and many system calls. If the signal handler calls the active function again, it may

corrupt the state of the library, or fail in some subtle way.

POSIX.1 (POSIX.1b and POSIX.1c¢) specifies a list of functions that are required
to be callable by signal handlers. The following is a list POSIX.1b-specific

functions required to be callable by signal handlers.

Table A-1: List of Callable Functions

access() f dat async() read() tcdrain()
aio_error() fork() rename() tcflow()
aio_return() fstat() rdir() tcflush()

ai 0_suspend() fsync() sem post () tcgetattr()

al arm() get egi d() setgid() t cget pgr p()
cfgetispeed() get eui d() set pgi d() t csendbr eak()
cf get ospeed() getgi d() setsid() tcsetattr()
cfsetispeed() get groups() setuid() t cset pgrp()

cf get ospeed() get pgrp() sigaction() time()

chdir() get pi d() si gaddset () timer_getoverrun()
chrod() get ppi d() si gdel set () timer_gettinme()
chown() getui d() si genpt yset () timer_settinme()
cl ock_gettime() kill() sigfillset() times()

cl ose() i nk() si gi smenber () umask()

creat () | seek() si gpendi ng() unane()

dup() mkdir () si gprocmask() unl i nk()

POSIX 1.b Migration Guide 91

Appendix A - Functions Callable from Signal Handlers

Table A-1: List of Callable Functions (Continued)

dup2() mkfifo() si gqueue() utime()
execl e() open() si gsuspend() wai t ()
execve() pat hconf () sl eep() wai t pi d()
_exit() pause() stat () wite()
fentl () pi pe() sysconf ()

92 POSIX 1.b Migration Guide

aeoxs Mapping Between Drafts

This Appendix correlates chapters in the POSIX.4 Draft 9 and POSIX.4 Draft 14
(POSIX.1b) specifications. POSIX.1b chapters are organized differently than those
in POSIX.4 Draft 9. The POSIX.1b is now organized as an amendment to the

POSIX.1 standard.

Table B-1: Draft 9 to POSIX.1b Chapter Mapping

Draft 9 Chapter

Location

2. Constants and vars

General
Section 2, sysconf,
Section 4, “Process Environment”

f pat hconf / pat hconf
Section 5, “Files and Directories”

3. Binary Semaphores

Semaphores
Section 11, “Synchronization”
(also fork/exit/exec in Section 3)

4. Memory Locking

Memory Locking
Section 12, “Memory Management”

5. Shared Memory

Shared Memory
Section 12, “Memory Management” (also
f ork/ exec/ exi t/ cl ose, Sections 3 and 6)

6. Priority Scheduling

Scheduling
Section 13, “Execution Scheduling” (also f or k/ exec
in Section 3)

7. Asynchronous Events

Real-Time Signals Extension, Section 3, “Process
Primitives”

8. Clocks and Timers

Section 14, “Clocks and Timers”

POSIX 1.b Migration Guide 93

Appendix B - Mapping Between Drafts

94

Table B-1: Draft 9 to POSIX.1b Chapter Mapping (Continued)

Draft 9 Chapter

Location

9. IPC Message Passing

Section 15, “Message Passing”
(also open/ fork/ exec, Section 3)

10. Synchronized 1/0

Section 6
“Input and Output Primitives”

11. Asynchronous I/O

Section 6
“Input and Output Primitives”

12. Real-Time Files

No Equivalent

No Equivalent

File Mapping (mmap)
Section 12, “Memory Management” (also
ftruncat e, Section 5, “Files and Directories”)

POSIX 1.b Migration Guide

— Index

data structures and flags 79
interface changes 87
interoperability 90
listio signal delivery 89
priority 89
queueing in priority order 80
synopses 80
timed suspension 89
asynchronous I/O priority 79
A asynchronous message sending and receiving 37
asynchronous process priority 81
Asynchronous Read and Write 81

Symbols

_POSIX_MAPPED_FILES test macro 55
_POSIX_MEMORY_PROTECTION test
macro 55

address range, locking 75 :
address space, locking 75, 76 asynchronous write

aio functions, synopses changes 88 Draft 9 81
aio_buf 88 POSIX.1b 82

aio_cancel() function 87, 89 attributes, message queues 39, 46

aio_error() function 80, 81, 87, 88
aio_fildes 88

aio_fsync() function 80, 87, 90
aio_lio_opcode 88

aio_nbytes 88, 89

aio_offset 88

aio_read() 87, 88

aio_reqprio 88

aio_return() function 80, 81, 87, 89
aio_setparam() proprietary library call 80, 81, 89 C
aio_sigevent 88
aio_suspend() function 87, 89
aio_write() 87, 88

aiocb data structure 79, 87, 88
aiocb structure 87

B

binary semaphores 67, 72
buffer management 47

cause of signal generation 31
changes

asynchronous I/O data structure 79
bi d bil 434 asynchronous I/O interface 87
arbitrary data, ability to send 3 Compile Time Symbolic Constant 9
Asynchronous I/O 79-90 Errno Values 9
asynchronous /0 29 from Draft 9 to POSIX.1b 3

cancellation notification 89

message queue data structures 39, 45

changes 79 .

message queue interface 44
data structure changes 79, 87

messages 47

POSIX 1.b Migration Guide 95

Index

96

priorities 47
real-time signals interface 30
scheduling interface 12
scheduling macros 12
semaphores 72
shared memory interface 54
synopses, asynchronous I/0O 80
timer functionality 63
changes, general 9
clock, resolution of 57, 65
Draft9 57
POSIX.1b 58
clock getres() function 57, 63
clock gettime() 63
clock_settime() 63
Clocks and Timers 57-65
compile time symbolic constant 9
Compiler Option Changes 4
condition variables, POSIX.1c 72
conditional posting to semaphores 71, 73
conditional posting to semaphores,
simulating 73
contacting LynuxWorks xi
context parameter, signal handling 22
counting semaphores 67, 72
Create Timer 64
Creating and Deleting Shared Memory 51

D

Data Buffer Allocation/Freeing 48
data structures
asynchronous I/0 87
sigevent POSIX.1b 31
data structures in message queues 39, 45
DATALOCK flag 77
deleting a semaphore 68
deleting a timer 65
Determining Timer Overrun Count(s) 61
disarming a timer 65
documents, LynxOS ix
Draft 14 2
Draft 9
address space, locking 75
asynchronous write 81
creating timers 58
definition 2
major changes to POSIX.1b 3

POSIX 1.b Migration Guide

memory locking flags 76

message queue functions 37

named semaphores 69

other event functions 29

real-time signals interface changes 30

setting timer 60

timer overrun count, determining 61
Draft 9 & 10

event functions 35

event structure 23

events facility 23

evtpoll() function 28

E

ekill() proprietary function 26, 31
errno values, changes 9
event functions equivalence, Draft 9 29
event functions with no equivalents in
POSIX.1b 35
Event Functions, Draft 9 & 10 35
event handler and signal handler synopses 21
event handler sequence
Draft 10 21
Draft9 21
event handlers, Draft 9 & 10
integer 20
event sending 44
event structure 19
event structure contents
Drafts 9 and 10 19

POSIX.1b 20
event structure, Draft 9 & 10 23
events

data capacity 18

sending after timer expiration 29
sending and receiving 48
sending to a process 25

vs. Real-time Signals 18

events and real-time signals interoperability 35

events vs. normal signals 17
evtpoll() 28, 34
evtsuspend() 29

exec() behavior 49

F

FIFO order queueing 18

flags, memory locking 77, 78

fork() behavior in shared memory 55
fpathconf(), new parameters 9
ftruncate() function 52, 55

Functions Callable from Signal Handlers 91-92

G

General changes 9
Get Timer Value 64
getclock() 63
getgroups() 5,7
getpgrp() 6,7, 8
gettimer() 63, 64

H

handlers
Draft 10 events 18
Draft 9 events 18
signals 18

Identifying Function Usage in Applications 8
Indefinite/Timed Wait 34
int signo signal handler 25, 34
interface
asynchronous 1/0, changes to 87
clocks and timers 57, 63
memory locking, changes to 77
message queue 37, 44
message queue, changes from Draft 9 to
POSIX.1b 44
scheduling, changes to 12
semaphores, changes to 72
shared memory, changes to 54
timer creation 58
interoperability
asynchronous I/O 90

events and real-time signals 35
memory locking 78
message queues 49
scheduling 15
semaphores 73
shared memory 56
timers 65
inter-process communication (IPC) 17
Introduction 1-10
IPC objects, listing and removing 67

L

libc.a 5

name conflicts with liblynx.a 5
liblynx.a 4

name conflicts with libc.a 5

other functions 8

using parts in an application 8
libposix4d9.a 4
Library Structure Changes 4
lio_listio() 87
liocb data structure 79, 87
lipcrm LynxOS utility 49, 56, 67, 73
lipcs LynxOS utility 49, 56, 67, 73
list-directed /O 83

Draft 9 83

POSIX.1b 85
locking

address range 75

current and future growth 78

current pages 76

data, text, or stack segments 77

entire address space 76

flags for 77

future growth 76

future pages 76

process address space 75, 76

Draft9 75
POSIX.1b 76
specific address space 75

Locking/Unlocking the Entire Process 78

Is utility 67
Isbrk() function 8
LynuxWorks, contacting xi

LynxOS proprietary scheduling policy 13

POSIX 1.b Migration Guide

Index

98

M

macros, scheduler parameters 13
MAP_SHARED flag 55
Mapping and Unmapping shared Memory 53
Mapping Between Drafts 93-94
mapping files and devices into process address
space 51
MCL_CURRENT flag 76
MCL_FUTURE flag 76
Memory Locking 75-78
memory locking
flags 76, 78
Draft9 76
POSIX.1b 77
interface changes 77
interoperability 78
restricting 75
memory locks, multiple 78
memory object data 51
message availability, notification of 42, 44, 49
message queue attributes 46
getting and setting 39, 46
getting and setting Draft 9 39
getting and setting POSIX.1b 40
message queue creation
Draft 9 example 38
POSIX.1b example 38
message queue data 51, 67
message queue functions, Draft 9 37
simulatable in POSIX.1b 37
Message Queues 37-49
message queues 29
buffer management 47
creating 38
data structure changes 39, 45
interface 44
Interoperability 49
names 37
New Utilities 49
persistence 37
synchronization control 47
wrapping 48
message receive order 44
message synchronization 44
messages
changes 47
overlong 49
priority changes 47

POSIX 1.b Migration Guide

selective receive 47
selective removal 37, 47
sending and receiving 41
Draft 9 example 41
POSIX.1b example 41
time-stamping 48
mkcontig() function 8
mksem() 69, 72
mkshm() 51, 54
mktimer() 58, 63, 64
mlockall() function 78
mmap() function 51, 55
return value 55
mprotect() function 55
mgq_attr structure 39, 45
mq_maxmsg attribute 39
mq_msgsize attribute 39
mq_notify() function 42
mq_open() function 38
mq_receive() 42
mgq_selective_receive LynxOS function 45, 47
mgqgetpid() 48
mgqpurge() 48
mgqstatus structure 39, 45
MQWRAP flag 44, 48
MSG_MOVE and MSG_USE flags 37
msgalloc() function 48
msgcb structure 39, 45
msgfree() function 48
msync() function 55
munlockall() function 78

N

named semaphores 67, 69, 72

listing and removing 73
names for message queues 37
nanosleep() 65
New Library Structure Issues 5
non-persistent semaphores 67
non-persistent shared memory, simulating 51
non-preemptible scheduling policy 14
Notification of Message Availability 42, 49

O_CREAT flag 51, 69
overlong messages 44

P
P4D9 3
pathconf(), new parameters 9
pending signals 31
pending signals/events, timers 65
Permission Checking 73
persistence, message queues 37
persistence, shared memory 51, 54
persistent semaphores 67
Pointer-Worth of Data 49
Polling for a Real-Time Signal 28
POSIX 1003.1 1
POSIX 1003.4 standard 2
POSIX.1 definition 1
POSIX.1 sigaction structure 24
POSIX.1 standard 2
POSIX.1b
address space, locking 76
asynchronous write 82
creating timers 59
major changes from Draft 9 3
memory locking flags 77
message priorities 47
mmap() function 51
mgq_notify() function 42
named semaphores 67, 69
real-time signals 23
real-time signals interface, important
points 30
sa_sigaction member 24
SA_SIGINFO flag 24
setting timer 60
sigevent structure 23
siginfo_t structure 24
signal handler synopsis 25
Signal Handlers 34
sigqueue() function example 27
timer overrun count, determining 62
POSIX.1b standard, definition 1
POSIX.Ic¢, definition 2
POSIX.4 Draft 14 1

POSIX .4 standard 2
POSIX.4a
definition 2
Draft 4 2
Draft 8 2
posting and waiting on semaphores 70
Draft9 70
POSIX.1b 70
posting to a semaphore, conditional 71, 73
priority scheduling 47
priority, asynchronous I/O 79, 89
priority, asynchronous process 81
priority, process scheduling 79
priority, scheduler 11
process address space, locking 75
process priority 47
process scheduling priority 79
process, locking or unlocking 78
PROT_NONE flag 55
Protection 55
Purging, Data Buffer Allocation/Freeing 48

Q

Queue wrapping 44
queueing a real-time signal to a process 26
queueing a signal, POSIX.1b 31

R

race condition, semifpost() 72
read, asynchronous 81
real-time signal
data structures 31
default action, POSIX.1b 30
polling for 28
sending to a process 27
sending without queueing sigqueue() 29
Real-Time Signals 17-35
real-time signals and events interoperability 35
real-time signals vs. events 18
receiving messages 41
Reference manuals ix
Relative and Absolute Times 64
reltimer() 63
resclock() 57, 63, 65

POSIX 1.b Migration Guide 929

Index

resetting a timer 65 sem_init() function 67
resolution, clock 57,65 sem_nsignal() function 6
restricting memory locks 75 sem_open() function 69, 72
rm utility 67 sem_post() function 73
rmtimer() 63 sem_reset() function 6
rmtimer() function 58 sem_signal() function 6

sem_trywait() function 73
sem_unlink() function 73
sem_wait() function 6, 8, 73

S Semaphores 67-73
semaphores

SA _D9EV 19, 24, 32 binary 67, 72
sa_flags flag 42, 58 changes 72
sa_flags member 24, 32 conditional posting 71, 73
sa_flags members, features 24 counting 67, 72
sa_handler member 18 deleting 68
SA_NOCLDSTOP ﬂag 24,32 interoperability 73
sa_sigaction member 18, 22,32, 58 named 67, 72
sa_sigaction.sa_flags 24 named, creating 69
SA_SIGINFO flag 18, 21,22, 32,42 Draft9 69
SCHED_DEFAULT LynxOS scheduling POSIX.1b 69

policy 13 new utilities 73
sched_get_priority_max() function 12, 13 non-persistent 67
sched_get_priority_min() function 12, 13 permission checking 73
sched_getparam() function 12 persistent 67
sched_getscheduler() function 12 posting 70
SCHED_OTHER scheduling policy 13 unnamed 67, 68, 72
sched_param structure 11 value 51, 67
sched_priority priority type 11 waiting on 70
sched_rr_get_interval() function 12, 13 semifpost(), race condition 72
sched_setparam() function 12 Sender ID 48
sched_setscheduler() function 12 Sending a Real-Time Signal to a Process 27
sched_yield() function 12, 13 Sending and Receiving Events 48
scheduler parameters, macros 13 Sending and Receiving Messages 41
Scheduling 11-15 setclock() 63
scheduling Shared Memory 51-56

interface, changes 12 shared memory

interoperability 15 changes to interface 54

Macros vs. Functions 13 creating and deleting 51

non-preemptible scheduling 14 Draft 9 code example 52

priorities 11 interoperability 56
scheduling functions, examples 11 mapping 53
scheduling macros, changes 12 Draft9 53
selective removal, messages 37 POSIX.1b 53
sem_close() function 72 new utilities 56
sem_count() function 6 object size 51, 54
sem_delete() function 6 persistence 54
sem_destroy() function 67 persistence-related differences 51
sem_get() function 6 POSIX.1b code example 52
sem_getvalue() function 71, 72, 73 size 52

100 POSIX 1.b Migration Guide

unmapping 53
shared memory object data 67
shared memory object, shared and private
changes 55
shm_open() function 51, 54
shm_unlink() function 52
SI_ASYNCIO 22, 25, 33
si_code member 24, 33
SI_ MESGQ 22,25, 33
SI_QUEUE 22, 25,33
si_signo member 24, 33
SI_ TIMER 22,25, 33
si_value member 25, 33
sigaction structure 18, 22, 24, 30, 32
contents 19
real-time signal handling 18
sigaction(), signal handler function 6, 7, 18
sigemptyset() function 35
sigev_notify member 20, 23, 30, 31, 32
sigev_signo member 23, 31
sigev_value member 23, 31
sigevent structure 19, 23, 30, 34, 64, 65
sigevent structure types 31
sigfillset() function 35
siginfo_t *info signal handler 25, 34
siginfo_t structure 21, 23, 26, 31, 33
siginfo_t.si_code 22
signal and event handler synopses 21
signal delivery, order 31
signal functions
Events 17
Normal signals 17
Real-time signals 17
signal generation, cause 31
signal handler calling sequence, POSIX.1 21
signal handler sequence, POSIX.1b 21
signal handler synopsis, POSIX.1b 25
signal handlers, POSIX.1b 34
Signal Number, timers 64
signal() function 7
Signal/Event Associated with a Timer 64
signal-catching function 33
signals
application-defined value 19
cause of 24
default action 17
normal vs. Events 17
pending 31
queueing to a process, POSIX.1b 31
real-time vs. events 18

user-defined 17
sigqueue() function 23, 25, 27, 31, 33
SIGRTMAX 31
SIGRTMIN 23,31
sigsuspend() function 29, 35
sigtimedwait() function 28, 34, 35
sigval union 20, 23, 32
sigwaitinfo() function 28, 34

simulating conditional posting to semaphores 73

simulating non-persistent memory 51
size, shared memory 52

size, shared memory object 54
sleep() function 7
smem_create() function 8
smem_get() function 8
smem_remove() function 8
STKLOCK flag 77

susleep() function 7
synchronization control 47
sysconf(), new parameters 9

T

Technical Support xi

Timed Suspension, asynchronous I/0 89

timer

absolute and the relative values 60

creation and deletion 58
Draft 9 58
POSIX.1b 59
setting 60
Draft 9 60
POSIX.1b 60
timer overrun count 57, 63
timer overrun count, determining 61
Draft 9 61
POSIX.1b 62
timer value, getting 64
TIMER ABSTIME flag 64
timer_create() 64
timer_create() function 58, 63, 64
timer_delete() function 58, 63
timer_getoverrun() function 57, 63
timer_getres() 65
timer_gettime() 63, 64
timer_settime() function 60, 63, 64
timers
associated signal/event 64

POSIX 1.b Migration Guide

101

Index

changes from Draft 9 to POSIX.1b 63
creating 64
deleting 65
disarming 65
interoperability 65
pending signals/events 65
relative and absolute values 64
resetting 65
resolutions 64
signal number 64
Timers and clocks 57
Timers, Message Queues, and Asynchronous
/0 29
time-stamping messages 48
truncation control, messages 49
TXTLOCK flag 77
Typographical Conventions x

U

unlocking entire process 78

unnamed semaphores 67, 68, 72

Using Parts of liblynx.a in an Application 8
usleep() function 7

\'

vmtopm() function 8
void *context signal handler 25, 34

w

wait types 34
wrapping, message queues 48
write, asynchronous 81

Y

yield() 13

102 POSIX 1.b Migration Guide

	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Introduction
	POSIX.1b Description
	Overview of Major Changes
	Library Structure and Compiler Option Changes
	Library Structure Changes
	Compiler Option Changes
	New Library Structure Issues
	Name Conflicts Between liblynx.a and libc.a
	Identifying Function Usage in Applications
	Other Functions in liblynx.a
	Using Parts of liblynx.a in an Application

	Other General Changes

	Chapter 2 Scheduling
	Scheduler Priority
	Draft 9 code
	Equivalent POSIX.1b code

	Changes to Macros
	Draft 9 code
	Equivalent POSIX.1b code

	Macros vs. Functions
	yield ()
	SCHED_OTHER
	Non-Preemptible Scheduling Policy
	Interoperability

	Chapter 3 Real-Time Signals
	Normal Signals Versus Events
	Events Versus Real-Time Signals
	The sigaction Structure
	sigaction Structure Contents

	The Event Structure
	event Structure Contents
	signal and event Handler Synopses
	siginfo_t Structure
	Data Structures
	Signal Handlers
	Use of the sigqueue Function
	Sending a Real-Time Signal to a Process
	Draft 9 Code
	Equivalent POSIX.1b Code

	Polling for a Real-Time Signal
	Draft 9 Code
	Equivalent POSIX.1b Code

	Equivalence for Other Draft 9 Event Functions
	Timers, Message Queues, and Asynchronous I/O

	Changes from Draft 9 to POSIX.1b
	Data Structures
	Indefinite/Timed Wait
	Ability to Send Arbitrary Data
	Drafts 9 and 10 Event Functions
	Interoperability

	Chapter 4 Message Queues
	Creating Message Queues
	Draft 9 Code
	Equivalent POSIX.1b Code

	Data Structure Changes
	Getting and Setting Message Queue Attributes
	Draft 9 Code
	Equivalent POSIX.1b Code

	Sending and Receiving Messages
	Draft 9 Code
	Equivalent POSIX.1b Code

	Notification of Message Availability
	Changes from Draft 9 to POSIX.1b
	Interface Changes
	Data Structures
	Attributes
	Messages
	Message Priorities
	Selective Receive
	Process Priorities
	Synchronization Control
	Buffer Management
	Sending and Receiving Events
	Purging, Data Buffer Allocation/Freeing
	Sender ID
	Queue Wrap
	Time-Stamping
	Truncation Control
	A Pointer-Worth of Data
	Notification of Message Availability
	exec() Behavior

	New Utilities
	Interoperability

	Chapter 5 Shared Memory
	Introduction
	Creating and Deleting Shared Memory
	Draft 9 Code
	Equivalent POSIX.1b Code

	Mapping and Unmapping Shared Memory
	Draft 9 Code
	Equivalent POSIX.1b code

	Changes from Draft 9 to POSIX.1b
	Persistence
	Size of Shared Memory Object
	Shared/Private Changes
	fork() Behavior
	Protection
	msync() and mprotect() Functions
	Return Values
	New Utilities
	Inter-Operability

	Chapter 6 Clocks and Timers
	Introduction
	Resolution of a Clock
	Draft 9 Code
	Equivalent POSIX.1b Code

	Creation and Deletion of a Timer
	Draft 9 Code
	Equivalent POSIX.1b Code

	Setting a Timer
	Draft 9 Code
	Equivalent POSIX.1b Code

	Determining Timer Overrun Count(s)
	Draft 9 Code
	Equivalent POSIX.1b Code

	Changes from Draft 9 to POSIX.1b
	Overrun Count
	Signal/Event Associated with a Timer
	Signal Number
	Relative and Absolute Times
	Resolutions
	Get Timer Value
	Create Timer
	Clock Resolution
	nanosleep()
	Pending Signals/Events
	Interoperability

	Chapter 7 Semaphores
	Introduction
	Unnamed Semaphores
	Creating a Named Semaphore
	Draft 9 Code
	Equivalent POSIX.1b Code

	Posting and Waiting on Semaphores
	Draft 9 Code
	Equivalent POSIX.1b Code

	Conditional Posting to Semaphores
	Draft 9 Code
	Equivalent POSIX.1b Code

	Changes from Draft 9 to POSIX.1b
	Conditional Posting
	Permission Checking
	New Utilities
	Interoperability

	Chapter 8 Memory Locking
	Locking the Specific Address Space
	Draft 9 Code
	Equivalent POSIX.1b Code

	Locking Future Growth
	Draft 9 Code
	Equivalent POSIX.1b Code

	Changes from Draft 9 to POSIX.1b
	Locking Flags
	Multiple Locks
	Locking/Unlocking the Entire Process
	Current/Future Locking
	Interoperability

	Chapter 9 Asynchronous I/O
	Data Structure Changes
	Asynchronous Read and Write
	Draft 9 Code
	Equivalent POSIX.1b Code

	List Directed I/O
	Draft 9 Code
	Equivalent POSIX.1b Code

	Changes from Draft 9 to POSIX.1b
	Data Structures
	Timed Suspension
	Cancellation Notification
	listio Signal Delivery
	aio_fsync()
	Interoperability

	Appendix A Functions Callable from Signal Handlers
	Appendix B Mapping Between Drafts
	Index

