
3

POSIX 1.b Migration Guide

LynxOS Release 4
DOC-0416-00

Product names mentioned in POSIX 1.b Migration Guide are trademarks of their respective manufacturers and are used
here for identification purposes only.

Copyright ©1987 - 2002, LynuxWorks, Inc. All rights reserved.
U.S. Patents 5,469,571; 5,594,903

Printed in the United States of America.

All rights reserved. No part of POSIX 1.b Migration Guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photographic, magnetic, or otherwise, without the
prior written permission of LynuxWorks, Inc.

LynuxWorks, Inc. makes no representations, express or implied, with respect to this documentation or the software it
describes, including (with no limitation) any implied warranties of utility or fitness for any particular purpose; all such
warranties are expressly disclaimed. Neither LynuxWorks, Inc., nor its distributors, nor its dealers shall be liable for any
indirect, incidental, or consequential damages under any circumstances.

(The exclusion of implied warranties may not apply in all cases under some statutes, and thus the above exclusion may
not apply. This warranty provides the purchaser with specific legal rights. There may be other purchaser rights which
vary from state to state within the United States of America.)

 Contents
PREFACE ... IX

For More Information ... ix
Typographical Conventions ... x
Special Notes .. xi
Technical Support ... xi

LynuxWorks U.S. Headquarters ... xi
LynuxWorks Europe ... xi
World Wide Web ... xi

CHAPTER 1 INTRODUCTION.. 1

POSIX.1b Description ... 1
Overview of Major Changes .. 3
Library Structure and Compiler Option Changes .. 4

Library Structure Changes .. 4
Compiler Option Changes .. 4
New Library Structure Issues ... 5

Name Conflicts Between liblynx.a and libc.a 5
Identifying Function Usage in Applications 8
Other Functions in liblynx.a .. 8
Using Parts of liblynx.a in an Application .. 8

Other General Changes .. 9

CHAPTER 2 SCHEDULING... 11

Scheduler Priority .. 11
Draft 9 code .. 11
Equivalent POSIX.1b code ... 11

Changes to Macros .. 12
POSIX 1.b Migration Guide iii

Contents

Draft 9 code .. 12
Equivalent POSIX.1b code .. 12

Macros vs. Functions ... 13
yield () ... 13
SCHED_OTHER ... 13
Non-Preemptible Scheduling Policy ... 14
Interoperability .. 15

CHAPTER 3 REAL-TIME SIGNALS ... 17

Normal Signals Versus Events .. 17
Events Versus Real-Time Signals ... 18
The sigaction Structure .. 18

sigaction Structure Contents ... 19
The Event Structure ... 19

event Structure Contents .. 19
signal and event Handler Synopses .. 21
siginfo_t Structure .. 21
Data Structures ... 23
Signal Handlers .. 25
Use of the sigqueue Function ... 25
Sending a Real-Time Signal to a Process ... 27

Draft 9 Code .. 27
Equivalent POSIX.1b Code .. 27

Polling for a Real-Time Signal ... 28
Draft 9 Code .. 28
Equivalent POSIX.1b Code .. 29

Equivalence for Other Draft 9 Event Functions 29
Timers, Message Queues, and Asynchronous I/O 29

Changes from Draft 9 to POSIX.1b .. 30
Data Structures ... 31
Indefinite/Timed Wait .. 34
Ability to Send Arbitrary Data ... 34
Drafts 9 and 10 Event Functions .. 35
Interoperability ... 35

CHAPTER 4 MESSAGE QUEUES ... 37

Creating Message Queues ... 38
Draft 9 Code ... 38
iv POSIX 1.b Migration Guide

Equivalent POSIX.1b Code .. 38

Data Structure Changes ... 39
Getting and Setting Message Queue Attributes ... 39

Draft 9 Code ... 39
Equivalent POSIX.1b Code .. 40

Sending and Receiving Messages .. 41
Draft 9 Code ... 41
Equivalent POSIX.1b Code .. 41

Notification of Message Availability .. 42
Changes from Draft 9 to POSIX.1b ... 44

Interface Changes ... 44
Data Structures ... 45
Attributes .. 46
Messages .. 47

Message Priorities ... 47
Selective Receive .. 47
Process Priorities ... 47
Synchronization Control ... 47
Buffer Management .. 47
Sending and Receiving Events .. 48
Purging, Data Buffer Allocation/Freeing .. 48
Sender ID .. 48
Queue Wrap .. 48
Time-Stamping .. 48
Truncation Control .. 49
A Pointer-Worth of Data ... 49
Notification of Message Availability .. 49
exec() Behavior ... 49

New Utilities ... 49
Interoperability ... 49

CHAPTER 5 SHARED MEMORY... 51

Introduction ... 51
Creating and Deleting Shared Memory ... 51

Draft 9 Code ... 52
Equivalent POSIX.1b Code .. 52

Mapping and Unmapping Shared Memory ... 53
Draft 9 Code ... 53
Equivalent POSIX.1b code ... 53
POSIX 1.b Migration Guide v

Contents

Changes from Draft 9 to POSIX.1b .. 54

Persistence .. 54
Size of Shared Memory Object .. 54
Shared/Private Changes .. 55
fork() Behavior ... 55
Protection ... 55
msync() and mprotect() Functions ... 55
Return Values ... 55
New Utilities .. 56
Inter-Operability ... 56

CHAPTER 6 CLOCKS AND TIMERS... 57

Introduction ... 57
Resolution of a Clock .. 57

Draft 9 Code ... 57
Equivalent POSIX.1b Code .. 58

Creation and Deletion of a Timer .. 58
Draft 9 Code ... 58
Equivalent POSIX.1b Code .. 59

Setting a Timer .. 60
Draft 9 Code ... 60
Equivalent POSIX.1b Code .. 60

Determining Timer Overrun Count(s) ... 61
Draft 9 Code ... 61
Equivalent POSIX.1b Code .. 62

Changes from Draft 9 to POSIX.1b .. 63
Overrun Count .. 63
Signal/Event Associated with a Timer ... 64
Signal Number .. 64
Relative and Absolute Times ... 64
Resolutions ... 64
Get Timer Value ... 64
Create Timer ... 64
Clock Resolution .. 65
nanosleep() ... 65
Pending Signals/Events .. 65
Interoperability ... 65
vi POSIX 1.b Migration Guide

CHAPTER 7 SEMAPHORES.. 67

Introduction ... 67
Unnamed Semaphores ... 68
Creating a Named Semaphore ... 69

Draft 9 Code ... 69
Equivalent POSIX.1b Code .. 69

Posting and Waiting on Semaphores ... 70
Draft 9 Code ... 70
Equivalent POSIX.1b Code .. 70

Conditional Posting to Semaphores ... 71
Draft 9 Code ... 71
Equivalent POSIX.1b Code .. 71

Changes from Draft 9 to POSIX.1b ... 72
Conditional Posting .. 73
Permission Checking .. 73
New Utilities ... 73
Interoperability ... 73

CHAPTER 8 MEMORY LOCKING.. 75

Locking the Specific Address Space ... 75
Draft 9 Code ... 75
Equivalent POSIX.1b Code .. 76

Locking Future Growth ... 76
Draft 9 Code ... 76
Equivalent POSIX.1b Code .. 77

Changes from Draft 9 to POSIX.1b ... 77
Locking Flags ... 77
Multiple Locks ... 78
Locking/Unlocking the Entire Process ... 78
Current/Future Locking .. 78
Interoperability ... 78

CHAPTER 9 ASYNCHRONOUS I/O .. 79

Data Structure Changes ... 79
Asynchronous Read and Write .. 81

Draft 9 Code ... 81
Equivalent POSIX.1b Code .. 82
POSIX 1.b Migration Guide vii

Contents

List Directed I/O .. 83

Draft 9 Code ... 83
Equivalent POSIX.1b Code .. 85

Changes from Draft 9 to POSIX.1b .. 87
Data Structures ... 87
Timed Suspension .. 89
Cancellation Notification ... 89
listio Signal Delivery .. 89
aio_fsync() .. 90
Interoperability ... 90

APPENDIX A FUNCTIONS CALLABLE FROM SIGNAL HANDLERS...................................... 91

APPENDIX B MAPPING BETWEEN DRAFTS.. 93

INDEX .. 95
viii POSIX 1.b Migration Guide

?

Preface
The POSIX 1.b Migration Guide is intended to help developers to migrate code
developed under POSIX.4 Draft 9 to POSIX.4 Draft 14 (POSIX.1b); it does not
provide enough information to write code directly to the POSIX.1b standard. This
Guide also assumes that the reader is thoroughly familiar with POSIX.4 Draft 9.
For detailed information, consult the appropriate LynxOS man pages and the
POSIX.1b standard.

For More Information

For more information on the features of LynxOS, refer to the following printed and
online documentation.

� Release Notes

This printed document contains late-breaking information about the
current release.

� LynxOS Installation Guide

This manual supports the initial installation and configuration of LynxOS
and the X Windows System.

� LynxOS User�s Guide

This document contains information about basic system administration
and kernel level specifics of LynxOS. It contains a �Quick Starting�
chapter and covers a range of topics, including tuning system
performance and creating kernel images for embedded applications.

� Online information

Information about commands and utilities is provided online in text
format through the man command. For example, a user wanting
POSIX 1.b Migration Guide ix

Preface

information about the GNU compiler would enter the following syntax,
where gcc is the argument for information about the GNU compiler:

man gcc

More recent versions of the documentation listed here may also be found online.

Typographical Conventions

The typefaces used in this manual, summarized below, emphasize important
concepts. All references to file names and commands are case sensitive and should
be typed accurately.

Kind of Text Examples

 Body text; italicized for emphasis, new
terms, and book titles

Refer to the LynxOS User�s Guide.

Environment variables, file names,
functions, methods, options, parameter
names, path names, commands, and
computer data
Commands that need to be highlighted
within body text, or commands that must be
typed as is by the user are bolded.

ls
-l
myprog.c
/dev/null
login: myname
cd /usr/home

Text that represents a variable, such as a file
name or a value that must be entered by
the user

cat filename
mv file1 file2

Blocks of text that appear on the display
screen after entering instructions
or commands

Loading file /tftpboot/shell.kdi
into 0x4000
.....................
File loaded. Size is 1314816
Copyright 2000 LynuxWorks, Inc.
All rights reserved.

LynxOS (ppc) created Mon Jul 17
17:50:22 GMT 2000
user name:

Keyboard options, button names, and
menu sequences

Enter, Ctrl-C
x POSIX 1.b Migration Guide

Special Notes

Special Notes

The following notations highlight any key points and cautionary notes that may
appear in this manual.

Technical Support

LynuxWorks Technical Support is available Monday through Friday (holidays
excluded) between 8:00 AM and 5:00 PM Pacific Time (U.S. Headquarters) or
between 9:00 AM and 6:00 PM Central European Time (Europe).

The LynuxWorks World Wide Web home page provides additional information
about our products, Frequently Asked Questions (FAQs), and LynuxWorks news
groups.

LynuxWorks U.S. Headquarters

Internet: support@lnxw.com

Phone: (408) 979-3940
Fax: (408) 979-3945

LynuxWorks Europe

Internet: tech_europe@lnxw.com

Phone: (+33) 1 30 85 06 00
Fax: (+33) 1 30 85 06 06

World Wide Web

http://www.lynuxworks.com

NOTE: These callouts note important or useful points in the text.

CAUTION! Used for situations that present minor hazards that may interfere with
or threaten equipment/performance.
POSIX 1.b Migration Guide xi

Preface
xii POSIX 1.b Migration Guide

CHAPTER 1 Introduction
POSIX.1b Description

The POSIX.1b standard encompasses real-time extensions to the POSIX.1
standard. POSIX.1b functionality includes shared memory, messages, real-time
signals, clocks and timers, scheduling, semaphores, memory locking, synchronized
I/O, and asynchronous I/O.

This Guide acts as a tutorial and describes the differences in compiler flags
between POSIX.4 Draft 9 and POSIX.1b.

For a guide to POSIX.1b programming style with LynxOS, please refer to the
on-line example programs provided with the distribution and to other
related documents.

The following definitions clarify how the various POSIX specifications interrelate:

POSIX.1 The basic operating system standard, also known as
POSIX 1003.1 - POSIX.1 was approved in 1988.

POSIX.1b Amendments to POSIX.1 for real-time systems -
POSIX.1b was approved in 1993. Also known as POSIX.4
Draft 14.

NOTE: Throughout the example code, error checking is not performed; function
calls for which error checking is not executed are assumed to be successful. The
reader should not accept this as a programming style. Error checking is omitted in
order to keep this document at a reasonable size and to place emphasis on the
migration�the purpose of this document. In order to simplify the examples,
obvious include files (i.e., <stdio.h>) have not been shown.
POSIX 1.b Migration Guide 1

Chapter 1 - Introduction

POSIX.4a (now POSIX.1c)Amendments to POSIX.1 defining thread

primitives - thread creation, synchronization, destruction,
etc. The POSIX.4 committee decided that keeping threads
in the POSIX.1b standard would delay approval, due to
the complexity of the threads issue. Also, a separate
POSIX specification for the threads interface allows
vendors the option to exclude the other real-time support,
which POSIX.1b requires. POSIX.4a Draft 8 was
approved and renamed POSIX.1c. LynxOS supports
POSIX.4a Draft 4.

Draft 9 In this Guide, �Draft 9� refers to Draft 9 of the POSIX
1003.4 standard. Draft 9 is an intermediate draft leading
to POSIX.1b. Draft 9 has been the target for LynxOS since
version 2.0. However, LynxOS event handling is based on
Draft 10.

Draft 10 The next intermediate draft after Draft 9, which, among
other things, made some important and useful changes to
event handling

The POSIX support in LynxOS has been targeted (mostly) for Draft 9 of the then-
evolving POSIX.4 standard, and for the approved POSIX.1 standard. POSIX.4
changed significantly between Draft 9 and Draft 14; Draft 14 is the version which
was approved as the POSIX.1b standard.

The POSIX.1 standard, when amended by POSIX.4, became the POSIX.1b
standard, and included all of the facilities specified in both documents. LynxOS
meets the POSIX.1b standard, and also supports Draft 4 of the POSIX.4a standard.

In this Guide, �POSIX.1b,� means the POSIX.1b standard as approved by the
IEEE. �Draft num� refers to the num draft of the POSIX.4 standard.
2 POSIX 1.b Migration Guide

Overview of Major Changes

Overview of Major Changes

� The compilation environment now defaults to POSIX.1b, rather than
POSIX.4 Draft 9 (referred to as �Draft 9� or �P4D9�). To invoke Draft 9
functionality, you must specify the option -mposix4d9 when compiling
an application. For more information, see the LynxOS Release Notes.

� Significant library structure changes have been made in this release of
LynxOS. Please see �Library Structure and Compiler Option Changes�
on page 4 in this chapter for more information.

� It is not possible to mix the Draft 9 and POSIX.1b standard versions in
the same application. Users must choose between the two with compile-
time options. LynuxWorks recommends using the POSIX.1b standard for
all future development.

� Not all Draft 9 features have corresponding equivalents in POSIX.1b.
Some features have been discontinued.

� POSIX.1b does not include real-time files. Draft 9 programs using this
facility have no migration equivalent in POSIX.1b. Draft 9 real-time file
support still exists, and LynuxWorks will continue to support this
interface as a proprietary feature in future releases.

� Message queues have changed significantly from Draft 9 to POSIX.1b.
Some facilities, such as determining the ID of the sender of a message,
and buffer management, are no longer available. The new message queue
support is streamlined, with better performance.

� The events facility from Draft 9 has been abandoned. The equivalent to
this interface is the real-time signals facility.

� Semaphores have changed from binary semaphores in Draft 9 to counting
semaphores in POSIX.1b.

� Draft 9 support for named semaphores, shared memory, and message
queues makes use of a file system. LynxOS�s POSIX.1b support uses
simple strings as names for these objects. There is no
file system involvement.

� There are new facilities in POSIX.1b which do not exist in Draft 9. The
mmap facility (which allows files, devices, and shared memory objects to
be mapped into memory) is new. The mmap facility works only for
shared memory objects in the first release.
POSIX 1.b Migration Guide 3

Chapter 1 - Introduction

Library Structure and Compiler Option Changes

In this release of LynxOS, both POSIX.1b and POSIX.4 Draft 9 (referred to as
�4D9�) are supported. However, POSIX.1b is now the default compilation
environment. This change that involved modifying the library structure and
compile time options from previous LynxOS releases.

Library Structure Changes

To use the POSIX library routine calls, compiler command line instructions had to
contain the -mposix switch (for gcc) or the -X switch (for cc). These options
instructed the linker to link with -lc_p.

The POSIX library routines for POSIX.1a and POSIX.1b have been merged into
the library libc.a. The libc.a library exists in /lib and /lib/thread (for
multithreads). Two new libraries have also been added:

� liblynx.a

Contains some LynxOS-specific library calls (not conforming to any
standard)

� libposix4d9.a
Contains support for POSIX.4 Draft 9

Compiler Option Changes

In this new structure, to compile an application with 4D9 functionality, you must
compile with the -mposix4d9 option. This option signals the compiler to define
-D__POSIX4_D9__ and to link with the libposix4d9.a library. Thus, you do
not need to change 4D9 source code with the new library structure, but you will
need to recompile with the -mposix4d9 option. Also, you cannot mix 4D9
functionality with POSIX.1b in a single application. Your application may fail to
link or may exhibit unpredictable results at run-time.
4 POSIX 1.b Migration Guide

New Library Structure Issues

The following table summarizes the changes to the compiler command
line options.

New Library Structure Issues

Name Conflicts Between liblynx.a and libc.a
With the library reorganization, it has been necessary to remove from the library
libc.a some non-POSIX functions that have the same names as POSIX
functions. These functions are now contained in the liblynx.a library and each
has an interface that is either LynxOS-specific or is BSD-compatible.

The following is a description of each of these functions and how its interface
differs from the POSIX interface:

1. getgroups()

This function differs in its arguments. The POSIX version (now in
libc.a) has the following prototype:

int getgroups(int, gid_t *);

The LynxOS version (now in liblynx.a) is BSD-compatible:

int getgroups(int *, gid_t *);

Table 1-1: Compiler Option Changes in LynxOS

POSIX Specification

LynxOS

cc

(x86)
gcc

POSIX 1003.1
C Language Standard

Default Default

POSIX 1003.1b
Final version of 1003.4

Default Default

POSIX 1003.4a Draft 4
Thread Extensions

-m -mthreads

POSIX 1003.4 Draft 9
Real-Time Extensions

-mposix4d9 -mposix4d9
POSIX 1.b Migration Guide 5

Chapter 1 - Introduction

2. getpgrp()

This function differs in its arguments. The POSIX version (now in
libc.a) has the following prototype:

pid_t getpgrp(void);

The LynxOS version (now in liblynx.a) is BSD-compatible:

pid_t getpgrp(pid_t);

3. LynxOS semaphore functions

These functions include sem_count(), sem_delete(), sem_get(),
sem_nsignal(), sem_reset(), sem_signal(), and sem_wait().
Only one of these functions, sem_wait(), has a name conflict with
POSIX, but because the functions are expected to be used as a group, the
whole set has been moved to liblynx.a. The POSIX version of
sem_wait() (now in libc.a) has the following prototype:

int sem_wait(sem_t *);

The LynxOS version (now in liblynx.a) is LynxOS-specific:

int sem_wait(int);

4. sigaction()

This function differs in its functionality. When the POSIX version (in
libc.a) is used to set up a signal handler for a particular signal, and that
signal subsequently interrupts a system call in progress, then after
returning from the handler, the system call aborts and errno sets
to EINTR.

When the LynxOS version (now in liblynx.a) is used in the same
fashion, and the signal subsequently interrupts a system call in progress
(as above), then after returning from the handler, the system call is
resumed where it has been left off.

Either version can be made to mimic the behavior of the other with the
appropriate flag. The POSIX version can be made to behave like the
LynxOS version by using the SA_NOABORT flag. The LynxOS version can
be made to behave like the POSIX version by using the SA_ABORT flag.
6 POSIX 1.b Migration Guide

Name Conflicts Between liblynx.a and libc.a

BSD behavior is not supported by LynxOS. BSD differs from both
POSIX and LynxOS in that under BSD, a system call is restarted after it
is interrupted by a signal.

5. signal()

POSIX does not specify the signal() function, and strictly adhering
POSIX applications should not use it. However, LynxOS does provide a
�POSIX-like� signal() in libc.a that can be used if necessary.

The LynxOS version of signal() (now in /lib/liblynx.a) differs
in its functionality the same way that sigaction() does (see Item 4,
above). Unlike sigaction(), however, there are no flags passed to
signal(), so there is no way to make the �POSIX-like� version mimic
LynxOS behavior or vice-versa.

6. sleep(), susleep(), usleep()

LynxOS provides two versions of these functions. One is LynxOS-
specific and is similar to BSD sleep(). (For more information about
this version, see the man page for sleep().)

The other version complies with the POSIX.1 standard. The functions
susleep() and usleep() are not specified in the POSIX.1 standard,
but because they are closely related to sleep(), LynxOS provides two
separate versions of them as well, found in libc.a and liblynx.a.

Of the above functions, the ones users need to be most concerned about are
getgroups(), getpgrp(), and the LynxOS semaphore functions, because using
unintended versions of these functions always produces incorrect results.

For getgroups(), the POSIX version provides the same level of functionality as
the LynxOS version, so it may be easier to convert the source code to the POSIX
version. For getpgrp(), the LynxOS version provides more functionality than
the POSIX version, because it allows the user to obtain the process group of a
given process ID. If this usage is not needed, however, then users may consider
converting the code to the POSIX version.

For sigaction() and signal(), the differences are less noticeable, and in
many cases do not matter. When converting to the POSIX version, be aware that

NOTE: Please see Appendix A, �Functions Callable from Signal Handlers� for a
list of functions, including sigaction(), required in POSIX.1b to be callable by
signal handlers. This is to prevent corruption of the state of a library or any other
subtle failure.
POSIX 1.b Migration Guide 7

Chapter 1 - Introduction

using the POSIX version usually requires more error checking around system calls
to handle the case when they are interrupted by a signal handler.

For sleep(), the differences between the LynxOS and POSIX versions often do
not matter. Converting from LynxOS sleep() to POSIX sleep() depends on
how a given application uses this function.

Identifying Function Usage in Applications
To identify the usage of these functions in executables or object files, use the nm
and grep utilities as follows:

$ nm file | grep -w function

For an executable, the output line from the command above should show a T,
meaning external text symbol. For an object file, it should show a U, meaning
unresolved symbol.

To identify the function usage in source files, use the grep utility.

Other Functions in liblynx.a
The following functions are temporarily included in liblynx.a as well:

lsbrk()

mkcontig()

smem_create()

smem_get()

smem_remove()

vmtopm()

Users may need to link with the liblynx.a library if their applications use these
functions, even though this has not been necessary in previous releases.

Using Parts of liblynx.a in an Application
Sometimes an application needs to use a mixture of the LynxOS and POSIX
versions of functions discussed in this section (for example, needs LynxOS
getpgrp(), but needs POSIX sem_wait()). To achieve this, users must extract
the object files that contain the needed LynxOS functions from liblynx.a and
link with these objects directly instead of liblynx.a. Alternatively, users may
8 POSIX 1.b Migration Guide

Other General Changes

put the extracted objects into their own smaller library. Users should then link the
application with this smaller library instead of liblynx.a.

Other General Changes

Refer to the sysconf() man pages for a list of new parameters which can be
passed to the sysconf() function. Also, refer to the pathconf() and
fpathconf() man pages for a list of new parameters that can be passed to these
two functions.

The lists of run-time invariant values and compile-time symbolic constants have
changed. Due to their length, these lists are not reproduced here. Refer to Table 2.5
and Table 2.10 of the POSIX.1b specification (IEEE 1003.1b) for these lists.

NOTE: Some of the objects in liblynx.a contain more than one function (for
example sleep(), susleep(), and usleep() are combined into one object),
so it is not possible to use the LynxOS version of one such function and the POSIX
version of another.

Table 1-2: Changes in Errno Values

Draft 9 POSIX.1b

EINPROG EINPROGRESS

EFTYPE EINVAL

No Equivalent EBADMSG

No Equivalent EMSGSIZE

EFAIL No Equivalent

ENWAIT No Equivalent

Table 1-3: Change in Compile Time Symbolic Constant

Draft 9 POSIX.1b

_POSIX_BINARY_SEMAPHORES _POSIX_SEMAPHORES
POSIX 1.b Migration Guide 9

Chapter 1 - Introduction
10 POSIX 1.b Migration Guide

CHAPTER 2 Scheduling
Scheduler Priority

The main difference in scheduling functionality is the way scheduling priorities are
handled. In Draft 9, scheduling priorities are defined as type int. However,
POSIX.1b defines a new structure, sched_param, which encloses the priority
field as type sched_priority. A pointer to the structure sched_param must be
passed to all scheduling functions. An example of these changes is shown below.

Draft 9 code

#include <sys/sched.h>

main()
{

int prio;
pid_t pid;
:
prio = getprio(pid);
:

}

Equivalent POSIX.1b code

#include <sched.h>

main()
{

int prio;
struct sched_param parameter;
pid_t pid;
:
sched_getparam(pid, ¶meter);
prio = parameter.sched_priority;
:

}

POSIX 1.b Migration Guide 11

Chapter 2 - Scheduling

Changes to Macros

Another minor change is that a number of Draft 9 macros are replaced by functions
in POSIX.1b as explained in the table below.

The following examples illustrates these changes:

Draft 9 code

#include <sys/sched.h>

main()
{

printf("FIFO min prio = %d\n", PRIO_FIFO_MIN);
}

Equivalent POSIX.1b code

#include <sched.h>

main()
{

printf("FIFO min prio = %d\n",
sched_get_priority_min(SCHED_FIFO));

}

Table 2-1: Scheduling Interface Changes

Draft 9 POSIX.1b

<sys/sched.h> <sched.h>

No Equivalent struct sched_param

setscheduler() sched_setscheduler()

getscheduler() sched_getscheduler()

setprio() sched_setparam()

getprio() sched_getparam()

yield() sched_yield()

PRIO_??_MAX macros sched_get_priority_max()

PRIO_??_MIN macros sched_get_priority_min()

RR_INTERVAL macro sched_rr_get_interval()
12 POSIX 1.b Migration Guide

Macros vs. Functions

Macros vs. Functions

Draft 9 defines a number of macros for certain scheduler parameters. Six of these
macros defined the minimum and maximum scheduler priorities for the three
scheduling policies:

PRIO_FIFO_MIN

PRIO_RR_MIN

PRIO_OTHER_MIN

PRIO_FIFO_MAX

PRIO_RR_MAX

PRIO_OTHER_MAX

These were replaced by two functions in POSIX.1b. The function
sched_get_priority_min() takes a scheduling policy as input and returns the
minimum priority for it. The function sched_get_priority_max() takes a
scheduling policy as input and returns the maximum priority for it.

Draft 9 defines the macro RR_INTERVAL for the interval for the SCHED_RR policy.
This is replaced by a new function sched_rr_get_interval() in POSIX.1b.

yield ()

The Draft 9 yield() function does not return anything, and sets no error numbers.
The equivalent sched_yield() function in POSIX.1b returns an int and sets
an error number on failure.

SCHED_OTHER

The behavior for the SCHED_OTHER scheduling policy has not changed. This is the
same as SCHED_DEFAULT, which is the LynxOS proprietary scheduling policy.
POSIX 1.b Migration Guide 13

Chapter 2 - Scheduling

Non-Preemptible Scheduling Policy

LynxOS implements a non-preemptible scheduling policy called
SCHED_NONPREEMPT. A process running under this policy cannot be preempted by
any other process until it voluntarily sleeps or blocks waiting for a semaphore or
mutex object. An example of this policy is a garbage collector running with low
priority and performing critical work so that it must not be interrupted. The sample
code of the application is as follows:

void garbage_collector(arg)
void *arg;
{

...
while (1) { /* endless loop */

if (waste_ratio() > max_waste_ratio) {
/* garbage collection, critical area
*/

...
}
sleep(GC_TIMEOUT);

} /* end of loop */
}

main()
{

pthread_attr_t attr;
struct sched_param prio;
pthread_t tid;
...
pthread_attr_create(&attr);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_NONPREEMPT);
prio.sched_priority = PRIO_NONPREEMPT_MIN;
pthread_attr_setschedparam(&attr, &prio);
pthread_create(&tid, &attr, garbage_collector, NULL);
...

}

LynxOS also defines 2 constants for the SCHED_NONPREEMPT policy designating
the maximum and minimum priorities for this policy. These constants are:

� PRIO_NONPREEMPT_MAX

� PRIO_NONPREEMPT_MIN

These priorities can also be obtained using the sched_get_priority_max()
and sched_get_priority_min() functions.
14 POSIX 1.b Migration Guide

Interoperability

Interoperability

There have been no changes in the standard scheduling facilities, and, therefore,
interoperability is preserved. Two processes, one using Draft 9 scheduling and
another using POSIX.1b scheduling would get the CPU slices as if they used the
same version of scheduling.
POSIX 1.b Migration Guide 15

Chapter 2 - Scheduling
16 POSIX 1.b Migration Guide

CHAPTER 3 Real-Time Signals
There are three basic types of signal functions available under LynxOS:

� Normal signals (as defined in POSIX.1)

� Events (Drafts 9 and 10)

� Real-time signals (POSIX.1b)

It is important to note that real-time signals may be thought of as an inter-process
communication (IPC) tool. Real-time signals are only one possible IPC mechanism
made available in POSIX.1b (e.g., messages, semaphores, and shared memory are
also considered IPC mechanisms). Different IPC functions vary in functionality
and performance.

Real-time signals are often not the best choice for IPC.

Normal Signals Versus Events

From one point of view, signals and events are slightly different user interfaces
layered on top of the same underlying LynxOS support. In both cases,
sigaction() notifies the operating system that the process is using a signal/event
handler. A difference is that the signal handler and the event handler do not have
the same calling sequence. The words �signal� and �event� are used almost
interchangeably because the two interfaces are nearly identical.

There are a couple of key differences between events and signals. The default
action for a signal is specified on the signal()man page. Most of the signals have
already-defined names and functionality, such as SIGKILL and SIGCORE. Only a
few user-defined signals are available. The events facility adds more �signals� to
the list of possible signals, and all of these new signals are available for user-
defined functions.
POSIX 1.b Migration Guide 17

Chapter 3 - Real-Time Signals

Events can also carry data; the event handler receives the event number and a small
amount of data. The signal handler and event handler have different parameters.
The main difference between Draft 9 and Draft 10 events is the handling function�s
calling sequence. Thus, signals, Draft 9 events, and Draft 10 events all have
different-looking handlers.

Events are queued. Normal signals are not queued under LynxOS; the POSIX.1b
standard does not define any particular queueing behavior for normal signals.

Events Versus Real-Time Signals

Events and real-time signals differ primarily in their default functionality. For
Drafts 9 and 10, the default action for an event is for the process to ignore them.
For POSIX.1b, the default action is to terminate the process.

Once again, the handler�s calling sequence has changed. And as with all POSIX.1b
functions, the functions and compile-time constants have new names. There are
minor changes in the data structures, as well.

For real-time signals, users must call sigaction() to notify the operating
system that a signal handler is being used. Events implementation requires a call to
sigaction(); LynxOS users with applications coded under Drafts 9 and 10
already call sigaction().

Both events and real-time signals are queued in FIFO order, and are delivered in
that order.

The sigaction Structure

In order to add real-time signal handling to the pre-existing POSIX.1 sigaction
structure, a new flag, SA_SIGINFO, is defined by POSIX.1b. This flag is in the
sa_flags member of the sigaction structure.

The SA_SIGINFO flag specifies the signal handler that is desired. If
SA_SIGINFO is set, it is possible to pass a small amount of data to the signal
handler (see signal handler synopses below). If SA_SIGINFO is not set, then the
signal handler does not receive data.

A new member, sa_sigaction, has been added to the sigaction structure. At
signal delivery time, the sa_sigaction member is called if the SA_SIGINFO

flag is set in sa_flags, otherwise sa_handler is called.
18 POSIX 1.b Migration Guide

sigaction Structure Contents

sigaction Structure Contents

The sigaction POSIX.1 structure contains at least the following members:
void (*sa_handler)();
sigset_t sa_mask;
int sa_flags;

The sigaction POSIX.1b structure now contains at least the
following members:

void (*sa_sigaction)(); /*
SA_SIGINFO set */
void (*sa_handler)(); /*
SA_SIGINFO NOT set */
sigset_t sa_mask;
int sa_flags;

/* NEW: set SA_SIGINFO flag if */
/* you want signals to have the */
/* data queued and retrieved */

The Event Structure

The new name of the event structure is now sigevent. The fields are similar. In
both cases, a signal�s value is an application-defined value, which is passed to the
signal-catching function at the time of signal delivery (allowing the signal to pass a
small amount of data).

event Structure Contents

The Drafts 9 and 10 event structure must include at least the following members:
evt_class_t evt_class; /*
signal number */

NOTE: LynxOS does not implement the Draft 9 and 10 specification for the event
handler. Instead, users are required to call sigaction to set up the event handler.
LynxOS customers with existing Drafts 9 and 10 applications need not add the
sigaction call; it should be in the application where needed.

NOTE: The default functionality for LynxOS is Draft 10 events. To use Draft 9
events, the user needs to set the SA_D9EV flag in the sa_flags member of the
sigaction structure. When the SA_D9EV flag is set, be sure to remove it when
porting an application to POSIX.1b.
POSIX 1.b Migration Guide 19

Chapter 3 - Real-Time Signals

void *evt_value; /*
signal value */
void *evt_handler (); /*
signal handler; not used by LynxOS*/
evtset_t evt_classmask; /* signal handler; not used by LynxOS*/

The sigevent POSIX.1b structure must include at least the following members:
int sigev_signo; /*
signal number */
union sigval sigev_value; /*
signal value */
int sigev_notify; /*
notification type*/

The sigval union must contain at least the following members:
int sival_int; /*
integer signal value */
void *sival_ptr; /*
pointer signal value */

The sigval union allows the user more flexibility in using the value passed by
the signal sending code, because it is guaranteed to be large enough for an integer
or a pointer, whichever is larger. The Draft 9 and 10 event handlers do not allow an
integer, if it happens to be larger than a pointer on a given implementation.

The values for the sigev_notify member in the sigval union above are
as follows:

SIGEV_NONE no signal will be sent

SIGEV_SIGNAL signal will be sent

This member has been added to the sigevent structure by POSIX.1b to allow
different implementation-defined notification mechanisms.

NOTE: evt_handler and evt_classmask are not used by LynxOS; the user is
required to call sigaction.

NOTE: If the value in this field is not set to SIGEV_SIGNAL, the process does not
receive a signal.
20 POSIX 1.b Migration Guide

signal and event Handler Synopses

signal and event Handler Synopses

For reference, the following POSIX versions have the signal and event handler
calling sequences listed below:

� The POSIX.1 signal handler calling sequence is as follows:

signal_handler(int signo);

� The Draft 9 event handler sequence is as follows:

event_handler(void *sigdata, int signo);

� The Draft 10 event handler sequence is as follows:

event_handler(int signo, void *sigdata);

(Please note the reversal of the signo and sigdata arguments.)

� The POSIX.1b signal handler sequence is as follows:

- If SA_SIGINFO is not set in sa_flags

signal_handler(int signo);

- If SA_SIGINFO is set in sa_flags

signal_handler(int signo, siginfo_t *info, void *context);

siginfo_t Structure

The siginfo_t structure must include at least these members:
int si_signo; /*
signal number */
int si_code; /*
cause of signal */
union sigval si_value; /*
signal value */

For both events and real-time signals, it is possible to pass a small amount of data
along with the signal to the handler.

For Drafts 9 and 10, the data was put into the event structure as
void *evt_value and received by the event handler as void *sigdata.

In POSIX.1b, the data is put into the sigevent structure as sigev_value. This
value is received by the signal handler via the new siginfo_t structure.

The sigaction flag SA_SIGINFO must be set to access the data, because the
signal handler used if SA_SIGINFO is not set, does not include siginfo_t.
POSIX 1.b Migration Guide 21

Chapter 3 - Real-Time Signals

Additionally, si_signo has the same value as the first argument, signo, in the
signal_handler structure does.

The signal handler parameter, context, is not used in the
LynxOS implementation.

� If SA_SIGINFO is set in sa_flags, use the sa_sigaction member
of sigaction structure, taking the following information into
consideration:

- The signal number must be in the range of SIGRTMIN through
SIGRTMAX.

- A real-time signal is sent.

Queued data is passed to the signal handler if the cause of the signal
(passed in si_code) is due to one of any of the following members
being called: SI_QUEUE, SI_TIMER, SI_ASYNCIO, or SI_MESGQ.

The signal handler is the function specified in sa_sigaction.

The signal handler calling sequence is as follows:
signal_handler(int signo, siginfo_t *info, void *context);

� If SA_SIGINFO is not set in sa_flags, use the sa_handler member
of the sigaction structure, taking into consideration that:

- A normal style signal is sent

- No data is passed to the signal handler.

- The signal handler is the function specified in sa_handler

The signal handler calling sequence is as follows:

signal_handler(int signo);

Table 3-1: siginfo_t.si_code

Value Meaning

SI_USER Due to kill() function

SI_QUEUE Due to sigqueue() function

SI_TIMER Due to timer expiration

SI_ASYNCIO Due to completion of asynchronous I/O

SI_MESGQ Due to arrival of message on an empty message queue
22 POSIX 1.b Migration Guide

Data Structures
The events facility from Draft 9 (and Draft 10, which LynxOS also supports) is
replaced by real-time signals in POSIX.1b. Draft 9 events and real-time signals are
distinctly different. Real-time signals are integrated with user (non-real-time)
signals. The primary distinction between Draft 9 events and real-time signals is the
default behavior; events are ignored while real-time signals terminate the process.

Data Structures

The event structure from Drafts 9 and 10 is replaced by the sigevent structure
in POSIX.1b with the following members:

The sigev_signo member specifies the signal to be generated. The
sigev_value member is the application-defined value, which is passed to the
signal-catching function at the time of signal delivery. This is a part of the
siginfo_t structure in the signal-catching function, which is described
in the table entitled �siginfo_t�.

Either an application-defined value of the type int or a pointer can be passed
through the sigval union. The sigev_notify member can have either of two

NOTE: If sigqueue() is called to send a signal that is not within the range of
SIGRTMIN to SIGRTMAX, the data is discarded, and the signal posts to the
receiving process. If the signal is already pending, the process does not necessarily
receive it more than once.

Table 3-2: sigevent Structure

Type Name Description

int sigev_signo Signal number

union sigval sigev_value Signal value

int sigev_notify Notification type

Table 3-3: sigval Union

Type Name Description

int sival_int Integer signal value

void * sival_ptr Pointer signal value
POSIX 1.b Migration Guide 23

Chapter 3 - Real-Time Signals

values: SIGEV_SIGNAL or SIGEV_NONE. SIGEV_SIGNAL queues a signal when
the event occurs. SIGEV_NONE delivers no asynchronous notification when the
event occurs.

For the sigaction structure defined by POSIX.1, a new flag, SA_SIGINFO, is
defined by POSIX.1b for the sa_flags member. This flag must be used when
setting up a handler to queue a real-time signal from POSIX.1b.

Also, under POSIX.1b, a new member, sa_sigaction, is defined for the
sigaction structure. This new member must be used for the signal handler
instead of sa_handler whenever the SA_SIGINFO flag is set.

sa_handler and sa_sigaction should not be set simultaneously.

The following table shows the various cases of the sa_flags members and the
features associated with them; the SA_NOCLDSTOP flag does not affect the flags in
this table.

POSIX.1b defines another structure, siginfo_t, which is used to contain code
that identifies the cause of a signal. The address of this structure is used as an
argument to the signal-catching function.

The si_signo member contains the signal number. It is the same as the signal
number argument of the signal-catching function. The si_code member encodes
the cause of the signal.

Table 3-4: sa_sigaction.sa_flags

Flag Feature

None (with a valid POSIX.1 signal value) POSIX.1 signal

SA_D9EV set Draft 9 event

None (with signal number between
EVTCLASS_MIN and EVTCLASS_MAX)

Draft 10 event

SA_SIGINFO POSIX.1b real-time signal

Table 3-5: siginfo_t

Type Name Description

int si_signo Signal number

int si_code Cause of signal

union sigval si_value Signal value
24 POSIX 1.b Migration Guide

Signal Handlers

The si_value member is the same as the application-specified signal value when
the si_code member is one of SI_QUEUE, SI_TIMER, SI_ASYNCIO, or
SI_MESGQ; see the table entitled �siginfo_t.si_code�.

Signal Handlers

The signal handler synopsis for POSIX.1b is different from what it was in Draft 9.

Use of the sigqueue Function

Under Drafts 9 and 10, there is no explicit mechanism to send an event to a
process. Events were generated as a result of a timer expiration, completion of
asynchronous I/O, etc.

Table 3-6: Signal Handlers

Draft Handler Synopses

Draft 9 event_handler(void *sigdata, int signo)

Draft 10 event_handler(int signo, void *sigdata)

POSIX.1b signal_handler(int signo)
if SA_SIGINFO not set in sa_flags for signo

signal_handler(int signo, siginfo_t *info, void
*context)
if SA_SIGINFO set in sa_flags for signo

Table 3-7: POSIX.1b Signal Handlers

Argument Meaning

int signo Signal number of the signal being delivered

siginfo_t *info Pointer to a siginfo_t structure that encodes the
signal number, the cause of the signal, and an application-
specified signal value. This data structure is
explained above.

void *context Unused in the LynxOS implementation
POSIX 1.b Migration Guide 25

Chapter 3 - Real-Time Signals

LynxOS provides a proprietary ekill() function to explicitly send an event to a
process. POSIX.1b provides a sigqueue() function to explicitly queue a real-
time signal to a specific process.

The following program illustrates the use of this function and signal handlers from
POSIX.1b; the use of the siginfo_t structure in the signal handler informs the
process of the cause of the signal:

#include <signal.h>

void signal_handler(int signo, siginfo_t *info, void *context);

main()
{

struct sigaction sa;
union sigval sig_value;
:
sa.sa_sigaction = signal_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;

/* SIGRTMIN is chosen more or less randomly,
but it’s in the required range */

sigaction(SIGRTMIN, &sa, NULL);

sig_value.sival_int = 1000;
sigqueue(getpid(), SIGRTMIN, sig_value);
:

}

void signal_handler(signo, info, context)
int signo;
siginfo_t *info;
void *context;
{

:
printf("In signal handler!!\n");
printf("Signal number = %d\n", signo);
printf("Signal value (int) = %d\n",

info->si_value.sival_int);

switch(info->si_code) {
case SI_USER:

printf("Here due to a kill() function!\n");
break;

case SI_QUEUE:
printf("Here due to a sigqueue() function!\n");
break;

case SI_TIMER:
printf("Here due to a timer expiration!\n");
break;

case SI_ASYNCIO:
printf("Here due to completion of asynch I/O!\n");
break;

case SI_MESGQ:
printf("Here due to arrival of a message!\n");
break;
26 POSIX 1.b Migration Guide

Sending a Real-Time Signal to a Process

default:

printf("No idea why here!!\n");
}
:

}

Sending a Real-Time Signal to a Process

Drafts 9 and 10 provide an evtraise() function to generate an event for a
process. This can be migrated to POSIX.1b with the sigqueue() function:

Draft 9 Code
#include <sys/events.h>

void event_handler(void *evt_value,
evt_class_t evt_class, evtset_t evt_mask);

main()
{

struct event ev;
:
ev.evt_handler = event_handler;
ev.evt_value = NULL;
ev.evt_class = EVTCLASS_MIN;
evtemptyset(&ev.evt_classmask);

evtraise(&ev);
:

}

void event_handler(evt_value, evt_class, evt_mask)
void *evt_value;
evt_class_t evt_class;
evtset_t evt_mask;
{

:
:

}

Equivalent POSIX.1b Code
#include <signal.h>

void signal_handler(int signo, siginfo_t *info,
void *context);

main()
{

struct sigaction sa;
union sigval value;
:
sa.sa_sigaction = signal_handler;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
POSIX 1.b Migration Guide 27

Chapter 3 - Real-Time Signals

sigaction(SIGRTMIN, &sa, NULL);

value.sival_ptr = NULL;
sigqueue(getpid(), SIGRTMIN, value);
:

}

void signal_handler(signo, info, context)
int signo;
siginfo_t *info;
void *context;
{

:
:

}

Polling for a Real-Time Signal

The evtpoll() function from Drafts 9 and 10 is superseded by the
sigwaitinfo() and sigtimedwait() functions. The following example
illustrates a conversion of the evtpoll() facility to POSIX.1b:

Draft 9 Code
#include <sys/events.h>
#include <sys/timers.h>

main()
{

evtset_t set;
struct timespec timeout;
void *value;
evt_class_t class;
:
evtemptyset(&set);
evtaddset(&set, EVTCLASS_MIN);
evtaddset(&set, EVTCLASS_MAX);

timeout.tv_sec = 2;
timeout.tv_nsec = 0;

if (evtpoll(&set, &timeout, &value, &class) != -1) {
printf("Received event no. %d\n", *class);
printf("Pointer to value = %d\n",

(int *) *value);
}
:
evtpoll(&set, NULL, &value, &class);
printf("Received event no. %d\n", *class);
printf("Pointer to value = %d\n", (int *) *value);
:

}

28 POSIX 1.b Migration Guide

Equivalent POSIX.1b Code

Equivalent POSIX.1b Code

#include <signal.h>

main()
{

sigset_t set;
siginfo_t info;
struct timespec timeout;
:
sigemptyset(&set);
sigaddset(&set, SIGRTMIN);
sigaddset(&set, SIGRTMAX);

timeout.tv_sec = 2;
timeout.tv_nsec = 0;

if (sigtimedwait(&set, &info, &timeout) != -1) {
printf("Dequeued signal no. %d\n",\

info->si_signo);
printf("Pointer to value = %d\n",

(int *) *info->si_value.sival_ptr);
}
:
sigwaitinfo(&set, &info);
printf("Dequeued signal no. %d\n",\

info->si_signo);
printf("Pointer to value = %d\n",

(int *) *info->si_value.sival_ptr);
:

}

Equivalence for Other Draft 9 Event Functions

There is no equivalent to the evtsigclass() function from Drafts 9 and 10 in
POSIX.1b because there is no longer a need for it. Most of the other event-related
functions have no specific equivalents in POSIX.1b. However, their functionality
is provided by the appropriate signal functions from POSIX.1; refer to �Changes
from Draft 9 to POSIX.1b� on page 30,� for more information, including
differences between evtsuspend() of Drafts 9 and 10 and sigsuspend()
of POSIX.1.

Timers, Message Queues, and Asynchronous I/O

With Drafts 9 and 10, it is possible to send events after a timer has expired, and
when asynchronous I/O is completed. In POSIX.1b, real-time signals can be sent to
a process without explicitly queuing them with a sigqueue() call. This can
happen when a timer expires (see Chapter 6, �Clocks and Timers� on page 57), a
message arrives on an empty message queue (see Chapter 4, �Message Queues� on
page 37), or asynchronous I/O completion (see Chapter 9, �Asynchronous I/O� on
page 79).
POSIX 1.b Migration Guide 29

Chapter 3 - Real-Time Signals

To use POSIX.1b real-time signals, the sigevent structure must be used, and the
handlers must be set up according to POSIX.1b specification. The sa_flags for
the sigaction structure must be set to SA_SIGINFO, and the sigev_notify

member for the sigevent structure must be set to SIGEV_SIGNAL.

Changes from Draft 9 to POSIX.1b

The final interface for real-time extended signals differs from the events facility in
Draft 9 (and Draft 10, which LynxOS also supports) as follows:

The following are important points about POSIX.1b interface:

� There is a class of signals in the SIGRTMIN to SIGRTMAX range which
are treated as �real-time signals.� The default action for a real-time signal
is to terminate the process, as opposed to ignoring an event in Drafts 9
and 10.

� It is possible to have multiple occurrences of the same signal queued in
FIFO order to a process.

Table 3-8: Extended Signal Interface

Drafts 9 & 10 POSIX.1b

Default action: Ignore the event Default action: Terminate the process

<sys/events.h> <signal.h>

EVTCLASS_MIN SIGRTMIN

EVTCLASS_MAX SIGRTMAX

struct event struct sigevent

No Equivalent struct siginfo_t

32 event values RTSIG_MAX signals

No Equivalent sigqueue()

evtraise() sigqueue(getpid(),....)

evtpoll() sigwaitinfo(),
sigtimedwait()

evtsigclass() No Equivalent
30 POSIX 1.b Migration Guide

Data Structures

� There is no explicit mechanism under Drafts 9 and 10 to send an event to

a given pid. LynxOS provides a proprietary ekill() function for this
purpose. In POSIX.1b, a new function, sigqueue(), is used to queue a
signal with a specified value to a process. Signals can also be queued as a
result of asynchronous I/O completion, timer expirations, etc.

� Queuing is not supported for signals generated by the kill() function
or by events such as timer expiration, hardware fault detection, etc. Such
signals have no effect on signals already queued for the same
signal number.

� When multiple, unblocked signals in the range of SIGRTMIN to
SIGRTMAX are pending, the unblocked signal with the lowest signal
number in that range is delivered. No other ordering of signal delivery
is specified.

� The cause for signal generation can be communicated to the
signaled process.

Data Structures

The event structure from Drafts 9 and 10 is replaced by one of the following
sigevent POSIX.1b structures:

The sigev_signo member specifies the signal to be generated. The
sigev_value member is the application-defined value to be passed to the
signal-catching function at the time of signal delivery. This is a part of the
siginfo_t structure in the signal-catching function detailed in the table
�siginfo_t Structure�.

Table 3-9: sigevent Structures

Type Name Description

int sigev_signo Signal number

union sigval sigev_value Signal value

int sigev_notify Notification type
POSIX 1.b Migration Guide 31

Chapter 3 - Real-Time Signals
Either an application-defined value of type int or a pointer can be passed
through the sigval union. The sigev_notify member can have either of two
values: SIGEV_SIGNAL or SIGEV_NONE. SIGEV_SIGNAL queues a signal
when the event occurs. SIGEV_NONE delivers no asynchronous notification when
the event occurs.

For the sigaction structure (from POSIX.1), a new flag, SA_SIGINFO, is
defined by POSIX.1b for the sa_flags member. This flag must be used when
setting up a handler to queue a real-time signal from POSIX.1b.

Also, under POSIX.1b, a new member, sa_sigaction, is defined for the
sigaction structure. This new member must be used for the signal handler
instead of sa_handler whenever the SA_SIGINFO flag is set.

sa_handler and sa_sigaction should not be set simultaneously

The table above does not consider the SA_NOCLDSTOP flag. It may or may not be
set; but that does not affect this table.

Table 3-10: sigval Union

Type Name Description

int sival_int Integer signal value

void * sival_ptr Pointer signal value

Table 3-11: sa_sigaction.sa_flags

Flag Feature

None (and signal no. with a valid value) POSIX.1 signal

SA_D9EV set Draft 9 event

None (and signal no. between EVTCLASS_MIN and
EVTCLASS_MAX)

Draft 10 event

SA_SIGINFO POSIX.1b real-time signal
32 POSIX 1.b Migration Guide

Data Structures

Under POSIX.1b siginfo_t (a new structure) contains the code identifying the
cause of the signal. The address of this structure is used as an argument to the
signal-catching function.

The si_signo member contains the signal number. It is the same as the signal
number argument of the signal-catching function. The si_code member encodes
the cause of the signal.

The si_value member is the same as the application-specified signal value,
when the si_code member is one of SI_QUEUE, SI_TIMER, SI_ASYNCIO,
or SI_MESGQ.

Table 3-12: siginfo_t Structure

Type Name Description

int si_signo Signal number

int si_code Cause of signal

union sigval si_value Signal value

Table 3-13: siginfo_t.si_code

Value Meaning

SI_USER Due to kill() function

SI_QUEUE Due to sigqueue() function

SI_TIMER Due to timer expiration

SI_ASYNCIO Due to completion of asynchronous I/O

SI_MESGQ Due to arrival of message on an empty message queue

NOTE: The signal handler synopsis for POSIX.1b is different than Draft 9. LynxOS
supports Draft 10 event handlers by default.
POSIX 1.b Migration Guide 33

Chapter 3 - Real-Time Signals
Indefinite/Timed Wait

In Drafts 9 and 10 one function, evtpoll(), waits for events with and without a
timeout. POSIX.1b provides a separate interface for these two operations −
sigwaitinfo() and sigtimedwait().

Ability to Send Arbitrary Data

The sigevent structure from POSIX.1b contains a sigev_value entry, which
is a union. With this entry, it is possible to send either an integer value or a pointer
to arbitrary data along with the signal.

Table 3-14: Signal Handlers

Draft Handler Synopses

Draft 9 event_handler(void *sigdata, int signo)

Draft 10 event_handler(int signo, void *sigdata)

POSIX.1b signal_handler(int signo)
if SA_SIGINFO not set in sa_flags for signo. This is the same
as POSIX.1 signal handler

signal_handler(int signo, siginfo_t *info, void
*context)
if SA_SIGINFO set in sa_flags for signo

Table 3-15: POSIX.1b Signal Handlers

Arguments POSIX.1b Meanings

int signo Signal number of the signal being delivered

siginfo_t *info Pointer to a siginfo_t structure that encodes the
signal number, cause of the signal and an application-
specified signal value

void *context Unused in the LynxOS implementation
34 POSIX 1.b Migration Guide

Drafts 9 and 10 Event Functions

Drafts 9 and 10 Event Functions

Functions evtemptyset(), evtfillset(), evtaddset(), evtdelset(),
evtismember(), evtprocmask(), evtsuspend(), evtsetjmp(), and
evtlongjmp() have no equivalents in POSIX.1b. The POSIX.1 signal functions
(sigemptyset(), sigfillset(), etc.) provide corresponding functionality.
However, there are slight differences. Drafts 9 and 10 evtsuspend() takes two
arguments. The second argument is a timespec structure, which allows a timed
wait. The POSIX.1 sigsuspend() takes only one argument; a timed wait is not
possible. The effect of an evtsuspend() with a timed wait can be simulated
with the new sigtimedwait() function from POSIX.1b. However, this is not a
true equivalence. It is not possible to invoke a signal handler with
sigtimedwait(); it can only return values.

Interoperability

Events and real-time signals are not inter-operable between Drafts 9, 10, and
POSIX.1b. Users should not try to catch a Draft 9 or 10 event with a signal handler
from POSIX.1b, or vice versa. The effects of such behavior are undefined.
POSIX 1.b Migration Guide 35

Chapter 3 - Real-Time Signals
36 POSIX 1.b Migration Guide

CHAPTER 4 Message Queues
The message queue interface has changed extensively. A number of Draft 9
features are completely eliminated in favor of performance improvements and ease
of use in POSIX.1b. The following is a list of Draft 9 functions with no equivalent
in POSIX.1b; applications that depend on these functions may not migrate easily to
POSIX.1b:

� msgalloc()

� msgfree()

� mqpurge()

� mqgetpid()

� mqgetevt()

� mqputevt()

Some of the functions above may be partially simulated by other functions in
POSIX.1b. For example, mqgetpid() can be simulated by encoding the pid of
the process in the message itself. The mqpurge() function can be simulated with
mq_receive() in a while loop until it fails. The mqputevt() and mqgetevt()
functions can be simulated with the sigqueue() and sigwaitinfo() functions
from POSIX.1b, respectively. The msgalloc() and msgfree() functions have
no corresponding functionality.

Three other features are no longer supported: asynchronous message sending and
receiving; using the MSG_MOVE and MSG_USE flags; and selective removing
messages from somewhere other than the head of the queue.

There are other important changes; Draft 9 and POSIX.1b differ with respect to
persistence and how the names for message queues are implemented. This is
similar to the differences for named semaphores as described in Chapter 7,
�Semaphores� on page 67.
POSIX 1.b Migration Guide 37

Chapter 4 - Message Queues

A comparison of the various message queue features is provided later in
this chapter.

Creating Message Queues

POSIX.1b message queues are created with the mq_open() function and the
O_CREAT flag as opposed to the mkmq() function from Draft 9, as per the
following example:

Draft 9 Code

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mqueue.h>

main()
{

int mq;
:
mkmq("message_queue", MQ_PERSIST | 0666);
mq = open("message_queue", O_RDWR | O_NONBLOCK,

MQ_PERSIST | 0666);
:
close(mq);
unlink("message_queue");
:

}

Equivalent POSIX.1b Code

#include <mqueue.h>

main()
{

mqd_t mq;
:
mq = mq_open("message_queue", O_CREAT | O_RDWR |

O_NONBLOCK, 0666, NULL);
:
mq_close(mq);
mq_unlink("message_queue");
:

}

38 POSIX 1.b Migration Guide

Data Structure Changes

Data Structure Changes

The two data structures, msgcb and mqstatus, from Draft 9 were combined into a
single data structure, mq_attr, in POSIX.1b. Also, a number of entries from both
of these structures were eliminated. For example, the time stamp and event fields
from msgcb have no equivalent in POSIX.1b.

The message length and message data fields from msgcb are now separate
arguments for the message sending and receiving functions. A comparison of data
structures is provided later in this chapter in �Data Structures� on page 45.

Getting and Setting Message Queue Attributes

The following example illustrates the comparison of the interfaces to get and set
message queue attributes. The mq_maxmsg and mq_msgsize attributes for a
POSIX.1b message queue may only be set at creation time. �Changes from Draft 9
to POSIX.1b� on page 44 tabulates the restrictions on setting attributes for a
POSIX.1b message queue.

The default Message Queue attributes are as follows:

� mq_flags = 0

� mq_maxmsg = 35

� mq_msgsize = 120

Draft 9 Code

#include <sys/mqueue.h>

#define SIZE 1024

main()
{

int mq;
struct mqstatus mqstat;
:
mkmq("message_queue", MQ_PERSIST | 0666);
mq = open("message_queue", O_RDWR | O_NONBLOCK,

MQ_PERSIST | 0666);
:
mqstat.mqmaxmsg = 200;
mqstat.mqrsvmsg = 200;
mqstat.mqmaxbytes = SIZE;
mqstat.mqrsvbytes = SIZE;
mqstat.mqwrap = MQNOWRAP;
mqstat.mqmaxarcv = 20;
POSIX 1.b Migration Guide 39

Chapter 4 - Message Queues

mqsetattr(mq, &mqstat);
:
mqgetattr(mq, &mqstat);
printf("mqmaxmsg: %d\n", mqstat.mqmaxmsg);
printf("mqrsvmsg: %d\n", mqstat.mqrsvmsg);
printf("mqmaxbytes: %d\n", mqstat.mqmaxbytes);
printf("mqrsvbytes: %d\n", mqstat.mqrsvbytes);
printf("mqcurmsgs : %d\n", mqstat.mqcurmsgs);
printf("mqsendwait: %d\n", mqstat.mqsendwait);
printf("mqrcvwait : %d\n", mqstat.mqrcvwait);
printf("mqmaxarcv : %d\n", mqstat.mqmaxarcv);
printf("mqwrap: %s\n",

(mqstat.mqwrap==MQWRAP)?"MQWRAP":"MQNOWRAP");
:
close(mq);
unlink("message_queue");
:

}

Equivalent POSIX.1b Code

#include <mqueue.h>

#define SIZE 1024

main()
{

msg_t mq;
struct mq_attr mqattr;
:
mqattr.mq_maxmsg = 200;
mqattr.mq_msgsize = SIZE;
mq = mq_open("message_queue", O_CREAT | O_RDWR,

0666, &mqattr);
:
mqattr.mq_flags = O_NONBLOCK;
mq_setattr(mq, &mqattr, NULL);
:
mq_getattr(mq, &mqattr);
printf("mq_flags : %s\n",

(mqattr.mq_flags & O_NONBLOCK == O_NONBLOCK)
? "Non-Blocking" : "Blocking");

printf("mq_maxmsg : %ld\n", mqattr.mq_maxmsg);
printf("mq_msgsize : %ld\n", mqattr.mq_msgsize);
printf("mq_curmsgs : %ld\n", mqattr.mq_curmsgs);
printf("mq_sendwait: %ld\n", mqattr.mq_sendwait);
printf("mq_rcvwait : %ld\n", mqattr.mq_rcvwait);
:
mq_close(mq);
mq_unlink("message_queue");
:

}

40 POSIX 1.b Migration Guide

Sending and Receiving Messages

Sending and Receiving Messages

The following example compares the sending and receiving of messages between
message queue facilities. The fork() call is only relevant to illustrate how
messages may be sent and received between two processes.

Draft 9 Code

#include <sys/mqueue.h>

#define SIZE 1024

main()
{

int mq;
char buffer[SIZE];
struct msgcb msgcbp;
:
mkmq("message_queue", MQ_PERSIST | 0666);
mq = open("message_queue", O_RDWR,MQ_PERSIST | 0666);
:
switch(fork()) {
case 0:

:
msgcbp.msg_flags = 0;
msgcbp.msg_bufsize = SIZE;
msgcbp.msg_data = buffer;
msgcbp.msg_type = 0;
mqreceive(mq, &msgcbp);
:

default:
:
msgcbp.msg_flags = MSG_COPY;
msgcbp.msg_length = SIZE;
msgcbp.msg_bufsize = SIZE;
msgcbp.msg_data = buffer;
msgcbp.msg_type = 0;
mqsend(mq, &msgcbp);
:

}
:
close(mq);
unlink("message_queue");
:

}

Equivalent POSIX.1b Code

#include <mqueue.h>

#define SIZE 1024

main()
{

msg_t mq;
POSIX 1.b Migration Guide 41

Chapter 4 - Message Queues

char buffer[SIZE];
:
mq = mq_open("message_queue", O_CREAT | O_RDWR,0666, NULL);
:
switch(fork()) {

case 0:
:
mq_receive(mq, buffer, SIZE, NULL);
:

default:
:
mq_send(mq, buffer, SIZE, MQ_PRIO_MAX-1);
:

}
:
mq_close(mq);
mq_unlink("message_queue");
:

}

Notification of Message Availability

The new mq_notify() function in POSIX.1b is used to notify a process that a
message is available on a message queue. This is done by sending a signal to the
process when the message queue changes from empty to non-empty as illustrated
in the following example.

When a notification request is attached to a message queue, another process may
be blocked in mq_receive() waiting to receive a message. If a message arrives at
the queue, mq_receive() is completed and the notification request remains
pending. If there is no process blocked in mq_receive(), the specified signal
handler is called.

The next example uses the flag no_msg to ensure that the notification request is
satisfied, and that the same message is received with an mq_receive() call: The
sa_flags flag is set to SA_SIGINFO, and the sigev_notify field is set to
SIGEV_SIGNAL to ensure the use of a real-time signal:

#include <mqueue.h>
#include <signal.h>

#define SIZE 1024

void signal_handler(int signo, siginfo_t *info, void *context);
volatile int no_msg;

main()
{

mqd_t mq;
char buffer[SIZE];
struct mq_attr mqattr;
struct sigevent notification;
struct sigaction sa;
42 POSIX 1.b Migration Guide

Notification of Message Availability

mqattr.mq_flags = 0;
mqattr.mq_maxmsg = 200;
mqattr.mq_msgsize = SIZE;
mq = mq_open("message_queue", O_CREAT | O_RDWR,

0666, &mqattr);
:
switch(fork()) {

case 0:
:
notification.sigev_signo = SIGRTMIN;
notification.sigev_value.sival_int = 0;
notification.sigev_value.sigev_notify =

SIGEV_SIGNAL;
:
sa.sa_sigaction = signal_handler;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);

sigaction(SIGRTMIN, &sa, NULL);
:
mq_notify(mq, ¬ification);
:
no_msg = 1;
while (no_msg) {

:
sched_yield();

}
mq_receive(mq, buffer, size, NULL);
:
break;

default:
:
mq_send(mq, buffer, size, MQ_PRIO_MAX-1);
:

}
:
mq_close(mq);
mq_unlink("message_queue");
:

}

void signal_handler(signo, info, context)
int signo;
siginfo_t *info;
void *context;
{

:
no_msg = 0;
:

}

POSIX 1.b Migration Guide 43

Chapter 4 - Message Queues

Changes from Draft 9 to POSIX.1b

Interface Changes

Message queues have changed in a fairly major way. A number of facilities from
Draft 9 are no longer available; however, POSIX.1b offers a new facility for
notification of message availability. The new implementation offers better
performance. Speeds comparable to raw memory copy are attainable using the
new, simple POSIX.1b functions

Table 4-1: Message Queue Interface

Draft 9 POSIX.1b

Message queue = special file Independent of file system

Persistent as well as non-persistent message
queues with the MQ_PERSIST flag

Persistent message queues

Queue wrapping with MQWRAP No queue wrapping

Buffer management with MSG_COPY,
MSG_USE, MSG_MOVE

All messages copied

Message transfer synchronization control
with MSG_WAIT, MSG_ASYNC,
MSG_NOWAIT

No message synchronization

Truncation control with MSG_TRUNC Overlong messages rejected at the time
of sending

Ability to send an event via a
message queue

No event sending

Selective message receive order No equivalent1

<sys/mqueue.h> <mqueue.h>

sender_t mqd_t

open() mq_open()

close() mq_close()

mkmq() Done with mq_open()

unlink() mq_unlink()
44 POSIX 1.b Migration Guide

Data Structures
Data Structures

The msgcb and mqstatus structures are combined into the single mq_attr

structure in POSIX.1b.

mqsend() mq_send()

mqreceive() mq_receive()

mqsetattr() mq_setattr()

mqgetattr() mq_getattr()

msgalloc() No Equivalent

msgfree() No Equivalent

mqpurge() No Equivalent

mqgetpid() No Equivalent

mqputevt() No Equivalent

mqgetevt() No Equivalent

No Equivalent mq_notify()
Notify process that a message is available
on a queue.

struct msgcb
struct mqstatus

struct mq_attr
Combines the flags of msgcb and
mqstatus.

1. LynxOS provides the mq_selective_receive() function to support this
behavior, even though it is not in the POSIX.1b standard.

Table 4-2: Data Structure Equivalence

Draft 9 POSIX.1b

msgcb.msg_flags mq_attr.mq_flags

msgcb.msg_type Message Priorities

msgcb.msg_length No Equivalent

msgcb.msg_bufsize No Equivalent

Table 4-1: Message Queue Interface (Continued)

Draft 9 POSIX.1b
POSIX 1.b Migration Guide 45

Chapter 4 - Message Queues
Attributes

There are various restrictions on setting attributes for message queues from
POSIX.1b. The table below shows the attributes that may be set, and when. All
attributes may be queried at any time.

msgcb.msg_data No Equivalent

msgcb.msg_event No Equivalent

msgcb.msg_errno No Equivalent

msgcb.msg_timesent No Equivalent

msgcb.msg_sender No Equivalent

mqstatus.mqrsvmsg No Equivalent

mqstatus.mqrsvbytes No Equivalent

mqstatus.mqmaxmsg mq_attr.mq_maxmsg

mqstatus.mqmaxbytes mq_attr.mq_msgsize

mqstatus.mqwrap No Equivalent

mqstatus.mqmaxarcv No Equivalent

mqstatus.mqcurmsgs mq_attr.mq_curmsgs

mqstatus.mqsendwait No Equivalent

mqstatus.mqrcvwait No Equivalent

Table 4-3: Message Queue Attributes

Attribute Set

mq_flags Yes, any time after creation

mq_maxmsg Yes, only at creation

mq_msgsize Yes, only at creation

mq_curmsgs No

Table 4-2: Data Structure Equivalence (Continued)

Draft 9 POSIX.1b
46 POSIX 1.b Migration Guide

Messages

Messages

Message Priorities
POSIX.1b provides a new concept of message priorities. A message is inserted into
the queue, and received from the queue according to message priority. This priority
is independent of the process priority.

Selective Receive
Draft 9 message queues allow the application to selectively remove queued
messages by type. This facility has been replaced by the message priority facility
described above. Note that priorities are somewhat less flexible than message
typing, because only the highest priority message is retrievable. LynuxWorks has
provided a proprietary extension, mq_selective_receive, to retain
this functionality.

Process Priorities
Process priorities come into the picture when sending and receiving messages. If
more than one process is blocked while sending to a full message queue (or
receiving from an empty message queue) with priority scheduling, the highest-
priority process, which has been waiting the longest, is unblocked first.

Synchronization Control
With Draft 9 message queues, it is possible to control how processes waited for
each other by specifying the MSG_WAIT, MSG_ASYNC, and MSG_NOWAIT flags on
a per-message basis. Such options are not available with POSIX.1b message
queues. All messages in POSIX.1b are sent and received with behavior equivalent
to the Draft 9 MSG_NOWAIT.

Buffer Management
With Draft 9 message queues, it is possible to control the use of buffers to achieve
higher performance with the MSG_MOVE, MSG_USE, and MSG_COPY flags on a
per-message basis. This feature is discontinued in POSIX.1b. All POSIX.1b
message queues have behavior equivalent to the MSG_COPY flag from Draft 9.
POSIX 1.b Migration Guide 47

Chapter 4 - Message Queues

Sending and Receiving Events
Draft 9 allows events to be sent along message queues. POSIX.1b does not provide
this capability.

Purging, Data Buffer Allocation/Freeing
Draft 9 provides the following functions:

mqpurge() purge a message queue

msgalloc() allocate a message data buffer

msgfree() free a message data buffer

The mqpurge() function can be simulated with mq_receive() in a while loop
until it fails. The msgalloc() and msgfree() functions have no
corresponding functionality.

Sender ID
The mqgetpid() function from Draft 9 allowed a process to determine the pid of
the sender process. There is no equivalent function for this feature in POSIX.1b.
However, the user can work around this by encoding the pid in the
message itself.

Queue Wrap
With Draft 9 message queues, it is possible to specify the queue wrap behavior, so
that older messages could be overwritten by newer ones as messages were sent to a
full queue. This behavior was requested with the MQWRAP flag at message queue
creation time. POSIX.1b does not support this capability.

Time-Stamping
It is possible to time-stamp Draft 9 messages. This feature is not supported by
POSIX.1b. An application writer can work around this by encoding the time-stamp
in the message.
48 POSIX 1.b Migration Guide

Truncation Control

Truncation Control
Draft 9 provides a MSG_TRUNC flag to truncate a message when receiving, if it is
larger than the buffer. POSIX.1b does not allow a message to be sent if its length
exceeds the message size of the queue, and does not allow mq_receive to be
called with a buffer size smaller than the message size.

A Pointer-Worth of Data
Draft 9 provides a MSG_OVERRIDE flag to indicate receipt of a pointer-worth of
data. POSIX.1b does not provide special support for such functionality, although
4-byte-long messages are supported.

Notification of Message Availability
POSIX.1b provides the new function, mq_notify(), to notify a process when a
message queue changes from empty to non-empty.

exec() Behavior
With Draft 9, message queue file descriptors of a process remain open after
exec(), except if the FD_CLOEXEC flag was set. With POSIX.1b, open message
queue descriptors of a calling process are closed upon exec().

New Utilities

LynxOS provides two new utilities, lipcs and lipcrm, to list and remove
message queues (and other POSIX.1b IPC facilities), respectively; refer to the
lipcs and lipcrm man pages for more information.

Interoperability

Draft 9 message queues and POSIX.1b message queues are distinct. There is no
interoperability. For example, it is not possible to send a message on a Draft 9
queue and receive it on a POSIX.1b message queue.
POSIX 1.b Migration Guide 49

Chapter 4 - Message Queues
50 POSIX 1.b Migration Guide

CHAPTER 5 Shared Memory
Introduction

The mmap() function is fundamental to the POSIX.1b changes in the shared
memory system. Additional changes affect the way shared memory object sizes are
specified upon creation. The mmap() function from POSIX.1b is not specific to
shared memory objects. With its full features, it is a powerful function allowing
files and devices to be mapped into process address space.

Also, there are persistence-related differences between the Draft 9 and POSIX.1b
specification of shared memory. Draft 9 provides persistent and non-persistent
shared memory; persistent shared memory had to be requested explicitly with the
SHM_PERSIST flag. In contrast, POSIX.1b only provides persistent shared
memory and does not require an explicit flag.

Persistence of an object implies that the object and its state (for example, the value
of a semaphore, data in a message queue, data for a shared memory object) are
preserved once the object is no longer referenced by a process. If the user
absolutely needs to migrate non-persistent behavior from Draft 9 to POSIX.1b,
here is an alternative method: After all of the processes that wish to use
non-persistent shared memory have opened the shared memory, shm_unlink the
shared memory. The shared memory will be deleted when all references to it are
removed, simulating non-persistent shared memory.

Creating and Deleting Shared Memory

The interface to create a shared memory object differs between Draft 9 and
POSIX.1b. Draft 9 provides a mkshm() function which used a size argument to
specify the size of the shared memory object. POSIX.1b shared memory is created
with the shm_open() function with the O_CREAT flag. This function does not
take a size argument; all shared memory objects are of zero size when created.
POSIX 1.b Migration Guide 51

Chapter 5 - Shared Memory

To specify size, a new POSIX.1b function, ftruncate(), which is not specific to
shared memory, must be used. This function truncates a file to a specified size. If a
file is expanded with ftruncate(), the expanded part is initialized to zero.
When ftruncate() is used to expand a shared memory object, the expanded
part is initialized to zero. The following example demonstrates the comparison.

Draft 9 Code

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/shmmap.h>

#define SIZE 1024

main()
{

int shm;
off_t size = SIZE;
:
mkshm("shmem", SHM_PERSIST | 0666, size);
shm = open("shmem", O_RDWR, SHM_PERSIST | 0666);
:
close(shm);
unlink("shmem");
:

}

Equivalent POSIX.1b Code

#include <sys/mman.h>

#define SIZE 1024

main()
{

int shm;
:
shm = shm_open("shmem", O_CREAT | O_RDWR, 0666);
ftruncate(shm, SIZE);
:
close(shm);
shm_unlink("shmem");
:

}

NOTE: To delete a shared memory object under POSIX.1b, call shm_unlink().
The object is actually destroyed after the last process unmaps the object.
52 POSIX 1.b Migration Guide

Mapping and Unmapping Shared Memory

Mapping and Unmapping Shared Memory

This code compares mapping and unmapping a shared memory object between
Draft 9 and POSIX.1b code; refer to �Changes from Draft 9 to POSIX.1b� on
page 54 for flags specific to shared memory.

Draft 9 Code

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/shmmap.h>

#define SIZE 1024

main()
{

int shm;
void *mem_ptr;
:
mkshm("shmem",.....);
shm = open("shmem",.....);
:
mem_ptr = shmmap(shm, NULL, SIZE, 0,

SHM_READ | SHM_WRITE);
:
shmunmap(mem_ptr, 0);
:
close(shm);
unlink("shmem");
:

}

Equivalent POSIX.1b code

#include <sys/mman.h>

#define SIZE 1024

main()
{

int shm;
char *mem_ptr;
:
shm = shm_open("shmem",.....);
ftruncate(shm,.....);
:
mem_ptr = mmap(NULL, SIZE, PROT_READ |

PROT_WRITE, MAP_SHARED, shm, 0);
:
munmap(mem_ptr, SIZE);
:
close(shm);
shm_unlink("shmem");
:

}

POSIX 1.b Migration Guide 53

Chapter 5 - Shared Memory

Changes from Draft 9 to POSIX.1b

The following table summarizes the shared memory interface changes:

Persistence

Draft 9 supports persistent and non-persistent shared memory. POSIX.1b shared
memory is persistent.

Size of Shared Memory Object

The interface changed to specify shared memory object size (when it is created). In
Draft 9, size was specified as an argument to the mkshm() function. In
POSIX.1b, a shared memory object is created with shm_open(), which does not
take a size argument. All shared memory objects are of zero size when created.

Table 5-1: Shared Memory Interface

Draft 9 POSIX.1b

Shared memory object = Special file Independent of file system

<sys/shmmap.h> <sys/mman.h>

SHM_READ PROT_READ

SHM_WRITE PROT_WRITE

SHM_EXEC PROT_EXEC

No Equivalent PROT_NONE

SHM_EXACT MAP_FIXED

shmmap() Done by mmap()

shmunmap() Done by munmap()

mkshm() Done by shm_open()

open() shm_open()

close() close()

unlink() shm_unlink()

No Equivalent ftruncate()
Truncates a file to specified length
54 POSIX 1.b Migration Guide

Shared/Private Changes

The size is specified with a new ftruncate() function. This function is not
specific to shared memory, and can be used to truncate any file to a specified size.
When ftruncate() is used to expand a shared memory object, the expanded
part is initialized to zero.

Shared/Private Changes

Currently, LynxOS does not support the MAP_PRIVATE flag. The MAP_SHARED
flag can be used, and changes to a shared memory object change the underlying
object. With the MAP_PRIVATE flag (which will be supported in a subsequent
release), changes to a shared memory object change the private copy of that object
for that process but not the underlying object.

fork() Behavior

In the absence of MAP_PRIVATE, there are no changes to the fork() behavior
with respect to shared memory. Memory mappings created by the parent are
retained by the child process. With the MAP_PRIVATE flag (when it is supported),
mappings before fork() in the parent also appear in the child. After fork(),
the parent and the child are independent with respect to private mappings. The
semantics are copy-on-write.

Protection

POSIX.1b supports all protections supported by Draft 9 (read, write, execute). In
addition a new PROT_NONE flag is provided to suppress the ability to access data.

msync() and mprotect() Functions

In addition to mmap(), POSIX.1b provides msync() and mprotect(), which are
unrelated to shared memory. These functions correspond to the
_POSIX_MAPPED_FILES and _POSIX_MEMORY_PROTECTION feature test
macros. These functions are only relevant to map files and devices with the
mmap() function.

Return Values

A notable difference exists between the return values of shmmap() in Draft 9 and
mmap() in POSIX.1b. shmmap() returns NULL upon failure, while mmap()
POSIX 1.b Migration Guide 55

Chapter 5 - Shared Memory

returns MAP_FAILED. All successful mmap() returns are guaranteed not to return
MAP_FAILED.

New Utilities

Lynx provides two new utilities, lipcs and lipcrm, to list and remove shared
memory objects, respectively; refer to the lipcs and lipcrm man pages for
more information.

Inter-Operability

There is no inter-operability between Draft 9 and POSIX.1b shared memory. Two
processes, one using Draft 9 shared memory, and the other using POSIX.1b shared
memory, cannot access the same underlying object.
56 POSIX 1.b Migration Guide

CHAPTER 6 Clocks and Timers
Introduction

The most important change in the clock and timer interface is that the following
Draft 9 functions have no equivalent in POSIX.1b:

� resrel()

� resabs()

� ressleep()

With non-trivial changes to the code, programs using the above functions can be
migrated to POSIX.1b. Also, timer overrun counts are handled with a new
function, timer_getoverrun(), instead of through the Draft 9
itimercb structure.

Refer to �Changes from Draft 9 to POSIX.1b� on page 63 for equivalence between
function names from Draft 9 and POSIX.1b.

Resolution of a Clock

The Draft 9 resclock() function obtains the maximum value of a clock. The
equivalent clock_getres() function from POSIX.1b does not allow this. The
following code is a comparison:

Draft 9 Code

#include <sys/timers.h>

main()
{

struct timespec res, maxval;
:

POSIX 1.b Migration Guide 57

Chapter 6 - Clocks and Timers

resclock(TIMEOFDAY, &res, &maxval);
printf("Resolution: %ld sec %ld nsec\n",

res.tv_sec, res.tv_nsec);
printf("Max. val.: %ld sec %ld nsec\n",

maxval.tv_sec, maxval.tv_nsec);
:

}

Equivalent POSIX.1b Code

#include <time.h>

main()
{

struct timespec res;
:
clock_getres(CLOCK_REALTIME, &res);
printf("Resolution: %ld sec %ld nsec\n",

res.tv_sec, res.tv_nsec);
:

}

Creation and Deletion of a Timer

The timer creation interface has changed from Draft 9 to POSIX.1b. In Draft 9, the
function mktimer() returned timer_t. In POSIX.1b, the function
timer_create() returns an int with a result argument of the type timer_t.

Also, there are differences in how notification type is specified. In POSIX.1b code,
the sa_flags flag is set to SA_SIGINFO, and the sigev_notify field is set to
SIGEV_SIGNAL to ensure the use of a real-time signal. In addition, the
sa_sigaction member is used to set the signal handler.

Timers are deleted with the timer_delete() function, instead of with
rmtimer().

Draft 9 Code

#include <sys/timers.h>
#include <sys/events.h>

void event_handler(void *evt_value,
evt_class_t evt_class, evtset_t evt_mask);

main()
{

timer_t timer1, timer2;
struct itimercb itimercbp;
:
timer1 = mktimer(TIMEOFDAY, DELIVERY_SIGNALS, NULL);
58 POSIX 1.b Migration Guide

Equivalent POSIX.1b Code

:
rmtimer(timer1);
:
itimercbp.itcb_event.evt_handler = event_handler;
itimercbp.itcb_event.evt_value = NULL;
itimercbp.itcb_event.evt_class = EVTCLASS_MIN;
evtemptyset(&itimercbp.itcb_event.evt_classmask);
itimercbp.itcb_count = 0;

timer2 = mktimer(TIMEOFDAY, DELIVERY_EVENTS,
&itimercbp);

:
rmtimer(timer2);
:

}

void event_handler(evt_value, evt_class, evt_mask)
void *evt_value;
evt_class_t evt_class;
evtset_t evt_mask;
{

:
:

}

Equivalent POSIX.1b Code

#include <time.h>
#include <signal.h>

void signal_handler(int signo, siginfo_t *info,
void *context);

main()
{

timer_t timer1, timer2;
struct sigevent se;
struct sigaction sa;
:
timer_create(CLOCK_REALTIME, NULL, &timer1);
:
timer_delete(timer1);
:
se.sigev_signo = SIGRTMIN;
se.sigev_value.sival_ptr = NULL;
se.sigev_notify = SIGEV_SIGNAL;

sa.sa_sigaction = signal_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;

sigaction(SIGRTMIN, &sa, NULL);

timer_create(CLOCK_REALTIME, &se, &timer2);
:
timer_delete(timer2);
:

}

void signal_handler(signo, info, context)
POSIX 1.b Migration Guide 59

Chapter 6 - Clocks and Timers

int signo;
siginfo_t *info;
void *context;
{

:
:

}

Setting a Timer

Draft 9 provides two functions, abstimer() and reltimer(), to set the value of
a timer. These are used to set the absolute and the relative value, respectively.
POSIX.1b provides only one function, timer_settime(), and requires an extra
flag argument to choose between absolute and relative countdowns.

Draft 9 Code

#include <sys/timers.h>

main()
{

timer_t timer;
struct itimerspec value, ovalue;
struct timespec now;
:
timer = mktimer(TIMEOFDAY, DELIVERY_SIGNALS, NULL);
:
value.it_value.tv_sec = 2;
value.it_value.tv_nsec = 0;
value.it_interval.tv_sec = 0;
value.it_interval.tv_nsec = 0;

reltimer(timer, &value, &ovalue);
:
getclock(TIMEOFDAY, &now);

value.it_value.tv_sec = now.tv_sec + 5;
value.it_value.tv_nsec = 0;
value.it_interval.tv_sec = 0;
value.it_interval.tv_nsec = 0;

abstimer(timer, &value, &ovalue);
:

}

Equivalent POSIX.1b Code

#include <time.h>

main()
{

timer_t timer;
60 POSIX 1.b Migration Guide

Determining Timer Overrun Count(s)

struct itimerspec value, ovalue;
struct timespec now;
:
timer_create(CLOCK_REALTIME, NULL, &timer);
:
value.it_value.tv_sec = 2;
value.it_value.tv_nsec = 0;
value.it_interval.tv_sec = 0;
value.it_interval.tv_nsec = 0;

timer_settime(timer, 0, &value, &ovalue);
:
clock_gettime(CLOCK_REALTIME, &now);

value.it_value.tv_sec = now.tv_sec + 5;
value.it_value.tv_nsec = 0;
value.it_interval.tv_sec = 0;
value.it_interval.tv_nsec = 0;

timer_settime(timer, TIMER_ABSTIME, &value,
&ovalue);

:
}

Determining Timer Overrun Count(s)

The following example shows how Draft 9 code, which determines the timer
overrun count(s), can be migrated to the POSIX.1b:

Draft 9 Code

#include <sys/timers.h>
#include <sys/events.h>

void event_handler(void *evt_value,
evt_class_t evt_class, evtset_t evt_mask);

main()
{

timer_t timer;
struct itimercb itimercbp;
:
itimercbp.itcb_event.evt_handler = event_handler;
itimercbp.itcb_event.evt_value = NULL;
itimercbp.itcb_event.evt_class = EVTCLASS_MIN;
evtemptyset(&itimercbp.itcb_event.evt_classmask);
itimercbp.itcb_count = 0;

timer = mktimer(TIMEOFDAY, DELIVERY_EVENTS,
&itimercbp);

:
printf("Overrun count = %d\n",

itimercbp.itcb_count);
:

}

POSIX 1.b Migration Guide 61

Chapter 6 - Clocks and Timers

void event_handler(evt_value, evt_class, evt_mask)
void *evt_value;
evt_class_t evt_class;
evtset_t evt_mask;
{

:
:

}

Equivalent POSIX.1b Code

#include <time.h>

void signal_handler(int signo, siginfo_t *info,
void *context);

int overrun;
timer_t timer;

main()
{

struct sigevent se;
struct sigaction sa;
:
se.sigev_signo = SIGRTMIN;
se.sigev_value.sival_ptr = NULL;
se.sigev_notify = SIGEV_SIGNAL;

sa.sa_sigaction = signal_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;

sigaction(SIGRTMIN, &sa, NULL);

timer_create(CLOCK_REALTIME, &se, &timer);
:
printf("Overrun count = %d\n", overrun);
:

}

void signal_handler(signo, info, context)
int signo;
siginfo_t *info;
void *context;
{

:
overrun = timer_getoverrun(timer);
:

}

62 POSIX 1.b Migration Guide

Changes from Draft 9 to POSIX.1b

Changes from Draft 9 to POSIX.1b

Almost all Draft 9 timer functionality has an equivalent in POSIX.1b. Where there
is no equivalent function, it can be emulated with a series of other functions. There
are some notable differences between the two interfaces.

Overrun Count

The overrun count is handled differently in the Draft 9 and POSIX.1b interfaces. In
Draft 9, the structure itimercb encloses the overrun count for the timer. In
POSIX.1b, no separate structure item is used. The overrun count is accessed
through the new timer_getoverrun() function.

Table 6-1: Clock And Timer Interface

Draft 9 POSIX.1b

<sys/timers.h> <time.h>

TIMEOFDAY CLOCK_REALTIME

getclock() clock_gettime()

setclock() clock_settime()

resclock() clock_getres()

mktimer() timer_create()

rmtimer() timer_delete()

gettimer() timer_gettime()

reltimer() timer_settime(timerid,0,...)

abstimer() timer_settime(timerid,
TIMER_ABSTIME,..)

itimercb.itcb_count timer_getoverrun()

resabs() Documentation

resrel() Documentation

ressleep() Documentation
POSIX 1.b Migration Guide 63

Chapter 6 - Clocks and Timers

Signal/Event Associated with a Timer

In Draft 9, the structure itimercb encloses an event associated with a timer. In
POSIX.1b, this structure no longer exists. Instead, a sigevent structure for a
real-time signal is used as an argument to timer_create().

Signal Number

In Draft 9, the flag DELIVERY_SIGNALS for notify_type in mktimer()
delivers the SIGALRM signal. If the flag is DELIVERY_EVENTS, an event is
associated with the timer. In POSIX.1b if the sigevent structure passed to
timer_create() is NULL, the default signal is used (which is SIGALRM for
CLOCK_REALTIME). If the sigevent structure for timer_create() specifies
SIGEV_SIGNAL and if the SA_SIGINFO bit is set for any real-time signal
between SIGRTMIN and SIGRTMAX, then that signal is queued.

Relative and Absolute Times

Draft 9 provides two functions, reltimer() and abstimer(), to set a timer
either with a relative offset or the absolute value, respectively. In POSIX.1b, the
timer_settime() function does both jobs. The new TIMER_ABSTIME flag
specifies the choice of an absolute timer instead of a relative timer.

Resolutions

With non-trivial changes to the code, programs using resrel(), resabs(), and
ressleep() can be migrated to POSIX.1b.

Get Timer Value

The gettimer() function from Draft 9 always returns the it_interval last
set by reltimer() or abstimer(). On the other hand, the
timer_gettime() function from POSIX.1b always returns how much time
remains on the timer.

Create Timer

The mktimer() function from Draft 9 returns a timer_t, and has a
notify_type argument. The timer_create() function from POSIX.1b has a
timer_t as a result argument, and returns an int. The notification type is
64 POSIX 1.b Migration Guide

Clock Resolution

handled through the sigev_notify entry in the sigevent structure, which is
an argument.

Clock Resolution

The resclock() function from Draft 9 provides an extra argument to obtain
maximum possible time value for a clock. The timer_getres() function from
POSIX.1b does not provide such an argument.

nanosleep()

In Draft 9, the second argument to the nanosleep() function is updated to
contain the unslept time. In POSIX.1b, this is done only if that argument is
non-NULL.

Pending Signals/Events

Draft 9 specifies that deleting a timer would cancel any pending events for that
timer. However for POSIX.1b, even after deleting a timer, signals queued from it
continue to be queued. Also with POSIX.1b, signals queued from a timer continue
to be queued, even after disarming or resetting a timer.

Interoperability

There is no inter-operability between the Draft 9 and final standard versions of
clocks and timers. These are distinct and separate features. However, the system-
wide time-of-day clock is the same for all processes. Two processes, one a Draft 9
process using TIMEOFDAY, and another POSIX.1b process using
CLOCK_REALTIME can access the same clock.
POSIX 1.b Migration Guide 65

Chapter 6 - Clocks and Timers
66 POSIX 1.b Migration Guide

0

CHAPTER 7 Semaphores
Introduction

Most of the old functionality of semaphores has an equivalent under the new
standard. The most important change is that Draft 9 provides binary semaphores,
whereas POSIX.1b provides counting semaphores. Also, Draft 9 provides only
named semaphores, whereas POSIX.1b provides named as well as unnamed
semaphores. Two new functions, sem_init() and sem_destroy(), were
introduced for unnamed semaphores.

Draft 9 semaphores were special files and relied on the underlying file system.
POSIX.1b semaphores are independent of the file system. Names for POSIX.1b
named semaphores are implemented as simple strings without file system
involvement. These strings are processed with a new, efficient name service. This
difference between Draft 9 and POSIX.1b may be experienced in other ways. For
example, the ls and rm utilities could access the Draft 9 semaphores. This cannot
be done for POSIX.1b named semaphores.

LynxOS provides two new utilities, lipcs and lipcrm, to list and remove named
IPC objects − semaphores, shared memory objects, and message queues. Refer to
the lipcs and lipcrm man pages for more information.

Also, there are persistence-related differences between the Draft 9 and POSIX.1b
semaphores. Draft 9 provides persistent and non-persistent semaphores. Persistent
semaphores were requested explicitly with the SEM_PERSIST flag. POSIX.1b, on
the other hand, only provides persistent semaphores.

Persistence of an object implies that the object and its state (e.g., value of a
semaphore, data in a message queue, data for a shared memory object) are
preserved once the object is no longer referenced by a process. If the user
absolutely needs to migrate non-persistent behavior from Draft 9 to POSIX.1b,
here is an alternative method: After all the processes that wish to use a non-
persistent semaphore have opened the semaphore, sem_unlink the semaphore.
POSIX 1.b Migration Guide 67

Chapter 7 - Semaphores

The semaphore is deleted when all references to it are removed, simulating a non-
persistent semaphore.

Unnamed Semaphores

The following example illustrates the use of POSIX.1b unnamed semaphores.
Notice that for two processes to use an unnamed semaphore, it must reside in
shared memory.

#include <sys/mman.h>
#include <semaphore.h>

main()
{

struct shared_info *sp;
:
fd = shm_open(shmname, oflags, mode);
:
sp = mmap(0, SHMSIZE, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, 0);
close(fd);
shm_unlink(shmname);
:
sem_init(&sp->sem, TRUE, 0);
:
pid = fork();

if (pid) {
/* Parent */
:
sem_post(&sp->sem);
:

}
else {

/* Child */
:
sem_wait(&sp->sem);
:

}
}

68 POSIX 1.b Migration Guide

Creating a Named Semaphore

Creating a Named Semaphore

Named semaphores for POSIX.1b are created using the function sem_open()
with the O_CREAT flag, instead of the mksem() function from Draft 9.

The following example compares the creation of a named semaphore. Note the use
of the SEM_PERSIST flag in Draft 9 code to request creation of a persistent
semaphore. For POSIX.1b, no special flag is necessary, because POSIX.1b only
provides persistent semaphores.

Draft 9 Code

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/sem.h>

main()
{

int sem;
:
mksem("semaphore", SEM_PERSIST | 0666,

STATE_LOCKED);
sem = open("semaphore", O_RDWR, SEM_PERSIST | 0666);
:
close(sem);
unlink("semaphore");
:

}

Equivalent POSIX.1b Code

#include <semaphore.h>

main()
{

sem_t *sem;
:
sem = sem_open("semaphore", O_CREAT, 0666, 0);
:
sem_close(sem);
sem_unlink("semaphore");
:

}

POSIX 1.b Migration Guide 69

Chapter 7 - Semaphores

Posting and Waiting on Semaphores

Refer to �Changes from Draft 9 to POSIX.1b� on page 72 later in this chapter, for
equivalence of function names to post to and wait on semaphores. The following
example compares Draft 9 and POSIX.1b for this functionality.

Draft 9 Code

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/sem.h>

main()
{

int sem;
:
mksem("semaphore",.....);
sem = open("semaphore",....);
:
/* this could also be semwait() */
semifwait(sem);
:
sempost(sem);
:

}

Equivalent POSIX.1b Code

#include <semaphore.h>

main()
{

sem_t *sem;
:
sem = sem_open("semaphore",.....);
:
/* this could also be sem_wait() */
sem_trywait(sem);
:
sem_post(sem);
:

}

70 POSIX 1.b Migration Guide

Conditional Posting to Semaphores

Conditional Posting to Semaphores

The Draft 9 facility for conditional posting to a semaphore with the semifpost()
function (only if a process is waiting for it), was removed. However, POSIX.1b
offers a new function, sem_getvalue(), to allow the user to obtain the value of a
semaphore at any time.

If the semaphore is locked, sem_getvalue() returns a zero or a negative
number. The absolute value of this number indicates the number of processes
waiting for the semaphore. This value is sampled at an unspecified time inside the
sem_getvalue() call. The following example illustrates the use of
sem_getvalue() and sem_post() to simulate the effect of semifpost()

from Draft 9. As explained below, the equivalence in this example does not
always hold.

Draft 9 Code

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/sem.h>

main()
{

int sem;
:
mksem("semaphore",.....);
sem = open("semaphore",....);
:
semifpost(sem);
:

}

Equivalent POSIX.1b Code

#include <semaphore.h>

main()
{

sem_t *sem;
int value;
:
sem = sem_open("semaphore",......);
:
sem_getvalue(sem, &value);
if (value < 0)

sem_post(sem);
:

}

POSIX 1.b Migration Guide 71

Chapter 7 - Semaphores

The semifpost() function from Draft 9 has an inherent race condition. If a
process is about to sleep on the semaphore, semifpost() would never wake
that process up. Therefore, programs that use semifpost() have a race
condition upon wake-up. (For more details on why sem_ifpost() has been
removed from POSIX.1b, refer to the rationales of the POSIX.1b standard.)

Also note that sem_getvalue() samples the value of the semaphore, and
(because there is no locking built into semaphores) does not give a reliable value
for heavily-used semaphores. POSIX.1b semaphores are not POSIX.1c
condition variables.

Changes from Draft 9 to POSIX.1b

Semaphores changed, although not in a major way. The most important change is
that Draft 9 provides binary semaphores, while POSIX.1b provides counting
semaphores. Also, Draft 9 provides only named semaphores and they are special
files. POSIX.1b provides named and unnamed semaphores; the interface is
independent of any file system.

Table 7-1: Semaphore Interface

Draft 9 POSIX.1b

Binary semaphores Counting semaphores

Semaphores = Special files Independent of file system

Only named semaphores Named and unnamed semaphores

Persistent as well as non-persistent
semaphores with the flag
SEM_PERSIST

Persistent semaphores

<sys/sem.h> <semaphore.h>

No Equivalent sem_init()
Initializes unnamed semaphore

No Equivalent sem_destroy()
Destroys unnamed semaphore

mksem() Done by sem_open()

open() sem_open()

close() sem_close()
72 POSIX 1.b Migration Guide

Conditional Posting
Conditional Posting

Draft 9 provides a semifpost() function to do a conditional post to a
semaphore if a process is waiting for it. This functionality is discontinued in
POSIX.1b. It can be simulated with a combination of sem_getvalue() and
sem_post(), but is not an atomic operation.

Permission Checking

Since Draft 9 semaphores are special files, there is the overhead of complete file
permission checking. In POSIX.1b, this is replaced by an efficient name service for
the named semaphores. The new service does not need to do directory traversals or
complicated permission checking. User ID and standard POSIX.1 permission
checking is performed on a per-object-name basis.

New Utilities

LynxOS provides two new utilities, lipcs and lipcrm, to respectively list and
remove named semaphores. Refer to the lipcs and lipcrm man pages for
more information.

Interoperability

There is no semaphore interoperability between Draft 9 and POSIX.1b.

unlink() sem_unlink()

semwait() sem_wait()

semifwait() sem_trywait()

sempost() sem_post()

semifpost() No Equivalent

No Equivalent sem_getvalue()
Get semaphore value

Table 7-1: Semaphore Interface (Continued)

Draft 9 POSIX.1b
POSIX 1.b Migration Guide 73

Chapter 7 - Semaphores
74 POSIX 1.b Migration Guide

CHAPTER 8 Memory Locking
The memory locking interface has changed from Draft 9 to POSIX.1b. Some Draft
9 facilities have been discontinued (see below), while a new feature has been
introduced to restrict memory locks to the current address space.

For additional information, refer to �Changes from Draft 9 to POSIX.1b� on
page 77 later in this chapter.

Locking the Specific Address Space

The ability to restrict memory locking for data, text, or stack segments of a process
under Draft 9 (DATALOCK, TXTLOCK, STKLOCK flags) no longer exists. The only
behavior supported is the ability to lock a specified address range (REGLOCK flag
in Draft 9) and the entire process address space (PROLOCK flag in Draft 9).

Two new functions have been introduced to lock and unlock the entire address
space, instead of using the PROLOCK flag. The following example illustrates their
use and comparison to Draft 9 code.

Draft 9 Code

#include <sys/memlk.h>

#define SIZE 1024

main()
{

void *addr;
:
addr = malloc(SIZE);
memlk(REGLOCK, addr, SIZE);
:
memunlk(REGLOCK, addr, SIZE);
:

}

POSIX 1.b Migration Guide 75

Chapter 8 - Memory Locking

Equivalent POSIX.1b Code

#include <sys/mman.h>

#define SIZE 1024

main()
{

void *addr;
:
addr = malloc(SIZE);
mlock(addr, SIZE);
:
munlock(addr, SIZE);
:

}

Locking Future Growth

When locking the entire address space, Draft 9 guaranteed that subsequent growth
would also be locked. POSIX.1b provides two flags, MCL_CURRENT and
MCL_FUTURE. These flags request locking current pages or future pages,
respectively. Under LynxOS, MCL_CURRENT locks current as well as future pages.

The MCL_FUTURE flag by itself locks only future pages, not current ones. It would
be unusual for an application writer to request this flag by itself.

Draft 9 Code

#include <sys/memlk.h>

main()
{

:
memlk(PROLOCK, NULL, 0);
:
memunlk(PROLOCK, NULL, 0);
:

}

Table 8-1: Memory Locking Flags

Flag LynxOS Semantics

MCL_CURRENT Lock current as well as future pages

MCL_CURRENT | MCL_FUTURE Same as MCL_CURRENT

MCL_FUTURE Locks only future pages, not current
76 POSIX 1.b Migration Guide

Equivalent POSIX.1b Code

Equivalent POSIX.1b Code

#include <sys/mman.h>

main()
{

:
mlockall(MCL_CURRENT | MCL_FUTURE);
:
munlockall();
:

}

Changes from Draft 9 to POSIX.1b

Locking Flags

Draft 9 allows processes to lock their data, text, or stack segments. There is no
support for such functionality in POSIX.1b. The flags used are:

� TXTLOCK

� DATALOCK

� STKLOCK

Table 8-2: Memory-Locking Interface

Draft 9 POSIX.1b

<sys/memlk.h> <sys/mman.h>

MEMLK_BOUNDSIZE PAGESIZE

memlk(REGLOCK,addr, size) mlock(addr,size)

memunlk(REGLOCK,addr, size) munlock(addr,size)

memlk(TXTLOCK|DATALOCK|
STKLOCK,..)

No Equivalent

memunlk (TXTLOCK|DATALOCK|
STKLOCK,..)

No Equivalent

memlk(PROLOCK,NULL,0) mlockall(MCL_CURRENT|MCL_FUTURE} or
mlockall(MCL_CURRENT)

memunlk(PROLOCK,NULL,0) munlockall()

No Equivalent mlockall(MCL_FUTURE)
POSIX 1.b Migration Guide 77

Chapter 8 - Memory Locking

Multiple Locks

Multiple memory locks can be set for a given region under Draft 9. There are no
semantics for multiple locking in POSIX.1b. Memory locking functions can be
invoked multiple times for a given address range, but still act as a single lock and
are removed by a single unlock.

Locking/Unlocking the Entire Process

In Draft 9, the PROLOCK flag was used with memlk() and memunlk() to
specify the entire process address space. In POSIX.1b, there are two new functions,
mlockall() and munlockall(), for this purpose.

Current/Future Locking

In Draft 9, future memory growth was automatically locked with the PROLOCK

flag. POSIX.1b provides a flag to request whether current or future pages be
locked, with the MCL_CURRENT and MCL_FUTURE values, respectively. Under
the LynxOS implementation, the MCL_CURRENT flag locks current as well as
future pages. The following table shows the meaning of these flags.

Interoperability

The memory locking facilities for both Draft 9 and POSIX.1b are based on the
same code in LynxOS.

Table 8-3: Memory Locking Flags

Flag LynxOS Semantics

MCL_CURRENT Lock current as well as future pages

MCL_CURRENT | MCL_FUTURE Same as MCL_CURRENT

MCL_FUTURE Lock only future pages, not current
78 POSIX 1.b Migration Guide

CHAPTER 9 Asynchronous I/O
Changes in asynchronous I/O features center primarily around reordered data
structure entries and function parameters. In addition, POSIX.1b introduces a new
idea of asynchronous I/O priority. The priority of an asynchronous I/O operation
can be lowered, but not raised, with respect to the process scheduling priority.

Refer to �Changes from Draft 9 to POSIX.1b� on page 87 for a comparison of data
structures and flags specific to asynchronous I/O.

Data Structure Changes

The aiocb data structure changed has significantly. Because of these changes, the
liocb data structure has been eliminated. The following is a comparison of the
aiocb data structures for Draft 9 and POSIX.1b.

Table 9-1: aiocb Structure

Draft 9 POSIX.1b

aio_offset aio_offset

aio_event aio_sigevent

aio_prio aio_reqprio

aio_whence No Equivalent (always SEEK_SET)

aio_flag No Equivalent

aio_errno No Equivalent

aio_nobytes No Equivalent

No Equivalent aio_nbytes

No Equivalent aio_fildes
POSIX 1.b Migration Guide 79

Chapter 9 - Asynchronous I/O
POSIX.1b structure includes the file descriptor, buffer, and listio opcode

fields. The new aio_nbytes field has the same semantics as defined by the
read() and write() synopses.

As a result, the synopses for the asynchronous I/O functions have changed
as follows:

� File descriptor, buffer, and number of bytes are not passed as separate
arguments to aio_read() and aio_write().

� The listio opcode is not passed as a separate argument to
lio_listio().

� The aio_whence field has been eliminated. The aio_offset

argument is treated as offset from the beginning of the file. The effect is
as if aio_whence is always SEEK_SET.

� The aio_errno field has been eliminated. Instead, a new function,
aio_error(), with the aiocb argument does the same job.

� The aio_flag field has been eliminated. It is superseded by the
aio_sigevent field.

� The afsync() function has been renamed to aio_fsync().

� The aio_nobytes field has been eliminated. The new aio_return()

function retrieves the return status from an aiocb structure.
aio_return() can be called exactly once per structure; this structure
may not be passed to aio_error() or aio_return() again.

There is no relation between the new aio_nbytes field and the old aio_nobytes
field. The aio_return() function may be used on the same aiocb structure
more than once, as a proprietary extension from LynuxWorks. This can be disabled
by a new proprietary library call aio_setparam(). Refer to the
aio_setparam() man page for more information.

The aio_prio field from Draft 9 was unused and has been replaced with the
aio_reqprio field. With this field, POSIX.1b asynchronous I/O can be queued in
a priority order.

No Equivalent aio_buf

No Equivalent aio_lio_opcode

Table 9-1: aiocb Structure (Continued)

Draft 9 POSIX.1b
80 POSIX 1.b Migration Guide

Asynchronous Read and Write

The priority of an asynchronous process is the process priority minus the
aio_reqprio value. Priority of asynchronous I/O can be lowered, but not raised,
with respect to the process priority. However, as a proprietary feature from
LynuxWorks, the priority of an asynchronous I/O operation can be raised with
respect to the process priority. This is achieved by the aio_setparam() library
call, which is specific to LynxOS. Refer to the aio_setparam() man page for
more information.

Asynchronous Read and Write

The following example shows a code comparison for an asynchronous write
operation. Also, it shows the use of two new functions for POSIX.1b; namely,
aio_return() and aio_error().

In POSIX.1b code the sa_flags flag is set to SA_SIGINFO, and the
sigev_notify field is set to SIGEV_SIGNAL to ensure the use of a
real-time signal.

Draft 9 Code

#include <errno.h>
#include <sys/aio.h>

#define SIZE 256

void event_handler(void *evt_value,
evt_class_t evt_class, evtset_t evt_mask);

main()
{

int fd;
char buf[SIZE];
struct aiocb cb;
struct sigaction sa;
:
fd = open(.......);
:
sa.sa_handler = event_handler;
sa.sa_flags = SA_D9EV;
sigemptyset(&sa.sa_mask);

sigaction(EVTCLASS_MIN, &sa, NULL);

cb.aio_event.evt_handler = event_handler;
cb.aio_event.evt_value = NULL;
cb.aio_event.evt_class = EVTCLASS_MIN;
evtemptyset(&cb.aio_event.evt_classmask);
cb.aio_flag = AIO_EVENT;
cb.aio_offset = 0;
cb.aio_whence = 0;
POSIX 1.b Migration Guide 81

Chapter 9 - Asynchronous I/O

cb.aio_prio = 0;

awrite(fd, buf, SIZE, &cb);

while (cb.aio_errno == EINPROG) {
:
:

}

printf("Errno = %d, No. of bytes = %d\n",
cb.aio_errno, cb.aio_nobytes);

:
}

void event_handler(evt_value, evt_class, evt_mask)
void *evt_value;
evt_class_t evt_class;
evtset_t evt_mask;
{

:
:

}

Equivalent POSIX.1b Code

#include <aio.h>
#include <errno.h>

#define SIZE 256

void signal_handler(int signo, siginfo_t *info, void *context);

main()
{

int fd;
char buf[SIZE];
struct aiocb cb;
struct sigaction sa;
int err, ret;
:
fd = open(.......);
:
sa.sa_sigaction = signal_handler;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);

sigaction(SIGRTMIN, &sa, NULL);

cb.aio_sigevent.sigev_signo = SIGRTMIN;
cb.aio_sigevent.sigev_value.sival_ptr = NULL;
cb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
cb.aio_offset = 0;
cb.aio_reqprio = 0;
cb.aio_fildes = fd;
cb.aio_buf = buf;
cb.aio_nbytes = SIZE;

aio_write(&cb);

while (aio_error(&cb) == EINPROGRESS) {
82 POSIX 1.b Migration Guide

List Directed I/O

:
:

}

err=aio_err (&cb);
ret=aio_return (&cb);
:

}
void signal_handler(signo, info, context)
int signo;
siginfo_t *info;
void *context;
{

:
:

}

List Directed I/O

The following example illustrates how a Draft 9 program doing list-directed I/O
can be migrated to POSIX.1b. In Draft 9, LIO_NOWAIT ignores the final event
argument while LIO_ASYNC ensures a final event delivery. In POSIX.1b,
LIO_NOWAIT ensures a final signal delivery on completion of the last listio job.
If, however, the final signal argument is NULL, no signal is sent.

Draft 9 Code

#include <sys/aio.h>

#define SIZE 1024

void evt_handler1(void *evt_value,
evt_class_t evt_class, evtset_t evt_mask);

void evt_handler2(void *evt_value,
evt_class_t evt_class, evtset_t evt_mask);

void evt_final_handler(void *evt_value,
evt_class_t evt_class,evtset_t evt_mask);

main()
{

int fd1, fd2;
char buf1[SIZE], buf2[SIZE];
struct liocb list1, list2, *lcb[2];
struct sigaction sa;
struct event final_evt;
:
fd1 = open(......);
fd2 = open(......);
:
sa.sa_handler = evt_handler1;
sa.sa_flags = SA_D9EV;
sigemptyset(&sa.sa_mask);

sigaction(EVTCLASS_MIN, &sa, NULL);
POSIX 1.b Migration Guide 83

Chapter 9 - Asynchronous I/O

sa.sa_handler = evt_handler2;
sa.sa_flags = SA_D9EV;
sigemptyset(&sa.sa_mask);

sigaction(EVTCLASS_MIN+1, &sa, NULL);
:
list1.lio_opcode = LIO_WRITE;
list1.lio_fildes = fd1;
list1.lio_buf = buf1;
list1.lio_nbytes = SIZE;
list1.lio_aiocb.aio_event.evt_data = NULL;
list1.lio_aiocb.aio_event.evt_class = EVTCLASS_MIN;
list1.lio_aiocb.aio_event.evt_handler =

evt_handler1;
evtemptyset(&list1.lio_aiocb.aio_event.

evt_classmask);
list1.lio_aiocb.aio_flag = AIO_EVENT;
list1.lio_aiocb.aio_offset = 0;
list1.lio_aiocb.aio_whence = 0;
list1.lio_aiocb.aio_prio = 0;

list2.lio_opcode = LIO_READ;
list2.lio_fildes = fd2;
list2.lio_buf = buf2;
list2.lio_nbytes = SIZE;
list2.lio_aiocb.aio_event.evt_data = NULL;
list2.lio_aiocb.aio_event.evt_class =

EVTCLASS_MIN+1;
list2.lio_aiocb.aio_event.evt_handler =

evt_handler2;
evtemptyset(&list2.lio_aiocb.aio_event.

evt_classmask);
list2.lio_aiocb.aio_flag = AIO_EVENT;
list2.lio_aiocb.aio_offset = 0;
list2.lio_aiocb.aio_whence = 0;
list2.lio_aiocb.aio_prio = 0;

lcb[0] = &list1;
lcb[1] = &list2;

sa.sa_handler = evt_final_handler;
sa.sa_flags = SA_D9EV;
sigemptyset(&sa.sa_mask);

sigaction(EVTCLASS_MIN+2, &sa, NULL);

final_evt.evt_value = NULL;
final_evt.evt_class = EVTCLASS_MIN+2;
final_evt.evt_handler = evt_final_handler;
evtemptyset(&final_evt.evt_classmask);
:
listio(LIO_ASYNC, lcb, 2, &final_evt);
:

}

void evt_handler1(evt_value, evt_class, evt_mask)
void *evt_value;
evt_class_t evt_class;
evtset_t evt_mask;
{

:
:

84 POSIX 1.b Migration Guide

Equivalent POSIX.1b Code

}

void evt_handler2(evt_value, evt_class, evt_mask)
void *evt_value;
evt_class_t evt_class;
evtset_t evt_mask;
{

:
:

}

void evt_final_handler(evt_value, evt_class, evt_mask)
void *evt_value;
evt_class_t evt_class;
evtset_t evt_mask;
{

:
:

}

Equivalent POSIX.1b Code

#include <aio.h>

#define SIZE 1024

void signal_handler1(int signo, siginfo_t *info,
void *context);

void signal_handler2(int signo, siginfo_t *info,
void *context);

void signal_final_handler(int signo, siginfo_t *info,
void *context);

main()
{

int fd1, fd2;
char buf1[SIZE], buf2[SIZE];
struct aiocb cb1, cb2, *cbs[2];
struct sigaction sa;
struct sigevent final_se;
:
fd1 = open(......);
fd2 = open(......);
:
sa.sa_sigaction = signal_handler1;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);

sigaction(SIGRTMIN, &sa, NULL);

sa.sa_sigaction = signal_handler2;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);

sigaction(SIGRTMIN+1, &sa, NULL);
:
cb1.aio_sigevent.sigev_signo = SIGRTMIN;
cb1.aio_sigevent.sigev_value.sival_ptr = NULL;
cb1.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
cb1.aio_offset = 0;
POSIX 1.b Migration Guide 85

Chapter 9 - Asynchronous I/O

cb1.aio_reqprio = 0;
cb1.aio_fildes = fd1;
cb1.aio_buf = buf1;
cb1.aio_nbytes = SIZE;
cb1.aio_lio_opcode = LIO_WRITE;

cb2.aio_sigevent.sigev_signo = SIGRTMIN+1;
cb2.aio_sigevent.sigev_value.sival_ptr = NULL;
cb2.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
cb2.aio_offset = 0;
cb2.aio_reqprio = 0;
cb2.aio_fildes = fd2;
cb2.aio_buf = buf2;
cb2.aio_nbytes = SIZE;
cb2.aio_lio_opcode = LIO_READ;

cbs[0] = &cb1;
cbs[1] = &cb2;

sa.sa_sigaction = signal_final_handler;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);

sigaction(SIGRTMIN+2, &sa, NULL);

final_se.sigev_signo = SIGRTMIN+2;
final_se.sigev_value.sival_ptr = NULL;
final_se.sigev_value.sigev_notify = SIGEV_SIGNAL;
:
lio_listio(LIO_NOWAIT, cbs, 2, &final_se);
:

}

void signal_handler1(signo, info, context)
int signo;
siginfo_t *info;
void *context;
{

:
:

}

void signal_handler2(signo, info, context);
int signo;
siginfo_t *info;
void *context;
{

:
:

}

void signal_final_handler(signo, info, context)
int signo;
siginfo_t *info;
void *context;
{

:
:

}

86 POSIX 1.b Migration Guide

Changes from Draft 9 to POSIX.1b

Changes from Draft 9 to POSIX.1b

All Draft 9 functionality has an equivalent in POSIX.1b, but there are differences
in the data structure entries and the way parameters are passed to functions.

Data Structures

The data structure aiocb changed a lot from Draft 9 to POSIX.1b. Also, the
liocb data structure has been eliminated because of the changes to aiocb.

Table 9-2: Asynchronous I/O Interface

Draft 9 POSIX.1b

<sys/aio.h> <aio.h>

struct liocb Provided by structure aiocb

AIO_EVENT No Equivalent

LIO_ASYNC No Equivalent

AIO_PRIO_DFL No Equivalent

AIO_PRIO_MAX No Equivalent

AIO_PRIO_MIN No Equivalent

AIO_LISTIO_MAX No Equivalent

No Equivalent AIO_PRIO_DELTA_MAX

aread() aio_read()

awrite() aio_write()

listio() lio_listio()

acancel() aio_cancel()

iosuspend() aio_suspend()

afsync() aio_fsync()

No Equivalent aio_error()
Retrieves the error status from an aiocb structure

No Equivalent aio_return()
Retrieves the return status from an aiocb structure
POSIX 1.b Migration Guide 87

Chapter 9 - Asynchronous I/O

The following is a comparison of the aiocb data structures for Draft 9
and POSIX.1b.

POSIX.1b structure includes the file descriptor, buffer, and listio opcode

fields. The new aio_nbytes field has the same semantics as defined by the
read() and write() synopses. Therefore, the synopses for the aio functions
have changed as follows:

� File descriptor, buffer, and number of bytes are not passed as separate
arguments to aio_read() and aio_write().

� listio opcode is not passed as a separate argument to
lio_listio().

The aio_whence field has been eliminated. The aio_offset argument is
treated as an offset from the beginning of the file. The effect is as if aio_whence

is always SEEK_SET.

The aio_errno field has been eliminated. Instead, a new function,
aio_error() with the aiocb argument does the same job.

The aio_flag field has been eliminated. It is superseded by the
aio_sigevent field.

Table 9-3: aiocb Structure

Draft 9 POSIX.1b

aio_offset aio_offset

aio_event aio_sigevent

aio_prio aio_reqprio

aio_whence No Equivalent

aio_flag No Equivalent

aio_errno No Equivalent

aio_nobytes No Equivalent

No Equivalent aio_nbytes

No Equivalent aio_fildes

No Equivalent aio_buf

No Equivalent aio_lio_opcode
88 POSIX 1.b Migration Guide

Timed Suspension

The aio_nobytes field has been eliminated. The new aio_return() function
retrieves the return status from an aiocb structure. aio_return() can be
called only once per structure; this structure may not be passed to aio_error()

or aio_return() again.

There is no relation between the new aio_nbytes field and the old
aio_nobytes field. The aio_return() function may be used on the same
aiocb structure more than once, as a proprietary extension from LynuxWorks.
This can be disabled by a new proprietary library call aio_setparam(). Refer to
the aio_setparam() man page for more information.

Priority of asynchronous I/O can be lowered, but not raised, with respect to the
process priority. However, a proprietary feature of LynxOS allows the priority of
an asynchronous I/O operation to be raised with respect to the process priority.
This is done by the aio_setparam() library call. Refer to the
aio_setparam() man page for more information.

Timed Suspension

The Draft 9 iosuspend() function suspends the process until the completion
of I/O. The aio_suspend() function from POSIX.1b adds an option for timed
suspension. It takes an extra timespec argument for timeout. If this argument
is NULL, the behavior is the same as suspension until the completion of I/O.

Cancellation Notification

With the acancel() function from Draft 9, no event notification is given when
an asynchronous I/O function is successfully cancelled. However, with the
aio_cancel() function from POSIX.1b, normal signal delivery occurs for all
asynchronous I/O functions that are cancelled.

listio Signal Delivery

POSIX.1b provides only two mode values as opposed to the three values from
Draft 9. The LIO_ASYNC value has been removed. The LIO_NOWAIT argument
ensures a final signal delivery, and is equivalent to LIO_ASYNC from Draft 9. If
the final signal parameter passed to lio_listio() is NULL, a final signal is not
sent. This is equivalent to the LIO_NOWAIT behavior from Draft 9.
POSIX 1.b Migration Guide 89

Chapter 9 - Asynchronous I/O

aio_fsync()

The POSIX.1b aio_fsync() function (equivalent to the Draft 9 afsync()

function) provides fsync() behavior with the O_SYNC flag, and fdatasync()

behavior with the O_DSYNC flag. The difference is that for synchronized I/O file
integrity completion, the O_FSYNC flag is used in Draft 9, while the O_SYNC flag
is used in POSIX.1b. Refer to the synchronous I/O section for the semantics of
these functions.

Interoperability

Asynchronous I/O is fully inter-operable. A process using Draft 9 asynchronous
I/O is compatible with a process performing POSIX.1b asynchronous I/O to the
same file.

NOTE: Due to a rare condition in the Draft 9 specification, multiple processes
accessing a file during asynchronous I/O can produce unexpected results. Avoid
using Draft 9 asynchronous I/O if the file will be accessed by multiple processes.
90 POSIX 1.b Migration Guide

APPENDIX A Functions Callable from Signal

Handlers
Because of their asynchronous nature, signals can interrupt any library function,
and many system calls. If the signal handler calls the active function again, it may
corrupt the state of the library, or fail in some subtle way.

POSIX.1 (POSIX.1b and POSIX.1c) specifies a list of functions that are required
to be callable by signal handlers. The following is a list POSIX.1b-specific
functions required to be callable by signal handlers.

Table A-1: List of Callable Functions

access() fdatasync() read() tcdrain()

aio_error() fork() rename() tcflow()

aio_return() fstat() rmdir() tcflush()

aio_suspend() fsync() sem_post() tcgetattr()

alarm() getegid() setgid() tcgetpgrp()

cfgetispeed() geteuid() setpgid() tcsendbreak()

cfgetospeed() getgid() setsid() tcsetattr()

cfsetispeed() getgroups() setuid() tcsetpgrp()

cfgetospeed() getpgrp() sigaction() time()

chdir() getpid() sigaddset() timer_getoverrun()

chmod() getppid() sigdelset() timer_gettime()

chown() getuid() sigemptyset() timer_settime()

clock_gettime() kill() sigfillset() times()

close() link() sigismember() umask()

creat() lseek() sigpending() uname()

dup() mkdir() sigprocmask() unlink()
POSIX 1.b Migration Guide 91

Appendix A - Functions Callable from Signal Handlers

dup2() mkfifo() sigqueue() utime()

execle() open() sigsuspend() wait()

execve() pathconf() sleep() waitpid()

_exit() pause() stat() write()

fcntl() pipe() sysconf()

Table A-1: List of Callable Functions (Continued)
92 POSIX 1.b Migration Guide

APPENDIX B Mapping Between Drafts
This Appendix correlates chapters in the POSIX.4 Draft 9 and POSIX.4 Draft 14
(POSIX.1b) specifications. POSIX.1b chapters are organized differently than those
in POSIX.4 Draft 9. The POSIX.1b is now organized as an amendment to the
POSIX.1 standard.

Table B-1: Draft 9 to POSIX.1b Chapter Mapping

Draft 9 Chapter Location

2. Constants and vars General
Section 2, sysconf,
Section 4, �Process Environment�

fpathconf/pathconf
Section 5, �Files and Directories�

3. Binary Semaphores Semaphores
Section 11, �Synchronization�
(also fork/exit/exec in Section 3)

4. Memory Locking Memory Locking
Section 12, �Memory Management�

5. Shared Memory Shared Memory
Section 12, �Memory Management� (also
fork/exec/exit/close, Sections 3 and 6)

6. Priority Scheduling Scheduling
Section 13, �Execution Scheduling� (also fork/exec
in Section 3)

7. Asynchronous Events Real-Time Signals Extension, Section 3, �Process
Primitives�

8. Clocks and Timers Section 14, �Clocks and Timers�
POSIX 1.b Migration Guide 93

Appendix B - Mapping Between Drafts

9. IPC Message Passing Section 15, �Message Passing�

(also open/fork/exec, Section 3)

10. Synchronized I/O Section 6
�Input and Output Primitives�

11. Asynchronous I/O Section 6
�Input and Output Primitives�

12. Real-Time Files No Equivalent

No Equivalent File Mapping (mmap)
Section 12, �Memory Management� (also
ftruncate, Section 5, �Files and Directories�)

Table B-1: Draft 9 to POSIX.1b Chapter Mapping (Continued)

Draft 9 Chapter Location
94 POSIX 1.b Migration Guide

Index
Symbols

_POSIX_MAPPED_FILES test macro 55
_POSIX_MEMORY_PROTECTION test

macro 55

A

address range, locking 75
address space, locking 75, 76
aio functions, synopses changes 88
aio_buf 88
aio_cancel() function 87, 89
aio_error() function 80, 81, 87, 88
aio_fildes 88
aio_fsync() function 80, 87, 90
aio_lio_opcode 88
aio_nbytes 88, 89
aio_offset 88
aio_read() 87, 88
aio_reqprio 88
aio_return() function 80, 81, 87, 89
aio_setparam() proprietary library call 80, 81, 89
aio_sigevent 88
aio_suspend() function 87, 89
aio_write() 87, 88
aiocb data structure 79, 87, 88
aiocb structure 87
arbitrary data, ability to send 34
Asynchronous I/O 79�90
asynchronous I/O 29

cancellation notification 89
changes 79
data structure changes 79, 87

data structures and flags 79
interface changes 87
interoperability 90
listio signal delivery 89
priority 89
queueing in priority order 80
synopses 80
timed suspension 89

asynchronous I/O priority 79
asynchronous message sending and receiving 37
asynchronous process priority 81
Asynchronous Read and Write 81
asynchronous write

Draft 9 81
POSIX.1b 82

attributes, message queues 39, 46

B

binary semaphores 67, 72
buffer management 47

C

cause of signal generation 31
changes

asynchronous I/O data structure 79
asynchronous I/O interface 87
Compile Time Symbolic Constant 9
Errno Values 9
from Draft 9 to POSIX.1b 3
message queue data structures 39, 45
message queue interface 44
messages 47
POSIX 1.b Migration Guide 95

Index

priorities 47

real-time signals interface 30
scheduling interface 12
scheduling macros 12
semaphores 72
shared memory interface 54
synopses, asynchronous I/O 80
timer functionality 63

changes, general 9
clock, resolution of 57, 65

Draft 9 57
POSIX.1b 58

clock_getres() function 57, 63
clock_gettime() 63
clock_settime() 63
Clocks and Timers 57�65
compile time symbolic constant 9
Compiler Option Changes 4
condition variables, POSIX.1c 72
conditional posting to semaphores 71, 73
conditional posting to semaphores,

simulating 73
contacting LynuxWorks xi
context parameter, signal handling 22
counting semaphores 67, 72
Create Timer 64
Creating and Deleting Shared Memory 51

D

Data Buffer Allocation/Freeing 48
data structures

asynchronous I/O 87
sigevent POSIX.1b 31

data structures in message queues 39, 45
DATALOCK flag 77
deleting a semaphore 68
deleting a timer 65
Determining Timer Overrun Count(s) 61
disarming a timer 65
documents, LynxOS ix
Draft 14 2
Draft 9

address space, locking 75
asynchronous write 81
creating timers 58
definition 2
major changes to POSIX.1b 3

memory locking flags 76
message queue functions 37
named semaphores 69
other event functions 29
real-time signals interface changes 30
setting timer 60
timer overrun count, determining 61

Draft 9 & 10
event functions 35
event structure 23
events facility 23
evtpoll() function 28

E

ekill() proprietary function 26, 31
errno values, changes 9
event functions equivalence, Draft 9 29
event functions with no equivalents in

POSIX.1b 35
Event Functions, Draft 9 & 10 35
event handler and signal handler synopses 21
event handler sequence

Draft 10 21
Draft 9 21

event handlers, Draft 9 & 10
integer 20

event sending 44
event structure 19
event structure contents

Drafts 9 and 10 19
POSIX.1b 20

event structure, Draft 9 & 10 23
events

data capacity 18
sending after timer expiration 29
sending and receiving 48
sending to a process 25
vs. Real-time Signals 18

events and real-time signals interoperability 35
events vs. normal signals 17
evtpoll() 28, 34
evtsuspend() 29
exec() behavior 49
96 POSIX 1.b Migration Guide

F

FIFO order queueing 18
flags, memory locking 77, 78
fork() behavior in shared memory 55
fpathconf(), new parameters 9
ftruncate() function 52, 55
Functions Callable from Signal Handlers 91�92

G

General changes 9
Get Timer Value 64
getclock() 63
getgroups() 5, 7
getpgrp() 6, 7, 8
gettimer() 63, 64

H

handlers
Draft 10 events 18
Draft 9 events 18
signals 18

I

Identifying Function Usage in Applications 8
Indefinite/Timed Wait 34
int signo signal handler 25, 34
interface

asynchronous I/O, changes to 87
clocks and timers 57, 63
memory locking, changes to 77
message queue 37, 44
message queue, changes from Draft 9 to

POSIX.1b 44
scheduling, changes to 12
semaphores, changes to 72
shared memory, changes to 54
timer creation 58

interoperability
asynchronous I/O 90

events and real-time signals 35
memory locking 78
message queues 49
scheduling 15
semaphores 73
shared memory 56
timers 65

inter-process communication (IPC) 17
Introduction 1�10
IPC objects, listing and removing 67

L

libc.a 5
name conflicts with liblynx.a 5

liblynx.a 4
name conflicts with libc.a 5
other functions 8
using parts in an application 8

libposix4d9.a 4
Library Structure Changes 4
lio_listio() 87
liocb data structure 79, 87
lipcrm LynxOS utility 49, 56, 67, 73
lipcs LynxOS utility 49, 56, 67, 73
list-directed I/O 83

Draft 9 83
POSIX.1b 85

locking
address range 75
current and future growth 78
current pages 76
data, text, or stack segments 77
entire address space 76
flags for 77
future growth 76
future pages 76
process address space 75, 76

Draft 9 75
POSIX.1b 76

specific address space 75
Locking/Unlocking the Entire Process 78
ls utility 67
lsbrk() function 8
LynuxWorks, contacting xi
LynxOS proprietary scheduling policy 13
POSIX 1.b Migration Guide 97

Index

M

macros, scheduler parameters 13
MAP_SHARED flag 55
Mapping and Unmapping shared Memory 53
Mapping Between Drafts 93�94
mapping files and devices into process address

space 51
MCL_CURRENT flag 76
MCL_FUTURE flag 76
Memory Locking 75�78
memory locking

flags 76, 78
Draft 9 76
POSIX.1b 77

interface changes 77
interoperability 78
restricting 75

memory locks, multiple 78
memory object data 51
message availability, notification of 42, 44, 49
message queue attributes 46

getting and setting 39, 46
getting and setting Draft 9 39
getting and setting POSIX.1b 40

message queue creation
Draft 9 example 38
POSIX.1b example 38

message queue data 51, 67
message queue functions, Draft 9 37

simulatable in POSIX.1b 37
Message Queues 37�49
message queues 29

buffer management 47
creating 38
data structure changes 39, 45
interface 44
Interoperability 49
names 37
New Utilities 49
persistence 37
synchronization control 47
wrapping 48

message receive order 44
message synchronization 44
messages

changes 47
overlong 49
priority changes 47

selective receive 47
selective removal 37, 47
sending and receiving 41

Draft 9 example 41
POSIX.1b example 41

time-stamping 48
mkcontig() function 8
mksem() 69, 72
mkshm() 51, 54
mktimer() 58, 63, 64
mlockall() function 78
mmap() function 51, 55

return value 55
mprotect() function 55
mq_attr structure 39, 45
mq_maxmsg attribute 39
mq_msgsize attribute 39
mq_notify() function 42
mq_open() function 38
mq_receive() 42
mq_selective_receive LynxOS function 45, 47
mqgetpid() 48
mqpurge() 48
mqstatus structure 39, 45
MQWRAP flag 44, 48
MSG_MOVE and MSG_USE flags 37
msgalloc() function 48
msgcb structure 39, 45
msgfree() function 48
msync() function 55
munlockall() function 78

N

named semaphores 67, 69, 72
listing and removing 73

names for message queues 37
nanosleep() 65
New Library Structure Issues 5
non-persistent semaphores 67
non-persistent shared memory, simulating 51
non-preemptible scheduling policy 14
Notification of Message Availability 42, 49
98 POSIX 1.b Migration Guide

O

O_CREAT flag 51, 69
overlong messages 44

P

P4D9 3
pathconf(), new parameters 9
pending signals 31
pending signals/events, timers 65
Permission Checking 73
persistence, message queues 37
persistence, shared memory 51, 54
persistent semaphores 67
Pointer-Worth of Data 49
Polling for a Real-Time Signal 28
POSIX 1003.1 1
POSIX 1003.4 standard 2
POSIX.1 definition 1
POSIX.1 sigaction structure 24
POSIX.1 standard 2
POSIX.1b

address space, locking 76
asynchronous write 82
creating timers 59
major changes from Draft 9 3
memory locking flags 77
message priorities 47
mmap() function 51
mq_notify() function 42
named semaphores 67, 69
real-time signals 23
real-time signals interface, important

points 30
sa_sigaction member 24
SA_SIGINFO flag 24
setting timer 60
sigevent structure 23
siginfo_t structure 24
signal handler synopsis 25
Signal Handlers 34
sigqueue() function example 27
timer overrun count, determining 62

POSIX.1b standard, definition 1
POSIX.1c, definition 2
POSIX.4 Draft 14 1

POSIX.4 standard 2
POSIX.4a

definition 2
Draft 4 2
Draft 8 2

posting and waiting on semaphores 70
Draft 9 70
POSIX.1b 70

posting to a semaphore, conditional 71, 73
priority scheduling 47
priority, asynchronous I/O 79, 89
priority, asynchronous process 81
priority, process scheduling 79
priority, scheduler 11
process address space, locking 75
process priority 47
process scheduling priority 79
process, locking or unlocking 78
PROT_NONE flag 55
Protection 55
Purging, Data Buffer Allocation/Freeing 48

Q

Queue wrapping 44
queueing a real-time signal to a process 26
queueing a signal, POSIX.1b 31

R

race condition, semifpost() 72
read, asynchronous 81
real-time signal

data structures 31
default action, POSIX.1b 30
polling for 28
sending to a process 27
sending without queueing sigqueue() 29

Real-Time Signals 17�35
real-time signals and events interoperability 35
real-time signals vs. events 18
receiving messages 41
Reference manuals ix
Relative and Absolute Times 64
reltimer() 63
resclock() 57, 63, 65
POSIX 1.b Migration Guide 99

Index

resetting a timer 65
resolution, clock 57, 65
restricting memory locks 75
rm utility 67
rmtimer() 63
rmtimer() function 58

S

SA_D9EV 19, 24, 32
sa_flags flag 42, 58
sa_flags member 24, 32
sa_flags members, features 24
sa_handler member 18
SA_NOCLDSTOP flag 24, 32
sa_sigaction member 18, 22, 32, 58
sa_sigaction.sa_flags 24
SA_SIGINFO flag 18, 21, 22, 32, 42
SCHED_DEFAULT LynxOS scheduling

policy 13
sched_get_priority_max() function 12, 13
sched_get_priority_min() function 12, 13
sched_getparam() function 12
sched_getscheduler() function 12
SCHED_OTHER scheduling policy 13
sched_param structure 11
sched_priority priority type 11
sched_rr_get_interval() function 12, 13
sched_setparam() function 12
sched_setscheduler() function 12
sched_yield() function 12, 13
scheduler parameters, macros 13
Scheduling 11�15
scheduling

interface, changes 12
interoperability 15
Macros vs. Functions 13
non-preemptible scheduling 14
priorities 11

scheduling functions, examples 11
scheduling macros, changes 12
selective removal, messages 37
sem_close() function 72
sem_count() function 6
sem_delete() function 6
sem_destroy() function 67
sem_get() function 6
sem_getvalue() function 71, 72, 73

sem_init() function 67
sem_nsignal() function 6
sem_open() function 69, 72
sem_post() function 73
sem_reset() function 6
sem_signal() function 6
sem_trywait() function 73
sem_unlink() function 73
sem_wait() function 6, 8, 73
Semaphores 67�73
semaphores

binary 67, 72
changes 72
conditional posting 71, 73
counting 67, 72
deleting 68
interoperability 73
named 67, 72
named, creating 69

Draft 9 69
POSIX.1b 69

new utilities 73
non-persistent 67
permission checking 73
persistent 67
posting 70
unnamed 67, 68, 72
value 51, 67
waiting on 70

semifpost(), race condition 72
Sender ID 48
Sending a Real-Time Signal to a Process 27
Sending and Receiving Events 48
Sending and Receiving Messages 41
setclock() 63
Shared Memory 51�56
shared memory

changes to interface 54
creating and deleting 51
Draft 9 code example 52
interoperability 56
mapping 53

Draft 9 53
POSIX.1b 53

new utilities 56
object size 51, 54
persistence 54
persistence-related differences 51
POSIX.1b code example 52
size 52
100 POSIX 1.b Migration Guide

unmapping 53

shared memory object data 67
shared memory object, shared and private

changes 55
shm_open() function 51, 54
shm_unlink() function 52
SI_ASYNCIO 22, 25, 33
si_code member 24, 33
SI_MESGQ 22, 25, 33
SI_QUEUE 22, 25, 33
si_signo member 24, 33
SI_TIMER 22, 25, 33
si_value member 25, 33
sigaction structure 18, 22, 24, 30, 32

contents 19
real-time signal handling 18

sigaction(), signal handler function 6, 7, 18
sigemptyset() function 35
sigev_notify member 20, 23, 30, 31, 32
sigev_signo member 23, 31
sigev_value member 23, 31
sigevent structure 19, 23, 30, 34, 64, 65
sigevent structure types 31
sigfillset() function 35
siginfo_t *info signal handler 25, 34
siginfo_t structure 21, 23, 26, 31, 33
siginfo_t.si_code 22
signal and event handler synopses 21
signal delivery, order 31
signal functions

Events 17
Normal signals 17
Real-time signals 17

signal generation, cause 31
signal handler calling sequence, POSIX.1 21
signal handler sequence, POSIX.1b 21
signal handler synopsis, POSIX.1b 25
signal handlers, POSIX.1b 34
Signal Number, timers 64
signal() function 7
Signal/Event Associated with a Timer 64
signal-catching function 33
signals

application-defined value 19
cause of 24
default action 17
normal vs. Events 17
pending 31
queueing to a process, POSIX.1b 31
real-time vs. events 18

user-defined 17
sigqueue() function 23, 25, 27, 31, 33
SIGRTMAX 31
SIGRTMIN 23, 31
sigsuspend() function 29, 35
sigtimedwait() function 28, 34, 35
sigval union 20, 23, 32
sigwaitinfo() function 28, 34
simulating conditional posting to semaphores 73
simulating non-persistent memory 51
size, shared memory 52
size, shared memory object 54
sleep() function 7
smem_create() function 8
smem_get() function 8
smem_remove() function 8
STKLOCK flag 77
susleep() function 7
synchronization control 47
sysconf(), new parameters 9

T

Technical Support xi
Timed Suspension, asynchronous I/O 89
timer

absolute and the relative values 60
creation and deletion 58

Draft 9 58
POSIX.1b 59

setting 60
Draft 9 60
POSIX.1b 60

timer overrun count 57, 63
timer overrun count, determining 61

Draft 9 61
POSIX.1b 62

timer value, getting 64
TIMER_ABSTIME flag 64
timer_create() 64
timer_create() function 58, 63, 64
timer_delete() function 58, 63
timer_getoverrun() function 57, 63
timer_getres() 65
timer_gettime() 63, 64
timer_settime() function 60, 63, 64
timers

associated signal/event 64
POSIX 1.b Migration Guide 101

Index

changes from Draft 9 to POSIX.1b 63
creating 64
deleting 65
disarming 65
interoperability 65
pending signals/events 65
relative and absolute values 64
resetting 65
resolutions 64
signal number 64

Timers and clocks 57
Timers, Message Queues, and Asynchronous

I/O 29
time-stamping messages 48
truncation control, messages 49
TXTLOCK flag 77
Typographical Conventions x

U

unlocking entire process 78
unnamed semaphores 67, 68, 72
Using Parts of liblynx.a in an Application 8
usleep() function 7

V

vmtopm() function 8
void *context signal handler 25, 34

W

wait types 34
wrapping, message queues 48
write, asynchronous 81

Y

yield() 13
102 POSIX 1.b Migration Guide

	Preface
	For More Information
	Typographical Conventions
	Special Notes
	Technical Support
	LynuxWorks U.S. Headquarters
	LynuxWorks Europe
	World Wide Web

	Chapter 1 Introduction
	POSIX.1b Description
	Overview of Major Changes
	Library Structure and Compiler Option Changes
	Library Structure Changes
	Compiler Option Changes
	New Library Structure Issues
	Name Conflicts Between liblynx.a and libc.a
	Identifying Function Usage in Applications
	Other Functions in liblynx.a
	Using Parts of liblynx.a in an Application

	Other General Changes

	Chapter 2 Scheduling
	Scheduler Priority
	Draft 9 code
	Equivalent POSIX.1b code

	Changes to Macros
	Draft 9 code
	Equivalent POSIX.1b code

	Macros vs. Functions
	yield ()
	SCHED_OTHER
	Non-Preemptible Scheduling Policy
	Interoperability

	Chapter 3 Real-Time Signals
	Normal Signals Versus Events
	Events Versus Real-Time Signals
	The sigaction Structure
	sigaction Structure Contents

	The Event Structure
	event Structure Contents
	signal and event Handler Synopses
	siginfo_t Structure
	Data Structures
	Signal Handlers
	Use of the sigqueue Function
	Sending a Real-Time Signal to a Process
	Draft 9 Code
	Equivalent POSIX.1b Code

	Polling for a Real-Time Signal
	Draft 9 Code
	Equivalent POSIX.1b Code

	Equivalence for Other Draft 9 Event Functions
	Timers, Message Queues, and Asynchronous I/O

	Changes from Draft 9 to POSIX.1b
	Data Structures
	Indefinite/Timed Wait
	Ability to Send Arbitrary Data
	Drafts 9 and 10 Event Functions
	Interoperability

	Chapter 4 Message Queues
	Creating Message Queues
	Draft 9 Code
	Equivalent POSIX.1b Code

	Data Structure Changes
	Getting and Setting Message Queue Attributes
	Draft 9 Code
	Equivalent POSIX.1b Code

	Sending and Receiving Messages
	Draft 9 Code
	Equivalent POSIX.1b Code

	Notification of Message Availability
	Changes from Draft 9 to POSIX.1b
	Interface Changes
	Data Structures
	Attributes
	Messages
	Message Priorities
	Selective Receive
	Process Priorities
	Synchronization Control
	Buffer Management
	Sending and Receiving Events
	Purging, Data Buffer Allocation/Freeing
	Sender ID
	Queue Wrap
	Time-Stamping
	Truncation Control
	A Pointer-Worth of Data
	Notification of Message Availability
	exec() Behavior

	New Utilities
	Interoperability

	Chapter 5 Shared Memory
	Introduction
	Creating and Deleting Shared Memory
	Draft 9 Code
	Equivalent POSIX.1b Code

	Mapping and Unmapping Shared Memory
	Draft 9 Code
	Equivalent POSIX.1b code

	Changes from Draft 9 to POSIX.1b
	Persistence
	Size of Shared Memory Object
	Shared/Private Changes
	fork() Behavior
	Protection
	msync() and mprotect() Functions
	Return Values
	New Utilities
	Inter-Operability

	Chapter 6 Clocks and Timers
	Introduction
	Resolution of a Clock
	Draft 9 Code
	Equivalent POSIX.1b Code

	Creation and Deletion of a Timer
	Draft 9 Code
	Equivalent POSIX.1b Code

	Setting a Timer
	Draft 9 Code
	Equivalent POSIX.1b Code

	Determining Timer Overrun Count(s)
	Draft 9 Code
	Equivalent POSIX.1b Code

	Changes from Draft 9 to POSIX.1b
	Overrun Count
	Signal/Event Associated with a Timer
	Signal Number
	Relative and Absolute Times
	Resolutions
	Get Timer Value
	Create Timer
	Clock Resolution
	nanosleep()
	Pending Signals/Events
	Interoperability

	Chapter 7 Semaphores
	Introduction
	Unnamed Semaphores
	Creating a Named Semaphore
	Draft 9 Code
	Equivalent POSIX.1b Code

	Posting and Waiting on Semaphores
	Draft 9 Code
	Equivalent POSIX.1b Code

	Conditional Posting to Semaphores
	Draft 9 Code
	Equivalent POSIX.1b Code

	Changes from Draft 9 to POSIX.1b
	Conditional Posting
	Permission Checking
	New Utilities
	Interoperability

	Chapter 8 Memory Locking
	Locking the Specific Address Space
	Draft 9 Code
	Equivalent POSIX.1b Code

	Locking Future Growth
	Draft 9 Code
	Equivalent POSIX.1b Code

	Changes from Draft 9 to POSIX.1b
	Locking Flags
	Multiple Locks
	Locking/Unlocking the Entire Process
	Current/Future Locking
	Interoperability

	Chapter 9 Asynchronous I/O
	Data Structure Changes
	Asynchronous Read and Write
	Draft 9 Code
	Equivalent POSIX.1b Code

	List Directed I/O
	Draft 9 Code
	Equivalent POSIX.1b Code

	Changes from Draft 9 to POSIX.1b
	Data Structures
	Timed Suspension
	Cancellation Notification
	listio Signal Delivery
	aio_fsync()
	Interoperability

	Appendix A Functions Callable from Signal Handlers
	Appendix B Mapping Between Drafts
	Index

